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We introduce a real-time measure of conditional biases to firms’ earnings forecasts. The
measure is defined as the difference between analysts’ expectations and a statistically
optimal unbiased machine-learning benchmark. Analysts’ conditional expectations are, on
average, biased upward, a bias that increases in the forecast horizon. These biases are
associated with negative cross-sectional return predictability, and the short legs of many
anomalies contain firms with excessively optimistic earnings forecasts. Further, managers
of companies with the greatest upward-biased earnings forecasts are more likely to issue
stocks. Commonly used linear earnings models do not work out-of-sample and are inferior
to those analysts provide. (JEL G12, G14)
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One necessary input for pricing a risky asset is an estimate of expected future
cash flows to which the asset owner would be entitled. Commonly used
cash flow proxies include the most recent realized earnings, simple linear
forecasts, or analysts’ forecasts. However, a significant strain of literature
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documents these forecasts can be biased or predict poorly out-of-sample,
thereby limiting their practical usefulness.1 In this study, we propose a novel
approach for constructing a statistically optimal and unbiased benchmark for
earnings expectations, which uses machine learning. We demonstrate that, in
contrast to linear forecasts, our new benchmark is effective out-of-sample.

To provide conditional expectations available in real time, we use the cross-
sectional information of firms’ balance sheets, macroeconomic variables, and
analysts’ predictions. Because of analysts’ forecasts belonging to the public
information set, the question arises whether these forecasts can be used to
improve on predictions obtained from other publicly available data sources. For
example, analysts’ forecasts could become redundant if other publicly available
variables are included in the analysis. Alternatively, analysts may collect
valuable private information that is subsequently reflected in their forecasts. We
find evidence consistent with the latter: analysts’ forecasts are not redundant
relative to our algorithm’s extensive set of publicly available variables. As such,
these forecasts are a crucial input to our machine learning approach.2 That said,
analyst forecasts, which are often biased, can be improved on by optimally
combining them with publicly available information sources.

We use a random forest regression as our primary analysis. A random forest
regression has two significant advantages. First, it naturally allows nonlinear
relationships. Second, it is designed for high-dimensional data and is therefore
robust to overfitting.3 We construct 1- and 2-year forecasts for annual earnings.
For quarterly forecasts, we use one-quarter, two-quarter, and three-quarter
horizons. We focus on these particular horizons as analysts’ forecasts for
other horizons have significantly fewer observations. Given the benchmark
expectation provided by our machine learning algorithm, we then calculate the
bias in expectations as the difference between the analysts’ forecasts and the
machine learning forecasts.

We show that analysts’ biases induce negative cross-sectional stock
return predictability: stocks with overly optimistic expectations earn lower
subsequent returns and vice versa. Notably, the short legs of common
anomalies consist of firms for which the analysts’ forecasts are excessively
optimistic relative to our benchmark. Finally, we show that managers of
those companies with the largest biases seem to take advantage of the overly
optimistic expectations by issuing stocks.4

1 See Kothari, So, and Verdi (2016) for an extensive review.

2 Using a mixed data sampling regression, Ball and Ghysels (2018) find that analysts’ forecasts provide
complementary information to the time-series forecasts of corporate earnings at short horizons of one quarter or
less.

3 See Gu, Kelly, and Xiu (2020) for an excellent overview of this and other well-known predictive algorithms in the
context of cross-sectional returns. See Bryzgalova, Pelger, and Zhu (2020) for a novel application of tree-based
methods to form portfolios.

4 We are agnostic on the source of the biases for analysts’ earnings forecasts. Scherbina (2004) and Scherbina
(2007) shows that the proportion of analysts who stop revising their annual earnings forecasts is associated with
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Although previous research has used realized earnings to evaluate the bias
and efficiency of analyst forecasts, these extant studies do not use a time
series or cross-section of real-time earnings forecasts as a benchmark.5 Without
such forecasts, it is difficult to assess and correct the conditional dynamics of
forecast biases before the actual value is realized. Hence, such studies only
document an unconditional bias over time and in the cross-section. That is, we
cannot know whether the given forecasts are conditionally biased, nor do we
observe the variation of these biases across stocks and time and their impact
on asset returns.

We fill this void by constructing a statistically optimal time-series and
cross-section of earnings forecasts. To the best of our knowledge, we are the
first to use machine learning to create a real-time proxy for firms earnings’
conditional expectations. The resultant estimates enable us to compute real-
time implied analyst biases, which can be used in cross-sectional stock-pricing
sorts and to study managers’ issuance behavior. Therefore, our benchmark
expectation diverges from the conventional approach, which uses raw analysts’
expectations, the past realized earnings value, or a simple linear model to form
the conditional forecast.6

Another strain of the relevant literature sorts stocks cross-sectionally using
long-term earnings growth forecasts, without comparing these values to
a benchmark (e.g., La Porta 1996; Bordalo et al. 2019). This approach
implicitly assumes that the cross-sectional median (or average) is sufficient as a
counterfactual. However, given the large cross-sectional variation in earnings,
it remains challenging to determine whether beliefs are biased or exaggerated
without a fully specified benchmark model (Zhou 2018).

Finally, studies have posited linear forecasting rules as a solution to the
analysts’ bias problem. An important contribution to this line of research is
So (2013). Using a linear regression framework with variables that have been
shown to provide effective forecasting power (as in Fama and French 2006;
Hou, Van Dijk, and Zhang 2012), So (2013) provides a linear forecast and
studies the predictable components of analysts’ errors and their impact on asset
prices. Similarly, Frankel and Lee (1998) suggests a linear model using a few
selected variables. We differ from So (2013) and Frankel and Lee (1998) in
three important ways.

First, because linear regressions do not efficiently handle high-dimensional
data, a variable selection step is necessary. Often, variables that have been
documented ex post as effective predictors are selected in this step, rendering

negative earning surprises and abnormal returns, suggesting that analysts withhold negative information from
their projections.

5 See, for example, Kozak, Nagel, and Santosh (2018) and Engelberg, McLean, and Pontiff (2018).

6 Academics have been recently attentive to the limitations of a simple linear model to forecast earnings. See, for
example, Babii et al. (2020), who use the sparse-group LASSO panel-data regression to circumvent the issue
of using mixed-frequency data (such as macroeconomic, financial, and news time series) and apply their new
technique to forecast price-earnings ratios.
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the linear forecast not entirely out-of-sample. We demonstrate that the
variable selection step is not innocuous, and most (if not all) of the return
predictability examined in So (2013) using linear forecasts disappears after
the 2000s.7 In contrast, our machine learning approach considers a broad
set of macroeconomic and firm-specific signals at every point in time. We,
therefore, do not incur any data leakage. As a consequence, the out-of-sample
predictability of our machine learning forecasts remains relatively stable
throughout the sample.

Second, the linear forecasts in So (2013) are not designed to be statistically
optimal. In fact, analysts’ forecasts are a better proxy for the conditional
expectations than linear forecasts are, as measured by the mean squared
error, even after the variable selection step. In contrast, our machine learning
forecasts are a better proxy out-of-sample.

Third and finally, we have no reason to impose the linearity of the conditional
expectation function. Indeed, we find that allowing for nonlinear effects
improves the forecasts, even when using a variable-selection-bias-free linear
model, consistent with previous studies using machine learning (Gu, Kelly,
and Xiu 2020). In particular, investors using linear forecasts after the 2000s
would miss the opportunity to earn at least 0.46% of return per month when
using the variable-selection-bias-free linear model and even more when using
models that have the forward-looking bias.

Armed with a statistically optimal and unbiased benchmark for firms’
earnings expectations and the implied real-time measure for firm-level
conditional earnings forecast biases across multiple horizons, we exemplify
its usefulness by focusing on two applications.

First, we study the impact of expectations and biases on stock market returns.
Second, we evaluate the effect of biases on managers’ actions. Concerning the
first application, we find significant return predictability associated with our
measure of conditional biases and a high correlation with return anomalies.
Regarding the second, we find that managers tend to issue more stocks when
their firms are subject to more optimistic forecasts relative to our benchmark.

While these two applications are illustrative of the usefulness of our
approach, we also note that part of our contribution is the expectation measure
itself. Finally, before explaining the economic and statistical theory and the
empirical results, we further describe our contribution to the existing literature
over the next paragraphs.

Regarding the relationship between anomalies and conditional biases,
Engelberg, McLean, and Pontiff (2020) document that analysts’ price targets
and buy/sell recommendations contradict stock return anomaly variables. In
contrast, our paper focuses on a different set of analysts that provide earnings
forecasts. We find that biases in these cash flow predictions correlate with

7 We discuss these results extensively in Internet Appendix Section A10.
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anomaly returns, suggesting an expectational error component in cash flows
driving anomalies.

Previous work also exists on the relationship between analysts’ expectations
and the stock issuance behavior of firms. Given that this earlier work does
not use a real-time conditional benchmark for earnings that the analysts’
expectations can be compared to, the conclusions drawn are different from
ours. Particularly, Richardson, Teoh, and Wysocki (2004) argue that firms
and managers communicate with each other. Analysts start with optimistic
forecasts, gradually lower those forecasts as the earnings announcement
approaches, undershoot the earnings forecast just before the announcement,
allowing firms to outperform the forecast and issue stock shortly after this
positive news.

