

City, University of London Institutional Repository

Citation: Strigini, L. (2007). Achieving effective diversity between redundant software-

based components. Paper presented at the 6th International Conference on Control and
Instrumentation in Nuclear Installations, 11-13 Sep 2007, Manchester, UK.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/27642/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Presented at the 6th International Conference on Control and Instrumentation in Nuclear
Installations, Manchester, 11th - 13th September 2007

Achieving effective diversity
between redundant software-based components

Lorenzo Strigini
Centre for Software Reliability, City University, London

E-mail: L.Strigini@csr.city.ac.uk

Abstract

All empirical evidence indicates that diversity between redundant
software-based components offers some defence against common-mode
failure in redundant systems, i.e., it brings gains in reliability or safety. An
important question is how to pursue diversity - in the selection or
development of such software - so as to achieve large enough gains.
Common sense suggests for instance to develop the components, or
procure components that have been developed, in "truly independent"
ways; and to make them "as diverse as possible", i.e. with intentional
differences in their designs and development methods. This advice is
unfortunately insufficient for most practical decisions, and turns out
sometimes to be self-contradictory, while direct experimental evidence of
"what really works" in industrial practice is scarce. This talk will
summarise the state of knowledge on these issues:

- the ways diversity can be pursued, using a threat-driven approach to
analysing the possible "diversity seeking decisions";

- the trade-offs that may arise given the practical constraints in an
actual project, having to choose in a limited range of options; and
especially the common case when the pursuit of diversity may work
against that of high reliability of the individual channels, while the
combined effect of these two factors on system-level reliability or
safety, the true goal pursued, is difficult to estimate;

- mathematical results that in some cases are sufficient for choosing
between alternative policies, even without specific experimental
evidence. These are based on probabilistic models and identify
scenarios under which pursuing some additional degree of either
"separation" or "diversification" between the development processes
of redundant components is guaranteed to yield improvements at the
system level.

 p 2

1. Introduction

In redundant systems for critical applications, design faults, if repeated in
all redundant computation channels, could cause common-mode failures.
Diversity between the redundant channels provides some protection
against this danger. Two current trends are increasing the importance of
fault tolerance via diversity in all applications of computers: the push
towards entrusting more critical functions to software-based components
(due in part to their desirable features, and in part to the practical
disappearance of non-software based alternatives); and the increased
reliance on off-the-shelf products, which may lack sufficient evidence of
the required reliability.

Diversity has mostly been studied for software, so we will refer to
scenarios of software development, although the same principles apply to
hardware diversity. Software diversity is sought by having two or more
separately developed variants (often called versions, originating the term
N-version programming for this use of diversity) of a program. The
versions must exhibit the same functional (externally visible) behaviour. It
is hoped that, if one version fails, the other, diverse version[s] will not fail
at the same time; that is, it is hoped that any bugs they may contain will
not cause failures in exactly the same circumstances in all versions. The
two or more versions are run in a redundant configuration, so that failures
of a subset of the versions may be masked or at least detected.

Diversity poses the same problems as all other techniques for defending
against design faults to achieve high dependability: first, how to forecast
their effectiveness; and then, since this forecasting is problematic, how to
direct their application to make them effective and cost-effective. In this
paper, we focus on the question of how best to pursue effective diversity,
i.e., how to differentiate redundant channels to achieve a low probability
that they will fail together.

In the discussion that follows we refer to the simplest scenario of
redundancy with diversity: a parallel-redundant, 2-channel protection
system, which, in a stylised representation, consists of two separate
channels, each receiving sensor readings from the plant and able
autonomously to cause a shut-down through a single, Boolean output. We
are interested in the system's behaviour on demand (so, we do not
consider spurious trips), and the measure of interest is the system's
probability of failure on demand (pfd). This system is safe against any
failure that affects only one of the diverse channels; while any failure of
both channels is an unsafe failure of the system.

