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ARTICLE

Group interactions modulate critical mass
dynamics in social convention
Iacopo Iacopini 1,2, Giovanni Petri3, Andrea Baronchelli4,5,7 & Alain Barrat 2,6,7✉

How can minorities of individuals overturn social conventions? The theory of critical mass

states that when a committed minority reaches a critical size, a cascade of behavioural

changes can occur, overturning apparently stable social norms. Evidence comes from theo-

retical and empirical studies in which minorities of very different sizes, including extremely

small ones, manage to bring a system to its tipping point. Here, we explore this diversity of

scenarios by introducing group interactions as a crucial element of realism into a model for

social convention. We find that the critical mass necessary to trigger behaviour change can

be very small if individuals have a limited propensity to change their views. Moreover, the

ability of the committed minority to overturn existing norms depends in a complex way on

the group size. Our findings reconcile the different sizes of critical mass found in previous

investigations and unveil the critical role of groups in such processes. This further highlights

the importance of the emerging field of higher-order networks, beyond pairwise interactions.

https://doi.org/10.1038/s42005-022-00845-y OPEN

1 Department of Network and Data Science, Central European University, 1100 Vienna, Austria. 2 Aix Marseille Univ, Université de Toulon, CNRS, CPT,
Marseille 13009, France. 3Mathematics and Complex Systems Research Area, ISI Foundation, Via Chisola 5, 10126 Turin, Italy. 4 Department of
Mathematics, City, University of London, EC1V 0HB London, UK. 5 The Alan Turing Institute, British Library, 96 Euston Road, NW12DB London, UK. 6 Tokyo
Tech World Research Hub Initiative (WRHI), Tokyo Institute of Technology, Tokyo, Japan. 7These authors jointly supervised this work: Andrea Baronchelli,
Alain Barrat. ✉email: alain.barrat@cpt.univ-mrs.fr

COMMUNICATIONS PHYSICS |            (2022) 5:64 | https://doi.org/10.1038/s42005-022-00845-y | www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00845-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00845-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00845-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00845-y&domain=pdf
http://orcid.org/0000-0001-8794-6410
http://orcid.org/0000-0001-8794-6410
http://orcid.org/0000-0001-8794-6410
http://orcid.org/0000-0001-8794-6410
http://orcid.org/0000-0001-8794-6410
http://orcid.org/0000-0001-8683-269X
http://orcid.org/0000-0001-8683-269X
http://orcid.org/0000-0001-8683-269X
http://orcid.org/0000-0001-8683-269X
http://orcid.org/0000-0001-8683-269X
mailto:alain.barrat@cpt.univ-mrs.fr
www.nature.com/commsphys
www.nature.com/commsphys


The theory of critical mass argues that apparently stable
social conventions can be overturned by a minority of
committed individuals if such minority reaches a critical

size1–3. In this view, the power of small factions comes not from
their authority or wealth but from the commitment to the cause
and also, crucially, from their size. Evidence from different con-
texts however shows a wide range of possible sizes. On the one
hand, several studies have found that rather large minority sizes
were required to overturn a majority. Qualitative analyses of
gender conventions in corporate leadership roles have hypothe-
sised that a critical mass of 30% of the population is necessary in
order for the tipping point to be reached4,5. Related observational
work has proposed a higher critical mass size approaching 40% of
the population6. Controlled experiments of social coordination
have brought empirical evidence for tipping points in the
dynamics of social conventions, finding a critical threshold of
25% of the population7. On the other hand, numerous observa-
tions suggest that even a minority counting just tens of com-
mitted individuals, and not significant fractions of the population,
may trigger abrupt social and normative change. Social
movements8 offer several examples in this sense (see9–11 and
examples therein), and a data-driven analysis of linguistic norm
change in English and Spanish pointed out that committed
minorities as small as 0.3% of the population can impose their
view12.

To understand the origin and nature of critical masses, several
frameworks have been proposed to investigate their role in
human behaviour, the dynamics of opinions, and the emergence
of norms and consensus, starting from simple models inspired
by statistical physics13–17. In particular, the naming game (NG)
model has been influential in the theoretical description of the
emergence of social norms18–20. The model describes how a
shared convention can emerge in a population of agents that
interact locally with their peers, without any central coordina-
tion. It has brought theoretical support to the tipping points
hypothesis, as a critical mass of 10% was shown to be able to
induce norm change in this model3. Subsequent generalisations
of this model yielded critical mass varying between 10% and
40% of the population depending on the strength of individual
commitment21. Adding further ingredients to the model, it
was even possible to obtain vanishing sizes for the critical
masses22–26. However, despite the wide range of observed cri-
tical mass sizes and of potential theoretical descriptions, little
attention has been devoted to the problem of explaining how the
initial group building up the critical mass itself emerges, and
what are its structural and dynamical determinants. Qualitative
hypothesis include the existence of an intermediate phase
composed by an initially small core of committed individuals
able to recruit the missing mass of peers necessary to trigger a
behavioural cascade27. To this aim, small groups could exploit
the role of high-resource individuals to mobilise the masses28,
homophily and local coalition formation27, or the role of non-
committed individuals sitting at the periphery of the social
network (‘slacktivists’)29. In all cases, the effect of small groups
—and group interactions—can be determinant. Indeed, group
interactions are the building blocks of real-world social systems,
from discussions in real life between a group of friends to col-
laboration networks, and including online discussions on online
social media and forums, which can involve large numbers of
individuals30–34. Recent works in complex systems research
have focused on taking into account these more realistic higher-
order (non-pairwise) interactions35–41. This includes models of
opinion dynamics such as the majority rule42,43, or extensions of
other models describing social and evolutionary dynamics to
hypergraphs44–48, leading to important changes of dynamical
behaviour. For instance, group interactions can dramatically

alter social contagion dynamics and lead to a rich phenomen-
ology including abrupt transitions, bi-stability and critical mass
phenomena49.

