
              

City, University of London Institutional Repository

Citation: He, W. & Timme, S. (2021). Triglobal infinite-wing shock-buffet study. Journal of 

Fluid Mechanics, 925, A27. doi: 10.1017/jfm.2021.678 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/28267/

Link to published version: https://doi.org/10.1017/jfm.2021.678

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


J. Fluid Mech. (2021), vol. 925, A27, doi:10.1017/jfm.2021.678

Triglobal infinite-wing shock-buffet study
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This article uses triglobal stability analysis to address the question of shock-buffet
unsteadiness, and associated modal dominance, on infinite wings at high Reynolds
number, expanding upon recent biglobal work, aspiring to elucidate the flow
phenomenon’s origin and characteristics. Infinite wings are modelled by extruding an
aerofoil to finite aspect ratios and imposing a periodic boundary condition without
assumptions on spanwise homogeneity. Two distinct steady base flows, spanwise uniform
and non-uniform, are analysed herein on straight and swept wings. Stability analysis of
straight-wing uniform flow identifies both the oscillatory aerofoil mode, linked to the
chordwise shock motion synchronised with a pulsation of its downstream shear layer,
and several monotone (non-oscillatory), spatially periodic shock-distortion modes. Those
monotone modes become outboard travelling on the swept wing with their respective
frequencies and phase speeds correlated with the sweep angle. In the limiting case of very
small wavenumbers approaching zero, the effect of sweep creates branches of outboard
and inboard travelling modes. Overall, triglobal results for such quasi-three-dimensional
base flows agree with previous biglobal studies. On the contrary, cellular patterns form in
proper three-dimensional base flow on straight wings, and we present the first triglobal
study of such an equilibrium solution to the governing equations. Spanwise-irregular
modes are found to be sensitive to the chosen aspect ratio. Nonlinear time-marching
simulations reveal the flow evolution and distinct events to confirm the insights gained
through dominant modes from routine triglobal stability analysis.

Key words: high-speed flow, absolute/convective instability

1. Introduction

Shock buffet brings a challenge to the wing design of modern large aircraft when flying in
the commercially interesting transonic regime. Essentially, shock buffet is a manifestation
of strong shock-wave/boundary-layer interaction, revealed through shock oscillations
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and intermittent boundary-layer separation. This sort of self-sustained unsteadiness will
exert additional low-frequency aerodynamic loads, eventually limiting the flight envelope
and potentially causing damage to the wing structure through the inevitable structural
response, called buffeting, addressed through the certification requirements. Predicting
shock-buffet onset early during wing design, and devising possible alleviation strategies,
requires a clear understanding of its physical mechanisms and effective numerical
methods, which is addressed herein. This work provides also a unique link between
earlier biglobal stability studies on canonical geometries, to demonstrate consistency
in the findings, and triglobal studies, using the same tools previously exercised by the
authors (Timme & Thormann 2016; Timme 2020) on practical finite wings with complex
designs.

Early experiments identified a low-frequency shock motion linked to the flow dynamics
on buffeting aerofoils (McDevitt, Levy & Deiwert 1976; Levy 1978). Lee (1990)
investigated transonic flow on a supercritical aerofoil for Mach numbers between 0.5
and 0.8 and discerned unsteadiness at a Strouhal number of approximately 0.074,
through measuring pressure fluctuation and unsteady aerodynamic force, and devised a
first explanation. The aerofoil shock-buffet mechanism is now often explained by the
shock interacting with upstream travelling acoustic waves generated at the trailing edge
through shock-induced disturbances travelling downstream inside the separated boundary
layer. This type of feedback loop was extensively examined by Hartmann, Feldhusen &
Schröder (2013) and Feldhusen-Hoffmann et al. (2018) using time-resolved tomographic
particle image velocimetry technology. Three-dimensional shock buffet in high Reynolds
number flow presents distinct phenomena from two-dimensional experiments. Besides
the two-dimensional characteristics, three-dimensional large-scale separation is observed
with increasing angle of attack in experiments for a straight wing (Jacquin et al. 2009)
and wind-tunnel-scale aircraft (Masini, Timme & Peace 2020a) models. It resembles the
so-called stall cells documented in the flow of severe separation from low to high Reynolds
numbers (Winkelmann & Barlow 1980; He et al. 2017; Plante et al. 2021). In addition to
experiments, great flow detail in the transonic regime can also be provided by steady or
unsteady simulations.

Numerical simulations on different aerofoils in high Reynolds number flow featuring
shock oscillations showed that the flow can be approximated through solving the unsteady
Reynolds-averaged Navier–Stokes (RANS) equations together with an appropriate
turbulence model (Barakos & Drikakis 2000; Garbaruk et al. 2003; Thiery & Coustols
2006), hence relying on the assumption of a separation of scales between the large-scale
low-frequency coherent shock-buffet dynamics, accessible through the unsteady RANS
method, and the small spatial and temporal scales of turbulence. The one-equation
Spalart–Allmaras model is widely used in the simulation of turbulent transonic flow
(Crouch, Garbaruk & Magidov 2007; Sartor, Mettot & Sipp 2015; Paladini et al. 2019),
while the suitability of various other models, such as linear and nonlinear eddy-viscosity
two-equation models, is also widely addressed (Barakos & Drikakis 2000; Thiery &
Coustols 2006; Szubert et al. 2015; Giannelis, Levinski & Vio 2018). Besides using
a RANS approach to study shock buffet, variants of detached-eddy simulation (Deck
2005; Grossi, Braza & Hoarau 2014) and large-eddy simulation (Garnier & Deck 2010;
Dandois, Mary & Brion 2018; Fukushima & Kawai 2018) are important alternatives due
to increased insight into the unsteady flow physics. In addition to the typical low-frequency
shock-buffet mode observed at high Reynolds numbers, several higher-frequency modes
are reported in a moderate Reynolds number transonic flow over a laminar aerofoil using
direct numerical simulation (Zauner, De Tullio & Sandham 2019). Together with analysing
the signal extracted from experiments and time-marching simulations, modal analysis
925 A27-2
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using either an operator-based global stability method (Crouch et al. 2007; Sartor et al.
2015; Crouch, Garbaruk & Strelet 2019; Paladini et al. 2019; Timme 2020; Plante et al.
2021) or data-driven algorithms such as proper orthogonal decomposition and dynamic
mode decomposition (Masini et al. 2020a; Masini, Timme & Peace 2020b; Zhao et al.
2020) can be used to explore the flow mechanism.

Stability analysis was first shown to be an effective method in predicting the onset
of two-dimensional aerofoil shock buffet by Crouch et al. (2007). Those transonic-flow
stability results on a NACA0012 aerofoil demonstrated good agreement with earlier
experimental data (McDevitt & Okuno 1985). More recently, the ideas were successfully
applied in the analysis of other aerofoils (Sartor et al. 2015; Zauner & Sandham 2020)
and three-dimensional infinite (Crouch et al. 2019; Paladini 2019; Paladini et al. 2019;
Plante et al. 2021) and finite (Timme & Thormann 2016; Timme 2020) wings. In those
infinite-wing shock-buffet studies, the authors predicted both the quasi-two-dimensional
aerofoil mode and presented spatial spanwise-periodic modes in the framework of biglobal
stability analysis. When using a symmetry (instead of periodic) boundary condition along
the span, Iorio, González & Ferrer (2014) only found the aerofoil mode in their triglobal
investigation. Causes for not identifying the spanwise-periodic modes could lie in using
small-aspect-ratio wings or imposing the symmetry boundary condition.

Importantly, detailed triglobal stability analysis on the infinite wing, both straight and
swept, without assuming homogeneity in the span direction, is currently missing to link
shock-buffet characteristics on the infinite wing, derived from biglobal studies, with those
on the finite wing (Masini et al. 2020a; Timme 2020). Once the shock-buffet phenomenon
appears, three-dimensional separation cells are formed on the suction side of the wing.
Hence, bi- or triglobal analysis on a quasi-three-dimensional base flow in the absence
of a spanwise flow field variation is not sufficient to describe the complete picture of
perturbation modes. Only triglobal analysis can deal with an arbitrary three-dimensional
flow field on a complex geometry, without an assumption on homogeneity in any spatial
dimension, i.e. irrespective of assuming a homogeneous flow field in the spanwise
direction, as done in biglobal studies. Herein, we are interested in understanding the
fully three-dimensional perturbation dynamics, without simplifying assumptions, by
describing the isolated impact of key geometric wing-sizing parameters (such as aspect
ratio and sweep) and flow conditions (specifically angle of attack) in the formation and
characteristics of the shock-buffet instability near onset. Section 2 introduces the definition
of both infinite straight and swept-wing flow and the chosen numerical methods. Details
of the base flows, and dependence on iterative and mesh convergence, are discussed in § 3.
Triglobal stability results of infinite-wing shock buffet are presented in § 4.

