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Abstract

Motivated by three health economics-related case studies, we propose a unifying and

flexible regression modelling framework that involves regime switching. The proposal can

handle the peculiar distributional shapes of the considered outcomes via a vast range

of marginal distributions, allows for a wide variety of copula dependence structures and

permits to specify all model parameters (including the dependence parameters) as flexible

functions of covariate effects. The algorithm is based on a computationally efficient

and stable penalised maximum likelihood estimation approach. The proposed modelling

framework is employed in three applications in health economics, that use data from the

Medical Expenditure Panel Survey, where novel patterns are uncovered. The framework

has been incorporated in the R package GJRM, hence allowing users to fit the desired

model(s) and produce easy-to-interpret numerical and visual summaries.

Key Words: copula; penalised regression spline; simultaneous estimation; structural

equation model, switching regime.
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1 Introduction

Inspired by health economics-related studies, we introduce a unifying and flexible regression

modelling framework with endogenous regime switching. In particular, we consider three case

studies which investigate the effect of a binary treatment on different types of outcomes. The

first study involves a continuous outcome and investigates the effect of holding insurance

through the employer on female wage earnings, and tests whether the theory of “compen-

sating differentials” holds. The second study, where the outcome is discrete, addresses the

question of whether visiting a doctor to obtain curative health care services affects children’s

school attendance. The third study, which involves a binary outcome, investigates the effect of

private health insurance on health care consumption, and assesses the theory of “favorable se-

lection”. These studies use data from the Medical Expenditure Panel Survey (MEPS), collected

and published by the Agency for Healthcare Research and Quality, an agency within the U.S.

Department of Health and Human Services. Commencing in 1996 and still ongoing to this day,

the MEPS enjoys a reputation for having the most complete individual-level information on

health insurance, health care usage, and health conditions among large-scale household surveys

in the U.S. The MEPS database files are freely available at https://www.meps.ahrq.gov.

Endogenous switching regression was originally envisioned in economics by Roy (1951) and

then later exploited by Borjas (1987). A parallel approach was independently developed in

statistics under the name of potential outcome framework (Neyman, 1923; Cox, 1958). The

main difference between the two frameworks is in the model’s formalisation; in economics,

models are thought of in terms of realised, not potential, outcomes, because the counterfactual

information is already enclosed in the related structural equations and hence there is no need

to construct “non-realised” variables to carry this information (Pearl, 2015). Given our back-

ground knowledge and acquired experience, we adopt the structural equation approach since it

naturally fits within the context of our case studies. In fact, this framework allows us to assess

economic theories, check model assumptions, account for the continuous or non-continuous

nature of the data, quantify the presence of omitted confounders, use the structural coefficients

to obtain treatment effects, and flexibly adjust for the effect of many and different types of
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observed confounders (e.g., Bollen, 2013).

Switching regression has proved to be a valuable tool in labour economics where it has

been abundantly applied, discussed and extended in several directions (e.g., Chen et al., 2014;

Cornelissen et al., 2016; Eisenhauer et al., 2015; Heckman, 1990; Heckman & Honore, 1990;

Heckman & Hotz, 1989; D’Haultfoeuille & Maurel, 2013; Murtazashvili & Wooldridge, 2016;

Smith, 2005). Various applications and extensions have also appeared in other fields (e.g.,

Bayer et al., 2011; Choi & Insik, 2009; Fitawek & Hendriks, 2021; Kim, 2021; Moscelli et al.,

2018), hence highlighting the relevance of the modelling framework. When the approach was

first developed and formalised, multivariate normality was assumed for theoretical and compu-

tational tractability. Since this assumption is clearly questionable in applications, extensions of

it were proposed. A notable example is Smith (2005) who introduced a class of alternatives to

the multivariate Gaussian based on copulae, a modelling strategy whereby a joint distribution

is formed by specifying marginal distributions and a copula function that binds them together.

In terms of software implementation, the traditional model, based on the assumption of nor-

mality, can be found in Lokshin & Sajaia (2004) and Toomet & Henningsen (2020). Hasebe

(2013) provided an implementation where the normal, logistic and Student’s t univariate distri-

butions as well as several bivariate copula distributions can be employed to specify the model.

Hasebe (2020) presented a switching regression model for count-data that exploits multivariate

normality.

The aim of this work is to introduce a unifying copula-based switching regression framework

that: a) is capable of handling binary, discrete and continuous outcomes via a vast range of

marginal distributions; b) permits to model each parameter of the assumed multivariate distri-

bution as a function of regression effects; c) can accommodate flexible regression structures; d)

allows for a wide variety of copula dependence structures. These points are prompted by the

three case studies. For example, in the first study, less conventional distributions such as the

inverse Gaussian and Fisk distributions fit wage earnings better than more traditional ones.

Also, since all distributional parameters can be modelled as a function of observed confounders,

the information contained in the data can be better exploited. In the second study, the negative

3



binomial type II fits well the missed school days outcome, and the observed confounders enter

both mean and dispersion parameters. The ability to accommodate flexibly outcome-observed

confounder relationships means that new patterns and trends in the data may be uncovered

and the impact of misspecification mitigated. As an example, in the first study, instead of

imposing a quadratic shape on the effect of age, we let the data determine such shape which

was found to be an increasing, but slightly concave, curve among females who do not hold

insurance through their employers, and a non-monotonic pattern among females who do hold

insurance. Finally, the copula parameters provide information on the presence and role of

unobservables. In the third study, the estimated dependencies are negative for both treatment

regimes, corroborating the assumption that unobservables that increase the likelihood of in-

surance also tend to reduce the probability of having a doctor visit. Note that the proposal

requires an instrumental variable for the switching mechanism (e.g., French & Taber, 2011), as

illustrated in the case studies.

The potential drawback of the proposed framework is that treatment effect identification is

based on functional form assumptions. However, in spite of its parametric flavour, the flexibil-

ity offered by the methodology enables the data to point to meaningful model structures, hence

capturing in a sense the spirit of semi-/non-parametric methods. Importantly, as stressed, for

instance, by Chen et al. (2014, see also references therein), the use of semi-/non-parametric

techniques in this context is problematic because they do not easily allow for treatment ef-

fect calculations and rely on asymptotic arguments that make such approaches less viable for

empirical research.

The introduced framework allows for many layers of complexity, however there is no price

to pay in terms of usability and interpretability. In fact, the modelling approach has been

incorporated in the software package GJRM (Marra & Radice, 2022), written for the program-

ming language R (R Core Team, 2022), which significantly eases the use of our switching regime

framework. Parameter estimation relies on a carefully structured algorithm, whereas inference

exploits a Bayesian result often employed for penalised likelihood-based models. The proposed

methodological developments, together with fast and reliable software implementation, repre-
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sent a significant advance in switching regression modelling. To the best of our knowledge, this

is the first freely available implementation of a unifying and flexible copula-based switching

regression framework.

The article is organised as follows. Section 2 introduces the general model and then discusses

the related log-likelihoods (and the components that make them up) as well as the incorporation

of flexible covariate effects. Section 3 describes parameter estimation, whereas Section 4 gives

details on inference, some properties of the estimator, information criteria and the definition of

residuals. Section 5 discusses the calculation of the average treatment effect and the procedure

to obtain an interval for it. Section 6 presents the findings from our three case studies, and

Section 7 concludes the paper with a discussion. The On-Line Supplementary Material provides

details on the algorithm, discusses the findings of a simulation study, and illustrates the use of

GJRM in the three case studies.

2 The Model

In switching regressions models, a random variable of interest is explained in different ways

across alternate regimes. When there are two regimes, the model has a trio of underlying

random variables (Y ∗
1i, Y

∗
2i, Y

∗
3i) which connect with observable random variables (Si, Y2i, Y3i)

via the rules

Si = 1(Y ∗
1i > 0), Y2i = (1− Si)Y

∗
2i, Y3i = SiY

∗
3i,

where 1(·) is an indicator function equaling 1 if the condition inside the braces holds and 0

otherwise. These rules imply a binary switching mechanism: if Si = 0 then Y2i holds the

observed value of Y ∗
2i and Y3i equals 0 (which here means that Y3i is missing or unobserved),

and if Si = 1 then Y3i holds the observed value of Y ∗
3i and Y2i equals 0. Note that the first rule

implies P (Si = 0) = P (Y ∗
1i ≤ 0), i.e. the cumulative distribution functions (cdfs) of Si and Y ∗

1i

coincide at si = y∗1i = 0.

Each member of the trio (Y ∗
1i, Y

∗
2i, Y

∗
3i) has associated marginal cdfs and probability (density

or mass) functions (pdfs/pmfs) which can be denoted as Fj(y
∗
ji|ϕj) and fj(y

∗
ji|ϕj), for j = 1, 2, 3,
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where ϕj represents a vector of distributional parameters of dimension wj ∈ N+ that can be

specified as flexible functions of regression effects (as explained in Section 2.3). Recall that

the equation related to the switching mechanism requires an instrument. The model also

requires bivariate cdfs that relate the first variable in the trio to the other two variables, that is

F12(y
∗
1i, y

∗
2i|ϕ1,ϕ2, θ12) and F13(y

∗
1i, y

∗
3i|ϕ1,ϕ3, θ13), where θ12 and θ13 are parameters capturing

the dependence between the respective margins.

The next section gives details on the form of the log-likelihood for different types of out-

come variables. Section 2.2 discusses the range of options for the specification of the copula

and marginal distributions. Section 2.3 explains how flexible regression structures can be ac-

commodated in the modelling framework.

2.1 Log-Likelihoods

Let (si, y2i, y3i) denote the ith observation on (Si, Y2i, Y3i), for i = 1, . . . , n, where n ∈ N+

denotes the sample size. For a given observed random sample, the log-likelihood function can

be expressed in three different ways depending on whether the outcome variable of interest is

continuous, discrete or binary. In the continuous case, as in Smith (2005), we have

ℓ(δ) =
n∑

i=1

(1− si) log

{
∂F12(0, y

∗
2i|ϕ1,ϕ2, θ12)

∂y∗2i

} ∣∣∣∣
y∗2i=y2i

+

si log

{
f3(y

∗
3i|ϕ3)−

∂F13(0, y
∗
3i|ϕ1,ϕ3, θ13)

∂y∗3i

} ∣∣∣∣
y∗3i=y3i

, (1)

where δ = (ϕT

1 ,ϕ
T

2 ,ϕ
T

3 , θ12, θ13)
T. In the discrete case, the log-likelihood function is instead

built using finite differences, i.e.

ℓ(δ) =
n∑

i=1

(1− si) log {F12(0, y
∗
2i|ϕ1,ϕ2, θ12)− F12(0, y

∗
2i − 1|ϕ1,ϕ2, θ12)}

∣∣∣∣
y∗2i=y2i

+

si log {f3(y∗3i|ϕ3)− F13(0, y
∗
3i|ϕ1,ϕ3, θ13) + F13(0, y

∗
3i − 1|ϕ1,ϕ3, θ13)}

∣∣∣∣
y∗3i=y3i

.

(2)
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In the binary scenario, we have four possible outcomes and hence

ℓ(δ) =
n∑

i=1

(1− si)(1− y2i) log {F12(0, 0|ϕ1,ϕ2, θ12)}+

(1− si)y2i log {F1(0|ϕ1)− F12(0, 0|ϕ1,ϕ2, θ12)}+

si(1− y3i) log {F3(0|ϕ3)− F13(0, 0|ϕ1,ϕ3, θ13)}+

siy3i log [(1− F1(0|ϕ1))− {F3(0|ϕ3)− F13(0, 0|ϕ1,ϕ3, θ13)}]

. (3)

Note that, since the log-likelihood functions above do not depend on F23(y
∗
2i, y

∗
3i|ϕ2,ϕ3, θ23),

where θ23 would represent a further dependence parameter, potential links between Y ∗
2i and Y ∗

3i

cannot be (directly) recovered (e.g., Smith, 2005), hence it is superfluous to specify a trivariate

distribution for (Y ∗
1i, Y

∗
2i, Y

∗
3i).

2.2 Copulae and Marginal Distributions

This section provides a very succinct description of the copula approach; we refer the reader

to, e.g., Nelsen (2006), Nikoloulopoulos & Karlis (2010), Trivedi and Zimmer (2007) and Joe

(2014) for technical details in various contexts. Using the copula method, the joint cdf of the

random variables of interest can be expressed as

F1j(y
∗
1, y

∗
j |ϕ1,ϕj, θ1j) = C1j

(
F1(y

∗
1|ϕ1), F2(y

∗
j |ϕj); θ1j

)
, j = 2, 3, (4)

where C1j : (0, 1)2 → (0, 1) is a two-place copula function. The main practical advantage of

copulae is that, with knowledge of arbitrary F1 and Fj and a copula function C1j that glues

them together, one can assemble a distribution of the otherwise difficult-to-know F1j . The

copulae implemented in GJRM are reported in Table 1. For those copulae that can only account

for positive dependence (e.g., Clayton and Joe), counter-clockwise rotated versions of them can

be obtained (Brechmann & Schepsmeier, 2013). For a pictorial representation of some of the

copulae considered here see, e.g., Hasebe (2013).

