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Abstract: 29 

Humans and other animals routinely make choices between goods of different value. Choices are 30 

often made within identifiable contexts, such that an efficient learner may represent values relative to 31 

their local context. However, if goods occur across multiple contexts, a relative value code can lead to 32 

irrational choice. In this case, an absolute context-independent value is preferable to a relative code. 33 

Here, we test the hypothesis that value representation is not fixed, but rationally adapted to context 34 

expectations. In two experiments, we manipulated participants’ expectations about whether item 35 

values learned within local contexts would need to be subsequently compared across contexts. Despite 36 

identical learning experiences, the group whose expectations included choices across local contexts, 37 

went on to learn more absolute-like representation than the group whose expectations only covered 38 

fixed local contexts. Thus, human value representation is neither relative nor absolute, but efficiently 39 

and rationally tuned to task demands.  40 

 41 

 42 
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 49 

 50 

 51 

  52 
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Main text: 53 

Humans and other animals often behave “as if” they calculated the value of goods, arranged 54 

goods according to their preferences in a rational manner, and chose the good with highest value. One 55 

way to achieve rational decision-making is to represent all items on an absolute scale, where an item's 56 

value is expressed as the amount of fixed units of measurement it provides. Units of measurement 57 

might be food items in a foraging patch, money, or the subjective utility of consumer products. Such 58 

an absolute value code is assumed in normative theories of decision-making1, optimal foraging 59 

theory2, many computational models of learning3 , and in key descriptive theories of choice4. 60 

Whilst an absolute code would equip the agent to make decisions across all contexts in which 61 

this unit of measurement is relevant, there are many reasons why biologically constrained systems 62 

may utilise different coding regimes. Absolute codes that maintain a constant unit may, for example, 63 

reserve precious coding range for values that occur with low frequency. Moreover, absolute codes 64 

may be more prone to deleterious noise if values cluster within a small range in each context (leading 65 

to easily confusable items).  66 

From the olfactory system in the fruitfly5, to visual systems6, through to value coding in 67 

humans7, neural systems can overcome such problems by encoding input relative to the local context 68 

(and/or state8,9). The value of one foraging patch can, for example, be encoded relative to other nearby 69 

patches. Such context-dependent encoding has been formalised in computational models, for instance 70 

by ensuring that coding covers the entire range of values (‘range adaptation’10) or by ensuring that 71 

values are normalised by concurrent inputs (‘divisive normalisation’11).  72 

The key advantage of relative codes is that they enable even small populations of neurons to 73 

efficiently represent items within a local context11. For the perceptual system, for example, adapting 74 

to local brightness levels (dark adaptation12) is likely close to optimal given the temporal and spatial 75 

autocorrelation in brightness in natural scenes (day-night light cycle). For value-based decisions, 76 

agents can boost discriminability using relative codes, which may be of particular importance if the 77 

agent aims to choose “correctly” (i.e., choose the highest valued item). This means that a foraging 78 

animal employing a relative value code may discriminate between patches of values A=5 and B=6 79 

with equal precision to when choosing between patches of values C=20 and D=21.  80 
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There is now ample evidence from psychology, behavioural ecology, primate 81 

neurophysiology and cognitive neuroscience that humans and other animals learn, and/or make 82 

choices consistent with such context-dependent value codes (9,13–19 but see20). A relative context-83 

dependent code also describes the firing pattern of neurons in value-related areas of the prefrontal 84 

cortex21 and explains human errors of judgment across many domains17. Relative codes have also 85 

been shown to be efficient in the sense that they maximize mutual information between stimulus and 86 

neural code under certain conditions22. In this latter sense, context-dependent codes can be locally 87 

optimal and resource efficient – allowing animals to choose the best option with the use of minimal 88 

resources22,23.  89 

However, as can easily be seen, relative value encoding can lead to inferior decision-making 90 

if the local contexts in which values were encoded are intermixed. In the above example, for instance, 91 

foraging patch B=6 is the locally superior option to A=5, which means that a pure relative encoder 92 

may prefer it to the globally superior option from a different context - provided it is inferior in its 93 

local context (e.g., prefer B=6 to C=20, where C is from [C=20, D=21]). Such ‘irrational’ decision-94 

making has been observed across species in many laboratory tasks10,15,17,24.  95 

Thus, one is faced with an additional problem: How to arbitrate the costs and benefits of 96 

absolute and relative encoding to optimize decision-making. This problem can be recast as one of 97 

expectation about context: If contexts are stable and distinct, relative encoding will be sufficient and 98 

maximizes discriminability, but if contexts are volatile and/or overlapping in time, a coding regime 99 

approximating absolute encoding will be better. Here, we take a first step towards this question by 100 

implicitly manipulating human participants’ expectations about contexts in two experiments.  In spirit, 101 

our work is similar to efforts in reinforcement learning to delineate under what circumstances, and 102 

under what cost, humans switch from a habitual (model-free) representation to a more costly 103 

representation that allows planning (model-based)25,26.   104 

In particular, we propose that humans do not use a single fixed representation of value, but 105 

flexibly tune value codes based on their expectations what the codes are for27. Further, we propose 106 

that the selection of which code to learn, is rational and efficient28. Thus, we do not ask whether 107 
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human value learning is absolute or relative overall 13,15, but rather whether humans flexibly adapt29,30 108 

their value representation in a manner that can be explained by expectation.  109 

We tested the hypothesis that value representation rationally adapts to task demands in two 110 

value-learning experiments, in which human participants learned values of pair-wise presented items. 111 

We implicitly manipulated task expectations, such that one group expected to make decisions within 112 

fixed local contexts (‘Uncrossed’), and another group expected to make decisions across local 113 

contexts (‘Crossed’). If value learning is fixed, the learnt value representations should be identical 114 

across groups. If value learning is rationally and flexibly adapted to task demands, people in the 115 

‘Crossed’ group should go on to learn more absolute-like representations (because they expect these 116 

to be task-relevant).   117 

Despite identical learning experiences, learnt value codes differed: participants learned more 118 

complex (absolute) representations only when they expected it to be necessary, thus highlighting the 119 

rational and dynamic nature of value representation.  120 

 121 

Results 122 

Design 123 

We conducted two value learning experiments. The first experiment used real-valued items, 124 

akin to studies in economic decision-making31, whereas the second used binomial outcomes akin to 125 

many reinforcement learning paradigms in this domain15. In both experiments, participants went 126 

through two independent phases of learning (with feedback) and decision-making (without feedback), 127 

with the stimuli optimised to allow reliable distinction between absolute and relative value encoding 128 

(Supplementary Methods: I; II).   129 

In the learning phases, participants learned the value of items through trial-by-trial feedback. 130 

As our key experimental manipulation, we implicitly altered participants’ expectations about the local 131 

contexts in which items had to be compared. After the initial learning phase, one group (Uncrossed) 132 

was presented with choices between fixed pairs of items (within contexts), whereas the other group 133 

(Crossed) encountered items also in intermixed pairs (across contexts).  134 
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We expected the Crossed group to use the experience of intermixed contexts to alter their value 135 

encoding for the subsequent independent learning phase. Value representations in both groups were 136 

measured with two surprise tasks at the end of each experiment. We first report on Experiment 1.  137 

