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Abstract
Excess hazard modelling is one of the main tools
in population-based cancer survival research. Indeed,
this setting allows for direct modelling of the survival
due to cancer even in the absence of reliable infor-
mation on the cause of death, which is common in
population-based cancer epidemiology studies. We pro-
pose a unifying link-based additive modelling frame-
work for the excess hazard that allows for the inclusion
of many types of covariate effects, including spatial and
time-dependent effects, using any type of smoother, such
as thin plate, cubic splines, tensor products and Markov
random fields. In addition, this framework accounts for
all types of censoring as well as left truncation. Esti-
mation is conducted by using an efficient and stable
penalized likelihood-based algorithm whose empirical
performance is evaluated through extensive simula-
tion studies. Some theoretical and asymptotic results
are discussed. Two case studies are presented using
population-based cancer data from patients diagnosed
with breast (female), colon and lung cancers in Eng-
land. The results support the presence of non-linear
and time-dependent effects as well as spatial variation.
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The proposed approach is available in the R package
GJRM.
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1 INTRODUCTION

One of the aims of population cancer epidemiology consists of quantifying the survival due to
cancer and to describe inequalities in cancer survival outcomes. This includes comparisons of
cancer survival between different subgroups of the populations, such as those defined by different
socio-economic or geographical factors. Cancer survival is typically used as a proxy for the over-
all effectiveness of the healthcare system in the treatment and management of cancer (Coleman,
2014), and it is increasingly used to formulate cancer control strategies (Department of Health,
2011). Data for cancer research are available from population-based cancer registries which col-
lect a standard set of information for every cancer registration, covering patient demographics,
tumour characteristics and type of treatment. Many efforts have been made in recent years to
augment cancer registration data with relevant clinical information contained in other electronic
health databases. Such enriched data create new opportunities for more complex cancer research
questions to be investigated.

There are three main frameworks for analysing survival data. The first is the overall survival
framework, where all-cause mortality is studied. This quantity is not of interest in cancer survival
studies because it does not quantify the survival due to cancer. The second is the cause-specific
framework, where information on the different causes of death is available, for example in the
death certificates. This addresses the previous issue as it indeed accounts for the different causes
of mortality in the population. Unfortunately, death certificates are unreliable in virtually any
country in the world, at least at the population level. The third is the relative survival framework,
which can be formulated in the absence of information on the cause of death. In this frame-
work, the idea is to separate the hazard associated with other causes of death from that associated
with cancer. This is done by assuming an additive decomposition of the individual hazard func-
tion, h(⋅), into two parts: the hazard associated with other causes of death, hO(⋅), and the hazard
associated with cancer, hE(⋅) (Estève et al., 1990):

h(t|x) = hO(age + t) + hE(t|x), (1)

where ‘age’ is the age at diagnosis of cancer and x represents the available patient characteris-
tics. The hazard associated with other causes of death, hO(age + t), is typically replaced by the
population hazard rate hP(age + t|w), which is obtained from life tables based on available char-
acteristics denoted by the generic vector w ⊂ x which can possibly include, in addition to age at
death or censoring (age + t), gender and calendar year, socio-economic status, ethnicity or region
of residence (Rachet et al., 2015). More specifically, hO(age + t) represents the true theoretical
hazard function associated with other causes of death and as such it is unknown in practice. For
this reason, it is approximated by hP(age + t|w), which can instead be extracted from national life
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tables as mentioned above. As an aside, note that the true theoretical hazard function hO(age + t)
may depend on x, or on a subset of x, or even on covariates that are not recorded.

The hazard associated with cancer, hE(t|x), is often referred to as the excess hazard. The
excess hazard function is typically modelled using the available patient characteristics, denoted
by x which can, for instance, incorporate continuous and categorical variables in our frame-
work. Several approaches for estimating the excess hazard have been explored in the literature,
such as non-parametric methods, which aim at estimating the cumulative excess hazard (Perme
et al., 2012) and the net survival (Pavlič & Pohar-Perme, 2019; Pohar-Perme et al., 2009, 2016),
parametric methods based on flexibly modelling the baseline excess hazard or cumulative haz-
ard using splines (Charvat et al., 2016; Cramb et al., 2016; Fauvernier et al., 2019; Lambert &
Royston, 2009; Quaresma et al., 2019) and modelling the baseline excess hazard function using
flexible parametric distributions (Rubio et al., 2019). Most approaches assume a proportional
hazards (PH) structure (with the option of adding time-dependent effects as originally proposed
by Cox (1972), which is a convenient way of bypassing the proportionality assumed by the PH
setting), with the exception of Rubio et al. (2019), who adopt a general hazard structure that con-
tains the PH, accelerated hazards and the accelerated failure time (AFT) models as particular
cases.

We propose a flexible parametric modelling framework. In this respect, it should be noted
that non-parametric and parametric approaches are generally viewed as complementary by prac-
titioners, rather than mutually exclusive. This view is strengthened by the fact that they are not
directly comparable. The interpretation for non-parametric models is, in fact, different than for
parametric models. This includes but is not limited to the fact that parametric approaches can
account for covariates directly while non-parametric approaches cannot (Perme et al., 2012). Fur-
ther, as mentioned above the available approaches do not allow one to model the excess hazard
function, as they represent estimates of the cumulative hazard or net survival (Perme et al., 2012).
Instead, parametric approaches allow one to estimate and plot the excess hazard function as this
function is explicitly available (Rubio et al., 2019).

Finally, with regard to our choice of taking a parametric approach, we note that Cox has
encouraged the broader use of parametric survival models for empirical modelling (Hjort, 1992;
Reid, 1994). This is because they facilitate model estimation and comparison, easily allow for
the calculation and visualization of, for instance, the estimated baseline hazard and survival
functions, and allow one to calculate many quantities of interest and their related intervals (e.g.
time-dependent hazard or odds ratios). Moreover, we overcome the generally restrictive nature of
traditional parametric models by proposing a splines-based framework which allows for a great
degree of modelling flexibility.

