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Abstract
Closed-form dynamic stiffness (DS) formulations coupled with an efficient eigen-solution technique are proposed
for exact longitudinal free vibration analyses of rods and trusses by using classical, Rayleigh-Love, Rayleigh-
Bishop and Mindlin-Hermann theories. First, the exact general solutions of the governing differential equations
of the four rod theories are developed. Then the solutions are substituted into the generalized displacement and
force boundary conditions (BCs), leading to the elemental DS matrices utilising symbolic computation. As an
accurate and efficient modal solution technique, the Wittrick-Williams (WW) algorithm is applied. The J0 count
for the WW algorithm has been resolved for all four types of DS elements with explicit analytical expressions.
The method is verified against some existing exact results for rods subjected to specific BCs. Comparisons of
the natural frequencies and mode shapes for different theories and slenderness ratios are also made. Finally,
benchmark solutions are provided for individual rods subject to different BCs, a stepped rod and a truss. This
research provides an exact and highly efficient modal analysis tool for rods and trusses within the whole frequency
range, which is suitable for parametric studies, optimization design, inverse problem analysis, and important for
statistical energy analysis.

© 2021 Published by Elsevier Ltd.

Keywords: Dynamic stiffness method; Wittrick-Williams algorithm; Rayleigh-Bishop theory; Mindlin-Hermann
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1. Introduction

Rods which principally carry tensile and compressive loads are commonly used in en-
gineering. They are widely used as components in piezoelectric applications[1], phononic
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crystals[2], damage detection[3] and wave propagation control[4]. Thus the vibration
and longitudinal wave propagation analysis of rods are very important in the design of
structures.

Many mathematical models describing the longitudinal vibration of rod elements have
been proposed. D’Alembert et al.[5] in the 18th century proposed the classical theory
of longitudinal vibration analysis based on one-dimensional wave equation, which is suit-
able for slender members undergoing low frequency vibration. The theory ignored the
transverse inertia effect and the corresponding transverse and longitudinal shear modes.
Rayleigh[6] considered the importance of transverse inertia effect in his classical book
Theory of Sound published in 1877. Later, the theory was further developed by Love
[7] in 1892. The next generalization of the theory was made by Bishop[8] who modified
the Rayleigh-Love theory by taking into account the contribution of the transverse shear
effect. The theory is now called the Rayleigh-Bishop theory. From the perspective of
engineering application, the Rayleigh-Bishop theory is significantly more complex than
the Rayleigh-Love theory, and the predicted resonance frequency is more accurate than
the classical theory. Next, Mindlin and Herrmann[9] generalized the Rayleigh–Bishop
model by considering the lateral displacement as an independent function of time and
space coordinates. Zozulya[10] then made a summary of the high order theory for rods.

The wave propagation and longitudinal vibration of rod elements in structures being
very important considerations in engineer applications have drawn significant attentions.
Han et al.[11] established the vibration energy flow model of longitudinally vibrating
Rayleigh–Love and Rayleigh–Bishop rods. They also compared the energy flow analysis
results with analytical solutions. Machado and Santos[12] analysed the effect of para-
metric distributed uncertainties in longitudinal wave propagation of Rayleigh-Love rod
using spectral element method. Krawczuk et al.[13, 14] introduced the Rayleigh-Love
theory for the lower excitation frequency, and the Mindlin-Herrmann models for higher
frequency excitation. Mei[15]analysed the dynamics of longitudinal vibration of rods from
the point of view of wave motion. Yang[16] presented a unified analytical solution to the
wave equation which controls the propagation of longitudinal stress waves in elastic rods.
Fedotov et al.[17–19] analysed the vibration of a Rayleigh-Bishop rod under different
conditions in terms of a Green function. Tenkam et al.[20] gave the analytical solution
in terms of Green’s functions of the Mindlin–Herrmann model for longitudinal vibration
of an isotropic rod with constant cross-section. Güven[21] investigated the propagation
of the longitudinal stress waves of Rayleigh–Bishop and Mindlin–Herrmann rods using
the modified couple stress theory. Żak and Krawczuk[22] highlighted some of the major
differences and similarities between different rod theories and discussed certain numerical
aspects of their applications. Wang et al.[23–25] analysed the free vibration and wave
propagation of beams and plates using Rayleigh-Ritz method. Shen et al.[26] modelled
the dispersive waves in cracked rods based on higher-order rod theories using wavelet
finite element method. Gan et al.[27] established their formulation based on Mindlin-
Herrmann theory. The propagation characteristics of the longitudinal wave in variable
cross section rods were studied by them by using the transfer matrix method. Lim et
al.[28, 29] developed different methods for the analysis of free vibration of beams. Chen
et al.[30, 31] analyzed the transverse vibration of longitudinally moving beams considering
finite deformation together with viscoelastic foundation using a complex modal analysis
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method. Zhang et al.[32] investigated the dynamic stability of longitudinally transport-
ing viscoelastic beams with two-frequency parametric excitation using the perturbation
technique. Yan et al.[33] studied the dynamics of a Mindlin–Herrmann rod with surface
piezoelectric patches adopting the reverberation matrix method. Sun et al.[34] proposed
the generalized finite difference method to solve space-fractional diffusion equations. Cao
et al.[35–37] analysed the vibrations of rods with the help of the Cosserat rod element
approach. Dai and Xiao[38] studied a new deployable truss structure using the Moore–
Penrose generalized inverse matrix method. Nevertheless, most of the above methods for
modelling the longitudinal vibration of rods have the following limitations. (i) Different
formulae are needed for different boundary conditions, (ii) Analytical solutions are only
for indvidual elements, thus not capable of modelling built-up structures, especially when
the longitudinal and bending vibration are coupled, (iii) Eigensolution techniques such as
matrix determinant are not efficient and reliable, and thus sometimes the methods can
miss some of the eigen-roots.

Different from the above methods, the dynamic stiffness method (DSM)[39] is an
exact analytical method which can be applied to built-up structures subjected to any
boundary conditions and has an efficient and reliable eigenvalue and response algorithm.
Many researchers have developed dynamic stiffness models in the frequency domain for
beams[40–44], membranes[45, 46], plates[47–49], shell[50, 51], multi-layered half-space[52],
amongst others. Moreover, DSM can be applied to many other related problems, such
as the dynamic response[53–55], wave propagation[56], energy flow analysis[57] and so
on. For example, Ding et al.[58] established dynamic stiffness models for free vibration
of an longitudinally moving beam with both ends supported by torsional springs and
vertical springs. Wu[57] applied the dynamic stiffness method to the energy flow analysis
of plate built-up structures. Bercin[59] used dynamic stiffness method as a benchmark to
check the effectiveness of statistical energy analysis and wave intensity method. Chen et
al.[53, 54] conducted the response analysis of longitudinally loaded beam on a viscoelastic
foundation using the dynamic stiffness method based on Timoshenko theory. Ba et al.[60]
studied the 3D dynamic responses of a multi-layered half-space subjected to concentrated
forces and pore pressure with the aid of dynamic stiffness matrix. Doyle[56] analysed the
wave propagation in structures using the spectral analysis method. For modal analysis,
the Wittrick-Williams algorithm[61, 62] is an effective way to extract eigenvalues from the
transcendental dynamic stiffness matrix. With the help of Wittrick-Williams algorithm,
the degrees of freedom needed to model the structures can be very few, but nevertheless,
exact natural frequencies can be computed.