Using (4), log-likelihood function (1) is made operational by replacing F12(y
∗
1i, y

∗
2i|ϕ1,ϕ2, θ12)
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Copula C(u1, u2; θ) Range of θ Transformation of θ

AMH ("AMH") u1u2

1−θ(1−u1)(1−u2)
[−1, 1] tanh−1(θ)

Clayton ("C0")
(
u−θ
1 + u−θ

2 − 1
)
−1/θ

(0,∞) log(θ)

FGM ("FGM") u1u2 {1 + θ(1− u1)(1− u2)} [−1, 1] tanh−1(θ)

Frank ("F")
−θ−1 log {1 + (exp {−θu1} − 1)
(exp {−θu2} − 1)/(exp {−θ} − 1)} R\ {0} −

Galambos ("GAL")
u1u2 exp

[{
(− log u1)

−θ

+(− log u2)
−θ

}
−1/θ

] (0,∞) log(θ)

Gaussian ("N") Φ2

(
Φ−1(u1),Φ

−1(u2); θ
)

[−1, 1] tanh−1(θ)

Gumbel ("G0")
exp

[
−
{
(− log u1)

θ

+(− log u2)
θ
}1/θ

] [1,∞) log(θ − 1)

Joe ("J0")
1−

{
(1− u1)

θ + (1− u2)
θ

−(1− u1)
θ(1− u2)

θ
}1/θ (1,∞) log(θ − 1)

Plackett ("PL")
(
Q−

√
R
)
/ {2(θ − 1)} (0,∞) log(θ)

Student’s t ("T") t2,ζ

(
t−1
ζ (u1), t

−1
ζ (u2); ζ, θ

)
[−1, 1] tanh−1(θ)

Table 1: Definition of the copulae implemented in the R package GJRM, with corresponding parameter
range of association parameter θ, and one-to-one transformation function of θ. Φ2(·, ·; θ) denotes the
cumulative distribution function (cdf) of the standard bivariate normal distribution with correlation
coefficient θ, and Φ(·) the cdf of the univariate standard normal distribution. t2,ζ(·, ·; ζ, θ) indicates the
cdf of the standard bivariate Student-t distribution with correlation θ and fixed ζ ∈ (2,∞) degrees of
freedom, and tζ(·) denotes the cdf of the univariate Student-t distribution with ζ degrees of freedom.
Quantities Q and R are given by 1+(θ−1)(u1+u2) and Q2−4θ(θ−1)u1u2, respectively. Arguments
BivD and BivD2 of gjrm() in GJRM allows the user to employ the desired copulae and can be set to any
of the values within brackets next to the copula names in the first column; for example, BivD = "C0"

and BivD2 = "FGM". For Clayton, Galambos, Gumbel and Joe, the number after the capital letter
indicates the degree of rotation required: the possible values are 0, 90, 180 and 270. The rotations
are defined as C90(u1, u2; θ) = u2−C(1−u1, u2), C180(u1, u2; θ) = u1+u2− 1+C(1−u1, 1−u2) and
C270(u1, u2; θ) = u1 − C(u1, 1− u2).
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f(y|µ, σ) E(Y ) V(Y )

Poisson ("PO") exp(−µ)µy

y! µ µ

Negative binomial type I ("NBI") Γ(y+1/σ)
Γ(1/σ)Γ(y+1)

(
σµ

1+σµ

)y (
1

1+σµ

)1/σ
µ µ+ σµ2

Negative binomial type II ("NBII") Γ(y+µ/σ)σy

Γ(µ/σ)Γ(y+1)(1+σ)y+µ/σ µ (1 + σ)µ

Poisson inverse Gaussian ("PIG")
(
2α
π

)0.5 µy exp(1/σ)Ky−0.5(α)
(ασ)yy! µ µ+ σµ2

Table 2: Definition and some properties of the main discrete distributions implemented in GJRM.
These have been parametrised according to Rigby & Stasinopoulos (2005) and are defined in terms of
parameters µ and σ. In all cases, y ∈ N0 and µ, σ ∈ (0,∞). Since the distributional parameters can

only take positive values, the transformation function log(·) is employed in all cases. α =
√

1
σ2 + 2µ

σ

and Kλ(t) = 1
2

∫∞
0 xλ−1 exp

{
−0.5t(x+ x−1)

}
dx is the modified Bessel function of the third kind.

Argument margins of gjrm() in GJRM allows the user to employ the desired discrete marginals This
is achieved using the characters within brackets next to the names of the distributions; for instance,
margins = c("logit", "NBI", "PIG"). Note that for the first margin other choices are possible:
probit and cloglog.

and F13(y
∗
1i, y

∗
3i|ϕ1,ϕ3, θ13) with C12 (F1(0|ϕ1), F2(y2i|ϕ2); θ12) and C13 (F1(0|ϕ1), F3(y3i|ϕ3); θ13),

respectively. A similar reasoning applies to log-likelihood functions (2) and (3). Note that

in (2), F12(y
∗
1i, y

∗
2i − 1|ϕ1,ϕ2, θ12) is replaced with C12 (F1(0|ϕ1), F2(y2i|ϕ2)− f2(y2i|ϕ2); θ12),

where, for the second margin, the relation f2(y2i|ϕ2) = F2(y2i|ϕ2)−F2(y2i − 1|ϕ2) is exploited

to avoid the evaluation of F2 for negative arguments; similarly for F13.

Regarding the marginal distributions, for S we consider a Bernoulli distribution with pa-

rameter µ1 ∈ (0, 1), representing the probability of switching. For Y2 and Y3 several choices

are possible: a Bernoulli distribution and those listed in Tables 2 and 3. These choices imply

that ϕ1 = µ1 and that ϕj, for j = 2, 3, is equal to either µj, (µj, σj)
T or (µj, σj , νj)

T.

2.3 Flexible Covariate Effects

Each parameter of the model can be linked to regression effects via an unknown smooth func-

tion m(zi) ∈ R, where zi represents a covariate vector (containing, e.g., binary, categorical,

continuous and geographic variables), and a known monotonic one-to-one transformation func-

tion ensuring that the restriction on the space of the parameter being considered is not vio-

lated. As an example, for a model with Bernoulli, Fisk and Gumbel margins and Gumbel and

Clayton copulae, we would have gµ1(µ1i) = mµ1(zi), gµ2(µ2i) = mµ2(zi), gσ2(σ2i) = mσ2(zi),
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F (y|µ, σ, ν) f(y|µ, σ, ν) E(Y ) V(Y )
Support of y

Parameters’ ranges

beta ("BE")

I(y;α1, α2)

α1 =
µ(1−σ2)

σ2

α2 =
(1−µ)(1−σ2)

σ2

yα1−1(1−y)α2−1

B(α1,α2)
µ σ2µ(1− µ)

0 < y < 1
0 < µ < 1, 0 < σ < 1

Dagum ("DAGUM")

{

1 +
(

y
µ

)−σ
}−ν

σν
y

[
(

y

µ

)

σν

{(

y

µ

)

σ

+1
}

ν+1

]

−µ
σ

Γ(− 1
σ
)Γ( 1

σ
+ν)

Γ(ν)

if σ > 1

−
(µ
σ

)2
[

2σ
Γ(− 2

σ
)Γ( 2

σ
+ν)

Γ(ν)

+

{

Γ(− 1
σ
)Γ( 1

σ
+ν)

Γ(ν)

}2
]

if σ > 2

y > 0
µ > 0, σ > 0, ν > 0

Fisk ("FISK")

{

1 +
(

y
µ

)−σ
}−1

σyσ−1

µσ

{

1+
(

y

µ

)

σ
}

2

µπ/σ
sin(π/σ)

if σ > 1 µ2
{

2π/σ
sin(2π/σ)

− (π/σ)2

sin(π/σ)2

}

if σ > 2

y > 0
µ > 0, σ > 0

gamma ("GA") 1

Γ
(

1

σ2

)γ
(

1
σ2 ,

y
µσ2

)

1

(µσ2)
1

σ2

y
1

σ2
−1

exp

(

− y

µσ2

)

Γ
(

1

σ2

) µ µ2σ2 y > 0
µ > 0, σ > 0

Gumbel ("GU") 1− exp
{

− exp
(

y−µ
σ

)}

1
σ
exp

{(

y−µ
σ

)

− exp
(

y−µ
σ

)}

µ− 0.57722σ π2σ2

6

−∞ < y < ∞
−∞ < µ < ∞, σ > 0

inverse Gaussian ("iG")

Φ

{

1√
yσ2

(

y
µ
− 1

)

}

+

exp
(

2
µσ2

)

Φ

{

− 1√
yσ2

(

y
µ
+ 1

)

}

1√
2πσ2y3

exp
{

− 1
2µ2σ2y

(y − µ)2
}

µ µ3σ2 y > 0
µ > 0, σ > 0

log-normal ("LN") 1
2
+ 1

2
erf

{

log(y)−µ

σ
√
2

}

1
yσ

√
2π

exp
[

− {log(y)−µ}2
2σ2

]

√

exp (σ2) exp (µ)
exp

(

σ2
) {

exp
(

σ2
)

−1} exp (2µ)

y > 0
−∞ < µ < ∞, σ > 0

logistic ("LO") 1

1+exp
(

− y−µ

σ

)

1
σ

{

exp
(

− y−µ
σ

)}{

1 + exp
(

− y−µ
σ

)}−2
µ π2σ2

3

−∞ < y < ∞
−∞ < µ < ∞, σ > 0

normal ("N") 1
2

{

1 + erf
(

y−µ

σ
√
2

)}

1
σ
√
2π

exp
{

− (y−µ)2

2σ2

}

µ σ2 −∞ < y < ∞
−∞ < µ < ∞, σ > 0

reverse Gumbel ("rGU") exp
{

− exp
(

− y−µ
σ

)}

1
σ
exp

{(

− y−µ
σ

)

− exp
(

− y−µ
σ

)}

µ+ 0.57722σ π2σ2

6

−∞ < y < ∞
−∞ < µ < ∞, σ > 0

Singh-Maddala ("SM") 1−
{

1 +
(

y
µ

)σ}−ν
σνyσ−1

µσ

{

1+
(

y

µ

)

σ
}

ν+1
µ

Γ(1+ 1
σ
)Γ(− 1

σ
+ν)

Γ(ν)

if σν > 1

µ2
{

Γ
(

1 + 2
σ

)

Γ(ν)Γ
(

− 2
σ
+ ν

)

−Γ
(

1 + 1
σ

)2
Γ
(

− 1
σ
+ ν

)2
}

if σν > 2

y > 0
µ > 0, σ > 0, ν > 0

Weibull ("WEI") 1− exp
{

−
(

y
µ

)σ}
σ
µ

(

y
µ

)σ−1
exp

{

−
(

y
µ

)σ}

µΓ
(

1
σ
+ 1

)

µ2
[

Γ
(

2
σ
+ 1

)

−
{

Γ
(

1
σ
+ 1

)}2
]

y > 0
µ > 0, σ > 0

Table 3: Definition and some properties of the main distributions implemented in GJRM. These have been conveniently parametrised according
to Rigby & Stasinopoulos (2005) and are defined in terms of parameters µ, σ and ν (which sometimes represent location, scale and shape).
Note that E(Y ) and V(Y ) of DAGUM, FISK (also known as log-logistic) and SM are indeterminate for certain values (or combination) of σ and
ν. Also, in many cases the parameters of the distributions determine E(Y ) and V(Y ) through functions of them. If a parameter can only take
positive values then the transformation function log(·) is employed. If a parameter takes values in (0, 1) then the inverse of the cumulative
distribution function of the standardised logistic distribution is used. I(·; ·, ·) is the regularized beta function, B(·, ·) is the beta function, Γ(·)
is the gamma function, γ(·, ·) is the lower incomplete gamma function, Φ(·) is the cdf of the univariate standard normal distribution, and
erf(·) is the error function. Argument margins of gjrm() in GJRM allows the user to employ the desired marginals; for instance, margins =

c("probit", "iG", "FISK"), where the first margin can also be logit or cloglog.
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gµ3(µ3i) = mµ3(zi), gσ3(σ3i) = mσ3(zi), gθ12(θ12i) = mθ12(zi), gθ13(θ13i) = mθ13(zi), where

gµ1(µ1i) = Φ−1(µ1i), with Φ−1(·) being the quantile function a standard normal distribu-

tion, gµ2(µ2i) = log(µ2i), gσ2(σ2i) = log(σ2i), gµ3(µ3i) = µ3i, gσ3(σ3i) = log(σ3i), gθ12(θ12i) =

log(θ12i−1) and gθ13(θ13i) = log(θ13i). For the binary margin, we assumed a probit link, however

the logit and complementary log-log functions could have been chosen instead. Furthermore,

we assumed that the same covariate vector is employed for each parameter, however, if desired,

different subsets of it can be adopted for different parameters.

