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Character Triple Conjecture for
p-Solvable Groups

Damiano Rossi

To the memory of Carlo Casolo
Abstract

In this paper, we prove the Character Triple Conjecture for p-solvable groups. This is a
conjecture proposed by Spéth during the reduction process of Dade’s Projective Conjecture to
quasisimple groups (see [Spal7]). In addition, as suggested by Isaacs and Navarro in [IN02], we
take into account the p-residue of characters.

1 Introduction

Global-local counting conjectures play a major role in modern representation theory of finite
groups. Amongst them are the McKay Conjecture [McK72] and its blockwise version, known
as the Alperin-McKay Conjecture [Alp76], the Alperin Weight Conjecture [[Alp87|] and a series of
conjectures proposed by Dade in [Dad92], [Dad94] and [Dad97|] that imply all the above mentioned
conjectures. Dade’s aim was to find a version of his conjecture strong enough to hold for every
finite group if proved for all nonabelian simple groups. Unfortunately, such a reduction theorem
has never been published. The first step towards the solution of the global-local conjectures has
been achieved by Isaacs, Malle and Navarro in [IMN07] where the McKay Conjecture was reduced
to a stronger statement for simple groups. Inspired by this result, other reduction theorems have
been proved (see [NT11]], [Spa13al, [Spa13b], [Spal7] and [NSV20]). However, contrary to Dade’s
philosophy, all the reduction theorems appeared so far reduce a certain statement for arbitrary
finite groups to a much stronger statement for quasisimple groups.

Although these stronger statements, known as inductive conditions, have been originally thought
for (quasi)simple groups, they can be stated for arbitrary finite groups. Then, going back to Dade’s
plan, by proving the inductive condition for simple groups it should be possible to obtain, not only
the original conjecture, but even the inductive condition itself for every finite group. This was
done in [NS14b]| for the Alperin—McKay Conjecture.

In [Spal7] Spath introduced the Character Triple Conjecture and showed that Dade’s Projective
Conjecture holds for every finite group if her conjecture holds for all quasisimple groups. Therefore
Spath’s conjecture plays the role of inductive condition for Dade’s Projective Conjecture. Following
[NS14b], we would like to show that the Character Triple Conjecture holds for every finite group
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if it holds for all quasisimple groups. To prove such a reduction theorem, it is necessary to study
the structure of a minimal counterexample. As for the above mentioned reductions, the first step
in this direction is to show that such a counterexample cannot be p-solvable. This result was in
preparation when the paper [Spa17] was published. Unfortunately, the project was later abandoned
and no proof has appeared. With permission of Spéth, we take over the project and prove the
Character Triple Conjecture for p-solvable groups in this paper.

More precisely, let G be a finite group and fix a prime p. For any d > 0, we denote by Irrd(G ) the
set of irreducible characters x € Irr(G) with p-defect equal to d. Let 9t(G) be the set of p-chains
of G starting with O,(G). If D = {Dy < Dy < --- < Dy} € N(G), we denote by |D| the integer
n, called the length of . This yields a partition of 91(G) into the set 9(G), of p-chains of even
length and the set 91(G)- of p-chains of odd length. Notice that G acts by conjugation on the set
of p-chains and let G|p be the stabilizer in G of the chain . For € € {+, -} and B a p-block of G,
define
CUB)c = {(D,9) | DeN(G)., € rr*(Gp),bl(9)“ = B},

where bl(#9) is the unique block of G containing 9 and bl(1}) is the block of G obtain via

Brauer’s induction (this is defined by [KR89, Lemma 3.2]). We denote by (D, %) the G-orbit of
(D,¥) € C*B). and by C%(B)./G the set of G-orbits. Now, our main result can be stated as
follows.

Theorem A. Let G be a finite p-solvable group with O, (G) < Z(G) and consider a p-block B of G
with noncentral defect groups. Suppose that G < A and denote by Ap the stabilizer of B in A. Then,
for every d > 0, there exists an Ap-equivariant bijection

Q:c4B),/G~CcUB)_|G

such that
(A]I)),ﬂv G]D)a 19) ~G (A]E,Xv G]E7 X) )
in the sense of Definition[2Z for every (D,9) € C*(B), and (E,x) € Q((D,)).

Recall that for x € Irr(G), the p-residue of x is the nonnegative integer () := |G|y /x(1),. Fol-
lowing ideas of Isaacs and Navarro [IN02], we include the p-residue of characters into the picture.
However, we do not consider more technical refinements involving Galois automorphisms (see
[Nav04]) or p-local Schur indices (see [Tur08b]) as done by Turull in [Turl7)] for Dade’s Conjec-
ture.

Theorem B. There exists a bijection §) satisfying the conditions of Theorem[Al and such that
r(0) =4r(x) (modp),

for every (D, ) € C4(B), and some (E,x) € Q((D,9)).

As a corollary to our results, we show that Dade’s Extended Projective Conjecture [Dad97, 4.10],
with the Isaacs-Navarro refinement, holds for every p-solvable group.

Corollary C. Dade’s Extended Projective Conjecture with the Isaacs-Navarro refinement holds for
every p-solvable group.

Proof. This follows from Theorem[Bland [[Spa17, Proposition 6.4]. O



The paper is structured as follows: in the next section, we establish some notation, we give the
main definitions used in the paper and we prove some preliminary results. In the third section,
we construct an equivariant defect preserving character bijection lying above the Glauberman
correspondence that is well behaved with respect to N-block isomorphic character triples (see
Definition 2.1). In the fourth section, we show how to construct N-block isomorphic character
triples by using the Fong correspondence. Finally in the last section, we use the previously obtained
results to prove Theorem[Aland Theorem[Bl This is done by inspecting the structure of a minimal
counterexample.

2 Preliminaries and notation

We use standard notation from representation theory of finite groups as in [Isa76l], [NT89] and
[Nav9g]]. All groups considered in the sequel are assumed to be finite. For notational convenience,
whenever necessary we denote the normalizer N (H) simply by G g, for every H < G.

Let Irr(G) the set of ordinary irreducible characters. If H < G and x € Irr(G), then Irr(xg)
is the set of irreducible characters of H which appear as constituents of the restricted character
X#. Moreover, for ¥ € Irr(H ), we denote by Irr(G | ¢) the set of irreducible constituents of the
induced character 9¢. For N 9 G and ¥ € Irr(IN') we denote by Gy the stabilizer of ¥ in G and by
Irrg (IN) the set of G-invariant irreducible characters of N. Then (G, N,v) is a character triple if
N <G and 9 € Irrg(N).

Fix a prime p. For x € Irr(G), there exist unique nonnegative integers d(x) and r(x), called
respectively the p-defect and the p-residue of y, such that (y )p?*) = |G|/x(1) with r(x) coprime
to p. For any d > 0, we denote by Irr?((G) the set of irreducible characters x € Irr(G) such that
d(x) = d. We denote by BI(G) the set of p-blocks of G and by BI(G | b) the set of all blocks of G
covering b, where N 94 G and b € BI(IV). Let G}, be the stabilizer of bin G. If H < G and b € BI(H),
then b€ is, when it is defined, the block obtained via Brauer induction. For X € Irr(G), the block
of G that contains x is bl(x). Let §(B) be the set of defect groups of the block B and d(B) be its
defect. If D is a p-subgroup of G, then BI(G | D) is the set of blocks of G with D € §(B).

For the notion of projective representation, we refer to [NT89], [Nav18]] and [Spa18]]. We denote by
Proj(G | «) the set of projective representations of G with factor set a.. Moreover, if N < G, then
we can consider a representation of G/N as a representation of G that is constant on N-cosets
by the usual inflation process. If P is a projective representation associated with a character triple
(G, N, ) (see [Spai8| Definition 1.7] and [Nav18| Definition 5.2]), then P yields a central extension
of G (see [Nav18| Theorem 5.6] and [Spa18, Theorem 1.12]). This is a standard construction and
we will make use of it without further comment.

In [Spa17| Definition 6.3] a new equivalence relation on character triples was introduced. This will
be of fundamental importance in what follows and, for completeness, we include the definition.

