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Abstract: Synthetic aperture radar (SAR) images for automatic target classification (automatic target recognition (ATR)) have
attracted significant interest as they can be acquired day and night under a wide range of weather conditions. However, SAR
images can be time consuming to analyse, even for experts. ATR can alleviate this burden and deep learning is an attractive
solution. A new deep learning Pose-informed architecture solution, that takes into account the impact of target orientation on the
SAR image as the scatterers configuration changes, is proposed. The classification is achieved in two stages. First, the
orientation of the target is determined using a Hough transform and a convolutional neural network (CNN). Then, classification
is achieved with a CNN specifically trained on targets with similar orientations to the target under test. The networks are trained
with translation and SAR-specific data augmentation. The proposed Pose-informed deep network architecture was successfully
tested on the Military Ground Target Dataset (MGTD) and the Moving and Stationary Target Acquisition and Recognition
(MSTAR) datasets. Results show the proposed solution outperformed standard AlexNets on the MGTD, MSTAR extended
operating condition (EOC)1, EOC2 and standard operating condition (SOC)10 datasets with a score of 99.13% on the MSTAR
SOC10.

1 Introduction
Synthetic aperture radar (SAR) images provide strategic
information for military and civilian applications and they can be
acquired day and night under a wide range of weather conditions.
Since the interpretation of SAR images is a common challenge,
automatic target recognition (ATR) algorithms can help assist with
decision-making when the operator is in the loop or when the
platforms are fully autonomous. Recent research on SAR ATR
methods has focused on convolutional neural networks (CNNs)
resulting from past research activities on deep learning for images.
CNNs are already commonly used in the visual domain and in the
existing literature, limited CNNs have been specifically proposed
and developed for SAR ATR. Some of the CNNs proposed for
SAR ATR are shallower than those used in the visual domain,
where the image resolution is much higher than that of SAR and
detailed features are commonly available [1, 2]. CNNs applied to
SAR have shown high recognition rates on the Moving and
Stationary Target Acquisition and Recognition (MSTAR) dataset
with scores reaching 99.1, 96.12, 98.93 and 98.60%, respectively,
on the MSTAR standard operating condition (SOC)10, MSTAR
extended operating condition (EOC)1, MSTAR EOC2 and MSTAR
EOC3 or even higher on the MSTAR SOC10 [2].

CNNs can be used directly for classification, but they have also
been used in the past literature to extract complex features from
SAR images and supply them to other classification solutions such
as a support vector machines [3, 4]. For example, features have
been extracted from intermediary layers of trained CNNs to
provide improved results with respect to former feature based
solutions that used a feature dictionary on the sparse representation
of the target (up to 99.5% compared to 80% on the MSTAR
SOC10 [3, 4]).

CNNs, whether used directly or as feature extractors, have to be
trained to learn key features for classification. They can be trained
entirely on SAR data, or through transfer learning process
consisting of a pre-training in the visual domain to increase the

total amount of training data before SAR training, or benefit from
data augmentation techniques with added transformed images in
the training set [3–5]. Other CNNs have been developed
specifically to tackle the low number of training images typically
characterising SAR ATR instead of working on the input data
directly [6].

In addition to deep learning architecture and input data changes,
improvements in classification performance have also been
achieved by providing extra information to a classifier. Some
methods to achieve this relied on information fusion, such as
combinations of deep learning methods with Gaussian mixture
models representating the SAR image, with texture information,
with different features or with decisions of other classifiers [7–9].

Alternative methods introduced tackled time variations in SAR
ATR by using several consecutive images of the target, rather than
performing classification on a single image. Classification of a
group of images (2–4 images) was carried out using a multiview
deep learning network or a long short-term memory (LSTM)
architecture [10, 11]. The LSTM is a recurrent neural network with
several inputs. The processing is such that the information given by
the first set of images is retained and used to process later images.
This architecture achieved a score of 99.90% on the MSTAR
SOC10 database [10]. However, these results were obtained with
groups of images with significantly different target orientations that
were not compatible with a realistic scenario for SAR images
acquired during a straight and short flight. Thus, these scores
cannot be directly compared to operational classification methods
based on a single image of the target.

Additional information, such as knowledge on the environment
during the SAR image acquisition, could help the classification
process. Indeed, sensitivity of SAR images to environmental
changes is a key challenge for SAR ATR algorithms. Changes of
the acquisition scenario can modify the SAR image substantially
due partly to the diffractive nature of the signal and lead to a drop
of the classification rate [2, 12, 13]. For these reasons, previous
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research has investigated ATR solutions that took into account a
variety of viewing conditions.

In particular, it was shown that the orientation of the target had
a strong influence on the target appearance [14, 15]. Improvement
in feature based classification performance was shown when an
estimate of the target orientation was provided to the classification
algorithm [16, 17]. Deep learning work also benefited from the
inclusion of target orientation knowledge to the network training.
For example, in addition to the main objective to optimise a loss
function on the target class, a secondary objective consisting in
determining the correct target orientation was included [18].
Although neural network have been previously used in the visual
domain to determine the orientation for face detection in the visual
domain for example, 180° uncertainty was less for human faces in
the visual domain than for rectangular targets in the SAR domain
[19]. In this case, the potential face was rotated and fed to a unique
detector not trained on the specific face orientation ranges. On the
contrary, 360° orientation determination has been rarely tackled
before for targets in the SAR domain [20, 21]. Most methods gave
only an approximation of the orientation modulo 180° or ranges of
possible orientation [22, 23]. Some methods were also based on
prior target class information to obtain a precise orientation [24,
25].

