
              

City, University of London Institutional Repository

Citation: Spreeuw, J. (2022). The Copula Derived from the SAHARA Utility Function. 

Risks, 10(7), 133. doi: 10.3390/risks10070133 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/28347/

Link to published version: https://doi.org/10.3390/risks10070133

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Citation: Spreeuw, Jaap. 2022. The

Copula Derived from the SAHARA

Utility Function. Risks 10: 133.

https://doi.org/10.3390/

risks10070133

Academic Editors: Ermanno Pitacco

and Annamaria Olivieri

Received: 28 February 2022

Accepted: 10 June 2022

Published: 28 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

risks

Article

The Copula Derived from the SAHARA Utility Function
Jaap Spreeuw

Faculty of Actuarial Science and Insurance, Bayes Business School (Formerly Cass), University of London,
106 Bunhill Row, London EC1Y 8TZ, UK; j.spreeuw@city.ac.uk

Abstract: A new Archimedean copula family is presented that was derived from the SAHARA
utility function introduced in the economic literature in 2011. Its properties are discussed, and its
flexibility and versatility are demonstrated. It is left tail decreasing or right tail increasing, but unlike
mainstream Archimedean families, not necessarily stochastically increasing at the same time. It is
shown that the family fits very well to a dataset of previously studied coupled lives in the literature.

Keywords: copula; Archimedean generator; dependence; coupled lives

1. Introduction

Archimedean copulas, which in two dimensions are of the form Cψ(u1, u2) =
ψ
(
ψ−1(u1) + ψ−1(u2)

)
where ψ is the one-dimensional generator, have become a popular

mode of modelling dependence in both finance and insurance. Several ways of constructing
copula families are given in Chapter 3 of Joe (2015). The interpretation of the generator as
the Williamson transform of a radial random variable has given rise to new Archimedean
families; see McNeil and Nešlehová (2009, 2010). Archimedean copulas are a flexible class
due to the ease with which new Archimedean copulas with an enriched parameter space
can be constructed from existing ones using transformations. For the bivariate case, five of
such transformations, namely, left composition, right composition, scaling, exponentiation,
and the linear combination of the (inverse) generator, were introduced in the literature
by Genest et al. (1998). They were reviewed by Michiels and De Schepper (2012), and in
more detail in Michiels and De Schepper (2009), with the focus on the so-called λ func-
tion (which is the ratio of the inverse generator to its derivative). For the latter, see also
Michiels et al. (2011).

In the literature, several generalized families were constructed that contain the Archimedean
class as a special case, e.g., the Archimax family in Capéraà et al. (2000) (which includes extreme
value copulas as another special case). The background risk model where one random variable
(“systemic risk”) acts multiplicatively on a series of other random variables (“idiosyncratic
risks”) is the basis of generalization of Archimedean copulas in several ways, as demonstrated
in Côté and Genest (2019) and Marri and Moutanabbir (2022).

Commonly used families typically feature a generator being completely monotonic
and thereby the Laplace transform of a mixing random variable. Common examples
include Clayton and Frank (as far as dependence is positive), Gumbel–Hougaard, and
Joe. This subfamily of Archimedean copulas, also known as shared frailty models, has the
advantage of being valid in any dimension. Recent applications regarding shared frailty
models involve the aforementioned background risk model; see (Albrecher et al. 2011;
Furman et al. 2021; Sarabia et al. 2018).

The Gumbel–Hougaard copula is a good fit to the well-known dataset of loss vs.
Allocated Loss Adjustment Expenses (ALAE), which is the object of statistical inference
in several publications, starting with Genest et al. (1998). For extensive analysis, consult
Joe (2015). Probably there are several other case studies of dependence in insurance where
the use of shared frailty models is appropriate.
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Shared frailty dependency models have the property of being conditionally increasing
(CI) and multivariate totally positive of order 2 (MTP2), as shown in Müller and Scarsini
(2005). In the specific case of two dimensions, this is known as TP2, implying stochastically
increasing (SI), which in turn implies both left tail decreasing (LTD) and right tail increasing
(RTI). If the two involved marginal random variables are remaining lifetimes, LTD/RTI
implies that the hazard rate of the one upon hazard (e.g., death or default) of the other goes
up. The stronger condition SI implies that the hazard rate of the one given the hazard of
the other (e.g., death or default) at time t decreases as t goes up. This was noted in Spreeuw
(2006). The underlying assumption of SI may work out well in reliability theory. Consider
two printers available to office staff. When one fails, the other one, pending the repair of
the first, is used more intensively and thereby exposed to greater strain. It is sensible to
assume that the longer the first printer is out of order, the higher the failure rate of the
remaining machine would be.

