

City, University of London Institutional Repository

Citation: Berry, C. & Komninos, N. (2022). Efficient Optimisation Framework for

Convolutional Neural Networks with Secure Multiparty Computation. Computers and
Security, 117, 102679. doi: 10.1016/j.cose.2022.102679

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/27829/

Link to published version: https://doi.org/10.1016/j.cose.2022.102679

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Efficient Optimisation Framework for Convolutional
Neural Networks with Secure Multiparty Computation

Cate Berry and Nikos Komninosa,1

aSchool of Mathematics, Computer Science and Engineering, City, University of London

Abstract

In recent years, deep learning has become an increasingly popular approach to mod-
elling data, due to its ability to detect abstract underlying patterns in data. Its practical
applications have been limited, however, by data privacy concerns, restricting its use in
major sectors such as healthcare and banking. Secure multiparty computation (MPC) is
a scheme which allows multiple parties to perform joint computations over private data,
while keeping the content of their data secret. MPC can enable privacy-preserving ma-
chine learning, however current implementations are rarely applied in practice due to
the prohibitively high cost of performing thousands of computations and transmitting
data between parties. In this paper we propose a framework incorporating various opti-
misation approaches from the wider field of privacy-preserving deep learning, including
privacy-preserving batch normalisation and polynomial approximation of activation func-
tions, and evaluate their performance when applied to a privacy-preserving convolutional
neural network (CNN), discussing the trade-off each offers in terms of their accuracy and
efficiency. We experiment with parametric polynomial (PPoly) activations by deriving
polynomial approximations to activation functions and allowing the network to tune the
coefficients as learning weights. We will show that, in shallow CNNs, the application of
batch normalisation in combination with a PPoly activation layer can result in faster con-
vergence, with testing accuracy exceeding that achieved with an unencrypted network, at
the cost of longer running times.

Keywords: secure multiparty computation, convolutional neural network,
polynomial approximation, parametric polynomial, secret sharing

1. Introduction

In recent years, the potential power of machine learning (ML) and ar-
tificial intelligence (AI) to positively impact decision-making has become
increasingly apparent across a range of application domains. Due to ad-
vances in computer hardware and the increased availability of large amounts
of data, the application of deep learning with neural networks in particular

1Email: catherine.statham@city.ac.uk, nikos.komninos.1@city.ac.uk

Preprint submitted to Computers and Security March 4, 2022

has become more feasible, generating impressive results in fields from ma-
chine translation to medical imaging [1], [2]. Deep learning algorithms can
infer features and structure in the input data that may not be discernible to
the human eye and use these to produce abstract representations that cap-
ture the variation in the input data. One of the most popular deep learning
algorithms is the convolutional neural network (CNN). These networks can
achieve state of the art performance in various applications and are partic-
ularly suited to imaging tasks due to their ability to learn the underlying
patterns and features of an image without human supervision or input. In
this study, we focus on training and testing privacy-preserving CNNs in par-
ticular. This allows us to present results that more closely resemble those
that may be obtained in a real-world scenario in industry or academia, where
it is not uncommon to train or fine-tune a CNN. This also allows us to com-
pare our results to existing work in the field, where CNN architectures and
the MNIST dataset [3] often provide a baseline set of results. It should be
noted, however, that the techniques we develop are not limited to CNNs and
may be similarly applied in other deep learning architectures.

In most cases, the power of a machine learning model is heavily depen-
dent on the availability of a reliable source of data that the model may be
trained and tested upon. Training a model on larger quantities of data usu-
ally results in better generalisation to unseen data, making the model more
accurate and trustworthy when applied in practice. In many application
domains, however, the nature of the problems to be addressed can prohibit
the acquisition and usage of such data. For example, medical researchers
may wish to build an ML model to predict patient diagnoses based on their
reported symptoms but may be prevented from doing so by the need to
preserve the privacy and confidentiality of patient medical history data.

The privacy of sensitive data has historically been ensured through the
use of cryptographic techniques such as encryption, with different schemes
providing varying levels of security. In an ML setting, however, most of
the classical encryption techniques are not applicable due to the need to
perform computations over private input data, which is necessarily obscured
by the encryption process. There exist several cryptographic primitives,
however, that are suited to privacy-preserving ML and AI. These include
Secure Multiparty Computation (MPC), a generic cryptographic primitive
which allows a number of independent parties to perform computations over
private data held in a distributed fashion between them [4].

In real-world applications of privacy-preserving deep learning with neural
networks, the most important considerations, alongside security, are the
accuracy and efficiency of the model to be deployed. Parties participating

2

in MPC schemes generally incur far higher computation and communication
costs than in traditional ML schemes, prohibiting the usage of MPC in most
practical applications. In this study, we develop and evaluate approaches
for optimising the training of privacy-preserving CNNs with MPC. We hope
that the results we present and the conclusions we draw give fresh insight
into the improvements that may be made to the feasibility and practicality
of implementing privacy-preserving neural networks.

1.1. Contributions

• We show that the choice of both the activation function used in privacy-
preserving CNNs as well as the method of approximation used has a
large impact on the performance of the neural network in practice, in
terms of both the efficiency and accuracy of the network. We provide
insights into the effect of using polynomials of differing degrees and
methods of initialisation, some of which are novel in a secret-sharing-
based MPC scheme for privacy-preserving CNNs.

• As the first study to evaluate various methods of polynomial approx-
imation in conjunction with different types of activation functions in
the context of secret-sharing-based MPC, we provide experimental re-
sults which demonstrate the strengths and limitations of these different
combinations. We additionally show that the techniques used may be
applied in the both the training and inference phases of the application
of privacy-preserving CNNs, preserving the accuracy of computations
and mitigating the impact on the efficiency of the network to a greater
degree than previous implementations.

• We implement and evaluate parametric activation functions, present-
ing an effective technique, novel in the context of MPC schemes, where
an activation function is initialised with a polynomial approximation
and tuned alongside the other weights of the CNN during the training
phase. This method is shown to outperform the other methods tested
in our experiments, achieving the highest recorded accuracy with a
low-degree polynomial.

1.2. Paper Organisation

The sections of this paper are organised as follows. Chapter 2 provides an
overview of existing work in this domain. In Chapter 3 we present a formal
description of our proposed framework and detail the theoretical background
and the methods used in its development. Chapter 4 outlines the testing

3

methodology, the experimental results achieved, and a discussion of our
findings. Conclusions and proposals for future work are given in Chapter 5.

2. Related Work

There exists a large and still growing body of research into the opti-
misation of non-privacy-preserving neural networks, however research into
the application of these methods to privacy-preserving neural networks is
sparse. In this section we outline some ways in which neural networks may
be optimised, the limitations of MPC with respect to machine learning and
optimisation, and the ways in which prior work has attempted to overcome
these limitations. A summary of results achieved by related studies on poly-
nomial approximation of activation functions can be seen in Table 1.

2.1. Optimisation of Neural Networks

As mentioned previously, a convolutional neural network (CNN) is a
specific type of feed-forward neural network which possesses certain archi-
tectural features. The first and defining layer of a CNN is the convolutional
layer. Layers of this type are comprised of a set of learnable ‘filters’. These
are small windows that are passed over the width and height of the input
volume, with the weights of the filter convolved with the input values at
each spatial location. An activation layer is usually placed after each convo-
lutional layer. These are non-linear functions which perform a computation
over every individual input value and feed the output forward to the next
layer. These layers therefore allow the network to filter out information be-
ing passed from neurons that do not meet the activation threshold, with the
combination of multiple non-linear layers enabling the network to develop
more expressive representations of the data. If a linear activation function
is used then, even with multiple layers, the network can still only learn lin-
ear representations of the data. This severely limits the possibilities of the
network to learn, since the power of a neural network is derived from its
ability to detect and represent complex and non-linear patterns and fea-
tures in data. In fact, the use of a non-linear activation function means
that neural networks with as few as two hidden layers can be proven to be
universal function approximators [5]. Thus, the choice of activation function
may ultimately be considered the most important factor in the successful
implementation of a neural network.

As the research in the field of deep learning has progressed, a number
of different activation functions have been proposed. One of the most sig-
nificant advances came with the introduction of the Rectified Linear Unit

4

(ReLU) activation function:

ReLU(x) = max(0, x) (1)

Variations of the ReLU activation function have since been developed, in-
cluding the Leaky ReLU [6] and Swish [7] activation functions, which are
described in further detail in section 3.3.

