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Abstract: The joint stiffness can have a significant effect on the stability of single-layer lattice structure. However, it is yet 
unclear what is the degree of influence of joint stiffness on the form finding of assembled lattice structures. This paper presents 
a form finding method that suits assembled free-form single-layer lattice structures while the effect of joint stiffness on the 
form finding of the structure is investigated. Based on experimental results of the Ring-Sleeve joint, spring elements are 
initially used to simulate the joint stiffness and then finite element models of the assembled single-layer lattice structures with 
semi-rigid joints are established. The effect of joint stiffness on the structural form finding is studied by changing the spring 
stiffness. Thereafter, the optimal shapes of the assembled lattice structures with different joint stiffness and improved buckling 
load capacity are obtained. Finally, the mechanical properties of the resulted structures with different joint stiffness are 
extensively compared. The results show that different joint stiffness generate different structural shapes, and the greater joint 
stiffness results in higher structural height. Furthermore, both the structural buckling load capacity and the imperfection 
sensitivity increase with the increase of joint stiffness. Overall, the buckling load capacity of the semi-rigid model is lower 
than that of the replaced model that obtained based on the rigid structure. 

Keywords: Assembled lattice structures; Semi-rigid joints; Beam-Virtual spring element; Form finding 

 

1. Introduction  

In recent years, the rise of computer-aided design and modelling techniques have enabled a new level of 
sophistication in the design of free-form lattice structures [1]. And thanks to their splendid visual effects 
and the capacity to cover large spaces with uninterrupted span, lots of free-form lattice structures are widely 
used in civil infrastructure including large-scale commercial buildings and stadia, such as the Pearl stadium 
and the Usnisa palace shown in Fig. 1. 

 
Basically, most of geometrical and topological information of lattice structures is stored in their joints, and 
the joint stiffness is sure to have an important effect on the structural mechanical performance. Moreover, 
the 21st century is the era of efficiency in design. Therefore, the assembled free-form lattice structures has 
become a very popular structural typology widely chosen in many recent applications. As the name implies, 
an assembled structure is the one that the connections of its rods are not connected through the welding joints 
but the assembled ones. So far, according to the previous researches, there are already many kinds of joints 
which can be applied for the free-form lattice structures, such as the German's metro-system, as shown in 
Fig. 2(a), and the SBP-system as shown in Fig. 2(b) [2-3]. More recently, the newly developed design 
algorithms, such as the structural topology optimisation algorithm, have effectively responded to the demand 
for the design of complex joints. Abdelwahab and Tsavdaridis [4] developed some novel node-connections 
with the help of structural optimisation algorithm, as shown in Fig. 2(c). Seifi [5] used the Bi-directional 
Evolutionary Structural Optimisation (BESO) techniques to design the structural joints of complex shapes 
for lattice-shell structures, as shown in Fig. 2(d). 

  
     (a) Pearl Stadium, China                 (b) Nanjing's Usnisa Palace, China 

Fig. 1 Examples of free-form lattice structures 



     
(a) Metro-2 connector (b) SBP-3 connector (c) The novel node-connections (d) Result of BESO method 

Fig. 2 some examples of assembled joints 

On account of the fact that so many types of joints have been developed and widely used in the practical 
projects, the assembled single-layer free-form lattice structures have become an interesting topic of research 
for large-span space structures. Furthermore, judging from research results in the past, most of the joints in 
assembled lattice structures are semi-rigid joints. Actually, the joints can be considered as one of the most 
important elements in the assembled lattice structures due to their vital role in load transferring process. 
There is a great amount of forces transferred through the small volume. Therefore, it is no doubt that the 
mechanical properties of the joints in assembled structures, such as strength and bending stiffness have a 
great influence on the mechanical behaviour of the structure. Observations from earlier studies [6-7] 
confirmed that the joint stiffness has a considerable effect on the load-displacement behaviour of the 
structure. Then, various types of joints have experimented for their respective mechanical performances, 
which have shown different effects on reticulated shells. According to a prototype test, the bending stiffness 
of the joint was determined [8], and the joint bending stiffness was brought into the overall structural analysis 
model. The differences of stable bearing capacity between the perfect lattice shell and the lattice shell with 
geometric initial imperfects were compared. The authors concluded that the rigid shell of the reticulated shell 
was very sensitive to the initial geometric imperfects, and as the stiffness of the joint weakens, the sensitivity 
of the reticulated shell to such imperfections decreases until the joint is hinged, thus this effect can be ignored. 
L´opez et al. [9-10], Kato et al. [11] and Lightfoot et al. [12] verified that the stiffness of the joints is an 
important factor that influences the behaviour of a single-layer latticed dome, and the influence of semi-rigid 
connection on structural stability is greater than that of geometric imperfect on structural stability. 
Furthermore, there are many other scholars who have meticulously studied the mechanical properties of 
semi-rigid joints. Guo et al. [13-14] studied the aluminum alloy plate joint systematically. The bending 
properties and key factors affecting the bending capacity of aluminum alloy plate joints were analysed in-
depth, and the calculation formula of bearing capacity is put forward. In addition, various types of joints 
have experimented for their respective mechanical performances according to Ma and Feng [15-17], which 
have shown different effects on reticulated shells.  

