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Abstract

A computationally efficient method for generating virtual periodic representative volume element
(RVE), capable of handling arbitrary inclusion shapes, is developed. A universal collision/overlap
detection and repair method is proposed, where each inclusion shape is represented as a union of
n-Spheres (UnS). A constrained optimization problem is formulated and solved to remove inclu-
sion overlaps; a closed-form solution is derived for calculating the degree of inclusions overlap
and its gradient vector with respect to inclusion position. RVE generation is illustrated with circu-
lar, spherical, four non-circular and four non-spherical inclusion shapes. Computational efficiency
is demonstrated using an elaborate RVE generation time study. The generated RVEs are evaluated
using various statistical metrics; results confirm the random distribution of inclusions. Effective
properties of RVEs, representing unidirectional composites, are determined using homogenization
with various fibre cross-section shapes; obtained mechanical properties have shown transverse
isotropy.

Keywords: Fibre composites, Particulate composites, Microstructure, Micromechanics, Collision
detection

1. Introduction

Over the past few decades, composites presence is increasing significantly in various indus-
tries due to their superior properties, such as higher specific stiffness and strength. Evaluation
of these properties (and damage behaviour) is a non-trivial task. They are controlled by multiple
factors such as constituent material properties, the relative proportion of constituents, geometri-
cal arrangement of inclusions and properties of the inclusion-matrix interface. Experimental and
theoretical approaches exist for evaluating composite properties, but the former approach is pro-
hibitive due to the enormous amount of human and capital resources involved in the process. In

∗Corresponding author
Email addresses: rajeshnakka@iisc.ac.in (Rajesh Nakka), dineshkumar@iisc.ac.in (Dineshkumar

Harursampath), sathiskumar.ponnusami@city.ac.uk (Sathiskumar A Ponnusami)

Preprint submitted to Composite Structures March 8, 2022



theoretical approaches, the material’s representative volume element (RVE) is used to find effec-
tive properties. RVE is chosen to contain all the typical heterogeneities of the microstructure, and
its constitutive behaviour is the same as that of the whole composite material. Among the differ-
ent theoretical methods, finite element analysis based numerical homogenization has become very
popular due to its capability in capturing microstructural morphology.

Large-scale manufacturing of composites leads to random placement of fibres instead of reg-
ular arrangement. It was observed that in the case of long fibre reinforced composites, RVE of
regularly arranged inclusions can predict effective properties up to a reasonable accuracy, but it is
not a good choice for damage predictions [1, 2, 3, 4]. Also, the damage initiation strongly depends
on the inter-fibre distances[5], so it is of interest to reproduce realistic inter-inclusion distance
distribution in RVE. RVE dimensions also influence effective properties, so optimum RVE size is
determined from the convergence study of its properties. For example, Trias et al. [6, 7] suggested
RVE side length as about 50 times fibre radius for carbon fibre reinforced polymer composites.

RVE can be generated, according to Bergmann et al. [8], broadly in three ways. One, mi-
crostructure reconstruction from images [9] using costly and time-consuming methods like X-ray
tomography, digital image correlation. Two, the physical processes involved in manufacturing
are simulated for getting a more realistic distribution of inclusions. These models simulate the
position and orientation of the inclusions by modelling the resin flow[10, 11]. Three, mimicking
the actual microstructure morphology using geometrical methods[12, 13] which is followed in the
present work.

Random sequential adsorption (RSA) [14], also known as the hard-core model, is a simple and
widely used approach for generating virtual RVEs. In this method, inclusions are placed randomly
inside the RVE boundaries, one after the other, such that the new inclusion does not intersect with
the previously placed inclusions until the required inclusion volume fraction is reached. RSA
suffers from lower jamming limits[14, 15], where the jamming limit is defined as the maximum
inclusion volume fraction beyond which adding new inclusions is not possible. The jamming limit
varies from RVE generation algorithm to algorithm and generating RVEs with volume fraction
close to jamming limit would take significantly longer times[7]. For example, in the case of RSA,
generating RVE of unidirectional composites, containing fibres of circular cross-section, with vol-
ume fractions greater than 50% would take very long time as the jamming occurs at about 54.6%
inclusion volume fraction. Similarly, with RSA algorithm, jamming occurs at about 38% inclu-
sion volume fraction in the case of particle reinforced composites of spherical shaped inclusions
[14, 15, 16]. These limits are less than the inclusion volume fractions of high strength composites
used in aerospace applications and theoretical limits(90% for UDCs and 74% for PRCs).

The lower jamming limit of RSA is due to poor space utilization, as the position of the accepted
inclusions is fixed. In order to overcome this, one line of RVE generation models [17, 12] are
focused on perturbing accepted inclusions so that space is made to accommodate extra inclusions,
thereby increasing the volume fraction limit. Recently, Wenlong Tian et al. [18] has coupled RSA
with molecular dynamics simulations to generate RVE of mono-disperse particles (or spheres) with
volume fractions greater than 50%. It is reported that this model [18] requires large computational
times for volume fractions ≥ 50% or number of particles > 100. Vaughan et al.[19], and Yang
et al.[20] developed growth-based models where inclusions are added about an initial seed point
(i.e., inclusion) at distances drawn from experimentally determined distributions. These models
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are able to reach fibre volume fractions up to about 65%. In another line of RVE generation
models[21, 22, 23], instead of adding inclusions in series, all inclusions are arranged regularly
upfront (for example, in rectangular or hexagonal patterns) then each of them is given random
perturbation to achieve random distribution of inclusions. It is observed that it is challenging to
obtain randomness at higher volume fractions using these methods [22].

