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Abstract 

All empirical evidence indicates that diversity between redundant 
software-based components offers some defence against common-mode 
failure in redundant systems, i.e., it brings gains in reliability or safety. An 
important question is how to pursue diversity - in the selection or 
development of such software - so as to achieve large enough gains. 
Common sense suggests for instance to develop the components, or 
procure components that have been developed, in "truly independent" 
ways; and to make them "as diverse as possible", i.e. with intentional 
differences in their designs and development methods. This advice is 
unfortunately insufficient for most practical decisions, and turns out 
sometimes to be self-contradictory, while direct experimental evidence of 
"what really works" in industrial practice is scarce.  This talk will 
summarise the state of knowledge on these issues: 

- the ways diversity can be pursued, using a threat-driven approach to 
analysing the possible "diversity seeking decisions"; 

- the trade-offs that may arise given the practical constraints in an 
actual project, having to choose in a limited range of options; and 
especially the common case when the pursuit of diversity may work 
against that of high reliability of the individual channels, while the 
combined effect of these two factors on system-level reliability or 
safety, the true goal pursued, is difficult to estimate;  

- mathematical results that in some cases are sufficient for choosing 
between alternative policies, even without specific experimental 
evidence. These are based on probabilistic models and identify 
scenarios under which pursuing some additional degree of either 
"separation" or "diversification" between the development processes 
of redundant components is guaranteed to yield improvements at the 
system level.  
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1. Introduction 

In redundant systems for critical applications, design faults, if repeated in 
all redundant computation channels, could cause common-mode failures. 
Diversity between the redundant channels provides some protection 
against this danger. Two current trends are increasing the importance of 
fault tolerance via diversity in all applications of computers: the push 
towards entrusting more critical functions to software-based components 
(due in part to their desirable features, and in part to the practical 
disappearance of non-software based alternatives); and the increased 
reliance on off-the-shelf products, which may lack sufficient evidence of 
the required reliability. 

Diversity has mostly been studied for software, so we will refer to 
scenarios of software development, although the same principles apply to 
hardware diversity. Software diversity is sought by having two or more 
separately developed variants (often called versions, originating the term 
N-version programming for this use of diversity) of a program. The 
versions must exhibit the same functional (externally visible) behaviour. It 
is hoped that, if one version fails, the other, diverse version[s] will not fail 
at the same time; that is, it is hoped that any bugs they may contain will 
not cause failures in exactly the same circumstances in all versions. The 
two or more versions are run in a redundant configuration, so that failures 
of a subset of the versions may be masked or at least detected. 

Diversity poses the same problems as all other techniques for defending 
against design faults to achieve high dependability: first, how to forecast 
their effectiveness; and then, since this forecasting is problematic, how to 
direct their application to make them effective and cost-effective. In this 
paper, we focus on the question of how best to pursue effective diversity, 
i.e., how to differentiate redundant channels to achieve a low probability 
that they will fail together.  

In the discussion that follows we refer to the simplest scenario of 
redundancy with diversity: a parallel-redundant, 2-channel protection 
system, which, in a stylised representation, consists of two separate 
channels, each receiving sensor readings from the plant and able 
autonomously to cause a shut-down through a single, Boolean output. We 
are interested in the system's behaviour on demand (so, we do not 
consider spurious trips), and the measure of interest is the system's 
probability of failure on demand (pfd). This system is safe against any 
failure that affects only one of the diverse channels; while any failure of 
both channels is an unsafe failure of the system. 