Another proposed solution to improve classification rates was
to generate and to add artificial images to the training set similar to
those often misclassified by the CNN in order to improve
robustness [26]. This approach was sufficient for few variables
such as the depression angle and the target orientation, but a high
number of variables cannot be addressed effectively in this manner.

In this paper, we propose a novel technique that, given a certain
target orientation, assigns its classification to the best suited CNN,
specialised in the recognition of targets in a similar range of
orientations, out of a group of CNNs with various range orientation
specialisations. Our approach relies on the determination of the
viewing conditions before choosing the most adequate trained
CNN for target classification. The technique presented here focuses
on the orientation of the target but could be extended to a wider
variety of conditions as long as enough examples with similar
conditions are present and referenced in the training set. Several
other parameters, e.g. the depression angle, background or
configuration could be selected in place of target orientation for the
neural network to focus on [12]. However, as target orientation has
been shown to have a great impact on classification rates and is
known with values ranging from 0° to 360° in the various datasets,
it is chosen to be the focus point of the Pose-informed architecture
[14–16, 18].

The Pose-informed method, first determines the target
orientation. The determination of the target orientation required for
the Pose-informed method is achieved over 360°. An alteration to
the traditional Hough transform method is proposed that reduces
the number of 90° errors (since the studied targets are mainly

rectangular) by studying the direction of the electromagnetic
energy backscattered by the target, giving a 180° angle
information. Training is then required in order to determine the
final orientation of the target with a CNN that distinguishes the
front from the back of the target. The proposed method improves
the precision of orientation determination compared to former
methods and does not require prior information on the target class.
Second, the image is supplied to a specialised CNN that has been
previously trained on SAR images with targets with similar
orientations. This CNN benefits from transfer learning from the
visual domain to the SAR domain before being trained on last time
on SAR images with targets in specific orientations.

In order to evaluate the Pose-informed method, a faire result
representation is proposed for classification rates on small datasets.
Indeed, in a small training dataset such as for the SAR ATR case
and with an even smaller validation set, it is possible that several
models reach the same best validation score with nonetheless
different testing scores. With this in mind, the worst and best
results on the testing set are given for all trained model achieving
the same best validation score, to give a range of possible
classification scores obtained on the testing set.

The orientation determination for the full 360° is determined
with a mean average error (MAE) of 11.94° and 14.34° on the
MSTAR SOC10 and Military Ground Target Dataset (MGTD),
respectively. The Pose-informed architectures outperforms the
simple CNN architecture on 4 out of the 5 datasets it was tested on
with respective deltas of 3.09, 2.14, 8.26, 1.77 and − 1.70% on the
MGTD, MSTAR SOC10, MSTAR EOC1, MSTAR EOC2 and
MSTAR EOC3. There is no drop in the classification rates for
targets with an orientation close to the border between the
orientation ranges of the specialised Pose-informed CNNs.

2 Dataset
The proposed architecture is tested on five different datasets. One
dataset is taken from the MGTD while the others are from the
MSTAR database.

The MGTD has been generated at Cranfield University [27, 28].
The emitted signal spanned the frequency range from 13 to 18 to
achieve a bandwidth of 5 GHz sampled with 4001 frequency
points. The resolution obtained is of three in range and 3.3 in cross-
range on model targets of around 1.5. Single polarised images
(horizontal–horizontal (HH)) are generated using the
backprojection algorithm [29]. Laboratory background is removed
by substracting all zero-Doppler contributions from the range-
profiles. A total of 1728 images are produced using a 20°
integration angle. The images in the dataset are organised in 24
sequences separated into a training and testing set to facilitate a
standard evaluation of SAR ATR algorithms. The training and
testing sets are made with different target configurations,
depression angles and laboratory backgrounds as presented in
Table 1. This dataset contains three target models: a T64, a T72 and
a BMP1.

The MSTAR database was developed by the US Defense
Advanced Research Projects Agency (DARPA) and the US Air
Force Research Laboratory (AFRL) [30]. All datasets were
collected in HH polarisation in X-Band with a 30 cm × 30 cm
resolution. The MSTAR dataset acquired under SOC consists of ten
targets. The training and testing sets were formed by selecting
images with differences in depression angle of 2° as shown in
Table 2. The three other MSTAR datasets have been acquired
under EOC and include four different targets. There is a greater
difference between the training and testing set for the EOC1,
EOC2, EOC3 with a 13° depression angle offset, respectively,
targets with target manufacturing differences and gear differences
between targets such as the addition or removal of a fuel barrel,
skirt or reactive armour.

In Table 3, the similarities and differences found in all datasets
are summed up in order to better understand the proposed
algorithm generalisation capabilities. 

Table 1 Description of the MGTD
Class Training (21.8°–23.4°) Testing (17.5°–20.3°)

Serial nb. Image nb. Serial nb. Image nb.
T64 63 72 9 36

64 72 10 36
65 72 15 36
66 72 16 36

                
T72 53 72 21 36

54 72 22 36
55 72 23 36
56 72 24 36

                
BMP1 49 72 27 36

50 72 28 36
51 72 29 36
52 72 30 36
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3 Deep learning pose-informed method
First, the CNN architecture retained in the Pose-informed
recognition solution is presented in Section 3.1. Second, we present
in Sections 3.2 and 3.3 the training of the CNNs, with transfer
learning from the visual domain as well as classical and SAR-
specific data augmentation to tackle the low number of images in
SAR ATR datasets.