If this is a bespoke system, each version is produced by its own "version
development team"; a "project manager" defines the requirement
specifications that the development teams must implement and the
constraints under which they have to work, handles specification updates
and decides on final acceptance of the developed versions.

 p 3

The reason for combining components in a redundant fashion is the
potential "diversity of failures" between them: we are interested in how
unlikely they are to fail together on the same demand. The goal is low
correlation between their failures; "diversity" is an informal term for this
goal. The word "diversity" is also used (somewhat confusingly) to indicate
the factors that tend to reduce failure correlation, and especially those
factors that developers can control. In earlier articles [6], we defined the
special term "diversity seeking decision" ("DSD") to avoid the common
confusion between decisions made about these factors and the (desired
or actual) effects of these decisions, i.e., the degree of actual diversity
between versions or between their failure behaviours. A DSD is a decision
available to system designers or project managers to attempt to promote
failure diversity between program versions. Recommendations about DSDs
[1] have been made since the beginning of research in software design
diversity. All DSDs belong roughly to two categories, with two different
goals:

- to keep the development processes for the versions as separate and
(informally speaking) "independent" as possible (preventing possible
mistakes from "leaking" from one to the other[s]);

- and/or to make these development processes "more different"
("forcing" diversity). For instance, mandating different designs
between two versions, and the use of different methods (including
tools, languages, test processes, etc) in developing them.

These recommendations often refer to a scenario of bespoke development
of (all versions of) a new system: the project manager can, in principle,
decide all details of the development process. In reality, this freedom is
always limited by practicality (e.g., skills of the available staff) and cost
factors, and the need to rely on off-the-shelf components where possible.
As a limiting case, a project may be limited to selecting completely off-
the-shelf implementations of all the diverse channels. The DSDs are then
applied to this selection process: e.g., there is usually a preference for
components that have been developed independently by separate
companies.

But how can a project manager choose from the long list of possible
DSDs? It is not necessarily the case that the more DSDs are applied, the
better, and there is a need to be selective, because DSDs may not be
mutually compatible, and most have costs: duplication of activities, added
co-ordination effort, need for staff with specific skills. Choosing, however,
involves difficulties:

- the link between any DSD and the potential resulting reduction in the
probability of common failures is unclear: how do we know which
DSDs will be cost-effective?

- although it is natural to focus on maximising diversity between the
channels, this may not maximise system reliability: decisions may

 p 4

involve subtle trade-offs between diversity between the channels and
dependability of the individual channels;

- even if we are satisfied with our estimate of the effect of an individual
DSD, we actually have a choice between alternative combinations of
DSD: a more complex decision problem

Guidance about these issues may be sought from several sources.
Controlled experiments have been run, but their evidence is too sparse to
support any general law about the effects of specific DSDs on failure
diversity; their main utility has been in providing counter-examples to
refute conjectured general laws1. General experience in software
development does give experts some idea about how different software
development methods are prone to different kinds of mistakes, although
this knowledge does not include measures of these differences, and it
concerns differences caused in patterns of faults rather than of failures.
But for the more complex questions, there is no consensus, and intuition
has repeatedly been shown to be misleading in this area. Help can then
be sought from probabilistic models that give insight about what we
should expect. These models lead to theorems of the form "If two
alternative development processes for a multiple-version system satisfy a
certain set of detailed conditions, and differ in some specific aspect of the
combinations of DSDs they use, the first process is to be preferred to the
second". Although these apply to restrictive set of conditions, and often
help to identify a preference but not to assess the extent of the probable
gains, they also help to clarify the unspoken assumptions implicit in
informal judgements, and thus avoid possible fallacies. This paper draws
on research performed in the DISPO (Diverse Software PrOject) projects
over several years, including new results from probabilistic modelling.

In Section 2, we discuss how DSDs achieve their goal of promoting failure
diversity, the limitations in available knowledge and a threat-based
criterion for selecting DSDs; in Section 3, we discuss, with the aid of
results from probabilistic modelling, the usefulness of separation and
independence between version developments, the ways of "forcing"
diversity even when these are not assured, and some preference criteria
between alternative forms of diverse developments. Section 4 deals with
the especially difficult issue of choosing combinations of DSDs. Section 5
contains some conclusions.

