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MODELLING CONFLICTING INDIVIDUAL PREFERENCE: TARGET
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Northampton Square,
London EC1V 0HB, UK.

Abstract. This paper will consider a group of individuals who each have a target number of

contacts they would like to have with other group members. We are interested in how close
this can be to being realized. Considering the group’s long-term outcome under reasonable

dynamics on the number of contacts. We formulate this as a graph realization problem for

undirected graphs, with the individuals as vertices and the number of desired contacts as the
vertex degree. It is well known that not all degree sequences can be realized as undirected

graphs, and the Havel-Hakimi algorithm characterizes those that can. When we ask how close

the degree sequences can be to realization, we ask for graphs that minimize the total deviation
between what is desired and possible. The set of all such graphs and all such associated

sequences are termed the minimal sets. Broom and Cannings have previously considered

this problem in many papers, and it is hard to tackle for general target sequences. This
paper revisited the minimal set in general, investigating two particular classes of sequence in

particular. We considered the n-element arithmetic sequence (n-1, n-2, . . . 1,0) for general n,
including obtaining a formula that generates the size of the minimal set for a given arithmetic

sequence, and the all or nothing sequences, where targets are either 0 or n-1, where a recurrence

relation for such a formula was found. Further, we consider the question of the size of the
minimal set of sequences in general. We consider a strategic version of the model where the

individuals are involved in a multiplayer game, each trying to achieve their target, and show

that optimal play can lead to the minimal set being left, thus answering an open question
from earlier work.
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1. Introduction.

1.1. General evolving models. The original game theoretical models of populations consid-
ered infinite well-mixed populations [13, 14, 32, 25, 17, 18] where all individuals can interact.
There are important differences between finite and infinite populations; however, see, for exam-
ple, [37]. Real populations are also not homogeneous but have a population structure, which has
been incorporated in various ways. A population may evolve on a simple graph G = (V,E), see
[24], where vertices represent individuals and edges connections between them. Here the popu-
lation is assumed to be comprised of (at least) two types of individuals. The games are played
between neighbours, with the composition of the population changing according to the outcomes
of these games; perhaps the essential property of such populations is the fixation probability, the
probability that a randomly placed mutant will eventually replace the resident population [2, 8].
Other models consider situations where the graph grows as new individuals are introduced to
the population following some reproductive process. For example, Southwell and Cannings in
[33, 34, 35] consider a model where at each time point t every vertex produces an “offspring”.
The current edges are retained, and new edges involving the new vertices (amongst themselves
and linked to the old vertices) are formed following some rules.

In real populations, both graph structure and population composition change. A work showing
how the interactions between the individuals affect the structure, as well as the types occupying
the vertices, has been done, e.g. see [36]. In [27, 28] the rates at which links are formed or
broken depend upon the types of individuals involved. For a review see [29] (see also[1]). A lot of
this work considers the problem of whether cooperative behaviour can evolve. The details vary,
but Allen and Nowak [1] note that a common theme is that it is easier to achieve cooperation
when the cooperators can group in a way that can exclude defectors, at least to some extent.
In the current paper, we consider strategic network formation. Such models date back to 1975
[4]. More recently, Jackson and Wolinsky [23] considered a scenario where an individual’s payoffs
depend upon the network. And they considered incentives of individuals to form networks (see
also [19, 20], and [21] for a review of such models, as well as a demonstration of some simple
examples, which illustrate some complexities and interesting features of these models). A variety
of scenarios have been considered, depending upon the allowable changes, whether individuals can
condition their play on potential changes of others and whether links can be formed unilaterally;
this latter situation [3, 11] is also how our model works.

1.2. A dynamic network population model. Consider a network of interactions between
the distinguishable vertices set V = (1, 2, 3, ....), and the edges which link pairs of individuals
(vertices) such that X = (xij) where i, j = 1, 2, ...., n denotes the edges for any given graph
(see [7]), with xij = 1(0) representing the presence (absence) of an edge between individuals
i and j. Edges can be formed or broken, and we follow a process in discrete time, which we
describe below. We thus have a time-dependent matrix X(t) describing the links, and this in
turn generates the vector et = (e1t, e2t, ....., ent), the sequence et of X(t), where at time t an
individual i has eit links. In [9] each vertex had a preferred range of links [mi,Mi] to other
individuals, where 0 6 mi 6 Mi 6 n − 1. In this paper we will only consider mi = Mi = ti
where ti is the unique target of individual i. Following a dynamic process, described precisely
in Section ??. For the unique target case, in [9] individuals were selected at random to change
their number of links. The individual below (above) their target range would form (break) one
of its links at random; an individual within its target range would make no change. Thus, we
have a fixed set of individuals (vertices) while the links change randomly. The process follows
a Markov chain, with vertices breaking or forming random connections to optimize their total
number; for the unique target case that we will consider, individual i will aim to get as close
as possible to the target ti. Depending on their desired total number of links, the presence or
absence of a specific link may benefit both, neither, or precisely one of the two involved.

Suppose the collection of targets, the target sequence, can be achieved by a graph. In that
case, it is possible that all individuals can be on target simultaneously when no further changes
happen (indeed, it is proved in [6] that the situation must eventually be reached). In this case,
the target sequence is called a graphical sequence. A lot of work has been done on these sequences,
for example in ([15], [12], [16], [26], and [30]). We shall discuss graphical sequences in Section 2.
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1.3. Paper outline. In this paper, we consider a model where ”evolution” takes place on the
class of simple graphs with a fixed number of vertices that represent individuals interacting
with each other, and the set of edges represents the links between these individuals. Section ??
has been a general introduction to our dynamic network population model. Section 2 describes
the model, including the target sequence and the general concept of the minimal set and its
properties. In Section 3 we consider the size of the minimal set, including for two key classes
of target sequence. In Section 4 we discuss the game theoretical model introduced in [7] and
further developed in [10] to resolve an open question from [7]. Finally Section 5 is a discussion
of our results and future work.

2. The Model.

2.1. Graphic Sequences. In this section, we will present many key definitions for this paper,
in particular, that of a graphical sequence, and we give sufficient and necessary conditions for a
sequence to be graphic, which we will introduce as a theorem (The Havel-Hakimi Theorem), as
well as mentioning some applications.

2.2. What is a graphical sequence?

Definition 2.1. The degree of a vertex (Vi) is the number of links going out of the vertex which
connects the vertex with other individuals deg(vi).

Definition 2.2. A finite sequence (t1, t2, t3, . . . , tn) of non-negative integers is called a degree
sequence of a graph G if the vertices of G can be labelled v1, v2, . . . , vn such that deg(vi) = ti
for all i = 1, 2, 3, . . . , n [38].

Definition 2.3. The sequence (e1, e2, . . . , en) is graphical if there exists a graph which achieves
that sequence exactly. Thus, if a sequence S : (e1, e2, e3, . . . , en) is a degree sequence of some
graph the sequence S is called a graphical sequence. Not every sequence of non-negative integers
can be graphical. Below we define two important classes of sequence which we shall consider
later in the paper.

Definition 2.4. The n-element arithmetic sequence has the form (n − 1, n − 2, n − 3, . . . , 1, 0)
for general n.

Definition 2.5. An all or nothing sequence is a sequence of n elements, m1 of which have target
n− 1 and m2 = n−m1 of which have target 0.

2.2.1. Sufficient and Necessary conditions for a graphical sequence.

Theorem 2.6 (the Havel-Hakimi Theorem). A sequence S : (t1, t2, t3, . . . , tn) of non-negative
and non-increasing integers with n ≥ 2, t1 ≥ 1, is graphic if and only if the sequence S′ :
(t2 − 1, t3 − 1, tti+1 − 1, . . . , tn) is graphic.

See [6, 12, 16] for more on graphic sequences. Here S′ is obtained by deleting the largest
element in S and subtracting one from the next largest elements. We note that it may be that
t2 − 1 ≥ t3 − 1 ≥ tti+1

− 1 . . . ≥ tn does not hold, in which case we would normally re-order the
terms to again be a non-increasing sequence. This is necessary for the repeated implementation
of the Havel-Hakimi result to a sequence often carried out.

2.2.2. Vertex classification. In this section we will discuss vertex classifications (see [7]). We shall
see that for specific target sequences, following the random process described in Section 4.1, we
will eventually reach a situation (the minimal set, as discussed later) where some individuals
might never be under or over target, and we shall classify them by their long-term possibilities.
We shall consider a target sequence t and the sequence of a graph v, e(v).

