IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Booth, T. (2022). Tactical troubleshooting: investigating support for end-user
developers in physical computing. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/28403/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Tactical Troubleshooting:

Investigating Support for End-User Developers
in Physical Computing

Tracey Booth

A dissertation submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy
at

City, University of London

Centre for Human-Computer Interaction Design
Department of Computer Science

School of Mathematics, Computer Science, and Engineering

April 2022

Supervisors: Dr Simone Stumpf
Dr Sara Jones

Dr Jon Bird

Copyright statement

Powers of discretion are hereby granted to the Librarian of City, University of London, to copy
the thesis in whole or in part without further reference to the author. This permission covers only

single copies made for study purposes, subject to normal conditions of acknowledgement.

Abstract

With maker culture and its emphasis on DIY and personal creation now firmly embedded in society, more
end-user developers—for example, artists, hobbyists, researchers and designers—have been drawn
towards developing interactive physical computing devices—microcontroller-based systems that interact
with the physical environment via sensors and actuators—using popular development platforms such as
Arduino. However, developing these devices usually involves 1) constructing an electronic circuit and 2)
programming its behaviour—activities which can present challenges to end-user developers, particularly
inexperienced ones. Inability to overcome these challenges may result in them failing to complete their
projects or even abandoning their physical computing ambitions altogether.

Decades of research have focused on understanding the problems that end-user programmers and
novice programmers face when programming software, and developing support for overcoming these.
Physical computing development might benefit from similar approaches but prior to this thesis there had
been little empirical work to determine what difficulties end-user developers experience in this domain,
their natural behaviours when dealing with them, or how they might be supported in overcoming them.

To fill this gap, this thesis aims to answer the following, overarching research question:

How can end-user developers be supported in overcoming problems they experience when
developing physical computing artefacts?

Answering this question involved four stages of work:

1. An exploratory, empirical study, investigating the problems that end-user developers experience
when developing a physical computing device.

2. Deeper analysis of data from the same study, to identify end-user developers’ natural behaviours
when troubleshooting circuit bugs—the type of bug identified as most likely to impede success.

3. Informed by this empirical work and inspired by creativity support cards, the development of a
novel, physical card-based tool, to support end-user developers when troubleshooting.

4. Evaluation of the support tool in a study with novice end-user developers, to observe its impact
on troubleshooting, and elicit feedback about their first-hand experience of using it.

This research is the first empirical investigation into the problems, behaviours and support needs of adult,
end-user developers using platforms such as Arduino to develop physical computing devices. The main
contributions of this thesis, are:

1. Empirically grounded knowledge of the problems experienced by end-user developers when
constructing and programming a physical computing device, including the types, location and
number of problems, and whether they are overcome.

2. Empirically grounded knowledge of end-user developers’ natural behaviours when
troubleshooting circuit bugs that they have introduced during development, including the tactics
they employ, resulting in suggestions for types of support from which end-user developers might
benefit when troubleshooting in this domain.

3. A novel, physical card-based tool to support end-user developers in troubleshooting physical
computing problems. The tool provides ideas for different troubleshooting tactics and is
designed to encourage more thoughtful troubleshooting,

4. Insights into how a physical card-based support tool might be used and perceived by novice
end-user developers when troubleshooting circuit bugs in a physical computing task.

Acknowledgements

There are people without whom this PhD would not have been possible. Chief among them (and | know
he'll enjoy that accolade), is my husband, Olivier, who made many sacrifices and adjustments to facilitate
and support my doctoral adventure, was patient (largely) in awaiting its completion, and never once
doubted that I would succeed, even during my wobbliest wobbles. Love and gratitude, always.

My PhD supervisors—Dr Simone Stumpf, Dr Sara Jones and Dr Jon Bird—were exceptional in the extent of
their engagement with my work and their efforts on my behalf. Generous with their advice and assistance,
and a constant source of support and encouragement, | really did land with my bum in the supervisory
butter. Heartfelt thanks to all. Special long service recognition to Simone, who was along for the entire
ride, starting with supervision of the MSc dissertation project that spawned the topic of my PhD.

I'would also like to express my gratitude to my examiners, Professor Judith Good and Professor Stephanie
Wilson, for their thorough critical review of my work, fair examination, and constructive feedback, from
which my thesis has benefitted greatly. Much appreciation to Dr Ernesto Priego, for chairing my viva so
beautifully, but also for providing help and support during my PhD, as Senior Tutor for Research.

Completing the final stages of this PhD during a global pandemic was not ideal. To my fellow PhD
students—particularly Carol, Beatrice, Niamh, Alex and Axel—thank you for the online meetups that
helped to re-establish some working routine in a time of upheaval and great uncertainty. Congratulations
on your own achievements. Whatever you accomplished during this period, you should be proud.

As a member of HCID, | have had the pleasure of working and studying alongside many remarkable
humans. Thank you to all, for any part played in my PhD, or my evolution as a researcher, but also for the
company and friendship within and outside of the university walls, and for setting the bar for ‘work’
parties high. Particular thanks to Stuart, for being so flexible and accommodating with access to the
Interaction Lab for my studies, and to Steph, for numerous reasons, but not least the conversation, over a
beer, several years ago, that made me think that doing a PhD might actually be possible.

Many thanks to City, University of London for waiving student fees for the duration of my PhD, and to all
course officers—Ann Marie, David, Nathalie, Savita—who provided behind-the-scenes help and support.

| am indebted to all of my study participants, for giving so generously of their time, rising to the challenge
of the tasks I set, and being candid in their feedback. | am also grateful to everyone who helped me to
recruit participants, as well as to anyone in the wider HCI research community who provided me with
feedback, inspiration, challenge, help or encouragement.

Some fabulous friends played a large part in keeping me, variously, sane, entertained, motivated and on
track, offered their support, or assisted me in some way. Special acknowledgement to—in alphabetical
order—Adrian, Bernard, Carol, Emma, Gita (RIP), Leon, Manda, Monty, Moose, Nathan, Niamh and Simon.

Finally, my academic journey has been somewhat unconventional, but my family have been supportive
throughout. Much love and gratitude to my parents, for their unwavering faith in my abilities, and for
preparing me for this endeavour by raising me to be curious, questioning, and tenacious in pursuing my
interests. | hope that this new achievement makes up for me still not completing a bachelor’s degree.
Love and appreciation also to my sister Vicky, for every instance of cheerleading, and to my niece, Olive,
for recreational distraction from stuff that wasn’t quite as much fun as Minecraft.

Table of Contents

LISt Of FIGUIES ottt sae e ba et e e sbeeaesaesnsasanans i
LISt Of TADLES . v
Publications arising from this thesis........cccceceviriiiiininiinienneeens Vi
Chapter 1 Introduclioncceuciieiiiiiiiiiiiiiirecerreccrrnee e eenneesenneessnnennns 1
1.1 Background and Motivationcccoveeieeiiniinriinireereseeese et 1

111 The Maker MOVEMENT ..ot 1

1.1.2 PhySiCal COMPULING oo 2

1.1.3 ENd-USEr deVelOPMENT ..o 2

1.1.4 End-user developers in physical computing: MAKers ..., 3

1.1.5 Supporting end-user developers’ physical computing development.........cccccccveenee. 4

1.1.6 HClresearch in the physical computing domain ..o 6

1.1.7 A physical card-based tool to support end-user developers’ troubleshooting.......... 7

1.2 Research qUESIONScc.ccciiiiiiiiiiiiicr s 8

1.3 Summary of CONtrIDULIONSuicuieeiecieeceee e 9

1.4 RESEAICH SCOPEcviiiiiiiiiicitt ettt 10

1.5 Methodology and approach..........cceeeierieienenieerereeee et seens 11

1.5.1 Anempirical, user-centred approach........ccccoiiieiecee e 11

1.5.2 Research methods and methodological StancCe........ccocovirinrinriniins 13

1.6 TheSiS OULIINEciiuiiiiiiiiiccc s 17
Chapter2 Related WOrkcceueiieiniiiiiiiiriiccttecerenecreeeeereneeeeenneeesnneesennees 19
2.1 ENd-USEr AEVEIOPELS ...ooveictiiciieciieieeiteseeseestesnesaessaesstessseessnesnesssesssesssesssasnnes 20

2.1.1 End-uservs novice and professional programmers ..., 20

2.1.2 Thedisadvantages of NON-EXPEItS. ... 22

2.1.3 End-user developers @S MOKEIS. ... 22

2.2 Non-experts’ problems in programming........ccccecceverreerenerreesenresseenesreesseseeees 23

221 CauSes Of SOFtWAIE EITON ... 24

2.2.2 LEAMINE DAMTIEIS ..o 25

223 SEATEEIES oo 27

2.3 Non-experts’ problems With CirCUItscoceevvirerieninieceercceceee e 29

2.4

2.5

2.6

2.7

2.8

Chapter 3

3.1
3.2

3.3

3.4

2.3.1 Circuit theory: problematic for [EarNErS.....cocoviierieiieieeeeeeeee e 29

Problems affecting end-user developers in physical computing............c........ 31
2.4.1 Existing evidence of problems in physical cOMpUtiNg.......ccccovveeierieiiieniieneeereane. 32
Supporting end-USer deVEIOPEIScocvereetererteieeetee ettt 34
2.5.1 Thechallenge of supporting end-user developers ..., 34
Supporting NON-exXPert ProgrammMErsS........coceereereenieerirensreesreeeseeseesseesseesssessses 35
2.6.1 Making programming EASIEN ..o 36
Supporting physical computing developmentccccocoevvervierineevenenreerenenee. 37
2.7.1 Easier programming in physical COMPULING......ccccooviriiriiiniinieeee e 37
2.7.2 Easiercircuits in physical COMPULINGccoiuiiiiiiiiiee e 38
2.7.3 Making circuits and programming EaSIENcccecuiiiieiiiirieeeeiee e 40
Supporting troubleshooting and debuggingcccocveeevercieninincinreeeeeen 43
2.8.1 Troubleshooting software problems (debUgEiNG)ccccovvverinrieiiniiinineeeeenn, 45
2.8.2 Troubleshooting physical computing problems ..., 46
Problems experienced by end-user developers in a physical

computing task (Study 1A)cceevveeeiiiiiiniiinnnnnnnsiicsssnineeeennnees. 48

INErOAUCTION. ...ttt 48
MEENOM ...ttt 49
3.2.1 OVEIVIBW oo st 49
3.2.2 ParTiCIPANTS e 50
3.2.3 ML e 55
3.24 PrOCEAUIE oo 61
3.2.5 Data COOCION ... 64
3.2.6 0 DAt@ ANQALYSIS .oeoiicee e 69
RESUIES ..ottt 80
3.3.1 How many problems? (RQL) ..o
3.3.2 What types of problems? (RQL) ..ccoovvvvrrinnenn.

3.3.3 Wheredid problems occur? (RQ1)
3.3.4 Did self-rated expertise and self-efficacy have an effect? (RQ2)
3.3.5 Were problems overcome? (RQ3) ... 85
3.3.6 What went fatally wrong? (RQ3) ... 87

D] ol Ry (o] o FS 91

Chapter 4 How end-user developers troubleshoot circuit bugs (Study 1B)93

4.1
4.2

4.3

4.4

Chapter 5

5.1
5.2

5.3

54

5.5

INErOAUCEHION. ..ttt 93
Method: Data ANalySiS.......cccoeiviiniiiniiinicincccce s 94
421 OVEIVIEW oottt 94
422 EVENE TYPE COAES ..o 98
423 RUNS s 100
424 EPISOUES ... 101
425 ACHVILY TYPE COURS ..t 102
426 TACHICS COURS ..o 103
427 BUES i 106
RESUIES ..ottt 106
43.1 How do end-user developers troubleshoot circuit bugs? (RQ1) ...covvvvrerierrinrieien. 107
4.3.2 Are end-user developers’ troubleshooting behaviours effective? (RQ2) 114
DISCUSSION c..ciuiiiiiiiiiiitiirt ettt sb e sba b sae e 121
441 TroubleshOOtiNG TACTICS ... 122
4.42 Supporting end-user developers’ troubleshooting ..., 125
Developing a physical card-based tool to support end-user

developers’ troubleshooting.........cccceeeuunennnnnnniiiisiinnnnnnnee. 131
INErOAUCHION. ...t e 131
Designing cards to support troubleshootingcccceeeveevienininnenennienienenne 132
521 WRY CATAS? oo 133
5.2.2 Design review of existing Card SES ... 134
5.2.3 Considerations when designing Cards ... 135
INItIal PrOtOTYPE. . eeceieciececcccre et e e e e e s e sraesaesnaa s 137
5.3.1 Proof of concept (informal Pilot)covviveriieeceeee e 139
A study to inform the design of the card deck.......cccocevvveeevvinnenciecenereee 140
5.4.1 FOCUS BrOUP SESSIONS .euiuiiiiiiiisiircitieeieiseee sttt 141
The Tactical Troubleshooting toolKit.........ccccceeerrerirrienerieceeerceeeeeeeen 144
5.5 1 TACHIC CANAS oo 146
5.5.2 CatBEONY CANOS ..ot 149
5.5.3 BeSEPraCliCe Cards ...t 149
554 COMPONENE CATAS ..oviiiieciieeeee s 150
5,55 PLAYMAL oo 150

556 Cad SEAN ettt 152

5.6
5.7

Chapter 6

6.1
6.2

6.3

6.4

Chapter 7

7.1

7.2
7.3
7.4

7.5

Card ProdUCLION PrOCESS.....cccuiivieirieirieeneereesrestessreesreeseesaesaesssesssasssasssaessnenns 152

DT ol E3Y (o] o SR 153

Evaluating the troubleshooting support cards with novice end-

user developers (StUdy 2).....cceeeerererreenceeeeeeeeeeeeenenneeeeeeeeeennnns 157

INErOAUCHION. ...ttt e 157
MEENOM ...ttt 157
0.2.1 OVEIVIEW oottt 157
0.2.2 STUAY AESIEN oo 158
6.2.3 PartiCIPANTS oo 159
B.2.4 MATEIIAIS . e 165
B.2.5 PIOCEAUIE ... 172
6.2.6 Data collection and @nalySiS 176
RESULES et 180
6.3.1 What effect do the cards have on helping end-user developers troubleshoot?..... 181
6.3.2 How do end-user developers view the support tool?........ccccoooveevvierceiceeeses 186
DISCUSSION .ttt 206
6.4.1 Task-related frUStration ... 206
B.4.2 SUIMIMATY 1ttt 207
Discussion and conclusionccccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeenn 211

(O0eY 01 410101 4o o - RTT 212

711 CONEADULION 1 oo 212
T.1.2 0 CONEIDULION 2 oo
7.1.3 Contribution 3 ...

714 CONEIDULION 4 ..o

Limitations of the work

The focus on troubleshooting.........cccoccviiniincciniiiice, 224
Reflection on methods and approach ... 226
7.4.1 Taskobservation in a laboratory environment, under tight constraints 227
7.4.2 Problems with think @loud ..o 228
743 APProach t0 @NaLYSiS.....oiieiiiecieieiecie e 229
7.4.4 ‘Whatworks’vs ‘What might work better?” ... 229
Opportunities for fUtUre WOrK.........ccueceeeecerereecese e re e 230

Appendices................

Appendix A.
Appendix B.
Appendix C.
Appendix D.
Appendix E.
Appendix F.
Appendix G.

Appendix H.

Appendix .
Appendix J.
Appendix K.
Appendix L.

Appendix M.
Appendix N.
Appendix O.

Appendix P.

Appendix Q.

AppendixR.
Appendix S.
Appendix T.

Appendix U.

Appendix V.

Appendix W.

Bibliography..............

... 233
Study 1A Ethics appliCation. ..o 233
Study 1A ReCruitment POSEET ... 236
Study 1A Participant information sheet ..o 237
Study 1A Informed conSeNnt fOrm ..o 238
Study 1A Background QUESTIONNAITE ... 239
Study 1A Self-efficacy QUESTIONNAITEcoviiieees 242
Study 1A Task instruction SHEet ..o 243
Study 1B Troubleshooting flow diagram ... 244
Initial set of candidate tactiCS. ... 245
Card design focus groups ethics application ..., 246
Card design focus groups participant information sheet..........ccccccooevvnee. 249
List of cards used in STUAY 2. 250
Tactics and Best PractiCe Cards.......oineseseeeseeeseeeseeeees 251
Study 2 Ethics appliCation ... 256
Study 2 ReCruitmeENt flYer. ..o 260
Study 2 Participant information Sheet. ... 261
Study 2 Informed coNSENt FOrM.......oiiviiiis 262
Study 2 Background qUeSIONNaIre ... 263
Study 2 Support Materials QUEStiONNAINecooevviveieeeeeee e 265
Study 2 Task iNSTIUCTIONS ... 267
Study 2 Interview topiC GUIAE ... 268
Study 1A/1B Participant background data ..o 269
Study 2 Participant background data ... 270

... 271

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Figure 5.

Figure 6.
Figure 7.
Figure 8.

Figure 9.

Figure 10.
Figure 11.

Figure 12.

Figure 13.

Figure 14.
Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.
Figure 21.

Figure 22.

An Arduino UNO board and the ArdUino IDE ... 5
General model of troubleshooting. From Katz and Anderson, 1987 ..., 44
Participants’ @XPerieNCE, IN YEATS ..o 53
Pt CI PANTS TrATNTINEG v 53
Participants’ self-ratings of expertise in physical computing, programming and

BLOCETONITS .t 54
Individual participants' self-ratings of eXpertise (1-7) ..o 54
Individual participants’ self-efficacy scores (out of a maximum of 100)........cc.ccccovvririerrirnnn. 54
Love-O-Meter protOtyPe N @CHIOMN ..o 56
MOdel LOVE-O-MELET CITCUIT. ... 57
Model LoVe-O-Meter PrOGIaM ...t 59
Study TA: SEGUENCE OF ACHIVITIES ..o 62

Desk and equipment setup. An additional monitor (visible on the right-hand side of the
image) mirrored the participant’s screen, enabling me to observe on-screen activity
during the task in an UNODErUSIVE WaY. ... 66

Still from composite split-screen video of a participant undertaking the task, showing
1) on-screen activity (large panel), 2) view of the participant’s head and shoulders
(small panel embedded within the screen activity panel), 3) desk-facing view (top right

panel) and 4) overhead, zoomed-in view of the circuit (bottom right panel).........cccccocevverien. 67
Extract from a transcript SPreadsneet........ocoovivieieeeee e 68
Photographs of @ participant’s CIFCUIL ... 68

Fritzing image of a participant’s circuit, showing the Arduino board (left) and the
solderless breadboard (FIZNT) 69

Portion of transcript coded with problem type (Obstacle, Breakdown, Bug) and
location (Code abbreviations: C=Circuit; B=Both, i.e., Circuit+Program)c.cccocevvvrrrrrerrennnn. 78

Total number of problems per participant. Participants whose columns are green
successfully completed the task, i.e., developed a working prototype that met the task

DI /SPECITICAtION. w.vtiii s 80
Number of each problem type, per participant, grouped by task success, ordered by

total number of problems (obstacles + breakdowns + DUES) ..o 81
Number of problems DY lOCATION ... 82
Problem types DY [0CTION ... 82
Participants’ self-efficacy scores (out of 100), and task success/failureccocovvrierinrierinnn. 84

Figure 23.

Figure 24.

Figure 25.
Figure 26.
Figure 27.

Figure 28.

Figure 29.

Figure 30.

Figure 31.

Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.

Figure 38.

Figure 39.
Figure 40.
Figure 41.

Figure 42.

Figure 43.
Figure. 44.
Figure 45.

Figure 46.

Participants' stacked self-ratings of expertise in programming, electronics, and

physical computing (E3CH OUE OF 7). 84
Stacked count of problems encountered by each participant, in the program, circuit

and CircUItHProgram [OCATIONS. ... 84
Number and proportion of problems (obstacles and bugs) overcome, or not resolved............ 85
Percentage of problems (bugs + obstacles) overcome, by each task success group................. 85
Circuit correctness as a factor in performance in overcoming obstacles ..., 87

Hierarchy of units of analysis , and the coding schemes applied at each level. A task
contains one or more troubleshooting runs. A run consists of one or more episodes. An
episode CoNSIStS Of ONE OF MOTE BVENTES. ... 95

Event codes applied to a portion of a transcript spreadsheet. A letter within a coloured
(coded) cell denotes the location subcode (C=Circuit; P=Program; B=Both, i.e.,
Circuit+Program). Note that rather than a location sub-code, the Fault recognition code
contains a flag (‘1) to indicate the point at which the participant became aware of the
PIODLIOIM e 100

Number of Diagnose, Fix and Evaluate Fix episodes, per participant..........cccccoeveeverierieriennnns, 108

Activity type episode counts, also indicating episodes where more than one Activity
Type was coded, most notably where participants were evaluating and diagnosing (70

episodes), i.e., they were unsure if a fix had been sucCeSSfUl. ..o 108
Transitions between troubleshooting activity tyPeS. ... 109
Tactics observed in DIagnoSse €PISOAES ... 111
Tactics observed in FiX @PISOU@S 113
Tactics observed in Evaluate FiX @PiSOAES ..o 114
Mean number of activity type episodes per Circuit ouUtCOMe BroUpP ..o, 115
Mean number of bugs added/fixed per Circuit OUECOME BrOUP ... 115
Mean number of episodes coded with each Diagnose tactic used, by circuit outcome

BIOUD ot 116
Outcome of tactics employed in Fix episodes, across the whole sample..........cccoovvviinirninnnn, 118
Episode outcomes of the two main Fix tactics used by participants ..., 119
Mean number of episodes coded with each Fix tactic used, by circuit outcome group........... 120
Mean number of episodes coded with each Evaluate Fix tactic used, by circuit outcome

BTOUD ettt 121
Content from the initial prototype of the troubleshooting support tool ..., 137
An example card from €aCh CatEEOMY ..o 145
Tactics card design, front (left) and rear (ML) ..o 147

Category card design, front (left) and rear (ight) ... 149

Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.

Figure 52.

Figure 53.
Figure 54.
Figure 55.

Figure 56.

Figure 57.

Figure 58.

Figure 59.
Figure 60.
Figure 61.

Figure 62.
Figure 63.

Figure 64.

Figure 65.

Figure 66.

Figure 67.

Figure 68.

Figure 69.

BeSt Practice Card d@SIZN ... 149

CoOMPONENT CArd A@SIZN e 150
Troubleshooting tOOLKIt PlaYMAT ... 151
CaTA SEANG 1o e 152
Tactics cards (front SIAES ONIY) ... 155

Category cards (fronts only), Best Practice cards, Component cards, Playmat, Card

ST e 156
Pt CIPANTS TrATNINEG v 162
Participants' length of experience (iN YEATS) ... 163
Participants' self-rated EXPErTISE 163

Individual participants' self-rated expertise, from 1 (Complete beginner) to 7 (Complete

Participants' self-rated troubleshooting expertise in Arduino, Electronics, Programming...... 164

Individual participants’ self-rated troubleshooting expertise: bugs in Arduino projects,

circuit bugs and program bugs, from 1 (Complete beginner) to 7 (Complete expert) 164
Cards in card stand, and playmat.....coc e 166
BUEEY Prototype A (TASK 1) . 169
BUEEY Prototype B (TASK 2) ...t 170
Still image from the video in which the correct prototype behaviour at runtime was

demonstrated, showing the temperature sensor and LEDs, but none of the wiring................ 172
Session sequence of activities for participants in each of the two groups ..., 174

Setup for With Support task. The troubleshooting cards can be seen, in their stand, top
left, and the playmat is bottom left. The buggy prototype is in a taped area, directly in
front of the participant, with the parts kit above it. ... 175

Still from a composite video of a participant task recording, showing in clockwise order
from top left 1) the participant’s head and shoulders view, 2) desk-facing view, 3)
screen capture, 4) overhead view of the circuit and 5) over-the-shoulder view of
SUPPOIT MALEMIALS USE ..o 177

Photograph (left) and Fritzing image (right) capturing the final state of a prototype at

ENE N OF @ TASK ottt 178
Participants who achieved task success, with and without the support materials, in

EACI TASK e 181
Preseeded bugs fixed with and without the support materials in each task.........cccccoevvecirnnne. 182

Participants (n), per support condition, who fixed specific preseeded bugs in each task.
The WSNS group had the support materials in T1; NSWS had them in T2. ..o, 183

Figure 70.

Figure 71.

Figure 72.

Figure 73.

Figure 74.

Participants (n) per support condition, with bugs (preseeded, new, new circuit bugs,
new program bugs) remaining at the end of each task. (Note: ‘New bugs’ counts
participants with any new bugs remaining, irrespective of their location).........ccccccoccoveveiinrnnne.

Participants (n) with bugs (pre-seeded, new bugs (all), new program bugs and new
circuit bugs) remaining at the end of tasks with or without SUPPOTtcccovvvriiriinis

Participants (n) who fixed none, some or all of the preseeded bugs, with and without
SUPDPOIT. ottt

Participants (n) per support condition who fixed none, some or all of the preseeded
DUES 1N E2CN TASK. .ttt

Support Materials questionnaire responses. Participants gave each question a rating
from 1 to 7. The number within each coloured box represents the number of
participants who chose that rating. Green represents the midpoint (rating=4)cccccccoevv....

185

List of Tables

Table 1.
Table 2.
Table 3.
Table 4.

Table 5.

Table6.
Table 7.
Table 8.

Table9.

Table 10.

Table 11.
Table 12.

Table 13.

Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.

Table 20.

Study 1A inclusion/exclusion criteria for participation ... 50
StUAY LA PAMLICIPANTS coooiiiii 52
Problem Type COAING SCEME ... 75
Example chain of problems (partial), showing Problem Type codes........c.covvriviiviinrinninrinnn. 76

Problem Location coding scheme, with code abbreviation in brackets beneath the

COA MAIME .t 7
Example of Problem Location codes applied in conjunction with Problem Type codes........... 7
Participants’ task performance and SUCCESSovvivieiirieeeieee e 86
Troubleshooting event tyPe COAES ... 98
AcCtiVity TYpes COAING SCREME ... 102
Tactics coding scheme and frequency of code application (total count of episodes

Coded) ACrOSS the SAMPIE ... 105
Summary of participants' troubleshooting of circuit bugs and the outcomes thereof 107
Activity Type episode counts, and the percentage of all (439) episodes these represent........ 108
Structure and content of the initial prototype card deck, and the relationship of the

tactic categories to the support recommendations from study 1Bcccoovrieiivriinierieninnn. 139
Card categories and their CONTENTS ... 145
Study 2 inclusion/exclusion criteria for participation ... 160
SEUAY 2 PartiCIPANTS e 161
Study 2 Participant length of experience (iN YEars) ... s 163
Study 2 Participant perceived eXPertiSe (1-7) ..o 163
Study 2 Participants perceived expertise in troubleshooting (1-7) ..o, 164
Participant task groups and order of CONAITIONSoviiiiir s 173

Publications arising from this thesis

= BoothT.(2015). Investigating the Barriers Experienced by Adult End-User Developers When
Physical Prototyping. In: Diaz P., Pipek V., Ardito C., Jensen C., Aedo I., Boden A. (eds) End-
User Development. IS-EUD 2015. Lecture Notes in Computer Science, vol 9083. Springer,
Cham. (Doctoral Consortium paper)

= Booth, T. (2015). Making Progress: Barriers to Success in End-User Developers' Physical
Prototyping. 2015 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), Atlanta, GA, 2015, pp. 299-300. doi: 10.1109/VLHCC.2015.7357236. (Doctoral
Consortium paper and poster presentation)

= Booth, T, Stumpf, S,, Bird, J. and Jones, S. (2016). Crossed Wires: Investigating the
Problems of End-User Developers in a Physical Computing Task. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems (CHI’16), 3485-3497. New York,
NY, USA: ACM. doi:10.1145/2858036.2858533.

» Booth, T, Bird, J. and Stumpf, S. (2017). The Trouble with Troubleshooting. Presented at
the CHI 2017 workshop: ‘Open Design ‘Intersection of Making and Manufacturing’.
(Workshop paper)

» Booth T, Bird J,, StumpfS., Jones S. (2019). Designing Troubleshooting Support Cards for
Novice End-User Developers of Physical Computing Prototypes. In: Malizia, A., Valtolina, S.,
Morch, A,, Serrano, A. and Stratton A. (eds) End-User Development. IS-EUD 2019. Lecture
Notes in Computer Science, vol 11553. Springer, Cham. doi.org/10.1007/978-3-030-24781-
2_15

i

Chapter 1

Introduction

The Maker Movement and the growth of maker culture worldwide, has drawn more non-experts,
for example, hobbyists, artists, designers and researchers, to physical computing development—
constructing and programming interactive prototypes and devices themselves, rather than
relying on professionals to do it for them (Dougherty, O'Reilly, and Conrad 2016). Popular open-
source physical computing platforms such as Arduino have lowered the barriers to this type of
development, however, as | will demonstrate in this thesis, this new population of end-user
developers, who may lack formal training in electronics and/or programming, can still struggle

to engineer and troubleshoot their creations.

This thesis seeks to understand the challenges faced by end-user developers
when developing physical computing artefacts, and investigates how to
support them.

The remainder of the Introduction chapter is structured as follows: | first motivate the work
described in the thesis, introducing the domain and population of study, and outlining the
research gaps to be addressed. | then present the research questions that were investigated in
the course of this work, outline the resulting contributions, and clarify the scope of the research.
Finally, | summarise the methodological stance from which the work was conducted, and the

primary research methods, and conclude with an outline of the structure of the thesis.

1.1 Background and motivation

1.1.1 The Maker Movement

The emergence of the Maker Movement (Dougherty 2012), in the early 2000s, saw a cultural shift

towards DIY and personal creation (Mota 2011), facilitated by advances in technology that

1

connected individuals and communities across the globe, and made affordable, open source
software and hardware widely available. The tools of technological production are now no
longer just in the hands of experts (Kuznetsov and Paulos 2010) and a wealth of online
resources, underpinned by platforms and technologies that facilitate communication and
sharing, provide novice makers with tutorials, guides, inspiration, encouragement and feedback.
Offline maker communities have also been key to this growth. Numerous local makerspaces,
hackerspaces, Fab Labs and maker groups—both formal and informal—have emerged world-
wide, as people explore physical computing, digital fabrication and other types of making, in the
places where they live, study and work, accessing and sharing resources, projects and expertise

with other makers, in social, educational, work and community environments.

One of the most popular activities in this space is physical computing development, attracting
many different types of established or fledgling maker, excited by the possibilities it affords, or

even just for the pleasure of making something which interacts with the world.

1.1.2 Physical computing

Physical computing integrates the digital world with the physical world, usually in the form of
electronic devices or systems that interact with the environment (Igoe and O’Sullivan 2004),
affording opportunities for new interfaces and interaction. These artefacts often take input
through sensors that measure aspects of the environment, such as temperature, proximity, or
light, and respond in some way, for example, though sound, motion or vibration, using actuators

(Bird, Marshall, and Rogers 2009; Gallacher et al. 2015).

Developing a physical computing artefact usually involves constructing a physical,
microcontroller-based prototype (electronic circuit) and programming its behaviour. It therefore
requires some measure of skill in both electronics and programming—activities which can
present challenges for end-user developers, particularly those without training or experience in

either or both of these disciplines.

1.1.3 End-user development

Put simply, end-user development is activity in which individuals—often non-expert developers—

engage in some aspect of development, to support their own work or personal goals. In the

context of programming software, this is also referred to as end-user programming—a term

initially popularised by Nardi (1993).

This thesis focuses on end-user development in a physical computing context. As physical
computing incorporates constructing physical circuits (hardware), as well as writing programs
(software) to control their behaviour, | have adapted® an existing definition of end-user
development, extending it beyond software alone, to be applicable to this domain:

“End-User Development, in_a_physical computing context, is a set of methods,

techniques, and tools that allow users of hardware and software systems, who are
acting as nonprofessional developers, at some point to create, modify, or extend a

physical computing artifact.”

(adapted from Lieberman et al. 2006 p.2)

End-user programming and end-user development have been studied extensively in domains
such as spreadsheets (formulas are considered to be a type of programming) and web
development, particularly to identify and understand the difficulties that end-user developers
experience in these activities, their behaviours when programming and debugging, and to
determine how they might be supported. However, until my work, little was known about end-
user development in the domain of physical computing. A study that | conducted during my MSc
uncovered some evidence of learning barriers for novice end-user developers undertaking short
programming tasks in visual and textual Arduino programming environments (see section 2.2.2;
full details published in Booth and Stumpf 2013), however, to my knowledge, until the work in
this thesis, there had been no further investigation into the difficulties experienced by end-user
developers when developing physical computing prototypes—constructing and programming
microcontroller-based circuits—nor any work to understand their behaviours, or establish how

they might be supported in this type of endeavour. This thesis addresses that gap.

1.1.4 End-user developersin physical computing: Makers

To understand end-user development in this domain, we can first look at who is doing it and to
what ends. As makers, end-user developers’ applications of physical computing technologies

are multifarious, for example:

! The underlined portions of text indicate the amendments made to the original definition, extending it
beyond just software.

= Artists create interactive artworks that express their artistic vision (Gibb 2010).

= Designers and researchers develop devices to conduct research, explore ideas and
prototype solutions to real-world problems (Cressey 2017).

= Hobbyists build smart home devices for the Internet of Things, monitoring and
interacting with their home environments (Jenkins and Bogost 2014).

= Individuals with chronic conditions take charge of their own well-being and health
by adapting medical devices and developing health-related information appliances
(Ananthanarayan et al. 2014)(O’Kane et al. 2016).

= Hobbyist e-textile crafters develop interactive soft-circuits, embedding
microcontrollers into clothing and accessories (Buechley and Hill 2010).

= Amateur and professional scientists build and adapt devices that enable them to
tinker and experiment with materials, to “open source science” (Kuznetsov et al.

2012).

As new and different groups become aware of physical computing technologies and the creative
and functional possibilities they afford, new applications of physical computing emerge
(Buechley and Perner-Wilson 2012). However, while the backgrounds and motivations of end-
user developers may vary, physical computing development requires a number of core skills

that can prove challenging to those without training, irrespective of their goals.