Based on the decomposition of the hazard function (1), the cumulative hazard function can
be written as

H(t|x) = ∫
t

0
h(r|x)dr = HP(age + t|w) − HP(age|w) + HE(t|x). (2)

Consequently, the survival function can be factorized as follows:

S(t|x) = exp{−H(t|x)} = exp
{
−HP(age + t|w) + HP(age|w)

}
exp {−HE(t|x)} . (3)

The survival function associated with the excess hazard, SN(t|x) = exp {−HE(t|x)}, is denoted
as the (individual) net survival. The concept of net survival is usually favoured by international
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agencies and programmes devoted to the study of cancer epidemiology, as well as policy-makers,
as it is not affected by other causes of mortality, under the assumed model (1); we
refer the reader to Rubio et al. (2019) and Rubio et al. (2021) for a discussion on these
points.

Building on Marra and Radice (2020), we present a flexible methodology that is capable
of handling simultaneously all types of censoring as well as left truncation, while account-
ing for the excess hazard. Often only right censoring and potentially left truncation is allowed
(e.g. Fauvernier et al., 2019; Quaresma et al., 2019), thus accounting for any type of censor-
ing broadens the applicability of our framework. Furthermore, a variety of covariate effects,
including time-dependent effects, can be flexibly estimated via additive predictors with sev-
eral types of smoothers. Our framework can also accommodate spatial effects in the definition
of the additive predictor of an excess hazard model, a feature that is not available in other
frameworks and software; this allows us to explore geographical disparities in cancer sur-
vival. The proposed model yields as special cases the widely used PH model, which allows
for the usual Cox-like interpretation of the estimated effects, as well as the proportional odds
(PO) model. The framework is based on modelling transformations of the survival function
which we found to perform well in practice. An advantage of using this scale is that the
post-estimation extraction of the (sub-)population net survival, a quantity often of interest
to practitioners, is notably quicker when compared to approaches which model on the haz-
ards scale; the need for numerical integration in the latter implies a higher computational
time.

The resulting additive model is very flexible since the baseline hazard is modelled by means of
monotonic P-splines. This is more efficient and parsimonious than using a non-parametric haz-
ard, as in the Cox model, and it is more flexible than strong parametric assumptions such as those
in AFT models. Parameter estimation is based on a penalized maximum likelihood approach
that allows for stable and efficient computations where smoothness is guaranteed by means of
a quadratic penalty. In order to allow for transparent and reproducible research as well as faster
dissemination of scientific results in industry and academia, the proposed modelling framework
is implemented in the GJRM R package (Marra & Radice, 2021). This implementation allows the
applied end-user to obtain and visualize relevant quantities such as population net survival and
excess hazard, and their confidence intervals, and easily perform model comparisons. Various
examples of code usage can be found in the online Supplementary Material as well as on the pub-
lic repository https://github.com/FJRubio67/LBANS/, where two publicly available data sets are
analysed.

Sections 2 and 3 present the model formulation and the model’s penalized log-likelihood.
Section 4 discusses parameter estimation and inference as well as some theoretical results.
Section 5 contains the results of the simulation study. Sections 6.1 and 6.2 present two case stud-
ies in the context of cancer epidemiology. Section 7 concludes the paper with a discussion and
potential directions for future research. Finally, for the sake of space, several details are collected
in the online Supplementary Material.

2 FLEXIBLE EXCESS HAZARD MODEL

For individual i = 1, … , n, where n represents the sample size, let Ti denote the true event time
and have a conditional net survival function denoted by SN(ti|xi; 𝜷) = exp {−HE(ti|xi; 𝜷)} ∈ (0, 1),
where xi represents a generic vector of patient characteristics that has an associated regression

https://github.com/FJRubio67/LBANS/
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coefficient vector 𝜷 ∈ Rw, where w is the length of 𝜷. A link-based additive net survival model
can be written as

g {SN(ti|xi; 𝜷)} = 𝜂i(ti, xi; f(𝜷)), (4)

where g ∶ (0, 1) → R is a monotone and twice continuously differentiable link function with
bounded derivatives and hence invertible, 𝜂i(ti, xi; f(𝜷)) ∈ R is an additive predictor which
includes a baseline function of time, or a stratified set of functions of time, and several types of
covariate effects (see the next section), and f(𝜷) is a vector function of 𝜷 whose main role is to
impose the monotonicity constraint, discussed in Section 3, needed when evaluating the baseline
function of time contained in the additive predictor. Note that the choice for g determines the
scale of the analysis (e.g. Liu et al., 2018).

Rearranging (4) yields SN(ti|xi; 𝜷) = G {𝜂i(ti, xi; f(𝜷))}, where G is an inverse link func-
tion. The cumulative hazard and hazard functions, H and h, are defined as HE(ti|xi; 𝜷) =
− log

[
G {𝜂i(ti, xi; f(𝜷))}

]
and

hE(ti|xi; 𝜷) = −
G′ {𝜂i(ti, xi; f(𝜷))}
G {𝜂i(ti, xi; f(𝜷))}

𝜕𝜂i(ti, xi; f(𝜷))
𝜕ti

, (5)

where G′ {𝜂i(ti, xi; f(𝜷))} = 𝜕G {𝜂i(ti, xi; f(𝜷))} ∕𝜕𝜂i(ti, xi; f(𝜷)). Table 1 displays the functions g,
G and G′ considered in this work.

