

City, University of London Institutional Repository

Citation: Sun, Y., Li, J., Chen, S., Andrienko, G., Andrienko, N. & Zhang, K. (2022). A

learning-based approach for efficient visualization construction. Visual Informatics, 6(1), pp.
14-25. doi: 10.1016/j.visinf.2022.01.001

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/28154/

Link to published version: https://doi.org/10.1016/j.visinf.2022.01.001

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Visual Informatics 6 (2022) 14–25

K
a

b

c

d

e

B
q
s

g
(
t
t
f
b
e
i
i
s
o

h
2
C

Contents lists available at ScienceDirect

Visual Informatics

journal homepage: www.elsevier.com/locate/visinf

A learning-based approach for efficient visualization construction
Yongjian Sun a, Jie Li a,∗, Siming Chen b, Gennady Andrienko c,d, Natalia Andrienko c,d,
ang Zhang e

College of Intelligence and Computing, Tianjin University, China
School of Data Science, Fudan University, China
Fraunhofer Institute IAIS, Germany
City University London, UK
Beijing Normal University-Hong Kong Baptist University United International College, China

a r t i c l e i n f o

Article history:
Received 18 December 2021
Received in revised form 20 January 2022
Accepted 20 January 2022
Available online 31 January 2022

Keywords:
Learned index
Neural network
Visualization index
Interactive exploration
Spatiotemporal visualization

a b s t r a c t

We propose an approach to underpin interactive visual exploration of large data volumes by training
Learned Visualization Index (LVI). Knowing in advance the data, the aggregation functions that are used
for visualization, the visual encoding, and available interactive operations for data selection, LVI allows
to avoid time-consuming data retrieval and processing of raw data in response to user’s interactions.
Instead, LVI directly predicts aggregates of interest for the user’s data selection. We demonstrate the
efficiency of the proposed approach in application to two use cases of spatio-temporal data at different
scales.

© 2022 The Authors. Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity
Press Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Indexing is a common technique for optimizing data retrieval.
y mapping data content to memory addresses, an index can
uickly derive the results of a queried key by avoiding the traver-
al of storage space.
A state-of-the-art perspective is that an index can be re-

arded as an AI model. This approach is called the Learned Index
LI) (Kraska et al., 2018). For example, a B-Tree is a regression
ree that maps a key to a position within a key-sorted set with
he guarantee that the key of the record at that position is the
irst key equal or higher than the look-up key. Meanwhile, a
loom filter is a binary classifier that predicts whether a key
xists in a set. A straightforward advantage of using these models
s their fast query speed with a low storage cost. Moreover,
ndex quality can be greatly improved, because each model is
pecifically trained for a dataset, thus the inherent characteristics
f the dataset could be effectively captured.
Inspired by this idea, we propose the Learned Visualization

Index (LVI), which is a neural network-based model that could be
trained by collecting samples of a large number of data subsets
and the corresponding visual feature values. LVI can directly
output the values of the visual features subject to a data selec-
tion, thus avoiding data retrieval and visual feature computation,

∗ Corresponding author.
E-mail address: jie.li@tju.edu.cn (J. Li).
ttps://doi.org/10.1016/j.visinf.2022.01.001
468-502X/© 2022 The Authors. Published by Elsevier B.V. on behalf of Zhejiang Univer
C BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
which are time-consuming, especially for large datasets. Using
LVI#1 in Fig. 1 as an example, in which the user selects a rect-
angular area on a map to generate a histogram showing the
number of tweets posted on each day-of-week. Having received
the selected region, the LVI directly outputs the pixel heights of
the seven bars without having to traverse the dataset multiple
times to compute the aggregated measures.

The inherent AI features of LVI bring many distinctive ad-
vantages. First, LCI can cope with the challenge of big data by
skipping the data retrieval for real-time interactive exploration.
Second, LVI size depends on the relatively small-size inner struc-
ture of the neural network rather than the large volumes of
original data. We therefore can apply an LVI in an environment
with limited computation and storage resources. Moreover, the
LVI approach supports users to query arbitrary attributes to ex-
plore different categories of data patterns. For example, we could
select a spatial range to generate a visualization showing data
distributions on time (Fig. 1(b-c)), explore the spatial patterns
within specified time intervals (Fig. 1(a)), and conduct combined
queries across space, time, and multiple attributes to achieve
more comprehensive analysis goals, as in Fig. 8.

Defining, training and optimizing an LVI for a given dataset is
challenging due to the following three aspects:

Information richness of visualization (C1). A visualization
typically integrates multiple visual features, whereas data se-
lection based on querying several continuous attribute intervals
contains less information. It is inherently difficult for an AI model
to output such rich information based on a low-dimensional
sity and Zhejiang University Press Co. Ltd. This is an open access article under the

https://doi.org/10.1016/j.visinf.2022.01.001
http://www.elsevier.com/locate/visinf
http://www.elsevier.com/locate/visinf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jie.li@tju.edu.cn
https://doi.org/10.1016/j.visinf.2022.01.001
http://creativecommons.org/licenses/by-nc-nd/4.0/

Y. Sun, J. Li, S. Chen et al. Visual Informatics 6 (2022) 14–25
Fig. 1. Visual analysis of Brightkite tweets by using five LVIs (#1-5). Each LVI is a neural network-based model, which takes user’s data selections as the input and
outputs visual features for the visualization. The analyst brushes (#1-2) a rectangle on the map to view temporal patterns of the tweets posted in the selected region
on days-of-week (b) and hours-of-day (c), (#3) selects two time intervals to observe spatial patterns of the posted tweets (a), and (#4-5) zooms (d) and pans (e)
the map to different scales and regions.
Fig. 2. Traditional (above) and LVI-based (bottom) visualization modes. Three
time-consuming processes in traditional mode are marked with underline.

encoding of data selections as inputs. Ensuring fast and accu-
rate output of values for multiple visual features poses a great
challenge for LVI design.

Irregularity of data distribution (C2). Predicting the value of
a visual feature can be viewed as a task of learning the distribu-
tion of the visualized measure. Such distribution may appear to
as very smooth at a top-level view, but actually is irregular when
zooming in to individual records, as in Fig. 3. It is well-known that
the neural network is more effective to approximate the general
shape of a Cumulative Data Distribution (CDF), but has a problem
with being accurate at the individual data instance level (Kraska
et al., 2018). Therefore, ensuring the accuracy of the predicted
results is very difficult even for a single visual feature.

Huge amount of training samples (C3). Different from tra-
ditional AI models (e.g. image classifiers,) in which training sets
are collected from the real world and manually labeled by a large
number of humans, the training set of an LVI is generated by
executing queries against the target dataset. Respectively, it is
easy to get a large number of training samples by setting different
query thresholds. Refining such samples for bringing the training
time to an acceptable level is the key to ensure the usability of
our approach.

To address these challenges, we decompose a visualization
into multiple visual features, train a neural network for each
15
visual feature separately, and design a framework that enables
multiple neural networks to execute in parallel (C1). To avoid
learning irregular data distributions, we train the neural network
to output visual feature values rather than attribute values (C2).
We leverage a Summed Area-Table (SAT) -based query sampling
to reduce the number of query samples while maintaining a high
accuracy (C3).

In summary, the main contributions of the paper are as fol-
lows:

• A data exploration mode based on AI model operations
for approximating visual feature values, replacing time-
consuming data retrieval. This mode enables exploration
flexibility under low memory requirements and high query
efficiency.

• A strategy to output visual feature values instead of data
measures. LVI essentially learns high-level trends rather
than irregular distributions of the data measures. Our ap-
proach fits the properties of neural networks, thus ensuring
the accuracy of results (C2).

• An implementation of the LVI, which integrates an SAT-
based query sampling to reduce the size of the training
set (C3), a decomposition mechanism to change a visual-
ization into multiple predictable visual feature sets (C1),
and a tensor-structured framework that enables multiple
separately trained neural networks to execute in parallel
(C1).

• An evaluation on two datasets of different scales, in which
multiple LVIs with different inputs and outputs are trained
for analyzing their performances in different application
scenarios.

The paper is structured as follows. After introducing the prob-
lem statement (Section 2), we review the related work (Sec-
tion 3), present our approach (Section 4) and describe two case
studies (Section 5), followed by a discussion in Section 6 and

conclusions in Section 7.

Y. Sun, J. Li, S. Chen et al. Visual Informatics 6 (2022) 14–25

2

i
m
p
p

2

D
o
o
r
v

D

a

t
r

. Problem statement

Our goal is to design and implement LVI and show its util-
ty for creating interactive visualization systems that integrate
ultiple views and rich interaction techniques for providing com-
rehensive analysis tools for finding data patterns from different
erspectives.

