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Character Triple Conjecture for
p-Solvable Groups

Damiano Rossi

To the memory of Carlo Casolo

Abstract

In this paper, we prove the Character Triple Conjecture for p-solvable groups. This is a

conjecture proposed by Späth during the reduction process of Dade’s Projective Conjecture to

quasisimple groups (see [Spä17]). In addition, as suggested by Isaacs and Navarro in [IN02], we

take into account the p-residue of characters.

1 Introduction

Global-local counting conjectures play a major role in modern representation theory of finite

groups. Amongst them are the McKay Conjecture [McK72] and its blockwise version, known

as the Alperin-McKay Conjecture [Alp76], the Alperin Weight Conjecture [Alp87] and a series of

conjectures proposed by Dade in [Dad92], [Dad94] and [Dad97] that imply all the above mentioned

conjectures. Dade’s aim was to find a version of his conjecture strong enough to hold for every

finite group if proved for all nonabelian simple groups. Unfortunately, such a reduction theorem

has never been published. The first step towards the solution of the global-local conjectures has

been achieved by Isaacs, Malle and Navarro in [IMN07] where the McKay Conjecture was reduced

to a stronger statement for simple groups. Inspired by this result, other reduction theorems have

been proved (see [NT11], [Spä13a], [Spä13b], [Spä17] and [NSV20]). However, contrary to Dade’s

philosophy, all the reduction theorems appeared so far reduce a certain statement for arbitrary

finite groups to a much stronger statement for quasisimple groups.

Although these stronger statements, known as inductive conditions, have been originally thought

for (quasi)simple groups, they can be stated for arbitrary finite groups. Then, going back to Dade’s

plan, by proving the inductive condition for simple groups it should be possible to obtain, not only

the original conjecture, but even the inductive condition itself for every finite group. This was

done in [NS14b] for the Alperin–McKay Conjecture.

In [Spä17] Späth introduced the Character Triple Conjecture and showed that Dade’s Projective

Conjecture holds for every finite group if her conjecture holds for all quasisimple groups. Therefore

Späth’s conjecture plays the role of inductive condition for Dade’s Projective Conjecture. Following

[NS14b], we would like to show that the Character Triple Conjecture holds for every finite group
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if it holds for all quasisimple groups. To prove such a reduction theorem, it is necessary to study

the structure of a minimal counterexample. As for the above mentioned reductions, the first step

in this direction is to show that such a counterexample cannot be p-solvable. This result was in

preparationwhen the paper [Spä17] was published. Unfortunately, the projectwas later abandoned

and no proof has appeared. With permission of Späth, we take over the project and prove the

Character Triple Conjecture for p-solvable groups in this paper.

More precisely, let G be a finite group and fix a prime p. For any d ≥ 0, we denote by Irrd(G) the
set of irreducible characters χ ∈ Irr(G) with p-defect equal to d. Let N(G) be the set of p-chains
of G starting with Op(G). If D = {D0 < D1 < ⋅ ⋅ ⋅ < Dn} ∈ N(G), we denote by ∣D∣ the integer
n, called the length of D. This yields a partition of N(G) into the set N(G)+ of p-chains of even
length and the set N(G)− of p-chains of odd length. Notice that G acts by conjugation on the set

of p-chains and let GD be the stabilizer in G of the chain D. For ǫ ∈ {+,−} and B a p-block of G,

define

C
d(B)ǫ ∶= {(D, ϑ) ∣ D ∈N(G)ǫ, ϑ ∈ Irrd(GD),bl(ϑ)G = B} ,

where bl(ϑ) is the unique block of GD containing ϑ and bl(ϑ)G is the block of G obtain via

Brauer’s induction (this is defined by [KR89, Lemma 3.2]). We denote by (D, ϑ) the G-orbit of
(D, ϑ) ∈ Cd(B)ǫ and by Cd(B)ǫ/G the set of G-orbits. Now, our main result can be stated as

follows.

Theorem A. LetG be a finite p-solvable group withOp(G) ≤ Z(G) and consider a p-blockB of G

with noncentral defect groups. Suppose that G ⊴ A and denote by AB the stabilizer of B in A. Then,

for every d ≥ 0, there exists an AB-equivariant bijection

Ω ∶ Cd(B)+/G→ Cd(B)−/G

such that

(AD,ϑ,GD, ϑ) ∼G (AE,χ,GE, χ) ,

in the sense of Definition 2.1, for every (D, ϑ) ∈ Cd(B)+ and (E, χ) ∈ Ω((D, ϑ)).

Recall that for χ ∈ Irr(G), the p-residue of χ is the nonnegative integer r(χ) ∶= ∣G∣p′/χ(1)p′ . Fol-
lowing ideas of Isaacs and Navarro [IN02], we include the p-residue of characters into the picture.

However, we do not consider more technical refinements involving Galois automorphisms (see

[Nav04]) or p-local Schur indices (see [Tur08b]) as done by Turull in [Tur17] for Dade’s Conjec-

ture.

Theorem B. There exists a bijection Ω satisfying the conditions of Theorem A and such that

r(ϑ) ≡ ±r(χ) (mod p),

for every (D, ϑ) ∈ Cd(B)+ and some (E, χ) ∈ Ω((D, ϑ)).

As a corollary to our results, we show that Dade’s Extended Projective Conjecture [Dad97, 4.10],

with the Isaacs-Navarro refinement, holds for every p-solvable group.

Corollary C. Dade’s Extended Projective Conjecture with the Isaacs-Navarro refinement holds for

every p-solvable group.

Proof. This follows from Theorem B and [Spä17, Proposition 6.4].
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The paper is structured as follows: in the next section, we establish some notation, we give the

main definitions used in the paper and we prove some preliminary results. In the third section,

we construct an equivariant defect preserving character bijection lying above the Glauberman

correspondence that is well behaved with respect to N -block isomorphic character triples (see

Definition 2.1). In the fourth section, we show how to construct N -block isomorphic character

triples by using the Fong correspondence. Finally in the last section, we use the previously obtained

results to prove Theorem A and Theorem B. This is done by inspecting the structure of a minimal

counterexample.

2 Preliminaries and notation

We use standard notation from representation theory of finite groups as in [Isa76], [NT89] and

[Nav98]. All groups considered in the sequel are assumed to be finite. For notational convenience,

whenever necessary we denote the normalizer NG(H) simply by GH , for every H ≤ G.

Let Irr(G) the set of ordinary irreducible characters. If H ≤ G and χ ∈ Irr(G), then Irr(χH)
is the set of irreducible characters of H which appear as constituents of the restricted character

χH . Moreover, for ϑ ∈ Irr(H), we denote by Irr(G ∣ ϑ) the set of irreducible constituents of the
induced character ϑG. For N ⊴ G and ϑ ∈ Irr(N) we denote byGϑ the stabilizer of ϑ in G and by

IrrG(N) the set of G-invariant irreducible characters ofN . Then (G,N,ϑ) is a character triple if
N ⊴ G and ϑ ∈ IrrG(N).

Fix a prime p. For χ ∈ Irr(G), there exist unique nonnegative integers d(χ) and r(χ), called
respectively the p-defect and the p-residue ofχ, such that r(χ)pd(χ) = ∣G∣/χ(1)with r(χ) coprime

to p. For any d ≥ 0, we denote by Irrd(G) the set of irreducible characters χ ∈ Irr(G) such that

d(χ) = d. We denote by Bl(G) the set of p-blocks of G and by Bl(G ∣ b) the set of all blocks of G
covering b, whereN ⊴ G and b ∈ Bl(N). LetGb be the stabilizer of b inG. IfH ≤ G and b ∈ Bl(H),
then bG is, when it is defined, the block obtained via Brauer induction. For χ ∈ Irr(G), the block
of G that contains χ is bl(χ). Let δ(B) be the set of defect groups of the block B and d(B) be its
defect. IfD is a p-subgroup of G, then Bl(G ∣D) is the set of blocks of G with D ∈ δ(B).

For the notion of projective representation, we refer to [NT89], [Nav18] and [Spä18]. We denote by

Proj(G ∣ α) the set of projective representations of G with factor set α. Moreover, if N ⊴ G, then
we can consider a representation of G/N as a representation of G that is constant on N -cosets

by the usual inflation process. If P is a projective representation associated with a character triple

(G,N,ϑ) (see [Spä18, Definition 1.7] and [Nav18, Definition 5.2]), thenP yields a central extension

of G (see [Nav18, Theorem 5.6] and [Spä18, Theorem 1.12]). This is a standard construction and

we will make use of it without further comment.

In [Spä17, Definition 6.3] a new equivalence relation on character triples was introduced. This will

be of fundamental importance in what follows and, for completeness, we include the definition.

Definition 2.1 (N -block isomorphic character triples). Let (H1,M1, ϑ1) and (H2,M2, ϑ2) be
two character triples and let N be a group. We say that the two character triples are N -block

isomorphic, and write

(H1,M1, ϑ1) ∼N (H2,M2, ϑ2) ,

if the following conditions are satisfied:

(i) N ⊴ NH1 = NH2 =∶ G, M1 = H1 ∩ N and M2 = H2 ∩ N . We denote the canonical

isomorphisms by li ∶Hi/Mi → G/N and by i ∶= l−1
2
○ l1 ∶H1/M1 →H2/M2;
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(ii) For i = 1,2, there exists a defect groupDi ∈ δ(bl(ϑi)) such thatCG(Di) ≤Hi. In particular

CG(N) ≤H1 ∩H2;

(iii) For i = 1,2, there exists a projective representation Pi ∈ Proj(Hi ∣ αi) associated with

(Hi,Mi, ϑi) such that α1(x, y) = α2(i(x), i(y)), for every x, y ∈ H1/M1, and with the

property that P1,CG(N) and P2,CG(N) are associated with the same scalar function (see the

comments preceding [Spä18, Definition 2.7] and [Nav18, Definition 10.14]). In this case, there

exists a strong isomorphism of character triple (i, σ) ∶ (H1,M1, ϑ1) → (H2,M2, ϑ2) (see
[Isa76, Problem 11.13]) given by

σJ1
∶ Irr(J1 ∣ ϑ1)→ Irr(J2 ∣ ϑ2)

tr(QJ1
⊗P1,J1

)↦ tr(QJ2
⊗P2,J2

),

for everyN ≤ J ≤ G, where Ji ∶= J ∩Hi andQ ∈ Proj(J/N ∣ α−1J×J). Here α is the factor set

of G/N corresponding to αi via the isomorphism li ∶Hi/Mi → G/N (see [Spä17, Theorem

3.3]);

(iv) For N ≤ J ≤ G, we have
bl(ψ)J = bl(σJ1

(ψ))J

for every ψ ∈ Irr(J1 ∣ ϑ1). Observe in this situation that block induction is well defined (see

[Spä17, Lemma 3.5]).