Additionally, parametric activation functions have been proposed, which
allow the parameters of the activation function to be treated as learning
weights that may be tuned by the model alongside the other learnable pa-
rameters of the neural network during training. This has been demonstrated
with the PReLU activation function, which has the same mathematical
structure as the Leaky ReLU function, except that the gradient parame-
ter a is treated as a learnable value rather than a constant [8]. The PReLU
function has been shown to improve model fitting with nearly zero extra
computational cost and little risk of overfitting [8].

An optional but common technique to accelerate the convergence of a
neural network is to apply a batch normalisation layer [9]. This normalises
the output of the previous layer by subtracting each individual value by the
mean of the mini-batch and dividing by the standard deviation. This has the
effect of mapping the data to a normal distribution, with a mean of zero and
unit variance. A scale coefficient and offset are then applied to the result,
which may be learnt by the network during training to allow for additional
tuning of the model to best fit the data. We define batch normalisation with
the following expression:

BN(xi) = γ ·
xi − µβ√
σ2B + ε

+ β (2)

Here, µB is the sample mean and σB is the sample standard deviation of
the mini-batch B, while γ and β are learnable parameters and ε is a small
constant. Although it is not entirely understood why batch normalisation
can provide such a significant improvement to model training, the authors
of the seminal paper that introduced the concept postulate that maintaining
a similar distribution and range of values between the different layers of the
network enables the network to convergence more efficiently [9].

2.2. Machine Learning with MPC

Privacy-preserving methods present a potential solution to enabling ma-
chine learning algorithms and neural networks to be applied to sensitive

5

data without compromising data privacy or the correctness of the results
obtained. Indeed, a large volume of research has been conducted in this
field, with privacy-preserving protocols proposed for the majority of the
classical ML algorithms, including linear regression [10], decision trees [11],
and k-nearest neighbours [12]. Additionally, schemes have been developed
for privacy-preserving neural networks, including CryptoNets [13] and Cryp-
toDL [14]. Important work into developing privacy-preserving protocols for
neural networks in recent years include SecureNN [15], ABY3 [16], and FAL-
CON [17], each of which has superseded the previous to become the state-
of-the-art in the three-party setting.

A recent study from Attrapadung et al. [18] focuses on developing secure
and efficient protocols for computing the Adam (Adaptive moment estima-
tion) optimisation algorithm. Optimisation algorithms may be added to
a neural network architecture to improve the speed of convergence during
training. In recent years, optimisation algorithms have become a standard
feature of deep neural networks (DNNs), with Adam being among the most
popular and effective algorithms. The traditional Adam algorithm is not
compatible with MPC as it requires non-linear functions. Attrapadung et
al. develop secure protocols for these arithmetic functions in the three-party
setting, and successfully train a DNN with their secure Adam optimiser,
achieving 95.64% accuracy within 117 seconds on the MNIST dataset. This
improves upon comparable state-of-the-art frameworks including ABY3 [16],
which achieved 94% accuracy in 2700 seconds, and FALCON [17], which
reached the same accuracy in 780 seconds (online phase only). The afore-
mentioned frameworks also converged after 15 training epochs, while Attra-
padung et al. [18] achieved convergence after just one epoch.

Neural networks present a particular challenge in the field of privacy-
preserving ML and AI due to the need to perform thousands, if not mil-
lions, of secure computations during model training and inference, requiring
many rounds of computation and communication between parties. Neural
networks also rely on the non-linear properties of the activation function
applied in the activation layer to enable them to learn complex patterns and
features in the training data. Since non-linear operations cannot be per-
formed with the basic secret-sharing MPC framework, alternative methods
must be employed to emulate or approximate these arithmetic operations.

2.3. Polynomial Approximation

While addition and multiplication operations are relatively inexpensive
to compute in MPC, more complex non-linear functions cannot be computed
using arithmetic circuits, and so present a greater challenge. One approach

6

to mitigating this challenge is to approximate these complex functions us-
ing polynomials, which by definition are evaluated using only addition and
multiplication operations, which are relatively inexpensive in MPC with
secret-sharing [19].

This has been previously demonstrated by Gilad-Bachrach et al. [13],
who used the lowest degree non-linear polynomial function, the square func-
tion f(x) = x2, as the activation function in their implementation. While
the low degree of this polynomial allows for efficient computation with MPC,
in a deep CNN the unbounded derivative of the function leads to unstable
training and significant accuracy loss [20].

Hesamifard et al. [14] present methods for the approximation of the
ReLU, sigmoid and tanh activation functions with low-degree polynomi-
als. While this research was conducted in the context of privacy-preserving
ML, it utilises a technique known as homomorphic encryption (HE) rather
than MPC. These methods are fundamentally different in their application,
however both require that computations be performed using only addition
and multiplication operations for efficiency, meaning that some optimisation
techniques may be transferable between them. In particular, the authors
focus on approximation with low-degree polynomials, accepting poorer ac-
curacy as a trade-off for computational performance. The study compares
various approximation methods for activation functions including numerical
analysis, Taylor series, and Chebyshev polynomials. The authors show that
for the ReLU approximation, least squares regression outperforms Taylor
series, with 56.8% accuracy compared to 40.3%. Chebyshev polynomials
far outperform both of these, however, with 69.0% for a standard Cheby-
shev polynomial and 88.5% for a Chebyshev polynomial modified to better
simulate the structure of the ReLU function [14].

A study from Seggers et al. [19] proposes various methods for performing
privacy-preserving training of CNNs. Here, the ReLU activation function
is approximated with a polynomial, with experimental results showing that
the final testing accuracy does not differ for the exact and approximated
ReLU functions, although the time taken for the network to converge is
increased. The authors do not consider alternative approximation methods
or activation functions, considering only a degree-3 approximation in their
experiments. We believe that further research and experimentation may
reveal methods that allow for better approximations and faster convergence
of the network.

7

2.4. Batch Normalisation in Combination with Polynomial Approximation

Another study in the field of privacy-preserving ML that utilises least
squares regression to approximate the ReLU function presents a novel method
for improving the quality of the approximation. Chabanne et al. [20] intro-
duce the approach of combining the polynomial approximation of the ReLU
function with a batch normalisation layer. Applying a batch normalisation
layer before each activation layer means that the data that is received as
an input to the activation layer has a restricted stable distribution. This is
because, due to the central limit theorem, we know that the output of the
preceding convolutional layer has a normal distribution, and thus the appli-
cation of a batch normalisation layer to this data will result in the output
data having a standard normal distribution. A distribution with zero mean
and unit variance will have 99.73% of its data between the range [−3, 3],
reducing the size of the interval where the polynomial approximation needs
to be accurate to a small interval around zero, allowing for a more accurate
approximation, particularly with lower-degree polynomials [20].

Chabanne et al. [20] only implement polynomial approximation for the
prediction phase, meaning that the networks are trained on unencrypted
data using the exact forms of the activation functions, rather than approx-
imations. In this project we aim to implement MPC in both the training
and prediction phases, meaning that we both train and test the network in
an encrypted way using activation functions approximated by polynomials.
The authors also base their scheme on HE rather than MPC, meaning that
their results may not be directly comparable to ours. However, it is still
notable that the authors achieved a classification accuracy of 98.18% with
a CNN trained using the aforementioned methods, which is close to the
accuracy achieved by an equivalent unencrypted network (99.59%).

Batch normalisation cannot be directly applied in an MPC scheme due
to the division and square root operations required in its computation. Re-
cent work by Wagh [21], however, presents a novel protocol for performing
batch normalisation in an MPC setting, making use of numerical methods to
approximate the non-linear operations. Numerical methods are techniques
that approximate the output of mathematical functions or protocols where
it is impossible or intractable to solve them analytically. Wagh [21] defines
a series of algorithms that perform the necessary steps of the approxima-
tions, including calculating the range over which the approximations will
be performed and the initial approximation that will be used as a starting
point.

8

2.5. Parametric Polynomial Activation Functions

Rather than directly approximating an existing activation function such
as ReLU with a polynomial, it is possible to initialise a polynomial acti-
vation function with arbitrary coefficients and then treat these coefficients
as learning weights that may be tuned by the model alongside the other
learnable parameters during training.

This idea has been explored in a privacy-preserving ML context by Wu
et al. [22], who build upon the framework presented by Hesamifard et al.
[14] with the aim of improving predictive accuracy while maintaining effi-
ciency in HE schemes for the secure training and evaluation of CNNs. In
experiments conducted over encrypted data, the authors demonstrate that
it is possible to achieve better accuracy using shallower CNNs when using
parametric polynomial (PPoly) activation functions than that attained in
previous works. Wu et al. [22] show that in a shallow network, PPoly acti-
vation functions outperform the exact ReLU activation function, achieving
99.33% and 99.05% testing accuracy respectively. Being able to achieve
comparable or better accuracy with a shallower CNN can greatly improve
the practicality of a model, particularly in an MPC context where compu-
tational costs are exacerbated by a significant factor.