In contrast, our findings are consistent with a different economic mechanism.
We use a real-time earnings forecast bias measure and find that firms issue more
stocks when the real-time bias is higher, which happens long before the end-
of-period earnings announcement. Our explanation for this phenomenon is that
managers understand when analysts are overly optimistic because managers
have private information. Therefore, they take advantage of this optimism in
the market and issue stock before earnings are realized, even up to 2 years
before.

We also contribute to the growing literature that documents analysts are
skillful and exert effort (see, e.g., Grennan and Michaely 2020) by providing
evidence that despite analysts being conditionally biased, they provide unique
information above and beyond what can be found in standard accounting and
macroeconomic variables. Furthermore, we show how this information can be
incorporated efficiently to form better forecasts.

Our work also relates to recent work by Hirshleifer and Jiang (2010) and
Baker and Wurgler (2013), who argue that managers can take advantage of
overpricing on their firms’ valuation by issuing stocks. Hirshleifer and Jiang
(2010) use firms’ stock issuances and repurchases to construct a misvaluation
factor, and Stambaugh and Yuan (2017) construct a mispricing factor based
on the net stock issuances. We contribute to this literature by providing direct
and novel evidence relating to conditional earnings forecast biases and stock
issuances. Since we show that it is feasible to have better forecasts than
analysts’ forecasts using public information, it seems plausible that managers
can construct superior forecasts exploiting their private information.

Finally, an extensive literature documents biases and the importance of
expectations for macroeconomic variables using the Survey of Professional
Forecasters (SPF) (see, e.g., Coibion and Gorodnichenko 2015; Bianchi,
Ludvigson, and Ma 2022 for recent expositions).8 We complement this

8 In particular, Bianchi, Ludvigson, and Ma (2022) characterizes the time-varying systematic expectation errors
embedded in survey responses using machine-learning techniques. See also Bordalo et al. (2019) and Bordalo
et al. (2020), who provide evidence of systematic biases in analysts’ forecasts of earnings growth.
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literature by (1) providing direct evidence of the existence of systematic biases
in analysts’ earnings forecasts, (2) constructing a more efficient forecast using
publicly available information in each period, and (3) documenting that these
biases relate to outcomes in financial markets and corporate policies.

1. Model

This section presents a condensed version of a tractable nonlinear model of
earnings and earnings expectations that illustrates some reasons linear forecasts
are inferior to those provided by machine learning techniques and analysts.
In particular, high variance of the relevant nonlinear effects causes the linear
models to underperform machine learning techniques. The complete model
also features asset prices so that it can be used to understand further why our
approach produces stable return predictability out-of-sample, whereas linear
forecasts do not. This complete model is presented in the appendix.

1.1 Model
Consider the following setup. There are two periods in the economy. First, a
measure 1 of assets, indexed by i, need to be priced. Second, the payoff y

of asset i is a random variable forecastable by a combination of linear and
nonlinear effects. In particular, the actual payoff distribution follows:

ỹi =f (xi)+g(vi)+zi +wi + ε̃i , (1)

where vi,wi,xi,zi are variables measurable in the first period and distributed
in the cross-section as independent standard normal. f and g are nonlinear
functions, orthogonal to the space of linear functions in xi and vi , respectively
(E[xf (x)]=E[vg(v)]=0). We assume that analysts use f (xi) and wi in
their forecasts. However, we assume that they miss out on the effects of zi

(which will deliver return predictability) as well as g(vi). The latter can be
motivated either because analysts are not aware of the forecasting power of
transformations of vi or because they only use linear transformations of vi . ỹ

and ε̃i are random variables measurable in the second period. ε̃i is distributed
as an independent standard normal. We assume that agents have a large enough
sample of these variables from past observations so that there is no estimation
error of the coefficients. Notice that (because of the orthogonality assumption
above) in a linear regression, the true coefficients associated with xi and vi are
zero. For tractability, the shock to earnings is not priced, and the risk-free rate
equals zero.

Our theoretical model includes nonlinear effects because, in our empirical
specification, we document substantial nonlinearities in the earnings process
as a function of the explanatory variables. For example, analysts’ forecasts are
among the most important predictors, and Figure 1, panel A, shows that EPS is
a nonlinear function of analysts’ forecasts. Hence, using the linear prediction
produces substantial errors as shown in Figure 1, panel B. Figure 1, panels C
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A B

C D

Figure 1
Partial dependence plot
The figure plots the partial dependence plot of one-quarter-ahead realized EPS on analysts’ forecasts. The partial
dependence plot is calculated from a random forest regression of EPS on the variables mentioned in Section 2.2.
The figure is smoothed using a generalize additive model. The random forest regression for the figure uses 2,000
trees and a minimum node size of one. The data start in 1986 and end in 2019.

and D, shows the same problem arises when using past EPS, which is a key
ingredient of linear forecasts, such as in Frankel and Lee (1998) or So (2013).

We show in the appendix that the earnings forecasting error is weakly
decreasing in the number of explanatory variables used, since an ideal
conditional expectation function can always disregard useless information.
For our application, random forest regression automatically discards useless
forecasting variables and incorporates useful ones. Given its flexibility and
robustness, it will (asymptotically) always benefit from adding information.

Hence, if we include analysts’ expectations (which are in the public
information set), any optimal estimator will achieve an error no higher than
analysts make. In practice, we find that random forest succeeds when adding
analysts’ expectations to the information set, while linear models are no
better than analysts’ forecasts. Because of their flexibility, random forests can
approximate any functional form, and (asymptotically) random forests are a
consistent estimator of the conditional mean.9

9 The property is commonly referred to in the literature as random forests being universal approximators. We
confirm in simulations that it applies in our setup.
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We also show in the appendix that under general conditions, as expected,
stocks with pessimistic (lower than optimal) predictions should have higher
(realized) returns and vice versa.

1.2 Spurious in-sample linear predictability
In the appendix, we also show that even though analysts’ earnings forecasts
dominate the linear earnings forecasts, return predictability may still arise from
the conditional bias measured by the difference between the analysts’ forecasts
and the linear forecasts. It occurs when a variable in which the analyst forecast
and the linear forecast differ is associated with return predictability. To make
matters worse, if the variable driving the return predictability only works in-
sample, the linear model’s return predictability will decrease substantially or
disappear altogether out-of-sample. In our empirical specification, the linear
model return predictability indeed disappears after the 2000s. In contrast, for
the machine learning model, the return predictability remains relatively stable.

2. Methodology and Data

In this section, we will describe how we apply random forest techniques to
earnings. We also describe the data sources that we input to this machine
learning algorithm.

2.1 Random forest and earnings forecasts
In this study, we use random forest regressions to forecast future earnings.
Random forest regression is a nonlinear and nonparametric ensemble method
that averages multiple forecasts from (potentially) weak predictors and is
asymptotically unbiased and can approximate any function. The ultimate
forecast is superior to a prediction following from any individual predictor
(Breiman 2001). We train the algorithm using rolling windows analogous to
a rolling regression forecast. The hyperparameters are chosen using cross-
validation: a data-driven method that does not have look-ahead bias by design.
We summarize the key parameters of our implementation in Table 1 and discuss
the cross-validation method in detail in Internet Appendix Section A1. We
explain the algorithm itself thoroughly in this subsection. The building blocks
for random forest regression are decision trees with a flowchart structure in
which the data are recursively split into nonintersecting regions. At each step,
the algorithm splits the data choosing the variable and threshold that best
minimizes the mean squared error when the average value of the variable to be
forecasted is used as the prediction. Decision trees contain two fundamental
substructures: decision nodes by which the data are split, and leaves that
represent the outcomes. At the leaves, the forecast is a constant local model
equal to the average for that region.

The decision tree in Figure 2 illustrates. The variable we wish to forecast is
the earnings-per-share (eps hereafter) for a cross-section of firms. At the first

8

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhac085/6782974 by guest on 21 D

ecem
ber 2022

https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhac085#supplementary-data
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhac085#supplementary-data
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhac085#supplementary-data


[12:33 13/12/2022 RFS-op-revf220087.tex] Page: 9 1–36

Man versus Machine Learning: The Term Structure of Earnings Expectations and Conditional Biases

Table 1
Hyperparameters for the random forest regression

Number of trees 2,000
Maximum depth 7
Sample fraction 1%
Minimum node size 5

This table reports the parameters chosen for the random forest regression. Number of trees is the number of
decision trees used. Maximum depth is the maximum number of splits that each decision tree can use. Sample
fraction is the fraction of observations used to train each decision tree. The minimum node size is the threshold
to stop the decision tree whenever the split would result in a sample size smaller than the minimum node size.
The hyperparameters are chosen using cross-validation over 1986 as detailed in Internet Appendix Section A1.
The random forest regression is trained using rolling regressions keeping the hyperparameters fixed.