2. Numerical set-up

2.1. Infinite-wing definition
Herein, we use the OAT15A aerofoil, which is the same profile used by Jacquin et al.
(2009) in their experiments and by Sartor et al. (2015), Paladini et al. (2019) and Crouch
et al. (2019) in their respective proper two-dimensional and biglobal three-dimensional
stability analyses. As shown in figure 1, the aerofoil’s two-dimensional baseline mesh
is circular with a far-field radius of 100 chord lengths. Overall, the two-dimensional
mesh is discretised by approximately 35 000 points. The near-wall boundary-layer region
is quasi-structured, with 75 points distributed in the wall-normal direction ensuring
y+ < 1, and 152 and 138 points discretise the suction and pressure sides of the aerofoil,
respectively. An O-type meshing strategy was chosen for the region around the profile’s
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(b)(a)

Figure 1. Mesh details showing (a) overall perspective of two-dimensional baseline mesh and (b) magnified
view near wing surface including periodic plane.

blunt trailing edge. Unstructured triangular meshing is applied elsewhere towards the
far-field boundary. While detailed mesh convergence in the aerofoil’s xz-plane together
with subtleties of the spatial discretisation and the choice of turbulence model have been
presented in the literature (Barakos & Drikakis 2000; Deck 2005; Thiery & Coustols
2006; Nitzsche et al. 2019), we focus exclusively on the parameter choices in the
spanwise direction, such as mesh resolution and finite aspect ratio. Straight-wing cases
are defined by extruding the two-dimensional aerofoil mesh in spanwise direction to have
different aspect ratios betweenA = 1 and 10. An infinite span is achieved by using an
appropriate spanwise-periodic boundary condition. The baseline extruded mesh for the
infinite wing contains 20 points per unit length in span uniformly distributed, giving a
total of approximately 2.1 × 106 points for our focus case with aspect ratioA = 3. The
effect of spanwise resolution will be discussed in §§ 3.1 and 4.1 and the finite aspect ratio
in § 3.3.

Swept wings are an integral part in designing modern large transport aircraft, on account
of a better high-speed aerodynamic performance. Infinite swept wings are modelled herein
by adjusting the direction and magnitude of the free-stream velocity vector, instead of
modifying the wing shape or orientation, while ensuring constant flow conditions in the
plane perpendicular to the wing’s leading edge when varying the sweep angle. Figure 2
illustrates the flow past a wing with a non-zero sweep angle Λ. Define reference Mach
number M∞,n, Reynolds number Re∞,n (based on chord length c) and angle of attack α in
the perpendicular plane and use the transformations

M∞ = M∞,n

cos Λ

√
1 − sin2 α sin2 Λ

Re∞ = Re∞,n

cos Λ

√
1 − sin2 α sin2 Λ

γ = arctan(tan α cos Λ)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (2.1)

As reference length, we use consistently the chord length c of the aerofoil defined
perpendicular to the wing’s leading edge.
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z
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Figure 2. Swept-wing flow set-up.

2.2. Governing equations and numerical methods
High Reynolds number turbulent transonic flow is described by the compressible
RANS equations, coupled with a suitable turbulence model, given in non-dimensional,
semi-discrete form as

du
dt

= R(u), (2.2)

where the vector R describes the nonlinear residual terms resulting from the spatial
discretisation of the governing equations (and also includes the discrete control volumes,
independent of time herein, when (2.2) is derived from a conservative integral form of
the governing equations) and the conservative variables u = [ρ, ρu, ρv, ρw, ρE, ρν̃]T

are defined for density, three Cartesian momentum components, total energy and the
working variable of the turbulence model. Specifically, the Reynolds stresses are modelled
through the Boussinesq approximation using the negative version of the Spalart–Allmaras
turbulence model (Allmaras, Johnson & Spalart 2012) to obtain the eddy viscosity.

The nonlinear governing equations (2.2), both steady state and time accurate, are solved
using the TAU code of the German Aerospace Center (DLR), which is an industrial
second-order code using a cell-vertex finite-volume formulation capable of dealing with
complex geometries (Schwamborn, Gerhold & Heinrich 2006). The inviscid fluxes of the
RANS equations are discretised using a central scheme with matrix artificial dissipation,
whereas a first-order upwind scheme is used for those of the turbulence model. Gradients
of flow variables, required for viscous fluxes and the source term of the turbulence model,
are computed using the Green–Gauss approach. Besides the spanwise-periodic boundary
condition introduced in the infinite-wing set-up, the viscous wall no-slip condition is
strongly imposed on the solid walls of the wing and the far field is described as
free-stream flow realised by the method of characteristics, consistent with interior-flux
discretisation. As the time stepper to converge the system of equations to a steady state,
we chose an explicit Runge–Kutta scheme with local time stepping and a geometric
multigrid (normally on three grid levels) for convergence acceleration. We typically
aim for a twelve orders of magnitude reduction in the norm of the density residual for
steady-state iterations, while the reader should note the discussion in § 3. For unsteady
time-marching simulation, which requires convergence to a pseudo-steady state in dual
time, the second-order backward difference formula is adopted. Cauchy convergence
control on the drag coefficient is specified with a minimum of 50 iterations in dual time
per real time step, and a time-step size is defined to have approximately 1000 to 2000 time
steps per period of a shock-buffet oscillation, resulting in a dimensional time-step size
(with respect to free-stream velocity and chord length) of �t = 10−5 s to 10−4 s.
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The steady-state RANS solution (fully coupled with the turbulence model), denoted
ū and satisfying R(ū) = 0, is used as base flow around which the linearised system is
formed, leading to the eigenvalue problem

λû = Jû (2.3)

through the exponential solution ansatz, where J = ∂R/∂u is the flux Jacobian matrix
and û and λ are eigenvector and eigenvalue, respectively. The eigenvalue λ = σ + iω
describes exponential growth or decay through σ and an angular frequency of an
oscillation through ω. The eigenvector contains the complex-valued spatial amplitudes
of the linear perturbation around the base flow, εũ = u − ū, where ũ = ûeΘ . The phase
function Θ = iβy + λt is specified by the chosen stability methodology (Theofilis 2011) –
in spanwise-uniform base flow, where ρv /= 0 is permitted but ∂ū/∂y ≡ 0, assuming
spanwise spatial periodicity in the perturbation dynamics, a biglobal approach can be
chosen with β ≥ 0 solving on a two-dimensional mesh in the xz-plane only, whereas
triglobal analysis, setting β = 0 and solving on an arbitrary mesh in three-dimensional
space, makes no simplifying assumptions on the base flow, or indeed the modal response,
whatsoever.

The latter triglobal stability approach, used throughout, has been implemented into the
linear harmonic incarnation of the flow solver previously and its ability was demonstrated
in Timme & Thormann (2016) and Timme (2020). The implicitly restarted Arnoldi method
(Sorensen 1992), as implemented in the ARPACK library (Maschhoff & Sorensen 1996;
Lehoucq, Sorensen & Yang 1998), is used to approximate a few but relevant eigenmodes
in the outer iterations, whereby the Krylov sequence is computed for the shift-invert
spectral transformation giving the matrix (J − ζ I)−1 (instead of J) with ζ as user-specified
complex-valued shift and I as the identity matrix. This leads to the requirement of solving
an inner linear system with the shifted coefficient matrix (J − ζ I) in each outer step using
a preconditioned sparse iterative Krylov subspace solver (Parks et al. 2006; Xu, Timme &
Badcock 2016).