1.1.5 Supporting end-user developers’ physical
computing development

Programming is challenging for non-experts, as is electronics engineering. Prior to the work in
this thesis it had already been suggested that in combining both of these activities, physical
computing development potentially puts even greater demand on end-user developers, in
terms of the knowledge and skill required to build—and troubleshoot—their creations (Tetteroo,

Soute, and Markopoulos 2013).

For many years, physical computing development presented significant barriers to those
without expertise in electronics and programming. Creating circuits required in-depth
knowledge of electronics and electrical circuit theory; programming circuits required firstly, the
ability to program in itself, and secondly, expert knowledge of how to interface software with

hardware, including uploading programs to microcontrollers and controlling hardware

components programmatically. Additionally, many of the tools required for physical computing
development were not easily accessible to those outside the domains of engineering and
programming, due to cost, for example, and/or availability, and were often difficult to master.
Thus, developing physical computing artefacts was often beyond the reach of those without

specialised knowledge and/or access to specialised tools and equipment.

However, in recent years, platforms and tools have emerged that aim to make physical
computing development easier for non-experts, including children and end-user developers. A
key example is Arduino (Mellis et al. 2007)—a low-cost, open source prototyping platform,
comprising a range of microcontroller boards of varying specification, and a simple, notepad-
style development environment (IDE) (Figure 1). Originally developed to teach physical
computing to interaction designers, the Arduino platform has achieved wide adoption by many
types of end-user developer, both expert and non-expert. Championed by high profile names
within the maker community (e.g., ‘Make’;, n.d.), and endorsed, from its early days, as an easy
point of entry into the physical computing world, the Arduino platform is the foundation upon
which immeasurable numbers of physical computing projects have been developed. As the de
facto physical computing platform of choice for end-user developers, it was an appropriate
platform to use in the research described in this thesis, where, as | demonstrate, there is still
some way to go in identifying and addressing the challenges that end-user developers face in

physical computing development.

o) sketch_jun26b | Arduino 1.6.5 - o IEl
File Edit Sketch Tools Help

Figure 1. An Arduino UNO board and the Arduino IDE

1.1.6 HCl research in the physical computing domain

Making is empowering, and can be transformative—society’s relationship with technology is
evolving as a result (Mota 2011). By engaging in DIY physical computing development practices,
end users no longer just consume technology, they are producing it, making this an area of
interest to HCl research, including those interested in facilitating or supporting the building of
interactive systems and devices by a broader range of individuals, not just experts or those with

a technical background. (De Roeck et al. 2012).

Prior to the work described in this thesis, there had, however, been little user research to
determine what difficulties end-user developers experience when developing physical
computing devices, their behaviours when doing so, or how to support them in overcoming their
problems. Much of the research into physical computing had focused on 1) developing novel
development tools and/or investigating the adoption or potential uses of them, or 2) assessing
the opportunities and impact of these technologies, as well as wider maker culture and
practices, in respect to specific groups—for example, children and young people—or society at
large—for example, education, innovation, and manufacturing. Focusing more on the outputs,
outcomes and opportunities of physical computing, not much attention had been paid to the
challenges of actually doing it, particularly for adult end-user developers, who often operate

outside of supported/formal learning environments.

As this thesis will demonstrate, much remains to be done to ensure that physical computing
development is truly accessible to all those who are enticed to try it, or who may benefit from
being able to develop or adapt a physical computing device. While platforms such as Arduino
make physical computing development easier and more accessible than it used to be, these
technologies can still present challenges to end-user developers, including those with limited or

even no experience in electronics and programming.

To provide end-user developers with tools that meet their needs, we need to know what
difficulties they face during development and how they naturally attempt to overcome these
problems. The work described in this thesis, which was informed by user research undertaken in
other end-user programming/development domains and followed a user-centred approach,
addresses this gap, and enables us to identify how we can support end-user developers in

overcoming their problems and achieving their physical computing ambitions.

1.1.7 Aphysical card-based tool to support end-user
developers’ troubleshooting

Akey challenge in supporting physical computing development lies—like the challenge for end-
user developers learning in this domain—in the fact that it involves both hardware (electronic
circuit construction) and software (programming). As | will demonstrate in the coming chapters,
end-user developers experience problems in both of these aspects of development, but also in

interfacing between them.

There are a number of ways in which end-user developers might be supported in developing
and troubleshooting physical computing prototypes. As active users (Carroll and Rosson 1987), it
has been shown that end-user programmers benefit most from support situated within their
tasks (Carroll 1998), and several software tools have been developed to support or scaffold their
programming and/or debugging, in applications such as spreadsheets and web mashup
environments (e.g., Cao et al. 2015). More recently there has been research to develop hardware
tools (e.g., Drew et al. 2016; Wu, Shen, et al. 2017) for visualising otherwise hidden aspects of
electronic circuits, while solutions such as basic troubleshooting checklists aimed at makers

operate outside of technology-based platforms (Craft 2013).

The medium that | chose for developing a tool to support/scaffold end-user developers’
troubleshooting of bugs during development—a physical deck of cards—was inspired by
popular creativity and design support tools such as IDEO’s popular Method Cards (‘IDEO Method
Cards’ n.d.) and the Tiles loT ideation toolkit (Mora, Gianni, and Divitini 2017). Physical cards
have been used in a number of domains, for example, to support game design (Wetzel, Rodden,
and Benford 2016; Mueller et al. 2014), consideration and discussion of information privacy /
data protection issues (Luger et al. 2015), and the design of children’s technology (Bekker and
Antle 2011). However, the tool | describe in this thesis is, to my knowledge, the first application of
physical cards for supporting end-user developers in troubleshooting physical computing
problems. Besides being a flexible, low-tech medium familiar to most people, physical cards
provide other potential benefits to end-user developers, as a diverse population with diverse
needs, working styles and goals. This thesis describes how such a tool might be designed and
developed, informed by both initial empirical work and the literature, and reports an evaluation
of its use by end-user developers, providing insights into the opportunities and challenges it
affords.

1.2 Research questions

The overarching research question that guided the work in this thesis was:

How can end-user developers be supported in overcoming problems they
experience when developing physical computing artefacts?

The aim of the work | will describe extends upon research in other end-user development
domains, to increase our knowledge of this particular population, and determine how they can
be supported in their physical computing development activities, specifically in overcoming the

most significant problems which arise during development.
In the process of meeting this aim, four main research questions? were developed:

TRQ1l: What problems do end-user developers experience when developing a
physical computing artefact? (Chapter 3)

TRQ2: How do end-user developers troubleshoot the most significant problems that
arise during development, and from what support might they benefit?
(Chapter 4)

TRQ3: How can we design a deck of physical cards to support end-user developers in
troubleshooting physical computing problems, particularly circuit bugs?
(Chapter 5)

TRQ4: What role might a card-based tool play in supporting end-user developers in
the process of troubleshooting circuit bugs in a physical computing prototype?
(Chapter 6)

Over the course of the coming chapters, each of these thesis-level research questions will be

broken down further into sub-questions and addressed.

? These thesis-level research question numbers are prefixed with ‘T’ to differentiate them from research
questions defined in respect to individual studies

1.3 Summary of contributions

This thesis provides four main contributions, summarised as follows. Each is described in

greater detail in the final chapter.

Contribution 1:

Empirically grounded knowledge of the problems experienced by end-user
developers when constructing and programming a physical computing
device, including the types, location and number of problems, and whether
they are overcome. (TRQ1)

By addressing TRQ1, | gained knowledge of what difficulties end-user developers experience
when developing physical computing artefacts. | identified the types of problems that arise, and
the specific aspects of physical computing that prove particularly difficult and which have the
most significant impact on development success, thereby establishing where support might be

best targeted, i.e., the troubleshooting of circuit bugs.

Contribution 2:

Empirically grounded knowledge of the behaviours of end-user developers
when troubleshooting physical computing problems, particularly circuit
bugs, as well as suggestion for support from which they might benefit. (TRQ2)

By addressing TRQ2 | gained knowledge of end-user developers’ natural behaviours when
troubleshooting circuit bugs, for example, what tactics they employ and whether these are
effective. | discovered that end-user developers, like end-user programmers in other
development domains, often use unproductive troubleshooting tactics, and would benefit from
specific types of support, and in general, being more thoughtful/reflective when

troubleshooting.

Contribution 3:

A novel, physical card-based tool to support novice end-user developers in
troubleshooting physical computing problems, particularly circuit bugs.
(TRQ3)

The knowledge and insights gained from answering TRQ1 and TRQ2 were used to identify
recommendations for supporting end-user developers in troubleshooting their bugs, and to
design and evaluate support for end-user developers’ troubleshooting of physical computing

problems, particularly those relating to circuit bugs (TRQ3). This support was in the form of a

novel, physical card-based tool, inspired by creativity support card decks. The tool aims to
provide end-user developers with ideas for troubleshooting tactics and encourage them to

think/reflect more during troubleshooting.

Contribution 4:

Insights into how a card-based support tool might be used and perceived by
end-user developers when troubleshooting circuit bugs in a physical
computing prototype. (TRQ4)

An evaluation of this novel card deck delivers insights into the role that such a tool might play in

the troubleshooting process, and how it might be perceived by novice end-user developers.

1.4 Research Scope

This research in this thesis investigates how adult end-user developers might be supported in

overcoming problems which arise during the development of a physical computing prototype.

Excluded from this work are considerations of problems that other groups or populations may
experience in this domain, for example, children or young people, or professional developers of

physical computing devices and systems.

While the first study in this thesis (Study 1A)—an exploratory investigation of problems that end-
user developers encounter—looks at all problems experienced by the participants during a
given task, the second study (Study 1B) focuses primarily on the troubleshooting of circuit bug-
related problems. An in-depth analysis of how end-user developers troubleshoot program bugs

in physical computing devices is out of scope for this work.

While end-user developers might also benefit from support in other aspects of physical
computing development, for example, the ideation of solutions, or in how to go about
developing a physical computing device, this thesis focuses only on troubleshooting support.

See section 7.3 for further discussion of the decision to focus on troubleshooting.

Finally, while there are many potential ways in which support could be provided to end-user
developers, this thesis does not claim to have established that the approach | took—a physical

card-based support tool—is the most effective. Establishing the best medium for supporting

10

end-user developers in physical computing development is again outside of the scope of this
thesis. Taking into consideration the insights gained through the initial studies, this is just one

way in which this type of scaffolding might be presented.

1.5 Methodology and approach

My PhD research and prior to it, the research | conducted for my MSc in Human-Centred Systems
dissertation project (Booth and Stumpf 2013), were both inspired by in-the-wild encounters with
end-user developers in a Women’s Technology and Arts group, initially as a participant in
introductory physical computing workshops and later as an assistant instructor. Through these
workshops, and in casual conversations with attendees who were less confident in their
programming and electronics abilities, | became aware that the promised easy entry into
physical computing, via platforms such as Arduino, might not be easy for everyone, particularly

those with little or no training or experience in programming, electronics, or both.

1.5.1 Anempirical, user-centred approach

Throughout my career | have been a staunch advocate for a user-centred approach (Sharp,
Preece, and Rogers 2019, 47-49) to the design and development of user-facing technology,
therefore the adoption of a user-centred methodology for investigating this real-world problem,
with a view to developing support for end-user developers in their physical computing
ambitions, seemed only natural—focusing my research from the outset on actual users (end-
user developers) and their tasks meant that any subsequent design work would be well-
grounded in an understanding of real-world needs and behaviours, rather than based on

speculation and assumption about where difficulties may lie.

| therefore began with rigorous empirical user research to understand the landscape of end-user
developers’ physical computing development problems and identify requirements for
supporting end-user developers in this domain. Thereafter, | applied my findings to the design
and development of a support tool prototype—again involving end-user developers in the

process. | subsequently evaluated this tool in a further user study with end-user developers.

11

When encountering User-Centred Design as an approach within Human-Computer Interaction, it
is more often than not in respect to the development of technology-based artefacts—software,
hardware, or both. The tool | have created, described in Chapter 5, is designed to support end-
user developers when they are using technology—both software (programming) and hardware
(microcontroller-based circuit construction)—to create technological artefacts, but does not do

so through the medium of technology.

When | set out on my PhD journey, | anticipated that the destination would be likely to involve
designing something to support end-user developers in physical computing development, or to
make physical computing development easier for them in some way, but had no solid
preconception of what form this might take. Through my initial literature review, | became aware
of several software-based tools developed to support end-user programming—including
debugging—but found no tools to support end-user developers in the construction or
troubleshooting of electronic circuits, or in physical computing development more generally.
During the course of my research, | became aware of new work to support learners in
troubleshooting (debugging) electronic circuits, however, both programming support tools and
electronics support tools have relied heavily on some kind of automated analysis of what was
being developed. Observing end-user developers, first-hand, struggling to develop and
troubleshoot physical computing prototypes, experiencing problems with both hardware and
software, led me to consider whether support provided via an alternative medium might present
some advantage. Therefore, the choice of a physical card-based medium for the support tool
flowed organically from the findings of my initial studies—a decision driven by a user-centred
consideration of the needs of end-user developers, particularly novices, informed by an in-depth

understanding of the challenges they face, gained through empirical work.

As is customary within a User-Centred Design process, my research followed a staged approach,

with each stage informing the next, and with representative users involved at each stage.:

1) Anexploratory study (Study 1A, Chapter 1)

2) Deeper analysis of a specific subset of the same data, resulting in a set of requirements
(Study 1B, Chapter 4)

3) Design activities to develop a prototype instantiating these requirements (Chapter 5)

4) Evaluation of the prototype in a final user study (Chapter 6).

12

1.5.2 Research methods and methodological stance

As a researcher, | am most interested in creating knowledge that can be used. To determine how
to support end-user developers in physical computing development | formulated research
questions that | felt would lead to useful—actionable—insights into the difficulties they

experience, and their support needs.

Answering these questions meant collecting a range of data—both qualitative and
quantitative—and employing a variety of research methods. Broadly, the empirical studies
described in this thesis were designed and conducted using a mixed methods approach to data
collection and analysis, reflecting a Pragmatist worldview—focusing on “what works rather than
what might be considered absolutely true or real” (Frey 2018), and using whatever methods
would provide “the best understanding of a research problem” (Creswell and Creswell 2018, 48).
Methods do, however, still carry with them assumptions regarding what is or isn’t of value to this
process (Mertens 2017, 20), and as a researcher, | am conscious that my views about ‘what
works’ have been shaped by my own knowledge and experiences, not only through academic
study but also professional education and practice, as | discuss further in section 7.4. The

methods employed at each stage were as follows.

Understanding the problem and generating requirements: Studies 1A & 1B

Study 1A (Chapter 3) sought to gain insights into end-user developers’ difficulties in physical
computing development. A commonly used HCI research method for identifying specific
usability problems—difficulties—in the use of technology is user-based testing—observing
“representative users attempting representative tasks” (Lazar, Feng, and Hochheiser 2017). As
this was, to my knowledge, the first in-depth investigation of end-user developers constructing
and programming physical computing prototypes, | conducted an exploratory study—a first-
hand observation of end-user developers undertaking a given physical computing development
task while thinking aloud. Through analysing a specific subset of the same data, Study 1B
(Chapter 4) aimed to identify participants’ troubleshooting behaviours, determine the
effectiveness of these, and from these the findings establish some requirements and/or
recommendations for support. Unlike more typical troubleshooting/debugging studies—
including the one described in Chapter 6—these participants were dealing with failure resulting

from bugs that they themselves had organically introduced during development.

13

A mixture of qualitative and quantitative data was collected and analysed, including task videos,
program files, digital images, and questionnaire data. In these two studies, rather than following
a specific, major mixed methods study design (such as one of those suggested by Creswell and
Plano Clark (2011, 73), although some characteristics are shared with convergent parallel design
within that typology), qualitative and quantitative approaches were blended in a multi-layered
series of transitions, moving back and forth between analysis modes and within the data, in an
“iterative, cyclical approach to research”—a core characteristic of mixed methods research

(Teddlie and Tashakkori 2010).

= Quantitative data were captured through questionnaires measuring aspects of
participants’ backgrounds, including self-efficacy and self-ratings of their expertise.

= Qualitative data, such as written transcripts of the task videos (verbal protocol of the
think aloud, and descriptions of participants’ actions)—in conjunction with the
videos themselves—were categorised using inductive and deductive coding
methods.

= The categories (codes) were also then used to quantify these data (Srnka and
Koeszegi 2007)—transforming it into numerical data that could be used in
quantitative analysis, for example, to summarise (e.g., frequency of problem types
instances), compare (e.g., frequency of tactics used by successful/unsuccessful
participants), or to look for significant relationships (e.g., correlation between
problems experienced and self-ratings of expertise).

= Quantitative findings were also used to highlight or identify parts of the data for
further qualitative analysis—for example, the discovery in Study 1A that circuit bugs
were by far the most frequent cause of task failure, led directly to Study 1B’s focus on
analysing the troubleshooting behaviours of participants dealing with circuit bugs.
This aligns with what has been referred to as an integrated elaboration model (Srnka
and Koeszegi 2007; Mayring 2001), allowing “the problem under investigation [to] be

more exhaustively elaborated”.

Rather than adhering to a specific qualitative analysis method in full, analysis of the qualitative
data followed a general qualitative approach that broadly aligned with the integrated
generalization design outlined by Srnka and Koeszegi (2007), involving stages common to a
number of qualitative methods (material sourcing; transcription; unitization; categorization and

coding), and with systematic rigour in application, including reliability and validity checks

14

throughout. Analysis focused on categorising data—with a view to describing it, either by
deductively recognising pre-existing concepts drawn from—or inspired by—the literature, or
developing new categories or schemes inductively from the data, by identifying and naming
patterns of thinking and/or behaviour. The process began with immersion in the data, and
coding was iterative, involving frequent revisiting and comparing of previously coded data. In
these respects, the approach therefore shares some characteristics with methods such as
Content Analysis (Krippendorff 2012) and Thematic Analysis (Braun and Clarke 2006); like Content
Analysis, it also involved unitisation and quantification of categorised data. However, the
intention was not to develop complex, multifaceted themes, or seek deep meaning through
interpretation, and while in some qualitative methods, analysis focuses only on a textual verbal
protocol, or on communication in some form, in these studies, participants’ actions were also
analysed, for example, their prototype development activities. Again, analysis was driven by
what was felt to make sense in terms of the research questions, would be useful to the overall

aim of the research and was practical within the constraints of the data | was able to capture.

Support tool development

Designing and developing the deck of troubleshooting support cards (described in Chapter 5)
also followed an iterative process, as is typical of a user-centred approach to design (Sharp,
Preece, and Rogers 2019, 49). Knowledge gained through studies 1A and 1B resulted in
identification of the most significant problems affecting end-user developers’ development
success, as well as a set of suggestions—loose requirements—to guide the development of the
support tool. These findings were then used, along with a targeted review of academic and non-
academic literature on troubleshooting, debugging and problem solving, to compile a list of
potential troubleshooting tactics for inclusion in the support tool. A similarly targeted design
review of card-based tools was conducted, from the academic literature and other sources,
including commercial card decks, and from this, a number of key considerations for the design
of a card-based tool identified. These, along with findings from the empirical studies, were then
used to create an initial prototype of a support tool—a set of troubleshooting tactics
instantiating support in the form of physical cards. A small, proof-of-concept study, involving
two end-user developers using these cards in troubleshooting tasks, established the need for
further design work, and that it would be better to focus on novice end-user developers as the

target user group for the support tool.

15

In two focus groups with novice end-user developers, typical UX methods then were used to
elicit feedback from representative users on several design variants and some options for
content and form, as well as to test a potential information architecture for the deck. Findings
from these focus groups were used to further refine the design of the cards and their

categorisation.

Evaluating the support tool

The final stage of the work in this thesis involved trialling the support tool prototype in a user
study with twenty novice end-user developers. A within-subjects study design was used (Lazar,
Feng, and Hochheiser 2017, 49)—participants undertook two troubleshooting tasks, one with,
and one without the tool—enabling comparison of participants’ performance and experience
with and without the support tool. Evaluation was therefore based on first hand use/experience

of the tool by representative users in a representative task.

This piece of user research also used a mixed methods approach, collecting and analysing both
qualitative and quantitative data, although, analysis followed a different approach than in the

previous studies.

Task performance was measured, providing quantitative data about troubleshooting success
with and without the support tool. However, in a pivot from the previous studies’ predominant
focus on analysing qualitative data captured during task execution, the main focus of analysis in
this study was upon participants’ subjective feedback about the support tool, captured via a
questionnaire and a semi-structured debriefing interview, following its use. Rich data, in the
form of textual transcripts of the video-recorded interviews were subjected to a thematic
analysis (Braun and Clarke 2006), using primarily inductive coding to explore these data, and
elicit themes in relation to participants’ use and experience of the support tool. Themes were
shaped and refined through immersion in and repeated iteration over the interview dataset. Not
only can the findings be used to inform a further design iteration of this particular support tool,
but they also—most importantly, in terms of the aim of this study—provide rich insights into the

potential for such a tool to support novice end-user developers in this domain.

16

1.6 Thesis outline

This thesis is structured as follows:

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter5:

Introduction (this chapter)
This chapter introduces the research described in this thesis, including the domain
and population of study, first providing a motivation for the work. It states the

research questions addressed and outlines the academic contributions of the work.

Related work
An overview and discussion of research undertaken by others, to-date, in related
areas of the literature, including the problems of non-experts with programming

and circuits, and the work which has addressed supporting them.

Problems experienced by end-user developers in a physical computing task
(Study 1A)

This describes the first research study conducted for this thesis, investigating the
problems faced by end-user developers when developing a physical computing
device—an observation of 20 adult end-user developers of varying expertise,
developing an Arduino prototype to a given specification but without any further

instruction or guidance.

How end-user developers troubleshoot circuit bugs (Study 1B)

Further analysis of data collected during the first study, this time diving deep into
the troubleshooting behaviours of participants dealing with failure due to circuit
bugs which they had introduced when building the physical computing device.
Findings lead to suggestions for support from which end-user developers might

benefit when troubleshooting in this domain.

Developing a physical card-based tool to support end-user developers’
troubleshooting

This chapter describes the design and development of a novel, card-based tool to
support end-user developers in troubleshooting physical computing development
problems. | present a rationale for providing support in this medium, and some

considerations for designing cards, informed by a review of the literature, followed

17

Chapter 6:

Chapter 7:

by description of the design process, the tool itself, and the card production

process.

Evaluating the troubleshooting support cards with novice end-user developers
(Study 2)

| describe and report findings from an evaluation of the card-based support tool, in
a within-subjects user study involving twenty novice Arduino users—adult end-user

developers—who each undertook troubleshooting tasks with and without the tool.

Discussion, limitations, and future work

A final discussion of, and reflections upon, the work described in this thesis. The
research questions are revisited, and the contributions are described in full, in
relation to the literature. The main limitations of this work are described, the
approach and methods used are reflected upon, as is the decision to focus on

troubleshooting, and finally, some areas for future work are suggested.

18

Chapter 2

Related Work

Physical computing involves both programming and electronics. Until the work in this thesis,
little was known about end-user developers in the physical computing domain, however, there
have been decades of research investigating the problems and typical behaviours of both novice
and end-user programmers, and finding ways to support them in creating, modifying, and

debugging software.

In this chapter, the literature in areas related to my work, is reviewed and discussed, in the

following order:

2.1 End-user developers—characteristics of end-user developers in comparison to novice,
expert and end-user programmers, and the disadvantages they face.

2.2 Non-experts’ problems in programming—common difficulties, the causes of software
error, learning barriers, and problems with strategies.

2.3 Non-experts’ problems with circuits—including difficulties observed in learning
circuit theory.

2.4 Problems affecting end-user developers in physical computing—including recent
evidence from e-textiles/STEM education, echoing my own findings.

2.5 Supporting end-user developers—challenges in supporting this population, and the
case for situated support.

2.6 Supporting non-expert programmers—approaches that have been taken to make
programming easier.

2.7 Supporting physical computing development—approaches that have attempted to
make programming and circuit construction easier, including modular platforms.

2.8 Supporting troubleshooting and debugging—troubleshooting as a process; work to
support end-user programmers in debugging; the current lack of support for end-user

developers’ debugging in physical computing, and recent work to address this.

19

2.1 End-user developers

The term ‘end-user programming’, originally popularised by Nardi (1993), usually refers to the
writing of software programs by end users, rather than professional programmers. Nardi made
the distinction that for this type of programmer, the act of programming is not the end in itself,
but the means by which they achieve the things they want to do, in their work and hobbies. End-
user programming has since been studied extensively in a number of different domains, for
example, spreadsheets (e.g. Kissinger et al. 2006), web development (e.g. Kuttal, Sarma, and
Rothermel 2013) and intelligent user interfaces (e.g. Kulesza et al. 2009). This thesis focuses on
the development (and troubleshooting) of physical computing artefacts by end-user developers,
which encompasses both programming and circuit construction. To recall, the definition | use in
this thesis, adapted from Lieberman and colleagues, is as follows:

“‘End-User Development, in a physical computing context, is a set of methods,

techniques, and tools that allow users of hardware and software systems, who are

acting as nonprofessional developers, at some point to create, modify, or extend a
physical computing artifact.”

(adapted from Lieberman et al. 2006 p.2)

| now turn to the literature that positions end-user developers within the broader field of

development.

2.1.1 End-uservs novice and professional programmers

Whereas professional programmers are paid to create and maintain software for others to use,
end-user programmers write programs to support their own goals, “in their own domains of
expertise”, to use themselves. “End user programmers might be secretaries, accountants,
children, teachers, interaction designers, scientists or anyone else who finds themselves writing

programs to support their work or hobbies.” (Ko et al. 2011).

It is important, say Ko and colleagues, not to conflate end-user programming (or end-user
development) with a lack of programming expertise—not all end-user programmers are novices
(although some certainly are). A professional programmer may develop software for their own
personal use, and in this be considered an end-user programmer; equally, someone not

employed as a professional programmer may have previous programming experience that they

20

draw upon to write programs to support some aspect of their primary work, or personal

interests. Intent, rather than expertise, they state, should therefore be the defining characteristic.

Defining end-user development in terms of expertise or area of application, argue Burnett and
Myers (2014), risks “siloing” end-user developers and their tools from the learnings from, benefits
of, and advancements in, professional software development Defining it, instead, as a role,
based on a dimension of intent, means that research can consider and address the needs and
practices of end-user developers at different levels of expertise, and in different areas of
application. Accordingly, the end-user software engineering (EUSE) research area seeks to bring
considerations of guality into end-user development, for example, by encouraging end-user
developers to engage in professional software development practices such as testing (Burnett,
Cook, and Rothermel 2004; Burnett 2009; Burnett and Myers 2014; Ko et al. 2011). The work |

describe in Chapter 3 and Chapter 4 provides further evidence in support of this position.

Pragmatically, when studying end-user developers, expertise is still a crucial factor to consider,
as | discuss further in the next section. Some end-user developers are, of course, more
experienced than others, and we can probably agree that someone without professional
experience of developing physical computing devices may have greater support needs than
someone who does. Therefore, the scope of the definition of end-user developer I use within this
thesis—particularly when recruiting for the studies | undertook—does not include individuals
currently (or previously) involved in professional physical computing development, even if they
do, at times, develop physical computing devices for their own personal use. And while my
initial studies involved end-user developers of varying levels of expertise, the novel support tool |
developed, which | describe in Chapter 5, was designed with novice end-user developers in

mind, by which I mean less-experienced end-user developers.

It is worth, however, noting the distinction between the terms end-user programmer and novice
programmer within the literature. Academic literature on programming, particularly since
Nardi’s seminal book on end-user programming (Nardi 1993), typically uses the term novice
programmer to refer to those who are learning to program with the aim of becoming
professional or expert programmers—that is, those learning with the intention of developing or
improving their mastery of programming as a craft. Whereas, according to Nardi and others, an
end-user programmer is programming to achieve some other end and, if inexperienced in
programming, may have little interest in learning the craft of programming, but instead be more

concerned with the final result (Nardi 1993; Ko et al. 2011). While this may not always be true in

21

respect to end-user development in physical computing (see section 2.1.3), a focus more on the
outcome or output of development has important implications for both learning and support, as

I discuss further in section 2.5.1 (The challenge of supporting end-user developers).

2.1.2 Thedisadvantages of non-experts

It stands to reason that when it comes to developing software, non-experts have it harder than
their more expert counterparts. Certainly, in many aspects of programming and software
development, expert or professional programmers have significant advantage over
inexperienced or less-experienced programmers, regardless of whether the literature would
class them as novice programmers or end-user programmers. Experts have considerably more
programming (and software engineering) knowledge and experience to draw upon, not only in
planning, creating and debugging their own programs, but also, for example, when adapting or
borrowing opportunistically from programs created by others—a common practice for end-user
programmers/developers (Brandt et al. 2009; Rosson and Carroll 1993; Lau et al. 2021). Pertinent
to the consideration of quality mentioned in the previous section, experts and professional
programmers also have a better understanding of how to test the reliability and accuracy of
their program results. This knowledge and these skills can take years, and much effort, to
acquire. Programming is hard, even for experts, and can be cognitively challenging to learn and
master. My work provides evidence that end-user development is challenging in physical
computing too, but also that expertise in one aspect of physical computing development, for
example, professional programming or engineering experience, does not always translate into
fewer problems, more effective troubleshooting, or greater success for end-user developers in

this domain.

2.1.3 End-user developers as makers

End-user developers of physical computing artefacts—who | also refer to as makers—are a
heterogeneous population, coming from all types of backgrounds and occupations, for
example, artists, designers, hobbyists and researchers, and as a result, their skills and needs are
varied. As with end-user programmers, not all end-user developers in this space are novices. A
maker may be a professional programmer, but still be inexperienced in electronics, or they make
come from an engineering background but have little programming experience. Others may

have considerable knowledge and skill in both programming and engineering, but not be

22

employed to develop physical computing devices. However, some end-user developers lack
experience in both programming and electronics, and they, of course, potentially face some of
the biggest challenges, particularly if they are more interested in the output of development—
the resulting artefact—than in acquiring the knowledge and developing the skills needed to

produce it.

However, unlike in some end-user programming domains, making is not necessarily always just
getting about the job done—in this domain, an end-user developer may have motivations
beyond realisation of the end product. Hands-on making can be a pleasurable activity in itself,
and the act of physical creation satisfying (Tanenbaum et al. 2013), while much is made also of
the social and community aspects of these practices (Kuznetsov and Paulos 2010). Intrinsic
motivation has a positive effect on performance in learning to program (Bergin and Reilly 2005),
and bricoleurism—tinkering, making and fixing things—has been shown to correlate with
intrinsic motivation in end-user programming (Aghaee et al. 2015). If end-user developers are
intrinsically motivated to create physical computing devices, this may provide a boost in their
efforts to learn the skills to do it, stick at it, or to see any problems they encounter through to

resolution.

The next section will discuss some of the work from the considerable body of research

investigating the problems of novice and end-user programmers.

2.2 Non-experts’ problems in programming

Much is known about the problems of inexperienced programmers. Novices’ numerous
difficulties in learning to program—and in the various activities involved in programming—are
covered extensively in the Computer Science literature, spanning several decades of work. While
discussing all of these problems, or the work of all those who have investigated them, is beyond
the scope of this thesis, a small sample of the literature provides some flavour of the difficulties

that others have observed in this field.

There is consistent evidence that novice programmers can struggle with concepts and activities
that are fundamental to programming. For example, Spohrer and Soloway (1986), studying the

mistakes of novice programmers, note problems with learning and understanding the semantics

23

of constructs—even the most basic ones, for example, variables—and applying them
appropriately. They also report novices’ difficulties in interpreting problems and tasks, and in
composing plans—as well as a tendency to rely upon existing knowledge when doing so. In a
longitudinal study, Garner, Haden, and Robins (2005) asked teachers of introductory Computer
Science to report problems that students sought assistance with—the main difficulties were with
the basic mechanics of programming (e.g., basic syntax), program design, basic program
structure, and problems understanding what a program is supposed to do; students also
experienced conceptual and implementation problems with arrays, arguments/parameters and
return types/values, loops, constructors, and control flow. Problems with variables, arrays and

loops also feature in the common novice programmer mistakes described by du Boulay (1986).

A similar set of problems was reported in a study by Lahtinen, Ala-Mutka and Jarvinen (2005),
asking 559 students and thirty-four teachers across six universities what they had found and
observed, respectively, to be difficult in learning to program. Notably, these authors also found
that students considered debugging to be the most difficult activity in learning to program and
error-handling the most difficult concept to learn. The ability to debug faulty programs—to
locate and resolve the causes of error (Katz and Anderson 1987)—is crucial to programming
success, and there is much work attesting to the difficulty of this type of problem solving, not
only for novice and end-user programmers but even experts, and investigating ways to support

them (see sections 2.2.3, 2.8 and 2.8.1 for further discussion).

While it would be reasonable to assume that novice end-user developers will face similar—or
analogous—difficulties when learning to develop and troubleshoot physical computing
prototypes, the work in this thesis provides the first evidence of this, in respect to both

programming and circuit construction.

2.2.1 Causes of software error

Perkins and Martin (1986) suggest that novices’ problems with programming stem from fragile
knowledge—including knowledge that is missing (not yet learned), inert (known but failed to be
retrieved), or misapplied in some way—in combination with poor problem-solving strategies.
Subsequent work by Ko and Myers (2005) focusing on the causes of software errors, based on
research into human error (Reason 1990), has suggested that errors are due to cognitive
breakdowns, in which programmers (including end-user programmers) encounter problems in

the application of skills, rules, or knowledge. Ko and Myers suggest that breakdowns can be

24

investigated by classifying the action being performed, the interface the action is performed on,
and the information being acted on—in the first study in this thesis (Chapter 3), analysis of end-
user developers’ problems was informed by this approach, looking at breakdowns, and the

locations in which these occurred.