Figure 2
Example decision tree
The figure shows an example decision tree. The variable we wish to forecast is the earnings-per-share (eps
hereafter) for a cross-section of firms. At the first step, the selected explanatory variable is the past earnings per
share (denoted by past_eps_std), and the threshold (or cutoff) value is at 0.051. Were we to end at this step, the
forecasted eps value is 0.06 when past_eps_std is less than 0.051 and 0.73 when adj_afeps is more than or equal
to 0.051. In the next step, the algorithm splits each of the previous two subspaces in two again. The first subspace
(past earnings per share less than 0.051) is split in two using again the past earnings per share as an explanatory
variable. The threshold value is −0.66. The second subspace (past earnings per share greater than 0.051) uses
the price per share as the next conditioning variable, and the subspace considered is price per share below the
threshold value of 1.1. The percentages show the proportion of the firms that fall in each of the splits. We then
continue for the predefined number of splits until we arrive at the final nodes. In the final nodes, the prediction
is the historical local average of that subspace.

step, the selected explanatory variable is the past earnings per share (denoted
by past_eps_std), and the threshold (or cutoff) value is 0.051. Naturally, the
whole sample (100%) is used at this first step. Were we to end at this step,
the forecast eps-value is 0.06 when past_eps_std is less than or equal to 0.051
(which corresponds to 57% of the sample), and 0.73 when past_eps_std is more
than or equal to 0.051 (43% of the sample). In the next step, the algorithm
splits each of the previous two subspaces in two again. The first subspace (past
earnings per share less than 0.051) is split in two using past earnings per share
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A B

Figure 3
Example decision tree prediction regions
The figure illustrates the forecast of the decision tree from Figure 2. The variable we wish to forecast is the
earnings-per-share for a cross-section of firms. Panel A shows the prediction is constant within each color box
and corresponds to the historical mean for each subspace. Panel B shows the realized values with different colors
indicating different values.

as an explanatory variable. The threshold value is −0.66. The second subspace
(past earnings per share greater than or equal to 0.051) uses the price per share
lower than 1.1. We then continue for the predefined number of splits until
we arrive at the final nodes. In the final nodes, the prediction is the historical
local average of that subspace. Figure 3, panels A and B, shows the resultant
predictive surface.

The goal of a decision tree model is to partition the data to make optimal
constant predictions in each partition (or subspace). Consequently, decision
trees are fully nonparametric and allow for arbitrary nonlinear interactions.
The only parameter for training a decision tree model is the depth, that is, the
maximum path length from a root node to leaves. The larger the depth, the more
complex the tree, and the more likely it will overfit the data.10

More formally, the decision tree model forecast (ŷ) is constant over a disjoint
number of regions Rm:

ŷ =f (x)=
∑
m

cmI{x∈Rm}, (2)

where the constants are given by

cm =
1

Nm

∑
{yi :xi∈Rm}

yi, (3)

and each region is chosen by forming rectangular hyperregions in the space of
the predictors:

Rm ={xi ∈×
i∈I

Xi :km
i,l <xi ≤km

i,h}, (4)

10 The standard approach to decrease the risk of overfitting is to stop the algorithm whenever the next split would
result in a sample size smaller than a predetermined size, usually five observations for regression (Hastie,
Tibshirani, and Friedman 2001). This sample threshold is called the minimum node size.
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where×denotes a Cartesian product, I is the number of predictors, and each
predictor xi can take values in the set Xi .

The algorithm numerically minimizes the mean squared error to best
approximate the conditional expectation by choosing the variables and
thresholds, and hence the regions Rm in a greedy fashion. Because of
their nonparametric nature and flexibility, decision tree models are prone to
overfitting when the depth is large. The most common solution is to use
an ensemble of decision trees with shorter depth, specifically random forest
regression models.

Random forest regression models are an ensemble of decision trees that
bootstrap the predictions of different decision trees. Each tree is trained on
a random sample, usually drawn with replacement. Instead of considering all
predictors, decision trees are modified so that they use a strict random subset
of features at each node to render the individual decision trees’ predictions
less correlated.11 The final prediction of a random forest model is obtained by
averaging each decision tree’s predictions.

Random forest regressions provide a natural measure of the importance
of each variable, the so-called “impurity importance” (Ishwaran 2015). The
impurity importance for variable Xi is the sum of all mean squared error
decreases of all nodes in the forest at which a split on Xi has been used,
normalized by the number of trees. The impurity importance measure can be
biased, and we use the correction of Nembrini, König, and Wright (2018)
to address this well-known concern. Finally, we normalize the features’
importance of each variable as percentages for ease of interpretation.

The random forest algorithm comprises three main parameters: (1) the
number of decision trees; (2) the depth of the decision trees; and (3) the fraction
of the sample used in each split.12

Since the random forest is a bootstrapping procedure, a high number of
decision trees is optimal. Notwithstanding computational time, there is no
theoretical downside for using more trees. That said, performance tends to
plateau following a large number of trees. Figure 4, panels A and B, confirms
that this indeed holds in our setup: the performance is increasing in the number
of trees but reaches a plateau.13

The depth of each decision tree determines the overall complexity of the
model. Thus, more complex models are more likely to overfit. Nevertheless,

11 The algorithm allows a fixed set of variables to be always considered at each split. More generally, the algorithm
enables us to specify the probability for each predictor to be considered at each partition.

12 An additional parameter is the percentage of the predictors considered in each splitting step. The random forest
algorithm is not sensitive to its value in our specification.

13 In the cross-validation step, we measure the performance using the out-of-sample R2 of the year 1986:

R2
oos =1−

∑
(MLFi−EPSi )2∑
(EPSi−EPS)2

. MLFi and EPSi denote the machine learning forecast and actual realized

earnings respectively for firm i. EPS represents the cross-sectional average of firm earnings. The denominator,∑
(EPSi −EPS)2, is constant across different specifications.
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A B

C D

E F

Figure 4
Cross-validation results for hyperparameters
The figure plots the results of using cross-validation for the hyperparameters. Panels A and B plot the out-of-
sample R2 for the one-quarter-ahead and the 1-year-ahead forecasts as a function of the number of trees. Panels
C and D plot the out-of-sample R2 for the one-quarter-ahead and the one-year-ahead forecasts as a function of
the depth of decision trees used in the random forest. Panels E and F plot the out-of-sample R2 for the one-
quarter-ahead and the 1-year-ahead forecasts as a function of the fraction of the sample that is taken in each split
used in the random forest. The model is trained using data up to 1986 January and the out-of-sample R2 for the
1-year-ahead earnings forecasts is calculated in 1986 February. The out-of-sample R2 is defined as one minus
the mean squared error implied by using the machine learning forecast divided by the mean squared error of
using the realized average value as a forecast. The random forest algorithm is random by design, so we take the
average of 100 runs to measure the out-of-sample R2.

because of the inherent randomization, random forests are resilient to
overfitting in a wide variety of circumstances. Figure 4, panels C and D, shows
that the performance of the model is increasing in model complexity up until a
depth of seven.

12
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The last hyperparameter we have to choose is the fraction of the sample used
to train each tree. For example, if that fraction is set to 1%, we would first take
a 1% random subsample without replacement as the training sample for each
decision tree. We then repeat the process for each remaining tree. Figure 4,
panels E and F, show the relationship between the fraction of the sample used
to train each tree and the out-of-sample R2 in 1986, the year we use for cross-
validation. The performance is first increasing in the fraction size and then
decreasing.

While random forest regressions are nonparametric, we can interpret them
using partial dependence plots (PDPs). PDPs explain how features influence
the predictions. They display the average marginal effect on the forecast for
each value of variable xi . PDPs show the value the model predicts on average
when each data instance has a fixed value for that feature. While a disadvantage
is that the averages calculated for the partial dependence plot may include very
unlikely data points, we include confidence intervals in the figures to address
the uncertainty. Formally PDPs are defined as

f̂xs (xs)=
1

n

n∑
i=1

f̂ (xs,x
(i)
c )≈Exc

[
f̂ (xs,xc)

]
, (5)

where xs is the variable of interest, and xi
c is a vector representing realizations

of the other variables. We show examples of PDPs in Figure 1, panels A and
B. The technique also can be applied to explain the joint effect of variables, as
illustrated in Figure 5.

We train the random forest model using data from the most recent year for the
quarterly earnings forecasts and 1-year-ahead forecast. We forecast earnings
in the following periods using only the information available at the current
time. For the 2-year-ahead predictions, we train the model using data from
the two most recent years because we do not have enough observations when
using a 12-month window to train the model.14 The forecasts are therefore
out-of-sample by design. The resultant forecasting regression is

Et [epsi,t+τ ]=RF[Fundamentalsi,t ,Macrot ,AFi,t ]. (6)

where RF denotes the random forest model using data from the most recent
periods. Fundamentalsi,t , Macrot , and AFi,t denote firm i’s fundamental
variables, macroeconomic variables, and analysts’ earnings forecasts respec-
tively. The earnings per share of firm i in quarter t +τ (τ =1 to 3) or year
t +τ (τ =1 to 2) is epsi,t+τ . We focus on five forecast horizons, including one
quarter, two quarters, three quarters, 1 year, and 2 years, because analysts’
forecasts for other horizons have significantly fewer observations. As analysts

14 Our results remain similar when using longer windows to train the models.

13
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Figure 5
EPS as a nonlinear function of stock price and past EPS
The figure plots the partial dependence plot of one-quarter-ahead realized EPS on past EPS and stock price.
The partial dependence plot is calculated from a random forest regression of EPS on the variables mentioned in
Section 2.2. The random forest regression for the figure uses 2,000 trees and a minimum node size of one. The
data start in 1986 and end in 2019.

make earnings forecasts every month, we construct our statistically optimal
benchmark monthly.15

2.2 Variables used for earnings forecasts
We consider an extensive collection of public signals available at each
point in time, summarized into three categories: firm-specific variables,
macroeconomic variables, and analysts’ earnings forecasts.