3.1 Baseline CNN

The CNN used as a baseline for comparison is an AlexNet with
five convolutional layers and three fully connected layers [32].
This architecture was selected as it has been successfully adapted
to a variety of other applications in the past, such as human pose
estimation, video classification and semantic segmentation [33–
35]. The architecture of AlexNet is straightforward compared to
other recent networks, such as ResNet or GoogleNet [36, 37]. The
number of weights is lower than for deeper models such as
VGGNet [38]. A simple architecture is selected for ease of
implementation and the availability of pre-trained models. The
effectiveness of the architecture on its own is not the prime focus
of this study as our main goal is to investigate whether
performances of a chosen network can be improved using the Pose-
informed solution proposed and evaluated in the result sections of
this paper. Thus the AlexNet is deemed a good candidate with its
relative simplicity and limited number of weight.

As the original implementation of AlexNet is based on 1000
targets in ImageNet, the last fully connected layer is replaced to
bring down the 1000 output classes to the number of classes in our
dataset [32, 39]. The initialisation of the weights in the untrained
last fully connected layer of the network is narrow-normal [40].

Further work once the Pose-informed model is validated could
see the AlexNet replaced with shallower CNNs, trained to be
robust to SAR characteristics such as speckle [41, 42].

3.2 Transfer learning training

In order to reduce training time and compensate for the low
number of images available compared to usual deep learning
training strategies, transfer learning is applied from a pre-trained
AlexNet on the ImageNet [39] to the appropriate SAR (or ISAR)
database presented in Section 2. The training method is the
stochastic gradient descent with momentum method [43]. As per
standard transfer learning, the network is first trained on the
ImageNet visual database and is trained again on the SAR data.
The second training focuses on the newly created last layers that
were modified to deal with the number of final targets. Out of all
training data described in Tables 1 and 2, 90% is allocated for
training of the neural network while the remaining 10% form the
validation set. The CNNs performing the best on the validation set
are selected to classify the testing set.

The parameters seen in Table 4 were first initialised with
empirical values and then refined with a random grid search. A
decaying learning rate is chosen so that the learning rate diminishes
as the loss becomes minimal. The learning rate is one of the most
sensitive training parameters for a CNN: if the learning rate is too
low, then the CNN is not able to learn the correct weights but if the
learning rate is too high, then the weights cannot settle and the loss
can increase. The learning rate is different for the various layers of
the network. Indeed, for transfer learning the training is mainly
focused on the deepest layers [44]. As the network is from a
different modality, the lower layers still need light training. Layers
higher than layer 9 have a higher learning rate with the highest
learning rate for the last layer. The learning rate λ0 is researched
extensively using a random grid search and is given in Table 4. The
learning rate is chosen so that it maximises the classification score
on the validation set after five training epochs. An epoch consists
of a training period while all training images have been through the
network once. The values of the training parameters are
summarised in Table 4.

All parameters are the same for all trainings in the different
datasets, apart for the learning rates given in Table 4 in order to
evaluate the generalisation capabilities of the method across varied
datasets with fixed parameters. This also has the advantage of
minimising the risk of overfitting by adjusting the CNNs
parameters too finely.

3.3 Data augmentation

Deep learning performance is significantly dependent on the
number and variety of the training images. This problem can be
partially tackled with data augmentation, which consists of adding

Table 2 Description of the MSTAR SOC10, MSTAR EOC1,
MSTAR EOC2 and MSTAR EOC3

MSTAR SOC10
Class Training (17°) Testing (15°)

Serial nb. Image nb. Serial nb. Image nb.
BMP2 sn_9563 233 sn_9563 196
BTR70 sn_c71 233 sn_c71 196
T72 sn_132 232 sn_132 196
BTR60 sn_k10yt7532 256 sn_k10yt7532 195
2S1 sn_b01 299 sn_b01 274
BRDM sn_E71 298 sn_E-71 274
D7 sn_92v13015 299 sn_92v13015 274
T62 sn_A51 299 sn_A51 273
ZIL sn_E12 299 sn_E12 274
ZSU sn_d08 299 sn_d08 274

 

 
MSTAR EOC1 – depression variant

Class Training (17°) Testing (30°)
Serial nb. Image nb. Serial nb. Image nb.

2S1 sn_b01 299 sn_b01 288
BRDM sn_E-71 298 sn_E71 289
T72 sn_132 232 sn_A64 288
ZSU sn_d08 299 sn_d08 288

 

 
MSTAR EOC2 – version variant

Class Training (17°) Testing (15° and 17°)
Serial nb. Image nb. Serial nb. Image nb.

BMP2 sn_9563 233 sn_9566 196 + 232 = 428
sn_c21 196 + 233 = 429

BRDM sn_E-71 298 — —
BTR70 sn_c71 233 — —

sn_812 195 + 231 = 426
sn_A04 275 + 299 = 573

T72 sn_132 232 sn_A05 274 + 299 = 573
sn_A07 274 + 299 = 573
sn_A10 271 + 296 = 567

 

 
MSTAR EOC3 – configuration variant

Class Training (17°) Testing (15° and 17°)
SERIAL NB. IMAGE NB. SERIAL NB. IMAGE NB.