Definition 2.7. The distance between two sequences (a) and (b) is giving by: Z(a, b) =∑n
i=1 |ai − bi|.

Definition 2.8. The deviation of a graph (and its associated sequence) is the distance from that
sequence to the target sequence t.

Definition 2.9. The score of t is s(t) = minv∈GZ(e(v), t).
3



The score is the minimal value of the deviation for all graphical sequences of the target t.
The adjusted Havel-Hakimi algorithmfinds the score of a sequence by following the steps:

• Sort the sequence in decreasing order.
• Remove the first (greatest) element. If this greatest element was k, subtract 1 from the k

following terms.
• If a negative number appears (only −1 is possible) change it to zero and add one to the

running total (which starts at 0).
• Repeat this process until we end up with a sequence of zeros.

The score is then the final total of summed 1’s. We will now define two central concepts for our
paper, the minimal sets of graphs and sequences.

Definition 2.10. The minimal set of graphs, K(min), is the set of graphs which achieve the
score.

Definition 2.11. The minimal set, J(min), is the set of sequences of graphs which achieve the
score.

For sequences, we must be careful about ties. We say a sequence of integers contains a tie if
an integer belonging to that sequence is repeated in a row, in other words if two consecutive
individuals have the same target. For example in the target sequence {2, 2, 1} there is a tie in
the first and second positions. For members of the minimal set permutations within the tied
positions are equivalent, for example {2, 1, 1} and {1, 2, 1} for the above sequence. To find J(min)
we thus disallow any sequence that is not non-increasing in the tie positions. For each element of
J(min) there will be a corresponding set of at least one element of K(min). For graphic sequences
the score is 0, as the target can be achieved by a graph, and consequently J(min) has a single
element (the target sequence itself). Here we are interested in non-graphic sequences, where not
all vertices can achieve their target simultaneously. For any given graph, a vertex can be in one
of three states:

• vertex i is Neutral if ei = ti (it would neither wish to form nor break an edge);
• vertex i is a Joiner if ei < ti (it would wish to form a new edge);
• vertex i is a Breaker if ei > ti (it would wish to break one of its edges).

It was shown in [7] that all vertices are Neutral for at least some elements of J(min). This then
implies that every vertex is of one of the following four types:

1. vertices which can be either Joiner or Breaker in some elements, and necessarily must be
Neutral for some other elements, of J(min). We denote the set of these as SA.

2. vertices which are either Joiners or Neutral for all elements of J(min). We denote the set
of these as SJ .

3. vertices which are Breakers or Neutral for all elements of J(min). We denote the set of
these as SB .

4. vertices which are Neutrals only. We denote the set of these as SN .

By Lemma 4.1 in [7], We know that we cannot have vertices from SA and vertices from SN

for the same sequence. Clearly, if the sequence is graphic then the only sequence within J(min)
corresponds to members of K(min) where the target is achieved for all vertices, i.e. all of its
vertices will be Neutral. In this case we cannot have Joiners or Breakers and all vertices are of
type 4.

2.3. Properties of the minimal set. In order to reach the minimal set, there will be a
number of steps and transitions which reduce the deviation of the graph until the minimal set
J(min)/K(min) is reached. By noting that no further improvement can occur we can conclude
the following:

1. There will be no links between two Breakers.
2. Any two Joiners will have a link between them.
3. If a Neutral is joined to a Breaker it means that Neutral is joined to every Joiner. Similarly,

if a Neutral is not joined to some Joiners that means it is not joined to any Breakers.
4. If we have a Neutral N which is joined to some Breakers and another Neutral N∗ is joined

to some other Breakers then N and N∗ are joined.
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5. If some Neutral N is not joined to some Joiners and another Neutral N∗ is not joined to
some other Joiners then N and N∗ are not joined.

Note 2.12. J(min) contains at least one member with no Joiners and at least one with no
Breakers (see [6] for further details).

Note 2.13. It was shown in [7] that (for a non-increasing target sequence) that members of SJ

must have lower index than members of SN or SA, which must have lower index than members
of SB . Some sets can be missing, indeed as stated above both SA and SN cannot occur, but any
present must always satisfy the above conditions.

3. The size of the minimal set. In this section we shall consider the minimal set(s) more
generally, and in particular we are interested in the size of the minimal set. We consider two
special cases, and the size of the largest minimal set in general for a given number of vertices n.

3.1. The largest minimal set. We consider two types of the minimal set, namely J(min) and
K(min). We shall mainly consider J(min) for the following reasons:

1. Dealing with J(min) is simpler than K(min), partly due to the difference in the size of
the minimal sets. Every sequence (in J(min), and in general) has at least one graph (in
K(min), and in general) which makes K(min) larger than J(min). The number of graphs

for n vertices is 2(n
2), and so asymptotically the logarithm of this number is of order n2,

whilst the number of sequences is bounded above by nn, the logarithm of which is of order
nln(n) (many sequences are not graphical and ties in the target further reduces this).

2. The minimal set is defined in terms of sequences not graphs. We saw this from the definition
of the score, and the fact that it can be found using the modified Havel-Hakimi algorithm
[6]. Whether any given graph/sequence achieves the score is thus established through
consideration of the sequence. When is the minimal set likely to be large? It might be
thought that J(min) should be at its largest when the score is the largest. What sequences
yield this maximal score? We show this in the following theorem. Note that, although the
main focus of this paper is J(min) as discussed above, we shall consider K(min) below, as
for the particular sequences involved, this is actually an easy set to find. The maximal
score ms(n) for n vertices occurs as follows.

Theorem 3.1. 1. If n = 2m, the maximal score occurs for target {(n − 1)m, 0m}, where xy

denotes a list of y x’s, and the score is ms(n) = m2.
2. If n = 2m + 1 the maximal score occurs for target {(n − 1)m+1, 0m} (and for its dual
{(n − 1)m, 0m+1}), and the score is ms(n) = m(m + 1). In each case the size of the
minimal set K(min) is 2ms(n).

Proof: For given target t (elements listed in descending order) there is at least one graph that
achieves the score. Choose such a graph, and count the edges of each vertex, listing these in
vector s. Clearly the elements of s are non-increasing (except perhaps in tied positions from
the target, and so there is an equivalent sequence where they are non-increasing), otherwise
swapping the links between some pair of vertices reduces the deviation, which is not possible
since the graph achieves the score.
It is shown in Theorem 4.11 from [7] that for our graph, any vertices that are short of target

(Joiners) must precede those achieving their target (Neutrals) which in turn must precede those
over target (Breakers). Now consider the sequence where we replace the target for all Joiners
by n− 1, the target for all Breakers by 0, and the target for neutrals by some number of n− 1s
preceding some number of 0s. This has a larger score than t (unless it is already of this type).
Thus the maximum score sequence(s) must be of form {(n− 1)x, 0n−x}.
This sequence has score x(n− 1)− x(x− 1) = x(n− x). It is easy to see this by connecting all

pairs of n− 1 vertices and splitting all pairs of 0 vertices; the existence (or otherwise) of a link
between any 0 and n− 1 pair has no effect on the deviation. Thus the largest possible scores are
given by the targets stated in the theorem. Now consider the size of the minimal set K(min). For
n = 2m consider {(m− 1)m, 0m} which is graphic, achieved by a unique graph with a subgraph
Km, a subgraph with m vertices and no edges, and no edges between the two subgraphs. The
score of our target being m2, this graphic sequence is a member of the minimal set for our target
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sequence. We can add any set of r edges between the two subgraphs and obtain a graph in this
minimal set. Adding any edges between the 0 vertices or removing any edges from between the
other vertices increases the deviation, meaning that any resulting graph is not in the minimal

set. Thus we have 2m
2

states in all. For n = 2m + 1 we consider the graph {mm+1, 0m}, with
subgraph Km+1, which is graphic and a member of the minimal set of target {(2m)m+1, 0m}.
Using the same reasoning as above, we obtain a minimal set of size 2m(m+1). �.
We note, however, that the largest K(min) does not necessarily occur for the sequence with the

largest score. Consider the n = 3 case. From Figure 1 we see that there are six states within the
minimal set for the sequence 111; however, the sequences with the maximal score are 220 and
200 with four states in the minimal set.