As for the form finding of free-form single-layer lattice structures, many techniques have been developed so 
far, namely the dynamic relaxation method, the force density method, the updated reference strategy, and 
the particle-spring system method. In addition, Feng et al. [18-19] studied the form finding of cable-braced 
free-form lattice structures with the aim of structural strain energy. Hawdon-Earl and Tsavdaridis [20] 
developed a standard and robust methodology for shell optimisation design. The methodology uses Oasys 
GSA and Abaqus which allow both form-finding analysis and dimensioning to be conducted. However, these 
methods are generally proposed for lattice structures with rigid joints to find the equilibrium states; few 
practical approaches for the shape designs of assembled free-form lattice structures with semi-rigid joints 
have been developed.  

Therefore, it is worth noting that earlier studies on assembled free-form lattice structures have mainly 
concentrated on the assembled connections and their influence on the VWUXFWXUHV¶�stability, yet no studies 
have been reported on the form finding of assembled single-layer lattice structures considering the effects of 
joint stiffness. Consequently, this paper takes the effect of the joint stiffness into consideration to optimise 
the assembled single-layer lattice structure, and account for the effect of different joint stiffness on the 
structural form finding.  

2. Get the actual joint stiffness  

In order to know the actual joint stiffness, a prototype test of the joint was conducted by the author¶s group. 
The joint used in the test is called Ring-Sleeve joint, which is a self-developed joint that is suitable for the 



assembled free-form single-layer lattice structure. The mechanical properties of the joint have been 
thoroughly studied through both experiments and finite element analysis by Wang et al. [21].  

2.1 Parameters of Ring-sleeve joint 

The details of the construction of Ring-sleeve joint are shown in a sectional drawing in Fig. 3. The joint 
consists of a central ring, sleeves, tubes and high-strength bolts. There are identical bolt holes in the central 
ring, sleeve, and tube. The bolt holes of the central ring, sleeves, and tubes are aligned to assemble the joint 
using the high-strength bolts. 

     

    (a) Model of joint                   (b) Sectional drawing of joint                    (c) Details of the semi-rigid joint                                         
Fig. 3 Schematic diagram of the joint  

2.2 Stiffness of the Ring-sleeve joints 

Table 1. Geometrical parameters of the joint 
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In order to determine several mechanical indexes of the bolted joint, four prototype tests were carried out 
and the design parameters of the test joints are shown in Table 1 and Fig. 3(c).  
Based on the rotational stiffness of rigid joints, the joint stiffness factor Fc is defined as the ratio of the 
assembled joint stiffness to rigid joint stiffness, as shown in formula (1). 

