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ABSTRACT
Two natural and potentially useful properties for capital allocation rules
are top-down consistency and shrinking independence. Top-down consis-
tencymeans that the total capital is determined by the aggregate portfolio
risk. Shrinking independence means that the risk capital allocated to a
given business line should not be affected by a proportional reduction of
exposure in another business line. These two properties are satisfied by,
respectively, the Euler allocation rule and the stress allocation rule. We
prove an impossibility theorem that states that these two properties jointly
lead to the trivial capital allocation based on themean. When a subadditive
risk measure is used, the same result holds for weaker versions of shrinking
independence, which prevents the increase in risk capital in one line, when
exposure to another is reduced. The impossibility theorem remains valid
even if one assumes strong positive dependence among the risk vectors.
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1. Capital allocation rules

Capital allocation is an active topic for researchers in riskmanagement and practitioners in the finan-
cial industry. Capital allocation problems are often studied in the context of risk measures, as in the
axiomatic settings of Denault (2001) and Kalkbrener (2005). We refer to Dhaene et al. (2012) and
Furman & Zitikis (2008) for overviews of capital allocation methods based on risk measures, and to
Scaillet (2004), Targino et al. (2015), Boonen et al. (2019) and Asimit et al. (2019) for examples of
statistical studies.

We first explain the mathematical setting for capital allocation. Fix a probability space (�,F ,P)

and some q ∈ [1,∞]. LetX be the set Lq of random variablesX with finite qthmoment, i.e.E[|X|q] <

∞ if q ∈ [1,∞) and ess-sup(X) < ∞ if q = ∞.
Each random vector X = (X1, . . . ,Xd) ∈ X d represents risks from multiple business lines; posi-

tive outcomes of each Xi are understood as losses. An allocation rule � is a mapping from X d to R
d.

For X ∈ X d and an allocation rule �, we denote by �(X) = (�1(X), . . . ,�d(X)) where �i(X) rep-
resents the amount of capital allocated to line i ∈ {1, . . . , d}. Capital allocation is intimately linked to
risk measures. A risk measure in this paper is a continuous and law-invariant mapping ρ : X → R.
We do not require anything beyond continuity and law invariance, which is satisfied by all risk mea-
sures in the literature and risk management practice.1 Even law invariance can be easily relaxed; see
Section 4.3.

CONTACT Andreas Tsanakas a.tsanakas.1@city.ac.uk

1Continuity iswith respect to the normonX = Lq. Amappingρ is law invariant ifρ(X) = ρ(Y) for identically distributed
X,Y ∈ X . All law-invariant convex risk measures are continuous on Lq for q � 1; see Rüschendorf (2013). Moreover, all
cash-subadditive risk measures, including the Value-at-Risk, are continuous on L∞; see Cerreia-Vioglio et al. (2011).
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Examples of capital allocation rules include the proportional allocation, the Euler allocation, the
Aumann–Shapley capital allocation, and those based on stress scenarios. Formal definitions of some
capital allocation rules are put in Appendix; below we give two specific examples which are sufficient
to illustrate our main message. These two examples share the general form

�(X) = E
QX[X], i.e. �i(X) = E

QX[Xi] for i = 1, . . . , d, (1)

where QX is a probability measure determined by the risk vector X.

(1) The Euler allocation based on the Expected Shortfall (ES) (also known as the CTE allocation)
is one of the most popular rules in capital allocation; see e.g. Kalkbrener (2005). It is defined
as a special case of (1) by

�(X) = E
QX [X] and

dQX

dP
= 1

1 − p
1{∑n

i=1 Xi�sp}, for some p ∈ (0, 1), (2)

where sp is the p-quantile of S :=
∑n

i=1 Xi. Herewe assume that S is continuously distributed.2

This leads to�i(X) = E[Xi|S � sp], i = 1, . . . , d. The total capital is
∑d

i=1 �i(X) = E[S|S �
sp], which is the ES of the total risk S at level p.

(2) The mixture-stress allocation proposed by Millossovich et al. (2021) is based on stress
scenarios generated directly by the risk vector X. It is defined as a special case of (1) by

�(X) = E
QX[X] and

dQX

dP
= θ + 1

d

d∑
i=1

(Fi(Xi))
θ , for some θ � 0, (3)

where each Xi is assumed to have a continuous distribution function Fi.3 The total capital
for the stress allocation rule is given by

∑d
i=1 �i(X) = E

QX [S]. The mixture-stress allocation
rule belongs to the class of stress allocation rules of Millossovich et al. (2021); see Appendix.

Ourmain result does not need to assume any specific form of allocation rules such as (1), (2) or (3);
the above examples are introduced only to motivate the two important properties in the next section.

2. Three properties for an allocation rule

We introduce three properties for an allocation rule �. All statements are meant to hold for all X =
(X1, . . . ,Xd) ∈ X d.