In a more recent line of research[13, 24, 25], the required number of inclusions are randomly
initialized, then inclusion overlaps are removed using an iterative procedure. Pathan et al.[13]
used L-BFGS-B constrained optimization algorithm to minimize/eliminate the inclusion overlaps.
Though it can generate RVEs with higher inclusion volume fractions, very high computational
times are reported. Herraez et al.[25] considered inclusions as rigid bodies where overlaps are
removed using repulsive force and momentum. This model,[25], generates RVEs of non-circular
cross-sections with higher volume fractions in relatively shorter times. In this work,[25], RVE
overlap is quantified using the area of inclusions intersection, which may not be easily deter-
mined for arbitrary inclusion shapes. Inclusion overlap checking, in general, is non-trivial for
non-circular or non-spherical shapes, especially when they are arbitrarily aligned in the space
[26, 27]. Among the various existing methods, Gilbert-Johnson-Keerthi (GJK) algorithm [28] is
more efficient for checking overlap of two arbitrary shapes in arbitrary positions. However, it is
iterative in nature and intended for convex shapes. It can be extended to concave shapes as well
by representing as a combination of convex shapes with increased complexity.

Machine Learning (ML) models [29, 30, 31, 32] were developed to predict the effective proper-
ties of the composite materials. ML models, in general, are data-intensive and require a variety of
data for better learning. In the case of RVE, this variety in data can be obtained from a broad spec-
trum of inclusion volume fractions, different inclusion shapes and different degrees of inclusion
randomness. So, it is of interest to have an RVE generation algorithm handling these variations
while maintaining the computational speed.

In this work, the RVE generation method based on bounds constrained optimization is pro-
posed which works for any 2D and 3D inclusion shapes. An optimization problem is formulated
to eliminate the inclusions overlap that occurred due to random initialization. As explained, alo-
girthms like GJK can be used to efficiently detect the overlap between arbitrary shapes but finding
the closed form expression for overlap cost and especially its gradient is not easy. Hence, in this
work a new method is developed for this purpose where each inclusion shape is represented as a
union of n-Spheres(UnS). Also, the same UnS representation of a shape is used to determine its
periodic copies. In section 2, the proposed RVE generation methodology is described. Then, the
method is applied to generate RVEs of five different 2D and five different 3D inclusion shapes in
section 3. Finally, in sections 4 and 5, statistical and micromechanical validation is performed on
the generated RVEs.

2. RVE generation methodology

RVE generation is accomplished majorly in two steps. First, inclusions are initialized randomly
within the bounds of RVE, which may lead to inclusion-overlapping. Second, eliminating overlaps
by inclusion repositioning while keeping them in contact with RVE. Fig. 1 shows all the steps
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Figure 1: RVE generation flow chart and a sample RVE of different inclusion shapes

involved in generating RVE of arbitrary inclusion shape and a sample RVE generated using with
this algorithm.

2.1. Initialization
The inclusions are randomly placed, one after the other allowing overlaps, within the RVE

boundary until the desired volume fraction is reached. In the present work, inclusion shapes are
categorized as circular, spherical, non-circular and non-spherical shapes and their dimensions can
be constant or drawn from a distribution of choice. Inclusions location and alignment are drawn
from uniform distribution where each inclusion takes a position in the RVE domain with equal
probability. For example, Eq. (1) shows optimization variables and their initialization formulae
for rectangular or cubical shaped RVE. The set of optimization variables applicable for an inclu-
sion depends on its geometry. Circular and spherical shapes need (x, y) and (x, y, z) respectively,
as their orientations are immaterial so that the remaining terms can be set to zero or some arbi-
trary constant. Similarly, non-circular and non-spherical shapes need (x, y, θ) and (x, y, z, θ, φ)
respectively.

x = xmin + p(xmax − xmin) (1a)
y = ymin + q(ymax − ymin) (1b)
z = zmin + s(zmax − zmin) (1c)
θ = 2πu (1d)

φ = cos−1(2w − 1) (1e)

Where p, q, s, u,w ∈ [0, 1] are drawn from uniform distribution, θ is azimuthal angle, φ is polar
angle and (xmin, ymin, zmin, xmax, ymax, zmax) are bounds of the RVE in (x, y, z) directions. The choice
of φ, in Eq. (1), is to ensure uniform distribution of points on the unit sphere, otherwise choosing
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φ=πw would cluster points near the poles [33]. Random initialization, as per Eq. (1), may lead to
the overlapping of inclusions, which must be removed. For this purpose, an optimization-based
iterative procedure for inclusions repositioning is presented in the next section.

2.2. Overlap elimination
In this section, all the steps involved in inclusion overlap elimination are presented in detail.