If this is a bespoke system, each version is produced by its own "version 
development team"; a "project manager" defines the requirement 
specifications that the development teams must implement and the 
constraints under which they have to work, handles specification updates 
and decides on final acceptance of the developed versions.  
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The reason for combining components in a redundant fashion is the 
potential "diversity of failures" between them: we are interested in how 
unlikely they are to fail together on the same demand. The goal is low 
correlation between their failures; "diversity" is an informal term for this 
goal. The word "diversity" is also used (somewhat confusingly) to indicate 
the factors that tend to reduce failure correlation, and especially those 
factors that developers can control. In earlier articles [6], we defined the 
special term "diversity seeking decision" ("DSD") to avoid the common 
confusion between decisions made about these factors and the  (desired 
or actual) effects of these decisions, i.e., the degree of actual diversity 
between versions or between their failure behaviours. A DSD is a decision 
available to system designers or project managers to attempt to promote 
failure diversity between program versions. Recommendations about DSDs 
[1] have been made since the beginning of research in software design 
diversity. All DSDs belong roughly to two categories, with two different 
goals: 

- to keep the development processes for the versions as separate and 
(informally speaking) "independent" as possible (preventing possible 
mistakes from "leaking" from one to the other[s]); 

- and/or to make these development processes "more different" 
("forcing" diversity). For instance, mandating different designs 
between two versions, and the use of different methods (including 
tools, languages, test processes, etc) in developing them. 

These recommendations often refer to a scenario of bespoke development 
of (all versions of) a new system: the project manager can, in principle, 
decide all details of the development process. In reality, this freedom is 
always limited by practicality (e.g., skills of the available staff) and cost 
factors, and the need to rely on off-the-shelf components where possible. 
As a limiting case, a project may be limited to selecting completely off-
the-shelf implementations of all the diverse channels. The DSDs are then 
applied to this selection process: e.g., there is usually a preference for 
components that have been developed independently by separate 
companies. 

But how can a project manager choose from the long list of possible 
DSDs? It is not necessarily the case that the more DSDs are applied, the 
better, and there is a need to be selective, because DSDs may not be 
mutually compatible, and most have costs: duplication of activities, added 
co-ordination effort, need for staff with specific skills. Choosing, however, 
involves difficulties: 

- the link between any DSD and the potential resulting reduction in the 
probability of common failures is unclear: how do we know which 
DSDs will be cost-effective? 

- although it is natural to focus on maximising diversity between the 
channels, this may not maximise system reliability: decisions may 
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involve subtle trade-offs between diversity between the channels and 
dependability of the individual channels; 

- even if we are satisfied with our estimate of the effect of an individual 
DSD, we actually have a choice between alternative combinations of 
DSD: a more complex decision problem 

Guidance about these issues may be sought from several sources. 
Controlled experiments have been run, but their evidence is too sparse to 
support any general law about the effects of specific DSDs on failure 
diversity; their main utility has been in providing counter-examples to 
refute conjectured general laws1. General experience in software 
development does give experts some idea about how different software 
development methods are prone to different kinds of mistakes, although 
this knowledge does not include measures of these differences, and it 
concerns differences caused in patterns of faults rather than of failures. 
But for the more complex questions, there is no consensus, and intuition 
has repeatedly been shown to be misleading in this area. Help can then 
be sought from probabilistic models that give insight about what we 
should expect. These models lead to theorems of the form "If two 
alternative development processes for a multiple-version system satisfy a 
certain set of detailed conditions, and differ in some specific aspect of the 
combinations of DSDs they use, the first process is to be preferred to the 
second". Although these apply to restrictive set of conditions, and often 
help to identify a preference but not to assess the extent of the probable 
gains, they also help to clarify the unspoken assumptions implicit in 
informal judgements, and thus avoid possible fallacies. This paper draws 
on research performed in the DISPO (Diverse Software PrOject) projects 
over several years, including new results from probabilistic modelling. 

In Section 2, we discuss how DSDs achieve their goal of promoting failure 
diversity, the limitations in available knowledge and a threat-based 
criterion for selecting DSDs; in Section 3, we discuss, with the aid of 
results from probabilistic modelling, the usefulness of separation and 
independence between version developments, the ways of "forcing" 
diversity even when these are not assured, and some preference criteria 
between alternative forms of diverse developments. Section 4 deals with 
the especially difficult issue of choosing combinations of DSDs. Section 5 
contains some conclusions. 

