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Abstract: We demonstrate that a non self-adjoint Hamiltonian of harmonic oscillator

type defined on a two-dimensional noncommutative space can be diagonalized exactly by

making use of pseudo-bosonic operators. The model admits an antilinear symmetry and

is of the type studied in the context of PT-symmetric quantum mechanics. Its eigenvalues

are computed to be real for the entire range of the coupling constants and the biorthogonal

sets of eigenstates for the Hamiltonian and its adjoint are explicitly constructed. We

show that despite the fact that these sets are complete and biorthogonal, they involve an

unbounded metric operator and therefore do not constitute (Riesz) bases for the Hilbert

space L2(R2), but instead only D-quasi bases. As recently proved by one of us (FB), this

is sufficient to deduce several interesting consequences.

1. Introduction

In the last 15 years more and more of physicists and mathematicians have developed an

interest in non-Hermitian and non self-adjoint operators possessing real eigenvalues. Such

type of models have been investigated before, but the more recent interest has been initiated

by the seminal paper [1] in which the complex cubic potential and its close relatives have

been studied. The original considerations, focussing mainly on the aspect of the possibility

to formulate consistent quantum mechanical systems, have broadened quickly and are

partly replaced by a more general analysis of related aspects. Many experiments [2, 3,

4, 5] have now been carried out, mainly for optical analogues to the quantum mechanical

systems, exploiting PT -symmetric phase transitions where real eigenvalues merge into two

complex conjugate pairs, to obtain gain and loss structures. We refer the reader to [6, 7, 8]

for some reviews on what is commonly named quasi-Hermitian [9, 10], pseudo-Hermitian

[11, 12] or PT -symmetric [13, 1] quantum mechanics. However, it was recently pointed

http://arxiv.org/abs/1310.4775v1
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out by Krejcirik and Siegl [14] that more mathematically oriented treatments of these type

of Hamiltonians are required, as for instance the complex cubic potential lacks to posses

a Riesz basis of eigenstates. Therefore we can still not associate a standard quantum

mechanical interpretation to this model. The purpose of this paper is to shed more light

on these issues.

Modifying recent ideas [15], one of us has newly introduced the notion of D-pseudo

bosons (D-pbs), [16], and used them in connection with several physical systems, whose

Hamiltonians are non self-adjoint operators, [17]. Among other aspects, it was shown that

D-pbs could be useful in the analysis of a two-dimensional harmonic oscillator described

by the Hamiltonian

Ĥ =
1

2
(p̂21 + x̂21) +

1

2
(p̂22 + x̂22) + i [A(x̂1 + x̂2) +B(p̂1 + p̂2)] , (1.1)

where (x̂j , p̂j) are noncommutative operators satisfying [x̂j , p̂k] = iδj,k11, [x̂j , x̂k] = iθǫj,k11,

[p̂j , p̂k] = iθ̃ǫj,k11, where θ and θ̃ are two real small parameters, measuring the non commu-

tativity of the system. In [17] a perturbative expansion in θ and θ̃ was set up and it was

shown, in particular, that if one neglects all the terms which are at least quadratic in θ

and θ̃ we can construct explicitly the eigenvectors of (the approximated version of) Ĥ and

deduce the related eigenvalues.

In this paper we show that, if the non commutativity is restricted to the spatial vari-

ables only, i.e. if θ̃ = 0, then Ĥ , and a slightly generalized version of it, can be exactly

diagonalized in terms of D-pbs. The corresponding eigenbases are biorthonormal, but in-

volve a metric operator that is unbounded, together with its inverse. Thus we will draw a

similar conclusion as reached in [14] and, more recently, in [18].

It may be worth to underline that these results, all together, suggest that several

common believes usually taken for granted in the physical literature on these topics require

some more care than usually adopted. For instance, in [19] (as well as in many other papers,

[20]), the biorthogonal sets of eigenstates of a rather general H, with H† 6= H, are used to

produce a resolution of the identity. In other words, they are used as bases in the Hilbert

space. However, the results in [14, 18], and those given in this paper, show that this is not

always possible, even for extremely simple models. This, we believe, helps clarifying the

situation, showing that many claims need to be analyzed in more details.