Therefore, the main purpose of this paper is to develop exact dynamic stiffness formu-
lations using four different rod theories, namely the classical, Rayleigh–Love, Rayleigh-
Bishop and Mindlin-Herrmann theories. The associated mode count technique for the
eigenvalue solution technique using Wittrick-Williams algorithm is significantly enhanced.
The method is then used to investigate the longitudinal free vibration behaviour of rods.
The paper is organized as follows. Following this Introduction, Section 2 develops the
dynamic stiffness matrices of the rod based on the above four different rod theories, and
the explicit form of the element of dynamic stiffness matrices are derived. Then, Section
3 fomulates the J0 count in the W-W algorithm, followed by the computation procedure
of mode shapes. Section 4 demonstrates the high accuracy and efficiency of the dynamic
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stiffness method by comparing the results with some published results for natural fre-
quencies using various rod theories for different boundary conditions. Furthermore, the
applications of dynamic stiffness method in vibration analysis of a stepped rod and a
pin-jointed plane frame are demostrated. Finally, Section 5 concludes the paper.

2. Dynamic stiffness formulations for free longitudinal vibration based on dif-
ferent rod theories

This section develops the dynamic stiffness (DS) formulations for a rod element based
on four different theories. It should be noted that the solutions of classical (Section 2.1)
and Rayleigh-Love theories (Section 2.2) can be found in the literature[63], which is given
here for the sake of completeness and also to make the paper self-contained. But the
dynamic stiffness (DS) formulations for the Rayleigh-Bishop (Section 2.3) and Mindlin-
Herrmann theories (Section 2.4) are new and proposed for the first time.

(a) Classical and Rayleigh-Love theories (b) Rayleigh-Bishop and Mindlin-Herrmann
theories

Fig. 1. The generalised displacement and force boundry conditions of rod elements based on the classical
and Rayleigh-Love theories(a), the Rayleigh-Bishop and Mindlin-Herrmann theories(b).

2.1. DS formulation for the classical theory
A rod model based on the classical (C) theory is shown in Fig.1(a). The element has

length L with constant cross section A. The classical theory assumes that the longitudinal
deformations along the neutral axis of the rod are the same at all points on the cross
section and that the transverse deflections are negligible. By using Hamilton’s principle,
the governing differential equation (GDE) in the time domain for a rod based on the
classical theory can be deduced as follows[64]

EA
∂2u

∂x2
− ρA

∂2u

∂t2
= 0 (1)

where EA is the longitudinal stiffness of the rod, ρ is the density of the material, A is the
cross-sectional area of the rod, u(x, t) is the longitudinal displacement of the rod cross
section at distance x from the origin and t is time. It can be shown from natural boundary
conditions that the expression for the longitudinal force f(x, t) is given by

f(x, t) = EA
∂u

∂x
(2)

Assuming that the rod longitudinal vibration is a simple harmonic vibration with an
angular frequency of ω, one can be write

u(x, t) = U(x) sin(ωt) (3)
4
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where U(x) is the amplitude of longitudinal vibration. Substituting Eq.(3) into Eq.(1),
we have

U ′′(x) +
ω2

a2
U(x) = 0 (4)

where a =
√
E/ρ. This equation is a second-order ordinary differential equation of U in

terms of x, and its solution can be obtained as

U (x) = C1 cos
(ω
a
x
)
+ C2 sin

(ω
a
x
)

(5)

where C1 and C2 are constants. Substituting Eq.(5) into Eq.(2), the expression for the
amplitude of the longitudinal force becomes

F (x) = EA
dU
dx (6)

Now referring to Fig.1(a), the boundary conditions for displacements and forces at
both ends of the rod can be applied as follows.

U (0) = U1, F (0) = −F1, (x = 0) (7a)
U (L) = U2, F (L) = F2, (x = L) (7b)

Substituting Eq.(7) into Eqs.(5) and (6), the following matrix relations can be obtained
as [

U1

U2

]
=

[
1 0

cosα sinα

] [
C1

C2

]
(8)

[
F1

F2

]
= EA

[
0 −ω

a

−ω
a

sinα ω
a

cosα

] [
C1

C2

]
(9)

where α = ωL/a.
By eliminating the constants C1 and C2 in Eqs.(8) and (9), the dynamic stiffness

formula for longitudinal vibration of a beam can be obtained, namely[
F1

F2

]
=
EAα

L

[
cotα − cscα
− cscα cotα

] [
U1

U2

]
(10)

Eq.(10) can also be written as follows
f = KCd (11)

where f =
[
F1 F2

]T represents the column vector of the force at both ends, d =[
U1 U2

]T represents the displacement column vector at both ends. KC represents
the dynamic stiffness matrix for the longitudinal vibration of the rod element based on
the classical theory in the local coordinate system, namely

KC =
EAα

L

[
cotα − cscα
− cscα cotα

]
(12)

2.2. DS formulation for the Rayleigh-Love theory
A rod model based on the Rayleigh-Love (R-L) theory is shown in Fig.1(a). The R-L

theory is the simplest generalization of the classical model by including the effects of the
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lateral motion. The governing differential equation (GDE) in the time domain for a rod
based on the R-L theory can be expressed in the following form[64]

EA
∂2u

∂x2
+ ν2ρIp

∂4u

∂x2∂t2
− ρA

∂2u

∂t2
= 0 (13)

where ν is the Poisson ratio of the material, Ip is the polar moment of inertia, u(x, t) is
the longitudinal displacement of the rod cross section from the origin x at time t. It can
be obtained from natural boundary conditions that the expression for the longitudinal
force f(x, t) is as follow

f(x, t) = EA
∂u

∂x
+ ν2ρIp

∂3u

∂x∂t2
(14)

If harmonic oscillation is assumed, then
u(x, t) = U(x) sin(ωt) (15)

where ω is the angular frequency, and U(x) is the amplitudes of u. Substituting Eq.(15)
into Eq.(13) gives (

EA− ρIpν
2ω2

) d2U

dx2 + ρAω2U = 0 (16)

This equation is a second-order ordinary differential equation of U in terms of x, whose
solution can be obtained as

U (x) = C1 cos
(ω
a
x
)
+ C2 sin

(ω
a
x
)

(17)

where a =
√

EA−ν2ρIpω2

ρA
, and C1 and C2 are arbitrary constants. Substituting Eq.(15)

into Eq.(14), the expression for the amplitude of the longitudinal force becomes

F (x) = (EA− ρIpν
2ω2)

dU
dx (18)

Now referring to Fig.1(a), the boundary conditions for displacements and forces at
both ends of the rod can be applied as follows

U (0) = U1, F (0) = −F1, (x = 0) (19a)
U (L) = U2, F (L) = F2, (x = L) (19b)

Substituting Eq.(19) into Eqs.(17) and (18), the relationships between displacement vector
and constant vector, force vector and constant vector can be derived respectively.[

U1

U2

]
=

[
1 0

cosα sinα

] [
C1

C2

]
(20)[

F1

F2

]
=

(EA− ρIpν
2ω2)α

L

[
0 −1

− sinα cosα

] [
C1

C2

]
(21)

where α = ωL/a.
The DS formulation can be obtained by eliminating the coefficients C1 and C2 from

Eqs.(20) and (21) and is given by[
F1

F2

]
=
α (EA− ρIpν

2ω2)

L

[
cotα − cscα
− cscα cotα

] [
U1

U2

]
(22)

6
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Eq.(22) can also be written as follows
f = KRLd (23)

where f =
[
F1 F2

]T represents the column vector of the force at both ends of the rod
element, d =

[
U1 U2

]T represents the displacement column vector at both ends. KRL

represents the dynamic stiffness matrix for the longitudinal vibration of the rod element
based on the R-L theory in the local coordinate system, namely

KRL =
α (EA− ρIpν

2ω2)

L

[
cotα − cscα
− cscα cotα

]
(24)