Let i and j be any two inclusions with centres at xi and x j in a RVE domain Ω as shown in
Fig. 2. The domain Ω is chosen as periodic to avoid gaps and overlaps when it is repeated in
the space. Overlap between a pair of inclusions can be quantified either by using the intersection
area or penetration distance along the line connecting centres. Due to its simplicity, we chose
the distance-based approach. Let di j and di j, respectively, denote centre-to-centre Euclidean dis-
tance and distance of the closest approach for i and j. Here, the distance of the closest approach is
defined as the centre-to-centre Euclidean distance when inclusions are just touching each other ex-
ternally. Then, the total magnitude of inclusion overlap, f , in the RVE is defined as the cumulative
sum of the overlap between all inclusion pairs as shown in Eq. (2)

f =

N−1∑
i=1

N∑
j=i+1

max(di j − di j, 0) =

N−1∑
i=1

N∑
j=i+1

(di j − di j)H(di j − di j) (2)

Where H(x) is Heaviside step function with unit value for all x > 0.
An optimization problem is formulated to minimize the total overlap, f , subject to the con-

straints that inclusions centre points xp does not cross the RVE domain Ω.

Minimise f
subjected to xp ∈ Ω

(3)

In Eq. (3), the RVE domain (Ω) can be in any shape of interest and it decides the nature of the
constraint equations. In the present study, the RVE domain Ω is chosen as rectangular in 2D and
cuboid in 3D as it ensures simple bounds on the spatial variables (x, y, z). Non-monotone spectral
projected gradient (NMSPG) is used, in the present work, to solve the Eq. (3) as explained in
section 3 while any constrained optimization solver can be used.

2.2.1. Shape representation as a Union of n-Spheres (UnS)
The overlap evaluation is a non-trivial task for non-circular and non-spherical shapes. In this

section, we describe a novel, time-efficient/scalable approach to identify overlaps, thereby allow-
ing our method to handle non-circular and non-spherical inclusion shapes. The idea is, overlap
detection between a pair of arbitrary shapes can be converted to overlap detection between two
groups of n-Spheres by representing inclusion shape as a union of n-Spheres (UnS). Here, the
term ”n-Sphere” implies a circle in 2D and a sphere in 3D, as used in mathematics. Fig. 3 shows
the UnS representation of inclusion shapes considered in the present work. For example, checking
the overlap between an ellipse and a rectangle requires finding the overlap between circles repre-
senting these two shapes. Overlap computation time is directly related to the number of n-Spheres
used for each shape. Hence, using the minimum possible number of n-Spheres is desirable.
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We proceed to find the centres and radii of n-Spheres to represent a shape. Let Ci and Ci rep-
resent the equations of ith shape boundary and a concentric outer curve around Ci with a thickness
of dss, minimum distance between boundaries of any two shapes. Here, Ci represents the region
within which the boundary of the other shapes is barred from entering. Assuming that we know
the position x0 and radii r0 of the starting n-Sphere, then xk and rk of the successive n-Spheres are
chosen such that the concentric n-Spheres of radius rk + dss would intersect on Ci. This would
ensure that the successive n-Spheres are separated by an optimum distance dx∗k. Overlap of inclu-
sions may not be captured if n-Spheres are placed at a distance greater than dx∗k as such a UnS may
not represent the shape accurately. Also, n-Spheres closer than dx∗k would unnecessarily increase
the number of n-Spheres there by increasing the computation time. In Appendix A, formulae for
finding the n-Spheres centre and radius are given for representing the ellipse/spheroid shape, the
region between a pair of lines/planes separated by an angle 2β.

2.2.2. Periodic copies addition
In a micromechanical analysis of the RVE, applying periodic boundary conditions (PBC) is

more advantageous over homogeneous boundary conditions[34, 35]. In order to apply PBC, RVE
must be continuous across its boundary when it is repeated in the space. To achieve this, if some
part of an inclusion leaves the RVE boundary, then an appropriate number of its copies must be
added to RVE at appropriate locations. Here, the number of periodic copies of an inclusion equals
the number of RVE faces &/ edges &/ a vertex intersecting the inclusion. These periodic copies
must be placed on the corresponding opposite face &/ edge &/ a vertex. For example, in 2D RVE,
if an inclusion intersects two edges and a vertex, then three copies are added on two opposite
edges and the opposite vertex. Finding intersections of RVE faces/edges/vertices with circular
(in 2D) and spherical (in 3D) inclusion shapes is relatively simple. So, in this work, periodic
copies are determined using the inclusions Union of n-Spheres (explained in the previous section)
representation.

For each inclusion, the intersection of each of its n-Sphere with the RVE boundary is evaluated.
Instances of inclusion’s intersection with RVE is the same as the set of all n-Sphere’s intersections
with RVE faces &/ edges &/ a vertex. Accordingly, periodic copies of inclusions are added to
RVE. As it involves running over each n-Sphere of each inclusion, filtering out boundary inclusions
saves the computational effort. This can be done by checking the overlap of inclusion’s bounding
box with that of the RVE.