(i) Vanishing continuity: �(εX) → 0 as ε ↓ 0.
(ii) Top-down consistency:

∑n
i=1 �i(X) = ρ(

∑n
i=1 Xi) for some risk measure ρ with ρ(1) = 1.

(iii) Shrinking independence: �i(X1, . . . ,Xj−1, aXj,Xj+1, . . . ,Xd) = �i(X) for all j �= i and a ∈
(0, 1).

Vanishing continuity (i), meaning that the allocated capital shrinks to 0 for a vanishing risk, is
satisfied by any sensible capital allocation rule. For instance, it is weaker than positive homogeneity:
�(εX) = ε�(X) for ε > 0, and positive homogeneity is satisfied by almost all capital allocation rules,
including the ones mentioned in Section 1 and Appendix.

2More precisely, we require {S � sp} to have probability 1−p. If this does not hold, then we need to replace the event
{S � sp} with a p-tail event of S introduced by Wang & Zitikis (2021).

3The case of discontinuity can be addressed using a suitable uniform transform; see Millossovich et al. (2021).
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Top-down consistency (ii)4 means that the total capital requirement can be calculated from a risk
measure that depends solely on themodel of the aggregate position. All top-downmethods generated
from a pre-specified risk measure satisfy this property. Indeed, it is the starting point of many studies
on capital allocation; see e.g. Denault (2001), Kalkbrener (2005) and Tsanakas (2009), where this
property is part of the definition of an allocation based on a risk measure. In particular, it is satisfied
by the Euler allocation rules, including the ES-based Euler allocation in (2). Nevertheless, in risk
management practice, the total capital requirement is not necessarily calculated by any specific risk
measure of a portfolio loss, but could indeed be exogenous to the allocation problem as in the settings
of Zaks et al. (2006), Dhaene et al. (2012) and Centrone & Rosazza Gianin (2018); see also Remark
2.4 of Asimit et al. (2019). We do not take top-down consistency as granted in this paper.

Shrinking independence (iii) reflects the requirement that decreases in the exposure to one line
of business do not lead to changes in the capital allocated to another line, and it may require some
more explanation. In this context, we may assume that each business line operates separately, and
they are pooled together by the overarching structure of the firm. Shrinking independence has a clear
organizational rationale, as a stability property of capital allocations. If shrinking independence does
not hold, the manager of a line of business may see their allocated capital change (even increase),
in response to portfolio changes outside their control. Indeed, this is a reason why insurance prac-
titioners are often reluctant to operationalize Euler allocations, as mentioned by the respondents of
Cabantous & Tsanakas (2019). At the same time, this property is very restrictive. Hence, two relax-
ations of shrinking independence, one replacing the equality by an inequality and one requiring the
property only for positive dependence, are discussed in Sections 4.1 and 4.2. To simplify exposition,
we will illustrate our main result using the stronger formulation (iii).

Shrinking independence is satisfied by any allocation rule induced by an invariant stressingmech-
anism of the type introduced by Millossovich et al. (2021), including the mixture-stress allocation
in (3); see also the ones in Appendix. Indeed, the mixture-stress allocation rule satisfies the stronger
property:

(iv) Strong independence: for each i, �i(X1, . . . ,Xj−1, g(Xj),Xj+1, . . . ,Xd) = �i(X) for j �= i and a
strictly increasing function g.

Strong independence thus ensures robustness of allocated risk capital not only to reductions in
exposure but also to more general monotonic risk reductions, e.g. by the purchasing of reinsurance.
See also the discussions and a real-data example in Millossovich et al. (2021).5

Shrinking independence does not conflict with the idea of diversification and risk reduction, since
it takes dependence into consideration. Indeed, the allocation rule (3) reflects diversification by penal-
izing positive dependence and rewarding negative dependence. For instance, for a fixed i = 1, . . . , d,
dQX/dP puts more weights on large value of Xi if X1, . . . ,Xn are comonotonic as compared to the
case that X1, . . . ,Xn are independent.

To understand the role of dependence of X for the allocation rules, we briefly discuss another
property based on copulas, which are a powerful tool to model the dependence structure of a random
vector separately from its marginal distributions.6

4This property is also referred to as the full allocation requirement or, particularly in a game theoretic context, as efficiency;
see e.g. Lemaire (1991).

5A much weaker stability requirement is implicit in the approach of Major (2018), whose capital allocation reflects
fully sensitivity to portfolio weights, but only partially to reinsurance parameters, as the latter are not included in the
Radon–Nikodym derivative that generates the risk functional considered.