This article is organized as follows: in the next section we review the definition and

a few central results on D-pbs. In section 3 we introduce the 2d-harmonic oscillator with

linear term in the momenta and position on a noncommutative flat space and we analyze

it in terms of D-pbs. We provide the computation of how it may be written in terms of

D-pb number operators and subsequently we verify the underlying assumptions, needed

to have something more than just a formal theory. This will allow for the construction of

biorthonormal sets, which are, however, shown not to be Riesz bases and not even bases,

but just D-quasi bases. Our conclusions are stated in section 4.

2. Pseudo-bosons, generalities

We briefly review here few definitions and central properties of D-pbs. More details can

– 2 –



Non self-adjoint model with unbound metric

be found in [16].

Let H be a given Hilbert space with scalar product 〈., .〉 and related norm ‖.‖. Further-
more, let a and b be two operators acting on H, with domains D(a) and D(b) respectively,

a† and b† their respective adjoints, and let D be a dense subspace of H such that a♯D ⊆ D
and b♯D ⊆ D, where x♯ is x or x†. It is worth noticing that we are not requiring here that

D coincides with either D(a) or D(b). Nevertheless, for obvious reasons, D ⊆ D(a♯) and

D ⊆ D(b♯).

Definition: The operators (a, b) are D-pseudo-bosonic if, for all f ∈ D, we have

a b f − b a f = f. (2.1)

Sometimes, to simplify the notation, instead of (2.1) we will simply write [a, b] = 11,

having in mind that both sides of this equation have to act on f ∈ D.

Our working assumptions are the following:

Assumption D-pb 1: There exists a non-zero ϕ0 ∈ D such that aϕ0 = 0.

Assumption D-pb 2: There exists a non-zero Ψ0 ∈ D such that b†Ψ0 = 0.

Then, if (a, b) satisfy the above definition, it is obvious that ϕ0 ∈ D∞(b) and that

Ψ0 ∈ D∞(a†), with D∞(x) denoting the common domain of all powers of x. Thus we can

define the following vectors, all belonging to D:

ϕn :=
1√
n!

bnϕ0, Ψn :=
1√
n!

a†
n
Ψ0, (2.2)

for n ≥ 0. As in [16] we introduce the sets FΨ = {Ψn, n ≥ 0} and Fϕ = {ϕn, n ≥ 0}.
Once again, since D is stable under the action of a♯ and b♯, we deduce that each ϕn and

each Ψn belongs to the domains of a♯, b♯ and N ♯, where N := ba.

It is now straightforward to deduce the following lowering and raising relations:

aϕn =
√
nϕn−1, a ϕ0 = 0, b†Ψn =

√
nΨn−1, b†Ψ0 = 0, for n ≥ 1,

a†Ψn =
√
n+ 1Ψn+1, b ϕn =

√
n+ 1ϕn+1, for n ≥ 0,

(2.3)

as well as the following eigenvalue equations: Nϕn = nϕn and N †Ψn = nΨn for n ≥ 0. As

a consequence of these equations, choosing the normalization of ϕ0 and Ψ0 in such a way

〈ϕ0,Ψ0〉 = 1, we deduce that

〈ϕn,Ψm〉 = δn,m, (2.4)

for all n,m ≥ 0. The third assumption originally introduced in [16] is the following:

Assumption D-pb 3: Fϕ is a basis for H.

This is equivalent to the request that FΨ is a basis for H as well, [16]. In particular,

if Fϕ and FΨ are Riesz bases for H, the D-pbs were called regular.