BMP2 sn_9563 233 – –
BRDM sn_E-71 298 – –
BTR70 sn_c71 233 – –

sn_s7 191 + 288 = 419
sn_A32 274 + 298 = 572

T72 sn_132 232 sn_A62 274 + 299 = 573
sn_A63 274 + 299 = 573
sn_A64 274 + 299 = 573
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new images to the training set, which are created by deforming
original images from the training set and thus provide more
training examples. Networks on all dataset benefit from translation
data augmentation. The input images are first resized to 227 × 227
pixels from an original size of 128 × 128. Each image is then
translated of a vector
[x, y] ∈ ℝ2, [x, y] ∈ [[ − 100; 100], [ − 100; 100]]. In practice, this
means that the target is always entirely in the image even if the
target was not exactly centred to begin with. The areas of the
images not assigned to a value are zero-padded to retain the
original size of the image.

Networks trained on the MGTD benefit from additional SAR
specific data augmentation. This technique relies on the artificial
addition of Weibull distributed noise to the radar returns before
processing the SAR images to simulate a noisier acquisition [5].
Four different noise distributions with various signal to noise ratio
(SNR) are investigated, increasing five times the original amount
of training images of the MGTD.

4 Pose-informed method
The Pose-informed deep learning architecture in Fig. 1 is proposed
to handle target classification. The first step consists in the
determination of the target orientation using a Hough transform
and a CNN, as described in Section 4.1. Once the orientation CNN
is found, the appropriate Pose-informed CNN is used to determine

the target class, as explained in Section 4.2. This Pose-informed
CNN is specifically trained on an orientation range that includes
the predicted orientation. There are n Pose-informed CNNs, each
trained on 360/n degree wide orientation range, with n between 2
and 8.

4.1 Target orientation determination

The determination of the target orientation is the first-step of the
Pose-informed method. To determine the orientation modulo 180°
of the target, several methods can be used. Statistical methods are
precise, however they require training which introduces additional
randomness to the process, for example the initialisation of an
expectation-maximisation algorithm [21, 24, 25]. Moreover, the
values of the estimated distributions are target specific. This
approach requires the target classification task to be carried out
before the orientation determination. For these reasons, a direct
pose estimator was selected, at the expense of a small precision
loss. Methods not relying on the evaluation of a statistical
distribution have already been investigated, for example by
estimating a bounding box or a Hough transform considering
several poses [22]. Here, a CNN is used to differentiate the front
from the back of the target once the orientation modulo 180° is
determined.

An alternative solution could be a CNN handling completely
the orientation determination. A CNN on the AlexNet model was
created with a regression layer to that end, but without success. As
the discontinuity at 0° and 360° complicated the loss, another CNN
was tested with two outputs representing the cosine and sine of the
orientation angle so that the loss could be continuous. This solution
did not give good results either. It could be because each output
could independently be associated with two target orientations.
Though, some deep learning methods have had some success
retrieving the orientation of text in images in the visible domain
[45]. This method relies however on the determination of an
encapsulating box on the zone of interest that works well for text
but has been shown to be a rather poor SAR target orientation
determination (standard deviation of 14.02° against 8.12° for the
encapsulating box and the Hough transform in [22], respectively).

The orientation is found in two steps. First, the orientation is
determined modulo 180° with a Hough transform by relying on the
rectangular shape of the target. Once the image is rotated with the
determined angle, the image contains a horizontal target. This
rotated image is fed to the CNN which determines the direction of
the target by recognising the front from the back of the target. With
these two steps, the full 360° orientation of the target is
determined. The image of the target is then analysed by the
appropriate Pose-informed CNN in Fig. 1b.

In this section, the pose estimation is investigated using a
simple segmentation method and improving the orientation
determined with a Hough transform by using prior knowledge that
targets have a rectangular shape.

4.1.1 Segmentation and 180° target orientation
determination: The objective of the segmentation for pose
estimation consists in extracting a precise contour of the target so
that the target orientation can be accurately estimated. In SAR
images, one or two edges of the target are usually well defined
depending on the electromagnetic wave illumination direction.
Once detected with the Hough transform, the longest straight edge
sets the target orientation. The segmentation process starts by
applying a Gaussian filter to smooth the picture and obtain a
simpler target shape to segment. After Gaussian filtering, the image
is binarised using a threshold. This threshold is chosen to keep only
65% of the brightest pixels by computing the intensity cumulative
distribution in images from the MSTAR database. It is increased to
88% in the MGTD as the target occupies more space and the
average intensity is higher. The resulting binary image is shown in
Fig. 2b. To smooth the edges of the target, morphological filtering
is applied with two steps of dilation and one of erosion. Lastly, the
smaller blobs are suppressed to keep only the largest before
extracting its contour as shown in Fig. 2c.