6A d-copula is a joint distribution function onR
d with standard uniformmarginals. Sklar’s theorem implies that the joint

distribution F of any random vector X can be expressed by a copula C of X through F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))
where F1, . . . , Fd are the marginals of F. The copula C is unique if F1, . . . , Fd are continuous. See Joe (2014) for a general
treatment of copulas.
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(v) Copula decomposition: for each i,�i(X) is determined by the distribution of Xi and the (possibly
non-unique) copulas of X.

Since copulas are invariant under strictly increasing transforms, copula decomposition (v) implies
strong independence (iv). Therefore, strong independence can reflect the intuitive idea of modelling
individual business lines and their dependence structure separately. The mixture-stress allocation
rule (3) satisfies copula decomposition.

Remark 2.1: Properties (iii), (iv) and (v) are also satisfied in the case that the risk capital of each busi-
ness line is individually computed by a risk measure; that is, each �i(Xi) solely depends on Xi. Such
individual allocations are not of further interest to us, as they ignore aggregation or diversification
effects.

Remark 2.2: We do not impose continuity of � in X d. In this way, we can include capital allocation
rules such as those based on invariant stressing mechanisms in Millossovich et al. (2021), which are
not necessarily continuous when handling discrete risk factors. For instance, discontinuity may arise
in (3) when a sequence of continuous risk vectors (Xn)n∈N converges to a risk vector X with some
discrete components. Instead, we only require the vanishing continuity, a much weaker requirement.

3. An impossibility theorem

We establish an impossibility theorem to show that shrinking independence and top-down consis-
tency conflict in the sense that, together with vanishing continuity, they jointly force the allocation
rule to be the trivial one based on themean. This result is an impossibility theorembecause in practice,
the total capital requirement cannot be computed using the mean.

Theorem 3.1: An allocation rule � satisfies properties (i)–(iii) if and only if �(X) = E[X] for all X ∈
X d.

Proof: The ‘if’ statement is straightforward, and we only show the ‘only if’ statement. Take an
arbitrary X = (X1, . . . ,Xd) ∈ X d. For ε ∈ (0, 1) and i = 1, . . . , d, let

Xε
−i = (εX1, . . . , εXi−1,Xi, εXi+1, . . . , εXd),

that is, the risk vectorXmultiplied by ε except for the ith component. Applying shrinking invariance
(iii) repeatedly leads to

�i(Xε
−i) = �i(X) for each i. (4)

Top-down consistency (ii) implies

∑
j�=i

�j(Xε
−i) + �i(Xε

−i) =
d∑

j=1
�j(Xε

−i) = ρ

⎛
⎝ε

∑
j�=i

Xj + Xi

⎞
⎠ for each i. (5)

Putting (4) and (5) together, we have

�i(X) = ρ

⎛
⎝ε

∑
j�=i

Xj + Xi

⎞
⎠−

∑
j�=i

�j(Xε
−i) for each i. (6)
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Moreover, (iii) also implies that for j �= i, we have �j(Xε
−i) = �j(εX). By using vanishing continuity

(i) and continuity of ρ,

∑
j�=i

�j(Xε
−i) =

∑
j�=i

�j(εX) → 0 and ρ

⎛
⎝ε

∑
j�=i

Xj + Xi

⎞
⎠ → ρ(Xi) as ε ↓ 0. (7)

Therefore, (6) and (7) lead to �i(X) → ρ(Xi). Noting that �i(X) does not depend on ε, we have
�i(X) = ρ(Xi) i.e. the allocation �i(X) depends only on the individual loss Xi. Moreover, using (ii)
again,

d∑
i=1

ρ(Xi) =
d∑

i=1
�i(X) = ρ

( d∑
i=1

Xi

)
,

i.e. ρ is additive. Since ρ is continuous, additive and law invariant with ρ(1) = 1, we get from
Lemma 3.1 below that ρ(X) = E[X] for all X ∈ X . Hence, the allocation rule � has to be the
mean. �

Remark 3.1: While somewhat troubling, it is not in itself surprising that different potentially useful
allocation properties may be in conflict; for an impossibility result in the context of cooperative game
theory, see Csóka & Pintér (2016). Furthermore, Mohammed et al. (2021) characterized multivariate
distributions of risk vectors, for which Euler allocations based on ES collapse to expected values.

The following lemma contains a known result used in the proof of Theorem 3.1, although we did
not find an explicit statement; such a result appeared in, for instance, the proof of LemmaA.1 ofWang
& Zitikis (2021). We provide a simple proof for the reader familiar with techniques in the theory of
risk measures.

Lemma 3.1: A mapping ρ : X → R is continuous, additive, and law invariant if and only if ρ(X) =
ρ(1)E[X] for all X ∈ X .

