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Abstract
A vast and growing literature on explaining deep learning models has emerged. This
paper contributes to that literature by introducing a global gradient-based model-
agnostic method, which we call Marginal Attribution by Conditioning on Quantiles
(MACQ). Our approach is based on analyzing the marginal attribution of predictions
(outputs) to individual features (inputs). Specifically, we consider variable importance
by fixing (global) output levels, and explaining how features marginally contribute to
these fixed global output levels. MACQ can be seen as a marginal attribution coun-
terpart to approaches such as accumulated local effects, which study the sensitivities
of outputs by perturbing inputs. Furthermore, MACQ allows us to separate marginal
attribution of individual features from interaction effects and to visualize the 3-way
relationship between marginal attribution, output level, and feature value.
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Locally interpretable model-agnostic explanation (LIME) · Variable importance ·
Post-hoc analysis · Interaction

1 Introduction

Deep learning models are typically trained to provide optimal predictive performance.
Interpreting and explaining the results of deep learningmodels has, until recently, only
played a subordinate role.With growing complexity of deep learning models, the need
and requirement of being able to explain deep learning solutions has become increas-
ingly important. This applies to many fields of application: deep learning findings
in medical fields and health care need to make sense to patients, loan and mortgage
evaluations and credit approvals need to be understandable to customers, insurance
pricing must be explained to insurance policyholders, business processes and deci-
sions need to be transparent to regulators, etc. These needs are even reinforced by
the requirements of being able to prove that deep learning solutions do not discrimi-
nate w.r.t. protected features and are in line with data protection regulation; see, e.g.,
Lindholm et al. (2022) and the references therein. Thus, there is substantial social and
political pressure to be able to explain, illustrate and verify deep learning solutions,
in order to provide reassurance that these work as intended.

Recent research focuses on different methods for explaining deep learning decision
making; an overview is given in Samek and Müller (2019). Some of these methods
provide a post-hoc analysis, which aims at understanding global model behavior, by
explaining individual outcomes and learned representations. Often this is done by
analyzing representative examples. We will discuss some of these post-hoc analysis
methods in the literature overview presented in the next section. Other methods aim at
a wider interdisciplinary approach bymore broadly examining how decisionmaking is
done in a social context, see, e.g., Miller (2019). All these approaches have in common
that they try to “open up the black-box”, to make model-driven decisions explainable
to stakeholders.

Our paper contributes to this literature. We provide a novel gradient-based model-
agnostic tool by analyzing marginal contributions to deep learning decisions in the
spirit of salience methods, as described in Ancona et al. (2019). Salience methods
are local model-agnostic tools that attribute marginal effects on outputs to different
inputs, i.e., marginal attribution is understood in the sense that effects on outputs are
allocated to individual components of the input features. The attributions we consider
are motivated by sensitivity analysis tools in risk measurement, which aggregate local
marginal attributions to a global picture at a given quantile level of the output variable,
see Hong (2009) and Proposition 1 in Tsanakas and Millossovich (2016). We call
this method Marginal Attribution by Conditioning on Quantiles (MACQ). Thus, our
first contribution is that we provide a global model-agnostic tool that attributes output
levels to input variables. In particular, this allows us to describe how the importance
of inputs varies across different output levels. As a second contribution, we extend
this view by including higher order derivatives beyond linear marginal contributions.
This additional step allows us to analyze interactions, and it can be seen in the context
of deep Taylor decompositions (DTD), similar to Montavon et al. (2017). A difficulty
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in Taylor decompositions is that they depend on a reference point. By rearranging
terms and taking advantage of our quantile view, we determine an optimal global
reference point that allows us to quantify both variable importance and interaction
strength in our MACQ approach. The third contribution is that we introduce graphic
tools that illustrate the 3-way relationship between (i) marginal attributions, (ii) the
response/output level and (iii) the feature value. Summarizing, ourmethod allows us to
simultaneously study variable importance and interaction strength at different output
levels, i.e., it allows us to explain which inputs and interactions contribute to a high or
a low output. This viewpoint is different from most other explainability tools, which
are mostly based on perturbations of inputs. Moreover, our method can be applied at
low computational cost, an important practical advantage.

Organization. The next section gives a literature overview that embeds ourMACQ
method into the present toolbox ofmodel explainability. This literature overview is also
used to introduce the relevant notation. Section 3 introduces our new proposal. This
section is divided into three parts: in Sect. 3.1 we present our main idea of aggregating
local marginal attributions to a quantile sensitivity analysis; Sect. 3.2 gives a higher
order expansion that grounds the study of interaction strengths; and Sect. 3.3 discusses
the choice of the reference point needed to calibrate our explainability tool. A synthetic
data example is presented in Sect. 4, Sect. 5 gives a real data example, and in Sect. 6 we
conclude. Appendix A revisits distortion risk measures, Appendix B gives additional
analysis on the real data example, and in Appendix C we describe the data used.

2 Literature overview

We give a brief summary of recent developments in post-hoc interpretability and
explainability tools for deep learning models. This summary also serves to introduce
the relevant notation for this paper. Consider the following twice differentiable regres-
sion function

μ : Rq → R, x �→ μ(x), (2.1)

with features x = (x1, . . . , xq)� ∈ R
q . The regression function μ describes the sys-

tematic effects of features x on the randomvariableY via the (conditional) expectation

E[Y |x] = μ(x).

We assume twice differentiability in x ∈ R
q of regression function (2.1) because

our model-agnostic proposal will be gradient-based; discrete inputs, e.g., binary input
components, will be embedded into R. In our examples in Sects. 4 and 5, we will use
a deep feed-forward neural network on tabular input data with the hyperbolic tangent
activation function. This gives us a smooth regression function (and an interpolation
for discrete input components), whose derivatives can be obtained in standard software
such as TensorFlow/Keras and PyTorch.
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2.1 Model-agnostic tools

Recent literature aims at understanding regression functions (2.1) coming from deep
learning models. One approach is to analyze marginal plots. We select one com-
ponent x j of x, and, by a slight abuse of notation, write x = (x j , x\ j ), where
x\ j = (x1, . . . , x j−1, x j+1, . . . xq)� collects all components of x except x j . We then
study the regression function as a function of x j by keeping the remaining components
x\ j of x fixed, that is,

x j ∈ R �→ μ(x j , x\ j ).

This gives the method of individual conditional expectation (ICE) of Goldstein et al.
(2015). If we have thousands or millions of instances (Y , x), it might be advantageous
to study ICE profiles on an aggregated level. This is the proposal of Friedman (2001)
and Zhao and Hastie (2021), called partial dependence plots (PDPs). We introduce the
feature distribution P which describes the statistical nature of all (potential) features
X ∼ P . The PDP profile of component 1 ≤ j ≤ q is defined by

x j �→ EP
[
μ(x j , X\ j )

] =
∫

μ(x j , x\ j )dP(x\ j ). (2.2)

The critical point in this approach is that it does not reflect the dependence structure
between feature components X j and X\ j , as described by feature distribution P ,
because we only integrate over the marginal distribution P(x\ j ) of X\ j in (2.2). The
method of accumulated local effects (ALEs) introduced by Apley and Zhu (2020)
aims at correctly incorporating the dependence structure of X . The local effect of
component x j in instance x is given by the partial derivative

μ j (x) = ∂μ(x)

∂x j
. (2.3)

The average local effect of component 1 ≤ j ≤ q is obtained by

x j �→ � j (x j ) = EP
[
μ j (X)

∣∣ X j = x j
] =

∫
μ j (x j , x\ j )dP(x\ j |x j ), (2.4)

where P(x\ j |x j ) denotes the conditional distribution of X\ j , given X j = x j . ALEs
integrate the average local effects � j (·) over their domain, thus, the ALE profile is
defined by

x j �→
∫ x j

x j0

� j (z j )dz j =
∫ x j

x j0

∫
μ j (z j , x\ j )dP(x\ j |z j )dz j , (2.5)

where x j0 is a given initialization point.
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Remark 2.1 • ThemaindifferencebetweenPDPs andALEs is that the latter correctly
consider the dependence structure between X j and X\ j . The two profiles coincide
if X j and X\ j are independent under P .

• Apley and Zhu (2020) provide a discretized version of the ALE profile, which
can also be applied to non-differentiable regression functions μ(·), such as those
coming from regression trees and tree boosting methods. Basically, this can be
received either by finite differences or by a local analysis in an environment of a
selected feature value x j .

