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We study the use of machine learning for finding numerical hermitian Yang–Mills connections on line 
bundles over Calabi–Yau manifolds. Defining an appropriate loss function and focusing on the examples 
of an elliptic curve, a K3 surface and a quintic threefold, we show that neural networks can be trained 
to give a close approximation to hermitian Yang–Mills connections.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction and summary

Heterotic string theory on Calabi–Yau threefolds equipped 
with gauge bundles provides a large class of phenomenologically 
promising string models [1–12]. However, despite many decades 
of work, it is still not possible to compute the masses or couplings 
that appear in the resulting four-dimensional theories from first 
principles. A good deal of the problem can be traced to the lack of 
explicit expressions for non-trivial Calabi–Yau (CY) metrics or her-
mitian Yang–Mills connections. Let us recall why these are needed. 
Compactification of the heterotic string on a Calabi–Yau threefold 
X with its Ricci-flat metric gives a four-dimensional effective the-
ory with N = 1 supersymmetry. To obtain MSSM-like theories, X
should also carry a holomorphic vector bundle V whose connec-
tion solves the hermitian Yang–Mills (HYM) equations [13,14].

Generic details of the compactification, such as the number of 
generations or the vanishing of certain couplings, can be obtained 
from algebro-geometric results for the existence and topology of 
the threefold X and the bundle V [15–22]. These calculations do 
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not need explicit expressions for either the metric or the connec-
tion. Unfortunately, the detailed four-dimensional physics is con-
trolled by a Kähler potential and a superpotential, which depend 
on both the explicit Ricci-flat metric and the explicit HYM connec-
tion. Without this data, it is generally not possible to accurately 
compute masses or couplings, leaving us unable to make precise 
particle physics predictions from string theory.

With little hope of finding analytic expressions for the rele-
vant metrics or connections, much progress has been made on 
finding numerical approximations. There is now a diverse range of 
algorithms for computing Ricci-flat metrics on Calabi–Yau mani-
folds numerically, including position space methods [23], spectral 
approaches [24–26] building on the work of Tian [27] and Don-
aldson [28], and, most recently machine learning [29] and neural 
networks tailored for the metric computation [30–33] (see [34] for 
a recent pedagogical review on Calabi–Yau manifolds and machine-
learning).

Given these advances, it now seems appropriate to focus on 
computing hermitian Yang–Mills connections. This will be the sub-
ject of the present work. As with the Ricci-flatness condition for 
the metric, the HYM equations are a system of partial differential 
equations that are difficult to solve, and so one is again compelled 
to consider numerical approximations. Previous work [35–37] has 
used Wang’s extension [38] of Donaldson’s approach to compute 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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numerical HYM connections for a number of examples, including 
SU(n) bundles over threefolds.

Unfortunately, connections are a jump in computational com-
plexity compared to the Ricci-flat metric, with a corresponding loss 
of speed and accuracy. With this in mind, we seek a faster and 
more accurate method by employing machine learning. The aim 
of this paper is to take the first step in applying machine learn-
ing to find HYM connections. Focusing on the simplest cases of 
connections on line bundles, we show that it is both feasible and 
promising to compute connections in this way. Though we do not 
tackle non-abelian bundles in the present work, we note that many 
Standard Model-like theories can be obtained from heterotic line 
bundle models [10,11,39,12,40–43]

Our approach builds on and extends the work of Douglas et 
al. [31] which presented a neural network for computing Calabi–
Yau metrics (they have provided a TensorFlow implementation of 
their approach on GitHub [44]). We give three examples, namely 
line bundles over an elliptic curve, a K3 surface, and a quintic 
threefold. For each of these, one starts by computing a numeri-
cal approximation to the Calabi–Yau metric. One then constructs 
a neural network whose input is the coordinates on the Calabi–
Yau and whose output is interpreted as the hermitian metric on 
the line bundle. By taking derivatives of the neural network, one 
can compute both the connection and the curvature defined by 
the hermitian metric. We give a loss function whose value is min-
imised for hermitian Yang–Mills connections, and then use this 
loss function to train the network. The resulting network encodes 
the hermitian metric that defines a HYM connection on the Calabi–
Yau. In this way, we find that accurate HYM connections can be 
obtained in a straightforward manner. In our results, we examine 
how the accuracy of the numerical connections changes with vary-
ing network depth. We observe that deeper networks are generally 
more accurate (as expected since they contain more parameters), 
with this improvement more pronounced as the dimension of the 
Calabi–Yau increases.