2.2.3. Cost function and gradient evaluation
Let inclusions i and j, as shown in Fig. 2, have Ni and N j number of n-Spheres in their UnS

form. The case of circular/spherical inclusion shape can be obtained by choosing Ni = 1 and
N j = 1. The cost of overlap between kth n-Sphere of ith inclusion and lth n-Sphere of jth inclusion
is defined as

Cik, jl = max(0, dik, jl − dik, jl) =
(
dik, jl − dik, jl

)
H(dik, jl − dik, jl) (4)
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Figure 2: Schematic of inclusions with n-Spheres

with,
dik, jl = rik + r jl + dss

dik, jl = ||xik − xjl||2

xik = (xik, yik, zik) = xi + ξik(θi, φi)
xjl = (x jl, y jl, z jl) = xj + ξjl(θj, φj)

(5)

where, H is the Heaviside step function, dss is the minimum surface-to-surface distance between
any two inclusions, xik and xjl are centres of kth and lth n-Spheres of ith and jth inclusions.

The total cost of overlap, f , for all N inclusions is given by

f (x, y, z, θ, φ) =

N−1∑
i=1

N∑
j=i+1

Ni∑
k=1

N j∑
l=1

C2
ik, jl (6)

Gradient, the rate of change of the cost function, f , due to change in ith inclusion variable
wi ∈ {xi, yi, zi, θi, φi} is evaluated as (refer to Appendix B for detailed derivation)

∇ f =

[
∂ f
∂xi

∂ f
∂yi

∂ f
∂zi

∂ f
∂θi

∂ f
∂φi

]
(7a)

= −2
N∑

j=1
,i

 Ni∑
k=1

N j∑
l=1

Cik, jl

dik, jl

[
∆xik, jl ∆yik, jl ∆zik, jl ∆θik, jl ∆φik, jl

] (7b)
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where,
∆xik, jl = xik − x jl

∆yik, jl = yik − y jl

∆zik, jl = zik − z jl

∆θik, jl = (yi − yik)∆xik, jl − (xi − xik)∆yik, jl

∆φik, jl =
zi − zik

η
(∆xik, jl(xi − xik) + ∆yik, jl(yi − yik)) − (∆zik, jlη)

η =
√

(xi − xik)2 + (yi − yik)2

The cost function and its gradient vector, as given by Eqs. (6) and (7), can be used with any
inclusion geometry by considering the appropriate set of optimization variables. For example,
in the case of circular shapes (z, θ, φ) are constant hence gradients vanish corresponding to these
variables.

3. Generating RVE of different inclusion shapes

This section demonstrates RVE generation for circular, spherical, four non-circular and four
non-spherical inclusion shapes. Fig. 3 shows the UnS form of non-circular and non-spherical in-
clusion shapes. Generating an RVE requires solving the optimization problem given in Eq. (3).
Constraints of Eq. (3) become simple bounds on the spatial variables for box shaped RVE (i.e.,
rectangle in 2D and cuboid in 3D). Gradient projection methods, an extension of the steep-
est descent method to the constrained optimization, are proved to be effective choices [36] for
solving optimization problems with such simple bounds. Hence, Non-monotone spectral pro-
jected gradient (NMSPG) algorithm [37, 38], a variant of gradient projection methods, is used
to solve the Eq. (3). The particular choice of the algorithm is based on two reasons. One, the
speed of convergence due to the choice of spectral step length. Two, guaranteed global conver-
gence due to the non-monotone nature of the line-search. In NMSPG implementation, parameters
M = 50, αmin = 10−6, αmax = 106, σ1 = 0.1, σ2 = 0.9, γ = 10−4 are used with the same naming
convention as in [37]. RVE generation procedure is designed to restart if the solution does not
converge in a predefined number of iterations.

Table 1, lists three different sets of RVE parameters used in the present work. In this table,
v f is the inclusion volume fraction, (Rµe,Rσe) are mean and standard deviation of reference cir-
cle/sphere radii, δ = L/Rµe is the RVE size, L is RVE side length and dss is inclusions minimum
surface-to-surface distance. Dimensions of different inclusion shapes, see Fig. C.11, are chosen to
give the same area/volume as that of the reference circle/sphere so that their RVE generation times
can be compared. Although RVEs can be generated for variable inclusion sizes, we have used
Rσe = 0 to study RVE generation for monodisperse inclusions. This is because the monodisperse
case takes more computational effort and have lower jamming limits than those with polydisperse
inclusions[13]. Two and three-dimensional RVEs generated using the set 1 and set 3, respectively,
are shown in Fig. 4
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(a) Capsule (b) Ellipse (c) Rectangle (d) 6-tip Star

