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Abstract: Three-dimensional (3D) local feature detection and description techniques are widely used for object registration and
recognition applications. Although several evaluations of 3D local feature detection and description methods have already been
published, these are constrained in a single dimensional scheme, i.e. either 3D or 2D methods that are applied onto multiple
projections of the 3D data. However, cross-dimensional (mixed 2D and 3D) feature detection and description are yet to be
investigated. Here, the authors evaluated the performance of both single and cross-dimensional feature detection and
description methods on several 3D data sets and demonstrated the superiority of cross-dimensional over single-dimensional
schemes.

1Introduction
Local features in three-dimensional (3D) data have been widely
investigated to improve the distinctiveness and robustness of local
feature (keypoint) detection and description methods. Given the
importance of these methods for 3D data registration and
classification applications, it is necessary to evaluate keypoint
detectors and feature descriptors. Most such evaluations have been
presented in the context of reports comparing current methods to
newly proposed techniques, although some studies dedicated to the
evaluation of 3D keypoint detectors or feature descriptors have also
been published [1]. However, such evaluations have been limited
to a single domain, with 3D methods applied directly to 3D data
[2–5], or 2D methods applied to multiple 2D projections of 3D data
[6, 7].

Examples of the direct 3D approach include the evaluation of
several 3D keypoint detectors by comparing the robustness of each
technique to rotation, scaling and translation [8], an evaluation
focusing on the optimum combination of 3D keypoint detection
and feature description [9], and a complete and thorough
evaluation of 3D keypoint detectors, with further limited evaluation
carried out of selected 3D descriptors [1]. The most comprehensive
studies of 3D feature descriptors reported thus far also included
work involving a selection of 3D keypoint detectors [2, 8, 10].
These latter reports represent the most comprehensive evaluations
of 3D keypoint detection [1] and description methods [2, 10]
published thus far.

In an example of the indirect approach (2D schemes applied to
3D data, where the 3D data are presented in a 2D range image
form), state-of-the-art 2D descriptors have been evaluated via
several transformations of the initial 2D range image, including
maximum curvature, mean curvature and shape index (ShI) [11].
The authors found that scale-invariant feature transform (SIFT)
[12] achieved the best performance in terms of facial recognition,
whereas fast retina keypoint (FREAK) [13] achieved the best trade-
off between performance and speed. The evaluation of 2D methods
on projections of 3D data in point cloud form has also been
attempted, but only in the context of comparing current methods to
newly proposed techniques [7].

Currently, the performance of 2D and 3D schemes has been
evaluated independently without cross-dimensional keypoint
detection and feature description or the direct comparison of pure
3D and 2D schemes. Cross-dimensional evaluation has not been
attempted yet and refers to challenging both 2D and 3D local

keypoint detection and feature description methods against 3D data
using a cross-dimensional approach. Currently, the comparison of
3D and 2D schemes has been superficially addressed in the context
of comparing a proposed technique against 3D methods [14].
Hence, driven by the absence of such comparisons, we therefore
evaluated both single and cross-dimensional keypoint detection and
feature description, i.e. 2D–2D, 3D–3D, 2D–3D and 3D–2D
keypoint detection and feature description data domain
combinations, on several 3D point cloud data sets varying in
content and complexity. The aim of the study was to identify
potential cross-modality combinations that exploit the advantages
of both 2D and 3D methods in terms of robustness and
computational efficiency, with performance and computational
requirements given equal priority. It should be noted that despite
single-modality keypoint detection and feature description on pure
3D and 2D data (not originating from projections) has already been
presented in [2, 15–17], to make a direct comparison between
single and cross-modality comparison feasible, it is necessary to re-
evaluate these keypoint detection and feature description methods
on the same data set used in this paper.

The contributions of this study, which is a thorough expansion
of our pre-print [18], can be summarised to

(i) We extend the evaluation of current keypoint detection and
feature description methods on 3D point cloud data by exceeding
the typical single data modality constraint (either 2D or 3D
methods) and adopt a novel cross-dimensional (mixed 2D and 3D)
scheme. This cross-modality evaluation has not yet been presented
in the current literature.
(ii) Our novel cross-dimensional evaluation demonstrates that 2D
keypoint detectors present higher repeatability rates, are more
robust to nuisances such as resolution variation and noise and are
faster to compute compared to their 3D counterparts.
(iii) Regarding the optimum keypoint detector and feature
descriptor combination, our cross-dimensional evaluation scheme
revealed that overall a multi-dimensional solution combining the
3D keypoint detector intrinsic shape signatures (ISSs) or uniform
subsampling, with the 2D feature descriptor named speeded-up
robust features (SURFs), are the optimum combinations
incorporating the advantages of each individual data modality and
affording high quality correspondences at a low computational
cost. Additionally, our trials demonstrated that overall a cross-
dimensional 3D keypoint detection and 2D feature description
combination is more appealing than a typical single dimensional
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3D solution affording twice the performance and a 54×
computational speedup.

The remainder of the article is organised as follows: Section 2
presents the 2D and 3D keypoint detectors and feature descriptors
that were evaluated. Section 3 presents the experimental setup and
Section 4 evaluates the 2D and 3D techniques in single and cross-
dimensional schemes. Our conclusions are presented in Section 5.

22D/3D keypoint detection and feature
description methods
2.1 Keypoint detectors

Keypoint detectors analyse the structure around a vertex or a pixel
depending on the data domain (3D or 2D, respectively) and classify
as keypoints the vertices/pixels that fulfil some specific criteria that
are dependent on the detector itself. Ideally, keypoints are
prominent among their surroundings, have unique features, and can
be redetected even if the object to which they belong is distorted or
corrupted.

2.1.1 2D detectors: Harris: Harris is a fixed scale corner detector
[19], which relies on an autocorrelation function that captures the
intensity variations of an image I in a neighbourhood window Q
centred at pixel p(x, y)

E(x, y) = ∑
Q

w(u, v) I(u + x, v + y) − I(u, v) 2

(1)

where (x, y) are the pixel coordinates in I and w(u, v) is the window
patch at position (u, v). Using Taylor's approximation, Harris
rearranges (1) as follows:

E(x, y) = x y M
x

y
(2)

M =
∑Q

Iu
2 ∑Q

IuIv

∑Q
IuIv ∑Q

Iv
2

(3)

where Iu, Iv represent the spatial gradients of the image.
The shape of Q is classified based on the eigenvalues Ȝ1 and Ȝ2

of M. Specifically, if both values are small, E also has a small value
and Q has an approximately constant intensity. If both are large, E
has a sharp peak indicating that Q includes a corner, and if Ȝ1>Ȝ2
then Q includes an edge. To measure the corner or edge quality,
Harris introduced metric R

R(x, y) = det M − k ⋅ tr M = λ1λ2 − k λ1 + λ2 (4)

where k ∈ [0.04, . . , 0.15].
Good features to track (GFTT): Shi and Tomasi [20] extended

the robustness of the Harris corner detector by proposing that Q
encloses a corner if min (λ1, λ2) > λ, where λ is a predefined
threshold. GFTT, like Harris, is a fixed scale detector.

Difference of Gaussians (DoG): Lowe [12] proposed the SIFT
keypoint detection and description scheme. For the keypoint
detection part, Lowe detected local extrema in image I utilising a
DoG scheme aiming to reduce the overall processing burden during
keypoint detection.

For the DoG scheme, a pyramid of images is created to achieve
scale invariance by convolving I with Gaussian kernels at various
scales. The output of two sequential convolutions is subtracted
creating a new set of images, i.e. DoG images, in which pixels are
classified as candidate keypoints. Then the pixel value of each
candidate keypoint is compared with its eight neighbours in the
same scale, the nine pixels one scale above and the nine pixels one
scale below. If the pixel value of a candidate keypoint has the
highest value within its neighbourhood then it is labelled as a
keypoint. The latter comparison is the popular non-maxima
suppression process. Finally, the keypoint detection stage ends with

a refinement process to discard keypoints that have a low contrast
and that lie on edges. The former are discarded by applying a
texture threshold, whereas the latter are discarded by identifying
Harris keypoints [19]. DoG is an adaptive scale keypoint detector.