 

 
  

  
assembled joint stiffnessFc
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For the rigid joint, the out-plane elastic bending stiffness can be defined as: 
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The torsional stiffness can be defined as: 
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Where E is the elastic modulus of a tube, and G is the shear modulus of elasticity. Iout is the out-plane inertia 
moment of a tube. Iin is the in-plane inertia moment of a tube. Itor is the torsional inertia moment of a tube. L 
is the length of a tube. 
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3. Establishment of assembled lattice structures with different joint stiffness 

3.1 the Beam-Virtual spring elements 

In this section, the way to simulate the different rotational stiffness of the assembled joint in the finite element 
model is presented. In order to study the influence of the assembled joint stiffness on form findingof 
assembled single-layer lattice structures, in this paper, the Beam-Virtual Spring elements were used to 
simulate the joint stiffness according to Wang et al. [21]. Actually, there are six virtual spring elements were 
used to simulate the freedom of six directions of the joints. In specific, in the numerical model of assembled 
free-form single-layer lattice structures, three nonlinear spring elements µcombin39¶ with unidirectional 
freedom were used to simulate the rotational capacity of the assembled semi-rigid joint in three directions, 
and the other three axial spring elements were used to simulate the three-direction translational freedom of 
the joint. 

3.2 Obtain the spring stiffness 

 
Fig. 4 Computational model with rotating spring 

Fig. 4 depicts the nodal calculation model with rotating springs. Under the action of bending moment M, the 
deformation ș of the right end of rod mainly includes deformation ș1 caused by bending of rod and 
deformation ș2 in the joint area. Assuming that the length of the rod is l, the elastic modulus is E, the cross-
section inertia distance is I, rotational stiffness of rod is KB, the spring at end of the rod is a zero-length 
element, the rotational stiffness is KS, and the rotational stiffness of the whole model is KJ. 

Then, according to structural mechanics: 

The rotation angle of the rod itself is:                
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The rotation angle of the spring is˖            
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Total rotation of the joint is˖            
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Then, the spring stiffness can be obtained as:            
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The rotational stiffness of the assembled joint model KJ has been obtained by the prototype test, and the final 
spring stiffness can be obtained. It is worth noting that there are only four different types of joint stiffness 
that were obtained by the test. Therefore, in order to analyse the influence of different joint stiffness on form 
finding of lattice structures more comprehensively, seven other semi-rigid joints were derived in this paper 
according to the test results, as shown in Table 2, the 4th to 7th joints are the experimental joints, and the 
remaining joints are the derivation results of this paper. These joints have different stiffness factors which 
change regularly from 0.1 to 0.9.   

Table 2 Spring rotational stiffness 

Joint 
No. 

Initial out-plane rotational stiffness (kN·m/rad) Initial in-plane rotational stiffness (kN·m/rad) 

Semi-rigid joint Stiffness factor 
Fc Spring element Semi-rigid joint Stiffness factor 

Fc Spring element 

1 204.19 10% 226.88 61.25 3% 63.15 



2 408.39 20% 510.48 81.67 4% 85.08 
3 612.58 30% 875.12 102.09 5% 107.47 
4 781.00 38% 1122.98 126.05 6% 129.97 
5 922.00 45% 1888.15 148.81 7% 174.12 
6 1030.00 50% 2079.99 166.24 8% 180.66 
7 1120.00 55% 2350.90 180.77 9% 192.59 
8 1225.17 60% 3062.93 204.19 10% 226.88 
9 1429.37 70% 4764.56 245.03 12% 278.44 

10 1633.56 80% 8167.83 285.87 14% 332.41 
11 1837.76 90% 18377.62 326.71 16% 388.94 

 
 

3.3 Verification of finite element model of assembled single-layer grid structure 

In order to verify the correctness of using the Beam-Virtual Spring elements to simulate the joint 
stiffness of assembled single-layer grid structure, the finite element model of single-layer spatial grid 
structure with Beam-Virtual Spring elements is establish, and the results of finite element analysis are 
compared with the experimental results  

  
           Fig. 5 A free-form single-layer lattice structure 

In this section, a free-form single-layer lattice structures shown in Fig. 5 is taken as an example. The 
initial shape is defined as a free-form surface of 14m in span and 2.7m in height (the rise). The rod is the 
square steel tube with dimensions of 100mm灤100mm灤4mm made of Q345 steel, and the elastic modulus is 

52.0 10 MPau . The concentrated load is applied on each node as a uniformly distributed load.  
In order to adapt to the laboratory conditions, the original structure was scaled down according to the 

similarity theory. In this case, 1/4 scaled model was selected. The physical quantities of the scaled model are 
similar to the original structure. Correspondingly, in the finite element simulation, the joint ending stiffness 
of the scaled model is taken as 1/256 of the original structure. In the test model, the equivalent node sandbag 
is used as the loading mode. During loading, the sandbag load is evenly transferred to each node through the 
loading frame, and the weight of each sandbag is 25kg. 