 138 

Experiment 1 – real-valued items 139 

Participants took on the role of consultants to manufacturers of reproduction items (replicas of 140 

historical items). There were two separate manufacturers (of cars & antiques) in two separate Phases 141 

(Figure 1A). Participants’ goal was to learn market prices in order to ‘consult’ on which items to 142 

manufacture.  143 

In the Learning Phases, participants learned item values through trial-by-trial feedback, after 144 

which they advised the manufacturer in separate Decision phases. At the end, there were two surprise 145 

tasks (All-pairs, Value judgment) designed to measure value encoding in the last Learning phase. 146 

Participants were randomly and blindly assigned to either the Uncrossed or Crossed group (colour-147 

coded green and blue respectively, Figure 1A).  148 

Each Phase began with a Learning stage, in which participants sampled market values (Figure 149 

1B). A single mouse-click on an item returned a single sale price (superimposed on the clicked item). 150 

Participants were free to sample in any order and as much as they wished. Sampling for each pair was 151 

terminated by a selling decision, after which the next pair was shown. In each Phase, participants 152 

learned the values of 6 items arranged into 3 pairs with normally distributed market prices (Figure 153 

1A). 154 

In the Decision stage (Figure 1C), the Uncrossed group made decisions about the pairs they had 155 

previously experienced. The Crossed group additionally made decisions within novel pairings, thus 156 

breaking their learning contexts. Participants might, for example, decide between Item! and Item" 157 

which had previously formed part of the first and second pair respectively. Participants’ choices in the 158 

Decision stages and surprise tasks were incentive compatible.   159 

We hypothesized that people do not use a fixed value-learning mechanism, but flexibly adapt 160 

their value-learning mechanisms to learn useful value representations. Given double-blind assignment 161 
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to groups, both groups start ‘Learning 1’ with the same expectations. However, the first Decision 162 

phase (Figure 1C) provides very different implicit signals for the two groups.  163 

The Uncrossed group should have no problem performing in this task given successful learning 164 

(Figure 1C). This would even be the case if participants used extreme context-dependent encoding: a 165 

binary Valence code. Using this mechanism, one learns, for each pair, that one item is ‘good’ and that 166 

one item is ‘bad’. That is, one learns the following (separate) sets of orderings: [Item# < Item!], 167 

[Item$ < Item"], and [Item% < Item&].  168 

In the Crossed group (Figure 1C), however, even participants who used less extreme relative 169 

encoding strategies may struggle to compare items across contexts: comparing, for example, Item% ~ 170 

320 (low-value in its context) and Item!~280 (high-value in its context). These unexpected and 171 

potentially more difficult experiences led participants to respond more slowly (Supplementary Results 172 

III). 173 

If people adapt to expected task demands as hypothesized, and the implicit manipulation is 174 

sufficient to induce different expectations, the two groups should go on to learn different 175 

representations for the subsequent set of items – Learning 2 and Decision 2. Immediately after these 176 

tasks, we tested participants’ learned representations using two independent surprise tasks.  177 

 178 

Experiment 1 – real-valued items - Decision-making performance 179 

First, we tested participants performance in an All-pairs task, in which all possible pairs of 180 

items were presented to both groups (without feedback). We found that the Crossed group’s choice 181 

accuracy was statistically significantly better than the Uncrossed group’s despite identical learning 182 

Phases (t(44) = 2.61, p = .012, CI = .026–.199, d = .77, two-tailed independent t-test) and observed 183 

above-chance performance in both groups (Figure 2A, CIs do not overlap .5, see also Supplementary 184 

Results II). The difference in performance is consistent with the Crossed group having encoded a 185 

more absolute-like value representation than the Uncrossed group (Supplementary Methods I).  186 

The worse performance for Uncrossed was accompanied by slower decision times, suggesting 187 

greater processing demands, and shows that worse performance was not simply due to spending less 188 

time on decisions (i.e., a speed-accuracy trade-off, Supplementary Results VI).  189 
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Next, we turned to a feature of our experimental design which allowed us to dissociate 190 

absolute-like encoding from any relative encoding using ‘diagnostic’ item pairs. The intuition is that 191 

any relative encoding will result in a fraction of choices that are globally inferior, but locally superior 192 

within the learning context, whereas an absolute code would not result in the same mistakes. The 193 

items in our task were chosen to optimize for this (Supplementary Methods I). 194 

Specifically, in Phase 2, Item!~N(280,28) was paired with Item#~N(250, 25). On the one hand, 195 

a relative learner would learn that Item! is ‘good’ within its local context. On the other hand, they 196 

would learn that both Item$
 ~N(300,30) and Item% ~N(320,32) are ‘bad’, because they were paired 197 

with higher-value items in their respective context (Figure 1A). Thus, a relative-value learner should 198 

prefer the locally ‘good’ (but globally inferior) Item!, to the locally ‘bad’ (but globally superior) 199 

Item$,%: thus exhibiting irrational choice (see also e.g., 15).  200 

In line with these predictions, we found that the Uncrossed group preferred the globally inferior 201 

option, choosing it instead of the globally superior options (preferring Item! to Item$,%), whereas the 202 

Crossed group expressed a weak preference for the globally superior items. The difference between 203 

groups was statistically marginally significant for the first pair (U(46) = 183, p = .055, r = .31), and 204 

statistically significant for the second pair (U(46) = 145, p = .003, r = .45), by two-tailed Mann-205 

Whitney U’s.  206 

In summary, participants choice behaviour shows that the groups learned different value 207 

representations despite identical learning Phases, and that, compared to Uncrossed, choices in Crossed 208 

were more consistent with an absolute code. 209 

 210 

Decoding value representation  211 

 While the above analyses provide tentative evidence that the groups learned different value 212 

representations, we next set out to address this more directly. For this purpose, participants were 213 

asked to directly indicate their learned value for each item in a Value Judgment task (Figure 1A). 214 

Items were presented sequentially (in random order), and participants indicated perceived value using 215 

a slider.  216 
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We applied representational similarity analysis (RSA)32,33 to these data. Although RSA was 217 

developed mainly as a multivariate analysis technique for neural data, it is increasingly deployed to 218 

characterize brain representations given behavioural data (e.g.,34–36) and can be used whenever the 219 

measure of interest is pair-wise distances on a univariate or multivariate space.  220 

We computed representational dissimilarity matrices (RDMs) separately for each participant 221 

and averaged them to form group-wise RDMs (for raw judgement data see Supplementary Results 222 

IV). Shown in Figure 3A-D, these RDMs depict each group’s value representation in the form of a 223 

dissimilarity structure that is rank-transformed and scaled (Methods). On this scale, a dissimilarity of 224 

0 implies that item values are represented identically (item pairs along the diagonal), and a 225 

dissimilarity of 1 implies that item values are highly dissimilar. 226 

Empirical RDMs are most readily interpreted when compared to model RDMs. We compared 227 

participants RDMs to four model RDMs, three relative value RDMs: ‘Valence’, ‘Range-adaptation’, 228 

‘Divisive normalisation’ and an ‘Absolute’ value RDM. We included different classes of relative 229 

models to ensure that results do not only hold for a single type of relative encoding.  230 