1 Many controlled experiments were run in the 1980s (see [5] for references). As usual in software
engineering, there are so many possible variations between development processes that
generalising from their results is always suspect, except as proofs of existence or counter-
examples. In these experiments, diversity has always produced reliability improvements, and it has
been demonstrated that independence between development activities of different versions does
not imply statistical independence of failures.

 p 5

Process

'diversity'

Product 'diversity'

'Diversity' of product

failure behaviour

Diversity-seeking decision (DSD)

creates

Process BProcess A

Version BVersion A

constrains development,

producing

common environment

 selects demands

pattern of correct

responses and failures

determines which

demands will fail

constrains development,

producing

determines which

demands will fail

pattern of correct

responses and failures

Fig. 1. From diversity-seeking decisions to failure diversity

2. Diversity seeking decisions

Purposes and effects of DSDs
In a DISPO project report [4], we discussed the various DSDs available to
a project manager who wished to produce diverse versions of computing
channels. Considering how effective a certain DSD would be in improving
failure diversity and, in the end, system pfd, means considering the long
cause-effect chain sketched in Fig. 1. This means reasoning about which
factors affect the likelihood of various human errors in development, and
how these errors affect software faults. Unfortunately there is little
empirical, quantitative knowledge about these processes. However, we
can at least describe through which possible mechanisms the DSDs –
 forcing diversity between the version development processes – may
increase failure diversity between the versions. Fig. 2 summarises these
possible mechanisms.

The main cause-effect chain is the diagonal series of cause-effect links
from "Diversity in human failure in development" to "Failure diversity":
causing the intellectual tasks for the two teams of developers to be liable
to different mistakes, thus leading to the faults in the different versions, if
present, to be likely to be different, which in turn may cause different run-
time behaviours, leading to failure diversity. About the practicality of this
pursuit, it is sometimes argued that people inevitably tend to make similar
mistakes. But psychological research has shown that even substantially
identical tasks present greatly varying levels of difficulty depending to the
way the tasks are presented. Thus, different design directives (forcing the
teams to hold different "natural" views of the development problem, e.g.
by partitioning it in different ways), or even different languages and tools,

 p 6

may shift which parts of the problem are most subject to errors by
developers for the different versions.

[Run-time] error diversity

Failure diversity

Diverse faults (code defects)

Diversity in human failure in development

Diverse error regions

Data diversity

Diverse

reactions to

errors from

other

subsystems

“Internal”

data diversity

Diversity

in error

propagation

Different program structures

Diverse development processes

Fig. 2. Mechanisms through which DSDs may improve
failure diversity. The arrows indicate causality. The open-
tailed arrows indicate that "downstream" differences may
occur even without the corresponding "upstream"
difference.

In probabilistic terms, the fundamental mathematical model defined by
Littlewood and Miller in the 1980s [5] (the "LM model") supports "forcing"
diversity via DSDs as a means to reduce the expected value of the system
pfd. This average pfd depends on the difficulty function for each version,
defined for each possible demand on the system as the probability that
the development process will make that demand a failure point for that
version. The difficulty functions cannot in practice be estimated with
confidence, but studying the model clarifies how development processes
(and DSDs affecting them) may affect failure independence or correlation.
An important implication of this model is, informally, that if two
development processes A and B are essentially equivalent in terms of
expected reliability delivered, for best reliability in a two-version system
one should choose an "AB" system (one version developed by process A
and one, independently, by process B) rather than an "AA" or a "BB"
system. An AB system has an expected pfd that is at least as good (i.e.,
low) as that of a homogenous (AA or BB) system, and possibly as low as
zero.