Figure 1. Transitions between the elements of the minimal set of graphs
K(min) of the sequence 111 showing every possible move between each of the
six elements.

represents a link between the corresponding two nodes.
- - - - represents the absence of such a link.

We have considered sequences of this type before in [7]. We considered a Markov process with
individuals not achieving their targets always choosing out of the potential improving moves
uniformly. And found the stationary distribution over the population states (the set of recurrent
states, which is K(min) and which formed a single class). We note that for the strategic game
considered in Section 4, the corresponding process would be much more difficult to analyse.
There are many states and possible transition distributions between these states (which occurs
depending upon strategic choices); all ms(n) edges represent a change that would improve the
deviation of one of the two participating individuals.
We note that although the above ”all or nothing” targets have a large minimal set of graphs,

their minimal set of sequences is not necessarily large due to a large number of ties within the
target (there are only two distinct values, n − 1 and 0). Thus reordering within the sequences
as discussed in Section 2.2.2 means that many different sequences are identical. Therefore it will
not be the case generally that sequences with the largest score will have the largest minimal set
J(min). But which sequences will have the largest J(min)? We cannot answer this question in
general, though we can investigate it for the smallest number of individuals. In particular, we
have found the minimal sets for all sequence lengths for 2 ≤ n ≤ 7 using a Matlab program.
In Table 1 we show the size of the largest minimal set, the corresponding target sequence and its

score. We also show the size of the minimal set and the score for two special classes of sequence
6



n score |J(min)| sequence Ar Ar AoN AoN
|J(min)| score |J(min)| score

2 1 2 (1,0) 2 1 2 1
3 2 3 (2,2,0)∗ 2 1 3 2
3 2 3 (2,0,0)∗

4 3 7 (3,2,0,0) 7 2 7 4
4 3 7 (3,3,1,0)
4 4 7 (3,3,0,0)∗

4 2 7 (3,2,1,0)+

5 4 20 (4,3,1,0,0) 7 2 13 6
5 4 20 (4,4,3,1,0)
6 7 84 (5,5,4,1,0,0) 30 3 34 9
7 9 262 (6,6,5,1,1,0,0) 30 3 76 12
7 9 262 (6,6,5,5,1,0,0)

Table 1. The sequences with the biggest minimal set size where n is the number
of individuals, —J(min)— size: refers to the minimal set size. We also consider
two special classes of sequence, the arithmetic (Ar, the sequence + above is an
example) and all-or-nothing (AoN, sequences ∗ above are examples) sequences
discussed later, for comparison.

described later. From Table 1 we see that the largest minimal set is not in general for the all-or-
nothing sequences, except for when there are very few nodes. Why is this? Let us consider the
case with 6 nodes as an example.

Example 3.2. Consider the following sequences

• 1) 555000
• 2) 554100
• 3) 543210

The first sequence has the largest score (9), the third sequence has a much smaller score (3),
and the second sequence has an intermediate value of the score (7). Thus we might think that
(1) should have the largest minimal set of the three and (3) the smallest.
The first sequence has the largest three numbers and the smallest three numbers all the same;

the second sequence has the largest and smallest two numbers the same, but the middle two take
different values; the third sequence has all numbers different. When we find the minimal set, we
must reorder the first and last three numbers for sequences in the minimal set of (1) and the first
and last two numbers for sequences in the minimal set of (2) to account for ties as discussed in
Section 2.2.2 (for sequence (3) there are no ties to consider). Thus there will be more equivalent
sequences for (1) than (2), and therefore (1) will have more elements to be omitted from the
minimal set. Thus J(min) is larger for the second sequence even though the score is smaller. It
has the biggest minimal set for the n = 6 case. In general, something similar occurs for all values
of n, as for all or nothing sequences, the number of ties is ever increasing. We have also seen in
the above example, and from Table 1, that the arithmetic sequence, which is the only type with
no ties, also does not achieve the maximum minimal set size. It has a relatively low score, and
we hypothesise that, in general, a combination of a high score and a low number of ties gives
a large minimal set. Note that we see in Section 3.3 that the minimal set J(min) of the all or
nothing sequences are generally bigger than the arithmetic one (although we have not been able
to prove this).
In the following two sections, we consider the two special classes of sequence, arithmetic and all

or nothing, that we have discussed above.

3.2. The minimal set for the arithmetic sequence. In this section we consider the n −
element arithmetic sequence (n−1, n−2, n−3, . . . , 1, 0) for general n as mentioned in definition
2.4. In particular, we demonstrate an exact formula for the size of the minimal set J(min) for
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this sequence in the process of identifying its precise membership. We will label the set as Jn
and thus the size of the set as | Jn |.
We know that the set n = 2m+ 1 has the same size as that for n = 2m, and that the elements

of the set for n = 2m + 1 can easily be derived from those for n = 2m (see [7] Theorem 4.2).
Thus we only need to solve the problem for n = 2m for general m. We can find the score of
n = 2m by the following lemma:

Lemma 3.3. The score for n = 2m is m.

Proof: 2m − 1, 2m − 2, . . . ,m,m − 1, . . . , 0 is an arithmetic sequence. Applying the adjusted
H-H algorithm on this sequence as follows, we obtain:
2m− 1, 2m− 2, . . . ,m− 1, . . . , 0 (+1)
2m− 3, 2m− 4, . . . , 0, 0 (+1)
2m− 5, 2m− 6, . . . , 0, 0, 0 (+1)
and so on. After the rth step, we obtain the sequence: 2m− 2r − 1, 2m− 2r − 2, . . . , 1, 0, . . . , 0
where there are r zeros with a cumulative total of r 1’s added. The leading term reduces by 2
for each further step and addition of 1 to the H-H algorithm’s value. We end with a sequence of
m zero’s with a value of m. Thus the score is m. �

Lemma 3.4. The members of the minimal set for n = 2m have the first m elements in SJ and
the last m elements in SB, in the terminology of [7].

Proof: We shall divide the sequence (2m− 1, 2m− 2, . . . ,m,m− 1, . . . , 0) into two sets:
S1 =

{
2m− 1, 2m− 2, . . . ,m

}
and S2 =

{
m− 1,m− 2. . . . , 0

}
.

We further denote:
βi: The links within S1 (or S2) for i = 0, 1, 2, . . . , 2m− 1,
αi: The links between the sets S1 and S2 for i = 0, 1, 2, . . . , 2m− 1.

1. The deviation of the sequence, written as D, can be found as follows.

D =

2m−1∑
i=m

|i− αi − βi|+
m−1∑
i=0

|i− αi − βi| ≥

2m−1∑
i=m

(|(i− αi)| − |βi|) +

m−1∑
i=0

|(βi + αi| − |i|) ≥

2m−1∑
i=m

((i− αi)− βi) +

m−1∑
j=0

(βi + αi − i) =

2m−1∑
i=m

i−
2m−1∑
i=m

αi −
2m−1∑
i=m

βi +

m−1∑
i=0

βi +

m−1∑
i=0

αi −
m−1∑
i=0

i.

We know that
m−1∑
i=0

αi =

2m−1∑
i=m

αi,

since the αis represent the links between S1 and S2 and so the summation is common
between the two sets.

Thus

D ≥
2m−1∑
i=0

i− 2

m−1∑
i=0

i−
2m−1∑
i=m

βi +

m−1∑
i=0

βi =

(2m(2m− 1)/2)− (2m(m− 1)/2)−
2m−1∑
i=m

βi +

m−1∑
i=0

βi =

m2 −
2m−1∑
i=m

βi +

m−1∑
i=0

βi.

The only way to achieve the score m is to have that all βi = m− 1 for i ≥ m and all βi = 0
for i < m.
Thus we have proved that to be in the minimal set we must have βi = m − 1 in S1 and
βi = 0 in S2.
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2. This then leaves the target number of links between the elements of S1 and S2, as i =
0, 1, ....,m− 1 for S1 and j = 1, 2, .....,m for S2. We will substitute for the values of βi for
all nodes as follows:

D =

2m−1∑
i=m

|(i− αi)− (m− 1)|+
m−1∑
i=0

|(i− αi)− 0|.

Denoting j = i−m+ 1, we have

D =

m∑
j=1

|αj+m−1 − j|+
m−1∑
i=0

|αi − i|.