.1. Concept definition

To introduce LVI, we formally define the following concepts:

efinition 1. We define q as a query of visualization. Without loss
f generality, q can be viewed as a set of continuous value ranges
f attributes, i.e., q = (r(a1), r(a2), . . . , r(am)), in which r() is a
ange operation and r(ai) will return a continuous interval of the
alue range of the attribute ai.

efinition 2. We define Q = (q1, q2, . . . , qn) as a query tem-
plate that consists of multiple queries on a set of attributes
A(Q) = {a1, a2, . . . , am}. From a geometric perspective, Q is a
high-dimensional query space, with each dimension correspond-
ing to an attribute of A(Q). Each query q can be viewed as a
subspace of Q , which conducts a range operation on a dimension
(attribute). The maximum number of queries involved in Q is
equal to the number of the combination of value intervals that
the attributes of A(Q) could take.

Definition 3. Assuming V is a visualization, without loss of gen-
erality, it can be decomposed into several visual feature sets, de-
noted as V = {VF1, VF2, . . . , VFk}, where VFi = {vfi1, vfi2, . . . , vfij}
is a visual feature set consisting of multiple visual features. For
example, a histogram has only one set of visual features, in which
a visual feature encodes the height of a bar in pixels, as in
Fig. 1(b-c).

Definition 4. For a visual feature set VF = {vf1, vf2, . . . , vfk}, we
use vf (q) to represent the quantitative value of a visual feature
vf ∈ VF corresponding to a query q, while VF (q) is a vector
consisting of the values of all the visual features belonging to VF .

Definition 5. We define e() as an embedding function for trans-
forming a query q to a low-dimensional real-value vector, i.e.
e(q) ∈ Rm, where m represents the length of the vector.

Definition 6. Given a query template Q = (q1, q2, . . . , qn) and
visual feature set VF , we call VF can be predicated by Q if we

could train a model to predict the vector of VF using the training
data D = ((e(q1), VF (q1)), (e(q2), VF (q2)), . . . , (e(qn), VF (qn))). We
call V is predictable, if for any VF ∈ V there is a query template
that can predict it, otherwise V is unpredictable.

Definition 7. Let V = {VF1, VF2, . . . , VFk} be a predictable visu-
alization, the LVI of V is a set of models LVI(V) = {f1, f2, . . . , fk}.
Each model fi is responsible for the prediction of a visual feature
set VFi, i.e., fi : Qi → VFi, where Qi is a query template that
could predict VFi. We train models for individual visual feature
sets separately because they depend on different query templates,
therefore the models differ in structure and cannot be integrated
together.
16
Fig. 3. Comparison of two strategies for predicting the pixel height of a bar.
(a) To predict the exact measure value, which needs to learn the irregular data
distribution. (b) LVI only ensures the predicted value to be correctly transformed
to the pixel height, thus allowing for a certain deviation between the predicted
value and the true value.

2.2. General considerations

There are several important aspects that should be discussed
before designing the LVI.

The first aspect iswhy we expect a neural network to be able
to accurately predict values of visual features. Let us consider
a histogram with only one bar as an example. To determine
the height of the bar, a straightforward idea is to train a neural
network to predict the value of the visualized measure, and then
use a simple linear transformation to calculate the pixel height, as
in Fig. 3(a). Achieving this goal is difficult, since the distribution of
the measure may be irregular, while the neural network is only
suitable to learn the overall shape of the data distribution and
is not good at achieving the required last mile accuracy (Kraska
et al., 2018). However, for drawing the bar it is unnecessary to
know exact measure values. To explain this point, let hmax be
he maximum pixel height of the bar. This implies that the value
ange of the visualized measure is divided into hmax intervals. For
calculating the height of the bar in pixels it is necessary to adjust
the value to the intervals. In other words what an LVI should do is
to ensure the predicted value could fall into the same interval as
the actual value. This allows a certain deviation in the predicted
value. We essentially need to learn a high-level smooth trend of
the distribution of the measure, as in Fig. 3(b). This goal can be
achieved by a neural network of a relatively simple structure.

Another important aspect to be explained is the relation-
ship between LVI and Learned Index LI (Kraska et al., 2018).
Although LVI is inspired by LI, they are essentially two differ-
ent techniques. In particular, LI is not optimal for constructing
visualizations. While LI efficiently predicts which data records
satisfy a given query, further time-consuming aggregation and
processing is necessary for mapping the predicted values to vi-
sual primitives. Another aspect is accuracy. As LI is a method
for optimizing database retrieval, its accuracy must be strictly
guaranteed, while LVI by its definition allows some deviations in
the output. Respectively, LVI does not require complex structures
such as the recursive structure and hybrid training used by LI for
improving the accuracy. While LI processes attributes one by one
for predicting data records selection, thus requiring further pro-
cessing for mapping to visual features, we design LVI in a way to
process multi-attribute queries at once, directly producing values
of discrete visual features rather than raw values of continuous
attributes. This should enable real-time efficient visualization
update in response to queries on different visualizations.

3. Related work

The current trend is to optimize the visual exploration of
large data volumes by applying data cubes, AI approaches, and,
recently, learned index.

Y. Sun, J. Li, S. Chen et al. Visual Informatics 6 (2022) 14–25

3

l
c
P
t
i
a
e
Z
e
D
m
i
c
i
e
N
o
(
t
p
(
e
d
s
a
T
v
t

s
C
r
g
g
p
M
r
c
i
i
f

t
a
h
c
i
p
b
c
a
a
t
a
s
v
D
v
t
t
L
v

.1. Data cube

Most of existing works depend on interactive exploration of
arge datasets relies on designing specific data structures. Data
ube can be viewed as the most classic OLAP (Online Analytical
rocessing) (Chaudhuri and Dayal, 1997) model that allows re-
rieving aggregated measures on any combination of attributes
n real-time. OLAP was successfully used in many domains such
s social media (Cao et al., 2015; Li et al., 2018b), traffic (Shekhar
t al., 2002; Chen et al., 2017), graphic analysis (Tian et al., 2008;
hu et al., 2020; Han et al., 2021), Scatterplots analysis (Xie
t al., 2021; Ma et al., 2018), etc. The main problem of the
ata Cube is that the combination explosion of attribute values
ay result in an unacceptable storage cost seriously affecting

ts usability. Liu et al. (2013) propose imMens that resolves this
hallenge for spatio-temporal exploration by limiting the max-
mum number of attributes to be queried to 4. Lins et al. Lins
t al. (2013) propose a quadtree-based data structure, named
anocubes, which supports realtime spatio-temporal exploration
n arbitrary ranges of space, time and attributes. Pahins et al.
2016) propose HashedCubes, which implements a similar func-
ion using a better space-efficient structure. Miranda et al. (2018)
ropose a structure for analyzing long time series. Mei et al.
2019) proposed an R-tree-based space partitioning scheme to
nable flexible binning strategies in the exploration of tabular
atasets. The core of these techniques is to design a unified data
tructure, in which the pre-computed aggregated measure values
re stored in a hierarchical structure to ensure access efficiency.
he size of the data structure is usually very large, even for simple
isualizations. On the contrary, the LVI is an AI model specifically
rained for a visualization, whose size is much smaller.

There exist several data cube-based techniques designed for
pecific purposes. Li et al. (2018a) design Semantics Space-Time
ube used to explore unstructured texts with spatial and tempo-
al information. Wang et al. (2017) propose Gaussian Cubes for
enerating visualization involving complex machine learning al-
orithms, such as PCA and linear regression. Li et al. (2018c) pro-
ose ConcaveCubes for drawing a boundary-based cluster map.
iranda et al. (2017) propose TopKube for exploring ranking

esults. These approaches, however, are used to generate spe-
ific types of visualizations. Our approach is different, provid-
ng theoretically-grounded support to arbitrary types of visual-
zations by decomposing them into multiple predictable visual
eature sets and training separate models for them.

Our LVI approach differs from the existing data cube-based
echniques (Lins et al., 2013; Pahins et al., 2016) in query schemes
nd memory requirements. For the data cube-based techniques,
ierarchical aggregation is applied to the dimensions, and the
orresponding aggregated measures are pre-calculated and stored
n a unified data structure according to the query scheme. The
roblem is two-fold. First, the query scheme is fixed, mainly
ecause the coordinate of each measure in the data structure
orresponds to the query condition, which cannot be changed
fter the data structure is generated. Second, the data structure
lways consumes a large storage space (from hundreds of MBs
o dozens of GBs), depending on the size of the target dataset
nd the number of query conditions (coordinates in the data
tructure). Even for simple visualizations that only contain a few
isual features, the size of the data structure cannot be reduced.
ifferent from them, an LVI is specifically trained for a given
isualization. The size of an LVI depends on its inner weight struc-
ures, which is typically very small, ranging from dozens of KBs
o several MBs. The small size makes it possible to train multiple
VIs with different query schemes to implement a comprehensive

isual analysis system.

