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a b s t r a c t 

It is known that the exact neurons maintaining a given memory (the neural ensemble) change from trial to trial. 

This raises the question of how the brain achieves stability in the face of this representational drift. Here, we 

demonstrate that this stability emerges at the level of the electric fields that arise from neural activity. We show 

that electric fields carry information about working memory content. The electric fields, in turn, can act as “guard 

rails ” that funnel higher dimensional variable neural activity along stable lower dimensional routes. We obtained 

the latent space associated with each memory. We then confirmed the stability of the electric field by mapping 

the latent space to different cortical patches (that comprise a neural ensemble) and reconstructing information 

flow between patches. Stable electric fields can allow latent states to be transferred between brain areas, in accord 

with modern engram theory. 
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. Introduction 

In the era of large scale electrophysiology ( Steinmetz et al., 2018 ),

eural recordings of high dimensionality are abundant. Yet this has re-

ealed that brain areas seem to exchange information in low dimen-

ions, using few task-related variables (latent variables) ( Katlowitz et al.,

018 ). Indeed, brain dynamics evolve in low, not high, dimensional

paces ( Gallego et al., 2018 ; Mastrogiuseppe and Ostojic, 2018 ). These

paces are found by dimensionality reduction, ( Jazayeri and Osto-

ic, 2021 ; Urai et al., 2021 ). Low dimensionality underlies a variety of

ognitive and motor tasks ( Cunningham and Byron, 2014 ; Pang et al.,

016 ). 

A key point is that low-dimension latent variables track informa-

ion and task demands and are stable, highly correlated across trials

 Pandarinath et al., 2018 ). This stands in contrast to higher-dimensional

eural dynamics; while there is some overlap ( Churchland et al., 2010 ),

he specific neurons and synapses activated are variable across trials

 Mongillo et al., 2017 ; Attardo et al., 2015 ; Ziv and Brenner, 2018 ).

his appears paradoxical: which specific neurons are activated contin-

ously changes, synapses rewire etc., yet at the functional/behavioral,

tability comes from low dimensional, latent variables ( Clopath et al.,

017 ; Lu and Zuo, 2021 ; Kozachkov et al., 2020 ). This low dimensional

tability is important for normal cognition and behavior. Downstream

eurons and networks need some consistency from upstream networks
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ven though those upstream networks are under continuous reconfigu-

ation. 

The continuous reconfiguration is known as representational drift

 Driscoll et al., 2017 ). It occurs at a time scale of days, minutes or sec-

nds ( Deitch et al., 2020 ). It helps ensure the robustness of brain cir-

uits. If some neurons fail, others can do the same task ( Marder et al.,

015 ). Plus, neurons, especially in higher cortical areas, have mixed se-

ectivity which adds computational horsepower and cognitive flexibility

 Fusi et al., 2016 ; Rigotti et al., 2013 ). Representational drift may also

e important for the brain computations needed for Predictive Coding

 Rule et al., 2019 ) and Reinforcement Learning ( Kappel et al., 2018 ). But

he biophysical mechanism that allows low-dimensional brain dynamics

o emerge despite the representational drift, is still a mystery. 

Here, we suggest that this low dimensional stability is an emer-

ent property of the electric fields generated by neural activity. Con-

ider the following: First, that ensembles are functionally integrated

ithin larger brain networks ( Park and Friston, 2013 ; Shine et al., 2016 ;

estphal et al., 2017 ). Networks must somehow represent the same

emory at different times even though larger networks in which they

mbedded are in different states at different times. Given this fluctuat-

ng network activity, it is difficult to imagine how that memory could

e represented by a specific set of neurons and connections, even if one

ssumes redundancy. Second, different combinations of electric sources

an generate the same field ( Jackson, 1999 ). Taken together, the above
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wo facts suggest that a changing input from the rest of the brain leads

o a reconfiguration of the ensemble so that a stable electric field is

aintained. Thus, a stable electric field level emerges from a high-

imensional representational drift of specific neurons. 

It may help to consider the following analogy: Brain anatomy is

ike the road-and-highway system. It is where traffic could go. Current

houghts, memories etc. are the patterns of traffic at that moment. An

xact network of specific neurons is one particular route through the

oad-and-highway system. But, importantly, the same destination can

e reached by taking different routes at different times (i.e., representa-

ional drift). What really matters are the general patterns of the traffic,

ot the exact roads it takes. There are multiple ways to travel from lo-

ation A to location B. 

This motivates the following hypothesis: That ensemble represen-

ation at the electric field level is more robust and less variable than

epresentation at the level of specific neurons and circuits. If true, this

ould explain how low-dimensional stable computations arise despite

epresentational drift. 

Here, we tested whether this hypothesis is supported by data from

 spatial delayed saccade task. We characterized the stability of both

he electric field and of the neural activity that generates this field. The

ame data were earlier used to build brain computer interfaces ( Jia et al.,

017 ) and provide a neurobiological explanation of the oblique effect

 Pinotsis et al., 2017 ). We here used them to train a biophysical neu-

al network model as an autoencoder that learned to maintain spatial

ocations. This gave us the latent space similarly to other dimensional-

ty reduction approaches ( Pang et al., 2016 ; Gao and Ganguli, 2015 ).

hen, we went one step further. We obtained single trial estimates of

ffective connectivity between different neurons. These describe how

nformation propagates over a cortical patch occupied by the neural en-

emble; and how neurons communicate via electric signals sent from

ne part of the patch to the other. This is a difference between our ap-

roach and other approaches. Our approach maps the latent space to a

ortical patch. It goes beyond dimensionality reduction and reconstructs

nformation flow. 

Following ( Pinotsis et al., 2017 ), we reconstructed the effective con-

ectivity between neurons on the patch from the latent space obtained

arlier. These connectivity estimates describe the exchange of electric

ignals within the ensemble. We found that they correlated with clus-

ers found using pairwise correlations ( Humphries, 2011 ). This extra

tep also allowed us to reconstruct the electric field produced by the

nsemble. Having a detailed description of electric signals and neural

ctivity within the patch, we computed the electric field near it, using

 classic dipole model from electromagnetism ( Schwartz et al., 2016 ).

o sum up, we predicted neural activity and the electric field gener-

ted each time (trial) the same location had to be remembered. Then,

e tested if they were the same across trials. We found that the elec-

ric field was different for different remembered locations and highly

onsistent across trials. It also contained stable information about the

emembered locations, while specific neurons activated were variable

cross trials (representational drift). 

. Methods 

.1. Experimental data and recording setup 

We reanalyzed data from ( Jia et al., 2017 ). The same data were used

n our earlier paper ( Pinotsis et al., 2017 ). Two adult male monkeys

monkey C, Macaca fascicularis, 9kg; monkey J, Macaca mulatta, 11kg)

ere handled in accordance with National Institutes of Health guide-

ines and the Massachusetts Institute of Technology Committee on Ani-

al Care. They were trained to perform an oculomotor spatial delayed

esponse task (Supplementary Fig. 1B). This task required the monkeys

o hold the location of one of six randomly chosen visual targets (at an-

les of 0, 60, 120, 180, 240 and 300 degrees, 12.5-degree eccentricity)

n memory over a brief (750 ms) delay period and then saccade to the re-
2 
embered location. If a saccade was made to the cued angle, the target

as presented with a green highlight and a water reward was delivered

therwise the target was presented with a red highlight and reward was

ithheld. Three 32-electrode chronic arrays were implanted unilaterally

n PFC, SEF and FEF in each monkey (Supplementary Fig. 1C). Each ar-

ay consisted of a 2 × 2 mm square grid, where the spacing between

lectrodes was 400 um. The implant channels were determined prior to

urgery using structural magnetic resonance imaging and anatomical at-

ases. From each electrode, we acquired local field potentials (extracted

ith a fourth order Butterworth low-pass filter with a cut-off frequency

f 500Hz, and recorded at 1 kHz) using a multichannel data acquisi-

ion system (Cerebus, Blackrock Microsystems). We analyzed local field

otentials (LFPs) during the delay period when monkeys held the cued

ngles in memory. 

.2. From the Wilson Cowan equations to deep neural fields 

Below we derive the evolution equations for a biophysical neural

etwork model whose connectivity parameters have been obtained af-

er training it as an autoencoder. This describes the activity of a neural

nsemble. Its connectivity is such that the mutual information between

he remembered cue and the ensemble activity is maximized. The cor-

esponding weights are optimal in an information-theoretic sense. 

Consider a neural ensemble that consists of neurons occupying a

ortical patch (two dimensional Euclidean manifold) 𝑀 𝐴 . Let 𝑢 𝑎 , 𝑣 𝑎 
e two spatial variables parameterizing a 𝑀 𝐴 , ( 𝑢 𝑎 , 𝑣 𝑎 ) ∈ 𝑀 𝐴 , see e.g.

 Ermentrout and Cowan, 1979 ; Pinotsis et al., 2012 ; Wilson and

owan, 1973 ). Let 𝑥 𝑎 
𝐸 
( 𝑢 𝑎 , 𝑣 𝑎 , 𝑡 ) and 𝑥 𝑏 

𝐼 
( 𝑢 𝑏 , 𝑣 𝑏 , 𝑡 ) be the membrane poten-

ial of excitatory neurons and inhibitory neurons at locations ( 𝑢 𝑎 , 𝑣 𝑎 )
nd ( 𝑢 𝑏 , 𝑣 𝑏 ) on the cortical surface and time t . The time evolution

f 𝑥 𝑎 
𝐸 
( 𝑢 𝑎 , 𝑣 𝑎 , 𝑡 ) and 𝑥 𝑏 

𝐼 
( 𝑢 𝑏 , 𝑣 𝑏 , 𝑡 ) is given by the following neural net-

ork equations, known as the Wilson-Cowan Equations ( Wilson and

owan, 1973 , Grossberg, 1967 ) 

̇  𝑎 
𝐸 
( 𝑢 𝑎 , 𝑣 𝑎 , 𝑡 ) = − 𝜏𝐸 𝑥 

𝑎 

𝐸 
( 𝑢 𝑎 , 𝑣 𝑎 , 𝑡 ) + 

∑
𝑐 

𝐾 𝐸𝐸 ( 𝑢 𝑎 , 𝑣 𝑎 , 𝑢 𝑐 , 𝑣 𝑐 ) 𝑓 
[
𝑥 𝑐 
𝐸 
( 𝑢 𝑐 , 𝑣 𝑐 , 𝑡 ) 

]
+ 

∑
𝑑 

𝐾 𝐸𝐼 ( 𝑢 𝑎 , 𝑣 𝑎 , 𝑢 𝑑 , 𝑣 𝑑 ) 𝑓 
[
𝑥 𝑑 
𝐼 
( 𝑢 𝑑 , 𝑣 𝑑 , 𝑡 ) 

]
+ 𝑆◦𝑈 𝐸 , 

𝑥̇ 𝑏 
𝐼 
( 𝑢 𝑏 , 𝑣 𝑏 , 𝑡 ) = − 𝜏𝐼 𝑥 

𝑏 
𝐼 
( 𝑢 𝑏 , 𝑣 𝑏 , 𝑡 ) + 

∑
𝑐 

𝐾 𝐼𝐼 ( 𝑢 𝑏 , 𝑣 𝑏 , 𝑢 𝑐 , 𝑣 𝑐 ) 𝑓 
[
𝑥 𝑐 
𝐼 
( 𝑢 𝑐 , 𝑣 𝑐 , 𝑡 ) 

]
+ 

∑
𝑑 

𝐾 𝐼𝐸 ( 𝑢 𝑏 , 𝑣 𝑏 , 𝑢 𝑑 , 𝑣 𝑑 ) 𝑓 
[
𝑥 𝑑 
𝐸 
( 𝑢 𝑑 , 𝑣 𝑑 , 𝑡 ) 

]
+ 𝑆◦𝑈 𝐼 , (1) 

here 𝑆 ∶ ( ℝ ) 𝑛 → ( ℝ ) 𝑛 maps exogenous inputs to depolarization and f is

ector-valued transfer function that describes the mapping from mem-

rane potentials to current (spikes per second; Lipschitz continuous to

uarantee local existence) of the population around point ( 𝑢 𝑎 , 𝑣 𝑎 ) ∈ 𝑀 𝐴 .