Framework Activation Function Method Accuracy

Seggers et al.
[19] ReLU (order 3) Regression 83.2%

Hesamifard
et al.
[14]∗

ReLU

Regression 56.87%
Taylor series 40.28%

Standard Chebyshev 68.98%
Modified Chebyshev 88.53%

Chabanne
et al. [20]∗∗ ReLU (order 2) Regression 98.18%

Wu et al.
[22]∗ Polynomial (order 2) PPoly 99.33%

Table 1: Summary of related work on polynomial approximation of activation functions.
All experiments were performed on the MNIST dataset [3] using comparably sized CNN
architectures.
∗ Model implemented with HE
∗∗ Model implemented with HE, polynomial approximation used in prediction phase only

9

Figure 1: Efficient Optimisation Framework of CNNs with MPC

3. Efficient Optimisation of CNNs with MPC

In this section we will present our proposed framework for optimising the
efficiency of convolutional neural networks implemented with secure multi-
party computation. We will present the requisite theoretical background to
our research and describe the protocols and methods we have developed,
and outline how to apply our findings in practice.

3.1. Framework Setting

While several techniques exist for performing MPC, in our experiments
we utilise an additive secret-sharing approach. Here, each individual party’s
input data is split into “shares” and distributed between all of the parties
participating in the scheme. In an m-party MPC scheme, a value x is secret-
shared between parties p1, ..., pm by choosing xp1 , ..., xpm ∈ Fq uniformly at
random such that:

x =

m∑
i=1

xpi mod q (3)

and then revealing xi to pi. We denote such a secret-sharing by [x]q. It
should be noted that no information about the true value of x is learnt by

10

any individual party, and that no proper subset of parties can reconstruct x.
The secret-shared value can be revealed to one of the parties if all of the other
parties in the scheme send their shares to that party. In MPC schemes based
on secret-sharing, computations are generally performed using arithmetic
circuits over a finite field modulo Q or over a ring modulo 2n, with Boolean
circuits being the special case when n = 1.

When implementing an MPC protocol or framework in practice, there
exist various model architectures that may be applied which determine how
the scheme is executed, such as how many parties are involved in the scheme
and the nature of their interactions with each other. A common approach
is to apply a ‘client-server’ architecture, where the parties who perform
the actual computations in the MPC scheme are a number of distributed
servers who are unaffiliated with the clients who own the data [23]. These
servers receive each client’s data in its secret-shared form, so that they
never see the true values of the inputs, and then perform the necessary
calculations to produce the result, which is also returned to the parties in a
secret-shared form. The client-server model is especially strong in a machine
learning context, since many ML models and algorithms require a large
number of calculations, which may be computation and storage heavy. By
outsourcing computation to external servers, which may have more resources
to expend, we save the clients themselves from having to perform many
local computations. It should be noted that if a client-server architecture
is utilised, then the addition of more parties (servers, in this case) does not
necessarily present any advantage, and in fact increases the complexity of
the scheme. Any number of clients can take part in the scheme by supplying
their data in a secret-shared form to the servers who will perform the MPC
protocols and return the results. Going forward, we develop our framework
in the 2-party setting, assuming a client-server design.

3.2. Batch Normalisation

As mentioned previously, it has become relatively commonplace to in-
clude a batch normalisation layer in CNN architectures as an additional
optimisation technique that can allow the network to converge more quickly
to an optimal configuration of weights.

Implementing batch normalisation in a secret-sharing MPC scheme
presents a challenge due to the complex operations required by the algo-
rithm, the details of which may be seen in Algorithm 1. While the mean
and variance of a mini-batch can be calculated using just addition and mul-
tiplication operations for the secret-shared values, as well as division by an

11

Algorithm 1 Batch Normalisation

Input: Mini-batch of data X = (x1, ..., xm)
Output: Normalised data Y = (y1, ..., ym)

1: Calculate mean: µ← 1
m

∑m
i=1 xi

2: Calculate variance: σ2 ← 1
m

∑m
i=1 (xi − µ)2

3: Normalise: x̂i ← xi−µ√
σ2+ε

+ β

4: Scale and shift: yi ← γx̂i + β
5: return Y = (y1, ...ym)

unencrypted value (the mini-batch size), the normalisation step requires di-
vision by the square root of an encrypted value. Neither division nor square
root can be computed natively using MPC, meaning that batch normalisa-
tion cannot be directly applied.

We adapt the methods outlined by Wagh [21] to implement approxi-
mated division and square root protocols in Python. We apply numerical
methods to approximate these functions using algorithms that use only the
operations that are compatible with MPC, which in turn allows us to per-
form the batch normalisation algorithm securely over private data.

3.2.1. Division Protocol

The division protocol outlined by Wagh [21] begins with w0 · (1 + ε0) as
an initial approximation for 1

x , where w0 = 2.9142− 2x and ε0 = 1−x ·w0.
This choice of initial values was suggested by Catrina and Saxena [24], who
develop a similar division protocol for MPC over data held in fixed-point
representation. We proceed iteratively by setting εi = ε2i−1 and multiplying

Algorithm 2 Private Division

Input: P1, P2 hold shares of a, b
Output: P1, P2 hold shares of a/b

1: Compute w0 ← 2.9142− 2b
2: Compute ε0 ← 1− b · w0

3: Compute x0 ← a · w0 · (ε0 + 1)
4: for i = 1 to n do
5: εi ← ε2i−1
6: xi ← xi−1 · (εi + 1)
7: end for
8: return xn ≈ a/b

12

Algorithm 3 Private Square Root

Input: P1, P2 hold shares of a
Output: P1, P2 hold shares of

√
a

1: Set x0 ← 0.5480842735a+ 0.3875541065
2: for i = 0 to n do
3: xi+1 ← 1

2(xi + a
xi

)
4: end for
5: return xn ≈

√
a

the previous approximate result by (1 + εi). Each iteration improves the
accuracy of the approximation, but also increases the round complexity, i.e.
the number of communication rounds required between parties, by 2, which
in turn increases the running time of the protocol. Experiments with the
number of iterations of the protocol are described in section 4.3. The full
algorithm can be seen in Algorithm 2.

3.2.2. Square Root Protocol

In order to compute the denominator in the normalisation step of the
batch normalisation algorithm, we must calculate the square root of an
encrypted value. Wagh [21] approaches this in a similar fashion to the
division protocol by applying the Newton-Raphson method to approximate
the output of the square root operation. The Newton-Raphson method is
used to approximate the zero of a continuous, once differentiable function f
[25]. Starting from an initial value x0, we compute an approximation with
the iterative formula:

xk+1 = xk −
f(xk)

f ′(xk)
(4)

With f(R) = R2 − x, whose zero is
√
x, we obtain the iterative formula for

computing the square root of a value a:

xn+1 =
1

2
(xn +

a

xn
) (5)

The choice of the initial value x0 is important ensuring efficient convergence
of the algorithm to an accurate approximation. Following the approach
described in [25], we derive values for the starting value through linear ap-
proximation:

L(x) = α · x+ β (6)

By minimising the relative error function and solving a system of equations,
we arrive at the values α = 0.5480842735 and β = 0.3875541065, which

13

allow us to compute an initial linear approximation to
√
x using the above

formula. The full square root algorithm can be seen in Algorithm 3.

3.3. Activation Functions

As described previously, the activation function used in a neural network
is arguably the most crucial component for enabling the network to learn
deeper features and underlying patterns in data. For this reason, many
different types of activation functions have been developed and implemented
over time.

One of the classical activation functions is the sigmoid function:

σ(x) =
1

(1 + e−x)
(7)

The form of the sigmoid function, as well as the other activation functions
we describe in this section, may be seen in Figure 2. The sigmoid func-
tion was the activation function primarily used in early research into deep
learning due to its being non-linear, continuously differentiable, monotonic,
and bounded. In particular, the output of the sigmoid function is bounded
in the range (0, 1), meaning that extremely large or small input values are
clipped or ‘squashed’ to this range. This has the advantage of imitating
biological synapses, however it also results in very high and very low val-
ues being saturated, with the function only being sensitive to changes in
input values of around 0. sigmoid functions also carry the disadvantage
of the gradient being close to zero at the tails of the curve. This can re-
sult in the ‘vanishing gradient problem’ during the training of DNNs, where
the gradient computed and backpropagated through the network becomes
increasingly small, preventing the network from learning effectively.