Definition 2.1 (N-block isomorphic character triples). Let (Hy, M1,9¥1) and (Ha, Ms,92) be
two character triples and let N be a group. We say that the two character triples are N-block
isomorphic, and write

(Hy, My, 01) ~n (Ha, M2,7),

if the following conditions are satisfied:

(i) N9 NHy = NHy = G, M; = Hin N and My = Hy n N. We denote the canonical
isomorphisms by I; : H;/M; - G/N and by i := I;' o ly : Hi/M; - Hy/Mo;



(i) Fori = 1,2, there exists a defect group D; € 6(bl(¥;)) such that C(D;) < H;. In particular
Ce(N) < Hy n Ho;

(iii) For 7 = 1,2, there exists a projective representation P; € Proj(H; | «;) associated with
(H;, M;,9;) such that aq(z,y) = as(i(z),i(y)), for every x,y € Hy/M;i, and with the
property that Py ¢, () and Py ¢, (n) are associated with the same scalar function (see the
comments preceding [[Spa18, Definition 2.7] and [Nav18] Definition 10.14]). In this case, there
exists a strong isomorphism of character triple (i,0) : (Hy, My,91) — (Ha2, M2, 92) (see
[Isa76, Problem 11.13]) given by

aJ, III’I‘(Jl | 191) g II’I‘(J2 | 192)
tr(Q, ® Pr,s,) = tr(Qy, ® P2.s,),

for every N < J < G, where J; := JnH; and Q € Proj(J/N | a7% ;). Here « is the factor set
of G/ N corresponding to «; via the isomorphism I; : H;/M; — G/ N (see [Spa17, Theorem
3.3]);

(iv) For N < J < G, we have
bl(y)” = bl(as, ()7

for every ¢ € Irr(.J; | ¥1). Observe in this situation that block induction is well defined (see
[Spa17, Lemma 3.5]).

In this situation, we say that (P1, Ps) is associated with (Hy, M1,91) ~n (Ha, M3, 92), or that
(H1,M1,91) ~n (Ha,Ma,92) is given by (P1,P2). Whenever we want to specify the pair
(P1,P2) we write U(J7131,P2) instead of simply o, .

The above definition gives a relation on character triples that extends the relation >; introduced
in [Spai8| Definition 4.2] (see also [NS14b]). In fact, observe that (G, N,x) >, (H, M,?) if and
only if (G, N, x) ~n (H,M,?). On the other hand, the notion of block isomorphism of character
triples given in [NS14bl Definition 3.6] is slightly different, and in some sense more restrictive,
from the relation >, (see [Spa18, Remark 4.3 (c)]). For this reason, we will not refer to results of
[NS14b] which involve directly block isomorphism of character triples.

Having defined N-block isomorphic character triples, we can now introduce Spéth’s Character
Triple Conjecture ([Spal7, Conjecture 6.3]). For a central p-subgroup Z of G, we denote by (G, Z)
the set of normal p-chains of G starting with Z. These are the chains D = {Z = Dy < Dy < --- <
D,,} of p-subgroups of G with the property that each D; is normal in the largest subgroup D,,.
We denote by |D| the integer n, called the length of D. The set (G, Z) is partitioned into the set
M(G, Z), of p-chains of even length, and the set 9(G, Z)_ of p-chains of odd length. The group
G acts by conjugation on N(G, Z) and we denote by Gp = N; Ng(D;) the stabilizer in G of the
chain ID. Finally, let B be a block of G and, for ¢ € {+, -} and d > 0, define C¢(B, Z). to be the set
of pairs (ID,9) with D € N(G, Z), and ¥ € Irr?(Gp) satisfying bl(9)¢ = B. Again, the group G
acts on C%(B, Z).. We denote by (ID,?) the G-orbit of (D,) € C*(B, Z). and by C4(B, Z)./G
the set of G-orbits.

Conjecture 2.2 (Spith’s Character Triple Conjecture). Let G be a finite group, Z < Z(G) be a
p-subgroup and consider B € BI(G) with defect groups strictly larger than Z. Suppose that G <4 A.
Then, for every d > 0, there exists an N 4 (Z) p-equivariant bijection

Q:CYB,2),|G—-CYB,2)_|G



such that
(A]D),’l97 G]D)a 19) ~G (A]E,Xa G]E7 X) )
for every (D,9) € C4(B, Z), and some (E, x) € Q((D,1)).

By [Spa17 Lemma 3.8 (c)], the above statement on character triples does not depend on the choice
of (E,x) € Q((ID,9)) nor on the representative (ID, ) of (D,9). We will make use of this fact

without further reference.

As shown in the following lemma, it is no loss of generality to assume O, (G) < Z(G) and consider
p-chains with initial term O, (G). This is an adaptation of a well known result (see, for instance,
[Nav18| Theorem 9.16]).

Lemma 2.3. Conjecture[2Z2 holds whenever Z < O,(G).

Proof. Consider D € (G, Z) withD = {Dg < Dy --- < D, }. If O,(G) £ Dy, then define D* to
be the p-chain obtained by adding O,(G)D,, to D. Assume O,(G) < D,, and let k be the unique
nonnegative integer such that O,(G) < Dy, and O,(G) ¢ Dy_1. If O,(G)Dy-1 = Dy, then we
define D* by deleting the term Dy, from D. If O,,(G) Dy-1 < Dy, then we define D* by adding the
term O, (G)Dy_1 to D. This defines a self-inverse N 4 (Z)-equivariant bijection * : M(G, Z) —
N(G, Z) such that [D| = [D*| £ 1. In particular Gp = Gp+ and we define Q((ID,9)) := (D*, ), for
every (D,9) € C4(B, Z),. O

2.1 A consequence of the Harris—Knorr theorem

Next, we collect some consequences of the Harris—Knorr theorem that will be used in the sequel.
The reader should notice that Corollary 2.5] and Corollary 2.6] below can also be deduced from
[Turl7, Theorem 4.1]. However, we present here an elementary argument.

Lemma 2.4. Let N < G and P be a p-subgroup of N. Consider a blockb € BI(N | P) and its Brauer
first main correspondent b’ € BI(Ny(P) | P). Let B' € BI(Ng(P)) and set B := (B')“. Then B’
covers b’ if and only if B covers b.

Proof. The result follows from the proof of the Harris—Knorr theorem [HK85]. O

If P is a p-group acting via automorphisms on a p’-group N, we denote by fp : Irrp(N) —
Irr(Cn (P)) the P-Glauberman correspondence (see [[sa76, Chapter 13] and [Nav18| §2.3]).

Corollary 2.5. Let N be a normal p’-subgroup of G and P be a p-subgroup of G. Consider i €
Irrp(N) and set p' == fp(p) € Irr(Cy(P)). If B € B(Ng(P)), then B’ covers bl(u") if and
only if (B")NN&(P) covers bl( ). Moreover, if ji is G-invariant, then B’ covers bl(u') if and only if
(B"Y covers bl(1).

Proof. Let b’ be the unique block of N yp(P) that covers bl(u'), b the unique block of N P that
covers bl(u) (see [Nav98| Corollary 9.6]) and notice that b and b" are Brauer first main corre-
spondents over P. Now, BI(NNg(P) | bl(n)) = B(NNg(P) |b) and BI(Ng(P) | bl(p')) =
BI(N¢(P) | b') and applying Lemma[Z4lit follows that B’ covers bl(x') if and only if (B") VN (P)
covers bl(p). Moreover, if 11 is G-invariant, then bl(p) is covered by (B')VN¢(P) if and only if it
is covered by (B’)¢. O



With the same argument, we obtain a version of the above corollary for normal p-chains.

Corollary 2.6. Let N be a normal p'-subgroup of G and D be a normal p-chain of G with last term
P. Consider ji € Irrp(N) and set i1/ := fp(p) € Irr(Cn (P)). If B’ € BI(Gp), then B’ coversbl(u)
ifand only if (B")NE® covers bl(y1). Moreover, if i is G-invariant, then B covers bl(y1") if and only
if (B")¢ covers bl(11).

Proof. The proof of Corollary [2.5]applies with minor changes. O

2.2 Construction of N-block isomorphic character triples

We prove some useful results that can be used to construct N-block isomorphic character triples.
First, we give a version of [NS14b| Theorem 3.14] for our situation. This proposition allows to
obtain new N-block isomorphic character triples involving irreducibly induced characters. This
is the case, for instance, when we apply the Fong—Reynolds correspondence or the Clifford corre-
spondence. Before proving this result, we need an easy lemma.

Lemma 2.7. Let N < G and 9 € Irr(N). If9< € Irr(G), then Co(N) < N.