Now suppose that for some k such that 0 ≤ k ≤ m we have k < αk+m−1, then

D =

m∑
j=1

|αj+m−1 − j|+
m−1∑
i=0

|αi − i| =

(αk+m−1 − k) +

m∑
j 6=k

|j − αj+m−1|+
m−1∑
i=0

|i− αi| ≥

2(αk+m−1 − k)−
m∑
j=1

αj+m−1 +

m∑
j=1

|j|+
m−1∑
i=0

αi −
m−1∑
i=0

|i| =

2(αk+m−1 − k) + (m(m+ 1)/2)− (m(m− 1)/2) = 2(αk+m−1 − k) +m > m.

That means that the sequence is not in the minimal set, and so k ≥ αk+m−1 i.e. no element
in S1 can be a Breaker, i.e. all elements of S1 are in SJ .

3. For 1 ≤ k ≤ m we will now assume that αk < k.

D =

m∑
j=1

|αj+m−1 − j)|+
m−1∑
i=0

|αi − i| =

m∑
j=1

|αj+m−1 − j)|+ (k − αk) +

m−1∑
i 6=k

|αi − i| ≥

m∑
j=1

|j| −
m∑
j=1

|αj+m−1|+ 2(k − αk) +

m−1∑
i=1

|αi| −
m−1∑
i=1

|i| =

2(k − αk) +m > m,

so again that means the sequence is not in the minimal set. Thus αk ≥ k i.e. no element in S2

can be a Joiner, i.e. all elements of S2 are in SB �.

Lemma 3.5. If a member of the minimal set has elements where for i < j in SJ we have ti ≥ tj
and ei ≤ ej, then the sequence with these two numbers swapped, so vertex i (j) has element ej
(ei), is also in the minimal set. Similarly for any two members of SB.

Proof: Consider the sequences S : e1, e2, . . . , ei, . . . , ej , ..., en
and S′ : e1, e2, . . . , ej , . . . , ei, . . . , en, the same sequence with ei and ej swapped. We will define

Ds =

n∑
i=0

|ti − ei|, D′s =

n∑
k 6=iorj

|tk − ek|+ |ti − ej |+ |tj − ei|.

We thus have that

D′s −Ds = |ti − ej |+ |tj − ei| − |ti − ei| − |tj − ej |.
We wish to prove that D′s −Ds ≤ 0. To do that we will discuss the following cases:

1. If ej ≥ ei ≥ ti ≥ tj
D′s −Ds = (ej − ti) + (ei − tj)− (ei − ti)− (ej − tj) = 0, so D′s = Ds.

2. If ej ≥ ti ≥ ei ≥ tj
D′s −Ds = (ej − ti) + (ei − tj)− (ti − ei)− (ej − tj) = 2ei − 2ti ≤ 0, so D′s ≤ Ds.

3. If ej ≥ ti ≥ tj ≥ ei
D′s −Ds = (ej − ti) + (tj − ei)− (ti − ei)− (ej − tj) = 2tj − 2ti ≤ 0, thus D′s ≤ Ds.
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4. If ti ≥ ej ≥ ei ≥ tj
D′s −Ds = (ti − ej) + (ei − tj)− (ti − ei)− (ej − tj) = −2ej + 2ei ≤ 0, thus D′s ≤ Ds.

5. If ti ≥ ej ≥ tj ≥ ei
D′s −Ds = (ti − ej) + (tj − ei)− (ti − ei)− (ej − tj) = −2ej + 2tj ≤ 0, thus D′s ≤ Ds.

6. If ti ≥ tj ≥ ei ≥ ej
D′s −Ds = (ti − ej) + (tj − ei)− (ti − ei)− (tj − ej) = 0, thus D′s = Ds in this case. Thus
D′s −Ds ≤ 0 in all cases, so that the result is true. �.

Lemma 3.6. From Lemmas 3.3, 3.4 and 3.5 we have that the vertex deviations, denoted εi in
the terminology of [7], must satisfy εi ≤ m+ 1− i for i ≤ m and εi ≤ i−m for i > m for all i.

Proof:

1. From the proof of Lemma 3.5 we have the following: 1 ≤ i ≤ m, βi = m−1 , so ei ≥ m−1.
From Lemma 3.5 we have ei ≤ 2m− i.
Thus the deviation εi = |ti − ei| = 2m− i− ei ≤ 2m− i− (m− 1) = m+ 1− i.

2. From the proof of Lemma 3.5 we have: m+ 1 ≤ i ≤ 2m,βi = 0, ei ≤ m.
From Lemma 3.5 again we have: ei ≥ 2m − i, so the Deviation εi = ei − (2m − i) ≤
m− (2m− i) = i−m. �.

Lemma 3.7. The following inequality holds.

l∑
j=1

εj +

2m∑
j=2m−l+1

εj ≥ l l = 1, .....,m. (1)

Proof: From Lemma 3.5 we have:
l∑

j=1

εj =

l∑
j=1

(2m− j − ej),
2m∑

j=2m−l+1

εj =

2m∑
j=2m−l+1

(ej − (2m− j)).

Denoting s = 2m+ 1− j,
2m∑

j=2m−l+1

(2m− j) =

l∑
s=1

(s− 1).

Adding the two terms from the LHS of Inequality (1) we get:

l∑
j=1

(2m− j)−
l∑

s=1

(s− 1)−
l∑

j=1

ej +

2m∑
j=2m−l+1

ej =

l∑
j=1

(2m− 2j + 1)−
l∑

j=1

ej +

2m∑
j=2m−l+1

ej =

l(2m+ 1)− 2

l∑
j=1

j −
l∑

j=1

ej +

2m∑
j=2m−l+1

ej =

l(2m+ 1)− (2l(l + 1)/2)−
l∑

j=1

ej +

2m∑
j=2m−l+1

ej =

l(2m+ 1− l − 1)−
l∑

j=1

ej +

2m∑
j=2m−l+1

ej = l(2m− l)−
l∑

j=1

ej +

2m∑
j=2m−l+1

ej .

We will divide j = 1, 2, . . . , 2m into three sets: set A which contains the first l elements, set B
which contains the middle 2m − 2l elements and set C which contains the last l elements. We
can make

∑l
j=1 ej as small as possible by forcing all the elements from set A to be connected to

elements in set B and force the elements in set A to be connect to each other.
We can similarly make

∑2m
j=2m−l+1 ej as small as possible by forcing all the elements in set C to

be broken from the elements in set and B, and the elements in the set C to be broken from each
other.
We denote the following:
LAA : are the links between the elements in set A (each edge is counted twice, representing a
link for two A individuals).
LAB = LBA : are the links between the elements in set A and set B.
LAC = LCA : are links between the elements in set A and set C.
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LBC = LCB : are the links between the elements in set B and set C.
LCC : are the links between the elements in set C (each edge is counted twice, representing a
link for two C individuals).
We have the following:

l∑
j=1

ej +

2m∑
j=2m−l+1

ej = l(2m− l)− (|LAA|+ |LAB |+ |LAC |) + (|LCA|+ |LCB |+ |LCC |) ≥

l(2m− l)− |LAA| − |LAB |+ |LCB |+ |LCC | ≥ l(2m− l)− l(l − 1)− l(2m− 2l) = l.

�.

Lemma 3.8. For any sequence that satisfies Lemmas 3.6 and 3.7 and has
∑m

i=1 εi = m, then
there is a graph which has this sequence.

Proof: We have the following sequence which represents the index of the nodes of our target
sequence: (1, 2, . . .m,m + 1, . . . , 2m − 1, 2m) so that the target of node i is 2m − i. We will
divide this sequence into two sets: (S1 : 1, 2, . . .m) and S2 : (2m, 2m − 1, . . .m + 1), where we
have switched the order of S2 for convenience as we see below. The required number of links for
each node respectively will be as follows:
S1 : 2m− 1− ε1, 2m− 2− ε2, . . . ,m+ 1− εm.
S2 : 0 + ε2m, 1 + ε2m−1, . . . ,m− 2 + εm+2,m− 1 + εm+1.
Firstly: from the statement of the lemma, we have the following:

l∑
j=1

εj +

2m∑
j=2m−l+1

εj ≥ l,

and

m∑
j=1

εj +

2m∑
j=m+1

εj = m.

From these we can conclude that

m∑
j=l+1

εj +

2m−l∑
j=m+1

εj ≤ m− l.