The numerical strategy follows a first-discretise-then-linearise matrix-forming
philosophy with a mostly hand-differentiated Jacobian matrix, corresponding to the
chosen spatial discretisation including all boundary conditions and the turbulence model
(without simplifications in the linearisation such as frozen eddy viscosity, cf. Thormann
& Widhalm 2013). We refer to a mostly hand-differentiated matrix, because dealing
with the linearised spanwise-periodic boundary condition in this work is a delicate
matter. Since such an analytical boundary conditions is currently not available in the
code, we made use of the existing analytical linearisation where possible (i.e. internal
points not having periodic-plane points in their stencil) and implemented a numerical
central finite-difference approach using graph colouring where necessary. Define as master
periodic points those that are updated directly through solving the governing equations (i.e.
those on one end of the otherwise finite span) and as shadow periodic points those updated
indirectly through assigning the value of their paired master points (i.e. those on the other
end). Care has to be taken that shadow periodic points are discarded in the Jacobian matrix
altogether and any dependence on those points is transferred to the matrix position of the
corresponding master periodic points.

For big problems with millions of degrees of freedom, the solution approach makes full
use of the high performance parallel computing infrastructure of the underlying industrial
flow solver. The investigation herein typically uses O(10–100) cores depending on the
mesh size. The established numerical strategy combined with an industrial flow solver
means that even practical non-canonical test cases at flight conditions can be investigated
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Figure 3. Convergence history of (a) density residual norm ‖Rρ‖ and base-flow force coefficients of (b) lift
C̄L and (c) drag C̄D for different spanwise spacings at angle of attack α = 3.5◦. Red bullets in (a) relate to the
snapshots in figure 4.

provided the decoupling of scales in high Reynolds number flow between the small scales
of turbulence and the large scales dominating the dynamic system applies.

3. Base-flow classification

Flow conditions defined normal to the wing’s leading edge (denoted by subscript n)
with reference free-stream Mach number M∞,n = 0.73, chord Reynolds number Re∞,n =
3.2 × 106 and angles of attack near the onset of shock buffet (similar to previous studies
using the same OAT15A profile) are our concern. All data are in non-dimensional form,
in particular, using the reference velocity U∞,n and chord length c, defined perpendicular
to the wing’s leading edge, unless explicitly stated otherwise.

3.1. Iterative and mesh convergence
A convergence study at a fixed angle of attack α = 3.5◦ is performed to assess the impact
of mesh resolution in the spanwise direction. A family of four meshes for a straight wing
with aspect ratio A = 3 is considered, featuring uniform spanwise spacings between
�y = 0.2 and 0.025 giving between ny = 15 and 120 points along the span altogether.
The density residual norm over iterations is examined for the steady-state simulations
and presented in figure 3(a). Coefficients of lift and drag of the fully converged flow
solutions, together with the relative errors, are summarised in table 1 while the respective
convergence histories are provided in figure 3(b,c). Besides the evident stages in the
convergence behaviour discussed in the next paragraph, the fully converged results show
clear differences in the terminal values of the lift and drag coefficients, linked to the
attainable flow solution for a given mesh resolution. The coarsest mesh with 15 points
along the span does not result in three-dimensional structures (as found for the other
meshes) and consequently the lift coefficient is the highest. With the formation of said
three-dimensional shock-distortion cells (one for the mesh with 30 points along the span
and two for all finer meshes), the lift coefficient drops by 7.5 % (cf. table 1). A similar
trend can be observed for the drag coefficient – note the competing components of drag
when a local pocket of shock distortion is formed in combination with its downstream flow
separation, as visualised in figure 4(b,c). Using the baseline mesh with 20 points per unit
length of span, giving a resolution of �y = 0.05, only introduces a vanishing error in the
integrated coefficients compared with the finest mesh of double the size. Importantly, this
conclusion has to be amended when scrutinising the global mode results to follow.
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ny �y C̄L ErrorC̄L
(%) C̄D ErrorC̄D

(%)

15 0.2 0.978026 7.5 0.045550 3.5
30 0.1 0.943001 3.6 0.044595 1.3
60 0.05 0.910152 0.0 0.043981 0.1
120 0.025 0.910180 (0.0) 0.044011 (0.0)

Table 1. Coefficients of lift and drag and relative error (with respect to finest mesh) from mesh convergence
study at angle of attack α = 3.5◦ for wing with aspect ratioA = 3.

(a) (b) (c)

y

x

Figure 4. Evolution of surface pressure coefficient C̄p on upper wing surface with respect to iteration number
showing (a) 10 000, (b) 40 000 and (c) 120 000 (marked by red bullets in figure 3a) at angle of attack α = 3.5◦
for a straight wing with baseline mesh spacing �y = 0.05 and aspect ratio A = 3. Contour levels of C̄p
are in the range [−1.5, 0]. The solid/dashed lines in (a) highlight the spanwise skin-friction coefficient at
C̄fy = ±10−7. The dashed-dotted lines in (b,c) show zero skin friction to highlight the separation zone.

Looking more closely at the convergence history for the chosen baseline mesh, in
combination with the corresponding surface pressure coefficient at three iteration numbers
in figure 4, marked stages can be distinguished. To the naked eye, the surface pressure
solution reveals no three-dimensional cellular pattern until approximately 10 000 iterations
(see figure 4a), which describes the first, almost monotonic convergence phase in
figure 3(a). This type of spanwise-uniform flow is found at a density residual level of
approximately ‖Rρ‖ = O(10−8), which is two orders of magnitude lower compared with
typical convergence levels often used in industrial RANS simulations. More interestingly,
an almost imperceptible cellular pattern with wavelength equal to the aerofoil chord
length c can be visualised through the spanwise skin-friction coefficient, C̄fy , at a very
low amplitude of O(10−7). As will become clear in the following discussion, this subtly
describes the leading unstable spanwise-periodic shock-distortion mode (with wavelength
equal to the chord length), initially disturbing the otherwise spanwise-uniform base-flow
solution. Continuing the steady-state iterations, the flow enters a stage where disturbances
seem to grow. Here, the large-scale three-dimensional flow field is formed, as seen starting
from 40 000 iterations in figure 4(b). This continues until nonlinear amplitude saturation
helps establish the final steady state. Together with the convergence history of force
coefficients, we can discern the impact of spanwise mesh resolution on the formation of
the cellular pattern. Effectively, a minimum mesh resolution, and a minimum convergence
threshold, is required to capture the cellular flow pattern along the span.
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y

x

(a) (b) (c) (d)

Figure 5. Fully converged surface pressure coefficient C̄p, plotted in the range [−1.5, 0], on upper wing
surface as a function of angle of attack for straight wing with baseline mesh spacing and aspect ratioA = 3.
From (a) to (d) are angles of attack α = 3.2◦ to 3.5◦. The dashed-dotted lines highlight the separation zone by
showing the zero skin-friction lines.

It should be noted that it was attempted during this study to obtain a spanwise-uniform
solution at terminal convergence, for instance, by switching the time stepper to the
code’s usual implicit backward Euler method or by initialising the flow field using
different aerofoil solutions converged to machine-epsilon values extruded along the span.
Specifically, aerofoil solutions were obtained both on a proper two-dimensional grid and
on a three-dimensional grid with one cell in the span direction and appropriate periodic
boundary condition (sometimes called 2.5-dimensional), ensuring consistency in the
spatial discretisation with respect to the proper three-dimensional approach throughout.
Eventually, the shock distortion appears, which is consistent with the stability results to
follow. To offer a possible explanation, converging to an unstable base state in the vicinity
of an oscillatory global instability seems to be possible since the base flow is close to
the time-averaged mean flow of the time-marched solution. This is not the case for the
monotone shock-distortion mode.

3.2. Spanwise-uniform base flow on straight and swept wings
In an earlier experimental study (Jacquin et al. 2009) on a wing with a small aspect ratio
(A ≈ 3.4), the flow was steady below an angle of attack α � 3.1◦ at the same nominal
flow conditions studied herein. Surface oil flow visualisation revealed that the surface lines
on the suction side of this wing are effectively two-dimensional before onset of shock
buffet. In contrast, a three-dimensional flow structure can be observed behind the shock
with angle of attack increased to α = 3.5◦. This behaviour can also be roughly examined
using an appropriate RANS simulation. Figure 5 presents a surface flow visualisation of
the fully converged RANS solution for the flow over the straight wing at a few angles of
attack around the onset of unsteadiness. The formation of the three-dimensional cellular
pattern for angles of attack beyond onset (based on the stability results to follow) is
revealed. Figure 6(a) presents the pressure coefficient (extracted at the mid-span station)
compared with these experiments at two selected angles of attack around the onset of shock
buffet and the numerical two-dimensional aerofoil results (using a very similar version of
the turbulence model) reproduced from Sartor et al. (2015). The simulations at α = 3.5◦
are in good agreement with the wind-tunnel data at α = 3.0◦. The discrepancy is well
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Figure 6. Base-flow results on straight wing with baseline mesh spacing and aspect ratio A = 3 showing
(a) spanwise-uniform pressure coefficient compared with experiments from Jacquin et al. (2009) and
steady-state two-dimensional aerofoil results from Sartor et al. (2015) and (b) lift and drag coefficient as
function of angle of attack α. Additional data points in (b) for the lift coefficient (•) were also extracted
from Sartor et al. (2015).