Proof. Set H := NCg(N) and observe that 1 := 9 € Irr(H). Since 1) is H-invariant we have
Yy =ed with e = |H : N|. However e = [¢x, 9] = [¢,%] = 1 and therefore Co(N) < N. O

Proposition 2.8. Let N 4 G and Gy < G. Fori = 1,2, consider H; < G such that G = NH;
and set M; := N n H;, Hy; := Gon H;, My; = Gon M; and Ny := Gon N 4 Ggy. Suppose
that G = GoN, that H; = Ho ;M; and that p; = (¢o,;)Mi € Trr(M;), for some o ; € Trr(My ;).
If (Ho,1,Mo1,¢01) ~nN, (Ho,2, Mo.2,%0,2), there exists a defect group D; € §(bl(y;)) such that
Cqa(D;) < H;, and induction Indﬁ i rr(Josi | po,i) = Tre(Ji | i) defines a bijection for every
N < J <G, where J; := Jn H; and ;7071- :==Jn Hy,, then (Hy, My1,01) ~n (Hz, M2, p2).

Proof. Assume (Hop 1, Mo 1,%0,1) ~No (Ho.2,Mo.2,%0,2) via (Po1,Po,2) and let o ; be the factor
set of Py ;. Consider the canonical isomorphisms ly ; : Ho i/ Mo,; - Go/Noandl; : H;/M; - G/N
and set g := 15712 olppandi=13"0ly. Ifj: G/N - Go/Ny and j; : H;/M; — Hy /Mo ; are the
canonical isomorphisms, then we have a commutative diagram

i

Hi/My —% s GIN +2" Hy/M,

5| ! |

Ho1/Moa - Go/No N Hoy2/Mo,2
i

As in [NS14b, Theorem 3.14], we consider the projective representation P; := (P ;) ' € Proj(H; | a;)
defined as follows: let {¢;1,...,t;n} be a H;-transversal for Hy ; contained in M;, where n :=



|G : Go| = |H; : Hp ;. For every « € H;, let

P07i(t;}-xti7k), ift;}-xti)k € HO,i

'Pi_,jyk(a:) = {

0, otherwise
and define
Piia (CL‘) . Pi,l,n(l')

Then, P; is a projective representation of H; associated with ¢; = tpg{; with factor set «; satisfying
ai(z,y) = a0,i(Ji(x), ji(y)), for all z, y € H; [ M;. Since

a0,1(j1(2), j1(y)) = 0,2 (G0 (51 (2)), 90 (J1(y))),
we conclude that oy (2, y) = a2(i(z),i(y)), for all x,y € Hy [/ M;.
We claim that Cg, (M;) < Gy. In this case, since Cg(N) < Cg(D;) < H;, we deduce Cg(IN) <
Cg, (No). To prove the claim, fix « € Cp, (M;), set J; := (M;,x) and Jy; := Go n J; and let @;
be an extension of ¢; to J;. Since Indii) C:1rr(Joji | o,i) = Tre(J; | ;) is a bijection, we can find

an irreducible character ¢g ; » € Irr(Jp ; | 0,:) such that tpb’ji)w = ; 2. By Lemma[27 we conclude
that x € Cy,(Jos) < Jo; < Go. This proves the claim, hence Cg(N) < Cg,(No). Now, since
Po,1,Ca, (No) a0d P 2,c i, (N) are associated with the same scalar function and [ti,;,Ca(N)] =1
forevery i=1,2and j = 1,...,n, then the same is true for P; ¢, () and Pa c(n)-

Next, fix N < J <G, set Jy := Jn Gy, J; := JnH; and Jy ; := J n Hy ;, and consider the bijections
given by the character triple isomorphisms induced by (Pg. 1, P 2) and (P, P2):

00,50, Irr(Jo,1 [ w0,1) = Irr(Jo 2 | 0,2)
tr(Q0,70., ® P0,1,J0.1) = t1(Q0,75.. ® Po.2,70.)

where Qg € Proj(Jo/Ny), and

oy Irr(J1 | 1) = Trr(Ja | ¢2)
tr(Qy, ® Pr,y,) = tr(Qs, ® Pa.s,)

where Q) € Proj(J/N). Observe that o, (z/JOJl) = (UO)JOJ (1/10))(]2, for all o € Irr(Jo1 | o,1)-
Let ¢ € TIrr(Jy | 1) and write ¢ = ¢", for some vy € Trr(Jo1 | ¢o,1). Since by hypothesis
bl(¢p0)”° = bl(00, 1, , (¥0))”°, we conclude that bl(y))” = bl(a, (¥))”. O

Whenever we have a pair of N-isomorphic character triples, there is an induced strong isomor-
phism of character triples with some special properties. In the following lemma we describe some
of these special features.

Lemma 2.9. Let (Hy, My,91) ~n (Ha, M2,92) given by (P1,P2) and, for N < J < G = NH;,
consider the bijection J(J?I’PZ) :Irr(Jy | 91) = Ire(J2 | 92), where J; := JnH;. Lettpy € Irr(Jy | 91)
and 1y = USTI’P2)(1#1). Then:

(i) there exists Q € Proj(JH; .y, /N) such that Q; j, ® Pi. s, affords1b;, where Q; = QH, 5y,



(ii) if D; := 0; ® P;, then
(Hy, 7005 J1,01) ~5 (H2, 1,95, J2,%2)

via (D1, D2). Moreover

UE(DIMDQ)( 1) = 0(7’177’2)(X1)7

forevery J < K < JH; jy, and x € Irr (K1 | ¢1) € Irr (K7 | 91), where K; := K n H;;
(iii) d(y1) - d(2) = d(V1) — d(2).

Proof. First, as JHy1 j = Gy = JHs 5, we may assume J 4 G. Moreover, since (i,0) is a strong
isomorphism of character triples, we know that

07 (1/}1)12 = O'Jfl (1/)fl) =0 (1/)%1)’

forevery z1 € Hy and o € Hy suchthati(Mix1) = Maxo. Inparticular ¢ (Hy y, /M) = Ha y, /Mo
and so JH; y, = JHa y,. Therefore, we may assume H; = H; y,.

By [Spa17, Theorem 3.3], there exists Q € Proj(.J/N | a3L ;) such that); is afforded by Q ;, ®P; J,.
By [Navi8, Theorem 5.5], there exists D; € Proj(H;) such that Dy j, = Qj, ® Py j,. Arguing as
in [NS14D), p. 707], relying on the proof of [Nav98| Theorem 8.16] we can find O; € Proj(H;) such
that

D1 =0,8P;

and Q) 5, = Q,. Since N < Ker(Q), we deduce that M; < Ker(Q,) < Ker(Q;). Now O, €
Proj(H: /M) and, using the isomorphism Hi /M = G/N ~ Hy/M>, we define 0 € Proj(G/N)
and Qy € Proj(Hy/Ms,). This proves (i). Set

Dy = @2 ® Po.

We claim that (Hq,J1,%1) ~j (Ha,J2,%9) via (D1, D3). Clearly the condition on the factor
sets is satisfied. Moreover, since v; lies over ¥;, we can find D; € 6(bl(¢;)) and Q; € 6(bl(¥;))

with Q; < D; and Cs(Q;) < H;. It follows that Cs(D;) < H;. To conclude, we need to check

(D, (D17D2)

the condition on block induction for o(PP2)_ It’s enough to show that o> coincides with

(PI’PZ) on Irr(K | ¢1), for every J < K < G, where K; := K n H;. C0n51der xi € Irr(Kq | 1)
and let R € Proj(K/J) such that x1 = tr(Rx, ® D1k, ). Then

0P (x1) = (R, ® Do i, )

= tr('RK2 ® @Kz ®'P27K2)
= 052177)2)(&(72}{1 ® QKl ®'P17K1))

o P (tr (R, ® Dik,))

P1,P
=P (x).

and the proof of (ii) is complete. To conclude, since 11 (1)/91(1) = 12(1)/92(1) by [[sa76, Lemma
11.24] and |J : J;| = i, it follows that

A =d() [ilp¥2(Dp _ [IMilp92(D)p _ a(91)-a(o2)

|J2|p1/’1(1)p ) |M2|p191(1)p
This finishes the proof. O




Given a defect preserving equivariant bijection respecting N-block isomorphic character triples,
we show how to obtain another bijection over the given one that satisfies similar properties. For
N <G and S € Irr(N), we denote by Irr(G | S) the set of x € Irr(G) that lies over some ¥ € S.