We then take the continuum limit of Equations (1). This is a common

ransformation of biophysical evolution equations ( van Hemmen, 2004 )

nd allows one to replace sums with integrals. It follows a standard pro-

ess in mathematical physics that provides the continuous version of a

iscrete system (opposite of discretization). We then partition 𝑀 𝐴 into

 × 𝐿 cortical patches of neural densities 𝜁𝑎 
𝑖𝑗 

with dimensions (Δ𝜐, Δ𝑣 )
 ∈ 1 , ..., 𝑁 and 𝑗 ∈ 1 , ..., 𝐿. Thus the subgroup of neurons in the square

 

𝑎 
𝑖𝑗 
= {[ 𝑖 Δ𝑢, ( 𝑖 + 1)Δ𝑢 ) , [ 𝑗Δ𝑣, ( 𝑗 + 1)Δ𝑣 )} of 𝑀 𝐴 is given by 𝜌𝑎 

𝑖𝑗 
= 𝜁𝑎 

𝑖𝑗 
Δ𝜐Δ𝑣.

or mathematical convenience, consider a copy 𝑀 𝐵 of manifold 𝑀 𝐴 .

he interaction between neurons in cortical patches 𝑇 𝑎 
𝑖𝑗 
∈ 𝑀 𝐴 and 𝑇 𝑏 

𝑘𝑙 
∈

 𝐵 only depends on the duplets ( 𝑖, 𝑗) and ( 𝑘, 𝑙) . A neuron at location

 𝑢 𝑎 , 𝑣 𝑎 ) inside square 𝑇 𝑎 
𝑖𝑗 

receives input from all neurons in square 𝑇 𝑏 
𝑘𝑙 

ith strength 𝐾 𝑃 𝑃 ′ ( 𝑖, 𝑗, 𝑘, 𝑙) = 𝐾̃ 𝑃 𝑃 ′ ( 𝑖 Δ𝑢, 𝑗Δ𝑣, 𝑘 Δ𝑢 ′, 𝑙Δ𝑣 ′) , 𝑃 , 𝑃 ′ = { 𝐸, 𝐼} ,
here we use “ ′ ” to denote locations on manifold 𝑀 𝐵 . Also, 𝐾̃ is

he continuous version of function K under the assumption that con-

ectivity is constant within the square with sides of length Δ𝜐 and Δ𝑣.
or simplicity of notation, in the following we write K in place of 𝐾̃ .

hen, we can define the local spatially averaged activity variable 𝑋 

𝑃 
by

 

𝑃 
( 𝑖 Δ𝑢, 𝑗Δ𝑣, 𝑡 ) = ( 𝜌𝑎 

𝑖𝑗 
) −1 

∑
( 𝑖,𝑗)∈𝑇 𝑎 

𝑖𝑗 
𝑥 𝑃 ( 𝑖, 𝑗, 𝑡 ) and consider the continuum

imit Δ𝑢, Δ𝑣, Δ𝑢 ′, Δ𝑣 ′ → 0 : all nodes within the patches 𝑇 𝑎 
𝑖𝑗 

and 𝑇 𝑎 
𝑖𝑗 

occupy

he same location in manifolds 𝑀 and 𝑀 . After replacing 𝑢 = 𝑖 Δ𝑢 ,
𝐴 𝐵 
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 = 𝑗Δ𝑣 and 𝑢 ′ = 𝑘 Δ𝑢 ′, 𝑣 ′ = 𝑙Δ𝑣 ′, Equations (1) can be written as a

ystem 

̇
 

𝐸 
( 𝑢, 𝑣, 𝑡 ) = − 𝜏𝐸 𝑋 

𝐸 
( 𝑢, 𝑣, 𝑡 ) + ∬𝑀 𝐵 

𝐾 𝐸𝐸 ( 𝑢, 𝑣, 𝑢 ′, 𝑣 ′) 𝑓 
[
𝑋 

𝐸 
( 𝑢 ′, 𝑣 ′, 𝑡 ) 

]
𝑑 𝑢 ′𝑑 𝑣 ′

+ ∬𝑀 𝐵 

𝐾 𝐸𝐼 ( 𝑢, 𝑣, 𝑢 ′, 𝑣 ′) 𝑓 
[
𝑋 

𝐼 
( 𝑢 ′, 𝑣 ′, 𝑡 ) 

]
𝑑 𝑢 ′𝑑 𝑣 ′ + 𝑆◦𝑈 𝐸 

𝑋̇ 

𝐼 
( 𝑢, 𝑣, 𝑡 ) = − 𝜏𝐼 𝑋 

𝐼 
( 𝑢, 𝑣, 𝑡 ) + ∬𝑀 𝐵 

𝐾 𝐼𝐼 ( 𝑢, 𝑣, 𝑢 ′, 𝑣 ′) 𝑓 
[
𝑋 

𝐼 
( 𝑢 ′, 𝑣 ′, 𝑡 ) 

]
𝑑 𝑢 ′𝑑 𝑣 ′

+ ∬𝑀 𝐵 

𝐾 𝐼𝐸 ( 𝑢, 𝑣, 𝑢 ′, 𝑣 ′) 𝑓 
[
𝑋 

𝐸 
( 𝑢 ′, 𝑣 ′, 𝑡 ) 

]
𝑑 𝑢 ′𝑑 𝑣 ′ + 𝑆◦𝑈 𝐼 (2) 

Similarly to ( Pinotsis et al., 2017 ), we then consider perturbations
̂
 𝑃 of membrane potentials around baseline: 𝑋 𝑃 ( 𝑢, 𝑣, 𝑡 ) = 𝑋 0 𝑃 ( 𝑢, 𝑣 ) +
̂
 𝑃 ( 𝑢, 𝑣, 𝑡 ) 𝑃 = { 𝐸, 𝐼} . This yields an expression of the perturba-

ions 𝑋̂ 𝑃 ( 𝑢, 𝑣, 𝑡 ) in terms of: (1) the functions 𝐺 𝑘 , which we previously

alled principal axes ( Pinotsis et al., 2017 ) ; and (2) the latent vari-

bles 𝑧 𝑃 𝑃 
′

𝑘𝑙 
, which we called connectivity components —to resemble stan-

ard PCA terminology. Both are defined below. In that earlier work

 Pinotsis et al., 2017 ), we found that the principal axes contained tem-

oral information, while the connectivity components contained spatial

nformation. The connectivity components 𝑧 𝑃 𝑃 
′

𝑘𝑙 
were defined by the fol-

owing equations 

 

𝑃 𝑃 ′

0 
( 𝑢, 𝑣 ) = 𝑑 𝑓 0 𝜏𝑃 

−1 ∬ 𝐾 

𝑃 𝑃 ′ ( 𝑢, 𝑣, 𝑢 
′, 𝑣 ′) 𝑑 𝑢 ′𝑑 𝑣 ′, 𝑃 , 𝑃 ′ = { 𝐸, 𝐼} 

 

𝑃 𝑃 ′
𝑘𝑙 

( 𝑢, 𝑣 ) = 

𝑑 𝑓 0 
𝑘 ! 𝜏𝑃 

−1 ∬ 𝐾 

𝑃 𝑃 ′ ( 𝑢, 𝑣, 𝑢 
′, 𝑣 ′) ( 𝑢 − 𝑢 ′) 𝑘 ( 𝑣 − 𝑣 ′) 𝑙 𝑑 𝑢 ′𝑑 𝑣 ′ (3) 

hile the principal axes were given by 

 

𝑃 

𝑘𝑙 
= 

𝜕 𝑋̂ 𝑃 ( 𝑢, 𝑣, 𝑡 ) 
𝜕 𝑢 ( 𝑘 ) 𝜕 𝑣 ( 𝑙) 

(4)

sing Eqs. (3) and (4) , Eq. (2) yields the following expressions for the

erturbations 𝑋̂ 𝑃 ( 𝑢, 𝑣, 𝑡 ) : 

̂
 𝐸 ( 𝑢, 𝑣, 𝑡 ) = 𝑧 𝐸𝐸 0 𝐺 

𝐸 

0 
+ 𝑧 𝐸𝐼 0 𝐺 

𝐼 

0 
+ 𝑧 𝐸𝐸 10 𝐺 

𝐸 
10 + 𝑧 𝐸𝐼 10 𝐺 

𝐼 
10 + 𝑧 𝐸𝐸 01 𝐺 

𝐸 
01 + 𝑧 𝐸𝐼 01 𝐺 

𝐼 
01 

+ 𝑧 𝐸𝐸 11 𝐺 

𝐸 
11 + 𝑧 𝐸𝐼 11 𝐺 

𝐼 
11 + 𝑧 𝐸𝐸 20 𝐺 

𝐸 
20 + 𝑧 𝐸𝐼 20 𝐺 

𝐼 
20 + 𝑧 𝐸𝐸 02 𝐺 

𝐸 
02 + 𝑧 𝐸𝐼 02 𝐺 

𝐼 
02

+ 𝑧 𝐸𝐸 21 𝐺 

𝐸 
21 + 𝑧 𝐸𝐼 21 𝐺 

𝐼 
21 + 𝑧 𝐸𝐸 12 𝐺 

𝐸 
12 + 𝑧 𝐸𝐼 12 𝐺 

𝐼 
12 + 𝑂( 𝑢 3 , 𝑣 3 ) 

𝑋̂ 𝐼 ( 𝑢, 𝑣, 𝑡 ) = 𝑧 𝐼𝐼 0 𝐺 

𝐼 

0 
+ 𝑧 𝐼𝐸 0 𝐺 

𝐸 

0 
+ 𝑧 𝐼𝐼 10 𝐺 

𝐼 
10 + 𝑧 𝐼𝐸 10 𝐺 

𝐸 
10 + 𝑧 𝐼𝐼 01 𝐺 

𝐼 
01 + 𝑧 𝐼𝐸 01 𝐺 

𝐸 
01 

+ 𝑧 𝐼𝐼 11 𝐺 

𝐼 
11 + 𝑧 𝐼𝐸 11 𝐺 

𝐸 
11 + 𝑧 𝐼𝐼 20 𝐺 

𝐼 
20 + 𝑧 𝐼𝐸 20 𝐺 

𝐼 
20 + 𝑧 𝐼𝐼 02 𝐺 

𝐼 
02 + 𝑧 𝐼𝐸 02 𝐺 

𝐸 
02 

+ 𝑧 𝐼𝐼 21 𝐺 

𝐼 
21 + 𝑧 𝐼𝐸 21 𝐺 

𝐼 
21 + 𝑧 𝐼𝐼 12 𝐺 

𝐼 
12 + 𝑧 𝐼𝐸 12 𝐺 

𝐸 
12 + 𝑂( 𝑢 3 , 𝑣 3 ) (5)

Note that the above equation is obtained using linear stability anal-

sis and includes a Taylor expansion over spatial coordinates. If we had

eparate data (depolarization or spike rates) for the excitatory and in-

ibitory populations, we could use Eq. (5) and this data to find 𝑋̂ 𝐸 ( 𝑢, 𝑣 )
nd 𝑋̂ 𝐼 ( 𝑢, 𝑣 ) separately. We could estimate the connectivity components

 

𝑃 𝑃 ′
𝑘𝑙 

for the excitatory and inhibitory populations separately. We will

ursue this in future work using data from excitatory and inhibitory

eurons. Here, our data included aggregate activity (LFPs) from both

opulations. 

LFP recordings contain aggregate activity of excitatory and in-

ibitory populations together. Mathematically, this is expressed as a

wo factor sum of membrane depolarization of all populations for each

ocation on the cortical surface, 𝑋̂ ( 𝑢, 𝑣 ) = 𝑋̂ 𝐸 ( 𝑢, 𝑣 ) + 𝑟 𝑋̂ 𝐼 ( 𝑢, 𝑣 ) , where r

s the ratio of excitatory to inhibitory activity, which we take r = 0.25.

his value for r was chosen according to Dale’s principle that neu-

ons can be either excitatory or inhibitory and there are four times

ore excitatory than inhibitory neurons ( Eccles, Fatt and Koketsu, 1954 ,

ong, Yang and Wang, 2016 ). For mathematical convenience and with-

ut loss of generality we also consider a (differentiable) change of co-

rdinates ( 𝑢 , 𝑣 ) → ( ̃𝑢 , ̃𝑣 ) where 𝑢̃ parameterizes the location of the exci-

atory populations and 𝑣̃ parameterizes the location of the inhibitory

opulations. We also assume that the Jacobian of this transformation

( ̃𝑢 , ̃𝑣 ) ≠ 0 . In the Results section, we validated this assumption numeri-

ally. The rigorous mathematical justification of this assumption will be
3 
onsidered elsewhere. Following this, the principal axes 𝐺 

𝑃 
𝑙𝑘 

and com-

onents can be simplified: 

(i) 
{
𝐺 

𝑃 
𝑙𝑘 
, 𝑧 𝑃 𝑃 

′
𝑘𝑙 

, 𝑧 𝑃 𝑃 
′

0 
}
= 

{ 

{ 𝐺 

𝑃 
𝑙𝑘 
( ̃𝑢 ) , 𝑧 𝑃 𝑃 ′

𝑘𝑙 
( ̃𝑢 ) , 𝑧 𝑃 𝑃 ′0 ( ̃𝑢 )} , 𝑃 = 𝐸, 

{ 𝐺 

𝑃 
𝑙𝑘 
( ̃𝑣 ) , 𝑧 𝑃 𝑃 ′

𝑘𝑙 
( ̃𝑣 ) , 𝑧 𝑃 𝑃 ′0 ( ̃𝑣 )} , 𝑃 = 𝐼, 

𝑃 ′= { 𝐸, 𝐼} 

(ii) 𝐺 

𝑃 
𝑙𝑘 

= 

{ 

0 , 𝑃 = 𝐸, any 𝑙, 𝑘 ≠ 0 
0 , 𝑃 = 𝐼, any 𝑘, 𝑙 ≠ 0 

Thus: (i) Principal axes 𝐺 

𝑃 
𝑙𝑘 

and components 𝑧 𝑃 𝑃 
′

𝑘𝑙 
describing excita-

ory populations depend on 𝑢̃ only and terms describing inhibitory pop-

lations depend on 𝑣̃ (this was the assumption above); (ii) Axes 𝐺 

𝐸 
𝑙𝑘 

nvolving excitatory activity involving non zero sub-indices k can be re-

oved from Eq. (5) , because these axes contain mixed derivatives. Sim-

larly for inhibitory activity and its axes 𝐺 

𝐼 
𝑙𝑘 

that contain mixed deriva-

ives with non zero sub-indices l . Because 𝑢̃ and 𝑣̃ are distinct (the lo-

ations of excitatory and inhibitory populations are different), we can

onsider the union of the spatial domains for 𝑢̃ and 𝑣̃ as a single, new

patial domain and join the spatial variables 𝑢̃ for the location of exci-

atory and 𝑣̃ for the location of the inhibitory populations into a single

ariable. Then, adding Eqs. (5a) and (5b), we obtain 

̂
 ≈ 𝐴̃ 

𝐸 
0 𝐺 

𝐸 

0 
+ 𝐴̃ 

𝐼 
0 𝐺 

𝐼 

0 
+ 𝐴̃ 

𝐸 
10 𝐺 

𝐸 
10 + 𝐴̃ 

𝐼 
01 𝐺 

𝐼 
01 + 𝐴̃ 

𝐸 
20 𝐺 

𝐸 
20 + 𝐴̃ 

𝐼 
02 𝐺 

𝐼 
02 + 𝜀 (6)

here the aggregate connectivity components 𝐴̃ 

𝑃 are two factor sums

f 𝑧 𝑃 𝑃 
′

defined by Eq. (3) : 