Table 3 Databases comparison
Environment MSTAR MGTD

Outside Laboratory
depression angle
difference between
training and testing

2°–13° (EOC1 only) 1.5°–5.9°

differences between
training and testing

depression angle,
target configuration

and variant

depression angle,
target configuration

and laboratory
background

polarisarion HH HH
resolution 30 cm 3.0 cm × 3.3 cm
approximate resolution
to target length ratio

3 × 10−2 2 × 10−2

average SNR 35 dB [31] 57 dB [5]
 

Table 4 AlexNet training parameters
Parameter Value
learning rate (up to layer 9) 1 ⋅ λ0

learning rate (after layer 9) 6 ⋅ λ0

learning rate (last layer) 12 ⋅ λ0

initial learning rate λ0 MSTAR: 8.0 × 10−5,
— MGTD: 1.2 × 10−5

epochs number 75
learning rate dropping rate 0.75
number of periods before dropping the learning
rate

7

batch size 15
 

Fig. 1  Overview of the Pose-informed architecture
(a) Orientation determination (Hough and CNN), (b) Pose-informed CNN
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Once the image is segmented, a Hough transform is applied to
the target contour. Only one peak, the brightest of the resulting
matrix is kept. It corresponds to the longest line that can be
superimposed on the target contour in Fig. 2d. The orientation of
the resulting line is retained as the orientation modulo 180° of the
target.

Owing to the difficulty to segment a target with poorly defined
edges and a varying illumination, the long edges were not always
detected as lines. These lines can be broken in several parts or not
being detected at all when the illumination is focused on one of the
small edges. If the small edge is the only one determined as a line
by the Hough transform, then the estimated orientation is off by
roughly 90°. We limit these recurring errors, by using prior
knowledge on the rectangular shape of the target and that the
intensity of the target is higher on average than that of the noise
and clutter in both the MSTAR and the MGTD. Once the
orientation of the target is computed by the Hough transform, the
image is rotated to compensate the target orientation. If the
orientation is off by 90°, then the target is vertical instead of
horizontal. A vertical ratio of the sum of intensities of the pixels
contained in two rectangles of fixed size is computed with either a
0° or 180° direction, respectively, as seen in Fig. 3. This ratio is
expressed in (1).

H(Iθ^) =
∑i = c1 − m

c1 + m ∑ j = c2 − s
c2 + s Iθ^(i, j)

∑i = c1 − s
c2 + s ∑ j = c2 − m

c2 + m Iθ^(i, j)
(1)

where θ
^
 is the estimation of the target orientation, Iθ^ is the image

resulting from the rotation of the original image of an angle −θ
^
,

H(Iθ^) is the vertical ratio of the target computed for the image Iθ^,
c1, c2 are the abscissa and ordinate defining the image centred (once
the target centred), s, m are half the length of the short and long
side of the rectangle, respectively.

After some testing on the training sets, the cut-off value of the
vertical ratio is determined to be 1.20 in the MGTD and 1.09 in the
MSTAR database. The difference could be due to different target
material as the MGTD targets are mainly in plastic. If the vertical
threshold is higher than that threshold, it is assumed that the
estimated orientation is off by 90° and this value is added to the
original orientation estimation.

4.1.2 360° target orientation determination: The Hough
transform provides an estimate of the orientation of the target
modulo 180°. However, features are different for the front and the
back of the target. Very few methods address the determination of
the exact pose of the target over an entire sector of 360° [20, 21].
The Pose-informed classification method requires prior knowledge
on the 360° orientation as the image will be distributed to a CNN
trained on targets with similar orientations. In order to determine
the direction of the target, a CNN similar to that proposed in
Section 3.1 is used. This CNN, given a rotated input image with a
horizontal target, determines if the final target orientation is α or
α + 180 with α the target orientation given by the Hough
transform.

The CNN used for this analysis is the same AlexNet as
presented in Section 3.1. The only difference is that the last fully
connected layer provides only two classes, i.e. front or back of the
target facing the right side of the image. The two classes are
labelled 0° or 180°. The training parameters are the same as in
Section 3.1. For training, rotated images with a horizontal target
are supplied to the network from the appropriate training dataset. In
order to maximise the training data, two types of images are
supplied:

• Images rotated with the ground truth orientations: each image is
rotated using the ground truth angle to produce two new images
with two different target orientations consisting of a 0° or 180°
direction.

• Images rotated with the orientation found with the Hough
transform: the image is rotated according to the orientation
determined with the Hough transform. The 0° or 180° labels are
assigned according to the closest label orientation to the Hough
transform orientation, as can be seen below

direction label

∈ {0°} if θ − θ
^ < 90 or θ − θ

^ − 360 < 90
{180°} else .

(2)

with θ
^
 the estimated target orientation after a potential 90°

correction as in (1).

Rotation data augmentation is also included with a random rotation
between −15° and 15° of the training data in order to make the
CNN robust against potential orientation estimation errors made by
the Hough transform.

4.2 Pose-informed architecture

Once the orientation of the target is estimated, the image is
analysed by the appropriate CNN from the Pose-informed
architecture. An example of the separation of the Pose-informed
CNNs, each focusing on a specific orientation range, is shown in
Fig. 4. 

Instead of training each Pose-informed CNN directly, a parent
CNN is trained on the full SAR training set with all possible target
orientations as shown in Fig. 5a. The evolution of the validation
loss reflecting the modality transfer learning is shown in Fig. 6. A
second transfer learning step is the orientation-speciality transfer

Fig. 2  Contour acquisition and orientation determination of the target
(a) Original image, (b) Image after the Gaussian filtering, thresholding, morphological
filtering and hole filling, (c) Small blobs removal, (d) Orientation of the target contour

 

Fig. 3  Location of the areas whose summed intensities are used to
compute the vertical ratio and tackle 90° errors
(a) Image of a rotated and centred target in the MSTAR dataset at 0°, (b) Location in
the MSTAR of the rectangles used to compute the vertical ratio

 

Fig. 4  Orientation ranges for an architecture with six Pose-informed
CNNs
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learning shown in Fig. 5b. The parent CNN is re-trained on a
specific orientation range by supplying SAR images with a targets
in a specific orientation range to become a specialised Pose-
informed CNN. The operation is repeated until all n Pose-informed
CNNs composing the full architecture are obtained. An example of
the validation loss during the orientation-speciality transfer
learning is shown in Fig. 6.