(e) Sphero-cylinder (f) Prolate spheroid (g) Oblate spheroid (h) Cylinder

Figure 3: Non-circular and non-spherical shapes representation as a union of n-Spheres

v f δ Rµe Rσe dss

Set 1 0.65 25 6 × 10−6m 0.0 0.07 × Rµe

Set 2 0.65 50 6 × 10−6m 0.0 0.07 × Rµe

Set 3 0.40 15 6 × 10−6m 0.0 0.07 × Rµe

Table 1: RVE parameter sets used in the present study

3.1. RVE generation time.
The RVE generation module is written in the open-source computational language Julia [39]

and used on a computer with 1.19GHz, four-core, 8 GB RAM specifications. In order to produce
large data sets of RVE, it may be for studying composites with data-hungry approaches like deep
learning; lower RVE generation times are desirable. To assess the computational performance,
RVE generation time study (tgen) is performed with various inclusion shapes having different aspect
ratios and RVE sizes (δ). For this purpose, RVE parameters of sets 2 and 3 of Table.1, are used
respectively, with δ ∈ {25, 50, 75, 100} in 2D and δ ∈ {15, 20, 30, 35} in 3D. It is observed that,
a large part of the tgen is due to overlap cost function ( f ) and its gradient (∇ f ) evaluations, and it
gets enhanced with number of n-Spheres used in UnS form of inclusion(see section 2.2.1). The f
and ∇ f are evaluated between a pair of inclusions only if their bounding boxes overlap to avoid
unnecessary overlap check with far-off inclusions. This reduces computation costs significantly
while dealing with non-convex shapes.

The minimum (tmin), mean (tµ), standard deviation (tσ) and maximum (tmax) values of tgen are
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(a) Circles (b) Capsules (c) Ellipses

(d) Rectangles (e) 3-tip stars (f) 4-tip stars

(g) 5-tip stars (h) Spheres (i) Sphero-cylinders

(j) Prolate-spheroids (k) Oblate-spheroids (l) Cylinders

Figure 4: (a)-(g) 2D RVEs and (h)-(l) 3D RVEs with 65 and 40 % inclusion volume fractions respectively.
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reported for 3D and 2D RVEs of different inclusion shapes in Tables C.5 and C.6, respectively,
obtained from 20 realizations in each case of 3D RVEs and 50 realizations in each case of 2D
RVEs. Of all four indicators, meantime is more reliable, as the other metrics are sensitive to out-
liers. If the random initialization is far from the solution, convergence may not be achieved in the
predefined number of iterations, so the RVE generation restarts with new initialization. This leads
to higher tmax and tµ in some cases. Thus, the parameters tmin, tσ, tmax can be used to understand
the uncertainty involved in that particular case. It is found that tgen is directly proportional to the
RVE size and aspect ratio of the inclusion because the increase in RVE size leads to more num-
ber of inclusions, and an increase in aspect ratio leads to more chances of inclusion overlap. For
n-tip stars, tµ is decreasing from a 3-tip star to a 5-tip star, as the 5-tip star has fewer chances of
entanglement/overlap with other inclusions. This is because more tips would result in a smaller
tip height for a given star area.

For circle-shaped inclusions, the present algorithm generated RVE of size δ = 50 with 65%
inclusion volume fraction in about 0.2-0.3 seconds, while [13] has reported 107.02 minutes on a
computer with similar specifications. This drastic reduction tgen may be majorly due to explicit gra-
dient evaluation, which otherwise has to be calculated using computationally expensive numerical
methods. Recently, [25] has reported RVE generation times for non-circular inclusion shapes. In
comparison with this study, for generating the RVE of approximately 2070 elliptical and rectangu-
lar inclusions, the present algorithm takes 35 and 20 seconds, respectively, while [25] has reported
69 and 86 seconds. Higher tgen of 3D RVEs, compared to 2D RVEs, is due to an increased number
of inclusions for a given RVE size and volume fraction. Note that, we have not reported tgen for
RVEs of cylinders with δ ∈ {30, 35} as the total number of spheres in the system (representing all
cylinders in RVE) has reached 200,000 to 300,000, thus leading to very high tgen. RVE generation
of such shapes can be made faster by developing cost-effective UnS representation in future work.

4. Statistical Validation

It is important to assess the distribution of inclusions in the RVE, as it influences the mechani-
cal response and damage initiation. In the following sections, the spatial distribution of inclusions
is evaluated in the neighbourhood and at several radial distances about each inclusion. For this
purpose, 20 different realizations of RVEs are generated for each inclusion shape, using the pa-
rameters given in set 2 (for 2D) and set 3 (for 3D) of Table. 1.

4.1. Voronoi regions areas and volumes
The RVE domain is discretized using Voronoi tessellation[40], with inclusions centres as seed

points, to demarcate a unique region (hence neighbours) for each inclusion. Voronoi tessellation of
a RVE with circular inclusions of 65% volume fraction is shown in Fig. 5a. The regular arrange-
ment of inclusions generates Voronoi regions with the uniform area (or volume) and equidistant
neighbours. So, these metrics are used to determine the randomness in the immediate neighbour-
hood of the inclusion. Coefficient of variation, mean normalized standard deviation(cv = σ/µ), of
Voronoi region areas (cva, for 2D RVE) and Voronoi region volumes (cvv, for 3D RVE) is shown
with box plots in Fig. 5. For regular arrangement, cva = 0 due to vanishing standard deviation
of Voronoi region areas or volumes and higher cva imply more randomness. Table 2 shows good
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Present
algorithm

Pathan et al.
[13]

Melro et al.
[12]