Proposition 2.10. Let K < A, Ay < A with A = K Ay and, for every subgroup X < A, set Xy =
X n Ag. Consider Ag-stable subsets of characters S € Irr(K') and So € Irr(Ky). Assume there exists
an Ag-equivariant bijection

v:S > So

such that
(Ay, K,9) ~k (Ao,9, Ko, ¥ (1))

and
Ca(D) < Ay,

for every 9 € S and some defect group D of bl(¥(9)). Then, for every K < J < A, there exists an
Ay, j-equivariant bijection
O;:Trr(J|S) = Irr(Jo | So)

such that
(A I,x) ~g (Ao, Jo, (X))

and
Ca(Q) < Ao,

for every x € Irr(J | S) and some defect group Q of bl(® ;(xx)). Moreover ¥ preserves the defect of
characters if and only if so does ® ;.

Proof. Consider an N 4, (J)-transversal S in S and define Sy := {U(¥) | ¥ € S}. Since ¥ is Ap-
equivariant, it follows that Sy is an N 4, (J)-transversal in Sy. For every 9 € S, with ¢ := U(¥}) €
So, we fix a pair of projective representations (P(?), ’Pé%)) giving (Ayg, K,9) ~x (Ao.9, Ko,J0).
Now, let T be an N 4, (J)-transversal in Irr(.J | §) such that every character x € T lies above a
character ¢ € S (this can be done by the choice of S). Moreover, as A = K Ay, we have J = K.Jj
and therefore every x € T lies over a unique ¥ € S by Clifford’s theorem.

For x € T lying over ¥ € S, let ¢ € Irr(Jy | 9) be the Clifford correspondent of x over ). Set
Jo := U(¥) € Sy and consider the N 4, (J)y-equivariant bijection o5, : Irr(Jy | ¥) — Irr(Jo 9 |

) induced by our choice of projective representations (P(?), ’Péﬁo) ). Let g := 05, (¢p). Since ¥
is Ag-equivariant, we deduce that Jy y = Jo9, and therefore ® () = ¢”° is irreducible by the
Clifford correspondence. Then, we define

Q7 (x") =2,(0)7,

for every x € T and « € N 4,(J). This defines an N 4, (.J)-equivariant bijection ¥ : Irr(J | §) -
Irr(Jo | So). Furthermore, using Lemma [2.9it’s clear that ¥ preserves the defect of characters if
and only if so does P ;.

Next, using the fact that (Ay, K,9) ~x (Ao,9, Ko, %) together with Lemma[2.9] we have

(Av, 19,05 J9,%) ~15 (A0,9,750,J0,9,%0)

and, because Ay y < Ay, j,, we obtain

(Ag, 1.9, J9,0) ~1y (Ao,9,7005Jo,0,%0) - (2.1)



By hypothesis there exists a defect group D of bl(9g) such that C 4 (D) < Ajy. Since bl(xq) covers
bl(¥o) we can find a defect group @ of bl(x) such that D < Q. It follows that C4(Q) < C4(D) <
Ayp. Finally, we obtain

(Aspxs 1,x) ~a (Ao,ux; Jo, @ (X))

by applying Proposition [2.8] together with (Z1). O

We end this section with an elementary but useful observation. Suppose to have N-block isomor-
phic character triples and that N < N. Under certain assumptions, it’s possible to deduce that
those character triples are in fact /N-block isomorphic.

Lemma 2.11. Let (/{il,Ml/Lﬁl) ~N (HQ,M/Q\J%) with H;N = G. Suppose that G < G and let
N <N <G withG = GN and N = Gn N. If Ca(D;) < G for some D; € §(bl(1;)), then
(HlaMla,ﬂl) ~N (H21M27/(92)'

Proof. This follows directly from Definition [2.1] O

3 N-block isomorphic character triples and Glauberman
correspondence

The aim of this section is to prove Theorem 3.7l which will be one of the main ingredients in
the final proof. To prove this result, we need to extend the bijection given in [NS14bl Theorem
5.13] to characters of positive height. This is done in Proposition [3.6] for the case where the D-
correspondence coincides with the Glauberman correspondence. Moreover, we obtain a canonical
bijection.

Let N < G and ¥ € Irr(IN) such that (o(9)9(1),|G : N|) = 1. We denote by ¥° the canonical
extension of ¥ to G, i.e. the unique extension of ¥ to G such that (o(9°),|G : N|) = 1 (see [Isa76l
Corollary 8.16]). To prove Proposition [3.6] in addition to the argument developed in [NS14b, §5],
we need the following result on the extendibility of the canonical extension. In what follows we
will often use the following easy fact: if H < G and x € Irr(G) such that x 7 € Irr(H ), then o(x 1)
divides o().

Lemma 3.1. Let N be a normal p’-subgroup of G and P a p-subgroup of G such that K := NP < G.
Consider 11 € Irrg(N) and let u° € Irr (K). Then 1 extends to G if and only if u° extends to G.

Proof. One implication is trivial. Notice that u° is G-invariant since y is G-invariant. Assume
that 4 has an extension x € Irr(G). We have to show that ;° extends to H, for every H/K ¢
Syl,(G/K') and every prime g. If ¢ = p, then p has a canonical extension to H, which is also an
extension of ©°.

Assume ¢ # p and consider A € Irr(K/N) such that u® = A\xx. Notice that, as u® and xx are
G-invariant, the character \ is G-invariant. Since K /N is a p-group and H/K is a ¢-group, we
deduce that A has a canonical extension A° to H. Then A\°x g is an extension of 11°. This concludes

the proof. O
Hypothesis 3.2. Let N be a normal p’-subgroup of A and P be a p-subgroup of A such that

K := NP 9 A. Consider u € Irr 4 (V) and its Glauberman correspondent fp(p) € Irr 4. (Np). Let
pu® elrra(K) and fp(u)® € Irra, (Kp) be the canonical extensions respectively of 1 and fp(p).
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Now, our aim is to obtain an adaptation of [NS14b| Proposition 5.12] that includes canonical ex-
tensions (see Lemma[3.5] below). This is done by proceeding as in [NS14b| §5] and using Lemma

1

Lemma 3.3. Assume Hypothesis[3.2and let C' be an abelian normal subgroup of A withC' < C4(K).

Suppose that u° has an extension Ji to A. Then there exists an extension fp(u) of fp(u)® to Ap such
that

Irr (fig) = Inr (mc) .

Proof. Write Cy, := Op(C') and Cpy := Oy (C) and set & := finc,,. Let £° be the canonical ex-
tension of  to KC. Since x extends to A, there exists an extension K of k° to A by Lemma [3.1]
Observe that k° extends p° and so does %K. Now, by [[sa76] Corollary 6.17], there exists a linear
character n € Irr(A/K) such that &t = . Let A and \; be the unique irreducible constituent
respectively of fic and of K¢. Then A = A1nc. Next, consider the P-Glauberman correspondent
fr(k) eIrr((NCy ) p) of k and let fp(x)° be its canonical extension to (K C') p. Using [Tur08a,
Theorem 6.5] and [Tur09, Theorem 7. 12] as k extends to A, we conclude that fp(k) extends to Ap.
By Lemma[3dlthere exists an extension fp(r) of fp(x)° to Ap. As before, notice that fp(li) isan
extension of fp(11)°. Define fp(p) := fp(k)na,. Since Kp <Ker(na, ), it follows that fr(p)is
an extension of fp(u)®. If \" and )] are the unique irreducible constituents respectively of fp (1)

and fp(k)q, then X = Anc. Therefore, in order to conclude, it is enough to show that A; = A].
Write A1 = A1, x A and A = A, x A}, with Mg, A) ), € Trr(Cp) and Ay pr, A, € Tir(Cy )
First, because fp(k) is an irreduable constituent of knc,, and Cy <Z(NCy), it follows that

Irr (T{cp,) =TIrr (fic;) =Irr (fp(:‘i)cp,) =TIrr (]%Cp,)

and therefore A\, = A} e Observe that Kyxc, = =(k )NXC = X A1 p. Since p does not divide
o(k?), it follows that p does not divide o(y x A,). In particular (p,o(A,)) = 1 and therefore
A1p = L, By the same argument, we obtain \} , = 1¢,. This shows that A\; = A} and the proof is
complete. O

Next, we extend Lemma [3.3]to the case where C' is not necessarily abelian.