100 102 104 106

Iteration

10–12

10–8

10–4

100

||Rρ||

α = 3.2°
α = 3.3°
α = 3.4°
α = 3.5°

100 102 104 106

Iteration

10–12

10–8

10–4

100

Λ = 0°
Λ = 5°
Λ = 10°
Λ = 20°
Λ = 30°

(a) (b)

Figure 7. Convergence history of density residual norm ‖Rρ‖ for wing with baseline mesh spacing and aspect
ratioA = 3 showing (a) different angles of attack for straight wing and (b) different sweep angles at angle of
attack α = 3.5◦.

documented and arises from the choice of turbulence model, which is further detailed in
§ 4.2. The corresponding integrated coefficients of lift and drag are shown in figure 6(b).
Particularly for the lift coefficient, the very clear jump at angle of attack of approximately
α = 3.4◦, coinciding with the formation of the shock distortion, is identified. For the drag
coefficient, on the other hand, the jump is less pronounced due to the aforementioned
competing drag contributions. The data points from Sartor et al. (2015) are included for
reference, noting that their two-dimensional aerofoil simulation cannot produce said shock
distortion.

These flow features can also be related to the non-monotonic trend in the convergence
history in figure 7(a). Although steady-state RANS results are independent of time, useful
insight can be extracted by analysing the residual history carefully to reveal the expected
flow unsteadiness. The figure shows the complete convergence trend of the density residual
norm of the steady RANS equations from low to high angles of attack around shock-buffet
onset on the straight wing. Two types of nominally steady flow characteristics, specifically
spanwise-uniform and -non-uniform base flow, can be identified depending on the level
of convergence, as seen through the surface pressure coefficient in figures 4 and 5. For
the straight-wing cases at angles of attack α = 3.2◦ and 3.3◦, the simulations quickly
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converge to the defined tolerance of ‖Rρ‖ = O(10−12). There is no three-dimensional
cellular flow pattern visible on the wing surface as shown in figure 5. Interestingly, the
iteration count grows dramatically when increasing the angle of attack to α = 3.4◦. This
suggests that we are in the vicinity of a critical condition and it takes (substantially)
more iterations to amplify an unstable (spanwise-periodic) mode with a positive growth
rate close to zero. This statement will be supported in § 4.2 by using stability theory to
extract dominant eigenmodes for the selected uniform base flow. As explained in § 3.1, for
stability analysis at higher angles of attack α = 3.4◦ and 3.5◦, we select the approximately
uniform base flow observed at 10 000 iterations giving a minimum density residual norm of
approximately ‖Rρ‖ = O(10−8) from the initial, almost monotonic stage of convergence.
Similar convergence level was reported by Crouch et al. (2019).

When the free-stream direction is not perpendicular to the leading edge of the wing,
flow over a swept wing is described. Following (2.1), we ensure that the flow conditions
perpendicular to the leading edge remain identical, independent of the sweep angle, for
the different sweep angles discussed herein, specifically Λ = 5◦, 10◦, 20◦ and 30◦. Their
convergence behaviour is compared with the straight wing in figure 7(b). The solution
converges well, almost monotonically, for Λ = 20◦ and 30◦ and, interestingly and in
contrast to the straight wing, spanwise-uniform flow is found at terminal convergence.
At the lower sweep angles of Λ = 5◦ and 10◦, convergence stalls, failing to reach
the specified tolerance, and different methods, such as selective frequency damping
(Åkervik et al. 2006) or a stronger implicit Newton–Krylov solver (Yan et al. 2021),
should be explored in the future to find fully converged base flow in those cases. Close
inspection of the corresponding non-converged flow fields suggests indecisiveness in
either forming spanwise cellular structures as for sweep angle Λ = 0◦ or convergence
towards spanwise-uniform flow as for the two largest sweep angles investigated. However,
similar to the discussion for the straight wing above, approximately uniform flow along the
span is identified at convergence levels close to ‖Rρ‖ = O(10−8). This statement will be
further scrutinised in § 4.2.

3.3. Spanwise-non-uniform base flow on straight wing
Based on previous investigations (Jacquin et al. 2009; Plante, Dandois & Laurendeau
2020), three-dimensional shock-distortion patterns exist in post-onset shock-buffet
conditions for the straight wing with aspect ratio A = 3. Taking the angle of attack
α = 3.5◦ as an example, the simulation starts showing such three-dimensional cells along
the span after approximately 40 000 iterations (see figure 4b). The pronouncedness of
cells continues to grow while the residual goes down, until the flow reaches the stage of
nonlinear saturation. For a full account on the base flow, a more comprehensive study
of the spanwise cells on wings with different aspect ratios between A = 1 and 10 is
shown in figure 8. Figure 9 illustrates the lift and drag coefficients, C̄L and C̄D, and
the size of each cell, L, measuring the distance between its two foci (highlighted by the
exemplary red line in figure 8), varying with aspect ratio. There is one cell formed on
the wing with aspect ratio A = 1, the size of which is smaller than the cells on wings
withA = 2 to 4. The cells are well developed on wings withA � 5, almost two times
larger than onA = 1. The variation of the lift and drag coefficients with respect to the
finite aspect ratio is less pronounced; the maximum difference between the wings with
aspect ratioA = 3 and the highest aspect ratio is 4.0 % for the lift coefficient and 1.7 %
for the drag coefficient. Stability analysis will be discussed for aspect ratios A = 3, 5
and 10.
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Figure 8. Steady base-flow surface pressure coefficient C̄p, plotted in the range [−1.5, 0], for wings with
baseline mesh spacing and different aspect ratios at angle of attack α = 3.5◦.
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Figure 9. Aspect-ratio dependence at machine-epsilon convergence (corresponding to figure 8) showing
(a) coefficients of lift C̄L and drag C̄D and (b) cell size L.

4. Triglobal shock-buffet stability results

Based on the spanwise-uniform and -non-uniform steady-state base flows established in
§ 3, triglobal shock-buffet instability studies follow. First, we probe the numerical set-up
to ensure it is robust and understood with respect to the various intricate parameter choices.
Then, two types of global modes, specifically uniform and periodic in the spanwise
direction, are investigated for the spanwise-uniform base flow on straight and swept wings.
Accordingly, the modal characteristics of the non-uniform base flow, which describes the
saturated state following a first bifurcation with spanwise-periodic monotone modes, are
scrutinised. Finally, we interpret the findings from a time-domain perspective.

4.1. Sanity checks on numerical set-up
The primary purpose of scrutinising the solution approach when solving the triglobal
three-dimensional linearised aerodynamic system with spanwise-periodic boundary
conditions is to ensure robustness with respect to the main parameters of the numerical
problem, focussing on the finite-difference step size when computing the periodic parts
of the Jacobian matrix, finite aspect ratio and spanwise mesh resolution. Note that, even
though we initially present our argumentation based on the eigenvalues λ only without
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Figure 10. Dependence of eigenmodes found in spanwise-uniform base flow on straight wing at angle of attack
α = 3.5◦ showing effect of (a) finite-difference step size, (b) aspect ratio and (c) spanwise mesh spacing. The
remaining main parameters in each case are kept at their reference values, specifically baseline mesh spacing
�y = 0.05, aspect ratioA = 3 and finite-difference step size ε = 10−6. Stability results for an alternative base
flow constructed by extruding an aerofoil solution along the span (×), cf. figure 11 as well, and numerical data
from Paladini et al. (2019) (•) are included in (c).

visualising the corresponding eigenvectors û, the eigenvalues are indeed examined through
the Rayleigh quotient, λ = ûHJû (where eigenvector û is scaled to unit length, ûHû = 1,
and superscript H denotes the Hermitian transpose), implicitly verifying the eigenvector,
too. These sanity checks focus on the spanwise-uniform base flow on the straight wing at
angle of attack α = 3.5◦.