Wongsto’s
et al. [21]

v f = 56% 0.168 0.139 0.137 0.129
v f = 65% 0.119 0.114 0.099 0.077

Table 2: Coefficient of variation of area, cva for RVE of circular inclusions

(a) Voronoi tessellation

0.1 0.2

circles
capsules 1.25
capsules 2.00
ellipses 1.25
ellipses 2.00

rectangles 1.25
rectangles 2.00

3 tip stars
4 tip stars
5 tip stars

(b) coefficient of variation of area cva

0.100 0.125 0.150 0.175

spheres

sphero
 cylinders

prolate
 spheroids

oblate
 spheroids

cylinders

(c) coefficient of variation of volume cvv

Figure 5: A typical Voronoi tessellation and its area and volume metrics for different inclusions

agreement of cva for RVE of circular inclusions when compared with that reported in literature.
For the same set of RVE parameters, cva and cvv of all inclusions, except stars, are in the range of
0.1 to 0.15, see Fig. 5, in line with the observations of [22, 25]. It is observed that cva is increasing
with aspect ratio and decreasing with the number of tips in the case of the n-tip star. As explained
previously, a 3-tip star has more chances of entanglement than a 5-tip star.

4.2. Nearest neighbour distributions
In this section, distributions of the first two nearest neighbour distances and nearest neighbour

orientation are studied. Probability density functions(PDF) of distances from every inclusion to its
closest and second-closest inclusion are plotted, for all the considered inclusion shapes, in Fig. 6.
PDFs are determined using kernel density estimation with Gaussian kernel and Scott method based
bandwidth. PDF becomes a sharp peak at the neighbour distance if all neighbours are equidistant,
as in the case of a regular arrangement. PDF gets flat as the neighbour distance distribution changes
from regular to random. Fig. 6 shows such PDF curves flattening with increasing aspect ratio and
decreasing number of tips on the star. This further supports previous observations with cva.

Cumulative distribution function (CDF) of nearest neighbour orientations is evaluated, for dif-
ferent inclusion shapes, using kernel density estimation and plotted in the Fig. 7. When inclusions
are in complete state of randomness (CSR), nearest neighbour angles are expected to take all possi-
ble values with equal probability. These angles are evaluated, using Eqs. (1d) and (1e), and plotted
on the same Fig 7. It is observed that, in all three plots of Fig. 7, CDF of different inclusion shapes
is closely following that of the CSR. This indicates retained randomness in the nearest neighbour
orientations, after the inclusions re-positioning during overlap removal process.
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Figure 6: Probability density function (PDF) of first two nearest neighbour distances of various inclusion shapes
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Figure 7: Cumulative distribution function (CDF) of nearest neighbour orientations, of 2D and 3D inclusion shapes

4.3. Ripley’s K function, K(r)
Ripley’s K function, K(r), determines the expected number of points inside a search circle (or

sphere) of radius r, centred at any point i, using the Eq. (8)

E(r) = λK(r) =
1
n

n∑
i=1

n∑
j,i

I(di j ≤ r)wi j(r) (8)

where, λ is point density, n is the number of points and I is the indicator function with value of 1
if the point j is inside the search circle (or sphere), otherwise zero. Edge correction term, wi j(r),
factors the absence of points in the exterior part of the search circle (or sphere) if it crosses the
bounds of the domain. The edge correction term can be avoided by replicating RVEs around the
RVE due to the virtue of its periodicity.

Residual Ripley’s K function, L(r), given in Eq. (9) measures the deviation of a given distri-

bution from that of the CSR. In the case of CSR, Kp(r) have πr2 and
4
3
πr3 for 2D and 3D RVEs

respectively.

L(r) =


√

K(r)
π
− r, for 2D case

3

√
3K(r)

4π
− r, for 3D case

(9)

In a search circle (or sphere) of a given radius r, the number of expected points higher than Kp(r)
indicates clustering, while the lower number implies dispersion. Hence, L(r) takes the value of
zero for CSR distribution and oscillates about zero for a regular arrangement. In Figs. 8(a) and
(b), L(r) is plotted for 2D and 3D cases, with standard deviation error bars, evaluated from 20
realizations. In the case of 2D inclusion shapes, L(r) is stabilized at about a radial distance ratio of
7 and remained constant but slightly above zero, indicating minor clustering for longer distances.
In the case of 3D inclusion shapes, L(r) is not fluctuating but monotonically reduced to zero,
indicating the absence of regular arrangement.
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4.4. Radial distribution function, G(r)
Ripley’s K function evaluates point patterns up to radius r in a cumulative manner. Hence, it

becomes difficult to identify the radial distance where the given distribution is deviating from the
CSR. For this purpose, the radial distribution function, G(r), given in Eq. (10), is derived from
K(r). It evaluates the probability of finding points in a circular strip (or spherical shell) of inner
radius r and small thickness dr, centred at any arbitrary point.

G(r) =


1

2πr
dK(r)

dr
=

A
2πrdrN2

∑n
i=1 Ni(r, r + dr) for 2D case

1
4πr2

dK(r)
dr

=
A

4πr2drN2

∑n
i=1 Ni(r, r + dr) for 3D case

(10)

where, Ni is the number of points in an annulus of inner radius r and outer radius r + dr centred
at ith inclusion centre. In the case of CSR, G(r) approaches unity at sufficiently longer distances
from the inclusion centre. Radial distribution functions for 2D and 3D inclusion shapes, evaluated
from 20 realizations, is shown in Figs. 8(c) and (d) with standard deviation as error bars. In the
case of both 2D and 3D inclusion shapes, G(r) approaches unity at radial distance ratios of about
7, indicating the randomness at sufficiently longer radial distances.