2.2.1 Firm fundamentals. We consider firm fundamental variables related
to future earnings.

1. Realized earnings from the last period. Earnings data have been
obtained from /I/B/E/S

2. Monthly stock prices and returns from CRSP

15 To minimize the impact of outliers within the model, we winsorize the forecasting variables at the 1% level
and standardize them following the recommended guidelines in the literature (Hastie, Tibshirani, and Friedman
2001).
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3. Sixty-seven financial ratios, such as the book-to-market ratio and
dividend yields, obtained from the Financial Ratios Suite by Wharton
Research Data Services16

2.2.2 Macroeconomic variables. We consider several macroeconomic vari-
ables that can affect firms’ earnings. We obtain these from the real-time data
set provided by the Federal Reserve Bank of Philadelphia.

1. Consumption growth, defined as the log difference of consumption in
goods and services

2. GDP growth, defined as the log difference of real GDP

3. Growth of industrial production, defined as the log difference of
Industrial Production Index (IPT)

4. Unemployment rate

2.2.3 Analyst forecasts. Analysts’ forecasts at time t for firm i’s earnings at
fiscal end period t +1 can be decomposed into public and private signals:17

AF t+1
i,t =

J∑
j=1

βjXj,i,t +
K∑

k=1

γkPk,i,t +Bi,t , (7)

where Xj,i,t , with j ∈1,...,J , represent the J public signals known at time
t about firm i; Pk,i,t , with k∈1,...,K are K private signals about firm i at
time t ; and Bi,t represents the analysts’ earnings forecasts bias generated by
expectation errors or incentive problems for firm i at time t . Our machine
learning algorithm is designed to use the private signals optimally in analysts’
forecasts, while correcting for their biases.

Diether, Malloy, and Scherbina (2002) point out that mistakes occur when
matching the I/B/E/S unadjusted actual file (actual realized earnings) with the
I/B/E/S unadjusted summary file (analysts’ forecasts) because stock splits may
occur between the earnings forecast day and the actual earnings announcement
day. In these cases, the estimates and the realized EPS value are based on
different numbers of shares outstanding. To address this issue, we use the
cumulative adjustment factors from the CRSP monthly stock file to adjust the
forecast and the actual EPS on the same share basis.18

16 See Internet Appendix Section A2 for details of the variables’ definitions and Internet Appendix Section A3 for
more information on how we merge these databases.

17 See Hughes, Liu, and Su (2008) and So (2013), among others.

18 We do not use the adjusted summary files because of rounding errors when I/B/E/S adjusts the share splits for
forecasts and actual earnings (Diether, Malloy, and Scherbina 2002).
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2.3 Term structure of real-time biases
The I/B/E/S database provides different forecast periods indicated by FPI for
analysts’ earnings forecasts.19 The span of the earnings forecast periods is one
quarter to 5 years. The I/B/E/S database also provides forecasts of long-term
earnings growth, defined as the expected annual increase in operating earnings
over the company’s next cycle ranging from three to 5 years (Bordalo et al.,
2019). At each month t , we measure the biases in investor expectations as the
differences between the analysts’ forecast and the machine learning forecast,
scaled by the closing stock price from the most recent month:

Biased_Expectationt+h
i,t =

Analyst_Forecastst+h
i,t −ML_Forecastt+h

i,t

Pricei,t−1
(8)

in which subscript i denotes firm, and t indicates the date when earnings
forecasts are made. The superscript t +h represents the forecasting period.

3. Hypotheses

In this section we lay out our main hypotheses.

3.1 Biased expectations and the cross-section of stock returns
If indeed, our machine learning forecasts provide the statistically optimal
unbiased benchmark for earnings expectations, but investors are affected by
(biased) analysts’ forecasts, we should observe that the stocks with optimistic
earnings forecasts will earn low future returns. That is, overly optimistic
earnings forecasts are associated with stock overpricing. Our first hypothesis
is, therefore:

Hypothesis 1. Stocks with more optimistic earning forecasts earn lower
returns in the subsequent periods.

3.2 Biased expectations and market timing
Bordalo et al. (2019) and Bouchaud et al. (2019) show that investors exhibit
biases when using current and past earnings information to issue forecasts
for the future. In addition, Baker and Wurgler (2013) argue that corporate
managers have more information about their firms than investors have and can
use that informational advantage. Hence, managers could take advantage of
investors’ expectation biases.

We, therefore, conjecture that managers can identify when investors
overestimate or underestimate firms’ future cash flows and that managers’

19 For example, the FPI of 1 corresponds to the 1-year-ahead earnings forecasts.
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expectations will align more closely to our statistically optimal benchmark.20

For example, managers may issue more stock when investors’ expectations
are higher than their own, that is engage in market timing (Baker and Wurgler
2002). Therefore, our second hypothesis is:

Hypothesis 2. Firms with more optimistic analysts’ forecasts relative to the
statistically optimal benchmark issue more stocks in the subsequent periods.

4. Empirical Findings

4.1 Earnings forecasts via machine learning
Table 2 compares the properties of analysts’ earnings forecasts with the
statistically optimal forecasts estimated using our machine learning algorithm
(random forests).

We find that for forecasts at all horizons, analysts make overoptimistic
forecasts on average. The realized analysts’ forecasts errors, defined as the
difference between the analysts’ forecasts and the realized value, increase in
the forecast horizon, ranging from 0.028 to 0.384 on average. All of these
are statistically significantly different from zero. In sharp contrast, the time-
series averages of the differences between the machine-learning forecast and
realized earnings are statistically indistinguishable from zero, with an average
absolute value of around 0.001 for the quarterly earnings forecasts, 0.027 for
the 1-year-ahead forecast, and −0.004 for the 2-year-ahead forecast.

The mean squared errors of the machine learning forecast are smaller than
the analysts’ mean squared errors, demonstrating that our forecasts are more
accurate than the forecasts provided by analysts.

Figure 6, panels A and B, reports the feature importance for the 1-year-ahead
and one-quarter-ahead earnings forecasts, respectively. The unreported feature
importance results are similar for other forecast horizons. Analysts’ forecasts,
past realized earnings, and stock price are the most important variables, and
their normalized importance roughly equals 0.20, 0.15, and 0.10, respectively.
Other variables, such as return on capital employed (ROCE), return on equity
(ROE), and pretax profit margin (PTPM), also contain useful information for
future earnings.

We define the conditional expectation bias for every stock as the difference
between the analysts’ forecast and the machine-learning forecast, scaled by the
closing stock price in the most recent month, as consistent with the previous
literature (Engelberg, McLean, and Pontiff 2018). The second-to-last column
of Table 2 reports the time-series average of the real-time-biased expectations.
The average conditional earnings forecast bias is statistically different from

20 Baker and Wurgler (2013) provide a comprehensive review of how rational managers make firm policies in
response to mispricing caused by irrational investors.
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A B

Figure 6
Feature importance
The figure plots the time-series average of feature importance of the 10 most important variables for the one-
quarter-ahead earnings forecasts in panel A and for the 1-year-ahead in panel B. The feature importance for each
variable is the normalized sum of the reduced mean squared error decrease when splitting on that variable using
the method in Nembrini, König, and Wright (2018). The feature importance of each variable is normalized so
that the features’ importance sums to one.

zero for all horizons. Furthermore, we find that analysts are more biased at
longer horizons.

Figure 7, panel A, shows the conditional aggregate bias, defined as the
average of the individual stocks’ expectations. We consider five different
forecast horizons and consider the possibility that the aggregate bias is higher
during historical bubbles. We find clear spikes during the internet bubble of
the early 2000s (Griffin et al. 2011) and in the financial crisis. For comparison,
Figure 7, panel B, displays the average realized bias. Both the realized and the
conditional bias show similar patterns, albeit with different magnitudes, and
both figures show spikes during the internet bubble and the financial crisis.

4.2 Conditional bias and the cross-section of stock returns
We have demonstrated above that analysts are, on average, overoptimistic
relative to the machine-learning benchmark and their estimates get more
precise when predicting at shorter horizons. If market participants’ beliefs
align closely with analysts’ earnings expectations, then we should observe
negative return predictability. Stocks with a high conditional earnings forecast
bias should earn lower returns than stocks with a lower conditional bias.21

We conduct monthly cross-sectional predictive regressions (following Fama
and MacBeth 1973) of stock returns on the conditional bias from the previous
month, and we report the time-series average of the slope coefficients. Analysts
make forecasts on firms’ cash flows at multiple horizons; hence we have many
conditional biases at every point in time for each firm. For each firm, we use the

21 We note that, if market participants are using the statistically optimal benchmark and do not follow analyst
expectations, we should not find cross-sectional predictability. We document the predictability.
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A B

Figure 7
Average bias of analysts’ earnings expectations
The figure plots the average conditional bias of analysts’ earnings expectations, which is measured as the average
of the bias of expectations of individual firms. We trim the data at the 1% level each period before taking the
average. In panel A the bias is calculated as the difference between analysts’ earnings forecast and the machine
learning forecast, scaled by the stock price from the most recent period. In panel B the bias is calculated as bias is
calculated as the difference between analysts’ earnings forecast and the realized value, scaled by the stock price
from the most recent period. To ensure the annual earnings forecasts have the same scale as quarterly forecasts,
we divide annual forecasts by four.

average of the conditional biases across the multiple horizons as the predictor.22

For a robustness check, we define the bias score as the arithmetic average of
the percentile rankings on each of the five conditional bias measures. We then
run a separate predictive regression for this bias score.