Note, however, that whilst we can readily contrast different relative models with the absolute 231 

model - and ask which best explains people’s representation of value - we cannot reliably determine if 232 

a relative code was generated by range-adaptation or by divisive normalisation (Supplementary 233 

Results VIII, IX). Indeed, our study was designed specifically to discriminate absolute from relative 234 

encoding, regardless of the precise implementation of the relative value encoding (Supplementary 235 

Methods I; II).  236 

The first implemented relative model (‘Valence’, Figure 3E) formalizes the extreme ‘good vs 237 

bad’ encoding discussed above.  The better option in each local context is encoded as ‘good’ and the 238 

worse option as ‘bad’. Thus, this model does not retain any magnitude information. The second 239 

relative model (‘Range adaptation’, Figure 3F) formalizes range-adaptation encoding, a highly 240 

successful class of context-dependent encoding schemes10,16. Accordingly, the value of the left item 241 

equals ()*+!"#$	
+-.	(()*+!"#$,()*+%&'($)

  (and vice versa for the right item). Note that this model scales values 242 

within local contexts to the interval [+(1	(2)
+-.	(2)

, 1], rather than the interval [0,1]. This is necessary here as 243 
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with only two items, the full range adaptation model (e.g.16) would otherwise reduce to the valence 244 

model. The third relative model (‘Divisive normalisation’, Figure 3G) formalizes the divisive 245 

normalisation encoding highlighted in the Introduction. Here the value of the left item equals 246 

()*+!"#$

#3()*+!"#$3()*+%&'($
 (and vice versa for the right item). Finally, we formalize absolute context-247 

independent encoding, as the expected value for items. For example, Item! is encoded as 180 because 248 

Item!~N(180,18).  249 

 250 

Experiment 1 – real-valued items – Value representation 251 

First, we highlight qualitative differences and similarities between participants value 252 

representation and those predicted by the different models. As can be seen in Figure 3, the three 253 

relative RDMs (E-G) have clusters of items that are objectively similar in value but are nonetheless 254 

encoded as highly dissimilar. For example, all the relative models capture the ‘irrational’ value 255 

encoding, by which Item!~𝑁(280,28) is encoded as more like Item"~𝑁(330,33), than 256 

Item$~𝑁(300,30). This ‘irrational’ dissimilarity structure follows from the context-dependent 257 

encoding of value formalized in the relative value models (see also Supplementary Methods I; II).  258 

 In Figure 3 Panel C-D, qualitative similarities are highlighted by white outlines. Items with 259 

values 250 and 280, for example, are encoded as dissimilar in the Uncrossed RDM - as they are in the 260 

relative models (E-G). The Crossed RDM, on the other hand, encodes this item pair as similar: in 261 

keeping with the Absolute RDM (H). The Crossed RDM also reflects a gradient of increasing 262 

dissimilarity between 390 and the other lower-value items. The Uncrossed RDM does not seem to 263 

exhibit this gradient. Finally, both Uncrossed and Crossed groups encode value in a format that goes 264 

beyond mere valence encoding (Figure 3A-B, E). Thus, participants in both groups encode value 265 

magnitude information (Supplementary Results V for formal tests).   266 

Next, we turned to the key quantitative comparisons. We contrasted the correlations between 267 

each model and the two groups. As per standard practice33, model RDMs were compared to the 268 

RDMs derived from participants’ behaviour using rank-correlations (Methods). A large positive 269 

correlation between a participant’s RDM and a given model RDM, shows that their representation of 270 
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value is well accounted for by the model. For presentation purposes, we focus on the two relative 271 

models that capture key aspects of participants value representation: range-adaptation and divisive 272 

normalisation.  273 

The Crossed group learned a more absolute value representation than the Uncrossed group: 274 

both compared to the Range-adaptation model (t(44) = 2.97, p = .005, CI = .15-.77, d = .88) and the 275 

Divisive normalisation model (t(44) = 2.57, p = .014, CI = .10-.85, d = .76), both two-tailed 276 

independent t-tests.   277 

Figure 4A-B plots model-participant RDM similarities expressed as partial Spearman 278 

Correlation Coefficients (thus discounting shared variance between models). Because the Range-279 

adaptation and the Divisive normalisation RDMs were highly correlated, we ran separate analyses 280 

contrasting each with the Absolute RDM. Symbols in Figure 4 reflect group averages, and grey lines 281 

reflect individual participants.  282 

For the Uncrossed group (A), no model consistently outperforms another, indicated by the 283 

mix of slopes. In the Crossed group, however, most participants are substantially better accounted for 284 

by absolute encoding (upward sloping lines), indicating that most participants shifted their encoding 285 

strategy towards an absolute code. 286 

Figure 4C shows the within-group contrast between the Absolute model and the two relative 287 

models from Figure 4A-B. Positive ∆r indicate evidence in favour of the absolute model, and negative 288 

indicate evidence in favour of the relative model. As can be seen, no model is consistently favoured in 289 

the Uncrossed group (CI’s overlap 0). However, in the Crossed group, the absolute model is favoured 290 

(CIs do not overlap 0).  291 

The previous analyses used a partial correlation approach to rule out the contribution of any 292 

shared variance. To ensure that these results do not depend on removing shared variance, we also ran 293 

the same analysis using independently run correlations (Methods). As can be seen in Figure 4D, the 294 

results replicate with independent correlations; the Crossed group learnt a more absolute value 295 

representation than the Uncrossed group: whether one considers the Range-adaptation RDM (t(44) = 296 

3.23, p = .002, CI = .21 - .92, d = .95), or the Divisive normalisation RDM (t(44) = 2.88, p = .006, CI 297 

= .13 - .74, d = .85).  298 
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Jointly, the results show that 1) people adapt their learning to expected task demands 299 

(difference between groups despite identical learning Phases), and 2) people only learn absolute-like 300 

value representations when a relative representation is expected to be insufficient for the task at hand 301 

(in the Crossed group). 302 

 303 

Experiment 2 – Binomial outcomes  304 

Next, we turned to a binomial decision task similar to many decision-making tasks in the field 305 

of reinforcement learning. Although economic values often come from continuous distributions as in 306 

Experiment 1 (e.g., market prices, food quantities), laboratory tasks often involve binomial 307 

distributions15,37–39. We therefore sought to establish whether people can also flexibly tune their value-308 

learning mechanism(s) for binomial outcome distributions.  309 

Key design features were kept identical to Experiment 1 (Figure 5A): learning experiences 310 

were identical across conditions, Phase 1 was designed to set participants’ expectations for Phase 2 in 311 

a condition-dependent manner (Crossed vs. Uncrossed), and learnt values were assessed in separate 312 

surprise tasks (All-pairs, Value judgement). Notable exceptions include using binomial value 313 

distributions, the number of ‘samples’ being fixed, and the experiment being run online.  314 

Based on Experiment 1, we predicted that, compared to the Uncrossed group, the Crossed 315 

group would show 1) better All-pairs performance, 2) improved choice for the single diagnostic item 316 

pair and 3) more absolute-like value representations. An initial experiment (Supplementary Results I) 317 

broadly confirmed these predictions but was underpowered to find a between-group effect of 318 

moderate size. We therefore ran a better powered pre-registered replication on which we report next. 319 