• Local effect (2.3) allows us to consider a 1st order Taylor expansion. Denote by
∇xμ(x) the gradient of μ(·) w.r.t. x. We have

μ(x + ε) = μ(x) + (∇xμ(x))�ε + o(‖ε‖), (2.6)

for ε ∈ R
q going to zero. This gives us a 1st order local approximation to μ(·) in

x, which reflects the local (linear) behavior, similarly to the locally interpretable
model-agnostic explanation (LIME) introduced by Ribeiro et al. (2016). That is,
(2.6) fits a local linear regression model around μ(x) with regression parameters
described by the components of the gradient ∇xμ(x). LIME then uses regu-
larization, e.g., LASSO, to select the most relevant feature components in the
neighborhood of μ(x).

• More generally, (2.6) defines a local surrogate model that can be used for a local
sensitivity analysis by perturbing x within a small environment. “White-box”
surrogate models are popular tools to explain complex regression functions; for
instance, decision trees can be fit to network regression models for extracting the
most relevant feature information.

• We can summarize the methods presented in this section as sensitivity tools that
analyze the effects on outputs of changing inputs. Moreover, the presented tools
do not study interaction effects of input components.

2.2 Gradient basedmodel-agnostic tools

Gradient-based model-agnostic tools can be used to attribute outputs to (feature)
inputs. Attribution denotes the process of assigning a relevance index to input com-
ponents, in order to explain a certain output, see Efron (2020). Ancona et al. (2019)
provide an overview of gradient-based attribution methods. In formula (2.3) of the
previous subsection we have met a first attribution method, giving the sensitivity of
the output μ(x) as a function of the input x.

Marginal attribution is obtained by considering the directional derivative w.r.t. the
features

x j �→ x jμ j (x) = x j
∂μ(x)

∂x j
. (2.7)

This has first been discussed in the machine learning community by Shrikumar et al.
(2016) who observed that this can make attribution more concise; these directional
derivatives have been coined Gradient*Input in the machine learning literature, see
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Ancona et al. (2019). Mathematically speaking, these marginal attributions can be
understood as individual contributions to a certain value in a Taylor series sense (and
relative to a reference point). For a linear regression model x �→ β0 +∑q

j=1 β j x j , the
marginal attributions give an additive decomposition of the regression function, and
β j can be considered as the relevance index of component j . In non-linear regression
models, such a linear decomposition only holds true locally, see (2.6), and other meth-
ods such as the Shapley value (Shapley 1953) are used to quantify non-linear effects
and interaction effects, see Lundberg and Lee (2017). We also mention (Sundararajan
et al. 2017), who consider integrated gradients

x j �→ x j

∫ 1

0
μ j (x0 + z(x − x0)) dz, (2.8)

for a given reference point x0. This mitigates the problem of only being accurate
locally. In practice, however, evaluation of (2.8) is computationally demanding, sim-
ilarly to Shapley values.

There are other methods that are specific to deep networks. We mention layer-wise
propagation (LRP) by Binder et al. (2016) and DeepLIFT (Deep Learning Important
FeaTures) by Shrikumar et al. (2017). These methods use a backward pass from
the output to the input. In this backward pass a relevance index (budget) is locally
redistributed (recursively from layer to layer), resulting in a relevance index on the
inputs (for the given output). Ancona et al. (2019) show in Propositions 1 and 2
that these two methods can be understood as averages over marginal attributions. We
remark that these methods are mainly used for convolutional neural networks (CNNs),
e.g., in image recognition, whereas our MACQ proposal is more suitable for tabular
data, as we require differentiability w.r.t. the inputs x. CNN architectures are often
non-differentiable because of the use of max-pooling layers.

Our contribution builds on marginal attributions (2.7). Marginal attributions are,
by definition, local explanations, and we will show how to integrate these local con-
siderations into a global variable importance analysis. Samek and Müller (2019) call
such an aggregation of individual explanations a global meta-explanation. As a conse-
quence, ourMACQ approach is the marginal attribution counterpart to ALEs by fixing
(global) output levels and describing how features marginally contribute to these lev-
els, whereas ALEs rather study the sensitivities of the outputs by perturbing the inputs.
Thus, similar to LRP and DeepLIFT, we use a type of backward pass from the output
to the input in our tool to explain the output.

3 Marginal attribution by conditioning on quantiles

3.1 First order attributions

We consider regression model (2.1) from a marginal attribution point of view, moti-
vated by the risk sensitivity tools of Hong (2009) and Tsanakas and Millossovich
(2016). Rather than considering average local effects (2.4), conditioned on event
{X j = x j }, we try to understand how feature components contribute to a certain
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response level μ(x). This allows us to study how the response levels are composed in
different regions of the decision space, as this is of intrinsic interest, e.g., in financial
applications.

Select a quantile level α ∈ (0, 1). The α-quantile of μ(X) is given by the left-
continuous generalized inverse

F−1
μ(X)(α) = inf

{
y ∈ R; Fμ(X)(y) ≥ α

}
,

where Fμ(X)(y) = P[μ(X) ≤ y] describes the distribution function of μ(X).
The 1st order attributions to components 1 ≤ j ≤ q at quantile level α are defined

by

S j (μ;α) = EP

[
X jμ j (X)

∣∣∣μ(X) = F−1
μ(X)(α)

]
. (3.1)

These are the Marginal Attributions by Conditioning on Quantiles (MACQ).
Tsanakas andMillossovich (2016) show that (3.1) naturally arises via sensitivities of

distortion riskmeasures.Choosing theα-Dirac distortion,which allocates a probability
weight of size 1 to a given α ∈ (0, 1), we exactly receive (3.1), which corresponds to
the sensitivities of the Value-at-Risk (VaR) risk measure at the given quantile level α.
Thus, the sensitivities of the VaR risk measure can be described by the average of the
marginal attributions X jμ j (X), conditioned on being the output at the corresponding
quantile level. The interested reader is referred to Appendix A for a more detailed
description of distortion risk measures.

Alternatively, we can describe 1st order attributions (3.1) by a 1st order Taylor
expansion (2.6) in feature perturbation ε = −x

μ(0) ≈ μ (x) − (∇xμ(x))� x. (3.2)

This shows that the 1st order attributions (3.1) describe a 1st order Taylor approxima-
tion at the common reference point 0, and rearranging the terms we get the 1st order
contributions to a given response level

F−1
μ(X)(α) = EP

[
μ (X)

∣∣
∣μ(X) = F−1

μ(X)(α)
]

≈ μ (0) +
q∑

j=1

S j (μ;α). (3.3)

Remark 3.1 • A 1st order Taylor expansion (2.6) gives a local model-agnostic
description in the spirit of LIME. Explicit choice ε = −x provides (3.2), which
can be viewed as a local description of μ(0) relative to x. The 1st order contribu-
tions (3.3) combine all these local descriptions (3.1) w.r.t. a given quantile level to
get the integrated MACQ view of μ(0), i.e.,

μ(0) ≈ E

[
μ (X) − (∇xμ(X))� X

∣∣∣μ(X) = F−1
μ(X)(α)

]

= F−1
μ(X)(α) −

q∑

j=1

S j (μ;α).
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This exactly corresponds to 1st order approximation (3.3). In the sequel it is less
important that we can approximate μ(0) by this integrated view, but μ(0) plays
the role of the reference level that calibrates our global meta-explanation. Thus,
all explanations made need to be understood relative to this reference level μ(0).

• In (3.2)–(3.3) we implicitly assumed that 0 is a suitable reference point for calibrat-
ing our global meta-explanation. We further explore and improve this calibration
in Sect. 3.3, below.

• Integrated gradients (2.8) integrate along a single path from a reference point x0
to x to make the 1st order Taylor approximation precise. We exchange the roles
of the points, here, and we approximate the reference point by aggregating over
all local descriptions in features X .

• 1st order contributions (3.3) provide a 3-way description of the regression function,
namely, they combine (i) marginal attribution S j (μ;α) as a function of 1 ≤ j ≤ q,
(ii) response level F−1

μ(X)(α) as a function of α, and (iii) feature values x j . In our
applications below we will illustrate the data from these different angles, each
having its importance in explaining the response.

• 1st order attribution (3.1) combines marginal attributions X jμ j (X) by focusing
on a common quantile level. A similar approach could also be done for other
model-agnostic tools, such as the Shapley value.

Example 3.2 (linear regression) A linear regression model considers regression func-
tion

x �→ μ(x) = β0 + β�x, (3.4)

with bias/intercept β0 ∈ R and regression parameter β ∈ R
q . The 1st order contribu-

tions (3.3) are for α ∈ (0, 1) given by

F−1
μ(X)(α) = β0 +

q∑

j=1

β jEP

[
X j

∣∣∣μ(X) = F−1
μ(X)(α)

]
= μ (0) +

q∑

j=1

S j (μ;α).

(3.5)

Thus, weweight the regression parameters β j with the feature components X j accord-
ing to their contributions to quantile F−1

μ(X)(α); and the reference point 0 is given
naturally providing initialization μ(0) = β0.