Fast Hessian (FH): a processing-efficient alternative to DoG is
the FH detector used as the keypoint detection part of the popular
SURFs algorithm [21]. In order to avoid convolution with second-
order derivatives, this technique approximates the Gaussian kernels
with their discretised version (i.e. box filters) that are computed
with a constant time cost by utilising the integral image concept
[22]. Like the DoG detector, candidate features are obtained after a
3 × 3 × 3 neighbourhood non-maximum suppression process.
Finally, candidate keypoints with a response R exceeding a pre-
defined threshold are preserved while the rest are discarded

R(x, y, σ) = Dxx(σ)Dyy(σ) − 0.9Dxy(σ)
2 (5)

where Dxx(σ), Dyy(σ) and Dxy(σ) are the outputs after convolving
the corresponding box filters of standard deviation σ with image I.
FH is an adaptive scale keypoint detector.

Features from accelerated segment test (FAST): FAST [23]
detects keypoints in an image I by placing around the pixel of
interest p a circle that has a circumference of 16 pixels. If Ip is the
pixel intensity at pixel p and thresh is the pre-defined threshold,
then p is labelled as a keypoint if N–contiguous pixels in the circle
are brighter than Ip + thresh or darker than Ip−thresh. FAST is a
fixed scale keypoint detector.

Binary robust invariant scalable keypoints (BRISK): the BRISK
technique [24] involves both a keypoint detection and a description
scheme. For the former, it uses the FAST [23] keypoint detector in
9–16 mask configuration, i.e. placing around the pixel of interest p
a circle that has a circumference of 16 pixels, and considering the
intensity of nine contiguous pixels within that circle. In BRISK, the
FAST technique is combined with maxima suppression applied in a
scale-space fashion using the FAST score as a measure of saliency.
However, in contrast to DoG and SURF, keypoints are sought
within a continuous scale-space by involving not only the true
octaves but also virtual intra-octave levels.

KAZE: KAZE [25] is similar to SURF in that it relies on the
response of a scale-normalised determinant of the Hessian at
multiple scale levels, but it involves a non-linear scale-space rather
than the linear scale-space used in SURF. KAZE is an adaptive
scale keypoint detector.

2.1.2 3D detectors: Intrinsic shape signatures: ISS [26] measures
the saliency of a point p(x, y, z) based on the eigenvalue
decomposition of the scatter matrix Σ(p) of the N vertices within
the support region (neighbourhood) V of p

Σ(p) =
1
N

∑
q ∈ V

q − μp q − μp
T

(6)

μp =
1
N

∑
q ∈ V

q (7)

ISS suggests that vertices fulfiling (8) are labelled as candidate
keypoints

λ2(p)
λ1(p)

< threshold1 ∧
λ3(p)
λ2(p)

< threshold2 (8)

where the Ȝ1, Ȝ2, Ȝ3 are the eigenvalues of Σ(p) in order of
decreasing magnitude. Finally, candidate keypoints with the
smallest eigenvalues and large variation along each principal
direction are labelled as ISS keypoints. ISS is a fixed scale
keypoint detector.

KeyPoint quality (KPQ): KPQ is a keypoint detector that ranks
candidate keypoints based on a quality metric [27]. Specifically, V
is aligned to the canonical reference frame given by the principal
directions, and then non-distinctive vertices are discarded by
thresholding the ratio between the maximum lengths along the first
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two principal axes. The remaining vertices p are labelled as
candidate keypoints, which are then evaluated for their saliency
ρ(p) with respect to a local sampling surface S that utilises a
uniform sampling grid and is fit to the remaining vertices within V

ρ(p) =
. 1000

N
2 ∑

q ∈ V

K(p) + max
q ∈ V

100K(p)

+ min
q ∈ V

100K(p) + max
q ∈ V

10k1 + min
q ∈ V

10k2

(9)

where K is the Gaussian curvature and k1, k2 are the principal
curvatures. Given that positive and negative curvature values are
equally descriptive, (9) considers absolute curvature values so that
positive and negative curvatures do not cancel each other. The
constant multiplicative terms are empirically chosen aiming at
giving the appropriate weight to each term [27]. Sensitivity to noise
and sampling is reduced by estimating k1 and k2 after the sampling
surface S is fitted to the vertices within V.

Vertices with a ρ(p) value exceeding a threshold and fulfiling
certain constraints are labelled as KPQ keypoints. These
constraints are (i) the minimum Euclidean distance between two
KPQ keypoints is greater than a certain threshold and (ii) that
within a support radius only one KPQ can exist. KPQ is a fixed
scale keypoint detector.

Harris 3D: although 2D and 3D Harris [19] are conceptually
similar, the modification required for extension to a 3D keypoint
detector involves substituting the image gradients in the covariance
matrix of (3) with the normal vector of the support region V
centred on vertex p(x, y, z) of the point cloud. Harris 3D is a fixed
scale keypoint detector.

Local surface patches (LSP): LSP [28] uses the ShI metric to
measure the saliency of vertex p(x, y, z). Vertices p that fulfil the
following constraint are considered as candidate LSP keypoints

ShI(p) ≥ (1 + a)μShI(p) ∨ ShI(p) ≤ (1 − β)μShI(p) (10)

where μShI(p) is the average ShI of the support region V and α, β are
user-defined thresholds. Candidate LSP keypoints then undergo a
non-maxima suppression process and the remaining vertices are
classified as LSP keypoints. LSP is a fixed scale keypoint detector.

Heat kernel signature (HKS): HKS [29] is a saliency metric
based on the restriction of the heat kernel to the temporal domain
that is computed on the mesh M of the point cloud. Vertex p(x, y, z)
is defined as an HKS keypoint if its saliency kt′ at time interval t′
fulfils the following constraint:

kt′(p, p) > kt′(q, q) (11)

where q is a vertex belonging to a two-ring neighbourhood of p and
kt′(p, q) is a function that represents the amount of heat transferred
from vertex p to q in time t′ given a unit heat source at vertex p.
Thus, kt′(p, q) is governed by the heat equation:

ΔMu(x, t) = −
∂u(x, t)

∂t
(12)

where ΔMu(x, t) is the Laplace-Beltrami operator defined on
manifold M. HKS is a fixed scale keypoint detector.

Laplace–Beltrami scale space (LBSS): Unnikrishnan and
Hebert [30] classify a vertex p(x, y, z) as a keypoint if its scale-
space saliency ρ(p, t) exceeds a certain threshold

ρ(p, t) =
2∥ p − A(p, t) ∥

t
e−2∥ p − A(p, t) ∥/t (13)

A(p, t) = p +
t

2

2
ΔM p (14)

where ΔM is the Laplace-Beltrami operator. In simpler terms, ρ(p,
t) can be considered as a displacement of p along its normal that is
proportional to the mean curvature. LBSS is an adaptive scale

keypoint detector and scale-space is implemented by increasing the
size of the support region V.

MeshDoG: MeshDoG [31] is a similar solution to LBSS but
scale-space is created using the DoG concept [12]. MeshDoG is
applied on a transformed representation of the point cloud, where
for the context of this paper we use the mean curvature [1]. The
scale-space saliency ρ(p, t) of a vertex p(x, y, z) is defined as

ρ(p, t) = CH
(t)(p) − CH

(t − 1)(p) (15)

CH
(t) = CH

(t − 1) × G(σ) (16)

where CH
(t) is the tth convolution of the mean curvature map CH

with the Gaussian kernel of zero mean and σ standard deviation.
MeshDoG is an adaptive scale keypoint detector.

Salient points (SPs): SP [32] is similar to MeshDoG [31] but is
directly applied to the vertex coordinates rather than a transformed
representation of the point cloud. SP is an adaptive scale keypoint
detector.