5. Micro-mechanical validation

In this section, 2D RVEs generated using the proposed algorithm are assessed for transverse
isotropy, using finite element based micromechanical analysis. Isotropy is expected on the cross-
section normal to fibre direction due to the random distribution of fibres. In order to compare with
the literature results, the same RVE parameters and material set E-glass/MY750/HY917/DY063
are considered[41]. Four different inclusion shapes, circle, ellipse, capsule and rectangle, are
considered in this analysis. This set contains linear elastic isotropic matrix and fibre with Young’s
modulus and Poisson’s ratio Em = 3.35GPa, νm = 0.35, E f = 74GPa, ν f = 0.2 respectively. RVEs
are generated with constant fibre radius r f = 2.6µm, RVE window size δ = 50.0, dss = 0.07r f

and inclusion volume fraction v f ∈ {0.2, 0.3, 0.4, 0.5, 0.6}. For each v f and inclusion shape, 20
different realizations are generated.

Finite element models of RVE are generated in ABAQUS using python scripts. As we are
interested only in transverse properties of the composite, four-node plane strain elements (CPE4),
along with a small proportion of three-node triangular elements (CPE3), are used in finite element
modelling. The number of elements in each model is chosen as approximately 50,000 elements
following a mesh convergence study. Periodic boundary conditions (PBC) are chosen over uniform
boundary conditions. This is because, when PBC are applied, equivalent properties of composite
converge faster with RVE size[42, 43, 44]. PBC are applied on the four edges using dummy nodes
(known as reference points in ABAQUS terminology) using the procedure explained in [45].

The effective material properties evaluated from the micromechanical analysis of RVEs, con-
taining 60% volume fraction of circular inclusions, match closely with the values reported in the
literature (see Table 3). Also, as shown in Table 4, transverse isotropy is observed in the RVEs is
of different fibre shapes. In Fig. (9), effective transverse elastic and shear moduli are plotted for
different inclusion shapes of five different volume fractions. It is observed that all the evaluated
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Figure 8: Long-range metrics, (a-b)Residual Ripley’s K function, L(r) and (c-d) Radial distribution function G(r) for
2D and 3D inclusion shapes
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properties are within the absolute (Voigt-Reuss) bounds and are very close to Hashin-Shtrikman
lower bound as expected for transverse properties. Hence, RVEs generated using the proposed
algorithm are suitable for modelling the microstructure of the unidirectional composite materials.

E22(in GPa) E33 (in GPa) G23 (in GPa) ν23 ν32

Mean (Std. dev) 13.656(0.126) 13.710(0.24) 4.842(0.08) 0.400(0.007) 0.402(0.004)
Experimental [41] 16.2 16.2 5.786 0.4 0.4
Pathan et al., [13] 13.02 12.927 4.736 0.4037 0.4008
Melro et al., [12] 13.367 13.387 4.851 0.370 0.371

Table 3: Transverse effective properties for RVE of circles

Inclusion Shape E22/E33 ν23/ν32 G23/
E22

2(1 + ν23)
Circle 0.9961 0.9955 0.9931
Ellipse 0.9966 0.9983 0.9875
Capsule 0.9956 0.996 0.9933

Rectangle 0.9968 0.9967 0.9981

Table 4: Transverse isotropy for different inclusion shapes, with 60% volume fraction

6. Conclusions

A computationally efficient method is developed for generating periodic RVEs of arbitrary in-
clusion shapes. Inclusion overlaps that occurred during random initialization are removed by solv-
ing a constrained optimization problem. Inclusion detection between arbitrary inclusion shapes is
accomplished by representing each of them as a union of n-Spheres(UnS). The following con-
clusions are drawn from a detailed RVE generation time study, statistical and micromechanical
analysis of RVEs. These studies are performed with ten inclusion shapes having different aspect
ratios.

• Inclusions repositioning using the derived overlap cost function gradient had enabled faster
RVE generation; gradient yields a coordinated movement of inclusions, by considering the
position of their neighbours, to reduce the overall inclusion overlap in the RVE.

• Increasing aspect ratio of the inclusions has increased computational time, lowered the max-
imum reachable volume fraction due to the increased chances of overlap.

• Statistical analysis of RVEs has shown randomness in the neighbourhood and at longer
distances from the inclusion centre.