                                       
1 Many controlled experiments were run in the 1980s (see [5] for references). As usual in software 
engineering, there are so many possible variations between development processes that 
generalising from their results is always suspect, except as proofs of existence or counter-
examples. In these experiments, diversity has always produced reliability improvements, and it has 
been demonstrated that independence between development activities of different versions does 
not imply statistical independence of failures. 
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Fig. 1. From diversity-seeking decisions to failure diversity 

 

2. Diversity seeking decisions 

Purposes and effects of DSDs 
In a DISPO project report [4], we discussed the various DSDs available to 
a project manager who wished to produce diverse versions of computing 
channels. Considering how effective a certain DSD would be in improving 
failure diversity and, in the end, system pfd, means considering the long 
cause-effect chain  sketched in Fig. 1. This means reasoning about which 
factors affect the likelihood of various human errors in development, and 
how these errors affect software faults. Unfortunately there is little 
empirical, quantitative knowledge about these processes. However, we 
can at least describe through which possible mechanisms the DSDs –
 forcing diversity between the version development processes – may 
increase failure diversity between the versions. Fig. 2 summarises these 
possible mechanisms. 

The main cause-effect chain is the diagonal series of cause-effect links 
from "Diversity in human failure in development" to "Failure diversity": 
causing the intellectual tasks for the two teams of developers to be liable 
to different mistakes, thus leading to the faults in the different versions, if 
present, to be likely to be different, which in turn may cause different run-
time behaviours, leading to failure diversity. About the practicality of this 
pursuit, it is sometimes argued that people inevitably tend to make similar 
mistakes. But psychological research has shown that even substantially 
identical tasks present greatly varying levels of difficulty depending to the 
way the tasks are presented. Thus, different design directives (forcing the 
teams to hold different "natural" views of the development problem, e.g. 
by partitioning it in different ways), or even different languages and tools, 
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may shift which parts of the problem are most subject to errors by 
developers for the different versions. 

[Run-time] error diversity

Failure diversity

Diverse faults (code defects)

Diversity in human failure in development 

Diverse error regions

Data diversity

Diverse 

reactions to 

errors from 

other 

subsystems

“Internal”

data diversity 

Diversity 

in error 

propagation

Different program structures

Diverse development processes

  
Fig. 2. Mechanisms through which DSDs may improve 
failure diversity. The arrows indicate causality. The open-
tailed arrows indicate that "downstream" differences may 
occur even without the corresponding "upstream" 
difference. 

In probabilistic terms, the fundamental mathematical model defined by 
Littlewood and Miller in the 1980s [5] (the "LM model") supports "forcing" 
diversity via DSDs as a means to reduce the expected value of the system 
pfd. This average pfd depends on the  difficulty function for each version, 
defined for each possible demand on the system as the probability that 
the development process will make that demand a failure point for that 
version. The difficulty functions cannot  in practice be estimated with 
confidence, but studying the model clarifies how development processes 
(and DSDs affecting them) may affect failure independence or correlation. 
An important implication of this model is, informally, that if two 
development processes A and B are essentially equivalent in terms of 
expected reliability delivered, for best reliability in a two-version system 
one should choose an "AB" system (one version developed by process A 
and one, independently, by process B) rather than an "AA" or a "BB" 
system. An AB system has an expected pfd that is at least as good (i.e., 
low) as that of a homogenous (AA or BB) system, and possibly as low as 
zero.  

Furthermore, the way to reduce the system pfd, i.e., to reduce failure 
correlation between the versions, is to make the two processes differ in 
such a way that those demands on which versions produced by A are 
more likely to fail are those in which versions produced by B are less likely 
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to fail  (technically, aiming for low covariance between the "difficulty 
functions" of the two processes [5]).  

To link our understanding of the causal description in Fig. 2 to the general 
directives derived from the probabilistic models, we need to consider how 
DSDs affect the parameters of the models, specifically the difficulty 
functions. This is reasonably simple in intuitive terms: 

• DSDs that aim to guarantee separation between the version 
development teams attempt to guarantee the condition of independent 
development, which is necessary for these theorems to apply; 

• DSDs that aim to make the version development processes more 
diverse attempt to make the difficulty functions for the two processes 
more diverse in the specific sense of reducing their covariance. So, 
DSDs should be chosen with an eye to their effects on where (for 
which demands on the system) each version development process is 
most "vulnerable". 