Furthermore, the way to reduce the system pfd, i.e., to reduce failure
correlation between the versions, is to make the two processes differ in
such a way that those demands on which versions produced by A are
more likely to fail are those in which versions produced by B are less likely

 p 7

to fail (technically, aiming for low covariance between the "difficulty
functions" of the two processes [5]).

To link our understanding of the causal description in Fig. 2 to the general
directives derived from the probabilistic models, we need to consider how
DSDs affect the parameters of the models, specifically the difficulty
functions. This is reasonably simple in intuitive terms:

• DSDs that aim to guarantee separation between the version
development teams attempt to guarantee the condition of independent
development, which is necessary for these theorems to apply;

• DSDs that aim to make the version development processes more
diverse attempt to make the difficulty functions for the two processes
more diverse in the specific sense of reducing their covariance. So,
DSDs should be chosen with an eye to their effects on where (for
which demands on the system) each version development process is
most "vulnerable".

There is a difficulty with this last recommendation. Available knowledge or
expert beliefs about the effects of DSDs usually concern the different
likelihoods of each type of software fault (defects in the artefacts –
specification, design, code) under different development regimes, not
about which demands these errors would affect. The knowledge concerns
entities in the code, but the desired result is about their effects in the
space of possible demands. A link between the two is missing. There is
neither a known mathematical basis nor sufficient empirical evidence for
trusting that increasing diversity (between versions) in the faults increases
failure diversity [10].

Matching defences to threats

Despite these difficulties in comparing the amounts of gain to be expected
from different DSDs, the engineering approach of selecting DSDs, in view
of their costs and other problems, on the basis of whether they can
plausibly address the specific risk expected, remains valid. The required
steps are:

• analysing threats (possible sources of human failures in development,
and faults in other systems – development tools and execution
platforms – that may cause system failures),

• selecting (on the basis of whatever data are available plus subjective
judgement) those against which it is believed that (in the specific
project) other defences (before applying diversity) are not strong
enough to reduce the risk to acceptable levels, and

• selecting DSDs that are appropriate against these high-risk threats.

The cited report [4] discusses evidence and plausible beliefs about the
mechanisms of action of various DSDs, to support this kind of decision
process. For instance, a useful coarse-grained classification of threats was
between "higher level" errors of the developers (in setting and interpreting
high-level requirements and specifications), their "lower level" errors (in

 p 8

the steps from specification to executable code), and "faults in the support
platform" (either run-time hardware and software execution environment,
or software tools like compilers). Relatively low-cost DSDs, e.g. hardware
diversity, mechanical diversification of code, apply against this last
category of threats, but are mostly ineffective against the "higher level"
errors. It is commonly believed that current software engineering practices
offer better defences against the middle category – "lower level" human
error – and, if these defences are used, DSDs should be chosen with a
focus on the other two categories of threats.

This approach avoids the risk of general, poorly based recommendations
of specific DSDs as universally appropriate, and allows instead decisions to
be tailored to the needs and circumstances of a project, e.g. the
availability of plausible techniques for avoiding categories of errors, rather
than dealing with their consequences through diversity.

3. Efficacy of DSDs, separation and independence

As pointed out earlier, recommended DSDs try to achieve either better
separation between the development processes of different processes (we
can then talk about separation, or unforced diversity) or to make the
processes intentionally different (forced diversity). Although it is difficult to
tailor forced diversity specifically to reduce correlation between version
failures – to diversify, between the versions, the sets of demands most
likely to be affected by any residual faults – forced diversity gives at least
a possibility of these being markedly different, just as unforced diversity
gives a possibility of the versions not having identical faults.