Here, we investigate the role of group interactions on critical
mass effects. To this aim, we extend the widely adopted naming
game framework, which has been shown to explain the outcome
of controlled experiments7, to account for more realistic inter-
action patterns and dynamics. We improve the modelling along
three directions. First, we propose a model to describe norm
evolution upon group interactions between any number of
agents. We thus encode these many-body interactions into the
hyperlinks of a hypergraph50, which provides a more faithful
representation of real-world social structures36,40, and define
new rules for group agreement. Second, we take into account
that social influence is in general not perfect51–53. Thus, indi-
viduals may successfully interact with one another without
necessarily converging on a norm adoption as a result of the
interaction. More specifically, while in the standard naming
game model a successful coordination is followed by a certain
and exclusive adoption of the norm that allowed the
coordination16,18 (perfect social influence54), here individuals
may be reluctant to let go of alternative conventions even when
they successfully manage to coordinate with one another on a
specific norm. Third, we inform the model with a variety of real-
world data concerning the structure of empirical social networks
and their microscopic (non-pairwise) interactions. This repre-
sents an improvement with respect to standard all-to-all, pair-
wise, or synthetic approaches. Taken together, these three
advances contribute towards a more realistic representation of
both social interactions and dynamics. Extensive numerical
simulations of this model on empirical data and synthetic
hypergraphs show that the critical mass required to induce
norm change is dramatically reduced when non-committed
members of the population are not fully susceptible to social
influence. We also find a rich phenomenology in which groups
modulate the takeover by helping sustaining the view of the
minority. In particular, we unveil a non-monotonic dependency
in the long term dynamical output: interactions in very small or
very large size turn out to be more favourable to the committed
minority than interactions in groups of intermediate size. Our
results hold when considering data from very different social
contexts and in a simplified version of the interaction structure,
for which we develop an analytical mean-field approach,
allowing us to get further insights and study the interplay
between social influence and size of the committed minority.

Results
The Framework. In order to include a more realistic description
of social interactions, we generalise the standard NG by con-
sidering that agents can interact not only in pairs but also in
groups of arbitrary size. Groups are indeed the most natural units
through which individuals engage with each other in social
contexts30–32,34, and it has been shown that considering these
higher-order interactions may reveal a rich phenomenology36,41.
While the usual NG considers that the agents are located on the
nodes of a network and interact along its links, we therefore
encode here the group interactions between the agents as the
hyperlinks of a hypergraph. This higher-order representation of
the social structure, in which pairwise interactions (links) [i, j] are
called 1-interactions, expands the more traditional representation
offered by graphs by considering relationships between any
number of agents, such as 2-interactions (triangles) [i, j, k],
3-interactions (tetrahedra), etc: a hyperlink is simply a set of
nodes [p0, p1,…, pk−1] that conveniently represents a multi-body
interaction between k nodes36,50.
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The evolution rules of the game in the generalised setting are
the following. At each time step a hyperlink e is randomly chosen
and a speaker agent is chosen at random among the nodes
composing e. All the other nodes participating in the same
hyperlink act as hearers. The speaker selects a random name, say
A, from its current vocabulary and communicates it to the group.
In the pairwise NG interactions, there is only one hearer and the
agreement can be reached if and only if the hearer has the name A
in its vocabulary. Here, the introduction of group interactions
requires the definition of a new generalised condition on the
group of hearers for an agreement to be possible. Multiple options
are obviously possible. The strictest possible condition is that the
agreement can be reached by the group only if all the hearers have
A in their vocabularies. This agreement rule can be seen as a
unanimity condition rule between the hearers’ vocabularies. On
the other hand, the weakest condition would be that an
agreement can be reached provided at least one of the hearers
knows the name already. We call this the union rule, as it is
enough that the name is in the union of the vocabularies of the
hearers. The unanimity condition seems more suitable when
modelling consensus, as it implies that all members of the
interacting group need to know a name to converge to it. On
the other hand, in the union rule, an alliance of two agents (the
speaker and one hearer) can make a group of arbitrary size
converge. We thus focus mainly on the unanimity condition
rule in the main text. We show the results for the union rule in
the Supplementary Note 2, and mention where relevant how the
results differ between the two rules. Intermediate rules such that a
given fraction or number of hearers need to have the name in
their vocabularies could also be considered.