Secondly: as per Lemma 3.5 we have m − 1 links for each individual in S1 to the other S1

elements and zero links between the nodes in S2. In addition we will connect each node i from
S1 with nodes m + 1 up to 2m − i in S2. This is illustrated in figure 2. By this procedure we
will get the following required extra links for each node in S1 and S2 respectively:
S1 : 1− ε1, 1− ε2, . . . , 1− εm−1, 1− εm.
S2 : ε2m, ε2m−1, . . . , εm+2, εm+1.
Thirdly: now we need to consider the value of εi + ε2m−i?
Here we will discuss the various possibilities:

1. Suppose that εi + ε2m−i = 1, then there are two possibilities:
• If εi = 0 and ε2m−i = 1, this means each node has achieved its desired target.
• If εi = 1 and ε2m−i = 0, both nodes in each opposite pair will need one more link, in

which case we will link these two nodes, so they would then have achieved their target.
2. If εi + ε2m−i > 1 we will denote εi + ε2m−i = k and ε2m−i = x. Given that

m∑
j=l+1

εj +

2m−l∑
j=m+1

εj ≤ m− l,

11



Figure 2. This figure shows the links between node i from S1 and node j in S2,
where S1 : 1, 2, . . . ,m−1,m. and S2 : 2m, 2m−1, . . . ,m+2,m+1 at the second
step of the process in Lemma 3.8 (other links between the two sets are absent).
These are in addition to the links between all elements of S1. All elements of
S2 are split from each other. We have thus illustrated the situation prior to the
third step.

there are at least k− 1 pairs where εj + ε2m−j = 0 with j > i. In this case we will link the node
2m− i in S2 with x nodes from S1 corresponding to the highest j values for which εi +ε2m−i = 0.
By this connection all these x nodes in S1 will reach their desired target and the node 2m − i
in S2 will be satisfied as well. That will leave k − x − 1 nodes from S1 where εj + ε2m−j = 0
requiring one more link and node i with k − x − 1 too many links. To have them achieve their
target we will connect these k − x − 1 nodes in S1 to the opposite node vertically in S2. This
will remove the extra one’s in the deviation for those nodes, but leave their partners with one
link too many. Now we consider node i in S1 which has (k− x− 1) extra links. To remove these
links we will break (k− x− 1) links between node i in S1 to these (k− x− 1) nodes in S2. Then
i and 2m − i have achieved their target, and for all j ≥ i either j and 2m − i are on target or
εj + ε2m−j = 0.
Finally: repeat step 2 for subsequent i. For the final step εj + ε2m−j = k, there must be exactly
k − 1 of εj + ε2m−j = 0 with j 6 i, following the previous procedure, then we are left with all
nodes on target, and finally that we have a sequence in the minimal set. �.
Now let us define Qi

k as the number of ways of picking a sequence of 2i numbers q1, q2, ....q2i
which sum to k where the following conditions are satisfied:{

qj ≤ i+ 1− j j ≤ i
qj ≤ j − i j > i

(2)

and
l∑

j=1

qj +

2i∑
j=2i−l+1

qj ≥ l + k − i (3)

In particular Lemma 3.8 implies that

| J2m |= Qm
m.

Lemma 3.9. Qi
k =

∑k
j=max(k−i+1,0)(j + 1)Qi−1

k−j, for k 6 i, Qi
0 = 1.

Proof:

1. Let W i
k be the set of all sequences of length 2i which sum to k and satisfy Inequalities 2

and 3. Thus by the definition of Qi
k we have |W i

k| = Qi
k.

2. Let X = (q1, q2, . . . , q2i) ∈ W i
k where q1 + q2i = j0 and k − i + 1 6 j0. We will show that

this implies that X ′ = (q2, . . . , q2i−1) ∈W i−1
k−j0 .

X is of length 2i⇒ X ′ is of length 2i− 2 = 2(i− 1).∑2i
j=1 qj = k ⇒

∑2i−1
j=2 qj = k − j0; qj ≤ i + 1 − j for j ≤ i ⇒ qj ≤ (i − 1) + 1 − (j − 1)
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for j − 1 ≤ i − 1. Similarly qj ≤ (j − 1) + 1 − (i − 1) for j − i > i − 1 so qj = q′j−1 for
2 ≤ j ≤ 2i− 1. Thus the entries of X ′ satisfy Inequality (2).
Now we must show that the sequence X ′ also satisfies Inequality (3).
We have

l∑
j=1

qj +

2i∑
j=2i−l+1

qj ≥ l + k − i⇒
l∑

j=2

qj +

2i−1∑
j=2i−l+1

qj + q1 + q2i ≥ l + k − i.

Using q1 + q2i = j0, we have

l∑
j=2

qj +

2i−1∑
j=2i−l+1

qj ≥ l + (k − j0)− i.

Letting j′ = j − 1 then we have

l−1∑
j′=1

q′j +

2i−2∑
j′=2i−l

q′j ≥ l + (k − j0)− i.

Since q′j ≥ 0 for any value of j′, we have

l∑
j′=1

q′j ≥
l−1∑
j′=1

q′j

and
2i−2∑

j′=2i−l+1

q′j ≥
2i−2∑

j′=2i−l

q′j ⇒
l∑

j′=1

q′j +

2i−1∑
j′=2i−l+1

q′j ≥ l + (k − j0)− i

which means that Condition (3) holds.
Thus we have that X ′ ∈W i−1

k−j0 .

3. We now show the reverse implication to the above, namely that if X = (q2, . . . , q2i−1) ∈
W i−1

k−j0 , q1 + q2i = j0 and k − i+ 1 6 j0 then X ′ = (q1, q2, . . . , q2i−1, q2i) ∈W i
k .

It is clear that X ′ is of length 2i and
∑2i

j=1 qj = k. For 2 6 j 6 i, qj ∈ W i−1
k−j0 satisfies

qj ≤ (i−1)+1− (j−1) = j+1− j and i < j 6 2i−1 satisfies qj ≤ (j−1)− (i−1) = j− i.
Since we also have q1, q2i 6 i then all of the entries of X ′ satisfy Inequality (2).
Now we must show that the sequence X ′ also satisfies Inequality (3).
For l = 1, we have q1 + q2i = j0 ≥ k − i+ 1.
For 2 6 l 6 i we have:

l∑
j=1

qj +

2i∑
j=2i−l+1

qj =

l∑
j=2

qj +

2i−1∑
j=2i−l+1

qj +(q1 + q2i) ≥ ((l−1)+(k− j0)− (i−1))+ j0 = l+k− i

which means that Condition (3) holds.
4. Let X = (q2, q3, . . . , q2i−1) ∈W i−1

k−j0 . and X ′ = (q1, q2 . . . , q2i) ∈W i
k.

Since q1 + q2i = j0, q1 ≥ 0, q2i ≥ 0 and j0 ≤ k ≤ i then we have j0 +1 ways to transform
X to X ′. Thus all sequences of W i−1

k−j0 can be transformed into a sequence of W i
k in j0 + 1

unique ways.
5. Finally we note that no two sequences in W i−1

k−j or two sequences one each from W i−1
k−j1 and

W i−1
k−j2 can generate the same sequence in W i

k.
If x1 and x2 are two such distinct elements then they differ in at least one position, so then
any supersequence of them must also differ similarly.

We shall solve the recurrence relation in Lemma 3.9 to get a solution for | J2m |. We note that
from the above we have a way of identifying all of its elements (any sequence with deviations
satisfying Lemma 3.8.

Theorem 3.10. We have the following formulae:

Qi
k =

(
2i+ k + 1

k

)
− 2

(
2i+ k + 1

k − 1

)
. (4)
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From Equation (4) and | J2m |= Qm
m we will have:

|J2m| =
(

3m+ 1

m

)
− 2

(
3m+ 1

m− 1

)
. (5)

Proof:

Qi
k =

k∑
j=0

(j + 1)Qi−1
k−j ⇒

Qi
k−1 =

k∑
j=0

(j + 1)Qi−1
(k−1)−j ⇒

Qi
k −Qi

k−1 =

k∑
j=0

(j + 1)Qi−1
k−j −

k∑
j=0

(j + 1)Qi−1
(k−1)−j =

k∑
j=0

Qi−1
j ⇒

(Qi
k −Qi

k−1)− (Qi
k−1 −Qi

k−2) = Qi−1
k ⇒

Qi
k − 2Qi

k−1 +Qi
k−2 = Qi−1

k . (6)

This is a standard second order recurrence relation (for i = 1) which has the solution: an =
ahn + apn, where an = ahn is the solution for the homogeneous case and apn is a particular solution.
Firstly: we will find the solution for the homogeneous case ahn which is given usingm2−2m+1 = 0.
Solving this equation we get a double root where m = 1, thus the general solution has the form
Aik +Bi.
Secondly: we will consider a particular solution (for simplicity of final form, we shall actually

consider the summation of two parts) apn. We will first check

Qi
k =

(
2i+ k + 1

k

)
, (7)

by substituting into Equation (6). Thus(
2i+ k + 1

k

)
− 2

(
2i+ (k − 1) + 1

k − 1

)
+

(
2i+ (k − 2) + 1

k − 2

)
=

(2i+ k + 1)!

k!(2i+ 1)!
− 2

(2i+ k)!