In [16] also a weaker version of Assumption D-pb 3 has been introduced, useful for

concrete physical applications: for that, let G be a suitable dense subspace of H. Two

– 3 –
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biorthogonal sets Fη = {ηn ∈ G, g ≥ 0} and FΦ = {Φn ∈ G, g ≥ 0} were called G-quasi
bases if, for all f, g ∈ G, the following holds:

〈f, g〉 =
∑

n≥0

〈f, ηn〉 〈Φn, g〉 =
∑

n≥0

〈f,Φn〉 〈ηn, g〉 . (2.5)

Is is clear that, while Assumption D-pb 3 implies (2.5), the reverse is false. However, if

Fη and FΦ satisfy (2.5), we still have some (weak) form of resolution of the identity. Now

Assumption D-pb 3 is replaced by the following:

Assumption D-pbw 3: Fϕ and FΨ are G-quasi bases.
Let now assume that Assumption D-pb 1, D-pb 2, and D-pbw 3 are satisfied, with

G = D, and let us consider a self-adjoint, invertible, operator Θ, which leaves, together

with Θ−1, D invariant: ΘD ⊆ D, Θ−1D ⊆ D. Then, as in [16], we say that (a, b†) are

Θ−conjugate if af = Θ−1b†Θ f , for all f ∈ D. Moreover, we can check that, for instance,

(a, b†) are Θ−conjugate if and only if (b, a†) are Θ−conjugate and that, assuming that

〈ϕ0,Θϕ0〉 = 1, (a, b†) are Θ−conjugate if and only if Ψn = Θϕn, for all n ≥ 0. Finally,

if (a, b†) are Θ−conjugate, then 〈f,Θf〉 > 0 for all non zero f ∈ D. The details of

these proofs can be found in [18]. Notice also that, not surprisingly, we also deduce that

Nf = Θ−1N †Θf , for all f ∈ D.

3. Noncommutative two dimensional harmonic oscillator with linear terms

Let us now consider the non self-adjoint two dimensional harmonic oscillator with linear

terms in the momenta and positions

H̃ =
1

2m
(p̃21 + p̃22) +

mω2

2
(x̃21 + x̃22) + iα1x̃1 + α2x̃2 + α3p̃1 + iα4p̃2, (3.1)

on the noncommutative flat space with the nonvanishing commutators [x̃1, x̃2] = iθ, [x̃j, p̃j ] =

i~ for j = 1, 2. Here θ and αi for i = 1, 2, 3, 4 are real dimensionful parameters. Note that

this Hamiltonian is non self-adjoint even when viewed on a standard space. However, H̃ is

constructed in such a way that it is left invariant with respect to the antilinear symmetry

PT −: x̃1 → −x̃1, x̃2 → x̃2, p̃1 → p̃1, p̃2 → −p̃2 and i → −i [21]. Thus in the general spirit

of PT -symmetric quantum mechanics [13, 1] the Hamiltonian is guaranteed to have real

eigenvalues provided that its eigenfunctions are eigenstates of PT −. Evidently in atomic

units, m = ω = ~ = 1, H̃ reduces to Ĥ for α1 → A, α2 → −iA, α3 → iB and α4 → B. We

also notice that PT − is no longer a symmetry of Ĥ , i.e. [PT −, Ĥ] 6= 0.

Our aim here is to employ D-pbs to diagonalize H̃ exactly, instead of using a perturba-

tive approach as in [17, 22] and to determine its spectrum. For this purpose we convert the

Hamiltonian first from a flat noncommutative space to one in terms of standard canonical

variables xi and pi for i = 1, 2 satisfying the canonical commutation relations [xj , pj ] = i~

and [xi, xj ] = [pi, pj ] = 0. This is achieved by a standard Bopp shift x̃1 → x1 − θ
2~p2,

– 4 –
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x̃2 → x2 +
θ
2~p1, p1 → p1 and p2 → p2. The Hamiltonian in (3.1) then acquires the form

H̃ =

(

1

2m
+

mω2θ2

8~2

)

(p21 + p22) +
mω2

2
(x21 + x22) +

mω2θ

2~
(x2p1 − x1p2) (3.2)

+iα1x1 + α2x2 +

(

α3 +
α2θ

2~

)

p1 + i

(

α4 −
α1θ

2~

)

p2.