In all cases, the propensity of the hearers to accept the
convergence to a consensus in the group is controlled by a
parameter β∈ [0, 1] (notice that this parameter contributes only
when an agreement is possible)20. Thus, if an agreement can be
reached, two possibilities exist [Fig. 1a]: (i) with probability β all the
nodes of the considered hyperlink agree on the chosen name A and

erase all the other names from their vocabularies [Fig. 1b]; (ii) with
probability 1− β there is no convergence but the nodes who did not
have A add it to their vocabulary. When agreement is instead not
possible, all nodes who did not have A add it to their vocabulary
[Fig. 1c, d]. Thus, the parameter β modulates social influence, i.e.
the propensity of individuals to change their behaviour to meet the
demands of a social environment. The smaller the β the less the
individuals participating are prone to change their views in spite of
the social influence mechanism55–57.

Finally, we allow for the presence of a committed minority
among the agents. The dynamics of these committed agents does
not obey the aforementioned rules. Instead, this fraction p of
agents always sticks to the same name and does not change it nor
updates their vocabulary3. For simplicity of notations and
consistency throughout the manuscript, we assign to these agents
the name A (and we denote their fraction as Ac). We will also
denote with nx(t) the fraction of agents supporting name x at a
given time t, and with n�x the corresponding values in the
stationary states reached in the long time regime.

Critical mass dynamics. We first show how the model allows for
minority takeover even in extreme cases. In Fig. 2a-c we show an
example of how a small minority, consisting here of a single
committed individual (0.3% of the population of 327 individuals),
can overturn the majority. The example reports the results of a
single simulation (representative of 95% of the runs we have
simulated) of a NG with the unanimity rule and β= 0.336. The
considered empirical social structure consists of face-to-face
interactions—as recorded by wearable sensors in a French high-
school58—and includes group interactions of sizes ranging from 2
to 5 (see Methods for details). The committed individual is
selected at random. We show in Fig. 2a visualisations of the
structure of interactions (showing for simplicity only the links
and not the groups of larger sizes) and of the states of the nodes at
several times during the simulation. Figure 2b moreover shows
the temporal evolution of the fraction of nodes supporting a given
name x (solid lines) until the absorbing state with all nodes
converging on A is reached. The circular markers on the curves
correspond to the times at which the five configurations of Fig. 2a
were observed. In these visualisations, we distinguish the com-
mitted agent by a lighter orange cross (Ac). Notice that this is the
only node initially supporting A (nA(0)= 0), while the remaining
nodes are initially assigned the name B (nB(0)= 1− p), repre-
sented by a blue colour. As time evolves, the committed agent
starts to spread name A locally: The fraction of nodes supporting
both names at the same time (but without preference for either
one, and represented by white nodes) increases around the
committed one, who converts a number of blue neighbours into
white nodes, that subsequently start to further diffuse the name A.
At later times, we observe a change in the slope of nA(t): the
fraction of nodes having adopted A starts to rapidly increase up to
the point when nA,B(t) reaches a maximum and starts decreasing,
while the initial minority takes over.

Figure 2b shows also, as a benchmark, the outcome of a
simulation with the same committed individual but β= 1. The
associated temporal evolution, where the minority remains as such
(dashed lines), confirms the central role played, in the minority
takeover, by the parameter β that encodes the propensity of
individuals to accept the convergence to a consensus in a group.
Finally, Fig. 2c shows the temporal evolution of the normalised sizes
of the largest connected component (LCC) of nodes supporting
name A (or Ac) and of the LCC of nodes that know A, namely with
vocabulary either A, Ac or A, B. More precisely, we consider the
subgraph induced by the nodes having the considered status, we
compute the size of its LCC and then normalise it by the total

Fig. 1 Dynamics of the model. Agents are represented by the nodes of a
social structure composed by interacting groups of different sizes. The
vocabulary of the agents--for simplicity containing at most only two names
(or conventions) {A, B}--is reflected in the colours of the nodes as shown in
the legend. At each interaction, a group is chosen at random (highlighted in
yellow in the figure) together with a speaker (node 1), while the remaining
nodes act as hearers. Here we illustrate the unanimity rule (see model
definition). a The speaker chooses a name at random from its vocabulary
(here, A), and communicates it to the rest of the group. Since A is present
in the vocabularies of all the hearers (nodes 2 and 3 support A, while node
4 knows both names), the group can reach an agreement. b With
probability β the group agrees on the chosen name, and all nodes involved
immediately update their vocabulary to A, erasing B. With probability 1− β
instead the agreement does not happen. c In this case, the speaker selects
A, but node 3 does not possess A in its vocabulary. d Thus, there cannot be
agreement in the group. Nevertheless, all hearers update their vocabularies
by adding the heard name, i.e., node 3 switches from A to A,B.
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number of nodes. As the simulation evolves the subgraphs start
growing around the committed node until they span the entire
population, the subgraph of nodes knowing A naturally growing
faster than the subgraph of nodes whose inventory contains only A.

Analysis of different regimes. To clarify the role of the under-
lying social structure and of the corresponding group interac-
tions, we study the evolution of the model on different empirical
data sets of interactions. To this aim, we rely on publicly available
data sets of different kinds of temporally-resolved social inter-
actions, from which we can construct aggregated higher-order
(group) representations (see also49). The data we use were col-
lected in six different contexts, namely a workplace (InVS15), a
primary school (LyonSchool), a conference (SFHH), a high school
(Thiers13, the data set used in Fig. 2), email communications
(Email-EU) and a political congress (Congress-bills). The
resulting hypergraphs are very different in terms of group size
distribution, with some containing groups up to size 24. We
provide additional information on the data and the data aggre-
gation methodology in ‘Methods’.