2.1 Additive predictor

For the sake of simplicity, the dependence on covariates and parameters has been dropped when
discussing the construction of 𝜂i. Since ti can be treated as a regressor, we define an overall covari-
ate vector zi made up of xi and ti. An additive predictor allows for various types of covariate effects
as well as their flexible functional form determination. An additive predictor is defined as

𝜂i = 𝛽0 +
K∑

k=1
sk(zki), i = 1, … ,n, (6)

where 𝛽0 ∈ R is an overall intercept, zki denotes the kth subvector of the complete vector zi and
the K functions sk(zki) denote effects which are chosen according to the type of covariate(s) con-
sidered. Each sk(zki) can be represented as a linear combination of Jk basis functions bkjk (zki) and
regression coefficients fkjk (𝛽kjk ) ∈ R, that is (e.g. Wood, 2017)

T A B L E 1 Functions implemented in GJRM (see Marra and Radice (2020) and references therein). Φ and 𝜙

are the cumulative distribution and density functions of a univariate standard normal distribution. The first two
functions are typically known as log-log and -logit links, respectively

Model Link g(S) Inverse link g−1(𝜂) = G(𝜂) G′(𝜂)

Prop. hazards (”PH”) log {− log (S)} exp {− exp(𝜂)} −G(𝜂) exp(𝜂)

Prop. odds (”PO”) − log
(

S
1−S

)
exp(−𝜂)

1+exp(−𝜂)
−G2(𝜂) exp(−𝜂)

probit (”probit”) −Φ−1(S) Φ(−𝜂) −𝜙(−𝜂)
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Jk∑
jk=1

fkjk (𝛽kjk )bkjk (zki). (7)

The above formulation implies that the vector of evaluations {sk(zk1), … , sk(zkn)}⊤ can be writ-
ten as Zkfk(𝜷k) with fk(𝜷k) = (fk1(𝛽k1), … , fkJk (𝛽kJk ))

⊤ and design matrix Zk[i, jk] = bkjk (zki). This
allows the predictor in Equation (6) to be written as

𝜼 = 𝛽01n + Z1f1(𝜷1) + … + ZKfK(𝜷K), (8)

where 1n is an n-dimensional vector made up of ones. Equation (8) can also be written in a more
compact way as 𝜼 = Zf(𝜷), where Z = (1n,Z1, … ,ZK) and f(𝜷) = (𝛽0, f(𝜷1)⊤, … , f(𝜷K)⊤)⊤. Addi-
tional observations on the additive predictor described here can be found in online Supplementary
Material C.1.

Each 𝜷k has an associated quadratic penalty 𝜆k𝜷
⊤
k Dk𝜷k, used in fitting, whose role is to enforce

specific properties on the kth function, such as smoothness. Note that matrix Dk only depends
on the choice of the basis functions. The smoothing parameter 𝜆k ∈ [0,∞) controls the trade-off
between fit and smoothness, and hence determines the shape of the estimated smooth function.
The overall penalty can be defined as𝜷⊤S𝜷, where S = diag(0, 𝜆1D1, … , 𝜆KDK). Note that smooth
functions are subject to centring (identifiability) constraints which can be imposed as described
in Wood (2017). Depending on the types of covariate effects one wishes to model, several defini-
tions of basis functions and penalty terms are possible. Examples include thin plate, cubic and
P- regression splines, tensor products, Markov random fields (MRFs), random effects, Gaussian
process smooths (see Wood, 2017, for all the options available). More details can be found in the
case studies reported in Section 6.

Finally, observe that in Equation (5) quantity 𝜕𝜂i(ti, xi; f(𝜷))∕𝜕ti is required.
Re-writing 𝜂i(ti, xi; f(𝜷)) as Zi(ti, xi)⊤f(𝜷), the derivative of interest can be obtained as

lim
𝜀→0

{
Zi(ti+𝜀,xi)−Zi(ti−𝜀,xi)

2𝜀

}⊤

f(𝜷) = Z′⊤
i f(𝜷), where, depending on the type of spline basis employed,

Z′
i can be calculated either by a finite-difference method or analytically.

3 PENALIZED LOG-LIKELIHOOD

The unifying framework proposed in this paper supports excess hazard modelling, all types of cen-
soring and left truncation in addition to the flexible additive predictor introduced in Section 2.1.
As the case studies presented in Section 6 involve excess hazard modelling on right-censored data,
which is the most common scenario in cancer research, here we will define the setting and the
log-likelihood only for this case. A detailed discussion of the full log-likelihood for the general
case can be found in online Supplementary Material A, while its derivation is reported in online
Supplementary Material B.

When the ith true event time Ti is known exactly, the individual is said to be uncensored. In
some cases, however, Ti may only be known to be larger than a certain time Ri, in which case the
individual is said to be right-censored and Ri is the random right-censoring time. The censoring
type of the ith observation can be summarized through the use of the indicator functions 𝛿Ri
and 𝛿Ui, where 𝛿Ri = 1 if the observation is right censored and 0 otherwise while 𝛿Ui = 1 if it is
uncensored and 0 otherwise.
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Let us assume that a random i.i.d. sample {(ri, 𝛿Ui, 𝛿Ri, xi)}n
i=1 is available, where ri is either

the time of death or the observed right-censoring time, and that censoring is independent and
non-informative conditional on xi. Let us also write SN(ti|xi) = SN {𝜂i(ti)} in order to make the
dependence of the net survival on 𝜂 explicit. The log-likelihood function associated with the
additive excess hazard model (1)–(3) can be written as

𝓁(𝜷) =
n∑

i=1
𝛿Ui log

[
hP(agei + ri|wi)SN {𝜂i(ri)} −

𝜕SN {𝜂i(ri)}
𝜕𝜂i(ri)

𝜕𝜂i(ri)
𝜕ri

]

+
n∑

i=1
𝛿Ri log [SN {𝜂i(ri)}] + Ci, (9)

where ri is the exact event time when 𝛿Ui = 1 and where Ci is a constant with respect to the model’s
parameters whose expression can be found in online Supplementary Material B.