17
3.2. AI in visualization

Combining visualizations with traditional machine learning
techniques to construct a ‘‘Human-in-the-Loop’’ analytic pipeline
has been the core goal of visual analytics (Amershi et al., 2014),
with the following representative works (Sacha et al., 2018; Elas-
sady et al., 2018; Zhao et al., 2019) and conceptual frameworks
and guidance (Andrienko et al., 2018; Xia et al., 2021; Collins
et al., 2018). There is a trend of using the term AI+VIS specifically
for application of the neural network and its derivatives (e.g. Con-
volutional neural network CNN, Recurrent Neural Network RNN,
Graph neural network GNN) in visualization.

The ‘‘black-box’’ character of AI models prompts the emer-
gence of visualization techniques for revealing inner functionality
of the AI models, i.e., Visualization for AI Explainability (Tzeng
and Ma, 2005). A number of visualization techniques have been
proposed for revealing different aspects of various kinds of AI
models, such as Tree Boosting Methods (Liu et al., 2018b), Con-
volutional Neural Networks (Liu et al., 2017; Bilal et al., 2018),
Recurrent Neural Networks (Ming et al., 2017), Generative Ad-
versarial Networks (Kahng et al., 2019), Deep-Q Learning (Wang
et al., 2019), and Deep Generative Models (Liu et al., 2018a). Two
literature reviews (Choo and Liu, 2018; Hohman et al., 2018) give
a comprehensive picture of the current research. These works can
be called as VIS for AI because they essentially utilize visualization
techniques for optimizing AI models. On the contrary, LVI is going
to operate in AI for VIS mode by utilizing AI models for optimizing
interactive visualization of large data volumes.

Though not formally proposed in any research paper, the
concept AI for VIS has been considered as a fruitful direction in
visualization by many domain experts. In a representative work
by Kwon et al. (2018), machine learning techniques are used to
achieve a quick estimation of the aesthetic metrics of large graph-
ics, which is not practical for traditional algorithms due to a high
computation complexity. This research motivated further works
on combining graphics with machine learning techniques (Chen
et al., 2019; Xia et al., 2020). Another important application of
this category is to utilize AI models for evaluating the usability
of a visualization (Sedlmair and Aupetit, 2015; Battle et al., 2018;
Xia et al., 2022). A classifier can be trained on a large number
of existing visualization techniques for predicting quality metrics
of a visualization. These works, however, are different from our
approach that is aimed at training a model for predicting values
of visual features.

3.3. Learned index

Replacing traditional indexes by a trained AI model for ac-
celerating data retrieval is a current trend in database research.
In comparison to the traditional index techniques, an AI model
is able to reduce greatly the storage space, while keeping the
false positive rates (FPR) and false negative rates (FNR) within
acceptable levels (Richter et al., 2015). Many existing techniques
focus on the Locality-Sensitive Hash (LSH) (Wang et al., 2016; Guo
and Li, 2015), which is essentially a classifier implementing the
nearest neighbor search within a high-dimensional space.

Our LVI approach is inspired by the Learned Index proposed
recently (Kraska et al., 2018), which designs a hybrid structure
of AI models and traditional database index to implement three
common types of database indexes: range index, point index, and
existence index. In one of the follow-up papers (Kraska et al.,
2019), the Learned Index was used for guiding the algorithm se-
lection for optimizing database access methods and query plans.
As discussed in Section 2.2, the differences between our approach
and the Learned Index is the following: 1) LI queries a single
attribute at once, while LVI supports combined query on multiple

Y. Sun, J. Li, S. Chen et al. Visual Informatics 6 (2022) 14–25

a
a
s
o
c

4

p

4

i
(
c
w
r

i
s
o
(
(
q
t

(
s
i

4

v
m
w
t
f

t
t
v
i
v

s
o
n
7
a
n
c
2
d
s

i
a
e

Fig. 4. The workflow of training an LVI.

ttributes; 2) LI returns a list of objects, while LVI directly predicts
ggregated visual feature values among the objects; 3) LI should
atisfy a strict accuracy requirement, while LVI outputs a number
f visual feature values with a guarantee that visual encoding is
orrect.

. Our approach

In this section we introduce a general framework of our ap-
roach and provide technical details of each phase.

.1. Workflow

Fig. 4 presents a proposed three-phase workflow of LVI train-
ng. First, we need to define a configuration of visualization
Fig. 4(a)) the LVI will be trained for. Specifically, we need to
hoose the type of the visualization, identify measures associated
ith each visual feature, and determine allowed deviations in the
esults.

In the second phase, the training set is generated by query-
ng the dataset (Fig. 4(b)). We decompose the visualization into
everal predictable visual feature sets, each consisting of a set
f visual features showing the same category of information
Definition 3). We therefore could train a model for each of them
Definition 7). Another critical step in this phase is appropriate
uery sampling, aimed at reducing the number of instances in
he query space in the training set.

Finally, the LVI is trained using the generated training set
Fig. 4(c)). Neural networks for different visual features are trained
eparately and then combined in a single tensor structure, allow-
ng them to run in parallel.

.2. Overall design

Each LVI is trained for a specific visualization, therefore the
isualization configuration should be fully determined before the
odel training. Specifically, to guide the training set generation
e need to choose a type of visualization, assign a data measure
o a visual feature, and specify how the data measure is derived
rom the attributes of the original dataset.

An important thing is to determine an appropriate accuracy of
he target visualization. In the example in Fig. 3(b), hmax encoded
he maximum value of the visualized measure, thus dividing the
alue range of the measure to a number of intervals correspond-
ng to pixels. Depending on the number of pixels allocated to the
isual feature, the desired level of LVI accuracy can be defined.
Accuracy requirements of many visualizations are not very

trict, since the resolution of visual features is limited. If hmax
f the histogram (Fig. 1(b)) is 200 pixels and the maximum
umber of daily tweets is about 700,000, a deviation of 3500 =
00,000/200 results in the correct height in pixels. Another ex-
mple is the heatmap (Fig. 1(a)), which usually contains a limited
umber of colors (Harrower and Brewer, 2003), as a human eye
annot distinguish too many colors on a map (Haroz andWhitney,
012), thus leading to more relaxing accuracy requirements. The
iscrete nature of visual representations enables LVI to achieve
ufficient accuracy.
18
Fig. 5. Attribute discretization enables a unified representation of range queries
marked as gray rectangles.

4.3. Training set generation

For training LVI, we generate the training set by executing
sequences of data queries.

4.3.1. Query sampling
There is typically a large number of query instances in a

query space (Definition 2). If we include all of them into the
training set, it will make the training time unacceptable. We
therefore utilize query sampling process to reduce the training
samples with the purpose of improving the usability of LVI. The
prerequisite of query sampling is to ensure an LVI to return a
correct result for any query. Therefore, neither local nor random
sampling is allowed, since they may exclude a part of the query
space, in which the data distribution of the visualized measure
is not regular enough for predicting. We therefore start with
discretizing the value range of each query attribute into several
bins and utilize the Summed-Area Table (SAT) -based sampling to
reduce the number of training samples.

The attribute discretization is needed, first, for reducing the
number of the results of the range operation that could be covered
by a query, and, second, for providing a unified representation
method for various categories of attributes, such as space, time,
as well as numeric or categorical attributes. Fig. 5 shows three
cases of the attribute discretization, which transforms the value
range of an attribute into a small set of bins.

To improve the query granularity, the value range of an at-
tribute is usually divided into a large number of bins, thus gen-
erating a large number of training samples. As our approach
supports combined queries on multiple attributes, this problem
gets even more serious. We therefore leverage Summed-Area
Table (SAT) (Crow, 1984) to resolve this problem. Consider an
example in Fig. 6(a), where the user trains a model for predicting
the count of objects in a value range ⟨s, e⟩ of an attribute, denoted
as N(s, e). By using the SAT, we could get the desired value by sub-
tracting the value for the range (o, S) from the value of the range
(o, e), where o represents the lower boundary of the value range
of the attribute: N(s, e) = N(o, e) − N(o, s) (Fig. 6(a)). Similarly,
we could calculate the measure of a query on two attributes using
the equation N(lb, rt) = N(o, rt)−N(o, lt)−N(o, rb)+N(o, lb), as
n Fig. 6(b). The symbol N() represents the measure value within
two-dimensional rectangle determined by a diagonal of two
ndpoints, and o refers to a 2D coordinate consisting of the lower

boundaries of the value ranges of the two attributes. The SAT
can also be used for the query on three (see Fig. 6(c)) or more
attributes. The advantage of using the SAT is obvious: we need to

visit each bin only once for generating the training set. In other

Y. Sun, J. Li, S. Chen et al. Visual Informatics 6 (2022) 14–25

d
+

o

w
p
t
t
n
l

S
m
v
c
e
w
t
B
o
o
u

a
o
g
t
S
a
a
1
p
a
c

4

v
s
t
o
s
h
a
a
t
c
t
v
v
v
h
v

Fig. 6. SAT-based queries sampling in (a) one-, (b) two- and (c) three-
imensional query space. Each green region represents a query, while symbols
or — marked on a vertex indicates the operation conducted on the vertex for

btaining the measure value for the green region.

ords, a training set only needs to include the queries whose start
oint is the original point o. The minimum number of the queries
hat should be included in a training set is

∏
a∈A(Q) |a|, where |a| is

he number of bins of the attribute a. This allows for keeping the
umber of training samples in most scenarios at an acceptable
evel.