This MACQ explanation (3.5) is rather different from the ALE profile (2.5). If we
initialize x j0 = 0, we receive ALE profile for the linear regression model

x j �→
∫ x j

0
� j (z j )dz j = β j x j .

This is exactly marginal attribution (2.7) of component j in the linear regression
model and it explains the change of the linear regression function if we change feature
component x j , whereas (3.5) describes the contribution of each feature component
to an expected response level μ(x). Explanation (3.5) of the quantile level F−1

μ(X)(α)

is exact in the linear regression case because there are no higher order terms in the
Taylor expansion (2.6).
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In general, the Taylor expansion (3.3) is accurate if the distance between 0 and X
is small enough for all relevant X , and if the regression function can be well described
aroundμ(X)by a linear function. The former requires that the reference point is chosen
somewhere “in the middle” of the feature distribution P . A useful consequence of our
output-to-input view is that we can explicitly quantify the accuracy of the 1st order
approximation by

∣∣∣
∣∣∣
F−1

μ(X)(α) − μ (0) −
q∑

j=1

S j (μ;α)

∣∣∣
∣∣∣
. (3.6)

In general, we want (3.6) to be small uniformly in quantile level α, for the given refer-
ence point 0. This then implies that the 1st order attributions give a good description on
all quantile levels α. In the linear regression case this description is exact, see (3.5). In
contrast to the Taylor decomposition inMontavon et al. (2017), the quantiles F−1

μ(X)(α)

give us a natural anchor point for determining a suitable reference point, which is also
computationally feasible. This idea will be developed in Sect. 3.3, below.

3.2 Second order attributions and interaction strength

Friedman and Popescu (2008) and Apley and Zhu (2020) have used higher order
derivatives of μ(·) to analyze interaction strength in systematic effects. This requires
the study of higher order Taylor expansions. The 2nd order Taylor expansion is given
by

μ(x + ε) = μ(x) + (∇xμ(x))�ε + 1

2
ε�(∇2

xμ(x))ε + o(‖ε‖2), (3.7)

where ∇2
xμ denotes the Hessian of μ w.r.t. x. Setting ε = −x allows us, in complete

analogy to (3.3), to study 2nd order contributions

F−1
μ(X)(α) ≈ μ (0) +

q∑

j=1

S j (μ;α) − 1

2

q∑

j,k=1

Tj,k(μ;α), (3.8)

with 2nd order attributions, for 1 ≤ j, k ≤ q,

Tj,k(μ;α) = EP

[
X j Xkμ j,k(X)

∣
∣∣μ(X) = F−1

μ(X)(α)
]
. (3.9)

Slightly rearranging the terms in (3.7) allows us to study individual feature contribu-
tions and interaction terms separately, that is,

F−1
μ(X)(α) ≈ μ (0) +

q∑

j=1

(
S j (μ;α) − 1

2
Tj, j (μ;α)

)
−

∑

1≤ j<k≤q

Tj,k(μ;α).

(3.10)
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The last term quantifies all 2nd order contributions coming from interactions between
X j and Xk , j �= k. We will show how interaction effects can be included in individual
features’ marginal attributions in Sect. 5.5, below.

Example 3.3 (quadratic regression function) A quadratic regression model considers
the regression function

x �→ μ(x) = β0 + β�x + x�Bx, (3.11)

with parameters β0 ∈ R, β ∈ R
q and B = (b j,k) j,k ∈ R

q×q . The 2nd order contribu-
tions are for α ∈ (0, 1) given by

F−1
μ(X)(α) = β0 + β�

EP

[
X

∣∣∣μ(X) = F−1
μ(X)(α)

]

+
q∑

j,k=1

b j,kEP

[
X j Xk

∣∣∣μ(X) = F−1
μ(X)(α)

]

= μ (0) +
q∑

j=1

S j (μ;α) − 1

2

q∑

j,k=1

Tj,k(μ;α),

withμ(0) = β0. Thus, obviously, the explanation (3.10) of the quantile level F
−1
μ(X)(α)

is exact in the case of a quadratic regression function (3.11).

Remark 3.4 The motivation for studying 1st order attributions (3.1) has been given
in terms of the risk sensitivity tools of Hong (2009) and Tsanakas and Millossovich
(2016). These are obtained by calculating directional derivatives of distortion risk
measures (using a Dirac distortion, see Appendix A). This argument does not carry
forward to the 2nd order terms (3.9), as 2nd order directional derivatives of distortion
risk measures turn out to be much more complicated, even in the linear case, see
Property 1 in Gourieroux et al. (2000).

3.3 Choice of reference point

To obtain sufficient accuracy in 1st and 2nd order approximations, respectively, the
reference point should lie somewhere “in the middle” of the feature distribution P .
We elaborate on this in this section. Typically, we want to get the following expression
small, uniformly in α ∈ (0, 1),

∣
∣∣∣∣∣
F−1

μ(X)(α) − μ (0) −
q∑

j=1

S j (μ;α) + 1

2

q∑

j,k=1

Tj,k(μ;α)

∣
∣∣∣∣∣
. (3.12)

This expression is for reference point 0. However, we can select any other reference
point a ∈ R

q , by exploring the 2nd order Taylor expansion (3.7) for ε = a − x. This
latter reference point a then provides us with a 2nd order approximation
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F−1
μ(X)(α) ≈ μ (a) − EP

[
(a − X)�∇xμ(X)

∣∣
∣μ(X) = F−1

μ(X)(α)
]

−1

2
EP

[
(a − X)�(∇2

xμ(X))(a − X)

∣∣
∣μ(X) = F−1

μ(X)(α)
]
.

(3.13)

The same can be received by translating the distribution P of the features by setting
Xa = X − a and letting μa(·) = μ(a + ·). The approximation (3.13) motivates
us to look for a reference point a ∈ R

q that makes the 2nd order approximation as
accurate as possible for “all” quantile levels. Being a bit less ambitious, we select a
discrete quantile grid 0 < α1 < . . . < αL < 1 on which we would like to have a good
approximation capacity. Define the events Al = {μ(X) = F−1

μ(X)(αl)} for 1 ≤ l ≤ L .
Consider the objective function

a �→ G(a;μ) =
L∑

l=1

(
F−1

μ(X)(αl) − μ (a) + EP

[
(a − X)�∇xμ(X)

∣∣∣Al

]

+ 1

2
EP

[
(a − X)�(∇2

xμ(X))(a − X)�
∣∣∣Al

] )2

. (3.14)

Minimizing this objective function in a gives us an optimal reference point w.r.t. the
quantile levels (αl)1≤l≤L . Unfortunately, a �→ G(a;μ) is not a convex function, and
therefore numerical methods may only find local minima. These can be found by a
plain vanilla gradient descent algorithm. We calculate the gradient of G w.r.t. a

∇aG(a;μ) = 2
L∑

l=1

(
F−1

μ(X)(αl) − μ (a) + EP

[
(a − X)�∇xμ(X)

∣∣∣Al

]

+ 1

2
EP

[
(a − X)�(∇2

xμ(X))(a − X)�
∣∣∣Al

])

×
(

− ∇aμ (a) + EP [∇xμ(X)|Al ]

− EP

[
X�∇2

xμ(X)

∣∣∣Al

]
+ 1

2
a�

EP

[
∇2
xμ(X)

∣∣∣Al

] )
.

The gradient descent algorithm then provides for tempered learning rates εt+1 > 0
updates at algorithmic time t

a(t) �→ a(t+1) = a(t) − εt+1∇aG(a(t);μ). (3.15)

Iteration step-wise locally decreases the objective function G.

Remark 3.5 • The above algorithm provides a global optimal reference point, thus,
a calibration for a global 2nd order meta-explanation. In some cases this global
calibration may not be satisfactory, in particular, if the reference point is far from
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the feature values X = x that mainly describe a given quantile level F−1
μ(X)(α)

through the corresponding conditional probability P[ · |μ(X) = F−1
μ(X)(α)]. In

that case, one may be interested in different local reference points that are optimal
for certain quantile levels, say, between 95 and 99%. In some sense, this will
provide a more “honest” description (3.8) because we do not try to simultaneously
describe all quantile levels. The downside of multiple reference points is that we
lose comparability of marginal effects across the whole decision space.

• Our attribution method (starting from the quantile level) has the advantage that we
can quantify the precision of our explanation through (3.12), and in the linear and
quadratic regression cases of Examples 3.2 and 3.3 this description is exact.