There are a number of obvious extensions. First, one could con-
sider line bundles over more complicated Calabi–Yau manifolds. 
This would involve generalising the code of Douglas et al. [31]
to complete intersections in products of projective space. Sec-
ond, one would want to move beyond abelian bundles to con-
sider non-abelian bundles, defined by monads, extensions, and 
so on. Both of these are essential if one wants to make con-
tact with the many constructions of the so-called heterotic Stan-
dard Model [45–47,4,10,48,11,39,12,49,40,50,51]. These advances, 
together with numerical metrics and Laplacians [52–54], and re-
sults for the matter-field Kähler potential [55–58], should enable 
real progress on computing masses and couplings in top-down 
string models. We will discuss these issues in future publications.

2. Hermitian Yang–Mills and line bundles on Calabi–Yau 
manifolds

Given a complex manifold X with a Kähler metric g (de-
fined by a choice of complex structure and Kähler form J ), a 
stable holomorphic vector bundle V admits a unique connec-
tion A whose curvature F solves the hermitian Yang–Mills equa-
tions:

Fij = F ī j̄ = 0, gi j̄ F i j̄ = μ(V )1. (1)

Here gi j̄ is the inverse Kähler metric on X , μ(V ) is a real 
constant known as the slope of V , and 1 is the d × d iden-
tity matrix on the fibres of the rank-d bundle V . The first two 
conditions are equivalent to the holomorphicity of V (and will 
be automatic in our construction). The third condition gives the 
2

HYM equations, a system of non-linear PDEs for the connec-
tion A.

The connection A can equivalently be described by a hermitian 
structure on V , which, more prosaically, is simply a hermitian in-
ner product G on sections of V . Given a frame {ea} for V , the inner 
product is

(ea, eb) = Gāb, G = G†. (2)

In holomorphic gauge, the connection is determined by G as

Ai = G−1∂i G, Aī = 0, (3)

with the curvature then given by

Fi j̄ = ∂ j̄∂i log G, (4)

where we are using the shorthand notation ∂i log G ≡ G−1∂i G . 
Given a Kähler metric, finding a solution to the HYM equations 
then reduces to choosing G such that (1) is satisfied. If this is the 
case, G is known as a Hermite–Einstein metric on V .

There exists a solution to the HYM equations on a Kähler mani-
fold if and only if the holomorphic vector bundle V is (at least) 
polystable [13,14]. To check this, one begins by computing the 
slope of V via

μ(V ) ≡
∫

X

c1(V ) ∧ Jn−1. (5)

Note that we always normalise Volg , the volume of X as mea-
sured by the Kähler metric, to one. The bundle V is stable if 
μ(F) < μ(V ) for all subsheaves F ⊂ V with 0 < rankF < rank V . 
Polystability is the statement that V is a direct sum of stable bun-
dles, all with the same slope. Thanks to this, the existence of a HYM 
connection can be reduced to algebraic conditions on subsheaves 
of V . Notice however that this is in no way constructive; that is, 
knowing a HYM connection exists does not give any hint of how to 
find it explicitly. For this we must turn to numerical methods. The 
aim of the present work is to use a neural network to search for 
numerical HYM solutions for the simplest examples, namely line 
bundles.

Line bundles on CY manifolds are by now a well-understood 
ingredient in heterotic compactifications (see, for example, [10–12,
39] and references therein). Recall that a holomorphic line bundle 
L over a complex manifold is determined (up to torsion) by its first 
Chern class, c1(L). Thanks to this, we can associate a line bundle 
over X to a divisor D by taking

c1(L) ≡ [F ]
2π

= D, (6)

where [F ] is the class of the curvature of the connection on L. The 
corresponding line bundle is then denoted by OX (D), or often by 
OX (kI ), where D = kIDI and the basis of divisors is implicit. The 
slope of a line bundle is then