2.3. DS formulation for the Rayleigh-Bishop theory
The governing differential equation (GDE) in the time domain for a rod based on the

Rayleigh-Bishop(R-B) theory can be expressed in the following form[64]

ν2GIp
∂4u

∂x4
− ν2ρIp

∂4u

∂x2∂t2
− EA

∂2u

∂x2
+ ρA

∂2u

∂t2
= 0 (25)

where E is the Young’s modulus of the material, G = E
2(1+ν)

is the shear modulus, u(x, t)
is the longitudinal displacement of the rod cross section from the origin x at time t. It
can be obtained from natural boundary conditions that the expression for the longitudinal
force f(x, t) is as follow

f(x, t) = EA
∂u

∂x
+ ν2ρIp

∂3u

∂x∂t2
− ν2GIp

∂3u

∂x3
(26)

Assuming that the longitudinal vibration is a simple harmonic vibration with an an-
gular frequency of ω over time t, that is

u(x, t) = U(x) sin(ωt) (27)
where ω is the angular frequency, and U(x) is the amplitudes of u. Substituting Eq.(27)
into Eq.(25) gives

ν2GIp
d4U

dx4 + (ρν2Ipω
2 − EA)

d2U

dx2 − ρAω2U = 0 (28)

Obviously, Eq.(28) is a fourth-order ordinary differential equation with the longitudinal
vibration amplitude U(x), and its characteristic equation is

r4 +
(ρν2Ipω

2 − EA)

Gν2Ip
r2 − ρAω2

Gν2Ip
= 0 (29)

The solution of Eq.(29) is given by r1,2 = ±iα, r3,4 = ±β, where i is the imaginary unit
and

α =

√√√√(ρν2Ipω2 − EA) +
√

(ρν2Ipω2 − EA)2 + 4ρAGν2Ipω2

2Gν2Ip

β =

√√√√−(ρν2Ipω2 − EA) +
√

(ρν2Ipω2 − EA)2 + 4ρAGν2Ipω2

2Gν2Ip

(30)

7
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The solution of Eq.(28) is given by
U (x) = C1 sinαx+ C2 cosαx+ C3 sinh βx+ C4 cosh βx (31)

The lateral deformation is
Ψ(x) = C1α cosαx− C2α sinαx+ C3β cosh βx+ C4β sinh βx (32)

where C1, C2, C3 and C4 are constants. Substituting Eq.(27) into Eq.(26), the expression
for the amplitude of the force can be given by

Fu = (EA− ρIpν
2ω2)

dU
dx − ν2GIp

d3U

dx3 (33a)

Fψ = ν2GIp
d2U

dx2 (33b)

Now referring to Fig.1(b), the boundary conditions for displacements and forces at
both ends of the rod can be applied as follows.

U (0) = U1,Ψ(0) = Ψ1, Fu (0) = −Fu1, Fψ (0) = −Fψ1 (34a)
U (L) = U2,Ψ(L) = Ψ2, Fu (L) = Fu2, Fψ (L) = Fψ2 (34b)

Substituting Eq.(34) into Eqs.(31), (32) and (33), the relationships between displacement
and constant vectors, between force and constant vectors can be derived respectively.

U1

Ψ1

U2

Ψ2

 =


0 1 0 1
α 0 β 0
s c S C
α c −α s βC βS



C1

C2

C3

C4

 (35)


Fu1

Fψ1

Fu2

Fψ2

 =


α
(
EA− ρIpν

2ω2
)
+ ν2GIpα

3 0

0 −α2ν2GIp

−
[(
EA− ρIpν

2ω2
)
α+ ν2GIpα

3
]
c

[(
EA− ρIpν

2ω2
)
α+ ν2GIpα

3
]
s

ν2GIpα
2s ν2GIpα

2c(
EA− ρIpν

2ω2
)
β − ν2GIpβ

3 0

0 β2ν2GIp

−
[(
EA− ρIpν

2ω2
)
β − ν2GIpβ

3
]
C −

[(
EA− ρIpν

2ω2
)
β − ν2GIpβ

3
]
S

ν2GIpβ
2S ν2GIpβ

2C




C1

C2

C3

C4


(36)

where c = cos (αL) , s = sin (αL) , C = cosh (βL) and S = sinh (βL).
By eliminating the constant vector from Eqs.(35) and (36), the dynamic stiffness

formulation for the Rayleigh-Bishop theory can be written as
f = KRBd (37)

where f =
[
Fu1 Fψ1 Fu2 Fψ2

]T represents the column vector of the force at both ends,
d =

[
U1 Ψ1 U2 Ψ2

]T represents the displacement column vector at both ends, KRB

represents the dynamic stiffness matrix for the R-B theory in the local coordinate system,

8
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namely

KRB =


G1 G2 G4 G5

G2 G3 −G5 G6

G4 −G5 G1 −G2

G5 G6 −G2 G3

 (38)

where
G1 = −bΓ (αCs+ βSc) /δ
G2 = −b(p− cCp+ 2bsS)/δ
G3 = Γ (αCs− βSc) /δ
G4 = bΓ (αs+ βS) /δ
G5 = b (c− C) /δ
G6 = 2Γ (−αS + βs) /δ
δ = [b(1− cC)− psS/2]/(Gν2Ip)

b = αβ, 2Γ = α2 + β2, p = α2 − β2

(39)

2.4. DS formulation for the Mindlin-Herrmann theory
A cylindrical rod model based on the Mindlin-Herrmann theory is shown in Fig.1(b).

(The DS formulation for a Mindlin-Herrmann rod with rectangular section is given in
the Appendix). The Mindlin–Herrmann theory can be developed taking into account
the lateral displacements and by considering the Poisson effect between longitudinal and
transverse deformations and it assumes uniform distribution of the longitudinal displace-
ment in the cross-section of the rod. The governing differential equation (GDE) in the
time domain for a cylindrical rod based on the Mindlin-Herrmann theory can be expressed
in the following form[65]

(2µ+ λ)A
∂2u

∂x2
+ 2λA

∂ψ

∂x
= ρA

∂2u

∂t2
(40)

µIp
∂2ψ

∂x2
− 4(µ+ λ)Aψ − 2λA

∂u

∂x
= ρIp

∂2ψ

∂t2
(41)

where µ = E/[2(1 + ν)], λ = νE/[(1 + ν)(1− 2ν)] are the Lamé coefficient, u(x, t) is the
longitudinal displacement of the rod cross section from the origin x at time t. The natural
boundary conditions are as follows

fu = (λ+ 2µ)A
∂u

∂x
+ 2λAψ (42a)

fψ = µIp
∂ψ

∂x
(42b)

Assuming that both the lateral and the longitudinal displacements undergo a simple
harmonic vibration with an angular frequency of ω over time t, that is

u(x, t) = U(x) sin(ωt) (43a)
ψ(x, t) = Ψ(x) sin(ωt) (43b)

where U(x) and Ψ(x) are the amplitudes of longitudinal and lateral vibrations, respec-
tively. Substituting Eq.(43) into Eqs.(40) and (41) gives[

(2µ+ λ)Ak2 + ρAω2 2λAk
2λAk −µIpk2 + 4(µ+ λ)A− ρIpω

2

] [
U
Ψ

]
=

[
0
0

]
(44)

9
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where k = d
dx . Setting the determinant of the coefficient matrix of Eq.(44) equal to zero

gives the characteristic equation as
a2k

4 − a1k
2 + a0 = 0 (45)

where

a2 = (2µ+ λ)AµIp,

a1 = (2µ+ λ)AρIpω
2 + ρAω2µIp − 4µ(2µ+ 3λ)A2,

a0 = −ρAω2[4(µ+ λ)A− ρIpω
2]