In this situation, we say that (P1,P2) is associated with (H1,M1, ϑ1) ∼N (H2,M2, ϑ2), or that
(H1,M1, ϑ1) ∼N (H2,M2, ϑ2) is given by (P1,P2). Whenever we want to specify the pair

(P1,P2) we write σ
(P1,P2)
J1

instead of simply σJ1
.

The above definition gives a relation on character triples that extends the relation ≥b introduced
in [Spä18, Definition 4.2] (see also [NS14b]). In fact, observe that (G,N,χ) ≥b (H,M,ϑ) if and
only if (G,N,χ) ∼N (H,M,ϑ). On the other hand, the notion of block isomorphism of character

triples given in [NS14b, Definition 3.6] is slightly different, and in some sense more restrictive,

from the relation ≥b (see [Spä18, Remark 4.3 (c)]). For this reason, we will not refer to results of

[NS14b] which involve directly block isomorphism of character triples.

Having defined N -block isomorphic character triples, we can now introduce Späth’s Character

Triple Conjecture ([Spä17, Conjecture 6.3]). For a central p-subgroupZ ofG, we denote byN(G,Z)
the set of normal p-chains of G starting with Z . These are the chains D = {Z = D0 < D1 < ⋅ ⋅ ⋅ <
Dn} of p-subgroups of G with the property that each Di is normal in the largest subgroup Dn.

We denote by ∣D∣ the integer n, called the length of D. The set N(G,Z) is partitioned into the set

N(G,Z)+ of p-chains of even length, and the set N(G,Z)− of p-chains of odd length. The group

G acts by conjugation on N(G,Z) and we denote by GD = ⋂iNG(Di) the stabilizer in G of the

chain D. Finally, let B be a block of G and, for ǫ ∈ {+,−} and d ≥ 0, define Cd(B,Z)ǫ to be the set
of pairs (D, ϑ) with D ∈ N(G,Z)ǫ and ϑ ∈ Irrd(GD) satisfying bl(ϑ)G = B. Again, the group G

acts on Cd(B,Z)ǫ. We denote by (D, ϑ) the G-orbit of (D, ϑ) ∈ Cd(B,Z)ǫ and by Cd(B,Z)ǫ/G
the set of G-orbits.

Conjecture 2.2 (Späth’s Character Triple Conjecture). Let G be a finite group, Z ≤ Z(G) be a
p-subgroup and consider B ∈ Bl(G) with defect groups strictly larger than Z . Suppose that G ⊴ A.
Then, for every d ≥ 0, there exists an NA(Z)B-equivariant bijection

Ω ∶ Cd(B,Z)+/G→ Cd(B,Z)−/G

4



such that

(AD,ϑ,GD, ϑ) ∼G (AE,χ,GE, χ) ,

for every (D, ϑ) ∈ Cd(B,Z)+ and some (E, χ) ∈ Ω((D, ϑ)).

By [Spä17, Lemma 3.8 (c)], the above statement on character triples does not depend on the choice

of (E, χ) ∈ Ω((D, ϑ)) nor on the representative (D, ϑ) of (D, ϑ). We will make use of this fact

without further reference.

As shown in the following lemma, it is no loss of generality to assumeOp(G) ≤ Z(G) and consider
p-chains with initial term Op(G). This is an adaptation of a well known result (see, for instance,

[Nav18, Theorem 9.16]).

Lemma 2.3. Conjecture 2.2 holds whenever Z <Op(G).

Proof. Consider D ∈ N(G,Z) with D = {D0 < D1 ⋅ ⋅ ⋅ < Dn}. If Op(G) ≰ Dn, then define D∗ to

be the p-chain obtained by adding Op(G)Dn to D. Assume Op(G) ≤ Dn and let k be the unique

nonnegative integer such that Op(G) ≤ Dk and Op(G) ≰ Dk−1. If Op(G)Dk−1 = Dk , then we

define D∗ by deleting the termDk from D. IfOp(G)Dk−1 <Dk , then we define D∗ by adding the

term Op(G)Dk−1 to D. This defines a self-inverse NA(Z)-equivariant bijection ∗ ∶ N(G,Z) →
N(G,Z) such that ∣D∣ = ∣D∗∣ ± 1. In particular GD = GD∗ and we define Ω((D, ϑ)) ∶= (D∗, ϑ), for
every (D, ϑ) ∈ Cd(B,Z)+.

2.1 A consequence of the Harris–Knörr theorem

Next, we collect some consequences of the Harris–Knörr theorem that will be used in the sequel.

The reader should notice that Corollary 2.5 and Corollary 2.6 below can also be deduced from

[Tur17, Theorem 4.1]. However, we present here an elementary argument.

Lemma 2.4. LetN ⊴ G and P be a p-subgroup ofN . Consider a block b ∈ Bl(N ∣ P ) and its Brauer
first main correspondent b′ ∈ Bl(NN(P ) ∣ P ). Let B′ ∈ Bl(NG(P )) and set B ∶= (B′)G. Then B′

covers b′ if and only if B covers b.

Proof. The result follows from the proof of the Harris–Knörr theorem [HK85].

If P is a p-group acting via automorphisms on a p′-group N , we denote by fP ∶ IrrP (N) →
Irr(CN(P )) the P -Glauberman correspondence (see [Isa76, Chapter 13] and [Nav18, §2.3]).

Corollary 2.5. Let N be a normal p′-subgroup of G and P be a p-subgroup of G. Consider µ ∈
IrrP (N) and set µ′ ∶= fP (µ) ∈ Irr(CN(P )). If B′ ∈ Bl(NG(P )), then B′ covers bl(µ′) if and
only if (B′)NNG(P ) covers bl(µ). Moreover, if µ is G-invariant, then B′ covers bl(µ′) if and only if
(B′)G covers bl(µ).

Proof. Let b′ be the unique block of NNP (P ) that covers bl(µ′), b the unique block of NP that

covers bl(µ) (see [Nav98, Corollary 9.6]) and notice that b and b′ are Brauer first main corre-

spondents over P . Now, Bl(NNG(P ) ∣ bl(µ)) = Bl(NNG(P ) ∣ b) and Bl(NG(P ) ∣ bl(µ′)) =
Bl(NG(P ) ∣ b′) and applying Lemma2.4 it follows thatB′ covers bl(µ′) if and only if (B′)NNG(P )

covers bl(µ). Moreover, if µ is G-invariant, then bl(µ) is covered by (B′)NNG(P ) if and only if it

is covered by (B′)G.
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With the same argument, we obtain a version of the above corollary for normal p-chains.

Corollary 2.6. Let N be a normal p′-subgroup of G and D be a normal p-chain of G with last term

P . Consider µ ∈ IrrP (N) and set µ′ ∶= fP (µ) ∈ Irr(CN(P )). IfB′ ∈ Bl(GD), then B′ covers bl(µ′)
if and only if (B′)NGD covers bl(µ). Moreover, if µ is G-invariant, then B′ covers bl(µ′) if and only
if (B′)G covers bl(µ).

Proof. The proof of Corollary 2.5 applies with minor changes.

2.2 Construction of N-block isomorphic character triples

We prove some useful results that can be used to construct N -block isomorphic character triples.

First, we give a version of [NS14b, Theorem 3.14] for our situation. This proposition allows to

obtain new N -block isomorphic character triples involving irreducibly induced characters. This

is the case, for instance, when we apply the Fong–Reynolds correspondence or the Clifford corre-

spondence. Before proving this result, we need an easy lemma.

Lemma 2.7. Let N ⊴ G and ϑ ∈ Irr(N). If ϑG ∈ Irr(G), then CG(N) ≤ N .

Proof. Set H ∶= NCG(N) and observe that ψ ∶= ϑH ∈ Irr(H). Since ϑ is H-invariant we have

ψN = eϑ with e = ∣H ∶N ∣. However e = [ψN , ϑ] = [ψ,ψ] = 1 and therefore CG(N) ≤ N .

Proposition 2.8. Let N ⊴ G and G0 ≤ G. For i = 1,2, consider Hi ≤ G such that G = NHi

and set Mi ∶= N ∩ Hi, H0,i ∶= G0 ∩ Hi, M0,i ∶= G0 ∩Mi and N0 ∶= G0 ∩ N ⊴ G0. Suppose

that G = G0N , that Hi = H0,iMi and that ϕi ∶= (ϕ0,i)Mi ∈ Irr(Mi), for some ϕ0,i ∈ Irr(M0,i).
If (H0,1,M0,1, ϕ0,1) ∼N0

(H0,2,M0,2, ϕ0,2), there exists a defect group Di ∈ δ(bl(ϕi)) such that

CG(Di) ≤ Hi, and induction IndJiJ0,i
∶ Irr(J0,i ∣ ϕ0,i) → Irr(Ji ∣ ϕi) defines a bijection for every

N ≤ J ≤ G, where Ji ∶= J ∩Hi and J0,i ∶= J ∩H0,i, then (H1,M1, ϕ1)∼N (H2,M2, ϕ2).
Proof. Assume (H0,1,M0,1, ϕ0,1)∼N0

(H0,2,M0,2, ϕ0,2) via (P0,1,P0,2) and letα0,i be the factor

set ofP0,i. Consider the canonical isomorphisms l0,i ∶H0,i/M0,i → G0/N0 and li ∶Hi/Mi → G/N
and set i0 ∶= l−10,2 ○ l0,1 and i = l

−1
2 ○ l1. If j ∶ G/N → G0/N0 and ji ∶ Hi/Mi → H0,i/M0,i are the

canonical isomorphisms, then we have a commutative diagram

H1/M1 G/N H2/M2

H0,1/M0,1 G0/N0 H0,2/M0,2

l1

i

j1 j

l2

j2

l0,1

i0

l0,2

As in [NS14b, Theorem3.14], we consider the projective representationPi ∶= (P0,i)Hi ∈ Proj(Hi ∣ αi)
defined as follows: let {ti,1, . . . , ti,n} be a Hi-transversal for H0,i contained in Mi, where n ∶=

6



∣G ∶ G0∣ = ∣Hi ∶H0,i∣. For every x ∈Hi, let

Pi,j,k(x) ∶=
⎧⎪⎪⎨⎪⎪⎩
P0,i(t−1i,jxti,k), if t−1i,jxti,k ∈H0,i

0, otherwise

and define

Pi(x) ∶= ⎛⎜⎝
Pi,1,1(x) . . . Pi,1,n(x)
⋮ ⋮

Pi,n,1(x) . . . Pi,n,n(x)
⎞⎟⎠ .