For getting the measure value in an n-dimensional space using
AT, we need to conduct multiple queries in subspaces deter-
ined by o and boundary points of the target space. The measure
alue of the target space can be calculated through the linear
ombination of the results of these queries. The number of op-
rations to get a measure value of a query template Q is 2|A(Q)|,
here |A(Q)| represents the number of attributes in Q . For the
hree cases in Fig. 6, the numbers are 2, 4 and 8, respectively.
y optimizing the model structure to enable parallel execution
f multiple stacked neural networks (Section 4.4.2), the time
verhead of such a process is very low, not affecting the real-time
pdate of the visualization in response to the user interaction.
It should be noted that SAT applicability is limited. It can be

pplied only if there are no newly-appearing and disappearing
bjects within the query space. Using Fig. 1 as an example, the
eo-tagged tweets (objects) in the Brightkite datas are distributed
hroughout the world (query space), we therefore could utilize
AT to quickly get the aggregated measure of the tweets within
ny area of the world. As a counter-example, we cannot get the
verage population of a country within the time interval from
980 to 1990 through the equation population(1980, 1990) =

opulation(1970, 1990) − population(1970, 1980), because there
re newborn and dead people, causing the set of people have been
hanging during that period.

.3.2. Visualization decomposition
The purpose of visualization decomposition is to transform a

isualization of information richness into multiple visual feature
ets with less information and more consistent form. According
o Definition 3, a predictable visualization can be decomposed into
ne or multiple feature sets. For example, a histogram contains a
ingle visual feature set, in which each visual feature encodes the
eight of a bar, as in Fig. 7(a). Similarly, a linechart (Fig. 7(b))
nd a heatmap (Fig. 7(c)) also have one visual feature set, while
scatterplot could be decomposed into three visual feature sets

hat represent x and y coordinates and dot sizes, as in Fig. 7(d). It
an be concluded that the number of visual feature sets is equal
o the number of information categories needed for defining the
isualization, regardless of the number of visual elements in the
isualization. A visualization that contains tens of thousands of
isual elements may have only one visual feature set, such as
eatmap containing numerous colored bins (Fig. 1(a)), while a
isualization with a few visual elements may have a relatively
19
Fig. 7. Visualization decomposition of four classic visualization techniques,
where (a–c) only contain one visual feature set and (d) has three visual feature
sets.

more visual feature sets, such as the scatterplot in 9(c), which
has three visual feature sets, but only 145 dots (visual elements).
We represent each visual feature set as a vector where each value
corresponds to a visual feature.

After decomposing a visualization into multiple visual feature
sets, we need to define a query template for predicting them (Def-
inition 6). A query template consists of a set of query instances
on the same attributes (Definition 2), each producing a measure
vector for the corresponding visual feature set (Definition 4).

Some visual features, such as object names or color schemes,
do not need to be predictable (Definition 6). They are defined by
the visualization environment.

4.4. Index building

Assuming VF is a visual feature set (Definition 3), the corre-
sponding model will take an input query q and produce an output
vector VF (q) (Definition 4). Using Fig. 1(b) as an example, the
heights of the 7 bars are independent visual features, since the
tweets posted on one day could not appear on others. Training
a single model for predicting multiple independent outputs is
undesirable, as the model may catch occasional relationships.
Instead, we propose a Visualization Index Framework (VIF) that
enables to train a neural network for each visual feature of VF
separately, as in Fig. 8(b), and then integrate weights from the
separate models to a tensor structure to allow parallel execution
of the neural networks (Fig. 8(c)). The purpose of the VIF is to
balance accuracy and time efficiency.

Next sections describe training of the neural network for a sin-
gle visual feature (Section 4.4.1) and the integration of multiple
models to construct VIF (Section 4.4.2).

4.4.1. Neural network training
A neural network is responsible for predicting the value of

a visual feature. The general training workflow (Fig. 8(b)) is the
following:

Encoding the queries to vectors makes it easier to capture the
pattern of relationships between inputs and outputs. The encoded
vectors will represent the queries to be fed into the neural net-
work. As the training set must include only the queries whose

Y. Sun, J. Li, S. Chen et al. Visual Informatics 6 (2022) 14–25

h
m

t
c

r
b

Fig. 8. Visualization Index Framework was used to construct a histogram with 7 bars. (a) The user interactively brushes a rectangle on the map to generate a
istogram for the counts of objects within the rectangle on different days of week. (b) Seven neural networks, each predicting the height of a single bar. (c) A tensor
odel integrates 7 neural networks, executes them in parallel and outputs heights of all bars.
s

n
a
n
m
c
t
c

n
o
t
a
i
d
c
b

arget ranges start from the point of origin o (Section 4.3.1), we
ould omit o and represent query vector as a bin coordinate in
the query space. For example, coordinates (x, y) correspond to a
ectangle on a map with a diagonal connecting o (the left-bottom
oundary point) and (x, y) (Fig. 8(b)). We therefore only need to

consider how to represent each bin coordinate as a unique vector.
We use either one-hot encoding or an embedding matrix to

encode the query. The one-hot (Wang et al., 2018) encoding
is the most common and effective way to encode the queries.
When the attribute has fewer bins, encoding the query using
one-hot can form a vector with fewer dimensions. For example,
encoding the query from the Day-of-Week view in Fig. 5 will
form a 7-dimensional vector: [0,0,1,1,1,0,0], because Wed, Thu
and Fri were selected. But when the attributes are divided into too
many bins, the one-hot encoding will lead to a long vector. This
results in too many neurons being included in the input layer,
thus reducing the execution efficiency of the neural network. We
therefore need to represent each attribute as a low-dimensional
real-valued vector. To implement this purpose, we construct an
embedding matrix for each attribute and put them in front of
the neural network, whose outputs are sequentially concatenated
and fed into the neural network as the input. Using Fig. 8(b) as an
example, we use two embedding matrices for the two attributes,
i.e., longitude and latitude, respectively. The initial values of the
embedding matrix are assigned randomly, they will be updated
together with the weights of the neural network. The advantages
of this structure are in two aspects. First, the structure of the
embedding vector is low-dimensional, thus greatly reducing the
number of necessary parameters of the neural network. Second,
by connecting the embedding matrices to the neural network
and updating them together, the final embedding vectors could
better adapt to the calculation task of the neural network, since
they reflect the predictive results to some extent. Note that there
are no clear rules for choosing encoding. Typically, it is more
appropriate to use embedding matrix when there are a lot of bins
(e.g., more than 100) in the attributes. Instead, when the number
of bins is small (e.g., less than 20), it is more effective to use
one-hot.

The number of neurons in the input layer is determined by the
length of the encoded vector of the query. A long vector could
20
reduce the amount of the information loss, but will increase the
number of parameters of the neural network. If we use embed-
ding matrix, then it is necessary to conduct multiple trials to find
the minimum length that can meet the accuracy requirement.

Neural Network Setting involves a large number of parame-
ters that control the convergence direction of the training. Here
we report only several key parameters. We utilize the simple and
full-connected neural network with up to three hidden layers,
typically one is enough, and the ReLU activation function to
implement the model. The number of epochs is set to 1500. The
training of a neural network will stop when its epoch number
reaches 1500 or the prediction accuracy of the neural network
reaches 100%, which will be tested within each epoch. We set
the batch size to 64. The learning rate is initialized to 0.001 with
a decay rate of 50% every 300 epochs. The loss function can be
written as follows:

J = J0 + λ1

∑
w

|w| + λ2

∑
w

w2, (1)

where λ1 and λ2 weight the contributions of the L1 and the L2
regularization items, which is a common method to avoid over-
fitting, and J0 represents the ordinary loss function that will be
et according to the implementation of the neural network.
There are two principal types of implementations of the neural

etwork. First, we could make the neural network for predicting
single value of the visual feature, i.e. implementing the neural
etwork as a data fitting task, in which J0 could be set to the
ean squared error (MSE). Second, we could view each value that
ould be taken by the visual feature as a label and implement
he neural network as a multi-label classifier, in which the binary
ross-entropy (BCE) can be used.
Although the second structure should involve more neural

etwork parameters (consider there is only one neuron in the
utput layer of the first structure), it, however, could decrease the
raining difficulty. This is mainly because predicting the label of
n object only needs to compare the probabilities that the object
s with different labels, rather than learning the irregular data
istribution. Therefore the second structure can be used in most
ases, especially when there is a weak predictable relationship
etween the query vector and the data distribution. For simple

Y. Sun, J. Li, S. Chen et al. Visual Informatics 6 (2022) 14–25

t
d
s

4

l
c
s
e
i
t
f
o
c
c

m
w
a
m
T
f
c
t
G
o
t
c
h
o
v
f

h
c
v
t
t
p

t
a
f
s
t
f

4

t
w
e
s
a
w
t
o
l
t
p

c
r
c

raining tasks, such as if the visual feature allows a large deviation
ue to the small number of values, we could utilize the first
tructure for reducing the storage cost.