Proof: The proof is adapted from that of Lemma A.1 of Wang & Zitikis (2021). The ‘if’ part is triv-
ial to check, and we thus only prove the ‘only if’ part. Let λ = ρ(1). Continuity and additivity gives
ρ(c) = λc for c ∈ R. Continuity and additivity also imply that ρ(aX) = aρ(X) for a> 0, which fur-
ther implies convexity of ρ. Hence, ρ is a finite coherent risk measure multiplied by λ on Lq; the
arguments below show that ρ is Fatou continuous (Definition 7.23 of Rüschendorf (2013)).

1. If q ∈ [1,∞), then, ρ is a finite convex risk measure (multiplied by λ), which is Fatou
continuous by Rüschendorf (2013, Theorem 7.24).

2. If q = ∞, then law invariance ofρ implies Fatou continuity by Theorem30 ofDelbaen (2012).

In both cases, Fatou continuity holds for ρ, and hence it admits a representation

ρ(X) =
∫

XdQ (8)

for a measure Q on (�,F); see e.g. Rüschendorf (2013, Theorem 7.20) and Föllmer & Schied (2016,
Exercise 4.2.1). Since ρ is law invariant, Q has to be equal to P multiplied by a constant. �

Among other consequences of Theorem 3.1, we notice that, assuming vanishing continuity and
top-down consistency, an allocation rule � that satisfies copula decomposition (v), must ignore
dependence. This is because the copula decomposition property is stronger than shrinking inde-
pendence and the trivial expectation-based allocation in Theorem 3.1 does not involve the depen-
dence structure of X. Hence, while shrinking independence is not intrinsically inconsistent with
diversification, it becomes so when top-down consistency is assumed.
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4. Relaxations of the properties

In this section, we discuss three possible relaxations of properties (ii) and (iii). The main message
is that with reasonable relaxations and some other additional assumptions, we arrive at the same
conclusion of the impossibility theorem.

4.1. Relaxing shrinking independence

Shrinking independence (iii) may be seen as quite strong, as it requires that the allocated capital to
line i with risk Xi remains unchanged, when reducing another line with risk Xj for j �= i. A natural
relaxation of this property is

(iii’) Weak shrinking independence:�i(X1, . . . ,Xj−1, aXj,Xj+1, . . . ,Xd) � �i(X) for all j �= i and a ∈
(0, 1).

Weak shrinking independence (iii’) means that if another line of business reduces its risk exposure,
then the allocated capital for an unchanged business line does not increase (but may decrease). This
property is much weaker than (iii), and it is arguably quite natural in an insurance context. As a
reduction in exposure to Xj would be expected to reduce the risk of the portfolio, (iii’) only requires
that this change has no adverse impact on other lines of business i �= j.

The property (iii’) in place of shrinking independence (iii) is tooweak to establish the impossibility
theorem.7 In the literature on capital allocation, one often considers a coherent risk measure that
calculates the total capital; see e.g. Kalkbrener (2005).8 In such a setting, we can strengthen (ii) to:

(ii’) Top-down consistency with a subadditive risk measure:
∑n

i=1 �i(X) = ρ(
∑n

i=1 Xi) for some
subadditive risk measure ρ with ρ(1) = 1.

We also modify the continuity in (i), which says that if the exposure in one business line vanishes,
then so is its allocated capital. This natural assumption is technically slightly stronger than (i).

(i’) Component-wise vanishing continuity:�(εX) → 0 and�j(X1, . . . ,Xj−1, εXj,Xj+1, . . . ,Xd) → 0
for each j = 1, . . . , d as ε ↓ 0.

The next result states that the impossibility theorem holds with the above modifications.

Theorem 4.1: An allocation rule � satisfies properties (i’), (ii’) and (iii’) if and only if �(X) = E[X]
for all X ∈ X d.

Proof: We follow the same logic and the same notation as in the proof of Theorem 3.1, and it is clear
that we only need to show the ‘only if’ statement. By continuity of ρ, we have, as in (7),

ρ

⎛
⎝ε

∑
j�=i

Xj + Xi

⎞
⎠ → ρ(Xi) as ε ↓ 0. (9)

7Although we do not have a concrete counter-example, getting an impossibility theorem for (i), (ii) and (iii’) does not
seem to be possible at least with the proof techniques in this paper.

8A coherent riskmeasure of Artzner et al. (1999) is defined to satisfy four properties: monotonicity, translation invariance,
positive homogeneity, and subadditivity. The only property we need here is subadditivity: ρ(X + Y) � ρ(X) + ρ(Y) for X,
Y ∈ X .