Another common activation function is the hyperbolic tangent (tanh)
function:

f(x) =
(ex − e−x)

(ex + e−x)
(8)

Figure 2: (from left to right) ReLU, sigmoid, tanh, Leaky ReLU and Swish functions

14

The tanh function is similar to the sigmoid function, however it operates
over the range (−1, 1) with a centre at 0. tanh has come to be generally
preferred over the sigmoid function in recent years, with networks using the
tanh activation functions being shown to provide faster convergence and
lower classification error than those using sigmoid activation functions [26].
Despite these improvements, the tanh function still suffers from the same
issues as the sigmoid function, namely the saturation of extreme values and
the vanishing gradient problem.

In recent years, the ReLU function (Equation 1) has come to be favoured
over the sigmoid and tanh functions. ReLU is a piecewise function, with the
output being zero for input values less than or equal to zero, and the output
being equivalent to the input for values above zero. This has the advantage
of enabling sparse activations in the network, with around 50% of hidden
neurons forced to zero in a randomly initialised network. Unlike sigmoid and
tanh, ReLU does not saturate values and thus does not suffer from the same
vanishing gradient problem, resulting in a much faster rate of convergence
of the network. For this reason, the ReLU function has quickly become the
state-of-the-art activation function used in deep learning applications.

However, ReLU still has some limitations that can result in difficul-
ties during training. Since the range of the ReLU function is [0,∞), some
activations can ‘blow up’ and become extremely large, since they are not
bounded in the same way as with the sigmoid or tanh functions. We may
also encounter the ‘dying ReLU’ problem, which occurs when the input to
a neuron is consistently negative, meaning that the neuron never activates.
This prevents gradients from flowing backward through the neuron during
backpropagation, meaning that the weights are not updated, and the neuron
becomes effectively useless. If a large number of neurons become inactive,
then the capacity of the network is reduced, and its learning capabilities
impeded.

One approach to mitigating the dying ReLU problem is to implement a
Leaky ReLU activation function [6]:

f(x) =

{
x, if x > 0.

ax, otherwise.
(9)

The Leaky ReLU is a variation of the ReLU function that allows for a
small, positive gradient (typically a = 0.01) when the unit is not active,
rather than zero gradient. In theory this could prevent neurons from dying
by ensuring that the gradient flowing backwards is not zero. Some studies
have successfully implemented the Leaky ReLU, achieving lower test error

15

than with a regular ReLU [27], however results have generally been inconsis-
tent across different algorithms and tasks, making its overall benefit unclear.
Pedamonti [28] compares the accuracy achieved on an image classification
task using an artificial neural network with various different activation func-
tions. The author achieved validation accuracy of 95.5% with sigmoid,
97.7% with ReLU and 97.6% with Leaky ReLU, showing that ReLU-like
functions significantly outperform the sigmoid function, and that the loss
in accuracy from applying Leaky ReLU over ReLU is negligible.

The final activation function we consider is the Swish activation function
[7]:

f(x) = x · σ(βx) =
x

1 + e−βx
(10)

Here, σ is the sigmoid function as defined previously, and β is either a
constant or a trainable parameter (typically β = 1). Swish can be loosely
viewed as a smooth function which nonlinearly interpolates between the lin-
ear function and the ReLU function [7]. Compared to the ReLU function,
Swish has a non-monotonic “bump” when x < 0. The authors of the article
introducing the Swish function present results that show that Swish consis-
tently matches or outperforms both the ReLU and Leaky ReLU functions
when applied to deep CNNs across a variety of tasks [7]. A study from Hayou
et al. [29] analyses the performance of the ReLU, tanh and Swish activation
functions in neural networks of varying width and depth. Experiments show
that tanh can outperform ReLU on shallower networks, however the vanish-
ing gradient problem results in tanh achieving very poor testing accuracy on
deeper networks. The authors hypothesise that Swish will outperform both
tanh and ReLU, due to possessing characteristics similar to those of tanh
that enable efficient information propagation, while avoiding the vanishing
gradient problem. Numerical results confirm this; while the difference in
testing accuracy between ReLU and Swish for shallower networks is small
(94.01% compared to 94.46%), for deeper networks with up to 40 layers, the
Swish activation function achieves higher accuracy by almost 6% (91.45%
compared to 97.14%) [29].

3.4. Polynomial Approximation

We implement various polynomial approximation methods in Python in
order to test their effect on the accuracy and efficiency of privacy-preserving
CNNs. We build upon the existing PrivateML framework, which provides
primitives for training neural networks with MPC and secret-sharing in
Python. The implementation environment is described in further detail
in section 4.1.

16

The PrivateML framework natively defines activation layers which ap-
proximate the sigmoid and ReLU functions with least squares regression.
The sigmoid function is approximated with a degree-9 polynomial with 5
terms, which means that a series of powers of the encrypted data must be
computed. For such a high-degree polynomial, this means that we will incur
a significant cost in computation and communication. We aim to show that
a better trade-off between the accuracy and efficiency of the approximation
may be achieved using alternative polynomial approximation methods that
do not require high-degree polynomials.

We implement a least squares regression approximation using the poly-
fit function from the Python package NumPy [30]. This function takes as
arguments a set of sample points (x, y) and the polynomial degree n and
returns the coefficients of the polynomial that minimises the squared error.
In the basic implementation, (x, y) are uniformly sampled from a given do-
main. We treat the domain as a hyperparameter of the network and perform
experiments with different values to obtain an optimal range from which to
sample the points.

We also implement the methods described by Chabanne et al. [20]. In
this case, we randomly sample the set of points x from a normal distribution
and pass these through the exact ReLU function to obtain the correspond-
ing y values. This can be done offline and without encryption because the
data used to derive the polynomial approximation is not private. We begin
by sampling from a standard normal distribution with mean zero and unit
variance but include the mean and variance of the distribution as hyperpa-
rameters that can be altered for testing purposes. Chabanne et al. [20] in
fact show that sampling from a distribution with a mean of zero and a stan-
dard deviation of slightly higher than 1 can produce more accurate results,
particularly for lower-degree polynomials.

We compute Taylor series approximations using the Python package
SciPy [31]. This function takes a callable function f to be approximated,
the point x at which the polynomial is to be evaluated, the degree n of the
polynomial, and a scale value, which defines the width of the interval that is
to be used to evaluate the polynomial. The function outputs the estimated
Taylor series polynomial of f at x.

Alongside these we also test the use of Chebyshev polynomials. We de-
velop our implementation using symbolic computation on top of code that
defines the underlying mathematical theory of Chebyshev polynomial ap-
proximation [32]. The implementation can approximate any of the activa-
tion functions defined previously with a polynomial of specified degree over
a given interval.

17

The final approximation method we implement is Lagrange polynomial
approximation. Following mathematical theory [33], we apply the lagrange
function from the SciPy package to obtain the Lagrange interpolating poly-
nomial [31].

The points used to evaluate the polynomials should be chosen carefully
to avoid large oscillations and inaccuracies between the points. This may
be achieved by using lower-degree polynomials or by using Chebyshev nodes
as the interpolation points. We implement a functionality to generate both
equidistant points and Chebyshev nodes to be used as the interpolation
points, enabling us to evaluate how the polynomials generated with these
different approaches compare in terms of the accuracy and efficiency of the
network.

As an alternative to interpolation, we may also apply the least squares
method to obtain a Lagrange approximating polynomial, which leads to an
exact approximation if the function to be approximated lies in the space
spanned by the basis functions [33]. We implement a generic least squares
protocol to perform a least squares fit to a given function over a given
interval.

3.4.1. Parametric Polynomial Activation Functions

In order to implement a parametric polynomial activation function in our
framework, we build upon the methods described by Wu et al. [22], who
implemented such an activation function in an HE-based protocol. Wu et
al. define their degree-2 parametric polynomial (PPoly) activation function
as:

p(xi) = ci1xi + ci2x
2
i (11)

Where xi is the input of the activation function in the ithchannel and ci1
and ci2 are learnable parameters. In their implementation, Wu et al. ran-
domly initialise the polynomial coefficients cij in the range [−1.5, 1.5]. A
range including negative and positive values was chosen so that the result-
ing polynomial may be non-monotonic. We explore this approach with a
PPoly layer in our Python framework, which allows the network loss to be
backpropagated and used to gradually tune the polynomial coefficients.

Extending the work of Wu et al. [22], we propose that higher accuracy
may be achieved by instead initialising the polynomial coefficients with those
taken from a baseline polynomial approximation to an existing activation
function. We therefore implement a functionality that initialises a PPoly ac-
tivation function with a polynomial approximation to an existing activation
function, and then treats the coefficients as learnable weights. In theory,

18

this effectively allows us to derive a polynomial approximation to a function
as described in the previous sections, and then tune this approximation dur-
ing the training phase to better fit the data and potentially produce more
accurate results. This also reduces over-parameterisation in the network, as
only a few coefficient values need to be learnt by the network, rather than
potentially hundreds as is the case in the approach used by Wu et al. [22].