The proposed model allows for a high degree of flexibility, which is why penalized estimation
of 𝜷 is advisable. In order to prevent over-fitting, we maximize the penalized log-likelihood

𝓁p(𝜷) = 𝓁(𝜷) − 1
2
𝜷⊤S𝜷. (10)

To ensure that the estimated survival function is monotonically decreasing or equivalently that
the hazard function is positive, the time effects are modelled using the monotonic P-spline
approach. Let s(ti) =

∑J
j=1fj(𝛽j)bj(ti), where the bj are B-spline basis functions of at least sec-

ond order built over the interval [a, b], based on equally spaced knots, and the fj(𝛽j) are
spline coefficients. A sufficient condition for s′(ti) ≥ 0 over [a, b] is that fj(𝛽j) ≥ fj−1(𝛽j−1),∀j
(e.g. Leitenstorfer & Tutz, 2007). Such condition can be imposed by defining the vector func-
tion of 𝜷 as f(𝜷) = 𝚺{𝛽1, exp(𝛽2), … , exp(𝛽J)}⊤, where 𝚺[𝜄1, 𝜄2] = 0 if 𝜄1 < 𝜄2 and 𝚺[𝜄1, 𝜄2] = 1 if
𝜄1 ≥ 𝜄2, with 𝜄1 and 𝜄2 denoting the row and column entries of 𝚺, and 𝜷⊤ = (𝛽1, 𝛽2, … , 𝛽J) is
the parameter vector to estimate. Note that in practice 𝚺 is absorbed into the design matrix
containing the B-spline basis functions Z. When setting up the penalty term, we penalize the
squared differences between adjacent 𝛽j, starting from 𝛽2, using D = D∗TD∗ where D∗ is a
(J − 2) × J matrix made up of zeros except that D∗[𝜄, 𝜄 + 1] = −D∗[𝜄, 𝜄 + 2] = 1 for 𝜄 = 1, … , J − 2
(Pya & Wood, 2015).

4 PARAMETER ESTIMATION AND INFERENCE

The estimation approach employed in this article is based on analytical derivative information
which helps enhance numerical stability and speed. It is worth noting that, given the struc-
ture of (9), deriving such quantities has been a tedious task. Furthermore, the above mentioned
re-parametrization implies a non-linear dependence of f(𝜷) from 𝜷 which additionally compli-
cates the structure of the derivatives, in particular those of the additive predictor 𝜂i(ti, xi; f(𝜷))
with respect to parameter vector 𝜷. These appear repeatedly in the score and in the Hessian and
are given by 𝜕𝜂i(ti, xi; f(𝜷))∕𝜕𝜷 = Zi ◦ E, 𝜕2𝜂i(ti, xi; f(𝜷))∕𝜕𝜷𝜕ti = Z′

i ◦ E and 𝜕2𝜂i(ti, xi; f(𝜷))∕𝜕𝜷2 =
diag(Zi) ◦ ̄̄E, where Zi is the transformed covariate vector corresponding to the ith observation,
◦ is the Hadamard product, diag(v) is a diagonal matrix with v its diagonal, E is a

∑K
k=1Jk × 1

vector such that its kth
jk

element is E[kjk ] = 1 if fkjk
(𝛽kjk

) = 𝛽kjk
and exp(𝛽kjk

) otherwise, and ̄̄E is a
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∑K
k=1Jk ×

∑K
k=1Jk diagonal matrix such that its kth

jk
diagonal element is ̄̄E[kjk , kjk ] = 0 if fkjk

(𝛽kjk
) =

𝛽kjk
and exp(𝛽kjk

) otherwise.
The analytical expression of the gradient and Hessian matrix are presented in online Supple-

mentary Material B. Although these derivatives involve lengthy calculations as well as careful
algorithmic implementation, the computational and inferential benefits of avoiding numerical
approximations justify the effort. The algorithm employed for estimating the regression param-
eters and smoothing coefficient vector is summarized in online Supplementary Material C.2.
Briefly, it combines a carefully structured trust region algorithm which uses the analytical expres-
sions of the gradient and Hessian of the log-likelihood and properly chosen starting values with
a general automatic multiple smoothing parameter selection algorithm based on an approximate
AIC measure.

In practice, this results in an estimation algorithm which is general, modular, efficient and
stable, working well even for problems which are non-concave and∕or exhibit close to flat regions.
We found this both through usage on real-world data as well as through the extensive simulation
study conducted and reported in detail in online Supplementary Material F. As expected, like any
method, in the latter we found that model fitting failed to converge at times (i.e. did not achieve
close to zero gradient and∕or positive definite Hessian), however this occurred only for a small
percentage of simulation replicates. This is in line with what we found with survPen, our main
competitor. Further details on this can also be found in online Supplementary Material F.

To obtain confidence intervals, we follow Wood et al. (2016) and employ the Bayesian
large sample approximation 𝜷

⋅∼  (𝜷,V𝜷), where V𝜷 = −Hp(𝜷)−1; using V𝜷 gives close to
across-the-function frequentist coverage probabilities because it accounts for both sampling vari-
ability and smoothing bias, a feature that is particularly relevant at finite sample sizes. Note
that applying the Bayesian approach to the modelling framework discussed in this paper follows
the notion that penalization in estimation implicitly assumes that wiggly models are less likely
than smoother ones, which translates into the following prior specification for 𝜷, f𝜷 ∝
exp{−𝜷⊤S𝜷∕2}.

Since the evaluation of the additive predictor in Equation (8) and the quantities that rely
on it depend on f(𝜷), it makes sense to obtain its distribution as well. Following Pya and Wood
(2015), we first consider the Taylor series expansion of f(𝜷) around f(�̃�), that is f(𝜷) − f(�̃�) ≈
diag(E)

(
𝜷 − �̃�

)
. This shows that f(𝜷) − f(�̃�) is approximately a linear function of 𝜷. We then recall

that linear functions of normally distributed random variables follow normal distributions. This
implies that f(𝜷) ⋅∼  (f(�̃�),Vf(𝜷)) where Vf(𝜷) = diag(E)V𝜷diag(E). p-values for the smooth com-
ponents in the model are derived by adapting the result discussed in Wood (2017) and using Vf(𝜷)
as covariance matrix.

Intervals for linear functions of the model’s coefficients, for example smooth components,
can then be obtained using the result just shown for f(𝜷). For non-linear functions of the model’s
coefficients, for example hazard functions, instead, the intervals can be conveniently obtained
by posterior simulations, hence avoiding computationally expensive parametric bootstrap or
frequentist approximations, for instance.

The approximation found for f(𝜷) also facilitates the construction of confidence intervals for
the net survival curve (either associated with an individual or a subpopulation). We define the
(marginal) net survival function associated with a subpopulation xpop = {x1, … xk} as

SN(t) =
1
k

∑
xi∈xpop

SN(t|xi),
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where it is assumed that k is the number of individuals belonging to the subpopulation of interest.
For instance, xpop could be the entire population or a subgroup of interest, such as a specific age
group. Keeping in mind that we are interested in finding the interval for an average over multiple
net survival curves, we will have to sample from the posterior distribution of this average. Finally,
online Supplementary Material D describes the use of the R package GJRM.