Using m(zi) makes the model very flexible. However, in practice n would have to be

unfeasibly large due to the well known curse-of-dimensionality when the dimension of zi is

large, as in most empirical situations. To this end, we impose an additive structure on m(zi)

which, while it implies that not all the interaction terms among the covariates can be accounted

for, still allows for a great deal of flexibility and retains good theoretical properties (e.g., Wood,

2017). Therefore, dropping for simplicity the subscript denoting which parameter the smooth

function belongs to, we define

m(zi) = β0 +
K∑

k=1

sk(zki), (5)

where β0 ∈ R is an overall intercept, zki denotes the kth sub-vector of zi and the K functions

sk(zki) represent generic effects chosen according to the type of covariate(s) considered, as

explained in the next sections. Each sk(zki) can be expressed as a linear combination of Jk

basis functions bkjk(zki) and regression coefficients βkjk ∈ R,

Jk∑

jk=1

βkjkbkjk(zki). (6)

This means that the vector of evaluations {sk(zk1), . . . , sk(zkn)}T can be written as Zkβk with

βk = (βk1, . . . , βkJk)
T and design matrix Zk[i, jk] = bkjk(zki). This allows the right hand side

of (5) to be written as β01n + Z1β1 + . . . + ZKβK or as Zβ, where Z = (1n,Z1, . . . ,ZK),

β = (β0,β
T

1 , . . . ,β
T

K)
T and 1n is an n-dimensional vector made up of ones.

Each βk has an associated quadratic penalty λkβ
T

kDkβk whose role is to enforce specific

properties on the kth function, such as smoothness. Here, Dk only depends on the choice of
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basis functions and hence not on βk. Tuning or smoothing parameter λk ∈ [0,∞) controls the

trade-off between fit and parsimony, and plays a crucial role in determining ŝk(zki); a large

value for λk will allow the related quadratic penalty to have a large influence on the estimation

of βk during model fitting, and vice versa. The overall penalty can be defined as βTDλβ, where

Dλ = diag(0, λ1D1, . . . , λKDK). To ensure identifiability of the model regression structure, the

sk(zki) are subject to centering constraints which are imposed by adopting the parsimonious

approach detailed in Wood (2017, Section 5.4.1). The next sections show how the above

framework can be utilised to model, among others, linear and nonlinear effects; these are

relevant for our case studies.

2.3.1 Parametric effects

These effects usually relate to binary and categorical variables and are represented by setting

sk(zki) = zTkiβk. The corresponding design matrix is obtained by stacking all covariate vectors

zki into Zk. No penalty is typically assigned to parametric effects, hence Dk = 0. There might

be, however, contexts in which it would be advisable to do so. An example is that of a factor

variable with many categories and only a few observations available for some of them. The

parameters of such categories may be weakly or not identified by the data in which case a

ridge penalty (obtained by setting Dk = Ik, where Ik is an identity matrix) can be employed to

circumvent such problem. Note that this is equivalent to the assumption that the coefficients

are i.i.d. normal random effects with unknown variance (Wood, 2017, Section 5.8).

2.3.2 Nonparametric effects

Penalised regression splines are a popular and computationally efficient way for representing un-

known nonlinear effects of continuous covariates. The main requirement is a global smoothness

assumption on differentiability. This method makes it possible to avoid arbitrary modelling

decisions, such as choosing the appropriate degree of a polynomial or specifying cut-points,

which could induce misspecification. This approach has been popularised by Eilers & Marx

(1996) and its theoretical properties addressed by several authors (e.g., Claeskens et al., 2009;

12



Kauermann et al., 2009; Wood, 2017).

For a continuous variable zki, we use representation (6), where the bkjk(zki) are known spline

basis functions. The design matrix Zk comprises the basis function evaluations for each i, and

essentially contains Jk curves with varying degrees of complexity. To enforce smoothness, the

penalty is based on the conventional choice Dk =
∫
dk(zk)dk(zk)

Tdzk, where the jthk element

of dk(zk) is given by ∂2bkjk(zk)/∂z
2
k and integration is over the range of zk. This approach can

virtually accommodate any (sensible) definition of basis function and penalty (e.g., penalised

low rank thin plate regression splines, P-splines) and we refer the reader to Wood (2017,

Chapter 5) for various definitions as well as a through discussion of their theoretical and

computational aspects.

When setting up the basis functions, knots have to be chosen unless not required (e.g.,

thin plate regression splines, Wood, 2017, Section 5.5.1). A value for Jk has to be chosen

too. Instead of addressing these problems, which may be computationally cumbersome, the

penalised regression spline method relies on setting Jk to a large number and then using a

penalty during model fitting to suppress that part of the smooth term complexity that is not

supported by the data. Still, Jk has to be chosen and the theoretical analysis of the above

authors suggest that Jk has to grow slowly with n to achieve statistical performance that is

asymptotically indistinguishable from that of a full smoothing spline. In practice, one may

perform a sensitivity analysis to assess how the estimates change for several values of Jk.

The penalised regression smoothing framework described in this section allows for several other

specifications as well as a vast variety of penalised spline functions. These include interaction

terms via varying coefficient smooths obtained by multiplying one or more smooth components

by some covariate(s), smooth functions of two or more continuous covariates (tensor product

terms), and Gaussian Markov random field, Gaussian process and adaptive smoothers, to

name but a few. Such flexibility makes the scope of the introduced models and the related

implementation in GJRM very wide and hence applicable to a large suite of empirical problems.
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3 Parameter Estimation

For a given observed random sample {(si, y2i, y3i, zi)}ni=1, because of the highly flexible regres-

sion structures allowed for by the proposed modelling framework, parameter estimation is based

on an objective function augmented by an overall quadratic penalty term which is set up using

the approach discussed in Section 2.3. That is,

ℓp(δ) = ℓ(δ)− 1

2
δTSλδ,

where ℓ(δ) is equal to either (1), (2) or (3), δ is defined as (βT

µ1
, . . . ,βT

θ12
,βT

θ13
)T, which is made

up of the coefficient vectors related to mµ1(zi), . . ., mθ12(zi), mθ13(zi) and whose specific set

up and dimension depend on the model specification, and Sλ = diag(Dλ,µ1 , . . . ,Dλ,θ12 ,Dλ,θ13),

which contains the overall smoothing parameter vector λ = (λT

µ1
, . . . ,λT

θ12
,λT

θ13
)T.

The construction of an algorithm that can estimate δ and λ in a stable and efficient manner

requires careful considerations and attention to certain details. For instance, experimentation

based on various optimisation schemes that rely on derivative free and quasi-Newton tech-

niques revealed a series of convergence and speed issues; in the cases explored, throughout the

iterations, the score and Hessian of ℓ(δ) were poorly approximated by numerical differentia-

tion methods. We finally settled on a simultaneous estimation approach, based on analytical

first and second order derivatives, implemented by adapting to this context the algorithm of

Marra & Radice (2020) (see Appendix A of the On-Line Supplementary Material for details).

4 Further considerations

At convergence, instead of basing inference on the classically derived frequentist covariance

matrix −H−1
p HH−1

p , where Hp and H are the Hessians of ℓp(δ) and ℓ(δ), intervals for any

linear function of δ, e.g. sk(zki), are obtained via the Bayesian large sample approximation

δ
a∼ N (δ̂,−H−1

p ). (7)
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Adopting the Bayesian framework in the context of penalised models implicitly assumes that

overly complex models are less likely than simpler or smoother ones which indeed translates

into the prior specification fδ ∝ exp
(
−1/2δTSλδ

)
. As elaborated by Wood (2017, Section

6.10, see also references therein), the Bayesian covariance matrix gives close to across-the-

function frequentist coverage probabilities since it includes the bias and variance components

in a frequentist sense, which is not the case for the frequentist covariance matrix. Intervals for

nonlinear functions of δ (see the next section for an example) can be conveniently obtained via

posterior simulation, whereas p-values for the terms in the model can be reliably obtained by

using the results summarised in Wood (2017, Section 6.12) which are based on −H−1
p .

Model building can be aided using tools such as the Akaike information criterion (AIC,

Akaike, 1973) and the Bayesian information criterion (BIC, Schwarz, 1978), and (randomised)

normalised quantile residuals (Dunn & Smyth, 1996). The AIC and BIC are defined as−2ℓ(δ̂)+

2edf and −2ℓ(δ̂)+log(n)edf , respectively, where the log-likelihood is evaluated at the penalised

parameter estimates and edf = tr(Â) with A =
√
−H (−Hp)

−1 √−H (see Appendix A for

details on the derivation of this quantity).

As for the residuals, for a continuous Y2, these are defined as q2i2 = Φ−1
{
F̂2|1(y2i2 |y1i2 = 0)

}
,

where i2 = 1, . . . , n2, n2 is the size of the sub-sample related to Y2 and F̂2|1(·) is the estimated

conditional cdf of Y2 given Y1 = 0. Similarly for Y3, q3i3 = Φ−1
{
F̂3|1(y3i3 |y1i3 = 1)

}
, where

i3 = 1, . . . , n3, n3 is the size of the sub-sample for Y3 and F̂3|1(·) is the estimated conditional

cdf of Y3 given Y1 = 1. The conditional cdfs are given by the ratios of the respective joint

cdfs and marginal probabilities, and account for the fact that Y2 and Y3 are observed only

for sub-samples. If the cdfs are close to their respective true distributions then the quan-

tile residuals follow the standard normal distribution, which can be easily assessed by, e.g.,

inspecting the corresponding QQ-plots. For discrete margins, randomised normalised quan-

tile residuals are used instead. For Y2, these are based on q2i2 = Φ−1(u2i2), where u2i2 is

a random value from the uniform distribution on
[
F̂2|1(y2i2 − 1|y1i2 = 0), F̂2|1(y2i2 |y1i2 = 0)

]
.

Similarly for Y3, q3i3 = Φ−1(u3i3), where u3i3 is a random value from the uniform distribution

on
[
F̂3|1(y3i3 − 1|y1i3 = 1), F̂3|1(y3i3 |y1i3 = 1)

]
. Randomisation allows one to view the discrete
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distributions as if there were continuous. With regard to S, because of its binary nature, resid-

ual analysis is not informative (e.g., Collett, 2002). In this case, a sensitivity analysis based on

different link functions can be carried out; experience suggests that the model fit will not be

significantly affected by this choice.

Studying the asymptotic properties of the proposed estimator is beyond the scope of the

present paper. However, this could be approached by considering a fixed number of knots

for the basis functions (e.g., Kauermann, 2005), in which case we would obtain, for instance,

that δ̂
P→ δ0 and ‖δ̂ − δ0‖ = OP (1/

√
n) and

√
n(δ̂ − δ0)

d→ N (0, i−1(δ0)), where i(δ0) =

cov
[
∂ℓ(δ)/∂δ|

δ0

]
.

Appendix B of the On-Line Supplementary Material discusses the results of a simulation

study, whereas Appendix C illustrates the use of GJRM.

5 Average Treatment Effect

The binary switching indicator variable Si can be referred to as treatment and takes value

1 or 0 which has implications on whether Y2 or Y3 can be observed. A well known measure

of treatment evaluation is the average treatment effect (ATE), which quantifies the expected

impact of a treatment for a randomly chosen individual from the population of interest. For a

fitted model, the ATE can be estimated as follows

ATE(δ̂) =
1

n

n∑

i=1

{
Ê(Y3i)− Ê(Y2i)

}
, (8)

where, for binary outcomes, the expectations can be expressed in terms of marginal probabilities

(based on the probit, logit or complementary log-log link function), whereas for discrete and

continuous outcomes the required formulae are reported in Tables 2 and 3. Note that in

the continuous case, some expectations are given by linear or nonlinear combinations of more

than one distributional parameter. Moreover, the ATE depends on δ (strictly speaking on

that subset of it that relates to the distributions of Y2 and Y3) through the m(zi) as detailed

in Section 2.3. Note that equation (8) can be easily modified to yield a percentage; this is
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achieved by dividing by Ê(Y2i).

Since Y ∗
2i and Y ∗

3i are not available for the whole sample, imputation or prediction is required

to compute (8). This is simply going to be based on the regressors and the estimated parameters

of the related equations. However, some caution is needed when selecting the set of covariates

to consider in the empirical analysis, especially when there are factor or categorical variables.

Here, one has to check that the levels of the variables that appear in the whole sample also

appear in the selected sub-samples (those related to Y2 and Y3). Consider, for instance, the

situation in which the data contain a factor variable with five levels and that only three of

them appear in the selected sample for Y2, and four of them in the sample associated with Y3.

In such a case, a model can still be fitted but it will not be possible to carry out the prediction

exercise required to compute (8).

Intervals for the ATE are obtained by employing the following procedure:

1. Draw V random vectors δ̃v, v = 1 . . . , V , using result (7).

2. Obtain V realisations of the function of interest, that is ATE(δ̃v).

3. Calculate the (ϑ/2)-th and (1 − ϑ/2)-th quantiles of the V realisations. The interval is

then given by CI1−ϑ = [ATE(δ̃v)ϑ/2,ATE(δ̃v)1−ϑ/2].

Parameter ϑ is typically set to 0.05. Furthermore, a value of V equal to 100 usually produces

representative results although it can be increased (for a little extra computational effort) if

more precision is required.

6 Case Studies

This section applies the proposed copula-based switching regression framework to three case

studies which investigate the effect of a binary treatment on various outcomes. To maintain

a consistent theme, all studies come from the field of health economics, a discipline for which

binary treatments and peculiar distributional shapes for outcomes are pervasive. As explained

in the introduction, the studies use data from the MEPS.
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6.1 Case study 1: continuous outcome

The majority of privately-insured Americans receive coverage through their employers as part

of their total compensation. In turn, the theory of “compensating differentials” holds that an

employee who receives health insurance from his employer should, all else equal, receive a lower

wage than an employee who does not receive coverage (Rosen, 1986). However, compensating

differentials are very difficult to observe in practice because good jobs tend to pay well and

offer insurance coverage (Currie & Madrian, 1999).