Corollary 3.4. Assume Hypothesis[3.2 and suppose that 1i° has an extension [i to A. Then there
exists an extension fp(u) of fp(u)® to Ap such that

Irr (fic,(x)) = Irr (fP(,u)CA(K)) :

Proof. Set C := C4(K), C":=[C,C] and A := A/C’. Since Jix is irreducible, as remarked before
[Spa18] Definition 2.7], we have C' < Z(77) and [[sa76| Lemma 2.27] implies that fic = (1) A, for
some linear character A € Irr(C'). In particular C’ < Ker(\) < Ker(z). It follows that C' n K is
contained in Ker(y®) and Ker(fp(x)°®) while C' n N is contained in Ker(u) and Ker(fp(1)).
Via the canonical 1somorphlsm N = N/C'nN, we can identify y with a character 7z of N. Similarly

we can consider ° as a character of K, f p(,u) as a character of Np and fp(u)° as a character
of K p. Notice that Ap = A— Kp = K— and Np = N— By [NS14b| Lemma 5.10] the character

fp(u) coincides with the P-Glauberman correspondent f5(R) of Ii. Moreover p® and fp(u)°
are the canonical extensions of 7t and of fp(u). Applying Lemma[3.3] we find an extension 1 of
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fp(u)° to Zﬁ such that Irr (ﬁg) =TIrr (1/16) where i is the character of A corresponding to i via

inflation. Now the inflation fp(u) € Irr(Ap) of ¢ satisfies the required hypothesis. O

Recall that, if R is the ring of algebraic integers and S is the localization of R at some maximal
ideal containing pR, then * : S — F denotes the canonical epimorphism, where F is the residue
field of characteristic p (see [Nav98, Chapter 2] for details).

Lemma 3.5. Assume Hypothesis[32 If 1° extends to fi € Irr(A), then there exists an extension
fp(w) of fp(u)°® to Ap such that

It (fic 4 (x)) = Irr (fP(H)cA(K))
and
fi(z)" = efp(p)(x)",
for every p-regular x € A with P € Syl,(Ck (x)), where e := [un,., fp(p)]-
Proof. By Lemmal[3.3]there exists an extension  of fp(u)® that satisfies the first condition. In order

to conclude, it is enough to find a linear character € € Irr(Ap/C 4 (K)Kp) such that fp(p) = £y
satisfies the second condition.

First, we construct the linear character &. Let x be a p-regular element of C4(P)Kp, set N(*)
N(z), K& := K(x) and observe that (N(®))p = (N,)® := Kp(x) and (K®))p = (K,)® :
Kp(x)

Since z is p-regular, the subgroup N (*) has order coprime to p and we can consider the P-Glauberman
correspondent fp (T ) ) of [ (). Moreover fp(fiye) )np = fp (1) by [IN91] Theorem A]. Now,

if fp(fiy))® is the canonical extension of fp (i) ) to Kl(f), then (fp(Tiye)®) Ky = fr(1)°.
Since X ,.(=) is another extension of fp(u)® to K I(f), it follows that there exists a unique linear
P

character £(*) ¢ Irr(Kl(f)/Kp) such that 5(””)XK<I) = fp(fin@ ). We define the map
P

g: CA(P)KP g (C
T = 5(%’)(5517’)-

We claim that £ is a linear character of C 4(P)K p with an extension §~ to Ap. To show that £ is
an irreducible character we apply [[sa76 Corollary 8.12]. Clearly £(1) = 1. Next, in order to show
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that ¢ is a class function we check that £&™) = (¢()) for every n € Ap and every p-regular
2 € C4(P)Kp. If this is the case, then

(@) = € ((aM)y) = €D (p)") = (€5 ((wp)") = €5 () = (),

for every x € C4(P)Kp and n € Ap. In particular ¢ is a class function. To prove the claim, just
notice that (X ;.x))" = X ;o= and that (fp(Fne))°)" is the canonical extension of fp (fiy) )" =
P P

fp(fixem ), for every n € Ap and every p-regular 2 € C 4(P)Kp. Next, since £(*) = 5(9”71) for
every p-regular x € C4(P)Kp, we deduce that £(z71) = ¢71(2), for every 2 € C4(P)Kp, and
therefore [¢,£] = 1. Finally, fix SxT < C4(P)K p with S a p-group and T a p’-group. Observe that
&s = 1g. On the other hand x k7 and fp(fiyT)® are both extensions of fp(1)® and we can find a
linear character A € Irr(KpT /K p) such that A\x k.7 = fp(finT)®. Moreover, for every x € T, we
have (fp(ﬁNT)°)K§f> = fp(Fnw))® and therefore & = Ap. It follows that Egxr € ZIrr(S x T)

and hence £ is a linear character by [Isa76, Corollary 8.12].

Next, we show that £ extends to Ap. To do so, we use [[sa76, Theorem 6.26]. Let ¢ be a prime
dividing o(¢) and consider S;/Ca(P)Kp € Syl,(Ap/Ca(P)Kp). Noticing that every p-element
2 of C4(P)Kp is contained in Ker(¢), we deduce that p does not divide |C 4 (P) K p : Ker(£)| and
hence q # p. Let Q € Syl (Ap/Np) such that S, = C4(P)KpQ and define Q; := QN Ca(P)Kp
and &; := £, . By [Spal0l Lemma 4.1], we deduce that £ extends to Ap if and only if {g, extends
to Q. We are going to check the latter condition. Because )1 < Ap we deduce that NQ); is
a P-invariant p’-group and that (NQ1)p = NpQ1 = Q1. We also have K@ = (NQ1) x P and
(KQ1)p = KpQ1 = Q1P. Now we can consider the P-Glauberman correspondent fp(fing, ) and
its canonical extension fp(fing, )° to @1 P. By [IN91] Theorem A] we have fp(fing, )ne = fr (1)
and so (fp(fing,)®) K, = fp(u)®. Using Lemma[3.d] we obtain an extension ¢ of fp(fing, )° to
(KQ)p = KpQ. By Gallagher’s theorem there exists a unique linear character v € Irr(KpQ/Kp)
such that x kg - v = 1. Finally, for every z € (), we have

é(m)XKIgw =fp(fine)” = (fr(iNG.) v )”
= (fr(Ane)") ko = (pai) g
= le(Dm) = XKI(::)VKI(::)

and it follows that vg, = &;. This shows that v is an extension of &; to () and therefore £ extends
to S,. We conclude that £ has an extension £ to Ap.

Define fp(u) := £x. By [NSi4a Theorem 2.6] we deduce that

i(x)" =iy ()" = efp(fine ) (@) = e(§(x)x(2))" = efp(p)(x)",
for every p-regular x € E such that P € Syl (Ck(x)).

It remains to show that C' := C 4(K) is contained in the kernel of £. First, observe that Ker(¢)
contains C' := [C,C] < Ker(&c). Moreover, Ker(&) contains every p-element of C. Since C'/C’
is abelian it’s enough to show that every p-regular element x of C lies in Ker(¢). By the Alperin
argument we know that B := bl(Jij ) ) and B’ := bl(fp(fiyw) )®) are Brauer correspondents
with B covering b := bl(fy) ) = {fiy@ } and B’ covering b’ := bl(fp(fiyw@)) = {fP(Tnw)}-
According to [Nav98| Theorem 4.14] it follows that Ap = Aps o Brp. Since x € C4(K), we have
x < Z(K®)) and hence

Ap(@) = Ap ((IK")Y) A ((xK‘” A Cre (P))+) (@),
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By [Nav98| Theorem 9.5], we conclude that
T\ _ oy iy - [P (@) (fp( 10 >)
(5 =2et=xmto (fpmNm)(l)) TrG ()

AsTrr(fic) = Irr(x¢) and x is p-regular, we obtain

X(@) _7i(z) _ fe(u)(x)
x(1) B Fe(p)(1)

and, in particular, £(«) = 1. This concludes the proof. O

The following result extends the bijection given in [NS14b| Theorem 5.13] (in the case where K of
[NS14b| Theorem 5.13] is a p’-group) to characters of positive height. In this particular situation
we obtain a canonical bijection.