 
Fig.6 Comparison of load-displacement curves 

After the test, the finite element analysis of the scaled model is carried out and compared with the test 



results. As shown in Fig. 6, the load displacement curve comparison between the test value and the 
simulation value is shown. In the test model, the structural initial stiffness is 543.48kN/m; in the finite 
element model, the structural initial stiffness is 539.44kN/m, the error is only 0.74%, and the structural 
stiffness in the test model is slightly larger than the simulation value. When the structure loses stability, the 
ultimate bearing capacity of the two models is consistent, which is 9.15kN/m2. For the structural member 
level, the maximum axial force of the member in the test model is 28.63kN, and that in the finite element 
simulation is 25.3kN, with a difference of 11.6%. In addition, compared the test model with the finite element 
model, it is found that the average error of the equivalent stress of each member is 6.74%, which indicates 
that there is little difference between the results of finite element simulation and the test model. 

In summary, through the comparative analysis of the test model and the finite element model, combined 
with the influence of measurement error in the test, the model test value is basically consistent with the finite 
element simulation result, which 
4. Implementation of form finding  

As the FEM (finite element model) of the assembled lattice structure was established, the form finding of 
the assembled lattice structure considering the effect of different joint stiffness is completed in this section.  

4.1 Optimising parameters 

In the form finding of free-form single-layer lattice structure, the structural total strain energy can be taken 
as the objective function, which can be expressed as follows. 

Objective function:                    

 
1min (z)
2

TC U KU � ��� 

 

max

400
345

    
B

MPa
Subject to

G

V

d

d


°
®
°̄

� ���� 

 
:KHUH�&�LV�WKH�VWUXFWXUDO�WRWDO�VWUDLQ�HQHUJ\��.�LV�WKH�VWLIIQHVV�PDWUL[��8�LV�WKH�QRGDO�GLVSODFHPHQW�YHFWRU��]�
LV�WKH�QRGDO�]�FRRUGLQDWH��%�LV�WKH�VKRUW�VSDQ�RI�WKH�VWUXFWXUH�� �LV�WKH�PD[LPXP�QRGDO�GLVSODFHPHQW�DQG �
LV�WKH�PD[LPXP�VWUHVV�RI�WKH�WXEHV�� 

'HVLJQ�YDULDEOHV�� In this paper, the z-direction coordinates of the internal nodes of the assembled lattice 
structure are set as design variables, as shown in Fig. 5. It is worth noting that in an assembled lattice structure, 
each actual joint was divided into seven points while all of the points have the same coordinates. Therefore, 
these seven points are considered as the same design variable and have the same shape change in the process 
of optimisation. 

4.2 Implementation of form finding 

In this section, a free-form single-layer lattice structures shown in Fig. 5 is taken as an example. The initial 
shape is defined as a free-form surface of 14m in span and 2.7m in height (the rise). The rod is the square 
steel tube with dimensions of 100mm×100mm×4mm made of Q345 steel, and the elastic modulus is

52.0 10 MPau . The concentrated load is applied on each node as a uniformly distributed load, including the 
rod weight, the finishing materials, and the live load of 500 N/m2.          

The FEA model of the assembled free-form lattice structures was established through the Beam-virtual 
spring elements, and the virtual springs were used to simulate the joint stiffness. Then, the impact of joint 
stiffness on form finding of assembled free-form single-layer lattice structures was studied through changing 
the spring stiffness. Taking the total strain energy as the objective function, and Optistruct solver in Hyper-



Works was used in this paper. Then, through several iterations, the optimal solution is obtained, as shown in 
Fig. 7. 