̃
 

𝑃 
0 = 𝑞 𝑃 

′ ( 𝑧 𝑃𝑃 0 + 𝑞 𝑃 𝑧 𝑃 
′𝑃 

0 ) , 𝑞 𝑃 = 

{ 

𝑟, 𝑃 = 𝐸 

1∕ 𝑟, 𝑃 = 𝐼 
, 𝑃 ≠ 𝑃 ′

̃
 

𝑃 
𝑘𝑙 
= 𝑞 𝑃 

′ ( 𝑧 𝑃𝑃 
𝑘𝑙 

+ 𝑞 𝑃 𝑧 𝑃 
′𝑃 

𝑘𝑙 
) 

(7) 

etting 𝐻 = [ 𝐺 

𝐸 
10 , 𝐺 

𝐼 
01 , 𝐺 

𝐸 
20 , 𝐺 

𝐼 
02 , ..., 𝐺 

𝐸 
𝑖 ⋯ 0 , 𝐺 

𝐼 
0 ⋯ 𝑖 

] 𝑇 Eq. (6) . is a deep neural

eld , and can be rewritten in the general form of a Gaussian Linear Model

GLM; cf Eq. (1) . in ( Pinotsis et al., 2017 )), 

 = 

∑
𝑗 
𝐻 𝑗 𝑤 𝑗 + 𝑚 + 𝑅 

 = 

[
𝐴 0 , 𝐴 1 , 𝐴 2 , ..., 𝐴 

𝑖 −1 , 𝐴 

𝑖 

]𝑇 
 = 𝑁 

−1 ∑
𝑁 

𝑋 

𝑙 

(8) 

here for simplicity of notation we have relabelled, 𝐴 

𝑘 
=

 ̃𝐴 

𝑃 
0 , 𝐴̃ 

𝑃 
01 , 𝐴̃ 

𝑃 
10 , ..., 𝐴̃ 

𝑃 
𝑖 0 , 𝐴̃ 

𝑃 
0 𝑖 ] and have dropped the superscript P , be-

ause we do not distinguish between neural populations in what

ollows. This simply relabels components with two sub-indices as

omponents with a single sub-index. Note that 𝐴 

𝑘 
are 1D, while 𝑧 𝑃 𝑃 

′
𝑘𝑙 

re 2D. Since there is only one spatial variable in 𝐴 

𝑘 
, only one sub-index

as needed. We have also assumed that cortical activity 𝑋̂ ( ̃𝑢 , ̃𝑣 , 𝑡 ) ∈ 𝑋̃ 

as sampled from a random process 𝑋̂ and 𝑌 = 𝑋̂ − 𝑚 . 

The above 1D reduction was obtained under certain mathematical

ssumptions. To validate them, we compared our effective connectiv-

ty estimates against two established approaches (see Methods section

elow and Results section). We found that our results correlated signif-

cantly with results obtained with these methods. The rigorous mathe-

atical justification of these assumptions will be pursued elsewhere. 

In brief, starting from a neural network model for coupled excitatory

nd inhibitory populations ( Eq. 1 ), we have shown how it can be refor-

ulated as a deep neural field model ( Eq. 6 ) – and then a GLM ( Eq. 8 ).

his is useful because it allows us to obtain the effective connectivity

hat characterises information flow within the neural ensemble. This is

escribed in the next section. 

.3. Connectivity components and kernels 

The connectivity components 𝐴 

𝑘 
are the latent states of the au-

oencoder trained by optimizing the cost function, known as the Free

nergy, F , 

𝐹 = 

(
− 

1 
2 

)[
( 𝑌 −𝐻𝑤 ) 𝑇 𝑟 2 

𝑠 
( 𝑌 − 𝐻𝑤 ) + ln |||𝑠 2 𝑠 ||| + ln |||𝑠 2 𝑠 Δ−1 ||| + 𝑍 

𝑇 𝑍 + co 𝑛𝑠𝑡 
]

Δ = 𝑠 2 𝑠 𝐼 + 𝐻 

𝑇 𝐻 

 = Δ−1 𝐻 

𝑇 𝑌 (9) 
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sing a Restricted Maximum-Likelihood (ReML) algorithm

 Harville, 1977 ). This assumed a directed graphical model 𝑝 ( 𝑌 |𝑤 )
sed in autoencoders that yields an approximation q to the posterior

 ∼ N( 𝑤 |𝑌 ) , see ( Pinotsis et al., 2017 ) for more details. Note that the

ost function defined by Eq. (9) , is the same cost function like the one

sed in Predictive Coding. 

To summarize, Equations (3) define the connectivity components

 

𝑃 𝑃 ′ of the neural network (1). Similarly, Equations (7) define the 1D

onnectivity components 𝐴 

𝑘 
of the deep neural field ( Eq. (6) ) as two

actor sums of 𝑧 𝑃 𝑃 
′
. Training the GLM to optimize the cost function (9)

e obtain single trial estimates of effective connectivity components 𝐴 

𝑘 
.

heir averages across trials are shown in Fig. 2 of ( Pinotsis et al., 2017 ).

f we had separate recordings of excitatory and inhibitory neurons we

ould get the effective connectivity components 𝑧 𝑃 𝑃 
′

of the neural net-

ork (1) in a similar way. This will be pursued elsewhere. Here, we

sed single trial 𝐴 

𝑘 
estimates to identify neural ensembles that main-

ained location during each trial. We also compared them to similar

easures obtained using other approaches for ensemble identification

see Methods below and Results). 

We now turn to connection weights of the neural network (1). We

all these connectivity kernels 𝐾 𝑃 𝑃 ′ . In Equations (3), the connectivity

omponents are integrals of the connectivity kernel 𝐾( 𝑢 𝑎 , 𝑣 𝑎 , 𝑢 𝑏 , 𝑣 𝑏 , 𝑡, 𝑡 ′) .
ere we have dropped the sub-indices 𝑃 , 𝑃 ′ because the kernel is not

patially discrete; instead, it depends on continuous variables ( 𝑢, 𝑣 ) . 
In ( Pinotsis et al., 2017 ), after obtaining 𝐴 

𝑘 
, we assumed that

ortical connectivity has a Gaussian profile and computed 𝐾( 𝑢 𝑎 , 𝑢 𝑏 ) =
 𝐶 
√
2 𝜋) −1 exp { − ( 𝑢 𝑎 − 𝑢 𝑏 − ̄𝑢 ) 2 ∕2 𝐶 2 } . This is shown schematically in

ig. 1 A as Gaussian (bell shaped) curves connecting any two electrodes

ampling from the patch. We also obtained trial average estimates of

( 𝑢 𝑎 , 𝑢 𝑏 ) , where 𝑢̄ and C are the mean and standard deviation of ax-

nal dispersion. Here, we first considered the same profile and focused

n the corresponding single trial estimates of 𝐾( 𝑢 𝑎 , 𝑢 𝑏 ) . We also consid-

red a more general expression for the connectivity profile involving a

eighted Gaussian (see Mapping the latent space to a cortical patch section

elow). Examples of connectivity kernels are shown in Fig. 2 B. 

.4. Comparison of our approach to established approaches in the literature

To validate our approach, we compared our estimates of con-

ectivity components and kernels to methods that are established in

he literature. First, we considered a correlation-based method, see

 Humphries, 2011 ). This yields neuronal ensembles, where neurons in

he same ensemble have dense connections with each other and weak

onnections to other neurons. This is achieved by maximizing a graph

heoretic measure known as modularity and is similar to finding com-

unities in social networks ( Newman and Girvan, 2004 ). It computes

imilarity measures including cosine similarity and the correlation coef-

cient that we used here. The method was initially developed to analyse

pike train data, but we here adapted it to deal with LFPs. It provides

 spectral decomposition of the modularity matrix using a stochastic al-

orithm ( Newman and Girvan, 2004 ). It employs a consensus algorithm

o ensure that the same clustering is obtained for different initialisations

 Lancichinetti and Fortunato, 2012 ). This method has been applied to

eural activity in visual cat areas ( Humphries, 2011 ) and the Aplysia

edal ganglion ( Bruno et al., 2015 ). 

Second, we used a higher dimensional SVD method known as

anonical decomposition (CD ( Carroll and Chang, 1970 ; Kolda and

ader, 2009 )). This provides a generalization of the usual SVD which

actorizes a tensor in terms of R arrays. It allows one to obtain an approx-

mation of the data represented by a third order tensor 𝑌 ∈ ( ℝ ) 𝑁 𝑇 ×𝑁 𝑆 ×𝑇 

iven by 

̃
 𝑖𝑗𝑘 ≈ 𝑓 𝑖 1 𝑏 𝑗1 𝑐 𝑘 1 + 𝑓 𝑖 2 𝑏 𝑗2 𝑐 𝑘 2 + ... + 𝑓 𝑖𝑅 𝑏 𝑗𝑅 𝑐 𝑘𝑅 (10)

here 𝑓 im 

∈ ( ℝ ) 𝑁 𝑇 ×𝑚 , 𝑏 jm 

∈ ( ℝ ) 𝑁 𝑆 ×𝑚 and 𝑐 km 

∈ ( ℝ ) 𝑇×𝑚 are three ma-

rices known as “modes ” in the mathematical literature ( Kolda and

ader, 2009 ). Their first dimensions are either number of trials 
4 
( 𝑁 𝑇 ), or electrodes ( 𝑁 𝑆 ) or time ( 𝑇 ). R is known as the rank of 𝑌 ,

ith m = 1,…R . Eq. (10) . includes a sum of combinations of elements

 𝑖 1 , 𝑏 𝑗1 , 𝑐 𝑘 1 , 𝑓 𝑖 2 , 𝑏 𝑗2 , 𝑐 𝑘 2 , ... . Taking together (i.e. for all m = 1,…R ) all el-

ments with the same first dimension, e.g. the dimension denoted by

ndex “i", that is, 𝑓 𝑖 1 , . 𝑓 𝑖 2 , .., 𝑓 𝑖𝑅 we obtain a matrix 𝐹 = [ 𝑓 𝑖𝑚 ] and simi-

arly for 𝐵 = [ 𝑏 𝑗𝑚 ] and 𝐶 = [ 𝑐 𝑘𝑚 ] . F, B and C are known as modes Each

ode is a matrix where the first dimension (denoted by i, j or k ) is equal

o one of the above three dimensions of the LFP array, that is, a number

f trials ( i = 1, .., 𝑁 𝑇 ), electrodes ( j = 1, …, 𝑁 𝑆 ) or time points ( k = 1, …, 𝑇 ).

hus, each term in the sum 𝑌 𝑖𝑗𝑘 is a product of elements from the three

odes 𝑓 𝑖𝑚 𝑏 𝑗𝑚 𝑐 𝑘𝑚 . This product is called a factor . The second dimension

denoted by m ) is the same for all three modes that belong to the same

actor and is different for each term in the sum (i.e. each factor). It ranges

etween 1 and some arbitrary number R, 𝑚 = 1 , ..., 𝑅 . Thus, R is equal

o the number of factors in the CD approximation 𝑌 𝑖𝑗𝑘 . In the Results

ection, we will see that R can be estimated based on some measures

rom statistics. 

The approximation 𝑌 is obtained using an alternating least squares

lgorithm (ALS) that minimizes the reconstruction error min 𝑌 ‖𝑌 − 𝑌 ‖𝐹 ,
here ‖𝑌 ‖𝐹 is the Frobenius norm of 𝑌 . The ALS approach fixes 𝐵 =

 𝑏 𝑗𝑚 ] and 𝐶 = [ 𝑐 𝑘𝑚 ] to find 𝐹 = [ 𝑓 𝑖𝑚 ] . The conditional least square esti-

ate of A is then 

 = 𝑌 ( 𝐵 ⊗𝐶) 𝑇 
[
( 𝐵 ⊗𝐶) ( 𝐵 ⊗𝐶) 𝑇 

]−1 
(11)

here ⊗ is known as the Kronecker product. ALS continues by then fix-

ng 𝐹 and C to find B and finally 𝐹 and C to find B. The CD approxima-

ion is unique up to permutation and scaling of the modes. Thus, ALS is

sed iteratively. For more details see ( ten Berge, 1993 ). CD has recently

een applied to analyse spiking data and identify neural ensembles in

 Williams et al., 2018 ). Here, we adapted this work to identify neural

nsembles using LFPs. The CD approach by ( Williams et al., 2018 ) does

ot provide single trial estimates of connectivity components and ker-

els, like those we considered here. However, we compared our results

o CD estimates after averaging across all trials that corresponded to the

ame stimulus. 

In the expansion (10) above, the number of components is arbitrary.

o find the rank R, we used two criteria: consistency and congruence.

onsistency was introduced as an alternative way to obtain the rank in

D approximations ( Bro and Kiers, 2003 ). It uses certain elements of CD

heory, known as CD factors, to compute an alternative approximation

f the data matrix, known as Tucker3 approximation ( Tucker, 1966 ).

he Tucker3 approximation also contains (mixtures of) CD factors. For

 given R, consistency quantifies the difference between data fits using

he CD and Tucker3 approximations. R should be such that this differ-

nce is minimal. According to ( Bro and Kiers, 2003 ), this corresponds

o consistency values between 50-100%. In brief, consistency quantifies

he degree that the LFP data contain a trilinear variation, see ( Bro and

iers, 2003 ) for more details. It is optimal for that particular value of R,

hat renders the core of the corresponding Tucker3 approximation (the

ucker3 approximation with the same CD factors) superdiagonal. 