KPQ-AS: this is an extension of the KPQ technique [27] that
facilitates adaptive-scale keypoint detection. Scale-space is created
by increasing the support region V and scale selection is achieved
by performing non-maxima suppression.

2.2 Local feature descriptors

Local feature description techniques describe local patches around
a point of interest by encoding the properties of the local patch.
Ideally, feature descriptors describe each keypoint in a unique
manner and are robust to nuisance factors such as resolution
variation and noise.

2.2.1 2D descriptors: Scale-invariant feature transform: Lowe
[12] describes a keypoint detection method but also suggests a
feature description technique. The latter initially assigns to each
keypoint one or multiple orientations that are based on the local
gradient information. The magnitude and direction of the gradient
form an orientation histogram with 36 bins based on the
neighbourhood of the keypoint. The histogram is then weighted by
a Gaussian kernel that is placed around the keypoint and the peak
of the histogram corresponds to the orientation of the keypoint. In
the event this histogram has peaks of at least 80% of the main
peak, then additional descriptions of the same keypoint are created
that share the same scale but have different orientations.

The scale and orientation linked to each keypoint form a local
coordinate frame. Specifically, the descriptor is computed using the
gradient magnitude and orientations in a 16 × 16 window around
the keypoint (rotated according to orientation). These are stacked
in 8-bin histograms formed in 4 × 4 sub-regions and are weighted
by a Gaussian window.

Speeded-up robust feature: SURF [21] initially performs an
orientation assignment by computing Gaussian-weighted Haar
wavelet responses over a circular region with a radius six times the
scale where the keypoint is detected. Once an orientation is
assigned, the description process involves a square region (20 × 
scale) centred on the keypoint and oriented accordingly. This
region is further divided into 4 × 4 sub-regions and then vertical
and horizontal Haar-wavelet responses are computed, which are
weighted with a Gaussian kernel. This process is performed at
fixed sample points and is summed up in each sub-region. Finally,
the polarity of intensity changes is also calculated by summing the
absolute values of the horizontal and vertical responses. SURF
features of opposing polarity are not matched.

Binary robust invariant scalable keypoint: The BRISK method
[24] encodes keypoints using a handcrafted sampling pattern
comprising concentric circular patches centred at a keypoint.
Aliasing effects during sampling are avoided by applying local
Gaussian smoothing on the patch to be described, with a standard
deviation proportional to the distance between the circle centre and
the keypoint.

There are two types of sampling pairs (short and long pairs) that
depend on the distance between them. The long pairs have a
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distance greater than threshold dmin, and are used to compute the
local gradient (of the patch) that defines the orientation of the
feature. The short pairs with a distance less than threshold dmax are
then rotated accordingly to achieve rotation invariance and are used
to compute the binary BRISK descriptor via intensity tests.

Fast retina keypoint: FREAK [13] is a biologically inspired
binary keypoint descriptor that applies a series of intensity tests on
a patch that encloses the keypoint. FREAK and BRISK share the
same sampling pattern and use the same mechanism to estimate the
keypoint orientation. However, FREAK is influenced by the human
retinal system and exploits a circular sampling grid with sampling
points that are denser near the centre and become exponentially
less dense further away from the centre. The advantage of this
concept is that the test pairs naturally form a coarse-to-fine
approach. Feature matching is accelerated by comparing the coarse
part of the descriptor and if these exceed a threshold then the fine
part is tested.

KAZE: The keypoint description part of KAZE [25] is similar to
SURF but is properly adapted to facilitate a non-linear scale-space
framework.

For a recent review on 2D keypoint detectors and descriptors
the reader is referred to [16, 17].

2.2.2 3D descriptors: The 3D local feature description techniques
comprise a support volume V that in centred on a keypoint p(x, y,
z) by encoding the geometric properties and the underlying
structure of V [33]. Their major advantages include robust feature
description for partially visible objects [34] and lower
susceptibility to illumination variation and pose changes [35]. The
3D descriptors evaluated herein are described below. However,
because we attributed equal importance to performance and
processing efficiency, we did not evaluate 3D shape context [36]
and its extension the unique shape context [37] due to their high
computational burden.

Histogram of distances (HoDs)/HoD-short (HoD-S): HoD [38]
is a robust and processing-efficient 3D descriptor that calculates
the probability mass density of the normalised point-pair L2-norm
distance distributions within V. L2-norm distances are encoded in a
coarse and a fine manner by using different bin sizes during
distance quantisation. Finally, the two types of encodings are
concatenated in a single descriptor. This dual encoding scheme
enhances feature-matching performance in the presence of noise
and subsampling perturbations. HoD does not require a local
reference frame (LRF) or axis (LRA) and adapts the description
radius on the target point cloud resolution rather than the template,
which is the norm for a 3D descriptor. HoD-S [39, 40] is a compact
version of HoD that exploits only on the coarse part of HoD.

Signatures of histograms of orientations (SHOT): SHOT [41]
divides the support volume V into a number of sub-volumes along
the azimuth, the elevation and the radius. For each sub-volume, a
1D histogram is computed based on the normal variation between
the keypoint p(x, y, z) (including its surrounding vertices) and the
vertices that lie in each sub-volume.

Fast point feature histograms (FPFHs): FPFH [42] establishes
on V a Darboux LRF. Then for each point belonging to V, FPFH
encodes the angular relationship between the keypoint p(x, y, z)
and its neighbours as provided by the LRF. Finally, this angular
relationship is transformed into a histogram.

Rotational projection statistics (RoPS): RoPS [43] establishes
on V a LRF, then V is rotated around every axis of the LRF and is
projected on each of the coordinate planes. Finally, each projection
undergoes a statistical analysis based on low-order moments and
entropy, which are converted into a 1D histogram.

Tri-spin images (TriSI): TriSI [44] is an extension of the popular
3D descriptor spin images (SIs) [45]. For the latter, given a support
volume V centred at point p(x, y, z), a LRA is aligned with the
normal vector of the vertices within V, a 2D array accumulator
with user-defined dimensions is placed on the LRA, and the SI
descriptor is generated by accumulating the neighbouring points
into each bin of the 2D array as the array spins around the LRA.
TriSI uses the same technique as SI but substitutes the LRA with

an LRF and calculates a SI value for each axis of the LRF. Finally,
the three SI values are concatenated to from a TriSI descriptor.

Recently, Zhao et al. [46] proposed the statistic of deviation
angles on sub-divided space (SDASS), which encodes the
geometrical and spatial information within V. For the geometrical
encoding part, SDASS calculates the angular deviation between a
typical sized LRA against an extended radius LRA. Additionally,
SDASS encodes the spatial information by dividing V along the
LRA axis, project the vertices within V against the radial direction
and calculate in each subspace the angular deviation between the
typical and the oversised LRAs. Zhou et al. [47] encode the salient
feature information within V by proposing the Histograms of
gaussian normal distribution (HGND) descriptor. Specifically, the
vertices in V are projected on the planes of a LRF centred at V and
each projection is divided in four equally sized quadrants. Then,
HGND calculates the Gaussian point distribution and the normal
distribution within each quadrant and finally forms a 1D histogram
to represent the feature descriptor. A similar approach to RoPS is
the multi-view depth (MVD) descriptor [48]. Both share an LRF
estimation process based on an eigen-analysis of the weighted
point scatter matrix within V and on a feature calculation process
by projecting V on the planes of the LRF. However, the two main
differences between these descriptors are, (i) RoPS requires mesh
information for the LRF estimation, while MVD can be directly
applied on the point cloud and (ii), during the feature calculation
process RoPS creates a quantitative distribution matrix for each
projection of V, while MVD creates a local depth distribution
matrix. Lim and Lee [49] extend the 2D SIFT descriptor to be
applicable on a 3D mesh and exploit the gradients of the scalar
functions defined on V by convolving the point cloud with
Gaussian kernels. Then adjacent Gaussian functions are subtracted
to produce the DoG functions and this procedure repeats with
down-sampled Gaussian functions in the next octave. Lin et al.
[50] suggest a binary variant of the SHOT descriptor by utilising a
Gray-code encrypting scheme, while [51] proposes a binary variant
of the HoD descriptor. In [52], the authors propose a deep-learning
based solution that directly processes unstructured 3D point clouds
and learns a permutation invariant representation of the 3D
vertices, while in [53] the authors utilise a deep network to directly
match 2D with 3D features. For a systematic review on current
feature descriptors the reader is referred to [54]. For completeness
it is worth mentioning that a thorough evaluation of current LRF
techniques is presented in [55].