For coupled lives, however, it is not so clear-cut. On the one hand, the event of
the death of one life usually triggers an elevated mortality of the surviving life, so the
assumption of LTD/RTI seems sensible. In addition, such lives are exposed to common
risks due to permanently living together and due to a similar background (“birds of a
feather flock together”, the so called long-term dependence according to Hougaard (2000)).
On the other hand, however, there is also the phenomenon of the event of the one life
dying leading to the mortality of the remaining life temporarily going up, which is the
so-called broken-heart syndrome (short-term dependence, also attributed to Hougaard
(2000)). Similar nonstandard features may apply to other cases in insurance (and finance
as well). In short, there is a case for constructing copula families allowing for flexibility in
terms of type of dependence, such as LTD/RTI but not necessarily SI.

In this paper, we introduce a new Archimedean copula family that is based on a
link between Archimedean generators and utility functions; see Spreeuw (2010) for more
details. Unlike mainstream copulas, this family has the property of being LTD/RTI, but not
necessarily SI, the latter being clearly indicated by the sign of one of the parameters.

The outline of the paper is as follows. Section 2 gives the basic definitions of Archimedean
copula, and the dependence concepts of LTD/RTI and SI. Section 3 introduces the new family
and analyzes its basic properties. Section 4 fits the new Archimedean family to the section of
censored remaining lifetime data of coupled lives, as in Luciano et al. (2008). Section 5 sets out a
conclusion.

2. Basic Definitions

Define ψ as the generator of a 2-dimensional Archimedean copula, being strictly
continuous, strictly decreasing, convex, with ψ(0) = 1 and limx→∞ ψ(x) = 0. The copula
itself is then specified as

Cψ(u1, u2) = ψ
(

ψ−1(u1) + ψ−1(u2)
)

, (1)

where u1, u2 each take values between 0 and 1.
Next are definitions of the tail concepts of left tail decreasing (LTD), right tail increasing

(RTI) and stochastically increasing (SI), based on two random variables X and Y, and their
copula C. They can all be found in Chapter 5 of Nelsen (2006).

Definition 1. Y is LTD in X (notation LTD(Y|X )) ⇔ Pr[Y ≤ y|X ≤ x ] is nonincreasing in
x for all y. For an exchangeable copula C (i.e., C(u, v) = C(v, u) for 0 ≤ u, v ≤ 1) of random
variables X and Y, LTD(Y|X ) and LTD(X|Y ) are equivalent.

Definition 2. Y is RTI in X (notation RTI(Y|X ))⇔ Pr[Y > y|X > x ] is nondecreasing in x for
all y. For an exchangeable copula C (i.e., C(u, v) = C(v, u) for 0 ≤ u, v ≤ 1) of random variables
X and Y, RTI(Y|X ) and RTI(X|Y ) are equivalent.
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Definition 3. Y is SI in X (notation SI(Y|X ))⇔ Pr[Y ≤ y|X = x ] is nonincreasing in x for
all y.

The following propositions are from Avérous and Dortet-Bernadet (2004). The second
one was originally shown in Capéraà and Genest (1993).

Proposition 1. If C is Archimedean with generator ψ, LTD(Y|X ) or LTD(X|Y ) if and only
if ψ is logconvex. Likewise, if Ĉ, the rotated copula (also known as survival copula) of C (so
Ĉ(u, v) = u + v− 1 + C(1− u, 1− v) for 0 ≤ u, v ≤ 1) is Archimedean with generator ψ̂ is
RTI(Y|X ) or RTI(X|Y ) if and only if ψ̂ is logconvex.

Proposition 2. If C is Archimedean with differentiable generator ψ, SI(Y|X ) or SI(X|Y ) if and
only if −ψ′ is logconvex.

3. SAHARA Family

The SAHARA copula family is derived from the Symmetric Asymptotic Hyperbolic
Absolute Risk Aversion (SAHARA) utility function introduced in Chen et al. (2011). This
utility function is specified below.