The effect of finite-difference step size, ε, on the computed eigenmodes is scrutinised
first for the case with baseline mesh spacing �y = 0.05 and aspect ratio A = 3. The
step size defines the increment with respect to a local flow variable, as discussed
by Mettot, Renac & Sipp (2014). Altogether, four different values of the step size
are presented in figure 10(a). Two shift positions, specifically ζ1 = 0.45i and ζ2 =
0.3, are used here to identify the discrete aerofoil-type mode with higher frequency
(ω ≈ 0.44) and four monotone (i.e. zero frequency) shock-distortion modes of different
wavelengths. Within the investigated range of step sizes, the impact on the numerical
accuracy of the eigenvalues is virtually non-existent, which should be expected from
such a graph-coloured approach. We will consistently use ε = 10−6 in the following and
throughout.

A wide range of (essentially continuous) wavenumbers can be scrutinised in the
framework of biglobal stability analysis. Hence, modes with (very) long, intermediate and
short wavelengths have been found by Crouch et al. (2019); Crouch, Garbaruk & Strelets
(2020), while contemplating the physical meaning of those short wavelength modes in
the context of turbulence modelling, due to the spanwise length scales becoming similar
to the shear-layer thickness. Triglobal stability analysis, on the other hand, identifies
discrete modes from the continuous band found in biglobal studies whereby the possible
wavenumbers are dictated by the finite aspect ratio and associated integer numbers of
cells along the span, enforced by the periodic boundary condition. At the same time, in a
triglobal analysis, very long (albeit wavenumber β /= 0) and very short wavelength modes
quickly become computationally prohibitive; very small wavenumbers require a high finite
aspect ratio (cf. the discussion surrounding figure 16), whereas very large wavenumbers
require smallest spanwise mesh spacings. Therefore, the combined effect of finite aspect
ratio and spanwise mesh resolution on the eigensolution is examined, as shown in
figures 10(b) and 10(c). Note that the spanwise-uniform oscillatory aerofoil-type mode is
unaffected by both the chosen aspect ratio and the spanwise mesh spacing, and it is hence
not further discussed herein. First, for a sufficient number of investigated aspect ratios,
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Figure 11. Angle-of-attack dependence of eigenmodes showing (a) two-dimensional base flow,
(b) comparison between two-dimensional (2-D), 2.5-dimensional (2.5-D) and three-dimensional (3-D)
straight-wing spanwise-uniform base flow and (c) three-dimensional base flow. The results by Sartor et al.
(2015) in (a) are in the range between α = 3.0◦ and 4.0◦ with increments of 0.25◦, and shock-buffet onset
occurs at approximately α = 3.4◦.

as presented in figure 10(b) for A = 2 to 5, the continuous band can be reconstructed
nicely. Specifically, the figure shows the growth rate of the monotone modes as a function
of wavenumber β defined as β ≡ 2π/l, where the dimensionless wavelength along the
span is l. As mentioned earlier for the base flow and also discussed in the following, the
mode with wavelength l equal to the chord length, c = 1, giving a wavenumber β = 2π
dominating the shock distortion. Second, in figure 10(c), convergence with decreasing
mesh spacing can be identified clearly for the three mesh spacings presented. An additional
refinement level using �y = 0.02 shows identical results compared with �y = 0.025. In
contrast to the refinement study for the base flow, we continue working with a spacing
of �y = 0.025, unless indicated otherwise below to do spot checks. The figure includes
stability results for a base flow constructed by extrusion along the span of an aerofoil
steady state converged to machine-epsilon values, which will be discussed in conjunction
with figure 11. Finally, included biglobal data at α = 3.2◦ reproduced from Paladini et al.
(2019) show good agreement overall, considering both the usual challenge in comparing
growth rates and the underlying differences in the simulation set-ups.

4.2. Triglobal instability of spanwise-uniform base flow on straight wing
With the numerical set-up established, we first carry out a two-dimensional aerofoil
stability analysis, computing global modes at angles of attack between α = 3.2◦ and
3.5◦. In figure 11(a), our results are compared with those by Sartor et al. (2015)
showing their solution for angles of attack between α = 3◦ and 4 ◦ in increments of
0.25◦. To be unambiguous, two-dimensional analysis refers to a two-dimensional aerofoil
mesh in the xz-plane and using both a two-dimensional base flow and perturbation
ansatz, with no spanwise component (ρv = ρ̃v = 0) considered whatsoever. Specifically,
the perturbation around the base flow takes the form ũ = û eλt, where û contains
the complex-valued amplitudes of the five conservative variables (excluding spanwise
momentum). The perturbation decays for angles of attack α < 3.4◦. At approximately
α = 3.4◦, the decay rate (σ < 0) turns into a growth rate (σ > 0) with the leading
eigenvalue crossing the imaginary axis into the positive half-plane, which means the
perturbation is marginally unstable, growing exponentially in time. Note that differences in
onset angle of attack compared with previous work on the same aerofoil can be explained
by a seemingly minor change of the Spalart–Allmaras turbulence model. Specifically, in
Crouch et al. (2019) and Paladini et al. (2019) the compressibility correction (Spalart 2000)
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is added as additional source term, which is not included herein (nor in Sartor et al.
(2015)). The effect of this correction is a lowering of eddy-viscosity levels, promoting
an earlier onset of the instability. On the contrary, Sartor et al. (2015) predict the
onset angle of attack at approximately α = 3.4◦, similar to our work, without using
the correction term. Interestingly, the wind-tunnel test data in Jacquin et al. (2009),
using the same aerofoil and flow conditions, agree more closely with the numerically
predicted sightly lower onset angle of attack. At angle of attack of α = 3.5◦, strong shock
unsteadiness dominates the flow field. There is one single unstable buffet mode with
an angular frequency of approximately ω = 0.44 (equivalent to a normalised Strouhal
number St ≡ ω/(2π cos Λ) ≈ 0.07), which is close to the experimental value for the
same aerofoil and agrees with the frequencies typically reported for aerofoil shock
buffet.

The stability results on the infinite wing with aspect ratio A = 3 using
spanwise-uniform base flow at an angle of attack of α = 3.5◦ is selected to compare
with the two-dimensional eigenspectrum, as seen in figure 11(b). Note that, albeit
using the same two-dimensional baseline mesh (which is extruded to create the
infinite-wing geometry) and finding good agreement overall, the remaining differences
in the leading aerofoil-type eigenmode can be explained by the inevitable differences
between proper two- and three-dimensional spatial discretisations. In contrast, we found
that the approximate spanwise-uniform base flow for the infinite wing (see the discussion
surrounding figure 4a) is not a cause of discrepancies. To substantiate the latter two
points, a triglobal stability analysis was performed using a 2.5-dimensional aerofoil base
flow extruded to the same spanwise grid resolution. Specifically, the aerofoil solution is
obtained on a mesh with a unit length in span to ensure consistent spatial discretisation
with respect to our default three-dimensional set-up. The close-to-perfect agreement in
the stability results on both the extruded and proper three-dimensional base flow, as
observed in figure 11(b) (and also earlier in figure 10c), confirms our assertion of using the
approximately spanwise-uniform base flow observed at 10 000 iterations. While similar
affirmative results for the swept-wing cases, discussed below, have been obtained, too,
these are not presented to remain concise. We choose to continue with the monolithic
triglobal framework.