 

      (a) Fc=0.1                                             (b) Fc=0.2                                            (c) Fc=0.3

 

      (d) Fc=0.38                                             (e) Fc=0.45                                         (f) Fc=0.5 

 

      (g) Fc=0.55                                             (h) Fc=0.6                                         (i) Fc=0.7 

 

      (j) Fc=0.8                                             (k) Fc=0.9                                         (l) Fc=1.0 

Fig. 7 Comparison of initial shape and the optimised shape under different stiffness factor 

Fig. 7 shows a shape comparison of the initial structure and the optimised structures under different stiffness 
factors. The black line represents the initial state of the structure, and the other colour lattices represent the 
optimised structural shapes under different stiffness factors. When the stiffness factor is equal to 1.0, it means 
that it is the result of form finding of lattice structures with rigid joints. Comparing the structural shapes in 
the figure, it is easily found that with the increase of joint stiffness factor, the variation of structural shape 
after optimisation is also increasing, and the closer the structural section is to the arch shape. Finally, when 
the stiffness factor becomes 1.0, the highest structural height was obtained. Therefore, it is proved that joint 
stiffness has a greater influence on form finding of the lattice structure; the larger joint stiffness can result in 
significant changes in the shape of a free-form single-layer lattice structures.  

Table 3 The initial models 

Model 
No. 

Stiffness factor 
Fc 

Strain energy
˄KJ˅ 

Buckling load capacity (N/m2) 
Imperfection 

sensitivity Mass (t)  Without 
imperfection 

With 
imperfection 

1 1.0 80.7 103396.22 73140.15 29.30 1.15 

2 0.9 81.5 99324.12 70945.8 28.57 1.15 

3 0.8 82.1 97252.24 68751.6 29.31 1.15 



4 0.7 82.6 89108.48 64363.2 27.77 1.15 

5 0.6 83.2 86868.88 57049.2 34.33 1.15 

6 0.55 83.6 74549.08 53392.2 28.38 1.15 

7 0.5 84 69581.36 48272.4 30.62 1.15 

8 0.45 84.4 65509.48 46078.2 29.66 1.15 

9 0.38 85.2 56389.68 42421.2 24.77 1.15 

10 0.3 85.7 48221.96 37301.4 22.65 1.15 

11 0.2 86.0 40006.32 30718.8 23.22 1.15 

12 0.1 86.3 22599.00 18285.0 19.09 1.15 
 

Table 4 The semi-rigid models that optimised directly  

Model 
No. 

Stiffness factor 
Fc 

Strain energy
˄KJ˅ 

Buckling load capacity (N/m2) 
Imperfection 

sensitivity Mass (t)  Without 
imperfection 

With 
imperfection 

13 1.0 21.1 308274.1 170304.51 44.75 1.34 

14 0.9 21.6 287196.2 165042 42.53 1.33 

15 0.8 24.2 264245.3 145574 44.91 1.288 

16 0.7 25.1 235065.6 134603 42.74 1.277 

17 0.6 25.3 186774.1 113354.3 39.31 1.275 

18 0.55 25.1 190586.9 137659 27.77 1.278 

19 0.5 27.4 170212.7 97804.08 42.54 1.258 

20 0.45 27.9 142241.4 115796.5 18.59 1.254 

21 0.38 28.9 139252.2 104946.4 24.64 1.248 

22 0.3 35.3 102497.8 86441.94 15.66 1.223 

23 0.2 42.1 78666.84 67955.33 13.62 1.201 

24 0.1 60.0 36331.50 36490.50 -0.44 1.165 
Table 5 The replaced models 

Model 
No. 