We now attempt to re-express this Hamiltonian in terms of pseudo-bosonic number oper-

ators Ni = biai as

H̃ = γ1N1 + γ2N2 + γ0 for γ0, γ1, γ2 ∈ R, (3.3)

where the operators ai and bi obey the two dimensional pseudo-bosonic commutation re-

lations

[aj , bk] = iδjk, [aj , ak] = [bj, bk] = 0, for j, k = 1, 2. (3.4)

For this purpose we represent the pseudo-bosonic operators ai and bi in terms of standard

bosonic creation and annihilation operators A†
i and Ai, respectively,

a1 =
1√
2
(A1 + iA2) + iβ1, b1 =

1√
2
(A†

1 − iA
†
2) + iβ3, (3.5)

a2 = − 1√
2
(iA1 +A2) + β2, b2 =

1√
2
(iA†

1 −A
†
2) + β4, (3.6)

with [Aj , A
†
k] = iδjk, [Aj , Ak] = [A†

j , A
†
k] = 0 for j, k = 1, 2 and βi ∈ C for i = 1, 2, 3, 4.

Furthermore we represent the A
†
i and Ai in terms of the standard canonical variables

A1 =

√

Mω

2~
x1 + i

√

1

2~Mω
p1, A2 =

√

Mω

2~
x2 + i

√

1

2~Mω
p2, (3.7)

A
†
1 =

√

Mω

2~
x1 − i

√

1

2~Mω
p1, A

†
2 =

√

Mω

2~
x2 − i

√

1

2~Mω
p2. (3.8)

We note that the pseudo-bosonic operators reduce to standard boson operators with bi = a
†
i

if and only if for β1 = −β̄3 and β2 = β̄4. Upon substitution we compare now (3.3) and

(3.2), which become identical subject to the constraints

β1 =
Ω(α1 + α2) + 2~mω(α3 − α4)

(Ω + θmω)
√
2mΩω3

, β2 =
Ω(α1 − α2) + 2~mω(α3 + α4)

(Ω− θmω)
√
2mΩω3

, (3.9)

β3 =
Ω(α1 − α2)− 2~mω(α3 + α4)

(Ω + θmω)
√
2mΩω3

, β4 =
−Ω(α1 + α2) + 2~mω(α3 − α4)

(Ω− θmω)
√
2mΩω3

, (3.10)

γ0 =
1

2
ω [Ω (1 + β1β3 − β2β4) + θmω (β1β3 + β2β4)] , (3.11)

γ1 =
1

2
ω (Ω + θmω) , γ2 =

1

2
ω (Ω− θmω) , M =

2m~

Ω
, (3.12)

where Ω :=
√

4~2 + θ2m2ω2. If we are now able to construct eigenstates Ψn for the pseudo-

bosonic number operators such thatNiϕn = ~ωniϕn, the eigenvalues for H̃ are immediately

computed from (3.3) to

En1,n2
= γ1~ωn1 + γ2~ωn2 + γ0. (3.13)

– 5 –
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We observe from (3.9) to (3.12) that the constants γi ∈ R for i = 0, 1, 2 are real and

consequently the energy En1,n2
is also real. Furthermore, we observe that the presence of

the linear terms in (3.1), that is αi 6= 0 for i = 1, 2, 3, 4, prevents us from using a standard

bosonic oscillator algebra and we are forced to employ pseudo-bosons. This is seen from

the fact that the pseudo-bosonic operator reduce to standard boson operators if and only

if for β1 = −β̄3 and β2 = β̄4. However, our constraints (3.9) and (3.10) imply that in this

boson case some linear terms in our Hamiltonian have to vanish, that is α1 = α4 = 0.

Furthermore we notice that for the reduction of H̃ to Ĥ for α1 → A, α2 → iA,

α3 → iB, α4 → B we obtain β1 = β̄3 and β2 = −β̄4, such that γ0 and therefore En1,n2

remain real. In this case the PT −-symmetry is broken and it remains unclear which

antilinear symmetry, if any, is responsible for keeping the spectrum real.