2.2.2 Learning barriers

One way to classify problems that can lead to error, seen frequently in the end-user
programming literature, is in terms of learning barriers (Ko, Myers, and Aung 2004). In a study
investigating problems experienced by end-user programmers learning Visual Basic, the authors
identified six frequently encountered barriers—obstacles which a learner must overcome in
order to make progress. When encountering these barriers, learners’ invalid assumptions—

caused by knowledge breakdowns—can result in error, stalled progress, or further barriers.

= Design barriers—*/ don’t know what | want the computer to do...”

= Selection barriers—/ think | know what | want the computer to do, but | don’t know
what to use...”

= Coordination barriers—*I think | know what things to use, but | don’t know how to make
them work together...”

= Use barriers—*“/ think | know what to use, but | don’t know how to use it...”

= Understanding barriers—“/ thought | knew how to use this, but it didn’t do what |
expected...”

= Information barriers—*/ think | know why it didn’t do what | expected, but | don’t know
how to check...”

Most of the barriers these authors observed were Understanding barriers—participants struggled
to diagnose unanticipated behaviour or failure at compile-time or runtime, often a result of
error. Use barriers were also prevalent, for example, participants’ difficulties in determining
correct syntax, as were Coordination barriers, in which working out the ‘invisible rules’ of

combining programming interfaces proved challenging.

Relationships between barriers were also observed, with invalid assumptions made when
overcoming barriers leading to new barriers—overcoming Coordination barriers frequently
resulted in further Understanding or Use barriers; Design barriers led frequently to Selection
barriers or Coordination barriers; Selection barriers led to Use barriers and Use barriers tended to
result in Understanding barriers, which in turn led to Information barriers. These “common paths

of failure”—chains of breakdowns—and their impact upon performance, point to value in

25

identifying where such obstacles may lie in systems and environments used by end-user
developers, and investigating whether there are opportunities to mitigate or reduce these
through targeted support and/or better design of development tools. In the first study of this
thesis (Chapter 3), analysis of problem locations provides insight into where support for end-

user developers might best be targeted.

Learning barriers have been identified in other end-user programming domains—albeit differing
in frequency, which suggests that factors such as the type of environment or task may affect
which obstacles (or chains of obstacles) end-user programmers will encounter in a particular
programming context. For example, Selection and Coordination barriers proved most prevalent
in studies of end-user programmers debugging intelligent agents (Kulesza et al. 2009) and
machine learning in spreadsheets (Sarkar et al. 2015), while in a study of end-user programmers
programming web mashups with Yahoo Pipes, Understanding and Use barriers were most
common (Kuttal, Sarma, and Rothermel 2013). Although they do not report the frequency of
barriers, Cao and colleagues, in an end-user web mashup programming study using Popfly,
found a close tie between Design barriers and unproductive framing episodes—where users try
to understand a problem, but fail to generate an idea for action—suggesting that these barriers

frequently lead to an inability to make progress in this environment (Cao et al. 2010).

2.2.2.1 Learning barriersin programming environments for
physical computing

There is already some evidence of learning barriers, for end-user programmers, in programming
environments for physical computing (Booth and Stumpf 2013). In this study, conducted for my
MSc dissertation project, | compared the benefits and effects of textual and visual programming
environments for Arduino, for end-user developers new to Arduino. | found Use barriers to be the
most frequently observed barrier type in both of these environments, highlighting that end-user
developers programming Arduino devices can struggle to use the basic building blocks of the
language correctly. Additionally, Understanding barriers were common in the textual
environment—participants struggled to understand system feedback within the environment—
and Selection barriers were common in the visual environment—participants had difficulty
deciding which of the available programming constructs would achieve what they wanted to do.
Again, these results suggest that the type of environment can affect the type of obstacles

experienced.

26

While the study provides some insight into barriers faced by novice end-user developers when
programming a physical computing device, the electronic circuits used in the tasks were
prebuilt, therefore, there was no analysis of problems relating to circuit construction—
participants only programmed the circuits; they did not create or modify them. In the first study
of this thesis, described in Chapter 3, I focus on identifying the problems—including obstacles
(barriers)—that end-user developers experience in a development task involving both

programming and circuit construction.

2.2.3 Strategies

Developers adopt different strategies for solving programming problems, for example when
debugging. Unsurprisingly, novices and experts can differ in their use of debugging strategies
(Nanja and Cook 1987; Vessey 1985), and novice programmers’ poor choice and application of
strategies can lead to unproductive troubleshooting behaviours (Murphy et al. 2008). Strategies
adopted by less-experienced programmers may even be destructive, for example, Perkins and
colleagues found that students who choose to tinker unsystematically when debugging—
making lot of changes in the hope of fixing bugs—often introduce new bugs, making programs
worse, rather than improving them (Perkins et al. 1986). Investigating the strategies that
developers use can provide insight into the challenges they face in applying them, and help
identify opportunities to address these difficulties (LaToza and Myers 2010). Equally, comparing
successful and unsuccessful debuggers can help to identify the types of approaches—thinking—

that might be encouraged in order to improve debugging skill (McCauley et al. 2008).

Following from this, knowing what strategies—or patterns of behaviour—end-user developers
naturally employ when problem solving, and whether these are successful or lead to additional
problems, can help us to identify what approaches are problematic for end-user developers,
what strategies they lack, and whether they might be guided towards particular or more
productive behaviours, in order to help them solve their problems more efficiently and

successfully (Grigoreanu, Burnett, and Robertson 2009).

To this end, several studies have looked at end-user programmers’ debugging strategies. A study
by Kissinger and colleagues analysed end-user programmers’ information gaps when debugging
spreadsheets and found 30% of these to be in respect to what strategy to use (Kissinger et al.
2006), for example, how to find or fix errors, or how to test their spreadsheets—users were

frequently unsure whether values and formulas were correct, or how to establish this. Similar

27

findings have been reported in other studies, where end-user programmers have been observed
to have difficulty knowing how to get started, or generating ideas to help them proceed (Cao,
Fleming, and Burnett 2011). When debugging, failure can manifest in a different location from
the actual fault, and choice of strategy has been shown to matter in the success of finding these
faults (Prabhakararao et al. 2003). Also, certain types of bugs may be localised quicker through
particular strategies, however, end-user developers may not have the knowledge or skill to

choose the strategies most likely to help them.

Gender differences have been observed in end-user programmers’ choice of strategies and their
success in using these to resolve bugs. In one study, males were more likely to follow
dependencies or use tests, and were more successful when they did so, whereas females
inspected their code and checked it against the specification more often, which also resulted in
greater success (Subrahmaniyan et al. 2008). While gender does not feature in any analysis of
performance or behaviour in this thesis, Subrahmaniyan et al.’s findings suggest, as other have
argued (Beckwith 2007; W. Jernigan et al. 2015), that support for end-user development should

consider and accommodate different users’ different information processing styles.

Finally, the development environment itself can also have an effect on the choice and successful
use of debugging strategies. In the Popfly web mashup environment, where blocks representing
functionality are, in effect, black boxes, participants in one study had trouble inspecting their
‘code’ (@ common strategy), being unable to see the inner workings, and had difficulty
understanding the links between blocks when trying to follow dependencies (Cao et al. 2010).
This highlights the importance of ensuring that the design of environments aimed at end-user
developers supports the problem-solving behaviours that they naturally employ, and of helping
end-user developers to adopt strategies and tactics that are appropriate for a particular

environment or type of development, and can be used effectively in that context.

Inspired and informed by the work discussed in this section, the study described in Chapter 4,
extends our knowledge of end-user developers’ problem-solving behaviours into the domain of
physical computing. Analysis of how end-user developers troubleshoot circuit bugs during
development identifies several common patterns of behaviour, while subsequent examination
of the efficacy of these approaches—including a comparison of the tactics employed by
successful and unsuccessful troubleshooters—provides insights into how end-user developers

might be supported when troubleshooting in this domain.

28

2.3 Non-experts’ problems with circuits

While I had no difficulty finding literature about the problems and behaviours of novice and end-
user programmers, or evidence of difficulties that students experience with circuit theory in an
educational context (as I will shortly describe in section 2.3.1), | found very little about end-user
developers constructing electronic circuits. Although hobbyist electronics kits have been around
for many years—for example, the Heathkit construction kits that were popular with amateur
electronics enthusiasts for most of the latter half of the twentieth century (Brueschke and Mack
2019)—I found no literature on problems or behaviours observed in hobbyist or amateur
electronics construction, prior to the advent of the Maker Movement. More recently, however,
Wakkary and colleagues report having difficulty using tutorials—a common approach for novice
makers—to construct electronic devices, in part due to problems with instructional materials of
inconsistent quality, or the assumption of a particular level of knowledge (Wakkary et al. 2015).
In the same year that the findings from the study described in Chapter 3 were published (Booth
et al. 2016), David Mellis, Leah Buechley and colleagues, investigating how to engage amateurs
in the fabrication of electronic devices using PCBs (printed circuit boards), report that
participants found it challenging to troubleshoot circuits consisting of low-level components,
and struggled to generate hypotheses for the causes of failure (Mellis et al. 2016). This further
confirms the need for work to identify and understand the difficulties experienced by non-

experts—including end-user developers—when working with circuits.

2.3.1 Circuit theory: problematic for learners

Despite the dearth of literature in respect to end-user developers’ problems with circuits, there
is, however, plenty of work attesting to the difficulties that children and even much older
students have in learning and applying the theories of electricity that are fundamental to
understanding and constructing electronic circuits. Numerous studies in the educational
literature show that learners struggle to fully grasp important, abstract concepts such as current,
voltage (potential difference) and resistance, and in the case of some of these concepts, even fail

to differentiate between them—current and voltage, for example, are frequently confused.

Research in this space has identified common misconceptions—alternative views—of how
electricity works, that affect students’ reasoning about even simple circuits (McDermott and

Shaffer 1992). Several alternative conceptual models have been identified in children, including,

29

for example, that current is stored in a battery and consumed over time, or that current is used
up by components in the order of the direction of the current (Shipstone 1984; 1988). Many of
these misconceptions are still evident in high school students and university students
(McDermott and Shaffer 1992), including those studying to be engineers (Periago and Bohigas
2005), electrical engineers (Métioui et al. 1996) or physics teachers. Even university science
teachers have been found to hold some of the same, faulty mental models (McDermott and
Shaffer 1992). These preconceived ideas prove resistant to change, even after instruction in the

scientific theory (Engelhardt and Beichner 2004).

As has been demonstrated repeatedly in the literature, these misconceptions affect students’
reasoning about circuits, and thus, their ability to accurately interpret circuits or construct new
ones reliably and successfully. Many students have a great deal of trouble reading circuit
diagrams—for example, they have difficulty understanding parallel circuits, and recognising
these when represented in different configurations within circuit diagrams (schematics), tending
to focus on the lines between components rather than on the electrical connections these
represent (McDermott and Shaffer 1992). Equally, while resistance is a crucial part of circuit
theory, many students struggle with this concept and are therefore unable to accurately predict

its effects on the behaviour of a hypothetical circuit (McDermott and Shaffer 1992).

All of this has important implications for end-user developers’ physical computing development,
particularly for end-user developers who are less experienced in electronics. While many end-
user developers may have been taught electrical circuit theory at school, they may have
inaccurate mental models of the fundamental concepts, which might affect their ability to apply
these successfully—several studies show evidence of students reverting to their previous, non-
scientific views after a period (e.g. Mackay and Hobden 2012). As a result, some end-user
developers may struggle to plan their circuits, or understand existing ones, for example, if
wanting to use and adapt something they have found—reuse is a common behaviour for makers
(Oehlberg, Willett, and Mackay 2015). If end-user developers do not properly understand the
relationships and dependencies between different variables in a circuit and cannot predict the
effect of changes to it, they may have trouble diagnosing and fixing problems they encounter.
Whatever beliefs end-user developers hold will inform their decisions and actions when

developing and troubleshooting their devices.

30

2.4 Problems affecting end-user developersin
physical computing

We know from the literature that programming is difficult for novice and end-user programmers,
and physical computing development involves both programming and electronics. It also
involves coordinating those two types of activity to achieve a particular goal, therefore in order
to achieve this, an understanding is needed of how the two relate and can be coordinated, or

what coordination between them is required.

Until the early work in this thesis, however, there was little knowledge of the problems affecting
end-user developers in this domain. While the large number of user posts asking for help in
online communities (e.g., ‘Arduino Forum’ n.d.; ‘Adafruit Customer Support Forums’ n.d.)
suggests that people experience a lot of problems when developing physical computing devices,
it would be difficult to ascertain which or how many of these problems were reported by end-

user developers.

Little was also known about how end-user developers troubleshoot problems which arise when
they are developing or modifying physical computing devices, or the difficulties they face when
doing so, but, again, as we know that debugging programming problems alone is hard,
particularly so for those lacking programming knowledge, skills and experience to draw upon
when recognising, diagnosing and resolving problems, it is likely to be so too in this domain. It
also stands to reason, as others have suggested (Tetteroo, Soute, and Markopoulos 2013), that
troubleshooting physical computing problems may be even more difficult for end-user
developers, firstly, because there is more to know in order to fully understand the domain, and
secondly, with both circuit and program involved, the problem space is more complicated.
Research has shown that as complexity increases, troubleshooting performance decreases—the
more components or relationships to consider, the greater the likelihood of misdiagnosis

(Morris and Rouse 1985).

Evidence of this has been reported in another domain popular with makers, which similarly
involves interactions and dependencies between hardware and software: 3D printing. Here,
suboptimal or failed results are common, but can be tricky to diagnose (Ludwig et al. 2014). For
example, there may be a mechanical problem with the printer, an error in the configuration of

the printer, or in the software that controls it, or some error in the 3D model itself, while

31

environmental or physical factors can also have an effect, for example, the temperature of the
room. These faults and errors can also co-occur and interact, resulting in a tangled knot of
failure that the user must analyse and unpick, in order to resolve their problems and achieve a

better end result.

In principle, all of this this can apply in physical computing development too. Unexpected or
erroneous output may be the result of problems with the physical construction or configuration
of the circuit or its individual components (including the microcontroller board), problems with
the system hardware or software on the computer upon which the IDE is running and to which
the circuit is connected, problems with the IDE application or configuration thereof, problems in
the program(s) that the user has written, or with any external programs or libraries they are
referencing. And likewise, environmental factors may contribute to failure or unexpected
behaviour, particularly where a circuit involves sensors, for example, heat, light, sound, or any
physical properties of a user’s interaction with a prototype (e.g., skin temperature or speed of
movement). Any of these factors, alone or in combination, can cause unexpected or erroneous

output or device behaviour.

2.4.1 Existing evidence of problems in physical computing

While much had been written or said about how platforms such as Arduino—originally created
for use by designers (see section 2.7.3)—could make developing physical computing devices
easier for non-experts, by the start of my PhD research there appeared to have been little
investigation into the problems or challenges that end-user developers might experience in

using them.

It does seem that there is still room for improvement in the design of tools within the physical
computing development space. As discussed earlier, in section 2.2.2, a study | undertook during
my MSc (Booth and Stumpf 2013) found evidence of learning barriers in visual and textual
programming environments for Arduino, including the official Arduino IDE, however this did not
look at circuit construction, only programming. There have also been calls for pedagogical tools
more suited to the needs of young learners (Blikstein 2015), from researchers/educators
concerned about the usability issues that maker-centric platforms present to children, and the

potential for ‘black box” toolkits to conceal information vital to learning.

32

Some studies have looked at the problems experienced when creating or troubleshooting e-
textiles projects, but these have mostly been in supported learning environments, or have
involved children or young people in groups. For example, Jayathirta and colleagues analysed
student interviews and project reports for evidence of debugging problems and found that
problems were experienced in both programming and circuitry, just over a third of programming
problems could be classed as more complex, and that collaboration was a key resource when
debugging (Jayathirtha, Fields, and Kafai 2018). Further work by some of these authors
investigated ways to develop students’ e-textiles debugging skills (e.g., Fields, Searle, and Kafai
2016; Kafai et al. 2014), however, again, these are in respect to pedagogical environments,
usually with a focus on developing curricula and specific interventions to engender STEM

learning through e-textiles development.

Since the first study described in this thesis (Chapter 3; Booth et al. 2016)—an empirical
investigation of the problems experienced by end-user developers when developing a physical
computing device—there has been some work looking at the problems of novices (students)
when using Arduino. Sadler and colleagues, recoding data from a previous study by Jung and
colleagues (Jung et al. 2014) in which high school students prototyped the most simple Arduino
project (making a single LED blink), followed by open-ended exploration, discovered that
failures (obstacles which required human intervention) were dominated by circuit wiring errors
(all but one of the twenty participants experienced these), while programming errors (nine
participants) and design ideas due to misconceptions and knowledge gaps were also reported
(Sadler, Shluzas, and Blikstein 2017)—the types of failure reported echo my own findings. More
recently, DesPortes and DiSalvo adapted the coding schemes (problem types and problem
locations) reported in Booth et al. 2016 (Chapter 3)—in a qualitative analysis of the problems of
university students using Arduino for the first time (DesPortes and DiSalvo 2019). As in my study,
participants experienced more software-related problems than hardware-related ones, and
problems were observed in both programming and circuit construction, as well as in interaction
between the two, again echoing my findings. These studies, like my work preceding them,
provide further evidence that novices experience problems with the most basic concepts and
tasks fundamental to physical computing development, for example, LED polarity errors and
problems with open (incomplete) circuits. While both of these studies involved students, my
own work focuses on adult end-user developers, and in the first two studies, end-user

developers with a wide range of skills—representative of the wider maker population. As | will

33

show, all end-user developers experience problems when developing a physical computing

device, irrespective of their background or level of expertise.

Until my work, however, there was no empirical evidence of these problems, including how end-
user developers attempt to troubleshoot their physical computing bugs, or how successful they
are in doing so, making it difficult to know where support might be best targeted. Analysing the
types of bugs that end-user developers introduce during physical computing development, how
these bugs manifest, and whether they are able to recognise them, accurately diagnose the
symptoms of failure in runtime behaviour they observe, and fix them, helps to establish where
some of the pain points lie. Knowing what troubleshooting behaviours end-user developers
employ, in their attempts to overcome problems, helps us to determine what aspects of

troubleshooting they could most benefit from help with.

2.5 Supporting end-user developers

It stands to reason that a lack of knowledge about programming and electrical engineering
concepts, and the relationships between the two, may limit novice or less-experienced end-user
developers in their prototype development ambitions, lead to frustrating bouts of
troubleshooting, or even prevent them from completing their projects. Supporting them in
overcoming their problems and developing their knowledge, however, is not a simple case of

providing the right education or training.

2.5.1 Thechallenge of supporting end-user developers

Much of the literature addressing students’ difficulties with circuits and programming suggests
pedagogical methods that encourage the development of good mental models (Mayer 1981; du
Boulay 1989; Liégeois et al. 2003; Shaffer and McDermott 1992), however, supporting end-user
developers in their tasks requires a different approach. Educators can design courses and
learning materials to support the incremental development of students’ knowledge and skill in
programming and electronics (e.g., Buechley, Eisenberg, and Elumeze 2007; Fields, Searle, and
Kafai 2016), but end-user developers are often self-taught, and their learning situated in a task
they are trying to accomplish—learning is likely to be more ad hoc and less structured than for

those in educational settings.

34

While there is no shortage of books, online tutorials, forums and examples available to guide
end-user developers in physical computing development, they may not be able to locate, assess
or use these effectively, as my work in this thesis will demonstrate (see Chapter 3 and Chapter 4).
Without sufficient domain knowledge to draw upon it may be difficult for an end-user developer
to judge the quality or relevance of a resource, recognise whether or how it might be useful, or
determine how it might be applied or adapted for their needs. They may also have limited time
available for study and/or be subject to a “production bias” that disinclines them from acquiring
any more knowledge than they need to get by—‘the paradox of the active user” (Carroll and
Rosson 1987). Blackwell’s Attention Investment theory (Blackwell 2002) also suggests that end-
user developers will weigh up the benefits of learning something new, in terms of the cognitive
cost of doing so and the risk that it may not be worth the effort, or result in failure—yet another
potential barrier to end-user developers’ learning, with implications for how support might be

presented.

The case for situated support

End-user programming and end-user development research has taken a pragmatic view of how
to support end-user programmers/developers in the activities of programming. Minimalist
theory suggests that users get more value from support situated within their tasks (Carroll 1998),
and studies have established the effectiveness of providing in situ scaffolding for problem
solving in existing end-user programming environments (e.g. Cao et al. 2015), however, until the
work in this thesis there had been no research to investigate this in the context of physical
computing development. To provide effective, situated support in this domain we must first
establish what support end-user developers might benefit from in these activities, starting with
the problems they experience that can impact their progress and success, and the difficulties

they encounter when trying to overcome them.

2.6 Supporting non-expert programmers

Numerous usability issues have been identified in the design of programming languages and
environments for novice programmers, and recommendations made for how to address these
Concerned by the tendency for the design of new programming systems to be driven by

technical considerations, rather than taking into account the considerable learnings from

35

research into novice programmers’ issues, Pane and Myers (1996) compiled a summary report of
work in this area, with the aim of making this knowledge more easily available to those
designing programming languages and environments. However, not all programming systems
aimed at non-expert programmers are concerned with improving skill. A comprehensive
taxonomy of novice programming languages and environments collated by Kelleher and Pausch
(2005) groups them into two broad categories: 1) systems for teaching—created to help novices
to learn to program and ultimately transition to general-purpose languages and 2) enabling
systems—created to empower novices or inexperienced programmers to program more easily
and quickly. This latter category includes many systems used by end-user programmers that

enable them to achieve their task goals.

2.6.1 Making programming easier

Much work addressing novice and end-user programmers’ difficulties focuses on simplifying

programming languages or environments.

A common approach to simplifying programming is through the use of visual programming
languages (VPLs), which use a visual representation instead of, or in addition to, more
traditional textual representations of program source code. Examples of VPLs aimed at end-user
programmers include Forms/3 (Burnett et al. 2001) in the spreadsheet paradigm, LabVIEW
(‘National Instruments LabVIEW’ 2013), which uses a box-and-wire notation for instrument
control and industrial automation, and Max (‘About Max’ n.d.), which again uses a box-and-wire
notation, for programming music and multimedia. Other VPL tools allow end users to
manipulate machine learning datasets (Sarkar et al. 2015) or interrogate, explore and interact
with web service data (Chang and Myers 2016), both within the familiar visual interface of a
spreadsheet. In the popular Scratch VPL (Resnick et al. 2009), developed to teach children how
to program using animations, programs are created by snapping together graphical blocks of
different colours, and the shapes of these blocks determine what they can connect with, thus
avoiding syntax errors common in text-based languages. This building-block metaphor has been
adopted by several other VPL environments, for example, MIT’s App Inventor web application,
which helps end-user programmers develop Android and iOS applications (‘MIT App Inventor’

n.d.; Wolber 2011).

There are other approaches, beyond visual programming. For example, Programming-by-

Demonstration eases the effort of learning a programming language by allowing users to

36

demonstrate how they would undertake a task, as a means of program creation—the system
records the user’s actions as a program, for later reuse and/or modification (Lieberman 2001,
Cypher et al. 2010). Natural Programming attempts to bridge the gap between humans’ natural
language and behaviours in describing problems and their solutions, and the rather less natural

instructions usually required to program computers (Pane and Myers 2006).

Some programming environments combine paradigms. For example, Flip (Good and Howland
2017) employs both visual programming and natural language, enabling programmers to
compose game event scripts using visual blocks, while simultaneously providing a natural
language representation of the resulting script, which can aid learners in sense-checking and
debugging their programs . The use of multiple representations to support novices in learning to
program is also a feature of a visual programming environment for physical computing
development that | used in a previous study with novice Arduino users (Booth and Stumpf 2013).
I will discuss this in the next section, along with other ways in which the visual programming
paradigm has been used to make the programming of physical computing devices easier, both

for children and end-user developers.

2.7 Supporting physical computing
development

Several tools have been developed to make developing physical computing devices easier.
Some focus on one aspect of physical computing, be that programming or circuit construction,

while others address both.

2.7.1 Easier programming in physical computing

Some research in this area has focused on lowering the bar for programming physical
computing devices, by providing visual programming environments. For example, Stanford
University’s d.tools platform enables designers of interactive devices to lay out and connect
software duals of smart, physical components (e.g. Phidgets (Greenberg and Fitchett 2001)),
plugged into a dedicated hardware interface connected to their computer, in a visual statechart-

inspired editing environment (Hartmann et al. 2006). They can then use this visual environment

37

to define the interaction behaviours of their device, test these behaviours, and iterate rapidly
through different design ideas. Motivated by their work with d.tools, the same authors
developed a tool which employs Programming-by-Demonstration techniques with physical
computing devices, using direct manipulation to make the programming of interaction easier

and more efficient (Hartmann et al. 2007; Fourney and Terry 2012).

Several visual programming environments have been developed for Arduino. For example,
Modkit Micro (Millner and Baafi 2011), which | used in an earlier study (Booth and Stumpf 2013),
adopts the same blocks-based metaphor as Scratch, as does Scratch for Arduino (S4A) (‘S4A:
Scratch for Arduino’ n.d.), allowing users to create Arduino programs by snapping together
blocks representing different Arduino code elements. In Modkit, a user can switch back and forth
between the graphical view and a text view of their program, enabling them to see how the
blocks program translate into Arduino code, and changes made in one view update the other,
S4A goes one step further by sending the states of sensors and actuators back to the IDE, where
they can be monitored. Both of these environments present a potentially easier route into
programming Arduino-based devices, but | have not yet found evidence of significant adoption

of either environment, or any other VPL for Arduino, by end-user developers.

2.7.2 Easier circuits in physical computing

Some work has aimed to make it easier to construct the electronics or hardware aspect of
physical computing devices. For example, the Programmable Bricks created at MIT Media Labs
enabled children to easily create physical computing devices by connecting sensors and motors
to a computer embedded in a LEGO brick and program them using the Logo programming
language (Resnick et al. 1996). A variation of these bricks, the MIT Cricket, was developed for use
in science and engineering education, to help children create easily devices that they can use in

active, hands-on exploration and investigation of concepts (Resnick, Berg, and Eisenberg 2000).

Some tools have been aimed at end-user developers, rather than children. Parallax’s BASIC
Stamp, released in 1992, was a microcontroller board incorporating sensors and outputs, aimed
at hobbyist engineers (Benchoff 2015). These boards dominated the hobbyist electronics market
for many years, but connecting components to them required soldering, and they could only be
programmed in one language—BASIC. Other tools aimed to facilitate rapid prototyping by non-
engineers, for example, the MetaCricket—an offshoot of MIT’s Cricket aimed at designers (Martin,

Mikhak, and Silverman 2000), Phidgets—'physical widgets', developed to help designers and

38

programmers build physical interfaces, with minimal electronics knowledge, and no need for
soldering (Greenberg and Fitchett 2001), and Calder, which allowed designers to control the
behaviour of prototypes constructed from modular components—or even traditional circuits
constructed on a custom breadboard component—through Macromedia Director (Lee et al.
2004). Gadgeteer (Villar, Scott, and Hodges 2011), also aimed to make it easier for end-user
developers to build interactive physical interfaces through plug-and-play hardware
components, however, while it eased the creation of physical devices, programming these
required knowledge of fully-fledged, general-purpose programming languages and
environments such as Visual Studio, perhaps limiting its adoption by end-user developers less

experienced and less confident in programming.

2.7.2.1 Virtual circuits

Taking a different approach, some tools enable end-user developers to plan their circuits
virtually before creating them with physical components. For example, Fritzing (Knorig, Wettach,
and Cohen 2009), a popular, open source virtual circuit prototyping tool, allows users to
graphically lay out circuits on a virtual breadboard (see Figure 16, on page 69, for an example of
a virtual circuit created with this tool). Building upon this, Autofritz extends Fritzing with
autocomplete functionality, using datasheet schematics and a database of projects from the
Fritzing community, to automatically suggest wiring configurations and further modules to add,

for inserted components (Lo et al. 2019).

Some tools aim to automate the translation between physical and virtual circuits. CircuitSense
(Wu, Wang, et al. 2017) translates physical circuits into virtual ones, automatically detecting the
placement of components and wires in the pins of a custom breadboard and predicting
component identity. A virtual version of the circuit is then visualised in Fritzing’s Breadboard
view, where users can perform further editing, for example, revising incorrectly identified
component types. CircuitStack (Wang et al. 2016) addresses the opposite problem, that is, the
translation of virtual circuits (breadboard schematics) into physical ones, by sandwiching

printed circuit paper and a breadboard between custom PCBs.

Autodesk's 123D Circuits Electronics Lab web application (‘123D Circuits Electronics Lab’ n.d.),
now discontinued as a standalone product, took virtual circuits one step further, by combining
virtual circuit construction with a code editor and a simulator, so that end-user developers could

'upload' their program to their virtual circuit and simulate runtime behaviour. A version of 123D

39

Circuits now exists within Autodesk’s Tinkercad environment, online, along with a number of
tutorials (‘Learn How to Use Tinkercad’ n.d.). Tinkercad’s 3D modelling tool has proven very
popular with makers and young people—I used it to design the cards stand described in Chapter

5—however it is not clear how widely its virtual circuit tools have been adopted.

Finally, some tools have also proposed ‘blending’ the digital and the physical. Proxino (Wu et al.
2019) uses physical proxies to bridge between virtual circuits and the physical world, allowing

circuit designers to test interaction with a virtual circuit via real /O components.

In theory, virtual prototype construction and simulation. may help end-user developers to
identify potential problems with their planned circuits and work out how to rectify these before
physically building them, however, | have yet to see formal, empirical studies confirming this. In

practice, this approach may even present different issues.

2.7.3 Making circuits and programming easier

Some physical computing development tools tackle the difficulty of both circuit construction
and programming. A platform that has proven popular with hobbyist roboticists is the LEGO
Mindstorms robotic construction platform (‘LEGO Mindstorms’ n.d.), which evolved out of MITs
work with Programmable Bricks. This combines the LEGO Technics system with a
programmable ‘Intelligent brick” and modular sensor and actuator components. The brick is
programmed via a visual programming environment that previously used the LabVIEW engine

butis now based on Scratch.

The tool currently most popular with makers—Arduino (Mellis et al. 2007; ‘Arduino’ n.d.)—was
originally developed to teach physical computing to designers, but has since become the de
facto physical computing platform for many types of end-user developers constructing
interactive devices. An open source hardware and software platform, it evolved out of Hernando
Barrédgan’s Wiring project (Barragan 2004; 2016), which allowed non-experts to easily connect
sensors and actuator components to a microcontroller board, without soldering, and to
program these circuits in a simple environment based on the Processing IDE (‘Processing’ n.d.).
Using standard headers, additional hardware circuit boards, called shields, can be stacked on
top of Arduino boards, to extend their capabilities, for example, to add Wi-Fi or Bluetooth

communication.

40

As the Arduino platform is open source, there have been numerous clones, extensions and
adaptations of its hardware designs, for example, an offshoot of Arduino, LilyPad Arduino, was
developed specifically for e-textiles, by Leah Buechley (2005). The LilyPad microcontroller board
and components (e.g., sensors and LEDs) are designed to be sewn onto fabric and connected
using conductive thread rather than wires. LilyPad was enthusiastically adopted by crafting
communities, and has been used successfully to engage otherwise underrepresented groups in
STEM activities, for example the creation of programmable wearable, interactive devices
(Buechley and Hill 2010). Studies have also shown the potential for e-textiles toolkits and
curricula to help learners understand STEM concepts (Peppler and Glosson 2013; Fields, Searle,

and Kafai 2016), including some of those mentioned earlier, which are prone to misconception.

Arduino’s relative ease of use, compared to previous ways of developing physical computing
devices, is one of its biggest draws for end-user developers, however, using the Arduino platform
still requires some measure of knowledge and skill in programming and electronics. The Arduino
IDE—a no-frills, notepad-style editor—has a simple, uncluttered interface that appears to
simplify the programming of Arduino-based devices. However, while many refer to the “Arduino
language”, the user is, in fact, programming in C/C++ (Williams 2015), albeit with the benefit of
additional libraries, referenced as standard within the IDE. These make communication between
the computer and Arduino board easier (including the uploading of programs to the
microcontroller—previously not an easy task for non-experts), and abstract some of the more
complex C/C++ code that users would otherwise have to write to achieve the same results, into
useful functions specific to the platform. It is therefore unsurprising that the novice Arduino
programmers in my earlier study—all end-user developers—experienced numerous learning
barriers when using it (Booth and Stumpf 2013). Equally, it may be easy to connect Arduino to a
solderless breadboard, but in connecting components to the Arduino board and one another, to
create a circuit, the same concepts and rules apply as in any other circuit—i.e., electrical circuit

theory that so many learners struggle to understand and apply (section 2.3).

We might conclude that modular hardware platforms based on plug-and-play components will
remove the need for end-user developers to acquire knowledge of electronics engineering—
certainly, these platforms show promise within a rapid prototyping context (Sadler, Shluzas, and
Blikstein 2017)—and that environments which simplify programming considerably, for example,
visual environments, will take all of the pain out of programming physical computing devices.

However, with the exception of LEGO Mindstorms, to date there is limited evidence of adoption

41

of these tools by end-user developers. By comparison, there is undeniable evidence of Arduino’s
popularity in physical computing hobbyist communities, despite it potentially requiring more
specialised knowledge to use than some of the other tools. What might explain this? Perhaps

these tools present different types of barriers and constraints.

Cost may be a factor. Arduino has a relatively low cost of entry—the boards are affordable,
especially clones, and many of the components used to create Arduino-based circuits—with the
exception of shields—are standard, off-the-shelf electronic components. By comparison,
modular hardware platforms are typically more expensive. An artist wishing to create an
installation involving a large number of LEDs, for example, may therefore face considerable
expense if they were to use modular LEDs instead of standard ones. The form factor of modules
may also physically constrain what can be developed, sometimes being larger than standard
components, due to the additional circuitry they contain, or they may rely on proprietary types
of connection, limiting their flexibility. However, for some end-user developers, the limitations or
trade-offs of modular hardware platforms may be well-outweighed by the ease of use in rapidly
developing a working prototype, without the difficulty of conventional circuit construction and

its potential obstruction to creativity (Sadler, Shluzas, and Blikstein 2017).