Table 3 shows the regression results. The first column in each panel of
Table 3 reports the regression without control variables. We find that both the
conditional bias and the bias score are associated with negative cross-sectional
stock return predictability. The coefficient on the conditional bias is −0.054
with a t-statistic of −3.94. The coefficient on the bias score is also significantly
negative with a t-statistic of −4.47. The R2s for both regressions have values
around 0.01.

The second column in each panel of Table 3 reports the regressions with
control variables, including size, book-to-market ratio, short-term reversal,
medium-term momentum, return volatility, share turnover, idiosyncratic
volatility, and investment. These variables have been shown to predict
stock returns with significant efficacy (Green, Hand, and Zhang 2017;
Freyberger, Neuhierl, and Weber 2020; Gu, Kelly, and Xiu 2020). We find
that the coefficients on both the conditional bias and the bias score remain
statistically significant after controlling for those variables. We report the
individual conditional bias results in Internet Appendix Section A5: the two-
quarters, three-quarters, and 2-year-ahead earnings forecast biases generate

22 We require at least two non-missing observations of conditional biases across the multiple horizons to measure
the average of conditional biases.
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Table 3
Fama-Macbeth regressions

A. Average BE B. BE score

(1) (2) (1) (2)

Bias −0.054 −0.064 −0.017 −0.028
t-stat −3.94 −5.08 −4.47 −11.27
ln(size) −0.079 −0.215
t-stat −2.22 −6.42
ln(beme) 0.091 0.178
t-stat 1.58 3.14
Ret1 −2.818 −2.987
t-stat −6.72 −7.12
Ret12_7 0.442 0.220
t-stat 2.88 1.52
IA −0.003 −0.003
t-stat −5.67 −5.88
IVOL −0.224 −0.198
t-stat −2.04 −1.80
Retvol 0.137 0.168
t-stat 1.19 1.47
Turnover −0.065 −0.046
t-stat −1.46 −1.03
Intercept 1.022 2.320 1.865 5.362
t-stat 3.64 4.41 7.89 11.35
R2 (%) 0.780 5.680 1.242 5.756

This table reports the Fama-Macbeth cross-sectional regressions of monthly stocks’ returns (in percent) on the
conditional earnings forecast bias. “Average BE” denotes the average of the conditional biases, defined as the
difference between analysts’ forecasts and the machine learning forecasts scaled by the closing stock price from
the most recent month, at different forecast horizons. “BE score” denotes the arithmetic average of the percentile
rankings on each of the five conditional biases at different forecast horizons. We multiply the coefficient on the
bias score by 100 to make it easier to compare. Columns 1 and 2 report the regression results with and without
control variables, respectively. The control variables include the logarithm of firm size (ln(size)), the logarithm
of book-to-market ratio (ln(beme)), the short-term reversal (Ret_1), the medium-term momentum (Ret12_7), the
investment-to-asset (IA), the idiosyncratic volatility (IVOL), the return volatility (Retvol), and the share turnover
(Turnover). We report the time-series average of slope coefficients associated with Fama-Macbeth t-statistics.
The sample period is 1986 to 2019.

significant negative return predictability.23 Moreover, conditional biases’
return predictability remains consistent when we either scale conditional biases
with total assets per share from the most recent fiscal period or drop stocks
whose prices are lower than $5. We report these and further robustness checks
in Internet Appendix Section A6.

Table 4 reports the correlations between the bias measures and the control
variables. We find that the conditional bias and the bias score are highly
positively correlated. Moreover, the conditional bias is negatively correlated
with size and momentum. Further, the conditional bias is positively correlated
with the book-to-market ratio, idiosyncratic volatility, and return volatility.
Accordingly, stocks with a smaller size, lower past cumulative returns, and a
higher book-to-market ratio, idiosyncratic volatility, and return volatility, tend
to have more overoptimistic expectations.

23 We find that the forecast bias at the one-quarter and 1-year-horizon does not predict stock returns significantly.
The lack of return predictability is consistent with analysts predicting better for those horizons and arguably with
analysts exercising more effort toward generating the one-quarter and 1-year-ahead forecasts.
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Table 5
Portfolios sorted on conditional bias

Quintile 1 2 3 4 5 5-1

A. Average BE

Mean 1.32 0.98 0.79 0.47 −0.14 −1.46
t-stat 6.53 4.53 3.18 1.62 −0.35 −5.11
CAPM beta 0.90 0.97 1.09 1.22 1.46 0.56

B. BE score

Mean 1.14 0.93 0.79 0.60 −0.02 −1.16
t-stat 5.66 4.22 3.18 2.06 −0.05 −3.83
CAPM beta 0.90 0.99 1.10 1.21 1.51 0.61

This table reports the time-series average of returns (in percent) on value-weighted portfolios formed on the
conditional earnings forecast bias. Panel A looks at “Average BE,” defined as the average of conditional bias at
different forecast horizons. Panel B presents the sorts based on “BE score,” defined as the arithmetic average of
the percentile rankings on each of the five conditional biases at different forecast horizons. The sample period is
1986 to 2019.

Additionally, we show that the results from the cross-sectional return
regressions also hold in time-series regressions. We sort stocks into five quintile
portfolios based on the conditional bias. Table 5 reports the portfolio sorts. Two
interesting patterns emerge. First, the value-weighted returns decrease in the
conditional bias. A long-short portfolio of the extreme quintiles results in a
return spread of −1.46% per month (t-statistic = −5.11) for the average bias
and −1.16% per month (t-statistic = −3.83) for the bias score. Second, the
capital asset pricing model (CAPM) betas of these portfolios tend to increase
with higher biased expectations, a finding that is consistent with the results
of Antoniou, Doukas, and Subrahmanyam (2015) and Hong and Sraer (2016),
who show that high-beta stocks are more susceptible to speculative overpricing.

We further examine whether returns on this long-short strategy can be
explained by leading asset pricing models. Table 6, panel A, reports the results
of using the average conditional bias as the portfolio sorting variable. We
find that the long-short strategy has a significant CAPM alpha of −1.85%
per month, with a significantly positive market beta of 0.56. Columns 4
to 7 show the regression results with the Fama-French three-factor (Fama
and French 1993) and five-factor models (Fama and French 2015). Neither
model can explain the documented return spread. The alpha in the three-
factor model is −1.96% with a t-statistic of −8.64; the alpha in the five-factor
model is −1.54% with a t-statistic of −5.84. Table 6, panel B, reports the
long-short strategy using the bias score as the sorting variable, and we find
consistent results.24 Overall, we conclude that the return predictability of the
conditional bias appears in cross-sectional regressions and time-series tests
against common multifactor representations.

Moreover, we document that consistent with analysts walking down their
earnings forecast (on average), and hence their biases, there is an associated

24 We report the results of the long-short strategy based on individual conditional bias in Internet Appendix
Table A5. All strategies, except for the one using the 1-year-ahead bias, exhibit significant alpha.
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Table 6
Time-series tests with common asset pricing models

CAPM FF3 FF5

Coef (β) t-stat Coef (β) t-stat Coef (β) t-stat

A. Average BE

Intercept −1.85 −7.18 −1.96 −8.64 −1.54 −5.84
Mkt_RF 0.56 7.53 0.53 7.86 0.38 5.28
SMB 0.80 7.06 0.61 5.17
HML 0.58 5.25 0.95 7.12
RMW −0.68 −4.10
CMA −0.53 −1.93

B. BE score

Intercept −1.58 −5.76 −1.69 −6.91 −1.17 −4.49
Mkt_RF 0.61 7.63 0.56 7.45 0.39 5.27
SMB 0.88 8.17 0.62 5.27
HML 0.56 4.29 0.97 7.05
RMW −0.91 −5.15
CMA −0.51 −1.90

This table reports the regression of stock returns (in percent) on the long-short portfolio sorted with the
conditional earnings forecast bias, on the CAPM, the Fama-French three-factor model (FF3), and the Fama-
French five-factor model (FF5). Panel A looks at average conditional bias at different forecast horizons. Panel
B presents the sorts based on “BE score,” defined as the arithmetic average of the percentile rankings on each of
the five conditional biases at different forecast horizons. The sample period is 1986 to 2019. The t-statistics are
adjusted by the heteroscedasticity robust standard errors White (1980).

decline in magnitude in the realized returns of the long-short portfolio
formed on the conditional earnings forecast bias: the majority of the return
is concentrated in the first months and the magnitude decreases quickly
afterward. Figure 8 depicts this result.25

Since the magnitude and significance of the results seem large by usual
standards, we conduct a placebo test in Internet Appendix Section A8 to shed
further light on these results and place them in context. In particular, we
replace the machine learning forecast with the future realized value and then
compute the conditional bias. The implied returns of these forward-looking
(and thus nontradable) strategies are many times larger in magnitude than the
ones implied by our (tradable) machine-learning forecasts. Finally, we show
in Internet Appendix Section A10 that the average long-short return earned by
sorting on the ML-implied earnings forecast bias is remarkably stable across
time horizons (albeit with increased volatility during the recent financial crisis)
in contrast with the marked decline in return predictability from the linear
models in the existing literature.26 The stability is also apparent from Figure 9,
which displays the cumulative performance of the return of a value-weighted
long-short portfolio, that is short on firms with the highest conditional bias and
long on firms with the lowest.