Importantly, the migration of a dominant triglobal spanwise-uniform oscillatory mode
can be observed while increasing the angle of attack, see figure 11(c). At angles of attack
α = 3.2◦ and 3.3◦, the flow is globally stable, and no unstable spanwise-periodic mode can
be observed either. This agrees with the results of the fully converged steady-state RANS
simulations shown in figure 5. As the angle of attack is increased, the spanwise-uniform
mode becomes unstable just below α = 3.4◦ with angular frequency of approximately
ω = 0.44 and growth rate nearly identical to the aerofoil analysis. The spatial structure
of this nominally aerofoil mode at angle of attack α = 3.5◦ is visualised in figure 12(a),
showing the real part of the spatial amplitude function of the total energy, highlighting
the synchronisation between the shock oscillation and the resulting pulsating shear layer.
Besides the oscillatory aerofoil mode, several spanwise-periodic monotone (i.e. with zero
frequency) non-travelling modes are identified. The leading unstable monotone mode at
α = 3.5◦, shown in figure 12(b), has three cells each with a non-dimensional spanwise
wavelength l = c, measured parallel to the leading edge. Recall that the periodic boundary
condition only permits an integer number of cells for any given aspect ratio. For the case
with aspect ratioA = 3, this corresponds to the wavenumber varying between β = 4π/3
and 12π/3 for the five modes. All modes are visualised in figure 13 showing the cellular
pattern on the wing surface highlighted by the real part of pressure coefficient Ĉp. Note
that at angle of attack α = 3.4◦, both the spanwise-uniform and spanwise-periodic modes
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(a) (b)

Figure 12. Real part of total energy amplitude ρ̂E of (a) the spanwise-uniform oscillatory aerofoil mode and
(b) the leading spanwise-periodic monotone stationary mode at angle of attack α = 3.5◦ showing iso-surfaces
at values ±0.001.

y

x

(a) (b) (c) (d) (e)

Figure 13. Real part of surface pressure coefficient Ĉp, plotted in the range [−0.001, 0.001], of
spanwise-periodic monotone stationary modes (ordered with decreasing growth rate as seen in figure 11b)
for straight wing with aspect ratioA = 3 at angle of attack α = 3.5◦.

are marginally unstable, explaining the very slow machine-epsilon convergence to a steady
base flow indicated in figure 7(a).

4.3. Triglobal instability of spanwise-uniform base flow on swept wing
In previous biglobal studies on infinite wings (Crouch et al. 2019; Paladini et al.
2019; Plante et al. 2021), the frequency range of those dominant modes related to the
shock-buffet instability on swept wings was found to be up to an order of magnitude
higher compared with the aerofoil mode on a straight wing, depending on the particular
configuration, specifically the sweep angle. Figure 14(a) presents the eigenspectra
resulting from the stability analysis on wings with sweep angles between Λ = 0◦ and
30◦ and aspect ratio A = 3. First, the inset plot in the figure zooms in around the
spanwise-uniform oscillatory aerofoil mode and, while its frequency stays more or less
constant, a strong stabilising effect with increasing sweep angle can be observed at fixed
angle of attack α = 3.5◦. Second, the spanwise-periodic monotone stationary modes
observed on the straight wing become oscillatory travelling modes for non-zero sweep
angles, which is in agreement with previous biglobal studies. As a general trend, their
oscillation frequency increases with the sweep angle. Also, for a given sweep angle,
the oscillation frequency increases with the number of cells along the span. Taking the
wing with sweep angle Λ = 20◦ as an example, those dominant modes cover a broadband
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Figure 14. Eigenspectra of spanwise-uniform base flow showing (a) sweep angles between Λ = 0◦ and 30 ◦
at angle of attack α = 3.5◦ and (b) several angles of attack for sweep angle Λ = 20◦. Coloured dashed lines
indicate the continuous band of eigenmodes that can be found with biglobal analysis (see e.g. Crouch et al.
2019), while grey dotted lines in (a) show the migration of discrete modes (with defined number of cells along
the span) with sweep angle.

frequency range between approximately ω = 1 and 4 (corresponding to typical swept-wing
shock-buffet Strouhal numbers between approximately St = 0.16 and 0.65). Furthermore,
as shown in figure 14(b), when increasing the angle of attack for fixed sweep angle
Λ = 20◦, both the broadband frequency range and growth rate of the spanwise-periodic
modes increase. At lower angle of attack α = 3.4◦, only three marginal spanwise-periodic
modes can be identified with wavenumbers ranging from β = 4π/3 to 8π/3. Considering
the marginally stable aerofoil mode at this angle of attack, too, a discussion of the
corresponding time-marching simulations would be of interest (cf. § 4.5).

To comprehend the isolated effect of sweep angle, results (consistently scaled by the
velocity in the plane perpendicular to the leading edge) are presented in figure 15, which
characterises the spanwise-periodic modes by showing growth rate, angular frequency
and speed of propagation as a function of wavenumber β. In figure 15(a) it can be
seen clearly that the highest growth rate is found for the modes with wavenumber of
approximately β = 2π, corresponding to a wavelength l = c (i.e. three cells for the
straight and swept wings with aspect ratio A = 3). As for the aerofoil mode, biglobal
literature has shown a stabilising effect of the sweep angle. Similar behaviour is found
here. The band of unstable modes (visible through the discrete modes) dominates the
range of wavenumbers between π and 4π, which agrees well with the latest revised
results by Crouch et al. (2020). The frequency of the unstable modes grows both with
the wavenumber and sweep angle, as shown in figure 15(b). Previously, the empirical
relation, ω/ cos Λ = 0.7 β tan Λ, has been presented in Paladini et al. (2019) and overall
good agreement with our triglobal results is observed. As highlighted in experiments on
finite swept wings, three-dimensional (so-called) buffet cells propagate outboard along the
span. The non-dimensional phase speed of those modes can be given by the same empirical
relation, ω/(β cos Λ) = 0.7 tan Λ, hence independent of wavenumber but increasing with
sweep angle. In the wavenumber range β < 16 examined here, the phase speed is nearly
constant for each sweep angle, see figure 15(c). In an effort to scrutinise the remaining
differences, particularly at higher sweep angles and wavenumbers, a mesh refinement
study was done for sweep angle Λ = 20◦. The additional data points for meshes with
�y = 0.05 and 0.02 in figure 15(b,c) suggest that differences with respect to the empirical
relation are not fully explained by mesh refinement alone. The spatial structures of the
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Figure 15. Sweep-angle dependence of (a) growth rate, (b) angular frequency and (c) phase speed of
spanwise-periodic modes as function of wavenumber β. The empirical phase-speed relation, 0.7 tan Λ, comes
from Paladini et al. (2019). Additional data points for sweep angle Λ = 20◦ using symbols (•) and (×)
describe spanwise mesh resolution of �y = 0.05 and 0.02, respectively, in addition to the default spacing
of �y = 0.025.
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Figure 16. Discussion of very small (positive) wavenumbers β < 1 at angle of attack α = 3.5◦ showing
(a) growth rate and (b) angular frequency. Outboard- and inboard-running modes are denoted by solid and
dashed lines, respectively.

spanwise-periodic travelling modes on the swept wings resemble those stationary modes
on the straight wing, as presented in figures 12 and 13, and are not repeated here. However,
one observation must be pointed out. The imaginary part of the travelling modes is
spatially 90◦ out of phase to the real part, i.e. minima and maxima of the imaginary
part can be found at zero crossings of the corresponding real part, to allow the spanwise
propagation of cells. Time-domain reconstruction of the monotone stationary modes, on
the other hand, leads to an unsteady flow perturbation describing a monotonically growing
shock distortion.

As stated earlier, the modes with smallest wavenumbers are absent due to the triglobal
limitation of describing the long wavelength on the wings with low aspect ratio. Hence,
two wings with very high aspect ratioA = 16 and 32 were created using ny = 80 points
along the span. Figure 16 presents the growth rate and frequency of eigenmodes in the
range of very small wavenumbers at four sweep angles. Two distinct branches of modes
can be observed; one outboard branch which describes modes travelling outboard along the
wing in a sense of positive sweep angle and another inboard branch describing propagation
in the opposite direction instead. Overall, the trend resembles what was discussed by
Crouch et al. (2019, 2020) and Plante et al. (2021). The inboard branch (visualised by

925 A27-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

67
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.678


Triglobal infinite-wing shock-buffet study

–0.1–0.2 0 0.1 0.2
σ

ω

0

0.2

0.4

0.6

0.8

1.0

= 3
= 5
= 10

0

0.04

0.08

0.12

0.16

St

Figure 17. Eigenspectra of spanwise-non-uniform base flow on straight wings with aspect ratioA = 3, 5 and
10 at angle of attack α = 3.4◦ (open symbol) and 3.5◦ (solid symbol).

dashed lines in the figure) has higher growth rates than the outboard branch, which would
suggest that the inboard behaviour is more dominant. At the same time, the inboard branch
has lower frequency than the outboard branch. Having said this, there are some important
differences to that discussion. Crouch et al. (2019, 2020) presented two branches with
positive and negative frequency, respectively. Specifically, the negative-frequency branch
was related to an inboard-running behaviour based on the phase-speed relation. ω/β. In
our case, we find pairs of inboard/outboard modes with positive frequencies and deduct the
direction of propagation from the eigenvector. Indeed, due to the mathematical character
of the eigenvalue problem with a real-valued matrix, we can also find the modes that are
complex conjugate to those presented in the figure (i.e. with negative frequency) for both
the inboard- and outboard-running modes. At a wavenumber β = 0, with the two branches
merged, we find the aerofoil mode only describing the spanwise-uniform chordwise shock
oscillation.