μ(L) =
∫

X

c1(L) ∧ Jn−1, (7)

which depends on both the choice of line bundle via c1(L) and 
the choice of Kähler moduli via J . Since a line bundle has no sub-
sheaves F ⊂ L with 0 < rankF < 1, line bundles are always stable. 
This means that a line bundle will always admit a connection that 
solves the HYM equation, gi j̄ F i j̄ = μ(L). The problem is finding the 
explicit form of this connection.
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C3 Bihom Square Log R
R9 RW (1)

Fig. 1. A D = 2 network on an elliptic curve, whose output should be interpreted 
either as the Kähler potential, K , or log of the inverse bundle metric, log G−1, 
depending on whether one is computing the Calabi–Yau metric or the hermitian 
Yang–Mills connection. Here, “Bihom” refers to a bihomogenous layer which takes 
zi = (z0, z1, z2) as input and outputs the real and imaginary parts of zi z̄ j̄ . “Square” 
is a dense layer with a quadratic activation function, �x �→ (W1�x)2, where W1 is a 
general linear transformation of dimension W (1) × 9. “Log” is a dense layer with a 
log activation function, �x �→ log(W2�x), where W2 is a general linear transformation 
of dimension 1 × W (1) .

3. Numerical metrics and connections from neural networks

In this section, we begin by reviewing the calculation of numer-
ical Calabi–Yau metrics using a neural network following Douglas 
et al. [31].1 We then discuss numerical HYM connections. Finally, 
we define a functional which is minimised on HYM connections 
and thus can act as a loss function for a suitable neural network 
whose output will be interpreted as log G−1.

3.1. Numerical metrics from neural networks

Consider a compact Calabi–Yau n-fold X defined as a hypersur-
face in Pn+1 by the vanishing of a holomorphic equation f (z) = 0
of degree n +2 (for example, a threefold defined by a quintic equa-
tion in P 4). The choice of defining equation f fixes the complex 
structure moduli of the Calabi–Yau. A choice of Kähler structure 
then determines the metric gi j̄ on X . In other words, the metric 
on X is fixed by a Kähler potential K (z, ̄z). Finding the Ricci-flat 
metric on X then amounts to choosing K such that the resulting 
Kähler metric is Ricci flat.

Apart from on the torus, there are no explicitly known Käh-
ler potentials that give such Ricci-flat metrics. Instead, work has 
mostly focused on finding numerical approximations starting from 
a Fubini–Study-like ansatz for K :

K = 1

kπ
log sαhαβ̄ s̄β̄ , (8)

where the sα are sections of OX (k) (homogeneous functions of 
the coordinates z of degree k modulo f = 0), and hαβ̄ is a her-
mitian matrix of parameters. One then varies the parameters so 
that the resulting Kähler metric is as close as possible to Ricci flat. 
Increasing the degree k increases the size of the matrix hαβ̄ , al-
lowing a better approximation of the honest Calabi–Yau metric. 
There are now a variety of schemes for choosing hαβ̄ , including via 
balanced metrics [28,24,25], direct optimisation [23,26] and neural 
networks [30].

The work of Douglas et al. [31] follows a similar path but uses 
a neural network to compute the Kähler potential directly (see also 
[30,32] for similar approaches). The network is a series of densely 
connected layers L(i) of depth D and width W (i) with quadratic 
activation functions θ(i) : x �→ x2. The final layer, L(D) , has width 
W (D) = 1 and a log activation function, θ(D) : x �→ log x. The out-
put of the network can thus be thought of as the logarithm of 
a homogeneous scalar function of the inputs, with the coefficients 
that appear in this function fixed by the collective weights v of the 
network. A diagram of this network structure is shown in Fig. 1.

The inputs to the network are coordinates on the Calabi–Yau 
hypersurface, given as points zi = [z0 : . . . : zn+1] in the ambient 
projective space Pn+1, which can thus be thought of as sections 
of OX (1), i.e. elements of H0(X, OX (1)). In practice, the first layer 

1 See also [33] for a discussion of the “holomorphic feedforward networks” that 
underlie this approach.
3

is actually a “bihomogeneous layer” which converts the inputs zi

to the real and imaginary parts of zi z̄ j̄ , allowing one to work 
with real quantities. The successive layers have activation functions 
which square the output of each layer, so that the network essen-
tially constructs the tensor product

D−1⊗
1

OX (2) = OX (2D−1). (9)

Thus the output of the penultimate layer represents elements of 
H0(X, OX (2D−1)). Together with the final layer, the network out-
put is K , the Kähler potential, with the precise way that elements 
of H0(X, OX (2D−1)) are combined fixed by the weights v . The 
output of the network can then be used to compute a Kähler met-
ric on the hypersurface. The aim is then to choose the weights 
v so that the resulting metric is as close as possible to Ricci 
flat.