Then,Pi is a projective representation ofHi associated with ϕi = ϕMi

0,i with factor set αi satisfying

αi(x, y) = α0,i(ji(x), ji(y)), for all x, y ∈Hi/Mi. Since

α0,1(j1(x), j1(y)) = α0,2(i0(j1(x)), i0(j1(y))),
we conclude that α1(x, y) = α2(i(x), i(y)), for all x, y ∈H1/M1.

We claim that CHi(Mi) ≤ G0. In this case, since CG(N) ≤ CG(Di) ≤ Hi, we deduce CG(N) ≤
CG0
(N0). To prove the claim, fix x ∈ CHi(Mi), set Ji ∶= ⟨Mi, x⟩ and J0,i ∶= G0 ∩ Ji and let ϕi,x

be an extension of ϕi to Ji. Since Ind
Ji
J0,i
∶ Irr(J0,i ∣ ϕ0,i) → Irr(Ji ∣ ϕi) is a bijection, we can find

an irreducible character ϕ0,i,x ∈ Irr(J0,i ∣ ϕ0,i) such that ϕJi
0,i,x = ϕi,x. By Lemma 2.7 we conclude

that x ∈ CJi(J0,i) ≤ J0,i ≤ G0. This proves the claim, hence CG(N) ≤ CG0
(N0). Now, since

P0,1,CG0
(N0) andP0,2,CG0

(N0) are associated with the same scalar function and [ti,j ,CG(N)] = 1
for every i = 1,2 and j = 1, . . . , n, then the same is true for P1,CG(N) and P2,CG(N).

Next, fixN ≤ J ≤ G, set J0 ∶= J ∩G0, Ji ∶= J ∩Hi and J0,i ∶= J ∩H0,i, and consider the bijections

given by the character triple isomorphisms induced by (P0,1,P0,2) and (P1,P2):
σ0,J0,1

∶ Irr(J0,1 ∣ ϕ0,1) → Irr(J0,2 ∣ ϕ0,2)
tr(Q0,J0,1

⊗P0,1,J0,1
) ↦ tr(Q0,J0,2

⊗P0,2,J0,2
)

where Q0 ∈ Proj(J0/N0), and
σJ1
∶ Irr(J1 ∣ ϕ1) → Irr(J2 ∣ ϕ2)

tr(QJ1
⊗P1,J1

) ↦ tr(QJ2
⊗P2,J2

)
where Q ∈ Proj(J/N). Observe that σJ1

(ψJ1

0
) = (σ0,J0,1

(ψ0))J2

, for all ψ0 ∈ Irr(J0,1 ∣ ϕ0,1).
Let ψ ∈ Irr(J1 ∣ ϕ1) and write ψ = ψJ1

0
, for some ψ0 ∈ Irr(J0,1 ∣ ϕ0,1). Since by hypothesis

bl(ψ0)J0 = bl(σ0,J0,1
(ψ0))J0 , we conclude that bl(ψ)J = bl(σJ1

(ψ))J .
Whenever we have a pair of N -isomorphic character triples, there is an induced strong isomor-

phism of character triples with some special properties. In the following lemma we describe some

of these special features.

Lemma 2.9. Let (H1,M1, ϑ1) ∼N (H2,M2, ϑ2) given by (P1,P2) and, for N ≤ J ≤ G = NHi,

consider the bijectionσ
(P1,P2)
J1

∶ Irr(J1 ∣ ϑ1)→ Irr(J2 ∣ ϑ2), where Ji ∶= J∩Hi. Letψ1 ∈ Irr(J1 ∣ ϑ1)
and ψ2 ∶= σ

(P1,P2)
J1

(ψ1). Then:
(i) there exists Q̂ ∈ Proj(JHi,J,ψi/N) such that Q̂i,Ji ⊗Pi,Ji affords ψi, where Q̂i ∶= QHi,J,ψi ;
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(ii) if Di ∶= Q̂i ⊗Pi, then (H1,J,ψ1
, J1, ψ1) ∼J (H2,J,ψ2

, J2, ψ2)
via (D1,D2). Moreover

σ
(D1,D2)
K1

(χ1) = σ(P1,P2)
K1

(χ1),
for every J ≤K ≤ JHi,J,ψi and χ ∈ Irr(K1 ∣ ψ1) ⊆ Irr(K1 ∣ ϑ1), where Ki ∶=K ∩Hi;

(iii) d(ψ1) − d(ψ2) = d(ϑ1) − d(ϑ2).
Proof. First, as JH1,J = GJ = JH2,J , we may assume J ⊴ G. Moreover, since (i, σ) is a strong

isomorphism of character triples, we know that

σJ1
(ψ1)x2 = σJx1

1

(ψx1

1
) = σJ1

(ψx1

1
),

for every x1 ∈H1 and x2 ∈H2 such that i(M1x1) =M2x2. In particular i(H1,ψ1
/M1) =H2,ψ2

/M2

and so JH1,ψ1
= JH2,ψ2

. Therefore, we may assume Hi =Hi,ψi .

By [Spä17, Theorem 3.3], there existsQ ∈ Proj(J/N ∣ α−1J×J) such thatψi is afforded byQJi⊗Pi,Ji .
By [Nav18, Theorem 5.5], there exists D1 ∈ Proj(H1) such that D1,J1

= QJ1
⊗P1,J1

. Arguing as

in [NS14b, p. 707], relying on the proof of [Nav98, Theorem 8.16] we can find Q̂1 ∈ Proj(H1) such
that

D1 = Q̂1 ⊗P1

and Q̂1,J1
= QJ1

. Since N ≤ Ker(Q), we deduce that M1 ≤ Ker(QJ1
) ≤ Ker(Q̂1). Now Q̂1 ∈

Proj(H1/M1) and, using the isomorphism H1/M1 ≃ G/N ≃ H2/M2, we define Q̂ ∈ Proj(G/N)
and Q̂2 ∈ Proj(H2/M2). This proves (i). Set

D2 ∶= Q̂2 ⊗P2.

We claim that (H1, J1, ψ1) ∼J (H2, J2, ψ2) via (D1,D2). Clearly the condition on the factor

sets is satisfied. Moreover, since ψi lies over ϑi, we can find Di ∈ δ(bl(ψi)) and Qi ∈ δ(bl(ϑi))
with Qi ≤ Di and CG(Qi) ≤ Hi. It follows that CG(Di) ≤ Hi. To conclude, we need to check

the condition on block induction for σ(D1,D2). It’s enough to show that σ
(D1,D2)
K1

coincides with

σ
(P1,P2)
K1

on Irr(K1 ∣ ψ1), for every J ≤ K ≤ G, where Ki ∶= K ∩Hi. Consider χi ∈ Irr(K1 ∣ ψ1)
and letR ∈ Proj(K/J) such that χ1 = tr(RK1

⊗D1,K1
). Then

σ
(D1,D2)
K1

(χ1) = tr(RK2
⊗D2,K2

)
= tr(RK2

⊗ Q̂K2
⊗P2,K2

)
= σ(P1,P2)

K1
(tr(RK1

⊗ Q̂K1
⊗P1,K1

))
= σ(P1,P2)

K1
(tr (RK1

⊗D1,K1
))

= σ(P1,P2)
K1

(χ1).
and the proof of (ii) is complete. To conclude, since ψ1(1)/ϑ1(1) = ψ2(1)/ϑ2(1) by [Isa76, Lemma

11.24] and ∣J ∶ Ji∣ = ∣N ∶Mi∣, it follows that
pd(ψ1)−d(ψ2) =

∣J1∣pψ2(1)p
∣J2∣pψ1(1)p =

∣M1∣pϑ2(1)p
∣M2∣pϑ1(1)p = p

d(ϑ1)−d(ϑ2).

This finishes the proof.
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Given a defect preserving equivariant bijection respecting N -block isomorphic character triples,

we show how to obtain another bijection over the given one that satisfies similar properties. For

N ⊴ G and S ⊆ Irr(N), we denote by Irr(G ∣ S) the set of χ ∈ Irr(G) that lies over some ϑ ∈ S .

Proposition 2.10. Let K ⊴ A, A0 ≤ A with A = KA0 and, for every subgroup X ≤ A, set X0 ∶=
X ∩A0. Consider A0-stable subsets of characters S ⊆ Irr(K) and S0 ⊆ Irr(K0). Assume there exists

an A0-equivariant bijection

Ψ ∶ S → S0

such that (Aϑ,K,ϑ) ∼K (A0,ϑ,K0,Ψ(ϑ))
and

CA(D) ≤ A0,

for every ϑ ∈ S and some defect group D of bl(Ψ(ϑ)). Then, for every K ≤ J ≤ A, there exists an
A0,J -equivariant bijection

ΦJ ∶ Irr(J ∣ S) → Irr(J0 ∣ S0)
such that (AJ,χ, J,χ) ∼J (A0,J,χ, J0,ΦJ(χ))
and

CA(Q) ≤ A0,

for every χ ∈ Irr(J ∣ S) and some defect group Q of bl(ΦJ(χ)). Moreover Ψ preserves the defect of

characters if and only if so does ΦJ .

Proof. Consider an NA0
(J)-transversal S in S and define S0 ∶= {Ψ(ϑ) ∣ ϑ ∈ S}. Since Ψ is A0-

equivariant, it follows that S0 is an NA0
(J)-transversal in S0. For every ϑ ∈ S, with ϑ0 ∶= Ψ(ϑ) ∈

S0, we fix a pair of projective representations (P(ϑ),P(ϑ0)
0
) giving (Aϑ,K,ϑ) ∼K (A0,ϑ,K0, ϑ0).