Proposition 3.6. Assume Hypothesis[32 Then there exists a canonical A p-equivariant bijection

Up I (K | 1) = Be(Kp | fo(0))

pov e fp(n)° v,

foreveryv e Irr(K /N'). Moreover ¥,, p preserves the defect of characters and
(Ay, K,9) ~k (Apo, Kp, ¥, p(V))

and
Ca(D) < Ap,

forevery ¥ e Irr (K | 1) and some defect group D of bl(¥,, p(19)).

Proof. Since K = NxP and Kp = Np x P are p-nilpotent groups with Sylow p-subgroup P, pis K-
invariant and fp(u) is K p-invariant, we have Irr(K | p) = Irr(bl(u®)) = {p°v | v e Irr(K/N)}
and Irr(Kp | fp(p)) = Irr(bl(fp(u)®)) = {fp(n)°v | v € Ir(Kp/Np)}. Thus, we obtain a
defect preserving A p-quivariant bijection by setting

U, p(pv) = fp(p) vy,

for every v € Irr (K /N'). Furthermore, as P is a common defect group of the two blocks bl(+¥}) and
bl(¥,, p(9)), the condition on defect groups is satisfied.

Consider P € Proj(A | «) a projective representation associated with ° and observe that P is
also associated with s Let A be the central extension of A defined by P and ¢ : A - A be the map
given by e(x, s) := z, for every x € A and s € S, with kernel S := (a(x,y) | z,y € A). For H < A,
set H := ¢ "1 (H). Since « is constant on K -cosets and o(1,1) = 1, the set Hy := {(h,1) | h e H} is
a subgroup of A, whenever H < K. In this case let 9 € Irr(Hy) be the character corresponding to
9 € Irr(H ) via the isomorphism ey, : Hy — H. Moreover H = Hox S and we define J := 9y x 15 €
Irr(H). Notice that (u°)o € Irr(Kp) is the canonical extension of o and that 12° € Irr(K) is
the canonical extension of 7i. Furthermore fp(u)o = fp,(10) and (fp(u)®)o is its canonical
extension. As no confusion arise, we just write p5 (resp. fp(u)g) instead of (1) = (o) (resp.

(fP(11)%)o = fr(1t0)°)
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Recall that the map defined by P (z, s) := sP(x), for all (z, s) € A, is an irreducible representation
of A affording an extension 7 of 1. Set S, := 0,(S), Spr 1= 0, (S), M := Ny x Sy, Q := Py x S,
and notice that K = M »x Q, Mg = (Np)o x Sy and Kg = Kp. Let ¢ = s € Irr (M) and
consider its canonical extension ¢° € Irr(I? ). By Lemma[3.] there exists an extension & of ©° to
A. Since Pk, is an extension of yio with 0Pk, dividing o(®), we deduce that P, = y15. Now,
if R is an irreducible representation of A affording 3, then R(z) := R(z,1) defines a projective
representation of A associated with £°. Replacing P with R, we may assume that 7 extends ¢°.

Now, Lemma [3:5]yields an extension fo () of fo(¢)° to Ag = Ap such that

Trr ((ﬁcz(f()) = Trr (fQ(<p)CA‘(I?)) (3.1)

and

B(x)" = efo(p)
for every p-regular x € A such that Q ¢ Syl, ( r(x
by [IN91, Theorem A] and using the fact that S, <

Ja(@) (ke pyy = fPo(10)°-

)(@)", (3:2)
)), where ¢ := [goMQ,fQ( )]. Observe that,

Z(A), we have Jq(#)(x,.), = [r, (1) and

Let P’ be an irreducible representation of Ap affording fo () and consider the projective repre-
sentation P’ of Ap defined by P'(z) := P'(x,1), for every & € Ap. Notice that P’ is associated
with fp(u)® and that its factor set coincides with a4, xa,. Furthermore, as C z(K) = C4(K)

and by (8.1), we deduce that Pc , (k) and ’PC (k) are associated with the same scalar function

Next, let ¥ = p®v € Irr (K | 1), with v € Irr (K /N), and observe that Ay = A,,. Let Q be a projective
representation of A, associated with v and notice that Q4,,, is a projective representation of
Ap,, associated with vg . It follows that S := P4, ® Q is a projective representation of A,
associated with ¢, while S’ := P/ by © Qa ., 1S a projective representation of Ap, associated
with ¥, p(9) = fp(p)°vi,. We claim that (Ay, K,9) ~x (Apy,Kp, ¥, p(0)) via (S,8"). By
the previous paragraph, one can easily check that the group theoretical conditions hold, that the
factor set of S’ coincides with the restriction of the factor set of S and that Sc,, (k) and SéAU (K)
are associated with the same scalar function. To conclude, it remains to check the condition on
block induction. By the proof of [NS14b, Theorem 4.4] it’s enough to show that

(|K|p,tr<3(x>> ) ) ( [ plyrtr(S'(2)) )
PO0(1), ) T\ PO, p(0)(1), )

for every p-regular = € Apy such that P € Syl,(Ck(x)). Fix a p-regular element z € Apy with
P € Syl,(Ck(x)). Then Q € Syl ,(Cx(x,1)) and (3.2) implies

tr (S(2))* = 3, 1) 6x(Q(@))” = (efa(@)(@,1)) tr(Q(2))" = e*tr (S'(x))".
Ase=[unp, fp(u)] and by [NS14b, Theorem 5.2 (b)], we obtain

oKl
|KP|

V(1)p = p(1) = [np, fP(W)]IN = Nplfp(u)(1)

Yy, p(9)(1)p (mod p)

and therefore

(|K|p'tr(5(flf)) ) _ (€|K|p'tr(5'(flf)) ) _ ( [Kplytr(S'(z)) )
prY(1),y ) v(1)d(1)y ) PPN, p(9)(1)p )
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Now the proof is complete. O

As a consequence, applying Proposition[2.10land Proposition[3.6] for IV < J < A we obtain a defect
preserving Ap j-equivariant bijection

O 1r(J | ) > Iee(Jp | fo (1))

such that
(AJ,)O J7 X) ~J (AJ,P,Xa JP7 q)(X)) )

for every x € Irr(J | 11). Finally, we obtain the main result of this section by considering a normal
p-chain D with last term P and J = NGp.

Theorem 3.7. Let N < G < A, with N < A a p’-subgroup, and consider a normal p-chain D of G
with final term P. Let p € Irr s (N) and fp(u) € Irr(Np) be its P-Glauberman correspondent. Then
there exists a defect preserving Ap-equivariant bijection

B, (NG | 1) > rx(Go | fr(n))

such that
(NA]D),Xa NG]D)a X) ~G (AD,X7 G]D)a (I);L,D(X)) )

forevery x e rr(NGp | ).

Proof. Let K := N P and observe that, without loss of generality, we may assume K < A. Now the
result follows from Proposition[2.10] Proposition 3.6land Lemma[2.11] O

4 N-block isomorphic character triples and Fong
correspondence

In this section, we show that the Fong correspondence [Fon61] can be used to construct N-block
isomorphic character triples. For completeness, we state the Fong correspondence in the form we
need.

Hypothesis 4.1. Let N be a normal p’-subgroup of A and consider p € Irra(N). Let P €
Proj(A | @) be a projective representation associated with (A, N, ) such that a(z, y)W|2 =1,
for every x,y € A (see [NT89, Theorem 3.5.7]), and denote by A the p'-central extension of A by
S = (a(z,y) | x,y € A) defined by P (see [Navi8, Section 5.3]). Let € : A — A be the epimorphism
given by e(x,s) = z, for every z € A and s € S, and consider Ny := {(n,1) | n € N} g A. For
every X < A, set X := ¢ '(X) and X := XNy/No. Consider the irreducible representation P
of 4 defined by P(z,s) := sP(x), for every 2 € A and s € S, and denote its character by 7. Let
X € Irr(N) be the linear character defined by A(n,s) = s, for every n € N and s € S, and set
Bi=puox 1g € Irr(N), where 1o correspond to p via the 1somorphlsm N =~ Ny. Notice that T
extends A L. Finally, denote by i the character X viewed as a character of N = N /No, that is
Ti(No(n,s)) = s, forevery n e N and s € S.