4 Synthetic example

We start with a synthetic data example. A synthetic example has the advantage of a
known (true) regression function μ. This allows us to verify that we draw the right
conclusions.1

4.1 Generation of synthetic data

Wechoose q = 7 and generate i.i.d. features X i = (Xi,1, . . . , Xi,7)
� ∼ P , 1 ≤ i ≤ n,

from a 7-dimensional standard Gaussian distribution having independent components.
We generate n = 10, 000 instances. For the regression function μ we set

x ∈ R
7 �→ μ(x) = 1

2
x21 + sin(x2) + 1

2
x3 sin(x4) − 1

2
x5x6. (4.1)

Thus, component x7 does not enter regression function μ. Based on this regression
function we generate for 1 ≤ i ≤ n independent Gaussian responses Yi , given xi , that
is

Yi |xi ∼ N (μ(xi ), 1). (4.2)

This gives us data set D = {(yi , xi ); 1 ≤ i ≤ n}. The resulting mean squared error
(MSE) of the simulated samples is given by

MSE(D) = 1

n

n∑

i=1

(yi − μ(xi ))2 = 1.0012. (4.3)

This is an empirical approximation to the true variance of 1, see (4.2).

1 The code of the synthetic example is available from https://github.com/RonRichman/MACQ.
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X7
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variable permutation importance
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Fig. 1 Synthetic example: variable permutation importance

4.2 Variable permutation importance

We start by analyzing variable permutation importance (VPI) introduced by Breiman
(2001). VPI is obtained by randomly permuting one component 1 ≤ j ≤ q of the
features xi ∈ R

q at a time across all instances 1 ≤ i ≤ n, and measuring the relative
increase inMSE compared to (4.3). The bigger this relative increase inMSE the bigger
the VPI of feature component x j .

Figure 1 shows the results. From this we conclude that x1 and x2 are the most
important feature components in this example, as permutation of these components
increases the MSE by almost 100%. The permutation of feature components x6 and
x5 leads to an increase of 50% and the permutation of x4 and x3 leads to an increase of
20%. The permutation of x7 does not lead to any increase, showing that this component
is unimportant. This gives us a first indication of variable importance.

4.3 MACQ explanation

We present the MACQ analysis for the regression function (4.1). In a first step, we
need to find a suitable reference point a ∈ R

q to obtain good accuracy in the 2nd order
approximation (3.13). Therefore, we consider the objective function G(a;μ) given
in (3.14) and apply plain vanilla gradient descent updates (3.15) with learning rates
εt+1 = 10−2/‖∇aG(a(t);μ)‖ to minimize this objective function. For the quantile
grid we choose αl ∈ {1%, . . . , 99%}. This optimization gives us reference point
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Fig. 2 1st and 2nd order contributions C1,C2 and C2,2 compared to the empirical quantiles F̂−1
μ(X)

(αl ),
1 ≤ l ≤ L

a = (0.000,−0.027, 1.187,−0.032, 0.891, 0.891, 0.000)� ∈ R
7. (4.4)

This reference point is centered except for the componentsa3,a5 anda6, and a provides
us with a base level of μ(a) = −0.44. We aim at studying the 1st and 2nd order
attributions S j (μ;α) and Tj,k(μ;α), respectively, relative to this base level. Working
with the data (Yi , xi , μ(xi ))1≤i≤n , we need to estimate the conditional expectations
on the events {μ(X) = F−1

μ(X)(α)}, α ∈ (0, 1), to receive empirical versions of 1st
and 2nd order attributions. We do this on a discrete grid by using a local smoother of
degree 2. We use the R function locfit, see Loader et al. (2020), with parameters
deg=2 and alpha=0.1 (the chosen bandwidth) applied to observations xai, jμ j (xi )
and x ai, j x

a
i,kμ j,k(xi ), 1 ≤ i ≤ n, where we set xai = xi − a for the chosen reference

point (4.4). We then fit the local smoother to these observations, ordered w.r.t. the
ranks of μ(xi ). Thus, e.g., the a-adjusted 1st order attributions S j (μ;αl), 1 ≤ l ≤ L ,
are estimated empirically by the pseudo code

predict(locfit(x ai, jμ j (xi ) ∼ rank(μ(xi ))/n,

alpha = 0.1,deg = 2),newdata = c(1 : 99)/100), (4.5)

and correspondingly for the 2nd order attributions Tj,k(μ;αl), 1 ≤ l ≤ L .
Figure 2 illustrates the results after optimizing for the reference point a. The black

dots show the empirical quantiles F̂−1
μ(X)(αl), 1 ≤ l ≤ L , obtained from the simu-

lated data μ(x1), . . . , μ(xn). The orange line shows the total 1st order contributions
C1 = μ(a) + ∑q

j=1 S j (μ;αl), see (3.3), received from approximations (4.5). The
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Fig. 3 (lhs) Attributions S j (μ; α) − 1
2 Tj , j (μ; α) excluding interaction terms, (rhs) interaction terms

−Tj,k (μ; α), j �= q

cyan line shows the total 2nd order contributions without interaction terms C2 =
μ(a)+∑q

j=1

(
S j (μ;αl)− 1

2Tj, j (μ;αl)
)
, and the red line shows the full 2nd order con-

tributionsC2,2 = μ(a)+∑q
j=1

(
S j (μ;αl)− 1

2Tj, j (μ;αl)
)−∑

1≤ j<k≤q Tj,k(μ;αl),
see (3.8). Figure 2 is interpreted as follows. The full 2nd order contributions C2,2 (red
line) match the empirical quantiles F̂−1

μ(X)(αl) (black dots) quite well; this shows that
our choice of the reference point a leads to a small approximation error of the quantile
function across all confidence levels. The shaded cyan area between C2 (cyan line)
and C2,2 (red line) shows the attributions to the interaction terms −Tj,k(μ;α), j �= k.
Since this area is comparably large, we conclude that interactions are relevant; we
come back to this in Fig. 3 (rhs) below. Moreover, we observe that the orange line
does not match the empirical quantiles as well as the red line, especially for large
quantile levels α. This shows that a 1st order approximation is not sufficient to explain
the (large) quantiles (note that we have a quadratic term x21/2 in the regression function
μ which is precisely the reason why we need to include 2nd order terms).

Next, we study the 1st and 2nd order attributions S j (μ;α) − 1
2Tj, j (μ;α) for all

feature components x j , 1 ≤ j ≤ q. Figure 3 (lhs) shows these attributions for the
different chosen quantiles (and excluding interaction terms). This plot indicates feature
importance at different quantile levels. First, we observe that component x7 (yellow
color) does not have any influence because S j (μ;α) − 1

2Tj, j (μ;α) ≡ 0 for j = 7.
Second, the attributions that undergo the biggest changes from small to large quantiles
are the ones of feature components x1 and x2. This shows that these two variables are
the most important ones to explain the quantile levels of μ(x). This is in line with
the VPI plot of Fig. 1, and, moreover, these two variables have a significant influence
over the entire quantile range. The next important variables are x5 and x6, and, in
particular, these variables are important to explain very small quantiles, noting that
the term −x5x6/2 in μ is unbounded from below (having a quadratic behavior) which
is the dominant term for small quantiles. The influence of the remaining variables
x3 and x4 is smaller, though still clearly different from zero. Thus, we find a similar
variable importance behavior for VPI and MACQ, but MACQ allows us to allocate
importance to different quantile levels, specifically, from the VPI plot we observe that
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x1 and x2 are similarly important, while MACQ additionally tells us that x2 is more
important for small quantile levels, whereas x1 dominates high quantile levels. Thus,
MACQ offers a more granular view.

Figure 3 (rhs) shows the interaction terms −Tj,k(μ;α), j �= q, that are different
from zero. There are only two terms different from zero, and they are exactly the ones
that have interactions in μ, see (4.1). Moreover, the interaction x6–x5 is clearly more
important than the interaction x4–x3; the former is unbounded in both variables, while
the latter is bounded for x4 through the sine function in μ. We conclude that we can
identify the important variables and interactions that mostly contribute to explain the
different quantile levels of μ(X).

4.4 Contribution of individual instances

Finally, we analyze individual instances xai = xi − a and study individual marginal
contributions

ωi, j = (xi, j − a j )μ j (xi ) − (xi, j − a j )
2μ j, j (xi )/2

to the attribution S j (μ;α)−Tj, j (μ;α)/2. For Fig. 4 we select at random 1000 differ-
ent instances xi , and plot their individualmarginal contributionsωi, j to the attributions
S j (μ;α)−Tj, j (μ;α)/2 (black solid line) for selected feature components, j = 1, 2, 3.
The ordering on the x-axis for the selected instances xi is obtained by considering the
empirical quantiles of the responses μ(xk) over all instances 1 ≤ k ≤ n. The hori-
zontal black line at 0 corresponds to the reference level. In addition to the attributions
S j (μ;α) − Tj, j (μ;α)/2 (black solid line), the plot is complemented by black dotted
lines giving one (empirical) standard deviation

VarP
(
(X j − a j )μ j (X) − (X j − a j )

2μ j, j (X)/2
∣∣
∣μ(X) = F−1

μ(X)(α)
)1/2

.