Stiffness factor 
Fc 

Strain energy
˄KJ˅ 

Buckling load capacity (N/m2) 
Imperfection 

sensitivity Mass (t)  Without 
imperfection 

With 
imperfection 

25 1.0 21.0 320192.1 173628 45.8 1.337 

26 0.9 21.8 298186.2 168419.16 43.52 1.337 

27 0.8 24.8 282180.48 173210.32 38.62 1.337 

28 0.7 26.3 264168.96 142792.64 45.95 1.337 

29 0.6 24.7 234149.76 155429.84 33.62 1.337 

30 0.55 24.6 219140.16 138748.44 36.69 1.337 

31 0.5 27.1 198126.72 124594.48 37.11 1.337 

32 0.45 27.7 152120.96 109385.64 28.09 1.337 

33 0.38 28.6 144111.36 100704.24 30.12 1.337 

34 0.3 35.0 123097.92 88550.28 28.07 1.337 

35 0.2 41.8 96080.64 72923.76 24.10 1.337 

36 0.1 58.7 55048.00 43407.00 21.15 1.337 



The data of each assembled lattice structures with semi-rigid joints are extracted after the optimisation, and 
compared with the initial structure and the optimised results. It should be noted that there are three different 
models here, the initial models with different joint stiffness, the semi-rigid models with different joint 
stiffness, and the replaced models with different joint stiffness. The initial models are the initial state of the 
structure, all the initial models have the same shape, however, the joint stiffness is different, which had been 
changed by changing the spring stiffness. The serial number of initial models are 1-12, as shown in Table 3. 
The semi-rigid models are the optimised results that take the assembled lattice structures as the optimisation 
object directly. All of the semi-rigid models have different shapes and different joint stiffness. The serial 
number of semi-rigid models is 13-24, as shown in Table 4. The replaced models are the optimised results 
that take a rigid lattice structures as the optimisation object. Then, the rigid joints of the structure are replaced 
by semi-rigid joints. All of the replaced models also have the same shape, but the different joint stiffness. 
The serial number of the replaced models are 25-36, as shown in Table 5. The significance of comparing the 
semi-rigid models and the replaced models is to explore which one is better during form finding of 
assembling lattice structures with semi-rigid joints ± i.e., the result of optimising the assembled structure 
directly or the result that replacing the rigid joint with a semi-rigid joint after optimising the rigid structure.   
 
In addition, to know the effect of initial geometric imperfection on the structural buckling load of the 
optimised structures, define the imperfection sensitivity as follows. 
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Where 
dP is the buckling load of the structure considering initial geometric imperfection; 

iP  is the 
buckling load of an intact structure without considering initial imperfection; the larger Mmeans the 
greater influence of initial geometric imperfection on the structural buckling load and the more sensitive 
the structure is. The imperfection is implemented according to the first-order eigenvalue buckling mode 
and the maximum value is 1/300 of the structural span.  

It can be seen from the tables that as the optimisation proceeding, the total strain energy of each structure is 
decreasing, and decreasing rapidly in the initial stage of optimisation. Compared with the initial structure, 
the total strain energy of all the optimised structure is greatly reduced. Furthermore, the greater the joint 
stiffness is, the more the total strain energy of the structure will be reduced, which is reduced by up to 73.85% 
when the stiffness factor is 1.0. 
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 (a) Without considering initial imperfection          (b) Considering the initial imperfection 

Fig. 8 Buckling load capacity of different models 

For the mechanical properties of the optimised structures, the buckling load capacity of different models is 
shown in Fig. 8. Combined with the data in Tables 3-5, it is appreciated that under the same joint stiffness 
factor, whether the initial imperfection is applied or not, the buckling load capacity of the structure after 
form finding is greatly improved compared to the initial structure. If the initial imperfection is not considered, 
the buckling load capacity of the optimised structure has increased by up to 197.2% compared with the initial 
structure and thereafter the imperfection is applied, the buckling load capacity of the structure after 



optimisation is increased by a minimum of 99.5% and a maximum of 132.6% compared with the initial 
structure. Furthermore, it is worth noting that, when the joint stiffness factor is equal to 0.45 and 0.38, and 
the imperfection is applied, the structural buckling load capacity of the semi-rigid model is 5% higher than 
that of the replaced model. Therefore, in this case, when the joint stiffness factor is equal to 0.45 or 0.38, the 
shape obtained by optimising the semi-rigid model directly is better than the result get by the replaced model. 
In addition, the figures also demonstrate that along with the increasing of the joint stiffness, the structural 
buckling load capacity is also increasing, which indicates that the joint stiffness has an important influence 
on the form finding of assembled lattice structures with semi-rigid joints. The larger the joint stiffness is, the 
easier it is to get the structure shape with higher buckling load capacity. 
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Fig. 9 Load-displacement curves of the semi-rigid models              Fig. 10 Variation of imperfection sensitivity 

The load-displacement curve of semi-rigid models is shown in Fig. 9, and depicts that structures with higher 
joint stiffness also have a higher buckling load capacity. Fig. 10 demonstrates the variation of imperfection 
sensitivity of different models. It can be seen that as the joint stiffness factor is increasing, the 
imperfection sensitivity of each model is gradually increasing. In particular, the initial models have the 
lowest imperfection sensitivity relatively, and the imperfection sensitivity of the replaced models is higher 
than that of the initial models. For semi-rigid models, when the stiffness factor is larger than 0.5, the semi-
rigid model has a larger imperfection sensitivity than that of the initial model, in most cases. When the 
stiffness factor is smaller than 0.5, the imperfection sensitivity of the semi-rigid model is lower than that of 
the initial and the replaced model. This is the reason that when the stiffness factor equal to 0.38 or 0.45, the 
buckling load capacity of the semi-rigid model is slightly higher than that of replaced models.  
 