SCANDINAVIAN ACTUARIAL JOURNAL 7

With weak shrinking invariance (iii’) replacing (iii), the equality in (6) becomes an inequality, giving
rise to

�i(X) � ρ

⎛
⎝ε

∑
j�=i

Xj + Xi

⎞
⎠−

∑
j�=i

�j(Xε
−i) for each i. (10)

Next, we verify

lim
ε↓0

�j(Xε
−i) → 0 for j �= i. (11)

For a fixed δ > 0 and ε ∈ (0, δ), we have, by using (iii’),

�j(Xε
−i) � �j(ε1X1, . . . , εi−1Xi−1,Xi, εi+1Xi+1, . . . , εdXd) (12)

where εk = δ for k �∈ {i, j} and εj = ε. For fixed δ, the right-hand side of (12) goes to 0 by (i’). Hence,
lim supε↓0 �j(Xε

−i) � 0. Moreover, using (iii’) again, we have

∑
j�=i

�j(Xε
−i) �

∑
j�=i

�j(εX) → 0 � lim sup
ε↓0

∑
j�=i

�j(Xε
−i).

This gives (11). Putting (9), (10) and (11) together lead to �i(X) � ρ(Xi). This inequality together
with (ii’) and subadditivity of ρ gives

d∑
i=1

ρ(Xi) �
d∑

i=1
�i(X) = ρ

( d∑
i=1

Xi

)
�

d∑
i=1

ρ(Xi).

Thus, ρ is additive and �i(X) = ρ(Xi). Using Lemma 3.1 we know that ρ is the mean. �

Remark 4.1: Assume that top-down consistency (ii) holds. In this setting, Kalkbrener (2005) further
imposed a property called diversification, which implies that �i(X) � ρ(Xi) for each i, meaning that
the risk capital for the sub-portfolioXi of portfolioX does not exceed the risk capital ifXi is considered
as a stand-alone portfolio.9 It is clear that this property, together with top-down consistency, implies
subadditivity and thus is stronger than requiring ρ to be subadditive. Hence, such an enhancement
of (ii) in place of (ii’), requiring the diversification property, is also sufficient for Theorem 4.1. This
also reveals that weak shrinking independence property conflicts not just with subadditivity, but also
with the implications of such a property for rational behaviour.10

4.2. Shrinking independence for only positive dependence

In case the risk vector X = (X1, . . . ,Xd) has some hedging effect among its components, shrinking
independence or weak shrinking independence may not be appealing. In such a case, shrinking the
exposure of one business line may lead to a reduction in the hedging effect to another business line.
Then, it could be reasonable that the capital allocated to the business line that is now less hedged
indeed faces an increase.

9Otherwise the business line imay be disadvantaged by being part of the portfolio X. There is certainly a game-theoretic
flavour to it, relating to the concept of the core of co-operative games and ideas of individual rationality; see e.g. Lemaire (1991);
Denault (2001). At the same time, note that the desirability of such properties is context-dependent; for example, Kim &
Hardy (2009) challenge the diversification property from a solvency-option perspective.

10On the other hand, if top-down consistency is not assumed, a property similar to diversification could be obtained for
the mixture stress allocation; see Proposition 5 of Millossovich et al. (2021). Top-down consistency is also relaxed by Centrone
& Rosazza Gianin (2018), in the context of (non-coherent) convex and quasi-convex risk measures, as the price to pay for
requiring the diversification property without subadditivity; see also Canna et al. (2021).
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Nevertheless, weak shrinking independence would be natural if the risk vector is strongly posi-
tively dependent in some sense, as there is no hedging effect in such a situation. In view of this, we
will discuss a much weaker version of shrinking independence, where the property is only imposed
on very positively dependent risk vectors. For this relaxation, we first define what wemean by positive
dependence. Let R be the Spearman rank correlation of a bivariate vector, defined as

R(X,Y) = (F(X),G(Y)), X,Y ∈ X ,

where (·) is Pearson’s correlation coefficient, and F and G are the distribution functions of X and Y,
respectively. If one of X and Y is degenerate, then we set R(X,Y) = 1.11 We define positive depen-
dence in the following sense: for r ∈ [−1, 1], we say that the randomvectorX is r-positively dependent,
if R(Xi,Xj) � r for all i �= j. Clearly, if X has continuous marginals, then 1-positive dependence
is equivalent to comonotonicity.12 Hence, the property of r-positive dependence gets stronger as r
increases, and it forms a continuum from arbitrary dependence (r = −1) to comonotonicity (r = 1).
We denote by X d

r the set of all r-positively dependent random vectors with continuous marginals.

Remark 4.2: The dependence measure R may be replaced by another measure of concordance (see
McNeil et al. (2015)), which may either be a joint concordance measure or a bivariate concordance
measure, such as (joint or bivariate) Kendall’s tau. From the proof of Theorem 4.2 below, it will be
clear that such a choice is irrelevant to our discussion.

We are now ready to further relax weak shrinking independence to the following version.

(iii’)r Weak shrinking independence under r-positive dependence:

�i(X1, . . . ,Xj−1, aXj,Xj+1, . . . ,Xd) � �i(X) for all j �= i, a ∈ (0, 1) and X ∈ X d
r .