(k − 1)!(2i+ 1)!
+

(2i+ k − 1)!

(k − 2)!(2i+ 1)!

=
(2i+ k − 1)!

k!(2i+ 1)!
[(2i+ k + 1)(2i+ k)− 2k(2i+ k) + k(k − 1)]

=
(2i+ k − 1)!

k!(2i+ 1)!
=

(
2i+ k − 1

k

)
= Qi−1

k ,

as required. Similarly, checking a second term

Qi
k =

(
2i+ k + 1

k − 1

)
(8)

it is easy to see that Equation (6) is also satisfied as required. We will consider the expression
in (7) minus twice that in (8) as our particular solution.
Thus our solution will have the form

Qi
k = Aik +Bi +

(
2i+ k + 1

k

)
− 2

(
2i+ k + 1

k − 1

)
.

Now we will find the values of Ai and Bi:
Qi

1 = 2i⇒ Ai = 0 and we have Qi
0 = 1⇒ Bi +1+0 = 1⇒ Bi = 0. We thus have the expression

from Equation (4) as required, and the theorem follows directly from this. �.

Example 3.11. We have the size of the minimal set given by:

|J2m| =
(

3m+ 1

m

)
− 2

(
3m+ 1

m− 1

)
.
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For m = 1 we will have |J2| =
(
4
1

)
− 2
(
4
0

)
= 4− 2 = 2.

For m = 2 we will have |J4| =
(
7
2

)
− 2
(
7
1

)
= 21− 14 = 7...etc, see Table 1 where we give further

results for the size of the arithmetic sequences.

It is worth recalling that, in the arithmetic sequence we have |J2m+1| = |J2m| as we can obtain
any sequence of J2m+1 from the corresponding sequence of J2m by adding a node with target m
in the middle of the 2m element sequence then adding one to all higher target nodes (as shown
in [7]), see for example Table 1 where |J3| = |J2| and |J5| = |J4| etc.
Using Stirling’s approximation formula

n! ≈
√

2πn
(n
e

)n
,

we can investigate the asymptotic behaviour of the above sequence.(
3m+ 1

m

)
− 2

(
3m+ 1

m− 1

)
=

(3m+ 1)!2

(2m+ 2)!m!
≈

2e√
2π

√
3m+ 1

m(2m+ 2)
exp{(3m+ 1) ln(3m+ 1)−m lnm− (2m+ 2) ln(2m+ 2)}.

The exponent term is clearly the dominant one, and for large m this term is approximated by
2m ln(3

√
3/2), and so ln |J2m| ≈ 2m ln(3

√
3/2).

Thus for even n we have an expression for the size of the minimal set for a particular class
of target sequence, and so we know that the largest minimal set must increase at least at rate
exp(n ln(3

√
3/2)) or 2.598n. We can see a comparison between the natural logarithm of the

precise values of the minimal set formulae from Equation (5) and the above approximation in
Table 2.

|J2m| =
(
3m+1

m

)
− 2
(
3m+1
m−1

)
ln |J2m| ln |J2m| ≈ 2m ln(3

√
3/2) % error

|J2| = 2 ln |J2| = 0.70 ln|J2| ≈ 1.90 171.4
|J4| = 7 ln |J4| = 1.95 ln |J4| ≈ 3.82 95.9
|J8| = 143 ln |J8| = 4.96 ln |J8| ≈ 7.64 54.0
|J14| = 21318 ln |J14| = 9.97 ln|J14| ≈ 13.37 34.1
|J18| = 690690 ln |J18| = 13.45 ln |J18| ≈ 17.19 27.8

|J100| = 5.90065579 ∗ 1038 ln|J100| = 89.27 ln|J100| ≈ 95.48 7.0

Table 2. In this table we show the size of the minimal set, its logarithm and
the corresponding term from the approximation from above. We see here that
whilst this approximation is poor as expected for small m, the relative error
(third column minus second column, divided by second column) decreases with
m, i.e. the larger m, the more accurate value we will get from the approximation
formula we gave.

3.3. The all or nothing sequence. Here we will consider the all or nothing sequence {(n −
1)m1 , 0m2} that we defined in Definition 2.5 and we considered in Section 3.1. For example the
sequences in Table 3 are those of this type, where the number of n−1 and 0 target vertices are in
equal number for even n, and there is one more n− 1 target for odd n. These are the sequences
which yield the maximum score from Theorem 3.1. Using the Matlab program described in
Section 3.1 we obtain the following sequence of sizes of the minimal set: 2, 3, 7, 13, 34, 36, 221,
557......(1) We know from the proof of Theorem 3.1 that in the minimal set all the nodes with
target 0 are split from each other and all nodes with target (n− 1) are connected to each other,
and then any combination of links between nodes with target n − 1 and nodes with target 0 is
in the minimal set. This can be represented as an m1×m2 matrix with a 1 if there is a link and
zero otherwise. The row-sums and column-sums of this matrix then have a 1-1 correspondence
with the sequences of the minimal set. For any collection of row-sums and column-sums, adding
m1−1 to the row sums and listing them in decreasing order, followed by listing the column sums
in decreasing order, gives the equivalent sequence in the minimal set. The problem of finding
the size of the minimal set for this class of target corresponds precisely to finding the number
of distinct sets of row sums and column sums for matrices where all entries are 0 and 1. This
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Sequence minimal set size
{ 1, 0 } 2
{ 2, 2, 0 } 3
{ 3, 3, 0, 0 } 7
{ 4, 4, 4, 0, 0 } 13
{5, 5, 5, 0, 0, 0 } 34
{ 6, 6, 6, 6, 0, 0, 0 } 76
{ 7, 7, 7, 7, 0, 0, 0, 0 } 221
{ 8, 8, 8, 8, 8, 0, 0, 0, 0 } 557

Table 3. The sequences and minimal set sizes for the maximal score sequences
for n = 2, . . . , 9.

problem was considered in [9], and is addressed in the on-line encyclopedia of integer sequences
[31] as sequence number A029894 (strictly speaking the above sequence 2, 3, 7, 34, . . . is sequence
A327913, and A327913 is given in tabular form as it is two-dimensional). [31] gives the following
formulae, which we use to generate Table 4 of minimal set sizes (an extended version of the Table
shown in (A327913) T (m1,m2) for sequence {(n − 1)m1 , 0m2} using a Matlab program. where
the function F satisfies the following iterative formula:

F (b, c, t, w) =

b∑
i=0

min(t+i,c)∑
j=d(t+i)/we

F (i, j, t+ i, w − 1) w > 0,

where F (b, c, 0, 0) = 1, F (b, c, t, 0) = 0, t > 0. For example:
T (2, 2) = F (2, 2, 0, 2) = F1, 1, 0, 1) + F (2, 1, 1, 1) + F (2, 2, 0, 1) = F (0, 0, 0, 0) + F (0, 0, 0, 0) +
F (1, 1, 0, 0) + F (0, 1, 0, 0) + F (0, 0, 0, 0) + F (1, 1, 0, 0) + F (2, 2, 0, 0) = 7. Note that T(1,1)=2,

m1/m2 0 1 2 3 4 5 6 7 8
0 1 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 9
2 1 3 7 13 22 34 50 70 95
3 1 4 13 34 76 152 280 482 787
4 1 5 22 76 221 557 1264 2630 5108
5 1 6 34 152 557 1736 4766 11812 26930
6 1 7 50 280 1264 4766 15584 45356 119999
7 1 8 70 482 2630 11812 45356 153228 465673
8 1 9 95 787 5108 26930 119999 465673 1611189
9 1 10 125 1230 9362 57270 293089 1294838 5060227

Table 4. The values of the minimal set for the all or nothing sequences with
m1 “all” vertices and m2 “nothing” vertices.