Theorem 4.2 (Fong). Assume Hypothesis[Z1l If N < H < A, then:
(i) H is ap'-central extension of H/N by the central p'-subgroup N=~§S;
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(ii) There exists a bijection
BICH | bl(12)) - BI(H | b(7))
B~ B

(iii) Let D € §(B) anﬂ consider @) € Sylp(ﬁ) so that D = Q x S. Then QNy/Ny € 6(B). In
particular B and B have isomorphic defect groups;
(iv) Forevery B € BI(H | bl(y)) corresponding to B € BI(H | bl(f%)) via the bijection in (ii), there

exists a defect preserving bijection
Irr(B) — Irr(B)
Ve

such that, lf1/) is the inflation to H of the character of H/S ~ H corresponding to ) and ¢ is
the inflation to H 0f1/) then 1/) THY';

(v) ForT € A set z := ¢(%) and T := NoZ. Then )* = ({E)T and B® = (E')f for every B €
BI(G | bl(i)) and ¢ € Irr(B).

Proof. Consider 1 € Irr(H | 1) afforded by X. We just show how to construct ¢. By [Nav18,
Theorem 10.11], there exists an irreducible projective representation Q ¢ Proj(H/N | a7y

such that X = Q ® Py unique up to similarity. Now, Q(:v s) := Q(x)s7!, for every x € H and
s € 5, defines an irreducible linear representation of H with Ny < Ker(Q) and whose character
lies over \. If we consider the inflation X to H of the c representation of H /S = H corresponding
to X, that is X(%) := %(E(A)) for every T ¢ H,thenX = O ® 'P . Define X to be the irreducible
representation of H=-H /No whose inflation is 0, and let ¢ be the character afforded by X. Then
1/) eIrr(A| ) and, 1f1/) is the inflation to H of the character of H/S ~ H corresponding to ¢ and
1/) is the inflation of 1/) to H, then 1/) = TH1/) The result follows from [Fon61]]. The description of
defect groups is a consequence of the proof of [Fon61l 2C]. To conclude, for Z € A, set x := ¢(T)
and T := NoZ. Then 9* = (§)% = (1?)77'];()f = (J’)ETI’; = (1?17)’7']7, where 7 is the inflation
to H of the character of H H/S ~ H corresponding to 1)* and (47 is the inflation of [ﬁ to H.
Thus (¢))7 coincides with 1% the Fong correspondent of 1. In particular, since ¥® e Irr(B7) and
()T € Irr(B7), we conclude that B* = B7, O

In the situation of Theorem@.2] we refer to B as the Fong correspondent of B and to ¢ as the Fong
correspondent of ¢). An important feature of the Fong correspondence is that it is compatible with
block induction.

Proposition 4.3. Assume Hypothesisidand let N < X <Y < A. Letb € BI(X | bl(11)) with Fong
correspon~dent7;€ BI(X | bl(%%)) and suppose that the induced blocks b¥ and (b)Y are defined. Then
v = (B)Y.

Proof. This result has been shown in [Rob00]. It can also be deduced from [Dad94, Theorem 14.3].
O

For x € G, we denote by €l (x) the G-conjugacy class of . Moreover, for any subset K of G, we
denote by K the sum of its elements in the group algebra of G.
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Theorem 4.4. Assume Hypothesis[41 Fori = 1,2, consider N < L; 9 H; < A and a H;-invariant
i € Irr(L; | j1). Notice that L; 4 H; and that the Fong correspondent); € Irr(L; | i) is H;-invariant.
Let L; < G 4 A and assume

(Hy,L1,91) ~g (Ha, L2, 02).
Then
(H17L17w1) ~G (H27L27¢2) .

Proof. The group theoretical conditions are clearly satisfied and without loss of generality we may
assume A = GH;, A = GH; and A = GH;. Consider B; := = bl(%);) and its Fong correspondent
B; = bl(¢;). By hypothesis, there exists a defect group D ¢ 0(B;) such that Ci(D;) <
Furthermore, by Theorem[4.2](iii) we can find a defect group P; € §(B;) such that, if Q; € Sylp(P ),
then D; = @Q; No/Ng. In particular

Cz(Qi) < H; (4.1)
and, noticing that

¢(Ca(Q0) = Ca(Py),

we obtain C 4 (P;) < H;. Fix projective representations (ﬁl , ﬁg) associated with (ﬁl, El, 17)1) ~&
(ﬁg, Zg, Jg) and let &; be the factor set ofﬁi. Consider a projective representation R; € Proj(H; |
;) associated with v; and define the projective representation R; € Proj(H; | @;) given by

Ri(h) = Ri(e(h)),

for every h eﬁi. Notice that @;(h, k) = a;(e(h), e(k)), forall b, k € H;, and that R; is associated
with ¢;. Let R} € Proj(H; | @) be the projective representation defined by

Ri(h) = Ri(Noh),

for every h € H;. Clearly &;(h, k) = &@(Noh, Nok), for all h, k € H;, and R/ is associated with ).
AsR; and ’P ® 'R' are a projective representations of H; associated with TE, 1/) 1, there exists

amap &, : H; /L - C* such that &R, = ’P*i ® R.. Let & : H;/L; -~ C* corresponds to &; via the
isomorphism H;/L; ~ Hz / El Replacing R; with &;R;, we may assume

Ri=Pg oR]. (4.2)

Now, as the factor sets &; and @y coincide under the isomorphism Hl/Ll ~ HQ/LQ, we deduce
that o1 and ap coincide under the 1somorphlsm Hy/L ~ HQ/LQ By hypothe51s ’Rl and RQ define
the same scalar function on C 5(G). As C z(G)No/No < C1(G) and C 3(G) < Hy n Ho by @I,
the scalar functions defined by R/ and R on C Z(é) coincijd\e. Now ﬁl,cg(é) and 7/@2)02(@) are
associated with the same scalar function and, since (C 3(G)) = C4(G) (see [NS14b| Theorem
4.1 (d)]), the same is true for Ry ¢, (@) and Ra c, (@)

Next, consider G < J < A and set J; := J n H;. Notice that, if y € Irr(Jy | ¥1), then Theorem [4.2]
(iv) implies that ¥ € Irr(Jy | ¢1). Write x = tr(Qj, ® R1,4,), for some Q € Proj(J/G). If we set
Q(z) == Q(e(x)) for every x € J, then (@2) implies

X1 :tr(@j ®71\;,1j~1)
:tr(@J R ; ®73J1)
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and therefore ¥ = tr(Q 7 ®7A€'1 7 ). Now, let O € Proj(.J/G) correspond to Q via the isomorphism
J/G ~ J|G and observe that the Fong correspondent of x can be written as Y = tr(Qy, ® R, 7, ).
By definition 57, (Y) = tr(Qz, ® R, 7,) so that its inflation 57, (X)" = tr(@J ® 'R' A) By
Theorem[4.2] (iv) and we obtain
T@Ei(Y),:t (73 ®@j R;Jg)
- ®R, 7))

=77,0.:(X)

and therefore
on(x) =77 (X)-

Since by hypothesis bl(o , (X))J bl(x)‘] we conclude from Proposition @3] that bl(c 7, (x))” =
bl(x)”. This completes the proof.

From now on we consider N < G 9 A. Since N is a central p’ subgroup of G, for every p- subgroup
P of G we have a decomposition P = N x O,(P). We write P, := O,(P). Mapping P to P,
induces a length preserving bijection

NG, 2)/G - NG, Z,) |G (4.3)
DD

which commutes with the action of A and A. In particular, observe that NGp = éﬁ. Using
Theorem[3.7] Theorem[4.2]and Theorem[£.4 we obtain the following corollaries.

Corollary 4.5. Assume Hypothesis[41 and let N < G < A. Consider a normal p-chain D of G' with
final term P and let fp(u) € Irr(Np) be the P-Glauberman correspondent of u. Then there exists a
defect preserving bijection

Lo Irr(Go | fp(p)) > I (Gy | 7)
commuting with the action of A and A

Proof. This follows immediately by Theorem[3.7land Theorem [4.2] O

The bijections described in the previous corollary are compatible with the relation ~ y from Defi-

nition 211
Corollary 4.6. Assume Hypothesis[41 and let N < G 9 A. Consider normal p-chains D and E of G

with final term respectively P and Q) and letI',,p and ', g be the corresponding bijections given by
Corollary3 Let Y € Irr(Gp | fp(p)) and x € Irr(Gr | fo(pt)) and suppose that

(5.r, 0000: G5 Do) ~& (A, 100 G Tue(0) -

Then
(Ap,9,Gp, V) ~a (Ag,y, GE, X) -
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Proof. This is a consequence of Theorem[3.7] Theorem [4.4land Corollary[4.5] O

The result that we are actually going to need in the final proof is the following. This is obtained
by putting together all the results obtained so far.