Now, let T be an NA0
(J)-transversal in Irr(J ∣ S) such that every character χ ∈ T lies above a

character ϑ ∈ S (this can be done by the choice of S). Moreover, as A = KA0, we have J = KJ0
and therefore every χ ∈ T lies over a unique ϑ ∈ S by Clifford’s theorem.

For χ ∈ T lying over ϑ ∈ S, let ϕ ∈ Irr(Jϑ ∣ ϑ) be the Clifford correspondent of χ over ϑ. Set

ϑ0 ∶= Ψ(ϑ) ∈ S0 and consider the NA0
(J)ϑ-equivariant bijection σJϑ ∶ Irr(Jϑ ∣ ϑ) → Irr(J0,ϑ ∣

ϑ0) induced by our choice of projective representations (P(ϑ),P(ϑ0)
0
). Let ϕ0 ∶= σJϑ(ϕ). Since Ψ

is A0-equivariant, we deduce that J0,ϑ = J0,ϑ0
and therefore ΦJ(χ) ∶= ϕJ0 is irreducible by the

Clifford correspondence. Then, we define

ΦJ (χx) ∶= ΦJ(χ)x,
for every χ ∈ T and x ∈ NA0

(J). This defines an NA0
(J)-equivariant bijection Ψ ∶ Irr(J ∣ S) →

Irr(J0 ∣ S0). Furthermore, using Lemma 2.9 it’s clear that Ψ preserves the defect of characters if

and only if so does ΦJ .

Next, using the fact that (Aϑ,K,ϑ) ∼K (A0,ϑ,K0, ϑ0) together with Lemma 2.9, we have

(Aϑ,Jϑ,ψ, Jϑ, ψ) ∼Jϑ (A0,ϑ,Jϑ,ψ, J0,ϑ, ψ0)
and, because Aϑ,J ≤ Aϑ,Jϑ , we obtain

(Aϑ,J,ψ, Jϑ, ψ)∼Jϑ (A0,ϑ,J,ψ, J0,ϑ, ψ0) . (2.1)
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By hypothesis there exists a defect groupD of bl(ϑ0) such thatCA(D) ≤ A0. Since bl(χ0) covers
bl(ϑ0)we can find a defect groupQ of bl(χ0) such thatD ≤ Q. It follows thatCA(Q) ≤CA(D) ≤
A0. Finally, we obtain (AJ,χ, J,χ) ∼J (A0,J,χ, J0,ΦJ(χ))
by applying Proposition 2.8 together with (2.1).

We end this section with an elementary but useful observation. Suppose to have N -block isomor-

phic character triples and that N ≤ N̂ . Under certain assumptions, it’s possible to deduce that

those character triples are in fact N̂ -block isomorphic.

Lemma 2.11. Let (H1,M1, ϑ1) ∼N (H2,M2, ϑ2) with HiN = G. Suppose that G ≤ Ĝ and let

N ≤ N̂ ⊴ Ĝ with Ĝ = GN̂ and N = G ∩ N̂ . If CĜ(Di) ≤ G for some Di ∈ δ(bl(ϑi)), then(H1,M1, ϑ1)∼N̂ (H2,M2, ϑ2).
Proof. This follows directly from Definition 2.1.

3 N-block isomorphic character triples and Glauberman

correspondence

The aim of this section is to prove Theorem 3.7 which will be one of the main ingredients in

the final proof. To prove this result, we need to extend the bijection given in [NS14b, Theorem

5.13] to characters of positive height. This is done in Proposition 3.6 for the case where the D-

correspondence coincides with the Glauberman correspondence. Moreover, we obtain a canonical

bijection.

Let N ⊴ G and ϑ ∈ IrrG(N) such that (o(ϑ)ϑ(1), ∣G ∶ N ∣) = 1. We denote by ϑ◇ the canonical

extension of ϑ to G, i.e. the unique extension of ϑ to G such that (o(ϑ◇), ∣G ∶ N ∣) = 1 (see [Isa76,

Corollary 8.16]). To prove Proposition 3.6, in addition to the argument developed in [NS14b, §5],

we need the following result on the extendibility of the canonical extension. In what follows we

will often use the following easy fact: ifH ≤ G and χ ∈ Irr(G) such that χH ∈ Irr(H), then o(χH)
divides o(χ).
Lemma 3.1. LetN be a normal p′-subgroup ofG and P a p-subgroup ofG such thatK ∶= NP ⊴ G.
Consider µ ∈ IrrG(N) and let µ◇ ∈ IrrG(K). Then µ extends to G if and only if µ◇ extends to G.

Proof. One implication is trivial. Notice that µ◇ is G-invariant since µ is G-invariant. Assume

that µ has an extension χ ∈ Irr(G). We have to show that µ◇ extends to H , for every H/K ∈
Sylq(G/K) and every prime q. If q = p, then µ has a canonical extension to H , which is also an

extension of µ◇.

Assume q ≠ p and consider λ ∈ Irr(K/N) such that µ◇ = λχK . Notice that, as µ◇ and χK are

G-invariant, the character λ is G-invariant. Since K/N is a p-group and H/K is a q-group, we

deduce that λ has a canonical extension λ◇ toH . Then λ◇χH is an extension of µ◇. This concludes

the proof.

Hypothesis 3.2. Let N be a normal p′-subgroup of A and P be a p-subgroup of A such that

K ∶= NP ⊴ A. Consider µ ∈ IrrA(N) and its Glauberman correspondent fP (µ) ∈ IrrAP (NP ). Let
µ◇ ∈ IrrA(K) and fP (µ)◇ ∈ IrrAP (KP ) be the canonical extensions respectively of µ and fP (µ).
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Now, our aim is to obtain an adaptation of [NS14b, Proposition 5.12] that includes canonical ex-

tensions (see Lemma 3.5 below). This is done by proceeding as in [NS14b, §5] and using Lemma

3.1.

Lemma 3.3. Assume Hypothesis 3.2 and letC be an abelian normal subgroup ofAwithC ≤CA(K).
Suppose that µ◇ has an extension µ̃ to A. Then there exists an extension f̃P (µ) of fP (µ)◇ toAP such

that

Irr (µ̃C) = Irr(f̃P (µ)C) .
Proof. Write Cp ∶= Op(C) and Cp′ ∶= Op′(C) and set κ ∶= µ̃NCp′ . Let κ

◇ be the canonical ex-

tension of κ to KC . Since κ extends to A, there exists an extension κ̃ of κ◇ to A by Lemma 3.1.

Observe that κ◇ extends µ◇ and so does κ̃. Now, by [Isa76, Corollary 6.17], there exists a linear

character η ∈ Irr(A/K) such that µ̃ = κ̃η. Let λ and λ1 be the unique irreducible constituent

respectively of µ̃C and of κ̃C . Then λ = λ1ηC . Next, consider the P -Glauberman correspondent

fP (κ) ∈ Irr((NCp′)P ) of κ and let fP (κ)◇ be its canonical extension to (KC)P . Using [Tur08a,

Theorem 6.5] and [Tur09, Theorem 7.12], as κ extends toA, we conclude that fP (κ) extends toAP .
By Lemma 3.1 there exists an extension f̃P (κ) of fP (κ)◇ toAP . As before, notice that f̃P (κ) is an
extension of fP (µ)◇. Define f̃P (µ) ∶= f̃P (κ)ηAP . SinceKP ≤ Ker(ηAP ), it follows that f̃P (µ) is
an extension of fP (µ)◇. Ifλ′ and λ′1 are the unique irreducible constituents respectively of f̃P (µ)C
and f̃P (κ)C , then λ′ = λ′1ηC . Therefore, in order to conclude, it is enough to show that λ1 = λ′1.
Write λ1 = λ1,p × λ1,p′ and λ′1 = λ

′
1,p × λ

′
1,p′ , with λ1,p, λ

′
1,p ∈ Irr(Cp) and λ1,p′ , λ′1,p′ ∈ Irr(Cp′).

First, because fP (κ) is an irreducible constituent of κNCp′ and Cp′ ≤ Z(NCp′), it follows that
Irr(κ̃Cp′) = Irr(κC′p) = Irr(fP (κ)Cp′) = Irr(f̃P (κ)Cp′)

and therefore λ1,p′ = λ′1,p′ . Observe that κ̃N×Cp = (κ◇)N×Cp = µ × λ1,p. Since p does not divide
o(κ◇), it follows that p does not divide o(µ × λp). In particular (p, o(λp)) = 1 and therefore

λ1,p = 1Cp . By the same argument, we obtain λ′1,p = 1Cp . This shows that λ1 = λ
′
1 and the proof is

complete.

Next, we extend Lemma 3.3 to the case where C is not necessarily abelian.

Corollary 3.4. Assume Hypothesis 3.2 and suppose that µ◇ has an extension µ̃ to A. Then there

exists an extension f̃P (µ) of fP (µ)◇ to AP such that

Irr (µ̃CA(K)) = Irr(f̃P (µ)CA(K)) .
Proof. Set C ∶= CA(K), C′ ∶= [C,C] and A ∶= A/C′. Since µ̃K is irreducible, as remarked before

[Spä18, Definition 2.7], we have C ≤ Z(µ̃) and [Isa76, Lemma 2.27] implies that µ̃C = µ(1)λ, for
some linear character λ ∈ Irr(C). In particular C′ ≤ Ker(λ) ≤ Ker(µ̃). It follows that C′ ∩K is

contained in Ker(µ◇) and Ker(fP (µ)◇) while C′ ∩N is contained in Ker(µ) and Ker(fP (µ)).
Via the canonical isomorphismN ≃ N/C′∩N , we can identify µwith a characterµ ofN . Similarly

we can consider µ◇ as a character of K , fP (µ) as a character of NP and fP (µ)◇ as a character

of KP . Notice that AP = AP , KP = KP
and NP = NP

. By [NS14b, Lemma 5.10] the character

fP (µ) coincides with the P -Glauberman correspondent f
P
(µ) of µ. Moreover µ◇ and fP (µ)◇

are the canonical extensions of µ and of fP (µ). Applying Lemma 3.3, we find an extension ψ of
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fP (µ)◇ to AP such that Irr(µ̃
C
) = Irr (ψ

C
), where µ̃ is the character ofA corresponding to µ̃ via

inflation. Now the inflation f̃P (µ) ∈ Irr(AP ) of ψ satisfies the required hypothesis.