4.3 Case 2 

     
     (a) Initial planar grid                     (b) supports and design variables 

Fig. 11 Initial model 

 

The assembled free-form single-layer lattice structure in last section, the structural initial shape has been 
roughly given. To verify the applicability of the proposed method for assembled lattice structure whose 
initial shape is not given, another assembled single-layer triangular lattice structure with plane quadrilateral 
is chosen as an example in this section. As shown in Fig. 11, the initial model is a quadrilateral with a length 
and width of 15m, and the four corners and the middle of the four edges are hinged, the load was distributed 
uniformly over the structure. The rod is a square steel tube with dimensions of 120mm×120mm×6mm made 
of steel grade Q345. 



 
      (a) Fc=0.1                                             (b) Fc=0.2                                            (c) Fc=0.3  

 

      (d) Fc=0.38                                             (e) Fc=0.45                                         (f) Fc=0.5 

 

      (g) Fc=0.55                                             (h) Fc=0.6                                         (i) Fc=0.7 

 

       (j) Fc=0.8                                             (k) Fc=0.9                                         (l) Fc=1.0  

Fig. 12 Shapes obtained under the different stiffness factor 

0 50 100 150 200 250

1x104

2x104

3x104

4x104

5x104

6x104

7x104

8x104

9x104

Sr
ta

in
 e

ne
rg

y 
(J

)

Iterations

 0.1
 0.2
 0.3
 0.38
 0.45
 0.5
 0.55
 0.6
 0.7
 0.8
 0.9
 1.0

 
20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

z-
ax

ia
l (

m
)

x-axial (m)

 1.0
 0.9
 0.8
 0.7
 0.6
 0.55
 0.5
 0.45
 0.38
 0.3
 0.2
 0.1

 
                     Fig. 13 Variation of strain energy                      Fig. 14 Comparison of the structural cross-section  

Taking the structural total strain energy as the object, the different joint stiffness is implemented by changing 
the virtual spring stiffness, and the stiffness factor is changed from 0.1 to 1.0. Finally, 12 optimal structural 
shapes under different joint stiffness are obtained, as shown in Fig. 12. It can be seen that after the 
optimisation, all structures with different joint stiffness have a certain degree of arching, and they have been 
transformed from planar quadrilateral to arched surfaces - that with four upwardly curved shapes. Moreover, 
as the joint stiffness increases, the amount of shape change of the structure after optimisation also increases, 
and then the degree of structural arching becomes higher. The variation of structural strain energy of different 
models is shown in Fig. 13, which shows that as the optimisation proceeds, the total strain energy of all 
structures is decreasing, and the greater the joint stiffness is, the more the total strain energy is reduced. 
When the stiffness factor is 1.0, the structural total strain energy decreases from 68045.8J to 10577.07J, with 
a decrease of 84.45%, and when the stiffness factor decreases to 0.1, the total strain energy of the structure 
decreases from 83236.4J to 51076.8J, only reduced by 38.6%. Fig. 14 depicts the comparison of the 



structural cross-section; the cross-section line is shown in Fig. 11(a). The greater joint stiffness factor 
generates a higher structural height. When the joint stiffness factor equal to 1.0, the structure has the highest 
height of 3.57m.  

Table 6  The semi-rigid models  

Model 
No. 