Let us now verify that eigenstates ϕn and those of the adjoint of the Hamiltonian, Ψn,

are well defined, really exist and most crucially whether they constitute a Riesz basis, or

even a basis.

3.1 Verification of the pseudo-bosonic assumptions

For simplicity let us now adopt atomic units. We commence by introducing the operators

âi := limβi→0 ai, â
†
i := limβi→0 bi, (3.14)

which, from (3.5)-(3.6), satisfy the standard bosonic canonical commutation relations,

[âi, â
†
j ] = δi,j 11, [âi, âj ] = 0, for i, j = 1, 2. Then, introducing the unitary operators

Di(z) := exp
{

z âi − z â
†
i

}

, D(z) := D1(z1)D2(z2), (3.15)

we compute

ai = âi + νi = D(ν)âiD
−1(ν), bi = â

†
i + µi = D(µ)â†iD

−1(µ), (3.16)

for i = 1, 2 with ν := {iβ1, β2}, µ := {−iβ̄3, β̄4}. An orthonormal basis for H = L2(R2)

is then constructed easily: Let e0,0 = e0 be the vacuum of â1 and â2, that is âie0 = 0 for

i = 1, 2. Then as common for the purely bosonic case, we introduce

en1, n2
= en :=

1√
n1!n2!

(â†1)
n1(â†2)

n2e0, (3.17)

and the related orthonormal basis Fe = {en, n1, n2 ≥ 0}. Of course for the bosonic number

operator n̂i := â
†
i âi we have n̂ien = nien.

In order to verify the assumptions of section 2, we first seek to construct ϕ0, i.e. the vac-

uum of ai satisfying a1ϕ0 = a2ϕ0 = 0. Evidently this holds if, and only if, âi(D
−1(ν)ϕ0) = 0

for i = 1, 2. This implies that ϕ0 = D(ν)e0, up to a normalization which will be fixed be-

low. Notice that, due to fact that D(ν) is unitary, and therefore everywhere defined, ϕ0 is

well defined.

Similarly we derive Ψ0, the vacuum for b†j. We require b
†
1Ψ0 = b

†
2Ψ0 = 0 which can be

rewritten as âi(D
−1(µ)Ψ0) = 0 for i = 1, 2. These equations are solved by Ψ0 = NΨD(µ)e0,

– 6 –
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which, due to the unitarity ofD(µ) is again well defined. HereNΨ is a normalization needed

to ensure the normalization
〈

ϕ0,Ψ0

〉

= 1. It is computed to

N2
Ψ =

〈

ϕ0, ϕ0

〉

〈

Ψ0,Ψ0

〉 = exp
[

|β1|2 + |β2|2 − |β3|2 − |β4|2 − 2Re(β1β2)− 2Re(β3β4)
]

. (3.18)

Evidently for β2 = −β3 and β1 = β4 this reduces to the standard bosonic normalization,

as is expected.

Remark: These results could have also been found quite easily by solving the equa-

tions directly in the coordinate representation. For instance, a1ϕ0 = a2ϕ0 = 0 are equiva-

lent to the differential equations

(x1 + ∂x1
+ ix2 + i ∂x2

+ 2iβ1)ϕ0(x1, x2) = (−ix1 − i ∂x1
− x2 − ∂x2

+ 2β2)ϕ0(x1, x2) = 0,

(3.19)

solved by ϕ0(x1, x2) ∝ e−
1

2
(x2

1
+x2

2
)−i(β1+β2)x1−(β1−β2)x2 . Similarly we find Ψ0(x1, x2) ∝

e−
1

2
(x2

1
+x2

2
)+i(β3−β4)x1+(β3+β4)x2 . We see that both of these functions belong, for instance,

to the set S(R2) of C∞-functions which, together with their derivatives, decrease faster to

zero than any inverse power of x1 and x2. However, this property might not be enough

for our purposes, since as we have outlined in section 2, we need to identify a set D, dense

in H, which not only contains ϕ0 and Ψ0, but which is in addition also stable under the

action of a♯j , b
♯
j, and other relevant operators. It is convenient to introduce, therefore, the

following set:

D =
{

f(x1, x2) ∈ S(R2), such that ek1x1+k2x2f(x1, x2) ∈ S(R2), ∀k1, k2 ∈ C

}

. (3.20)

D is dense in H, since it contains the set D(R2) of the C∞-functions with compact support.