Olsen (2002) finds evidence of compensating differentials using instrumental variables re-

gression. Focusing on a sample of full-time employed females from the Current Population

Survey, and using information on their husbands’ employment and insurance status as instru-

ments, he calculates that insurance reduces wages by approximately 20 percent. Our study

attempts to mimic Olsen’s approach by applying the proposed framework to data from the

MEPS.

The dataset focuses on females in the age range 25− 64 from the 2012 wave of the MEPS.

(We focus on 2012 to avoid complications associated with the Affordable Care Act, which,

starting in 2014, required that most employers in the U.S. offer health benefits.) Similar to

Olsen, the dataset focuses on females employed in the private sector full-time (at least 35 hours

per week) who are not self employed. Furthermore, all females in the dataset are married

to husbands who, themselves, also are employed. Table 1 from Appendix C if the On-Line

Supplementary Material presents sample means partitioned according to whether the female

holds insurance through her employer. The top row shows the difficulty of finding evidence

of compensating differentials, with insured females having higher wage earnings. (Those wage

numbers are highly statistically different, according to a conventional two-sample t-test.) The

bottom of the table shows two instruments similar to the ones used in Olsen’s study. The

first, whether the female’s husband holds insurance through his employer, suggests that wives

tend to decline coverage when they have options through their husbands’ plans. The second

suggests that wives of husbands who work at larger firms, and thus presumably have better

insurance options, also tend to decline coverage.
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For the copula-based switching regression approach, the main modelling decisions involve

the distribution forms for the three marginals and the two copulae. To arrive at those decisions,

we explore many permutations of marginals and copulae available in the GJRM package, and

we settle on the forms that yield the best overall fit according to the AIC and BIC, defined

in Section 4, and by inspecting residual plots (see Figure 1 for the plots of the chosen model).

Using such data-driven approach, the treatment variable, an indicator for whether the wife

holds insurance through her employer, follows a probit specification. For the wife’s wage in-

come, the choices are the inverse Gaussian distribution among wives who do not hold insurance

through their employers, and the Fisk distribution for those who do. As for the copulae, we

have the Gumbel to link insurance to wages among wives who do not hold insurance through

their employers, and the survival Clayton for those who do.

The object of main interest is the average treatment effect of health benefits on wage earn-

ings. Before analysing the results obtained, however, the next three paragraphs will comment

on the estimated model parameters which are reported in Appendix C of the On-Line Supple-

mentary Material. Regarding the switching mechanism equation (EQUATION 1 of the R output),

the coefficients corroborate a priori expectations. For example, for a married woman, being a

union member and working at a larger firm increase the likelihood of accepting her employer

coverage. Regarding the regime regressions, the interpretation might or might not be that

intuitive depending on the chosen distribution. For instance, since the selected distribution

for regime 0 (wives who do not hold insurance through their employers) is an inverse Gaus-

sian, the coefficients in EQUATION 2 can be used to obtain the usual percentage effects on the

mean. For example, for wives who do not hold insurance through their employers, the wage

of a Hispanic is, on average, 25 percent lower as compared to that of a white woman. This

interpretation does not hold for regime 1 (EQUATION 4) since the chosen distribution is the Fisk

and, as reported in Table 3, the mean is a function of both µ and σ. However, interpretable

effects can be easily obtained as illustrated in Appendix C. As for EQUATION 3 and EQUATION

5, the coefficients can be used to obtain effects on the σ parameters which, however, do not

correspond to standard deviations; to calculate these, the formulae reported in Table 3 have
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Figure 1: Histograms of normalised quantile residuals and normal Q-Q plots of residuals for the wage
outcome variable under regime 0 (top) and regime 1 (bottom).

to be employed in a similar way as mentioned for the mean of the Fisk distribution.

Regarding the estimated smooth functions, reported in Figure 2, we note that age does

not have an effect on the switching mechanism. For parameter µ of the inverse Gaussian, the

effect of age shows an increasing, but slightly concave, shape among females who do not hold

insurance through their employers. For µ of the Fisk, the effect of age follows a non-monotonic

pattern, reaching its peak positive effect around age 45, among females who do hold insurance.

For the σ parameters of the two distributions, age does not show any significant effect.

The dependence terms, shown in Appendix C, indicates overall that unobserved factors that

increase a female’s likelihood of holding insurance through her employer also correlate with
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Figure 2: Estimated smooth effects of age for the probit equation, for the µ parameters of the
inverse Gaussian and Fisk, and for the σ parameters of the same distributions. 95% point-wise
intervals are also reported. The jittered rug plot, at the bottom of each graph, shows the covariate
values. The numbers in the brackets of the y-axis captions are the edf of the smooth curves. Note
that the estimated smooth functions are centered around zero because of the centering identifiability
constraints. When edf = 1, the intervals correctly exhibit the behaviour displayed in the last plot
because of such constraints.

higher wages. In particular, that relationship appears to be present and precisely estimated,

among females who do not hold their own insurance, implying that certain types of females

likely sort into jobs based on desires for health benefits. The same is not true for females who

do hold their own insurance since the dependence parameter is virtually zero. Such subtle

details of endogeneity bias are impossible to detect in more conventional regression setups.

Table 4 displays the results for the average treatment effect of interest. The first row

shows the estimate and related interval from a univariate regression (including all controls,

minus the two instruments) where the wage variable is assumed to follow the Fisk distribution

(which appears to offer the best univariate fit). That number suggests that holding insurance
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Estimate 95% C.I.
Univariate Fisk 0.10 (0.04, 0.17)
Control function Fisk -0.11 (-0.24, 0.04)
Proposal -0.28 (-0.38, -0.15)

Table 4: Average treatment effects for case study 1.

correlates with a 10 percent higher wage. The next row shows the result from a control

function approach which consists of two steps. The first involves a probit regression of the

endogenous treatment (insurance status) on all controls plus the instruments, and serves to

generate residuals. The second step involves a Fisk-based regression of the wage outcome

on all variables (minus the two instruments) plus the first-stage residuals, which control for

the endogeneity problem (e.g., Terza et al., 2008). The result from this approach suggests

that insurance lowers wages by about 11 percent. Finally, the bottom row reports the effect

obtained from the more flexible switching regression framework. The estimate suggests that

insurance lowers wages by about 28 percent, more that 150 percent larger than that of the

control function. The control function setup (analogous to traditional instrumental variables

regression), by restricting the link between insurance and wages to operate via a simple intercept

shift, seems to under-report the magnitude of compensating differentials. Probably, having

insurance tends to reduce take-home pay by a larger amount than is typically recognised.

The flexible switching regression approach allows one to specify ancillary parameters, in-

cluding copula dependence terms, as functions of covariates. Specifically, it seems plausible

that the copula terms might depend upon a wife’s level of educational attainment. The re-

sults reported in Appendix C show the coefficient estimates when the copula terms are given

regression structures dependent on the three education dummies. Bear in mind that the coef-

ficients are not statistically significant but for the sake of demonstrating the capabilities of the

approach we provide an interpretation of the results. Focusing on the effect of college, having

at least some college education appears to strengthen the positive association between having

insurance and wage earnings among wives who do not have insurance, but college education

does not appear to exert that same influence among wives who have insurance.
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6.2 Case study 2: binary outcome

For people in the U.S. younger than age 65, having private coverage requires individuals to

either find employment at a place that offers insurance or navigate the maze of insurance

exchanges established by the Affordable Care Act. That level of effort implies that private

coverage likely is endogenously linked to key outcomes, most importantly the consumption

of health care services. Consequently, one of the core topics of health economics centers on

estimating the effect of private health insurance on health care consumption. This case study

draws inspiration from Deb et al. (2006) who explored this topic using methods similar to those

presented here, albeit with a different econometric focus.

This case study considers the effect of a binary treatment (having insurance) on a binary

outcome (having visited a doctor during the previous calendar year). Nearly all contacts with

the health care system in the U.S. begin with an office-based visit to a doctor, so having a

doctor visit is a reasonable proxy for a broad category of medical service usage. Drawn from the

2012 and 2013 waves of the MEPS, Table 2 from Appendix C of the On-Line Supplementary

Material shows sample means for people with age in the range 18− 64 who work in the private

sector. No one in the sample reports being self employed, and no one reports ever having

any form of public insurance during the survey period. Shown near to the top of the table,

64 percent of insured subjects report having a doctor visit, compared to only 30 percent of

uninsured subjects. Those numbers differ statistically according to a standard z-test. Inspired

by Deb et al. (2006), the bottom of the table shows the instrument, firm size, which appears

to strongly associate with the likelihood of having insurance.

With both treatment and outcome being binary, all marginal distributions follow logit spec-

ifications, which appear to offer the best fit. For the two copulae, the information criteria point

to the 270 degree rotated Clayton to link insurance to doctor visits among people without in-

surance, and the Gaussian copula among people with insurance. Results for the copula-based

switching regression approach are reported in Appendix C of the On-Line Supplementary Mate-

rial. Most coefficient estimates corroborate a priori expectations. In particular, the instrument

appears to influence the probability of having insurance, with subjects employed at larger firms
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more likely to have coverage. Dependence appears to be negative for both treatment states.

The overall interpretation is that unobserved factors that increase the likelihood of insurance

also tend to reduce the probability of having a doctor visit. Health economists label that pat-

tern “favorable selection” which means that insured subjects tend to be healthier and/or more

risk averse.

Estimate 95% C.I.
Univariate logit 0.25 (0.23, 0.27)
Control function logit 0.37 (0.26, 0.47)
Proposal 0.37 (0.27, 0.45)

Table 5: Average treatment effects for case study 2.

Table 5 presents average treatment effects of insurance on having a doctor visit. The first

row shows an estimate from a univariate logit regression (including all controls, minus the

instrument). That number suggests that having insurance increases the probability of having a

doctor visit by 25 percentage points, a sizable effect relative to the sample mean of 55 percent

of subjects having a doctor visit. The next row shows the result from the control function

approach which suggests that having insurance increases the probability of a doctor visit by 37

percentage points. Finally, the bottom row reports the effect obtained from the more flexible

switching regression framework. The effect is 0.37, which is the same as that obtained from

the control function approach. Thus, in this case, the proposed approach seems to confirm the

result of the more restrictive control function approach.

6.3 Case study 3: discrete outcome

A large swath of research explores reasons for school absenteeism, but the most important

determinant appears to be health, with medical problems strongly linked to higher absenteeism

(Basch, 2011; Holbert et al., 2002). Thus, consider the following narrowly-targeted question:

Does visiting a doctor in order to obtain curative health care services cause children to miss

school? Drawn from the 2015 wave of the MEPS, Table 3 from Appendix C of the On-Line

Supplementary Material shows sample means for children between ages 6 − 13, a range for
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which schooling is compulsory in most U.S. jurisdictions.

The top row of the table indicates that students who visit a doctor to obtain curative medical

services during the calendar year have, on average, 3.33 missed school days, compared to 1.50

missed days for students who do not have curative visits. Those numbers differ statistically

according to a standard t-test. The bottom row of the table shows the variable that serves as

an instrument: an indicator for whether the family of the child can arrive at its usual source

of medical care in less than 30 minutes. (That variable likely reflects, in part, travel costs

that families must incur in order to acquire medical services.) The numbers suggest that being

located closer to one’s usual source of care associates with larger probabilities of having a

curative visit.

As for case study 1, exploring many permutations of marginals and copulae, the best overall

fit comes when the distribution of the treatment variable (whether the child had a curative

visit) follows a logit specification, and both marginals for the outcome variable (the number of

missed school days) follow a Negative Binomial type II (see the residual plots in Appendix C

of the On-Line Supplementary Material). For the two copulae, the link between doctor visit

and missed days follows a 90 degree rotated Joe among children with no doctor visits, and a

non-rotated Joe among children with doctor visits.

The estimated results are reported in Appendix C. Most of the coefficients corroborate a

priori expectations. The age effects are linear in the curative visit equation. But for missed

school days, as far as the µ parameter is concerned (which is also the mean of the distribution),

among students who do not have curative visits, age shows an overall decreasing non linear

effect which then starts increasing in the final years. Among students who do have curative

visits, the age effect shows a decreasing linear pattern. As for σ, age shows an increasing linear

effect among students who do not have curative visits and a quadratic effect among students

who do have curative visits.

The dependence terms point to very different patterns by treatment status. The association

is negative for children without curative visits, suggesting that, on average, unobserved traits

that induce children to have office visits tend to reduce missed school days among children who
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do not have office visits. On the other hand, the other dependence term is positive, indicating

the opposite pattern among children who do have office visits. Taken together, those disparate

associations suggest a pattern whereby parents who have trouble accessing medical care also

tend to have children who miss school, a finding that could not have been detected with a more

conventional approach.

Estimate 95% C.I.
Univariate NBII 1.62 (1.40, 1.86)
Control function NBII 1.46 (-0.47, 4.45)
Proposal 0.94 (0.58, 1.40)

Table 6: Average treatment effects for case study 3.