The solution of Eq.(45) is given by

k2i =
a1 ±

√
a21 − 4a2a0
2a2

(46)

when i = 1, take ’+’; when i = 2, take ’-’. Then the general solution of the rod displace-
ment is

U(x) = A1R1 sinh k1x+ A2R1 cosh k1x+ A3R2 sinh k2x+ A4R2 cosh k2x (47a)
Ψ(x) = A1 cosh k1x+ A2 sinh k1x+ A3 cosh k2x+ A4 sinh k2x (47b)

where Ri =
−2kiλA

(2µ+λ)Ak2i+ρAω
2 = −2kiλ

(2µ+λ)k2i+ρω
2 , i = 1, 2. Substituting Eq.(43) into Eq.(42), the

expression for the amplitude of the force can be given by

Fu = (λ+ 2µ)A
dU
dx + 2λAΨ (48a)

Fψ = µIp
dΨ
dx (48b)

Now referring to Fig.1(b), the boundary conditions for displacements and forces at
both ends of the rod can be applied as follows

U (0) = U1,Ψ(0) = Ψ1, Fu (0) = −Fu1, Fψ (0) = −Fψ1 (49a)
U (L) = U2,Ψ(L) = Ψ2, Fu (L) = Fu2, Fψ (L) = Fψ2 (49b)

Substituting Eq.(49) into Eqs.(47) and (48), the relationships between displacement and
constant vectors, force and constant vectors can be derived respectively.

U1

Ψ1

U2

Ψ2

 =


0 R1 0 R2

1 0 1 0
R1Sh1 R1Ch1 R2Sh2 R2Ch2
Ch1 Sh1 Ch2 Sh2



C1

C2

C3

C4

 (50)


Fu1

Fψ1

Fu2

Fψ2

 =


−k1M1R1 − 2M2 0 (−k2M1R2 − 2M2) 0

0 −k1M3 0 −k2M3

(k1M1R1 + 2M2)Ch1 (k1M1R1 + 2M2)Sh1 (k2M1R2 + 2M2)Ch2 (k2M1R2 + 2M2)Sh2

k1M3Sh1 k1M3Ch1 k2M3Sh2 k2M3Ch2




C1

C2

C3

C4

 (51)

where Ch1 = cosh (Lk1) , Sh1 = sinh (Lk1) , Ch2 = cosh (Lk2) , Sh2 = sinh (Lk2) and
M1 = (2µ+ λ)A,M2 = λA,M3 = µIp.

By eliminating the constant vector from Eqs.(50) and (51), the DS formulation for the
10
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Mindlin-Herrmann theory can be derived as
f = KMHd (52)

where f =
[
Fu1 Fψ1 Fu2 Fψ2

]T represents the force vector, d =
[
U1 Ψ1 U2 Ψ2

]T
represents the displacement vector at both ends, KMH represents the DS matrix of the
Mindlin-Herrmann theory in the local coordinate system, namely

KMH =


G1 G2 G4 G5

G2 G3 −G5 G6

G4 −G5 G1 −G2

G5 G6 −G2 G3

 (53)

where
G1 =M1 (−R2Ch2Sh1 +R1Ch1Sh2) (R1k1 −R2k2) /δ
G2 =M3 [R1 (−Sh1Sh2k1 − k2 + Ch1Ch2k2) + R2 (−k1 + Ch1Ch2k2 − Sh1Sh2k2)] /δ
G3 =M3 (−R1Ch2Sh1 +R2Ch1Sh2) (R2k1 −R1k2) /δ
G4 = −M1 (−R2Sh1 +R1Sh2) (R1k1 −R2k2) /δ
G5 =M3 (Ch1 − Ch2) (R2k1 −R1k2) /δ
G6 = −M3 (−R1Sh1 +R2Sh2) (R2k1 −R1k2) /δ
δ = 2R1R2 (1 − Ch1Ch2) + (R2

1 +R2
2)Sh1Sh2

(54)

3. The Wittrick-Williams algorithm and mode shape computation
Unlike the numerical matrices commonly used in the finite element method, the ele-

ments of the dynamic stiffness matrix here are transcendental functions of the frequencies.
Therefore, linear algebraic solvers for numerical eigenvalue problems cannot be applied
to extract the eigensolutions from the dynamic stiffness formulation. In this respect, the
Wittrick-Williams algorithm is a reliable and accurate method for the free vibration anal-
ysis based on the dynamic stiffness formulation. The Wittrick-Williams algorithm stems
from the Rayleigh theorem, combined with the properties of the Sturm sequence. The
natural frequency can be converged upon by the bisection method or similar method up
to any required accuracy. In the Wittrick-Williams algorithm, Eq.(55) is used to calculate
the mode count J when the circular frequency ω is lower than ω∗.

J =
m∑
i

J0i(ω
∗) + s (K(ω∗)) (55)

where ω∗ is a given trial frequency (ω∗ ≥ 0); s (K(ω∗)) is the number of negative diagonal
elements after upper triangular transformation by performing Gauss elimination of K(ω)
evaluated at ω = ω∗. J0i(ω

∗) is the number of natural frequencies between ω = 0 and
ω = ω∗ for an individual element when both ends of the element are fully clamped. m is
the total number of elements composing the structure. The calculating of J0i is crucial in
the Wittrick-Williams algorithm, whose solutions will be provided as follows. It should
be noted that the solutions of classical theory and Rayleigh-Love theory (Section 3.1) can
be found in the literature[63], but those for the Rayleigh-Bishop and Mindlin-Herrmann
theories (Section 3.2 and Section 3.3) are proposed for the first time, according to the
best knowledge of the authors.

11
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3.1. The J0 count for the classical theory and Rayleigh-Love theory
For the classical theory and Rayleigh- Love theory, when both ends of the rod element

are fixed, combining the physical meaning of the dynamic stiffness, it is known that all
elements in the dynamic stiffness matrix of the rod element should have infinite number
of natural frequencies, i.e.

sinα = sin (nπ) = 0 (56)
Then J0 can be easily obtained, given by[63]

J0 (ω) = floor
(
ωL

aπ

)
(57)

where a =
√
E/ρ for the classical theory, a =

√
(EA− ν2ρIpω2)/(ρA) for the Rayleigh-

Love theory and floor(•) is the floor function representing the largest integer number not
smaller than ′•′.

3.2. The J0 count for the Rayleigh-Bishop theory
For Rayleigh-Bishop theory, it is difficult to determine the frequency number J0 of

fixed supports at both ends directly, but it is easy to find the mode count Js of the
element with both ends simply supported. According to Wittrick-Williams algorithm, Js
can be given by,

Js = J0 + s(B) (58)
in which B is the dynamic stiffness matrix for the rod element with both ends simply
supported, i.e., B =

[
G3 G6

G6 G3

]
. Thus the expression of J0 for Rayleigh-Bishop theory

can be given by
J0 = Js − s(B) (59)

For a Rayleigh-Bishop rod simply supported on both ends, we have
U (0) = U (L) = Fψ (0) = Fψ (L) = 0 (60)

We can assume
U (x) = sin

(mπ
L
x
)

(61)

where m = 0, 1, 2, 3... Substituting Eq.(61) into Eq.(25), we can get a fourth polynomial
equation with respect to m , i.e.(π

L
m
)4

− ρν2Ipω
2 − EA

Gν2Ip

(π
L
m
)2

− ρAω2

Gν2Ip
= 0 (62)

with four roots of m, namely

m1,2 = ±L
π

√
Π1 −

√
Π2

2
,m3,4 = ±L

π

√
Π1 +

√
Π2

2
(63)

where Π1 =
ρν2Ipω2−EA

Gν2Ip
and Π2 = Π2

1+
4ρAω2

Gν2Ip
. It is obvious that the wavenumber m should

be a nonnegative integer value. Therefore, the two negative roots m2 and m4 should be
omitted and now only m1 and m3 are to be considered. Three situations are needed to
be taken into consideration.