There is a difficulty with this last recommendation. Available knowledge or 
expert beliefs about the effects of DSDs usually concern the different 
likelihoods of each type of software fault (defects in the artefacts – 
specification, design, code) under different development regimes, not 
about which demands these errors would affect. The knowledge concerns 
entities in the code, but the desired result is about their effects in the 
space of possible demands. A link between the two is missing. There is 
neither a known mathematical basis nor sufficient empirical evidence for 
trusting that increasing diversity (between versions) in the faults increases 
failure diversity [10].  

Matching defences to threats 

Despite these difficulties in comparing the amounts of gain to be expected 
from different DSDs, the engineering approach of selecting DSDs, in view 
of their costs and other problems, on the basis of whether they can 
plausibly address the specific risk expected, remains valid. The required 
steps are: 

• analysing threats (possible sources of human failures in development, 
and faults in other systems – development tools and execution 
platforms – that may cause system failures), 

• selecting (on the basis of whatever data are available plus subjective 
judgement) those against which it is believed that (in the specific 
project) other defences (before applying diversity) are not strong 
enough to reduce the risk to acceptable levels,  and 

• selecting DSDs that are appropriate against these high-risk threats. 

The cited report [4] discusses evidence and plausible beliefs about the 
mechanisms of action of various DSDs, to support this kind of decision 
process. For instance, a useful coarse-grained classification of threats was 
between "higher level" errors of the developers (in setting and interpreting 
high-level requirements and specifications), their "lower level" errors (in 
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the steps from specification to executable code), and "faults in the support 
platform" (either run-time hardware and software execution environment, 
or software tools like compilers). Relatively low-cost DSDs, e.g. hardware 
diversity, mechanical diversification of code, apply against this last 
category of threats, but are mostly ineffective against the "higher level" 
errors. It is commonly believed that current software engineering practices 
offer better defences against the middle category –  "lower level" human 
error – and, if these defences are used, DSDs should be chosen with a 
focus on the other two categories of threats. 

This approach avoids the risk of general, poorly based recommendations 
of specific DSDs as universally appropriate, and allows instead decisions to 
be tailored to the needs and circumstances of a project, e.g. the 
availability of plausible techniques for avoiding categories of errors, rather 
than dealing with their consequences through diversity.  

3. Efficacy of DSDs, separation and independence 

As pointed out earlier, recommended DSDs try to achieve either better 
separation between the development processes of different processes (we 
can then talk about separation, or unforced diversity) or to make the 
processes intentionally different (forced diversity). Although it is difficult to 
tailor forced diversity specifically to reduce correlation between version 
failures – to diversify, between the versions, the sets of demands most 
likely to be affected by any residual faults – forced diversity gives at least 
a possibility of these being markedly different, just as unforced diversity 
gives a possibility of the versions not having identical faults. 

It is often asserted that strict separation between the development 
processes is an essential component of achieving diversity. This would 
lead to some serious difficulties but is, fortunately, not strictly true. As for 
the difficulties, let us suppose, for instance, that a version development 
team reports to the project manager an ambiguity or suspected error in 
the specification. The project manager will then issue a correction to the 
specification. Presumably, this correction should go to the other team as 
well, so as to avoid possible errors. But this violates separation between 
the teams. Indeed, the way the problem was first noticed may be due to 
the first team's specific view of a design problem, and the specification 
change may well transmit this view to the second team, avoiding some 
errors but also causing this team to share some mental "blind spots" with 
the first team.  This may seem too subtle a risk to consider against the 
obvious advantage of correcting a wrong specification, but there may be 
many other reasons for communications that may propagate some 
influence from one team to the other. Should we then drop the diversity 
approach altogether? For a high-visibility example, we may consider that 
Boeing did not use software diversity in the Boeing 777, indicating [12] 
the need for free communication among developers as the main reason: 
they assumed that separation between teams was an essential part of the 
diversity approach. Introducing dependence between the version 
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development processes also violates the assumptions of the LM model, 
and thus erodes one of the arguments that recommend "forcing" diversity. 