This transfer learning by stage is a training strategy consisting
of modality transfer learning followed by an environmental
specific transfer learning, (in this case orientation-specific) to make
the Pose-informed CNNs fully aware of the feature changes in a
specific orientation. Transfer learning by stage optimises the
number of images that the Pose-informed CNNs have at their
disposal for training because the more common SAR features are
learned by the parent CNN, while the Pose-informed CNNs focus
on finer and more specific features during the orientation-speciality
transfer learning.

The same AlexNet presented in Section 3.1 was used and
trained with the same learning rate. With usual transfer learning,

the Pose-informed CNN would be trained directly on the ISAR
images in a specific orientation range. Instead, with transfer
learning by stage, the Pose-informed CNN is trained on the full
ISAR training set before training on the ISAR images in a specific
orientation range. The evolution of the loss during transfer learning
by stage with the first traditional transfer learning (from the visual
domain to the SAR domain) and the orientation-speciality transfer
learning is shown in Fig. 6. The loss corresponding to the
orientation-speciality training has a lower starting value than that
for the modality transfer learning, as the starting network already
underwent an initial training in the SAR domain. At the end of the
second training, the validation loss is lower than that at the end of
the modality transfer learning (<0.01 compared to 0.05).

The first stage of transfer learning makes the Pose-informed
CNNs learn standard SAR features. The second stage facilitates
their specialisation in a particular orientation range. This method
optimises the use of all training samples and promotes the learning
of a specialised CNN. Results suggest it becomes possible to learn
features that are present in the overall training set but are sparse in
the specialisation areas.

4.2.1 Computation of the result range: It is not possible to have
a proper separation between the training and the validation set in
the MSTAR database because the MSTAR SOC10 and EOCs
provide only one sequence of images for each target in the training
set. Thus even if part of the training set is dedicated for validation
only, a high validation score does not prevent overfitting as images
are extremely similar. Indeed, images are formed with the same
target, in the same configuration, with the same depression angle
and were collected at the same time period. The MGTD instead
provides four series of images, for each target with different
configurations and taken at different times, of which one could be
dedicated to validation purposes. However, the same procedure
was applied to all datasets and 10% of the training set was
randomly allocated as validation set to guarantee a uniform testing
method across all datasets.

As a result, CNNs with the same validation score can have
different testing results. This is especially true in datasets with a
small number of images in the validation set, and under the EOCs
for which the difference between the training and testing set is
greater. In an attempt to report the results fairly, a range of the
scores achieved on the testing set is given rather than a single
percentage. The assumed best performing CNNs selected are those
with the highest classification score on the validation set. The
lowest and highest scores achieved on the testing set are then
reported. The range result of the pose informed architecture has to
take into account the different networks involved. For each
orientation range, the best and worst performing CNN with the
highest validation score are retained. The combination of the worst
CNNs in each orientation range into one Pose-informed model
gives the minimum of the classification rate achievable. The same
process is adopted for the best CNNs in each orientation range.

In terms of computational complexity, it can be assumed that
the segmentation, relying on thresholding mainly, has a low
influence compared to the use of the two CNNs that enable the full
orientation determination and classification. As a result, we can
approximate the algorithm complexity to be close to 2.c, c being
the CNN complexity. In this paper, it is an AlexNet that is used that
requires 725M floating point operations per seconds for a total of
61M parameters [46]. Further work could be dedicated to see how
the Pose-informed architecture scales with shallower and less
complex networks.

5 Results of the orientation determination
As described in Section 4, the orientation of the target has to be
determined before it can be properly classified by the Pose-
informed method. In this section, the target orientation estimation
obtained with the improved Hough transform and the direction
CNN is evaluated.

Fig. 5  Training by stage of the Pose-informed CNN. A modality transfer
learning followed by an orientation transfer learning
(a) Modality transfer learning, (b) Orientation speciality transfer learning

 

Fig. 6  Evolution of the validation loss during transfer learning
(a) Evolution of the validation loss during the modality transfer learning of the
network, (b) Evolution of the validation loss during the orientation-speciality transfer
learning of the network

 

1654 IET Radar Sonar Navig., 2020, Vol. 14 Iss. 11, pp. 1649-1658
© The Institution of Engineering and Technology 2020



5.1 Target 180° orientation determination

The Hough transform achieves better results than those already
reported (7.52° in Table 5 against 11.7° [47]) on the MSTAR
SOC10 data, which shows the importance of a precise
segmentation for this method to work well. The Hough transform
scores could appear better if the best pose out of several potential
poses was considered as in [22]. It achieves similar results to
various geometrical pose estimation methods (MAE of 6.76° in
Table 5 against 5.91° [47]).