Congruence, on the other hand, is simply based on uncorrected cor-

elation coefficients (CC) between any two sets of factor matrices { F 1 ,

 1 , C 1 } and { F 2 , B 2 , C 2 } . These are averaged over a different implemen-

ations of the ALS algorithm starting from different initial conditions and

hen the maximum value is subtracted from 1, i.e. congruence (CG) is

iven by 𝐶𝐺 = 1 − max (1∕ 𝑁 

∑
𝑡 𝜌𝑡 )) where 𝜌𝑡 is the CC computed in the

- th initialisation and we have assumed N initialisations. Congruence

as initially used to remedy instabilities and slow convergence that are

nowns to affect ALS, due to its iterative nature. A low value of congru-

nce implies that the CD approximation was not stuck in local minima

nd CD factors are stable ( Kiers, 1998 ). In Results, we chose a rank R

ith high consistency and low congruence. This results in a stable CD

pproximation that includes a trilinear variation in the data. 
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Fig. 1. A. Outline of our approach. We first reformulated a neural network (described by Wilson Cowan equations) as a neural field model and then a Gaussian 

Linear Model (GLM; step 1. We trained this model as an autoencoder and obtained the latent states (connectivity components; step 2). Then, using inverse problem 

theory, we obtained the corresponding connectivity kernels (step 3). In ( Pinotsis et al., 2017 ), we used the kernels and graph theory to characterize the topography 

and topology of neural ensembles. Here, we use the kernels and electromagnetism (dipole theory) to study the stability of the electric field generated by an ensemble 

(step 4). This paper and ( Pinotsis et al., 2017 ) focus on the structure and biophysics of neural ensembles. In related work ( Pinotsis et al., 2019 ), we also studied the 

computations performed by ensembles using deep neural networks and behavioural models. B. Extracellular space around each neuron within the ensemble (blue 

cylindrical fibers). C. Bidomain model for the electric field generated by a cylindrical fiber in a conductor. The extracellular and intracellular space are depicted by 

blue and grey cylindrical fibers (see Methods for the meaning of various symbols) D. Extracellular electric potential 𝑉 𝑒 corresponding to two random trials: i (black 

dashed lines, left panel) and j (red dashed lines, right panel). 

5 



D.A. Pinotsis and E.K. Miller NeuroImage 253 (2022) 119058 

Fig. 2. A. Examples of neural activity for two different individual trials corresponding to the same task condition. Local field potentials (LFPs, in mV ) are shown on the 

vertical axis. The electrodes (location on the cortex) and time (in ms ) are shown on the two horizontal axes. B. Significance ( p- value) of Pearson correlations between 

the single trial connectivity components and ensemble indices obtained by the approach of ( Humphries, 2011 ). Trials where a horizontal location was maintained 

( 𝜃= 0 degrees) are shown in the left panel. Similarly, trials for cued angle at 𝜃= 6 0 degrees are shown in the right panel. Estimates for all trials correlated perfectly 

( p < 10 − 2 ). C. Example of effective connectivity kernel with a Gaussian profile. This describes the weights which scale neural activity propagating between any pair 

of populations located near one of the electrodes. This kernel characterizes information flow at the single trial level. D. Example of an alternative expression of the 

effective connectivity kernel obtained as a weighted Gaussian using a series expansion. E. Correlations between the connectivity kernels in panels C. and D. R = 87% 

of connectivity weights were significantly correlated at the p < . 05 level. These are shown in yellow. Blue denotes weights that were not significantly correlated. 
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.5. The electric potential and electric field generated by a neural ensemble 

To model the electric potential (EP) generated by synaptic activity

EPSPs and IPSPs) in a neural ensemble we use the bidomain model of

he neural tissue ( Schwartz et al., 2016 ; Goldwyn et al., 2017 ; Mc Laugh-

in et al., 2010 ). This assumes that the neural ensemble can be rep-

esented by a cylindrical fiber of radius 𝑎 (grey cylinder in Fig. 1 C).

yramidal neurons are assumed to be aligned and the EP (and the elec-

ric field) varies primarily along the dendritic axis. Also, they receive

ynchronous synaptic input. Under these assumptions, the extracellular

pace of each neuron can be described by a cylindrical fiber (small blue

ylinders in Fig. 1 B). Then, the electromagnetic principle of superpo-

ition allows us to replace the individual cylindrical fibers of Fig. 1 B

for each neuron) with a larger cylindrical fiber corresponding to the

xtracellular space surrounding the neural ensemble (blue cylinder in

ig. 1 C). The extracellular current near each neuron can be added to

btain an aggregate current that flows in the extracellular space around

he ensemble. Similarly, current flowing along the dendrites of each neu-

on (in the intracellular space) can be added to obtain an aggregate

urrent that flows within the ensemble (grey cylinder in Fig. 1 C). The

P and the electric field have rotational symmetry. The potential is a

unction of two coordinates ( 𝜌, 𝑍) , where 𝑍 = 𝑢 𝑎 is the coordinate along

he fiber axis and 𝜌 is coordinate vertical to it, see ( Plonsey, 1974 ) and

ig. 1 C. Deviations from symmetry (spatial inhomogeneity) and asyn-

hronous input will change the current flowing and the electric field

utside the ensemble ( Goldwyn et al., 2017 ) (e.g. axes of individual

ylindrical fibers of Fig. 1 B might cross). Because of the principle of

uperposition in electromagnetics, this will reduce the overall extra-

ellular electric field. However, it will not affect qualitive results, like
 a  

6 
he stability of the electric field we will discuss later. This is because

he laws of electromagnetism do not change and can still be applied

y splitting the extracellular and intracellular spaces into smaller parts

cylindrical fibers) where symmetry and synchrony still apply. Below,

e use the bidomain model, to derive the extracellular potential 𝑉 𝑒 and

he extracellular electric field generated by the neural ensemble, 𝐸 

𝑒 .

he extracellular potential 𝑉 𝑒 (corresponding to two different trials, see

ext section) is shown in Fig. 1 D using black and red dashed lines. De-

ails of this derivation can be found in the references above. Here, we

ncluded a summary for the convenience of the reader. The bidomain

odel describes the potential in the two sides of the neuron membrane,

hat is, the intracellular 𝑉 𝑖 and extracellular 𝑉 𝑒 potentials. Their dif-

erence 𝑉 𝑚 = 𝑉 𝑒 0 − 𝑉 𝑖 0 is the transmembrane potential and results in a

patial discontinuity also for the electric field 𝐸 

𝑎 = −∇ 𝑉 𝑎 
𝑜 
, 𝑎 = { 𝑒, 𝑖 } . 𝑉 𝑒 0 

nd 𝑉 𝑖 0 are the values of the extracellular and intracellular EPs on the

wo sides of the membrane. Note that ∇ denotes the gradient operator.

ccording to the theory of electromagnetism, this discontinuity gives

ise to dipole sources with moments ( Jackson, 1999 ) 

 𝑎 = ∇ 

2 𝑉 𝑚 ∕ 𝑟 (12)

ere 𝑟 is the brain resistivity with 𝑟 = 2 . 2 Ohm ( Rush and Driscoll, 1969 )

nd we have assumed that the number of neurons is large and that each

ell is very small compared to the distance at which the LFP electrode is

laced. Also, the current density 𝐼 𝑎 ( 𝑢 𝑎 , 𝑣 𝑎 ) that results from EPSPs and

PSPs is given by 

 

𝑎 ( 𝑢 𝑎 , 𝑣 𝑎 ) = 𝑝 
𝑎 
∕Ω (13)

here Ω is the total volume of the ensemble. Neglecting ephaptic inter-

ctions 𝑉 𝑚 ≈ 𝑉 𝑖 , and the extracellular electric potential generated by
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he current density 𝐼 𝑎 ( 𝑢 𝑎 , 𝑣 𝑎 ) is given by 

 

𝑒 ( 𝑢 𝑒 , 𝑣 𝑒 , 𝑤 

𝑒 ) = (4 𝜋𝜎𝑒 ) −1 ∫ 𝐼( 𝑢 𝑎 , 𝑣 𝑎 )∇(1∕ 𝑅 ) 𝑑Ω (14)

here 𝜎𝑒 is the conductivity of the extracellular space, and R is the dis-

ance between the current source at the point ( 𝛼, 𝑢 𝑎 ) of the neural en-

emble and the point ( 𝜌, 𝑢 𝑒 ) in the extracellular space where we measure

 

𝑒 , i.e. the location of the LFP electrode, 

𝑅 = 

√ 

( 𝑢 𝑒 − 𝑢 𝑎 ) 2 + ( 𝜌 − 𝛼) 2 , see Fig. 1 C. Then, according to the bido-

ain model, Eq. (14) can be written as ( Henriquez, 1993 ; Roth, 1997 )

 

𝑒 ( 𝑢 𝑒 , 𝑣 𝑒 , 𝑤 

𝑒 ) = −(4 𝜋𝜎𝑒 ∕ 𝜎𝑖 ) 𝐹 𝑇 −1 
[
𝑉 𝑚 ( 𝑘 ) 𝑊 ( 𝑘 ) 

]
(15)

here 𝑉 𝑚 ( 𝑘 ) is the Fourier Transform of the transmembrane potential

 

𝑚 and FT − 1 is its inverse Fourier Transform, that is, 

̂
 

𝑚 ( 𝑘 ) = ∫
∞

−∞
𝑉 𝑚 ( 𝜌) 𝑒 𝑖𝑘𝜌𝑑𝜌

 𝑇 −1 
[
𝑉 𝑚 ( 𝑘 ) 

]
= 𝑉 𝑚 ( 𝜌) = ∫

∞

−∞
𝑉 𝑚 ( 𝑘 ) 𝑒 − 𝑖𝑘𝜌𝑑𝑘 

(16) 

The function 𝑊 ( 𝑘 ) is given in terms of the modified Bessel functions

f the first 𝐼 0 ( 𝜌) , 𝐼 1 ( 𝜌) and second 𝐾 0 ( 𝜌) , 𝐾 1 ( 𝜌) kind ( Abramowitz et al.,

988 ), 

 ( 𝑘 ) = 

𝐼 1 ( |𝑘 |𝑑) 𝐾 0 ( |𝑘 |𝜌) 
𝐼 0 ( |𝑘 |𝑑) 𝐾 1 ( |𝑘 |𝑑) + 𝜎𝑖 ∕ 𝜎𝑒 𝐼 1 ( |𝑘 |𝑑) 𝐾 0 ( |𝑘 |𝑑) (17)

hen, the extracellular electric field (EF) generated by the neural ensem-

le, 𝐸 

𝑒 , is just the gradient of 𝑉 𝑒 , 𝐸 

𝑒 = −∇ 𝑉 𝑒 . 

.6. Gauge functions and ensemble electric fields 

Multiple extracellular EPs 𝑉 𝑒 can give rise to the same EF 𝐸 

𝑒 = −∇ 𝑉 𝑒 

n extracellular space. This is a well-known result in the theory of elec-

romagnetism called Gauge invariance. It follows from the conservation

f electrical charges Jackson, 1999 ). The same electric field can be ex-

ressed in terms of different potential functions, 𝑉 𝑒 ( Darrigol, 2003 ).

hese describe different arrangements of electric sources and capture

ymmetries of the Maxwell equations that describe the evolution of the

xtracellular EF, 𝐸 

𝑒 ( Maxwell, 2021 ). In the case of LFP measured with

ultielectrode arrays, each trial gives rise to an LFP recording. This,

n turn, results from a different EP generated by current flow within a

eural ensemble in each trial. In Results, we test the hypothesis that the

F is the same for all trials corresponding to the same remembered stimulus ,

 

𝑒 { trial 𝑖 } = 𝐸 

𝑒 { trial 𝑗} . To test this hypothesis, we first needed an esti-

ate of the EP at an arbitrary trial j , 𝑉 𝑒 { trial 𝑗} . This is shown by red

ashed lines in the right panel of Fig. 1 D (see also the discussion in the

revious section). We obtained this using Eqs. (15) and ( (17) above, in

wo ways. First, using simulations of our deep neural field model. Sec-

nd, using recorded LFPs as proxies for the transmembrane potential at

rbitrary trial j , 𝑉 𝑚 { trial 𝑗} . Then by taking the gradient of 𝑉 𝑒 { trial 𝑗} ,
e found the extracellular EF for trial j , 𝐸 

𝑒 { trial 𝑗} . Having obtained EF

stimates, we tested the hypothesis that the EF is stable in three ways:

irst, we looked whether EFs where correlated across trials. Second, we

sked if EF estimates were consistently different for neural ensembles

hat maintain different cued angles. We tested if we could distinguish

etween memorized cues based on EFs. We used EFs as classification

eatures in two commonly used classification algorithms, Naïve Bayes

nd diagonal LDA ( Pinotsis et al., 2017 ). Third, we used Gauge func-

ions that connect the recorded LFPs. If the EF was stable, the EPs are

elated by Gauge functions 𝜒 = 𝜒( 𝜌, 𝜁, 𝑡 ) ( Jackson, 1999 ) 

 

𝑒 { trial 𝑖 } = 𝑉 𝑒 { trial 𝑗} + 𝜕 𝜒∕ 𝜕 𝑡 (18)

A Gauge function describes the difference between two electric

otential functions that result in the same electric field. In Fig. 1 D,

 

𝑒 { trial 𝑖 } is shown using black dashed lines (left panel). Subtracting
7 
 

𝑒 { trial 𝑗} from 𝑉 𝑒 { trial 𝑖 } , we obtain the temporal derivative (rate of

hange) of the Gauge function. In short, a third way to test the stabil-

ty of EFs is to test if the Gauge functions can be used to distinguish

etween different cued angles (see Results). According to Eq. (18) , the

ime derivative of the Gauge function 𝜕 𝜒∕ 𝜕 𝑡 is equal to the difference of

Ps corresponding to any two trials. Eq. (18) should hold for any arbi-

rary pair of trials. Thus, we asked whether we could decode cued angles

sing Gauge function derivatives 𝜕 𝜒∕ 𝜕 𝑡 as classification features. These,

n turn, were obtained after subtracting LFP recordings. An indepen-

ent experimental validation could also be carried out using intracellu-

ar recordings: If Eq. (18) holds, then a similar Equation for the intracel-

ular potential 𝑉 𝑖 also holds with the same Gauge function 𝜒 = 𝜒( 𝜌, 𝜁, 𝑡 ) .
hus, the Gauge function 𝜒( 𝜌, 𝜁, 𝑡 ) , can be found experimentally by mea-

uring 𝑉 𝑖 during any two trials, 𝑉 𝑖 { trial 𝑖 } and 𝑉 𝑖 { trial 𝑗} . 