We first simulate the model on each structure, with p= 3% (see
Methods for details of the numerical simulations) and different

values of β. Figure 2d–g shows the results averaged across 50
different runs for each empirical structure. In each panel, the
fraction of nodes supporting name x is plotted as a function of
time [panels (d,e) x= A+ Ac, panels (f,g) x= (A, B)] for two
different values of β, namely β= 0.28 (d,f) and β= 0.41 (e,g) [see
also Supplementary Fig. 1]. Clearly, and despite the significant
differences among the data sets, the dynamics falls into the same
two radically different regimes depending on the parameter β. For
low values of β [β= 0.28, Fig. 2d, f], all the curves stabilise after
some time—that depends on the considered structure—on similar
and intermediate values of the densities of individuals with norm
A or B. In this scenario the initial very small minority of
committed individuals manages to strongly expand the reach of
the name A, but does not convince the entire population. Instead,
there is a co-existence regime, where the number of agents
supporting name A remains globally fairly constant, while,
microscopically, the nodes continue to switch between different
states. We note that this regime is not present in the traditional
NG (β= 1) where a global consensus is always reached at long
times. The picture changes for larger values of β [β= 0.41, Fig. 2e,
g]. After an initial transient, there is an abrupt transition (with a
temporal scale that depends on the particular structure) after

Fig. 2 Critical mass dynamics. a Illustrative example of a simulation of the Naming Game (NG) with unanimity rule on an empirical social structure
(Thiers13), where a minority Ac of one single committed individual supporting A--consisting of 0.3% of the population of 327 individuals--overturns the
stable social norms and reaches global consensus (under imperfect communication, with social influence parameter β= 0.336). b Temporal evolution of
the fraction nx(t) of nodes supporting name x. Different solid lines correspond to different names, x= {A+ Ac, B, (A, B)}. Dashed lines are reported as a
benchmark, representing the case with perfect communication (β= 1). c Temporal evolution of the normalised size of the largest connected component
(LCC) of nodes supporting name A (red curve) and nodes that have A (but not necessarily A only) in their vocabulary (green curve). Panels d, e, f, g show
the temporal evolution of the dynamics with committed minorities (p= 3%) on empirical higher-order structures. The social structures are constructed
from empirical data sets collected in six different context: a workplace (InVS15)84, a primary school (LyonSchool)85, a conference (SFHH)86, a high school
(Thiers13)58, email communications (Email-EU)87 and a political congress (Congress-bills)88. The temporal evolution of the densities of nodes holding
name A and holding both A and B are reported in panels (d, e) and (f, g), respectively, for two different values of the parameter β quantifying the efficacy of
reaching an agreement within a group, namely β= 0.28 (d, f) and β= 0.41 (e, g). The results over different runs of stochastic simulations are reported as
median values (solid lines) and values contained within the 25th and 75th percentiles (shaded areas).
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which the minority manages to convince the entire population
and simulations reach the absorbing state of global coherence
(with name A). Notice how the nAB(t) curve typically presents a
peak right before nAþAc

ðtÞ starts to increase, corresponding to the
behaviour already highlighted in the single run investigated in
Fig. 2b: the information about name A diffuses from the
committed, making the vocabulary of individuals who have B
first become (A, B) and finally switch to A. We also illustrate this
behaviour in Supplementary Fig. 2, by showing that the average
time for individuals to adopt A (exclusively) for the first time
increases with their distance from a committed individual.

We further characterise the behaviour of the model by
studying how the stationary state changes with β. Simulation
results are shown in Fig. 3, where we plot the fraction of nodes
holding each name (A or B) in the stationary state as a function
of β, either without committed individuals (p= 0) or with a
fraction p= 0.03 of committed (see Supplementary Figures 3, 4
for the results for the other data sets, as well as for different
values of the fraction of committed p and for the union
condition rule for group agreement). Figure 3a, b highlights the
rich behaviour of the model as β changes from 0 to 1, with
several clearly distinct regimes. In the absence of committed
minorities [p= 0, Fig. 3a], we initialise the simulations with
40% of individuals supporting name A (nB(0)= 0.6), and we
obtain two distinct regimes. For low values of β, the system
reaches a stationary state where the two names co-exist and
have on average the same density: neither one dominates, and a
substantial fraction of individuals hold the two names in their
vocabulary (as even when there is no local convergence because
β is small, the hearers add the speaker’s norm to their
vocabulary, which favours the emergence of agents having
both names). However, as consensus becomes easier (increasing
β), the social influence within groups tends to favour the name
of the initial majority (B). Above a critical value βc that varies
with the structure, the dynamics falls into the absorbing state
with no A agents left. In contrast with the pairwise NG model
in20, the transition is not abrupt. There is in fact a third

intermediate regime–whose extent strongly depends on the
social structure–where names co-exist, but B dominates.