Table 6 shows the effects of curative visits on missed school days. The first row presents an

estimate from a univariate NBII regression (including all controls, minus the instrument). That

number suggests that having a curative visits leads to approximately 1.62 more missed school

days, a sizable effect relative to the sample mean of 2.10 missed days. The next row shows the

result from the control function approach which shows that having a curative visits leads to

1.46 more missed days; this is similar in magnitude to the univariate NBII regression, but with

a much wider confidence interval. Finally, the bottom row reports the effect obtained using

the proposed switching regression framework. The resulting estimate suggests that having a

curative visit leads to 0.94 more missed days, which is approximately less than one-third the

magnitude of the control function estimate. Evidently, the control function method fails to

detect the nuanced pattern of endogeneity, likely because, as indicated by the dependencies

commented in the previous paragraph, endogeneity tugs in opposite directions and different

magnitudes depending on whether children have doctor visits. In the control function approach,

those opposite directions appear to cancel out as well as lessen precision, leaving an effect

similar to that of the univariate NBII regression. The flexible switching regression setup, where

endogeneity is considered separately by treatment state, finds a smaller treatment effect. Giving

the dependence terms regression structures did not appear to produce interesting insights.
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7 Conclusions

Motivated by three case studies in the field of health economics, we have introduced a unifying

approach to switching regime regression. Various details including the model set up, parameter

estimation and inference have been discussed. All developments have been integrated within

the R package GJRM whose modularity allows for easy inclusion of virtually any parametric

copula and marginal distribution.

The proposed approach makes a significant contribution in switching regression modelling

since it can handle various empirical situations and is practically usable. Although the literature

in this area is ample, to the best of our knowledge, until now there has existed no work that

provided a methodological framework together with software implementation for the type of

switching regime regression problem considered in this paper. Recall that the proposal can

handle many types of outcomes via a vast range of marginal distributions, allows for a wide

variety of copula dependence structures, and permits to specify all model parameters as flexible

functions of covariate effects. The findings from our three case studies have provided new

evidence on the problems tackled.

Future research will focus on extending the scope of the modelling framework by allowing

for survival margins as well as by exploring alternative copula selection methods along the lines

of Cai (2014), for instance.
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Appendix A: Parameter Estimation

The algorithm used for parameter estimation was implemented by adapting to this context the

two-step approach of Marra & Radice (2020). The two steps are summarised below.

Estimation of δ

At iteration a, for a given parameter vector δ[a] and holding the smoothing parameters fixed

at a vector of values (denoted as λ[a] or λ̂), an update for δ is found by solving the following

problem

δ[a+1] = δ[a] + argmin
e:‖e‖≤∆[a]

ℓ̆p(δ
[a])

︸ ︷︷ ︸

:=e[a+1]

, (1)

ℓ̆p(δ
[a]) := −{ℓp(δ[a]) + eTg[a]

p +
1

2
eTH [a]

p e},

1



where ‖ · ‖ is the Euclidean norm and ∆[a] is the radius of the trust region which is adjusted

through the iterations. The penalised score vector and penalised Hessian matrix are given by

g
[a]
p = g[a] − Sλ̂δ

[a] and H
[a]
p = H [a] − Sλ̂, where g[a] is defined as

(

∂ℓ(δ)

∂βµ1

∣
∣
∣
∣

T

βµ1=β
[a]
µ1

, . . . ,
∂ℓ(δ)

∂βθ12

∣
∣
∣
∣

T

βθ12
=β

[a]
θ12

,
∂ℓ(δ)

∂βθ13

∣
∣
∣
∣

T

βθ13
=β

[a]
θ13

)T

and H [a] as

∂2ℓ(δ)

∂βl∂βT
m

∣
∣
∣
∣
βl=β

[a]
l
,βm=β

[a]
m

, l,m = µ1, . . . , θ12, θ13.

At each iteration, the minimisation of (1) uses a quadratic approximation of ℓp(δ
[a]) to choose

the best e[a+1] within the ball centered in δ[a] of radius ∆[a].

Trust region and classical line search methods employ a quadratic model of the objective

function to generate steps from one iterate to the next. Line search methods find a search

direction and then suitable step lengths along this direction. Instead, trust region approaches

search the step that minimises the objective function within a previously defined region around

the current iterate. If a function exhibits, e.g., long plateaus and the current iterate δ[a] is in

that region, line search methods may search the next step δ[a+1] far away from the current

iterate, hence reducing the efficiency of the algorithm. Also, the evaluation of the objective

function may be, e.g., non-definite, therefore causing algorithmic failure. On the contrary,

before evaluating the objective function, trust region methods define a maximum distance

based on the trust region. This is advantageous because the new iterate will not lie too far

away from the current one and also because in case of non-definite evaluation of ℓ̆p step e[a+1]

will not be accepted. When a candidate does not improve the function sufficiently or gives a

non-definite evaluation of ℓ̆p, the trust region will shrink and the algorithm will move back to the

previous step. If the improvement is large enough then the trust region will expand in the next

iteration. Since the proposed implementation is based on the analytical score and Hessian of

ℓ(δ), the algorithm will converge super-linearly to a point satisfying the second-order sufficient

conditions. Moreover, near the solution, the approach will become asymptotically similar to the

Newton-Raphson method, hence benefitting from the fast convergence rate of this technique.
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See Nocedal & Wright (2006, Chapter 4) for more details.

Estimation of λ

To discuss the criterion adopted for multiple smoothing parameter estimation, we first need

to express the estimator for δ in terms of score and Hessian. A first order Taylor expansion

of g
[a+1]
p about δ[a] yields 0 = g

[a+1]
p ≈ g

[a]
p +

(
δ[a+1] − δ[a]

)
H

[a]
p , which, after some manipu-

lation, leads to δ[a+1] =
(

−H
[a]
p

)−1 √
−H [a]M[a], where M[a] = µ

[a]
M

+ ǫ[a], µ
[a]
M

=
√
−H [a]δ[a]

and ǫ[a] =
√
−H [a]

−1
g[a]. From likelihood theory, ǫ ∼ N (0, Iψ), M ∼ N (µM, Iψ), where

Iψ is an identity matrix of dimension ψ (the length of δ), µM =
√
−Hδ0 and δ0 is the

true parameter vector. The predicted value vector for M is µ̂M =
√
−Hδ̂ = AM, where

A =
√
−H (−Hp)

−1 √−H . To calibrate the the trade-off between fit and parsimony in a

data-driven manner, λ is determined by minimising E (‖µM − µ̂M‖2) which, after some ma-

nipulation, is equal to

E
(
‖M−AM‖2

)
−Wn+ 2tr(A), (2)

where W = w1 + w2 + w3 + 2 and tr(A) represents the effective degrees of freedom (edf) of

the penalised model. Note that (2) depends on λ through A. In practice, an estimate of (2)

in required, i.e.

̂‖µM − µ̂M‖2 = ‖M−AM‖2 −Wn+ 2tr(A). (3)

So, for a given λ[a] and holding δ[a+1] fixed, the following problem is solved

λ[a+1] = arg min
λ

‖M[a+1] −A[a+1]M[a+1]‖2 −Wn+ 2tr(A[a+1]), (4)

using the stable and efficient computational routine of Wood (2017, Section 6.5.1). Basing

smoothing parameter estimation on a parametrisation of M that employs H and g as a whole

instead of the n components that make them up is advantageous in terms of stability, efficiency

and generality of the approach (see Marra et al. (2017) for a through discussion on this). The
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additional benefit is that the score and Hessian, which are needed to set up the quantities in

(4), are obtained as a byproduct of the estimation step for δ, hence reducing the computational

effort made for the smoothing step.

To within an additive constant, the first term on the RHS of (3) is a quadratic approximation

to −2ℓ(δ̂), hence (3) is approximately equivalent to the Akaike information criterion (AIC,

Akaike, 1973) with degrees of freedom given by tr(A). The edf of a model that only has

unpenalised terms is ψ, since in this case tr(A) = tr(Iψ). The edf of a penalised model is tr(A)

which can be written as ψ − tr
{
(−H + Sλ)

−1
Sλ

}
; if λ → 0 then tr(A) → ψ and if λ → ∞

then tr(A) → ψ− ζ, where ζ is the total number of parameters subject to penalisation. When

0 < λ < ∞, the edf is a value in the range [ψ − ζ, ψ]. The edf associated to each penalised

term in the model is given by the sum of the related trace elements.

The steps for estimating δ and λ are iterated until
∣
∣ℓ(δ[a+1])− ℓ(δ[a])

∣
∣ /
(
0.1 +

∣
∣ℓ(δ[a+1])

∣
∣
)
<

1e− 07 is satisfied. Starting values for the parameters associated to the marginal distributions

are obtained by fitting three suitable univariate regression models (related to the three responses

of the joint model), whereas initial values for the copula parameters are obtained by using

transformations of the empirical correlations between the residuals of the above regressions.
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Appendix B: Simulation Study

This section shows the results from three sets of Monte Carlo studies, each mimicking the

outcomes of the three case studies (continuous, discrete and binary). For each study, we

considered sample sizes of 2000 and 4000, while the number of replicates was set to 1000.

Continuous case

The simulations rely on a data generating process (DGP) of the form

s ∼ Bernoulli with µ1 =
{exp (0.5 + s1 (z1) + 0.5z2 − z3)}

1 + {exp (0.5 + s1 (z1) + 0.5z2 − z3)}
,

y∗2 ∼ Weibull with µ2 = exp {11− 0.2z1 + 0.3s2 (z2)} and σ2 = exp {1 + 0.2z2}

for regime 0, and of the form

s ∼ Bernoulli with µ1 =
{exp (0.5 + s1 (z1) + 0.5z2 − z3)}

1 + {exp (0.5 + s1 (z1) + 0.5z2 − z3)}
,

y∗3 ∼ Fisk with µ2 = exp {10 + 0.3z1 − 0.2z2} and σ2 = exp {1 + 0.6s3 (z1)}

for regime 1. The smooths are defined as s1(z) = 0.6 sin(2πz), s2(z) = 0.6 {exp (z) + sin (2.9z)}

and s3(z) = z + exp (−30(z − 0.5)2). Variables z1, z2 and z3 are generated using a multivari-

ate standard Gaussian with correlation parameters set at 0.5, which are then transformed

using the distribution function of a standard Gaussian. Associated values of s and y∗2, and

s and y∗3 are generated via function archmCopula(), from the R package copula, using the

Joe and Clayton copulae, respectively. The dependence parameters θ12 and θ13 are specified

as exp (2.5− 0.5z1) + 1 and exp (1.5 + 0.6z2), respectively. The data generated from the two

regimes are then combined such that the data under regime 0 are consistent with s = 0 and

data under regime 1 are consistent with s = 1.

Using gjrm(), for each simulated dataset, we fitted the endogenous switching regression

model with logit and Weibull marginals and Joe copula for regime 0, and logit and Fisk
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marginals and Clayton copula for regime 1. The smooth components in the models were

represented using penalised low rank thin plate splines with second order penalty and 10 bases.

For each replicate, curve estimates were constructed using 200 equally spaced fixed values in

the (0, 1) range.

Figure 1 summarises the findings of the simulation study when looking at the parametric

estimates. The results show that the bias and variability of the estimates, across the two

sample sizes, are low for all parameters of the two margins, and that they decrease as the

sample size increases. As for the effects associated with the copula parameters, the results are

more variable although the precision increases with the sample size. This finding was expected

as the copula parameters are notoriously more difficult to estimate since the related profile

likelihoods tend to be less sharp around the optimum.

Figure 2 shows that the true smooth functions are recovered well by the estimation method.

Moreover, the results, in terms of bias and variability, improve as the sample size increases.

Alternative scenarios were tried out and the findings were similar to the ones reported here.
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Figure 1: Estimation results for parametric effects under the continuous outcome scenario.
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Figure 2: Estimation results for smooth effects under the continuous outcome scenario.
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Discrete case

The simulations are based on the following DGP:

s ∼ Bernoulli with µ1 =
{exp (0.5 + s1 (z1) + 0.5z2 − z3)}

1 + {exp (0.5 + s1 (z1) + 0.5z2 − z3)}
,

y∗2 ∼ Negative Binomial type II with µ2 = exp {0.5− 0.2z1 + 0.6s2 (z2)} and σ2 = exp {0.2 + 0.4z2}

for regime 0, and

s ∼ Bernoulli with µ1 =
{exp (0.5 + s1 (z1) + 0.5z2 − z3)}

1 + {exp (0.5 + s1 (z1) + 0.5z2 − z3)}
,

y∗3 ∼ Negative Binomial type II with µ2 = exp {0.5 + 0.3z1 − .2z2} and σ2 = exp {1.2s3 (z1)}

for regime 1. The smooth functions s1(z), s2(z) and s3(z) are the same as those defined for

the continuous case and variables z1, z2 and z3 have also been generated in the same way.

Associated values of s and y∗2, and s and y∗3 are generated using the Joe and Clayton copulae,

where θ12 and θ13 are specified as exp (2.5 + 0.5z1) + 1 and exp (1.5 + 0.6z2), respectively.