It should be noted that despite literature offers recent keypoint
detection and feature description techniques (especially for the 3D
descriptors), in this work we focus our evaluation on state-of-the-
art techniques with an open source code, ensuring the high quality
performance of method as presented in the corresponding
literature.

3Experimental setup
3.1 Data sets

We challenged the effectiveness and the robustness of each
keypoint detector and feature descriptor by evaluating their
performance on the Oakland data set [56], the Laser Scanner data
set [57], the Kinect data set [41] and the SpaceTime data set [41].

3.1.1 Oakland data set: The Oakland data set comprises 18 point
cloud scenes of the Oakland University campus captured using a
LIDAR device. For our point cloud registration scenario, we
exploit two consecutive scenes that have some overlap. Then one
of the two scenes was randomly rotated (pitch, roll and yaw) by up
to 180° and simultaneously translated in the X, Y and Z directions
by up to 10 m.

3.1.2 Laser scanner data set: The Laser Scanner data set is the
most cited data set in the 3D computer vision literature. It
comprises five model point clouds and 50 scene point clouds of
high quality. Each model comprises a full 3D point cloud, whereas
the scenes are 2.5D point clouds (i.e. viewing-dependent point
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clouds based on a specific vantage point). Scenes also contain
clutter objects and the target is occluded.

3.1.3 Kinect data set: The Kinect data set comprises six models
and 16 scenes acquired by a Microsoft Kinect sensor. Given the
sensing device, the point cloud quality is low, and the models
within scenes are occluded and mixed with clutter objects. In
contrast to the Laser Scanner data set, the models and scenes in the
Kinect data set share the same dimensionality (2.5D).

3.1.4 SpaceTime: The SpaceTime data set [41] was created by
using the SpaceTime Stereo technique and comprises eight models
and 15 scenes. Given the use of this technique, the point clouds are
of medium quality. Each scene encloses the target object which is
cluttered and occluded.

3.2 Evaluation

Given a model and a target point cloud, the first part of our
evaluation involved challenging the 3D keypoint detection methods
against the 2D methods. For the former, we applied the 3D
keypoint detectors presented in Section 2 to both the Model M and
the Scene S. As previously reported [1], we avoided the influence
of border vertices on the keypoint detection process by discarding
border keypoints. Then, given the known homography between M
and S, we calculated a number of performance metrics for each
keypoint detector (Section 3.3).

The 3D techniques were applied directly to the point cloud data,
whereas for the 2D techniques we initially projected each point
cloud onto the main planes of the XYZ global reference frame that
was fitted to the point cloud during acquisition. Then on each
projection, we applied the 2D keypoint detectors presented in
Section 2. Finally, we back projected the detected 2D keypoints of
each projection to the initial point cloud and calculated the
performance metrics used for the 3D keypoint detectors.

During the 3D to multi-2D remapping process, we properly
quantised the coordinates of each vertex to remap the 3D floating-
point vertex coordinates p x, y, z  into integer coordinates
pQ x, y, z , which are then projected on the XYZ reference planes

pQ x, y, z = qf ⋅ p x, y, z (17)

where qf is the quantisation factor and ⋅  the bottom-round
process. Selecting qf is not trivial as it highly affects the amount of
details of the multi-2D projections and thus the performance of the
keypoint detection and description methods. In fact, large qf values
create large 2D projections increasing the total computational time
and the memory requirements of the processing platform in such an
extent that the fast to compute (in general) 2D keypoint detection
and description methods may impose an overall larger processing
burden compared to their 3D counterparts. On the contrary, small
qf values discard point cloud topology information during the 3D to
2D remapping process by subsampling the projected data. Once the
2D keypoints are detected, their 2D pixel coordinates are remapped
into the XYZ global reference frame where the entire point cloud is
placed, creating the p3D x, y, z  keypoint coordinates. Due to the
multi-2D to 3D back-projection process, which includes the inverse
process of (17), a complete match between p3D and a vertex p of
the point cloud is not trivial, and therefore we associate p3D with
the closest point cloud vertex

p3D ∼ arg min
p

∥ p3D − p ∥2 (18)

The overall keypoint evaluation pipeline is presented in Fig. 1a. 
The second part of our evaluation compared single and cross-

dimensional keypoint detection and feature description.
Specifically, we evaluated the performance of 3D keypoint
detection and description (3D–3D), 2D keypoint detection and
description (2D–2D), 3D keypoint detection with 2D description
(3D–2D), and 2D keypoint detection with 3D description (2D–3D).
We assessed only the top-performing 2D and 3D keypoint detectors

based on the results of the first part of our evaluation. As described
for the first stage, we applied each 2D descriptor to the projected
planes of the XYZ global reference frame that was fitted to the
point cloud during acquisition. During 2D feature matching, we
cross-matched all features from every plane of the model and the
target point clouds and created a list of corresponding pixels, which
were back-projected into the original 3D domain. The performance
metrics for each keypoint detector and feature descriptor
combination (Section 3.3) were used for both single and cross-
dimensional keypoint detection. Fig. 1b shows the architecture for
all single (2D–2D, 3D–3D) and cross-dimensional (2D–3D, 3D–
2D) keypoint detection and description methods, which is applied
on both M and S point clouds in order to perform single and cross-
dimensional feature matching depending on the pipeline evaluated.
Fig. 1c presents the complete cross/single dimensional evaluation
architecture including the feature matching and the model – scene
correspondence estimation stages. It is worth noting that we
intentionally did not use any correspondence grouping scheme to
discard false correspondences as we purely focus on the
capabilities of each cross and single dimensional keypoint
detection and feature description technique. However, for
completeness on current corresponding grouping techniques, the
reader is referred to [58].

3.3 Comparison metrics

3.3.1 Absolute/relative repeatability (AR/RR): Repeatability is
the most important metric for a keypoint detector because it defines
its ability to find the same keypoints on different instances of a
given 3D point cloud or 2D image. For the 2D and 3D detectors
evaluated in this study, we extracted a keypoint kM from the model
M (either a 3D point cloud or a 2D image projection depending on
the evaluation) and transformed it into kMS according to the
homography, i.e. rotation R and translation T, between the model
M and the scene S. A keypoint kM is repeatable if the Euclidean
distance of kMS from its nearest keypoint kS that is extracted from
the scene S is less than a threshold ɛ

∥ RkM + T − kS ∥ = ∥ kMS − kS ∥ < ε (19)

The AR and the RR [2, 59] are defined as

AR = C
+ (20)

RR =
C

+

C
(21)

where C+ is the number of keypoints that fulfil (19) and C is the
number of detected keypoints in the model scene. Model keypoints
kM were only considered if they were present in the scene. We
therefore checked whether a real vertex existed within a small
neighbourhood of the fictitious kMTcreated by the known model-
scene homography. If this was true, the real vertex closest to the
fictitious kMT was linked with kM. This neighbourhood is defined
by a sphere centred at kMT with a radius of 10 × Tr, with Tr the
average scene point cloud resolution.

In contrast to previous studies [1, 2, 45], we set a larger radius
in order to achieve a common neighbourhood size for all tests and
also to compensate for transformation errors that occur when the
3D point cloud vertices are projected onto multiple 2D images and
are then back-projected to a 3D point cloud.