 320 

Experiment 2 – Binomial outcomes - Decision-making performance 321 

As can be seen in Figure 5B, in both groups choice performance was statistically significantly 322 

above chance (CIs do not overlap .5, see also Supplementary Results II). As in Experiment 1, the 323 

Crossed group made statistically significantly better decisions in All-pairs following learning (Figure 324 

5B, t(222) = 2.30, p = .011, CI = .011-inf, d = .31, one-tailed independent t-test). As in Experiment 1, 325 
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the worse performance in the Uncrossed group was accompanied by slower decision times 326 

(Supplementary Results VI).  327 

Next, we further constrained our comparison to those item pairs for which a divisive 328 

normalisation model would make opposing predictions to an absolute value code (Supplementary 329 

Methods II). Even for this restricted analysis (Figure 4C), for which choosing is more difficult 330 

(differences between values are smaller, Supplementary Figure 3A) choice performance was 331 

statistically significantly above chance in both groups (non-overlapping CIs, Figure 5C).  However, 332 

for this sub-selection, the Crossed group again made statistically significantly better decisions than the 333 

Uncrossed group (t(222) = 3.56, p < .001, CI = .073–inf, d = .48, one-tailed independent t-test).  334 

Restricting the analysis further to the single diagnostic stimulus pair (Supplementary Methods 335 

II) replicates Experiment 1 (Figure 5D): Crossed group participants chose the higher-value option 336 

more frequently than Uncrossed (Figure 5C; U(224) = 4722, p < .001, r = .25, one-tailed Mann-U 337 

Whitney test). Thus, as in Experiment 1, decision-making was consistent with the Crossed group 338 

learning a more absolute-like value representation than the Uncrossed group.  339 

 340 

Experiment 2 – Binomial outcomes - Value representation 341 

Next, we turned our attention again to the RSA analyses. Figure 6A-B show the group-wise 342 

average RDMs for Experiment 2. As in Experiment 1, Figure 6C-D highlight similarities between the 343 

empirical average RDMs and the model RDMs. As in Experiment 1, participants’ value 344 

representation was not consistent with a Valence code (Figure 6E, for formal tests see Supplementary 345 

Results V, and for raw judgements see Supplementary Results IV).  346 

As in Experiment 1, the Crossed group learned a more absolute value representation than the 347 

Uncrossed group: whether one considers the Range-adaptation RDM (t(222) = 3.25, p < .001, CI = 348 

.17-inf, d = .43), or the Divisive normalisation RDM (t(222) = 3.09, p = .001, CI = .15-inf, d = .41, 349 

both one-tailed independent t-tests). 350 

 Comparing the empirical RDMs to the finer-grained model RDMs, the ‘cross-type’ pattern in 351 

the two-remaining relative RDMs (Figure 6F-H) is apparent in Uncrossed group (Figure 6C), but 352 

largely absent in the Crossed group (Figure 6D). The latter instead seems to reflect a gradient of 353 
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dissimilarity approximating the underlying outcome probabilities as in the Absolute Model (.1 vs the 354 

remaining item values, Figure 6C).  355 

Next, we turned to the partial correlation analyses plotted in Figure 7A-B. For the Uncrossed 356 

group (A), there was a trend towards the relative models performing better than the absolute model. 357 

However, as in Experiment 1, no model consistently outperformed another (mix of sloped lines). In 358 

the Crossed group, however, participants were substantially better accounted for by absolute encoding 359 

(upward sloping lines); regardless of whether the comparison is a Range adaptation RDM or a 360 

Divisive normalisation RDM.  361 

Figure 7C shows the within-group contrast between the Absolute model and the two relative 362 

models from the data in Figure 7A-B. Positive ∆r indicate evidence in favour of the absolute model, 363 

and negative indicate evidence in favour of the relative model. As can be seen, there is no statistically 364 

significant evidence of any model being consistently favoured in the Uncrossed group (all CIs overlap 365 

0). However, in the Crossed group, the absolute model is clearly favoured (CIs do not overlap 0).  366 

Figure 7D shows an analysis identical to that in Figure 7C except that it has been carried out on 367 

independently run correlations. As can be seen, the results persist with independent correlations. The 368 

Crossed group learned a more absolute value representation than the Uncrossed group: whether one 369 

considers the Range-adaptation RDM (t(222) = 3.01, p = .002, CI = .05-inf, d = .40), or the Divisive 370 

normalisation RDM (t(222) = 3.15, p < .001, CI = .02-inf, d = .42, both one-tailed independent t-371 

tests). 372 

Thus, Experiment 2 replicated and generalised the results of Experiment 1, using an online 373 

study with binomial outcome distributions. Choice task data showed that the Crossed group learned a 374 

different value representation than the Uncrossed group – despite identical learning experiences. The 375 

choices in the Crossed group were better than those in the Uncrossed group and were better 376 

specifically for item pairs for which an absolute-like representation will result in improved choice. 377 

The RSA analyses further show that the Crossed group learned an absolute-like representation, and 378 

that they learned a more absolute-like representation than the Uncrossed group.  379 

 380 

Discussion 381 
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We sought to reconcile the theoretical and empirical tension between two diametrically 382 

opposing accounts of value learning and encoding: a context-independent but potentially 383 

computationally costly absolute value representation1,2,4, and an efficient local, but potentially 384 

irrational, relative value representation 7,11,13,15. We proposed that humans do not use a single fixed 385 

mechanism – learning either absolute or relative value codes – but adapt their learning to expected 386 

task demands in an efficient and rational manner: learning sufficient and necessary value 387 

representations.  388 

 We tested this hypothesis in two value-learning experiments: one involving real-valued items 389 

and the other involving binomial outcomes. In each study, the first phase was equivalent to the full 390 

experience of participants in many experimental paradigms(e.g., 15,37). The second phase gave 391 

participants the chance to use their prior experience with the task to tune their learning mechanism to 392 

optimise task performance. Phase 2 thus mimicked the opportunity to adapt learning mechanisms that 393 

arise in many real-life tasks (and which are performed more than once).   394 

Despite identical learning experiences, the two groups learned different value codes. 395 

Specifically, across the two experiments, the Crossed group made decisions consistent with a higher-396 

fidelity representation (Figs. 3,6), made fewer irrational choices (Figs. 2,5), and learned 397 

representations that were more absolute-like than the Uncrossed group (Figs. 4,7). Importantly, 398 

participants learned more absolute representations only when it was expected to be useful. Thus, 399 

people learn neither absolute nor relative value codes, but adapt their learning to what they expect to 400 

code to be used for.  401 

Nevertheless, the reliable group differences were not always reflected at the individual level. 402 

In the Uncrossed condition, many participants appeared to have learnt absolute-like codes. This may 403 

be driven by the fact that both absolute and relative codes yield good results for the Uncrossed group. 404 