3.5. Efficient Optimisation Framework of CNNs with MPC

We have outlined some of the key bottlenecks that are encountered when
implementing neural networks with MPC and have identified some potential
areas of improvement over current state of the art methods. We now present
our framework for performing more efficient and scalable training and in-
ference with privacy-preserving CNNs. A pictorial diagram of our proposed
framework can be seen in Figure 1.

The application of numerical approximation techniques including the
Newton-Raphson method have enabled the implementation of private di-
vision and square-root operations. Following the protocols and algorithms
outlined by Wagh [21] we have been able to implement these protocols in a
Python environment where their efficacy has been tested and verified. The
trade-off between the accuracy and efficiency of these protocols has also been
explored, with the findings presented in section 4.3.

A primary consequence of the secure and efficient implementation of
these operations is the ability of performing privacy-preserving batch nor-
malisation. Batch normalisation layers have become commonplace in neural
network architectures in recent years due to their effect of increasing the
speed and stability of convergence of the network. This is no less true in
a privacy-preserving network, where any gains made in the efficiency and
practicality of the network are in fact even more important.

Alongside the inclusion of a privacy-preserving batch normalisation layer,
we also propose the use of polynomial approximated activation layers. While
the optimisations provided by applying parametric activation functions may
be considered marginal in non-privacy-preserving contexts, in an MPC scheme
for training privacy-preserving CNNs the gains in accuracy and efficiency are
all the more valuable, leading us to conclude that their implementation is
worthwhile and beneficial.

The type of activation function to be approximated, the method of poly-
nomial approximation, and the degree of the polynomial used are the most
influential factors that must be determined at this stage. In section 4 we
present and discuss the results of experiments with a privacy-preserving

19

CNN where each of these factors are varied alongside other relevant hy-
perparameters of the network. It is evident from these results that the
most successful implementation in terms of accuracy and efficiency was ob-
tained using a parametric polynomial activation function initialised with a
degree-3 least squares regression polynomial approximation to the Leaky
ReLU function. This approach achieved the highest accuracy of the combi-
nations tested, with 87.5% accuracy on the test set. These results were also
achieved in fewer epochs than the other activation functions tested in our
experiments. When a PPoly activation layer is used, the coefficients of the
polynomial activation function are trained alongside the other weights of the
network in a privacy-preserving way. The optimal values, corresponding to
the state of the network weights at the point of lowest validation error, may
be fixed for use in a privacy-preserving inference phase.

4. Experimental Results and Discussion

In this section we present and discuss the experimental results attained
by models trained and evaluated with the various combinations of activation
functions and polynomial approximation methods described in the previous
section. We also perform complexity analysis of the protocols implemented
and analyse the implications of our implementation on the security of the
networks we train and test.

4.1. Implementation Environment

There exist a number of libraries and frameworks in Python which allow
users to train neural networks with a combination of simple commands. In
order to implement an MPC scheme with secret-sharing, however, we must
redefine the operations used to evaluate the network from first principles.
This includes the basic arithmetic operations of addition and multiplication,
as well as each individual layer and the computations performed within
them. Developing a comprehensive framework from the ground up would
be out of scope for this project, so we build upon PrivateML, an existing
secret-sharing-based MPC framework designed specifically for training and
evaluating privacy-preserving neural networks [34]. We also make use of a
number of Python modules for processing and manipulating data, including
NumPy and SymPy [30], [35].

PrivateML provides the basic components necessary for training a CNN
in Python with secret-sharing-based MPC in a simulated client-server model.
We do not implement a functioning client-server model as this would require
the configuration of communication with remote servers. This project does

20

not intend to focus on the logistics of the MPC scheme itself, but on the
impact of various optimisation approaches on the performance of the CNN
model, which may be evaluated in an offline test environment in Python.

4.2. Testing Details

The models tested were trained and evaluated on the MNIST dataset
[3], a popular image recognition dataset commonly used for evaluating the
performance of CNNs.

As mentioned previously, we build upon the PrivateML framework [34]
and the open-source implementation of this framework in Python. Due to
inefficiencies in the original code, limitations on computational power, and
time restrictions, we perform scaled-down tests in order to keep training
times feasible and prevent memory overflows. This means that we must use
smaller training, validation, and testing sets than ideal, while also training
for fewer epochs than is standard.

Since we are aiming to improve the efficiency and practicality of MPC
for training and evaluating CNNs, it is in our interest to use as small a
network as possible while maintaining a high degree of accuracy. We are
also limited to using a shallow CNN architecture due to the high memory
requirements of the PrivateML framework, which has not been optimised
for large-scale deep learning tasks. In addition, due to time limitations and
the number of tests that need to be performed, using a deeper architecture
would make training times infeasible. For these reasons we proceed with a
shallow CNN architecture as may be seen in Table 2. A diagram showing
the structure of the network and the implementation details is presented in
Figure 3. Deeper networks may be constructed with the following formula:
[[CONV → BN → ACT]i → POOL]j → [FC]k → Softmax. In our
proposed framework, BN is a privacy-preserving batch normalisation layer,
ACT refers to a PPoly activation layer, and POOL is an average-pooling

Layer Hyperparameter settings

Conv2D 32 filters, size=3x3, strides=1, padding=1
BatchNorm -
PolyActivation user defined
AveragePooling2D size=2x2
Dense 10 hidden neurons
Softmax -

Table 2: CNN architecture

21

Figure 3: CNN structure and implementation details

layer (preferable to max-pooling in MPC schemes). The hyperparameters of
each layer may be altered and optimised to suit individual implementations.

4.3. Protocol Efficiency

We apply asymptotic complexity analysis to the private division and
square root protocols to judge their efficiency and practicality. In the case
of the division protocol (Algorithm 2), we derive an upper bound on the
asymptotic running time of O(n), where n refers to the length of the array
being computed over. Similarly, the square root protocol we have imple-
mented (Algorithm 3) also has an asymptotic running time of O(n). In
these cases we can say that the algorithms have polynomial time complex-
ity, which is considered to be efficient.

Through experiments we determine the optimal number of iterations to
be applied in each protocol, allowing us to obtain an accurate approximation
in the fewest iterations possible, reducing the computational cost of the
protocols and making their application more feasible. This is crucial when
attempting to optimise the performance of a neural network in an MPC

22

Figure 4: Convergence of division protocol

(a) Convergence of square root protocol (b) Time taken for square root protocol scales
linearly

Figure 5: Experiments with number of iterations of square root algorithm

setting, as we must consider the trade-off between potential improvements
in accuracy with the increased computational and communication costs that
results from performing repeated operations over secret-shared data.

We experiment with the number of iterations of both the private division
and square root protocols, taking into account the running time of the algo-
rithms and the error between the approximated result and the true result.
We evaluate the performance of the square root protocol by measuring the
running time and accuracy of the approximation with successive iterations
relative to the ground truth. We observe that the square root approxima-
tion protocol converges after around 7 iterations (Figure 5a) with the lowest
numerical error reported after 4 iterations. The running time of the algo-
rithm also increases linearly with additional iterations, as expected (Figure

23

Method Train accuracy Test accuracy Runtime (mins)

ReLU (exact) 71.88% 53.13% 0.5
ReLU + BN (exact) 96.88% 81.25% 0.6
ReLU (approx) 43.75% 23.96% 52.8
ReLU + BN (approx) 94.34% 74.35% 156.5

Table 3: Baseline implementation results

5b). The lowest numerical error for the division protocol is found after just
1 iteration (Figure 4), and therefore we fix the number of iterations of the
square root and division protocols at 4 and 1 respectively.

4.4. Experimental Results

Table 4 shows the results obtained for each polynomial approximation
method with the settings that achieved the highest testing accuracy.

We observe that the highest testing accuracy was attained by the network
trained using a degree-3 least squares regression polynomial approximation
to the Leaky ReLU function. This method achieved 81.25% testing accu-
racy, which matches that recorded with an equivalent unencrypted CNN
implemented without MPC, as may be seen in Table 3.