Recall that, if R is the ring of algebraic integers and S is the localization of R at some maximal

ideal containing pR, then ∗ ∶ S → F denotes the canonical epimorphism, where F is the residue

field of characteristic p (see [Nav98, Chapter 2] for details).

Lemma 3.5. Assume Hypothesis 3.2. If µ◇ extends to µ̃ ∈ Irr(A), then there exists an extension

f̃P (µ) of fP (µ)◇ to AP such that

Irr(µ̃CA(K)) = Irr(f̃P (µ)CA(K))
and

µ̃(x)∗ = ef̃P (µ)(x)∗,
for every p-regular x ∈ A with P ∈ Sylp(CK(x)), where e ∶= [µNP , fP (µ)].
Proof. By Lemma 3.3 there exists an extension χ of fP (µ)◇ that satisfies the first condition. In order
to conclude, it is enough to find a linear character ξ̃ ∈ Irr(AP /CA(K)KP ) such that f̃P (µ) ∶= ξ̃ ⋅χ
satisfies the second condition.

First, we construct the linear character ξ̃. Let x be a p-regular element of CA(P )KP , set N
(x) ∶=

N⟨x⟩, K(x) ∶= K⟨x⟩ and observe that (N (x))P = (Np)(x) ∶= KP ⟨x⟩ and (K(x))P = (Kp)(x) ∶=
KP ⟨x⟩.

N

K N (x)

K(x)

NP

KP N
(x)
P

K
(x)
P

Sincex is p-regular, the subgroupN (x) has order coprime to p andwe can consider theP -Glauberman

correspondent fP (µ̃N(x)) of µ̃N(x) . Moreover fP (µ̃N(x))NP = fP (µ) by [IN91, Theorem A]. Now,

if fP (µ̃N(x))◇ is the canonical extension of fP (µ̃N(x)) to K(x)P
, then (fP (µ̃N(x))◇)KP = fP (µ)◇.

Since χ
K
(x)
P

is another extension of fP (µ)◇ to K(x)P
, it follows that there exists a unique linear

character ξ(x) ∈ Irr(K(x)
P
/KP ) such that ξ(x)χ

K
(x)
P

= fP (µ̃N(x))◇. We define the map

ξ ∶CA(P )KP → C

x↦ ξ(xp′)(xp′).
We claim that ξ is a linear character of CA(P )KP with an extension ξ̃ to AP . To show that ξ is

an irreducible character we apply [Isa76, Corollary 8.12]. Clearly ξ(1) = 1. Next, in order to show
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that ξ is a class function we check that ξ(x
n) = (ξ(x))n, for every n ∈ AP and every p-regular

x ∈CA(P )KP . If this is the case, then

ξ(xn) = ξ((xn)p′)((xn)p′) = ξ((xp′)n)((xp′)n) = (ξ(xp′))n((xp′)n) = ξ(xp′)(xp′) = ξ(x),
for every x ∈ CA(P )KP and n ∈ AP . In particular ξ is a class function. To prove the claim, just

notice that (χ
K
(x)
P

)n = χ
K
(xn)
P

and that (fP (µ̃N(x))◇)n is the canonical extension of fP (µ̃N(x))n =
fP (µ̃N(xn)), for every n ∈ AP and every p-regular x ∈ CA(P )KP . Next, since ξ

(x) = ξ(x
−1) for

every p-regular x ∈ CA(P )KP , we deduce that ξ(x−1) = ξ−1(x), for every x ∈ CA(P )KP , and

therefore [ξ, ξ] = 1. Finally, fixS×T ≤CA(P )KP withS a p-group and T a p′-group. Observe that

ξS = 1S . On the other hand χKPT and fP (µ̃NT )◇ are both extensions of fP (µ)◇ and we can find a
linear character λ ∈ Irr(KPT /KP) such that λχKPT = fP (µ̃NT )◇. Moreover, for every x ∈ T , we
have (fP (µ̃NT )◇)K(x)

P

= fP (µ̃N(x))◇ and therefore ξT = λT . It follows that ξS×T ∈ ZIrr(S × T )
and hence ξ is a linear character by [Isa76, Corollary 8.12].

Next, we show that ξ extends to AP . To do so, we use [Isa76, Theorem 6.26]. Let q be a prime

dividing o(ξ) and consider Sq/CA(P )KP ∈ Sylq(AP /CA(P )KP ). Noticing that every p-element

x ofCA(P )KP is contained inKer(ξ), we deduce that p does not divide ∣CA(P )KP ∶ Ker(ξ)∣ and
hence q ≠ p. LetQ ∈ Sylq(AP /NP ) such that Sq =CA(P )KPQ and define Q1 ∶= Q∩CA(P )KP

and ξ1 ∶= ξQ1
. By [Spä10, Lemma 4.1], we deduce that ξ extends to AP if and only if ξQ1

extends

to Q. We are going to check the latter condition. Because Q1 ≤ AP we deduce that NQ1 is

a P -invariant p′-group and that (NQ1)P = NPQ1 = Q1. We also have KQ1 = (NQ1) ⋊ P and(KQ1)P =KPQ1 = Q1P . Nowwe can consider theP -Glauberman correspondent fP (µ̃NQ1
) and

its canonical extension fP (µ̃NQ1
)◇ toQ1P . By [IN91, TheoremA]we have fP (µ̃NQ1

)NP = fP (µ)
and so (fP (µ̃NQ1

)◇)KP = fP (µ)◇. Using Lemma 3.1, we obtain an extension ψ of fP (µ̃NQ1
)◇ to(KQ)P =KPQ. By Gallagher’s theorem there exists a unique linear character ν ∈ Irr(KPQ/KP )

such that χKPQ ⋅ ν = ψ. Finally, for every x ∈ Q1, we have

ξ(x)χ
K
(x)
P

= fP (µ̃N(x))◇ = (fP (µ̃NQ1
)
N
(x)
P

)◇
= (fP (µ̃NQ1

)◇)
K
(x)
P

= (ψPQ1
)
K
(x)
P

= ψ
K
(x)
P

= χ
K
(x)
P

ν
K
(x)
P

and it follows that νQ1
= ξ1. This shows that νQ is an extension of ξ1 toQ and therefore ξ extends

to Sq . We conclude that ξ has an extension ξ̃ to AP .

Define f̃P (µ) ∶= ξ̃χ. By [NS14a, Theorem 2.6] we deduce that

µ̃(x)∗ = µ̃N(x)(x)∗ = efP (µ̃N(x))(x)∗ = e(ξ(x)χ(x))∗ = ef̃P (µ)(x)∗,
for every p-regular x ∈ E such that P ∈ Sylp(CK(x)).
It remains to show that C ∶= CA(K) is contained in the kernel of ξ. First, observe that Ker(ξ)
contains C′ ∶= [C,C] ≤ Ker(ξC). Moreover, Ker(ξ) contains every p-element of C . Since C/C′
is abelian it’s enough to show that every p-regular element x of C lies in Ker(ξ). By the Alperin

argument we know that B ∶= bl(µ̃K(x)) and B′ ∶= bl(fP (µ̃N(x))◇) are Brauer correspondents

with B covering b ∶= bl(µ̃N(x)) = {µ̃N(x)} and B′ covering b′ ∶= bl(fP (µ̃N(x))) = {fP (µ̃N(x))}.
According to [Nav98, Theorem 4.14] it follows that λB = λB′ ○ BrP . Since x ∈ CA(K), we have
x ≤ Z(K(x)) and hence

λB(x) = λB ((xK(x))+) = λB′ ((xK(x) ∩CK(x)(P ))+) = λB′(x).
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By [Nav98, Theorem 9.5], we conclude that

( µ̃(x)
µ̃(1))

∗

= λB(x) = λB′(x) = (fP (µ̃N(x))(x)
fP (µ̃N(x))(1))

∗

= ( f̃P (µ)(x)
f̃P (µ)(1))

∗

.

As Irr(µ̃C) = Irr(χC) and x is p-regular, we obtain

χ(x)
χ(1) =

µ̃(x)
µ̃(1) =

f̃P (µ)(x)
f̃P (µ)(1)

and, in particular, ξ(x) = 1. This concludes the proof.
The following result extends the bijection given in [NS14b, Theorem 5.13] (in the case whereK of

[NS14b, Theorem 5.13] is a p′-group) to characters of positive height. In this particular situation

we obtain a canonical bijection.

Proposition 3.6. Assume Hypothesis 3.2. Then there exists a canonical AP -equivariant bijection

Ψµ,P ∶ Irr(K ∣ µ)→ Irr(KP ∣ fP (µ))
µ◇ν ↦ fP (µ)◇νKP ,

for every ν ∈ Irr(K/N). Moreover Ψµ,P preserves the defect of characters and

(Aϑ,K,ϑ) ∼K (AP,ϑ,KP ,Ψµ,P (ϑ))
and

CA(D) ≤ AP ,
for every ϑ ∈ Irr(K ∣ µ) and some defect group D of bl(Ψµ,P (ϑ)).
Proof. SinceK =N⋊P andKP =NP ×P are p-nilpotent groupswith Sylow p-subgroupP , µ isK-

invariant and fP (µ) is KP -invariant, we have Irr(K ∣ µ) = Irr(bl(µ◇)) = {µ◇ν ∣ ν ∈ Irr(K/N)}
and Irr(KP ∣ fP (µ)) = Irr(bl(fP (µ)◇)) = {fP (µ)◇ν ∣ ν ∈ Irr(KP /NP )}. Thus, we obtain a

defect preserving AP -quivariant bijection by setting

Ψµ,P (µ◇ν) ∶= fP (µ)◇νKP ,
for every ν ∈ Irr(K/N). Furthermore, as P is a common defect group of the two blocks bl(ϑ) and
bl(Ψµ,P (ϑ)), the condition on defect groups is satisfied.