Stiffness factor 
Fc 

Strain energy
˄KJ˅ 

Buckling load capacity (N/m2) 
Imperfection 

sensitivity Mass (t)  Without 
imperfection 

With 
imperfection 

37 1.0 10.57 56018.45 42165.33 24.7 1.811 

38 0.9 10.63 45227.00 40640.60 10.14 1.807 

39 0.8 10.80 42159.00 38309.70 9.13 1.801 

40 0.7 11.52 38376.00 34924.50 8.99 1.793 

41 0.6 12.18 34064.55 30379.05 10.82 1.789 

42 0.55 13.96 29152.50 26110.50 10.43 1.787 

43 0.5 14.22 24597.95 23075.10 6.19 1.786 

44 0.45 15.45 25480.00 24440.23 4.08 1.786 

45 0.38 16.44 26712.40 24596.00 7.92 1.787 

46 0.3 19.85 23422.10 21689.20 7.40 1.785 

47 0.2 20.94 14981.20 13936.00 6.98 1.761 

48 0.1 51.07 8261.50 7675.21 7.10 1.733 
 

Table 7 The replaced models 

Model 
No. 

Stiffness factor 
Fc 

Strain energy
˄KJ˅ 

Buckling load capacity (N/m2) 
Imperfection 

sensitivity Mass (t)  Without 
imperfection 

With 
imperfection 

49 1.0 10.57 57200.15 43355.24 24.20 1.811 

50 0.9 10.61 54275.00 42487.90 21.72 1.811 

51 0.8 10.69 51025.00 40753.70 20.13 1.811 

52 0.7 11.34 48587.50 39019.50 19.69 1.811 

53 0.6 11.13 44248.75 35117.55 20.64 1.811 

54 0.55 12.79 39552.50 33816.90 14.5 1.811 

55 0.5 13.34 35262.50 30782.05 12.71 1.811 

56 0.45 14.56 32337.50 28180.75 12.85 1.811 

57 0.38 15.35 27300.00 26013.00 4.71 1.811 

58 0.3 18.34 26812.50 23845.25 11.07 1.811 

59 0.2 19.97 22165.00 19943.30 10.02 1.811 

60 0.1 43.45 13162.50 12355.85 6.13 1.811 
 

The data post-optimisation of the semi-rigid models and the replaced models are shown in Table 6 and Table 
7, respectively. It is known through comparison that whether the semi-rigid model or the replaced model, 
their buckling load capacity increases with the increase of joint stiffness factor. However, independent of 
the joint stiffness, the buckling load capacity of the semi-rigid models is always lower than that of the 
replaced models, as shown in Fig. 15. In this case, a better structural shape with higher buckling load capacity 
is obtained by the replaced models. Fig. 16 shows the variation of structural imperfection sensitivity of 
different models. It suggests that the structural imperfection sensitivity becomes continuously higher as the 



joint stiffness factor increases, and the imperfection sensitivity of semi-rigid models is always lower than 
that of the replaced models. 
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Fig. 15 Variation of buckling load capacity     Fig. 16 Variation of imperfection sensitivity 

 
5. Concluding remarks 

In order to explore the influence of joint stiffness on form finding of assembled free-form single-layer lattice 
structures, a form finding method employing HyperWorks software was proposed in this paper. Initially, the 
actual joint stiffness was obtained through the prototype test. Then, the Beam-Virtual spring element was 
introduced and the FE model of the assembled free-form single-layer lattice structures was established. Then, 
the semi-rigid joint was simulated by virtual springs, and the effect of joint stiffness on the form finding was 
studied through changing the spring stiffness by a reasonable proportion. The main conclusions are as 
follows: 

1. The joint stiffness will have a certain influence on form finding of assembled free-form single-layer 
lattice structures. Different joint stiffness will generate different structural shapes. Having greater 
joint stiffness, the structural shape variation will be larger, and a higher structural height will be 
obtained; 

2. The greater the joint stiffness is, the higher structural buckling load capacity will be recorded post-
optimisation, as well as it can result in the high structural imperfection sensitivity; and 

3. In some cases, the buckling load capacity of the semi-rigid model is higher than that of the replaced 
model, but the increase is limited - only about 5%. In general, the buckling load capacity of the 
semi-rigid model is lower than that of the replaced model. On the other hand, the structural 
imperfection sensitivity of the replaced model is higher than that of the semi-rigid model. 

This study creates the potential to consider the real semi-rigid behaviour of connections during form finding 
and exploit the benefits, resulting in more accurate and fully optimised shapes of reticulated structures. 
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