To address these doubts, we reconsidered [8] the claim that diversity 
requires the strictest separation between version development teams, 
examining implicit assumptions and plausible arguments and formulating 
them as precise probabilistic models, which extend the LM model [9]. Of 
course, some issues cannot be decided by mathematics alone. For 
instance, when is a specification clarification important enough to be 
worth transmitting to a development team that did not request it? This 
question could only be answered empirically, and then only by a volume of 
experimental research that is probably infeasible. But the probabilistic 
modelling produces clarity, and it does identify scenarios in which one 
option in a development process is demonstrably superior to another, in 
terms of expected system pfd.  

Our probabilistic reasoning [9] is supported by representing the 
development process for a two-version system as a Bayesian 
network, as in Fig. 3: in this graph, nodes represent the (a priori 
unpredictable) choices during a development process, and edges 
represent the fact that the actual value of the upstream node 
affects the probabilities of different outcomes for the 
downstream node. 
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Fig. 3 A Bayesian network for an example of non-independent version 

development processes 

 

We give here some examples of questions that can be answered by our 
mathematical modelling. A convenient aspect of development for 
illustrating such examples is testing (cf also [7]). At some stage of a 
project, two software versions (custom-made or off-the-shelf) are 
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available for testing, in order to correct any remaining faults. Suppose 
that, up to this point, the diverse development processes are equivalent in 
that they have the same probabilities of delivering correct programs, or 
programs with any specific faults. Given a testing criterion, many 
alternative test suites (sets of test cases), all equally appropriate, could be 
chosen. With respect to testing the two versions, the project manager 
could decide: 

• to randomly choose one test suite and use it for both versions. This 
creates a form of dependence between the two development process. 
In the probabilistic model, this dependence produces a non-negative 
addendum in the expression for the expected system pfd. However, it 
reduces other terms in this expression, so that it can be shown that 
under some broad assumptions this testing stage improves system 
pfd, as one would expect; 

• however, this dependence can be avoided by independently selecting, 
according to the same criterion, two test suites for the two versions. 
Then, the model shows that this is a net improvement: the non-
negative addendum disappears. 

Similar statements apply to any other "common influence" between the 
developments of the two versions. What is interesting in the new 
theorems is that they indicate preferences between alternative decisions 
for processes between which there is some dependence, and thus are 
more generally applicable than those derived from the LM model. The two 
examples given above with reference to testing generalise to two such 
preference criteria: 

• "Decoupling" of common influences: given two identical version 
development processes, with one or more common influencing factors 
(the nodes between the two chains in Fig. 3), removing any such 
factor and substituting it with two independent, identically distributed 
ones each affecting one version can only improve the expected system 
pfd; 

• "Diversifying" the version development processes: Given the same 
scenario as above, changing one of the two processes so that its 
quality remains the same, but the specific probability distribution 
associated to any one of the nodes changes, can only improve the 
expected system pfd. 

A third criterion generalises the first one to the case in which two versions 
are not developed by statistically identical processes: 

• "Decoupling" given positive covariance: Even if the two processes are 
not identical, applying "decoupling" will be an improvement if the 
common factor that is eliminated is one with respect to which the 
covariance of the difficulty functions is positive, for any possible 
combination of values of all of the other influences.  

An application of this last criterion is a scenario in which the common 
factor is such that among its possible values (e.g., test suites, algorithms 
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for implementing a given function, etc.) some are better than (or at least 
as good as) others for any demand: e.g., if of two possible choices we 
believe that one will certainly imply lower (or at most equal) probability of 
failure on every demand, even if we do not know which choice is the 
better one for our particular application. 

This last form of forced diversity can be applied in a "reactive" manner: 
after one development team makes a choice, the project manager orders 
the other team to choose the other alternative. Interestingly, this is, 
mathematically speaking, a way of creating a dependence between the 
two development processes. That is, the common advocacy of 
"independent" developments is still justified  if all forms of "dependence" 
create positive correlations between variables in the two processes. If a 
project manager can devise one that creates negative correlation, it will 
tend to decrease system pfd. 