The main asymptotic results related to the proposed estimator are presented below and are
based on classical assumptions from the GAM and relative survival literature and refer to model
regularity conditions.

Theorem 1 If Assumptions A1–A8 hold (see online Supplementary Material E) then

1. 𝜷
P
−→ 𝜷0 and ||𝜷 − 𝜷0|| = Op(n− 1

2 ),

2.
√

n(𝜷 − 𝜷0)
d
−→ N(0, i−1(𝜷0)),

where 𝜷0 is the true parameters vector.

5 SIMULATION STUDY

We consider 20 scenarios, resulting from the combination of four sample sizes, n = 200, 500, 1000
and 5000, and five data generating processes (DGPs) of increasing difficulty, to extensively test our
method’s ability to capture the true generating mechanism. We will compare the performance of
our method, implemented in the R package GJRM, with a state-of-the-art model in the (relative)
survival setting, that is Fauvernier et al. (2019) and its implementation in theR packagesurvPen.
Although other penalized relative survival model implementations exist, we consider survPen
to be an adequate benchmark as it was in turn extensively tested against competing frameworks in
the reference paper and was generally found to be superior. We will then have four fitted models:
GJRM with each of the three allowed link functions, that is PH, PO and probit, and survPen.

As we are in a relative survival setting, we will simulate the population hazard and the excess
hazard separately for each individual. The former is simulated from a piece-wise exponential
distribution based on life tables from the general English population. The latter using increasingly
complex functional forms with parameters set to result in approximately 40% censoring. This level
was chosen to reflect the 44.8% censoring found in the case studies on which the simulated ones
are based. For each scenario, we simulate 1000 data sets, which include also age at diagnosis and
level of deprivation defined on a discrete scale between 1 (least deprived) and 5 (most deprived).

Our method performs consistently well throughout the scenarios and over a range of metrics,
with greater uncertainty generally found at the smaller sample size, as expected. In the following
section, we present the results for one of the most challenging DGPs. For more details and the full
set of results, we refer the reader to online Supplementary Material F.

5.1 General hazards model with non-linear effect of age

We consider a general hazards model, as defined in Rubio et al. (2019). For the jth observation
this is given by

hGH
E (t; xj) = h0

(
t exp[𝛼 ⋅ f (agecj)]

)
exp(x⊤

j 𝜷) with h0(r) =
𝜙
(

ln r−𝜇
𝜎

)
Φ
(
− ln r−𝜇

𝜎

)
⋅ r𝜎

,
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where the baseline hazard h0(⋅) is modelled using a log-normal distribution with parameters
(𝜇, 𝜎) and where 𝜙(⋅) and Φ(⋅) represent, respectively, the density function and CDF of a stan-
dard normal. Furthermore, xj = [ f (agecj), depj]⊤ where f (agecj) = 0.75 sinh[0.5arcsinh[3agecj]]
is a smooth function of the standardized age at diagnosis agecj, chosen to ensure that the associ-
ated effect was not too small, and depj is the level of deprivation. The associated (time-fixed) effect
is denoted by 𝜷. A time-dependent effect is also assumed for f (agecj) and is denoted by 𝛼. The
values used for the parameters (𝜇, 𝜎, 𝛼, 𝜷) are reported in Table 8 of online Supplementary
Material F.

In terms of model selection, using the AIC, the GJRM PH model was found to be the best
among the GJRM models which were in turn found to be preferred to survPen. This holds with
the exception of the case n = 200, for which GJRM probit is the best model in terms of AIC, both
when compared with the other GJRM models as well as with survPen; see table 10 of the online
Supplementary Material F. In the following, only the best GJRMmodel will be compared with the
survPen model, to avoid cluttering the plots.

In Figure 1, we report the boxplot of the root mean square error (RMSE) for the excess hazard
for each of the two approaches and for each sample size. The boxplot of the bias is very similar so
it is omitted here due to space constraints but it is reported in Figure 22 of online Supplementary
Material F. We find that the RMSE decreases as the sample size increases and that it is overall
smaller but more variable for GJRM PH than for survPen at n = 1000 and n = 5000. At n = 200
and n = 500, survPen outperforms GJRM probit and GJRM PH, respectively; from Figure 2, we
see that the survPen estimated excess hazard curve is not very close to the true curve although
it is overall better than the one produced by GJRM. In general, GJRMmostly leads to curves which
trace the true excess hazard more closely but, when they do not, specifically in the middle and
final times, they contribute to higher overall values of RMSE. We find this behaviour in the average
estimated excess hazard plots reported in Figure 2, where GJRM captures the first portion of the
true excess hazard relatively well, even at the lowest sample sizes, but departs from it in the final
times. survPen, instead, struggles to capture the initial steeply increasing portion of the true
excess hazard while it is closer to the true curve in the final times. At the highest sample size,
GJRM improves greatly its fit also in the final times, becoming almost indistinguishable from the

0.
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0.
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0.
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0.
12

0005 = n0001 = n005 = n002 = n

GJRM probit survPen GJRM PH survPen GJRM PH survPen GJRM PH survPen

F I G U R E 1 Boxplots of root mean square error of excess hazard function for each model specification
under the fourth data generating processes
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(a) (b) (c)

(d)

F I G U R E 2 Average estimated excess hazard for GJRM and survPen versus the true excess hazard
function under the fourth data generating processes (the mean was taken across the excess hazard estimated on
each simulated data set)

true curve across the entire time range. survPen also greatly improves its fit to the first portion
of the true curve but does not match GJRM.

We omit the analysis of the population net survival as both methods perform very well, with
almost perfectly overlapping estimated average curves when compared with the true survival.
Consequently, the bias and RMSE are markedly smaller than for the estimated excess hazard with
the two methods overall comparable in magnitude and variability. These details can nonetheless
be found in online Supplementary Material F.