(4.6)
The sizes of these standard deviations quantify the heterogeneity in the individual

marginal contributionsωi, j . This can either be because of heterogeneity of the portfolio

Fig. 4 Individual marginal contributions ωi, j of 1,000 randomly selected instances xi for (lhs) j = 1,
(middle) j = 2, (rhs) j = 3; the black line shows attribution S j (μ; α)− Tj, j (μ; α)/2 and the black dotted
line gives one standard deviation; the colors illustrate the feature values x j
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xi, j at a certain quantile level, or because we have a rough regression surface implying
heterogeneity in the derivatives μ j (xi ) and μ j, j (xi ).

We start by explaining Fig. 4 (lhs) which shows feature component x1; this feature
component enters the regression function μ as x21/2, see (4.1). The color scale shows
the feature values xi,1 of the individual instances (indexed by i). From this plot we
conclude that the feature values xi,1 around zero (green, yellow color) give smaller
contributions, while very negative values (red color) and very positive values (light
blue color) give higher contributions also resulting in comparably larger values for
μ(x). Of course, this makes perfect sense, given the quadratic term x21/2 in μ.

Figure 4 (middle) basically shows one cycle of the sine function sin(x2). Small
values of xi,2 (red color) explain small expected responsesμ(x), whereas large values
of xi,2 (light blue color) explain bigger expected responses (for a linear function in x2
we would receive a strictly horizontal coloring; an example is given in Fig. 16 in the
appendix).

Finally, Fig. 4 (rhs) analyzes the feature component x3. This term enters the regres-
sion function as x3 sin(x4)/2. The sine function performs a (random) sine flip (X3 and
X4 are independent), therefore, the sign of the contribution of component x3 is not
well-determined. This is clearly visible from Fig. 4 (rhs) because red and light-blue
dots equally spread around the zero line, and only the interaction between x3 and x4
determines the explicit contribution in this case.

This finishes the synthetic data example; we will provide additional (different)
graphs and analysis in the real data example presented in the next section.

5 Real data example: bike rentals

5.1 Model choice andmodel fitting

We consider the bike rental example of Fanaee-T and Gama (2014), which has also
been studied in Apley and Zhu (2020). The data describes the bike sharing process
over the years 2011 and 2012 of the Capital Bikesharing system in Washington DC.
On an hourly time grid we have information about the proportion of casual bike rentals
relative to all bike rentals (casual and registered users). This data set is complemented
by explanatoryvariables such asweather conditions and seasonal variables.Weprovide
a descriptive analysis of the data in Appendix C. On average, 17% of all bike rentals
are by casual users and 83% by registered users. However, these proportions strongly
fluctuate w.r.t. daytime, holidays, weather conditions, etc. This variability is illustrated
in Fig. 19 in Appendix C. We design a neural network regression function to forecast
the proportion of casual rentals. We denote the response variable (proportion) by Y ,
and we denote the features (explanatory variables) by x ∈ R

q .
We choose a fully-connected feed-forward neural network θ : Rq → R of depth

d = 3, having (q1, q2, q3) = (20, 15, 10) neurons in the three hidden layers. This
gives the network regression function

x ∈ R
q �→ μ(x) = σ(θ(x)) ∈ (0, 1), (5.1)
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Fig. 5 (lhs) Empirical density of canonical parameter (θ(xi ))1≤i≤n , (rhs) variable permutation importance

where σ is the sigmoid output activation and x �→ θ(x) models the canonical param-
eter of a logistic regression model. In order to have a smooth network regression
function we choose the hyperbolic tangent as activation function in the three hidden
layers. We have implemented this network in TensorFlow, see Abadi et al. (2015),
and in Keras, see Chollet et al. (2015); as mentioned above, this software allows us to
formally calculate gradients and Hessians.

In all that follows we do not consider the attributions of the regression function
x �→ μ(x) itself, but we directly focus on the corresponding attributions on the
canonical scale x �→ θ(x). This has the advantage that the results do not get distorted
by the sigmoid output activation σ . Thus, we replace μ by θ in (3.8)–(3.10), resulting
in studying 2nd order contributions

F−1
θ(X)(α) ≈ θ (a) +

q∑

j=1

(
S j (θ;α) − 1

2
Tj, j (θ;α)

)
−

∑

1≤ j<k≤q

Tj,k(θ;α),

(5.2)

for reference point a ∈ R
q . The network architecture is fitted to the available data using

early stopping to prevent over-fitting. Importantly, we do not say anything here about
the quality of the predictive model, but aim at understanding the fitted regression
function x �→ θ(x). This can be done regardless of whether the chosen model is
suitable for the predictive task at hand. Figure 5 (lhs) shows the empirical density of
the canonical parameters xi �→ θ(xi ) of the fitted model over all instances 1 ≤ i ≤ n.
We have negative skewness in this empirical density.

5.2 Variable permutation importance and partial dependence plots

We start by presenting the classical explainability tools. As a first variable importance
measure we again provide the VPI plot of Breiman (2001). As objective function
we use the Bernoulli deviance loss which is proportional to the binary cross-entropy
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Fig. 6 PDPs and ALE profiles of the feature components having more than 2 levels

(also called log-loss). Figure 5 (rhs) shows the VPI. There are three variables (hour,
working day and temperature) that highly dominate all others. Note that the VPI does
not properly consider the dependence structure in X , similarly to ICEs and PDPs,
because permutation of x j is done without impacting the remaining components x\ j .

Figure 6 gives the PDPs (red color) and the ALE profiles (blue color) of all fea-
ture components that have more than 2 levels; the y-scale is the same in all plots. As
explained in Sect. 2.1, these techniques analyze the sensitivities of μ(x) in the indi-
vidual feature components of x. PDPs do not respect the dependence structure within
x, whereas ALE profiles do. From Fig. 6 we observe that these dependence structures
may play an important role, e.g., in the most important variable hour (daytime) the
dependence structure significantly influences the graph. In fact, hour and temp are
highly dependent (nighttime is colder than daytime), and this implies that we do not
observe a temperature of 30 degree Celsius during nighttime. ALE profiles respect
this, but PDPs do not. In general, these sensitivity plots reflect the empirical marginal
plots of Fig. 19 in the appendix, but beyond that they do not provide much further
insight, e.g., concerning interactions of feature components (theoretically, it would
be possible to produce two-dimensional PDPs and ALEs, but in high-dimensional
problems this is not feasible).
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5.3 1st and 2nd order contributions

We now turn our attention to the MACQ approach to interpret the fitted network of
the bike rental data. The accuracy of the 2nd order contributions (5.2) will depend
on the choice of the reference point a ∈ R

q . For network gradient descent fitting we
have normalized the feature components to be centered and have unit variance, i.e.,
EP [X] = 0 and VarP (X j ) = 1 for all 1 ≤ j ≤ q. This pre-processing is needed
to efficiently apply stochastic gradient descent network fitting, and all subsequent
interpretations should be understood in terms of the scaled feature components. Of
course, by a simple back-transformation we get back to interpretations on the original
feature scale. We then translate these feature components by choosing a reference
point a such that the objective function G(a; θ) is minimized, see (3.14); this is done
as in Sect. 4 with the same learning rates εt+1 = 10−2/‖∇aG(a(t); θ)‖. The resulting
decrease in the objective function G(·; θ) is plotted in Fig. 7 (lhs).

The chosen reference point is given by

a = (−0.27, 0.01,−0.18, 0.59,−0.18,−0.58, 0.15,−0.46,−0.48, 0.13, 0.15)� ∈ R
11.

This gives canonical parameter of θ(a) = −1.12 and logistic probability μ(a) =
σ(θ(a)) = 24%. Thus, the reference point lies at a higher probability level than the
overall empirical probability of 17%.

Nextwedetermine the 1st and 2ndorder contributions in complete analogy toSect. 4
using the local smoother (4.5). Figure 7 (rhs) gives the results after optimizing for the
reference point a. The orange line shows the 1st order contributions C1 = θ(a) +∑q

j=1 S j (θ;α), see (3.3), the cyan line the 2nd order contributions without interaction

terms C2 = θ(a)+∑q
j=1(S j (θ;α)− 1

2Tj, j (θ;α)), and the red line the full 2nd order

contributions C2,2 = θ(a)+∑q
j=1(S j (θ;α)− 1

2Tj, j (θ;α))−∑
1≤ j<k≤q Tj,k(θ;α),

see (3.8)–(3.10). Figure 7 (rhs) tells us that the full 2nd order contributions C2,2

Fig. 7 (lhs) Gradient descent loss decay for determining reference point a, (rhs) 1st and 2nd order contri-
butions C1, C2 and C2,2 compared to the empirical quantiles F̂−1

θ(X)
(αl ), 1 ≤ l ≤ L
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Fig. 8 (lhs) Attributions S j (θ; α) − 1
2 Tj , j (θ;α) excluding interaction terms, see (5.2), (rhs) attributions

S j (θ; α) − 1
2 Tj, j (θ;α) for selected quantile levels α ∈ {20%, 40%, 60%, 80%}

match the empirical quantiles F̂−1
θ(X)(αl) (black dots) rather well. The shaded cyan

area between C2 (cyan line) and C2,2 (red line) shows the significant influence of the
interaction terms Tj,k(θ;α), j �= k. This implies that a simple generalized additive
model (GAM) will not be able to model these data accurately.