A radically different scenario emerges when a committed
minority is present. The system exhibits three different
regimes, illustrated in Figure 3b that gives the results of
simulations performed with a small seed of committed agents
(chosen at random) with name A, all other agents having
initially the name B (p= 0.03, nA(0)= 0, nB(0)= 1− p). At
small values of β, as for the former case, local convergence
within each group interaction is hard, and a stationary state
with co-existence of the two names is reached. Name A, despite
being known initially only to a small minority, reaches
nevertheless a substantial fraction of the population and is
actually more represented than B even in this regime. As β
increases, the advantage gained by A becomes rapidly stronger
until we reach an absorbing state in which the initial minority
wins and conquers the entire population, while name B, which
was initially shared by the majority (97%) of the population,
disappears. This regime persists for a certain range of β values
that we call Δβ*. At larger β finally, we enter a third regime
where the committed minority is not able to spread its norm
widely, and the system converges to a stationary state where
the name supported by the initial majority prevails, with the
obvious exception of the committed agents, and with a small
fraction of agents in contact with the committed who tend to
have a shared vocabulary (A, B).

This phenomenology is qualitatively robust, despite different
underlying social interaction structures. Figure 3c shows the
numbers of groups of each size contained in each data set. Face-
to-face interactions involve relatively low number of agents, so
that group sizes are limited; on the contrary, email communica-
tions (Email-EU) and political networks of bills co-sponsoring
(Congress-bills) can correspond to larger groups, involving up to
24 individuals, with a heterogeneous distribution of group sizes.
The social structure influences the quantitative results of the long
term dynamics, as the larger intervals Δβ* are associated to the
data sets that include large groups. We have verified that these

Fig. 3 Stationary state of the naming game (NG) dynamics with unanimity rule simulated on empirical higher-order structures, and histograms of the
group sizes of these structures. The considered social structures correspond to empirical data sets collected in four different contexts (see Methods): a
conference (SFHH), a high school (Thiers13), email communications (Email-EU) and a political congress (Congress-bills). Panels a and b correspond
respectively to simulations without and with committed minorities Ac supporting name A (respectively, fraction of committed p= 0 and p= 3%). In these
panels, we plot the fraction of nodes supporting name x in the stationary state, n�x ðβÞ, obtained by means of numerical simulations on each data set, as a
function of the social influence parameter β. Lines (continuous and dashed, respectively associated to names A+ Ac and B) and shaded areas refer to the
median values and values contained within the 25th and 75th percentile measured over 150 runs. The panels c shows the histograms of group sizes
associated to each data set, where a group of size k represents a higher-order interaction (of order k− 1) between k nodes.
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quantitative differences are due indeed to group size distributions
and not to particular correlations that might be present in the
data, by performing simulations using a group-size-based mean-
field approach, as in Supplementary Figure 5: in these simula-
tions, the data are reshuffled so that the group size distribution is
preserved but other correlations are destroyed. The differences in
the width of the Δβ* interval in which the committed minority
prevails are preserved, showing that the size of the groups plays
an important role. We investigate this role more systematically in
the next section.

The role of group size. The results discussed above show a
similar phenomenology for different social contexts corre-
sponding to different interaction patterns, with different group
sizes and generalised degree distributions59 (see Supplemen-
tary Fig. 6). In this section, we explore more systematically the

impact of group size on the outcome of the dynamics, and, in
particular, its interplay with the existence of a committed
minority. We therefore consider synthetic interaction struc-
tures where we control the distribution of group sizes. For
simplicity, we consider homogeneous structures in which
individuals interact in groups of fixed size (uniform hyper-
graphs). Figure 4 shows the results of stochastic simulations on
such (k− 1)-uniform hypergraphs, where each hyperlink
consists of exactly k nodes. In Fig. 4a–h we plot the median
fraction of nodes supporting name x in the stationary state,
n�xðβÞ, as a function of β for several group sizes. Panels (a,c,e,g)
and (b,d,f,h) show the results of simulations initiated with a
different fraction of committed nodes holding name A, set
respectively to p= 0.01 and p= 0.03 (all the other nodes
holding initially name B). When varying the group size from
k= 2 (a,b) to k= 5 (c,d), the range Δβ* in which the com-
mitted convert the whole population to A decreases. However,
when we further increase the group size (g,h), Δβ* increases
again. Thus, increasing k changes the range of β values for
which the minority manages to take over the entire population
in a non-monotonic way. This range also depends on the
committed population size p, with a broader range for larger p.
Similar plots for different agreement rules can be found in
Supplementary Fig. 7. Figure 4i further highlights this non-
monotonic dependence of k by plotting the optimal range Δβ*