.7. Mapping the latent space to a cortical patch 

The extra step that allowed us to obtain the electric field above was

he mapping of the latent space to a cortical patch ( Pinotsis et al., 2017 ).

tarting from the connectivity components, we obtained the weights

hat scaled incoming input to each population from all other popula-

ions in the ensemble, called the connectivity kernel. This describes in-

ormation exchange and electrical activity on the patch. Having this, we

hen reconstructed the EF. Consider Eq. (1) . The connectivity kernels

 𝑃 𝑃 ′ ( 𝑢 𝑋 , 𝑣 𝑋 , 𝑢 𝑐 , 𝑣 𝑐 ) , 𝑋 = { 𝑎, 𝑏 } include the weights that scale input from

 population at location ( 𝑢 𝑐 , 𝑣 𝑐 ) to an excitatory population at ( 𝑢 𝑎 , 𝑣 𝑎 ) or

n inhibitory population at ( 𝑢 𝑏 , 𝑣 𝑏 ). Above, we considered the continuum

imit of Equations (1), that is, Equations (2) and similarly the continuum

imit of the connectivity kernels 𝐾 𝑃 𝑃 ′ ( 𝑢, 𝑣, 𝑢 ′, 𝑣 ′) . These have the same

eaning as 𝐾 𝑃 𝑃 ′ ( 𝑢 𝑋 , 𝑣 𝑋 , 𝑢 𝑐 , 𝑣 𝑐 ) . Only a difference in notation: the sub-

ndices denoting location have been replaced by continuous spatial vari-

bles that lie on a patch 𝑢, 𝑣 ∈ 𝑀 𝐴 . Then, given the connectivity compo-

ents 𝐴 

0 
, 𝐴 

𝑘𝑙 
, we can find 𝐾 𝑃 𝑃 ′ . In mathematical terms, the kernels are

robability distribution functions and can be estimated using a variety of

ethods from inverse problems theory, including splines ( Gehringer and

edner, 1992 ), series expansions ( Amindavar and Ritcey, 1994 ) and

ther methods ( Heinz, 2013 ; Mersmann, 1995 ). 

We here considered a Gaussian connectivity profile used in

 Pinotsis et al., 2017 ) and an alternative expression for the connectivity

ernel that includes sums of Gaussian profiles weighted by polynomial

actors known as Hermite polynomials, 𝐻 𝑛 ( Abramowitz et al, 1988 ).

hese sums are known as Gram-Charlier series. In brief, the connectiv-

ty kernel of the neural ensemble can be approximated by 

( 𝑢, 𝑢 ′) = 

𝑘 ∑
0 
𝑑 𝑛 𝐻 𝑛 ( 𝑢 ) 𝑔 𝐶 ( 𝑢, 𝑢 ′) 

 𝐶 ( 𝑢, 𝑢 ′) = exp 
{ 

− ( 𝑢 − 𝑢 ′ − ̄𝑢 ) 2 ∕2 𝐶 2 
} 

̄ = 

𝐴 1 ∕ 𝐴 0 

 = 

√ 

𝐴 0 𝐴 2 − 𝐴 1 
2 

𝐴 0 

( 𝑢, 𝑢 ′) = 𝑑 0 𝐻 0 ( 𝑢 ) 𝑔 𝐶 ( 𝑢, 𝑢 ′) + 𝑑 1 𝐻 1 ( 𝑢 ) 𝑔 𝐶 ( 𝑢, 𝑢 ′) + .... + 𝑑 𝑘 𝐻 𝑘 ( 𝑢 ) 𝑔 𝐶 ( 𝑢, 𝑢 ′) 

 𝐶 ( 𝑢, 𝑢 ′) = exp 
{ 

− ( 𝑢 − 𝑢 ′ − ̄𝑢 ) 2 ∕2 𝐶 2 
} 

̄ = 

𝐴 1 ∕ 𝐴 0 

 = 

√ 

𝐴 0 𝐴 2 − 𝐴 1 
2 

𝐴 0 

(19) 

here the Hermite polynomials, 𝐻 𝑛 , n = 0,…k, are known and the coeffi-

ients 𝑑 𝑛 can be found by substituting (19) and the definition of 𝐻 𝑛 into

 𝑛 = 𝐶 2 𝑛 ∕ 𝑛 ! ∫ 𝐾 𝑃 𝑃 ′ ( 𝑢, 𝑢 ′) 𝐻 𝑛 ( 𝑢 ) 𝑑𝑢 (20)
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1 The oblique effect is the relative deficiency in perceptual performance 

for oblique angles or contours compared to horizontal or vertical stimuli 

( Appelle, 1972 ). In ( Pinotsis et al., 2017 ), we reconstructed the connectivity 

of ensembles maintaining oblique and horizontal angles and found that it was 

sparsest in the latter case. 
Interestingly, Eq. (20) using the binomial theorem and the definition

f connectivity components gives 

 

𝑘 
( 𝑢, 𝑢 ′) = 𝛾 ∫ ∑𝑘 

1 𝑑 𝑛 𝐻 𝑛 ( 𝑢 ) 𝑔 𝐶 ( 𝑢, 𝑢 ′) 
∑𝑘 

0 (−1) 
𝑛 

( 

𝑘 

𝑛 

) 

𝑢 𝑘 𝑢 ′𝑘 − 𝑛 𝑑𝑢 ′

= 

𝑑 𝑓 0 
𝑘 ! 𝜏𝑃 

−1 
(21) 

The above expression seems complicated. However, one can use the

roperties of the Hermite polynomials to find the coefficients 𝑑 𝑛 , 𝑛 =
 , 1 , ..., 𝑘 . 

 0 = 𝐴 0 
 1 = 𝐴 1 
 2 = 1∕2 

[
𝐴 2 + 2( 𝑢 ′ − ̄𝑢 ) 𝐴 1 + ( 𝑢 ′2 + ̄𝑢 2 − 𝐶 2 − 2 𝐶 ̄𝑢 ) 𝐴 0 

] (22) 

Substituting the above expressions and the expressions for Hermite

olynomials into Eq. (19) , we obtain an alternative expression for the

onnectivity kernel 𝐾( 𝑢, 𝑢 ′) that involves a Gaussian function weighted

y terms involving connectivity components (keeping the first three

erms in the series expansion given by Eq. (19) ): 

( 𝑢, 𝑢 ′) ≈ 𝑔 𝐶 ( 𝑢, 𝑢 ′)·( 

𝐴 0 + 𝐴 1 ( 𝑢 − ̄𝑢 )∕ 𝐶 2 

+1∕2 
[
𝐴 2 + 2( 𝑢 ′ − ̄𝑢 ) 𝐴 1 + ( 𝑢 ′2 + ̄𝑢 2 − 𝐶 2 − 2 𝐶 ̄𝑢 ) 𝐴 0 

]
( 𝑢 − ̄𝑢 ) 2 ∕( 𝐶 4 − 1∕ 𝐶 2 ) 

)
(23) 

. Results 

.1. Deep neural fields describe neural ensemble structure in a holistic 

ashion 

This paper follows upon our recent work that focused on groups of

eurons that represent memories known as neural ensembles ( Fig. 1 A).

n ( Pinotsis et al., 2019 ) we studied computations performed by neu-

al ensembles during a flexible sensorimotor decision making task

 Siegel et al., 2015 ). We showed that neural ensembles in the same brain

rea performed different computations based on the rule applied during

ach trial, although the stimulus processed was the same. This result

as obtained by comparing brain responses to both a behavioral model

nd a deep neural network and testing if they give similar results. In a

arallel line of work ( Pinotsis et al., 2017 ), we also studied the structure

f neural ensembles and obtained their effective connectivity. Our anal-

ses below build upon that earlier work and used the same dataset. This

ncludes a spatial working memory task, where the angle of a cue had to

e remembered (delayed saccade task; Supplementary Figure 1A). We

nalysed LFP data recorded during the delay period. 

We analysed neural activity (LFPs) recorded from a multielectrode

rray of N s = 32 electrodes implanted in the FEF of two macaque mon-

eys. LFPs are thought to describe neural activity from a population

n the proximity of each electrode ( Buzsáki et al., 2012 , Lindén et al.,

011 ). Analysing LFPs allowed us to identify neural ensembles and test

f they overlap in different trials. Electrodes were numbered in a mono-

onic fashion; neighbouring electrodes had adjacent numbers (Supple-

entary Fig. 1B). Our approach and the main results of ( Pinotsis et al.,

017 ) are summarized below and in Fig. 1 A. 

Our approach has the following steps (each step is depicted by an

rrow in Fig. 1 A, see below): (1) Start with a neural network model. Re-

ormulate this as a biophysical Gaussian Linear Model (GLM), that we

alled deep neural field. (2) Use LFP data to obtain the latent states (con-

ectivity components) of the deep neural field model. The term “deep ”

as used in our earlier work ( Pinotsis et al., 2017 ) to distinguish this

odel (with learned connectivity parameters) from common neural field

odels where connectivity weights are chosen ad hoc, e.g. ( Bojak and

iley, 2010 ; Atay and Hutt, 2006 ; Deco et al., 2008 ; Coombes, 2010 ).

he learned parameters are obtained after training the neural field as

n autoencoder (see also ( Pinotsis et al., 2017 )). Thus, the term “deep ”

efers to the hidden layer of the corresponding training network. (3) Use
8 
he connectivity components and inverse problem theory to obtain the

ffective connectivity (connectivity kernels). We will come back to com-

onents and kernels (and their differences) below. (4) Use electromag-

etism and the connectivity kernels to obtain the electric field generated

y the neural ensemble. This will be discussed later. 

In ( Pinotsis et al., 2017 ), we used average connectivity estimates and

raph theory and showed that path length portioned the space of cued

ngles. The smallest values occurred for cues on the horizontal merid-

an, i.e. information propagates faster. This provided an explanation of

he oblique effect in psychophysics ( Appelle, 1972 ) 1 . Here, we use sin-

le trial connectivity estimates and electromagnetism to reconstruct the

lectric field produced by a neural ensemble. We assumed that this is

redicted by the bidomain model of the neural tissue ( Schwartz et al.,

016 ; Goldwyn et al., 2017 ; Mc Laughlin et al., 2010 ) ( Fig. 1 C), see also

ethods . In this model, the extracellular spaces of individual neurons

re described by cylindrical fibers (blue cylinders in Fig. 1 B). The bido-

ain model predicts that extracellular currents measured in different

rials (e.g. trials i and j ), generate different electric potentials 𝑉 𝑒 { trial 𝑖 }
black dashed curves, left panel in Fig. 1 D) and 𝑉 𝑒 { trial 𝑗} (red dashed

urves, right panel in Fig. 1 D). This will be discussed in detail later. 

Examples of neural activity for two different individual trials cor-

esponding to the same task condition are shown in Fig. 2 A. LFP am-

litudes (in mV ) are shown on the vertical axis. The horizontal axis are

lectrode number (location) and time (in ms ). We assumed that FEF com-

rised a large number of neural populations (indexed by j = 1,…, N = 32 ),

hat was equal to the number of electrodes we sampled from, see also

 Pinotsis et al., 2017 ). Each of these populations can be thought of as

entred around a point ( 𝑢 𝑎 , 𝑣 𝑎 ) on the 2D cortical surface. They also in-

eract with other populations located at point ( 𝑢 𝑏 , 𝑣 𝑏 ) , via an effective

onnectivity kernel 𝐾( 𝑢 𝑎 , 𝑣 𝑎 , 𝑢 𝑏 , 𝑣 𝑏 , 𝑡, 𝑡 ′) . 
We previously identified neural ensembles based on their effective

onnectivity kernel averaged across trials ( Pinotsis et al., 2017 ). This

onnectivity was expressed in terms of two measures: (1) the latent vari-

bles of an autoencoder that we called connectivity components and (2)

he connectivity kernel 𝐾( 𝑢 𝑎 , 𝑣 𝑎 , 𝑢 𝑏 , 𝑣 𝑏 , 𝑡, 𝑡 ′) of a biophysical rate model

neural field). This kernel was obtained from the connectivity compo-

ents after assuming a Gaussian connectivity profile over space. Here,

e followed a similar approach and focused on effective connectivity of

 neural ensemble and its components at the single trial level (i.e., with-

ut averaging). We also considered a more general weighted Gaussian

s a connectivity profile over space. Our starting point was different to
9 : we modelled each neural ensemble as a 2D neural network model of

nteracting excitatory and inhibitory populations (Wilson-Cowan Equa-

ions; see Methods). By changing the variable that parameterised the

ortical surface from discrete to continuous, the neural network was re-

ormulated as a mean field model, known as a neural field ( Wilson and

owan, 1973 ; Amari, 1977 ; Coombes, 2007 ). In ( Pinotsis et al., 2017 ),

ur starting point was a usual neural field. 

Since we are measuring aggregate activity (LFPs), we could not dis-

inguish between locations of excitatory vs inhibitory populations. At

he same time, these locations do not overlap. Intuitively, this means

hat we can join the 2 spatial variables in the neural network, describ-

ng locations of excitatory and inhibitory populations, into one. In con-

lusion, the original 2D neural network model was first transformed

o a 2D neural field and then to an 1D deep neural field considered in

 Pinotsis et al., 2017 ). The details of this reduction are included in Meth-

ds. Its mathematical implications will be considered elsewhere. Here,

e assessed whether this reduction allowed us to correctly identify neu-
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al ensembles, by comparing our results to those obtained using other

ethods. 

.2. Effective connectivity components of deep neural fields reveal clusters 

btained using pairwise correlations 

We compared the effective connectivity components and kernels ob-

ained with the deep neural field model to estimates of ensemble con-

ectivity obtained with other methods. Below, we show that our effec-

ive connectivity estimates correlated significantly with connectivity es-

imates obtained using pairwise correlations ( Humphries, 2011 ) and a

igh dimensional SVD approach ( Carroll and Chang, 1970 ). 