Thus, whichever code participants favour as their “default” would be expected to persist. Relatedly, in 405 

the Crossed condition some participants appeared to have learnt relative codes. This may be due to 406 

factors beyond the scope of our current study, such as cognitive capacity limitations40, intrinsic 407 

computational noise41,42, or mechanisms relating to working memory or attention43,44. Future work 408 

might manipulate task demands and difficulty38,45, (c.f. 46 to address these factors.  409 
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A second outstanding question relates to precise encoding of the flexibly adapted 410 

representation. Whilst our design allowed us to determine that people switch to an absolute value 411 

representation when they expect it to be necessary, it does not allow finer-grade discrimination 412 

between different kinds of relative encodings. Apart from the Valence model, which we were able to 413 

largely reject (Supplementary Results V), different experimental designs are required to address this 414 

question. It is also possible that any relative value code is itself adaptable and/or determined by task 415 

constraints.  416 

A related question is what mechanisms give rise to the flexible and adaptive value 417 

representations we observe. Our studies were designed for well-controlled measurement of value 418 

representation following learning, with an emphasis on being able to dissociate absolute from relative 419 

value encoding. The trade-off is that the design is not effective in characterizing learning mechanisms 420 

themselves - as opposed to the codes they give rise to. Nevertheless, our design allowed us to 421 

successfully recover and discriminate between relative and absolute models in simulations, thus 422 

supporting our key RDM contrasts (Supplementary Results VIII), and allowing us to ask: Is value 423 

encoding adaptive, and if so – is it rationally adaptive?  424 

In principle, a single mechanism could underlie the observed flexibility. Such a mechanism 425 

could, for example, be implemented with a free parameter governing the extent to which learning is 426 

relative, such that	item4*5) = ()*+!"#$

#36∗(()*+!"#$3()*+%&'($)
	, where W is a free parameter between 0 (for 427 

wholly absolute encoding) and 1 (for wholly relative encoding, see Supplementary Results IX). 428 

Alternatively, the space over which item values are normalised could be expanded to render the code 429 

absolute-like. However, it is also possible that mechanisms rely at least in part on different substrates 430 

as in, for example, model-based and model-free learning47–49.  431 

Finally, extrapolating beyond the behavioural data at hand, one might reasonably expect that 432 

relative values behave like “cached” values in Reinforcement Learning, in that they incorporate 433 

context into their code (without later being able to retrieve context values), whereas absolute-like 434 

encoding may rely on memory systems that separate item and context representations, allowing the 435 

system to flexibly combine them at decision time. Thus one might expect the absolute-like 436 
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representation to preferentially recruit hippocampal-medial prefrontal circuits, whereas relative 437 

encoding may rely more heavily on striatal-prefrontal circuits, as approximately in the model-free / 438 

model-based distinction in RL49. However, further research is needed to identify the neural 439 

mechanisms arbitrating between the two encodings.   440 

In summary, our results highlight the highly dynamic and rational nature of value 441 

representation: humans do not simply have a single, fixed form of representation, but rather adjust 442 

their value code in a rational50–52 manner according to expected task demands. In relation to the 443 

ongoing debate about whether the brain encodes values at all53,54, where relative encoding is 444 

sometimes taken as evidence that it does not, our results suggest the it may well do - if the 445 

circumstances merit. In other words, perhaps both absolute and relative codes previously found can be 446 

explained by participants inferring which code would be sufficient for the task at hand.  447 

 448 

Methods 449 

Experiment 1 - Participants 450 

The study complied with all relevant ethical regulations and was approved by the local ethics 451 

committee at City, University of London. Sixty participants (37 female) were recruited via the local 452 

participation panel. Participants provided written informed consent and were debriefed. Participants 453 

had normal, or corrected-to-normal, vision, were fluent in English, healthy (no known physical or 454 

psychological conditions), and between 18-45 years old. No statistical methods were used to pre-455 

determine sample sizes, but our sample sizes are similar to those in previous work10,15. 456 

Participants were reimbursed for their time and were paid a performance-related bonus: a base 457 

pay of £5 and an additional bonus between £0 and £6. The average bonus was for a total of £2.78 458 

(range £0-6). The performance bonus was determined by choice performance across all Decision 459 

Phases as well as during the final two tasks. The greater the number of high-value choices, the greater 460 

the bonus, and the closer the judgement to the true item value the higher the bonus.  461 

We excluded participants who did not fulfil minimal task requirements. Criteria apply to the 462 

Learning phases only (Figure 1A-B), and are therefore orthogonal to the target behaviour in the final 463 

tasks (Figure 1A). Exclusion criteria were based on 1) sampling behaviour and 2) below-chance 464 
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performance for the preliminary decisions in the first sampling phase. Participants who only sampled 465 

once (or fewer times), per item per item-pair sampling opportunity, were excluded (Learning 1-2, 466 

Figure 1). This cut-off represents <= 18 samples per Context and is far lower than the median of 123 467 

(IQR=118) and 143 (IQR=91) for Phase 1 and 2 respectively. There were 9 preliminary decisions in 468 

the first Phase (3 pairs presented three times each, Figure 1 A-B). Someone who responded randomly 469 

when making these decisions, would be expected to achieve a choice accuracy between .22 and .78 470 

(with a mean choice accuracy of .5). This range reflects the lower and upper 95% confidence interval 471 

on a hypothetical agent who responds randomly (i.e., selects each option with p = .5). Participants 472 

who performed worse than the upper confidence interval (i.e., did not achieve at a greater choice 473 

accuracy than expected by chance) were excluded. 474 

In summary, we excluded participants who showed no or little evidence of learning – a pre-475 

condition for encoding value (whether in an absolute or relative form). In total, fourteen participants 476 

met one or both exclusion criteria for a final sample size of n=46: 24 of which had been assigned to 477 

the Uncrossed condition, and 22 of which had been assigned to the Crossed condition.  478 

Experiment 1 - Materials  479 

Participants took on the role of a consultant to a manufacturer of reproduction items in two 480 

different contexts (antiques/cars, Figure 1). The item-values and item-pairs were Phase-specific 481 

(Figure 1A). However, the mapping of item type (antiques/cars) to Phase, the mapping of specific 482 

items (e.g., typewriter) to item-values (e.g., N(180,18)), and the side on which items were presented 483 

during sampling, were all randomized across participants.  484 

Item-values (Figure 1A) were selected primarily so that absolute-value and relative-value 485 

representations dissociate (Supplementary Methods I-II, Supplementary Figure 1-3), and secondarily 486 

to achieve a balance between task-difficulties in the Learning and Decision phases (Supplementary 487 

Methods III, Supplementary Figure 4-7). A single sample from one item resulted in a draw from the 488 

corresponding normal value distribution (truncated at ±2 SD). The Learning phases (Figure 1A-B, D) 489 

were self-paced, and participants had a wide range of different strategies as evidenced by the wide 490 

range of the number of samples drawn (range Phase 1: min=48, max=478: range Phase 2; min=32, 491 

max=509).  492 
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The Decision phases (Figure 1A, C-D) involved 18 decisions per Phase. The Uncrossed group 493 

decided between the pairs they had experienced during sampling (repeated 6 times = 18 decisions). 494 