as a function of k for different values of p, for the unanimity
rule. We also show in Supplementary Fig. 8 the evolution with
k of the minimal and maximal values of this range, β�min and
β�max, for both rules. For the intersection rule, both are non-
monotonic with k: at small k, β�min increases and β�max decreases,
while both reverse their tendency at larger k. On the other
hand, for the union rule, β�max increases monotonically with k
and only β�min keeps a non monotonic behaviour. This complex
behaviour can be interpreted by several competing effects of
the group size. Let us first consider large β. For the intersection
rule, the unanimity condition makes it more difficult for an
agreement to be possible on a minority name when the group
size increases; on the other hand, more individuals are con-
verted to the new name upon each single successful agreement.
The competition between these effects leads to a non-
monotonic β�max . For the union rule, the first effect does not
exist, and increasing group size makes it more probable for a
minority speaker to find a hearer knowing the minority name:
β�max increases monotonically with k. At small β and low k, co-
existence of norms is favoured for both rules by increasing k
(hence β�min increases), because it is more probable that both
norms are represented when a larger group is chosen to
interact; as β is small, local consensus is not very probable and
instead the most probable outcome is that all agents gain the
word of the speaker in their inventories, thus becoming (A, B).
As k continues to increase however, the local convergence of
large groups starts to dominate and β�min starts thus to decrease.
We note that similar competing effects of group sizes have
been described in a different type of cascade dynamics60,
leading to non-monotonic group size effects. Moreover, this
phenomenology provides quantitative support to the so-called
group size paradox well-studied in sociology61. We also notice
that even for large values of β (in the regime where the name
supported by the committed minority does not reach the entire
population) group interactions still play a major role in
keeping the system out of the absorbing state of the majority
and promoting the alternative norm. This is evident from
Fig. 4j, where we report the fraction of agents having both
names in the stationary state as a function of k, for a fixed value
of β= 0.71, which—depending on k and p—might fall inside or

Fig. 4 Higher-order (group) effects in the naming game (NG) for
different values of the social influence parameter β. We consider
(k− 1)− uniform hypergraphs, i.e. regular structures in which each
interaction involves exactly k agents. Group agreement follows the
unanimity rule. a–h The density of nodes supporting name x in the
stationary state, n�x ðβÞ, obtained by means of numerical simulations, is
shown as a function of the social influence parameter β (Ac: committed
minority). Lines (continuous and dashed, respectively associated to names
A+Ac and B) and shaded areas refer to the median values and values
contained within the 25th and 75th percentiles of the 50 numerical
simulations. a, c, e, g and b, d, f, h correspond to simulations with different
sizes of committed minorities supporting name A, namely fractions
p= 0.01 and p= 0.03 of the population. In the initial state, all the other
agents hold norm B. Four different group sizes are considered: k= 2 (a, b),
k= 5 (c, d), k= 10 (e, f) and k= 40 (g, h). The range Δβ* of β values for
which n�A ¼ 1 (i.e., the committed minority manages to convert the whole
population), is plotted in (i) as a function of the group size k and for
different values of the fraction p of committed (see legend). We show in
Supplementary Figure 8 the equivalent of this panel for the union rule.
j Fraction of nodes n�AB holding both names in the stationary state as a
function of k for different values of p.
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outside of the optimal range Δβ*. The corresponding points are
also highlighted in Fig. 4a–h. We see that n�AB increases with
the group size, up to the point where the minority wins. Notice
how this fraction of individuals holding both norms becomes
easily much larger than p, highlighting how the committed
individuals propagate the knowledge of the alternative name to
a substantial part of the population, even when they do not
manage to completely reverse the initial majority.

Analytical approach. To get further insights on the observed
behaviour, its dependency on the parameters of the model, as well
as to access the impact of the microscopic rule for group agree-
ment, we finally consider a mean-field (MF) description of the
generalised model. We limit here our study to groups of three
nodes as the number of potential combinations becomes soon
intractable as the group size increases. We thus consider an
infinitely large homogeneously mixing population such that each
interaction involves three nodes taken at random, obeying the
rules of the NG defined above, under the unanimity condition
rule for reaching an agreement. The equations for the dynamical
evolution of the densities of agents having each possible voca-
bulary, nA, nB and nAB, can then be written as:

dtnA ¼� 2n2AnB þ
5
2
β� 1

� �
n2AnAB

� 2nAn
2
B � 3nAnBnAB

þ ð4β� 1ÞnAn2AB þ
3
2
βn3AB þ

5
2
βp2nAB

þ p �2nAnB þ ð5β� 1ÞnAnAB þ 4βn2AB
� �

dtnB ¼� 2n2BnA þ 5
2
β� 1

� �
n2BnAB

� 2nBn
2
A � 3nBnAnAB

þ ð4β� 1ÞnBn2AB þ
3
2
βn3AB � 2p2nB

� p 4nAnB þ 2n2B þ 3nBnAB
� �

nAB ¼1� nA � nB � p

ð1Þ

where dt denotes the time derivative.
Similar equations can be derived for different agreement rules,

such as for the less strict union rule, in which having one of the
hearers knowing the name expressed by the speaker is potentially
enough to reach consensus in the entire group. The evolution

equations in this case read

dtnA ¼ 2ðβ� 1Þn2AnB þ
5
2
β� 1

� �
n2AnAB

� 2nAn
2
B þ ð6β� 3ÞnAnBnAB

þ ð4β� 1ÞnAn2AB þ 3βnBn
2
AB þ

3
2
βn3AB

þ p2 2βnB þ
5
2
βnAB

� �
þ p 2ð2β� 1ÞnAnB

�

þð5β� 1ÞnAnAB þ 6βnBnAB þ 4βn2AB
�

dtnB ¼ 2ðβ� 1Þn2BnA þ 5
2
β� 1

� �
n2BnAB

� 2nBn
2
A þ ð6β� 3ÞnBnAnAB

þ ð4β� 1ÞnBn2AB þ 3βnAn
2
AB þ

3
2
βn3AB

� 2p2nB � p½2n2B þ ð3� 3βÞnBnAB�
� p½�2βn2AB þ 4nAnB�

nAB ¼ 1� nA � nB � p:

ð2Þ

Equations for the benchmark pairwise rule, without higher-order
interactions, are reported in Supplementary Note 1.