• Micromechanical analysis of RVEs has shown transverse isotropy for circular, elliptical and
rectangular inclusion shapes, indicating the random distribution of inclusion shapes.
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Figure 9: Transverse elastic and shear moduli for different inclusion shapes

Inclusions overlap detection using UnS representation can make the existing RVE genera-
tion algorithms handle arbitrary inclusion shapes. Also, UnS representation could be used for
object/shape collision detection in other fields like robotics and computer graphics. Due to com-
putational efficiency and capability to work with different inclusion shapes, large and rich/varied
data sets of RVEs can be generated for data-driven studies of composite materials.
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Appendix A. Shape representation as a union of n-Spheres

Eqs. (A.1) and (A.2) give successive n-Spheres for representing the region between a pair of
lines/planes and ellipse/spheroid, respectively. Fig. A.10 shows the schematic of these n-Spheres
arrangement along with the parameters used in Eqs. (A.1) and (A.2). Note that, for the sake of
simplicity, n-Spheres position and radii are determined for shapes placed at the origin with its axis
aligned with the positive x-axis. Then these n-Spheres are rotated and translated, about the origin,
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Figure A.10: Schematic representation of n-Spheres arrangement

to the actual position of the inclusion. Eq. A.1, can be used for many standard shapes like n-sided

regular polygon (with β = π−
2π
n

at each corner), capsule (with β = 0), rectangle (with β = π/4 at
each corner and β = 0 along the axis).

xk+1 = xk +
2dss

cos β

√1 +
2rk

dss
− tan β


rk+1 = rk − (xk+1 − xk) sin β

(A.1)

xk+1 = xk(2ξ2 − 1) + 2E
√

(1 − ξ2)r2
k + ξ(b + dss)2 − b2

rk+1 =

√
b2 −

( xk+1

e

)2 (A.2)

where, ξ = E/e, E =

√
1 −

(b + dss)2

(a + dss)2 , e =

√
1 −

b2

a2 .

Appendix B. Gradient evaluation

The gradient of cost function, f , is evaluated, with respect to an independent variable wp of the
pth inclusion, as follows

∂ f
∂wp

=
∂

∂wp

N−1∑
i=1

N∑
j=i+1

Ni∑
k=1

N j∑
l=1

C2
ik, jl

 = 2
N−1∑
i=1

N∑
j=i+1

Ni∑
k=1

N j∑
l=1

Cik, jl
∂Cik, jl

∂wp
(B.1)

For the overlap cost, Cik, jl between kth and lth n-Sphere of ith and jth inclusion,

• Cik, jl = C jl,ik, as the cost overlap between i and j should be the same as that between j and i.
19



• Cik, jl = 0 for i = j = p, as the cost of overlap is defined for a pair of two different inclusions

•
∂Cik, jl

∂wp
= 0 for i , p and j , p, as the overlap magnitude between a pair of inclusions is

independent of other inclusions position

using the above properties of Cik, jl, Eq. (B.1), is simplified as,

∂ f
∂wp

= 2
p−1∑
i=1

Ni∑
k=1

N j∑
l=1

Cik,pl
∂Cik,pl

∂wp
+ 2

N∑
j=p+1

Ni∑
k=1

N j∑
l=1

Cpk, jl
∂Cpk, jl

∂wp
(B.2)

In the first term, replacing i with j and using Cik, jl = C jl,ik gives,

∂ f
∂wp

= 2
N∑

j=1
,p

Ni∑
k=1

N j∑
l=1

Cpk, jl
∂Cpk, jl

∂wp
(B.3)

Now, using i to represent any inclusion instead of p,

∂ f
∂wi

= 2
N∑

j=1
,i

Ni∑
k=1

N j∑
l=1

Cik, jl
∂Cik, jl

∂wi
(B.4)

using Eq. (4) in Eq. (B.4),

∂ f
∂wi

= 2
N∑

j=1
,i

Ni∑
k=1

N j∑
l=1

(dik, jl − dik, jl)

∂dik, jl

∂wi
−
∂dik, jl

∂wi

 H[dik, jl − dik, jl]

= −2
N∑

j=1
,i

Ni∑
k=1

N j∑
l=1

Cik, jl
∂dik, jl

∂wi

(B.5)

Using Eq. (5) in Eq. (B.5) gives the cost function gradient as shown in Eq. (7).

Appendix C. Geometry of shapes
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Figure C.11: Geometrical details of inclusion shapes

Sphere Sphero-cylinder Spheroid Cylinder
AR = a/b AR = a/b AR = a/b

2.0 0.75 2.0 2.0

δ = 15
Ninc ≈ 323

tmin 0.1 0.56 0.79 1.79 160.0
tµ 0.18 8.75 2.36 2.42 470.23
tσ 0.08 2.54 1.34 0.52 269.5

tmax 0.47 26.48 5.96 3.29 1471.4

δ = 20
Ninc ≈ 764

tmin 0.40 4.2 3.39 7.68 526.74
tµ 0.62 40.7 8.34 16.82 1166.9
tσ 0.17 20.01 4.66 8.11 190.0

tmax 1.13 94.77 21.03 40.93 1589.1

δ = 30
Ninc ≈ 2579

tmin 3.91 184.23 32.88 73.84 -
tµ 5.11 405.21 92.69 206.4 -
tσ 0.82 90.77 30.25 110.4 -

tmax 6.51 590.61 201.57 412.05 -

δ = 35
Ninc ≈ 4095

tmin 9.24 227.2 60.11 169.4 -
tµ 12.99 709.7 361.28 526.46 -
tσ 2.51 180.9 200.26 120.54 -

tmax 17.19 1102.4 756.06 1127.5 -

Table C.5: RVE generation times (in seconds) for 3D inclusion shapes, with different RVE size δ.
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