25 We present evidence of downward revision in analysts’ earnings forecasts in Internet Appendix Section A7.

26 We report earnings forecast errors of the linear model in Internet Appendix Section A9 and show that linear
forecasts have larger forecast errors than analysts’ forecasts and random forest forecasts.
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Figure 8
Average conditional bias portfolio returns for different horizons
This figure plots the average monthly return of a value-weighted long-short portfolio that is short in firms with
the highest conditional earnings forecast bias (using ML forecasts as a benchmark), and long on the firms with
the lowest conditional bias, for different horizons. The shaded region corresponds to a 99% confidence interval.
The sample period is 1986 to 2019.

Figure 9
Cumulative Performance of the Portfolios Sorted on Conditional Bias
This figure plots the (log) cumulative performance of the return of a value-weighted long-short portfolio that is
short on firms with the highest conditional earnings forecast bias and long on the firms with the lowest. The figure
also plots the market return for comparison. The market return data come from Kenneth R. French’s website.
The sample period is 1986 to 2019.

4.3 Conditional bias and market anomalies
In two recent studies, Engelberg, McLean, and Pontiff (2018) and Kozak,
Nagel, and Santosh (2018) compare analysts’ earnings forecasts to the realized
values. Both studies find that analysts tend to have overoptimistic expectations
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for stocks in the short side of anomalies, which earn lower returns. However,
as previously mentioned, the realized earnings value cannot be combined in
real-time with analyst forecasts to construct a real-time earnings forecast bias
measure that in turn is used to sort portfolios on. To shed light on this issue,
we use our conditional bias measure to examine whether analysts have more
conditional overoptimistic expectations on anomaly shorts.

We focus on the 27 significant and robust anomalies considered in Hou,
Xue, and Zhang (2015). We examine these anomalies for two reasons: (1) they
cover the most prevalent anomalies, including momentum, value, investment,
profitability, intangibles, as well as trading frictions, and (2) they have been
widely used to test leading asset pricing models (Hou et al. 2015; Stambaugh
and Yuan 2017; Daniel, Hirshleifer, and Sun 2019).27 We follow the literature
and sort stocks into 10 portfolios based on the decile of each anomaly variable.
We use the extreme deciles as the long and the short leg of the anomaly
strategies.

Having obtained ranks of stocks based on each anomaly variable, we then
combine these ranks to construct an anomaly score defined as the equal-
weighted average of the rank scores of the 27 anomaly variables. To calculate
the score, for each month, we assign decile ranks to each stock based on
the 27 anomaly variables.28 The anomaly score for an individual stock is
calculated as the arithmetic average of its ranking on each of the 27 anomalies.
Next, we break stocks into 10 decile portfolios based on this anomaly score.
The long (short) leg is defined as the stocks in the top (bottom) decile
portfolio.

Table 7, panel A, presents the average anomaly score for portfolios sorted
independently on the conditional earnings forecast bias and the anomaly
score.29 For each anomaly decile portfolio, the anomaly score ranges from
3.31 to 6.82, with the highest (lowest) score indicating the long (short) leg
of the anomaly strategy. Table 7, panel B, reports the average number of stocks
in each of the 10×5 portfolios. On average, we have around 50 stocks every
month in each portfolio. Moreover, the average number of stocks per month for
the portfolio with the highest conditional biases and the lowest anomaly score
is 97, which is more than double the average number of stocks per month for
the portfolio with both the lowest conditional biases and the lowest anomaly

27 Table A16 in Internet Appendix Section A11 lists the anomalies associated with their academic publications. The
sample period spans July 1965 to December 2019, depending on data availability. We follow the descriptions
detailed in Hou, Xue, and Zhang (2015) to construct the anomaly variables. The last column in Table A16 reports
the monthly average returns (in percent) of the long-short anomaly portfolios.

28 When measuring the anomaly score, we exclude stocks for which we have fewer than 10 rank scores, which
occurs when not all the data inputs on the characteristics are available.

29 For the results shown in Tables 7 and 8, we use the average of the conditional biases at different forecast horizons
to sort the portfolios. The results remain robust when we use the arithmetic average of the percentile rankings
on each of the five conditional bias measures.
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Table 7
Conditional bias and anomalies

Anomaly decile

BE quintile S 2 3 4 5 6 7 8 9 L L-S

A. Anomaly score

1 3.35 3.97 4.37 4.70 4.99 5.26 5.54 5.85 6.22 6.81 3.46
2 3.34 3.98 4.37 4.70 4.99 5.26 5.54 5.85 6.23 6.82 3.47
3 3.31 3.97 4.37 4.69 4.99 5.26 5.54 5.85 6.22 6.83 3.52
4 3.24 3.96 4.37 4.69 4.99 5.25 5.54 5.85 6.23 6.87 3.62
5 3.21 3.95 4.37 4.69 4.99 5.26 5.53 5.85 6.23 6.91 3.71
All stocks 3.31 3.97 4.37 4.70 4.99 5.26 5.54 5.85 6.23 6.82 3.51

B. Number of stocks

1 37 47 52 57 63 64 66 67 65 62
2 34 50 56 62 64 65 66 67 62 54
3 51 59 61 62 60 59 58 58 56 54
4 73 65 60 57 55 52 52 52 53 58
5 97 70 60 53 49 48 46 48 51 60
All stocks 292 291 289 291 291 288 289 292 286 288

This table reports the conditional bias for portfolios formed by sorting independently on the average conditional
earnings forecast bias (BE) and the anomaly score, defined as the equal-weighted average of the decile ranking
on each of the 27 anomaly variables. Panel A looks at the time-series average of anomaly score of each portfolio.
Panel B looks at the number of stocks in each portfolio. The sample period is 1986 to 2019.

score (37 stocks). This implies that stocks with higher conditional biases tend
to be anomaly shorts, that is, overpriced stocks.

Table 8 presents the value-weighted returns of the portfolios formed by
sorting independently on the conditional earnings forecast bias and the
anomaly score. The long-short portfolio using the anomaly score earns 1.36%
per month with a t-statistic of 5.74. While the long-short anomaly strategy
in each quintile sort on the conditional bias has a similar anomaly score
(around 3.6), we find that anomalies’ payoffs increase when the conditional
bias increases. In the quintile group with the greatest conditional bias, the long-
short strategy based on anomaly score earns the highest returns (2.13% per
month with a t-statistic of 6.37). In contrast, the anomaly spread equals 0.60%
(with a t-statistic of 1.82) in the quintile group with the smallest conditional
bias. The difference in average returns between these two quintile portfolios
is significantly positive (1.52% per month with a t-statistic of 3.81). Further,
we find that the short leg portfolio return decreases from 1.06% per month to
−1.29% when we move from the first quintile of the conditional bias to the
fifth quintile. These findings are consistent with anomaly payoffs arising from
the overpricing of stocks with the most overoptimistic earnings expectations.30

Moreover, we document in Internet Appendix Section A12, that the effect of
the conditional bias is not subsumed by the anomaly score, as the results remain

30 Internet Appendix Table A17 presents alphas with respect to the Fama-French five-factor model for the portfolios
formed by sorting independently on the conditional bias and the anomaly score. We find that the alpha from the
long-short anomaly portfolio is larger and more significant across portfolios with a larger conditional bias. More
importantly, the anomaly alpha becomes insignificant for portfolios with the smallest bias.
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Table 8
Returns on portfolios formed on conditional bias and anomaly score

Anomaly decile

BE quintile S 2 3 4 5 6 7 8 9 L L-S

1 1.06 1.00 1.28 1.36 1.38 1.45 1.48 1.34 1.64 1.66 0.60
t-stat 2.73 3.21 4.84 5.40 5.43 6.25 6.90 6.60 7.91 7.09 1.82
2 0.29 0.76 0.99 1.06 0.94 0.90 1.10 1.02 1.33 1.38 1.09
t-stat 0.82 2.66 3.77 4.22 3.78 3.79 4.73 4.50 6.38 6.31 3.74
3 −0.16 0.40 0.64 0.60 0.68 1.11 0.92 1.02 1.21 1.06 1.23
t-stat −0.43 1.24 2.23 2.14 2.52 4.13 3.65 4.06 4.72 4.06 4.40
4 −0.73 −0.31 0.51 0.58 0.30 0.64 0.74 0.80 1.04 0.81 1.54
t-stat −1.75 −0.79 1.53 1.59 0.86 1.87 2.33 2.66 3.54 2.58 4.78
5 −1.29 −0.81 −0.41 −0.01 −0.06 0.27 0.25 0.29 0.90 0.84 2.13
t-stat −2.62 −1.63 −0.97 −0.03 −0.14 0.61 0.59 0.69 2.04 1.99 6.37
5-1 −2.35 −1.81 −1.69 −1.38 −1.44 −1.18 −1.23 −1.05 −0.74 −0.83 1.52
t-stat −6.04 −4.75 −5.02 −3.66 −3.84 −3.12 −3.36 −2.98 −1.92 −2.37 3.81

All stocks S 2 3 4 5 6 7 8 9 L L-S

Return −0.06 0.46 0.81 0.95 0.87 1.02 1.04 1.05 1.31 1.30 1.36
t-stat −0.17 1.56 3.22 3.99 3.66 4.52 4.94 5.11 6.62 5.94 5.74
BE 0.009 0.007 0.005 0.004 0.004 0.004 0.004 0.003 0.004 0.004 −0.005
t-stat 5.83 5.24 6.19 6.05 5.59 5.76 6.02 5.73 5.02 4.71 −4.81

This table reports the time-series average of value-weighted returns on portfolios formed by sorting
independently on the average conditional earnings forecast bias (BE) and the anomaly score, defined as the
equal-weighted average of the decile ranking on each of the 27 anomaly variables. The last two rows report the
conditional bias (with Newey-West t-statistic) of the 10 decile portfolios formed on the anomaly score.

similar when using the orthogonal component of our conditional bias measure
relative to the anomaly score.