Programming environments and notations may also impose constraints. For example, visual
programming has achieved recognition, increasingly so in recent years, as a way to make
programming easier for non-experts, particularly children. However, a common criticism of
visual programming tools like Scratch is that while they may be useful for learning some of the
basic concepts in programming, in practice their simplicity sometimes limits what is
programmatically achievable. | am not aware of any empirical work establishing the boundaries
of what physical computing devices can be developed using visual programming tools, and this

is beyond the scope of my research, but it is worth noting.

The Arduino platform’s association with the Maker Movement, from its outset, no doubt boosted
its popularity, leading to a plethora of Arduino-related learning and community resources, both
online and offline. Currently, Arduino is still probably the most well-known physical computing
platform, which may also go some way to explaining why it continues to be the most widely

used, despite the potential challenges it may present to novices.

Recently, alternatives beyond the ‘Arduino monoculture’ (Blikstein 2015) have begun to appear,

in the HCI research community at least, for easier creation of physical computing prototypes

42

using off-the-shelf components. Taking a generative design approach, Trigger-Action-Circuits
(TAC) (Anderson, Grossman, and Fitzmaurice 2017), allows novices to specify high-level
behaviours using a visual programming metaphor. The system then generates candidate circuit
designs for the user to choose from, according to their needs or preferences, for example, cost,
component availability or ease of construction. A visual representation of each circuit is
provided, for the user to copy/reproduce, along with detailed assembly instructions. In a user
study, participants using TAC to develop the simplified Love-O-Meter (a popular choice for
physical computing study tasks since its use in Booth et al. 2016) performed much better than
those using the normal Arduino tools, both in task success and time to complete. The authors
acknowledge that this kind of high-level design/development may not lead to the same degree
of learning, but for end-user developers focused mainly on the end product of their efforts, it
may be an effective way to take some of the pain out of developing physical computing devices.
The caveat, of course, as with the other tools involving virtual circuits as a precursor to physical
circuit creation, is that the user still needs to reproduce the physical circuit—my studies show
that end-user developers can still experience problems and make mistakes, introducing bugs,

when physically reproducing even simple circuits from images.

2.8 Supporting troubleshooting and debugging

Software engineering deals, to a great extent, with finding and fixing bugs:

"the realization came over me with full force that a good part of the remainder of my
life was going to be spent in finding errors in my own programs” (Wilkes 1985)

End-user developers should not only be supported in creating their physical computing devices,
they should be also supported in troubleshooting any problems which arise in process of doing
so, for example, finding and fixing any bugs they introduce, or any failure of their device to

behave as expected.

Troubleshooting is a form of problem solving (Jonassen 2000). In typical use, the term describes
the process of locating and rectifying faults in electronic systems or circuits, in the same way
that debugging describes the act of finding and fixing program faults that a developer has
introduced. In fact, debugging has previously been referred to as an instance of troubleshooting

in which program errors rather than device errors are located and corrected (Katz and Anderson

43

1987). In physical computing, particularly in materials aimed at end-user developers or makers
(e.g. Banzi 2009), the terms troubleshooting and debugging are sometimes used

interchangeably, as I do at various points in this thesis.

Understand
System

¢

Test
System

O G
Yes

Locate
Error

b

Repair
Error

Figure 2. General model of troubleshooting. From Katz and Anderson, 1987

Troubleshooting (or debugging) is typically modelled as an iterative process, as in the Katz and
Anderson General Model of Troubleshooting (Figure 2) (Katz and Anderson 1987)—in this model,
iterations comprise 'Test System’, 'Locate error', and 'Repair error' activities. During Test System,
the developer tries to confirm the existence of a bug; in Locate error, they attempt to localise and
identify the bug; in Repair Error, they fix the bug; finally, it needs to be verified that the fix has
been successful, which leads back to Test System. If the test confirms that a bug still exists, the

developer returns to localisation... and so on.

In practice, particularly for end-user developers, as | will also show in my studies, these activities
sometimes co-occur, or happen in a different order, for example, end-user programmers often
make a number of changes until they establish what fixes the problem or results in the desired
behaviour (Ko et al. 2011), using ‘repairs’ to locate error—a strategy that Rosson and Carroll refer

to as “debugging into existence” (Rosson and Carroll 1993).

Knowing where to look for bugs, what evidence to look for, how to test for the existence of bugs
and how to interpret the result of testing, is crucial to successful troubleshooting (Morris and
Rouse 1985). These are diagnostic activities in which hypotheses play a key role (Pennington and
Grabowski 1990; Jonassen 2000)—troubleshooting activities are directed by ideas about the

possible or probable cause of symptoms, and false assumptions made by novice programmers

44

and end-user programmers when hypothesising during debugging have been shown to result in
new bugs (e.g., Ko and Myers 2003; Gugerty and Olson 1986). Successful troubleshooting
requires a broad range of domain-specific and more generic knowledge—system knowledge,
procedural knowledge and strategic knowledge, for example—which experts build up over time,
forming deep and complex mental models that provide a bedrock for successful fault diagnosis
(Jonassen 2000; Lesgold and Lajoie 1991). However, without the right knowledge, end-user
developers—particularly less-experienced ones—may have difficulty forming hypotheses (Ko,
Myers, and Aung 2004), be unable to identify appropriate strategies or procedures to test their
hypotheses (Kissinger et al. 2006), or lack the practical know-how to put their ideas into action

(Ko, Myers, and Aung 2004).

2.8.1 Troubleshooting software problems (debugging)

As discussed in section 2.2.3, much has been done to understand how end-user programmers
debug software in order to find ways to support them, and a number of tools, informed by this
work, have been developed to help end-user programmers diagnose problems, generate and

test hypotheses, and localise bugs.

A popular approach for tools developed to support end-user programmers’ debugging is
through providing features directly within the programming environment, in order to support
problem-solving activities during programming. The Idea Garden, an extension to end-user
programming environments, scaffolds end-user developers’ problem solving during
programming and debugging, suggesting appropriate strategies for overcoming barriers, and
providing information about useful concepts and patterns (Cao et al. 2015). This situated
support tool, informed by problem-solving theory (Cao et al. 2013, referring to Simon 1980) and
Minimalist theory (Carroll 1998), gently guides end-user programmers in developing their own
problem-solving skills, rather than solving their problems for them. The WYSIWYT (What You See
Is What You Test) testing methodology has proven effective in helping end-user programmers
test and localise spreadsheet bugs by providing visual feedback about the “testedness” of cells
containing formulas (Ruthruff, Burnett, and Rothermel 2005). This methodology uses a strategy
the authors refer to as “Surprise-Explain-Reward”, again informed by Minimalist theory and
Attention Investment theory, to reveal information useful to the user in debugging a
spreadsheet. A variant of this latter tool—WYSIWYT/ML—adapted for machine learning

environments, helps end-user programmers successfully debug problems in an intelligent agent

45

system (Kulesza et al. 2011). Also in the spreadsheet domain, StratCel, an add-in for Microsoft
Excel, was designed to support a common strategy used by end-user programmers when
debugging—"to-do listing”. It enables end-user programmers to offload some of the cognitive
effort of planning and then tracking what they test, by first automatically generating a list of
things to check and then allowing the user to mark these off as they progress (Grigoreanu,
Burnett, and Robertson 2010). In a study, using this tool, end-user programmers found and fixed
far more bugs than those not using it, demonstrating that support tools which adopt a strategy-
based approach can increase end-user programmers’ success in localising and resolving their
bugs. Addressing a different problem, the Whyline explicitly supports novice programmers’
hypothesis formation during debugging, by allowing them to ask “why did” and “why didn't”
questions about their programs' behaviour, and mapping these to the sections of code

potentially responsible for failure (Ko and Myers 2004; 2008).

To design tools to support end-user developers in the physical computing domain, we can
potentially draw much inspiration from this work, but we first need to know what they need

support with. My work addresses this gap.

2.8.2 Troubleshooting physical computing problems

Until recently, there were few support tools for troubleshooting the simple circuits typically
involved in end-user developers’ physical computing prototype development. Most systems
supporting the troubleshooting of electronics-based systems were aimed at professionals, or
those training to be professionals, for example, SHERLOCK (Lesgold et al. 1992), an environment

for teaching sophisticated electronics troubleshooting to fighter airplane engineers.

Since publication of the findings from the first study in this thesis, other researchers have
developed a number of novel hardware addons or tools to help novices troubleshoot electronic
circuits. Most of these tools address the lack of visibility about the internal operating states of
physical computing prototypes at runtime, employ some kind of enhanced (instrumented)
breadboard, with measurement data collected (automatically or on demand) from the circuit,
and present this visually via a GUI, along with additional debugging features, in some cases. For
example, Toastboard, aimed at novices and informed by interviews with domain experts,
measures and visualises voltage, and can alert the user to common errors (Drew et al. 2016),
while CurrentViz uses the virtual ‘Breadboard’ view in Fritzing to show calculated real-time

visualisation of current flow within a breadboard circuit (Wu, Shen, et al. 2017). These tools show

46

promise, however, | have yet to see more formal empirical studies demonstrating their efficacy
in typical end-user development tasks. Also, most only support the troubleshooting of circuits,

not program-related problems.

While, as discussed in section 2.7, there are now platforms and environments which make
physical computing development somewhat easier for non-experts, they usually lack the
sophisticated types of debugging tools found in most professional programming environments.
The current Arduino IDE has a message console, where compiler errors are displayed, as well as
a Serial Monitor terminal that can display program output and which is often used for
debugging, but until a recent beta version of Arduino IDE, which contains a live debugger, there
was no specific debugging support available within the platform. Certain plugins enable the
debugging of Arduino projects in Microsoft Visual Studio, however, as others have argued, a
fully-fledged professional IDE may be daunting to inexperienced end-user developers
(Repenning and loannidou 2006). Equally, novice end-user developers appreciate the simplicity
of the Arduino’s notepad-style programming interface, despite it providing them with very little

assistance in troubleshooting their problems (Booth and Stumpf 2013).

Bifrost (McGrath et al. 2017) is the first tool | have found aimed at end-user developers that
provides tools to help users debug or troubleshoot their programs, circuits and the interaction
between these. Like some of the circuit troubleshooting support tools previously mentioned, its
dashboard-style interface exposes visualisations of electrical activity (digital and analog signals)
alongside an enhanced serial console and code editor, and allows users to set breakpoints,
monitor variables and navigate back and forth within a recorded trace. Electrical signals are

captured from the Arduino pins via a custom PCB shield, connected to a logic analyser.

To my knowledge, the circuit debugging tools | have described are still at the conceptual
research prototype stage, and without further studies, beyond the exploratory work reported,
there remain unanswered questions regarding their efficacy in helping end-user developers,
particularly novices, resolve their problems, or whether they pose different problems. In the
meantime, there is currently still little support for this population in troubleshooting. Some
websites and books provide checklists for troubleshooting problems and failure (e.g. Taylor
2010; Craft 2013), but as previously discussed, end-user developers in this domain might benefit
from different approaches to scaffolding their troubleshooting—the physical card-based
support tool | developed, which | will describe in Chapter 5 (see also Booth et al. 2019), informed

by the empirical work | will reported in the next two chapters, represents such an approach.

47

Chapter 3

Problems experienced by end-user developers in
a physical computing task (Study 1A)

3.1 Introduction

To support end-user developers in developing physical computing devices, we need to

understand what challenges they face.

In this chapter I describe a study investigating the problems faced by end-user developers when
developing physical computing devices. This was an exploratory study, with the goal of
addressing a lack of knowledge about end-user developers in this domain, and establishing

what they have most trouble with during development. It aimed to address the following.

Firstly, the lack of empirical knowledge about the type and extent of the problems faced by end-
user developers during development, and the locations or activities in which these occur. As
physical computing development involves both programming and electronics, there is potential

for different problems than have been observed in programming alone.

Secondly, knowing whether factors such as self-rated expertise and self-efficacy play a role in
the problems, performance and success of end-user developers developing in this domain,

should indicate whether some end-user developers are more in need of certain types of support.

Finally, knowing what types of problems end-user developers are able to resolve, and which are
more likely to result in task failure, will enable us to address/target support efforts towards

helping end-user developers to overcome the most difficult and severe issues.

48

The study seeks to answer the following thesis-level research question:

TRQ1l: What problems do end-user developers experience when developing a
physical computing artefact?

This has been broken down into the following three study-level research questions:

RQ1l: How many problems do end-user developers encounter, and where do these
problems occur? Are there aspects of physical computing development that
are particularly prone to problems?

RQ2: How do end-user developers' self-rated expertise and self-efficacy affect the
challenges they face in a physical computing development task?

RQ3: What problems are overcome by end-user developers, and what problems
prove insurmountable?

Work that has helped to determine how end-user programmers can be supported in
programming and debugging spreadsheets or web mashups is underpinned by empirical data
about the difficulties that end-user programmers experience in these domains. The main part of
the study was therefore an observation of the problems which arose when end-user developers

undertook a hands-on physical computing development task.

3.2 Method

3.2.1 Overview

To answer the research questions, | conducted an empirical user study. Participants were given
45 minutes to develop a physical computing device from scratch to a set brief, while thinking
aloud; all were given the same task specification and equipment. A rich set of data was
collected: questionnaires captured information about participants’ backgrounds and self-
efficacy, the task was video recorded (on-screen and off-screen activity), a post-task interview
captured participants’ understanding of the physical computing concepts involved in the task,

and any program and circuit artefacts created during the task were saved for later scrutiny.

49

3.2.2 Participants

Once full ethical approval for the study had been granted (Appendix A), twenty adult end-user
developers were recruited. Eligible participants had to have some experience of using Arduino,
but only for personal projects (for example, a hobbyist developing a microcontroller-based
music-making device), or to support their own work (for example, a researcher developing an
interactive prototype for use in a study they were running). They could not be (or have ever
been) employed or commissioned by others specifically to create physical computing

prototypes, whether or not for monetary gain.

As this was an exploratory study, | hoped for a broad mix of backgrounds and skills in
electronics, programming, and physical computing across the sample. As discussed in the
previous chapter (section 2.1.1), not all end-user developers in physical computing are novices.
Some may have more experience in a particular aspect of development, for example, an end-
user developer might be employed as a professional programmer, but dabble with Arduino in
their spare time, and be relatively new to working with electronics. | wondered if any disparity in
skill might reveal anything interesting—for example, whether participants who rated themselves
higher in programming expertise might experience fewer programming problems than those
who rated their programming expertise lower. Therefore, even professional programmers or
engineers could take part, but only if they met the end-user developer criterion with regards to
physical computing.

Table 1. Study 1A inclusion/exclusion criteria for participation

Inclusion criteria Exclusion criteria

Adult (Aged 18 or older) Aged under 18

At least some practical (hands-on) experience of No practical (hands-on) experience of using the
using the Arduino platform, with, as a minimum, Arduino platform.

both of the followi [though not ilyinth
oo 'ect>).ovv|ng(a ough notnecessaryn the Experience of using either LEDs or analog sensors in
SAme project: an Arduino project, but not both.

= Experience of using LEDs in an Arduino
project AND

= Experience of using at least one type of
analog sensor in an Arduino project

End-user developer: Has only developed physical Previously or currently employed/commissioned
computing prototypes/devices for own use. specifically to develop physical computing
prototypes/devices.

Able to attend, in person, a 1.5-hour session Unable to attend, in-person, a 1.5-hour session

50

As a minimum, participants had to have experience of using LEDs in an Arduino project, as well
as at least one type of analog sensor, although not necessarily together. This would ensure
some familiarity with the types of components involved in the task, and the methods used to

programmatically control them.

Table 1 summarises the inclusion and exclusion criteria for participation in the study. If a
prospective participant met all of the inclusion criteria, they were deemed eligible to take part; a

person meeting any of the exclusion criteria was deemed ineligible.

3.2.2.1 Recruitment

Recruitment was via several channels. As | wanted to target hobbyists, | contacted a number of
different Maker communities (e.g., London Hackspace, MzTEK, London threads-space, London
Arduino meetup group, Not Just Arduino group, and Dorkbot London, and with permission, sent
a call for participation to their mailing lists. To reach end-user developers in other communities,
makers in my personal network disseminated my call for participation online and offline,
including via several university student mailing lists, and a poster pinned to noticeboards at
several London universities (Appendix B). | also posted on social media at regular intervals
(Twitter and Facebook), first setting up a Google document containing basic information about

the study that | could link to, keeping emails and posts succinct.

Interested respondents were sent a copy of the participant information sheet (Appendix C)
providing full details about the study, so that they could determine their eligibility and decide
whether they wished to participate. Prospective participants were screened for eligibility and

only those who met all of the criteria for participation were invited to take part.

3.2.2.2 Who took part?

Twenty adult end-user developers were recruited—8 females and 12 males, with a mean age of
31.8 years. Table 2 shows the ages, gender, and occupations of those who took part.
Demographic, experience and expertise data were collected from participants via a background
questionnaire (Appendix E, described in sections 3.2.3.1 and 3.2.5.1); self-efficacy ratings were

captured via a second questionnaire (Appendix F, described in sections 3.2.3.3 and 3.2.5.2).

51

Descriptive statistics were used to summarise these data (Appendix V). As hoped, there was a
broad mix of backgrounds and experience across the sample, which | will now describe in

greater detail.

Occupation

Participants included both students (6) and professionals (14) and came from a variety of
disciplines. Only two people currently employed as IT professionals took part—one software
developer and one systems analyst—but seven participants indicated that they had been
employed as programmers at some point. Only one engineering professional—a broadcast

engineer—took part. All were end-user developers in physical computing, as specified.

Table 2. Study 1A participants

Ptc Age Gender Occupation

PO1 27 Female Post-Doctoral Researcher (Human-Computer Interaction)
P02 27 Male Broadcast Engineer

P03 22 Female PhD Student (Computer Science)

P04 25 Female PhD Student (Media & Arts Technology)

P05 32 Female Project Manager (Arts)

P06 46 Male Events/Content Producer

PO7 30 Male PhD Student (Media & Arts Technology)

P08 33 Male Restaurant owner

P09 29 Female Director and Research Consultant (Technology & Arts)
P10 34 Female Project Manager (Media & Technology)

P11 53 Male High School Substitute Teacher (English Literature)
P12 41 Female University Lecturer (Fashion Marketing)

P13 38 Female Student (Science & Human Physiology)

P14 32 Male Software Developer

P15 32 Male Post-Doctoral Researcher (Computer Science)

P16 29 Male Systems Analyst

P17 28 Male PhD Student (Human-Computer Interaction)

P18 30 Male Education Programme Manager (Science)

P19 26 Male Industrial & Web Designer

P20 22 Male MSc Student (Computer Science & Embedded Systems)

52

Experience

As shown in Figure 3, participants generally had more years of programming experience
(mean=10.89, SD=7.53) than electronics experience (mean=6.75, SD=7.63) or physical computing

development experience (mean=3.23, SD=2.03).

30 °
25
" 20 ° @ Physical computing
E 15 3 [Programming
10 [7] Electronics
s
0

Figure 3. Participants’ experience, in years

Training / instruction

Most (16 participants) had received some form of training or instruction in programming (Figure
4), ranging from one-off workshops to formal education—twelve had attended at least one
programming module at a university level. Fewer had received training in electronics (9) or
physical computing (13). Most physical computing instruction had been in the form of
workshops, often introductory, although three participants had taken a university module.
Instruction in electronics was least represented. Five had taken at least one module at university

level, while four had been taught electronics at school or attended specific workshops.

20
jﬂ/ 1 M Yes
<
810 .
9
- . .
o

0
Physical computing Programming Electronics

Figure 4. Participants' training

Self-rated expertise

To succeed in a physical computing task, end-user developers need to be sufficiently proficient
at programming, and at constructing an electronic circuit, but we would hardly expect them to

be experts. Participants rated their expertise in programming, electronics and physical

53

computing on a scale of 1 (complete beginner) to 7 (total expert). On average, rated themselves
slightly higher in programming expertise (mean=4.40, SD=1.47) than electronics (mean=3.10,
SD=1.33) or physical computing (mean=3.60, SD=1.19) (Figure 5). These are then not all complete

novices but represent a good cross-section of end-user developers in physical computing.

: |

@ Physical computing

@ Programming

Rating
N

[] Electronics

Figure 5. Participants’ self-ratings of expertise in physical computing, programming and electronics

; ° A Physical computing @ Programming Electronics
6 A o L BN BN J
5 B L B A [2
oo
£ilo A A o A A oo
T3 A o 0 A A A A A
2 B D O AR A
1
P01 P02 P03 P04 PO5 PO6 PO7 P08 P09 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20
Figure 6. Individual participants' self-ratings of expertise (1-7)
Self-efficacy

Self-efficacy is an individual’s belief in their capability to accomplish something, even in the face
of difficulty. Participants’ self-efficacy was captured via a separate questionnaire (Appendix F,
described in sections 3.2.3.3 and 3.2.5.2), with analysis resulting in a single self-efficacy score per
participant, out of a maximum of 100. As shown in Figure 7, most participants were relatively
self-confident at tackling a physical computing task of moderate complexity using the Arduino

platform, with a mean score of 69.70 for the sample (SD=10.78).

100

80

60

40

20

P01 P02 P03 P04 PO5 P06 PO7 P08 POS P10 P11l P12 P13 P14 P15 P16 P17 P18 P19 P20

Figure 7. Individual participants’ self-efficacy scores (out of a maximum of 100)

54

3.2.3 Materials

Avariety of materials were developed for this study. These will now be described.

3.2.3.1 Background questionnaire

This questionnaire (Appendix E) captured demographic information from each participant, as
well as information about their background and experience in programming, electronics and
physical computing. This was created using online survey software (SurveyGizmo, now known as
Alchemer (Alchemer LLC, n.d.)) and was completed by participants in advance of the in-person
lab session, to keep the time required for in-person participation to a minimum (see section
3.2.4.1). An initial statement asked participants to indicate their consent to this data collection,

prior to answering any questions.

3.2.3.2 Informed consent form

An informed consent form (Appendix D) was created to capture each participant’s agreement to
taking part in the study and their acknowledgement that they understood what this would

entail, including video recording of the session, and the uses of any data gathered.

3.2.3.3 Self-efficacy questionnaire

The self-efficacy questionnaire (Appendix F) was based on a validated, standard questionnaire
about self-efficacy in computer use (Compeau and Higgins 1995), and captured participants’
self-efficacy in completing a physical computing task of moderate complexity using the Arduino

platform.

3.2.3.4 Physical computing development task

The main part of the in-person session was the hands-on physical computing development task.
For this task, participants were asked to develop a physical computing device, from scratch, to a

given brief, using the Arduino platform.

55

The task was designed to involve some of the most fundamental concepts in physical
computing. It was a simplified® version of the third project in the official Arduino Starter Kit
(‘Arduino Starter Kit’ n.d.), which is aimed at people new to the Arduino platform. As this is an
early project in the set of ten Starter Kit project tutorials, it was reasonable to assume that
participants would already have some exposure to most, if not all, of the concepts involved in it,
for example, connecting LEDs to an Arduino and programmatically controlling them, or

connecting a sensor to an Arduino and programmatically reading data from it.

The device that participants were asked to build was a “Love-O-Meter”, which uses three LEDs to
visualise the readings from a temperature sensor (Figure 8). The successfully constructed device
should behave as follows: When the sensor measures the ambient room temperature, no LEDs
should be lit. As temperature increases, LEDs should light up in turn, as specific temperature
thresholds are reached, until all 3 LEDs are lit. As the temperature drops, the LEDs should turn
off, one by one, as the same temperature thresholds are reached, until the ambient room
temperature is reached, and no LEDs are lit. Temperature is changed by holding the sensor

between the fingers (to increase the temperature) or releasing it (to decrease the temperature).

Figure 8. Love-O-Meter prototype in action

Building the Love-O-Meter device requires creating an electronic circuit and programming it to
achieve the specified behaviour. It is possible to first build the whole circuit and then write the

whole program, or alternatively, to decompose the task into smaller parts, building the circuit

* The original project included code that converted the raw ADC (analog to digital conversion) readings
(read from the analog pin), first to voltage and then Celsius. The specification used in this study included
no conversion, reducing the complexity of the program.

56

and writing the program for discrete functional units (e.g., the sensor circuit and code), and
establishing that they work as expected before extending or combining them. Indeed, such an
incremental approach to development is considered good practice, however, to give an idea of
what is involved in constructing the circuit and writing the program, | will here describe them as

two separate activities:

Building the circuit

Building the circuit requires seating 7 electronic components (1 x temperature sensor, 3 x LEDs
and 3 xresistors) in a solderless breadboard and connecting them to appropriate pins or sockets
on the Arduino microcontroller board, and to one another, where appropriate. Figure 9 shows

an annotated layout of the simplest circuit that could be built to satisfy the task brief.

] Ground rail | | Breadboard |

Arduino Uno board .\‘
T

<zl

5V power p -

0Q

Ground

Analog pins

Figure9. Model Love-O-Meter circuit

The temperature sensor is an analog device, therefore it must be connected to an analog pin on
the Arduino board, so that continuous temperature values can read from it. At runtime, the
Arduino will convert these analog values (voltage readings) into digital values (in the range 0-
1023) that can be used by the program. The sensor has 3 legs, and each requires a specific type
of connection. Although more complex configurations can be used, the sensor requires, at the
very least, a connection to Ground, a connection to power (e.g., the 5V pin on the Arduino) and
the connection to an analog pin already mentioned. Connecting the sensor legs incorrectly (e.g.,
swapping two of the connection types) can result in erroneous behaviour, or even damage to

the sensor.

57

The LED anodes must be connected to digital pins on the Arduino board, so that these pins can
be used as switches, by the program, to turn the LEDs on or off. The LED cathodes must be
connected to Ground. LEDs are diodes, which means they have polarity—they work only in a
specific direction. Therefore, it is crucial that these connections are not reversed, or the LEDs will
not work. A resistor should be connected in series with each LED, either between the cathode
and Ground, or between the anode and the digital pin, to regulate current. Not doing so can
lead to burning out the LEDs prematurely or even damaging the Arduino. The resistor needs to
be of a value appropriate for the LED, in the context of the circuit. Too low a value and the

resistor will not prevent damage; too high and the LED will not light up.

As the sensor and LED components require, in total, four connections to Ground, but the
Arduino board only has three Ground pins, it is necessary to create a Ground rail on the

breadboard, which allows multiple components to share a common Ground connection.

Finally, connecting the circuit, via the USB port on the Arduino board, to a USB port on the
computer, enables communication between the IDE and the Arduino board, so that information
can be sent back and forth between them, for example to upload the program to the
microcontroller or to return values from the microcontroller to the IDE. This connection also,

importantly, provides power to the Arduino board and thereby the rest of the circuit.

Writing the program

Creating the program requires writing code that reads the current temperature from the
temperature sensor, compares this value to specified temperature thresholds, and then turns

the LEDs on or off, as appropriate. Figure 10 shows what the program might look like.

An Arduino program always contains two specific functions: the Setup () function, whichis run
once when the Arduino is started, and the Loop () function, which runs repeatedly in a loop

once the Setup () function has been processed and contains the main body of the program.

Pins on the Arduino to which the sensor and LEDs are connected must be specified, in code, as
input or output, in the Setup () function. A Serial.begin () statement must also be
added to the Setup () function, to enable serial communication between the Arduino and the
IDE. Variables can be created to store the temperature values read. In the main body of the
program—the Loop () function—the temperature is read by using the analogRead ()

function, which reads the current value of the sensor pin. The main logic of the program, i.e., the

58

code which compares the current temperature value to specified threshold values and turns

LEDs on or off, as appropriate, isimplemented in the form of conditional statements.

int ledl = 9; //declare wariables for the LEDs and set them to digital pin numbkers 9, 11 and 13
int led2 = 11;
int led3 = 13;

int tempSensor = RA0; //declare a wvariable for the temperature senscr, and set it to analog pin A0
int temperature; //declare a variable to hold the reading from the temperature sensor

woid setup{) { J//this will run once, when the program starts
pinMode (ledl, OUTFUT): //set the digital pin (9) connected to LED#1 to be OUTPUT
pinMode (led2, COUTPUT):
pinMode (led3, OUTEUT):

pinMode (tempSensor, INEUT); //set the analog pin connected to the sensor to be OUTEUT

Serial.begin(9600); //3tart serial communication between the Arduinc and the computer/ILDE

b
woid loop() { //this will run repeatedly, conce the setup() function has completed

temperature = analogRead(tempSensor); //read the senscr pin and assign the value to the "temperature' wvariable
Serial.println(temperature); //write the temperature value to the Serial Monitor window in the IDE

if (temperature >=149) [//if the sensor reading is 14% or greater...
digitalWrite (ledl, HIGH):; //turn the first LED on
} else { //if the sensor reading is less than 149
digitalWrite (ledl, LOW); //turn the first LED off
}
if (temperature >=152) [
digitalWrite (led2, HIGH):
} else |
digitalWrite (led2, LOW):
1
if (temperature >=153) {
digitalWrite (led3, HIGH):
} else |
digitalWrite (led3, LOW):

1

delay(200); // wait 200 milliseconds before the next reading

Figure 10. Model Love-O-Meter program

To determine appropriate values for the temperature thresholds, it is necessary for the
participant to find out what values are being read from the temperature sensor. This is done by
using the Serial.println () function to output values read from the sensor to the IDE’s
Serial Monitor—a terminal window that can be launched within the IDE, often used for
debugging. Observing the values output to this window, will enable the participant to identify
first, the value for the ambient room temperature (when the sensor is not held) and second, the
rate of increase in values when the sensor is held, so that threshold values can be chosen for use

in the main logic of the program, that is, appropriate values at which to turn the LEDs on or off.

59

LEDs are turned on/off with the digitalWrite () function, using the argument HIGH to turn
an LED on, and LOW to turn an LED off. The delay () function is used to pause for a specified

number of milliseconds between sensor readings.

Task resources

A task instruction sheet (Appendix G) was created, specifying the prototype requirements,
including desired behaviour and details of any constraints within which the participant was

expected to operate, for example, the task time, and rules for use of external resources.

The development board chosen for use in the task was the official Arduino UNO revision 3. This
is a commonly used starter board, included in the official Arduino Starter Kit. The development
environment used was the official Arduino IDE (version 1.61 for Windows), running on a Microsoft
Windows 7 desktop PC. The PC had access to the internet and the Chrome browser was

available for browsing the Web.

A kit of equipment was created, for use in the task, starting with a selection of electronic
components from the Arduino Starter Kit. This included TMP36 temperature sensors, different
coloured LEDs (red, green, yellow, blue) and resistors in a wide range of different values (4.7Q,
2200}, 330Q), 5600, 1kQ, 10kQ, 1MQ, 10MQ). Several of each component were provided, in case
participants wanted (or needed) to swap out components during the task, and only new
components were provided, so that there was no chance of a participant using a component
that had been damaged by previous use, or choosing a particular resistor because it had been
used by a previous participant (used resistors are obvious in that they are no longer perfectly
straight). The components were labelled and only component types needed for the task were
provided, as | was more interested in whether participants could develop the prototype, than in
whether they were able to recognise components. Several values of resistor were provided as
this would allow me to see whether participants were able to select appropriate values of
resistor for use with the LEDs. The kit also contained jumper wires (also known as jump wires),
which are a type of wire designed for prototyping convenience—they terminate in a hard pin at
each end, making it easy to insert them into breadboard holes or the pins on an Arduino board.
Several different colours of wire were provided, to enable participants to follow wiring colour
conventions (e.g., red for power, black for ground, different colours for different

signals/components etc) should they wish to do so. The kit also contained a USB cable, for

60

connecting the Arduino board to the PC, and a digital multi-meter, in case participants wished

to measure any aspect of their circuit.

3.2.3.5 Interview topic and questions guide

A guide was created to direct questioning in the interview that followed the task, to elicit
participants’ understanding of physical computing concepts. Topics and questions related to
the concepts and equipment involved in the task. To create it, a range of resources were
consulted, including books about physical computing and Arduino, websites about physical
computing development, online physical computing tutorials, and literature on programming,
electronics and physical computing. Although captured, interview data were not analysed—I
originally planned to also look at mental models as part of this investigation into end-user
developers’ problems, but decided instead to investigate troubleshooting, in depth, (Chapter 4),

with that ultimately becoming the focus of this PhD (discussed further in section 7.3).

3.2.4 Procedure

Once it was established that a respondent was eligible and wished to take part in the study, a
date and time were agreed for them to attend an in-person session in the Centre for HCI Design’s
Interaction Lab at City, University of London. They were then sent a confirmation email
containing instructions for attending the session, and a link to the background questionnaire, to

be completed prior to the session.
The participation procedure is summarised as follows:

1. The participant first completed a background questionnaire online, at an emailed URL.
2. They subsequently attended a scheduled in-person session, structured as follows:
2.1. Completion of a self-efficacy questionnaire to measure their confidence in
physical computing development tasks.
2.2. Ahands-on task, in which they developed a physical computing prototype,
from scratch, to a given brief, using equipment provided, while thinking aloud.
At the end of the task, they demonstrated what they had built.
2.3. Apost-task interview, in which they explained the prototype workings, and

answered questions about the concepts involved in the task.

61

Figure 11 shows the sequence of activities, which will now be described in detail.

Pre-session

Participation agreed & confirmed

v

Background questionnaire (online)

!

In-person session

Welcome & introduction to study

v

Consent form

v

Self-Efficacy questionnaire
(online)

Hands-on physical computing development
task

Familiarisation with task brief &
nstructions

!

Task execution
(45 mins, think-aloud)

v

Prototype demonstration

'

Semi-structured Interview
(physical computing concepts)

Figure 11. Study 1A: Sequence of activities

3.2.4.1 Background questionnaire (online completion)

Participants were asked to complete the background questionnaire online, in advance of the
session, as the in-person session would already take a considerable amount of time (1.5 hours).
A link to the questionnaire was sent in the participation confirmation email. On being opened,
the questionnaire required participants to digitally provide their consent for this data collection

prior to answering any questions.

3.2.4.2 In-person session

On arrival at the Interaction Lab the participant was given a verbal introduction to the study,

asked to read the participant information sheet again, and signed the informed consent form.