12
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(1) If Π2 < 0, then both m1 and m3 are complex value, so
Js = 0 (64)

(2) If Π2 > 0 and Π1 −
√
Π2 < 0, then m1 is imaginary and m3 is positive real, so

Js = floor

L

π

√
Π1 +

√
Π2

2

 (65)

(3) If Π2 > 0 and Π1 −
√
Π2 > 0, then both m1 and m3 are positive real, thus

Js = floor

L

π

√
Π1 −

√
Π2

2

+ floor

L

π

√
Π1 +

√
Π2

2

 (66)

Therefore, J0 can be determined by Eq.(59).

3.3. The J0 count for the Mindlin-Herrmann theory
Similarly, for Mindlin-Herrmann theory, deriving the expressions of the mode count Js

of the element with both ends simply supported is the first step. When simply supported
on both ends, we have

U (0) = U (L) = Fψ (0) = Fψ (L) = 0 (67)
We can assume

U (x) = sin
(mπ
L
x
)

Ψ(x) = k cos
(mπ
L
x
) (68)

where m = 0, 1, 2, 3...
(1) For m = 0, we have U (x) = 0 and Ψ(x) = k, corresponding to one rigid mode,

we have
Js = 1 (69)

(2) For m = 1, 2, 3..., we can substitute Eq.(68) into Eqs.(40) and (41) leading to a
fourth polynomial equation with respect to m , i.e.

a2

(π
L
m
)4

+ a1

(π
L
m
)2

+ a0 = 0 (70)

where

a2 = (2µ+ λ)AµIp,

a1 = (2µ+ λ)AρIpω
2 + ρAω2µIp − 4µ(2µ+ 3λ)A2,

a0 = −ρAω2[4(µ+ λ)A− ρIpω
2]

where four roots of m exist, namely

m1,2 = ±L
π

√
−a1 −

√
a21 − 4a0a1
2a2

,m3,4 = ±L
π

√
−a1 +

√
a21 − 4a0a1
2a2

(71)

13
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It is known from the physical sense that the wavenumber m should be a nonnegative
integer value. Therefore, the two negative roots m2 and m4 should be omitted. However,
there are still three situations for roots m1 and m3.

(i) If a21 − 4a0a1 < 0, then both m1 and m3 are complex value, we have
Js = 1 (72)

(ii) If a21 − 4a0a1 > 0 and −a1 −
√
a21 − 4a0a1 < 0 and −a1 +

√
a21 − 4a0a1 > 0, then

only m3 is positive real, so

Js = floor

L

π

√
−a1 +

√
a21 − 4a0a1
2a2

 (73)

(iii) If Π2 > 0 and Π1 −
√
Π2 > 0, then both m1 and m3 are positive real, thus

Js = floor

L

π

√
−a1 −

√
a21 − 4a0a1
2a2

+ floor

L

π

√
−a1 +

√
a21 − 4a0a1
2a2

 (74)

Finally, the J0 of a Mindlin-Herrmann can be determined based on Eq. (59).

3.4. Mode shape computation
Once the natural frequencies have been computed by the W-W algorithm, the mode

shapes can be solved directly. By taking the entry of the displacement vector corre-
sponding to an appropriate degree of freedom equal to arbitrary assigned values, the
displacement vector in the global coordinate system can be obtained. Then the displace-
ment vector in the global coordinate system will be transformed to the local coordinate
system. The unknown constant vector can be calculated by using the relationships be-
tween the force, displacement and constant vectors. Finally, the mode shapes of the
structures corresponding to the natural frequency can be recovered.

4. Results and discussion

The theory described above has been implemented into a Matlab program to compute
numerical results. To demonstrate the exactness of the method, Section 4.1 validates the
present results with the help of those available in the literature. Section 4.2 illustrates the
natural frequencies of a rod element with both ends simply supportted based on different
theories. In Section 4.3, we computed the natural frequencies based on different theories
under all possible boundary conditions. Then, in Section 4.4, we explore the natural
frequencies and mode shapes of a stepped rod. Finally, Section 4.5 shows the application
to the free vibration analysis of a pin-jointed frame based on the four rod theories.

4.1. Validation and comparisons
In this section, the DS models developed in this paper are validated against existing

results in the literatures. A cylindrical rod based on both the Rayleigh-Bishop and the
Mindlin-Herrmann theories is selected for the free vibration analyses. Both ends of the
rod are simply supported, i.e., the longitudinal deformation of the rod end is fixed whereas
the lateral deformation of the rod end is free. The physical and geometric parameters are

14
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the same as the exact solutions of Refs.[19] and [20], i.e., Young modulus E = 1011Pa,
mass density ρ = 8.5×103kg/m3, Poisson ratio ν = 0.34，radius r = 0.5m, length l = 1m.

The first six natural frequencies computed by both the dynamic stiffness method and
those in Refs.[19] and [20] are shown in Table 1. It can be clearly seen from Table 1 that
the results computed using the DSM match very well with the exact solutions computed
in Refs.[19] and [20]. The difference is mainly due to the insufficient precision of the
significant figures adopted in the references. It should be emphasized that the current
dynamic stiffness method is capable of obtaining results for all possible BCs without
deriving new formulations, which is in an apparent contrast to the Green function method
in Refs.[19] and [20].

Table 1. The first sixth natural frequencies of longitudinally vibrating Rayleigh-Bishop and Mindlin-
Herrmann under simply-simply supported boundary conditions computed by DSM and exact solutions
in terms of a Green function as in Ref.[19] and Ref.[20]

Mode No.

Natural frequency (Hz)

Rayleigh-Bishop Mindlin-Herrmann

Ref.[19] DSM Ref.[20] DSM

1 1647 1646.53 1637 1636.57
2 3014 3014.27 2883 2882.76
3 4140 4140.49 3335 3334.6
4 5152 5152.47 3750 3750.42
5 6126 6126.38 3855 3855.4
6 7094 7094.28 4793 4793.14

4.2. Comparisons of the natural frequencies based on different theories
The nth natural frequencies of a classical rod with both ends clamped can be found

in Ref.[63] given by
ωnC

= nπ
√
E/ (ρL2) (75)

where n = 1, 2, 3.... When both ends of a Rayleigh-Love rod are clamped, combined
with the physical meaning of the stiffness, it is known that all elements in the dynamic
stiffness matrix of the longitudinal free vibration of the Rayleigh Love rod element should
be infinite. Thus, we have sin

(
ωL

√
ρA

EA−ν2ρIpω2

)
= 0, and therefore, the nth natural

frequencies of a Rayleigh-Love rod with both ends clamped can be given by[63]

ωnRL
= nπ

√
E

ρL2

√
AL2

AL2+ν2n2π2Ip
(76)

It is notable that for the Rayleigh-Love theory, there is a cut off frequency ω0 for the
longitudinal vibration of rod element, shown in Fig.2. It means that with the increase
of the order of natural frequency, the natural frequency keeps approaching the cut-off
frequency ω0. This is because when ω >

√
EA/(ρIpν2), the root of the governing equation

is imaginary, and there is no harmonic vibration occuring. Ref.[66] also pointed out this
limitation.
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Fig. 2. The cut off frequency of the Rayleigh-Love theory.