The standard deviation is however higher for methods based on
entropy or wavelets for a 180° estimation [24, 48]. The Hough
transform method does not require training beforehand, whereas
the entropy method needs training beforehand to optimise a
maximum likelihood prediction of the entropy over the training
images, and the wavelet method outperformed our method only
when errors due to slant plane projection were compensated for
with additional training. If such methods were chosen, then two
trainings would be necessary in total as we would still need to lift
the 180° ambiguity.

Overall, the best scores are achieved for the direct Hough
transform with a vertical ratio. Indeed, the higher the error, the
most likely the ratio will be over the threshold set in Section 4.1.1.
Thus, the vertical ratio tackles strong errors around 90°.

The errors in the 0° − 40° range are, as in the MSTAR, mostly
due to differences in illumination inside the target. Some areas are
not included in the segmentation due to a too low intensity. This
fake edge is picked up by the Hough transform as the line is longer
than the real edge, being more or less on the target diagonal as seen
in Fig. 7. This worsens the first estimation of the target orientation.

The best performing algorithm in Table 6 is the direct Hough
transform with the vertical ratio. 

5.2 Target 360° orientation determination

The orientation CNN distinguishing the target front from the back
is evaluated on the testing data consisting of images rotated using
the Hough transform estimation and thus with potential orientation
errors. The target is not always horizontal in the images fed to the
CNN.

When the difference between the final orientation and the
ground truth angle is <90°, it is assumed that the CNN determined
the correct target direction (front or back). On the contrary, if the
error is >90°, then the error could be minimised by adding 180° to
the target orientation. Metrics to evaluate the 360° orientation
determination are given in Table 7 for the MSTAR and the MGTD.

In the two databases, the root mean square error (RMSE)
increased compared to the previous section as the highest errors
can now attain 180° instead of only 90°. The direction of the target
is harder to determine in the MGTD images than in the MSTAR
SOC10 AND EOC1 datasets. The full 360° orientation
determination has rarely been investigated in the MSTAR datasets
and, when it has been, it was often not on the standard datasets
defined in Section 2. A statistical method has been tested on the
MSTAR EOC2 and EOC3 [21]. Results were given with the
Hilbert-Schmidt distance as in (3) with an equivalent error in
degrees

dHS
2 = 4 − 4cos(θ − θ

^) (3)

where θ the same as in (1) and θ
^
 is the 360° estimated target

orientation.
However, as the cosine is not a linear function, the MAE cannot

be obtained by a direct inversion, thus the squared Hilbert-Schmidt
distance obtained with our method is calculated in order to be able
to compare the results with this statistical method. A value of 0
corresponds to a perfect estimation of the orientation, 8
corresponds to the highest possible error equal to 180°. An average
distance of 0.8 was achieved on the MSTAR EOC2 and 1.0 on the
MSTAR EOC3 dataset, while the statistical method reported a
distance of 1.7 on the MSTAR EOC2 and 2.0 on the MSTAR
EOC3 dataset. The statistical method also assumed knowledge of

the target type to achieve those results. The proposed method is
thus more precise and requires less prior information.

6 Results of the Pose-informed architecture
6.1 Study of the potential border effects

In order to study the classification border effects between the
different orientation ranges of the Pose-informed method, we plot
the score of the correct class according to the difference between
the target orientation and the closest orientation range border in
Fig. 8 for each target in the MSTAR SOC10 testing set. Each point
represents the classification result. When the distance between the
target orientation and closest orientation range border is 0, the
target is aligned with the border. For this analysis, a total of five
Pose-informed CNNs are used as this number n of orientation
ranges gives the best results overall in Section 6.2. The total span
of each orientation range is thus 72°. It appears that there is no
error increase, nor loss of confidence of the Pose-informed CNN
while classifying targets with an orientation close to the border. We
did not find a classification border effect for the Pose-informed
method.

6.2 Results of the pose-informed architecture compared to
the baseline CNN

Each table relates the scores achieved for the standard CNN and
the proposed Pose-informed architecture. Results are reported for
the MSTAR SOC10, MSTAR EOC1, MSTAR EOC2, MSTAR
EOC3 and the MGTD in Table 8. The baseline CNN trained on the
MSTAR SOC10 has no range for the standard CNN since the
larger number of images in the validation set enabled a finer
distinction between scores and only one CNN achieved the highest
validation score.

The best rates for both methods on all datasets are: 97.56% for
the standard CNN against 99.13% for the Pose-informed on the
MSTAR SOC10, 85.06% against 88.97% on the MSTAR EOC1,
92.32% against 94.09% on the MSTAR EOC2, 95.24% against
93.54% on the MSTAR EOC3, 91.20% against 94.29% on the
MGTD. Overall, the Pose-informed architecture outperforms the
standard method, even though the amount of training data for the
orientation-speciality transfer learning was very limited.
Concerning the MSTAR EOC3, the Pose-informed architecture
performs less than the standard CNN with a drop of 6% in the
worst case scenario with two Pose-informed CNNs, and 3% for
five Pose-informed CNNs.

The scores of the five CNNs Pose-informed method can also be
compared with a two CNNs Pose-informed method to evaluate the
importance of a higher number of CNNs and thus number of
orientation ranges. In the MSTAR SOC10, the Pose-informed
method with five CNNs performs 0.17% better than the Pose-
informed method with only 2 CNNs. Similarly, it performs 4.86%
better in the MSTAR EOC1, 0.79% better in the MSTAR EOC2,
3.14% better in the MSTAR EOC3, 3.09% better in the MGTD.
The five CNNs Pose-informed architecture achieves better results
than the two CNNs Pose-informed architecture. The two CNNs
Pose-informed architecture has less possibility to adapt to a
specific aspect angle as the images provided for training are less
orientation specific. It would seem that the proposed method has
indeed been able to learn extra information about specific
orientations even without additional data by applying transfer
learning in two stages. The Pose-informed method would probably
significantly benefit from additional data because of the low
number of images in the second training set resulting from the
aspect angle partition of the training data.