Theorem 4.2: Suppose that an allocation rule � satisfies properties (i’) and (ii’). For r ∈ (0, 1), �

satisfies (iii’)r if and only if�(X) = E[X] for allX ∈ X d
r . Moreover, if (iii’)r holds, then the riskmeasure

ρ used to calculate the total capital must be the mean for any risk vector in X d.

Proof: The ‘if’ statement is straightforward, and we will only show the ‘only if’ statement below.
Take X ∈ X d

r . Note that all random vectors like Xε
−i and X share the same pair-wise values of the

dependence measure R. The same argument as in the proof of Theorem 4.1 carries through and leads
to

�i(X) = ρ(Xi) for each i and ρ

( d∑
i=1

Xi

)
=

d∑
i=1

ρ(Xi);

that is, ρ is additive for components of a risk vector in X d
r . Lemma 4.1 below guarantees that ρ has

to be the mean for all random variables in X . �

By taking r< 1 close to 1 in Theorem 4.2, we know that the allocation rule is, once again, the trivial
one if weak shrinking independence holds for very positive dependence. We note that the statement
in Theorem 4.2 is made only for X ∈ X d

r because (iii’)r is also only formulated for X ∈ X d
r . As such,

Theorem 4.2 does not say anything about the form of �(X) for X outside X d
r . Nevertheless, the total

capital has to be themean of the aggregate position, that is, ρ(
∑d

i=1 Xi) = E[
∑d

i=1 Xi] for allX ∈ X d

11This convention does not affect our discussion or results. If one of X and Y is degenerate, then X and Y are comonotonic.
As comonotonicity is the strongest form of positive dependence, it is natural to set the rank correlation to 1.

12Two random variables X and Y are comonotonic if X = f (X + Y) and Y = g(X + Y) a.s. for increasing functions f and
g. Comonotonicity of a random vector means pair-wise comonotonicity. For more on comonotonicity and other dependence
concepts, see Dhaene et al. (2002) and Puccetti & Wang (2015).
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(not only those in X d
r ), and this contradicts risk management practice; so the interpretation of the

impossibility theorem remains valid.
The proof of Theorem 4.2 uses the following lemma which characterizes risk measures with addi-

tivity for randomvectors inX 2
r . As far aswe are aware, this lemma is the first of its sort in the literature,

and it may be of independent interest.13 We remark that a key step in the proof of Lemma 4.1 is that
the risk measure needs to be additive for comonotonic risks. This means that the proof would not
hold if we considered r-positive dependence with respect to the usual linear correlation, since linear
correlation equal to 1 does not guarantee comonotonicity, given the impact of marginal distributions.

Lemma 4.1: Fix r ∈ (0, 1). A mapping ρ : X → R is continuous, subadditive, additive for (X,Y) ∈
X 2
r , and law invariant if and only if ρ(X) = ρ(1)E[X] for all X ∈ X .

Proof: Without loss of generality, assume ρ(1) = 1.
First, we will consider the case of X = Lq for q ∈ [1,∞). Since any comonotonic random vector

with continuous marginals is in X 2
r , and ρ is continuous, we know that ρ is additive for any pair of

comonotonic random variables in X , thus comonotonic-additive. A comonotonic-additive and con-
tinuous riskmeasure is always positively homogeneous,meaning thatρ(αX) = αρ(X) forα ∈ (0,∞)

and X ∈ X . This can be checked from the equality ρ(nX) = nρ(X) for any natural number n and
X ∈ X , together with continuity. Using ρ(1) = 1, comonotonic-additivity and positive homogeneity,
we further get ρ(X + m) = ρ(X) + m for all m ∈ R and X ∈ X. Denote by ρ̃(X) = ρ(X) − E[X],
X ∈ X . It follows from properties of ρ that ρ̃ is subadditive, comonotonic-additive, law invariant,
positively homogeneous, and satisfying ρ̃(X + m) = ρ̃(X) for allm ∈ R and X ∈ X . Therefore, ρ̃ is
a comonotonic-additive coherent measure of variability in the sense of Furman et al. (2017), and by
the representation result in Theorem 2.1 of Furman et al. (2017), we can write

ρ̃(X) =
∫ 1

0
F−1
X (t)dh(t), X ∈ X ,

where h : [0, 1] → R is left-continuous, convex, and satisfies h(0) = h(1) = 0, and F−1
X is the left

quantile function of X. Right-continuity of h is shown in the proof of Theorem 2.1 of Furman
et al. (2017). Hence, h is continuous since ρ̃ is finite on Lq.