In conclusion, the simulation study shows that GJRM and survPen are comparable and both
able to adequately capture even complex DGPs. In particular, survPen seems to perform better
when n is smaller and, while capturing satisfactorily the overall shape of the true excess hazard,
it appears slightly shifted and flatter. GJRM performs less well at the lowest sample size but the
fit improves dramatically as the sample size increases. As all of the data sets considered in the
applications are characterized by a number of patients which is well above the largest sample
size considered here, empirical performance is not likely to be a matter of concern. Finally, both
approaches are characterized by similar model specifications and run times for model fitting,
however survPen is slower when calculating (sub-)population net survival estimates. For more
details on these aspects and for the full set of results, we refer the reader to online Supplementary
Material F.

6 CASE STUDIES

Cancer research strives to provide an accurate picture of the evolving cancer burden, as well as
documenting existing inequalities, using a variety of key indicators, including cancer survival. In
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this section, we present two case studies which aim at investigating inequalities in net survival
for patients diagnosed in England. The first case study aims at investigating socio-economical
inequalities in net survival for the top three incident cancer types (breast, colon and lung), but
which have differential levels of survival as confirmed by previous research (Quaresma et al.,
2015), and the second case study aims at studying geographical disparities in net survival for colon
cancer patients in England.

For these case studies, individual cancer records were obtained from the National Cancer
Registry at the Office for National Statistics (ONS) on all adult patients (aged 15–99 years) diag-
nosed with a first, primary, invasive malignancy of the breast (women), colon and lung during
2010 in England. All cancer records were followed-up by the National Health Service Central
Register, who routinely update these records with information about each patient’s vital sta-
tus. These cases were followed up until the 31 December 2015. Survival times were measured
from the date of diagnosis until the date of death or last time of follow-up. The individual
patient and tumour-specific variables available for this analysis were: full date of diagnosis, last
follow-up and death times, vital-status indicator (which takes value 1 if the patient died of the
cancer of interest and 0 otherwise), age at diagnosis (recorded as a continuous variable) and
deprivation category (1—least deprived to 5—most deprived) defined according to the quin-
tiles of the distribution of the Income Domain scores of the 2011 England Indices of Multiple
Deprivation, NHS England Regions and Local Offices of residence (14 geographical regions),
and tumour stage at diagnosis (I–IV). Background mortality rates were obtained for each can-
cer patient from population life tables for England defined for each calendar year in 2010–2015,
and stratified by single year, age, sex, deprivation category and Government Office Region of
residence.

Additional examples of data analyses, including of spatial effects on cancer survival, can be
found on the public repository https://github.com/FJRubio67/LBANS/, where we consider the
Simulacrum data set and the LeukSurv data set from the R package spBayesSurv.

6.1 Socio-demographic inequalities in breast, colon and lung cancer
survival in England

In this case study, we compare the net survival curves for the most deprived and least deprived
groups of the population for the three major cancer types. The breast cancer in women data set
contains n = 38,636 complete cases, with median age 62.8 years, from which no = 9169 patients
died within the follow-up period (76.2% censoring). The colon cancer in men data set contains
n= 11,106 complete cases, with median age 72.7 years, from which no = 6126 patients died within
the follow-up period (44.8% censoring). The colon cancer in women data set contains n = 9,999
complete cases, with median age 74.8 years, from which no = 5520 patients died within the
follow-up period (44.8% censoring). The lung cancer in men data set contains n= 18,609 complete
cases, with median age 72.8 years, from which no = 17,286 patients died within the follow-up
period (7.1% censoring). The lung cancer in women data set contains n = 14,920 complete cases,
with median age 73.2 years, from which no = 13,418 patients died within the follow-up period
(10.1% censoring). We chose to analyse these data sets as cancers they involve are the three most
commonly diagnosed types in England (Office for National Statistics, Newport, UK, 2011) with
each having differential levels of survival. Previous research investigating trends in cancer sur-
vival in England since the 1970s has, in fact, identified three broad groups of cancers based on
their levels of survival: those with good prognosis, including breast cancer, those with moderate

https://github.com/FJRubio67/LBANS/
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survival levels, including colon cancer, and those with very poor prognosis, including lung cancer,
for which little improvement has occurred in the past 40 years up to 2010 (Quaresma et al., 2015).

Table 2 shows the net survival estimates and the corresponding 95% confidence intervals, at
1,3 and 5 years after diagnosis, using GJRM. Models equivalent to those specified for GJRM were
fitted using survPen as well; the AIC favoured the GJRM models in all cases. The net survival
estimates obtained using survPen were very close to those obtained with the best GJRM model;
they can be found in table 13 of online Supplementary Material G.

Note, in particular, that the results reported in Table 2 correspond to the best model selected
using the AIC among nine models obtained by combining the three different allowed links
(PH, PO and probit) with three different definitions of the additive predictor. The first of these
specifications includes a linear effect of age at diagnosis and takes the form 𝜂i = 𝛽0 + dep⊤

i 𝜷1 +
ageci𝛽2 + s1(log(ti)), the second includes a non-linear effect of age at diagnosis and takes the
form 𝜂i = 𝛽0 + dep⊤

i 𝜷1 + s1(log(ti)) + s2(ageci) while the third one includes a non-linear and
time-dependent effect of age at diagnosis and takes the form 𝜂i = 𝛽0 + dep⊤

i 𝜷1 + s1(log(ti)) +
s2(ageci) + s3(log(ti), ageci). Here depi represents the level of deprivation, defined on a discrete

T A B L E 2 Net survival at 1, 3 and 5 years after diagnosis (‘yrs’) with 95% confidence interval between
brackets for all adult (aged 15–99 years) women diagnosed with breast cancer and men and women diagnosed
with colon and lung cancer during 2010 in England: population net survival (‘pop’), net survival for the least
deprived patients (‘dep 1’) and net survival for the most deprived patients (‘dep 5’). The estimates were obtained
using the R package GJRM

(yrs) pop dep 1 dep 5

Breast cancer

1 0.96 (0.96, 0.96) 0.97 (0.97, 0.97) 0.95 (0.94, 0.95)