To explore the interplay between the size of the committed
minority and the social influence parameter β in determining
the final state of the system evolving according to these
equations, we integrate them numerically. For both rules, we
use the same initial condition as in the previous sections: we fix
a fraction p > 0 of committed agents and a value for β, and we
set nA(0)= nAB(0)= 0 so that initially the only agents with
name A are the committed ones, all the others holding name B
(nB(0)= 1− p). We record the evolution of the densities nx(t)
until they reach a stationary value (results are also confirmed
by directly imposing the stationarity condition dt= 0, and
solving the resulting equations through the programme
Mathematica).

This allows us to study how the final fraction of agents holding
name A, n�AþAc

� nAðt ! 1Þ þ p, depends on p and β. Results
are shown in Fig. 5 as three-dimensional phase diagrams. We also
show, to make the link with previous figures clearer, a curve (in
black) of n�AþAc

as a function of β for a fixed fraction of
committed individuals (p= 0.08). With the unanimity condition
[Fig. 5a] three regimes emerge, as observed before with stochastic

Fig. 5 Mean field (MF) phase diagrams of the naming game with committed minorities on 2-uniform hypergraphs. Each three-dimensional surface
(grey/yellow shading is only for visualisation purposes) gives the stationary fraction of agents supporting name A (z-axis) as a function of the social
influence parameter β and of the fraction p of agents committed to A (Ac). Different panels correspond to different conditions for group agreement, namely
unanimity (a) and “union" (b). The surfaces are obtained through numerical integration of Eq. (1) and Eq. (2) at fixed p, β, with initial conditions nA(0)= 0,
nB(0)= 1− p, nAB(0)= 0. Example curves with p= 0.08 are shown with solid black lines. The associated results of stochastic simulations (circles) for
homogeneous systems of 1000 agents are shown for comparison.
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simulations: at low β the committed manage to create a co-
existence of names, with n�AþAc

>> p, but do not overturn the
initial majority. In the central region, whose width depends on
the size of the committed minority p (see also Supplementary
Fig. 9), the new name A prevails and the initially general name B
completely disappears. Finally, at large enough β the system is not
much perturbed by the committed. Overall, the larger the
committed minority, the higher β needs to be to avoid the initial
name to disappear. This phenomenology persists for different
agreement rules, as for the less restrictive union condition shown
in Fig. 5b. In this case, for p= 0.08 the third regime vanishes and
the optimal range Δβ* expands up to the case β= 1 correspond-
ing to the perfect social influence scenario (as for the standard
NG). We also note that the results of our MF approach are in
perfect agreement with the ones from stochastic simulations, here
reported as white circles (further comparisons with stochastic
simulations are reported in Supplementary Figures 10, 11).
Additional heatmaps for both rules and the pairwise benchmark
are reported in Supplementary Figs. 12, 13.

Discussion
Online connectedness is reportedly speeding up the process of
collective behavioural change62,63 through the adoption of new
norms7,64–66. In this scenario, clarifying the microscopic
mechanisms driving this process is key to gain a better under-
standing of our society and to design possible interventions aimed
at contrasting undesired effects. At the same time, understanding
how policy can create tipping points where none exist, and how it
can push the system past the tipping point, are fundamental
questions whose answer might change the way in which we
address major societal challenges67, such as accelerating the post-
carbon transition11 or contrasting vaccine-hesitancy68,69.

The model for tipping points dynamics in social convention
introduced in this work extends the usual naming game frame-
work towards more realism. First, we moved beyond peer-to-peer
communication by considering group interactions not only
restricted to pairs, as many actual interactions, both in real life
and online, involve group discussions. In addition, we investi-
gated the effects of imperfect social influence and considered real
social structures for interactions. Our results show that critical
mass dynamics can be initiated by minorities of very different
sizes, including by an (almost) arbitrarily small minority, and that
groups play a crucial role in determining the minority takeover.
For example, one single individual with no special power or
wealth can overturn the social conventions held by a group of
hundreds of peers. Counter-intuitively, this happens when agents
are not fully inclined to let go of the convention they currently
use in favour of a new one. Note that, if agents are extremely
reluctant to change, the system remains in a state where both
norms co-exist at a similar level and many agents hold both
norms. To consider realistic interactions, we have performed
extensive numerical simulations on higher-order social networks
constructed from empirical data and including group interactions
of very different sizes, confirming that the findings hold in a
broad region of the parameter space and for different interaction
settings. Moreover, we have unveiled an interesting role of the
size of interacting groups. Recently, large groups have been found
to have a dominant role in seeding and sustaining contagion
processes on hypergraphs70. Here, we have shown a non-
monotonic behaviour in which both small and large group
interactions favour the committed minority. We believe that our
group communication model, which includes higher-order effects
in micro-interactions, opens up a new direction in naming game
applications to study opinion spreading and norm emergence.
For instance, it would be relevant to explore how the influence of

a minority can be maximised70–72, depending on whether its
members tend to be cohesive or part of different groups. More
broadly, this confirms the relevance of going beyond network
representations and taking into account higher-order interactions
when modelling social phenomena36,41.