In Fig. 8 (lhs) we show the attributions S j (θ;α) − 1
2Tj, j (θ;α). These attributions

show the differences relative to the canonical parameter in the reference point θ(a);
when aggregating over 1 ≤ j ≤ q this results in the cyan line of Fig. 7 (rhs). Fig. 8
(lhs) shows substantial sensitivities in the variables hour, workingday, temp
and month. From this we conclude that these are the most important variables in
the regression model to explain the systematic effects in responses Y . In contrast
to the VPI plot of Fig. 5 (rhs) and the PDPs of Fig. 6, this assessment correctly
considers the dependence structurewithin the features X ; note that the variablemonth
receives a higher importance in MACQ than in the VPI plot of Fig. 5 (rhs). (In Fig. 12,
below, we will see that month has important interaction effects with other variables
which may partly explain the differences between VPI and this MACQ assessment.)
Figure 8 now allows us to analyze variable importance at different quantile levels by
considering vertical slices. We consider such vertical slices in Fig. 8 (rhs) for four
selected quantile levels α ∈ {20%, 40%, 60%, 80%}. We observe that the variables
month, hour, workingday and temp undergo the biggest changes when moving
from small quantiles to big ones. The quantile level at 20% can be explained by the
three features temp, month and workingday, whereas the quantile level at 60%
has hour (daytime) as an important variable. Note that this is not the full MACQ
picture, yet, as we do not consider interactions in these vertical slices; the importance
of interactions is indicated by the cyan shaded area in Fig. 7 (rhs) for different quantile
levels.

The 1st and 2nd order contribution results given in Figs. 7 and 8 have been obtained
by one single network that has been fitted to the data. Since network fitting lacks a
certain degree of robustness, due to the fact that stochastic gradient descent may
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explore different local minimums of the loss surface, we verify in Appendix B.1 that
the proposed MACQ analysis gives similar results also for other networks that have
been fitted to the same data.

Remark 5.1 The feature components of x need pre-processing in order to be suitable
for gradient descent fitting. Continuous and binary variables have been centered and
normalized so that their gradients live on a similar range. This makes gradient descent
fitting more efficient because all partial derivatives in the gradient are directly compa-
rable. Our example does not have categorical feature components. Categorical feature
components can be treated in different ways. For ourMACQproposal we envisage two
different treatments. Firstly, dummy coding could be used. This requires the choice
of a reference level, and considers all other levels relative to this reference level. The
resulting marginal attributions should then be interpreted as differences to the ref-
erence level. Secondly, one can use embedding layers for categorical variables, see
Bengio et al. (2003) and Guo and Berkhahn (2016). In that case the attribution analysis
can directly be done on these learned embeddings of categorical levels, in complete
analogy to the continuous variables.

5.4 Contribution of individual instances

Next, we focus on individual instances xai = xi − a and study individual marginal
contributions ωi, j = (xi, j − a j )θ j (xi ) − (xi, j − a j )

2θ j, j (xi )/2 to attribution
S j (θ;α) − Tj, j (θ;α)/2. This is in analogy to Fig. 4, but again we study the con-
tributions on the canonical scale θ .

For Fig. 9 we select at random 1,000 different instances xi , and plot their individual
marginal contributions ωi, j (colored dots) to the attributions S j (θ;α) − Tj, j (θ;α)/2
(black solid line). The ordering on the x-axis is w.r.t. the quantile levels α ∈ (0, 1),
the black solid line shows the attributions and the black dotted line gives one empir-
ical standard deviation, see (4.6). We start with Fig. 9 (bottom-right), which shows
the binary variable workingday. This variable clearly differentiates low from high
quantiles F−1

θ(X)(α), showing that the casual rental proportion Y is in average bigger
for non-working days (red dots). Moreover, for low quantiles levels the working day
variable clearly lowers expected response θ(x) compared to the reference level θ(a),
as the cyan dots are below the horizontal black line at 0, which corresponds to the
reference level.

Next, we study the variable temp of Fig. 9 (bottom-left). In this plot we see a clear
positive dependence between quantile levels and temperature, showing that casual
rentals are generally low for low temperatures, which can either be the calendar sea-
son or bad weather conditions. We have clearly more heterogeneity in features (and
resulting derivatives θ j (xi ) and θ j, j (xi )) contributing to low quantile levels than to
higher ones. The variable temp is highly correlated with calendar month, and the
calendar month plot in Fig. 9 (top-left) looks similar, showing that casual rental pro-
portions Y are negatively impacted bywinter seasons. There are some low proportions,
though, also for summer months, these need to be explained by other variables, e.g.,
they may correspond to a rainy day or to a specific daytime. The interpretation of the
variable hour in Fig. 9 (top-right) is slightly more complicated since we do not have
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Fig. 9 Individual marginal contributions ωi, j of 1,000 randomly selected instances xi for (top-left) j =
month, (top-right) j = hour, (bottom-left) j = temp and (bottom-right) j = workingday; the black
line shows attribution S j (θ;α) − Tj , j (θ;α)/2 and the black dotted line gives one standard deviation; the
y-scales differs in the plots and the colors illustrate the feature values x j

monotonicity of θ(x) in this variable, see also Fig. 19 in the appendix. Nevertheless we
also see a separation between working and leisure times (for the time-being ignoring
interactions with holidays and weekends).

For better understanding, Fig. 9 should be compared to the corresponding plots of a
generalized linear model (GLM).We provide a GLM in Appendix B.2, and the crucial
property of the GLM plot is a horizontal layering of the colors due to linearity after
applying the link function, see Fig. 16 in Appendix B.2.

In Fig. 9 we have plotted the individual marginal contributions ωi, j on the y-axis
against the quantiles α ∈ (0, 1) on the x-axis to explain how the features xi enter the
quantile levels F−1

θ(X)(α). This is the 3-way analysis mentioned above, where the third
dimension is highlighted by using different colors in Fig. 9. Alternatively, we can also
try to understand how this third dimension of different feature values x j contributes
to the individual marginal contributions ωi, j . Figure 10 plots the individual marginal
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Fig. 10 Individual marginal contributions ωi, j of 1,000 randomly selected instances xi for (lhs) j =
month, (middle) j = hour and (rhs) j = temp; the black line shows the empirical average; the colors
show the expected responses μ(xi ) ∈ (0, 1) (casual rental proportions)

Fig. 11 Expected responses μ(xi ) of 1,000 randomly selected instances xi for (lhs) j = month, (middle)
j = hour and (rhs) j = temp; the black line shows the empirical average; the colors show the the
individual marginal contributions ωi, j

contributions ωi, j on the y-axis against the feature values x j on the x-axis. The black
line shows the averages of ωi, j over all instances, and the colored dots show the 1,000
randomly selected instances xi with the colors illustrating the expected responses, i.e.,
the expected casual rental proportions μ(xi ) = σ(θ(xi )) ∈ (0, 1). The general shape
of the black lines in these graphs reflects well the PDPs and ALE profiles in Fig. 6.
However, the detailed structure slightly differs in these plots as they do not exactly
show the same quantity, Fig. 6 shows marginal empirical graphs, whereas Fig. 10
quantifies individual marginal contributions to expected responses θ(x) in an additive
way (on the canonical scale). Figure 10 (rhs) shows a clear monotone plot which also
results in a separation of the colors, whereas the colors in Fig. 10 (lhs, middle) can
only be fully understood by also studying contributions and interactions with other
components xi,k , k �= j .

Figure 11 shows the same data as Fig. 10, but it exchanges the role of the individual
marginal contributions ωi, j and the expected responses μ(xi ). In Fig. 11 we show the
responses on the y-axis and the color scale is chosen w.r.t. the individual marginal
contributions ωi, j . We observe a strong positive correlation between the individual
marginal contributions ωi, j and the expected responses μ(xi ), which is better visible
here than in Fig. 10. Of course, this makes perfect sense as the individual marginal
contributions are 2nd order approximations to the expected responses (subject to the
interactions we are going to study in the next section).
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Fig. 12 Off-diagonal terms −Tj ,k (θ;α) giving the interactions

5.5 Importance of interaction terms

There remains the analysis of the interaction terms−Tj,k(θ;α), j �= k, which account
for the cyan shaded are in Fig. 7 (rhs). These interaction terms are shown in Fig. 12.