ϕθ,ε(s)

=



− 1
(1+ 1/θ)2−1

(
s− ε +

√
δ2 + (s− ε)2

)−(1+ 1/θ)

·
(

s− ε + (1 + 1/θ)
√

δ2 + (s− ε)2
) θ 6= 0

1
2 ln
(
(s− ε) +

√
δ2 + (s− ε)2

)
+ 1

2 δ−2(s− ε)

(√
δ2 + (s− ε)2 − (s− ε)

) θ = 0.

, θ ∈ (−∞,−1) ∪ (0, ∞), δ > 0, ε ∈ R. (2)

As shown in Spreeuw (2010), a strict Archimedean generator can be obtained from a
utility function ϕ if ϕ(∞) = lims−→∞ ϕ(s) < ∞. For SAHARA, this is the case when θ > 0.
Then, applying the formula ψθ,ε(s) = {ϕθ,ε(∞)− ϕθ,ε(s)}{ϕθ,ε(∞)− ϕθ,ε(0)}−1 leads to
the Archimedean generator

ψθ,ε(s) =

 s− ε +
√

δ2 + (s− ε)2

−ε +
√

δ2 + ε2

−(1+ 1/θ) s− ε + (1 + 1/θ)
√

δ2 + (s− ε)2

−ε + (1 + 1/θ)
√

δ2 + ε2

. (3)

Remark 1. This approach of obtaining an Archimedean generator from a utility function is not to
be confused with the method of obtaining the inverse of an Archimedean generator from a utility
function. For the latter, consult Spreeuw (2014).

The SAHARA utility function was inspired by nonmonotone risk aversion coefficient

ARϕ(s) =
1 + 1/θ√
(s− ε)2 + δ2

,

which, unlike common utility functions, is not monotone in its argument. It is rather
increasing for s < ε attaining a maximum for s = ε, and decreasing for s > ε. The
SAHARA utility function found applications in both finance and insurance (Bernard et al.
2021; Bernard and Kwak 2016; Brachetta and Schmidli 2020; Chen et al. 2021; Chen and
Vellekoop 2017; Li and Ma 2018; Schumacher 2018). As shown in Spreeuw (2010), a risk
aversion monotone decreasing (increasing) on the positive real line in general implies that
the corresponding Archimedean copula is stochastic increasing (stochastic decreasing) in
two dimensions. The former property applies to the vast majority of commonly applied
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copula families (including all those whose generator is a completely monotonic function).
For ε > 0 the copula is neither stochastic increasing nor stochastic decreasing. To the best of
our knowledge, there are hardly any copula families that share this property.

For ε < 0, the condition imposed on δ can be somewhat relaxed to δ ≥ 0, δ = 0
corresponding to the Clayton copula with parameter θ. Due to scaling, for some real-
valued δ∗ > 0 and ε∗, (δ, ε) = (δ∗, ε∗) gives exactly the same Archimedean copula as
(δ, ε) =

(
1, ε∗

/
δ∗
)
. To see this, we divide in (3) both numerator and denominator by δ > 0.

This gives:

ψθ,ε(s) =

 s
δ −

ε
δ +

√
1 +

( s
δ −

ε
δ

)2

− ε
δ +

√
1 +

(
ε
δ

)2

−(1+ 1/θ) s
δ −

ε
δ + (1 + 1/θ)

√
1 +

( s
δ −

ε
δ

)2

− ε
δ + (1 + 1/θ)

√
1 +

(
ε
δ

)2

.

Now, ε being real-valued implies that ε/δ is real-valued as well. In addition, it is well-
known that a generator is only defined up to a multiple constant. In other words, for β > 0,
ψθ,ε(s) and ψθ,ε(β s) generate the same Archimedean copula. δ∗ −→+ 0 is equivalent to∣∣ ε∗/δ∗

∣∣ −→ ∞. Hence, without loss of generality, we take δ = 1 from now on bearing in
mind that, for ε −→ −∞, the Clayton copula with parameter θ is obtained as a limiting
case. For ε −→ ∞, the Clayton copula is again obtained as a limiting case, although now
with parameter − θ

2θ+1 .
It can be numerically shown that this copula (a) for a fixed θ decreases in concordance

with increasing ε; (b) for negative fixed ε, it increases in concordance with increasing θ; and
(c) for a positive fixed ε, it first decreases and then increases in concordance in terms of θ.
For any finite ε, θ ↓ 0 and θ −→ ∞ lead to independence and comonotonicity, respectively.