Self-efficacy questionnaire: Participants completed the self-efficacy questionnaire, after first
being familiarised with the content, including clarification of what was meant by “a task of

moderate complexity”—an Arduino development task that involved prototyping a circuit which

62

involved a sensor and three LEDs, and writing a program to coordinate and control their

behaviour.

Physical computing development task: Participants were then given the physical computing
development task. They were first taken through the task information sheet verbally, ensuring
that they understood the specification of the device they were being asked to develop. They
were shown the equipment they could use, and the constraints within which they were expected
to operate were explained. Participants were given 45 minutes to complete the task and asked
to think-aloud while doing so. Should they forget to think aloud during the task, they were
reminded to do so. During the task they could ask questions to clarify the brief but could expect
no other help or advice in the development of the prototype. Participants were also allowed to
use additional resources to help them complete the task, for example, they could use help
content and example programs built into the Arduino IDE, or search online for other sources of
information. They were allowed to copy code and use resources to guide the construction of the
circuit, as reusing and adapting code or other content created by others is a common behaviour
for end-user developers, but could not search for and copy an exact solution to the brief, i.e., a
project in which LEDs are controlled in response to readings from a temperature sensor. Finally,
they were asked to keep the prototype within a marked area of the desk during development (to

keep it within the video recording frame).

When the participant was happy that they understood what they were being asked to do, the
task commenced. Beyond reminders to think aloud, the only facilitator intervention was if there
was any danger of harm to the participant, or if any problem with the equipment was observed
that was unrelated to anything the participant had done (for example, with the PC hardware or
the software running on it). Towards the end of the 45 minutes, they were given a verbal

reminder of the time remaining.

At the end of the task, participants were asked to demonstrate the final behaviour of their
prototype. If they had not succeeded in constructing and programming a physical prototype

that met the given specification, they were asked to show how far they had got.

Post-task interview: Participants were first asked to give an overview of what they had created,
explaining what they had used, how the program and circuit were structured and how the
individual aspects worked together as a whole. They were then asked questions about the

concepts involved in the task. Note, again, that these data were not analysed.

63

3.2.4.3 Pilot

The Starter Kit estimated 30 minutes as the expected time to complete the Love-O-Meter
project, however, that would obviously be with the benefit of the step-by-step instructions in the
manual, whereas | wanted to give participants a broad specification of what the prototype
should achieve and see how they fared without further instructions. | trialled the task and on the
basis of the results, increased the time to 45 minutes. The entire procedure and materials were
piloted with an end-user developer who had experience of using Arduino. As a result of this,
some questions in the background questionnaire (relating to experience of alternative physical

computing platforms) were removed, and some questions were reworded for clarity.

3.2.5 Data collection

3.2.5.1 Background questionnaire data

The Background Questionnaire (Appendix E) contained 21 questions, capturing two types of
data: firstly, personal and demographic information (age, gender, occupation) and secondly,
information about participants’ backgrounds and experience in physical computing,
programming and electronics. The background and experience questions were grouped by these
three activities and ordered so that participants were first exposed to the questions about

physical computing, and then programming and electronics.

Length of experience: Participants were asked to indicate, in years and months, how long they
had been doing each activity, from the approximate date at which they had first started. This is
not an accurate measure of the amount of experience a participant has—for example, they may
not have programmed frequently or even regularly since they first started programming— but it

provides an idea of how long they had been exposed to the concepts involved in each activity.

Level of expertise (self-rated): Participants rated their expertise in each activity, using a scale
from 1 (complete beginner) to 7 (total expert). While we cannot take this as an objective
measure of their expertise, it provides some indication of the level of knowledge and skill they
felt themselves to have in each activity, enabling me to look for any correlation with

performance or problems (RQ2).

64

Knowledge acquisition: Participants were asked to indicate how they felt they had acquired
their knowledge and skills in each activity. This was in a multiple-choice question, containing 5

statements that ranged from ‘totally self-taught’ to ‘totally through training and instruction’.

Training and instruction: Participants were also asked whether they had received training or
instruction in each activity (Yes/No). If yes, they were asked to provide a brief summary of the

training or instruction.

Employment: Participants were also asked whether they had ever been employed as a

professional programmer (Yes/No) or to construct/troubleshoot electronic circuits (Yes/No).

3.2.5.2 Self-efficacy questionnaire data

The self-efficacy questionnaire (Appendix F) was based on a validated questionnaire about self-
efficacy in computer use (Compeau and Higgins 1995), that has been used in a number of end-
user programming studies. The word of the questionnaire was adapted for the context of the
study. It contained a main statement: “/ could complete a physical prototyping task of moderate
complexity using the Arduino platform..." followed by 10 questions that related to completing this
task under particular circumstances, for example “..if | had only the built-in help facility for
assistance”. When familiarising each participant with the questionnaire, “a task of moderate
complexity” was verbally defined as a task that involved prototyping a circuit that involved a

sensor and three LEDs and writing a program to coordinate and control their behaviour.

In each question participants were asked to first indicate whether they thought they would be
able to complete the task under the given circumstance (Yes/No). If yes, they had to rate their
self-confidence in completing it on a scale of 1 to 10. The scores for these 10 questions were

later summed to create a self-efficacy score out of 100, as is customary for this questionnaire.

3.2.5.3 Task data

Avariety of data were collected in the hands-on task, chiefly video recordings and the prototype
artefacts created by participants (program, photographs and Fritzing images of the final state of
each participant’s physical circuit), and additionally, any notes made by myself or participants

during the task, and participants’ browser history.

65

Video recordings

Data about participants’ thoughts and behaviour during the task was captured through video
recordings from four different vantage points, recording both on-screen and off-screen activity.
Morae Recorder software was used to record on-screen activity, as well as video of the
participant’s head and shoulders, using the computer’s webcam, so that their facial expressions
should be visible. A standalone camera faced the desk from a short distance away, recording the
participant’s body movement, including interaction with the equipment, and their movement
between the computer and the rest of the equipment. A second standalone camera was
positioned directly above the desk, framing a zoomed-in, overhead view of the physical
prototype (circuit). A roughly Ad-sized area of the desk was marked using black tape, and the
participant was asked to keep the prototype inside this marked area, to ensure it stayed within
the recording frame. Audio tracks were recorded for all videos, so that these could later be used
to synchronise the videos—clapping hands together before the task began created an obvious
spike in the waveform of each audio track, similar to how clapperboards are used in filmmaking

to facilitate synchronisation of multiple recordings.

Figure 12. Desk and equipment setup. An additional monitor (visible on the right-hand side of the image) mirrored the
participant’s screen, enabling me to observe on-screen activity during the task in an unobtrusive way.

In preparation for analysis, all videos recorded for each participant were later synchronised,
using Adobe Premiere Pro video editing software, to a single, composite, split-screen video,
showing all camera views at once. Figure 13 shows a still image from one of these videos. During
analysis, these composite videos enabled me to see what was happening from multiple

viewpoints simultaneously.

66

Arduino

Figure 13. Still from composite split-screen video of a participant undertaking the task, showing 1) on-screen activity (large
panel), 2) view of the participant’s head and shoulders (small panel embedded within the screen activity panel), 3) desk-facing
view (top right panel) and 4) overhead, zoomed-in view of the circuit (bottom right panel)

The content of these videos was transcribed, using Ingscribe multimedia transcription software
(Inquirium, LLC, n.d.), creating a written record of what each participant said and did during the
task, i.e., verbal and non-verbal behaviour. Quotation marks were used to indicate the start and
end of verbatim quotes, to differentiate these from descriptions of behaviour. Creating these
transcripts enabled me to immerse myself in the data, through repeatedly watching and re-
watching the videos, in order to capture the verbal protocol of what participants said during the
tasks, and to observe and describe what else was happening. When describing actions or other
non-verbal behaviour, the aim was not to create a full, comprehensive record of all activity at the
most granular level possible—pragmatically, with approximately fifteen hours of task video this
would have been impractical—but to summarise participants’ actions, for example “Removes

the red LED from the breadboard”.

These written records were imported into Excel, creating twenty transcript spreadsheets in
total—one for each participant—all stored within one Excel workbook. Figure 14 shows an
extract from one of these spreadsheets. When analysing task data—for example, to identify
problems encountered by participants (section 3.2.6.2)—the transcript spreadsheets were used
in conjunction with the composite videos—I not only read the written transcripts and applied

codes to these, I also scrutinised the videos when doing so, as rich representations of activity.

67

While selecting a resistor "l don't remember quite well what kind of resistance | should use"
"Let's go with 10" (he selects a 10k resistor)

"l can never remember the right side for the LED"

Connects the LED to the power rail and the 10k resistor, which is connected to the ground rail.
The LED doesn't come on.

"I think it's a bit too high". Removes the 10k resistor and replaces it with a 330 ohm resistor.
The LED comes on. "That's okay".

Removes the resistor. The LED is now only connected to 5V (via the anode)

Takes a temperature sensor and looks at it." | can look it up on the Internet to see how it works,
right?"

Figure 14. Extract from a transcript spreadsheet

Prototype artefacts: program and circuit

After each session, any programs created by the participant were saved, and the participant’s
circuit (the physical hardware part of the prototype, comprising the Arduino board, the
solderless breadboard, and any components and wires that had been added to them) was
digitally photographed from a number of angles. Figure 15 shows two examples of these

photographs, taken of the same circuit.

The Fritzing software application was also used to create a visual record of the final circuit

configuration—as the Arduino boards and breadboards were reused in subsequent participant

sessions. Figure 16 shows an example of a Fritzing image of a participant’s circuit.

Figure 15. Photographs of a participant’s circuit

Additional data

A Chrome browser plugin was used to export the participant’s browser history to a separate file,
to keep a record of all web pages that the participant had visited during the task, should these

data prove useful during analysis. Any notes or diagrams created on paper by the participant

68

during the task or interview were scanned and saved as digital files, in case these also proved
useful during analysis. During the task | sat close enough to the participant to observe them in
an unobtrusive way (see Figure 12) and took handwritten notes—these were also scanned and

saved as digital files.

- L

°
=
< -
>
3 =
= =
=
=
3
o,

Figure 16. Fritzing image of a participant’s circuit, showing the Arduino board (left) and the solderless breadboard (right)

3.2.5.4 Post-task interview data

Participants’” answers to the post-task interview questions were captured as video-recordings,
using the same camera angles, so that | could see not only the participant’s face (and therefore
their expressions) but also any gestures they made, for example, when referring to their
prototype. When discussing their program, participants were asked to use a mouse, rather than

their fingers, to point to things on-screen, so that this would be captured by Morae Recorder.

3.2.6 Data analysis

To answer the research questions, | analysed the data using mixed methods, summarised as

follows:

RQ1l: How many problems do end-user developers encounter, and where do these
problems occur? Are there aspects of physical computing development that
are particularly prone to problems?

To address RQ1, the task transcripts and videos were analysed for evidence of problems evident

in participants’ comments and behaviour (section 3.2.6.2). To determine the types of problems

69

experienced or introduced by participants, problem type codes were applied to the transcripts
for each problem instance, (section 3.2.6.3). To determine where—i.e., in what aspects of
development—participants experienced problems, location codes were applied, as sub-codes,

to each of the problem type instances (section 3.2.6.4).
These results were aggregated and summarised using descriptive statistics.

The task data were also analysed for participants’ task success (section 3.2.6.6). | then looked for
correlation between task success and the number of problems, problem types and locations of

problems. | used statistical tests to check the results for significance.

RQ2: How do end-user developers' self-rated expertise and self-efficacy affect the
challenges they face in a physical computing development task?

RQ2 was answered by analysing data from the background questionnaire and self-efficacy

questionnaire data in conjunction with the coded datasets from answering RQ1.

To identify any relationships between participants’ backgrounds and the problems they
encountered, SPSS was used to check for correlation between background variables (self-
efficacy scores and self-rated expertise in programming, electronics, and physical computing)
and the number of problems, problem types and problems per location. | also looked for
correlation between these background factors and task success. Statistical tests were

performed to check these results for significance.

RQ3: What problems are overcome by end-user developers, and what problems
prove insurmountable?

RQ3 was addressed first by analysing the problem datasets (RQ1), now coding whether or not
participants had managed to resolve/overcome each of the obstacles or bugs they had

encountered (section 3.2.6.5).

The resulting, coded dataset was analysed for the number and proportion of problems that
participants did or did not overcome, individually and across the sample, and the types and
locations of these problems. Further analysis included comparing the number and proportion of

each type of problem resolved in each location.

These results were analysed in conjunction with task success data (RQ1), to determine and

compare how many (and what proportion of) problems, of what types and in which locations,

70

successful and unsuccessful participants were able to overcome. These results were further
analysed in relation to program and circuit correctness (section 3.2.6.7), to check for any
difference in performance between participants who failed the task but still managed to

complete the program or circuit correctly, and those whose circuits or programs were incorrect.

The task transcripts of unsuccessful participants were then used to determine the cause of each
unsuccessful participant’s task failure (section 3.2.6.8). These results were then aggregated, to

reveal what type (locations) of bugs were responsible for task failure.

Finally, once it was established which bugs participants had struggled to overcome, and which
bugs had led to most task failures, | was able to look deeper into the transcripts, to get a sense

of participants’ difficulties in resolving these bugs.

3.2.6.1 About the coding process

In the above summary of analysis steps, and the descriptions of coding schemes that follow this
section, the process of coding qualitative task data sounds far more linear than it was in
practice. Coding occurred in roughly the order described, however, the coding schemes were

developed and refined through considerable iteration over the dataset.

In preparation for coding, | created an initial definition of ‘problem’, based on looking for
evidence of difficulty or impediment to progress (see section 3.2.6.2). Creating the written
transcripts had already made me aware of some of the difficulties or issues that | could expect to
find in the dataset, but | also compiled a list of additional things to look out for, synthesized from
the literature, my previous experience of coding learning barriers (Booth and Stumpf 2013), and
my domain knowledge of physical computing and of development in general. Guided by these
sensitizing concepts, | read closely through the transcripts, using the videos for extra
context/detail, looking for any evidence of difficulty, or impediment to progress, and applying
the problem code where appropriate, making note of any new rules. As | progressed through the
dataset, encountering evidence of new and different challenges faced by participants, the
coding rules and list of examples evolved. If unsure of something, it was flagged up for
discussion. Transcripts were repeatedly revisited, to review in light of new rules, checking
previous coding for consistency, and making amendments where appropriate. While inter-rater

reliability checks were not formally conducted, portions of the dataset were discussed and

71

jointly coded with one of my PhD supervisors on more than one occasion, which helped to

ensure validity of the codes and reliability of application.

The pattern of iteration, rule refinement and revision applied to all of the qualitative analysis in
this study, with frequently cycling within and between different levels of coding. For example,
although coding began with problems, then progressed to problem types and locations, in
practice, when coding the latter, | might re-encounter something which | felt, on reflection,
should be coded as a problem, or become aware of a bug that had been somehow overlooked
during the previous rounds. Notes made when coding instances of problems, in separate
columns alongside the coded text, formed the basis from which the problem type and location
codes developed—semi-inductively, as | was already sensitized to the concepts through
familiarity with the literature. Final codes—and rules for application—were reviewed within my
supervisory team before final application and extensive re-checking. This happened at two key
points: firstly, when finalising the coding required to answer RQ1, and similarly, for RQ3, when

the coded dataset was re-analysed, for evidence of problem resolution.

As already mentioned, codes were applied to the task transcripts, but | also used the task videos
throughout the coding process. The videos were a crucial source of rich data when coding,
particularly in respect to external help seeking by participants, or changes to the program or
physical circuit, which often required very careful scrutiny, involving repeated rewatching,
and/or magnification of the video image. However, to verify certain problems—or their
resolution—I sometimes even reproduced participants’ prototypes (circuit, program or both), to
correspond with what I saw in the video. During the coding process, descriptions of changes to
the circuit or program were amended in the transcripts where | felt this to be useful or

important, for example, to add more granular details about a particular bug or bug fix.

I will now describe the coding schemes, including the rules for application, in more detail.

3.2.6.2 Problems

The task transcripts were coded for evidence of problems. A problem was defined as any
impediment to progress, that is, any difficulty, action or thought that halted progress or slowed it
down, or had the potential to do so. In effect, anything that was not something an idealised
maker would do—one who knew exactly how to complete the task, without assistance, and

understood every aspect of it—was counted as a problem. Inspired by research into Learning

72

Barriers (Ko, Myers, and Aung 2004), this definition included any verbal or non-verbal evidence
that the participant was having difficulty determining how to proceed, or in assessing or
understanding something—similar to what others have also termed information gaps (Kissinger
et al. 2006). Inspired by previous work on error classification (Reason 1990; Ko and Myers 2005),
the definition included errors made in conscious planning, assessment and action, rule-based
mistakes (where expertise failed), as well as knowledge-based mistakes (where expertise was
lacking). It also included slips and lapses—unconscious errors in execution. | did not apply these

classifications when coding, but they were catered for within the coding rules and examples.

Types of evidence

| looked for evidence of problems in the actions, verbal comments and other non-verbal
behaviour of the participants, using the task video transcripts in conjunction with the task
videos themselves to identify problem instances. In some cases, the evidence of a problem
might be obvious, for example, a participant wiring up an LED incorrectly, or stating “/ need to
find out how to wire up this sensor”, or “Is this working? | really don’t know”. Other evidence might
be less obvious, for example, a participant looking puzzled on viewing output in the Serial

Monitor.

It is also worth noting that participants were not always aware they had a problem. For example,
a participant might introduce a bug but be unaware of it until some time later. All problems were

coded, not just those of which participants were aware.

Specific rules

If multiple components or statements of the same type were involved, for example, a participant
wired up all 3 LEDs incorrectly, or omitted a semi-colon from each of 3 variable declaration

statements, these were coded as 3 separate problems.

Once a problem had been noted, subsequent evidence of the same problem observed
immediately after the evidence of the initial problem was not coded as a new problem. However,
if any different activity occurred between evidence of a problem and further evidence of it, the
second evidence was counted as a new problem, as it proved too difficult to track problems as

unique problems (see next section). Often the problem might also have changed slightly, for

73

example, a participant may have formed a hypothesis that affected their assessment of the

current situation and their challenge in addressing it.

Difficulty in tracking problems

| originally intended to track problems as unique problems, however, in practice this proved
impractical. Problems were frequently nested. A single problem might subsequently decompose
into further sub-problems, or lead to new, different problems before the original problem had
been resolved. For example, when addressing an issue of not knowing how to wire up the
sensor, the participant might find a wiring diagram online that showed how to do this, but
subsequently have trouble deciding whether the configuration was appropriate for the current
prototype, or determining which way around the sensor in the diagram was oriented, in order to
map the connection information to the seating of the actual, physical sensor component in the
breadboard.

Participants also did not always deal with problems in a linear fashion. Sometimes a participant
would leave a problem to deal with something else, possibly coming back to it later, but
possibly not. For example, a participant might not be able to interpret the output in the Serial
Monitor, resulting from incorrect wiring of the sensor, but decide to move onto adding and
programming the LEDs regardless, and then later decide to return to looking at the sensor

output.

3.2.6.3 Problem types

A scheme comprising 3 codes was developed to categorise problem instances by problem type.
Different, more complex categorisation was considered, however, these three categories felt
useful enough to proceed with, as descriptors of the most fundamental characteristics of

impediments to participants’ progress.

e Obstacles were coded on evidence of barriers to overcome. These were often due to
knowledge gaps.

e Breakdowns were coded on error in action or thinking, that is, when the participant said
or did something that was incorrect.

e Bugs were coded for faults introduced, most often in the circuit or the program.

74

The coding scheme evolved from notes made when applying the problem code, but was heavily
inspired by Ko and colleagues’ work on software error classification (Ko and Myers 2005) and
learning barriers (Ko, Myers, and Aung 2004). | was familiar with the concept of learning barriers
as a schema for classifying hurdles encountered by learners when programming, and the
potential for breakdowns to occur when they are attempting to overcome them. As | chose to
include the concept of a barrier within my coding scheme, but not to use the learning barrier
classifications (see section 2.2.2), the term obstacle was chosen instead, to avoid confusion.
Table 3 shows each code and its definition, as well of examples of situations where each code

would be applied.

Table3. Problem Type coding scheme

Code Definition Examples of code application
Obstacle Barrier to overcome. - Not knowing how to connect the sensor.
Often due to inadequate |- Not knowing how to declare a variable.
knowledge - Not knowing what readings in the IDE’s Serial Monitor mean.

- Not knowing how to diagnose the cause of unexpected
failure or erroneous output

Breakdown | Errorin action or thought |- Miswiring the sensor.
- Not adding a semi-colon at the end of a variable declaration.
- Wrong diagnosis of bug symptoms.

Bug Fault introduced, usually |- Sensor connected to a digital pin, instead of an analog pin.
in the circuit or program. |- Syntax error in variable declaration, e.g., missing semi-colon
Usually the result of a
Breakdown.

Chains of problems

As has been shown in previous work (Ko and Myers 2005; Kulesza et al. 2009) there can be chains

of problems, for example:

= An obstacle might lead to a breakdown: in trying to overcome an obstacle, a user may
make a wrong decision, reach a wrong conclusion, or perform a wrong action.

= An obstacle might lead to another obstacle: in trying to overcome an obstacle, a user
may encounter another one.

= A breakdown might result in another breakdown: wrong thinking—for example, an
incorrect hypothesis—can lead to wrong action.

= Abreakdown might resultin a bug: wrong action might introduce a fault.

» A breakdown might result in an obstacle: wrong action or thinking can cause another

barrier for the user to overcome.

75

Table 4 illustrates how these chains of problems might occur:

However, a breakdown might not necessarily result in a bug or a further obstacle. A participant
might state something incorrect, for example, a misdiagnosis of the cause of unexpected
prototype behaviour, but then not act upon it; a participant might incorrectly declare an

unnecessary variable but then not actually use it.

Table 4. Example chain of problems (partial), showing Problem Type codes

Activity / evidence Problem Type

1 | Aparticipant does not know how to wire up the sensor. Obstacle

2 | Theyfind a circuit diagram online that shows them how to do it but despite | Breakdown
this information, they miswire the sensor, swapping two of the connections

3 | Thiserror results in circuit problems (faults) that they will need to fix Bug
although they are not yet aware that there is anything wrong.

4 | On viewing the sensor reading values in the Serial Monitor, they note that the | Obstacle
values are unpredictable.

5 | The unpredictability of the readings is due to the incorrect sensor Breakdown
connections, but the participant wrongly concludes that it may be because
they did not use a resistor with the sensor.

6 | They subsequently—and wrongly—connect a resistor to the sensor, between | Breakdown
the Ground leg and the analog pin.

7 | This error results in yet another problem (fault) they will need to solve if they | Bug
are to succeed in the task (although, they still show no evidence of realising
they have done something wrong).

8 | Onviewing the new sensor reading values, they note that the values are Obstacle
different, yet still unpredictable. They do not understand why.

3.2.6.4 Problem locations

A Location coding scheme was applied to the problems dataset, specifically as sub-codes of
problem type codes, to record where participants experienced problems. This coding scheme,
also inspired by Ko & Myers’ work analysing the cause of programming errors (Ko and Myers
2005), eventually comprised four location codes. Although | began with two codes—Circuit and
Program, the scheme evolved inductively during the process of coding, with two further codes
added—IDE and Circuit+Program—as a result of encountering problems within the dataset that

could not simply be coded with either of the two existing codes.

Table 5 lists and defines these codes, and provides examples of the circumstances under which

each code might be applied.

76

Where participants showed evidence of missing or incomplete knowledge, the location codes
were assigned according to the area of knowledge. For example, if a participant searched for an
example program, the 'Program' location code was assigned. If the participant was unable to
figure out where to find a particular function/option in the IDE, the 'IDE' location code was

assigned. A problem could be coded with more than one location, if applicable.

Table 5. Problem Location coding scheme, with code abbreviation in brackets beneath the code name

Code Definition Examples of code application
Circuit Obstacle, breakdown or bug - Not knowing how to connect the sensor
(@] involves understanding or (Circuit obstacle).
manipulation of the circuit - Miswiring an LED (Circuit breakdown; Circuit
bug).
Program Obstacle, breakdown or bug - Not knowing how to declare a variable
(P) involves understanding or (Program obstacle).
manipulation of the program - Introducing a syntax error in an If statement

(Program breakdown; Program bug).

IDE Obstacle, breakdown or bug - Not knowing where to find the Upload option

0 involves the use or function of the | in the IDE (IDE obstacle)
IDE - Clicking on the wrong toolbar button in the

IDE (IDE breakdown)

Circuit+Program | Obstacle, breakdown or bug - Not being sure why LEDs turn on or off at

(B) involves manipulating, unexpected times (Circuit+Program obstacle)
understanding or interpreting - Misdiagnosing bug symptoms in the Serial
interaction between both Monitor (Circuit+Program breakdown)

program and circuit

Table 6 illustrates how these codes might be applied to a chain of problems. Figure 17 shows a

coded portion of a transcript.

Table 6. Example of Problem Location codes applied in conjunction with Problem Type codes

Activity / evidence Location & Problem Type
1 | Aparticipant does not seat the Ground leg of the sensor properly | Circuit bug

in the breadboard.
2 | When they view the sensor readings in the Serial Monitor, the Circuit+Program Obstacle

readings sometimes drop to zero. They have trouble deciding
whether this shows evidence of a problem, or is to be expected.

3 | They wonder if they might have done something wrong in the Circuit+Program
program, causing this behaviour. breakdown
4 | They subsequently act upon the incorrect hypothesis by Program breakdown

modifying the program.

5 | In modifying the program, they introduce a syntaxerror. Program bug

7

Activity Obstacle Breakdown Bug

Stares at the prototype, thinking B
Pushes the sensor, watching the LEDs.
Goes back to the datasheet, and scrolls through it. C

"I'm looking in the datasheet again, to see if there's any indication of, uh, what the
application circuit is, without getting into too much complicated stuff. Which, I've come
back to the same page again, and (shakes his head) I'm not seeing anything new."
Looks at an application circuit diagram on the datashet

"l can see there is a diagram with this particular sensor, but there's a voltage divider, and | C

don't really understand why there's a voltage divider"

"You know what? I'm just going to randomly putin an extra resistor, and make a voltage C

divider, because the datasheet says there is one, so maybe that will help, | don't know"

Takes a resistor and starts to change the wiring, adding in the resistor to the sensor C C
"So I've got one resistor going to Ground, which should pull it down, does pull it down, C

and one resistor coming out of here"

Figure 17. Portion of transcript coded with problem type (Obstacle, Breakdown, Bug) and location (Code abbreviations:
C=Circuit; B=Both, i.e., Circuit+Program)

3.2.6.5 Problems overcome

Problems were analysed for whether participants managed to overcome them. A problem was
counted as overcome if it was resolved. For this analysis, only obstacles and bugs were
considered. As breakdowns were errors in action or thought, they could not be resolved—only

the obstacles that led to them, or the bugs that resulted from them, could be resolved.

Obstacles were counted as overcome if the participant managed to find a solution to the
problem, whether by finding information to fill their knowledge gap or reasoning until correct
understanding was reached. For example, an obstacle of a participant not knowing how to
connect the sensor was counted as resolved if the participant managed to find out how to do
this. If they subsequently made a mistake when applying the information that they had found,
the obstacle was still counted as resolved, as the knowledge gap had been filled, irrespective of

whether the participant had applied the knowledge correctly

Bugs were counted as overcome if the participant rectified or removed the fault or transformed
it into a new, different bug. For example, a syntax error bug introduced was resolved if the
participant managed to rectify the syntax. If the participant introduced a different syntax error
when rectifying the original bug, the original bug was still counted as overcome, because in

effect, that particular bug no longer existed.

Problems were usually overcome by trial-and-error (trying things out or guesswork), existing

knowledge (participants using what they already knew to solve a problem or reason towards it),

78

or looking things up (using additional resources such as online examples or information, or help

content in the IDE to find a solution)

Each problem in the transcript was coded according to whether it was overcome or not. The

transcripts and videos were used to trace whether each problem was overcome.

3.2.6.6 Task success

Task data were analysed for whether each participant had completed the task successfully, i.e.
achieved the goal of the given task brief—task success was defined as the participant having
successfully constructed a working prototype that met the specification in the task instruction
sheet/brief, and with the circuit or program containing no fault(s) that would prevent it from
behaving as specified—i.e. both correct (see section 3.2.6.7). Participants had demonstrated
their prototypes at the end of the task, but the task video recordings were also used to
determine whether the prototype behaved as specified. The saved programs and the circuit
photographs and Fritzing images were also scrutinised for errors that were not evident in the
prototype’s runtime behaviour—in some instances, a prototype might appear to behave as
specified, but the program might contain an error that was not obvious at runtime, for example,
the use of an incorrect operator in the conditional statements (>instead of >=) might leave a
gap that was not perceptible to the eye, due to the speed at which the program statements were

executed.

3.2.6.7 Correctness of circuit and program

Participants’ programs and circuits—using the circuit photographs and Fritzing diagrams—were
analysed for correctness. A circuit or program was considered to be correct if it contained all of
the elements required in order to meet the brief, configured in such a way as to meet the brief,
and contained no bugs (faults) that would prevent the prototype from behaving as specified,
irrespective of whether this failure was visible to the eye at runtime. Correctness did not equate
perfection—extraneous elements that did not affect the prototype’s runtime behaviour, for
example, program variables that had been declared but not used, were not counted as faults in

this analysis, as they had no effect on behaviour.

79

3.2.6.8 Cause of task failure

Task data were analysed for the cause of task failure. The cause of task failure was considered to
be the location (circuit, program, IDE) of the first bug (fault) introduced that the participant failed
to resolve which would prevent the prototype from working as specified, regardless of any
subsequent, co-existing bugs still unresolved at the end of the task. Note that a participant need
not have been aware of a bug’s existence, in order for it to be taken as the cause of failure. The

cause of failure was determined through analysis of the task transcripts.

3.3 Results

I will now describe the results of the study, in roughly the order of analysis outlined in the

previous section.

3.3.1 How many problems? (RQ1)

All participants experienced problems, some more than others, showing that each participant’s

progress was impeded in some way (Figure 18).

160
140
120
100
80
60
40
20
0

Mean 76.35

Problems (n)

P01 P02 PO3 P04 PO5 PO6 PO7 PO8 P09 P10 P11 P12 P13 P14 P15 Ple P17 P18 P19 P20

Figure 18. Total number of problems per participant. Participants whose columns are green successfullycompleted the task,
i.e., developed a working prototype that met the task brief/specification.

3.3.2 What types of problems? (RQ1)

All participants experienced obstacles, all but one experienced breakdowns, and all but two
introduced bugs—most participants (18) experienced all three types of problems. Participants

encountered a mean of 41.60 obstacles (SD=14.17), 21.05 breakdowns (SD=13.4), and created

80

13.7 bugs (SD=9.85) over the 45 minutes they worked on the task. This means that participants
struggled a great deal, even though the task was based on a relatively simple Arduino project

aimed at learners.

| then investigated whether task success was linked with how many problems were encountered

(Figure 19).

160

140 Participants who successfully [l Obstacles [l Breakdowns [Bugs
) completed the task had I
120 4 - Fewer obstacles (p=0.015) .

€ 100 - - Fewer breakdowns (p=0.006) -
o B =il

-
60 1 = -----...
w0 T
Tl
o | NN N N B B

pPo5 PO7 PO3 P17 PO6 P18 | P04 P15 PO9 P19 P14 PO1 P12 P11 PO8 P13 PO2 P10 Pl6 P20

Problems (n)

Succeeded Failed

Figure 19. Number of each problem type, per participant, grouped by task success, ordered by total number of problems
(obstacles + breakdowns + bugs)

Only six of the twenty participants achieved task success. A Mann-Whitney test showed that the
six participants who succeeded had significantly lower total numbers of obstacles (U=13.00,
p=0.015) and breakdowns (U=10.00, p=0.006) than the fourteen participants who did not
succeed. Furthermore, although not significant (U=18.00, p=0.051), successful participants also
marginally introduced fewer bugs. It appears that the successful participants were simply better
in some way at physical computing development—either knowing more, or doing fewer things

wrong—than their unsuccessful counterparts.

3.3.3 Where did problems occur? (RQ1)

| was interested in where participants' problems were located. Figure 20 shows the count of
problems in each location. Most problems related to programming, then circuit construction,

then ‘circuit+program’, with only a few related to the IDE.

81

N

o

o
L

Problems (n)
N
3

800 +
600 +
809

30
Program Circuit Circuit+ IDE
Program

o

Figure 20. Number of problems by location

Breaking these locations down further, by problem type, reveals that the overwhelming majority
of obstacles (49%) occurred in relation to the program (mean=20.40, SD=8.93), followed by 28%
associated with circuit construction (mean=11.55, SD=6.36), while 20% of obstacles occurred in
the interaction between the program and circuit (mean=8.25, SD=7.87). The same pattern also
held true for breakdowns: 52% occurred in the program (mean=10.95, SD=8.41), while 31% of
breakdowns were circuit-related (mean=6.45, SD=5.97). This means that participants carried out
more wrong actions, and made more incorrect assessments and factually incorrect statements,
when they were programming, than when they were constructing the circuit. | also found that
bugs introduced by participants related overwhelming to their program (66%) instead of their

circuit (33%).

400 [Obstacles
408
1 Breakdowns

<= 300
g [Bugs
% 200 219 231
a 182

- I

21
B Ba - .

Program Circuit Circuit+ IDE
Program

Figure 21. Problem types by location

Figure 21 shows the distribution of obstacles, breakdowns and bugs in the circuit, program,
circuit+program and IDE. Only very few obstacles (3%) stemmed from use of the IDE (mean=1.05,
SD=1.39). This echoes findings from end-user programming research which showed that users
tend to have few information gaps about features of the programming environment and that the
majority of problems arise due to issues in problem solving on a strategic level, that is, knowing

how to test or debug, or what to do next (Kissinger et al. 2006).