Next, we show that h has to be the constant 0. Suppose for the purpose of contradiction that h is not
always 0. Since h is convex and h(0) = h(1) = 0, it must be non-positive, and there exists a smallest
minimal point s = min(argmint∈[0,1]h(t)) with h(s) < 0. Note that h is convex and nonlinear in any
neighbourhood of s. Hence, for any ε > 0 with [s − ε, s + ε] ⊆ [0, 1],∫ s+ε

s−ε

(t − s)dh(t) = εh(s + ε) + εh(s − ε) −
∫ s+ε

s−ε

h(t)dt > 0. (13)

Denote by A = [s − ε, s + ε]. Let U be a uniform random variable on [0, 1], and

V = (2s − U)1{U∈A} + U1{U �∈A}.

We take ε > 0 small enough so that R(U,V) > r. This is possible since R(U,V) → 1 as ε ↓ 0. We
can easily check that U + V = 2s1{U∈A} + 2U1{U �∈A}. Using (13), we have

ρ(2U) − ρ(U + V) =
∫ 1

0
2tdh(t) −

∫ 1

0

(
2t1{t �∈A} + 2s1{t∈A}

)
dh(t) =

∫ s+ε

s−ε

(2t − 2s)dh(t) > 0.

(14)

13This lemmamay be seen as a special result on functionals that collapse to the mean; see e.g. Bellini et al. (2021) for other
results on such functionals.
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On the other hand, note that ρ(U) = ρ(V) because V is uniformly distributed on [0, 1], and ρ is law
invariant. Since ρ is additive on X 2

r , we have

ρ(U + V) = ρ(U) + ρ(V) = ρ(U) + ρ(U) = ρ(2U).

This leads to a contradiction. Hence, h is a constant 0, which implies that ρ̃ is also 0. Therefore,
ρ(X) = E[X] for all X ∈ X .

The case of X = L∞ is analogous. The only difference in the L∞ case is that one needs to further
argue that, if h jumps at 0, then Equation (14) holds. If h has a jump at 0, then h is not a constant on the
interval [0, 2ε] for any ε > 0. Since h is not a constant on [0, 2ε], and h is convex, we get that (14) holds
with s = ε. This violates the additivity of ρ on X 2

r . The case that h jumps at 1 is similar. Therefore, h
has no jump at 0 or 1. The rest of the proof is the same as in the case of Lp for p ∈ [1,∞). �

Lemma 4.1 also reveals the reason why r = 1 is not included in Theorem 4.2. Indeed, assuming
continuity, additivity on X 2

1 is precisely comonotonic-additivity. This property is satisfied by distor-
tion risk measure (Wang et al. 1997) – more broadly: for any signed Choquet integral, e.g. Wang
et al. (2020) – not necessarily equal to the mean. For instance, the ES-based Euler allocation principle
leads to the risk measure ρ being an ES, which is additive for comonotonic random variables.

4.3. Relaxing law invariance

Next, we relax law invariance in the assumption of the risk measure ρ appearing in top-down con-
sistency. Absence of law invariance means that the total capital can be assessed not only based on
the distribution of the total risk, but also on other characteristics, such as scenario-based analysis;
see Wang & Ziegel (2021) for a theory of non-law invariant risk measures in risk management. In
the next result, we will see that allowing for this extra flexibility in the risk assessment does not give
rise to more choices of capital allocation rules; we return to the case of the mean, with respect to a
probability measure possibly different from P. Below, Q � P means that Q is absolutely continuous
with respect to P.

Theorem4.3: LetX = Lq for some q ∈ [1,∞), and do not assume that the riskmeasureρ is necessarily
law invariant. An allocation rule � satisfies properties (i)–(iii) if and only if �(X) = E

Q[X] on X d for
some probability measure Q � P.

The proof of Theorem 4.3 follows from similar arguments as in that of Theorem 3.1, and we only
mention the differences. Law invariance appears in the proof of Theorem 3.1 through the application
of Lemma 3.1. Lemma 4.2 below is a variant of Lemma 3.1 which does not rely on law invariance.
Having Lemma 4.2(a) in place of Lemma 3.1 leads to a proof of Theorem 4.3.

Lemma 4.2: (a) A mapping ρ : Lq → R where q ∈ [1,∞) is continuous and additive if and only if
ρ(X) = ρ(1)EQ[X] on Lq for some probability measure Q � P.

(b) A mapping ρ : L∞ → R is continuous and additive if and only if ρ(X) = ρ(1)EQ[X] on L∞ for
some finitely additive measure Q � P with total mass 1.

Proof: The proof is identical to that of Lemma 3.1, with the exception that, continuity on L∞ with-
out law invariance is not sufficient to guarantee Fatou continuity. As a consequence, Q in (8) is not
necessarily a probability measure; instead, Q is only finitely additive. Absolute continuity of Q with
respect to P is obviously necessary; otherwise E

Q is not finite. �

Remark 4.3: In the statements of Theorem 4.3 and Lemma 4.2, there is an implicit requirement forQ
that E

Q is finite on X . This is because � and ρ in these results are assumed to take real values. Since
finitely additive measures are not an easy object to work with, we did not include the case q = ∞
in Theorem 4.3, although it is clear that the result holds similarly, and the economic interpretation
remains the same.
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5. Concluding remarks

The main result in this short paper reveals a profound conflict between two operational considera-
tions in capital allocation rules: top-down consistency and shrinking independence. Both properties
are potentially useful in different contexts for the design of capital allocation rules. Unfortunately,
as shown by our impossibility theorem, they do not live well together, and this result still holds true
when we relax some of the conditions in the two properties.