The last two rows in Table 8 report the conditional biases for each of the
10 decile portfolios sorted on the anomaly score. We find that the short-
leg portfolio is comprised of stocks with more overoptimistic expectations,
suggestive of overpricing. Moreover, the difference in conditional earnings
forecast biases between the anomaly-short and anomaly-long portfolio is 0.005
and significant at the 1% level (with a t-statistic of 4.81).31

4.4 Conditional bias and firms’ financing decisions
Managers have more information about their firm than most investors have, due
to the access managers have to private information as well as available public
signals. Baker and Wurgler (2013) argue that managers use their additional
information to the advantage of existing shareholders and engage in market
timing (Baker and Wurgler 2002). Following Hypothesis 2, we conjecture
that managers issue more equity whenever analysts’ expectations are more
optimistic than the statistically optimal machine learning benchmark.

We follow Fama and French (2008) to measure firm i’s net stock issuances
at the fiscal year-end t as the natural logarithm of the ratio of the split-
adjusted shares outstanding at the fiscal year-end t to the split-adjusted shares

31 We document in the Internet Appendix Section A12 that the relationship between the conditional bias and the
anomaly score is not present out-of-sample when using the earnings forecast bias implied by linear models.
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Table 9
Net stock issuances and conditional biases

A. Net stock issuances of portfolios formed on BE

Quintile 1 2 3 4 5 5-1

Average BE 0.006 0.012 0.017 0.028 0.065 0.059
t-stat 1.16 1.54 2.52 4.13 4.86 4.24
BE score 0.006 0.011 0.018 0.030 0.063 0.057
t-stat 0.99 1.50 3.37 5.58 4.32 3.69

B. Fama-MacBeth regressions

A. Average BE B. BE score
(1) (2) (1) (2)

Bias 0.442 0.355 0.072 0.039
t-stat 2.24 1.94 4.57 2.14
ln(size) −0.503 −0.484
t-stat −2.91 −2.26
ln(beme) −2.042 −2.013
t-stat −7.00 −6.41
EBITDA −0.109 −0.109
t-stat −4.96 −4.91
Intercept 0.035 0.095 0.005 0.079
t-stat 8.52 3.43 0.57 1.97
R2 (%) 2.888 8.724 0.913 6.969

Panel A reports the time-series average of net stock issuances of value-weighted portfolios sorted on the
conditional earnings forecast bias. “Average BE” refers to the average of the conditional bias at different forecast
horizons. “BE score” refers to the arithmetic average of the percentile rankings on each of the five conditional
biases at different forecast horizons. Panel B reports the Fama-MacBeth regressions of firms’ net stock issuances
on the conditional bias and control variables include the logarithm of firm size (ln(size)), the logarithm of
book-to-market ratio (ln(beme)), and earnings before interest, taxes, and depreciation divided by total assets
(EBITDA). We multiply the coefficient on the bias score by 100 to make it easier to compare. The sample period
is 1986 to 2019. We report the time-series average of slope coefficients associated with Newey-West t-statistics.

outstanding at the fiscal year-end t −1,

NSIi,t = log(
Split_adjusted_sharesi,t

Split_adjusted_sharesi,t−1
). (9)

Because the net stock issuances are measured annually, we match the average
of the conditional earnings forecast bias in the past 12 months to the fiscal year
ending at time t .32 Table 9, panel A, reports the value-weighted average net
stock issuance for stocks sorted in portfolios according to the conditional bias
of analysts’ forecasts as measured relative to our machine-learning forecast.

The net stock issuances increase monotonically in the conditional bias.
Importantly, we find that firms in the quintile portfolio with the most optimistic
earnings expectations issue significantly more stocks than firms with the least
optimistic expectations. Managers of firms whose earnings forecasts are more
optimistic issue on average 6% more of total shares outstanding. The difference
is statistically significant at the 1% level.

32 Our results remain robust when matching the average of the conditional bias from the past 24-12 months to the
net stock issuances of the fiscal year ending at time t . We report this robustness check in Internet Appendix
Table A22.
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Table 9, panel B, reports the Fama-MacBeth regressions of firms’ net stock
issuances on the conditional earnings forecast bias. As in Baker and Wurgler
(2002) and Pontiff and Woodgate (2008), we control for firm size, the book-
to-market ratio, and earnings before interest, taxes, and depreciation divided
by total assets. Overall, our findings are consistent with the previous portfolio
sorts: managers of firms with larger conditional bias issue more stocks. We
also find that firms with smaller size, lower book-to-market ratios, and lower
profitabilities tend to issue more stocks, consistent with the results in Baker
and Wurgler (2002) and Pontiff and Woodgate (2008).

In Internet Appendix Section A14, we document that the predictability of net
stock issuances does not decline significantly in the post-2000 period relative
to the pre-2000 period. In contrast, we observe a significant decline in the
NSI predictability when using the linear earnings forecast bias as proposed
in So (2013). Interestingly, the linear forecast, free of forward-looking bias,
can predict both in- and out-of-sample net stock issuances. Internet Appendix
Section A14 also reports the average net stock issuances for portfolios sorted
independently on conditional bias and anomaly scores. Given the independent
sort on the anomaly score, we find that stocks in the anomaly short leg have
more net stock issuances than stocks in the long leg. In addition, within 9 of
10 anomaly deciles, we find a significantly positive difference in NSI between
stocks with the largest conditional earnings forecast bias and stocks with the
smallest conditional bias.

5. Conclusion

The pricing of assets relies significantly on the forecasts of associated cash
flows. Analysts’ earnings forecasts are often used as a measure of expectations,
despite the common knowledge that these forecasts are on average biased
upward: a structural misalignment obtains between these earnings forecasts and
their subsequent lower realizations. In this paper, we develop a novel machine
learning forecast algorithm that is statistically optimal, unbiased, and robust to
variable selection bias. We demonstrate that, in contrast to linear forecasts, our
new benchmark is effective out-of-sample.

This new measure is useful not only as an input to asset pricing applications
but also as an available real-time benchmark against which other forecasts
can be compared. We can therefore construct a real-time measure of analyst
earnings forecast biases both in the time series and the cross-section. We find
that these biases exhibit considerable variation in both dimensions. Further,
cross-sectional asset pricing sorts based on this real-time measure of analyst
biases show that stocks for which the earnings forecasts are the most upward-
(downward-) biased earn lower (higher) average returns going forward. This
finding indicates that analysts’ forecast errors may have an effect on asset
prices.
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In addition to these asset pricing results, our findings also have implications
for corporate finance. Managers of firms for which the earnings forecast is
most upward-biased issue more stocks. This finding indicates that managers
are at least partially aware of analyst biases or the associated influence on
asset prices. While we apply our machine learning approach to earnings, the
approach can be easily extended to other variables, such as real investment and
dividends.

Appendix A. Model

In this appendix, we present a tractable nonlinear model of earnings and earnings expectations
that illustrates some reasons linear forecasts are inferior to those provided by machine learning
techniques and analysts. In particular, a high variance of the relevant nonlinear effects causes the
linear models to behave poorly. The condensed version of this model is presented in the main paper
in Section 1. The model also features asset prices, so that it can be used to further understand our
return predictability results.

A.1 Economy
Consider the following setup. There are two periods in the economy. There is a measure 1 of assets
to be priced, indexed by i. The payoff yi of asset i is a random variable that is forecastable by a
combination of linear and nonlinear effects. In particular, the true payoff distribution follows:

ỹi =f (xi )+g(vi )+zi +wi + ε̃i , (A1)

where vi ,wi,xi ,and zi are variables measurable in the first period and distributed in the cross-
section as independent standard normal. f and g are measurable nonlinear functions, orthogonal
to the space of linear functions in xi and vi respectively. That is, f and g satisfy E[xf (x)]=
E[vg(v)]=0. This implies that the best linear approximation of the functions are constants given
by E[f (x)] and E[g(v)] respectively.33 We assume E[(f (x)−E[f (x))2]=var(f (x))≡σ 2

f x >1

and var(g(v))≡σ 2
gv , and assume that all second moments exist.

We further assume that analysts use f (xi ) and wi in their forecasts. However, they miss out
on the effects of zi and g(vi ), either because they are not aware of the forecasting power of
transformations of vi or because they use linear transformations of vi only. Furthermore, we assume
a high variance of f (xi ), which will result in analyst forecasts being more accurate than linear
forecasts, despite the linear forecast using all variables.

ỹ and ε̃i are random variables measurable in the second period. ε̃i is distributed as an
independent standard normal. We assume that agents have a large enough sample of these variables
from past observations so that there is no estimation error of the coefficients. Notice that (because
of the orthogonality assumption above) in a linear regression the true coefficients associated with
xi and vi are zero. For tractability, we assume that the shock to earnings is not priced and the
risk-free rate is equal to zero.

The reason our theoretical model includes nonlinear effects is that in our empirical specification,
we document substantial nonlinearities in the earnings process as a function of the explanatory
variables. For example, analysts’ forecasts are amongst the most important predictors, and Figure 1,
panel A, shows that EPS is a nonlinear function of analysts’ forecasts. Hence, the linear prediction
produces substantial errors, as shown in Figure 1, panel B. Figure 1, panels C and D, shows the

33 Examples of functions that satisfy the conditions are f (x)=xp , where p is an even positive integer or any
symmetric function around zero, where f (x)=f (−x).
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same problem arises when using past EPS, which is a key ingredient of linear forecasts, such as in
Frankel and Lee (1998) or So (2013).