Corollary 4.7. Assume Hypothesis[41 and let N < G 4 A. Let Z be a central p-subgroup of G
and consider a block B € BI(G | bl(u)) whose defect groups are larger than Z. Then the Fong
correspondent B € BI(G) has defect groups larger than Z,, and there exists a bijection

A:CYB,2)|G~CYB,Z,)|G
that preserves the length of the p-chains, commutes with the ation of A and A and such that, if
(A(®§)7 Gﬁa 19) ~aG (A(Ei)v Gﬁv 5{) )

then
(A,0):Gp,9) ~c (A, GE. X) ,

for every (D,9), (E,x) € CHB, Z), (D,J) e A(D,9)) and (E,X) € A((E, x)).

Proof. LetD € (G, Z) with last term P and consider D € N(G, Z,,). If 9 € Irr(Gp) and bl(9)% =
B, then ¥ lies over fp(u) by Corollary [2.61 Now, there exists a unique ¢ € Irr(NGp | i) such
that 9 = @, (1)) and T, (9 = 1) is the Fong correspondent of 9. By Theorem[3.7} we know that
bl(9)NE® = bl(1)), hence bl(¥)¢ = B if and only if bl(¢)) = B. Furthermore, by Proposition &3]
it follows that bl(¥))¢ = B if and only if bl(¢))¢ = B. This shows that the set of characters of Gp
whose block induces to B is mapped via I';, p to the set of characters of éﬁ whose block induces
to B. We define _
A((D,9)) = (B, Ty (),

for every (D,9) € C4(B, Z). By @3), Corollary &5 and Corollary 4.6 we conclude that A is a
bijection with the required properties. O

5 Structure of a minimal counterexample

In this section, we finally prove Spéth’s Character Triple Conjecture for p-solvable groups. Our
proof is inspired by the argument developed in [Rob00]. As in Robinson’s work, what we are actu-
ally going to show is that a minimal counterexample G to Conjecture[2.2satisfies O, (G)O, (G) <
Z(@). Since the conjecture trivially holds for abelian groups, Theorem[Alwill then follow as a corol-
lary of (the proof of) Theorem[5.2] In this paper we consider subpairs in the sense of [Ols82], i.e.
pairs (P,bp), where P is a p-subgroup of G and bp € BI(PCg(P)).

Proposition 5.1. Assume that G 4 A is a minimal counterexample to Conjecture[Z2 with respect
to |G : Z(G)| first and then to |A| and consider Z < Z(G), B € BI(G) and d > O for which the
conjecture fails to hold. Then every block b € BI(O,(G)) covered by B is A-invariant.

Proof. Set N := O,(G) and fix a block bl(x) € BI(INV) covered by B. For every subgroup H < A,

set HY := H,. Let BY € BI(G" | bl(1)) be the Fong-Reynolds correspondent of B over bl(u)
[Nav98| Theorem 9.14]. Since B and B" have a common defect group D < GV, by [AB79, Theorem
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3.10] or [Ols82, Theorem 2.1] we can find a BY-Sylow subpair (D, bY},) such that (D,bp) is a B-
Sylow subpair, where bp = (b},)P€<(P). Notice that, by using Corollary 25| together with the
theory of subpairs, the block b}, covers bl(fp(u)). Hence bp covers bl(fp(u)). More generally,
the block by covers bl(fg(p)), for every B-subpair (Q,bg) < (D,bp). Using this observation,
we can construct an A-transversal T in C%(B, Z) such that P < G and ¥ € Irr(Gp | fp(u)), for
every (ID,9) € T with P the last term of .

Consider (ID,9)) € T and let P be the last term of D. Notice that Gy) = Gp f,.(,) and let 9V €
Irr(GY, | fp(w)) be the Clifford correspondent of ¥ over fp(u). As A = GAY, we obtain an
AY-equivariant bijection

Y:C4B,2)|G - CYBY,2)|G"

by defining T((]D),ﬁ)g) = (]D),19V)g, for every (D,9) € T and y € AY. Since |G¥: Z(G)| <
|G : Z(G)), if 11 is not A-invariant, then there exists an AY-equivariant bijection

QV:cYBY,2),/GY - CYBY,Z)_|GY

such that
(AE/]D).,ﬁV)’ G]]éa 0V) ~Gv (A\(/]E,XV)7 G]]\ga Xv) )
for every (D,9") e C*(BY,Z), and (E, x") € QV((ID,9¥V)). Combining Q" with T and applying

Proposition [2.8] we obtain an A-equivariant bijection
Q:C%B,2),/G - CYB,2)_|G

such that
(A(D,ﬁ)a GDu 19) ~G (A(]E,X)a G]E7 X) ’

for every (D,9) € C*(B, Z), and (E, x) € Q((ID,?9)). This is a contradiction and therefore z must
be A-invariant. O

Theorem 5.2. Assume that G 4 A is a minimal counterexample to Conjecture [2.2 with respect to
|G : Z(G)| first and then to | A| and consider Z < Z(G), B € BI(G) and d > 0 for which the conjecture
fails to hold. Then O,(G)0,(G) < Z(G).

Proof. Set N := O,/(G) and fix a block bl(x) € BI(IN) covered by B. Notice that by Lemma
(23] we must have Z = O,(G). Thus it’s enough to show that N is contained in the center. By
Proposition 5.1l we know that 1 is A-invariant and therefore we can apply the results obtained in
Section@ Let B € BI(G) be the Fong correspondent of B. Since N < Z(G), if N ¢ Z(G), then

|G:Z(G)| <|G: NZ(G)| = |G : NZ(G)| < |G : Z(G)| and we obtain an A-equivariant bijection
§:C4(B,7,),/G - C'(B, Z,) /G

such that _ o _ _

(A5.9:05:7) ~a (Ag.5) G5 X)
for every (D,9) € C4(B, Z,). and (E,¥) € Q((D,7)). Combining Q) with the bijection A given
by Corollary[4.7] we obtain an A-equivariant bijection

Q:C%B,2),/G - CYB,2)_|G
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such that
(A(D,ﬁ)a GDu 19) ~G (A(]E,X)u G]E7 X) )

for every (D,9) € C4(B,Z), and (E, x) € Q((ID,?)). This contradiction shows that N must be
contained in the center of G. O

Next, we consider the residue of characters. We are going to obtain Theorem[Blas a consequence
of an analogous study of a minimal counterexample. We need the following result whose proof
can be deduced by Glesser’s paper [Gle07].

Lemma 5.3. Let ', p be the bijection of Corollary[4.3 Then
r () IN| = £u(D)r(D)IN] (mod p),
forevery ¥ e Irr(Gp | fp(u)).

Proof. This follows from similar computations as the ones in the proofs of [Gle07, Corollary 3.4
and Theorem 3.8]. O

For completeness, we state the Isaacs-Navarro refinement of the Character Triple Conjecture.

Conjecture 5.4 (Isaacs-Navarro refinement of the Character Triple Conjecture). There exists a
bijection §2 as in Conjecture[2.2 such that

r(9) = 2r(x) (mod p),
for every (D,9) € CY(B, Z), and (E, x) € Q((D,)).

Finally, using the proof of Theorem[5.2]and Lemma[5.3] we obtain a similar structure theorem for a
minimal counterexample of Conjecture[5.4]

Theorem 5.5. Assume that G 4 A is a minimal counterexample to Conjecture [5.4 with respect to
|G : Z(G)| first and then to | A| and consider Z < Z(G), B € BI(G) and d > 0 for which the conjecture
fails to hold. Then O,(G)0,(G) < Z(G).

Proof. Set N := Op/(G) and fix a block bl(x) € BI(IV) covered by B. By the proof of Lemma[2.3]
we know that Z = O,(G) and it’s enough to show that N < Z(G). Proceeding as in the proof of
Proposition 5.1l and noticing that induction of characters preserves the residue of characters, we
deduce that 4 must be A-invariant. Then, using Lemmal5.3]and adapting the the proof of Theorem
we obtain N < Z(G). O
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