.4.2. VIF for index parallelization
As the visual feature sets are independent, VIF architecture al-

ows parallel execution of multiple neural networks (Fig. 8(c)). VIF
an be regarded as a tensor-structured neural network. Given a
et of neural networks with the same structure, VIF automatically
xtracts their weight and embedding matrices at the correspond-
ng layer, and combines them into a tensor. This transforms mul-
iple matrix operations into a single tensor operation of the data
lowing through a layer. According to the tensor specification,
perations over stacked matrices of different neural networks are
onducted separately, producing the same results as what we
ould obtain by executing the neural networks separately.
VIF has two advantages in comparison to separately executing

ultiple neural networks. First, VIF only needs to record the
eights and embedding metrics of the neural networks, thus
voiding the interference of unnecessary overhead and instru-
entation introduced by the AI training framework, such as
ensorflow (Abadi et al., 2016) and Pytorch (Paszke et al., 2017),
or managing large models (Kraska et al., 2018). Second, the
ompact tensor operation can be optimized more easily through
he multi-thread mechanism of modern AI hardware, such as
PU or TPU, usually containing thousands of cores. Obtaining
utputs through a tensor operation is theoretically slower than
he data cube-based techniques that only need to access an in-
ache memory address to get the pre-calculated measure. VIF,
owever, enables obtaining multiple values simultaneously. In
ther words, the time needed for getting a single value of a single
isual feature is almost equal to predicting the vector for a visual
eature set consisting of a number of visual features.

Note that the neural networks that could be integrated should
ave the same structure, i.e., the same number of neurons on each
orresponding layer. Since the neural networks for predicting the
isual features in a visual feature set depend on the same query
emplate and have a similar type of outputs, it is natural to design
hem as having the same structure, thus making their integration
ossible.
Each neural network should have a standalone input. For

his purpose the input vector should also be transformed into
tensor by stacking itself multiple times (each layer will be

ed into a neural network), such as (x, y) coordinate of tensor
tructure in Fig. 8(c). This can be easily implemented through
he broadcasting mechanism integrated in many deep learning
rameworks.

.5. Index training and usage

We could use any AI framework, such as Tensorflow or Py-
orch, to train the neural network. After the training process, the
eights and the embedding metrics of the neural network are
xtracted, stacked into several tensor structures, and stored in
tandalone files. That is, python is only used for training LVIs
nd we implement the tensor operations using any language
ith higher execution efficiency. In this paper, we implemented
ensor operations using CUDA and C++. We have designed an
ptimizer that automatically divides a tensor operation into a
arge number of small matrix operations and executes each of
hem on a dedicated GPU core, thus greatly improving the general
erformance (see ‘‘Execution’’ parameters in Table 3).
LVI visualizations are implemented within a client–server ar-

hitecture and work in a web browser. The server receives query
equests from the client and sends predicted results back to the
lient. Our visualization component implemented in JavaScript
21
Table 1
LVIs of the first case.
Query Template Visualization

1 Longitude(360), Latitude(180) Histogram(7)
2 Longitude(360), Latitude(180) Histogram(24)
3 day-of-Week(7), hour-of-Day(24) Heatmap(60000)
4 day-of-Week(7), hour-of-Day(24) Heatmap(64800)
5 day-of-Week(7), hour-of-Day(24) Heatmap(45000)

works in the browser, maps predicted visual features to proper vi-
sual variables, handles unpredictable visual features (Definition 6)
by assigning specific values to each of them, and supports inter-
activity such as panning and zooming, coordination of multiple
views, and data selection for drilling down to patterns of interest.

5. Evaluation

5.1. Brightkite social media checkins

The Brightkite dataset contains about 4.5M social media check-
in records of 58K users collected from Apr. 2008 till Oct. 2010
worldwide. This dataset has been widely used in many papers
(e.g. Lins et al. (2013), Pahins et al. (2016), Wang et al. (2018)).

We trained five LVIs to generate two histograms and three
density maps (heatmaps) for different scales and regions, as in
Fig. 1. Specifically, the analyst could select a spatial region to
generate two histograms showing the tweets distribution on day-
of-week (#1) and hour-of-day (#2), respectively. She could also
select two time intervals on the two histograms to generate
a heatmap for observing spatial distributions of the messages
posted during the selected times (#3-5). We have trained several
LVIs for supporting more efficient generation of density maps at
different scales. Thus, the global map uses a global LVI (#4) with
1◦ resolution (360 × 180) while US (#3) and EU maps (#5) use
LVIs created at finer resolutions (0.25◦).

All LVIs trained for this use case are listed in Table 1. The
numbers in the brackets show the number of bins for attributes
in the query template and the resolution of the corresponding
visualization.

5.2. Population statistics data

The second use case is based on a collection of annual statistics
records of 145 countries over the period of 38 years (1971–
2008) (Li et al., 2018b). The dataset contains spatial (longitudes
and latitudes of countries) and temporal (year) references and
three economic criteria: income per capita, life expectancy, and
population count. Though this dataset is quite small, it is inter-
esting to compare the performance of the LVI when dealing with
datasets of different scales (see Fig. 2).

We train seven LVIs on this dataset to form a multiple views
visualization (Fig. 9). Specifically, when the analyst selects a time
point ‘‘1999’’ (#11), the histograms (#6-8) present distributions
of values of the three attributes (‘‘Population’’ in Fig. 9d, ‘‘Income
per capita’’ in Fig. 9e, and ‘‘Life expectancy’’ in Fig. 9f) for all
countries. A scatterplot (#9) positions the countries according
to their ‘‘Income per capita’’ (X) and ‘‘Life expectancy’’ (Y), with
dot sizes representing ‘‘population’’. In addition, an unpredictable
attribute ‘‘Continent’’ is shown by color hues. A further selection
of a spatial region on the map (#10) would support selection of
countries to be shown in the scatter plot and reflected in the
histograms (this operation is not illustrated). The analyst selects
intervals of interest of the three attributes (#12) to see spatio-
temporal aggregation of the query results. In the example, only
one of the 3 attributes was affected by the query, therefore the

Y. Sun, J. Li, S. Chen et al. Visual Informatics 6 (2022) 14–25

5

m
c
L
a
i
e
s
p

i

L
o

Fig. 9. Visual analysis system that integrates six views (a–f) for exploring the economic statistical data. The system is constructed based on seven LVIs (#6-12),
whose inputs and outputs are marked with the corresponding visual variables (size, position, color hue and value (Bertin et al., 1983)).
a
P
a
u
h
u
e
T
p

Table 2
LVIs of the second case.
Query Template Visualization

6 Year(38) Histogram(10)
7 Year(38) Histogram(7)
8 Year(38) Histogram(20)
9 Year(38) Scatterplot(145)
10 Longitude(360), Latitude(180) Scatterplot(145)
11 Population(40), Life Expectancy(40), Income(40) Linechart(38)
12 Population(40), Life Expectancy(40), Income(40) Thememap (145)

full ranges of the remaining attributes were selected. In the result,
for each country on the map (Fig. 9a) we see for how many years
the conditions were satisfied. On the time graph (Fig. 9b), we see
how many countries satisfy the query conditions each year.

The characteristics of all LVIs are listed in Table 2.

.3. Performance assessment

Table 3 summarizes the model parameters and the perfor-
ance criteria of the LVIs. Table 4 shows the results of the
omparison of query overhead with and without LVI. All of the
VIs were trained on a GPU Server (XEON E5-2680, 128G, 1080Ti),
nd the execution time were tested on an ordinary PC (Core
7 6700HQ, 16G, GTX950M), thus emulating a real application
nvironment. The execution time thus will further improve when
eparating client and server and using a server with a better
erformance.
The numbers of attributes in the query template |A(Q)|, train-

ng samples |Q | and count of output visual features |VF | are in
the first three columns. Two further parameters, ‘‘Embedding’’
and ‘‘Weights’’, describe the structure of the embedding ma-
trix and the neural network for a single neural network (‘‘Null’’
means the one-hot encoding is used); they must be multiplied
by |VF | for the complete VIF structure. The remaining columns
list six critical performance criteria. ‘‘ Σ Size’’ represents the
size of the files storing the embedding matrices, weights and
bias of an LVI. The ratio ‘‘|Key|/|SAT |’’ representing volumes of
VI and the corresponding SAT, reflects the storage efficiency of
ur approach in general. We used LVI to build the two systems
22
long with a database version on the Brightkite dataset and the
opulation dataset. The database version has the same interface
s the LVI version. Instead of using LVI, the database version
ses the database to respond user queries. The database used
ere is MySQL (MySQL, 2001). We randomly extract 1000 actual
ser queries from logs of the visualization systems and test the
xecution time by running them on the two versions of systems.
he result is shown in Table 4. Several findings regarding the LVI
erformance can be summarized as follows:

(1) In general, the results support our arguments well, i.e. an LVI
could accurately (> 99.8%) output a large number of visual
feature values (up to 64800) in real-time (3–14 ms).