Solving the quadratic equation with ω as an independent variable given by Eq.(62) ,
the nth natural frequencies of a Rayleigh–Bishop rod with both ends simply supported
can be given by[19]

ωnRB
= nπ

√
E

ρL2

√
2(1 + ν)AL2 + ν2n2π2Ip

2(1 + ν)AL2+2(1 + ν)ν2n2π2Ip
(77)

Similarly, the natural frequencies of a Mindlin-Herrmann rod with both ends simply sup-
ported can be obtained from Eq.(70). The Mindlin-Herrmann theory consists of longitu-
dinal vibration modes and pure transversal vibration modes. The nth natural frequencies
correspond to the longitudinal vibration modes can be given by

ωnMHa
=

1

2
nπ

√
E

ρL2

√√√√−8l2 + (−3 + 4ν)n2π2r2 −
√

(8l2 − n2π2r2)2 + 128n2π2ν2r2l2

n2π2r2 (−1 + ν + 2ν2)

(78)
The nth natural frequencies correspond to the pure transversal vibration modes can be
given by

ωnMHt
=

1

2
nπ

√
E

ρL2

√√√√−8l2 + (−3 + 4ν)n2π2r2 +
√

(8l2 − n2π2r2)2 + 128n2π2ν2r2l2

n2π2r2 (−1 + ν + 2ν2)

(79)
From above, it follows that the distinction among the four models is dependent on the

slenderness ratio L/r as well as the Poisson ratio ν of the material where L is the length
of the rod and r is radius of gyration of the cross-section of the rod . The Poisson ratio
ν for an isotropic material is generally constant and is assumed to be 0.3 in the following
analysis.

Fig.3 illustrates how the natural frequencies of longitudinal vibration vary with slen-
derness ratio under the boundary condition of simply supported at both ends. As ex-
pected, the differences in results for lower values of the slenderness ratios (and higher
natural frequencies) are quite pronounced. For instance, compared with the classical the-
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Fig. 3. Variation of natural frequencies (1st, 5th, 10th, 30th, 50th and 100th) with slenderness ratio(L/r)
for the classical, Rayleigh–Love, Rayleigh-Bishop and Mindlin-Herrmann theories under the S-S boundary
condition(The abscissa is the logarithmic coordinate).
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ory, the discrepancies in the fifth natural frequency for Rayleigh–Love, Rayleigh–Bishop
and Mindlin-Herrmann for slenderness ratio 5 are 25%, 10%, 15%, respectively. Therefore,
for smaller slenderness ratios and for higher frequency ranges, the lateral deformation of
the rod is so important that can not be ignored. Moreover, the Mindlin-Herrmann theory
is a more accurate theory for the modal analysis of rod structures within the low, medium
and high frequency ranges.

4.3. Comparisions of different boundary conditions
In this section, modal analysis is performed for rods by using the above four theories

applying different boundary conditions such as fixed supported, one end fixed, the other
end simply supported and simply supported conditions. We consider an isotropic, thick,
short rod with a cylindrical section. The material and geometric parameters are as follows:
r = 0.2m, l = 1m,E = 70× 109Pa, ν = 0.3, ρ = 2.7× 103kg/m3. For the classsical theory
and Rayleigh-Love theory, each node has only one longitudinal degree of freedom. So
there are three kinds of boundary conditions: fixed-fixed, fixed-free, and free-free. For
the Rayleigh-Bishop theory and Mindlin-Herrmann theory, each node has two degrees of
freedom with the longitudinal displacement and the cross section rotation. So there are
altogether 10 boundary conditions in the combinations of fixed, simply supported, sliding
and free.

The natural frequencies using the four rod theories under different boundry conditions
computed by DSM are shown in Tables 2 and 3. It should be noted that the letters ’C’,
’G’, ’S’ and ’F’ in this section represent ’clamped’, ’guided’, ’simply-supported’ and ’free’
boundary conditions, respectively. ’BCs’ is an abbreviation for boundary conditions.
’C’, ’R-L’, ’R-B’, ’M-H’ represent the classical, Rayleigh-Love, Rayleigh-Bishop, Mindlin-
Herrmann theories respectively. In general, the results computed by the dynamic stiffness
method can be used as benchmark solutions to assess the results of other approximate
methods.

4.4. Application to rod assemblies

Fig. 4. A three-stepped rod for free vibration analysis.

In this section, the dynamic stiffness method is used to analyze the vibration charac-
teristics of a stepped rod with solid circular cross-section. To get the the global dynamic
stiffness matrix of the final structure, we used an assembly process just like that of the
finite element method. The specific process is given in the appendix B. As shown in Fig.4,
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Table 2. Exact natural frequencies within the low(1st, 3rd and 5th modes), mid(10th, 20th, 30th and
50th modes) and high(100th mode) frequency ranges for a rod subject to 3 different combinations of end
constrains based on classical(C), Rayleigh-Love(R-L), Rayleigh-Bishop(R-B), Mindlin-Herrmann(M-H)
theories.

BCs Theory
Natural frequency (Hz)

1 3 5 10 20 30 50 100

C-C

C 2545.88 7637.62 12729.4 25458.7 50917.5 76376.3 127294 254587
R-L 2523.56 7091.7 10592.6 15278.7 17883.8 18530.1 18889.3 19047.2
R-B 2671.7 7687.3 12013.4 20637.9 35680.6 50825.5 81729.1 160091
M-H 2603.52 7462.88 11029.8 13526.7 22311.7 32692.6 52838.5 103602

C-F

C 1272.94 6364.69 11456.4 24185.8 49644.6 75103.3 126021 253314
R-L 1270.12 6038.29 9824.72 14989.9 17826.8 18511.5 18885.1 19046.7
R-B 1305.42 6317.19 10686.7 19060.9 33662.6 48671.5 79472.6 157770
M-H 1288.4 6199.24 9842.96 12970.9 21570.3 31706.2 51994.3 102237

F-F

C 0 5091.75 10183.5 22912.9 48371.7 73830.4 124748 252042
R-L 0 4919.94 8986.14 14671.5 17765.9 18492 18880.7 19046.2
R-B 0 4979.42 9406.48 17684.5 31698.4 46539.2 77222.9 155451
M-H 0 4953.47 8841.41 12285.4 20827.5 30381.7 50675.9 101447

the rod structure is composed of three sections, each of which is constructed of different
materials and has different cross-sectional areas. The left end of the stepped rod is fully
fixed, and the right end is free. The parameters required for dynamic stiffness analysis
are as follows:

r1 = 0.05m, r2 = 0.03m, r3 = 0.075m
l1 = 0.05m, l2 = 0.17m, l3 = 0.13m
E1 = 200× 109Pa,E2 = 70× 109Pa,E3 = 100× 109Pa

ρ1 = 7.85 × 103kg/m3, ρ2 = 2.7× 103kg/m3, ρ3 = 8.4 × 103kg/m3

ν1 = 0.30, ν2 = 0.33, ν3 = 0.34
The natural frequencies obtained using DSM based on the four theories are shown

in Table 4. Due to the existence of the cut-off frequency of Rayleigh love theory, the
natural frequencies of the tenth order and higher are not possible to compute. Although,
for the first natural frquency, the Mindlin-Herrmann theory is larger than the classical
theory (the differences are still well within 1.2%), but for high-order natural frequencies,
the Mindlin-Herrmann theory is much smaller and more accurate than other theories.

Table 5 illustrates the 1st, 3rd, 10th, 30th, and 50th mode shapes based on four
theories. It can be clearly seen that for the classical and Rayleigh-Love theories, there
is only longitudinal deformation, but for the Rayleigh-Bishop and Mindlin-Herrmann
theories, the lateral deformation is apparent and cannot be ignored.