The Crossed group made decisions between novel pairs (6 novel pairs x 2 = 12 decisions, see Figure 1 495 

for examples), in addition to learnt pairs (3 pairs x 2 = 6 decisions).  496 

The two final tasks (Figure 1A, E) were identical across groups. The All-pairs task involved 15 497 

pairs, representing a full factorial combination of all possible pairs from Phase 2 (excluding identical 498 

pairs), repeated three times for a total of 45 pairs. The Value judgment task involved the 6 items in 499 

Phase 2, presented one at a time along with a slider-interface (min=100, max=450). For all tasks, the 500 

presentation order and presentation side (where applicable) were randomized across participants. 501 

Experiment 1 Procedure 502 

Participants read the information sheet, provided written informed consent, and completed the 503 

tasks. After completing the behavioural tasks, participants completed three questionnaires. These 504 

formed part of one author’s MSc dissertation project and are not reported on here.  505 

Experiment 1 Apparatus 506 

Stimuli were displayed on a touchscreen (Ilyama T2245MSC) and code was written in 507 

MATLAB (Mathworks) using PsychToolbox55 on Linux (Xubuntu 18.04) with a soft real-time kernel. 508 

Experiment 2 Participants 509 

The study was approved by the local ethics committee at City, University of London, and 510 

complied with all relevant ethical regulations. Participants were recruited via Prolific Academic, fully 511 

informed, provided written informed consent and were debriefed. Participants were between the age 512 

of 18 and 40, were UK residents, were healthy (no ongoing mental health conditions, dementia/mild 513 

cognitive impairment, no daily impact of mental illness), had not participated in similar studies of 514 

ours, had a minimum approval rate on Prolific of 99 and minimum of 10 submissions. We sought to 515 

include a minimum of 280 participants, conditional on having at least 100 participants in each 516 

condition passing post-completion exclusion criteria. The sample size was determined based on power 517 

calculations, which in turn were based on the pilot study (Supplementary Results I). Power 518 

calculation, exclusion criteria, and sampling strategy were pre-registered (https://osf.io/xjsmh). 519 
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Online panels provide little experimental control and the potential for poor participant 520 

engagement (see also discussion in Supplementary Results VII). To minimise this issue, we employed 521 

an initial check that participants had read and understood task instructions. To be eligible, potential 522 

participants had to answer 8 multiple-choice questions correctly. In addition, participants were 523 

allowed to make only one error in the first Decision block for the stimuli they had just learnt about. 524 

Specifically, if after experiencing 10 learning trials per item-pair, participants were unable to choose 525 

the higher value items 2 out of the first 3 presentations the study ended prematurely, and participants’ 526 

pay was pro-rated. We chose to allow 1 error as even engaged participants might be expected to make 527 

mistakes especially for the more difficult stimulus pair (.8 vs .9). In total 888 participants expressed 528 

interest and 352 completed the full study. Most non-completers (92%) failed the initial knowledge 529 

test.  530 

Participants were reimbursed for their time and were paid a performance-related bonus. 531 

Participants were paid a base pay of £2.92 for participation (the experiment took ~35 mins) and an 532 

additional bonus between £0 and £2.92. The average bonus was £1.46 (range £0.50–£2). The 533 

performance bonus was determined by choice performance across all Learning, Decision Phases and 534 

the final two tasks. Correct choices in the Decision phases and the All-pairs task were weighted x10 535 

compared to Learning. This was done to encourage participant engagement for the tasks which did not 536 

involve feedback. In general, the reward structure was as in Experiment 1 in that the greater the 537 

number of high-value choices, the higher the bonus, and the closer the judged value to the true item 538 

value, the higher the bonus. 539 

In addition to the pre-registered a priori exclusions, we also employed pre-registered exclusion 540 

criteria based on participants’ not fulfilling minimal task performance criteria after completing the full 541 

study. Because each participant experienced the same number of trials, sampling behaviour cannot be 542 

used for excluding disengaged participants (unlike in Experiment 1). Instead, we excluded participants 543 

who did not learn to choose among the pairs experienced during Learning. All participants were trained 544 

on the following binomial probability pairs: [.1 vs .6], [4 vs .7] and [.8 vs .9.] - irrespective of condition. 545 

We excluded participants who made more than two errors in two repeats of these three pairs (i.e., more 546 

than 2/6 errors) at the end of the experiment (in the All-pairs task). In other words, we include only 547 
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participants who showed evidence of encoding these learning phases for later recall. Note that these 548 

exclusion criteria are orthogonal to the question of absolute and relative value codes. Both absolute and 549 

relative models of learning will allow participants to learn to choose between the items in the Learning 550 

phase. In other words, choices between items of pairs that participants directly learned about - unlike 551 

novel combinations of the component items - are not diagnostic with regards to value representation.  552 

Applying these exclusion criteria, which are orthogonal to which model participants may use to 553 

encode value, leaves N=224 participants of which n=119 participants were from the Uncrossed group 554 

and n=105 were from the Crossed group. That is, it resulted in the exclusion of ~36% of participants. 555 

We report analyses also including these excluded participants in Supplementary Results VII (these 556 

analyses replicate those reported here).  557 

Experiment 2 Materials and Procedure 558 

Experiment 2 was a pre-registered version of a previous study (https://osf.io/xjsmh). As in 559 

Experiment 1, participants took on the role of a consultant to a manufacturer of reproduction items in 560 

two different contexts (antiques/cars, Figure 5). Key design features were identical to Experiment 1. 561 

However, outcomes were binomial (successful sale/unsuccessful sale), the task was not self-paced, 562 

and the learning experience was not ‘blocked’ by item-pairs (item-pairs were randomly intermixed 563 

during learning) and involved a relatively rapid stimulus display sequence.  564 

In the Learning Phases, participants saw each item pair presented side-by-side (~1 sec), 565 

followed by a response phase in which participants had ~1.5 second to make a choice, followed by 566 

sequential feedback, in which the chosen item was presented first followed by the unchosen item.  567 

Outcome feedback was in the form of a green double-rectangle image outline (successful sale) or a 568 

single-rectangle red image outline (unsuccessful sale).  569 

Experienced outcomes matched the expected outcome of the binomial distributions (Figure 570 

5A). This was achieved by pre-allocating and shuffling an outcome vector (of 1’s and 0’s) for each 571 

item. This design minimizes the impact of sampling error56 on differences between participants and/or 572 

conditions. There were two learning blocks per Learning Phase. In each block each pair was presented 573 

10 times, for a total of 30 trials per block and 60 trials per Phase. The presentation order was 574 

randomized.  575 
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Each of the two blocks of Decision trials (two for each Learning Phase), involved 12 decisions 576 

without feedback. The Uncrossed group made decisions between pairs experienced during learning (3 577 

pairs x 4). In addition to experienced pairs (3 pairs presented once), the Crossed group made decisions 578 

also between novel pairs composed of items from different learning pairs (9 novel pairs, randomized 579 

across participants). Thus, each group experienced 24 Decision trials per Learning Phase.  580 