4. Combining DSDs 

A major problem we mentioned earlier is that of deciding about how to 
combine DSDs. Suppose a certain DSD – one form of diversity between 
version development processes – is known to be useful, but there are 
doubts whether it is sufficient protection (i.e., whether it would achieve 
enough reduction in common-mode failures); suppose that another one is 
also known to be useful. If we combined the two, would their advantages 
add up?  And  if we had a choice between applying two  alternative pairs 
of DSDs, how could we decide?  

We cannot just assume that applying one more DSD will improve system 
pfd. We could think, for instance, that a DSD (say, specifying diverse 
algorithms for the various versions) produces benefits because it gives a 
development team a different version of the problem seen by another 
team, so that they are not likely to make the same mistakes. However, 
perhaps there is a point beyond which further "difference" produces no 
further advantage: the problems seen are already as different as they can 
be. Then, applying a second DSD (say, using very different design 
methods for the various versions), possibly just as effective as the first 
one when used alone, would not give any additional advantage when used 
in combination with it, and might even make things worse by forcing the 
use of inferior techniques (or techniques less familiar to developers), 
chosen for the sake of diversity. 

From the mathematical viewpoint, one of Littlewood's and Miller's 
theorems (Theorem 3 [3]) gave sufficient conditions for a combination of 
DSDs to be advantageous (better than applying just one DSD) when 
applied to version development processes that are equivalent (in terms of 
expected system pfd) and independent.  From the more recent research, 
we can add some extra theorems that do not require independence.  The 
"decoupling" principles introduced in section 3 apply for any number of 
independent "influencing factors" that affect both version developments: 
any DSD that removes one such factor is an improvement. 
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We have not been able yet to study how broad the application of these 
decision criteria may be in practice (how often the sufficient conditions of 
these theorems would be recognised as approximately realised in a 
development project), but they are certainly worth considering as 
available guidance. 

5. Conclusions 

We have summarised some decision problems, and the available 
knowledge for solving them, in managing diverse developments to 
produce "diverse enough" versions of the channels of a redundant system. 
On the minus side, decisions cannot be based on precise quantitative 
estimates of the pfd gains to be expected from the alternative solutions. It 
is not to be expected that experimental research will deliver complete 
guidance for these decisions, and some intuitively appealing decision 
criteria, like trying to diversify the types of errors that are likely to happen 
in coding, turn out to have very weak support if analysed in detail. 
Empirical research is still desirable to better understand the causal links in 
Fig. 2 (via controlled experiments in cognitive psychology and via analysis 
of diversity in existing code [2; 11], but it will not deliver precise 
quantitative predictions.  

On the positive side, reasoning about the intended and presumable effects 
of the various "diversity seeking decisions" allows one at least to match 
them to the expected threats (e.g., errors in specific phases of the 
development process). In addition, probabilistic modelling, including 
recent advances in the DISPO projects, helps to clarify the arguments for 
and against the various possible ways of managing process diversity. In 
particular,  

• it resolves apparent difficulties about the desirability or not of 
complete separation between the development processes of the 
diverse versions, and 

• it solves some of the difficulties concerning the choice to combine 
multiple DSDs, 

giving clear preferences with respect to some of the decisions that may be 
necessary. 

These mathematical results often confirm recommendations that have so 
far been offered on an intuitive basis, advocating "separation" between 
version development processes and "diversification" of these processes. 
But the mathematical results also clearly outline the limits of these 
recommendations, for instance highlighting the importance of scenarios in 
which an action can improve system pfd despite reducing diversity, and 
the role of creating "negative dependence" via "reactive" DSDs. For some 
procedures, like certain types of testing, the application of these results is 
straightforward; for others, it may require careful judgement to decide 
whether the pertinent theorems apply. 
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A more complete compilation of useful indications for pursuing effective 
diversity, taking into account the results of recent research, is now being 
prepared at City University. 
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