It is often asserted that strict separation between the development
processes is an essential component of achieving diversity. This would
lead to some serious difficulties but is, fortunately, not strictly true. As for
the difficulties, let us suppose, for instance, that a version development
team reports to the project manager an ambiguity or suspected error in
the specification. The project manager will then issue a correction to the
specification. Presumably, this correction should go to the other team as
well, so as to avoid possible errors. But this violates separation between
the teams. Indeed, the way the problem was first noticed may be due to
the first team's specific view of a design problem, and the specification
change may well transmit this view to the second team, avoiding some
errors but also causing this team to share some mental "blind spots" with
the first team. This may seem too subtle a risk to consider against the
obvious advantage of correcting a wrong specification, but there may be
many other reasons for communications that may propagate some
influence from one team to the other. Should we then drop the diversity
approach altogether? For a high-visibility example, we may consider that
Boeing did not use software diversity in the Boeing 777, indicating [12]
the need for free communication among developers as the main reason:
they assumed that separation between teams was an essential part of the
diversity approach. Introducing dependence between the version

 p 9

development processes also violates the assumptions of the LM model,
and thus erodes one of the arguments that recommend "forcing" diversity.

To address these doubts, we reconsidered [8] the claim that diversity
requires the strictest separation between version development teams,
examining implicit assumptions and plausible arguments and formulating
them as precise probabilistic models, which extend the LM model [9]. Of
course, some issues cannot be decided by mathematics alone. For
instance, when is a specification clarification important enough to be
worth transmitting to a development team that did not request it? This
question could only be answered empirically, and then only by a volume of
experimental research that is probably infeasible. But the probabilistic
modelling produces clarity, and it does identify scenarios in which one
option in a development process is demonstrably superior to another, in
terms of expected system pfd.

Our probabilistic reasoning [9] is supported by representing the
development process for a two-version system as a Bayesian
network, as in Fig. 3: in this graph, nodes represent the (a priori
unpredictable) choices during a development process, and edges
represent the fact that the actual value of the upstream node
affects the probabilities of different outcomes for the
downstream node.

System

fails

Version A

fails

System test

demands

Version B

fails

corresponding

outcomes of

developing version B:

version as

delivered

failure or

success

initial

version code

version before

system testing

high-level

design

Specification

clarifications

coding unit testing/

inspection/

re-work

system

testing/

version

debugging

execution

on

demand

Specifications

wording and errors

activities that

produce the outcomes:

outcomes of

developing version A:

Randomly chosen

demand

Fig. 3 A Bayesian network for an example of non-independent version

development processes

We give here some examples of questions that can be answered by our
mathematical modelling. A convenient aspect of development for
illustrating such examples is testing (cf also [7]). At some stage of a
project, two software versions (custom-made or off-the-shelf) are

 p 10

available for testing, in order to correct any remaining faults. Suppose
that, up to this point, the diverse development processes are equivalent in
that they have the same probabilities of delivering correct programs, or
programs with any specific faults. Given a testing criterion, many
alternative test suites (sets of test cases), all equally appropriate, could be
chosen. With respect to testing the two versions, the project manager
could decide:

• to randomly choose one test suite and use it for both versions. This
creates a form of dependence between the two development process.
In the probabilistic model, this dependence produces a non-negative
addendum in the expression for the expected system pfd. However, it
reduces other terms in this expression, so that it can be shown that
under some broad assumptions this testing stage improves system
pfd, as one would expect;

• however, this dependence can be avoided by independently selecting,
according to the same criterion, two test suites for the two versions.
Then, the model shows that this is a net improvement: the non-
negative addendum disappears.

Similar statements apply to any other "common influence" between the
developments of the two versions. What is interesting in the new
theorems is that they indicate preferences between alternative decisions
for processes between which there is some dependence, and thus are
more generally applicable than those derived from the LM model. The two
examples given above with reference to testing generalise to two such
preference criteria:

• "Decoupling" of common influences: given two identical version
development processes, with one or more common influencing factors
(the nodes between the two chains in Fig. 3), removing any such
factor and substituting it with two independent, identically distributed
ones each affecting one version can only improve the expected system
pfd;

• "Diversifying" the version development processes: Given the same
scenario as above, changing one of the two processes so that its
quality remains the same, but the specific probability distribution
associated to any one of the nodes changes, can only improve the
expected system pfd.