Based on the approach presented by Chabanne et al. [20], as outlined in
Section 2.4, we used a sample of points taken from a standard normal distri-
bution to derive our polynomial approximation. We also experimented with
the parameters of the distribution that the sample was taken from by vary-
ing the value of the standard deviation, σ. The testing accuracy achieved
by networks trained with degree-3 least squares regression approximations
of Leaky ReLU with different values of σ may be seen in Table 5. We find
an optimal value of σ = 1.2, which matches the results found by Chabanne
et al. in the case of degree-2 polynomial approximations. We may also com-
pare these results to those obtained using a polynomial approximation fitted
with a uniformly sampled set of points. Through the hyperparameter tun-

Method Degree Function Train acc. Test acc. Runtime

Regression 3 Leaky ReLU 62.50% 81.25% 160.3
Taylor series 3 Swish 100.00% 71.88% 155.6
Chebyshev 4 tanh 100.00% 69.79% 181.4
Lagrange 4 tanh 96.88% 70.83% 181.8

Table 4: Experimental results for best implementation with each approximation method

24

Sample distribution Degree Testing accuracy

Uniform[−0.5, 0.5] 3 77.38%
Normal(µ = 0.0, σ = 1.0) 3 77.48%
Normal(µ = 0.0, σ = 1.1) 3 79.17%
Normal(µ = 0.0, σ = 1.2) 3 81.25%
Normal(µ = 0.0, σ = 1.2) 2 78.13%

Table 5: Results of regression approximation to Leaky ReLU with different settings

Polynomial Method Train acc. Test acc. Runtime

ci1xi + ci2x
2
i [22] 15.66% 29.17% 205.8

c1xi + c2x
2
i Original 100.00% 79.17% 179.6

c1xi + c2x
2
i + c3x

3
i Original 90.63% 87.50% 142.1

c0 + c2x
2
i + c4x

4
i Original 53.13% 68.75% 212.3

Table 6: PPoly activation function results

ing process, we found that sampling points uniformly in the range [−0.5, 0.5]
provided the most successful approximation, however the accuracy achieved
did not exceed that of the implementation mentioned previously.

The results achieved by networks trained with PPoly activation func-
tions of different forms may be seen in Table 6. Of particular note is the
degree-3 polynomial, which achieved a testing accuracy of 87.50%, which
is significantly higher than that achieved by any of the previously tested
polynomial approximation methods. This also exceeds the testing accuracy
achieved by an equivalent CNN computing over plaintext data, although the
increase in running time of the model is significant.

We chose to initialise the PPoly activation function with a least squares
regression approximation to the Leaky ReLU function, which achieved the
highest accuracy in tests of the polynomial approximation methods, as de-
scribed previously. We proposed previously that a better fitting polynomial
approximation could be derived by allowing the network to tune the coeffi-
cients of an existing approximation, and our results support this hypothesis,
showing an increase in testing accuracy of 6.25%. We also note in Table 6
that the method applied by Wu et al. [22] of initialising the polynomial coef-
ficients randomly in the range [−1.5, 1.5] achieved far lower testing accuracy
than our proposed method of initialising the polynomial coefficients with
those from a separate polynomial approximation of an existing activation
function.

The running time of the most successful PPoly implementation, 142.1

25

Figure 6: Degree-3 approximations of ReLU with each method in comparison to exact
ReLU function

minutes, is also the lowest of the results presented in Table 4 and Table
6. This is due to the low degree of the polynomial, and the early stopping
of training after the second epoch, when we noticed that the validation
accuracy was consistently decreasing with each mini-batch of data.

4.5. Discussion of Results

Figure 6 shows the plots of the degree-3 polynomial approximations ob-
tained with each polynomial approximation method in comparison to the
exact ReLU function.

As explained previously, our experiments must be performed on a smaller
scale, making it difficult to directly compare the accuracy achieved by our
models with the results reported in existing work. We therefore primarily
compare the results achieved with different combinations of activation func-
tions and approximation methods to judge their relative performance in our
testing environment. Larger scale tests should be performed to confirm the
efficacy of these findings and to directly compare them to existing work in
the field.

From the results presented in Table 4, we may deduce that, out of the
methods tested, least squares regression appears to be the most effective
polynomial approximation method in terms of the accuracy achievable on
the testing dataset. Through hyperparameter tuning we have been able to
determine the optimal settings of the approximation, as shown in Table 5.
Combined with the PPoly method, this approach may also be further tuned
during training to achieve even better accuracy. While the highest testing
accuracy was achieved using a degree-3 polynomial, we have also presented

26

results for the equivalent degree-2 polynomial implementation. We note that
although this method achieves somewhat lower accuracy than the optimal
method, this may be viewed as an acceptable trade-off for the reduction in
the computational complexity of the network.

Networks trained using low-degree PPoly activation functions generally
achieve similar or higher accuracy than those using Taylor series, Chebyshev,
and Lagrange polynomial approximations. In particular, our degree-2 PPoly
network achieved 79.17% accuracy, beating that achieved by other methods
which required degree-3 and 4 polynomials.

As mentioned previously, the highest testing accuracy was achieved with
a degree-3 least squares regression approximation to the Leaky ReLU func-
tion, with tanh and Swish providing the best results for the other approx-
imation methods. In the case of tanh, however, the optimal implementa-
tions required the use of degree-4 polynomials, which incur higher running
times. Tests performed with sigmoid polynomial approximations consis-
tently stalled during training and did not progress past the point of around
30% testing set accuracy. We recorded similarly poor results using the orig-
inal PrivateML sigmoid approximation layer, which uses a degree-9 polyno-
mial approximation. This may reflect the limitations of the sigmoid activa-
tion function, such as the vanishing gradient problem.

While the ReLU, Leaky ReLU, and Swish activation functions possess
similar structures, we may note that Swish performed the best when tested
with the optimal Chebyshev and Lagrange polynomial approximation set-
tings. The Leaky ReLU, on the other hand, outperformed Swish when im-
plemented with Taylor series and least squares regression fitted polynomials.
This suggests that the performance of a polynomial approximation method
may depend on the type of function that is being approximated, and that
different methods may be better suited to different use-cases.

It is evident from the results presented that the approaches we have
implemented have the potential to optimise the performance of privacy-
preserving CNNs trained and tested using secret-sharing-based MPC. In
order to preserve the practicality of the networks we train, the results we
present focus on the application of low-degree polynomial approximations.
We have demonstrated the significant improvements in accuracy that may
be achieved with the application of private batch normalisation and para-
metric polynomial activation functions in an MPC setting, and have shown
that the testing accuracy achieved can match or even exceed that attained
by unencrypted models. The additional complexity that results from imple-
menting PPoly activation functions appears to be negligible in comparison
to the improvements in accuracy that may be achieved, and is also offset to

27

an extent by the low degree of the polynomials that we may use with this
method.

4.6. Security Analysis and Discussion

Throughout this paper we have assumed that the framework utilises a
client-server protocol design, where secure computations are performed by a
number of distributed servers. This approach was formalised by Araki et al.
[23], who provide in their article rigorous proofs of the security level of their
protocols, which they claim to be secure in the presence of one semi-honest
adversarial party. This level of security is sufficient in cases when there is
some level of trust between the parties involved in the scheme, but there is
still concern about inadvertent information leakage, or the parties cannot
reveal their input data to each other due to privacy regulations [23].

Additionally, the security of the private division and square root proto-
cols we have implemented have been proven in the work of Wagh [21] where
these protocols were introduced. The combination of these protocols that
is needed to enable the application private batch normalisation does not
compromise this security.

The use of polynomial approximated and parametric activation functions
also does not impact the security or privacy of the networks being trained
and tested. The coefficients of the polynomial approximated activation func-
tions need not be kept private, as these values reveal no new information
about the data being computed over or the inner weights of the model being
trained. In the case of PPoly activation functions, the coefficients of the
polynomials are stored as private values alongside the weights of the net-
work, and so do not present any additional security risk. The values that
these polynomials are initialised with may be kept private or public with no
infringement on privacy, as long as the intermediary and final values of the
coefficients are kept private, as these may be used to deduce information
regarding the nature of the data being used for training.

With respect to the confidentiality, integrity and availability (CIA) se-
curity triad, we achieve confidentiality of data in our current model unless
two or more dishonest parties collaborate in the communication exchange.
The implementation scheme of Araki et al. [23] is a verifiable secret shar-
ing in which verifiable auxiliary information is used to keep data private and
confidential. Data integrity and availability is not guaranteed in multi-party
schemes, as the one we currently use, to avoid the complexity and overhead
of digital signatures or Denial of Service (DoS) counter measures.