It is important to delimit the scope of our findings. The major
limitation of our results is, of course, that they have been obtained in
the context of a single theoretical model, i.e., the naming game
framework. However, this model has been previously used in several
theoretical and empirical studies on tipping point dynamics in social
convention, successfully reproducing the results obtained in con-
trolled experiments7. As such, by generalising this model towards
the inclusion of realistic interactions, by confirming how committed
minorities of varying sizes can take over and even small committed
minorities can be dramatically effective, and by shedding light on
the effect of higher-order interactions, our work contributes to the
development of more realistic modelling approaches and to the
understanding of the critical mass phenomena. Naturally, it would
be interesting to expand the results to other modelling frameworks
of emergence or social cooperation42,73,74. An even more substantial
step further would involve the design of novel controlled
experiments7,75,76 to empirically assess the impact of the (different)
group interactions introduced and of the various model parameters.
For instance, p can be tuned by giving specific instructions to some
participants to act as committed, while the role of β could be
mimicked by artificial agents similar to bots77,78 that could prevent
convergence with a tunable probability.

A second limitation is that our model cannot fully account for
the complexity of real world interactions. While this is certainly
true, it is worth stressing that we have considered more realistic
interactions patterns than ever before in this context, or for that
matter in many multi-agent models. Future work may further
enrich this aspect by considering the effect of community
structures79 and of temporal (higher-order) networks24,48,80.
Moreover, the model and the generalisations we have considered
lend themselves easily to many natural extensions: in particular,
the parameter β describing the modulation of social influence
could depend on agents’ properties, such as their centrality, or on
the size of each interacting group. The activity of a group
(probability to be selected at each time step) could also depend on
its size. Co-evolution of the interaction structure and of the
norms could also be introduced in the model81. Finally, it would
be very interesting to investigate the behaviour of our model
when agents committed to different opinions are present82, with
two distinct minorities pushing each a distinct new norm against
an initial well established one.

Methods
Data description and aggregation. We build empirical hypergraphs by aggre-
gating six different data sets of temporally resolved interactions. Four of these data
sets, provided by the SocioPatterns collaboration83, describe face-to-face interac-
tions collected in different social contexts: a workplace (InVS15)84, a primary
school (LyonSchool)85, a conference (SFHH)86, and a high school (Thiers13)58.
Data from these experiments are initially aggregated by using a temporal window
of 15 min and the maximal cliques within each temporal snapshot are retained (a
similar procedure was used in Ref. 49). We then simply filtered the cliques by
removing those that appeared only once, and finally used them to build each of the
four empirical hypergraphs considered. The other two data sets involve con-
siderably bigger interactions, and it is evident from the group size distributions
reported in Fig. 3. The Email-EU dataset refers to email communications from a
European research institution87, where each node represent a different email
address and each hyperlink involves the sender and the (multiple) recipients of
each message (1-second resolution). Finally, the Congress-bills data set refers to
legislative bills in the U.S. congress88, where each node represent a person in the
congress and hyperlinks join sponsors and co-sponsors of bills put forward in the
House of Representatives and the Senate. No additional data processing has been
performed on these last two data sets, as they already come in the form of simplices
from Ref. 33.

The six empirical hypergraphs, in addition to describing very different types of
interactions and contexts, are composed by different numbers of nodes N and
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groups E: N= 217, E= 3704 (InVS15), N= 242, E= 8010 (LyonSchool), N= 403,
E= 7741 (SFHH), N= 327, E= 4862 (Thiers13), N= 9,79, E= 209,005 (Email-
EU), N= 1718, E= 105,929 (Congress-bills). The histograms of group sizes are
shown in Fig. 3 and in Supplementary Fig. 3, while generalised degree distributions
are reported in Supplementary Fig. 6.

Stochastic simulations. We run agent-based stochastic simulations of the generalised
NGmodel on real-world social structures and on idealised homogeneous populations of
N= 1000 agents. In this latter case, simulations are performed assuming an homo-
geneous mixing population: all agents can potentially interact with each other. In both
cases the dynamics evolves in the following way. At each timestep a group is chosen at
random, either from the actual list of groups composing the empirical dataset, or in the
homogeneous case, by selecting at random k nodes. One of the nodes composing the
selected group, randomly chosen, acts as a speaker and the remaining nodes as hearers.
The status of each node is then updated according to the specific rules defined in the
model. The process is repeated until the system reaches an absorbing state (with all the
nodes holding the same norm) or a steady state for the densities of agents holding a
given norm. Densities in the steady state are computed by taking the average over 100
values sampled from the last 50,000 steps. The results shown in the figures correspond
to median and standard deviations computed on 50 runs with random initial conditions
(i.e., with a random selection of committed agents).

Data availability
The data sets are available from the original sources http://www.sociopatterns.org/
datasets/ and https://github.com/arbenson/ScHoLP-Data.

Code availability
The code is available at https://github.com/iaciac/higher-order-NG.
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