As stated above, we assume that the shock to earnings is not priced and the risk-free rate is
equal to zero. Let m̃ be the stochastic discount factor (SDF), then Cov(m̃,ε̃i )=0 ∀i, and E[m̃]=1.

Define μi,j =E[ỹi |Fi,j ], that is, the conditional expectation of a representative agent when using
sigma algebra Fi,j to form the expectation. The following result is immediate from the definition
of conditional expectation:

Lemma 1. If Fi,j ⊆Fi,k then E[(ỹi −μi,k)2]≤E[(ỹi −μi,j )2].

Lemma 1 has two important implications. First, including more variables in an ideal estimator will
weakly decrease the error, since the estimator can always disregard the useless variables. For our
application, random forest regression automatically discards useless variables and incorporates the
information of useful ones. Given its flexibility and robustness, it will always benefit from adding
information, at least asymptotically.34

Second, if we include the conditional expectation, μi,j as a variable to use for prediction (e.g.,
analyst forecasts), in an optimal estimator, the error of the estimator must be at least as low as the
error when using the conditional expectation μi,j as a forecast, since the optimal estimator can
always ignore all of the information except for μi,j .

Naturally, if we include analysts’ expectations, information that appears in the public
information set, any optimal estimator will achieve an error no higher than analysts. Formally,
any conditional expectation is a function of observable variables, say E[ỹi |Fi,j ]=Gi,j (x,z,w) in
our setup, and observing Gi,j (x,z,w)=μi,j provides additional information and Lemma 1 applies.
In practice, we find that when adding analysts’ expectations, the squared error of the random forest
prediction is lower than that of analysts, whereas the squared error of the linear model is higher
than that of analysts.

Third, a predictor that is unconditionally biased, if it is not the conditional expectation, will
be conditionally biased, since the conditional expectation and the predictor will differ in some
information sets.

If all agents in the economy form expectations using the information set Fi,j , then the price
of asset i is Pi =μi,j and the expected return from the point of view of the agents is E[Ri |Fi,j ]=
E[ỹi |Fi,j ]

μi,j
=1.

The actual expectation of yi is given by μ∗
i =E[ỹi |F ∗

j ]=1+f (xi )+g(vi )+zi +wi . The estimator
may be unfeasible if the agents do not know the true functional form or cannot process all the
variables. The (actual) expected return is then given by

E[Ri ]=
μ∗

i

μi,j

. (A2)

Naturally, stocks with pessimistic (lower than optimal) predictions will have higher (realized)
returns and vice-versa.

We now consider three different ways of forming expectations. First, let us consider linear
forecasts: we assume that (1) agents have access to past realizations of the variables, (2) estimate
the linear model precisely, but (3) only include first-order terms. That is, they run a regression of
the form:

y =a+bxx+bvv+bzz+bww+u, (A3)

and estimate a,bx,bv,bz,bw . For simplicity, we assume that they get accurate coefficients (up
to specification) due to a large enough sample size: a =1+E[f (x)]+E[g(v)],bx =0,bv =0,bz =

34 Unfortunately, because of finite sample sizes, the addition of useless variables is not free. At every step each
decision tree chooses a finite number of variables, and if none of the variables provides information, the decision
tree will waste a split and predict the mean from the previous node. In practice, random forests are very robust to
adding useless features and can be modified to be more selective in the presence of very high-dimensional data.
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1,bw =10. Hence they form expectations equal to μl =E[y|linear model]=a+z+w=1+E[f (x)]+
E[g(v)]+z+w, where Ei [·] denotes a cross-sectional expectation. Notice that the resultant
conditional expectation is (cross-sectionally) unbiased:

Ei [μl]=Ei [a+z+w]=Ei [E[ỹ]]=1+E[f (x)]+E[g(v)], (A4)

where Ei [·] denotes a cross-sectional expectation. The linear model compensates for the lack of
linearity in x and v by adding the unconditional expectation of f (x) and g(v) to the intercept.

Second, let us consider analyst expectations: we assume that analysts form expectations using x,
v, and w exclusively, for example, because they can process only a certain amount of information.
They also have access to the correct functional form of x, but not v, to illustrate specification
uncertainty. Their resultant estimate is μa =E[y|analyst]=1+E[g(v)]+f (x)+w.

Third, we form expectations using a nonlinear function estimated by applying random forests
to the past sample. Because of their flexibility, random forests can approximate any functional
form, and (asymptotically) random forest are a consistent estimator of the conditional mean.35 For
simplicity, we consider the estimate to be μML =E[y|machine learning]=1+f (xi )+g(vi )+zi +wi ,
but notice that in practice there is a finite (although large) sample size, and the estimates are subject
to sampling error.

The (asymptotic) mean squared error is σ 2
f x +σ 2

gv +var(ε) for the linear model, var(z)+σ 2
gv +

var(ε) for analysts, and var(ε) for the machine learning forecast. We say that a forecast dominates
another forecast if the mean squared error of the first is smaller than the mean squared error of the
second. To match the empirical results, we assume σ 2

f x >var(z)=1. Hence, within the model, as
in our empirical findings, the machine learning forecast dominates the analyst’s forecast, which in
turn dominates the linear forecast.

We now assume that the economywide expectations of the agents coincide with analysts’
expectations. Generally speaking, assets with high bias with respect to the machine learning
forecast will get lower returns. Since the machine learning is a better forecast, and approximates
better the true conditional expectation, the returns will roughly follow:

E[Ri ]=
E[yi |machine learning]

E[yi |analyst]
, (A5)

and firms with overly optimistic forecasts with respect to the machine learning forecast will have
lower average returns.

A.2 Spurious in-sample linear predictability
Even though analysts’ earnings forecasts dominate the linear earnings forecasts, return
predictability may still arise from the conditional bias measured by the difference between the
analysts’ earnings forecasts and the linear earnings forecasts, in two situations.

First consider the case in which the linear forecast conditionally dominates the analysts’
forecast. For example, for assets with x =0 and z 	=0, the linear model will dominate the analysts’
forecast, and stocks with optimistic expectations will have lower returns. This is a consequence of
Lemma 1, as nonoptimal expectations can be conditionally biased.

Second, and more importantly, if the analysts’ forecast and the linear forecast have a different
loading on the variable z, and z induces a correlation between the payoff and the SDF, return
predictability may arise from the conditional bias measured by the difference between the analysts’
earnings forecasts and the linear earnings forecasts.

To illustrate the latter point formally, assume now that the SDF, M̃ , has E[M̃]=1, E[M̃ε̃]=0
and V ar(M̃)=1.

35 This is commonly referred to in the literature as random forest being universal approximators. We confirm in
simulations that it applies in our setup.
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The payoff of asset i follows

ỹi =1+f (xi )+g(vi )+zi +wi +h(zi )f̃ + ε̃i , (A6)

where h :R→ (0,1) is an increasing strictly positive function, E[f̃ ]=0, V ar(f̃ )=1 and
Corr(f̃ ,M̃)=Cov(f̃ ,M̃)=−a,a>0.36

We assume that regardless of the way agents form expectations, they are aware of the covariance
with the SDF. The (conditional) covariance is then given by

Cov(ỹ,M̃)=h(zi )Cov(f̃ ,M̃)=−h(zi )a. (A7)

Hence, firms with higher zi have higher returns, as the price is given by

Price(yi |Fi,j )=E[M̃ỹ|Fi,j ]=E[ỹ|Fi,j ]−h(zi )a =μi,j −h(zi )a, (A8)

and the expected return is given by

E[Ri ]=
μ∗

i

μi,j −h(zi )a
. (A9)

Notice that a simple portfolio sort using z will produce a spread in returns, since firms with
lower z have lower returns. Notice as well that the difference between the analysts’ forecast and
the linear forecast is given by

E[ỹ|analyst]−E[ỹ|linear model]= (A10)

1+E[g(v)]+f (x)+w−(1+E[g(v)]+E[f (x)]+z+w)= (A11)

f (x)−E[f (x)]–z. (A12)

In the model (and in the empirical results), analyst earnings estimates are better than linear
forecasts. Nevertheless, the bias in the linear earnings forecast appears to be correlated with
differences in expected returns. If both expected returns and biases are correlated with a common
variable z, then this return predictability can appear even when economically these biases in and
of themselves are not the driver of the return predictability.37

To make matters worse, if the variable driving the return predictability only works in-
sample, then the out-of-sample linear model’s return predictability will decrease substantially or
disappear.38 In our empirical specification, the linear model return predictability disappears after
the 2000s.

In contrast, for the machine learning model the results from the previous section apply and
assets with high bias with respect to the machine learning forecast get lower returns:

E[Ri ]=
E[yi |machine learning]

E[yi |analyst]−h(zi )
. (A13)

Consistent with the empirical results, the machine-learning return predictability remains stable.

36 We assume a is small enough that none of the prices is zero.

37 In the model, x and z are independent cross-sectionally, and x is unrelated to returns, but firms with higher z will
have higher returns, so a sort in z will produce differences in expected returns mechanically.

38 In our model it would correspond to a change in the covariance with the SDF to zero. More generally, it can be
caused by changes in market efficiency.
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