82

3.3.4 Did self-rated expertise and self-efficacy have an
effect? (RQ2)

Recall that | was interested in whether background factors affected the number, type and
location of the problems that participants experienced, and whether they were able to succeed
in the task. As mentioned, only six participants successfully built a working prototype that met

the specification, while fourteen failed to do so.

To answer this research question (RQ2), the problems analysis results were imported into SPSS,
along with the data from the background questionnaire and self-efficacy questionnaire. | then
looked for relationships between participants’ task performance—firstly in respect to task
success and then the type and location of problems encountered—and their self-ratings of

expertise and self-efficacy.

Using participants self-ratings of their own expertise and self-efficacy for this analysis enabled
me to see whether participants’ perceptions of their own abilities had any correlation with their
actual performance. While not an objective measure, the self-ratings of expertise do provide
some indication of how skilled participants felt themselves to be; administering tests of
competence in programming, electronics and physical computing would not have been
practical within the constraints of the study. Participants’ self-efficacy ratings are an indication
of how confident they are at being able to apply their skills—expertise—to a particular end,
which in this case was specified as an Arduino development task of moderate complexity
involving a temperature sensor and three LEDs. The greater a person’s self-efficacy in terms of a

particular task, goal or activity, the more they believe that they will be successful.

Figure 22 shows participants’ individual self-efficacy scores, and whether or not they successfully
completed the task (indicated in green), while Figure 23 shows their self-ratings of expertise, and

Figure 24 the number of problems each experienced.

| found no significant relationships between task success and self-efficacy, nor between task

success and self-rated expertise in programming, electronics, or physical computing.

83

[Tasksuccess [l Task failure

—
A O 0 O
o o o O

Self-efficacy score

N
(@)

o

P01 P02 P03 P04 P05 PO6 PO7 PO8 P09 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

Figure 22. Participants’ self-efficacy scores (out of 100), and task success/failure

| Programming [Electronics | Physical computing

N

Rating

15 I
| l ||I iiun,
lI|--IIIl..I IIIIlll

PO1 P02 PO3 P04 PO5 PO6 PO7 PO8 P09 P10 P11 P12 P13 P14 P15 Ple P17 P18 P19 P20

Figure 23. Participants' stacked self-ratings of expertise in programming, electronics, and physical computing (each out of 7)

o W o WO

I Program [Circuit B Circuit+Program
60 .
= B .0 B
[|
30 _-_I .= I.l_ _--.
» BN ENENE =
- pulaiSRARARANRRNE
NN [B

P01 P02 P03 P04 PO5 PO6 PO7 PO8 POS P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

Figure 24. Stacked count of problems encountered by each participant, in the program, circuit and circuit+program locations

Considering that, on average, participants rated their programming expertise higher than their
electronics expertise, | was surprised that they experienced more program-related than circuit-
related problems. | did not find any significant correlation between their electronics expertise
and how many circuit-related obstacles, breakdowns or bugs they had in constructing the
prototype, or a relationship between their self-rated programming expertise and their program
bugs. Although not significant, there was a marginal relationship between programming

expertise and program-related obstacles (r=-0.431, p=0.058) and breakdowns (r=-0.400, p=0.081).

Taken together, this means that, in general, participants in this study were poor judges of how

good they are at constructing physical computing prototypes.

84

3.3.5 Were problems overcome? (RQ3)

It might be tempting to deduce that programming was the major challenge for participants in
the task, given that most of the problems were programming related. However, the number of
problems encountered and where they occurred does not show the severity of problems or
whether they were successfully resolved (overcome). Some problems might be more easily
overcome than others by end-user developers. | now turn to my analysis of whether these

problems could be overcome.

Obstacles Bugs

B Overcome [Overcome
83

B Not resolved Il Not resolved

(30%)

Figure 25. Number and proportion of problems (obstacles and bugs) overcome, or not resolved.

For this analysis, | looked only at obstacles and bugs, since they represent faults which can be
overcome, whereas breakdowns manifest as actions or spoken thoughts that cannot be
'undone'. Initially, it appeared that a large number of all obstacles and bugs were overcome by
participants, wherever their location (Figure 25)—it is worth noting also that some bugs were
also marked as resolved when participants transformed them into new bugs. However, when
obstacles involved the interaction of the circuit with the program, less than half of these were

resolved (46%), highlighting that these types of problems seemed to be particularly challenging.

| then investigated differences between participants who successfully completed the task and
those who were unsuccessful (Figure 26). Successful participants overcame 97% of their
obstacles and all of their bugs. Unsuccessful participants, on the other hand, only overcame

68% of their obstacles and bugs (69% and 64% respectively).

97% 68%
Y Y

Figure 26. Percentage of problems (bugs + obstacles) overcome, by each task success group

85

3.3.5.1 Cause of task failure

| looked at the types of bugs that caused fourteen participants not to complete the task (Table
7). Recall that the cause of task failure was taken as the first bug that participants failed to
resolve that would prevent the prototype from working as specified. | made one exception to
this rule—P13 had an otherwise perfectly constructed circuit and program, but because they
could not figure out how to view the readings from the sensor in the IDE, they could not
establish what temperature thresholds to set—an IDE-related obstacle they could not

overcome, which ultimately caused their task failure.

By far the main cause of failure was fault in circuit construction—ten participants—although in

nine of these cases, the program was also wrong or incomplete.

Table 7. Participants’ task performance and success

86

Location of first | _ Circuit Program
Prc Task unresolved First problem that was not resolved that would correct& | correct &
success oroblem cause task failure complete | complete
P01 Circuit Sensor signal & Ground swapped
P02 Circuit No resistors with LEDs
P03 Y - -
P04 Circuit Mis-seated sensor (Ground leg not in breadboard)
P05 Y - -
P06 Y - -
Po7 Y - -
P08 Circuit No resistors with LEDs
P09 Program Mixed up variables in adapting copied code
P10 Circuit LEDs wired to Power & digital pins, no ground
P11 Circuit No resistors with LEDs
P12 Circuit LED connected to sensor
P13 IDE Did not know how to display serial output
P14 Circuit No resistors with LEDs
P15 Circuit No resistors with LEDs
P16 Program Wrong operator in conditional statement (]).
P17 - -
P18 Y - -
P19 Program Wrong operator in conditional statement (> not >=)
P20 Circuit No resistors with LEDs

Four participants failed the task due to at least one unresolved fault in their program code,
however, all four did manage to construct the circuit correctly. These participants did much
better than the rest of the unsuccessful participants, in both overcoming obstacles and resolving
bugs, not just those involving the circuit, but particularly those obstacles involving interaction
between the circuit and the program: participants who correctly constructed the electronic
circuit overcame 63% of 'circuit+program' obstacles, while participants who did they overcame
only 35% (Figure 27). This suggests that circuit construction is something that end-user
developers could really benefit from support with.

100%
80% M Program

96% 100%
60% 76% 78% Circuit
s @ Circuit+Program
40%
20%
0%

Circuit correct (n=4) Circuit incorrect (n=10)

Obstacles overcome

Task success (n=6) Task failure

Figure 27. Circuit correctness as a factor in performance in overcoming obstacles

| wondered what activities caused the fatal problems in developing these physical computing

prototypes. | present the analysis in the next section.

3.3.6 What went fatally wrong? (RQ3)

| now present a detailed analysis of what participants did which caused them to not complete
the task, that is, problems that led eventually to task failure or were very difficult to address. It
should be noted that while the primary cause of task failure was taken from a single problem,
often a chain or series of bugs were introduced, each further compounding the difficulty of

overcoming them.

Program construction

Four participants constructed the circuit correctly but had some fault(s) in their program that
prevented them from successfully completing the task. Common faults included using the
wrong temperature thresholds in conditional statements, incorrect conditional logic, and

numerous problems with variable declarations, assignment and referencing.

87

For example, participant P16 forgot to add a statement to read the sensor in their program and
then referred to the wrong variable in their conditional statements. As a result, the participant
saw temperature readings that always remained at zero, regardless of whether they touched the
sensor. Attempting to remedy this, they copied code from an example, but the code that they
copied did not address the previous two bugs. To compound the issue, they also forgot to
change the variable names in the code that they had copied, so now these did not match the

ones they were already using in their program.

Challenges in learning to program have been explored extensively within the literature and it
seems that many participants in this study struggled with very basic and common programming

activities too.

Circuit construction

The most common fatal error that caused ten participants—half of the sample—not to succeed
in the task, was some kind of fault in circuit construction. | looked in more detail at what went

wrong in these cases.

A high number of breakdowns involved miswiring i.e., incorrectly connecting circuit components
to the circuit. | observed 87 of these miswiring breakdowns. All but one of the unsuccessful
participants encountered these mistakes, and for five participants this caused bugs which
prevented them from completing the task successfully. The most common miswiring
breakdown was connecting the legs of the temperature sensor or LEDs to the wrong types of
Arduino pin. For example, P01 accidentally miswired the sensor very early in the task, resulting in
unpredictable sensor readings. Unsure of whether these readings were “normal”, and wondering
if there might be an "accuracy" problem, they searched online for ways to programmatically
make the readings more reliable, and copied in unnecessary code, to no avail. Forum posts
found online—none of which were relevant to the bug—led this participant to make yet more
changes to both their circuit and program, none of which addressed the original miswiring bug,
and eventually they gave up:
"It's the world. It's just unpredictable in the world. [...] It's technically doing what |

want it to do, but it's the world that's breaking, as in, | can't get it to get to the right
temperature" (PO1).

A particular type of miswiring—poor seating of a component or wire into the breadboard—was

observed for three participants. In one case, the participant did not realise that a poorly seated

88

sensor—connection had not been properly established with the contacts inside the breadboard
and therefore the rest of the circuit—was the cause of the unpredictable sensor readings they
observed in the IDE’s Serial Monitor, which intermittently dropped to zero.

"So why does the sensor don't work? [sic] It should be work. [sic] So it goes to zero. |
didn't change anything with the sensor" (P04).

Like PO1 they were unsure as to whether this behaviour was normal, so looked for help online,
however, incorrectly assuming that an error in the program was the cause, searched for
program-related rather than circuit-related guidance. They made several trial-and-error changes
to their program—none of which addressed the bug—to see if the readings would improve. They

did not, and this bug went unresolved, eventually leading to task failure:

Another kind of circuit construction error that prevented task success involved five participants
not using resistors with the LEDs. In this task, the missing resistors caused a very insidious
problem, by affecting the behaviour of the temperature sensor, making readings very
unpredictable—the large amount of current drawn by the LEDs affected the sensor readings:
values rose higher and quicker than normal, and dropped more slowly.

"I mean, it should work. The problem is just that the sensor doesn't seem to be very

responsive. Because it starts at 150 and when you put your hand there it went over
180, and never came back to 150" (P20).

None of these five participants ever localised or fixed this bug. Instead, unable to determine the
fault location in the circuit, three tried to address the problem through extraneous program
code, or modifying otherwise perfect code, while one also added extraneous resistors to the

temperature sensor.

| also noticed that four participants chose too high a value of resistor to use with the LEDs.
Although this did not prove fatal to the success of three of these participants—the LEDs lit up
but were dimmer than they should have been—one participant wired a single resistor of such a
high value to all of their LEDs that two did not light up and the third only blinked intermittently.
To address this, they disconnected the resistor from two of the LEDs, causing the same insidious

sensor readings problem mentioned previously—a problem they never resolved.

Two participants connected the LED cathodes to digital pins and anodes to 5V power (rather
than anodes to digital pins and cathodes to ground). If these connections were reversed, an LED

would not work at all, however, with this bug, the LEDs will work in an unexpected way: the LED

89

lights up when it should be off and turns off when a signal is sent to turn it on. Both participants
assumed that the error lay in their program and tried to address it there, making and testing
several changes to the temperature thresholds in the conditional statements that specified the
logic controlling the LED behaviour:

"I'm sure my code is not right, about the If statements. I'm pretty sure the If statements
are not right. But I'm pretty sure that if | change 24 to something else..." (P10)

While P10 was correct in their hypothesis that there was something wrong with their IT£
statement, as it did indeed contain a bug, this was not at the root of the erroneous behaviour
they were seeing. Neither participant resolved this circuit bug, and both failed to complete the

task.

Testing

Testing a physical computing artefact can be more complex than testing a program alone. In
two instances, participants who had constructed their prototype correctly, touched their
temperature sensor and the LEDs did not light up. In fact, they had cold fingers, that is, their test
'input' was bad. In one instance, this led a participant to believe there was a fault when there
was not. In software, a more appropriate test strategy would be to use a variety of test inputs

including edge cases.

Debugging

Professional software development environments usually provide a debugger, which helps
programmers to locate and fix faults, and end-user programming environments have started to
do similar. Unfortunately, the Arduino platform does not yet have analogous debugging tools
and thus it was sometimes difficult for participants in this study to identify what the problem

was.

However, characteristics of some problems proved helpful in guiding participants towards the
source of a fault. One particular miswiring fault that four participants were able to identify and
fix was when they erroneously reversed the power and ground connections of the temperature
sensor. This error led to the component heating up, and as a result they felt momentary
discomfort when they touched it: although very unexpected, this feedback, experienced in the
location of the fault, helped them to localise the fault immediately to that particular component

in the circuit.

90

A pattern of misdiagnosis leading to bugs: | have already highlighted the insidious problem
resulting from missing resistors. The only way that participants were able to spot this problem
was by noticing that the sensor readings were incorrect when viewing them in Arduino IDE.
However, perhaps because their focus was on the programming environment at this point, they
usually tried to debug this issue by making changes to their program code. This proved to be a
fairly common pattern: bug - misdiagnosis (breakdown) - wrong action to resolve (breakdown)
> bug. A similar pattern has been observed in studies of end-user programming, although here it
is also more complicated in that a wrong hypothesis as to the cause of failure can lead to the

end-user developer making changes in a completely different location altogether.

Summary

Why did it go so wrong for many of the participants? The study showed that problems in
physical computing are to be expected, even for users who are eventually successful, but it also
showed that some circuit construction errors were particularly hard to identify and remedy. Five
participants did not even realize that a circuit-related error was preventing their prototype from
working and attempted to fix the perceived fault by changing their program code. Obviously,
that proved in vain and in fact caused four of them to introduce more bugs into their program.
This might also explain why | observed so many program-related obstacles, breakdown and
bugs, and the high proportion of problems that were associated with the interaction of circuit
and program—once participants started to incorrectly believe that the issue was in the program
instead of the circuit, they often created further problems in this location. A major contributory
factor here might be that testing and debugging physical computing prototypes are both very

challenging and appropriate support tools are not currently available.

3.4 Discussion

The study revealed the following;

e All participants encountered problems when developing the device—all experienced
obstacles (barriers), and the vast majority also experienced breakdowns (errors in fault

or action) and introduced bugs (faults), in their circuit, program or both (RQ1).

91

e While most problems occurred in programming the device (RQ1) the majority of task
failures—inability to develop a working prototype that met the task brief—were
primarily due to circuit-related problems (RQ3).

e Circuit-related task failures were mainly attributed to two types of bugs: miswiring, for
example, providing the wrong connections from the Arduino board to the sensor, and
missing components, for example, failing to use resistors with the LEDs. Participants had
serious difficulties localising the circuit faults that caused them to fail the task. (RQ3).

e Indiagnosing the symptoms of these bugs, participants did not always realize that there
was a fault or errorin their circuit and often incorrectly tried to fix the perceived problem
by modifying their program, leading to new program bugs. In some cases, they also
chose to modify a different part of the circuit, also introducing new circuit bugs. (RQ3),

e Background factors such as self-efficacy and self-rated expertise did not predict whether
participants would complete the task, nor the number, type and location of problems

they experienced (RQ2).

A number of limitations should be acknowledged for this study—these are detailed in section
7.2, and include, for example, the small sample size. However, there appear to be clear
opportunities to help end-user developers overcome their problems, drawing on insights from
studies of end-user developers’ problems in software development. Targeting support at the
most severe problems—the circuit bugs that led to so many new problems and prevented
participants from successfully completing a working prototype—seems a logical approach, but
while the analyses described in this chapter identifies the type and location of problems most
likely to cause end-user developers the most trouble, at this point, we still do not know why they

failed to resolve them.

My next task was therefore to find out why participants failed to overcome these bugs. What
behaviours did end-user developers employ when troubleshooting and why did these fail? Might
different tactics have helped these participants to diagnose and resolve their bugs? If so, what
are the critical points at which end-user developers could be caught and guided towards

information that might help them troubleshoot?

The next chapter describes work undertaken to answer these questions, namely a deeper
analysis of the same data, this time focusing specifically on participants’ troubleshooting of

problems resulting from circuit bugs introduced during development.

92

Chapter 4

How end-user developers troubleshoot circuit
bugs (Study 1B)

4.1 Introduction

A second analysis of data collected in the previous study, this new study now sought to address
the lack of knowledge about how end-user developers troubleshoot their physical computing
problems and whether their approaches are effective, and in doing so, answer the second
research question guiding this thesis: while Study 1A aimed to identify the problems that end-
user developers encountered when developing a physical computing device (TRQ1), the next
analyses of these data—Study 1B—sought to identify and understand end-user developers’
troubleshooting behaviours (TRQ2) when attempting to find and fix circuit bugs—the type of bug

associated with most task failures (section 3.3.5.1).

In the previous analyses | observed many instances of participants failing to localise their circuit
bugs successfully, and introducing numerous new problems in the process of troubleshooting. |
now wanted to understand where participants went wrong in their troubleshooting attempts,
and why, for half of the sample, inability to resolve this type of bug resulted in task failure. | was
also curious to find out what had enabled some participants to successfully resolve at least

some—if not all—of their circuit bugs.

The decision to now focus on troubleshooting behaviours was informed by the novice and end-
user programming literature. Research into end-user programmers’ debugging behaviours (e.g.,
Kissinger et al. 2006; Grigoreanu, Burnett, and Robertson 2010; Kulesza et al. 2009) has proven
valuable in determining avenues of support for them (e.g., Cao et al. 2015), in part by identifying

problematic areas to address. For example, work has shown that end-user programmers can

93

employ unproductive or destructive strategies, or simply do not know which strategies might

help them (see section 2.2.3).

Having observed several participants struggle to diagnose their circuit bug-related problems,
and having noticed some specific patterns of misdiagnosis, | wondered whether looking deeper
at the troubleshooting behaviours of these participants might yield insights into how to support

end-user developers dealing with these types of problem.

Therefore, rather than collecting new data, this new piece of work built upon the first set of
findings with further, deeper analysis of the same data, identifying the behaviours employed by
end-user developers when troubleshooting the effects of circuit bugs that they themselves had

introduced, and determining whether these are effective.
The study addresses the following thesis-level research question:

TRQ2: How do end-user developers troubleshoot the most significant problems that
arise during development, and from what support might they benefit?

This has been broken down into two more-specific research questions, guiding this analysis:

RQ1l: How do end-user developers troubleshoot circuit bugs? What troubleshooting
tactics do they use?

RQ2: Are end-user developers’ troubleshooting behaviours effective in helping to
resolve their circuit bugs?

4.2 Method: Data Analysis

This section begins with an overview of the analysis, including an outline of the data
segmentation and of the process of coding. Thereafter | describe the segmentation and coding

schemes in detail, including rules for application.

4.2.1 Overview

Analysis now focused on participants’ troubleshooting of circuit bugs—the problems that had

proven most severe in preventing the successful building of a working prototype. A participant

94

was said to be troubleshooting a circuit bug when they showed evidence of noticing the
symptoms of one at runtime—irrespective of whether they realised it was a circuit bug causing
the symptoms—and made some attempt to investigate or address it, or if they noticed or
suspected—correctly—a potential circuit bug when building their prototype and then took steps

to investigate or resolve it.

The dataset consisted of the task data collected for fourteen of the twenty study participants—
that is, all those who encountered and troubleshot one or more circuit bug-related problems.
Data from the other six participants was not analysed because they either experienced no bugs

atall, or only experienced program bugs.

The main source of data in this study was the task transcripts from the previous analysis, again
supplemented with the task videos. Recall that the transcript spreadsheets contained a written
record of participants’ think aloud comments and actions during the task—one spreadsheet per
participant. Previous coding—specifically, problem types and problem locations—now made it

easy to identify the fourteen participants who had introduced and dealt with circuit bugs.

4.2.1.1 Data segmentation and coding schemes

Unit of analysis Coding scheme(s) applied to each unit

Task
(The entire 45 minute

: Tasksuccess Successin meeting the task goal (Y/N)
development task) .

Run
(A continuous period
of troubleshooting)

Episode
(Sequence of events

Activity types Stage(s) within iterative troubleshooting cycle

with a discernible, Tactics Specific troubleshooting tactic(s)
describable intent) employed during the episode

Event Event types Type(s) of action / thought

(A new action or
thought) Bugs Bugs added or fixed during the event

Figure 28. Hierarchy of units of analysis, and the coding schemes applied at each level. A task contains one or more
troubleshooting runs. A run consists of one or more episodes. An episode consists of one or more events.

A substantial part of answering the two research questions entailed segmenting portions of the
transcripts into specific units, to which a number of coding schemes were applied. Figure 28

shows the organisational hierarchy of segmentation of the task transcript spreadsheet data, and

95

the coding which was applied at each level. Note that this diagram does not indicate the

sequence in which segmentation or coding took place.

= FEach participant undertook one Task. The coding scheme applied at this level was
Task success, i.e., whether the participant succeeded or failed to complete the task.

= Atask contained one or more troubleshooting Runs (section 4.2.3)—continuous
periods when a participant was observed to be troubleshooting circuit bug-related
problems. No coding schemes were applied at this level—runs serve mainly to
demarcate periods of troubleshooting.

= Atroubleshooting run consisted of one or multiple Episodes (section 4.2.4)—
sequences of events (see next point) that could be easily described in terms of
intentional behaviour. Two coding schemes were applied at this level: Activity Types
(section 4.2.5), and Tactics (section 4.2.6).

» Each episode consisted of one or more events—individual comments or action by the
participant. The two coding schemes applied at this level were Event Types (section
4.2.2), and Bugs—new bugs and bugs fixed, coded in the previous analysis (section
3.2.6.3). Aswith bugs, a Location sub-code (e.g., Circuit or Program) was applied to

Event Type codes, where appropriate.

4.2.1.2 About the coding process

In the previous study, the application of all coding schemes took place in Excel. In this study,
coding began in Excel, but then transitioned to the hand-coding of printed visual
representations of the data, before returning to Excel for the remainder of the analysis. As before
the approach to coding was highly iterative, involving multiple passes through the dataset, and
began with a period of familiarisation, this time focusing attention specifically on evidence of

troubleshooting.

The problem-coded transcript spreadsheets, supplemented with the task videos, were used to
identify periods within the dataset during which circuit bug-related problems were troubleshot.
Within these portions of the transcripts, events (actions or comments) associated with
troubleshooting were coded with Event Type codes—a coding scheme developed inductively
from the data—and refined through iteration and discussion. This coding was then used to
identify episodes within the transcript spreadsheets. Episodes within a spreadsheet were

numbered sequentially, as were runs if more than one was evident.

96

For coding the episodes with Activity Types and Tactics, however, rather than working with the
transcript spreadsheets, | found it useful to view the data in a different form—the run and
episode segmentation and the event type coding were used to create visual representations—
troubleshooting flow diagrams—of the sequence/flow of troubleshooting episodes. Appendix H
shows an example. Beneath the summary of circuit bug(s) that the participant troubleshot, the
sequence—and summarised content—of episodes is shown. Each numbered block represents
an episode, annotated with transcript text to the right. The coloured rectangles within each
episode block summarise the Event Types that were coded, in the order of their occurrence, for
example, a sequence of several Get help events in which a participant looked at a number of
different web pages online, would be represented by a single Get Help block. Event types were
dual coded using words and colours in the transcript spreadsheets and the same colours were
used in the troubleshooting flow diagrams, for visual clarity, for example, Change blocks are

always orange, Inspect blocks always blue, etc.

Episodes in the troubleshooting flow diagrams were coded with Activity Type, and subsequently,
Tactic codes. The development of the Activity Type codes (section 4.2.5) followed an inductive
approach, initially identifying lower level ‘goals’ of activity within the dataset and then later
comparing and consolidating them. While coding of Tactics began, deductively, with initial
codes and coding rules derived from or informed by the literature, this was supplemented with
inductive coding. As in previous coding of the task data, these coding schemes were developed
and refined through repeated iteration over the dataset and discussion with my supervisory
team until code definitions were stable and rules deemed reliable. Once hand coding was

complete, the coding was transferred to Excel, for further analysis.

Although creating the troubleshooting flow diagrams was somewhat laborious, | found this
more visual, summarised view very helpful when coding the episodes, given the large amount of
data in the transcript spreadsheets. The process of creating these diagrams also provided a
further opportunity to review the episode segmentation and amend this where appropriate. The
diagrams were also very useful in discussing the segmentation and any specific coding decisions

with others, for example, to ensure reliability.

Much of the remainder of the analysis was done in Excel, using formulae and pivot tables,
however Microsoft Access was also used to parse and query the spreadsheet data, including to
transform it into structures that could be analysed more easily within Excel. My previous

experience with Access development made this the easiest way to achieve what | wanted to do.

97

The segmentation and coding schemes, including the rules of application, will now be described

in greater detail.

4.2.2 Event Type codes

Portions of the transcripts in which troubleshooting of circuit bugs took place were segmented
into sequential units of analysis, with each unit representing a new action or statement by the

participant—each, effectively, an event.

A set of troubleshooting Event Type codes was developed (Table 8), focusing only on the low-
level ‘what’ of participants’ comments and actions, rather than ‘how’ or ‘why’: realising that
there is a problem (fault recognition), hypothesising about something, visually inspecting

something, making some kind of change; testing the system in some way, or seeking help.

Table 8. Troubleshooting event type codes

Code Description

Fault Recognition | The participant indicates they know or suspect there is a problem, or they
see hard evidence of an error, e.g., a compiler error message, or the
sensor feeling hot to the touch.

Hypothesis The participant states a concrete idea of how to resolve a problem, what
may be wrong, or why something is not (or may not be) working. Can
include loose hypotheses, e.g., 'l think | may have done something wrong
in the circuit’.

Get Help The participant seeks or uses help from other sources. E.g., reading help
content or examples built into the IDE, or copying circuit schematics in
online tutorials

Inspect The participant visually inspects some aspect of the circuit, program, or
IDE, to evaluate correctness, locate a fault, or understand it. E.g.,
checking the sensor wiring

Change The participant makes some kind of change, in an attempt to resolve a
problem, isolate the cause of one, or determine whether there is a
problem. E.g., swapping an LED with a new one from the parts kit, or
changing the sensor wiring.

Test System The participant tests or evaluates their prototype, or a part thereof, either
to determine its correctness, or to isolate the cause of a
perceived/suspected problem. E.g., watching LED behaviour, viewing
sensor readings printed to the Serial Monitor, or holding and releasing
the sensor to see the effect on behaviour or output.

98

The intention with this coding scheme was to see whether defining some fundamental building
blocks of troubleshooting activity would later help in identifying patterns of intentional
behaviour within the transcript spreadsheets. With so much data to analyse, this felt like a
practical first step. Therefore, rather than using a predefined coding scheme, these codes were
developed inductively from the data—familiarity with the task data, including from previous
analyses, provided a starting point, but as previously, codes and the rules for applying them

were refined over several iterations, and through discussion with my supervisory team.

In applying the codes to a transcript, coding began at the participant's first voiced identification
or suspicion of a circuit-related problem (irrespective of whether they realised the problem was
circuit-related)—and stopped either when troubleshooting ceased, for example, if the problem
was resolved or at the end of the task session if resolution did not occur. Multiple Event Type
codes could be applied to each unit, and units could be ignored if it was felt that no codes

applied. A portion of a coded transcript is shown in Figure 29.

Location sub-codes were also applied, using the same sub-codes used previously (section
3.2.6.4). For example, if a participant hypothesised that a perceived problem was caused by an
error in their circuit, the Hypothesis code was applied to this statement, and sub-coded “C” (for

Circuit). When coding Fault recognition, a ‘1’ flag was used, rather than a location sub-code.

Only units with some relationship to the troubleshooting were coded. For example, if a
participant stopped troubleshooting to attend to another aspect of development—for example,
if they wrongly assumed they had solved the problem, or merely decided to move on to
something else—then the units in which they were not troubleshooting were not coded. If a
participant encountered another problem to investigate/resolve when troubleshooting the
original problem, those units were coded, being somewhat embedded within the original line of
troubleshooting. This meant coding some sequences of units where multiple, co-occurring
problems were dealt with at the same time by a participant. In fact, participants sometimes
introduced further bugs when troubleshooting, for example through misdiagnosis of the cause

of a problem, or slips and mistakes made when implementing a potential fix.

To establish the reliability of the code set, myself and another researcher independently coded a
segment of the dataset in which a participant troubleshot a circuit miswiring bug. In addition to
the transcript spreadsheet, we each had the video to refer to for further clarification. Coded

transcripts were then compared, and areas of disagreement discussed, before the coding

99

scheme was adjusted, refining the definitions, and teasing out any ambiguity. Five separate
rounds of this took place, involving three researchers and four different segments of the task
videos, until agreement of 81.7%, calculated by the Jaccard index, was reached. Given the

acceptable level of agreement, | then coded the remainder of the dataset.

Tme [Fert - Hyp°th85is ----

00:29:01 "Maybe | made a mistake, because we're already at 29 degrees."

00:29:13 Checks the circuit, specifically the wiring of the LEDs. -
00:29:23 Briefly removes and reseats the blue LED. -
00:29:27 Holds the sensor briefly, watching the LEDs. -
00:29:32 Watches the readings in the Serial Monitor. -
00:29:38 Switches back to the program and starts reading through it, -
checkingit. "I have 11,12, 13...I'm reading the voltage..."
00:29:44 "It's probably my electronics skills" €
00:29:50 Goes back to the circuit and starts checking it. "Let's see..." -
00:29:52 Removes the yellow LED.

00:29:55 "Oh, no. It's just remembering which direction | put them in" ©

00:31:01 Reseats the yellow LED, the opposite way. -
00:31:03 Holds the sensor. The blue LED comes on, then starts to flicker
onand off.

00:30:11 Releases the sensor and stares at the LEDs. "Hmmmm"

00:30:15 Checks the wiring again.

00:30:26 "Let's see, 0k, so | have the ground coming from here, then it's
this resistor, then this one goes into here, and it goes back to
the resistor, fine... then this one goes back, the shorter"
00:30:49 Removes the blue LED briefly and reseats it.

00:31:04 "And this one (checking) the shorter"

00:31:05 Removes the yellow LED

00:31:08 Removes the blue LED -

00:31:10 "Let mejust try if the LEDs actually work" c
00:31:12 Seats the yellow LED in the position vacated by the blue LED.

00:31:14 Holds the sensor and watches the LEDs.

00:31:16 "No." (The yellow LED hasn't come on)

00:31:19 "Isitthat | burntit by using it the wrong way round" €

00:31:21 Removes the yellow LED.

Figure 29. Event codes applied to a portion of a transcript spreadsheet. A letter within a coloured (coded) cell denotes the
location subcode (G=Circuit; P~Program; B=Both, i.e., Circuit+Program). Note that rather than a location sub-code, the Fault
recognition code contains a flag (‘1) to indicate the point at which the participant became aware of the problem

4.2.3 Runs

The coded transcripts were used to identify the start and end of troubleshooting runs—any
period of continuous troubleshooting of a circuit bug-related problem. A run ended either with
evidence that troubleshooting had stopped, for example, if the participant indicated that they
knew (or thought) they had resolved their problem and continued with further construction of
the device, or at the end of the task, if resolution did not occur. As some participants had more

than one continuous period of troubleshooting, a transcript could contain one or more runs.

100

No coding schemes were applied to runs. The main use of runs was to demarcate or identify
exactly which portions of each transcript spreadsheet were included in the analysis. This was
helpful in summarising these data, for example, when calculating how much time participants

had spent troubleshooting, and when creating the troubleshooting flow diagrams.

In total, I identified 26 troubleshooting runs, across the 14 participants.

4.2.4 Episodes

Within runs, using the event codes, | then homed in on troubleshooting episodes. Episodes
incorporated sequences of activity (events) that could be easily described in terms of intentional
behaviour. This segmentation was inspired by Newell and Simon, who describe an episode as “a
succinctly describable segment of behaviour associated with attaining a goal” (Newell and

Simon 1972, 84).

Working iteratively through the coded transcripts, | looked for obvious changes in activity and
intention, based on what participants were doing and saying, marking each transition as the

potential start of a new episode.

While, in some cases, episodes included only one event, many included multiple. Consecutive
events of the same type undertaken with roughly the same discernible intent were counted as
belonging to the same episode. For example, if a participant spent a few minutes looking at
several different web pages in succession, trying to find information about the correct wiring of
LEDs—i.e., several Get Help events, all with broadly the same intent—this was counted as one
episode, as, per Newell and Simon’s definition, | could reasonably describe this, succinctly, as
‘looking online for information about the correct wiring of LEDS'. If they then made several
changes to the wiring of the LEDs, to correct a perceived/suspected error, this was counted as
another episode, this time consisting of multiple, consecutive ‘Change’ events. Subsequent
running of (and runtime interaction with) the prototype to determine whether the fixes had been
successful—i.e., one or more Test System events with the same intention—was counted as yet
another episode. | also checked whether subsequent or preceding units should be included, for

example, a participant explaining what they were going to do immediately prior to doing it.

Often a transition from one type of event to another meant a new episode, as the participant

was doing something new/different. However, if two types of event (action) could not be

101

reasonably be separated in their description, they were both included in the same episode, for
example, a participant using an online diagram to guide them during the rewiring of a

component involved rapid interleaving of Get Help + Change events.

To establish the reliability of my segmentation, | went through several portions of the transcripts
with one of my supervisors—a senior researcher and physical computing expert—until we were

confident that segmentation was consistent.

The two coding schemes which applied to episodes—Activity Types (4.2.5), and Tactics (4.2.6)—

will now be described.