T(2,1)=3, T(2,2)=7, T(3,2)=13, T(3,3)=34, T(4,3)=76, T(4,4)= 221, T(5,4)=557 are the first
entries in the leading diagonal, and its neighbour, from Table 4, which are of course the same
values of the minimal sets size of the sequences as given in Table 3.
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ln|J2m| of the AoN ln|J2m| of the Ar ln |J2m| ≈ 2m ln(3
√

3/2)
ln |J8| = 5.4 ln |J8| ≈ 4.9 ln|J8| ≈ 7.64
ln|J10| = 7.5 ln |J10| ≈ 6.6 ln |J10| ≈ 9.55
ln|J12| = 9.7 ln |J12| ≈ 8.3 ln |J12| ≈ 11.46

ln |J14| = 11.9 ln |J14| ≈ 10 ln |J14| ≈ 13.67
ln|J16| = 14.3 ln |J16| ≈ 11.7 ln |J16| ≈ 15.28

Table 5. Here we show the logarithm of the size of the minimal sets for the all
or nothing and arithmetic sequences.

ln|J2m| of the AoN sequence ln|J2m| of the Arithmetic sequence
ln |J2| ≈ 0.7 ln |J2| ≈ 0.7
ln |J4| ≈ 1.9 ln |J4| ≈ 1.9
ln |J6| ≈ 3.5 ln |J6| ≈ 3.4
ln |J8| ≈ 5.4 ln |J8| ≈ 4.9
ln|J10| ≈ 7.5 ln |J10| ≈ 6.6
ln|J12| ≈ 9.7 ln |J12| ≈ 8.3

ln |J14| ≈ 11.9 ln |J14| ≈ 10
ln|J16| ≈ 14.3 ln |J16| ≈ 11.7

Table 6. The values of the minimal set for the all or nothing sequences with
m1 “all” vertices and m2 “nothing” vertices.

From Table 6 we can see that for small numbers of individuals the (largest) minimal set for
the all or nothing sequence is larger than for the arithmetic sequence, and that the gap is
increasing. We know from the approximation at the end of Section 3.2 that the logarithm of the
arithmetic sequence has a leading term that is of order n, though a more careful examination
of the approximation shows that it is not a purely linear function, as it involves a term in the
logarithm of n too.
In Figure 3 we can see that the logarithm of the arithmetic sequence gradually increases in
slope, approaching its limiting term, and we can see that it appears that the logarithm of the
(dominant) all or nothing sequence does the same. Thus we can conjecture that it also has a
leading term that is of order one. We have fitted a line to each of these data sets for illustration
for the lowest values of n (distinct lines for odd and even n in each case) for illustration. In
general the all or nothing sequence appears to increase approximately linearly at a faster rate
than the arithmetic sequence, indeed the slope in Figure 3 is already steeper than the limiting
case for the arithmetic sequence, and so it appears that the all or nothing sequence has a larger
minimal set than the arithmetic one in general.

4. The Game-Theoretical Model and the Minimal set. In this section we consider the
game-theoretical model first introduced in [7] and examine whether consideration of the minimal
set is enough to investigate the optimal behaviour, a previously open question. We show below
with a simple example that it is not, but first we need to define the game. In order to do this,
we need to define the underlying Markov chain which governs how links are formed and broken.
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Figure 3. In this figure we considered two types of sequences; the all or noth-
ing and the arithmetic sequences, and fitted two lines for each; one for the even
values and the other for the odd terms of the sequence.
Line 1:represented by � ...... refers to the even terms of the all or nothing se-
quences, Y = 0.9875x− 2.025.
Line 2: represented by ♦ refers to the odd terms of the all or nothing
sequences, Y = 1.0357x− 2.6071.
Line 3: represented by N refers to the even terms of the arithmetic se-
quences, Y = 0.7935x− 1.1786.
Line 4: represented by • refers to the odd terms of the arithmetic se-
quences, Y = 0.7935x− 0.3851.

4.1. The Markov Chain Model: In Section 1.2 we denoted the set of links by the matrix X,
where xij = xji = 1 if Ii and Ij are linked, and xij = xji = 0 otherwise. A sequence of moves
occurs, where a random individual is selected to potentially update their set of links. Each move
starts with an individual being selected to do the update at random (i.e. with probability 1/n).
It has n distinct (pure) choices, i.e. it can change any given edge (remove if present or add if
absent) with any of the other n− 1 individuals, or to make no change.
As in [7, 10], we denote the probability that individual i chooses to change edge xij , conditional

on it being selected to be the updating individual, by uij , with uii representing the probability
of no change. Given that there are n individuals that could be chosen, the strategies for any
situation can be written as an n×n matrix U, where all row sums equal 1. Our strategy matrix
U depends upon the current state X, and so the full set of strategies is denoted by UX. For an
x∗ which differs from x at a single position (xij = 0, x∗ij = 1 or xij = 1, x∗ij = 0) for a specific
i, j,

P (Xt+1 = x∗|Xt = x) =
uij(X) + uji(X)

n
.

Ii will have a number of edges eit to other individuals, so that the above process generates
an evolving sequence et = (e1t, e2t, e3t, .....ent). In particular in [5] a model where there were
no strategy choices except to always try to improve the deviation for any given individual was
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introduced. Thus any individual below (above) target added (removed) a link, selecting out of
the available choices with equal probability.
For the case xij = 0, x∗ij = 1 this led to

P (Xt+1 = x∗|Xt = x) =


1
n

1
n−1−ui

+ 1
n

1
n−1−uj

ui < ti, uj < tj
1
n

1
n−1−ui

ui < ti, uj ≥ tj
1
n

1
n−1−uj

ui ≥ ti, uj < tj

0 ui ≥ ti, uj ≥ tj

and for the case xij = 1, x∗ij = 0

P (Xt+1 = x∗|Xt = x) =


1
n

1
ui

+ 1
n

1
uj

ui > ti, uj > tj
1
n

1
ui

ui > ti, uj ≤ tj
1
n

1
uj

ui ≤ ti, uj > tj

0 ui ≤ ti, uj ≤ tj

4.1.1. The Game. UX denotes the set of strategies for all situations. If following these strategies
leads to a unique stationary distribution over the states x (this will happen if there is always
some non-zero probability of any transition in the minimal set, but does not happen in general,
as shown in [7]; in particular it happens for the game we are interested in below) which we can
denote by π(X), then the payoff to individual i can be written as follows:

Ri(UX) = −
∑
X

εi(X)π(X), (9)

where εi(X) is the deviation of Ii in state X. Individuals can try to improve their payoffs by
changing their strategy. We only allow local changes, where individual i changes the ith row
of UX for a single X only (as opposed to global changes, where Ii is able to change the ith
row of UX for any number of states simultaneously). Considering all possible changes by any
single individual, a strategy set is a Nash equilibrium under if, under all allowable changes by
i : UX → Ui

X

Ri(U) ≥ Ri(U
i) i = 1, . . . , n.

4.2. Example showing that leaving the minimal set can be optimal. Suppose that we
have n individuals, one of them I1 with target n − 2 and the others with target zero, i.e we
have the target sequence:{n−2, 0, 0, ....., 0}. We assume that all individuals with target zero will
always break links when they have the opportunity (this is clearly beneficial as then they will
be on target almost all of the time and have a maximum of a single link otherwise). Similarly
individual I1 with target n− 2 would always form links when it is below its target of n− 2 (this
individual will almost always be below target as whilst it must be selected to add any links, all
of its potential partners will break such links when they are selected) and may/may not add the
final link if it has the opportunity to do so whilst connected to n− 2 individuals. We will show
that in this game it is sometimes optimal to leave the minimal set, in particular that I1 should
form a link when already on target.
Consider the states S0, S1, . . . , Sn−1, all of them involving no links between individuals with

target zero, where in state Sk I1 has links to precisely k other individuals. Given all have target
0 and will break their one possible link (with I1) when they have the chance, it does not matter
which of the k individuals I1 is connected to, and so we represented this by a single state.
Assume that if I1 is selected in Sn−2, then it will choose to form the final link with probability
p, and that if I1 is selected in Sn−1 then it will choose to break a link with probability q (and
again it does not matter which is selected in this particular game). The transition matrix P for
this Markov process is given in Matrix (10) and can be used to find the stationary distribution,
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π0, π1, π2, ......., πn−1 where and 0 ≤ p ≤ 1 , 0 ≤ q ≤ 1:

P =



(n− 1)/n 1/n 0 . . . 0
1/n (n− 2)/n 1/n . . . 0
0 2/n (n− 3)/n 1/n . . 0
0 0 3/n n− 4/n 1/n . 0
. . . . . . .
. . . . . . .
0 . . n− 3/n 2/n 1/n 0
0 . . . (n− 2)/n (2− p)/n p/n
0 . . . 0 (n− 1 + q)/n (1− q)/n


.