The network is trained by minimising the pointwise difference 
between the measure defined by the (explicitly known) holomor-
phic (n, 0)-form, vol� = i � ∧ �̄, and the measure defined by the 
Kähler metric on X , volg = Jn (using K computed by the network). 
The two quantities agree pointwise if and only if the metric is the 
honest Ricci-flat metric.

In outline, training proceeds as follows. First, a training set and 
a test set, each containing 10,000 points lying on the Calabi–Yau 
hypersurface, are generated. The training points (and data about 
coordinate patches, the (n, 0)-form and the point distribution) are 
passed to the network in batches of 1,000 in a training round. The 
Kähler metric defined by the network is given by the complex Hes-
sian of the network output, gi j̄(v) ∼ ∂i∂ j̄ K (v), where v denotes 
the weights of the network. The loss function is simply the mean 
absolute percentage error (MAPE), summed over the points in the 
training round:

σ(v) =
∫

X

∣∣∣∣1 − volg(v)

vol�

∣∣∣∣vol�, (10)

where here, and in what follows, we normalise the integrated vol-
umes, Volg and Vol� , to one. Note that this is known as the “σ
measure” in [25] and later work. One then searches for the min-
imum of this function in weight space, using stochastic gradient 
descent to update the weights after each training round. After 500 
epochs, the network has usually converged to an approximately 
Ricci-flat Kähler potential. The accuracy of the resulting network 
can then be checked by evaluating σ(v) on the test set.

It is simple to see how the numerical accuracy of the approx-
imation can be increased. From (9), a deeper network provides a 
higher-degree expansion of the Kähler potential with more param-
eters (weights), both of which should allow a better approximation 
of the Ricci-flat metric. A wider network increases only the num-
ber of parameters (weights).

3.2. Numerical connections from neural networks

Following [35–37], one can calculate numerical HYM connec-
tions by starting with an ansatz similar in spirit to (8) but now for 
the hermitian structure G as

(G−1)ab̄ =
Nk∑
α,β

Sa
α Hαβ̄ S̄ b̄

β̄
, (11)

where Sa
α are sections of V ⊗ OX (k) and Hαβ̄ is a hermitian ma-

trix of parameters. In principle, one then varies these parameters 
to find an approximate solution to the HYM equation (1). The re-
sult of this is the hermitian metric, and hence connection, on the 
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Fig. 2. Results for line bundle connections on an elliptic curve trained using Loss[v]. The plots show the histogram of gi j̄ F i j̄ evaluated for sample points on the elliptic curve 
in both the training and test sets. The left, middle and right plots are for networks of depth D = 2, 3, 4 respectively, which correspond to connections on the line bundles 
OX (2), OX (4) and OX (8).
bundle V (k) ≡ V ⊗ OX (k). Since we are interested in the connec-
tion on V alone, one should subtract the contribution of OX (k). 
As discussed in [36,37], the optimal way to do this is to take the 
metric on OX (k) to be that induced by det G . For the case where 
V is a line bundle, one does not encounter this complication as 
the connection on V = OX (m) is simple to recover from the con-
nection on OX (m + k). As with the metric, increasing k increases 
the number of sections Sa

α and hence the number of parameters 
in Hαβ̄ , so that larger values of k allow for a better approximation 
to the honest HYM connection.

Our idea is to use the structure of a neural network to mimic 
the construction of G−1, using the coordinates and activation func-
tions to reproduce the sections, with the weights standing in for 
the parameters.

We will focus on the example of rank-one bundles, i.e. line bun-
dles. In this case, the hermitian fibre metric on the line bundle is 
a scalar

G−1 =
Nk∑
α,β

Sα Hαβ̄ S̄ β̄ , (12)

with the curvature given by

Fi j̄ = ∂ j̄∂i log G = −∂ j̄∂i log G−1. (13)

We will treat the output of the neural network as log G−1, from 
which it is simple to calculate Fi j̄ .