4.2.5 Activity Type codes

The troubleshooting activity types coding scheme attempted to address the ‘why’ of
troubleshooting activity, but at a very high level (Table 9). It was inspired by Katz and Anderson’s
General Troubleshooting Model (Katz and Anderson 1987), but is even simpler than that model,
focusing on the iteration of activity. Each episode was coded with either a single activity code or,

in some cases, multiple activity types.

The coding scheme, shown in Table 9, comprises three troubleshooting activity type codes:
Diagnose, Fix and Evaluate Fix. These activity types were developed inductively from the data,
and once again refined through much discussion and multiple iterations of application, but it is
useful to compare them to the Katz and Anderson model which inspired the decision to focus

on what can be seen as three primary goals of activity within the iterative cycle.

Table9. Activity Types coding scheme

Activity Type | Description

Diagnose The participant knows or suspects that they have a problem and
shows evidence of trying to understand it, confirm its existence, or to
identify its cause

Fix The participant attempts to directly resolve a problem through some
kind of action, usually making one or more changes to the circuit,
program, IDE, or USB connection between the PC and Arduino
board.

Evaluate Fix | The participant evaluates the success of an attempted fix, ideally by
conducting a test to establish that the problem has been resolved,
but alternatively by double-checking their implementation, through
inspection, for example, in comparison to an example.

102

In Diagnose, the participant knows or suspects that they have a problem and shows evidence of
trying to understand it, confirm its existence, or to identify its cause—which naturally includes
fault localisation. This activity type is characterized by the gathering of information and the
processing of that information in order to reach a hypothesis or conclusion, for example, the
potential cause of a problem, the location of an error causing a problem, or how to resolve a
problem. In this definition, Diagnose amalgamates Understand System, Test System and Locate

Errorin the Katz and Anderson model.

In Fix, the participant tries to resolve a problem through some kind of action, usually making one
or more changes to the physical circuit, program, IDE, or USB connection between the PC and
Arduino board. This activity type relates to Repair Error in the Katz and Anderson model when a
participant has identified the cause or knows how to fix it, however, | also include cases where a
participant makes speculative changes, that is, without being sure of the cause of a problem or

whether the change that they were making would resolve it.

Finally, in Evaluate Fix, the participant evaluates the success of an attempted fix, ideally by
conducting a test to establish that the problem has been resolved, but alternatively by double-
checking their implementation through inspection, for example, by comparing it to an external
resource, such as a wiring schematic. This activity type corresponds to Test System in the

idealized troubleshooting model.

As mentioned, the Activity Type codes were initially applied, by hand, to printouts of the

troubleshooting flow diagrams (Appendix H). Later this coding was transferred to Excel.

4.2.6 Tactics codes

| also used the troubleshooting flow diagrams, in conjunction with the videos, to hand code the
episodes with a second coding scheme, now addressing Tactics. This was inspired by previous
work investigating software debugging strategies and troubleshooting hardware, supplemented

with additional codes developed through an inductive process (Table 10).

In this work, a tactic is designed as an observable pattern of troubleshooting behaviour. There is
some inconsistency within the literature regarding the definition of the term strategy and | felt
‘tactic’ to be closer to describing the level of some of the behavioural patterns | observed and

considered worthy of representing in the coding scheme—strategic thinking was difficult to

103

deduce from the think aloud data and therefore coding was often based on what | could reliably
deduce from participants’ actions in conjunction with their comments (section 7.4.2). Focusing
on tactics was also inspired by discussion of tactics in the context of electronic testing
procedures (Lesgold and Lajoie 1991) and Grigoreanu and colleagues’ definition of a tactic,
adapted from Bates (1990), as “the use of one or more moves with the purpose of more quickly
and accurately finding or fixing a bug” (Grigoreanu, Burnett, and Robertson 2009). While some of
the patterns | report as tactics may be closer to what Grigoreanu and colleagues would term
stratagems, and what others would refer to as strategies, | deliberately chose to keep codes at

one level for this analysis, focusing simply on observable patterns, referred to as tactics.

To develop this coding scheme, | first undertook a review of the literature on end-user and
novice programmer debugging strategies (e.g. Grigoreanu, Burnett, and Robertson 2009; Murphy
et al. 2008), then looked to the literature on hardware troubleshooting (e.g. Steinberg and
Gitomer 1996), and problem solving (e.g., Wickelgren 1977), and finally, reviewed a selection of
non-academic literature on software debugging and the troubleshooting of systems and circuits
(e.g. Agans 2002; Craft 2013; Tomal and Agajanian 2014). From these sources—far more than are
cited here—I collated an initial set of codes, which | adapted, where necessary/appropriate, for
use in a physical computing context. | refined the code set through iteration across the dataset,
looking for relevant patterns in the data, inductively developing further codes where a pattern of
troubleshooting behaviour was evident but none of the existing codes applied. Candidate codes
were discussed at length with one of my PhD supervisors, until there was consensus in the
reliability of the definitions and under what conditions the codes might be applied. The final

code set can be seen in Table 10.

| applied the tactics codes to troubleshooting episodes in the troubleshooting flow diagrams,
looking for evidence in participants’ comments and actions, for example, an episode in which a
participant searched online for information about the TMP36 temperature sensor would be
coded with Get Help. Where appropriate, episodes could be coded with multiple tactics, for
example, an episode in which a participant removed an LED from the breadboard and re-seated
it the opposite way around, to see (without any certainty) if that would solve the problem, would
be coded with both ‘Speculative Change’ and ‘Reverse orientation’. Similarly, an episode in
which a participant used a diagram found online to guide the wiring of the temperature sensor
would be coded with the ‘Get Help’ tactic and the ‘Copy example’ tactic. Once hand coding of

episodes was completed, it was transferred to Excel, for further analysis.

104

Table 10. Tactics coding scheme and frequency of code application (total count of episodes coded) across the sample

Tactic

Description

Run and analyse

Run and/or interact with the prototype and analyse the output or behaviour

Inspection

Visually inspect the program, circuit or IDE settings for error

Speculative change

Make a change to resolve a problem, without being sure of the cause and/or how to
fix it.

Serial Monitor

Use the IDE’s built-in Serial Monitor tool to view program output

Get help

Search for, or use, external resources

Causal reasoning from output

Reason backwards from faulty behaviour/output to its possible cause

Isolation

Reduce a part of the system, for testing, or test an isolated part of the system

Correct error

Make a change to correct an error, having localised the cause and knowing how to
fix it

Compare example

Compare implementation to an external resource, for example, an online wiring
schematic, or program code.

Copy example

Copy or reproduce an external resource, e.g., an online wiring schematic or
program code.

Alternative physical input

Use a different input source when interacting with the prototype, e.g., fanning the
sensor or blowing on it, to cool it down

Wiggle/push connection

Physically push or wiggle a connection, to make sure it is seated properly or to see
the effect upon runtime behaviour/output.

System feedback Read or use the system feedback printed to the IDE’s error panel, for example,
compile errors or board communication problems.

Relocate Move a component or program statement(s) to a different location.

System verify Compile, to test for correctness

Undo Reverse a change; usually when a fix attempt is unsuccessful

Reverse orientation

Turn a hardware component around (180 degrees) in the breadboard.

Change power

Change the power source / supply

Control execution speed

Programmatically adjust the speed at which the program is executed (typically by
using/modifying the delay () function)

Restart

Restart or reopen something in the hope that this action fixes the problem

Swap for same

Replace a hardware component with one of the same type and specification, for
example, to check for a faulty component or test a particular sub-circuit

Cross-check

Visually check that things match where they are supposed to, for example, pin
number used in the circuit and program, or baud rates in the program and IDE

Measure

Measure some aspect of the circuit with a specific tool, for example, a digital
multimeter

Press ahead, regardless

Stop troubleshooting and return to building, even though there is some suspicion—
or even certainty—that there is still a problem

105

4.2.7 Bugs

To determine whether participants’ behaviour was effective, | analysed the coded dataset in
conjunction with the bugs and fixes coding from the previous analysis (Chapter 3), looking at
whether they successfully resolved all their circuit bugs and how many bugs (of all types, not just

circuit bugs) they fixed and introduced when troubleshooting circuit bug-related problems.

4.3 Results

Table 11 shows a summary of the troubleshooting analysed. Of the fourteen participants who
troubleshot circuit bugs, only two participants succeeded in completing the task, successfully
resolving all their circuit (and program) bugs, while a further two participants who failed the
task, did manage to resolve all their circuit bugs but not all program bugs. The remaining ten
participants in this analysis failed the task primarily due to their inability to resolve circuit bugs
that they had introduced, either prior to the troubleshooting in this analysis, or during it. The
table also details the number of runs, the number of episodes and the number of bugs (all or
circuit bugs) introduced or fixed during the troubleshooting of circuit bugs, and the amount of
time spent on this troubleshooting. As the event type coding was used primarily to facilitate
subsequent segmentation (episodes) and coding (tactics and activity types), rather than as a

measure of performance, | do not report the number or total of event type code instances.

I will now present my findings in two parts. First, | analyse how participants troubleshot their
circuit bugs, examining where their activity was focused and the tactics which they employed
(RQ1). Then, I identify which tactics were effective for troubleshooting, looking at their outcomes
and comparing participants who successfully resolved their circuit bugs with those who did not

(RQ2).

106

Table 11. Summary of participants' troubleshooting of circuit bugs and the outcomes thereof

All circuit Bugs Bugs Circuit Circuit

Task bugs No. of Time No. of added fixed bugs bugs

Ptc success resolved? runs spent episodes (all) (all) added fixed
P01 N N 2 00:20:56 34 10 1 1 1
P02 N N 2 00:29:15 86 28 18 15 11
P04 N N 2 00:14:53 27 2 2 2 2
P08 N N 2 00:06:38 21 4 1 0 0
P10 N N 2 00:07:26 22 7 5 5 5
P11 N N 1 00:04:04 3 1 3 1 3
P12 N N 1 00:06:37 8 1 0 1 0
P13 N Y 1 00:02:36 12 4 4 4 4
P14 N N 2 00:25:18 60 12 6 1 1
P15 N N 2 00:05:58 29 3 3 3 3
P16 N Y 2 00:01:50 9 1 3 1 3
P17 Y Y 1 00:15:16 47 14 16 8 10
P18 Y Y 1 00:02:44 11 10 13 6 9
P20 N N 5 00:20:32 70 23 15 11 11
26 02:44:03 439 120 90 59 63

4.3.1 How do end-user developers troubleshoot circuit
bugs? (RQ1)

4.3.1.1 Activity Types

| coded each troubleshooting episode with one or more of the three activity types: Diagnose, Fix,
and Evaluate Fix—which | considered to be the three primary goals of troubleshooting activity
within the iterative troubleshooting cycle. Figure 30 shows the number of episodes of each

activity type coded for each participant.

Across all participants, 251 of the 439 episodes (57%) were spent trying to Diagnose problems,
while Fix was coded in 130 episodes and Evaluate Fix occurred 133 times (Table 12). Some
episodes contained more than one activity type (see Figure 31), for example, 70 episodes were

coded with both Evaluate Fix and Diagnose (28% of all 251 Diagnose episodes, and 53% of all

107

133 Evaluate Fix episodes). In these episodes, participants were often unsure as to whether a fix

had been successful, and diagnosis was usually embedded in their evaluation of this.

100 M Evaluate
I Fix

I . I Diagnose
m B
. []

o @
o O

~
o

Episodes (n)

N
o

P01 P02 P04 P08 P10 P11 P12 P13 P14 P15 Pl6 P17 P18 P20

o

Figure 30. Number of Diagnose, Fix and Evaluate Fix episodes, per participant

Recall that the Diagnose activity type code was applied to episodes where a participant knew or
suspected that they had a problem and showed evidence of trying to diagnose it—for example,
to confirm a problem, to explore or understand a problem, or to identify the cause of a problem.
Over half of participants’ troubleshooting episodes involved these types of diagnosis activities
(251/439) and they spent almost twice as many episodes trying to identify and localise their

problems as fixing them (251 Diagnose episodes; 130 Fix episodes).

Table 12. Activity Type episode counts, and the percentage of all (439) episodes these represent

Diagnose Fix Evaluate Fix
251 130 133
57.2% 29.6% 30.3%

Diagnose (only)
Diagnose & Fix
| Fix (only)
B Fix & Evaluate
W Evaluate (only)

Evaluate & Diagnose

Figure 31. Activity type episode counts, also indicating episodes where more than one Activity Type was coded, most notably
where participants were evaluating and diagnosing (70 episodes), i.e., they were unsure if a fix had been successful

108

Next, | analysed the transitions between these activity types, that is, a move from one type of
activity to another, or a particular sequence of moves. An idealized troubleshooting process,
according to the general model presented in (Katz and Anderson 1987), is a sequence of
transitions from Diagnose (locate error) to Fix (repair error) to Evaluate Fix (test system), with an
assumption that a transition from Diagnose to Fix happens once the person troubleshooting has
a clear idea what the problem is, i.e. they have located the cause of it. This idealized sequence
occurred 93 times across all participants. There were frequent transitions between Diagnose and
Fix (99) and between Fix and Evaluate Fix (107), as might be expected from the idealized

troubleshooting model.
(1413

Diagnose 99
(251)

\70
AN
S~

70 episodes coded with both D & E

/

Figure 32. Transitions between troubleshooting activity types

Participants iterated a great deal within activity types, particularly within Diagnose (141),
compared to within Evaluate Fix (21) and Fix (8). These iterations can indicate that a particular
tactic has not achieved the intended goal, and that it either has to be repeated or a different
tactic employed. For example, in a particular series of Diagnose episodes, P20 performs the

following sequence of actions:

1. Visually inspects the circuit, checking the wiring

2. Switches focus to an online example image of sensor wiring, comparing it to their
circuit.

3. Reopens the Serial Monitor and interacts with the sensor, observes that the readings are
too high and that transitions do not appear to be correct

4. Visually cross-checks the baud specified in the program and the baud specified in the

Serial Monitor window, to determine whether they are the same.

109

5. Turns off Auto-scroll in the Serial Monitor and interacts with the sensor while watching
the readings, noting that they do not change as expected.

6. Visually cross-checks the analog pin number referenced in the program with that used
on the Arduino board, making sure they are the same.

7. Visually inspect the sensor wiring again and notices that the Ground wire is seated in the

wrong breadboard hole.

I would not suggest that the above sequence of episodes is an example of poor troubleshooting.
It does, however, serve to illustrate how the number of iterations within Diagnose (141)
demonstrate that diagnosis tactics were often not successful in localising a circuit bug and did
not lead directly to a fix attempt. Furthermore, as | describe in the next section, some
participants transitioned from Diagnose to Fix and made changes to the circuit even though
they had not been able to successfully diagnose the problem, i.e., locate the error that was

causingit.

4.3.1.2 Tactics

| now turn to how participants employed different troubleshooting tactics in each of the activity
types. I focus on the most frequently adopted tactics and some less frequently observed which |
perceived to have impact (positive or negative) on participants’ troubleshooting, or are specific
or unique to physical computing development or circuit troubleshooting. | provide examples of
participant behaviours that were coded by these tactics and in how many episodes each tactic

was observed across all participants.

Tactics observed in Diagnose episodes

Tactics coded within this activity type were characterized by the gathering of information, the
processing of that information in order to reach some conclusion about a problem, or some
understanding of the conditions under which a problem did or did not manifest. Episodes were

coded with more than one tactic, if appropriate.

The most frequently observed tactic was Run & Analyse (116 Diagnose episodes; 46%), where
participants attempted to use the runtime behaviour of their prototype (for example, the LEDs
turning on/off) or output from it (for example, readings from the temperature sensor printed to

the Serial Monitor) to diagnose their problem. Participants were observed trying different

110

approaches to affect the runtime behaviour of their prototypes, for example, changing the
temperature sensor’s readings by blowing on it, fanning it with a piece of paper, or swapping the
hand with which they held it—Alternative Physical Input was coded for these 17 episodes (7% of
all Diagnose episodes). The Causal Reasoning from Output tactic (56 Diagnose episodes; 22%)
was coded where participants analysis of runtime output or behaviour resulted in verbal

hypotheses—whether correct or not—about the cause of their problems.

Cross-check 4
Measure 4
Wiggle/push connection 5
System feedback 13
Alternative physical input 17
Compare to example 17
Isolation 43
Get help 45
Causal reasoning from output 56
Serial Monitor 74
Inspection 87
Run and analyse 116

0 50 60 70 80 90 100 110 120 130
Episodes (n)

T
0 10 20 30 4
Figure 33. Tactics observed in Diagnose episodes

Participants sometimes used tools to diagnose the runtime output or state of their prototype. In
74 Diagnose episodes (29%), participants analysed output printed to the IDE’s built-in Serial
Monitor, for example, the temperature readings from the temperature sensor. In 13 episodes
(5%), they tried to use system feedback in the IDE’s error panel to diagnose their problems—
while feedback was often related to program errors, some circuit errors, for example, those
relating to the connection between the Arduino board and the computer, resulted in error
messages. Another tool-related tactic, less frequently observed but particularly relevant to
circuit problems, was Measure (4 Diagnose episodes, 2%), where participants used a digital

multimeter to measure some aspect of the circuit at runtime, for example, voltage.

Sometimes, just having a good look at something can help to identify an error, or rule one out,
thereby narrowing down the list of potential causes. The second most frequently observed
Diagnose tactic was Inspection (87 Diagnose episodes; 35%), where participants visually
inspected some aspect of their program, circuit, or IDE configuration, for example, checking that
they had connected an LED to the correct Arduino pins, or that it was seated the right way
around in the breadboard. Cross-check, a specific type of inspection tactic, was observed in 4

Diagnose episodes (2%)—this involves checking that references correspond, for example, that

111

the digital pin numbers referenced in the program (software) match the numbers (labels) of the

digital pins used on the Arduino (hardware).

Participants did not always rely on their own knowledge to diagnose their problems. Get Help
was observed in 45 Diagnose episodes (18%) where participants looked for and/or used external
help to diagnose their problems, for example, they attempted to find information to explain the
symptoms they were seeing. Similarly, in 17 Diagnose episodes (7%), participants employed
Compare to Example as a tactic, where they compared what they had implemented to an
external resource, for example, a circuit diagram online, in the hope of identifying any mistake

they might have made which could be causing their current problem.

Another tactic observed was to reduce the complexity of the system. | coded /solation against
the 43 Diagnose episodes (17%) in which participants were observed attempting to reduce
system size or complexity as a tactic for homing in on the cause of a problem, or performing
some sort of test upon a reduced system, for example, using direct connections from power and

Ground to test whether LEDs were working.

Finally, Wiggle/Push Connection (5 Diagnose episodes; 2%), was coded when participants
speculatively prodded wires or components at runtime to see whether that changed the
behaviour of the circuit, for example, if an LED lit up, or the values printed to the Serial Monitor

changed.

Tactics observed in Fix episodes

Two very distinct tactics accounted for 126 of the 130 Fix episodes. The tactic used most
frequently when participants attempted to fix their problems was Speculative Change (89 Fix
episodes; 68%), where participants made it clear that they had not located the error or where
there was evidence of speculation or a lack of confidence either in what the error was or that the
change they were making would fix the problem. In contrast, 37 Fix episodes (28%) were coded
as Correct Error, which involved participants carrying out a fix with a clear indication that they
did have a good idea of what was causing their problem and/or had confidence that what they
were attempting would help to rectify it. Some Fix episodes were also coded with a second

tactics code, and | now describe these.

112

Restart 4
Swap for same
Change power
Control execution speed
Undo
Reverse orientation 7
Wiggle/push connection 8
Relocate 10
Copy example 21
Get help 21
Correct error 37

Speculative change 89
T T T T T T T T T 1

0 10 20 30 40 50 60 70 80 90 100
Episodes (n)

Figure 34. Tactics observed in Fix episodes

In 16% of Fix episodes, participants used external resources in fixing (or attempting to fix) their
prototype—the codes Get Help and Copy Example were applied to these episodes, which usually
involved a participant reproducing a circuit wiring image/diagram, or copying code found
online. However, almost half of these episodes (11/21) were also coded with Speculative
Change—even when copying examples participants were not always sure that they were doing

the right thing.

| observed a number of other tactics that participants employed in the hope of fixing their circuit
bugs. Relocate—for example, unnecessarily moving a component to a new position on the
breadboard, or the end of a wire to a different position within the same breadboard row—was
used in 10 (8%) of the Fix episodes. When using the Wiggle/Push Connection tactic in Fix
episodes (8 episodes, 6%) participants pushed components or wires deeper into the
breadboard or an Arduino pin. Reverse Orientation (7 Fix episodes, 5%) was sometimes used to
determine whether an LED had been placed the wrong way round in a breadboard—a common
mistake when constructing electronic circuits. Undo—reversing a fix attempt, for example, if it
was unsuccessful (or felt to be unsuccessful) in resolving the problem—was coded against 7 Fix
episodes (5%). Control Execution Speed—changing Delay () values in the Arduino code,
primarily to change the rate at which the sensor was read—was seen in 5 Fix episodes (4%);
Change Power (5 Fix episodes, 4%) usually involved changing the sensor’s power supply from
one voltage to another. Swap for Same (5 Fix episodes, 4%)—involved swapping out a
component for an identical one; and, finally, Restart—pressing the restart button on the Arduino
board, or reuploading the program without having made any changes—was seen in 4 Fix

episodes (3%).

113

Tactics observed in Evaluate Fix episodes

In most of the 133 Evaluate Fix episodes, the tactics used involved looking at runtime behaviour
to see if it met the specification in the brief. Consequently, as with the Diagnose activity type,
Run and Analyse (108 Evaluate Fix episodes; 81%) was the most frequently used tactic, and the
Serial Monitor (60 Evaluate Fix episodes; 45%) and Alternative Physical Input (14 Evaluate Fix
episodes; 11%) tactics were also frequently employed. Many tactics for diagnosing problems are
also applicable for evaluating fixes, demonstrated by participants’ use of Inspection (11 Evaluate
Fix episodes; 8%), and Get Help (5 Evaluate Fix episodes; 4%) combined with Compare to
Example (5 Evaluate Fix episodes, 4%), where participants used an external resource to
determine whether a fix had been correctly implemented. Participants also used direct
connections from 5V power to test whether LEDs were correctly wired within the circuit, i.e., a
form of Isolation (9 Evaluate Fix episodes, 7%), temporarily removing other dependencies, for

example, program logic.

Compare to example
Get help
Isolation 9

System verify

Inspection

Alternative physical input
Serial Monitor

11
11
14
60

Run and analyse 108

0 10 20 30 40 50 60 70 80 90
Episodes (n)

100 110 120

Figure 35. Tactics observed in Evaluate Fix episodes

4.3.2 Are end-user developers’ troubleshooting
behaviours effective? (RQ2)

In the previous section | discussed tactics used by participants when troubleshooting their bugs.

| now turn my attention to determining whether these tactics were effective

To gain insight into why the Circuit Success group were successful and the Circuit Failure group
were not, | compared the participants who successfully resolved their circuit bugs (Circuit

Success group, n=4) with those who were unsuccessful (Circuit Failure group, n=10).

114

| first analysed the number of episodes spent by the two groups in the three different activity
types and there were stark differences: the Circuit Failure group, on average, had more than
twice the number of Diagnose episodes and close to twice as many Fix and Evaluate Fix
episodes (Figure 36).
25

M Circuit success (n=4)
M Circuit failure (n=10)

= =)
o o o

Episodes (mean)

€3]

Diagnose prob Fix problem Evaluate fix

o

Figure 36. Mean number of activity type episodes per circuit outcome group

| then analysed whether there was a difference between the Circuit Success and Circuit Failure
groups in how many bugs they fixed and added when they were troubleshooting (Figure 37). The
Circuit Success group fixed, on average, more bugs than they introduced but the Circuit Failure
group introduced almost twice as many bugs as they fixed. When | analysed what percentage of
episodes had bugs added or fixed, | found that the Circuit Success group fixed bugs in a larger
proportion of episodes than they introduced bugs; in contrast, the Circuit Failure group

introduced bugs far more often than they fixed them.

10

3 W Bugs added
) 6 I Bugs fixed
]
£
2 4
>
m 2

0

Circuit success Circuit failure

Figure 37. Mean number of bugs added/fixed per circuit outcome group

4.3.2.1 Activity types and tactics

| then analysed the troubleshooting tactics that the Circuit Success and Circuit Failure groups
carried out in episodes coded with each of the three activity types, to see if I could identify what

made the Circuit Success group more successful troubleshooters.

115

Diagnose episode tactics

Figure 38 compares the average number of episodes that the Circuit Success and Circuit Failure

groups spent carrying out different diagnosis tactics.

M Circuit Success (n=4) @ Circuit Failure (n=10)

12
= 10
©
()
£ 8
$:
L 6
3
2 4
L

2 I I ‘

0 1 1 :—(
Runand Inspectfor Serial Causal Get help Isolation Compare to Alternative
analyse error Monitor reasoning example physical

from output input

Figure 38. Mean number of episodes coded with each Diagnose tactic used, by circuit outcome group

On average, the Circuit Failure group spent almost three times more Diagnose episodes using
the Run and Analyse tactic, that is, diagnosing their problems through the runtime output or
behaviour of the prototype, and on average, made use of the Serial Monitor in eight Diagnose
episodes, in comparison to the Circuit Success group which never used it. They averaged three
times more Causal Reasoning from Output, episodes, trying to reason backwards from the
system behaviour they observed to its possible causes, either watching the behaviour of the
circuit, that is, the LEDs, or how temperature readings changed in the Serial Monitor, for
example, when they varied the physical input to the sensor— the Circuit Failure group averaged
two episodes of providing Alternate Physical Input to the temperature sensor, for example, by
blowing on it. Analysing behaviour and other output—a ‘backwards reasoning’ strategy (Vessey
1985) can be very useful in diagnosis, however | frequently saw participants in the Circuit Failure
group having difficulty understanding the output they were seeing, or generating incorrect
hypotheses as to what it might mean. For example, P20, struggling to work out whether the
readings they were seeing were normal (they were not) surmised—incorrectly—that the
precision of the sensor was the issue, and that this could be addressed by modifying the
Delay () statementinthe program, to control the frequency with which the sensor was read:

"Oh, now it's going down. It takes a while, but, | mean, it works. Perhaps | should try to
minimise this effect of the delay we have with the sensor, it's not very precise." (P20)

Similarly, P14 decided to change the temperature thresholds in their program to address the

problematic sensor readings they were seeing in the Serial Monitor:

116

"Hmmm, they're staying at 30. They haven't gone down as much. (Blows gently on the
sensor and watches the readings. They don't drop) It's not doing anything. Ah no, now
it's going down... no it's staying. That's odd. [...] Yes, it's gone down to 25 again. I'm
not entirely sure... what the reading is... 26. [...] Yeah, so those two are too close
together, | think. [...] So | might try changing the gap between each temperature" (P14,
Circuit Failure group)

In addition, | saw some unsuccessful participants repeatedly running their prototypes without
having taken any action that would help them to narrow in on the area of fault, again
demonstrating that participants in this group had difficulty using this tactic for diagnosis. Both
groups did make some use of the Isolation tactic, however, looking at the underlying data, | saw
that one participant was responsible for 68% of the Circuit Failure group’s Isolation diagnosis

episodes.

The Circuit Failure group used Inspection more frequently than the Circuit Success group, that is,
examining their circuits looking for potential bugs, such as miswiring or wrongly seated
components, however, it was clear that they did not always know what they were looking for. In
some cases, they looked in the wrong location, for example, the program, rather than the circuit,
and while some did inspect the circuit, they did not always look at the area of it which contained
the bug—again, their hypotheses were poor. For example, P10, had miswired the LEDs,
connecting their cathodes to digital pins and their anodes to a power rail. When the LEDs did
not light up, they inspected their circuit and incorrectly concluded that the problem lay in the
location of the sensor on the breadboard:

“The LEDs aren't lighting up, so that means that I've messed it up. [...] (Inspects the

circuit) Oh! But | know why! | need to move this on the other side (pointing at the

sensor wiring). | need to move the sensor on this part" (the other side of the central
channel of the breadboard)” (P10, Circuit Failure group)

As a result of their inability to localise bugs by analysing output or through inspection,
participants in the Circuit Failure group were far more likely to try to Get Help, for example, by
searching for information that would help them to interpret output, investigate their ideas, or
determine whether parts of their prototype were correctly constructed (Compare to Example).
However, these attempts to find help were not always effective—poor or incorrect hypotheses
led to poor or incorrect searches, and in several cases, led participants to make incorrect
decisions regarding what might help to resolve their bugs. For example, P14, struggling to
resolve their problem, made unnecessary changes to both program and circuit as a result of

earlier seeing information online about changing voltage from 5V to 3.3V. Running out of ideas,

117

they decided to try this, without really understanding it, leading to new circuit and program
bugs, further increasing their confusion:
"According to the instructions, it should just be a matter of changing kind of this one
value, to tell it it's using a 3.3 volt signal. Um, but I've changed it and now I'm getting
negative... (frowns slightly, looking at the program) negative temp... well it's not

reading the right temperature, it seems. But I'm not entirely sure where | need to... if
there's any other changes | need to make" (P14, Circuit Failure group)

In contrast, the Circuit Success group as a whole only used Get Help twice and the Compare to
Example tactic once. On average, the tactics used most frequently for diagnosis by the Circuit
Success group were Run and Analyse, Inspection, and Isolation. The effectiveness of the different
diagnosis tactics employed by the Circuit Success and Circuit Failure group become apparent

when we compare how they fixed their problems.

Fix episode tactics

| first turn my attention to the outcomes, overall, of the tactics used in Fix episodes, as an
indicator of whether participants tactics when attempting to resolve their problems were
actually successful. Figure 39 shows the outcome of tactics used in Fix episodes, in terms of
whether they resulted in bug fixes, new bugs, both bug fixes and new bugs, or neither. We see
that some of the tactics most frequently used by end-user developers in this study, not only
failed to reliably fix bugs, they actually introduced new ones.

90

[l New bugs (only)

80
[New bugs AND bugs fixed

-~
o

[Bugs fixed (only)

[ex}
o

[No new bugs or bugs fixed

N
S

w
o

N
o

—
o

] — W N
Speculative Correct Gethelp/ Relocate Wiggle/ Reverse Undo Change Swapfor Control Restart

change error Copy push orientation power same execution
Example connection speed

o

Episodes
3

Figure 39. Outcome of tactics employed in Fix episodes, across the whole sample

118

For example, several end-user developers in this analysis used external resources (Get Help /
Copy Example—in this activity, both code the same episodes) when attempting to fix their
problems, however this was clearly not always effective—participants sometimes made
mistakes when copying examples, due to knowledge gaps and poor understanding, or cognitive
slips, resulting in new bugs or unnecessary, additional complexity. Overall, eleven of the Get Help
Fix episodes resulted in new bugs (eight coded with Speculative Change), while only seven
resulted in bug fixes (two coded with Speculative Change) and six of these episodes neither fixed
bugs nor introduced new ones, where participants made unnecessary but otherwise harmless
changes, for example, minor modifications to the time specified in the Delay () statement, to

reflect what they had seen in example code online.

Looking specifically at the two main tactics used in Fix episodes (Figure 40) we see the
Speculative Change tactic led to very few bug fixes (17% of episodes, 20 bugs fixed) and actually
introduced lots of new bugs (56% of episodes, 70 bugs added). In contrast, the Correct Error
tactic did result in a lot of bug fixes (76% of Fix episodes, 63 bugs fixed) and far fewer new bugs
(27% of Fix episodes, 21 bugs added). This reveals an important finding, namely, that the tactic
that end-user developers used most often to fix their circuit bugs, not only failed to achieve the

desired result, but actually introduced more problems.

100%
80% 37% W New bugs
4] New bugs & bugs fixed
S 60% 7%)
o 0 59%
2 10% 0 Bugs fixed
% 40% W No new bugs or fixes
X 0
20% 6% 16%
0
0% - 11%
Speculative change Correct error
(70 bugs added (21 bugs added
20 bugs fixed) 63 bugs fixed)

Figure 40. Episode outcomes of the two main Fix tactics used by participants

Comparing the two groups provides some insight into why the Circuit Failure group struggled to
resolve their problems. The biggest difference between the tactics used by the two groups to fix
their circuit bugs is that the Circuit Success group had, on average, almost twice as many Correct
Error Fix episodes as the Circuit Failure group, who had, on average, over three times as many
Speculative Change Fix episodes (Figure 41). The Circuit Success group on average employed the

Correct Error tactic in twice as many Fix episodes as Speculative Change; in contrast, the Circuit

119

Failure group on average employed the Speculative Change tactic in over three times as many

Fix episodes as Correct Error.

W Circuit Success (n=4) @ Circuit Failure (n=10)
10

Episodes (mean)

4
2 ! ‘ ‘
0 1 1 \ \
Speculative change Correct error Get help Copy example

Figure 41. Mean number of episodes coded with each Fix tactic used, by circuit outcome group

It appears, from these results, substantiated by the video data, that when the Circuit Success
group performed Fix actions, they more often had (or appeared to have) confidence that they
knew were the error lay and/or how to rectify it, as a result of having effectively diagnosed their
circuit problem. In contrast, those in the Circuit Failure group made far more changes without
such confidence. The fact that the Copy Example fix tactic was, on average, more frequently used
by the Circuit Failure group than the Circuit Success group (Figure 41) is also evidence that the
Circuit Failure group was less certain about the nature of the circuit bugs they were trying to
resolve—they were more likely to Get Help. In some cases, participants also did not understand
the example they were copying, or struggled to interpret it. For example, P12, when trying to
correct their sensor wiring, had difficulty trying to work out how the sensor was oriented in the
diagram they found online, with the result that they actually recreated the bug that they were
attempting to fix:

"Either it's going to be... (Looks between the board and the image). How can | tell

which way round it's going to be, just by looking at it? [...] | may put it in the wrong

way again” (P12, Circuit Failure group)
The lack of confidence or certainty that the Circuit Failure group had about the cause of their
circuit bugs and how to resolve them was evident in the type of language they used, for
example, "Let's stick that in there and see what happens” (P01), “I'll give it a try (P10). In fact, the
Circuit Failure group often made changes to their program or circuit in the hope that doing so
would help them to locate the source of the problem—a trial-and-error or tinkering approach to

troubleshooting that in many cases led to additional problems.