3.3.2 Area under curve (AUC): The AUC metric is a single
value that indicates the overall performance of the descriptor. Here,
we calculated the AUC based on the 1-precision–recall (PR) curve
[2]. Given a scene feature fs that encodes the keypoint kS, a list of
model features and the model-to-scene ground truth homography, fs
is matched against all model features to find the closest. If the
Euclidean distance of the keypoints that have matched features is
less than a threshold ȝ then the match is considered as a true
positive (TP) otherwise as a false positive (FP). Features that are
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incorrectly not matched are labelled as a false negative (FN).
Hence, 1-Precision and Recall are defined as

1 − Precision = 1 −
TP

TP + FP
(22)

Recall =
TP

TP + FN
(23)

The PR curve is obtained by varying threshold μ ∈ [0, 1] and
matching exploits the fast library for approximate nearest
neighbours [60].

3.3.3 Compactness: This metric relates the descriptive power to
the cardinality of a description vector. This is important because
the length of the feature vector has a great impact on the memory
footprint and computational requirements during the feature
matching stage. As previously reported [2], we define compactness
as

compactness =
Average AUC

Descriptor cardinality
(24)

Fig. 1 Single and cross dimensional feature detection and description architecture
(a) 2D/3D keypoint detection pipeline, (b) 2D/3D keypoint detection and description pipeline, (c) Cross/single dimensional evaluation pipeline
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3.4 Implementation

All trials were performed in on an Intel i7 with 16 GB of RAM.
Keypoint detectors and descriptors were implemented in C++/PCL.
The tuned parameters of each detector (Table 1) and descriptor
(Table 2) were used to maximise performance. The untuned
parameters were fixed either to those proposed by the original
authors or to their PCL implementation [9, 38]. For the tuning
process, we used the Oakland data set and confirmed that SHOT
has a stable description performance regardless of the description
radius, whereas TriSI, FPFH and RoPS gain peak performance and
then drop [2]. For the scenarios we evaluated, this peak
performance was identified at a radius of 20 × Mr, with Mr
representing the average Model point cloud resolution. For HoD
and HoD-S, optimal performance was achieved at 20 × Tr.

4Experimental results and discussion
4.1 Evaluation of keypoint detectors

4.1.1 Oakland data set: One important factor affecting the
performance of the 2D keypoint detection methods is the
quantisation factor qf used during the 3D to multi-2D remapping
process applied to the point cloud. As shown in Fig. 2a, the RR
increased with qf for all methods with the exception of DoG, which
showed a stable but poor performance. This is because qf defines
the amount of detail preserved on the 2D image projections after
the remapping process, with higher qf values corresponding to a
higher resolution. Fig. 2b shows the corresponding AR achieved by
each method, revealing that RR and AR have a similar relationship
with qf. The low RR performance of DoG reflects the extremely
low AR. Due to the log scale of the AR plot, zero AR is omitted
and thus AR plots can be interrupted.

The selection of qf has also a direct impact on the number of
detected keypoints, the physical size of the 2D projections and
ultimately on the overall processing time required to apply the 2D
keypoint detection methods.

Given that we regarded performance and computational
efficiency as equally important, we set qf = 10 for the remaining
trials. The processing burden for qf = 10 is 57 times lower than
qf = 100, but most of the keypoint detection methods still perform
well (Fig. 2a). Table 3 shows the processing time needed for
various qf values and the process acceleration relative to qf = 10. 
Fig. 3 shows the processing time needed by each 2D keypoint
detector (for qf = 10) and the corresponding time for the 3D
keypoint detection methods evaluated herein (qfis not applicable in
the 3D methods). Fig. 3 shows that although the computational
time of the 2D methods includes the 3D to multi-2D remapping,
keypoint detection process for all three planes, and keypoint back-
projection to the original 3D domain, the computational burden is
much lower than that of almost all 3D descriptors. In terms of
processing time Fast9 achieved the lowest, followed by GFTT,
Harris and FH. The highest computational burden was associated
with KPQ and KPQ-AS.

Subsequent trials on the Oakland data set evaluated the
robustness of the 2D and 3D keypoint detection methods
challenged by variable resolution, Gaussian noise and SHOT noise.
These nuisance factors are added to one of the two scene segments
and simultaneously the same segment was also randomly rotated
up to 180° in pitch, roll and yaw and translated up to 10 m in the X,
Y and Z directions, creating a highly complex and challenging
scenario that exceeds the typical difficulty of current computer
vision scenarios. This complexity was introduced to investigate the
limits of the keypoint detection methods and the single and cross-
dimensional 2D/3D keypoint detection and description methods
described in Section 4.2.

In the nuisance-free setting, the 2D keypoint detection methods
achieved an average RR of 38% compared to 22% for the 3D
methods, indicating that the 2D methods are more robust to
resolution variation (Fig. 4). This is mainly due to the coordinate
remapping process in (17), which transforms the floating-point

Table 1 Keypoint detectors evaluated
Dimension Descriptor Tuned parameters
3D ISS —
3D SP —
3D Harris 3D —
3D KPQ —
3D uniform grid size of 5× point cloud resolution
2D GFTT Min. corner quality 10−3/Gaussian

filter size 3 × 3
2D FAST16-Adaptive

scale
Min. corner quality 10−3/Min.

intensity contrast 10−3/octaves 4
2D FAST6-Fixed

scale
Min. corner quality 10−3/Min.

intensity contrast 10−3

2D DoG eight scale levels
2D FAST-9 intensity threshold 9
2D Harris 2D Min. corner quality 10−3/Gaussian

filter size 3 × 3
2D KAZE six scale levels/six octaves
2D FH-9 six scale levels/blob threshold 10−5

 

Table 2 Feature descriptors evaluated
Dimension Descriptor Descriptor length Tuned parameters
3D SHOT 352 —
3D HoD 240 —
3D HoD-S 40 —
3D FPFH 33 —
3D RoPS 135 —
3D TriSI 675 —
2D FREAK 64 —
2D SURF 64 —
2D BRISK 64 —
2D KAZE 64 —
2D SIFT 128 eight scale levels
 

Fig. 2 Impact of discretisation factor on 2D keypoint detection on the Oakland data set
(a) RR, (b) AR
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vertex coordinates into pixel coordinates. Even when the resolution
was reduced to one eighth of the original value, most of the 2D
methods, namely Fast9, GFTT, Harris, Fast16-F (fixed scale) and
Fast16-A (adaptive scale), were still able to achieve appealing RR
and AR scores. Interestingly, DoG performed less well than
anticipated, but this was due to the extremely small number of
keypoints it provided. In contrast, the 3D methods were much more
vulnerable to resolution variation even when the resolution was
reduced to only half its original value.

Next we investigated the robustness of each method to various
Gaussian noise levels with zero mean and standard deviation
σ = {0.1Mr, 0.3Mr, 0.5Mr} [9, 38]. Figs. 5a and b clearly shows
that the 2D keypoint detectors were only marginally affected
regardless of the noise level, with KAZE, GFTT, Fast16-A and FH
demonstrating a highly appealing and stable performance. This is
because the low quantisation value qf = 10 during the coordinate
remapping process of (17) quantises the noisy vertex coordinates in
the same pixel coordinates as seen in the noise-free case. Unlike
the 2D methods, the 3D methods were strongly affected even by
low Gaussian noise levels (Figs. 5c and d).

Finally, we evaluated the robustness of each method to various
SHOT noise levels modelled with a Poisson process where

λ = {0.1Mr, 0.3Mr, 0.5Mr}. Fig. 6 shows that the 2D descriptors
were only marginally affected, retaining their high RR and AR
values. Their appealing performance is yet again due to the
quantisation process of (17) and the small qf value. In contrast, the
3D descriptors were strongly influenced by even low levels of
SHOT noise.

Regarding the overall performance of the 2D and 3D keypoint
detectors on the Oakland data set, it is evident that the majority of
the 2D techniques outperform the 3D ones both in terms of
processing efficiency and robustness to resolution and nose
variation.