According to Theorem 4.3 of Joe (1997), p. 91, for Archimedean copulas with a strict
generator, the population version of Kendall’s tau can be written as:

τ = 1− 4
∞∫

s=0

s
(

d
ds

ψθ,ε(s)
)2

ds.

Using software system Wolfram Mathematica (see Wolfram Research Inc. (2017)) this
gives the expression:

τ = 1−
(2θ + 1)

(
(θ + 2)(3θ + 2) + 4(θ + 2)ε4 + 12(θ + 1)ε2 + 2(θ + 4)ε

√
ε2 + 1 + 4(θ + 2)ε3

√
ε2 + 1

)
(θ + 2)(3θ + 2)

(
θ + ε

(√
ε2 + 1 + ε

)
+ 1
)2 ,

for ε = 0 considerably reducing to τ = { θ/(θ + 1)}2. Taking the limit for ε → −∞
, keeping θ constant, gives τ → θ/(θ + 2). This is the well-known formula of Kendall’s
tau for the Clayton copula, and therefore not very surprising. Taking the limit ε → ∞,
keeping θ constant, gives τ → − θ/(3θ + 2). This implies that, for increasing θ, the
range of values taken by τ increases. So, the lowest possible value of τ for this family
is limθ−→∞− θ/(3θ + 2) = −1/3. For fixed nonpositive ε, τ is monotone increasing in θ
from 0 to 1. For fixed and finite positive ε, τ as a function of θ first decreases until a certain
negative minimum that is greater than −1/3, and increases afterwards. The greater the
value of ε is, the greater the value of θ for which the minimum is reached and the smaller
the minimal value. The difference between Kendall’s tau for ε = 0 and ε→ −∞ is

θ

θ + 2
−
(

θ

θ + 1

)2
=

θ

(θ + 2)(θ + 1)2 ,

which is zero for θ = 0, increasing until θ =
(√

5− 1
)/

2 ≈ 0.618 (which for ε = 0 and
ε→ −∞ gives values of Kendall’s tau of 0.236 and 0.146, respectively), then decreasing for
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increasing θ and ultimately vanishing. There is no upper tail dependence, while the lower
tail dependence coefficient is 2− 1/θ .

Another interesting feature of this family concerns the conditional survival copula,
that is, if the copula of the conditional joint survival function H(x|y ) = Pr[X1 > x1, X2 >
x2 |X1 > y1, X2 > y2 ]. If the joint survival function H(x) has an Archimedean copula
with generator ψ(s), s ≥ 0, the conditional joint survival function H(x|y ) also has an
Archimedean copula with generator

ψy(s) = ψ(s + t)
/

ψ(t) , (4)

where t = ψ−1(H(y)
)
. (Usually the conditional copula is rather given in terms of the

inverse generator ψ−1
y (s) = ψ−1(sH(y)

)
− ψ−1(H(y)

)
, see (Charpentier 2003; Spreeuw

2006; Sungur 2002)) Applying (4) to the SAHARA family gives

ψy,θ,ε(s) =

 s + t− ε +
√

δ2 + (s + t− ε)2

t− ε +
√

δ2 + (t− ε)2

−(1+ 1/θ) s + t− ε + (1 + 1/θ)
√

δ2 + (s + t− ε)2

t− ε + (1 + 1/θ)
√

δ2 + (t− ε)2

, (5)

so the conditional copula is again SAHARA with parameters θ and ε− t. It follows that
dependence increases over time, and the copula converges to Clayton with parameter θ.
Again, this is unlike most other copula families where the limiting dependence is either
none (independence) or perfect positive.

Some scatterplots follow in Figures 1–3, for Kendall’s tau fixed at 0.25 and varying
values for ε and θ. As ε went up, we encountered on the one hand increasingly positive
dependence in the bottom left part, and increasingly negative dependence in the top right
half. Such families could be considered when data feature strongly positive dependence
for small values, and weakly positive, no, or even negative dependence for large values.

The SAHARA copula is clearly flexible and versatile. A drawback is that the in-
verse of the generator is not available in closed form, like some families introduced in
McNeil and Nešlehová (2010), Hua and Joe (2011) and Hua (2015), rendering computations
more complicated.