Following section 2, we are now interested in deducing the properties of the vectors

ϕn = 1√
n1!n2!

bn1

1 bn2

2 ϕ0 and Ψn = 1√
n1!n2!

(a†1)
n1(a†2)

n2Ψ0. We notice that both ϕn and Ψn

necessarily belong to D for all n, because of the stability of D under the action of bi and

a
†
i , and the previously established fact that ϕ0,Ψ0 ∈ D. The formulae (3.16) state how the

pseudo-bosonic operators (ai, bi) are related to the bosonic operators (âi, â
†
i ) by means of

the in general two different unitary operators D(ν) and D(µ).

A single operator could be used if we introduce the operators

Vi(z, w) := exp
{

w̄ âi − z â
†
i

}

, V (ν, µ) := V1(ν1, µ1)V2(ν2, µ2). (3.21)

Now we compute

ai = V (ν, µ)âiV
−1(ν, µ), bi = V (ν, µ)â†iV

−1(ν, µ), (3.22)

which, in contrast to (3.16), only involve a single, albeit in general unbounded, operator

to relate the (ai, bi) to the (âi, â
†
i ). We also check directly

a
†
i = V (µ, ν)âiV

−1(µ, ν), b
†
i = V (µ, ν)âiV

−1(µ, ν). (3.23)

– 7 –
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A immediate consequence of these formulae are the following relations between the various

number operators: n̂i = V −1(ν, µ)NiV (ν, µ) = V −1(µ, ν)N †
i V (µ, ν), which in turns implies

that

Ni = T (ν, µ)N †
i T

−1(ν, µ), (3.24)

where T (ν, µ) := V (ν, µ)V −1(µ, ν). Needless to say, all these equalities and definitions are

well defined on D, but not on the whole H1. Incidentally we observe that T (γ, γ) = 11.

This is in agreement with the fact that, when µ = ν, the operator V (ν, µ) is bounded with

bounded inverse, see below.

By a similar reasoning as above applied for the construction of the vacuum state we

now deduce that

ϕn = V (ν, µ)en, Ψn = NΨV (µ, ν)en. (3.25)

In analogy with [18], we see that, while V (ν, ν) = D(ν) is a unitary operator and as a

consequence bounded, the operator V (ν, µ), as well as its inverse, is unbounded for ν 6= µ.

The crucial conclusion from this is that the two sets Fϕ = {ϕn} and FΨ = {Ψn} cannot

be Riesz bases. In fact, they are both related to the orthonormal basis Fe by unbounded

operators. Moreover: they are not even a basis, while they are both complete in H. The

proofs of these claims do not differ much from those given in [18] and therefore will not be

repeated here. We will comment further on the physical meaning of these results in the

next subsection.

Similarly as in [18] we can prove that Fϕ and FΨ are D-quasi bases. In fact, repeating

almost the same steps, we deduce that for instance, ∀ f, g ∈ D,

〈f, g〉 =
∑

n

〈

f, ϕn

〉 〈

Ψn, g
〉

, (3.26)

so that the results listed at the end of section 2 hold true. In particular, let us introduce the

operator Θ(ν, µ) := T (µ, ν). It is possible to show that Θ(ν, µ) is self-adjoint, invertible,

and leaves D invariant. Moreover, Θ(ν, ν) = 1, and

Θ(ν, µ) = NΨ

2
∏

i=1

e(νi−µ
i
)â†

i e(ν̄i−µ̄
i
)âi , (3.27)

which implies that
〈

f,Θ(ν, µ)f
〉

> 0 for all non zero vectors f ∈ D. This is in agree-

ment with the facts that (i) Ψn = Θ(ν, µ)ϕn, ∀n; (ii) (aj , b
†
j) are Θ-conjugate: ajf =

Θ−1(ν, µ)b†jΘ(ν, µ)f , for all f ∈ D. We conclude also that, again for all f ∈ D,

Nif = Θ−1(ν, µ)N †
i Θ(ν, µ)f, (3.28)

which is the intertwining relation responsible for the fact that H̃ and H̃† have the same

eingenvalues and related eigenvectors, see below.