We first discuss connectivity components (denoted by 𝐴 

𝑘 
in Meth-

ds). These are the latent variables of the low dimensional space ob-

ained after training our deep neural field as an autoencoder. We will

ee below that they describe aggregate synaptic input to neural pop-

lations located at a certain point on the cortical patch. They cluster

eurons into task related groups ( Williams et al., 2018 ). Specifically,

e obtained single trial component estimates in the following way. We

rained a deep neural field model using a cost function considered in pre-

ictive coding and autoencoder networks. Component averages across

rials were shown in Fig. 2 of ( Pinotsis et al., 2017 ). In that paper, we

lso showed that connectivity components were matrix-valued functions

ith dimensionality equal to 𝑁 𝑇 ×𝑁 𝑆 , where 𝑁 𝑇 = 600 is the number

f trials. For each trial, we obtained a vector of dimension 𝑁 𝑆 whose

ntries were called component strengths . These were similar to loadings

r principal components in PCA. Because we here used aggregate neu-

al activity from both kinds of populations (LFPs), we obtained effective

onnectivity components for both populations together. This is similar

o other dimensionality reduction approaches, e.g. ( Pang et al., 2016 ;

illiams et al., 2018 ). 

Here, we validated the effective connectivity components obtained

n ( Pinotsis et al., 2017 ) (summarized also in ( Pinotsis and Miller, 2017 ))

sing two independent methods. First, using a correlation-based

ethod, see ( Humphries, 2011 ). This was originally used to identify

imilarities between spike trains. It was based on pairwise correlations.

imilarities were then used to define neural ensembles –assuming that

eurons with similar spiking patterns represented the same stimulus or

equence. Thus, one obtains neural ensembles. Each neuron is included

n an ensemble (called a “cluster ” in the original paper), indicated by an

nsemble index. In other words, the approach by ( Humphries, 2011 ) did

ot yield effective connectivity per se, but one can map the ensemble in-

ex to effective connectivity components and kernels that we obtained.

Below, we compare our effective connectivity estimates to the clus-

ers obtained using the method presented in ( Humphries, 2011 ). This

ields an alternative way to obtain the same neural ensembles described

y our deep neural field model in an unsupervised way, using a k- means

lgorithm. We adapted the original algorithm from ( Humphries, 2011 )

o work with LFP data, instead of spike trains. For each trial, the

ethod assigned each electrode to an ensemble using an ensemble in-

ex. Assuming that electrodes sample from populations in their proxim-

ty ( Buzsáki et al., 2012 ; Lindén et al., 2011 ), this process also assigns

opulations to ensembles. We then computed the correlation between

he ensemble indices and the first connectivity components for differ-

nt cued angles. We asked whether the ensemble index correlated with

he component strength for each electrode and trial. In ( Pinotsis et al.,

017 ), we showed that the component strengths are aggregate sums of

ll the weights of all connections that target the electrode at hand. They

escribe changes of signal as it propagates between electrodes. Thus,

ifferent values of component strengths correspond to different levels

f activity (drive) that each electrode receives. 

Pearson correlations were obtained for ensembles obtained from tri-

ls with different cued angles. Recall that the monkey performed a spa-

ial delayed saccade task (Supplementary Fig. 1A). The p -values across

ll 32 electrodes are shown in Fig. 2 B for a remembered stimulus at an-

le 𝜃 = 0 (left) and 𝜃 = 60 (right) degrees. Correlations were also signif-
9 
cant for trials that involved different angles (other stimuli, not shown).

t should be noted that both the ensemble index and the component

trength of the deep neural fields are single trial measures. The fact that

hey were significantly correlated implies that electrodes formed ensem-

les based on the drive that the neural population in the vicinity of each

lectrode received during each trial. This is similar to intercolumnar

ynchronization observed in perceptual grouping studies ( Gray et al.,

989 ). 

In conclusion, we found that the effective connectivity components

f our deep neural field model describe the same clusters as those

ound using pairwise correlations obtained using LFPs and the method

f ( Humphries, 2011 ). This provides an independent validation of our

ffective connectivity estimates at the single trial level. 

.3. Connectivity kernels correlate with ensemble indices 

Recall that, besides connectivity components, our approach also

ields the connectivity kernel. Its entries, called connectivity weights

uantify the strength of the effective connections between the recording

ites within each cortical area, see Supplementary Fig. 1B. They multi-

ly input signal from other electrodes that targets a certain electrode

easuring activity from a part of the neural ensemble. In other words,

hey describe how the signal is amplified or attenuated when it prop-

gates between recording sites. Large positive weights of connections

argeting a certain electrode implies that large LFP responses would be

xpected from that recording site. 

The connectivity kernel enabled us to map the latent space (spanned

y the components) to a cortical patch, that the neural ensemble oc-

upies. Later, we will also use the connectivity kernel to predict the

lectric field generated by the ensemble. First, we assessed whether the

onnectivity kernel could also identify neural ensembles, similarly to

he connectivity components above. 

We assumed a Gaussian connectivity profile over space and obtained

ingle trial connectivity kernel estimates 𝑔 𝐶 ( 𝑢 𝑎 , 𝑢 𝑏 ) (Methods). We also

onsidered a more general weighted Gaussian profile. This is a gener-

lization of the widely used Gaussian kernel ( Bojak and Liley, 2010 ;

tay and Hutt, 2006 ; Coombes, 2010 ) that follows from a series expan-

ion ( Amindavar and Ritcey, 1994 ). Here, a Gaussian kernel is weighted

y known Hermite polynomials ( Abramowitz et al., 1988 ). 

Example connectivity kernels obtained using data from a random

rial are shown in Fig. 2 C and D. Fig. 2 C shows a single Gaussian kernel,

hile Fig. 2 D shows the more general weighted Gaussian. Note that

ecause of the Gaussian profile, only elements around the main diagonal

re non-zero Fig. 2 .E shows correlations between the two expressions

btained. R = 87% of connectivity weights of the kernels shown in Fig. 2 C

nd D were correlated. 

For simplicity, in the analyses below we used the expression involv-

ng a single Gaussian kernel. Similar analyses can be carried out using

lternative expressions. First, we asked whether the connectivity kernel

ould be used to identify neural ensembles, similar to the analyses for

onnectivity components presented above. We computed correlations

etween single trial connectivity kernels and ensemble indices, obtained

sing the method of ( Humphries, 2011 ). 

Earlier, we found that ensemble indices were correlated with con-

ectivity components. Correlations were significant for all trials. This

mplied that electrodes formed ensembles, where electrodes in the same

nsemble had neural populations in their vicinity driven by the same in-

ut. Similarly, we found that ensemble indices also correlated with the

onnectivity kernels we obtained. Correlations between ensemble indices

nd connectivity kernels for cued angle at 𝜃 = 240 degrees are shown in

ig. 3 A . Correlation coefficients are shown in the vertical axis and trials

n the horizontal axis. Trials with significant correlations at p < 0.05 are

enoted with asterisk. Overall, 25-40% of single trial kernel estimates

orrelated with ensemble indices for different angles. The percentage of

ignificantly correlated trials for each cued angle is shown in Fig. 3 B.

onnectivity components were correlated with ensemble indices across



D.A. Pinotsis and E.K. Miller NeuroImage 253 (2022) 119058 

Fig. 3. A. Correlations between single trial ensemble indices and connectivity kernels for cued angle at 𝜃 = 240 degrees. Correlation values are shown on the vertical 

axis. Individual trials are shown on the horizontal axes. Trials with significant correlations at p < 0.05 are denoted with an asterisk. B. Percentage of significantly 

correlated trials for each cued angle. Locations are shown on the horizontal axis. Overall, 25-40% of single trial kernel estimates correlated with ensemble indices for 

different angles. C. Canonical Decomposition. Left and right panels show results for cued angles at 𝜃= 0 and 𝜃= 6 0 degrees. The number of factors (rank) is shown on 

the horizontal axis. Consistency is shown using magenta bars, while congruence is shown using grey bars. Different bars correspond to different ranks. Consistency 

values are shown on the left vertical axes, while congruence values are shown on the right vertical axes. ALS algorithm reconstruction error is shown in the insets. D. 

Correlations between connectivity components and first (left panel) and second (right panel) neuron factors obtained via Canonical Decomposition. Cued angles are 

shown on the horizontal axes. P- values (grey bars) are shown on the left vertical axes. Correlation coefficients are shown on the right vertical axes (burgundy bars). 
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ll trials. Connectivity kernels across some of the trials where the same

ued angle was maintained, not all. Note that the connectivity kernels

ere a priori constrained to have a Gaussian (parametric) form, while

he components were unconstrained. This explains why the percentage

f significant correlations is smaller in the case of kernels. Some ensem-

le indices show Gaussianity too – but there is nothing intrinsic in the

ethod of ( Humphries, 2011 ) that requires this assumption —which, on

he other hand, was intrinsic to the Gaussian profile we assumed for

ernels. If ensemble indices are not Gaussian, there are no significant

orrelations. 

All in all, the above results suggest that the connectivity kernels

dentified the clusters obtained with the pairwise correlation method

f ( Humphries, 2011 ). The advantage that these kernels have over the

reviously considered components is that they describe actual connec-

ivity on a cortical patch, not latent space. 

.4. Connectivity components of deep neural fields correlate with high 

imensional SVD components 

We also validated the effective connectivity components obtained us-

ng our deep neural field approach using a second method. This is based

n some old extension of high dimensional SVD, known as Canonical De-

omposition (CD), see ( Carroll and Chang, 1970 ) and ( Williams et al.,

018 ) for a recent application. Recall that, to obtain effective connec-

ivity estimates, we trained the biophysical model as an autoencoder.

his is similar to classical principal component analysis (PCA): Obtain-

ng the connectivity components amounts to obtaining principal com-

onents. Thus, another validation of our components can be achieved
10 
y comparing them to components obtained using an SVD approach like

D. Note that CD components do not correspond to single trial ensem-

le connectivity like the components obtained using our method. CD

rovides an estimate of average (across trials) connectivity that we had

ound in ( Pinotsis et al., 2017 ). The authors of ( Williams et al., 2018 )

alled this average the neuron mode and suggested that it describes the

spatial structure that is common across all trials ”. Below, we will see that

his is similar to the average connectivity component across trials. We

ill also compare the CD neuron mode with the average connectivity

omponent. We will show that the two correlated perfectly. 

CD yields an approximation of our data: this is a three-dimensional

FP array 𝑌 ∈ ℝ 

𝑁 𝑇 ×𝑁 𝑆 ×𝑇 (trials x electrodes x time; Methods). The CD

pproximation includes three matrices (or “modes ”) that describe pat-

erns over each of the three dimensions: a trial, electrode and time mode.

hese are dominant patterns in the data, similar to PCA components

hat describe dominant patterns in time or space. Examples of such PCA

omponents include those obtained with the dimensionality reduction

pproach of ( Wang et al., 2018 ) that outputs motor timing, i.e. trajec-

ories in a low dimensional domain spanned by PCA components in the

ime domain; also in ( Mante et al., 2013 ) PCA components included

rajectories traced out by neurons representing motion and color. 

We used the CD approximation to validate our effective connectivity

stimates. Of particular interest for our current analysis is the neuron

ode. This is an 𝑁 𝑆 ×𝑅 matrix, where 𝑁 𝑆 is the number of electrodes

nd R is a constant, known as rank, that will be estimated below based

n some measures from statistics. We assume that each electrode mea-

ures activity from a neural population in its proximity. The columns of

his matrix are vectors of dimension equal to the number of electrodes.
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ach entry is an approximate LFP measured at each electrode (averaged

cross time and trials). The paper ( Williams et al., 2018 ) used spiking

ata and the CD approach to obtain the neuron mode. These authors

uggested that one can think of the neuron mode as a prototypical fir-

ng rate across neurons. 

According to ( Williams et al., 2018 ), a neuron mode corresponds to

the synaptic weights from each latent input to each neuron ”. This is similar

o the definition of the component strengths included in 29 : “(component

trengths) express the sum of all connectivity weights that target the neurons

hat contribute to the LFPs observed from each electrode ”. Thus, our connec-

ivity components and CD neuron modes are generalisations of principal

omponents in three dimensions, and they have similar definitions. 

Note that here, we used the word “mode ” instead of “factor ”, because

he word “factor ” is commonly used in the mathematical literature to

enote terms in the CD approximation ( Kolda and Bader, 2009 ). In other

ords, our “neuron mode ” is the “neuron factor ” of ( Williams et al.,

018 ). 

We asked whether our connectivity components and CD neuron

odes found using our LFP data were correlated. We considered connec-

ivity components averaged across trials. To find the CD neuron modes

e used a standard iterative Alternating Least Squares (ALS) algorithm

 ten Berge, 1993 ). Before obtaining the modes we needed to find the

ank, R (Methods) . This is part of the CD approach. We assumed differ-

nt values for rank R = 1,…,5 . For each value of R , we calculated the sum

f squares reconstruction error. This is plotted on the vertical axis ap-

earing in the top right insets of the panels in Fig. 3C. On the horizontal

xis, we plotted the number of factors (rank, R ). The left panel shows

esults obtained for LFP responses when a cue stimulus was presented

t angle 𝜃 = 0 degrees. The right panel shows similar results for a cue to

= 60 degrees. 

For both stimuli (and all other angles, Supplementary Fig. 2A), the

rror reduced with an increasing number of factors (blue line in the

nsets). This provides a sanity check that the ALS algorithm produces

eaningful results as the rank increased. This is similar to PCA, where

he more principal components are included, the higher the variance

xplained. To find the optimal value for rank R, we computed two sta-

istical measures: consistency and congruence. 

Consistency was introduced as way to obtain the rank, R , in CD ap-

roximations in the paper ( Bro and Kiers, 2003 ). It uses certain ele-

ents of CD theory, known as CD factors, to compute an alternative

pproximation of the data matrix, known as Tucker3 approximation

 Tucker, 1966 ) and calculates the rank based on this approximation (see

ethods for more details). High consistency suggests that there is a tri-

inear variation in the data. Congruence (also known as similarity) on

he other hand, is the result of subtracting the maximum average uncor-

ected correlation coefficient (UCC) between factors corresponding to

ifferent initialisations of the ALS algorithm from 1 (see Methods). This

ddresses the local minima problem of the ALS algorithm. The lowest

he congruence, the more stable the CD approximation (it does not de-

end on ALS initialisation). In these cases, congruence is small or close

o zero, which was the case in our data too (see below). 