4.4. Triglobal instability of spanwise-non-uniform base flow on straight wing
Attention now turns to the spanwise-non-uniform base flow obtained at terminal
convergence of the steady RANS iterations at a sweep angle of Λ = 0◦. We focus on
analysing the stability of straight wings whose base flow contains three-dimensional
cellular structures, as shown in figure 8. Recall that the wings with higher sweep angle
gave spanwise-uniform base flow also at terminal convergence. Low-, medium- and
high-aspect-ratio wings with A = 3, 5 and 10 were chosen on account of the number
of cells and cell size highlighted in figure 9. Figure 17 shows the eigenspectra of these
three wing flows at supercritical angles of attack α = 3.4◦ and 3.5◦. On the wing with
the lowest aspect ratio, one single unstable mode is identified with an angular frequency
of approximately ω = 0.4, close to the spanwise-uniform aerofoil mode’s frequency, but
with a substantially higher growth rate. There is also a marginally stable mode with a
slightly decreased frequency. These two modes are proper three-dimensional. Specifically,
spatial amplitudes follow the shock structure of the underlying base flow, resulting from
the growth of the spanwise-periodic monotone modes and nonlinear amplitude saturation.
Interestingly, and consequently, those monotone modes do not feature in the perturbation
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(a) (b) (e) ( f ) (g)

(c) (d)

Figure 18. Real part of surface pressure coefficient ĈP, plotted in the range [−0.001, 0.001], showing (a,c,e)
the leading mode and (b,d,f ,g) the marginal/unstable modes of the spanwise-non-uniform base flow on straight
wings with aspect ratioA = 3, 5 and 10.

dynamics of the spanwise-non-uniform base flow. For the leading unstable mode, the
dynamics of the two cells are synchronised (see figure 18a), whereas for the marginally
stable mode the cells are spatially out of phase (see figure 18b). In the case of the wing
with the medium aspect ratioA = 5 at angle of attack α = 3.5◦, two unstable modes are
observed. The growth rate of the leading mode is lower compared with that at aspect ratio
A = 3, while its frequency is slightly increased. The spatial structures of these modes are
similar to those on the wing with aspect ratioA = 3, as shown in figure 18(c,d). At the
lower angle of attack α = 3.4◦, only one dominant mode is observed which agrees with
the single cell found in the base flow. Finally, in the case of the wing with the highest
aspect ratio which shows three cells in the base flow in figure 8, three unstable modes are
identified. Overall in spanwise-non-uniform base flow, the number of discrete, physically
relevant modes seems to correspond with the number of shock-distortion cells.
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Figure 19. Time histories of perturbation in lift coefficient, C̃L, calculated by unsteady RANS (URANS)
simulations and reconstructed from leading unstable global mode in spanwise-non-uniform base flow (as shown
in figures 17 and 18) for two straight wings at angle of attack α = 3.5◦ with aspect ratio (a) A = 3 and
(b)A = 5. The bullets (•) correspond to the time instances visualised in figure 20.

4.5. Time-domain interpretation of global modes
To confirm accuracy of the eigensolution and interpret the interplay of multiple
dominant modes, a comparison with time-marching unsteady RANS results is shown in
figures 19–22. We focus both on the straight wing while scrutinising the aspect-ratio and
base-flow dependence (following the previous subsections) and on the swept-wing flow
with sweep angle Λ = 20◦ addressing the angle-of-attack dependence (cf. figure 14b).
Note in contrast to the unsteady RANS simulations in Crouch et al. (2019), where the
initial flow field was perturbed by an instability mode, we integrate in time starting from
non-perfectly converged steady-state solutions exhibiting residual noise. Figures 19 and 21
present the time histories of the perturbation in lift coefficient with respect to the base flow
at terminal convergence, C̃L = CL − C̄L, while figures 20 and 22 show the corresponding
surface pressure coefficient at suitably selected time instances. The reconstruction of
the unsteady flow solution from the global modes makes use of the relation C̃L(t) =
ĈL eλt + c.c., where c.c. refers to the complex conjugate and the complex-valued amplitude
of the lift perturbation, ĈL, follows from integrating the eigenvector û over the solid wing
surface ( just as obtaining integrated aerodynamic forces from the base flow). Overall,
from the figures it can be concluded that the stability tool produces results on a par with
time-marching unsteady RANS simulations within the limit of small unsteady perturbation
amplitudes, while, at the same time, the leading global modes offer an explanation for the
intricate nature of the time-marched signals.

For the straight wing with aspect ratio A = 3 in figure 19(a), two unsteady RANS
simulations are shown starting either from spanwise-uniform or -non-uniform base flow.
Note that the perturbation is shown in both cases with respect to the lift coefficient of
the nonlinear non-uniform base flow, as is the global mode reconstruction. Looking at
the unsteady RANS simulation started from the non-uniform base flow, the corresponding
global stability signal reconstructed from the leading global mode can predict the linear
growth of the perturbation until approximately t ≈ 95 (in non-dimensional units), before
a nonlinear mechanism plays the dominant role in saturating the growth. Obviously, in
the exponential growth stage for time t < 95 where linear perturbation amplitudes are
observed, the angular frequency ω ≈ 0.4 is in agreement with the stability results by
construction. Subsequently, once within the stage of established limit-cycle oscillation

925 A27-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

67
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.678


W. He and S. Timme

(a) (b) (c) (d ) (e)

( f ) (g) (h) (i) ( j)

y

x

Figure 20. Snapshots of surface pressure coefficient Cp, plotted in range [−1.5, 0], for (a–e) aspect ratio
A = 3 at dimensionless time instances t = 71, 95, 152, 162, 466 (cf. figure 19a) and ( f –j) aspect ratio
A = 5 at dimensionless time instances t = 143, 262, 392, 440, 547 (cf. figure 19b), both initialised from
non-uniform base flow.

(LCO) for non-dimensional time 160 < t < 435, the frequency increases slightly to
approximately ω = 0.44, implying the aerofoil mode dominates the flow. Indeed,
the time-averaged mean lift coefficient agrees more or less with the value of the
spanwise-uniform base flow. Figure 20(c,d), showing the corresponding surface pressure
coefficient, aims to highlight the LCO of the spanwise-uniform shock front corresponding
to the expansion and contraction of its downstream shear layer (essentially aerofoil shock
buffet). Concerning the unsteady RANS simulation started from the spanwise-uniform
base flow, initially the uniform shock front gets disturbed through the leading monotone
shock-distortion mode with wavelength equal to the chord length (which is expected and
similar to the machine-epsilon convergence of the nonlinear flow using the steady-state
time stepper). Note that the corresponding signal reconstructed from the monotone
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Figure 21. Time histories of perturbation in lift coefficient, C̃L, calculated by unsteady RANS (URANS) and
linear global mode for swept-wing base flow with sweep angle Λ = 20◦ and aspect ratioA = 3 at angles of
attack (a) α = 3.4◦ and (b) α = 3.5◦.

shock-distortion mode is not included in the plot. Nonlinear saturation effects make the
two unsteady RANS simulations identical once the limit cycle is established. Nevertheless,
an interesting event can be observed at approximately t = 466. A strong burst-like
excursion of the lift coefficient occurs due to the dramatic growth of pressure disturbances
resembling once again the leading unstable monotone mode (highlighted in figure 20e),
following which the flow re-enters the aerofoil-like limit cycle. Repeated reappearance
of the flare up of the unstable monotone modes is expected. Required time scales of
the time-marching simulations, as we demonstrate, are very substantial near the onset
to reveal the appearance and interplay of different modes. Interestingly, the description
of the time-marching simulations on the straight wing in Crouch et al. (2019) would
suggest that they observed a similar event of high activity of the otherwise seemingly
dormant, spanwise-periodic monotone (shock-distortion) mode. The reader is also referred
to Plante et al. (2020, 2021), where nonlinear time-marching simulations are discussed.
(The same argument applies to our swept-wing case discussed below.) Therein, the growth
of the leading shock-distortion mode is saturated leading to a persistent appearance of the
buffet cells. The reason for this contrast can be manifold, such as proximity to the onset
condition, different aerofoil profiles, chosen aspect ratio, turbulence model version and
spatial discretisation.