We do not argue that either property is desirable or not, as desirability clearly depends on the con-
text. Based on our impossibility theorem, if top-down consistency is required, then (weak) shrinking
independence cannot be achieved, and vice versa. For researchers who take top-down consistency as
granted (which is reasonable in some applications), our main result advises that hoping for shrinking
independence is futile. If top-down consistency is not required, then shrinking independence can be
used, while at the same time upholding diversification properties.

The two properties encode different organizational requirements. On the one hand, top-down
consistency requires capital to be calculated by a centralized approach; the performance of each line
of business is solely understood through its contribution to portfolio risk. On the other hand, shrink-
ing independence relates to a bottom-up view of the capital allocation process, recognizing some
autonomy to business lines – while diversification should still be reflected in allocated capital, the
risk of individual lines should also be understood in its own right. This tension between top-down
and bottom-up approaches to insurance operations is already foreshadowed in a premium calculation
context by Bühlmann (1985).

Hence, our impossibility theorem adds evidence to the view that there are no universally good
methods for capital allocation; one always needs to carefully consider context-specific priorities in
given applications when designing allocation rules. This observation may also partially explain why
capital allocation has remained an active field of study in finance and insurance, with rich theoretical
and applied research findings; see e.g. the recent advances inBoonen et al. (2017), Centrone&Rosazza
Gianin (2018), Boonen et al. (2020) and Bauer & Zanjani (2021).
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Appendix. Two classes of capital allocation rules
In this appendix, we formally define two classes of capital allocation rules. The first class is based on Euler’s principle.
The Euler allocation rule is a top-down method, in which the aggregate capital is computed via a positively homoge-
neous riskmeasure ρ. For λ ∈ R

d, write rρ,X(λ) = ρ(λ · X) and let S = ∑d
i=1 Xi = 1 · X. The ρ-based Euler allocation

rule is defined as

�i(X) = ∂rρ,X
∂λi

(1), i = 1, . . . , d.

The Euler allocation satisfies top-down consistency (ii), due to Euler’s principle for positively homogeneous functions.
More precisely, the function rρ,X is positively homogeneous, meaning that rρ,X(tλ) = trρ,X(λ) for t � 0 and λ ∈ R

d.
Euler’s principle gives

ρ(S) = rρ,X(1) =
d∑

i=1

∂rρ,X
∂λi

(1) =
d∑

i=1
�i(X).

For a positively homogeneous riskmeasure, theAumann–Shapley capital allocation is equivalent to the Euler allocation;
see e.g. Denault (2001). In case ρ is the standard deviation, the Euler allocation becomes the covariance principle,
defined as

�i(X) = Cov(Xi, S)√
Var(S)

, i = 1, . . . , d.

In case ρ is ES at level p, we arrive at the ES-based Euler allocation (2).
The second class of allocation rules is based on stress scenarios. The stress allocation rule ofMillossovich et al. (2021)

is defined as �(X) = E
QX [X] in (1), under the assumption that the Radon–Nikodym density dQX

dP
is invariant under

strictly increasing marginal transforms on X. Invariance is a natural property in stress testing since the choice of the
counting units or a transform e.g. from asset returns to log-returns, should not affect stress scenarios, as discussed
by Millossovich et al. (2021). Clearly, any stress allocation rule satisfies shrinking independence (iii); indeed, strong
independence (iv) holds.

Examples of stress allocation rules include the mixture-stress allocation in (3), the Spearman allocation, and the
dual Spearman allocation. Assume that each Xi has a continuous distribution function Fi and write Ui = Fi(Xi). The
Spearman allocation is defined via the stress scenario in (1) as

dQX

dP
=

∏d
i=1 U

θ
i

E[
∏d

i=1 U
θ
i ]

for some θ > 0,

and the dual Spearman allocation is defined via the stress scenario in (1) as

dQX

dP
=

∏d
i=1(1 − Ui)

−θ

E[
∏d

i=1(1 − Ui)−θ ]
for some θ ∈ (0, 1),

The name ‘Spearman’ comes from the fact that E[
∏d

i=1 Ui] is a linear transform of the multivariate Spearman’s rank
correlation of X. The Spearman and dual Spearman allocation rules enjoy several useful properties, including an
independence-preserving property, meaning that an independent vector X under P remains independent under QX.
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