In short, we chose the optimal rank R such that consistency is high

nd congruence is low. This ensures the CD approximation reflects a

rilinear variation in the data and is stable. Consistency and congru-

nce are shown in the right and left vertical axes of the bar plots in the

ain panels of Fig. 3 C. Consistency is shown using magenta bars, while

ongruence is shown using grey bars. Different bars correspond to dif-

erent ranks. Rank is shown on the horizontal axes. Consistency values

re shown on the left vertical axes, while congruence values are shown

n the right vertical axes. 

For cues presented at both 𝜃 = 0 , 60 degrees (left and right panels

n Fig. 3 C) we obtained high consistency values for R = 1,2 (magenta

ars) . The same was true also for other angles (Supplementary Fig. 2A).

or all values of R in Fig. 3 C and Supplementary Fig. 2A, congruence

as very small (grey bars). Its order was 10 − 4 for 𝜃 = 0 and 10 − 5 for

= 60 degrees . Thus, in what follows, we used the CD approximation
11 
ith R = 2. For all angles, this corresponded to high consistency and low

ongruence. For R = 2, the neuron mode was a matrix of dimensionality

 𝑆 × 2 . Fixing 𝑚 = 𝑀 ∗ , where 𝑀 ∗= 1 , 2 we obtained two vectors ⃗b 𝑗𝑀∗ ,

 = 1, …, 𝑁 𝑆 that approximate average LFPs across time and trials. These

re the two columns of the neuron mode. Following ( Williams et al.,

018 ), we call these vectors the 1 st and 2 nd neuron factors. 

Recall that, each connectivity component is also a vector of length

 𝑆 . In ( Pinotsis et al., 2017 ), we studied the first four connectivity

omponents (similar to principal components in PCA). Here we fo-

used on the first, as this explains most of the data variance simi-

arly to the neuron factors that comprise the neuron mode. This ex-

lained about 35% of variance (Supplementary Fig. 2B). Keeping up to

 components, variance explained increased to about 60%. We asked

hether the two neuron factors (recall R = 2 above) were correlated

ith the first connectivity component. For cues presented at every an-

le ( 𝜃 = 0 , 60 , 120 , 180 , 240 , 300 degrees), we computed the correlation

oefficient and corresponding p -value between the 1st and 2nd neuron

actors and the connectivity component averaged across trials. These

re shown in Fig. 3 D. We found that the average connectivity compo-

ent was significantly correlated with both the 1st and 2nd neuron fac-

ors. Correlations were significant for all angles. P- values (grey bars) are

hown on the left vertical axes of left (1st neuron factor) and right (2nd

euron factor) panels. Only the 2 largest p- values for 𝜃 = 60 degrees are

hown. All other p- values were much smaller than p < 10 − 5 . Thus, they

re not visible in the plot. The corresponding values of the correlation

oefficient r are shown on the right vertical axes (burgundy bars). They

re all high. Correlation coefficients were r > 0.9 for all angles except

= 60 for which r > 0.7. Note that the CD approximation assumes a tri-

inear variation in the data, while the autoencoder approach we used to

btain our components is nonlinear. Thus, the remaining dissimilarity

an be explained by a nonlinear mixing of latent states afforded by an

utoencoder. 

To sum up, we compared our approach for performing dimensional-

ty reduction to a high dimensional SVD approach, known as Canonical

ecomposition (CD ( Carroll and Chang, 1970 ; Williams et al., 2018 )).

e found that the effective connectivity components obtained using our

pproach correlates significantly with the neuron factors obtained using

D. This provides a second, independent validation of our approach. 

All in all, we compared the effective connectivity components with

esults obtained using pairwise correlations and the latent states of a

igh dimensional SVD approach. Our components correlated with those

ound using alternative methods. Thus, all three methods found a similar

tructure of the latent space within which neural activity evolves, while

eurons are maintaining cued angles. 

.5. Stable electric fields emerge from neural ensembles that represent the 

ame cued angle in different trials 

To sum so far, we first found the latent space associated with mainte-

ance of a cued angle (connectivity components). We then mapped this

pace to a cortical patch occupied by a neural ensemble —and obtained

he connectivity kernels. These describe the exchange of information

uring cue maintenance. We found that the corresponding connectiv-

ty weights correlated significantly with single trial ensemble indices

btained using pairwise correlations ( Humphries, 2011 ) across a large

ercentage of trials. 

Recall that the connectivity weights scale the input signal from other

lectrodes that targets a certain electrode measuring activity from a part

f the neural ensemble. Having obtained these weights, we could then

redict the Electric Field (EF) generated by the neural ensemble. The

onnectivity kernels describe how neurons communicate via electric sig-

als sent from one part of the ensemble patch to the other. These electric

ignals generate the EF. Below we used the connectivity kernel and the

eep neural field model to simulate EFs. We wanted to test if EFs were

imilar across trials where the same cued angle was maintained. 
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Fig. 4. A. Example of simulated electric field (EF) using the bidomain model. The EF amplitude is shown on the vertical axis ( V/m ), while the two horizontal axes 

show the electrode (location on the cortex) and time ( ms ). B. (Left) P- values of correlations between single trial EF amplitudes. These correspond to EFs generated 

by neural ensembles maintaining a cued angle at 𝜃 = 0 degrees. Yellow entries in the correlation matrix denote significant p- values, p < .05 . The percentage of 

significantly correlated single trial EF estimates is shown on the top right corner, R = 80% . (Right) P- values of correlations between single trial deep neural field data. 

Yellow entries denote significant p- values as in Fig. 4 B. Percentage of correlated trials is lower than Fig. 4 B (Left). C. Percentage of electrodes where electric field 

estimates were correlated across a larger number of trials compared to neural activity estimates, for different stimuli (angles). 
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LFPs can be thought of as proxies to electric fields. However, it is

ot clear what their source is –and whether they are solely produced

y neurons that participate in an ensemble or neighbouring neurons

oo. In other words, the ground truth regarding neural sources that pro-

uce the ensemble EF is unknown. Thus, we used our deep neural field

odel and the bidomain model to obtain predictions of ensemble EFs.

he deep neural field model stands in for an in silico implementation

f a neural ensemble. The bidomain model has been used to predict

he electric field generated by biological tissues, like the cardiac muscle

 Henriquez, 1993 ; Roth, 1997 ) and auditory brainstem ( Goldwyn et al.,

017 ). To estimate the extracellular EF, the model requires only a mea-

urement of the transmembrane potential 𝑉 𝑚 (Methods). The bidomain

odel neglects ephaptic coupling and electromagnetic wave effects –

hat are small compared to electric effects. It yields the EF in the extra-

ellular space by computing the Fourier transform of 𝑉 𝑚 measurements

nd an analytical expression based on Bessel functions of the first and

econd kind. 

Here, we obtained two EF estimates. First, EF estimates based on

eep neural field model predictions of transmembrane potentials 𝑉 𝑚 .

hese are simulated potentials after training the deep neural field model

ith all available data. We called them simulated EFs . Second, EF esti-

ates based on real LFPs. These did not use the deep neural field model.

FPs were used as proxies for transmembrane potentials and replaced

he simulated transmembrane potential from the neural field model

bove. We called the EFs obtained using real LFPs and the bidomain

odel, real EFs . 

An example simulated EF estimate is shown in Fig. 4 A. The EF am-

litude is shown on the vertical axis ( V/m ), while the two horizon-
12 
al axes show the electrode number (ID; location on the cortex) and

ime ( ms ). P- values of correlations between EF amplitudes are shown in

ig. 4 B. These correspond to EFs generated by neural ensembles main-

aining a cued angle at 𝜃 = 0 degrees. We here considered EF estimates

rom trials where our connectivity kernel correlated with the findings

f ( Humphries, 2011 ) (correlated trials). To obtain these estimates, we

rst simulated neural activity using our deep neural field model. Vari-

nce explained was about 40% for all stimuli (cued angles, Supplemen-

ary Fig. 4A and see also Fig. 9 in ( Pinotsis et al., 2017 ); there we had

sed all trials, instead of correlated trials that we used here). After sim-

lating neural activity, we computed EF estimates using the bidomain

odel. We asked whether they correlated across trials for the same

lectrode. 

Yellow entries in the correlation matrix denote significant p- values, p

 .05 , for an electrode at the edge of the patch and cued angle 𝜃 = 0 . The

ercentage of significantly correlated single trial EF estimates is shown

n the top right corner of the left panel in Fig. 4 B, R = 81% . Similarly, we

ound that EF amplitudes were also correlated across all trials and other

ngles with R = 70-80% (see Supplementary Fig. 3). We also computed

he corresponding correlation using deep neural field activity estimates

t the same electrode for the same cued angle. The percentage of sig-

ificantly correlated trials was R = 77% (top right corner of right panel

n Fig. 4 B). Note this is lower than the percentage of correlated trials

omputed using EF estimates obtained above. 

We then asked if the same result holds across many electrodes: that

s, if the percentage of correlated trials was lower when using single

rial neural activity (deep neural field simulated data) compared to EF

stimates. If it was, that would mean that neural activity was more
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ariable than EF recordings. In other words, several distinct configu-

ations of neural sources led to the same field. 

To sum up, we asked whether for the same electrode (location on

he ensemble patch), there was a significant difference in the percent-

ge, R, of correlated trials obtained using: (1) reconstructed neural ac-

ivity, which we called, R NA and (2) reconstructed EF estimates, called

 EF . We repeated this for all electrodes and summarized results for each

ued angle. Results are shown in Fig. 4 C. For all stimuli, a larger num-

er of electrodes had reconstructed single trial EF estimates that were

orrelated across trials, R EF, compared to reconstructed neural activity

stimates, R NA, : 

Bars in Fig. 4 C show the percentage electrodes, Q, where R EF was

ignificantly higher than R NA, Q = 11-27%. To test for statistical sig-

ificance, we used a Fischer exact test. This allows one to find dif-

erences between binomial distributions. Here, the binary variable de-

cribes whether a single trial EF estimate or neural activity estimate was

orrelated or not (the entries of matrices in Fig. 4 B). The null hypothesis

as that there was no difference in the percentage of correlated trials (at

he 5% significance level). We repeated the analysis for each electrode.

We found that a large part of electrodes had R EF > R NA 
2 . In other

ords, electric field estimates were more often correlated across trials,

.e. more stable, compared to neural activity estimates 3 . In the next sec-

ion, we will see that stronger stability of the EF compared to neural

ctivity was also confirmed by decoding analyses. Training accuracy

ased on neural activity was significantly lower than accuracy based

n EF estimates. This also suggests that information contained in delay

eural activity was less stable than that contained in the electric field. 

Not all electrodes had significant differences, R EF > R NA , because

ifferent stimuli activate different parts of the patch. Differences in con-

ectivity components between stimuli are localised within those parts

see Fig. 2 of ( Pinotsis et al., 2017 ) and relevant discussion). This sug-

ests that only parts of the patch (certain electrodes) will be sensitive to

hanges of stimuli. EF and neural activity estimates measured at those

lectrodes will be correlated, that is, stable across trials (not the whole

atch). 

To sum, we found that electric fields were correlated across trials

here the same cue was maintained. Further, the number of electrodes

locations) where this happens was larger than the corresponding num-

er when neural activity was correlated. All in all, the above results

uggest that stable electrical fields emerge from high-dimensional ever-

hifting neuronal activity patterns of neural ensembles during trials

here the same cue was maintained in memory networks. Having shown

hat electric fields are stable, we turned to the information carried by

hem and asked if it was stable too. 

.6. Emergent electric fields carry unique information about working 

emory content 

Finally, we asked whether EF produced by neural ensembles carried

nformation about working memory content. We assessed whether EF es-

imates obtained using our approach were consistently different among

eural ensembles that maintained different cued angles. In other words,

e tested if we could distinguish between memorized cues based on EFs.

f we could, this means that EFs can be uniquely associated with differ-

nt working memories that are used to perform the task. To formally

est this hypothesis, we used the EF estimates as classification features

f different trials by cued angle. We used 450 trials and held out 20%

f the data as a test set. We used simulated and real EFs as classification

eatures and two different algorithms, Naïve Bayes and diagonal LDA.

hese are among the most commonly used. 
2 For all cued angles except 𝜃= 60 degrees (Supplementary Fig. 4B) . 
3 During memory delay, some part of neural activity will be stable (attractor 

ynamics). This is not always picked up by EF estimates measured at certain 

ocations (electrodes) due to assumptions in the bidomain model (isotropic field, 

omogeneous resistivity, infinite neural source etc; Supplementary Fig. 4B). 

E  

a

13 
The results of our analyses are shown in Fig. 5 (using Naïve Bayes)

nd Supplementary Figure 6 (using diagonal LDA). Decoding accuracy

alues are shown on the vertical axis, while the corresponding electrodes

patch locations) are shown on the horizontal axis. We performed per-

utation tests, after shuffling class labels (cued angles) around. Blue

ars denote observed accuracy values. Orange bars denote the maxi-

um of the shuffled distribution. If blue bars are larger than orange,

he observed accuracy is significantly higher than chance (max of shuf-

ed estimates) at the p = 0.01 level. This was the case for over half of

he electrodes and accuracies obtained using simulated EFs ( Fig. 5 A).

he corresponding train and test confusion matrices are shown in Sup-

lementary Fig. 5A. These are averages over all electrodes. Accuracies

ere very similar for all stimuli 4 . 