(2) The ‘‘|Key|/|SAT |’’ of most LVIs are less than 50% (except for
#6-9), confirming a low storage cost of our approach.

(3) If a query template includes only a single attribute (#6-9),
LVI has no advantage in storage space, since the length of its
embedding vector inevitably covers all bins of the attribute.

(4) The ‘‘|Key|/|SAT |’’ parameter is inversely proportional to
‘‘Deviation’’. For a small allowed deviation, i.e. a high accu-
racy requirement, the neural network (#1-2) requires more
parameters. On the contrary, much fewer parameters are
needed if the accuracy requirement is relaxed (#10).

(5) The size of an LVI is not correlated with the size of the
original dataset. A small dataset may need a large LVI to
meet complex visualization requirements (#11-12). On the
contrary, to support a visualization with fewer visual fea-
tures or a low query granularity, the size of the LVI could be
very small, even for a large dataset (#1-2).

(6) Only one LVI cannot get 100% accuracy (#11), since no devi-
ation is allowed in its predicted results. Such an extremely
high accuracy requirement is caused by a small number of
values that could be output from the LVI (integer between 0
and 145) and relative more visual feature values (0-200px),
thus even a deviation of one will result in incorrect visual
effects.

(7) Most of the training processes can finish within 2.5 h, which
illustrates the effectiveness of the query sampling. Two LVIs
(#2, 11) take longer time, because more epochs should be
conducted to satisfy the accuracy requirement.

Y. Sun, J. Li, S. Chen et al. Visual Informatics 6 (2022) 14–25

c
m
d
o
p
f

a
t
e

a
i
s

Table 3
Summarization of model parameters and performance criteria.

|A(Q)| |Q | |VF | Embedding Weights |Key|/|SAT | Σ Size Training Execution Deviation Accuracy
(N) (N) (N) (X) (X) (%) (KB) (h) (ms) (N) (%)

1 2 64800 7 540 × 20 40 × 80,80 × 200 46.3 532 2.1 6 1/200 100
2 2 64800 24 540 × 20 40 × 80,80 × 200 46.3 1822 6.0 7 1/200 100
3 2 168 60000 Null 31 × 1 18.5 7495 2.1 13 1/5 100
4 2 168 64800 Null 31 × 1 18.5 7495 2.3 14 1/5 100
5 2 168 45000 Null 31 × 1 18.5 5621 1.8 11 1/5 100
6–8 1 38 20 Null 38 × 1 100 3 0.6 3 1/200 100
9 1 38 145 Null 38 × 3 100 65 1.5 3 1/200,1/50 100
10 2 64800 145 540 × 5 10 × 2 4.2 1541 0.4 2 1/2 100
11 3 64000 38 120 × 20 60 × 80,80 × 146 29.5 3727 14.4 7 1/146 99.8
12 3 64000 145 120 × 20 60 × 60,60 × 39 13 2481 1.2 5 1/39 100
Table 4
Comparison of execution time between LVI version and database
version.

LVI Database

Brightkite
Mean 8.6ms 8.5s
Max 15.8ms 35.4s
Std 1.3ms 7.3s
Median 8.4ms 7.9s

Population
Mean 3.1ms 0.3s
Max 9.0ms 1.2s
Std 0.8ms 0.2s
Median 3.1ms 0.3s

(8) In real scenarios, the maximum execution time of LVI does
not exceed 20 ms. LVI always executes fast no matter how
many records are in the dataset. Compared to the database
version, LVI can reduce more query overhead on large
datasets.

6. Discussion

In this paper, we propose a neural network-based approach to
onstructing interactive visualization systems with coordinated
ultiple views. The resulting client–server system is able to han-
le large and complex data in efficient way, enabling fast update
f visualizations in response to interactively specified queries. The
roposed approach can be used for implementing a flexible OLAP,
ree from pre-defined intervals on cube dimensions.

Due to the inherent features of the neural networks, our
pproach enables real-time response to queries on arbitrary at-
ribute ranges with higher accuracy at a low storage cost. How-
ver, we also acknowledge several limitations.
Generality. LVI cannot predict unpredictable visual feature

set that contains non-numerical visual features. However, if the
visual features in the unpredictable visual feature set are constant
values, we can just store these values and visualize them directly.
For visualizations that do not contain unpredictable visual feature
set, no matter how complex the visualization is, we can decom-
pose them into a set of numerical vectors for prediction. Complex
visualization may contain more visual feature sets, but does not
increase the complexity of the training process.

Storage Space. Although the size of an LVI is typically small,
especially in comparison to the original data, it is more appropri-
ate to benchmark it against the corresponding SAT that delivers
precise results. Essentially, the purpose of LVI is to learn the
distribution of the SAT. Depending on the regularity of the data
distribution and allowed deviation, the parameter amount of the
LVI may take from 1/20 to 1/2 of the SAT size.

Accuracy. The desired accuracy of an LVI is based on the
ccuracy requirements, i.e. allowed deviation of the target visual-
zation. Naturally, more parameters and more complex structures
hould be used for achieving higher accuracy. For complex query
23
templates consisting of numerous attributes, the predictable re-
lationship between the query template and the visual feature
set may become weak. However, the embedding matrix can ef-
fectively alleviate this problem. Another issue is overfitting. Our
method is used for interactive exploration. Fitting all training
samples is enough, which includes all possible queries. This is
quite different from existing deep learning models that inevitably
meet new inputs in application domains.

Parallelization. The VIF approach conceptually allows multi-
ple neural networks to be executed in parallel by splitting integral
tensor operations to a large number of pieces and executing
them separately on different hardware cores. At present, it is
common that a GPU contains thousands of cuda cores, theoret-
ically supporting the same number of tasks to be executed in
parallel. However, this is not strictly necessary, as visualizations
usually have only tens to hundreds of visual features, which is
far less than the number of cores of a common AI hardware.
Several visualizations containing more visual features, such as
heatmap (#3 − 5), which could also be calculated within several
computation cycles.

Flexibility. A distinguishable characteristic of our approach is
that each LVI is specifically trained for a selected visualization,
and the visual design should be fixed before the training process.
Although this limitation restricts flexibility of use, it can greatly
save storage space by avoiding a huge data structure, in which the
theoretical amount of information is not fully utilized, especially
for generating simple visualizations.

Update. The cost for updating an LVI is significantly higher
than for a traditional database index, such as B-Tree, and data
cube-based techniques, which only need to update all nodes on
the branch of the hierarchical index structure from the root to the
leaf node where the change occurs. This, however, is a common
problem that all AI applications are facing. We expect that the
development of modern AI hardware will increase the training
speed.

Conceptually, the problem of updates can be resolved for data
that adds over time, which is a common setting for dashboard
applications. The time range can be divided into bins (e.g. of
one hour), and neural networks are trained separately for each
time bin. For producing outputs for the whole time range, the
outputs of networks for separate time bins are combined. Such
an approach limits the applicability to additive aggregate mea-
sures (sum, count) and their derivatives (average), but does not
allow such aggregates as median or count distinct identities. The
time overhead for training multiple networks is compensated by
their smaller dimensionality. So, there exists a class of dashboard
applications that can be supported with dynamic data updates.

Scalability. There are two aspects of scalability: the data
amount and the query resolution (the number of bins included
in the query template). The data volume affects the training time,
but does not affect the storage space of the final LVI. Increasing of
the query resolution causes a longer encoding, thus introducing

Y. Sun, J. Li, S. Chen et al. Visual Informatics 6 (2022) 14–25

m
d
t

r
a
m
s
d
r
s
q
s
c

b
t
w
v
d

7

w
i
t
s
s
t
i
e
b
n
a

p
i
c
t
t
a
s
l

C

C
A
t
K

D

c
t

E

s

A

(
F
(

R

A

A

A

B

B

B

C

C

C

C

C

C

C
E

G

H

H

H

H

K

K

K

K

L

L

ore parameters to the neural network. However, query embed-
ing that reduces query dimensionality could greatly alleviate
his problem.

Functionality. Our approach is suitable for visualizations that
epresent additive aggregation measures such as sum, count, and
verage. Visualizations of other kinds (e.g. representing positional
easures such as medians or quantiles, or complex derived mea-
ures such as low-dimensional embeddings of multi-dimensional
ata) are not supported. The query primitives are restricted to
ange operations, but are not able to support multiple ranges
election or more complex interaction techniques such as Lasso
uery. However, the lasso polygon can be decomposed into a
et rectangles of different size and shape, and results of the
orresponding queries are combined.
Despite these limitations, our approach has a good potential to

e applied in a large number of practically important applications
hat require interactive visualization of large data volumes. It
orks especially good if the desired visualization accuracy is not
ery high (e.g. in apps that are supposed to be used on mobile
evices).