The two final tasks (Figure 5A) were identical across groups. The All-pairs task involved 15 581 

pairs, representing a full factorial combination of all possible pairs from Phase 2 (excluding identical 582 

pairs), repeated twice (controlling for presentation side) for a total of 30 pairs. The Value judgment 583 

task involved the 6 items in Phase 2, presented one at a time along with a slider-interface (min=0%, 584 

max=100%) representing the probability of an item selling. The presentation order and presentation 585 

side (where applicable) were randomized across participants for all tasks.  586 

Design and Statistical Analyses – Experiment 1 & 2 587 

Both experiments used a between-subject design with participants assigned randomly and 588 

blindly to one of two conditions: Uncrossed and Crossed. Our analyses focus on differences between 589 

the two groups for the two final tasks and within-task contrasts against reference magnitudes.  590 

Prior to any analyses, we first explored data for normality by inspecting Q-Q plots and 591 

boxplots, and for independent tests equality of variances (F test). The primary inferential statistic was 592 

the t-test, and these tests relatively robust to violations of assumptions and were used unless 593 

deviations were extreme.   594 

For data with clear deviations from parametric assumptions (e.g., Figure 2B), less powerful 595 

non-parametric equivalent tests were used. To rule out potential limits to t-test robustness affecting 596 

inferences we also ran all our t-tests reported here using non-parametric tests. All contrasts for which 597 

the t-test was used replicate with non-parametric tests (i.e., a significant test for the t-test also yields a 598 

significant result for the non-parametric equivalent). The results therefore do not depend on the 599 

assumptions of the independent and paired-samples t-tests.  600 

We also report 95% CIs (parametric or bootstrapped) for all descriptive statistics here. CIs can 601 

be used for inference by comparing them to reference magnitudes. For example, if the mean choice 602 

accuracy is above .5, and the 95% CI of that mean does not overlap .5, choice performance was 603 



 23 

statistically significantly greater than chance (though overlapping CIs do not necessarily imply a non-604 

significant contrast).  605 

All reported tests for Experiment 1 are two-tailed. Predictions for Experiment 2 were pre-606 

registered (https://osf.io/xjsmh) and derived from results from Experiment 1, and the initial pilot 607 

version of Experiment 2 (Supplementary Results I), and all between-group contrasts were one-tailed. 608 

Reported effect sizes are Cohen’s d for t-tests (d >= .2 small; d  >= .5 medium; d >= .8 large) and 609 

rank-biserial correlation r for non-parametric tests (r >= .1  small; r >= .3 medium; r >= .5 large). 610 

Cohen’s d was computed as 𝑑 = 	 89:(;)
√=

 and 𝑑 = 𝑎𝑏𝑠(𝑡)	5 #
>#
+ #

>!
 for paired-samples and independent 611 

t-statistic respectively. Rank-biserial correlation was computed as 𝑟 = 1 − !?
>#	>!

 for the Mann-612 

Whitney U statistic.  613 

Standard RSA protocols33 were followed. Empirical value RDMs were computed as the pair-614 

wise Euclidean distance between each participant’s value judgements. Average RDMs were computed 615 

by averaging (arithmetic mean) over participants’ RDMs separately for each group. Model RDMs 616 

were computed as the pair-wise Euclidean distance between item values defined by the relevant 617 

model equations (Main Text). For display purposes RDMs were rank-transformed (equal stays equal) 618 

and scaled to 0-1, where 0 implies identical item-values and 1 means maximally dissimilar item-619 

values.  620 

We computed the similarity between model RDMs and participant RDMs by partial correlation 621 

(Spearman). Partial correlation accounts only for unique variance. This means that a correlation 622 

between one model RDM and a participant’s RDM cannot be explained by the second model RDM. 623 

Because our interest lay in dissociating absolute from relative encoding (not distinguishing between 624 

various relative models), and because relative models were highly correlated, we performed these 625 

analyses separately for each contrasting relative model (Figure 4 & 7). We also performed analyses 626 

with independent correlations (i.e., any shared variance between models is not taken into account). 627 

Like the partial correlation analyses, these used the Spearman correlation coefficient. For all 628 

correlational analyses, large positive r’s imply a high degree of similarity between participants value 629 

RDMs and model RDMs (and r = 0 implies no relationship).  630 
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For the key statistical analysis, to establish whether the evidence in favour of the absolute 631 

model over the relative model was greater in the Crossed group than the Uncrossed group, we 632 

computed the difference between the absolute and the relative models independently for each group 633 

and contrasted those differences with t-tests. A positive difference in r indicates evidence in favour of 634 

absolute encoding and a negative difference in r indicates evidence in favour of relative encoding. 635 

These differences can also be used to infer whether there was a tendency to favour relative or absolute 636 

encoding within each group by contrasting the 95% CIs of those average differences to 0.  637 

All statistical analyses were performed in MATLAB 2020b and 2022a (MathWorks).   638 

Data availability 639 

Data is available online on the Open Science Framework (https://osf.io/h32u6/).  640 