The structure of the connection network is the same as that 
of Fig. 1, with the depth of the network controlling the value of 
m + k. As with the metric network, the inputs are the points on 
the Calabi–Yau hypersurface, given as points on Pn+1, and the out-
put of the network should be identified with log G−1. For each 
training round, one computes Fi j̄ as the complex Hessian of the 
output of the network. One then uses a previously trained metric 
network to compute the Ricci-flat metric, and combines this with 
Fi j̄ into an appropriate loss function, which we give in the next 
subsection. Training then attempts to minimise this loss function 
to find a numerical approximation to the HYM connection (for a 
given choice of Ricci-flat metric). After sufficient training rounds, 
one has a neural network that is equivalent to log G−1 as a func-
tion of coordinates. A schematic of this structure is given in the 
appendices in Fig. A.5.

3.3. Loss function

We now introduce an accuracy measure for HYM connections 
that will serve as a loss function for the neural network. As a no-
tational convenience, we define the contraction of g with F to 
be the scalar F g ≡ gi j̄ F i j̄ valued in endomorphisms of the gauge 
group; that is, for a rank-d bundle V , at a point on X , F g is a d ×d
matrix. With this notation the HYM equation is simply
4

F g = μ(V )1. (14)

We also define the expectation 〈O 〉 of a quantity O to be its aver-
age over the Calabi–Yau X using the exact CY measure vol� – for 
example, the expectation of tr F g is defined to be

〈tr F g〉 ≡
∫

X

vol� tr F g, (15)

where we recall that we normalised Vol� ≡ ∫
X vol� = 1.

Our connection network outputs log G−1, which in turn is used 
to compute F . Together with the data of an approximate Calabi–
Yau metric g , this gives F g as a function of the network weights v . 
As we discuss in Appendix A, a suitable choice for the loss function 
of the connection network is

Loss[v] ≡
〈
tr F 2

g(v)
〉
− 1

d

〈
tr F g(v)

〉2
. (16)

Obviously, there are other loss functions that one could choose. For 
example, given that one can often compute the slope of V (k) by 
algebraic means, one could instead minimise |〈tr F g〉 −μ(V (k))|, or 
any power of this.

4. Results

Having laid out our strategy, we now move to our results. The 
examples we consider are an elliptic curve, a K3 surface and a 
quintic threefold, all given as n-dimensional hypersurfaces in Pn+1

defined by the zero locus of a degree-(n +2) polynomial of the ho-
mogeneous coordinates [z0 : . . . : zn+1]. In all examples, the Ricci-
flat metric was first calculated using Douglas et al.’s metric net-
work [31,44]. We then trained the connection network for a variety 
of network depths. In all examples, the loss function was taken to 
be Loss[v] as in (16) and the networks were trained for 500 epochs 
using the Adam gradient-based optimisation algorithm [59]. The 
training sets and test sets each consisted of 10,000 random sample 
points on the relevant Calabi–Yau hypersurface. Note that with our 
choice of normalisations, the slope of the line bundle V = OX (m)

is given by μ(V ) = m, and so the HYM connection on V should 
satisfy F g = m.

4.1. Elliptic curve

The defining equation of an elliptic curve can be expressed in 
the form2

f (z) = z3
1 + az2

0z1 − z0z2
2 + bz3

0, (17)

2 This can be brought into the usual Weierstrass form y2 = x3 +ax +b by defining 
x = z1/z0 and y = z2/z0.
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Fig. 3. Values of gi j̄ F i j̄ for a line bundle connection calculated using a D = 4 net-

work on the elliptic curve trained using Loss[v]. The plot shows the values of gi j̄ F i j̄
on the z-axis sampled over points on the elliptic curve on the patch z0 = 1 with 
(x, y) = (z1, z2).

with the curve itself given by the zero locus of f (z) in P 2. 
The curve is non-singular if and only if the discriminant 	 =
−16(4a3 + 27b2) is non-zero. The example we consider is the el-
liptic curve with (a, b) = (−1, 1). Since 	 = 0, the curve is smooth 
and free from singularities. The approximate Calabi–Yau metric for 
this example was computed at k = 4 using a network of depth 
D = 3 with W (i) = (70, 100, 1). In the language of [25], the accu-
racy of this metric is σ = 0.001.