4.5. Application to pin-jointed plane frame structures
The higher-order rod theory can be incorporated into pin-jointed frame structures for

more accurate results. Fig.5 gives an illustrative example. Each element of the frame has
the same uniform geometrical, cross sectional and material properties. Flexural rigidity
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Table 3. Exact natural frequencies within the low(1st, 3rd and 5th modes), mid(10th, 20th, 30th and
50th modes) and high(100th mode) frequency ranges for a rod subject to 7 different combinations of end
constrains based on Rayleigh-Bishop(R-B) and Mindlin-Herrmann(M-H) theories

BCs Theory
Natural frequency (Hz)

1 3 5 10 20 30 50 100

C-S R-B 2600.06 7492.03 11731.1 20223.6 35113.5 50184.2 81025.2 159343
M-H 2567.08 7338.58 10948.8 13501.1 22096.8 32044.7 52090.4 103599

C-G R-B 1305.49 6325.16 10733.7 19449.2 34369.5 49422.9 80247.9 158556
M-H 1288.52 6225.55 10185.8 13523.9 22311.3 31844.7 52147.1 103021

S-S R-B 2532.17 7306.5 11461.7 19822.8 34553.9 49546.9 80322.9 158594
M-H 2531.73 7219.9 10859.2 13233.5 22044.9 31290.5 51312.3 103020

S-G R-B 1271.20 6165.87 10482.4 19059.3 33815.4 48788.4 79546.5 157808
M-H 1271.19 6128.24 10048.8 13077.9 21597.2 31827.6 52090.0 102234

S-F
R-B 1271.15 6158.73 10440.4 18699.3 33116.5 48040.2 78772.2 157022
M-H 1271.08 6104.26 9729.03 12698.6 20937.7 31281.5 51310.7 102132

G-G R-B 0 4986.72 9464.61 33078.1 33078.1 48030.6 78770.4 157022
M-H 0 4973.7 9179.27 22044.9 22044.9 31290.5 51312.3 103020

G-F R-B 0 4983.06 9435.21 17968.2 32383.9 47283.9 77996.4 156236
M-H 0 4963.50 8989.75 21570.3 21570.3 30567.9 50697.5 102233

Table 4. Exact natural frequencies covering low-(1st-5th modes), mid-(10th-50th modes) and high-(100th
mode) frequency range of a stepped rod in longitudinal vibration using four theories, namely, Classical(C),
Rayleigh-Love(R-L), Rayleigh-Bishop(R-B) and Mindlin-Herrmann(M-H).

Mode No.
Natural frequency (Hz)

C R-L R-B M-H

1 1184.39 1184.31 165.181 1198.20
2 12509.4 11732.9 12428.2 11677.2
3 15002.6 14503.4 15641.6 14842.5
4 24187.3 20014.4 21570.1 18403.7
5 26578.8 23268.4 27558.9 21923.8
10 59541.9 28865.4 45209.5 36163.3
30 181371 30341.0 121635 87117.2
50 305332 30417.7 196030 132447
100 613992 30446.1 381754 254677

EI = 4 × 106Nm2, axial rigidity EA = 8 × 108N , mass per unit ρA = 30kg/m, Poisson
ratio ν = 0.3.

By applying the proposed DS formulations of the four rod theories, a wide frequency
range of natural frequencies of the frame structure are obtained through both DSM and
FEM. Some selected frequencies computed by DSM based on four different theories are
compared with FE solutions computed by ANSYS in Table 6. The computation of both
DSM and FEM results was performed on the same PC equipped with a 2.40 GHz Intel

20



Liu et. al. / Applied Mathematical Modelling 01 (2021) 1–29 21

Table 5. Mode shapes of a stepped rod in longitudinal vibration based on four different theories, namely,
classical(C), Rayleigh-Love(R-L), Rayleigh-Bishop(R-B), Mindlin-Herrmann(M-H), respectively

Mode No.
Mode shapes

Classical Rayleigh-Love Rayleigh-Bishop Mindlin-Herrmann

1

3

10

30

50
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Fig. 5. A pin-jointed plane frame.

Table 6. Natural frequencies in Hz and computational time(Comp. Time) of the pin-jointed plane frame
of Fig. 4 using the finite element method(FEM) by using different numbers of elements(N) and by the
dynamic stiffness method(DSM) based on four rod theories, namely, classical(C), Rayleigh-Love(R-L),
Rayleigh-Bishop(R-B), Mindlin-Herrmann(M-H), respectively. ITC (Impossible To Compute), % Error
in FEM relative to R-B shown in the parenthesis.

Mode No.
FEM DSM

N = 13 N = 26 N = 65 N = 780 N = 1300 C R-L R-B M-H

1
48.8655 62.5114 67.8912 72.2833 72.4453

72.6877 72.6874 73.0610 72.8763(-33.16%) (-14.49%) (-7.08%) (-1.06%) (-0.84%)

3 122.614 132.813 143.931 151.622 151.933 152.403 152.401 153.126 152.768(-19.97%) (-13.32%) (-6.00%) (-0.98%) (-0.78%)

5 187.415 228.456 255.146 265.687 266.048 266.593 266.581 267.952 267.276(-30.10%) (-14.79%) (-4.78%) (-0.85%) (-0.71%)

25 (ITC) 1365.09 1280.20 1285.20 1287.39 1290.99 1289.56 1297.54 1293.89(-5.16%) (-1.34%) (-0.95%) (-0.78%)

50 (ITC) (ITC) 2994.94 2643.82 2646.84 2654.67 2642.30 2661.54 2654.20(12.53%) (-0.67%) (-0.55%)

100 (ITC) (ITC) 4367.50 5264.03 5242.20 5238.84 5145.61 5210.65 5192.44(-16.18%) (1.02%) (0.61%)

200 (ITC) (ITC) (ITC) 10778.4 10593.8 10505.2 9808.75 10137.1 10012.16.33% (4.51%)

350 (ITC) (ITC) (ITC) 20010.7 18956.4 18378.9 15262.5 16615.4 15674.6(20.43%) (14.09%)

500 (ITC) (ITC) (ITC) 30323.7 27954.0 26327.8 18982.9 22147.9 16969.5(36.91%) (26.22%)
Comp. Time(s) \ \ \ 92.56 130.31 6.42 7.934 9.88 12.96

core i7-5500U CPU processor and 8 GB of memory. When using the DSM, only one
element for each member is used in the modelling and all DSM results are given with
accuracy of six significant figures. The FEM results are computed by using different
numbers of elements. When the numbers of elements are not enough in the FEM, the
results are unreliable and higher natural modes are not possible to compute. It is apparent
that DSM is far more superior to the FEM in free vibration analysis within medium to
high frequency ranges. It should be noted that the relative errors between two methods
increase at higher modes. There may be two reasons. On one hand, it is because the
numbers of elements used in FEM are not enough at high frequency range (Compared
with the classical theory, the relative errors of the 500th mode between DSM and FEM
is 6.18%). On the other hand, it reflects that the influence of the lateral deformation of
the rod structure is apparent and cannot be ignored when analyzing the high-frequency
vibration of the rod structures. The major advantage of the proposed DSM lies in the
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fact that the DS formulation satisfies the governing differential equation exactly and uses
extremely low degree of freedom to represent the system most accurately. Furthermore, it
can be seen from Table 6 that when the structure is divided into 1300 elements in FEM,
the FEM takes as long as 130s to compute the first 500 modes while the DSM only costs
13s. It is apparent that the DSM gives exact results covering low to high frequency ranges
with much higher efficiency than the FEM.