. Conclusion and future work

This paper has presented Learned Visualization Index (LVI),
hich is a neural network-based technique that supports efficient

nteractive exploration of large datasets. LVI is a machine learning
echnique that can achieve the same functions as traditional data
tructure-based IDE techniques. We have shown that LVI has
tate-of-the-art performance and advantages absent in existing
echniques. Particularly, the storage cost of LVI can beat all exist-
ng techniques by not generating a complex data structure. The
asy process of developing the prototype IDE systems reflects
etter usability. We thus believe LVI can replace traditional tech-
iques in specific cases. As a novel AI4VIS application, LVI brings
new direction for future IDE research.
In the future, we plan to make two improvements. First, we

lan to apply it to further datasets for a thorough evaluation of
ts performance. Second, the LVI can be viewed as a general con-
ept of predicting values of visual features instead of computing
hem from the data. We are going to experiment with other AI
echniques for extending our approach (e.g. CNN, RNN, and GNN),
nd consider possibilities to support more complex visualizations
uch as trees and graphs and more flexible interactions such as
asso query.

RediT authorship contribution statement

Yongjian Sun: Conducts the main body of the work and exper-
iments. Jie Li: Proposes the idea and write the manuscript. Siming
hen: Help in refining the idea and paper organization. Gennady
ndrienko: Help in refining the idea and paper organization. Na-
alia Andrienko: Help in refining the idea and paper organization.
ang Zhang: Responsible for the final paper proofing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

thical Approval

This study does not contain any studies with human or animal

ubjects performed by any of the authors.

24
cknowledgments

This work is supported by National Key R&D Program of China
2018YFC0831700), NSFC project (61972278), Natural Science
oundation of Tianjin (20JCQNJC01620), and the Browser Project
CEIEC-2020-ZM02-0132).

eferences

badi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al., 2016. Tensorflow: A system for
large-scale machine learning. In: 12th {USENIX} Symposium on Operating
Systems Design And Implementation ({OSDI} 16). pp. 265–283.

mershi, S., Cakmak, M., Knox, W.B., Kulesza, T., 2014. Power to the people: The
role of humans in interactive machine learning. Ai Mag. 35 (4), 105–120.

ndrienko, N.V., Lammarsch, T., Andrienko, G.L., Fuchs, G., Keim, D.A., Miksch, S.,
Rind, A., 2018. Viewing visual analytics as model building. Comput. Graph.
Forum 37 (6), 275–299.

attle, L., Duan, P., Miranda, Z., Mukusheva, D., Chang, R., Stonebraker, M., 2018.
Beagle: Automated extraction and interpretation of visualizations from the
web. In: Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. ACM, p. 594.

ertin, J., Berg, W.J., Wainer, H., 1983. Semiology of Graphics: Diagrams,
Networks, Maps, Vol. 1. University of Wisconsin press Madison.

ilal, A., Jourabloo, A., Ye, M., Liu, X., Ren, L., 2018. Do convolutional neural
networks learn class hierarchy? IEEE Trans. Vis. Comput. Graphics 24 (1),
152–162.

ao, G., Wang, S., Hwang, M., Padmanabhan, A., Zhang, Z., Soltani, K., 2015.
A scalable framework for spatiotemporal analysis of location-based social
media data. Comput. Environ. Urban Syst. 51, 70–82.

haudhuri, S., Dayal, U., 1997. An overview of data warehousing and OLAP
technology. SIGMOD Rec. (ISSN: 0163-5808) 26 (1), 65–74.

hen, W., Guo, F., Han, D., Pan, J., Nie, X., Xia, J., Zhang, X., 2019. Structure-
based suggestive exploration: A new approach for effective exploration of
large networks. IEEE Trans. Vis. Comput. Graphics 25 (1), 555–565.

hen, W., Huang, Z., Wu, F., Zhu, M., Guan, H., Maciejewski, R., 2017. VAUD:
A visual analysis approach for exploring spatio-temporal urban data. IEEE
Trans. Vis. Comput. Graphics 24 (9), 2636–2648.

hoo, J., Liu, S., 2018. Visual analytics for explainable deep learning. IEEE Comput.
Graph. Appl. 38 (4), 84–92.

ollins, C., Andrienko, N.V., Schreck, T., Yang, J., Choo, J., Engelke, U., Jena, A.,
Dwyer, T., 2018. Guidance in the human–machine analytics process. Vis. Inf.
2 (3), 166–180.

row, F.C., 1984. Summed-area tables for texture mapping. In: SIGGRAPH.
lassady, M., Sevastjanova, R., Sperrle, F., Keim, D.A., Collins, C., 2018. Progressive

learning of topic modeling parameters: A visual analytics framework. IEEE
Trans. Vis. Comput. Graphics 24 (1), 382–391.

uo, J., Li, J., 2015. CNN based hashing for image retrieval. Comput. Vis. Pattern
Recog..

an, D., Pan, J., Zhao, X., Chen, W., 2021. Netv. js: A web-based library for high-
efficiency visualization of large-scale graphs and networks. Vis. Inf. 5 (1),
61–66.

aroz, S., Whitney, D., 2012. How capacity limits of attention influence infor-
mation visualization effectiveness. IEEE Trans. Vis. Comput. Graphics 18 (12),
2402–2410.

arrower, M., Brewer, C.A., 2003. Colorbrewer.org: An online tool for selecting
colour schemes for maps. Cartogr. J. 40 (1), 27–37.

ohman, F.M., Kahng, M., Pienta, R., Chau, D.H., 2018. Visual analytics in deep
learning: An interrogative survey for the next frontiers. IEEE Trans. Vis.
Comput. Graphics.

ahng, M., Thorat, N., Chau, D.H.P., Viegas, F., Wattenberg, M., 2019. GAN lab:
Understanding complex deep generative models using interactive visual
experimentation. IEEE Trans. Vis. Comput. Graphics 25 (1), 310–320.

raska, T., Alizadeh, M., Beutel, A., Chi, E., Ding, J., Kristo, A., Leclerc, G.,
Madden, S., Mao, H., Nathan, V., 2019. Sagedb: A learned database system.
CIDR.

raska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N., 2018. The case for learned
index structures. In: Proceedings of the 2018 International Conference on
Management of Data. pp. 489–504.

won, O.-H., Crnovrsanin, T., Ma, K.-L., 2018. What would a graph look like in
this layout? a machine learning approach to large graph visualization. IEEE
Trans. Vis. Comput. Graphics 24 (1), 478–488.

i, J., Chen, S., Chen, W., Andrienko, G., Andrienko, N., 2018a. Semantics-space-
time cube. a conceptual framework for systematic analysis of texts in space
and time. IEEE Trans. Vis. Comput. Graphics.

i, J., Chen, S., Zhang, K., Andrienko, G., Andrienko, N., 2018b. COPE: Interactive
exploration of co-occurrence patterns in spatial time series. IEEE Trans. Vis.

Comput. Graphics.

http://refhub.elsevier.com/S2468-502X(22)00008-0/sb1
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb1
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb1
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb1
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb1
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb1
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb1
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb2
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb2
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb2
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb3
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb3
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb3
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb3
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb3
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb4
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb4
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb4
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb4
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb4
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb4
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb4
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb5
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb5
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb5
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb6
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb6
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb6
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb6
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb6
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb7
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb7
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb7
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb7
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb7
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb8
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb8
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb8
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb9
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb9
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb9
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb9
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb9
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb10
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb10
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb10
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb10
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb10
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb11
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb11
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb11
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb12
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb12
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb12
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb12
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb12
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb13
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb14
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb14
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb14
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb14
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb14
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb15
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb15
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb15
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb16
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb16
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb16
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb16
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb16
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb17
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb17
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb17
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb17
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb17
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb18
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb18
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb18
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb19
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb19
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb19
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb19
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb19
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb20
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb20
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb20
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb20
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb20
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb21
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb21
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb21
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb21
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb21
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb22
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb22
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb22
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb22
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb22
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb23
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb23
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb23
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb23
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb23
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb24
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb24
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb24
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb24
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb24
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb25
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb25
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb25
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb25
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb25

Y. Sun, J. Li, S. Chen et al. Visual Informatics 6 (2022) 14–25

L

L

L

L

L

L

M

M

M

M

M

M
P

P

R

S

i, M., Choudhury, F.M., Bao, Z., Samet, H., Sellis, T., 2018c. ConcaveCubes: Sup-
porting cluster-based geographical visualization in large data scale. Comput.
Graph. Forum 37 (3), 217–228.