To compute the connection, we considered neural networks of 
depth D = 2, 3, 4 with intermediate layers of width W (i) = 40. 
Our results are shown in Fig. 2 with the training curves given 
in the appendices in Fig. B.9. In particular, we plot the histogram 
of gi j̄ F i j̄ evaluated for points in both the training and test sets. 
One sees that the histogram of gi j̄ F i j̄ is clustered around 2, 4 
and 8 for the D = 2, 3, 4 networks respectively, in agreement with 
F g = m, with the distribution more peaked for D = 3, 4. In Fig. 3, 
we plot the values of gi j̄ F i j̄ for the D = 4 network over the el-
liptic curve on the patch z0 = 1. As expected from the histograms, 
the values of gi j̄ F i j̄ over the elliptic curve are very close to con-
stant.

In order to compare the accuracy of the networks, we use the 
fact that the curvature of the HYM connection on OX (m) and that 
on OX (m + k) are related in a simple way since they are propor-
tional. As an example, consider V = OX (1) where we then twist 
by OX (k) with k = 1, 3, 7. Our neural network then computes the 
HYM connections on OX (2), OX (4) and OX (8). We then untwist 
in order to obtain a connection on V = OX (1) itself. We show 
the result of this in the left plot of Fig. 4. We see that all three 
networks are accurate, with the values of gi j̄ F i j̄ within 1% of the 
expected result, i.e. one, though the D = 2 network (corresponding 
to OX (2)) is the least accurate. The deeper D = 3 and D = 4 net-
works, however, have very similar accuracy to each other. This is 
not that surprising, since the Kähler metric on X was itself com-
puted using a D = 3 network, so the extra freedom allowed by the 
D = 4 network is not necessary.

4.2. K3 surface

The K3 surface we consider is a smooth quartic hypersurface 
f (z) = 0 in P 3. The defining equation is

f (z) = z4
0 + z4

1 + z4
2 + z4

3, (18)

which gives the Fermat quartic. The approximate Calabi–Yau met-
ric for this example was computed at k = 8 using a network of 
depth D = 4 with intermediate layers of width 100, i.e. W (i) =
(100, 100, 100, 1). In the language of [25], the resulting metric has 
a sigma measure of σ = 0.00035.
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We considered neural networks of depth D = 2, 3, 4 with in-
termediate layers of width W (i) = 100. Our full results are given 
in Appendix B, with the histograms of gi j̄ F i j̄ evaluated for both 
the training and test sets shown in Fig. A.7, and the train-
ing curves given in Fig. B.10. One sees that the histogram of 
gi j̄ F i j̄ is tightly clustered around 2, 4 and 8 for the D = 2, 3, 4
networks respectively, with the distribution more peaked for 
D = 3,4.

In order to compare the accuracy of these three networks, we 
again treat the networks as computing connections on OX (1 + k), 
and then untwist in order to obtain a connection on V = OX (1). 
We show the result of this in the middle plot of Fig. 4. We ob-
serve that all three networks are accurate, with the values of gi j̄ F i j̄
within 2% of the expected result, i.e. one. Again, the D = 2 net-
work (corresponding to OX (2)) is the least accurate of the three, 
as it displays the largest spread in values, and the deepest, D = 4
network gives the smallest spread of the three. The extra complex-
ity allowed by the D = 4 network leads to a small advantage over 
the D = 3 network. Since the numerical Ricci-flat metric on X was 
itself computed using a D = 4 network, it is somewhat surprising 
that the D = 4 network does not show a larger increase in accu-
racy over D = 3.

4.3. Quintic threefold

Finally, we consider a Calabi–Yau threefold given as smooth 
quintic hypersurface in P 4. The defining equation is

f (z) = z5
0 + z5

1 + z5
2 + z5

3 + z5
4 + 1

2 z0z1z2z3z4, (19)

which gives a member of the Dwork family of quintics. The ap-
proximate Calabi–Yau metric for this example was computed at 
k = 8 using a network of depth D = 4 with W (i) = (100, 100,