Consider P ∈ Proj(A ∣ α) a projective representation associated with µ◇ and observe that P is

also associated with µ. Let Â be the central extension ofA defined by P and ǫ ∶ Â→ A be the map

given by ǫ(x, s) ∶= x, for every x ∈ A and s ∈ S, with kernel S ∶= ⟨α(x, y) ∣ x, y ∈ A⟩. For H ≤ A,
set Ĥ ∶= ǫ−1(H). Since α is constant onK-cosets and α(1,1) = 1, the setH0 ∶= {(h,1) ∣ h ∈ H} is
a subgroup of Â, wheneverH ≤K . In this case let ϑ0 ∈ Irr(H0) be the character corresponding to
ϑ ∈ Irr(H) via the isomorphism ǫH0

∶H0 →H . Moreover Ĥ =H0×S and we define ϑ̂ ∶= ϑ0×1S ∈
Irr(Ĥ). Notice that (µ◇)0 ∈ Irr(K0) is the canonical extension of µ0 and that µ̂◇ ∈ Irr(K̂) is
the canonical extension of µ̂. Furthermore fP (µ)0 = fP0

(µ0) and (fP (µ)◇)0 is its canonical

extension. As no confusion arise, we just write µ◇0 (resp. fP (µ)◇0) instead of (µ◇)0 = (µ0)◇ (resp.(fP (µ)◇)0 = fP0
(µ0)◇).
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Recall that the map defined by P̂(x, s) ∶= sP(x), for all (x, s) ∈ Â, is an irreducible representation

of Â affording an extension τ of µ◇0 . Set Sp ∶=Op(S), Sp′ ∶=Op′(S),M ∶= N0 ×Sp′ , Q ∶= P0 ×Sp,

and notice that K̂ = M ⋊ Q, MQ = (NP )0 × Sp′ and K̂Q = K̂P . Let ϕ ∶= τM ∈ IrrÂ(M) and
consider its canonical extension ϕ◇ ∈ Irr(K̂). By Lemma 3.1, there exists an extension ϕ̃ of ϕ◇ to

Â. Since ϕ̃K0
is an extension of µ0 with o(ϕ̃K0

) dividing o(ϕ◇), we deduce that ϕ̃K0
= µ◇

0
. Now,

if R̂ is an irreducible representation of Â affording ϕ̃, then R(x) ∶= R̂(x,1) defines a projective
representation of A associated with µ◇. Replacing P with R, we may assume that τ extends ϕ◇.

Now, Lemma 3.5 yields an extension f̃Q(ϕ) of fQ(ϕ)◇ to ÂQ = ÂP such that

Irr(ϕ̃
CÂ(K̂)

) = Irr(f̃Q(ϕ)CÂ(K̂)) (3.1)

and

ϕ̃(x)∗ = ef̃Q(ϕ)(x)∗, (3.2)

for every p-regular x ∈ Â such that Q ∈ Sylp(CK̂(x)), where e ∶= [ϕMQ
, fQ(ϕ)]. Observe that,

by [IN91, Theorem A] and using the fact that Sp ≤ Z(Â), we have f̃Q(ϕ)(NP )0 = fP0
(µ0) and

f̃Q(ϕ)(KP )0 = fP0
(µ0)◇.

Let P̂ ′ be an irreducible representation of ÂP affording f̃Q(ϕ) and consider the projective repre-

sentation P ′ of AP defined by P ′(x) ∶= P̂ ′(x,1), for every x ∈ AP . Notice that P ′ is associated
with fP (µ)◇ and that its factor set coincides with αAP ×AP . Furthermore, as CÂ(K̂) = ĈA(K)
and by (3.1), we deduce that PCA(K) and P

′
CA(K)

are associated with the same scalar function

Next, let ϑ = µ◇ν ∈ Irr(K ∣ µ), with ν ∈ Irr(K/N), and observe thatAϑ = Aν . LetQ be a projective

representation of Aν associated with ν and notice that QAP,ν is a projective representation of

AP,ν associated with νKP . It follows that S ∶= PAν ⊗ Q is a projective representation of Aν
associated with ϑ, while S′ ∶= P ′AP,ν ⊗ QAP,ν is a projective representation of AP,ν associated

withΨµ,P (ϑ) = fP (µ)◇νKP . We claim that (Aϑ,K,ϑ) ∼K (AP,ϑ,KP ,Ψµ,P (ϑ)) via (S,S′). By
the previous paragraph, one can easily check that the group theoretical conditions hold, that the

factor set of S′ coincides with the restriction of the factor set of S and that SCAν (K) and S
′
CAν (K)

are associated with the same scalar function. To conclude, it remains to check the condition on

block induction. By the proof of [NS14b, Theorem 4.4] it’s enough to show that

( ∣K ∣p′tr(S(x))
pht(ϑ)ϑ(1)p′ )

∗

= ( ∣KP ∣p′tr(S′(x))
pht(Ψµ,P (ϑ))Ψµ,P (ϑ)(1)p′ )

∗

,

for every p-regular x ∈ AP,ϑ such that P ∈ Sylp(CK(x)). Fix a p-regular element x ∈ AP,ϑ with

P ∈ Sylp(CK(x)). Then Q ∈ Sylp(CK̂(x,1)) and (3.2) implies

tr (S(x))∗ = ϕ̃(x,1)∗tr(Q(x))∗ = (ef̃Q(ϕ)(x,1))∗ tr(Q(x))∗ = e∗tr (S′(x))∗ .
As e = [µNP , fP (µ)] and by [NS14b, Theorem 5.2 (b)], we obtain

ϑ(1)p′ = µ(1) ≡ [µNP , fP (µ)]∣N ∶ NP ∣fP (µ)(1) ≡ e ∣K ∣p′∣KP ∣p′Ψµ,P (ϑ)(1)p′ (mod p)
and therefore

(∣K ∣p′tr(S(x))
pht(ϑ)ϑ(1)p′ )

∗

= (e∣K ∣p′tr(S′(x))
ν(1)ϑ(1)p′ )

∗

= ( ∣KP ∣p′tr(S′(x))
pht(Ψµ,P (ϑ))Ψµ,P (ϑ)(1)p′ )

∗

.
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Now the proof is complete.

As a consequence, applying Proposition 2.10 and Proposition 3.6, forN ≤ J ≤ Awe obtain a defect

preserving AP,J -equivariant bijection

Φ ∶ Irr(J ∣ µ)→ Irr(JP ∣ fP (µ))
such that (AJ,χ, J,χ) ∼J (AJ,P,χ, JP ,Φ(χ)) ,
for every χ ∈ Irr(J ∣ µ). Finally, we obtain the main result of this section by considering a normal

p-chain D with last term P and J =NGD.

Theorem 3.7. Let N ≤ G ⊴ A, with N ⊴ A a p′-subgroup, and consider a normal p-chain D of G

with final term P . Let µ ∈ IrrA(N) and fP (µ) ∈ Irr(NP ) be its P -Glauberman correspondent. Then

there exists a defect preserving AD-equivariant bijection

Φµ,D ∶ Irr(NGD ∣ µ)→ Irr(GD ∣ fP (µ))
such that (NAD,χ,NGD, χ)∼G (AD,χ,GD,Φµ,D(χ)) ,
for every χ ∈ Irr(NGD ∣ µ).
Proof. LetK ∶= NP and observe that, without loss of generality, we may assumeK ⊴ A. Now the

result follows from Proposition 2.10, Proposition 3.6 and Lemma 2.11.

4 N-block isomorphic character triples and Fong

correspondence

In this section, we show that the Fong correspondence [Fon61] can be used to construct N -block

isomorphic character triples. For completeness, we state the Fong correspondence in the form we

need.

Hypothesis 4.1. Let N be a normal p′-subgroup of A and consider µ ∈ IrrA(N). Let P ∈
Proj(A ∣ α) be a projective representation associated with (A,N,µ) such that α(x, y)∣N ∣2 = 1,

for every x, y ∈ A (see [NT89, Theorem 3.5.7]), and denote by Â the p′-central extension of A by

S ∶= ⟨α(x, y) ∣ x, y ∈ A⟩ defined byP (see [Nav18, Section 5.3]). Let ǫ ∶ Â→ A be the epimorphism

given by ǫ(x, s) ∶= x, for every x ∈ A and s ∈ S, and consider N0 ∶= {(n,1) ∣ n ∈ N} ⊴ Â. For
every X ≤ A, set X̂ ∶= ǫ−1(X) and X̃ ∶= X̂N0/N0. Consider the irreducible representation P̂

of Â defined by P̂(x, s) ∶= sP(x), for every x ∈ A and s ∈ S, and denote its character by τ . Let

λ̂ ∈ Irr(N̂) be the linear character defined by λ̂(n, s) ∶= s−1, for every n ∈ N and s ∈ S, and set

µ̂ ∶= µ0 × 1S ∈ Irr(N̂), where µ0 correspond to µ via the isomorphism N ≃ N0. Notice that τ

extends µ̂λ̂−1. Finally, denote by µ̃ the character λ̂ viewed as a character of Ñ = N̂/N0, that is

µ̃(N0(n, s)) = s−1, for every n ∈ N and s ∈ S.

Theorem 4.2 (Fong). Assume Hypothesis 4.1. If N ≤H ≤ A, then:

(i) H̃ is a p′-central extension of H/N by the central p′-subgroup Ñ ≃ S;
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(ii) There exists a bijection

Bl(H ∣ bl(µ))→ Bl(H̃ ∣ bl(µ̃))
B ↦ B̃

(iii) Let D ∈ δ(B) and consider Q ∈ Sylp(D̂) so that D̂ = Q × S. Then QN0/N0 ∈ δ(B̃). In

particular B and B̃ have isomorphic defect groups;

(iv) For every B ∈ Bl(H ∣ bl(µ)) corresponding to B̃ ∈ Bl(H̃ ∣ bl(µ̃)) via the bijection in (ii), there
exists a defect preserving bijection

Irr(B)→ Irr(B̃)
ψ ↦ ψ̃

such that, if ψ̂ is the inflation to Ĥ of the character of Ĥ/S ≃ H corresponding to ψ and ψ̃′ is

the inflation to Ĥ of ψ̃, then ψ̂ = τĤ ψ̃
′;

(v) For x̂ ∈ Â set x ∶= ǫ(x̂) and x̃ ∶= N0x̂. Then ψ̃x = (ψ̃)x̃ and B̃x = (B̃)x̃, for every B ∈
Bl(G ∣ bl(µ)) and ψ ∈ Irr(B).