1This aspect is almost never stressed in the physical literature. Unbounded operators never exist alone!

They exist in connection with some suitable dense subspace of H, their domains.

– 8 –



Non self-adjoint model with unbound metric

3.2 Back to the Hamiltonian

Let us now return to our original problem, i.e. the deduction of the eigenvalues and the

eigenvectors for H̃ in (3.2) and Ĥ in (1.1). As we have shown we may express them in

terms of pseudo-bosonic number operators. From the above construction is clear that

H̃ϕn = Enϕn, (3.29)

with En ∈ R given by (3.13). From our results in section 2 it also follows directly that the

eigensystem of the adjoint H̃† = γ̄1N
†
1 + γ̄2N

†
2 + γ̄0 is computed to

H̃†Ψn = ĒnΨn = EnΨn. (3.30)

The analysis in [18] showed that, as already deduced, two biorthogonal sets of eigen-

states of a Hamiltonian and of its adjoint, need not to be automatically a Riesz basis,

even when they are complete! This is exactly the case here: Fϕ and FΨ are biorthogonal,

complete, eigenstates of H̃ and H̃† (Ĥ and Ĥ†), respectively, but neither Fϕ nor FΨ are

bases for H. However, interestingly enough, they are D-quasi bases, and this is reflected

in the properties we have explicitly verified for our model.

4. Conclusions

We have investigated the properties of a non self-adjoint model on a noncommutative two

dimensional space. The Hamiltonian H̃ was set up in the standard fashion followed in

the literature on PT -symmetric quantum mechanics, by seeking an anti-linear symmetry,

i.e. PT − in this case. From our explicit formulae we observe that PT −: ϕ0 → ϕ0,

ϕn → (−1)n1ϕn, Ψ0 → Ψ0, Ψn → (−1)n1Ψn such that by the standard arguments of

Wigner [13] it follows that the eigenvalues of H̃ have to be real. This is confirmed by our

explicit computation. The symmetry for the Hamiltonian Ĥ is not evident from the start,

but as demonstrated the overall conclusions are the same as for H̃.

However, despite having well defined real physical spectrum, we established further

that H̃ can not be considered as a standard quantum mechanical model, since the corre-

sponding biorthonormal system is not of Riesz type. As already discussed, in many places

in the literature, see [19] for instance, it is incorrectly assumed that the eigenvectors of a not

self-adjoint Hamiltonian H and H† automatically form a biorthogonal basis. In fact, this

is a rather strong requirement which is quite difficult to find satisfied in concrete models

existing in the literature, at least for infinite dimensional Hilbert spaces. We have shown

that even for the simple example presented here this is not the case. This only leaves two

of the following options: either this conclusion is wrong for the cases treated, as it would

be for the model presented here, or at least some additional analysis is required to justify

it. Thus our example supports the suggestion [14, 18] that many models, thought to be

very interesting quantum mechanical systems, need to be revisited for further scrutiny.

It is easy to see from our formulae that these conclusions do not rely on the fact

that the model is formulated on a noncommutative space and also hold in the limit to

the commutative space when setting limθ→0Ω = 2~, limθ→0M = m, etc. In reverse, this
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also means that the problem of not having automatically a biorthonormal basis can not

be solved by formulating the model on a non-commutative space, which provides more

freedom and often removes inconsistencies.

We end this section, and the paper, observing that, even with all the problems we

have put in evidence along the paper, we may still make sense of the model presented here,

simply because of the role of the quasi-bases as described above and in more detail in the

quoted literature.
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