Figure 1. Scatterplot of the SAHARA copula for θ = 1 and ε = 0; τ = 0.25.
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Figure 2. Scatterplot of the SAHARA copula for θ = 4.5464 and ε = 2; τ = 0.25.

Figure 3. Scatterplot of the SAHARA copula for θ = 69.11 and ε = 10; τ = 0.25.

4. Application

For the numerical application in this section, we use the example about modelling
dependence of coupled lives in Luciano et al. (2008) and Spreeuw (2014). The two publi-
cations used different data, although they both concern samples specified as generations
from the same large dataset of annuitants from a Canadian insurer. In this section, copula
families are fitted into the data from Luciano et al. (2008) rather than those from Spreeuw
(2010). We follow the same procedure of modelling and calibration as that in Luciano et al.
(2008) and Spreeuw (2014). Some elaboration on deriving the empirical generator is in
order to render this paper self-contained.

The joint survival function of two remaining lifetimes Tm
x (male, age x at the start of

the observation) and T f
y (female, age y at the start of the observation) is given in terms of a

survival copula Cxy as

Sxy(s, t) = Cxy(Sm
x (s), S f

y(t)).

In this setup, the lives are coupled at the time when they are observed (rather than at
birth, as in, e.g., Frees et al. (1996)), just like in Carriere (2000). Using a modified version
of the procedure by Wang and Wells (2000), the performance of a candidate Archimedean
copula is judged on the basis of distance between the empirical Kendall function, denoted
by K̂n(xy), and the theoretical Kendall function, denoted by K

ψ−1
Â

(xy)(v), where ψ−1
Â

is the

inverse generator of the copula concerned, with Â being the parameter vector estimate
minimizing the distance between K̂n(xy) and K

ψ−1
Â

(xy)(v). For single parameter copulas,
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A = θ, while for families with two parameters, A = {θ, ε}. The distance or error is defined
under the L2 norm (so, in the usual quadratic sense). Therefore,

error
(

ψ−1
Â

(xy)
)
=
∫ 1

ξ

(
K

ψ−1
Â

(xy)(v)− K̂n(xy)(v)
)2

dv,

with

Â = arg min
A

∫ 1

ξ

(
K

ψ−1
A (xy)(v)− K̂n(xy)(v)

)2
dv.

Given that the data were right censored, the lower bound ξ was greater than zero. In
this example, it is taken to be the smallest value for which K̂n(xy) is positive:

ξ = min
{

ν : K̂n(xy)(v) > 0
}

.

The empirical Kendall function, denoted by K̂n(xy), was derived from Dabrowska’s
nonparametric estimator of the joint survival function (see Dabrowska (1988)). Given that
the data were right censored, with many observations being doubly censored, K̂n(xy) is
zero between 0 and a certain value ξ1 > 0, at which point it jumps. In this case, ξ1 = 0.23.
The pseudo-maximum likelihood (PML) procedure uses as input rescaled Kaplan–Meier
estimates of the marginal survival functions in order to accommodate censoring.

Luciano et al. (2008) fit the data to Clayton, Gumbel-Hougaard, Frank, entry 20 of Ta-
ble 4.2 in Nelsen (2006) (“4.2.20 Nelsen”) and the so-called Special copula. For convenience,
the last two are listed below with their generators:

1. 4.2.20 Nelsen: ψθ(t) = {log[e + t]}−
1
θ , θ > 0.

2. Special: ψθ(t) =
(
−t+
√

t2+4
2

) 1
θ , θ > 0.

Luciano et al. (2008) concluded that 4.2.20 Nelsen fit the data best. In this section,
we compare its performance with that of SAHARA and the best contender of common
two-parameter families from Joe (1997, 2015), i.e., BB2. Its generator is:

ψθ(t) =
{

1 +
log[1 + t]

ε

}− 1
θ

, θ, ε > 0.

The 4.2.20 Nelsen is a special case of BB2 arising for ε = 1.
Results are given in Table 1. The positive estimate for ε indicates the absence of SI.

Table 1. Results for several copula families.