For the sake of a reasonable paper length, in the remaining
challenges using alternative data sets, the 2D and 3D keypoint
detection methods were tested against the standard data set alone,
without resolution or noise variation.

4.1.2 Laser scanner data set: When tested against the Laser
Scanner data set, the best RR performance was achieved by the 3D
keypoint detector ISS with the 2D detector GFTT following closely
behind (Fig. 7a). The 2D and 3D methods achieved average RR
values of 21 and 20%, respectively, and in both cases the AR

Table 3 Overall processing time for various qf values
qf 100 50 20 10 5
avg. time, s 19.12 6.14 1.26 0.33 0.31
gain factor 57 18 4 1 1

 

Fig. 3 Processing time of 2D (blue) and 3D (black) keypoint detectors (qf = 10 for the 2D methods)
 

Fig. 4 Evaluating detector performance on the Oakland data set under various resolution levels
(a) 2D techniques RR, (b) 2D techniques AR, (c) 3D techniques RR, (d) 3D techniques AR (original resolution refers to resolution during data set acquisition)
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values provided on average a similar number of keypoints
(Fig. 7b).

4.1.3 Kinect data set: When tested against the Kinect data set,
most of the 2D keypoint detectors (GFTT, FH, KAZE, Harris and
Fast9) achieved a better RR performance than the corresponding
3D methods, with GFTT and FH exceeding 75% RR (Fig. 8). The
average RR of the 2D methods (45%) was far superior to the
average RR of the 3D methods (22%).

4.1.4 SpaceTime data set: The 2D methods achieved higher RR
values than the 3D methods when tested against the SpaceTime

data set, with Fast16-A performing best (Fig. 9). The average RR
of the 2D methods was 47%, compared to 28% for the 3D
methods.

4.1.5 Discussion: From the keypoint detection trials it is evident
that the 2D methods are overall more appealing than the 3D
methods for several reasons:

(i) In the nuisance-free Oakland and Kinect data sets, the RR
values of the 2D methods were double those of the 3D methods.
For the Laser Scanner data set, both the 2D and 3D methods
achieved a similar performance.

Fig. 5 Evaluating detector performance on the Oakland data set under various Gaussian noise levels
(a) 2D techniques RR, (b) 2D techniques AR, (c) 3D techniques RR, (d) 3D techniques AR (original noise level refers to noise during data set acquisition)

 

Fig. 6 Evaluating detector performance on the Oakland data set under various SHOT noise levels
(a) 2D techniques RR, (b) 2D techniques AR, (c) 3D techniques RR, (d) 3D techniques AR (original noise level refers to noise during data set acquisition)
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(ii) The 2D methods were superior in terms of robustness to
nuisances (resolution variation, Gaussian and SHOT noise). This
was mainly due to the low quantisation value qf = 10 during the
coordinate remapping process of (17). In contrast, due to the
challenging complexity of the Oakland scenario, the 3D keypoint
detection techniques achieved very low RR values even at the
lowest nuisance levels.
(iii) The 2D methods were four times faster to execute than the 3D
methods, despite the former requiring a multi-staged process that
includes 3D to multi-2D remapping, keypoint detection on all three
planes and keypoint back-projection to the original 3D domain.

4.2 Evaluation of feature descriptors

Next, we conducted single and cross-dimensional evaluations of
the 2D and 3D keypoint detection and description methods on the
data sets described in Section 4.1. The trials comprised 2D–2D,
2D–3D, 3D–2D and 3D–3D schemes, where the first and second
numbers indicate the dimensionality of the keypoint detector and
feature descriptor, respectively. To improve clarity, only the GFTT,
Fast16-A and FH keypoint detection methods were used for the 2D
scenarios, and only ISS for the 3D scenario. The selection was
based on both the RR metric and the computational efficiency
demonstrated in Section 4.1. For the 3D keypoint detection
methods, we also investigated the performance by applying a

uniform subsampling scheme and scoring based on the AUC
metric.

4.2.1 Oakland data set: In the first trial, we evaluated the 2D–2D
scheme and tested robustness to resolution variation, Gaussian
noise and SHOT noise using the same parameters described for the
evaluation of keypoint detection (Section 4.1.1).

SURF and KAZE were the most robust feature descriptors in
response to resolution variation regardless of the keypoint
detection method (Fig. 10a). Among the three 2D keypoint
detectors we challenged, Fast16-A achieved the highest AUC value
and the most robust combination was Fast16-A with the SURF
descriptor. In contrast, SIFT, FREAK and BRISK achieved low
AUC values at all resolutions regardless of the associated 2D
keypoint detector. Interestingly, SIFT, FREAK and BRISK
achieved low AUC values even when applied to the original
nuisance-free scene.

We also evaluated the robustness of the 2D–2D scheme with
various levels of Gaussian noise. SURF and KAZE were again the
most robust (Fig. 10b). Similarly to the initial trial, FREAK,
BRISK and SIFT achieved low AUC scores regardless of the
Gaussian noise level. The same trend was observed in the SHOT
noise trial (Fig. 10c). In both noise trials, the AUC achieved by
each method was quite stable regardless of the noise level,

Fig. 7 Evaluating 2D (blue) and 3D (black) keypoint detectors on the Laser Scanner data set
(a) RR, (b) AR

 

Fig. 8 Evaluating 2D (blue) and 3D (black) keypoint detectors on the Kinect data set
(a) RR, (b) AR

 

Fig. 9 Evaluating 2D (blue) and 3D (black) keypoint detectors on the SpaceTime data set
(a) RR, (b) AR
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highlighting the robustness of the 2D methods to noise and also the
important contribution of the quantisation process of (17).

In the second trial, we considered the 2D–3D scheme. All of the
3D descriptors we tested were sensitive to resolution variation
(Fig. 11a), and given the robustness already shown for the 2D
keypoint detection methods (Fig. 4a), the low AUC values in the
2D-3D trial were attributed to the 3D descriptors. In contrast, the
2D–3D scheme was more robust against noise nuisances but still
inferior to the 2D–2D scheme. For Gaussian and SHOT noise
(Figs. 11b and c), the performance of each 3D descriptor depended
strongly on the 2D keypoint detector. Hence, for the GFFT
keypoint detector, the best performance was achieved by RoPS,
closely followed by HoD-S, FPFH and HoD. A similar trend was
apparent for the Fast16-A keypoint detector. However, the FH
keypoint detector resulted in higher AUC values for most of the 3D
descriptors, with HoD-S and HoD again achieving highest AUC
values. Interestingly, TriSI and SHOT achieved a low AUC value

regardless of the nuisance applied. Overall, the performance of the
2D–3D scheme was inferior to that of the 2D–2D scheme.

The third trial was the cross-dimensional 3D–2D scheme. ISS
was more robust to resolution variation compared to uniform
subsampling (Fig. 12a). Interestingly, the hierarchy between ISS
and the uniform subsampling strategy was the same for the 2D–2D
and 3D–2D schemes, suggesting that the AUC is mostly affected
by the 2D feature descriptors rather than the dimensionality of the
keypoint detection method. Even so, the cross-dimensional 3D–2D
scheme based on ISS and SURF was more robust to resolution
variation, achieving a relatively stable AUC at all resolution levels.
The robustness of the 3D-2D scheme to Gaussian noise variation is
shown in Fig. 12b. The performance of both 3D keypoint detection
methods was similar, with ISS gaining a slight advantage. Again,
the hierarchy of the 2D–2D and 3D–2D schemes was the same.
Finally, we challenged the 3D–2D scheme with various levels of
SHOT noise (Fig. 12c). SURF achieved the highest performance,
although both SURF and KAZE generated appealing AUC scores.