28

5. Conclusions and Future Work

Our results give fresh insight into the efficacy of various polynomial ap-
proximation methods when applied to the training of privacy-preserving
CNNs with MPC. As far as we are aware, ours is the first study in this
field to perform a comprehensive evaluation of methods for approximating
non-linear activation functions with polynomials, and the first to experiment
with parametric polynomial activation functions. Our study may therefore
form a reference point for future researchers and practitioners wishing to
implement privacy-preserving CNNs with MPC, and lay a basis of empirical
findings for future research in this field to build upon. We are also the first to
apply Lagrange polynomials for approximating non-linear activation func-
tions, although the results achieved do not support the use of this method
over other approaches, such as least squares regression.

We have demonstrated that it is possible to implement a privacy-
preserving batch normalisation layer with MPC and provided empirical re-
sults to support our hypothesis that this would greatly increase the accuracy
of the network at the cost of longer running times. We have additionally
implemented and evaluated the novel approach of initialising a parametric
polynomial activation function with a polynomial approximation and allow-
ing the network to tune the coefficients as learning weights. The high test-
ing accuracy and speed of convergence of models trained with this method,
which can even exceed that of equivalent unencrypted models, show its po-
tential for providing polynomial approximated activation layers that are
highly optimised for the data and task at hand. As an extension to our
work we would like to experiment with parametric polynomial activation
functions of different forms and with different methods of initialisation.

Due to constraints on time and resources, we were required to perform
scaled-down tests in order to keep running times feasible. This resulted in
the overall accuracy achieved by our models being far lower than if the mod-
els had been trained using a larger training dataset and for a greater number
of epochs. Because of this, it is difficult to compare our results to existing
work in this field, due to the difference in scale of the values recorded. We
were also restricted to using a shallow CNN, which limits the generalisability
of our results. It is possible that different polynomial approximation meth-
ods may perform better or worse when applied in networks of varying depths
and architectures, and this is something that we would like to explore in the
near future. That being said, the experiments we have performed allow us
to compare the results obtained with different techniques within our testing
environment and to draw conclusions on their performance relative to each

29

other and to an unencrypted baseline.
In order to perform more thorough experiments we would ideally imple-

ment the framework in a true client-server model, rather than a simulated
environment in Python, using dedicated remote servers with more powerful
hardware to perform computations. We would also reformat the code to be
less memory-intensive and better scalable to larger networks. For example,
we may integrate our framework with a distributed computation framework
such as TensorFlow [36], which provides highly optimised protocols for un-
encrypted neural network training that could be adapted to an MPC setting.

References

[1] Q. V. Le, M. Schuster, A neural network for machine transla-
tion, at production scale, https://ai.googleblog.com/2016/09/

a-neural-network-for-machine.html, accessed: 2020-10-12 (2016).

[2] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M.
Blau, S. Thrun, Dermatologist-level classification of skin cancer with
deep neural networks, Nat. 542 (7639) (2017) 115–118. doi:10.1038/

nature21056.
URL https://doi.org/10.1038/nature21056

[3] Y. LeCun, C. Cortes, C. J. Burges, Mnist handwritten digit database,
http://yann.lecun.com/exdb/mnist/, accessed: 2020-10-12 (2010).

[4] R. Cramer, I. Damg̊ard, J. B. Nielsen, Secure Multiparty Computation
and Secret Sharing, Cambridge University Press, 2015.
URL http://www.cambridge.org/de/academic/subjects/

computer-science/cryptography-cryptology-and-coding/

secure-multiparty-computation-and-secret-sharing?format=

HB&isbn=9781107043053

[5] K. Hornik, M. B. Stinchcombe, H. White, Multilayer feedforward net-
works are universal approximators, Neural Networks 2 (5) (1989) 359–
366. doi:10.1016/0893-6080(89)90020-8.
URL https://doi.org/10.1016/0893-6080(89)90020-8

[6] A. L. Maas, A. Y. Hannun, A. Y. Ng, Rectifier nonlinearities improve
neural network acoustic models, in: International Conference on Ma-
chine Learning (ICML), Vol. 1, 2013.

30

https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html
https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056
http://yann.lecun.com/exdb/mnist/
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8

[7] Q. V. L. Prajit Ramachandran, Barret Zoph, Searching for activation
functions (2018).
URL https://openreview.net/forum?id=SkBYYyZRZ

[8] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification, in: 2015 IEEE
International Conference on Computer Vision, ICCV 2015, Santiago,
Chile, December 7-13, 2015, IEEE Computer Society, 2015, pp. 1026–
1034. doi:10.1109/ICCV.2015.123.
URL https://doi.org/10.1109/ICCV.2015.123

[9] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network
training by reducing internal covariate shift, in: F. R. Bach, D. M. Blei
(Eds.), Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, Vol. 37 of JMLR
Workshop and Conference Proceedings, JMLR.org, 2015, pp. 448–456.
URL http://proceedings.mlr.press/v37/ioffe15.html

[10] A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Za-
hur, D. Evans, Privacy-preserving distributed linear regression on high-
dimensional data, 2017, pp. 345–364. doi:https://doi.org/10.1515/
popets-2017-0053.
URL https://sciendo.com/article/10.1515/popets-2017-0053

[11] A. Akavia, M. Leibovich, Y. S. Resheff, R. Ron, M. Shahar, M. Vald,
Privacy-preserving decision trees training and prediction, Cryptology
ePrint Archive, Report 2021/768, https://ia.cr/2021/768 (2021).

[12] A. Boldyreva, T. Tang, Privacy-preserving approximate k-nearest-
neighbors search that hides access, query and volume patterns, Cryp-
tology ePrint Archive, Report 2021/816, https://ia.cr/2021/816

(2021).

[13] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig,
J. Wernsing, Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy, in: M. Balcan, K. Q. Weinberger
(Eds.), Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016,
Vol. 48 of JMLR Workshop and Conference Proceedings, JMLR.org,
2016, pp. 201–210.
URL http://proceedings.mlr.press/v48/gilad-bachrach16.html

31

https://openreview.net/forum?id=SkBYYyZRZ
https://openreview.net/forum?id=SkBYYyZRZ
https://openreview.net/forum?id=SkBYYyZRZ
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
https://sciendo.com/article/10.1515/popets-2017-0053
https://sciendo.com/article/10.1515/popets-2017-0053
https://doi.org/https://doi.org/10.1515/popets-2017-0053
https://doi.org/https://doi.org/10.1515/popets-2017-0053
https://sciendo.com/article/10.1515/popets-2017-0053
https://ia.cr/2021/768
https://ia.cr/2021/816
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html

[14] E. Hesamifard, H. Takabi, M. Ghasemi, Cryptodl: Deep neural net-
works over encrypted data, CoRR abs/1711.05189 (2017). arXiv:

1711.05189.
URL http://arxiv.org/abs/1711.05189

[15] S. Wagh, D. Gupta, N. Chandran, Securenn: 3-party secure compu-
tation for neural network training, Proceedings on Privacy Enhancing
Technologies 2019 (2019) 26–49. doi:10.2478/popets-2019-0035.

[16] P. Mohassel, P. Rindal, Aby3: A mixed protocol framework for ma-
chine learning, in: Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’18, Associa-
tion for Computing Machinery, New York, NY, USA, 2018, p. 35–52.
doi:10.1145/3243734.3243760.
URL https://doi.org/10.1145/3243734.3243760

[17] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, T. Ra-
bin, FALCON: honest-majority maliciously secure framework for pri-
vate deep learning, CoRR abs/2004.02229 (2020). arXiv:2004.02229.
URL https://arxiv.org/abs/2004.02229

[18] N. Attrapadung, K. Hamada, D. Ikarashi, R. Kikuchi, T. Matsuda,
I. Mishina, H. Morita, J. C. N. Schuldt, Adam in private: Secure and
fast training of deep neural networks with adaptive moment estimation,
Cryptology ePrint Archive, Report 2021/736, https://ia.cr/2021/

736 (2021).