100, 1). The resulting metric has a sigma measure of σ = 0.001.
We considered neural networks of depth D = 2, 3, 4 with inter-

mediate layers of width W (i) = 100. Our full results are given in 
Appendix B, with the histograms of gi j̄ F i j̄ evaluated for points in 
both the training and test sets shown in Fig. B.8, and the train-
ing curves shown in Fig. B.11. In order to compare the accuracy of 
these three networks, we again untwist in order to obtain a con-
nection on V = OX (1). We show the result of this in the right 
plot of Fig. 4. We see that all three networks are accurate, with 
the values of gi j̄ F i j̄ within 5% of the expected result, i.e. one. 
Note that we computed the approximate Ricci-flat metric using a 
D = 4 network, and the curvature of the HYM connection should 
agree with the Kähler form of the Ricci-flat metric. Thanks to this, 
and the complexity of the Calabi–Yau metric on a threefold, it is 
not surprising that the D = 4 network performs the best of the 
three.
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Fig. 4. Histograms of gi j̄ F i j̄ on the line bundle OX (1) for: (Left) an elliptic curve; (Middle) a K3 surface; (Right) a quintic threefold. In all cases, gi j̄ F i j̄ is evaluated for points 
in the test set with the curvature given by untwisting the connection calculated by neural networks with D = 2, 3, 4, corresponding to OX (2), OX (4) and OX (8).
Points (and patch data) from 
CY n-fold [z0 : · · · : zn+1]

Network of depth 
D , layer widths 
W (1) . . . W (D)

Hermitian metric G−1 on bun-
dle, parametrised by weights

Calculate Fi j̄ using 
complex Hessian

Use pre-trained 
network for Kähler 
potential to give gi j̄

Calculate loss and 
update weights

Fig. A.5. Network structure for determining the gauge connection of a line bundle 
on a CY n-fold.

Appendix A. Network structure and loss function

In this appendix, we further discuss the structure of the neural 
network for computing numerical connections on line bundles and 
also justify the choice of loss function in the main text.

A.1. The network structure

The network structure for determining a gauge connection that 
satisfies hermitian Yang–Mills is given in Fig. A.5. As we also de-
scribe in the main text, the inputs to the network are sets of points 
on the Calabi–Yau hypersurface, given as points on the ambient 
projective space. This information is fed into a linear, dense net-
work of depth D with layer widths W (i) , shown in Fig. 1. The first 
layer of the network is a bihomogeneous layer, followed by dense 
layers with quadratic activation functions and zero biases. The out-
put of the network is the hermitian metric on the bundle (actually 
log G−1), parametrised by the weights v of the network. Next, we 
compute the curvature Fi j̄ of the connection induced by this her-
mitian metric by taking the complex Hessian of the network. In 
practice, this computes the curvature as a tensor on the ambient 
space, so one must pull it back to the hypersurface using the Ja-
cobian defined by the patches and the defining equation of the 
Calabi–Yau (see [24] for more details about this). The loss function 
of the network, whose discretised form is given in Equation (A.7), 
is defined by both the curvature computed by the network and a 
numerical Calabi–Yau metric. The latter comes from a pre-trained 
network whose output is a Kähler metric gi j̄ which is approxi-
mately Ricci flat. The loss function is then minimised by adjusting 
the weights v of the network using backpropagation. The result of 
this is a “trained” network whose output defines an approximate 
hermitian Yang–Mills connection.
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A.2. The loss function

Consider the variance of the trace of F g :

Var[tr F g] = 〈(tr F g)
2〉 − 〈tr F g〉2. (A.1)

Clearly, Var[tr F g] ≥ 0 with equality only when tr F g = 〈tr F g〉. 
However, this is the case only if tr F g is constant over X . Now con-
sider the fact that for a d ×d hermitian matrix M (such as 〈tr F g〉), 
one always has

d · tr M2 ≥ (tr M)2, (A.2)

with equality if and only if M is proportional to the identity ma-
trix, M ∝ 1 (but with no constraint on the function relating the 
two). Putting together these two observations, we define the func-
tional

E[F , g] = 〈tr F 2
g〉 − 1

d
〈tr F g〉2, (A.3)

which satisfies

0 ≤ Var[tr F g] ≤ d · E[F , g]. (A.4)

Thus if one finds a connection such that E[F , g] = 0, it must be 
the case that (A.2) is saturated and Var[tr F g] = 0, which imply 
tr F g = 〈tr F g〉 and F g ∝ 1 respectively. Taken together, these two 
conditions are equivalent to F g = c 1 with c constant, and so one 
has found a HYM connection. Conversely, it is clear that a HYM 
connection satisfies both Var[tr F g] = 0 and saturates the inequal-
ity (A.2). Hence, we have