5. Conclusion

In this paper, closed-form dynamic stiffness (DS) formulations for the Rayleigh–Bishop
and Mindlin-Herrmann theoris are developed for the first time, which is applicable to the
exact vibration analysis of low aspect ratio rods especially within mid to high frequency
ranges. First, the general solutions of the governing differential equations of motion based
on the classical, Rayleigh-Love, Rayleigh-Bishop and Mindlin-Herrmann rod theories are
obtained. Then those general solutions are used as exact shape functions to be substituded
into the generalised displacement and force boundary conditions, leading to ensuing an-
alytical DS matrices for different rod elements. As a well-established solution technique,
the Wittrick-Williams algorithm is applied for exact modal analysis of individual rod as
well as their assemblies. Besides, the difficulty generally encountered in computing the
problematic J0 count when applying the Wittrick-Williams algorithm for modal analysis
has been overcome in an elegant and efficient manner.

To verify the accuracy of the developed dynamic stiffness models, the natural frequen-
cies of a cylindrical rod with specific boundary conditions based on the Rayleigh-Bishop
and Mindlin-Herrmann theories are provided and validated against existing exact solu-
tions. Comparisons on the natural frequencies made for different theories are also made.
The results show that the distinction between the models quickly decreases with the in-
crease of slenderness ratio(L/r) and the decrease of Poisson ratio. Then, the proposed
dynamic stiffness matrices are subsequently used for free vibration analysis of a uniform
rod under all possible combinations of boundary conditions. The current rod DS formu-
lations has been applied to both cantilevered stepped rods and pin-jointed plane frames
to demostrate the wide applicability of the model to complex built-up structures and the
high efficiency of the dynamic stiffness method. The theories developed are particularly
helpful when analysing mid to high-frequency free vibration of built-up structures. Fur-
thermore, the developed models can be used for the exact free vibration analysis of space
frames and multibody systems. The theory developed will be particularly useful when
applying statistical energy analysis method for which the modal density is usually very
high in the high frequency range.
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Appendix A. Dynamic stiffness formulation for the Mindlin-Herrmann the-
ory with rectangular section

The governing differential equation (GDE) in the time domain for a rod with rectan-
gular section based on the Mindlin-Herrmann theory can be expressed in the following
form[65]

(2µ+ λ)A
∂2u

∂x2
+ λA

∂ψ

∂x
= ρA

∂2u

∂t2
(A.1)

µIK1
∂2ψ

∂x2
− (2µ+ λ)Aψ − λA

∂u

∂x
= ρIK2

∂2ψ

∂t2
(A.2)

where K1 = 12
π2 , K2 = K1

(
1+v

0.87+1.12v

)2, I is the moment of inertia of the section. The
natural boundary conditions are as follows

fu = (2µ+ λ)A
du
dx

+ λAψ (A.3a)

fψ = µIK1
dψ
dx

(A.3b)

Assuming that both the lateral and the longitudinal displacements undergo a simple
harmonic vibration with an angular frequency of ω over time t, that is

u(x, t) = U(x) sin(ωt) (A.4a)
ψ(x, t) = Ψ(x) sin(ωt) (A.4b)

where U(x) and Ψ(x) are the amplitudes of longitudinal and lateral vibrations, respec-
tively. Substituting Eqs.(A.4a)(A.4b) into Eqs.(A.1) and (A.2) gives[

(2µ+ λ)Ad2 + ρAω2 λAd
λAd −µId2 + 4(µ+ λ)A− ρIpω

2

] [
U
Ψ

]
=

[
0
0

]
(A.5)

where d = d
dx . Setting the determinant of the coefficient matrix of Eq.(A.5) equal to zero

gives the characteristic equation as
a2k

4 − a1k
2 + a0 = 0 (A.6)

where

a2 = (2µ+ λ)AµIK1,

a1 = −(2µ+ λ)ρIAK2ω
2 − ρAω2µIK1 + 4µ(µ+ λ)A2,

a0 = −ρAω2[(2µ+ λ)A− ρIK2ω
2]

The solution of Eq.(A.6) is given by

k2i =
a1 ±

√
a21 − 4a2a0
2a2

(A.7)

when i = 1, take ’+’; when i = 2, take ’-’. Then the general solution of the rod displace-
ment is

U(x) = A1R1 sinh k1x+ A2R1 cosh k1x+ A3R2 sinh k2x+ A4R2 cosh k2x (A.8a)
Ψ(x) = A1 cosh k1x+ A2 sinh k1x+ A3 cosh k2x+ A4 sinh k2x (A.8b)
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where Ri =
−kiλA

(2µ+λ)Ak2i+ρAω
2 = −kiλ

(2µ+λ)k2i+ρω
2 , i = 1, 2. Substituting Eq.(A.4) into Eq.(A.3),

the expression for the amplitude of the force can be given by

Fu = (λ+ 2µ)A
dU
dx + 2λAΨ (A.9a)

Fψ = µIK1
dΨ
dx (A.9b)

The boundary conditions for displacements and forces at both ends of the rod can be
applied as follows

U (0) = U1,Ψ(0) = Ψ1, Fu (0) = −Fu1, Fψ (0) = −Fψ1 (A.10a)
U (L) = U2,Ψ(L) = Ψ2, Fu (L) = Fu2, Fψ (L) = Fψ2 (A.10b)

Substituting Eq.(A.10) into Eqs.(A.8) and (A.9), the relationships between displacement
and constant vectors, force and constant vectors can be derived respectively.

U1

Ψ1

U2

Ψ2

 =


0 R1 0 R2

1 0 1 0
R1Sh1 R1Ch1 R2Sh2 R2Ch2
Ch1 Sh1 Ch2 Sh2



C1

C2

C3

C4

 (A.11)


Fu1

Fψ1

Fu2

Fψ2

 =


−k1M1R1 −M2 0 (−k2M1R2 −M2) 0

0 −k1M3 0 −k2M3

(k1M1R1 +M2)Ch1 (k1M1R1 +M2)Sh1 (k2M1R2 +M2)Ch2 (k2M1R2 +M2)Sh2

k1M3Sh1 k1M3Ch1 k2M3Sh2 k2M3Ch2




C1

C2

C3

C4

 (A.12)

where Ch1 = cosh (Lk1) , Sh1 = sinh (Lk1) , Ch2 = cosh (Lk2) , Sh2 = sinh (Lk2) and
M1 = (2µ+ λ)A,M2 = λA,M3 = µIK1.
By eliminating the constant vector from Eqs.(A.11) and (A.12), the DS formulation for
the Mindlin-Herrmann theory can be derived as

f = KMHsd (A.13)

where f =
[
Fu1 Fψ1 Fu2 Fψ2

]T represents the force vector, d =
[
U1 Ψ1 U2 Ψ2

]T
represents the displacement vector at both ends, KMHs represents the DS matrix of the
Mindlin-Herrmann rod with square section, namely

KMHs =


G1 G2 G4 G5

G2 G3 −G5 G6

G4 −G5 G1 −G2

G5 G6 −G2 G3

 (A.14)
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where
G1 =M1 (−R2Ch2Sh1 +R1Ch1Sh2) (R1k1 −R2k2) /δ
G2 =M3 [R1 (−Sh1Sh2k1 − k2 + Ch1Ch2k2) + R2 (−k1 + Ch1Ch2k2 − Sh1Sh2k2)] /δ
G3 =M3 (−R1Ch2Sh1 +R2Ch1Sh2) (R2k1 −R1k2) /δ
G4 = −M1 (−R2Sh1 +R1Sh2) (R1k1 −R2k2) /δ
G5 = −M1R1R2 (Ch1 − Ch2) (R1k1 −R2k2) /δ
G6 = −M3 (−R1Sh1 +R2Sh2) (R2k1 −R1k2) /δ
δ = 2R1R2 (1 − Ch1Ch2) + (R2

1 +R2
2)Sh1Sh2

(A.15)
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