Using gjrm(), we fitted the endogenous switching regression model with logit and negative

binomial type II marginals and Joe copula for regime 0, and logit and negative binomial type

II marginals and Clayton copula for regime 1. As shown in Figures 3 and 4, the findings are

similar to those previously described for the continuous case.
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Figure 3: Estimation results for parametric effects under the discrete outcome scenario.
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Figure 4: Estimation results for smooth effects under the discrete outcome scenario.
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Binary case

The simulations rely on a DGP of the form

s ∼ Bernoulli with µ1 =
{exp (0.5 + s1 (z1) + 0.5z2 − z3)}

1 + {exp (0.5 + s1 (z1) + 0.5z2 − z3)}
,

y∗2 ∼ Bernoulli with µ2 = Φ{−0.75− 0.2z1 + 0.6s2 (z2)}

for regime 0, and of the form

s ∼ Bernoulli with µ1 =
{exp (0.5 + s1 (z1) + 0.5z2 − z3)}

1 + {exp (0.5 + s1 (z1) + 0.5z2 − z3)}
,

y∗3 ∼ Bernoulli with µ2 = Φ{−0.35 + 0.3z1 − 0.2z2}

for regime 1. Φ(·) denotes the cdf of a standard normal distribution. The smooth functions

s1(z) and s2(z) have been previously defined, as are variables z1, z2 and z3. Associated values

of s and y∗2, and s and y∗3 are generated using the Joe and Clayton copulae, where θ12 and θ13

are specified as exp (0.5 + 2z1) + 1 and exp (0.25 + 1.6z2), respectively.

Using gjrm(), we fitted the endogenous switching regression model with logit and probit

marginals and Joe copula for regime 0, and logit and probit marginals and Clayton copula

for regime 1. The findings are similar to those previously described for the continuous and

discrete cases. The bias and variability of the estimates across the two sample sizes are low for

all parameters, and tend to improve with the sample size (see Figure 5). Similarly, Figure 6

shows that the true smooth functions are recovered well by the estimation method, and that

the results, in terms of bias and variability, improve as the sample size increase.
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Figure 5: Estimation results for parametric effects under the binary outcome scenario.
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Figure 6: Estimation results for smooth effects under the binary outcome scenario.
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Appendix C: Model fitting using GJRM

The proposed methodology has been implemented within the R package GJRM (Marra & Radice,

2022), which required extending the gjrm() function. This package has been created to enhance

reproducible research and to disseminate results in a straightforward and transparent way. The

function is easy to use, especially if the user is already familiar with the syntax of (generalised)

linear and additive models in R. R code chunks are reported below for all three case studies:

continuous, binary and discrete.

Case study 1: continuous outcome

Summary statistics for the data used in this analysis are given in Table 1.

Insured by her employer Not insured by her employer
n = 1, 141 n = 777

wage 51,650 43,881
age 42.3 42.1
white reference category
black 0.13 0.12
hispanic 0.18 0.23
famsze2: family size of 2 reference category
famsze3: family size of 3 0.24 0.21
famsze4: family size of 4 0.28 0.29
famsze5: family size greater than 4 0.17 0.25
edlh: less than high school reference category
edhs: high school degree 0.13 0.15
edsc: some college 0.22 0.23
edco: college degree 0.37 0.30
west reference category
neast: northest 0.15 0.17
mwest: midwest 0.20 0.20
south 0.35 0.39
union: union member 0.07 0.03
numemp: firm size 188.0 115.3
h held: husband holds insurance 0.45 0.77
h numemp: husband firm size 126.0 176.5

Table 1: Sample means for data from the 2012 wave of the MEPS used for case study 1.

One of the calls used for modelling the continuous data from the MEPS is
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eq1 <- held ~ s(age) + black + hispanic + as.factor(famsze) + edhs + edsc + edco +

neast + mwest + south + unions + numemp + h_held + h_numemp

eq23 <- wage ~ s(age) + black + hispanic + as.factor(famsze) + edhs + edsc + edco +

neast + mwest + south + unions + numemp

eq45 <- ~ s(age) + black + hispanic + as.factor(famsze) + edhs + edsc + edco +

neast + mwest + south + unions + numemp

eq67 <- ~ 1

fl <- list(eq1, eq23, eq23, eq45, eq45, eq67, eq67)

out <- gjrm(fl1, margins = c("probit", "iG", "FISK"), data = mydata, Model = "ROY",

BivD = "G0", BivD2 = "C180")

where fl is a list of seven equations, one (eq1) related to S, two (eq23 and eq45) related

to Y2, two (eq23 and eq45) related to Y3 and the remaining two (eq67 and eq67) related

to θ12 and θ13, respectively. Options for the first (binary) equation are probit, logit and

cloglog. Equation eq1 is for µ1, equation eq23 is for parameters µ2 and µ3 of the continuous

(inverse Gaussian and Fisk, in this case) distributions. Equation eq45 is for parameters σ2

and σ3 of the inverse Gaussian and Fisk distributions, respectively, and eq67 is the equation

for the copula parameters θ12 and θ13. The list of possible options for Y2 and Y3 are Bernoulli

distributions (with probit, logit or cloglog links) and those listed in Tables 2 and 3 of the

main paper. Arguments BivD and BivD2 specify the copulae adopted for F12 and F13 (see

Table 1 for the possible choices) and Model = "ROY" has the obvious interpretation. Symbol

s() stands for smooth function as defined in Section 2.3 of the main paper. Default is bs =

"tp" (penalised low rank thin plate spline) with k = 10 (number of basis functions) and m =

2 (order of derivatives). However, argument bs can also be set to, for example, cr (penalised

cubic regression spline), ps (P-spline) and mrf (Markov random field), to name but a few.

mydata is a data frame containing all the variables already defined in Section 7.1 of the main

paper. After fitting the model, functions conv.check() and post.check() can be used to

check that convergence has been achieved and that the chosen distributions adequately fit the

data, respectively.

> conv.check(out)
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Largest absolute gradient value: 1.438028e-05

Observed information matrix is positive definite

Eigenvalue range: [9.280739e-08,7.780443e+12]

Trust region iterations before smoothing parameter estimation: 21

Loops for smoothing parameter estimation: 4

Trust region iterations within smoothing loops: 23

Estimated overall probability range: 0.1314135 0.9806641

Estimated overall density range: 6.812654e-08 4.20202

conv.check() provides various information about the estimation process. Convergence is as-

sessed by checking that the maximum of the absolute value of the score vector is virtually equal

to 0 and that the observed information matrix is positive definite. post.check() produces the

histograms and normal Q-Q plots of the normalised quantile residuals, reported in Figure 1 of

the main paper, which show that the chosen distributions fit fairly well the data.

To obtain summary statistics, we can use summary() which works in a similar fashion as

that of (generalised) linear and additive models.

summary(out)

COPULA 1-2: Gumbel

COPULA 1-3: 180 Clayton

MARGIN 1: Switching Mechanism - Bernoulli

MARGIN 2: Regime 0 - inverse Gaussian

MARGIN 3: Regime 1 - Fisk

EQUATION 1 - Switching Mechanism

Link function for mu.1: probit

Formula: held ~ s(age) + black + hispanic + as.factor(famsze) + edhs + edsc + edco +

neast + mwest + south + unions + numemp + h_held + h_numemp
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Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.933655 0.101384 9.209 < 2e-16 ***

black 0.101623 0.097433 1.043 0.296945

hispanic -0.184453 0.080160 -2.301 0.021388 *

as.factor(famsze)3 -0.026368 0.087565 -0.301 0.763322

as.factor(famsze)4 -0.204154 0.083774 -2.437 0.014811 *

as.factor(famsze)5 -0.448442 0.092390 -4.854 1.21e-06 ***

edhs -0.091903 0.097280 -0.945 0.344799

edsc 0.030079 0.078901 0.381 0.703034

edco 0.153875 0.072721 2.116 0.034349 *

neast -0.399121 0.100419 -3.975 7.05e-05 ***

mwest -0.212922 0.092810 -2.294 0.021781 *

south -0.205110 0.080223 -2.557 0.010565 *

unions 0.484815 0.150086 3.230 0.001237 **

numemp 0.014222 0.001815 7.836 4.64e-15 ***

h_held -0.841109 0.066233 -12.699 < 2e-16 ***

h_numemp -0.006644 0.001775 -3.743 0.000182 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(age) 1.657 2.078 2.34 0.327

EQUATION 2 - Regime 0

Link function for mu.2: log

Formula: wage ~ s(age) + black + hispanic + as.factor(famsze) + edhs + edsc + edco +
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neast + mwest + south + unions + numemp

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 11.351653 0.149213 76.077 < 2e-16 ***

black -0.112143 0.099426 -1.128 0.259360

hispanic -0.285558 0.073942 -3.862 0.000112 ***

as.factor(famsze)3 0.033817 0.081295 0.416 0.677424

as.factor(famsze)4 -0.108853 0.076053 -1.431 0.152353

as.factor(famsze)5 -0.042998 0.090385 -0.476 0.634273

edhs -0.484049 0.087366 -5.540 3.02e-08 ***

edsc -0.140298 0.078980 -1.776 0.075674 .

edco 0.277421 0.074680 3.715 0.000203 ***

neast -0.180956 0.096452 -1.876 0.060638 .

mwest -0.247084 0.095008 -2.601 0.009304 **

south -0.219210 0.085300 -2.570 0.010173 *

unions 0.221818 0.170199 1.303 0.192476

numemp 0.004229 0.001632 2.591 0.009561 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(age) 2.192 2.778 6.769 0.0694 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 3 - Regime 1

Link function for mu.3: log
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Formula: wage ~ s(age) + black + hispanic + as.factor(famsze) + edhs + edsc + edco +

neast + mwest + south + unions + numemp

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 10.6565864 0.0484040 220.159 < 2e-16 ***

black -0.1123528 0.0442188 -2.541 0.011059 *

hispanic -0.2053208 0.0430297 -4.772 1.83e-06 ***

as.factor(famsze)3 0.0270304 0.0420589 0.643 0.520432

as.factor(famsze)4 0.0310057 0.0440658 0.704 0.481667

as.factor(famsze)5 -0.1062012 0.0490476 -2.165 0.030367 *

edhs -0.1751615 0.0466851 -3.752 0.000175 ***

edsc -0.0914366 0.0401495 -2.277 0.022762 *

edco 0.2606299 0.0362928 7.181 6.90e-13 ***

neast 0.0655319 0.0504348 1.299 0.193827

mwest -0.0993563 0.0466613 -2.129 0.033229 *

south -0.0644598 0.0420978 -1.531 0.125722

unions 0.0007900 0.0542413 0.015 0.988379

numemp 0.0035178 0.0007799 4.511 6.46e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(age) 6.651 7.769 28.44 0.000377 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 4 - Regime 0
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Link function for sigma.2: log

Formula: ~ s(age) + black + hispanic + as.factor(famsze) + edhs + edsc + edco +

neast + mwest + south + unions + numemp

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.801558 0.074761 -77.602 < 2e-16 ***

black 0.228957 0.075935 3.015 0.00257 **

hispanic 0.154055 0.059355 2.595 0.00945 **

as.factor(famsze)3 -0.013479 0.069503 -0.194 0.84622

as.factor(famsze)4 0.049197 0.066638 0.738 0.46035

as.factor(famsze)5 0.208282 0.072791 2.861 0.00422 **

edhs -0.163184 0.074302 -2.196 0.02808 *

edsc -0.108400 0.060173 -1.801 0.07163 .

edco -0.131152 0.055761 -2.352 0.01867 *

neast -0.015360 0.077093 -0.199 0.84207

mwest 0.010062 0.072596 0.139 0.88976

south 0.001511 0.061292 0.025 0.98033

unions -0.097420 0.138126 -0.705 0.48062

numemp -0.009414 0.001437 -6.551 5.7e-11 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(age) 3.683 4.592 4.063 0.433

EQUATION 5 - Regime 1

Link function for sigma.3: log
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Formula: ~ s(age) + black + hispanic + as.factor(famsze) + edhs + edsc + edco +

neast + mwest + south + unions + numemp

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.0374722 0.0718558 14.438 <2e-16 ***

black 0.1221001 0.0787434 1.551 0.1210

hispanic 0.0292991 0.0705065 0.416 0.6777

as.factor(famsze)3 0.1096391 0.0689862 1.589 0.1120

as.factor(famsze)4 0.0484750 0.0664561 0.729 0.4657

as.factor(famsze)5 0.0726353 0.0772118 0.941 0.3468

edhs 0.1292537 0.0851834 1.517 0.1292

edsc 0.0222331 0.0662316 0.336 0.7371

edco -0.0179561 0.0583704 -0.308 0.7584

neast 0.1269937 0.0819533 1.550 0.1212

mwest 0.1298293 0.0752446 1.725 0.0844 .

south 0.1043364 0.0654631 1.594 0.1110

unions 0.1501032 0.1015155 1.479 0.1392

numemp 0.0001106 0.0013518 0.082 0.9348

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(age) 1 1 1.236 0.266

EQUATION 6 - Regime 0

Link function for theta.12: log( - 1)

Formula: ~1
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Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.03992 0.25177 0.159 0.874

EQUATION 7 - Regime 1

Link function for theta.13: log

Formula: ~1

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -16.47 3282.53 -0.005 0.996

n = 1918 n.sel0 = 777 n.sel1 = 1141

sigma.2 = 0.00271(0.00227,0.00325) sigma.3 = 3.42(2.86,4.13)

theta.12 = 2.04(1.63,2.55) theta.13 = 7.07e-08(4.14e-08,28)

tau.12 = 0.51(0.387,0.607) tau.13 = 3.53e-08(2.07e-08,0.933)

total edf = 88.2

These summaries have been commented in the main manuscript. Function plot() can be used

to visualise results.

par(mfrow = c(2, 3), mar = c(4, 5, 2, 0) + 0.1)

plot(out, eq = 1, scale = 0, select = 1, rug = TRUE, jit = TRUE)

plot(out, eq = 2, scale = 0, select = 1, rug = TRUE, jit = TRUE)

plot(out, eq = 3, scale = 0, select = 1, rug = TRUE, jit = TRUE)

plot(out, eq = 4, scale = 0, select = 1, rug = TRUE, jit = TRUE)

plot(out, eq = 5, scale = 0, select = 1, rug = TRUE, jit = TRUE)

They correspond to the five estimated smooth functions reported in Figure 2 of the manuscript.
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To calculate the average treatment effect, with corresponding interval, function AT() can be

used. Argument percent = TRUE allows the user to produce results in terms of percentage and

n.sim = 1000 is the number of simulated coefficient vectors from the posterior distribution of

the estimated model parameters used to obtain intervals.