Fig. 10 Evaluating 2D keypoint detectors and 2D feature descriptors on the Oakland data set
(a) Resolution variation, (b) Gaussian noise, (c) SHOT noise (original noise and resolution refer to noise and resolution, respectively, during data set acquisition)

 

Fig. 11 Evaluating 2D keypoint detectors and 3D feature descriptors on the Oakland data set
(a) Resolution variation, (b) Gaussian noise, (c) SHOT noise (original noise and resolution refer to noise and resolution during data set acquisition)

 

Fig. 12 Evaluating 3D keypoint detectors and 2D feature descriptors on the Oakland data set
(a) Resolution variation, (b) Gaussian noise, (c) SHOT noise (original noise and resolution refer to noise and resolution during data set acquisition)
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Again, the hierarchy of the 2D–2D and 3D–2D schemes was
preserved.

The final trial considered the 3D–3D scheme. The performance
of this scheme in all three nuisance trials was similar to the 2D–3D
scheme, with the 3D–3D scheme showing marginally better AUC
values.

Given that these combinations involved 2D methods, the
processing time not only includes the keypoint detection and
feature description methods but also the 3D to multi-2D projection
and 2D to 3D back-projection. For the overall performance of the
keypoint detection methods considering all description methods,
the fastest 2D technique was Fast16-A, and of the 3D methods,
uniform subsampling was faster than ISS. For the feature
description methods and their overall performance considering all
keypoint detection methods, we conclude that most efficient 2D
descriptor is SURF, and the most efficient 3D descriptor is HoD-S.

The evaluations on the Oakland data set lead to the following
conclusions:

(i) The 2D–2D combination achieves the highest overall
performance in terms of AUC and processing efficiency.
(ii) The 2D feature descriptors preserve their hierarchy and their
performance regardless of the keypoint detection dimensionality
and method.

The 2D feature descriptors are more robust to nuisances than their
3D counterparts. The performance degradation of the 3D
descriptors in response to increasing nuisance levels is also
described elsewhere, although in the context of different data sets
[2]. Therefore, 3D descriptors appear to generally suffer from low
robustness to resolution variation, Gaussian noise and SHOT noise.

4.2.2 Laser scanner data set: As stated above, we only
considered the nuisance-free versions of the Laser Scanner, Kinect
and SpaceTime data sets. The performance of the various keypoint
detection and feature description methods against the Laser
Scanner data set is shown in Fig. 13. For the 2D–2D scheme
(Fig. 14a), the highest AUC was achieved by combining SURF
with FH, or Fast16-A and SIFT with FH. For the 2D–3D scheme
(Fig. 14b), GFTT combined with FPFH performed best, whereas
Fast16-A or FH combined with any 3D feature descriptor resulted
in the poorest performance. The 3D–2D scheme was the best of all
four of the dimensional combinations (Fig. 14c). Specifically, 3D
uniform subsampling combined with SURF and KAZE achieved
AUC values of 0.77 and 0.73, respectively. This is almost twice the
highest value generated by the 2D–2D scheme, three times that of
the 2D–3D scheme and five times that of the 3D–3D scheme.
Interestingly, the 3D–3D combination, which is the standard
approach for 3D data in the form of point clouds, achieved the
lowest AUC scores (Fig. 14d) in agreement with earlier studies [2].

Fig. 13 Evaluating 3D keypoint detectors and 3D feature descriptors on the Oakland data set
(a) Resolution variation, (b) Gaussian noise, (c) SHOT noise (original noise and resolution refer to noise and resolution during data set acquisition)

 

Fig. 14 Evaluating keypoint detector and feature descriptor combinations on the Laser Scanner data set
(a) 2D–2D, (b) 2D–3D, (c) 3D–2D, (d) 3D–3D
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4.2.3 Kinect data set: The AUC values representing each
combination of methods tested against the standard Kinect data set
are summarised in Fig. 15. The 3D–2D scheme achieved the
highest AUC values, specifically ISS combined with SURF.

4.2.4 SpaceTime data set: The AUC values representing each
combination of methods tested against the standard SpaceTime
data set are summarised in Fig. 16. Here, the 2D–2D scheme
achieved the highest AUC scores, followed by the 3D–2D scheme.
Interestingly, however, only SURF and KAZE provided
meaningful AUC values.

4.2.5 Robustness overall performance: To enhance our
comparison of the single and cross-dimensional keypoint detection
and feature description combinations, the AUC scores achieved by
each method averaged over all data sets are presented in Table 4,
along with the average performance per keypoint detection and
feature description technique on an independent basis. 

This analysis shows that the 3D keypoint detectors contribute to
higher AUC values, with the 2D FH method following closely
behind. Regarding the feature descriptors, SURF clearly achieves
the highest AUC values regardless of the keypoint detector,
followed by KAZE. RoPS achieves the highest performance among
the 3D techniques, but still lower than SURF and KAZE. Overall,

Fig. 15 Evaluating keypoint detector and feature descriptor combinations on the Kinect data set
(a) 2D–2D, (b) 2D–3D, (c) 3D–2D, (d) 3D–3D

 

Fig. 16 Evaluating keypoint detector and feature descriptor combinations on the SpaceTime data set
(a) 2D–2D, (b) 2D–3D, (c) 3D–2D, (d) 3D–3D
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the 3D–2D scheme is the most appealing combination, achieving
the highest AUC values while imposing among the lowest
computational requirements. A detailed analysis of the
computational requirements is presented in Table 5 summarising
the computational time required by each 2D/3D keypoint detection
and feature description combination, and the average time required
by each method regardless of the combination. The most efficient
methods were Fast16-A combined with SURF and FH combined
with SURF, each requiring only 0.05 s per point cloud.

For completeness, in Fig. 17 we visualise the AUC versus
processing time relationship between every single and cross-modal
combination. From Fig. 17 it is obvious that the feature descriptor
is the main computational contributor greatly defining the overall
performance and the processing time of each combination. As
expected, the 2D descriptors are faster to compute with HoD-S and
HoD being at the computational margin of the 2D and the 3D
techniques. Interestingly, despite 3D descriptors being designed to
manipulate 3D data, the 2D techniques afford a higher AUC. This
is because during the 3D to multi-2D data remapping process and
vice versa, quantising the vertex coordinates to pixel coordinates
contributes to reducing the minor model-scene nuisances and thus
enforcing the descriptor's robustness. Additionally, it is worth
noting that Fig. 17 reveals that the keypoint detection hierarchy
within each coloured feature descriptor-based cluster places the 3D
keypoint detection methods as the top performing ones. Exceptions
are SIFT, BRISK, HoD and FPFH.

Additionally, in Figs. 18 and 19 we present examples of single
and cross dimensional keypoint detection/feature description
correspondences utilising scenes from the Oakland data set under
1/8 subsampling rate difference. However, to maintain a reasonable

paper length we only present the top AUC keypoint detection /
feature description combinations as of Table 4. Figs. 18 and 19
highlight that overall the 2D descriptors are superior compared to
the 3D ones. This is due to the 2D to 3D remapping and vice versa
that smoothes the different point cloud densities.

We also evaluated the performance of each method based on the
compactness metric. This reveals the description capability of each
feature description technique, but also uses the AUC value so
assesses the joint performance of the keypoint detector and feature
descriptor. Table 6 presents the average compactness values for all
data sets, revealing that ISS and uniform subsampling combined
with SURF are the most descriptive combinations. 