Copula Parameter Estimates Error
ϕ
[−1]
θ̂

(xy)

4.2.20 Nelsen θ̂ = 1.005 0.720
BB2 Joe (1997) θ̂ = 1.469; ε̂ = 0.383 0.667

SAHARA θ̂ = 0.204; ε̂ = 0.914 0.293

As in Luciano et al. (2008), we performed a graphical comparison between the theoretical
and the empirical K functions through transformation λ(w) = w− K(w) for ξ1 ≤ w ≤ 1. The
result can be found in Figure 4. SAHARA achieved a significant improvement to the fit
compared to the other families.
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0.4 0.6 0.8 1.0
w

-0.25

-0.20

-0.15

-0.10

-0.05

(w)

Figure 4. Graphical comparison between theoretical λ(w) = w − K(w) for SAHARA (yellow),
BB2 (green) and 4.2.20 Nelsen (orange) and empirical one (blue).

Now consider the notion of SI in more detail. For two random variables X1 and X2,
X2 being SI in X1 is equivalent to Pr[X2 > x2|X1 = x1 ] being nondecreasing in x1 for all x2.
Related to this is the notion of long-term dependence as introduced in Hougaard (2000).
If we define µm

(
t
∣∣∣T f

y = ty

)
as the conditional force of mortality of life (x) at duration

t given T f
y = ty < t ((y) dies at duration ty), then the dependence between Tm

x and T f
y

is of the long-term type if µm
(

t
∣∣∣T f

y = ty

)
is constant or decreasing as a function of ty,

while dependence is short-term if µm
(

t
∣∣∣T f

y = ty

)
is increasing as a function of ty. To

understand this, it is important to that, as indicated before, for Archimedean copulas,
stochastic increasing (SI) is equivalent to −ψ′ being logconvex. Spreeuw (2006) showed
that this property of the generator also applies to long-term dependence, implying that SI
and long-term dependence are actually equivalent. On the other hand, however, for the
SAHARA family, we have:

∂
{

ln
[
−ψ′θ,ε(s)

]}
∂s

= − 1 + 1/θ√
(s− ε)2 + 1

,

which is monotone increasing in s across the board for negative ε. For positive values
of ε, however, the expression decreases in s for 0 ≤ s < ε, so the SI property does not
hold. The positive parameter estimate for ε suggests that short-term rather than long-term
dependence may prevail between the coupled lives. To investigate this further, we analysed
the data in the same vein as in Spreeuw and Owadally (2013), who devise an augmented
Markov model to allow for short-term dependence for the entire dataset. Results are
reported in Table 2.

In this table, e denotes the time in which an integer number of years that have elapsed
since the death of the partner. So, e.g., e = 0 concerns the lives that were bereaved less than
a year ago. For each possible value of e (noting that each life was observed for 5 years or
less), we calculate number of deaths reported, the risk exposure, and the overall mortality
rate being the ratio of the values in the second and third column. So, for instance, the
risk exposure of lives who lost their partner less than a year ago is 604.87, and there were
69 lives that died within one year after their partner. Now, long-term dependence implies
that the mortality rate in the last column should be increasing as a function of e, but the
results in Table 2 show that this is not the case, and that short-term dependence may be
present even though the aggregate mortality rate for e = 4 is higher than for e equal to 1, 2
or 3.

Ideally, one such table should be shown for each gender. However, due to the small
number of observed deaths in the dataset, in particular for higher values of e caused by
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heavy censoring, males and females were combined. Results in Table 2 should thus be
interpreted as an indication of possible short-term dependence, rather than firm evidence.

Table 2. Mortality for all couples, with e denoting the number of years since partner’s death.

Deaths Exposure Mortality

Partner dead

e = 0 69 604.87 0.114075

e = 1 17 428.44 0.039679

e = 2 9 277.76 0.032403

e = 3 4 155.08 0.025590

e = 4 3 49.67 0.060395

Partner alive 751 34,631.45 0.021685

5. Conclusions

In this paper, we introduced a new Archimedean copula family derived from the
SAHARA utility function. With SAHARA utility first increasing to a maximum and subse-
quently decreasing, the corresponding copula family allows for stochastically increasing
(SI) and non-SI at the same time, depending on the sign of one of the parameters. As the
numerical application shows, this family could fit the mortality data of coupled lives well.
The parameter estimates suggest the possible existence of short-term dependence, i.e., the
mortality of bereaved lives increases on bereavement but diminishes later.
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