Concerning the wing with aspect ratio A = 5, the initial unsteady flow
development, when started from the spanwise-non-uniform base flow, is identical to
the lower-aspect-ratio wing, eventually leading to an LCO describing spanwise-uniform
aerofoil-like shock oscillation. During this stage (0 < t < 200), two slopes of σ1 ≈ 0.067
and σ2 ≈ 0.012 are identified corresponding to the growth rates of dominant and the
marginally unstable modes, respectively. Importantly (to assure a correct simulation
set-up with periodic boundary condition along the span), during the established LCO
stage, the two wings with aspect ratio A = 3 and 5 predict quasi-identical unsteady
flow fields with the same dominant frequency of approximately ω = 0.44, time-averaged
mean lift coefficient of 0.976 and associated oscillation amplitude of 0.048. Since
the wing with aspect ratio A = 5 has a higher lift coefficient of C̄L = 0.933 for the
spanwise-non-uniform base flow, compared with C̄L = 0.910 for the wing with aspect ratio
A = 3 (cf. figure 9), its shift towards the mean-flow value in the spanwise-uniform LCO
stage is somewhat lower, as visualised in figure 19. Nonetheless, we observe an aspect-ratio
dependence. After long time integration until approximately t = 390 (cf. figure 19b), the
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(a) (b) (c) (d) (e)
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Figure 22. Snapshots of surface pressure coefficient Cp, plotted in the range [−1.5, 0], and surface
skin-friction lines for swept wing with aspect ratioA = 3 and sweep angle Λ = 20◦ between dimensionless
times (a–d) t = 938.63 and 946.22 with increment �t = 2.53 and (e) t = 986.64, initialised from
spanwise-uniform base flow at angle of attack α = 3.4◦.

spanwise-uniform shock oscillation is disturbed, similar to the wing with aspect ratio
A = 3 shown in figure 20(e). However, looking at figure 20(h), the disturbance does
not resemble the leading monotone shock-distortion mode with wavelength equal to the
chord length. Subsequently, the unsteady lift coefficient becomes irregular resulting from
the pulsation of the single cell visualised in figure 20(i), in addition to the entire shock
front oscillating in chordwise direction. The appearance of a single cell could be linked
to the interplay of the two unstable modes, described in figure 17, possibly leading to an
incomplete cancellation of the shock curvature due to the out-of-phase spatial structures
shown in figure 18(c,d).

Analysing both the time histories of global integrated coefficients and pressure signals at
various discrete surface points, we find a dominant frequency of approximately ω = 0.35.
On this note, the interested reader is once again referred to Plante et al. (2020, 2021),
who compared unsteady RANS simulations on 2.5-dimensional (spanwise invariant) and
infinite three-dimensional cases for straight and swept wings, albeit using a different
aerofoil profile. The spanwise invariant scenario resulted in shock unsteadiness with a
dominant frequency of St = 0.075 (ω = 0.47), as did their corresponding biglobal stability
study, whereas the power spectral density estimate of the three-dimensional wing gave
a lower dominant frequency peaking at approximately St = 0.06 (ω = 0.38). The flow
field itself showed irregular amplification of a shock distortion and consequently buffet
cells. While the reasons for this frequency-related observation remained unexplained, we
propose a possible link to our global mode analysis using the spanwise-varying base flow.

Figure 21 summarises two unsteady RANS simulations for the flow over a wing
with sweep angle Λ = 20◦ and aspect ratio A = 3 around the onset of shock buffet
at angles of attack α = 3.4◦ and 3.5◦. This discussion relates to the global modes and
stability characteristics described in figure 14(b). Both simulations are initialised from
their fully converged spanwise-uniform base flows. The first long stretch of the signal
until approximately t = 961, shown as a flat line in figure 21(a), contains two stages.
First, remaining noise in the flow field decays exponentially dominated by the dynamics
of the stable aerofoil mode until approximately t = 633 (not shown for clarity). Second,
the leading spanwise-periodic travelling shock-distortion mode with wavelength equal to
the chord length grows exponentially between approximately t = 633 and 961. The growth,
both when linear assumptions apply and even more so in the nonlinear stage, is substantial,
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as visualised in figure 22. Recall the discussion on the straight-wing time-marching
simulations earlier. The figure shows both the outboard propagation of the three buffet cells
with an estimated phase speed of 0.22 in the nonlinear amplitude stage (while the linear
stage agrees with the results presented in figure 15c) and the significant shock distortion,
which in its final stages results in a complete breakdown of the flow field, as is evident from
the almost 50 % drop in lift coefficient compared with the base-flow value C̄L = 0.976.
(Note, both phase speed and lift coefficient are with respect to the reference velocity
perpendicular to the wing’s leading edge.) In the aftermath, the flow recovers describing a
spanwise-uniform shock oscillation with decaying amplitudes, according to the marginally
stable aerofoil mode. Possibly, even though the decaying aerofoil mode dominates the
global flow field, the initially minute growth of the shock-distortion mode is also present.
The inset plot in figure 21(a) illustrates an attempt to estimate the growth rates of these
latter two stages. The decay/growth rates extracted from the signal with linear amplitudes,
denoted σ1 (≈ −0.007) and σ2 (≈ 0.028) in the figure, are in excellent agreement with
those from the stability analysis in figure 14(b). Indeed, the reconstruction of the lift
coefficient using the stable aerofoil mode agrees very well with the decaying oscillation
of the unsteady RANS simulation. Overall, the description of the flow characteristics for
the higher angle of attack α = 3.5◦ in figure 21(b) is very similar with the exception that
now the aerofoil mode is unstable leading to periods of spanwise-uniform oscillations of
limited amplitude.

5. Conclusions

Triglobal stability analysis using an iterative inner–outer solution approach is exercised
herein for the study of infinite wings featuring transonic shock buffet and two types of
steady base flows; spanwise-uniform flow on straight and swept wings and non-uniform
flow on a straight wing. Infinite wings are modelled by enforcing a spanwise-periodic
boundary condition, which was linearised in the chosen flow solver as part of the current
work. Flow gradients are permitted in all spatial directions when computing the steady
base flow and no limiting assumptions on the perturbation dynamics are imposed either,
which generalises the more restrictive spanwise homogeneity and periodicity conditions of
corresponding biglobal studies. Swept-wing flow is simulated by adjusting the free-stream
velocity vector to ensure that the reference conditions in the plane perpendicular to the
leading edge of the wing are constant and independent of sweep angle.

Quasi-three-dimensional spanwise-uniform base flow on straight and swept wings,
studied at angles of attack around the onset of unsteadiness at high Reynolds number,
is quantitatively comparable to a proper two-dimensional aerofoil, albeit using a fully
three-dimensional solution approach. Besides the spanwise-uniform oscillatory aerofoil
mode, a group of spatially periodic monotone shock-distortion modes characterised
by different wavenumbers are found on the straight wing. These stationary modes
develop into travelling modes in swept-wing flow covering the typical broadband
frequency range of finite-wing shock buffet. The leading shock-distortion mode has a
wavelength equal to the aerofoil chord, independent of sweep angle. Frequency and phase
speed increase with sweep angle (and wavenumber for the former) and agree with an
empirical relation previously established in the literature. For the limit of very small
wavenumbers close to zero, mode branches of both outboard-running and more dominant
inboard-running directions are identified. In non-uniform base flow on the straight wing,
spanwise-irregular modes, congruous with the underlying three-dimensional nonlinear
shock pattern, are found. Depending on the aspect ratio, the interplay of unstable
modes can result in irregular unsteady responses, instead of well-organised large-scale
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unsteadiness characterised either by spatial uniformity or periodicity in the span direction.
The competing dynamics of dominant global modes in the perturbation flow field is
interpreted and understood through time-marching simulations revealing, amongst others,
distinct events of high spanwise-periodic shock-distortion activity.
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