It seems that the Pose-informed architecture with five CNNs
performed the best overall. The highest score of the five orientation
ranges Pose-informed architecture is always higher than that of the
standard CNN with the exception of the MSTAR EOC3 dataset.
The minimum score of the Pose-informed architecture is higher to
that of the standard CNN in the MGTD, MSTAR SOC10, MSTAR
EOC1. The lower scores of the Pose-informed architecture are less
than that of the standard CNN in the MSTAR EOC2 and MSTAR
EOC3. Thus, even if the worst performing CNNs from the Pose-
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informed CNNs set are selected out of the CNNs with the best
validation score, the method still achieves higher scores than the
standard CNN method in three datasets out of 5. The worse results
are achieved on the MSTAR EOC3 and this could be caused by the
orientation determination results which achieved the worse results
on this database in Section 5.2. If the target in one orientation is
analysed by the CNN from another orientation range, the results

could be worse than those of a standard CNN trained on the whole
SAR training set.

6.3 Influence of the target orientation determination

In order to evaluate the influence of the precision of the orientation
determination, the classification loss is evaluated when the
classifying Pose-informed CNN is chosen randomly instead of
being chosen according to the target orientation. Results are given
on the MGTD in Table 9. The loss in the classification score
increases with the number of Pose-informed CNNs. Indeed, as the
number of Pose-informed CNNs increases, they become more and
more specialised. If the full architecture contains only 2 Pose-
informed CNNs, an error in the orientation range assignment
results in the neighbouring range CNN classifying the image.
Although with more Pose-informed CNN, the CNNs become less
aware of the specificities of the further target orientations. Thus,
the prospective studies could focus on the precision of the
orientation determination which becomes crucial when it is an
input for the classification.

7 Conclusion
In this paper, we propose a novel Pose-informed deep learning
architecture which takes into account the target orientation in the
classification process by SAR images. The target orientation is
determined first, followed by the target classification using a CNN
specialised in a certain target orientation range. This architecture is
tested on five SAR and ISAR datasets that differs in terms of
resolution, SNR, depression angle and acquisition environment.
The CNNs, composing the architecture, are trained with nearly
identical parameters and are generalised well over the two datasets.

The orientation determination is handled over 360° with a
proposed association between a Hough transform, a study of the
image intensity to limit 90° errors on rectangular targets and a
CNN recognising the target direction. This orientation
determination performs better over 360° and does not require prior
knowledge on the target type, compared to existing statistically
based methods.

The proposed Pose-informed architecture performs better than
the standard CNN, except on the MSTAR EOC3 which has the
poorest precision for orientation determination. It achieves
respectively 99.01, 85.58, 94.09, 93.54 and 94.29% on the MSTAR
SOC10, EOC1, EOC2, EOC3 and MGTD, with a delta compared
to the standard CNN of + 2.14%, + 8.26%, + 1.77%, − 1.70% and + 
3.09%.

It can be noted that in the five Pose-informed CNNs,
classification errors do not depend on the closeness of the target
orientation with the range border of the trained Pose-informed
CNN. However, if the classification is systematically attributed to a
CNN specialised in a non-relevant orientation range, the
performances drop.

An area of improvement could be to take into account not only
the orientation, but also other characteristics of the radar images.
Further work could focus on the evaluation of the robustness of the
model against occlusion by masking partly the target, against noise
or the adaptation of the model to SAR characteristics such as
speckle. In order to compare the robustness of several methods, the
proposition of a standard dataset, either a new or an altered
previous dataset, with different parameters such as resolution,
speckle amount, occlusion would prove extremely useful.
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Table 5 Error statistics in the target 180° orientation
determination in the MSTAR SOC10 database
Method to estimate the target
orientation

Mean σ MAE RMSE

direct Hough transform on the threshold
segmented target

4.78 16.62 7.80 17.30

direct Hough transform on the threshold
segmented target with vertical ratio

3.88 13.81 6.76 14.34

 

Fig. 7  Potential drawback of the averaged Hough transform using the
wrong edge of the target

 
Table 6 Error statistics of the target 180° orientation
determination in the MGTD
Method to estimate the target
orientation

Mean σ MAE RMSE

direct Hough transform on the threshold
segmented target

2.98 16.59 6.79 16.85

direct Hough transform on the threshold
segmented target with vertical ratio

2.31 7.86 4.37 8.14

 

Table 7 Error statistics of the target 360° orientation
determination in the MSTAR database and MGTD
Database Mean σ MAE RMSE
MSTAR SOC10 −0.51 33.56 11.84 33.55
MSTAR EOC1 −0.08 24.71 11.23 24.70
MSTAR EOC2 −4.13 52.44 19.58 52.60
MSTAR EOC3 −5.84 60.97 24.51 61.25
MGTD −1.46 45.29 14.34 45.28

 

Fig. 8  Analysis of the correct target score and errors according to the
distance to the orientation range border on the MSTAR SOC10 testing set
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