Code availability 641 

Analysis code is available on Open Science Framework (https://osf.io/h32u6/). 642 
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Figure 1. Experiment 1 Design and Tasks. (A) Each participant was double-blindly assigned to either the 658 
Uncrossed (green) or the Crossed (blue) group. There were two Phases, which were structurally identical, but 659 
with different market values and item types. The mapping between item types and context was randomized 660 
across participants, as was the item-value mapping, and item type was counterbalanced. In each Phase, 661 
participants first learnt market values of 6 items (antiques or vintage cars) arranged into 3 pairs. The notation in 662 
the panel indicates the normal value distributions from which experienced samples were drawn: N(M,SD) where 663 
M is the mean and SD the standard deviation. Samples were truncated at ±2SD to avoid potential extreme 664 
outlying values (A, see also Supplementary Methods III). Participants learnt by sampling (B). A click on an 665 
item returned a single sample. Participants were free to sample as much as they wished. Sampling for a given 666 
pair ended once a preliminary selling decision was made. There were three sampling phases for each item-pair 667 
(three preliminary decision/item). Learning was followed by Decision (C), in which participants made decisions 668 
without feedback. The Uncrossed groups made decisions about previously sampled item-pairs. The Crossed 669 
group also made decisions between novel item-pairings, composed of items from different item-pairs. We 670 
predicted that the expectations induced by Decision in Phase 1 would cause value learning mechanisms to 671 
diverge across groups in Phase 2 (D). Phase 2 learnt values were assessed in two ‘surprise’ final tasks: In All-672 
pairs (E) participants made decisions between all possible pairs from Phase 2 (N=15, repeated thrice for N=45). 673 
In Value judgment (F), participants judged the value the value of the six stimuli in Phase 2 presented in a 674 
random order by adjusting a slider (min=100, max=450, in integer steps) until it matched the perceived item 675 
value.  676 
 677 
Figure 2. Experiment 1 All-pairs choice accuracy. (A) Choice accuracy as a function of group. Coloured 678 
symbols represent group means (green square = Uncrossed; blue triangle = Crossed). Grey discs represent 679 
individual participants. Error bars are 95% CIs. Statistics reflect the group-wise contrast t(44) = 2.61, p = .012, 680 
CI = .026–.199, d = .77, independent t-test. (B) Choice accuracy for a sub-selection of highly diagnostic pairs, in 681 
which a local high-value item (Item2) was globally inferior to other local low-value items (Item3, Item5). Bar 682 
height reflect means and error bars are bootstrapped 95% CIs. Grey discs represent individual participants. X-683 
axis coordinates of participants’ data have been jittered for presentation purposes. P-values reflect two-tailed 684 
Mann-Whitney U tests: U(46) = 183, p = .055, r = .31 and U(46) = 145, p = .003, r = .45 respectively. For all 685 
panels Uncrossed n = 24 and Crossed n = 22. 686 
 687 
Figure 3. Experiment 1 Value RDMs. Average RDMs for the Uncrossed group (A) and the Crossed group (B). 688 
Note that items are ordered by the underlying value (not item number). Average RDMs (C,D) but with pair-wise 689 
similarities matching those of different models (E-H) highlighted. Model RDMs (E-H). The colour scale 690 
indicates rank-transformed and rescaled dissimilarity (see Methods, 0=minimal dissimilarity, 1=maximal 691 
dissimilarity). Panel A-D reflect averages over Uncrossed n=24 and Crossed n=22 respectively. 692 
 693 
Figure 4. Experiment 1 RDM correlations. Partial Spearman participant x model correlations for the Uncrossed 694 
(A, green squares) and Crossed group (B) respectively. Each panel (A,B) shows two analyses: one in which 695 
range-adaptation is pitted against absolute encoding, and another in which divisive normalisation is pitted 696 
against absolute encoding. The larger the r the better the model accounts for participants’ value representation. 697 
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Symbols indicate group means and error bars reflect 95% CIs. Grey lines represent individual participants. 698 
Downwards sloping lines (from left to right) indicate that participants’ representation of value is better modelled 699 
as relative. Upward sloping lines (from left to right) indicate that the participants’ value code is better accounted 700 
for by an absolute code. (C) Mean participant x Model correlation differences (participant x Absolute r – 701 
participant x Relative r). Positive r’s indicate that the absolute model fits better and negative r’s that the relative 702 
model fits better. Symbols reflect means and error bars reflect 95% CIs. The reported p-values reflect group-703 
wise contrasts, which assess whether the evidence in favour of the absolute model over the relative model was 704 
stronger in the Crossed group: t(44) = 2.97, p = .005, CI = .15 - .77, d = .88)  and t(44) = 2.57, p = .014, CI = .10 705 
- .85, d = .76 respectively. (D) As (C) but for independent correlations. The p-values reflect key across-group 706 
contrasts t(44) = 3.23, p = .002, CI = .21 - .92, d = .95 and   (t(44) = 2.88, p = .006, CI = .13 - .74, d = .85). All 707 
t-statistics reflect two-tailed independent tests. All panels reflect Uncrossed n = 24 and Crossed n = 22. 708 
 709 
Figure 5. Experiment 2 Design and All-pairs choice accuracy. Key design features of Experiment 2 were 710 
identical to Experiment 1. Each participant was assigned (double-blind) to either the Uncrossed (green colour) 711 
or the Crossed (blue colour) groups. There were two Phases, which were structurally identical, but with different 712 
market values and item types. In each phase, participants first learnt the likelihood that an item would sell of 6 713 
items (antiques or vintage cars, order counterbalanced across participants) arranged into 3 pairs. Values were 714 
matched to the expected outcomes of binomial distributions (B(N, p), where p is the probability of observing a 715 
sale on a single trial (N=1). Values were matched such that with p=.1, for example, participants would observe a 716 
successful sale on 2 out of 20 trials (Methods, see also Supplementary Methods III). Learning was followed by 717 
Decision, in which participants made consequential decisions without feedback. The Uncrossed groups made 718 
decisions about previously sampled item-pairs. The Crossed group made decisions between novel item-pairings, 719 
composed of items from different previously sampled item-pairs. (B) All-pairs choice accuracy as a function of 720 
group. Coloured symbols represent group means (Uncrossed=green square; Crossed=blue triangle,). Error bars 721 
are 95% CIs. Gray dots represent individual participants. The p-value reflects a one-tailed independent t-test 722 
t(222) = 2.30, p = .011, CI = .011 - inf, d = .31. (C) Sub-set of All-pairs trials for which Divisive normalisation 723 
and Absolute encoding make different predictions (see Supplementary Methods II). Coloured symbols represent 724 
group means and error bars are 95% CIs. Gray dots represent individual participants. The p-value reflects a one-725 
tailed independent t-test t(222) = 3.56, p < .001, CI = .073 – inf, d = .48 (D) The single All-pairs stimulus-pair 726 
for which strong context-dependent encoding would result in different choices compared to absolute value 727 
encoding, plotted separately for Uncrossed and Crossed. Bar height reflects means and error bars reflect 728 
bootstrapped 95% CIs. Gray dots represent individual participants. For (D) participants could either make 0, 1 729 
or 2 errors. The p-value reflects a one-tailed Mann-Whitney U, U = 4722, p < .001, r = .25. X-axis coordinates 730 
of participants’ data have been jittered for presentation purposes. Across all panels: Uncrossed n=119 and 731 
Crossed n=105. 732 
 733 
Figure 6. Experiment 2 Value RDMs. Average RDMs for the Uncrossed group (A) and the Crossed group (B). 734 
Note that items are ordered by the underlying value (not item number). Average RDMs (C,D) but with pair-wise 735 
similarities matching those of different models (E-H) highlighted. Model RDMs (E-H). The colour scale 736 
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indicates rank-transformed and rescaled dissimilarity (see Methods, 0=minimal dissimilarity, 1=maximal 737 
dissimilarity). Panel A-D reflect averages over Uncrossed n=119 and Crossed n=105 respectively. 738 
 739 
Figure 7. Experiment 2 Model RDM correlations. Partial Spearman participant x model correlations for the 740 
Uncrossed group (A, green squares) and Crossed group (B, blue triangles). Each plot shows two analyses: one 741 
in which range-adaptation is pitted against absolute encoding, and another in which divisive normalisation is 742 
pitted against absolute encoding. The larger the r the better the model accounts for participants’ value 743 
representation. Symbols indicate group means and error bars reflect 95% CIs. Grey lines represent individual 744 
participants. Downwards sloping lines (from left to right) indicate that participants’ representation of value is 745 
better modelled as relative. Upward sloping lines (from left to right) indicate that the participants’ value code is 746 
better accounted for by an absolute code. (C) Mean participant x Model correlation differences (participant x 747 
Absolute r – participant x Relative r). Positive r’s indicate that the absolute model fits better and negative r’s 748 
that the relative model fits better. Symbols reflect means and error bars reflect 95% CIs. The reported p-values 749 
reflect key Crossed-Uncrossed group-wise contrasts assessing whether the evidence in favour of the absolute 750 
model over the relative model was stronger in the Crossed group: t(222) = 3.25, p < .001, lCI = .17-inf, d = .43); 751 
t(222) = 3.09, p = .001, CI = .15-inf, d = .41). (D) As (C) but for independent correlations. The p-values reflect 752 
key across-group contrasts: (t(222) = 3.01, p = .002, CI = .05-inf, d = .40); (t(222) = 3.15, p < .001, CI = .02-inf, 753 
d = .42). All t-tests reflect two-tailed independent t-tests. All panel reflects n=119 for the Uncrossed group and 754 
n=105 for the Crossed group.  755 
 756 
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