[19] R. Seggers, K. L. Veen, C. Schaffner, Privately training cnns using
two-party spdz, accessed: 2020-10-12 (2018).
URL https://homepages.cwi.nl/~schaffne/projects/reports/

RubenSeggers_KoenvdVeen.pdf

[20] H. Chabanne, A. de Wargny, J. Milgram, C. Morel, E. Prouff, Privacy-
preserving classification on deep neural network, IACR Cryptol. ePrint
Arch. 2017 (2017) 35.
URL http://eprint.iacr.org/2017/035

[21] S. Wagh, New directions in efficient privacy-preserving machine learn-
ing, Ph.D. thesis, Princeton University, accessed: 2020-10-12 (5 2020).
URL https://snwagh.github.io/CV/thesis.pdf

32

http://arxiv.org/abs/1711.05189
http://arxiv.org/abs/1711.05189
http://arxiv.org/abs/1711.05189
http://arxiv.org/abs/1711.05189
http://arxiv.org/abs/1711.05189
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3243734.3243760
https://arxiv.org/abs/2004.02229
https://arxiv.org/abs/2004.02229
http://arxiv.org/abs/2004.02229
https://arxiv.org/abs/2004.02229
https://ia.cr/2021/736
https://ia.cr/2021/736
https://homepages.cwi.nl/~schaffne/projects/reports/RubenSeggers_KoenvdVeen.pdf
https://homepages.cwi.nl/~schaffne/projects/reports/RubenSeggers_KoenvdVeen.pdf
https://homepages.cwi.nl/~schaffne/projects/reports/RubenSeggers_KoenvdVeen.pdf
https://homepages.cwi.nl/~schaffne/projects/reports/RubenSeggers_KoenvdVeen.pdf
http://eprint.iacr.org/2017/035
http://eprint.iacr.org/2017/035
http://eprint.iacr.org/2017/035
https://snwagh.github.io/CV/thesis.pdf
https://snwagh.github.io/CV/thesis.pdf
https://snwagh.github.io/CV/thesis.pdf

[22] W. Wu, J. Liu, H. Wang, F. Tang, M. Xian, Ppolynets: Achieving
high prediction accuracy and efficiency with parametric polynomial ac-
tivations, IEEE Access 6 (2018) 72814–72823. doi:10.1109/ACCESS.

2018.2882407.
URL https://doi.org/10.1109/ACCESS.2018.2882407

[23] T. Araki, J. Furukawa, Y. Lindell, A. Nof, K. Ohara, High-throughput
semi-honest secure three-party computation with an honest majority,
in: E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, S. Halevi
(Eds.), Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016,
ACM, 2016, pp. 805–817. doi:10.1145/2976749.2978331.
URL https://doi.org/10.1145/2976749.2978331

[24] O. Catrina, A. Saxena, Secure computation with fixed-point numbers,
in: R. Sion (Ed.), Financial Cryptography and Data Security, 14th
International Conference, FC 2010, Tenerife, Canary Islands, Spain,
January 25-28, 2010, Revised Selected Papers, Vol. 6052 of Lecture
Notes in Computer Science, Springer, 2010, pp. 35–50. doi:10.1007/

978-3-642-14577-3_6.
URL https://doi.org/10.1007/978-3-642-14577-3_6

[25] M. Liedel, Secure distributed computation of the square root and ap-
plications, in: M. D. Ryan, B. Smyth, G. Wang (Eds.), Information
Security Practice and Experience - 8th International Conference, IS-
PEC 2012, Hangzhou, China, April 9-12, 2012. Proceedings, Vol. 7232
of Lecture Notes in Computer Science, Springer, 2012, pp. 277–288.
doi:10.1007/978-3-642-29101-2_19.
URL https://doi.org/10.1007/978-3-642-29101-2_19

[26] X. Glorot, Y. Bengio, Understanding the difficulty of training deep
feedforward neural networks, in: Y. W. Teh, D. M. Titterington (Eds.),
Proceedings of the Thirteenth International Conference on Artificial In-
telligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia,
Italy, May 13-15, 2010, Vol. 9 of JMLR Proceedings, JMLR.org, 2010,
pp. 249–256.
URL http://proceedings.mlr.press/v9/glorot10a.html

[27] B. Xu, N. Wang, T. Chen, M. Li, Empirical evaluation of rectified
activations in convolutional network, CoRR abs/1505.00853 (2015).
arXiv:1505.00853.
URL http://arxiv.org/abs/1505.00853

33

https://doi.org/10.1109/ACCESS.2018.2882407
https://doi.org/10.1109/ACCESS.2018.2882407
https://doi.org/10.1109/ACCESS.2018.2882407
https://doi.org/10.1109/ACCESS.2018.2882407
https://doi.org/10.1109/ACCESS.2018.2882407
https://doi.org/10.1109/ACCESS.2018.2882407
https://doi.org/10.1145/2976749.2978331
https://doi.org/10.1145/2976749.2978331
https://doi.org/10.1145/2976749.2978331
https://doi.org/10.1145/2976749.2978331
https://doi.org/10.1007/978-3-642-14577-3_6
https://doi.org/10.1007/978-3-642-14577-3_6
https://doi.org/10.1007/978-3-642-14577-3_6
https://doi.org/10.1007/978-3-642-14577-3_6
https://doi.org/10.1007/978-3-642-29101-2_19
https://doi.org/10.1007/978-3-642-29101-2_19
https://doi.org/10.1007/978-3-642-29101-2_19
https://doi.org/10.1007/978-3-642-29101-2_19
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1505.00853

[28] D. Pedamonti, Comparison of non-linear activation functions for deep
neural networks on MNIST classification task, CoRR abs/1804.02763
(2018). arXiv:1804.02763.
URL http://arxiv.org/abs/1804.02763

[29] S. Hayou, A. Doucet, J. Rousseau, On the selection of initialization and
activation function for deep neural networks, CoRR abs/1805.08266
(2018). arXiv:1805.08266.
URL http://arxiv.org/abs/1805.08266

[30] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Vir-
tanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith,
R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane,
J. F. del R’ıo, M. Wiebe, P. Peterson, P. G’erard-Marchant, K. Shep-
pard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T. E. Oliphant,
Array programming with NumPy, Nature 585 (7825) (2020) 357–362.
doi:10.1038/s41586-020-2649-2.
URL https://doi.org/10.1038/s41586-020-2649-2

[31] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,
S. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, I. Polat,
Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimr-
man, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy, Scipy 1.0-fundamental
algorithms for scientific computing in python, CoRR abs/1907.10121
(2019). arXiv:1907.10121.
URL http://arxiv.org/abs/1907.10121

[32] Chebyshev approximation in python, https://www.excamera.com/

sphinx/article-chebyshev.html, accessed: 2020-10-12.

[33] H. P. Langtangen, Approximation of functions, http://hplgit.

github.io/num-methods-for-PDEs/doc/pub/approx/html/approx.

html, accessed: 2020-10-12 (2016).

[34] K. L. Veen, M. Dahl, R. Seggers, Privateml, https://github.com/

koenvanderveen/privateml, accessed: 2020-10-12 (2018).

[35] A. Meurer, C. P. Smith, M. Paprocki, O. Cert́ık, S. B. Kirpichev,
M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rath-
nayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta,

34

http://arxiv.org/abs/1804.02763
http://arxiv.org/abs/1804.02763
http://arxiv.org/abs/1804.02763
http://arxiv.org/abs/1804.02763
http://arxiv.org/abs/1805.08266
http://arxiv.org/abs/1805.08266
http://arxiv.org/abs/1805.08266
http://arxiv.org/abs/1805.08266
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://arxiv.org/abs/1907.10121
http://arxiv.org/abs/1907.10121
http://arxiv.org/abs/1907.10121
http://arxiv.org/abs/1907.10121
https://www.excamera.com/sphinx/article-chebyshev.html
https://www.excamera.com/sphinx/article-chebyshev.html
http://hplgit.github.io/num-methods-for-PDEs/doc/pub/approx/html/approx.html
http://hplgit.github.io/num-methods-for-PDEs/doc/pub/approx/html/approx.html
http://hplgit.github.io/num-methods-for-PDEs/doc/pub/approx/html/approx.html
https://github.com/koenvanderveen/privateml
https://github.com/koenvanderveen/privateml

S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel,
S. Roucka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, A. M. Sco-
patz, Sympy: symbolic computing in python, PeerJ Comput. Sci. 3
(2017) e103. doi:10.7717/peerj-cs.103.
URL https://doi.org/10.7717/peerj-cs.103

[36] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. A. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, X. Zheng, Tensorflow: A system for
large-scale machine learning, in: K. Keeton, T. Roscoe (Eds.), 12th
USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, USENIX
Association, 2016, pp. 265–283.
URL https://www.usenix.org/conference/osdi16/

technical-sessions/presentation/abadi

35

https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

	Introduction
	Contributions
	Paper Organisation

	Related Work
	Optimisation of Neural Networks
	Machine Learning with MPC
	Polynomial Approximation
	Batch Normalisation in Combination with Polynomial Approximation
	Parametric Polynomial Activation Functions

	Efficient Optimisation of CNNs with MPC
	Framework Setting
	Batch Normalisation
	Division Protocol
	Square Root Protocol

	Activation Functions
	Polynomial Approximation
	Parametric Polynomial Activation Functions

	Efficient Optimisation Framework of CNNs with MPC

	Experimental Results and Discussion
	Implementation Environment
	Testing Details
	Protocol Efficiency
	Experimental Results
	Discussion of Results
	Security Analysis and Discussion

	Conclusions and Future Work