Recall that simulated EFs above were obtained from connectivity

omponents, which, in turn, were obtained after training the neural field

odel on the whole dataset. Thus, decoding features contain some pre-

ious information from the data, something often referred to as data

eakage. To address this, we computed the decoding accuracy using real

Fs as features. Recall also that these were obtained after using LFPs

s proxies for transmembrane potential. Thus, the corresponding accu-

acy will not be biased and includes out-of-sample validation based on

 20% held out test set. Similarly to simulated EFs, a permutation test

onfirmed accuracy significantly higher than chance at the p < 0.01 level

or over half of the electrodes ( Fig. 5 B). The corresponding average con-

usion matrices are shown in Supplementary Fig. 5B. Accuracies based

n simulated EFs are similar to those obtained using LFPs (real EFs). To

est for their equivalence, we used the TOST procedure ( Lakens et al.,

018 ). We found that accuracies were the same, t(31) = -2.05, p = 0.02

assuming that a meaningful difference would be larger than 2%). 

To summarize, we found that simulated and real EF estimates dif-

ered systematically depending on the exact cued angle; they were

niquely associated with the remembered stimulus. The above results

onfirm our earlier result that EFs were stable across trials where the

ame cued angle was maintained. They contained unique information

bout the remembered stimulus, that seems to be preserved across tri-

ls. 

The theory of electromagnetism suggests that if EFs are stable, then

he differences of the corresponding extracellular potentials should also

e stable. These are known as Gauge functions (Methods). They are ob-

ained by subtracting real LFPs recorded in different trials where the

ame cued angle was maintained. We thus asked if we could distin-

uish cued angles when using Gauge functions as decoding features.

f we could, this would provide an alternative confirmation of our re-

ults. Crucially, Gauge functions do not rely on the validity of neither

idomain nor the deep neural field model. Thus, if they can distinguish

etween cued angles this is a confirmation of our result independent of

hese models. 

The results of our analyses are shown in Fig. 5 C. As before, blue

nd orange bars correspond to observed accuracy and chance accuracy

maximum of the shuffled distribution) respectively. Accuracy obtained

auge is similar to the results in Fig. 5 A and B. Thus, Gauge functions

re also stable and contain information about the cued angle. 

Finally, we repeated the decoding analyses using simulated neural

ctivity (from the deep neural field model). Permutation test results are

hown in Fig. 5 D. Accuracy was higher than chance ( p < 0.01) for over

alf of the electrodes. A one sided, Welch test also found that training

ccuracy based on neural activity was significantly smaller than accu-

acy obtained using real EFs t(31) = -8.2, p < 0.001. The corresponding

onfusion matrices are shown in Supplementary Fig. 6C. Correctly clas-

ified trials were fewer than those obtained using real and simulated

Fs. Thus, neural activity did not contain the same stable information

s the electric field. This is in accord with our earlier result ( Fig. 4 ). 
4 Except for 𝜃= 0 degrees, which is slightly higher. 
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Fig. 5. A. Permutation test of decoding accuracy based on simulated EF estimates. Accuracy values are shown on the vertical axes, while the corresponding electrodes 

(patch locations) are shown on the horizontal axes. Blue bars show observed accuracy estimates. Orange bars show the maximum obtained accuracy after performing 

N = 100 permutations. For those electrodes that unshuffled estimates are higher than the maximum of the distribution after shuffling, decoding accuracy is significantly 

higher than chance at the p = 0.01 level. Over half of the electrodes have higher accuracy (blue bars) than the maximum of the distribution obtained after shuffling 

(orange bars). B. Same as in A. after replacing simulated EFs by real EFs. An equivalence test found that simulated and real EF accuracy estimate are the same (see 

text). C. Same as in A. after replacing simulated EFs by Gauge functions that do not depend on the neural field or dipole models. D. Same as in A. after replacing 

simulated EFs by neural activity estimates. A Welch test found that training accuracy obtained using neural activity was smaller than the corresponding accuracy 

obtained using real EFs (see text). Results shown in all panels were obtained using a Naïve Bayes classifier. 
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All in all, we found that electric fields provided higher than chance

ecoding accuracy in predicting the remembered stimuli (cued angles).

hus EFs contained unique information about working memory content

eeded to perform the task. 

. Discussion 

We analyzed monkey LFP data from a spatial working memory task

 Jia et al., 2017 ; Pinotsis et al., 2017 ). We found that stable electri-

al fields emerge from high-dimensional ever-shifting neuronal activity

atterns of neural ensembles in the brain. We trained a biophysical neu-

al network model as an autoencoder that learned to maintain spatial

ocations. This provided latent variables describing the connectivity of

eural ensembles, which we called ’connectivity components’. We also

econstructed single trial effective connectivity estimates, ‘ connectivity

ernels’ ( Pinotsis et al., 2017 ). These describe information flow within

he neural ensemble; in other words, the exchange of electric signals

etween neurons forming an ensemble. Crucially, this distinguishes our

pproach from other dimensionality reduction approaches ( Jazayeri and

stojic, 2021 ; Cunningham and Byron, 2014 ). Our approach maps the

atent space to a cortical patch. It goes beyond dimensionality reduction

nd reconstructs information flow. 
14 
Mathematically, the connection weights (kernel) can be thought of as

he probability of having connections between neural populations form-

ng a neural ensemble ( Pinotsis et al., 2017 ). Other methods to obtain

he probability function include splines ( Gehringer and Redner, 1992 )

nd tools from complex systems ( Heinz, 2013 ). We will systematically

onsider these methods elsewhere. We here used a Restricted Maximum

ikelihood (ReML) algorithm for obtaining the connectivity components

 Pinotsis et al., 2017 ). This optimizes the same cost function used in vari-

tional autoencoders, called Free Energy (FE; also known as Evidence

ower Bound, ELBO). ReML does not require an explicit cross valida-

ion step (the E-step is embedded in the M-step after substituting the

osterior variance). While cross validation (CV) partitions data in test

nd training sets, ReML prevents overfitting by penalizing for model

omplexity. The relationship between CV and FE for assessing source

econstruction error in the context of neuroimaging data has been sys-

ematically studied in several studies including ( Troebinger et al., 2014 ;

ittle et al., 2018 ). CV error and FE are correlated ( Bonaiuto et al.,

018 ). 

We found that the connectivity components were highly corre-

ated with latent factors extracted by Canonical Decomposition (high

imensional SVD) ( Carroll and Chang, 1970 ; Williams et al., 2018 ;

iers, 1998 ). We also found that connectivity components and kernels
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ere correlated with cluster indices obtained using unsupervised clus-

ering ( Humphries, 2011 ). 

Connectivity components and kernels describe the effective connec-

ivity between different neurons forming a neural ensemble: How elec-

ric signals and information are exchanged between them. Using kernels

nd the classic dipole theory of electromagnetism, we reconstructed the

lectric fields (EFs) produced by a neural ensemble. We reconstructed

he electric fields using four steps ( Fig. 1 A). We first reformulated a neu-

al network (described by Wilson Cowan equations) as a neural field

odel and then a Gaussian Linear Model (GLM; step 1). We trained

his model as an autoencoder using LFP data. This allowed us to ob-

ain the latent states (connectivity components; step 2). Then, using in-

erse problem theory, we obtained the corresponding connectivity ker-

els (step 3). Finally, electromagnetism (dipole theory) allowed us to

redict the electric field generated by an ensemble (step 4). 

We found that different remembered locations resulted in different

lectric fields. These fields were highly stable across trials yet, at the

evel of specific circuits there was more variability (representational

rift ( Driscoll et al., 2017 ; Deitch et al., 2020 )). We trained a neural

eld model using single trial LFP data and obtained its connectivity.

his model described a neural ensemble. We then reconstructed electric

eld and neural activity estimates generated by the ensemble during

elay when the same location was remembered and looked at the per-

entage of correlated trials. The percentage of electric field estimates

hat were significantly correlated across trials was higher than the cor-

esponding percentage obtained using neural activity estimates and this

as replicated across many electrodes and stimuli. 

This result is also supported by the theory of electromagnetism. The

ame electric field can arise from different combinations of specific

eurons and networks (electromagnetic sources and sinks ( Perkins and

erkins, 2000 )). This is known as non-uniqueness of the electromag-

etic inverse problem: One cannot find the exact sources by measuring

lectric fields alone ( Jackson, 1999 ). This non-uniqueness implies that

eural sources changed between trials but the electric field was stable:

cross like trials, where the same memory was maintained, the inputs

ntering a given network changed. Electromagnetism predicts that neu-

al sources will reconfigure themselves to accommodate these inputs but

he overall electric field will be the same. When inputs change, the neu-

al sources change but the electric field will not. This can explain the ob-

erved variability in the patterns of neurons forming a neural ensemble.

ere, we confirmed this hypothesis using LFP data and computational

odeling. In future work, we will experimentally test the stability of the

lectric field. 

Finally and importantly, different EFs were uniquely associated with

ifferent working memories needed to perform the experimental task

uccessfully. To support this, it was shown that the EF estimates pro-

ided higher-than-chance decoding accuracies in predicting the remem-

ered stimuli (i.e., cued angles). Further, training accuracy based on

eural activity was lower and correctly classified trials were fewer than

hose obtained using EFs. Neural activity is less stable than the electric

eld. 

Our model assumes that LFPs contain information about the exci-

ation to inhibition (E/I) balance, despite being an aggregate measure

f neural activity obtained from both excitatory and inhibitory popula-

ions. This is supported by both computational ( Mazzoni et al., 2013 ;

lomb et al., 2021 ; Kang et al., 2020 ) and empirical ( Trakoshis et al.,

020 ; Haider et al., 2006 ) studies, see also ( Gao et al., 2017 ) for a re-

ent discussion. In particular, a large body of work by us and others

sing Dynamic Causal Models (DCM) has shown that it is possible to

nfer E/I ratios assuming that LFPs arise as a result of certain synaptic

urrents, usually AMPA and GABA A currents, see e.g. ( Pinotsis et al.,

016 ; Pinotsis et al., 2017 ; Friston et al., 2015 ; Legon et al., 2016 ;

amburg et al., 2019 ; Pinotsis and Miller, 2020 ). In future work, we

ill use separate recordings (depolarization or spike rates) from excita-

ory and inhibitory populations, to reconstruct excitatory and inhibitory

ctivity separately. 
15 
In general, there are three different ways one can reduce the dimen-

ionality in large, brain imaging datasets. Because these datasets involve

hree-way matrices (tensors) with dimensions ( time x neurons x trials ),

hree different sets of principal components (PCTs) can be obtained,

n either (i) time; (ii) neurons (or channels) or (iii) trials domain. The

utputs of this process are trajectories – i.e. collections of points– in do-

ains spanned by the corresponding PCTs. For example, in ( Wang et al.,

018 ) the output was motor timing (i.e. trajectories in a low dimensional

omain spanned by time PCTs —ie. temporal evolution of population

ctivity); while ( Mante et al., 2013 ) obtained trajectories traced out by

eurons in the motion and color domains (because PCTs along the sec-

nd dimension, neurons, correspond to behaviourally relevant variables;

eurons are grouped into PCTs depending on their tuning preferences).

inally, PCTs can be defined in the trial domain and the corresponding

rajectories can then be used to obtain estimates of trial to trial variabil-

ty. This can e.g. reveal changes in excitability of neural populations due

o attention ( Kanashiro et al., 2017 ) and ongoing cognitive variables in

eneral ( Nienborg et al., 2012 ). 

We here characterized the latent states during memory maintenance

sing biophysically informed models, neural fields. Because these mod-

ls are defined in the time and neuron (i.e. space) domain, this reduc-

ion provides insights in both those domains. This, in turn, can help

ne understand the relation between representational drift and proper-

ies, like criticality ( Maturana et al., 2020 ; Bak et al., 1988 ). Cortical

ynamics in critical regimes are characterised by a co-occurrence of dif-

erent temporal frequencies at different spatial scales ( Freeman, 2003 ).

oth frequencies and spatial scales can be described by the connectiv-

ty components and principal axes obtained after training a neural field

odel ( Pinotsis et al., 2017 ). In that earlier work, we showed that single

rial principal axes predict the characteristic Lyapunov exponents that

etermine the timescales at which the system returns to equilibrium af-

er perturbations, commonly known as critical slowing ( Grindrod and

inotsis, 2011 ; Pinotsis and Friston, 2011 ). The connectivity compo-

ents describe different neural ensembles, i.e. spatial patterns or com-

inations of neurons that maintain cued angles. These change between

rials (representational drift). Thus, by studying single trial estimates of

omponents and principal axes, one can link critical slowing with en-

embles and representational drift. This will be considered elsewhere. 

In short, we found that stable EFs emerge from high-dimensional

ver-shifting neuronal activity patterns of neural ensembles in the brain.

hese EFs were robust across experimental trials where the same lo-

ation was maintained, despite the continually changing neuronal ac-

ivity, something known as the ’representational drift’. Also, the low-

imensional emergent electrical fields carry information about working

emories. 

The stability of the electric field can allow the brain to control the

atent variables (e.g., oscillations) that give rise to the same memory.

e suggest that the electric field does not just emerge from the repre-

entational drift. It also helps sculpt and herd that general pattern of

raffic. In other words, electric fields can act as “guard rails ” that fun-

el the higher dimensional variable neural activity along stable lower-

imensional routes. We will test this hypothesis elsewhere. The low-

imensional stability in electric fields might help the brain perform com-

utations, by allowing latent states to be reliably transferred between

rain areas, in accord with modern engram theory ( Ryan et al., 2015 ).

his is also in accord with the theory of Synergetics ( Basar et al., 1983 ,

uchs et al., 2000 ; Haken, 2006 ; Jirsa and Kelso, 2000 ). The electric field

an be viewed as a control variable similar to energy ( Haken, 1985 )

nd attention signals ( Ditzinger and Haken, 1989 ) that evolves more

lowly than the latent variables that represent information. In other

ords, there might be a temporal hierarchy comprising the timescales

f control parameters (e.g. electric field), order parameters (e.g. latent

ariables ( Gallego et al., 2020 ; Yu et al., 2008 )) and enslaved parts (e.g.

scillations/spiking ( Haken, 2006 )). 

All in all, our results and related work suggest that the electric field

s conserved in memory networks and allows latent variables from dif-
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erent brain areas to interact and produce behavior. Although the exact

eurons forming a neural ensemble differ from trial to trial (representa-

ional drift), the electric field is stable and contains unique information

bout the remembered stimulus, that seems to be preserved across trials.
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