Proof. Consider ψ ∈ Irr(H ∣ µ) afforded by X. We just show how to construct ψ̃. By [Nav18,

Theorem 10.11], there exists an irreducible projective representation Q ∈ Proj(H/N ∣ α−1H×H)
such that X = Q ⊗ PH unique up to similarity. Now, Q̂(x, s) ∶= Q(x)s−1, for every x ∈ H and

s ∈ S, defines an irreducible linear representation of Ĥ with N0 ≤ Ker(Q̂) and whose character

lies over λ̂. If we consider the inflation X̂ to Ĥ of the representation of Ĥ/S ≃ H corresponding

to X, that is X̂(x̂) ∶= X(ǫ(x̂)), for every x̂ ∈ Ĥ , then X̂ = Q̂ ⊗ P̂Ĥ . Define X̃ to be the irreducible

representation of H̃ = Ĥ/N0 whose inflation is Q̂, and let ψ̃ be the character afforded by X̃. Then

ψ̃ ∈ Irr(Ã ∣ µ̃) and, if ψ̂ is the inflation to Ĥ of the character of Ĥ/S ≃H corresponding to ψ and

ψ̃′ is the inflation of ψ̃ to Ĥ , then ψ̂ = τĤ ψ̃
′. The result follows from [Fon61]. The description of

defect groups is a consequence of the proof of [Fon61, 2C]. To conclude, for x̂ ∈ Â, set x ∶= ǫ(x̂)
and x̃ ∶= N0x̂. Then ψ̂x = (ψ̂)x̂ = (ψ̃′τĤ)x̂ = (ψ̃′)x̂τĤ = (ψ̃x̃)′τĤ , where ψ̂x is the inflation

to Ĥ of the character of Ĥ/S ≃ H corresponding to ψx and (ψ̃x̃)′ is the inflation of ψ̃x̃ to Ĥ .

Thus (ψ̃)x̃ coincides with ψ̃x the Fong correspondent of ψx. In particular, since ψ̃x ∈ Irr(B̃x) and(ψ̃)x̃ ∈ Irr(B̃x̃), we conclude that B̃x = B̃x̃.
In the situation of Theorem 4.2, we refer to B̃ as the Fong correspondent ofB and to ψ̃ as the Fong

correspondent of ψ. An important feature of the Fong correspondence is that it is compatible with

block induction.

Proposition 4.3. Assume Hypothesis 4.1 and let N ≤X ≤ Y ≤ A. Let b ∈ Bl(X ∣ bl(µ)) with Fong

correspondent b̃ ∈ Bl(X̃ ∣ bl(µ̃)) and suppose that the induced blocks bY and (̃b)Ỹ are defined. Then

b̃Y = (̃b)Ỹ .
Proof. This result has been shown in [Rob00]. It can also be deduced from [Dad94, Theorem 14.3].

For x ∈ G, we denote by ClG(x) the G-conjugacy class of x. Moreover, for any subsetK of G, we

denote by K+ the sum of its elements in the group algebra of G.
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Theorem 4.4. Assume Hypothesis 4.1. For i = 1,2, consider N ≤ Li ⊴ Hi ≤ A and a Hi-invariant

ψi ∈ Irr(Li ∣ µ). Notice that L̃i ⊴ H̃i and that the Fong correspondent ψ̃i ∈ Irr(L̃i ∣ µ̃) is H̃i-invariant.

Let Li ≤ G ⊴ A and assume (H̃1, L̃1, ψ̃1)∼G̃ (H̃2, L̃2, ψ̃2) .
Then (H1, L1, ψ1)∼G (H2, L2, ψ2) .
Proof. The group theoretical conditions are clearly satisfied and without loss of generality we may

assume A = GHi, Â = ĜĤi and Ã = G̃H̃i. Consider Bi ∶= bl(ψi) and its Fong correspondent

B̃i = bl(ψ̃i). By hypothesis, there exists a defect group Di ∈ δ(B̃i) such that CÃ(Di) ≤ H̃i.

Furthermore, by Theorem 4.2 (iii) we can find a defect group Pi ∈ δ(Bi) such that, ifQi ∈ Sylp(P̂i),
then Di =QiN0/N0. In particular

CÂ(Qi) ≤ Ĥi (4.1)

and, noticing that

ǫ (CÂ(Qi)) =CA(Pi),
we obtainCA(Pi) ≤Hi. Fix projective representations (R̃1, R̃2) associatedwith (H̃1, L̃1, ψ̃1)∼G̃(H̃2, L̃2, ψ̃2) and let α̃i be the factor set of R̃i. Consider a projective representationRi ∈ Proj(Hi ∣
αi) associated with ψi and define the projective representation R̂i ∈ Proj(Ĥi ∣ α̂i) given by

R̂i(h) ∶=Ri(ǫ(h)),
for every h ∈ Ĥi. Notice that α̂i(h, k) = αi(ǫ(h), ǫ(k)), for all h, k ∈ Ĥi, and that R̂i is associated

with ψ̂i. Let R̃
′
i ∈ Proj(Ĥi ∣ α̃′i) be the projective representation defined by

R̃
′
i(h) ∶= R̃i(N0h),

for every h ∈ Ĥi. Clearly α̃
′
i(h, k) = α̃i(N0h,N0k), for all h, k ∈ Ĥi, and R̃

′
i is associated with ψ̃′i.

As R̂i and P̂Ĥi ⊗R̃
′
i are a projective representations of Ĥi associated with τL̂iψ̃

′
i = ψ̂i, there exists

a map ξ̂i ∶ Ĥi/L̂i → C
× such that ξ̂iR̂i = P̂Ĥi ⊗ R̃

′
i. Let ξi ∶Hi/Li → C

× corresponds to ξ̂i via the

isomorphism Hi/Li ≃ Ĥi/L̂i. Replacing Ri with ξiRi, we may assume

R̂i = P̂Ĥi ⊗ R̃
′
i. (4.2)

Now, as the factor sets α̃1 and α̃2 coincide under the isomorphism H̃1/L̃1 ≃ H̃2/L̃2, we deduce

that α1 and α2 coincide under the isomorphismH1/L1 ≃H2/L2. By hypothesis R̃1 and R̃2 define

the same scalar function onCÃ(G̃). AsCÂ(Ĝ)N0/N0 ≤CÃ(G̃) andCÂ(Ĝ) ≤ Ĥ1 ∩ Ĥ2 by (4.1),

the scalar functions defined by R̃′
1
and R̃′

2
onCÂ(Ĝ) coincide. Now R̂1,CÂ(Ĝ)

and R̂
2,CÂ(Ĝ)

are

associated with the same scalar function and, since ǫ(CÂ(Ĝ)) = CA(G) (see [NS14b, Theorem

4.1 (d)]), the same is true forR1,CA(G) andR2,CA(G).

Next, consider G ≤ J ≤ A and set Ji ∶= J ∩Hi. Notice that, if χ ∈ Irr(J1 ∣ ψ1), then Theorem 4.2

(iv) implies that χ̃ ∈ Irr(J̃1 ∣ ψ̃1). Write χ = tr(QJ1
⊗R1,J1

), for some Q ∈ Proj(J/G). If we set
Q̂(x) ∶= Q(ǫ(x)) for every x ∈ Ĵ , then (4.2) implies

χ̂1 = tr (Q̂Ĵ1
⊗ R̂

1,Ĵ1
)

= tr (Q̂Ĵ1
⊗ R̃

′
1,Ĵ1

⊗ P̂Ĵ1
)
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and therefore χ̃′ = tr(Q̂Ĵ1
⊗R̃′

1,Ĵ1

). Now, let Q̃ ∈ Proj(J̃/G̃) correspond to Q̂ via the isomorphism

J̃/G̃ ≃ Ĵ/Ĝ and observe that the Fong correspondent of χ can be written as χ̃ = tr(Q̃J̃1
⊗ R̃

1,J̃1
).

By definition σ̃J̃1
(χ̃) = tr(Q̃J̃2

⊗ R̃
2,J̃2
) so that its inflation σ̃J̃1

(χ̃)′ = tr(Q̂Ĵ2
⊗ R̃′

2,Ĵ2

). By

Theorem 4.2 (iv) and (4.2) we obtain

τĴ2
σ̃J̃1
(χ̃)′ = tr (P̂Ĵ2

⊗ Q̂Ĵ2
⊗ R̃

′
2,Ĵ2

)
= tr (Q̂Ĵ2

⊗ R̂
2,Ĵ2
)

= σ̂J1
(χ)

= τĴ2
σ̃J1
(χ)′

and therefore

σ̃J1
(χ) = σ̃J̃1

(χ̃) .
Since by hypothesis bl(σ̃J1

(χ))J̃ = bl(χ̃)J̃ , we conclude from Proposition 4.3 that bl(σJ1
(χ))J =

bl(χ)J . This completes the proof.

From now on we considerN ≤ G ⊴ A. Since Ñ is a central p′-subgroup of G̃, for every p-subgroup

P of G we have a decomposition P̃ = Ñ ×Op(P̃ ). We write P̃p ∶= Op(P̃). Mapping P to P̃p
induces a length preserving bijection

N(G,Z)/G→N(G̃, Z̃p)/G̃ (4.3)

D↦ D̃

which commutes with the action of A and Ã. In particular, observe that ÑGD = G̃D̃
. Using

Theorem 3.7, Theorem 4.2 and Theorem 4.4 we obtain the following corollaries.

Corollary 4.5. Assume Hypothesis 4.1 and let N ≤ G ⊴ A. Consider a normal p-chain D of G with

final term P and let fP (µ) ∈ Irr(NP ) be the P -Glauberman correspondent of µ. Then there exists a

defect preserving bijection

Γµ,D ∶ Irr (GD ∣ fP (µ))→ Irr(G̃
D̃
∣ µ̃)

commuting with the action of A and Ã.

Proof. This follows immediately by Theorem 3.7 and Theorem 4.2.

The bijections described in the previous corollary are compatible with the relation ∼N from Defi-

nition 2.1.

Corollary 4.6. Assume Hypothesis 4.1 and let N ≤ G ⊴ A. Consider normal p-chains D and E of G

with final term respectively P and Q and let Γµ,D and Γµ,E be the corresponding bijections given by

Corollary 4.5. Let ϑ ∈ Irr(GD ∣ fP (µ)) and χ ∈ Irr(GE ∣ fQ(µ)) and suppose that
(Ã

D̃,Γµ,D(ϑ)
, G̃

D̃
,Γµ,D(ϑ))∼G̃ (ÃẼ,Γµ,E(χ)

, G̃
Ẽ
,Γµ,E(χ)) .