Overall, the contributions of our work can be summarised to

(i) In contrast to current literature, we evaluated current keypoint
detection and feature description methods on a broader basis by
adopting a novel cross-dimensional (mixed 2D and 3D) scheme. It
is worth noting that such a broad multi-dimensional evaluation has
not yet been reported in the literature.
(ii) Our trials demonstrated that 2D keypoint detectors attain higher
repeatability rates, are less prone to nuisances such as resolution
variation and noise, and are faster to compute compared to their 3D
counterparts. The reason for their advantages was the 2D–3D
remapping, which flattened minor nuisances. However, this
smoothing process negatively affected the 2D feature description
process reducing their descriptiveness. In terms of processing
efficiency, manipulating 2D data with a low quantisation factor for
the 3D–2D remapping process was computationally more efficient
than directly exploiting 3D data despite the remapping process. In
fact, the average processing time per modality combination

Table 4 Average AUC performance on all data sets
2D descriptors 3D descriptors

FREAK SURF BRISK KAZE SIFT HoD-S HoD SHOT FPFH RoPS TriSI Average
keypoint detectors 2D GFTT 0.14 0.36 0.11 0.31 0.08 0.12 0.09 0.02 0.23 0.20 0.03 0.15

Fast16-A 0.14 0.41 0.11 0.32 0.20 0.12 0.09 0.01 0.20 0.18 0.01 0.16
FH 0.15 0.36 0.09 0.29 0.29 0.21 0.16 0.03 0.18 0.23 0.06 0.18

3D ISS 0.16 0.47 0.07 0.36 0.10 0.14 0.08 0.04 0.20 0.26 0.07 0.18
Uniform 0.14 0.47 0.04 0.33 0.08 0.22 0.14 0.02 0.21 0.24 0.05 0.18
average 0.15 0.42 0.09 0.32 0.15 0.16 0.11 0.02 0.20 0.22 0.04

 

Table 5 Total processing time
2D descriptors 3D descriptors

FREAK SURF BRISK KAZE SIFT HoD-S HoD SHOT FPFH RoPS TriSI Average
keypoint detectors 2D GFTT (F) 0.23 0.11 0.92 0.14 0.26 2.64 4.05 8.20 54.78 26.30 44.92 12.96

Fast16 (A) 0.16 0.05 0.80 0.07 0.26 0.83 1.17 5.19 26.51 7.69 29.61 6.58
FH (A) 0.61 0.05 0.80 0.07 0.05 0.65 0.93 4.82 34.34 5.95 29.61 7.08

3D ISS 0.29 0.20 0.94 0.29 0.26 1.84 2.74 6.54 59.46 21.39 46.35 12.75
uniform 0.20 0.11 0.84 0.15 0.27 0.98 1.40 5.19 53.23 9.43 35.15 9.72
average 0.30 0.10 0.86 0.14 0.22 1.39 2.06 5.99 45.66 14.15 37.13

 

Fig. 17 Overall performance visualising AUC versus processing time (best seen in colour)
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(Table 5) was 0.31, 0.36, 16.01 and 20.31 s for the 2D–2D, 3D–2D,
2D–3D and 3D–3D for the keypoint detection – feature description
combinations, respectively.
(iii) The proposed cross-dimensional evaluation scheme revealed
that a cross-dimensional solution combining the 3D keypoint
detector ISS or uniform subsampling with the 2D feature descriptor
SURF are the most appealing combinations. This is because it
incorporates the advantages of each individual data modality and
technique, affording high AUC scores with only a minor
computational burden compared to the faster 2D single-
dimensional keypoint detection and feature description techniques.
Despite ISS/SURF and uniform/SURF attain only 5% higher AUC
compared to the 2D keypoint detection methods combined with
SURF, this performance gain is still important for registration and
low-drift LIDAR-based odometry applications. Examples of the
feature correspondences between the model and the scene point
clouds are presented in Figs. 18 and 19.

(iv) Overall, from Table 4 the average AUC per modality
combination was 0.22, 0.22, 0.12 and 0.14 for the 2D–2D, 3D–2D,
2D–3D and 3D–3D modality combinations highlighting the
contribution of the 2D feature descriptors. In terms of compactness,
based on Table 6, the average values per modality combination are
3.20, 3.34, 1.98, 2.19, for the corresponding 2D–2D, 3D–2D, 2D–
3D and 3D–3D combinations, revealing that the small feature
length of the 2D descriptors affords a higher description capability
per feature element. The latter is important as while the feature
descriptiveness is high, the memory storage requirements are
maintained low.

5Conclusions
Local feature detection and description techniques are commonly
used for 3D object registration and recognition applications.
Therefore, current literature offers several evaluations of 3D local
feature detection and description methods. However, literature is

Fig. 18 Example presenting the overall top AUC performing cross/single
dimensional feature correspondences on two scenes of the Oakland data set
under 1/8 subsampling rate difference
(a) ISS/FREAK, (b) ISS/SURF, (c) Uniform/SURF, (d) GFTT/BRISK, (e) ISS/KAZE,
(f) FH/SIFT (green and red lines present the TP and FP correspondences, figure is best
seen in colour)

 

Fig. 19 Example presenting the overall top AUC performing cross/single
dimensional feature correspondences on two scenes of the Oakland data set
under 1/8 subsampling rate difference
(a) Uniform /HoD-S, (b) FH/ HoD, (c) ISS/SHOT, (d) GFTT/FPFH, (e) ISS/ RoPS, (f)
ISS/TriSI (green and red lines present the TP and FP correspondences, figure is best
seen in colour)

 

Table 6 Average compactness on all data sets
2D descriptors 3D descriptors

FREAK SURF BRISK KAZE SIFT HoD-S HoD SHOT FPFH RoPS TriSI Average
keypoint detectors 2D GFTT 2.23 5.63 1.72 4.77 0.61 3.06 0.36 0.05 6.82 1.50 0.04 2.43

Fast16-A 2.23 6.45 1.76 5.04 1.52 2.94 0.38 0.01 5.91 1.31 0.01 2.51
FH 2.27 5.66 1.41 4.49 2.27 5.13 0.65 0.07 5.53 1.69 0.09 2.66

3D ISS 2.42 7.38 1.09 5.63 0.78 3.50 0.34 0.11 5.98 1.94 0.10 2.66
uniform 2.23 7.38 0.66 5.20 0.61 5.38 0.59 0.04 6.44 1.80 0.08 2.76
average 2.27 6.50 1.33 5.02 1.16 4.00 0.46 0.06 6.14 1.65 0.07
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constrained to evaluating methods of a single data dimension, i.e.
either 3D or 2D methods that are applied onto multiple projections
of the 3D data, while cross-dimensional (mixed 2D and 3D) feature
detection and description has not been investigated yet. Spurred by
that evaluation gap and aiming at exploiting the advantages of both
the 2D and the 3D methods, we evaluated all possible multi-
dimensional combinations of keypoint detection and feature
description methods and compared their performance against the
single-dimensional methods. Our evaluation included four data sets
differing in quality and complexity and under various levels of
three nuisance factors (resolution variation, Gaussian and SHOT
noise).

Our trials indicated that the optimum combination is multi-
dimensional, contrasting with the typical approach for keypoint
detection and feature description of 3D data based on methods
explicitly designed for the 3D data domain. Specifically, we found
that the most appealing keypoint detection/feature description
combination is a cross-dimensional scheme blending the 3D ISS/
uniform subsampling with the 2D FH. Our findings demonstrated
that a pure 3D scheme poses an inferior solution due to the
mediocre AUC performance, the poorer performance under
resolution and noise nuisances, and the higher computational
burden. In fact, we demonstrated that a cross-dimensional 3D
keypoint detection and 2D feature description combination is more
appealing than a typical single dimensional 3D solution affording
twice the performance and a 54× computational speedup. These
findings are especially important for time critical applications that
involve accurate correspondence estimation of 3D point cloud data.

Additionally, our evaluation revealed that the major contributor
to the processing burden of both the single and the multi-
dimensional keypoint detection and feature description schemes is
the description part. Hence, all schemes involving a 3D feature
descriptor are on average one order of magnitude slower.
Considering the pure 2D solutions, these are appealing but attain
lower AUC values compared to the 3D–2D multi-dimensional
combination.

Future work shall focus on implementing our findings on time-
critical applications such as LIDAR-based odometry for vehicle,
unmanned air vehicles, sea and space odometry applications. We
believe that the low processing time of our cross-dimensional
scheme along with its high-quality correspondence estimation, will
afford a low drift odometry solution.
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