F solves HYM ⇔ E[F , g] = 0. (A.5)

This motivates our choice of loss function, Loss[v], in Equation 
(16). For the special case of a rank-one bundle, i.e. a line bundle 
with d = 1, one has

E[F , g] = 〈F 2
g〉 − 〈F g〉2, (A.6)

which is simply the variance of F g .
Written as a discrete sum over points of X , the loss function is

Loss[v] =
∑

p tr(gi j̄(p)Fi j̄(v, p))2 w p∑
p w p

−1

d

(
∑

p gi j̄(p) tr Fi j̄(v, p)w p)2

(
∑

p w p)2
,

(A.7)

where p denotes a point in the training set, and w p is a mass 
which weights the sum over points to reproduce the integration 
measure defined by vol� [24].
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Fig. A.6. Results for line bundle connections on an elliptic curve trained using Loss[v]. The plots show the values of gi j̄ F i j̄ on the z-axis over the elliptic curve on the patch 
z0 = 1 with (x, y) = (z1, z2). The left, middle and right plots are for networks of depth D = 2, 3, 4 respectively, which correspond to connections on the line bundles OX (2), 
OX (4) and OX (8).

Fig. A.7. Results for line bundle connections on a K3 surface trained using Loss[v]. The plots show the histogram of gi j̄ F i j̄ evaluated for points in both the training and test 
sets, together with the mean and standard deviation. The plots are for networks of depth D = 2, 3, 4 which correspond to connections on the line bundles OX (2), OX (4)

and OX (8).

Fig. B.8. Results for line bundle connections on a quintic threefold trained using Loss[v]. The plots show the histogram of gi j̄ F i j̄ evaluated for points in both the training 
and test sets, together with the mean and standard deviation. The plots are for networks of depth D = 2, 3, 4 which correspond to connections on the line bundles OX (2), 
OX (4) and OX (8).

Fig. B.9. Training curves (the value of the loss function evaluated on the training set) as a function of training epoch for line bundle connections on an elliptic curve trained 
using Loss[v]. The plots are for networks of depth D = 2, 3, 4 which correspond to connections on the line bundles OX (2), OX (4) and OX (8).
Appendix B. Histograms and training curves

In this appendix, we display the histograms for gi j̄ F i j̄ and the 
training curves for D = 2, 3, 4 networks computing line bundle 
connections on an elliptic curve, K3 surface, and quintic threefold, 
as in the main text.
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Fig. A.6 shows the values of gi j̄ F i j̄ for points on the elliptic 
curve (17) on the patch z0 = 1 for D = 2, 3, 4 networks, com-
pleting Fig. 3 given in the main text. Figs. A.7 and B.8 show the 
histogram of gi j̄ F i j̄ for line bundle connections for both the K3 and 
quintic threefold examined in the main text. Each figure displays 
the histograms for networks of depth D = 2, 3, 4, corresponding to 
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Fig. B.10. Training curves (the value of the loss function evaluated on the training set) as a function of training epoch for line bundle connections on a K3 surface trained 
using Loss[v]. The plots are for networks of depth D = 2, 3, 4 which correspond to connections on the line bundles OX (2), OX (4) and OX (8).

Fig. B.11. Training curves (the value of the loss function evaluated on the training set) as a function of training epoch for line bundle connections on a quintic threefold 
trained using Loss[v]. The plots are for networks of depth D = 2, 3, 4 which correspond to connections on the line bundles OX (2), OX (4) and OX (8).
computing the connection on OX (2), OX (4) and OX (8). Both the 
training set and test set are included; there are no signs of over-
training.

Finally, Figs. B.9, B.10 and B.11 show the training curves (the 
value of the loss function evaluated on the training set) as a func-
tion of training epoch for line bundle connections on the elliptic 
curve (17), the K3 surface (18), and the quintic threefold (19), re-
spectively. Each figure displays the training curves for networks of 
depth D = 2, 3, 4, corresponding to computing the connection on 
OX (2), OX (4) and OX (8). The general pattern that one observes 
is that the shallow D = 2 networks reach a minimum very quickly, 
while the deepest D = 4 networks show decreasing losses all the 
way to the 500th epoch.
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