Then (AD,ϑ,GD, ϑ) ∼G (AE,χ,GE, χ) .
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Proof. This is a consequence of Theorem 3.7, Theorem 4.4 and Corollary 4.5.

The result that we are actually going to need in the final proof is the following. This is obtained

by putting together all the results obtained so far.

Corollary 4.7. Assume Hypothesis 4.1 and let N ≤ G ⊴ A. Let Z be a central p-subgroup of G

and consider a block B ∈ Bl(G ∣ bl(µ)) whose defect groups are larger than Z . Then the Fong

correspondent B̃ ∈ Bl(G̃) has defect groups larger than Z̃p and there exists a bijection
∆ ∶ Cd(B,Z)/G→ Cd(B̃, Z̃p)/G̃

that preserves the length of the p-chains, commutes with the ation of A and Ã and such that, if

(Ã(D̃,ϑ̃), G̃D̃
, ϑ̃)∼G̃ (Ã(Ẽ,χ̃), G̃D̃

, χ̃) ,
then (A(D,ϑ),GD, ϑ) ∼G (A(E,χ),GE, χ) ,
for every (D, ϑ), (E, χ) ∈ Cd(B,Z), (D̃, ϑ̃) ∈∆((D, ϑ)) and (Ẽ, χ̃) ∈∆((E, χ)).
Proof. LetD ∈ N(G,Z)with last term P and consider D̃ ∈N(G̃, Z̃p). If ϑ ∈ Irr(GD) and bl(ϑ)G =
B, then ϑ lies over fP (µ) by Corollary 2.6. Now, there exists a unique ψ ∈ Irr(NGD ∣ µ) such
that ϑ = Φµ,D(ψ) and Γµ,D(ϑ) = ψ̃ is the Fong correspondent of ψ. By Theorem 3.7, we know that

bl(ϑ)NGD = bl(ψ), hence bl(ϑ)G = B if and only if bl(ψ)G = B. Furthermore, by Proposition 4.3

it follows that bl(ψ)G = B if and only if bl(ψ̃)G̃ = B̃. This shows that the set of characters of GD

whose block induces to B is mapped via Γµ,D to the set of characters of G̃
D̃
whose block induces

to B̃. We define

∆((D, ϑ)) ∶= (D̃,Γµ,D(ϑ)),
for every (D, ϑ) ∈ Cd(B,Z). By (4.3), Corollary 4.5 and Corollary 4.6 we conclude that ∆ is a

bijection with the required properties.

5 Structure of a minimal counterexample

In this section, we finally prove Späth’s Character Triple Conjecture for p-solvable groups. Our

proof is inspired by the argument developed in [Rob00]. As in Robinson’s work, what we are actu-

ally going to show is that a minimal counterexampleG to Conjecture 2.2 satisfiesOp(G)Op′(G) ≤
Z(G). Since the conjecture trivially holds for abelian groups, TheoremAwill then follow as a corol-

lary of (the proof of) Theorem 5.2. In this paper we consider subpairs in the sense of [Ols82], i.e.

pairs (P, bP ), where P is a p-subgroup of G and bP ∈ Bl(PCG(P )).
Proposition 5.1. Assume that G ⊴ A is a minimal counterexample to Conjecture 2.2 with respect

to ∣G ∶ Z(G)∣ first and then to ∣A∣ and consider Z ≤ Z(G), B ∈ Bl(G) and d ≥ 0 for which the

conjecture fails to hold. Then every block b ∈ Bl(Op′(G)) covered by B is A-invariant.

Proof. Set N ∶= Op′(G) and fix a block bl(µ) ∈ Bl(N) covered by B. For every subgroup H ≤ A,
set H∨ ∶= Hµ. Let B

∨ ∈ Bl(G∨ ∣ bl(µ)) be the Fong–Reynolds correspondent of B over bl(µ)
[Nav98, Theorem 9.14]. SinceB andB∨ have a common defect groupD ≤ G∨, by [AB79, Theorem
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3.10] or [Ols82, Theorem 2.1] we can find a B∨-Sylow subpair (D,b∨D) such that (D,bD) is a B-

Sylow subpair, where bD ∶= (b∨D)DCG(D). Notice that, by using Corollary 2.5 together with the

theory of subpairs, the block b∨D covers bl(fD(µ)). Hence bD covers bl(fD(µ)). More generally,

the block bQ covers bl(fQ(µ)), for every B-subpair (Q, bQ) ≤ (D,bD). Using this observation,

we can construct an A-transversal T in Cd(B,Z) such that P ≤ G∨ and ϑ ∈ Irr(GD ∣ fP (µ)), for
every (D, ϑ) ∈ T with P the last term of D.

Consider (D, ϑ) ∈ T and let P be the last term of D. Notice that G∨
D
= GD,fP (µ) and let ϑ∨ ∈

Irr(G∨
D
∣ fP (µ)) be the Clifford correspondent of ϑ over fP (µ). As A = GA∨, we obtain an

A∨-equivariant bijection

Υ ∶ Cd(B,Z)/G→ Cd(B∨, Z)/G∨
by defining Υ((D, ϑ)y) ∶= (D, ϑ∨)y , for every (D, ϑ) ∈ T and y ∈ A∨. Since ∣G∨ ∶ Z(G∨)∣ ≤∣G ∶ Z(G)∣, if µ is not A-invariant, then there exists an A∨-equivariant bijection

Ω∨ ∶ Cd(B∨, Z)+/G∨ → Cd(B∨, Z)−/G∨
such that (A∨(D,ϑ∨),G∨D, ϑ∨)∼G∨ (A∨(E,χ∨),G∨E, χ∨) ,
for every (D, ϑ∨) ∈ Cd(B∨, Z)+ and (E, χ∨) ∈ Ω∨((D, ϑ∨)). Combining Ω∨ with Υ and applying

Proposition 2.8, we obtain an A-equivariant bijection

Ω ∶ Cd(B,Z)+/G→ Cd(B,Z)−/G
such that (A(D,ϑ),GD, ϑ) ∼G (A(E,χ),GE, χ) ,
for every (D, ϑ) ∈ Cd(B,Z)+ and (E, χ) ∈ Ω((D, ϑ)). This is a contradiction and therefore µmust

be A-invariant.

Theorem 5.2. Assume that G ⊴ A is a minimal counterexample to Conjecture 2.2 with respect to∣G ∶ Z(G)∣ first and then to ∣A∣ and considerZ ≤ Z(G),B ∈ Bl(G) and d ≥ 0 for which the conjecture
fails to hold. Then Op(G)Op′(G) ≤ Z(G).
Proof. Set N ∶= Op′(G) and fix a block bl(µ) ∈ Bl(N) covered by B. Notice that by Lemma

2.3 we must have Z = Op(G). Thus it’s enough to show that N is contained in the center. By

Proposition 5.1, we know that µ is A-invariant and therefore we can apply the results obtained in

Section 4. Let B̃ ∈ Bl(G̃) be the Fong correspondent of B. Since Ñ ≤ Z(G̃), if N ≰ Z(G), then
∣G̃ ∶ Z(G̃)∣ ≤ ∣G̃ ∶ ÑZ(G)∣ = ∣G ∶ NZ(G)∣ < ∣G ∶ Z(G)∣ and we obtain an Ã-equivariant bijection

Ω̃ ∶ Cd(B̃, Z̃p)+/G̃→ Cd(B̃, Z̃p)−/G̃
such that (Ã(D̃,ϑ̃), G̃D̃

, ϑ̃)∼G̃ (Ã(Ẽ,χ̃), G̃D̃
, χ̃) ,

for every (D̃, ϑ̃) ∈ Cd(B̃, Z̃p)+ and (Ẽ, χ̃) ∈ Ω̃((D̃, ϑ̃)). Combining Ω̃ with the bijection ∆ given

by Corollary 4.7, we obtain an A-equivariant bijection

Ω ∶ Cd(B,Z)+/G→ Cd(B,Z)−/G
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such that (A(D,ϑ),GD, ϑ) ∼G (A(E,χ),GE, χ) ,
for every (D, ϑ) ∈ Cd(B,Z)+ and (E, χ) ∈ Ω((D, ϑ)). This contradiction shows that N must be

contained in the center of G.

Next, we consider the residue of characters. We are going to obtain Theorem B as a consequence

of an analogous study of a minimal counterexample. We need the following result whose proof

can be deduced by Glesser’s paper [Gle07].

Lemma 5.3. Let Γµ,D be the bijection of Corollary 4.5. Then

r (Γµ,D(ϑ)) ∣N ∣ ≡ ±µ(1)r(ϑ)∣Ñ ∣ (mod p),
for every ϑ ∈ Irr(GD ∣ fP (µ)).
Proof. This follows from similar computations as the ones in the proofs of [Gle07, Corollary 3.4

and Theorem 3.8].

For completeness, we state the Isaacs-Navarro refinement of the Character Triple Conjecture.

Conjecture 5.4 (Isaacs-Navarro refinement of the Character Triple Conjecture). There exists a

bijection Ω as in Conjecture 2.2 such that

r(ϑ) ≡ ±r(χ) (mod p),
for every (D, ϑ) ∈ Cd(B,Z)+ and (E, χ) ∈ Ω((D, ϑ)).
Finally, using the proof of Theorem 5.2 and Lemma 5.3 we obtain a similar structure theorem for a

minimal counterexample of Conjecture 5.4.

Theorem 5.5. Assume that G ⊴ A is a minimal counterexample to Conjecture 5.4 with respect to∣G ∶ Z(G)∣ first and then to ∣A∣ and considerZ ≤ Z(G),B ∈ Bl(G) and d ≥ 0 for which the conjecture
fails to hold. Then Op(G)Op′(G) ≤ Z(G).
Proof. Set N ∶= Op′(G) and fix a block bl(µ) ∈ Bl(N) covered by B. By the proof of Lemma 2.3

we know that Z = Op(G) and it’s enough to show that N ≤ Z(G). Proceeding as in the proof of

Proposition 5.1 and noticing that induction of characters preserves the residue of characters, we

deduce that µmust beA-invariant. Then, using Lemma 5.3 and adapting the the proof of Theorem

5.2, we obtain N ≤ Z(G).
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