3 0.90 (0.89, 0.90) 0.92 (0.91, 0.92) 0.87 (0.87, 0.88)

5 0.85 (0.85, 0.86) 0.88 (0.87, 0.89) 0.82 (0.81, 0.83)

Colon cancer (men)

1 0.74 (0.74, 0.75) 0.77 (0.76, 0.78) 0.71 (0.69, 0.72)

3 0.62 (0.61, 0.62) 0.65 (0.63, 0.66) 0.57 (0.55, 0.59)

5 0.57 (0.56, 0.58) 0.60 (0.58, 0.62) 0.52 (0.50, 0.54)

Colon cancer (women)

1 0.72 (0.71, 0.73) 0.76 (0.75, 0.78) 0.68 (0.66, 0.69)

3 0.60 (0.58, 0.60) 0.64 (0.63, 0.66) 0.54 (0.52, 0.56)

5 0.55 (0.54, 0.56) 0.60 (0.59, 0.62) 0.50 (0.47, 0.52)

Lung cancer (men)

1 0.30 (0.29, 0.30) 0.31 (0.30, 0.32) 0.29 (0.28, 0.30)

3 0.13 (0.12, 0.13) 0.13 (0.13, 0.14) 0.12 (0.12, 0.13)

5 0.09 (0.09, 0.09) 0.10 (0.09, 0.10) 0.09 (0.08, 0.09)

Lung cancer (women)

1 0.34 (0.34, 0.35) 0.36 (0.35, 0.37) 0.33 (0.32, 0.34)

3 0.16 (0.15, 0.16) 0.17 (0.16, 0.18) 0.15 (0.14, 0.15)

5 0.12 (0.12, 0.12) 0.13 (0.12, 0.14) 0.11 (0.11, 0.12)
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scale from 1 (least deprived) to 5 (most deprived), s1(⋅) a monotonic P-spline taken over the loga-
rithm of time chosen to ensure the monotonicity of the survival function as explained in Section 3,
s2(⋅) a cubic regression spline taken over the standardized age at diagnosis of cancer ageci and
s3(⋅) a pure tensor product interaction between standardized age at diagnosis and time, whose
marginals are also cubic regression splines. This is how time-dependent effects are included in the
models specified in the applications and in the simulation study. Note that the term ‘pure’ refers
to the fact that sum-to-zero constraints remove the unit function from the span of the marginals,
with the result that the tensor product basis will not include the main effects. These, in fact, would
result from the product of a marginal basis with the unit functions in the other marginal bases. In
other terms, this specification enables us to model the main effects and the interaction term sepa-
rately, thus leading to more flexibility as the main effects are allowed to have different complexity
from their associated effects in the interaction term (Wood, 2017). With regard to the penalty asso-
ciated with the non-linear term s2(ageci), this takes the form of the quadratic penalty defined in
Section 2.1 with Dk given by the integrated square second derivative of the basis functions, that is
∫ dk(zk)dk(zk)⊤dzk with the jth

k element of dk(zk) defined as 𝜕2bkjk (zk)∕𝜕z2
k. The penalty associated

with the non-linear pure interaction term s3(log(ti), ageci) is, instead, more complex as it entails
combining two penalties, each corresponding to one of the arguments of the smooth function.
These are summed after being weighted by smoothing parameters, which thus serve the purpose
of controlling the trade-off between the smoothness in each of the two directions; for more details
on this we refer the reader to chapter 5 of Wood (2017). The best model according to the AIC is
the one obtained by combining the probit link with the last specification. This is the case for all
five data sets.

Figure 3 presents the net survival and the population excess hazard curves for data on
breast, colon and lung cancer for female patients with deprivation categories 1 and 5. For
completeness, we present the output for the best model as well as the smooths of age and
log(ti) for the colon cancer in men data set in online Supplementary Material G. Here, further
details on how the non-linear and time-dependent effects can be specified in R can also be
found.

Very high levels of survival were observed for women diagnosed with breast cancer in 2010
(above 80% at 5 years after diagnosis), moderate levels of survival for both men and women diag-
nosed with colon cancer (above 50% at 5 years after diagnosis) and very low survival for patients
diagnosed with lung cancer in both genders. For all cancers, net survival was always lower for
the most deprived group of patients at all times after diagnosis (Table 2). From the three cancers,

(a) (b) (c)

F I G U R E 3 Net survival for all adult women (aged 15–99 years) diagnosed during 2010 in England (least
deprived vs. most deprived): (a) breast cancer; (b) colon cancer; (c) lung cancer
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the largest differences between the most deprived and the most affluent groups were observed for
colon cancer patients.

6.2 Modelling spatial effects on colon cancer survival in England

For this second case study, we highlight how to incorporate spatial effects in our methodology to
analyse geographical inequalities in net survival. The data set contains n = 9379 complete cases,
with median age 72.08 years, from which no = 4859 patients died within the follow-up period
(48.2% censoring). There were 2092 patients with deprivation level 1 (least deprived), 2126 with
deprivation level 2, 1946 with deprivation level 3, 1748 with deprivation 4 and 1467 with depriva-
tion level 5 (most deprived). Among all patients, 1316 were diagnosed with stage 1 tumour, 2880
with stage 2, 2779 with stage 3 and 2404 with stage 4. We use as the geographical unit of analysis
the NHS England Regions and Local Offices of residence.