To not overload Fig. 12 we only show the interaction terms Tj,k for which
maxα |Tj,k(θ;α)| > 0.2. We identify three major interaction terms: workingday-
hour, workingday-month and hour-month. Of course, these interactions are
very reasonable to understand casual rental proportions. For small quantiles also inter-
actions temp-month and temp-hour are important. Interestingly, we also find
an interaction workingday-year: in the data there is a positive trend of regis-
tered rental bike users (in absolute terms) which interacts differently on working and
non-working days because casual rentals are more frequent on non-working days.
Identifying the importance of these interactions highlights that it will not be sufficient
to work within a GLM or a GAM unless we add explicit interaction terms to them.

In the final step we combine the attributions S j (θ;α) − Tj, j (θ;α)/2 with the
interaction terms Tj,k(θ;α), k ≤ j . A natural way is to just allocate half of the
interaction terms Tj,k(θ;α) to each component j and k. This then provides allocated
2nd order attributions to components 1 ≤ j ≤ q

Vj (θ;α) = S j (θ;α) − Tj, j (θ;α)/2 −
∑

j �=k

Tj,k(θ;α)/2

= S j (θ;α) −
q∑

k=1

Tj,k(θ;α)/2.
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Adding the reference level θ(a), we again receive the full 2nd order contributions
C2,2 = θ(a) + ∑q

j=1 Vj (θ;α) illustrated by the red line in Fig. 7 (rhs). In Fig. 13 we
provide these attributions Vj (θ;α) for quantiles α ∈ (0, 1). These plots differ from
Fig. 8 only by the inclusion of the 2nd order off-diagonal (interaction) terms. Compar-
ing the right-hand sides of these two plots we observe that firstly the level is shifted,
which is explained by the shaded cyan area in Fig. 7 (rhs). Secondly, interactions
impact mainly the small quantiles in our example, as is made clear from Fig. 12.

6 Conclusions

This article proposes a novel gradient-based global model-agnostic tool that can be
calculated efficiently for differentiable deep learningmodels and produces informative
visualizations. This tool studies marginal attribution to feature components at a given
response level.Marginal attributions allow us to separatemarginal effects of individual
feature components from interaction effects, and they allow us to study the resulting
variable importance plots in different regions of the decision space, characterized by
different response levels. Variable importance is measured w.r.t. a reference point that
is calibrated on the entire space for our explanation. Finding a good reference point has
been efficiently performed by a simple gradient descent search. A main outcome of
our model-agnostic tool is a 3-way relationship between marginal attribution, output
level and feature value, which can be illustrated in different ways.

Our method complements commonly used response sensitivity analyses, such
as variable permutation importance or accumulated local effects, by an additional
marginal attribution view. It should be preferred over these alternative methods, when
variable importance varies across response levels and if interactions play an important
role in the systematic effects on responses. In particular, in our bike rental example
we have been able to explicitly (at low computational cost) extract granular feature
information at different response levels also providing insight into systematic effects
coming from variable interactions.
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Our method is most suitable if the true regression surface is comparably smooth,
and if it can be characterized by second order terms. In fact, our method is exact
in the quadratic regression case, and in the general case we can explicitly quantify
the approximation error due to the conditioning on the quantile level considered. If
this approximation error is too big, one can still consider a local description, local in
terms of response levels by choosing different reference points for different response
intervals, but then one loses the global model-agnostic view, as the decision space
becomes partitioned w.r.t. response levels.

Ourmethod is based on aggregating local Taylor expansions, conditioned on a given
a response level. A similar concept could also be applied to other local model-agnostic
decomposition tools such as SHAP. In this sense, our proposal can be seen as a more
general concept that can be applied w.r.t. different local attribution mechanisms.
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A Sensitivities in distortion risk measures

The purpose of this appendix is to briefly explain distortion risk measures and how
they relate tomarginal attribution. For this discussion we impose stronger assumptions
than we have needed above, i.e., these more restrictive assumptions are only made for
the explanation here. Assume the expected response μ(X) has a continuous distribu-
tion function Fμ(X). It follows thatUμ(X) = Fμ(X)(μ(X)) is uniformly distributed on
[0, 1]. Choose a density ζ on [0, 1]. We can interpret ζ(Uμ(X)) as a probability dis-
tortion (probability re-weighting scheme inducing a change of probability measure)
because we have

EP
[
ζ(Uμ(X))

] =
∫ 1

0
ζ(u)du = 1.

The distorted expected response can then be defined by

�(μ(X); ζ ) = EP
[
μ(X)ζ(Uμ(X))

]
.

The functional �(μ(X); ζ ) describes a distortion risk measure, see Wang (1996) and
Acerbi (2002). It can be interpreted via a Radon–Nikodým derivative dPζ (X = x) =
ζ(Uμ(x))dP(X = x).We study the sensitivities of this distortion riskmeasurew.r.t. the
components of X . Assume that the following directional derivatives exist in zero for
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all 1 ≤ j ≤ q

S j (μ; ζ ) = ∂

∂ε
�

(
μ

(
(X1, . . . , X j−1, X j (1 + ε), X j+1, . . . Xq)

�)
; ζ

)∣
∣∣
ε=0

.

Then, S j (μ; ζ ) can be interpreted as the sensitivity of X �→ μ(X) in feature compo-
nent X j . Hong (2009) and Tsanakas and Millossovich (2016) prove under different
sets of assumptions that these sensitivities satisfy

S j (μ; ζ ) = EP
[
X jμ j (X)ζ(Uμ(X))

]
.

Observe that this exactly uses marginal attribution (2.7). We still have the freedom of
choosing the density ζ on [0, 1]. If we choose the uniform distribution ζ ≡ 1 on [0, 1]
we receive the average expected response and its average marginal attribution

�(μ(X); ζ ≡ 1) = EP [μ(X)] and S j (μ; ζ ≡ 1) = EP [X jμ j (X)].

If we choose for density ζ the Dirac measure δα in α ∈ (0, 1), which allocates proba-
bility weight 1 to α, this gives us the α-quantile

�(μ(X); ζ = δα) = F−1
μ(X)(α).

For its sensitivities we receive for 1 ≤ j ≤ q

S j (μ; ζ = δα) = EP

[
X jμ j (X)

∣∣
∣μ(X) = F−1

μ(X)(α)
]
,

which exactly corresponds to 1st order attribution (3.1). We could choose any other
density ζ on [0, 1] to obtain sensitivities of other distortion risk measures. Such other
choices may also have interesting counterparts in interpreting smooth deep learning
models, by directing attention to different areas of the prediction space.

B Further analysis of the real data example

This appendix provides further analysis of the real data example of Sect. 5. First, we
verify the robustness of the MACQ approach by fitting multiple networks to the same
data. Second, we compare the fully-connected feed-forward neural network regression
function given in (5.1) to a generalized linear model (GLM) regression. Finally, we
illustrate what we can learn from the MACQ analysis about representation learning in
different network layers.

B.1 Robustness of 1st and 2nd order contributions

In Fig. 14 we analyze the robustness of the attribution results. We do this by
considering different networks x �→ θ(x) for predicting the response variable Y .
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Fig. 14 Robustness of 1st and 2nd order contributions across 4 different networks: (top row) empirical
densities of canonical parameters (θ(xi ))1≤i≤n , (bottom row) 1st and 2nd order contributions (5.2)

Network regression models lack a certain degree of robustness as gradient descent
network fitting explores different (local) minima of the objective function; note that,
in general, neural network fitting is not a convex minimization problem. This issue of
non-uniqueness of good predictive models has been widely discussed in the literature,
and ensembling may be one mitigation strategy; we refer to Dietterich (2000a, b),
Zhou et al. (2002), Zhou (2012), Richman and Wüthrich (2020) and Wüthrich and
Merz (2021). The top row of Fig. 14 shows the empirical distributions of the canon-
ical parameter (θ(xi ))1≤i≤n for 4 different networks; we observe that there are some
differences in these empirical densities. The bottom row shows the corresponding 1st
and 2nd order contributions (5.2), split by 1st order contributions C1, 2nd order con-
tributions without interactions C2 and the full 2nd order contributions C2,2. At this
level, we judge the attributions made to be rather robust over the different models, as
the general shapes of these graphs are similar, and the interaction terms C2,2 − C2
show a similar structure and magnitude across the 4 different network models.