A third criterion generalises the first one to the case in which two versions
are not developed by statistically identical processes:

• "Decoupling" given positive covariance: Even if the two processes are
not identical, applying "decoupling" will be an improvement if the
common factor that is eliminated is one with respect to which the
covariance of the difficulty functions is positive, for any possible
combination of values of all of the other influences.

An application of this last criterion is a scenario in which the common
factor is such that among its possible values (e.g., test suites, algorithms

 p 11

for implementing a given function, etc.) some are better than (or at least
as good as) others for any demand: e.g., if of two possible choices we
believe that one will certainly imply lower (or at most equal) probability of
failure on every demand, even if we do not know which choice is the
better one for our particular application.

This last form of forced diversity can be applied in a "reactive" manner:
after one development team makes a choice, the project manager orders
the other team to choose the other alternative. Interestingly, this is,
mathematically speaking, a way of creating a dependence between the
two development processes. That is, the common advocacy of
"independent" developments is still justified if all forms of "dependence"
create positive correlations between variables in the two processes. If a
project manager can devise one that creates negative correlation, it will
tend to decrease system pfd.

4. Combining DSDs

A major problem we mentioned earlier is that of deciding about how to
combine DSDs. Suppose a certain DSD – one form of diversity between
version development processes – is known to be useful, but there are
doubts whether it is sufficient protection (i.e., whether it would achieve
enough reduction in common-mode failures); suppose that another one is
also known to be useful. If we combined the two, would their advantages
add up? And if we had a choice between applying two alternative pairs
of DSDs, how could we decide?

We cannot just assume that applying one more DSD will improve system
pfd. We could think, for instance, that a DSD (say, specifying diverse
algorithms for the various versions) produces benefits because it gives a
development team a different version of the problem seen by another
team, so that they are not likely to make the same mistakes. However,
perhaps there is a point beyond which further "difference" produces no
further advantage: the problems seen are already as different as they can
be. Then, applying a second DSD (say, using very different design
methods for the various versions), possibly just as effective as the first
one when used alone, would not give any additional advantage when used
in combination with it, and might even make things worse by forcing the
use of inferior techniques (or techniques less familiar to developers),
chosen for the sake of diversity.

From the mathematical viewpoint, one of Littlewood's and Miller's
theorems (Theorem 3 [3]) gave sufficient conditions for a combination of
DSDs to be advantageous (better than applying just one DSD) when
applied to version development processes that are equivalent (in terms of
expected system pfd) and independent. From the more recent research,
we can add some extra theorems that do not require independence. The
"decoupling" principles introduced in section 3 apply for any number of
independent "influencing factors" that affect both version developments:
any DSD that removes one such factor is an improvement.

 p 12

We have not been able yet to study how broad the application of these
decision criteria may be in practice (how often the sufficient conditions of
these theorems would be recognised as approximately realised in a
development project), but they are certainly worth considering as
available guidance.

5. Conclusions

We have summarised some decision problems, and the available
knowledge for solving them, in managing diverse developments to
produce "diverse enough" versions of the channels of a redundant system.
On the minus side, decisions cannot be based on precise quantitative
estimates of the pfd gains to be expected from the alternative solutions. It
is not to be expected that experimental research will deliver complete
guidance for these decisions, and some intuitively appealing decision
criteria, like trying to diversify the types of errors that are likely to happen
in coding, turn out to have very weak support if analysed in detail.
Empirical research is still desirable to better understand the causal links in
Fig. 2 (via controlled experiments in cognitive psychology and via analysis
of diversity in existing code [2; 11], but it will not deliver precise
quantitative predictions.

On the positive side, reasoning about the intended and presumable effects
of the various "diversity seeking decisions" allows one at least to match
them to the expected threats (e.g., errors in specific phases of the
development process). In addition, probabilistic modelling, including
recent advances in the DISPO projects, helps to clarify the arguments for
and against the various possible ways of managing process diversity. In
particular,

• it resolves apparent difficulties about the desirability or not of
complete separation between the development processes of the
diverse versions, and

• it solves some of the difficulties concerning the choice to combine
multiple DSDs,

giving clear preferences with respect to some of the decisions that may be
necessary.