AT(out, percent = TRUE, n.sim = 1000)

Average treatment effect with 95% interval:

-0.282 (-0.383,-0.146)

Interpretable effects for the Fisk distribution can be obtained using prediction. For example,

to calculate the average effect that a one-unit increase in the age variable has on the outcome,

one can use for example

d0 <- data.frame(held = 1, age = mydata$age, black = mydata$black,

hispanic = mydata$hispanic, famsze5 = mydata$famsze5,

edhs = mydata$edhs, edsc = mydata$edsc,

edco = mydata$edco, neast = mydata$neast,

mwest = mydata$mwest, south = mydata$south,

unions = mydata$unions, numemp = mydata$numemp)

d0 <- data.frame(held = 1, age = mydata$age + 1, black = mydata$black,

hispanic = mydata$hispanic, famsze5 = mydata$famsze5,

edhs = mydata$edhs, edsc = mydata$edsc,

edco = mydata$edco, neast = mydata$neast,

mwest = mydata$mwest, south = mydata$south,

unions = mydata$unions, numemp = mydata$numemp)

eta0.1 <- predict(res.lBIC, eq = 2, newdata = d0)

eta0.2 <- predict(res.lBIC, eq = 4, newdata = d0)

eta1.1 <- predict(res.lBIC, eq = 3, newdata = d1)

eta1.2 <- predict(res.lBIC, eq = 5, newdata = d1)
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mu0 <- ( exp(eta0.1)*pi/exp(eta0.2) )/( sin(pi/exp(eta0.2)) )

mu1 <- ( exp(eta1.1)*pi/exp(eta1.2) )/( sin(pi/exp(eta1.2)) )

mean((mu1 - mu0)/mu0)

The model with dependence parameters specified as functions of covariates can also be

estimated. That is,

eq1 <- held ~ s(age) + black + hispanic + as.factor(famsze) + edhs + edsc + edco +

neast + mwest + south + unions + numemp + h_held + h_numemp

eq23 <- wage ~ s(age) + black + hispanic + as.factor(famsze) + edhs + edsc + edco +

neast + mwest + south + unions + numemp

eq45 <- ~ s(age) + black + hispanic + as.factor(famsze) + edhs + edsc + edco +

neast + mwest + south + unions + numemp

eq67 <- ~ edhs + edsc + edco

fl <- list(eq1, eq23, eq23, eq45, eq45, eq67, eq67)

out <- gjrm(fl, margins = c("probit", "iG", "FISK"), data = mydata, Model = "ROY",

BivD = "G0", BivD2 = "C180")

The following (edited) R output shows the output for the coefficients of the dependence param-

eters.

summary(out)

...

EQUATION 6 - Regime 0

Link function for theta.12: log( - 1)

Formula: ~edhs + edsc + edco

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.08378 0.35897 -0.233 0.815

edhs 0.30036 0.61054 0.492 0.623
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edsc -0.32284 1.01659 -0.318 0.751

edco 0.44819 0.47250 0.949 0.343

EQUATION 7 - Regime 1

Link function for theta.13: log

Formula: ~edhs + edsc + edco

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -19.68 1595.59 -0.012 0.990

edhs 18.70 1595.59 0.012 0.991

edsc 18.85 1595.59 0.012 0.991

edco -18.63 2136.31 -0.009 0.993

Finally, other familiar functions such as AIC(), BIC(), predict() can be used in the usual

manner. Further details can be found in the documentation of the GJRM package in R.
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Case study 2: binary outcome

Summary statistics for the data used in this analysis are given in Table 2.

Insured Not insured
n = 11,262 n = 4,022

obdrv: doctor visit? 0.64 0.30
age 42.7 39.7
female 0.49 0.41
white: reference category
black 0.17 0.16
hispanic 0.21 0.54
married 0.61 0.42
famsze1: family size of 1 reference category
famsze2: family size of 2 0.27 0.19
famsze3: family size of 3 0.20 0.18
famsze4: family size of 4 0.22 0.20
famsze5: family size of 5 0.11 0.14
famsze6: family size of 6 0.04 0.07
famsze7: family size greater than 6 0.02 0.06
edlh: less than high school reference category
edhs: high school degree 0.16 0.19
edsc: some college 0.23 0.16
edco: college degree 0.29 0.08
ttlpx: income/1000 51.9 23.7
west reference category
neast: northest 0.16 0.12
mwest: midwest 0.22 0.14
south 0.350 0.46
fairpoor: fair or poor health 0.08 0.14
numemp: firm size 162.3 56.7

Table 2: Sample means for data from the 2012 and 2013 waves of the MEPS used for case
study 2.

Similarly to the continuous case, the R syntax to fit a flexible endogenous switching regres-

sion model using data from the MEPS is

eq1 <- prvev ~ age + female + black + hispanic + married + as.factor(famsze6) + edhs +

edsc + edco + ttlpx + neast + mwest + south + fairpoor + numemp

eq23 <- obdrv ~ age + female + black + hispanic + married + as.factor(famsze6) + edhs +

edsc + edco + ttlpx + neast + mwest + south + fairpoor

eq45 <- ~ 1
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fl <- list(eq1, eq23, eq23, eq45, eq45)

out <- gjrm(fl, margins = c("logit", "logit", "logit"), data = mydata, Model = "ROY",

BivD = "C270", BivD2 = "N")

The model parameter estimates are

summary(out)

COPULA 1-2: 270 Clayton

COPULA 1-3: Gaussian

MARGIN 1: Switching Mechanism - Bernoulli

MARGIN 2: Regime 0 - Bernoulli

MARGIN 3: Regime 1 - Bernoulli

EQUATION 1 - Switching Mechanism

Link function for mu.1: logit

Formula: prvev ~ age + female + black + hispanic + married + as.factor(famsze6) +

edhs + edsc + edco + ttlpx + neast + mwest + south + fairpoor +

numemp

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.390675 0.128451 -10.826 < 2e-16 ***

age 0.007424 0.002210 3.360 0.000781 ***

female 0.583377 0.046232 12.619 < 2e-16 ***

black -0.153000 0.064563 -2.370 0.017800 *

hispanic -1.002183 0.052129 -19.225 < 2e-16 ***

married 0.715041 0.051885 13.781 < 2e-16 ***

as.factor(famsze6)2 0.012691 0.076297 0.166 0.867887

as.factor(famsze6)3 -0.104904 0.080418 -1.304 0.192067

as.factor(famsze6)4 -0.172606 0.082278 -2.098 0.035920 *

as.factor(famsze6)5 -0.327042 0.090846 -3.600 0.000318 ***

as.factor(famsze6)6 -0.293134 0.114201 -2.567 0.010264 *
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as.factor(famsze6)7 -0.854401 0.132905 -6.429 1.29e-10 ***

edhs 0.127725 0.058959 2.166 0.030285 *

edsc 0.300245 0.059165 5.075 3.88e-07 ***

edco 0.594349 0.073103 8.130 4.28e-16 ***

ttlpx 0.048546 0.001564 31.033 < 2e-16 ***

neast -0.011402 0.076354 -0.149 0.881295

mwest 0.020847 0.070886 0.294 0.768685

south -0.280942 0.057068 -4.923 8.53e-07 ***

fairpoor -0.169658 0.069468 -2.442 0.014596 *

numemp 0.038496 0.001897 20.297 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 2 - Regime 0

Link function for mu.2: logit

Formula: obdrv ~ age + female + black + hispanic + married + as.factor(famsze6) +

edhs + edsc + edco + ttlpx + neast + mwest + south + fairpoor

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.526329 0.226887 -11.135 < 2e-16 ***

age 0.022212 0.003923 5.661 1.50e-08 ***

female 0.924082 0.082390 11.216 < 2e-16 ***

black -0.069081 0.119726 -0.577 0.563948

hispanic 0.131477 0.114602 1.147 0.251277

married 0.395872 0.093352 4.241 2.23e-05 ***

as.factor(famsze6)2 -0.048398 0.131243 -0.369 0.712300

as.factor(famsze6)3 -0.251465 0.136761 -1.839 0.065956 .

as.factor(famsze6)4 -0.386101 0.140067 -2.757 0.005842 **
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as.factor(famsze6)5 -0.564675 0.155062 -3.642 0.000271 ***

as.factor(famsze6)6 -0.669130 0.193743 -3.454 0.000553 ***

as.factor(famsze6)7 -0.780401 0.208262 -3.747 0.000179 ***

edhs -0.073853 0.103878 -0.711 0.477110

edsc 0.101509 0.108853 0.933 0.351060

edco 0.009480 0.151926 0.062 0.950243

ttlpx 0.001359 0.005007 0.271 0.786031

neast -0.011043 0.137838 -0.080 0.936148

mwest 0.289097 0.124775 2.317 0.020507 *

south 0.018084 0.095836 0.189 0.850327

fairpoor 0.756052 0.102962 7.343 2.09e-13 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 3 - Regime 1

Link function for mu.3: logit

Formula: obdrv ~ age + female + black + hispanic + married + as.factor(famsze6) +

edhs + edsc + edco + ttlpx + neast + mwest + south + fairpoor

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6863875 0.1320077 -5.200 2.00e-07 ***

age 0.0233058 0.0020249 11.510 < 2e-16 ***

female 0.7861674 0.0443886 17.711 < 2e-16 ***

black -0.2494801 0.0584396 -4.269 1.96e-05 ***

hispanic 0.0419265 0.0603593 0.695 0.487296

married 0.2886930 0.0538823 5.358 8.42e-08 ***

as.factor(famsze6)2 -0.2379138 0.0729861 -3.260 0.001115 **

as.factor(famsze6)3 -0.4359142 0.0780003 -5.589 2.29e-08 ***
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as.factor(famsze6)4 -0.5281958 0.0799416 -6.607 3.91e-11 ***

as.factor(famsze6)5 -0.4960410 0.0913915 -5.428 5.71e-08 ***

as.factor(famsze6)6 -1.0579122 0.1208198 -8.756 < 2e-16 ***

as.factor(famsze6)7 -0.6797689 0.1603574 -4.239 2.24e-05 ***

edhs -0.0546203 0.0604281 -0.904 0.366054

edsc 0.0778587 0.0538152 1.447 0.147959

edco 0.1077880 0.0534270 2.017 0.043645 *

ttlpx 0.0017990 0.0007355 2.446 0.014444 *

neast 0.0851615 0.0645468 1.319 0.187043

mwest 0.2258218 0.0604011 3.739 0.000185 ***

south 0.1730747 0.0543029 3.187 0.001437 **

fairpoor 0.6564940 0.0832818 7.883 3.20e-15 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 4 - Regime 0

Link function for theta.12: log(- )

Formula: ~1

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.9401 0.5271 -3.681 0.000232 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 5 - Regime 1

Link function for theta.13: atanh

Formula: ~1
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Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.32610 0.07157 -4.556 5.21e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

n = 15284 n.sel0 = 4022 n.sel1 = 11262

theta.12 = -0.144(-0.423,-0.054) theta.13 = -0.315(-0.456,-0.174)

tau.12 = -0.067(-0.175,-0.0263) tau.13 = -0.204(-0.301,-0.112)

total edf = 63

The average treatment effect, with corresponding interval, is

AT(out, n.sim = 1000)

Average treatment effect with 95% interval:

0.366 (0.259,0.443)
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Discrete case

Summary statistics for the data used in this analysis are given in Table 3.

Curative visit No curative visit
n = 1, 412 n = 2, 908

days: Missed school days 3.33 1.50
age 9.29 9.55
female 0.48 0.47
black 0.15 0.25
hispanic 0.38 0.44
west reference category
neast: northest 0.13 0.13
mwest: midwest 0.21 0.17
south 0.38 0.42
famsze2: family size of 2 reference category
famsze3: family size of 3 0.17 0.14
famsze4: family size of 4 0.34 0.29
famsze5: family size of 5 0.25 0.27
famsze6: family size of 6 0.11 0.15
famsze7: family size of 7 0.04 0.06
famsze8: family size greater than 7 0.02 0.05
povcat1: poverty category 1 reference category
povcat2: poverty category 2 0.08 0.08
povcat3: poverty category 3 0.16 0.20
povcat4: poverty category 4 0.24 0.24
povcat5: poverty category 5 0.22 0.12
notenglish: language other than English spoken at home 0.42 0.49
uscquick: can travel to doctor in < 30 minutes 0.90 0.80

Table 3: Sample means for data from the 2015 wave of the MEPS used for case study 3.