ins, L., Klosowski, J.T., Scheidegger, C., 2013. Nanocubes for real-time explo-
ration of spatiotemporal datasets. IEEE Trans. Vis. Comput. Graphics 19 (12),
2456.

iu, Z., Jiang, B., Heer, J., 2013. imMens : real-time visual querying of big data.
Eurographics 32, 421–430.

iu, M., Shi, J., Cao, K., Zhu, J., Liu, S., 2018a. Analyzing the training processes of
deep generative models. IEEE Trans. Vis. Comput. Graphics 24 (1), 77–87.

iu, M., Shi, J., Li, Z., Li, C., Zhu, J., Liu, S., 2017. Towards better analysis of
deep convolutional neural networks. IEEE Trans. Vis. Comput. Graphics 23
(1), 91–100.

iu, S., Xiao, J., Liu, J., Wang, X., Wu, J., Zhu, J., 2018b. Visual diagnosis of tree
boosting methods. IEEE Trans. Vis. Comput. Graphics (1), 1.

a, Y., Tung, A.K., Wang, W., Gao, X., Pan, Z., Chen, W., 2018. Scatternet: A deep
subjective similarity model for visual analysis of scatterplots. IEEE Trans. Vis.
Comput. Graphics 26 (3), 1562–1576.

ei, H., Chen, W., Wei, Y., Hu, Y., Zhou, S., Lin, B., Zhao, Y., Xia, J., 2019. Rsatree:
Distribution-aware data representation of large-scale tabular datasets for
flexible visual query. IEEE Trans. Vis. Comput. Graphics 26 (1), 1161–1171.

ing, Y., Cao, S., Zhang, R., Li, Z., Chen, Y., Song, Y., Qu, H., 2017. Understanding
hidden memories of recurrent neural networks. In: IEEE Conference on Visual
Analytics Science And Technology. VAST, pp. 13–24.

iranda, F., Lage, M., Doraiswamy, H., Mydlarz, C., Salamon, J., Lockerman, Y.,
Freire, J., Silva, C.T., 2018. Time lattice: A data structure for the interactive
visual analysis of large time series. Comput. Graph. Forum 37 (3), 23–35.

iranda, F., Lins, L.D., Klosowski, J.T., Silva, C.T., 2017. TopKube: A rank-aware
data cube for real-time exploration of spatiotemporal data. IEEE Trans. Vis.
Comput. Graphics 24 (3), 1394–1407.

ySQL, A., 2001. Mysql.
ahins, C.A., Stephens, S.A., Scheidegger, C., Comba, J.L., 2016. Hashedcubes:

Simple, low memory, real-time visual exploration of big data. IEEE Trans.
Vis. Comput. Graphics 23 (1), 671–680.

aszke, A., Gross, S., Chintala, S., Chanan, G., 2017. Pytorch. Comput. Softw. Vers.
0.3 1.

ichter, S., Alvarez, V., Dittrich, J., 2015. A seven-dimensional analysis of hashing
methods and its implications on query processing. 9, (3), pp. 96–107,

acha, D., Kraus, M., Bernard, J., Behrisch, M., Schreck, T., Asano, Y., Keim, D.A.,
2018. SOMFlow: Guided exploratory cluster analysis with self-organizing
maps and analytic provenance. IEEE Trans. Vis. Comput. Graphics 24 (1),
120–130.
25
Sedlmair, M., Aupetit, M., 2015. Data-driven evaluation of visual quality
measures. Comput. Graphics Forum 34 (3), 201–210.

Shekhar, S., Lu, C., Liu, R., Zhou, C., 2002. CubeView: a system for traffic data
visualization. pp. 674–678.

Tian, Y., Hankins, R.A., Patel, J.M., 2008. Efficient aggregation for graph
summarization. pp. 567–580.

Tzeng, F.-Y., Ma, K.-L., 2005. Opening the black box-data driven visualization of
neural networks. In: Visualization. 2005. VIS 05. IEEE, IEEE, pp. 383–390.

Wang, Z., Cashman, D., Li, M., Li, J., Berger, M., Levine, J.A., Chang, R., Schei-
degger, C.E., 2018. NNCubes: Learned structures for visual data exploration.
CoRR abs/1808.08983 arXiv:1808.08983.

Wang, Z., Ferreira, N., Wei, Y., Bhaskar, A.S., Scheidegger, C.E., 2017. Gaussian
cubes: Real-time modeling for visual exploration of large multidimensional
datasets. IEEE Trans. Vis. Comput. Graphics 23 (1), 681–690.

Wang, J., Gou, L., Shen, H.-W., Yang, H., 2019. DQNViz: A visual analytics
approach to understand deep Q-networks. IEEE Trans. Vis. Comput. Graphics
25 (1), 288–298.

Wang, J., Liu, W., Kumar, S., Chang, S., 2016. Learning to hash for indexing big
data—A survey. Learning 104 (1), 34–57.

Xia, J., Chen, T., Zhang, L., Chen, W., Chen, Y., Zhang, X., Xie, C., Schreck, T.,
2020. SMAP: A joint dimensionality reduction scheme for secure multi-
party visualization. In: 2020 IEEE Conference on Visual Analytics Science
And Technology. VAST, pp. 107–118. http://dx.doi.org/10.1109/VAST50239.
2020.00015.

Xia, J., Lin, W., Jiang, G., Wang, Y., Chen, W., Schreck, T., 2021. Visual clustering
factors in scatterplots. IEEE Comput. Graph. Appl. 41 (5), 79–89. http://dx.
doi.org/10.1109/MCG.2021.3098804.

Xia, J., Zhang, Y., Song, J., Chen, Y., Wang, Y., Liu, S., 2022. Revisiting dimen-
sionality reduction techniques for visual cluster analysis: An empirical study.
IEEE Trans. Vis. Comput. Graphics 28 (1), 529–539. http://dx.doi.org/10.1109/
TVCG.2021.3114694.

Xie, P., Tao, W., Li, J., Huang, W., Chen, S., 2021. Exploring multi-dimensional
data via subset embedding. arXiv preprint arXiv:2104.11867.

Zhao, Y., Luo, F., Chen, M., Wang, Y., Xia, J., Zhou, F., Wang, Y., Chen, Y., Chen, W.,
2019. Evaluating multi-dimensional visualizations for understanding fuzzy
clusters. IEEE Trans. Vis. Comput. Graphics 25 (1), 12–21.

Zhu, M., Chen, W., Hu, Y., Hou, Y., Liu, L., Zhang, K., 2020. DRGraph: An efficient
graph layout algorithm for large-scale graphs by dimensionality reduction.
IEEE Trans. Vis. Comput. Graphics 27 (2), 1666–1676.

http://refhub.elsevier.com/S2468-502X(22)00008-0/sb26
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb26
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb26
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb26
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb26
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb27
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb27
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb27
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb27
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb27
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb28
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb28
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb28
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb29
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb29
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb29
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb30
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb30
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb30
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb30
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb30
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb31
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb31
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb31
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb32
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb32
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb32
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb32
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb32
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb33
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb33
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb33
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb33
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb33
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb34
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb34
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb34
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb34
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb34
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb35
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb35
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb35
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb35
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb35
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb36
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb36
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb36
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb36
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb36
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb37
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb38
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb38
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb38
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb38
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb38
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb39
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb39
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb39
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb40
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb40
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb40
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb41
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb41
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb41
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb41
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb41
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb41
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb41
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb42
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb42
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb42
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb43
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb43
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb43
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb44
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb44
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb44
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb45
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb45
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb45
http://arxiv.org/abs/1808.08983
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb47
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb47
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb47
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb47
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb47
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb48
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb48
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb48
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb48
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb48
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb49
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb49
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb49
http://dx.doi.org/10.1109/VAST50239.2020.00015
http://dx.doi.org/10.1109/VAST50239.2020.00015
http://dx.doi.org/10.1109/VAST50239.2020.00015
http://dx.doi.org/10.1109/MCG.2021.3098804
http://dx.doi.org/10.1109/MCG.2021.3098804
http://dx.doi.org/10.1109/MCG.2021.3098804
http://dx.doi.org/10.1109/TVCG.2021.3114694
http://dx.doi.org/10.1109/TVCG.2021.3114694
http://dx.doi.org/10.1109/TVCG.2021.3114694
http://arxiv.org/abs/2104.11867
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb54
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb54
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb54
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb54
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb54
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb55
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb55
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb55
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb55
http://refhub.elsevier.com/S2468-502X(22)00008-0/sb55

	A learning-based approach for efficient visualization construction
	Introduction
	Problem statement
	Concept definition
	General considerations

	Related work
	Data cube
	AI in visualization
	Learned index

	Our approach
	Workflow
	Overall design
	Training set generation
	Query sampling
	Visualization decomposition

	Index building
	Neural network training
	VIF for index parallelization

	Index training and usage

	Evaluation
	Brightkite social media checkins
	Population statistics data
	Performance assessment

	Discussion
	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