These mathematical results often confirm recommendations that have so
far been offered on an intuitive basis, advocating "separation" between
version development processes and "diversification" of these processes.
But the mathematical results also clearly outline the limits of these
recommendations, for instance highlighting the importance of scenarios in
which an action can improve system pfd despite reducing diversity, and
the role of creating "negative dependence" via "reactive" DSDs. For some
procedures, like certain types of testing, the application of these results is
straightforward; for others, it may require careful judgement to decide
whether the pertinent theorems apply.

 p 13

A more complete compilation of useful indications for pursuing effective
diversity, taking into account the results of recent research, is now being
prepared at City University.

Acknowledgments

The work reported was supported in part by the DISPO (DIverse Software
PrOject) projects managed by British Energy Generation Ltd, and in part
by projects DOTS (Diversity with Off-The-Shelf components) and DIRC
(Interdisciplinary Research Collaboration in Dependability) of the
Engineering and Physical Sciences Research Council.

References
[1] A. Avizienis. "The Methodology of N-Version Programming", in Software Fault
Tolerance, (M. Lyu, Ed.), pp. 23-46, John Wiley & Sons, 1995.

[2] I. Gashi, P. Popov and L. Strigini, "Fault Tolerance via Diversity for Off-The-Shelf
Products: a Study with SQL Database Servers", IEEE Transaction on Dependable and
Secure Computing, in print

[3] B. Littlewood and D.R. Miller, "Conceptual Modelling of Coincident Failures in Multi-
Version Software", IEEE Transactions on Software Engineering, vol. SE-15, no. 12, 1989,
pp.1596-1614.

[4] B. Littlewood and L. Strigini. "A discussion of practices for enhancing diversity in
software designs", DISPO project technical report LS-DI-TR-04, Centre for Software
Reliability, City University, 2000.

[5] B. Littlewood, P. Popov and L. Strigini, "Modelling software design diversity - a
review", ACM Computing Surveys, vol. 33, no. 2, 2001, pp.177-208.

[6] P. Popov, L. Strigini and A. Romanovsky. "Choosing effective methods for design
diversity - how to progress from intuition to science", SAFECOMP '99, 18th International
Conference on Computer Safety, Reliability and Security, Toulouse, France, Springer,
September 1999, pp. 272-285.

[7] P. Popov and B. Littlewood. "The effect of testing on the reliability of fault-tolerant
software", DSN 2004, International Conference on Dependable Systems and Networks,
Florence, Italy, IEEE Computer Society, June 2004, pp. 265-274.

[8] K. Salako and L. Strigini. "Dependence between developments of diverse software
versions: scenarios, statistical models and implications", DISPO2 Project Technical Report
LS-DISPO2-04, Centre for Software Reliability, City University, July 2004.

[9] K. Salako and L. Strigini. "Diversity for fault tolerance: effects of “dependence” and
common factors in software development", DISPO5 Project Technical Report KS-DISPO5-
01, August 2006.

[10] L. Strigini. "DISPO2 fault injection experiments with DARTS software: findings",
DISPO2 Project Technical Report LS-DISPO2-06, Centre for Software Reliability, City
University, July 2003.

[11] M.J.P. van der Meulen, P.G. Bishop and M. Revilla. "An Exploration of Software
Faults and Failure Behaviour in a Large Population of Programs", 15th International
Symposium on Software Reliability Engineering (ISSRE'04), Rennes, France, Springer-
Verlag, 2004, pp. 101-112.

 p 14

[12] Y.C.B. Yeh. "Design Considerations in Boeing 777 Fly-By-Wire Computers", 3rd IEEE
High-Assurance Systems Engineering Symposium (HASE), Washington, DC, USA, IEEE
Computer Society Press, November 1998, pp. 64-73.