The R code for fitting a flexible endogenous switching regression model using discrete data

is

eq1 <- cure ~ s(age, k = 5) + female + black + hispanic + r_noreast + r_midwest +

r_south + as.factor(famsze8) + as.factor(povcat) + notenglish +

uscquick

eq23 <- days ~ s(age, k = 5) + female + black + hispanic + r_noreast + r_midwest +

r_south + as.factor(famsze8) + as.factor(povcat) + notenglish

eq45 <- ~ s(age, k = 5) + female + black + hispanic + r_noreast + r_midwest +

r_south + as.factor(famsze8) + as.factor(povcat) + notenglish
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eq67 <- ~ 1

fl <- list(eq1, eq23, eq23, eq45, eq45, eq67, eq67)

out <- gjrm(fl, margins = c("logit", "NBII", "NBII"), data = mydata, Model = "ROY",

BivD = "J90", BivD2 = "J0")

post.check(out)

The randomised normalised quantile residuals (see Figure 7) show that the model seems to fit

the data adequately.
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Figure 7: Histograms of randomised normalised quantile residuals and normal Q-Q plots of
residuals for the outcome variable under regime 0 (top) and regime 1 (bottom).

The estimated smooth functions (see Figure 8), parametric coefficients and average treat-

ment effect can easily be obtained as illustrated below.
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Figure 8: Estimated smooth effects of age for the logit equation, for the µ parameters of the
negative binomial type II distributions, and for the σ parameters of the same distributions.
95% point-wise intervals are also reported. The jittered rug plot, at the bottom of each graph,
shows the covariate values. The numbers in the brackets of the y-axis captions are the edf of
the smooth curves. Note that the estimated smooth functions are centered around zero because
of the centering identifiability constraints. When edf = 1, the intervals correctly exhibit the
behaviour displayed in the related plots.

par(mfrow = c(2, 3), mar = c(4, 5, 2, 0) + 0.1 )

plot(out, eq = 1, scale = 0, select = 1, rug = TRUE, jit = TRUE)

plot(out, eq = 2, scale = 0, select = 1, rug = TRUE, jit = TRUE)

plot(out, eq = 3, scale = 0, select = 1, rug = TRUE, jit = TRUE)

plot(out, eq = 4, scale = 0, select = 1, rug = TRUE, jit = TRUE)

plot(out, eq = 5, scale = 0, select = 1, rug = TRUE, jit = TRUE)

summary(out)
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COPULA 1-2: 90 Joe

COPULA 1-3: Joe

MARGIN 1: Switching Mechanism - Bernoulli

MARGIN 2: Regime 0 - Negative Binomial - Type II

MARGIN 3: Regime 1 - Negative Binomial - Type II

EQUATION 1 - Switching Mechanism

Link function for mu.1: logit

Formula: cure ~ s(age, k = 5) + female + black + hispanic + r_noreast + r_midwest +

r_south + as.factor(famsze8) + as.factor(povcat) + notenglish +

uscquick

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.64852 0.19604 -3.308 0.000939 ***

female 0.03691 0.06657 0.554 0.579301

black -0.83719 0.10182 -8.223 < 2e-16 ***

hispanic -0.17196 0.09863 -1.743 0.081267 .

r_noreast -0.06304 0.11312 -0.557 0.577361

r_midwest -0.02118 0.10298 -0.206 0.837019

r_south -0.01471 0.08577 -0.171 0.863862

as.factor(famsze8)3 -0.08582 0.16760 -0.512 0.608622

as.factor(famsze8)4 -0.23589 0.15812 -1.492 0.135734

as.factor(famsze8)5 -0.37090 0.16063 -2.309 0.020943 *

as.factor(famsze8)6 -0.57074 0.17569 -3.248 0.001160 **

as.factor(famsze8)7 -0.71895 0.21802 -3.298 0.000975 ***

as.factor(famsze8)8 -1.03579 0.24237 -4.274 1.92e-05 ***

as.factor(povcat)2 0.06563 0.13099 0.501 0.616377

as.factor(povcat)3 -0.09616 0.09980 -0.964 0.335292
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as.factor(povcat)4 -0.07487 0.09393 -0.797 0.425404

as.factor(povcat)5 0.36425 0.11033 3.301 0.000962 ***

notenglish -0.29781 0.09284 -3.208 0.001337 **

uscquick 0.70362 0.09510 7.398 1.38e-13 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(age) 1 1 13.23 0.000275 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 2 - Regime 0

Link function for mu.2: log

Formula: days ~ s(age, k = 5) + female + black + hispanic + r_noreast + r_midwest +

r_south + as.factor(famsze8) + as.factor(povcat) + notenglish

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.878924 0.199342 4.409 1.04e-05 ***

female -0.117858 0.070407 -1.674 0.094137 .

black -0.230860 0.103011 -2.241 0.025019 *

hispanic -0.033035 0.103519 -0.319 0.749637

r_noreast 0.163015 0.122739 1.328 0.184131

r_midwest -0.062925 0.103254 -0.609 0.542248

r_south -0.364064 0.092632 -3.930 8.49e-05 ***

as.factor(famsze8)3 -0.168890 0.178784 -0.945 0.344834

as.factor(famsze8)4 -0.215881 0.168542 -1.281 0.200237
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as.factor(famsze8)5 -0.408128 0.171584 -2.379 0.017379 *

as.factor(famsze8)6 -0.546609 0.190494 -2.869 0.004112 **

as.factor(famsze8)7 -0.346811 0.231838 -1.496 0.134675

as.factor(famsze8)8 -0.009186 0.218985 -0.042 0.966540

as.factor(povcat)2 -0.050693 0.131185 -0.386 0.699180

as.factor(povcat)3 0.007062 0.101505 0.070 0.944532

as.factor(povcat)4 -0.088240 0.095661 -0.922 0.356308

as.factor(povcat)5 -0.384332 0.128276 -2.996 0.002734 **

notenglish -0.348412 0.098191 -3.548 0.000388 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(age) 3.63 3.919 8.027 0.117

EQUATION 3 - Regime 1

Link function for mu.3: log

Formula: days ~ s(age, k = 5) + female + black + hispanic + r_noreast + r_midwest +

r_south + as.factor(famsze8) + as.factor(povcat) + notenglish

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.564042 0.154438 10.127 < 2e-16 ***

female 0.067505 0.067215 1.004 0.315222

black -0.679874 0.137693 -4.938 7.91e-07 ***

hispanic -0.031854 0.097389 -0.327 0.743608

r_noreast 0.203741 0.112285 1.814 0.069603 .

r_midwest -0.056513 0.096579 -0.585 0.558445
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r_south -0.171323 0.091225 -1.878 0.060379 .

as.factor(famsze8)3 -0.251047 0.133555 -1.880 0.060145 .

as.factor(famsze8)4 -0.474404 0.126485 -3.751 0.000176 ***

as.factor(famsze8)5 -0.407027 0.131573 -3.094 0.001978 **

as.factor(famsze8)6 -1.008446 0.188318 -5.355 8.56e-08 ***

as.factor(famsze8)7 -0.642992 0.226565 -2.838 0.004540 **

as.factor(famsze8)8 -0.569796 0.279354 -2.040 0.041381 *

as.factor(povcat)2 0.015392 0.131000 0.117 0.906466

as.factor(povcat)3 -0.001824 0.115683 -0.016 0.987420

as.factor(povcat)4 -0.076960 0.098379 -0.782 0.434049

as.factor(povcat)5 -0.120577 0.104563 -1.153 0.248847

notenglish -0.428705 0.102566 -4.180 2.92e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(age) 1 1 7.764 0.00533 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 4 - Regime 0

Link function for sigma.2: log

Formula: ~ s(age, k = 5) + female + black + hispanic + r_noreast + r_midwest +

r_south + as.factor(famsze8) + as.factor(povcat) + notenglish

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.8993685 0.3052245 6.223 4.88e-10 ***
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female -0.2029161 0.1125355 -1.803 0.07137 .

black -0.0139303 0.1558955 -0.089 0.92880

hispanic 0.0002043 0.1559999 0.001 0.99895

r_noreast 0.4783852 0.1851500 2.584 0.00977 **

r_midwest -0.1382934 0.1693023 -0.817 0.41402

r_south -0.0393854 0.1482455 -0.266 0.79049

as.factor(famsze8)3 -0.4323473 0.2695046 -1.604 0.10866

as.factor(famsze8)4 -0.3983620 0.2509564 -1.587 0.11243

as.factor(famsze8)5 -0.4063417 0.2553452 -1.591 0.11153

as.factor(famsze8)6 -0.3714422 0.2844513 -1.306 0.19161

as.factor(famsze8)7 -0.0609952 0.3423269 -0.178 0.85858

as.factor(famsze8)8 -0.1899950 0.3386801 -0.561 0.57481

as.factor(povcat)2 -0.2912458 0.2138583 -1.362 0.17324

as.factor(povcat)3 -0.1255781 0.1600029 -0.785 0.43254

as.factor(povcat)4 -0.2100805 0.1485085 -1.415 0.15719

as.factor(povcat)5 -0.3348258 0.1969505 -1.700 0.08912 .

notenglish -0.0258460 0.1464059 -0.177 0.85987

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(age) 1 1 7.208 0.00726 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 5 - Regime 1

Link function for sigma.3: log

Formula: ~ s(age, k = 5) + female + black + hispanic + r_noreast + r_midwest +
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r_south + as.factor(famsze8) + as.factor(povcat) + notenglish

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.098824 0.303125 3.625 0.000289 ***

female 0.190474 0.121641 1.566 0.117379

black -0.137023 0.184193 -0.744 0.456932

hispanic -0.408446 0.167109 -2.444 0.014518 *

r_noreast 0.001641 0.204763 0.008 0.993605

r_midwest -0.521681 0.184385 -2.829 0.004665 **

r_south -0.124930 0.154306 -0.810 0.418156

as.factor(famsze8)3 0.325554 0.289224 1.126 0.260330

as.factor(famsze8)4 0.237064 0.277049 0.856 0.392177

as.factor(famsze8)5 0.243794 0.281351 0.867 0.386209

as.factor(famsze8)6 0.530289 0.323299 1.640 0.100954

as.factor(famsze8)7 0.037756 0.395628 0.095 0.923970

as.factor(famsze8)8 0.161187 0.467116 0.345 0.730043

as.factor(povcat)2 -0.181393 0.237303 -0.764 0.444631

as.factor(povcat)3 0.067904 0.183664 0.370 0.711594

as.factor(povcat)4 -0.280581 0.170674 -1.644 0.100186

as.factor(povcat)5 -0.451696 0.196651 -2.297 0.021622 *

notenglish 0.215595 0.156001 1.382 0.166968

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(age) 2.099 2.565 5.752 0.0692 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

41



EQUATION 6 - Regime 0

Link function for theta.12: log(- - 1)

Formula: ~1

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.1767 0.2943 -0.6 0.548

EQUATION 7 - Regime 1

Link function for theta.13: log( - 1)

Formula: ~1

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.9547 0.3036 -3.145 0.00166 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

n = 4320 n.sel0 = 2908 n.sel1 = 1412

sigma.2 = 3.84(2.47,6.07) sigma.3 = 3.12(1.86,5.21)

theta.12 = -1.84(-2.31,-1.49) theta.13 = 1.38(1.19,1.72)

tau.12 = -0.317(-0.417,-0.217) tau.13 = 0.179(0.0984,0.285)

total edf = 102

AT(res.lAIC, n.sim = 1000)
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Average treatment effect with 95% interval:

0.938 (0.551,1.377)

An alternative model with dependence parameters specified as functions of covariate(s) can

also be estimated.

eq1 <- cure ~ s(age, k = 5) + female + black + hispanic + r_noreast + r_midwest +

r_south + as.factor(famsze8) + as.factor(povcat) + notenglish +

uscquick

eq23 <- days ~ s(age, k = 5) + female + black + hispanic + r_noreast + r_midwest +

r_south + as.factor(famsze8) + as.factor(povcat) + notenglish

eq45 <- ~ s(age, k = 5) + female + black + hispanic + r_noreast + r_midwest +

r_south + as.factor(famsze8) + as.factor(povcat) + notenglish

eq67 <- ~ notenglish

fl <- list(eq1, eq23, eq23, eq45, eq45, eq67, eq67)

out <- gjrm(fl, margins = c("logit", "NBII", "NBII"), data = mydata, Model = "ROY",

BivD = "J90", BivD2 = "J0")

The following (edited) R output shows the coefficients for the dependence parameters.

summary(out)

...

EQUATION 6 - Regime 0

Link function for theta.12: log(- - 1)

Formula: ~notenglish

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.0555 0.2698 0.206 0.837

notenglish -0.9873 0.7387 -1.337 0.181
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EQUATION 7 - Regime 1

Link function for theta.13: log( - 1)

Formula: ~ notenglish

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.8663 0.3617 -2.395 0.0166 *

notenglish -0.1766 0.4678 -0.378 0.7058

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

n = 4320 n.sel0 = 2908 n.sel1 = 1412

sigma.2 = 3.83(2.42,6.11) sigma.3 = 3.12(1.87,5.19)

theta.12 = -1.75(-2.53,-1.37) theta.13 = 1.39(1.2,1.82)

tau.12 = -0.281(-0.451,-0.162) tau.13 = 0.18(0.102,0.311)

total edf = 104

The results show that the dependence parameters do not have any association with notenglish and

that a more parsimonious model, as the one previously fitted, is more appropriate.
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