We fitted the same nine models described in Section 6.1 with the only difference being that
the additive predictors now include a spatial variation term as well. The best model in terms of
AIC is that obtained by combining a PH link function with the most complex additive predictor
specification, that is 𝜂i = 𝛽0 + dep⊤

i 𝜷1 + s1(log(ti)) + s2(ageci) + s3(log(ti), ageci) + sspatial(regioni),
where sspatial(⋅) models the English National Health Service (NHS) regions and local offices of
residence for individual i, indicated by regioni, using an MRF approach. In practice, considering
R distinct regions, (7) takes the form sspatial(regioni) = 𝜷⊤

k 𝜹
(reg)
i where 𝜷k = [𝛽k1, … , 𝛽kR]⊤ is the

vector of effects associated with each region and 𝜹
(reg)
i = [𝛿(reg)

i1 , … , 𝛿
(reg)
iR ]⊤ is such that 𝛿(reg)

ir = 1 if
individual i belongs to region r and 0 otherwise, for every i = 1, … , n and r = 1, … , R. To ensure
that neighbouring regions have similar effects 𝛽kr, we penalize the sum of squared differences
between 𝛽kr values for all pairs of neighbouring regions. In other terms, we impose the penalty

Pen(𝜷k) =
m∑

r=1

∑
q∈nei(r)

q>r

(𝛽kr − 𝛽kq)2,

where taking only the terms q > r in the inmost summation ensures that the squared difference
between a given pair is taken only once. Furthermore, nei(r) represents the set of neighbours for
region r. This can be re-written in terms of the quadratic penalty introduced above by defining an
R × R matrix Dk with diagonal elements nr given by the number of neighbours for region r and
off-diagonal elements Dk[q, r] = −1 if q ∈ nei(r) and 0 otherwise, for q, r = 1, … , R. Note that the
penalty can also be viewed as being induced by an improper Gaussian prior 𝜸 ∼  (0, 𝜏D−

k ), where
𝜏 is some precision parameter which replaces the smoothing parameter 𝜆k from the penalized
likelihood framework through the equality 𝜏 = 𝜆−1

k . The 𝜸 and the neighbourhood structure can
then be viewed as an intrinsic Gaussian MRF with precision matrix Dk (Rue & Held, 2005).

The setup of the spatial effects in R is straightforward. The region boundaries, in fact, are
openly accessible on the Office for National Statistics website. The regions can then be setup using
the GJRM function polys.setup() and used in the model specification as the argument of the
MRF smooth. For further details on how the models have been specified using the R package
GJRM we refer the reader to online Supplementary Material G.

We report net survival at 1 and 5 years after diagnosis in Figure 4: Figures 4a and b present
the results for the least deprived patients, and Figures 4c and d for most deprived patients.
These plots have been obtained using the GJRM function polys.map(). In line with the
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(a) (b)

(c) (d)

F I G U R E 4 Maps of net survival for all adult male patients (aged 15–99 years) diagnosed with colon cancer
during 2010 in England: (a) 1-year net survival (least deprived), (b) 1-year net survival (most deprived), (c) 5-year
net survival (least deprived), (d) 5-year net survival (most deprived)

results presented in the first case study, we observe that net survival is consistently lower
for the most deprived category across all regions, which becomes more evident at 5 years
after diagnosis. Moreover, we notice some variability in net survival by region. Public Health
England annually reports an Index of Cancer Survival (Quaresma et al., 2015), where, in pre-
vious years, a clear north-south gradient in survival was reported (Index of cancer survival
for Clinical Commissioning Groups in England). However, this gradient has been consis-
tently narrowing, which is also in line with the results reported in Figure 4. This type of
targeted descriptive spatial summaries is crucial for generating hypotheses which may serve
as a basis for conducting more in-depth investigations about the factors driving the observed
inequalities.
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7 DISCUSSION

We have proposed a unifying framework for excess hazard estimation using a link-based addi-
tive model formulation, which allows for a variety of link functions, several types of covariate
effects, and for all types of censoring and left truncation. Estimation is based on a carefully con-
structed efficient and stable penalized likelihood-based algorithm. Under standard conditions
for generalized additive models adapted to the excess hazard setting, we have shown consis-
tency and asymptotic normality of the estimators. An intuitive implementation of the proposed
methodology is available in the R package GJRM, including the straightforward extraction of
relevant quantities, such as the (sub-)population net survival and associated intervals. This is
true for any of the smooths included in the model as well. The simulation study, covering
four sample sizes and several DGPs, demonstrated the reliability and flexibility of the proposed
model. In particular, we have observed low levels of bias and variance of the point estimates,
as well as a good ability to recover the excess hazard shape, while maintaining low computa-
tional times with the fitting procedure taking between 1 and 30 s for data sets of up to n = 5000
observations.

The two case studies using real population-based cancer data highlight the usability of our
methodology, which allows for the inclusion of complex effects to answer challenging research
questions. We explored socio-demographic inequalities and geographical disparities in net sur-
vival for three of the most common cancer types diagnosed in England. In a wider context, such
kind of results are increasingly being used to formulate cancer control strategies and to prioritize
cancer control measures (All-Party Parliamentary Group on Cancer, 2017; Department of Health,
2019). Other uses of our methodology include, but are not limited to, the study of long-term
trends in net survival to evaluate the effectiveness of national cancer plans after they have been
implemented, by assessing their impact on survival (Exarchakou et al., 2018). In addition, the
possibility of modelling spatial effects through the MRF approach facilitates the study of geo-
graphical disparities in cancer survival for different sets of relevant health geographies. We note
that age-standardization techniques, that is re-weighting the estimates of net survival using a
standard cancer population age distribution, have not been applied to the net survival estimates
presented in the case studies. We emphasize that when the interest lies in comparing levels of
survival between different populations or over time within the same population, such techniques
can be applied to avoid that comparisons are masked by differences in the age profiles of can-
cer patients, since for most cancers the cancer-specific hazard is age dependent (Corazziari et al.,
2004). This is not to be confused with the use of the standardized age at diagnosis as a covariate
in the model specification, which is indeed done in the case studies.

Our contribution to the relative survival setting brings new research opportunities, for
instance: (a) extending the proposed methodology to model multivariate survival data; a poten-
tial direction for such development consists of following the copula link-based model proposed
in Marra and Radice (2020); (b) the additive decomposition of the total (or overall) hazard in
the relative survival framework, relies on the assumption that the two competing risks (asso-
ciated with cancer and with all other causes of death) remain independent during the entire
follow-up period. Copula functions could be used to relax this assumption; (c) developing for-
mal model selection tools for additive excess hazard regression models (Maringe et al., 2019;
Rossell & Rubio, 2022); and (d) extending the applicability of our methodology by imple-
menting additional quantities of interest for cancer research (Belot et al., 2019) in the GJRM
package.
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