From Fig. 14 we also observe that the 1st order contributions C1 intersect the
quantiles F−1

θ(X)(α) at different levels for the 4 different calibrations. This indicates
that the optimal reference point a is chosen differently in the different networks.
Figure 15 shows the chosen reference points a of the 4 different networks in relation
to the centered and normalized features (xi )1≤i≤n . Some feature components have
a very skewed distribution as can be seen from the thicker horizontal boxplot lines
showing the median of each feature component (xi, j )1≤i≤n , 1 ≤ j ≤ q. The reference
point mostly lies within the interquartile range (IQR).

B.2 Generalized linear model

To better understand the individual marginal contribution plots of Fig. 9, we also fit
a logistic GLM to the rental bike data. A GLM has a linear regression structure on
the canonical scale θ . We fit this GLM to the rental bike data, and in this fitted GLM
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Fig. 15 Choice of reference point a across 4 different networks illustrated for all feature components
1 ≤ j ≤ q

the variable temp_feel receives the largest regression parameter β j = 0.3197. We
remark that the biggest regression parameter is not attained by the most important
variables, here, because these most important variables enter the regression function
non-monotonically (e.g., cyclically in case of hour) and a GLM cannot properly cope
with such non-monotonicity.

Figure 16 shows the individual marginal contributions ωi, j in a GLM for variable
temp_feel. A GLM is linear in the feature values on the canonical scale (for canon-
ical link), and this can clearly be seen from Fig. 16, as the resulting coloring has a
(strict) horizontal structure. Moreover, the regression parameter β j is positive which
results in an increasing slope w.r.t. the quantile levels. If we compare Figs. 9 and 16,
we conclude that the former plots do not have a strict horizontal structure in the colors
which says that none of these variables can be modeled by a GLM term.

B.3 Scrolling through the network layers

Our MACQ proposal is also useful to understand representation learning of neural
networks. A deep feed-forward neural network θ : Rq → R is a composition of d
hidden neural network layers z(k) : Rqk−1 → R

qk , 1 ≤ k ≤ d; we initialize input
dimension q0 = q. Define the composition x �→ z(d:1)(x) = (z(d) ◦ . . . ◦ z(1))(x)

which maps input x ∈ R
q to the last hidden network layer having dimension qd .

Network (5.1) with logistic output can then be written as

x ∈ R
q �→ μ(x) = σ(θ(x)) = σ

(
β0 + β�z(d:1)(x)

)
,
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Fig. 16 Individual marginal contributionsωi, j of 1,000 randomly selected instances xi in the logistic GLM
for j = temp_feel; the black line shows attribution S j (θ;α) and the black dotted line gives one standard
deviation; colors illustrate the feature values x j

with bias/intercept β0 ∈ R and regression parameter/weight β ∈ R
qd . This should be

compared to linear regression (3.4).
Each hidden layer learns a new representation of the inputs xi , that is, the represen-

tations learned in layer k are given by x(k:1)
i := (z(k) ◦ . . . ◦ z(1))(xi ), for 1 ≤ i ≤ n,

we also refer to Section 7.1 in Wüthrich and Merz (2021). We can view these learned
representations as new inputs to the remaining network after hidden layer k

x ∈ R
qk �→ σ

(
β0 + β�z(d:k+1)(x)

)
= σ

(
β0 + β�(z(d) ◦ . . . ◦ z(k+1))(x)

)
.

In the following analysis we consider the instances (Yi , x
(k:1)
i ) with these learned

features x(k:1)
i as inputs to the remaining network z(d:k+1) after layer k, andwe perform

the same MACQ analysis as above in these reduced setups.
Figure 17 provides the 1st and 2nd order contributions (5.2) of the original inputs

(lhs), the learned representations x(1:1)
i in the first hidden layer (middle), and the

learned representations x(2:1)
i in the second hidden layer (rhs) on the corresponding

remaining networks z(3:k+1). We interpret these MACQ results as follows. The first
hidden layer (middle graph) has mainly a smoothing effect in recomposing the inputs
xi suitably. The second layer takes care of the interaction effects diminishing the
cyan shaded area in Fig. 17 (rhs). Of course, this makes perfect sense as the output
layer considers a linear function with weight β ∈ R

qd which no longer allows for
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Fig. 17 1st and 2nd order contributions (5.2) of the (learned) representations: (lhs) original inputs xi ,

(middle) learned representations x(1:1)
i , and (rhs) learned representations x(2:1)

i

interactions. Therefore, interactions need to be learned in the previous layers. The
same applies to non-linear structures (on the canonical scale).

C Descriptive analysis of bike rental example

This appendix gives a brief descriptive analysis of the data, which helps us interpret the
network regression models. The data comprises the number of casual and registered
bike rentals every hour from 2011/01/01 until 2012/12/31. This data set has origi-
nally been studied in Fanaee-T and Gama (2014) and Apley and Zhu (2020), and can
be downloaded from https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset.
Listing 1 gives a short excerpt of the data.

Listing 1 Excerpt of bike rental data.

1 ’data.frame ’: 17379 obs. of 13 variables:

2 $ date : Date , format: "2011 -01 -01" "2011 -01 -01" "2011 -01 -01" ...

3 $ year : num 2011 2011 2011 2011 2011 ...

4 $ month : int 1 1 1 1 1 1 1 1 1 1 ...

5 $ hour : int 0 1 2 3 4 5 6 7 8 9 ...

6 $ weekday : int 6 6 6 6 6 6 6 6 6 6 ...

7 $ holiday : Factor w/ 2 levels "holiday","no-holiday ": 2 2 2 2 2 2 2 2 2 2 ...

8 $ workingday: Factor w/ 2 levels "no-working","workingday ": 1 1 1 1 1 1 1 1 1 1 ...

9 $ weather : num 1 1 1 1 1 2 1 1 1 1 ...

10 $ temp : num 0.24 0.22 0.22 0.24 0.24 0.24 0.22 0.2 0.24 0.32 ...

11 $ temp_feel : num 0.288 0.273 0.273 0.288 0.288 ...

12 $ humidity : num 0.81 0.8 0.8 0.75 0.75 0.75 0.8 0.86 0.75 0.76 ...

13 $ windspeed : num 0 0 0 0 0 0.0896 0 0 0 0 ...

14 $ casual : int 3 8 5 3 0 0 2 1 1 8 ...

15 $ registered: int 13 32 27 10 1 1 0 2 7 6 ...

16 $ count : int 16 40 32 13 1 1 2 3 8 14 ...

As response variable we consider the proportion of casual rentals relative to all
rentals, thus, we set the response Y = casual/count ∈ [0, 1] on an hourly grid
over the entire observation period. These are n = 17, 379 hours from 2011/01/01
until 2012/12/31, see line 1 of Listing 1. We note that count ≥ 1 for all observations,
which makes Y well-defined throughout the whole observation period. The goal is to
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Fig. 18 (lhs) Histogram and (rhs) boxplot of (hourly) responses Y = casual/count ∈ [0, 1] over the
entire observation period; the orange line shows the empirical mean of 17%

predict this response variable Y based on the available feature information x, which
is provided on lines 3-13 of Listing 1. These are the year, month and hour of
the observations Y . The weekday (with 0 for Sunday), holiday (yes/no for public
holiday), workingday (yes/no, the former neither being a public holiday nor a
weekend), weather (1,2 and 3 for clear, cloudy and rain/snow), temperature temp,
the felt temperature temp_feel, humidity and windspeed. Note that all these
features are continuous or binary, thus, we can directly use this feature encoding for
regression modeling.

We illustrate this data. Figure 18 shows the observed responses Y = casual/

count over the entire observation period. In average the casual rentals make 17% of
all rentals, and the empirical density of Y is strongly skewed.

In Fig. 19 we provide the marginal observed responses for each level of all features.
The top-left shows the average response for each calendar week from 2011/01/01 until
2012/12/31. This depicts a strong seasonal pattern of the casual rental proportion.
Moreover, daytime, weekdays, working days/holidays and weather conditions such
as temperature give important information for predicting the proportion of casual
rentals. Only wind speed does not seem to be very relevant. From the top-middle we
also observe that the proportion of casual rentals slightly decreases over time which
can be explained by increasing regular rental subscriptions from 2011 to 2012.

For many of the feature components it is clear that they are highly correlated. In
Fig. 20 we plot temperature, humidity and wind speed against calendar month (top
row), daytime (middle row) and weather conditions (bottom row). These plots clearly
show this dependence. Moreover, humidity is negatively correlated with wind speed
and positively correlated with temperature (at least up to moderate temperatures).
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Fig. 19 Average response Y for each level of all features date (in weekly units), year, month, hour,
weekday, holiday, workingday, weather, temp, temp_feel, humidity and windspeed
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Fig. 20 Dependence between feature components: (top) temperature, humidity and wind speed against
calendar month, (middle) temperature, humidity and wind speed against daytime, (bottom) temperature,
humidity and wind speed against weather conditions
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