(10)
The payoff R(p, q) to I1 for this game with n individuals is given by the formula:

R(p, q) = −
n−1∑
i=0

πi|i− (n− 2)| = −
n−2∑
i=0

πi(n− 2− i).

1. To find the stationary distribution π we have π = π∗P , which yields the following equations:

π0 =
n− 1

n
π0 +

1

n
π1 ⇒ π0 = π1,

π1 =
1

n
π0 +

n− 2

n
π1 +

2

n
π2 ⇒ π2 =

1

2!
π0.

For m ≤ n− 2 we have:

πm−1 =
1

n
πm−2 +

n−m
n

πm−1 +
n

m
πm ⇒ mπm−1 = πm−2 +mπm. (11)

Let us assume that

πk =
1

k!
π0. (12)

Substituting Equation (12) into Equation (11) we obtain

m

(m− 1)!
π0 =

1

(m− 2)!
π0 +mπm =⇒ πm =

1

m!
π0.

Thus, since π1 = π0, we have that πm = π0/m! for m < n − 1. We will now find πn−1
which depends upon p, q and π0 as follows:

πn−2 =
1

n
πn−3 +

2− p
n

πn−2 +
n− 1 + q

n
πn−1 ⇒

n− 2 + p

n
πn−2 =

1

n(n− 3)!
π0 +

n− 1 + q

n
πn−1 ⇒

πn−1 =
p

n− 1 + q

π0
(n− 2)!

.

To find the value of π0 we have
∑n−1

m=0 πm = 1⇒

π0 =
1∑n−2

m=0
1
m! + p

n−1+q (n− 2)!
.

2. We now proceed to find the payoff of individual I1 by applying the following formula for
the payoff following Equation (9):

R(p, q) = −
n−1∑
m=0

πm|m− (n− 2)| = −
n−3∑
m=0

πm(n− 2−m).

Thus

R(p, q) = −

[
n−2∑
m=0

(n−m− 2)
1

m!
+

p

(n− 1 + q)(n− 2)!

]
π0 ⇒
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R(p, q) = −
(n− 2)

∑n−3
m=0 1/m! +

∑n−3
m=1 1/(m− 1)! + p/(n− 1 + q)(n− 2)!∑n−2

m=0 1/m! + p/((n− 1 + q)(n− 2)!
. (13)

Denoting Sx =
∑x

m=0 1/m! and r = p/(n− 1 + q) in (13) we obtain:

R(p, q) = − (n− 2)Sn−3 + Sn−4 + r

Sn−2 + r
(14)

Finding the derivative of Equation (14) with respect to r we obtain

dR(p, q)

dr
=
−Sn−2 + (n− 2)Sn−3 + Sn−4

(Sn−2 + r)2
(15)

Now we will discuss the sign of the numerator of Equation (15), which we shall denote by
On. We have On = −Sn−2 + (n − 2)Sn−3 + Sn−4. Recalling that Sx =

∑x
m=0 1/m!, we have

S0 = 1, S1 = 2, S2 = 2.5, S3 = 2.6, . . ., which leads to the following terms for On; O2 = −1, O3 =
−1, O4 = 2.5, O5 = 6.9, . . .. In general On is positive for all larger values of n. We have that
dR/dr < 0 when n < 4 and dR/dr > 0 when n ≥ 4. From the definition of r it is clear that r
is maximised (r = 1) when p = 1, q = 0 and minimised (r = 0) when p = 0 and q can take any
value. Thus r = 1, and so p = 1, is the optimal strategy whenever n ≥ 4 and we thus have that
I1 should take the extra link when it has the chance, which leads to the minimal set being left,
whenever n ≥ 4.

5. Discussion. In this paper we have further developed the model of conflicting individual
preference introduced in [5]. In this model each individual is assigned to a vertex in a graph, with
relations between these individuals represented by the set of edges between the vertices. Every
individual has a specific target number of links they would like to form with their neighbours.
The composition of the population does not change, but the relations between the individuals
vary over time following a dynamic process, the transition probabilities of which are governed
by strategic choices of the individuals, as introduced in [7].
An important concept of these models is that of the minimal set (of graphs or their associated

sequences), where collectively the total population deviation, a measure of how far they are from
satisfying all individuals’ objectives, is satisfied. Up to now only some general properties of
these were known, and the core focus of the paper was to consider this in more precise detail.
In particular we found a general formula to find the size of the minimal set, and its precise
composition, for the arithmetic sequence. We also discovered a recurrence relation for the size
of the minimal set for the all or nothing sequence, by showing its equivalence to an existing
problem.
In general these are not the largest minimal sets, and we have also investigated all minimal

sets for a small number of vertices. There are also interesting questions to be examined, even
for these sequences, e.g. in the long run will the minimal set of the arithmetic or all or nothing
sequence be the larger (there is support for this being the latter)?
We considered the game theoretical model developed in [7] where the question of whether it is

never optimal to leave the minimal set (and so considering games only on the minimal set was in
some way sufficient) was left open. In Section 4 we have shown a counter-example where leaving
the minimal set is an optimal strategy for one of the players, thus considering the minimal set is
not always sufficient to solve the game. The study of social networks and their role in shaping
human activities has been a subject of increasing interest in recent years. A good review of work
on how networks influence social and economic activity as well as how they can be modelled and
analysed (up to the time of its publication) is provided in [22]. There is hope that using such
methods will lead to a better understanding of the patterns of human interactions, and will open
the door for future applications. Jackson and Wolinsky [23] studied a case closely related to ours,
where individuals’ payoffs depend upon the network, taking into consideration the incentive for
individuals to form networks.
In their model self-interested individuals could break links unilaterally, although the formation

of links required the consent of both individuals. Thus the detailed analysis was rather different
to ours, and they concentrated on proving general results under these assumptions. The key
aspects that we consider in this paper do align well with their ideas, however. Firstly for our
game, minus the graph deviation is the value as they define it, and similarly the minimal set is
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precisely the set of graphs which they call strongly efficient. We note that we have no stable
states under their definition, unless the sequence is graphic.
There are a number of potential ways to develop this work in the future. Perhaps an individual

prefers to connect with some individuals over others, so that some links will be preferable to
others, so called “transitivity preferences”. Another interesting possibility is to only allow certain
links to be formed or indeed force certain links to be formed (there may be people you cannot
interact with, or have to interact with even if you would prefer not to). We may have a spatially
distributed population and individuals may only be able to form links with their close neighbours.
Alternatively, we might consider different link formation/ breaking rules. In our current work

the selected individual can form or break a link without the receiving individual having any say
in this. What if links could only be added or broken with the permission of the receiver, or if
any individual can break a link but both participants must agree to form one,as in [23]? Work
on the former case is in its early stages.
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[36] György Szabó and Gabor Fath. Evolutionary games on graphs. Physics reports, 446(4-6):97–216, 2007.

[37] Christine Taylor, Drew Fudenberg, Akira Sasaki, and Martin A Nowak. Evolutionary game dynamics in finite

populations. Bulletin of mathematical biology, 66(6):1621–1644, 2004.
[38] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle River, NJ,

1996.

23


	1. Introduction
	1.1. General evolving models
	1.2. A dynamic network population model
	1.3. Paper outline

	2. The Model
	2.1. Graphic Sequences 
	2.2. What is a graphical sequence?
	2.3. Properties of the minimal set

	3. The size of the minimal set
	3.1. The largest minimal set
	3.2. The minimal set for the arithmetic sequence
	3.3. The all or nothing sequence

	4. The Game-Theoretical Model and the Minimal set
	4.1. The Markov Chain Model:
	4.2. Example showing that leaving the minimal set can be optimal

	5. Discussion
	REFERENCES