120

Evaluate Fix episode tactics

There are also differences in the Evaluate Fix tactics adopted by the Circuit Success and Circuit
Failure groups (Figure 42). Although both groups used Run and Analyse in approximately the
same proportion of their Evaluate Fix episodes (Circuit Success 83% of 23 episodes, Circuit
Failure 81% of 110 episodes), the Circuit Failure group used it, on average, in almost twice as
many episodes and made far more use of the Serial Monitor—53% of their Evaluate Fix episodes,

in contrast to the Circuit Success group who only used this tactic/tool twice.

W Circuit Success (n=4) @ Circuit Failure (n=10)
10

Episodes (mean)

2 ; S ¢ .

Runand analyse Serial Monitor Alternative System verify Isolation
physical input

Figure 42. Mean number of episodes coded with each Evaluate Fix tactic used, by circuit outcome group

The whole Circuit Success group used /solation to evaluate their fixes in eight episodes (35% of
their Evaluate Fix episodes), in comparison to the whole Circuit Failure group who only used it
once (1%). Both of these tactical differences reflect the fact that the Circuit Success group were
more likely—and presumably more able—to evaluate the success of their fix attempts by
focusing on a smaller part of the system, compared to the Circuit Failure group, who had to rely

more often on program output to the Serial Monitor window.

I will now discuss these results in the context of my research questions and their implications for

how to support end-user developers in troubleshooting their bugs.

4.4 Discussion

This study aimed to answer two research questions:

RQ1l: How do end-user developers troubleshoot circuit bugs? What troubleshooting
tactics do they use?

121

RQ.2: Are end-user developers’ troubleshooting behaviours effective in helping to
resolve their circuit bugs?

This analysis demonstrated that the natural troubleshooting behaviours of end-user developers
can be very different from the idealised model (Katz and Anderson 1987). While a small number
of participants were able to successfully troubleshoot all of their circuit bugs, the majority were
not, on average spending roughly double the number of episodes on diagnosing their problems,

attempting to fix them, and evaluating the success of their fix attempts.

4.4.1 Troubleshooting tactics

Participants often relied on analysing runtime behaviour to diagnose their problems, with
limited success when they had difficulty understanding the output they were seeing, or judging
its correctness. Successful participants made more use of tactics such as isolation—testing or
evaluating a smaller functional part of the circuit. Although both successful and unsuccessful
participants made use of inspection in attempting to diagnose their problems, in many cases,
unsuccessful participants applied these visual checks to the wrong location of their prototype.
Unsuccessful participants also made use of external help, but in several cases, this proved
ineffective, particularly when participants’ hypotheses were poor or incorrect, affecting their
searches and, in turn, the changes they chose to make in the hope of resolving their problems.
Additionally, unsuccessful participants also made mistakes when using information found
online, for example, when copying example circuit diagrams, or comparing them to what they

had implemented.

As we have seen, when participants failed to localise their circuit bugs, they often resorted to
making speculative changes to their prototype, in the hope that this would fix and thereby reveal
the error, however, this approach resulted in over than three times more bugs than it fixed—the
majority of this type of fix attempt were made by the Circuit Failure group (80 out of 89
episodes). In contrast, the Circuit Success group were far more successful at localising and

resolving their bugs—their fix attempts resolved three times as many bugs as they introduced.

Although the analysis in the previous chapter found no significant correlation between
participants’ self-rated expertise and either their task success or the problems they experienced
(section 3.3.4), there is evidence in the tasks transcripts and videos that participants’ lack of

success in diagnosing and resolving their circuit bugs, and the further problems they

122

encountered when doing so, were sometimes related to a lack of domain knowledge, which led
to poor or incorrect hypotheses, wrong actions and mistakes. However, it would be wrong to
conclude that the participants in the Circuit Success group were all just more knowledgeable
and better at troubleshooting than those in the Circuit Failure group. Participants in the Circuit
Success group sometimes made speculative changes to their circuits and introduced new bugs;
participants in the Circuit Failure group were able to successfully diagnose and fix some, if not
all, of their bugs. For example, P02, who was in the Circuit Failure group, fixed more bugs than
any other participant (18) but also introduced the most bugs (28). On some occasions P02
demonstrated an exemplary approach to troubleshooting that followed the idealised model
(diagnosing effectively, fixing a localised bug and then evaluating that the fix had been
successful). However, they were also completely unable to diagnose one particular circuit bug
and eventually resorted to making speculative changes which eventually proved fatal. It is

informative to compare a bug that P02 solved with the one that led to task failure.

P02 ‘LED orientation’ bug (Resolved): When P02, prior to writing any code, noticed an LED light
up unexpectedly, they decided to conduct a test to see if the LEDs were correctly oriented:

"I'm just going to test that the LEDs light up when | connect power to them, so | know

they're the right way round. [...] | like to make sure I'm doing the right thing before |

get confused and start trying to code around a problem that was my fault in the first
place" (P02)

They isolated and tested LED subcircuits by temporarily connecting them directly to the Arduino
5V pin—a direct power source. After conducting the test, P02 hypothesised (correctly) that the
LEDs that did not light up were wrongly oriented:

"it doesn't light up. So, therefore these are all the other way round." (P02)

P02 turned those LEDs around in the breadboard and touched each anode with a wire
connected to the 5V pin. When each LED lit up in turn, P02 concluded—correctly—that all LEDs

were now properly oriented and carried on with the task.

P02 ‘Missing LED resistors’ bug (Unresolved): Unfortunately, when wiring up their LEDs, P02
had failed to add resistors to them. Although this did not prevent the LEDs from lighting up, it
meant they drew too much current from the Arduino, which in turn, affected the temperature
sensor readings—the insidious problem mentioned in the previous chapter. Unlike the LED
orientation bug that they successfully diagnosed and resolved, it was not easy to identify what

was causing this problem. P02 carried out a series of exploratory tests and changes to the circuit

123

in the hope that one of these would reveal the problem, for example, removing sensor
connections and wiggling wires, watching whether this changed the readings in the Serial
Monitor:

"So, I'm wiggling that wire, and I'm looking at the numbers coming back and they're
changing... quite a lot.” (P02).

However, observing these readings did not help P02 localise the problem:

"Hmmm, some very weird numbers are coming out of this thing. | wonder if I... |
haven't hooked it up backwards, have I? I'll have a look at the documentation again.”
(P0O2)

Seeking external help led them to speculatively add an unnecessary resistor to the sensor:

“It’s probably not right, but let’s see. Hopefully it won’t explode” (P02).

This not only did not help them resolve or diagnose the problem, it also actually introduced a
new bug, further complicating matters—in fact, they subsequently ended up adding new
program bugs, as well as yet another resistor, making diagnosis even more difficult. Leaving the
unnecessary resistors in place, and failing to make any sense of the output they were seeing, P02

eventually failed the task.

The ‘LED orientation’ circuit bug that P02 did resolve was less complex to diagnose than their
‘missing LED resistors’ bug, as they were at an earlier stage in developing the prototype and thus
there were fewer dependencies in place—similar to the bugs encountered by the Circuit Success
group and some of the bugs that the Circuit Failure group did manage to resolve. Three of the
Circuit Success group participants were troubleshooting LED wiring bugs, and at that point in
development had either not added the sensor to the breadboard or, if they had, they had not yet
written the program logic to control the LEDs in response to the sensor readings. It was
therefore relatively straightforward to for them to deduce that the problem they were
experiencing lay in their LED wiring. The fourth participant in this group had only wired up the
sensor and written the program to read it when they discovered that temperature sensor was
very hot to the touch—it had overheated due to being wired up incorrectly. This provided very
clear feedback about the location of the circuit bug. In contrast, when troubleshooting the
‘missing LED resistors’ bug, although the temperature readings in the Serial Monitor indicated to
P02 that there was a problem, they provided no information about the cause or location of the
problem. P02’s focus was on the erratic behaviour of the sensor, but this was caused by an

unobvious dependency on a different component—the LEDs, which, lacking resistors, were

124

drawing more current. Despite their diagnosis efforts, at no point was P02 able to isolate the
cause of the problem and they therefore resorted to making speculative changes, resulting in

new bugs.

Beyond end-user developers’ domain knowledge and skill in troubleshooting, there are
therefore two additional factors that appeared to affect how end-user developers in this study
troubleshot their circuit bugs and whether they were successful at resolving them: 1) the stage of
development of the prototype—the less complex the prototype, the easier it was to localise
bugs; and 2) the directness of feedback about the location of the bug—hot sensors are easier to
diagnose than erratic readings from a temperature sensor that are resulting from hidden
dependencies on other parts of the circuit. The Circuit Success group were able to solve all their
circuit bugs by diagnosing successfully and making informed changes to the circuit. Whereas all
participants in the Circuit Failure group failed to resolve at least one bug because they were
troubleshooting a prototype with more complex dependencies and no direct feedback about
the location of the bug, which meant they relied on observing the runtime behaviour of the
prototype to determine whether there was a bug and if so, where it was located. In some cases,
added complexity was due to participants deciding to stop troubleshooting, having failed in
their initial diagnoses, to continue with building, making subsequent diagnosis even more
difficult. As a result of participants’ inability to diagnose their problems and localise their circuit
bugs, they made speculative changes. Not only did these mostly fail to resolve their problems,
they also introduced more bugs, consistent with the literature on the problems of end-user and
novice programmers (e.g., Gugerty and Olson 1986). These insights into the additional factors
that influenced how end-user developers tried to troubleshoot circuit bugs in this study, along
with other findings from the study, suggest ways that we can support end-user developers in

troubleshooting problems in physical computing prototypes.

4.4.2 Supporting end-user developers’ troubleshooting

I will now summarise some of the key difficulties | observed in participants’ troubleshooting,
before reflecting on one of the more problematic behaviours observed—speculative changes—
and then outlining types of support from which I believe end-user developers might benefit,

based on my findings.

In this study, several participants struggled to diagnose their circuit bug related problems,

particularly those in which there were complex or hidden dependencies. A number of ineffective

125

behaviours were observed, including when participants ran out of ideas for things to try. For
example, instead of conducting focused tests, attempting to reduce dependencies, or
undertaking systematic inspection, some participants relied on repeatedly running (executing)
their prototypes in the hope that this would reveal some clue—more often resulting in poor or
incorrect hypotheses regarding the runtime behaviour or output they were seeing, especially if
they did not understand what failure/success looked like. When participants did inspect their
prototypes for error, they sometimes looked in the wrong place, again due to poor or incorrect
hypotheses, while more through and systematic inspection, for example, not just of the location
in which symptoms occurred, may have led them to localise their bugs. Additionally, when
participants sought external help, to diagnose or fix their bugs, or evaluate their fixes, this was
not always effective, because their searches were poor/incorrect (due to inadequate or incorrect
hypotheses), or they lacked the knowledge to understand, judge or apply the resources they had
found. In some cases, instead of attempting to analyse or understand the failure they were

seeing, participants did little or no diagnosis before attempting fixes.

Many of these ineffective troubleshooting behaviours resulted in participants making
speculative changes to the program and/or circuit, few of which actually fixed bugs. While some
instances of good/effective speculative changes were observed, most speculative changes
introduced far more bugs than they solved. Participants sometimes left these bugs in place,
rather than undoing them, which compounded their difficulties. They also added to their
problems by choosing to make several changes in one go, rather than incrementally making and

immediately testing changes.

4.4.2.1 Speculative changes—tinkering

Tinkering, as a pattern of behaviour, has been observed in novice and end-user programmers
(e.g., Perkins et al. 1986; Cao et al. 2010) and it may even be that end-user developers in the
current domain are particularly prone to it, due to the hands-on nature of circuit construction,
and of making in general. Tinkering as a creative approach to making is part of Arduino's
philosophy, where people who are not experts in programming or electronics are encouraged to
'have a go', and to discover and learn from their hands-on experiences, including their mistakes
(Banzi 2009). However, this study suggests that a ‘try it and see what happens’ approach without
thinking or reflection is, in itself, a poor troubleshooting strategy. There is therefore an

interesting tension between the informality of tinkering as a form of creative experimentation,

126

and the potential for a more structured, systematic approach to troubleshooting that could help

end-user developers to locate their bugs and resolve their problems.

It is not only unrealistic to expect end-user developers not to make any speculative changes
when troubleshooting, there can be value in experimentation, both in terms of helping to
diagnose and resolve problems within a troubleshooting process, and as opportunities for end-
user developers to learn through their experiments—other researchers have pointed out both
negative and positive effects of novices’ tinkering when programming (Perkins et al. 1986). | did
see instances of what we might call ‘good’—or what Perkins and colleagues would term
effective—tinkering. These instances were often characterized by small, low-cost changes (in
terms of time and effort) that were easy to evaluate, easily reversible, and which were unlikely to
have adverse effects. When making these changes, participants often also seemed to have a
clearidea of what outcome they were looking for—for example, P13 turned an LED around in the
breadboard, to see if it was wrongly oriented, and then immediately turned it back when it did
not light up. In this form, tinkering can be viewed more as focused hypothesis testing.
Speculative changes in this study often worked best when fewer dependencies existed, either
due to the stage of prototype development or to participants deliberately isolating the part of
the system in which to test a potential hypothesis. In a nutshell, it seems that if end-user
developers are more thoughtful when making speculative changes, they could avoid some of
the additional problems introduced by participants in this study when troubleshooting. Equally,
if end-user developers are better at diagnosing their problems through other tactics, this may
also result in fewer speculative changes of the kind we saw the Circuit Failure group resort to

when they ran out of ideas.

Therefore, a general troubleshooting strategy that would encourage end-user developers to
adopt a more considered and less speculative approach to troubleshooting is more

thoughtful/reflective troubleshooting—thinking before, during and after action.

4.4.2.2 Support for specific aspects of troubleshooting

Chiefly, this study demonstrates that end-user developers would benefit from support for
diagnosing their problems, including complex circuits that contain multiple dependencies. If
end-user developers are better at diagnosis, they are more likely to localise their bugs and
therefore make more informed changes to their prototypes, rather than haphazard speculative

ones. Furthermore, if end-user developers have the ability to diagnose their problems, this will

127

also help them to evaluate the success of their attempted fixes too, as both activities employ

some similar tactics.

The study suggests that specific aspects of diagnosis/evaluation that would benefit from

support include:

= Planning and hypothesising: It would be unrealistic to expect end-user developers,
particularly novices, to formulate complex plans upfront before acting, however,
considering different hypotheses, and troubleshooting tactics, weighing up
options, and making more thoughtful decisions regarding what action to take,
should help end-user developers to become better troubleshooters.

» Recognising and defining failure: Better identification and analysis of the
symptoms caused by bugs could help end-user developers with problem diagnosis
and fault localisation, but also in evaluating whether their attempted fixes have
been successful. End-user developers should be encouraged to look for and define
symptoms of failure, in order to generate better hypotheses.

= More focused analysis of runtime behaviour/output: End-user developers could
perform more focused analysis of the runtime behaviour and output they can
observe, rather than just repeatedly running (executing) their prototypes and
hoping that this will reveal some clue. End-user developers would benefit from
guidance in the types of analyses they can perform.

» Problem decomposition: Breaking a problem down or simplifying it can aid in
diagnosis and fault localisation. Reducing dependencies, through tactics such as
isolation, can help to establish the boundaries of failure and identify which
elements of a circuit or program are contributing—and not contributing—to failure.
End-user developers would benefit from suggestions to adopt these approaches.

» Focused testing, rather than haphazard speculative changes: There is value in
experimentation, however, potential risks and dependencies should also be
considered. Ideally end-user developers should be more thoughtful when making
speculative changes, approaching these as focused tests driven by hypotheses,
ideally with a clear idea of what to look for in the results. This would also make it
easier for end-user developers to evaluate the results of their experiments and

reverse changes if needed.

128

= Thorough inspection: A number of visual checks should be performed before
making changes. Suggestions of where to look and what to look for—particularly

common errors—could help end-user developers to localise their bugs.

End-user developers can also be supported by providing best practice for making changes to

circuits, for example:

= Incremental, iterative progress: End-user developers should be encouraged to
make one change at a time and evaluate the results before making further changes.
» Keeping track: Having a record of what was tried and what the results were could
prevent end-user developers from repeating unsuccessful troubleshooting actions.
» Undo failed fixes: End-user developers should be encouraged to reverse changes

that did not fix their problems, rather than building further upon them.

Finally, end-user developers should be encouraged to follow an iterative process—performing
thorough diagnosis before a fix attempt, and then immediately evaluating whether the fix was

successful.

4.4.2.3 General troubleshooting support principles
There are three over-arching principles to support end-user developers’ troubleshooting:

First, as suggested, we should encourage end-user developers to be more thoughtful/reflective
when troubleshooting and to avoid making speculative changes that typically result in more
new bugs than fixes. Dewey (discussed in Miettinen 2000) distinguished this type of trial-and-
error behaviour from reflective problem solving, which he saw as an iterative cycle of: defining
the problem; diagnosing and formulating a working hypothesis; reasoning; and testing the
hypothesis through action. Fleck and Fitzpatrick (2010) define reflection as “serious thought or
consideration” and identify five levels of reflection (RO-R4), where the lower levels are foundation
for higher ones. The card-based support tool | describe in the next encourages end-user
developers to reflect at the R2 level—Dialogic Reflection—that is: thinking about what they
should be doing and why, considering alternatives, questioning their assumptions, generating
and prioritising hypotheses to explore, and evaluating their fix attempts and the impact of their
actions. In general, thinking through their problems should help end-user developers become

better troubleshooters and increase the likelihood of them solving their own problems.

129

Second, support should facilitate end-user developers persevering with systematic
troubleshooting. In this study, some participants gave up troubleshooting and continued
building when they were not sure that they had solved their problem, or when they ran out of

ideas.

Third, end-user developers would benefit from support in planning and tracking their
troubleshooting. This would help them carry out all necessary steps and also enable them to

remember what they have tried and what the results were.

In summary, | suggest that end-user developers can be supported in troubleshooting by
providing them with alternative tactics to use, based on the recommendations for specific
support | have outlined, and underpinned by some general principles, for example, encouraging
end-user developers to be more thoughtful when troubleshooting. The aim is not to try to turn
end-user developers into engineers, as a big appeal of physical computing is its creative,
tinkering approach to making interactive devices. However, with this support | feel a number of
unproductive—and in some cases, destructive—troubleshooting behaviours observed for some

of the participants in this study could have been avoided.

It is worth noting that while the above recommendations are made in respect to supporting
end-user developers’ troubleshooting within a physical computing development context, most
of these recommendations are reasonably high-level and would potentially be applicable to

other development domains.

Finally, as with the previous chapter, some limitations should be considered in respect to the
findings in this study. Threats to validity include, for example, the small sample size, and
representativeness of this sample of the wider end-user developer population, but also the
potential effects of the study itself, for example time constraints and the pressures felt as a result

of being observed and recorded. | discuss these and other limitations in section 7.2.

In the following chapter, I will describe the design and development of a novel support tool
which instantiates the suggestions for supporting end-user developers that are summarised

above, in a physical card-based form.

130

Chapter 5

Developing a physical card-based tool to support
end-user developers’ troubleshooting

5.1 Introduction

The previous two chapters describe my empirical work investigating how end-user developers
develop physical computing prototypes and troubleshoot circuit bugs which they introduce.
These analyses enabled me to identify ways in which end-user developers could be supported,

summarised in section 4.4.2.

Informed by these studies, | now describe the design and development of a novel, card-based
tool to support end-user developers’ troubleshooting of physical computing problems,

particularly circuit bugs, addressing the third main research question of this thesis:

TRQ3: How can we design a deck of physical cards to support end-user developers in
troubleshooting physical computing problems, particularly circuit bugs?

The structure of this chapter is as follows: | first establish a context for the development of this
new support tool, in comparison to previous work to support end-user developers. | then
motivate the use of cards as a medium in which to provide support, and describe the design
principles which guided the design and development of the card deck. | describe the
development of an initial prototype and how trialling this in a small proof of concept study led
to targeting the design of the tool more towards needs of novice end-user developers.
Thereafter, | report the findings of two focus groups with novice end-user developers, to help
shape the design of the final card set. Finally, | describe the card set that was used in the final
study of this thesis, along with some supplementary materials in the toolkit, and detail the

production process.

131

5.2 Designing cards to support troubleshooting

As discussed in my review of the literature (section 2.8.1), there has been much work to find ways
to support end-user programmers in debugging their software programs. For example, software
tools such as the Idea Garden (Cao et al. 2015; William Jernigan et al. 2017) draw upon theories
of learning and curiosity (Carroll and Rosson 1987; Robertson et al. 2004) to provide in-situ
support for end-user programmers during their tasks, and help them to become better problem
solvers. Tools such as these rely on background analysis of the user’s program, and have been
shown to be effective, but only address programming issues. As the empirical work in the
previous chapters demonstrates, end-user developers do experience problems with
programming their physical computing prototypes, but circuit-related problems appear to have
the most significant impact upon task success, with some circuit bugs proving particularly
difficult to diagnose and resolve. Since that work, research prototypes have been developed by
other researchers to help learners debug electronic circuits (section 2.8.2), however, with the
exception of Bifrost (McGrath et al. 2017) these deal only with electronic circuits, not
programming, and again rely on automated analysis of implementation, often requiring
additional hardware and software. They also do not address some of the additional support
needs | identified in the previous chapter. | am aware of no other tool aimed at end-user
developers that, in addition to supporting the diagnosis of circuit bugs, specifically aims to
scaffold the process of troubleshooting physical computing problems and help novice end-user
developers to become better problem solvers in general. In the face of fragile knowledge, such
as that demonstrated in the troubleshooting difficulties of participants in the previous chapter, it
has also been suggested that simple prompts may perhaps play a better role than sophisticated
strategies, in helping novices to think through their problems and build their knowledge

effectively (Perkins and Martin 1986)—something worth considering for end-user developers too.

As my empirical work suggests that end-user developers would benefit from applying more
process and reflection to their troubleshooting activities, | looked to other domains for
inspiration when considering through which medium to support might be provided. A popular
method used to generate ideas, prompt reflection, and provide low-tech support for process in

other domains, either in general, or for particular activities, is physical cards.

132

5.2.1 Why cards?

Numerous card-based tools have been developed to support the generation and development
of ideas within a creative or design process and/or to provide theoretical, domain-specific

knowledge during one. Domain, problem or activity-specific card tools include:

» Tango Cards—designing tangible learning games (Deng, Antle, and Neustaedter
2014),

» Mixed Reality Game Cards—designing mixed reality games (Wetzel, Rodden, and
Benford 2016),

= FExertion cards—designing exertion games, (Mueller et al. 2014),

= DSD Cards—instantiating knowledge useful when designing technology for children
(Bekker and Antle 2011),

= Tangible Interaction Cards—designing tangible user interfaces (Hornecker 2010),

» Information Privacy by Design Cards—considering data protection issues during
design (Luger et al. 2015),

» PLEX Cards—designing for playfulness (Lucero and Arrasvuori 2010),

» Video Card Game—supporting User-Centred Design discussions (Buur and
Soendergaard 2000),

» The Design with Intent Toolkit—designing for behaviour change (Lockton et al. 2009)

= Envisioning Cards—considering human values during design (Friedman and Hendry
2012)

» VNA—game design ideas (Kultima et al. 2008) and

= Tiles IoT Toolkit—designing Internet of Things prototypes (Mora, Gianni, and Divitini
2017).

Card tools have been shown to afford a number of benefits. Antle and Wise, using theories of
cognition and learning to inform TUI design, argue that “Using spatial, physical, temporal or
relational properties can slow down interaction and trigger reflection” (Antle and Wise 2013),
suggesting that physical cards, which end-user developers can easily and rapidly arrange to
explore relations, and configure into meaningful spatial arrangements, are an appropriate
medium for encouraging reflective troubleshooting. Bekker and Antle also found that cards were
good for facilitating comparisons as they can be rapidly moved next to one another or formed

into groups (Bekker and Antle 2011). Furthermore, if there are different categories of cards, they

133

can be combined in different ways to explore new possibilities. More generally, arranging cards
can support the framing and reframing of a problem and lead to the generation of hypotheses—
something shown to be problematic for novices (Vessey 1985; Gugerty and Olson 1986). Having
duplicate cards can support the generation of alternative hypotheses (Buur and Soendergaard
2000) and the use of cards containing less-specific information can also help generate ideas and
hypotheses (Wetzel, Rodden, and Benford 2016). Cards can not only embody or instantiate
knowledge that will be useful during a process, they can also act as good memory prompts
(Deng, Antle, and Neustaedter 2014), of relevant information, but also of where a user is in the
current process, for example, they can be used to help break down a problem into individual

steps and prevent important steps being missed out (Mueller et al. 2014).

5.2.2 Design review of existing card sets

To gain insight into designing a card-based tool, I looked to the academic literature—including
but not restricted to the design, creativity, HCI and education literature—and also at tools
originating outside of academic research, for example commercial card decks. The intention
was not only to gain an understanding of the tools available and how the design of these tools
supported their stated aims and uses, but also to uncover the different factors important in the

process of designing a card-based tool, and delivering information via this medium.

Additionally, | found suggested classifications of ideation card tools, which also informed the
design process. For example, Wolfel and Merritt (2013) did a comparative analysis of eighteen
card-based tools and described them in terms of five design dimensions: Intended purpose and
scope; Duration of use / When in process; Methodology of Use; Customization; and Formal
Qualities. More recently, Roy and Warren (2018) list several ways in which card sets can work
within a process, for example, to stimulate creative thinking (e.g. Brian Eno’s Oblique Strategies
cards ‘The Oblique Strategies’, n.d.), summarise useful information and knowledge (e.g. The
Game Design Deck of Lenses, Arcila 2013) or to provide ideas and/or solutions for specific

contexts or domains (e.g. the Design with Intent toolkit, Lockton et al. 2009).

The next section presents my findings about the design of physical card-based tools, drawn from

the academic literature.

134

5.2.3 Considerations when designing cards

Based on my review of the literature, | identified five key categories of design considerations:

Physical form

The physical format chosen for a set of cards should take into account how they will be used,
considering, for example, their handling and positioning. Physical properties, such as the size
and thickness of cards, have been shown to matter: participants in a study to evaluate the DSD
cards (Bekker and Antle 2011) felt that sturdier materials would have improved the cards’
tangible properties; similarly, in a study by Tudor et al., cards’ lack of stiffness affected how
participants used them. These authors also found that over-sized cards were difficult to
manipulate (Tudor et al. 1993). The orientation of card design can affect the readability of
content when cards are used by groups (Buur and Soendergaard 2000), but orientation also has
implications for handling and positioning by individual users too, as does sidedness—usually
only one side of a card can be seen unless the user turns it over. Most cards typically use a
rectangular format, but different shapes may afford ways to indicate differences or relationships

between cards (Bekker and Antle 2011).

Information content

The information on a card should support its purpose and reinforce desired behaviour. When
designing cards to prompt thinking or reflection, questions—particularly open ones—are one
mechanism commonly used towards this end (Lockton et al. 2009; Hornecker 2010; Bekker and
Antle 2011; Friedman and Hendry 2012; Mueller et al. 2014; Luger et al. 2015); others include
providing minimal information (Kultima et al. 2008; Lucero and Arrasvuori 2010) or evocative

imagery (Hornecker 2010; Lucero and Arrasvuori 2010; Friedman and Hendry 2012).

Cards can provide context or instantiate knowledge (Bekker and Antle 2011; Friedman and
Hendry 2012; Luger et al. 2015; Mora, Gianni, and Divitini 2017) and give concrete examples
(Deng, Antle, and Neustaedter 2014; Mora, Gianni, and Divitini 2017) or instructions for activities
(Friedman and Hendry 2012), however, establishing the right amount of information to have on
a card is crucial—too much information can overwhelm the user and be time-consuming to read
(Wetzel, Rodden, and Benford 2016), potentially distracting them from the flow of the activity
that the tool is supposed to support (Deng, Antle, and Neustaedter 2014). Any descriptions and

135

definitions should therefore be succinct and easy to digest (Lockton et al. 2009; Lucero and

Arrasvuori 2010).

As information should be accessible to those who need to digest it, the knowledge level of
prospective users should be taken into account (Deng, Antle, and Neustaedter 2014). Unfamiliar
content can pose problems (Lucero and Arrasvuori 2010) and lead to users ignoring cards or
information that might help them in their tasks (Deng, Antle, and Neustaedter 2014; Mora,
Gianni, and Divitini 2017) or them focusing more on interpreting a card than on the activity it is
supposed to support (Mueller et al. 2014). Ideally, information should be written in simple,
everyday language, avoiding wording that could be difficult to understand, including jargon
(Lockton et al. 2009; Bekker and Antle 2011; Deng, Antle, and Neustaedter 2014; Mueller et al.
2014), However, in the simplification of complex concepts, detail is inevitably lost (Deng, Antle,

and Neustaedter 2014)—trade-offs are often inevitable.

Visual appearance

Visual design can be used to reinforce information architecture and improve searchability (Deng,
Antle, and Neustaedter 2014), using spatial layout, colour, iconography and typography, to make
it easy to find specific cards, categories or types of content (Bekker and Antle 2011). It should be
easy to differentiate cards (and categories) from one another (Deng, Antle, and Neustaedter
2014), and if a card is double-sided, the two sides should be visually distinct (Bekker and Antle
2011). Care should be taken with graphical imagery—some can be confusing or open to
misinterpretation (Hornecker 2010; Lucero and Arrasvuori 2010; Deng, Antle, and Neustaedter

2014).

Structure

An effective information architecture will aid users in navigating a set of cards and finding the
information they need, whether within a set or on a card. It should support easy scanning of the
card deck (or subsets of multiple cards) and of the information types upon a card (Deng, Antle,
and Neustaedter 2014. Categories have the potential to subdivide a deck of cards into
meaningful units, but should be simple (Lockton et al. 2009) and easy to understand. One way to
help physically differentiate or separate different card types and categories is through the use of

tabs (Deng, Antle, and Neustaedter 2014).

136

Method of use

Any rules for card usage should again support the purpose of the cards and reinforce target

behaviours (Lockton et al. 2009). A structured method may help (Lucero and Arrasvuori 2010;

Mora, Gianni, and Divitini 2017) but different methods for different contexts (Lockton et al. 2009;

Lucero and Arrasvuori 2010; Bekker and Antle 2011) or levels of experience (Wetzel, Rodden, and

Benford 2016) may be appropriate—some users may want more guidance than others (Mueller

et al. 2014). The learning curve for any method should not be too steep (Lockton et al. 2009).

5.3

Initial prototype

An initial low-fidelity prototype of the tool was created (Hanington and Martin 2012, 138), as an

input to the next phase of design, instantiating some of the support suggestions derived from

the empirical work in the previous chapter, as well as design considerations from the literature.

Check seating Understand Reproduce Generate Check for bad
— the system the problem more data connections
[\ it 4A2-
iy gt =®
« Are all components and T‘
wires seated properly in the + What additional data (from + Are all connections
breadboard or Arduino pins? + How does the system work? + Can you reproduce the the system) might help you stable/secure?
« If a component has multiple . \d’VHaf_ Gg f%gmﬁ d'ffedfenf parts problem? diagnose the problem? + Are any connections in
o —in ally an .
18gs, are all firmly sealed? mgetlhe[l;q i + Do you always get the same * How mlg:\t you , danger of coming loose?
* Are all cables seated behaviour? generate/observe it
properly within their ports?

Figure 43. Content from the initial prototype of the troubleshooting support tool

To populate the card deck | identified forty candidate tactics for inclusion. This list of tactics was

informed by both the literature and my empirical work, as follows.

Literature: When developing the tactics coding scheme (section 4.2.6), | undertook a
review of literature on debugging, troubleshooting and problem solving, looking for
potential strategies or tactics that might be relevant to, or could be adapted for, a
physical computing development context, or which might inspire specific patterns to
look for within the data. Sources included not only academic literature, for example,
previous work on novice, end-user and professional programming strategies and
systems troubleshooting, but also non-academic sources, for example, Arduino books,
aimed at professional software electronics

debugging books developers,

137

troubleshooting guides and handbooks for creative problem solving. | looked for
common themes within these sources, but also for domain and activity-specific
methods and techniques. | returned to this research when developing the initial
prototype of the card deck.

= Empirical work: Observing participants constructing a physical computing device had
provided insight into problems that an end-user developer might encounter. Observing
their troubleshooting behaviours had given me insight into tactics that proved useful in
diagnosis, but also tactics that were problematic or less useful. Additionally, the
recommendations for supporting end-user developers derived from my empirical work
provided ideas for general and specific approaches that might help end-user

developers, particularly in diagnosis.

| also returned to the list of circuit bugs experienced by participants. For each of these, |
considered what tactics led to successful localisation, but also considered what else
might have been helpful, taking into account the characteristics of these bugs, for
example, the directness of feedback and how visible they were to the eye. This included

tactics | had observed, but also additional ideas from the literature.

In a paired, open card-sorting exercise (Morville and Rosenfeld 2007, 255) with one of my PhD
supervisors—a physical computing expert—the forty candidate tactics were grouped into eight

initial categories.

Table 13 lists these categories, with a description of what they contained, some examples of
tactics in each category, and finally, the support recommendation(s) from study 1B (section
4.4.2) that a category related to or instantiated. The full draft list of candidate tactics is available

as Appendix I.

In addition, the deck also held four cards containing troubleshooting ‘wisdom,” and three cards
containing basic component wiring information: LEDs, TMP36 temperature sensor, and Arduino

Uno board.

138

recommendations from study 1B

Table 13. Structure and content of the initial prototype card deck, and the relationship of the tactic categories to the support

Related
Category In brief Example tactics recommendation(s)
from study 1B
Understand Identify and define the Reproduce the problem, | Recognise and define
(define) the symptoms of failure, by Check for abnormality failure; Focused analysis
problem using focused testing and of runtime behaviour /

analysing the results

output
Focused testing

Understand the
system

Familiarisation with a
system orits
requirements, in order to
understand it—to help
diagnose or evaluate

Identify / trace
dependencies; Check
the brief

Recognise and define
failure (understand
what failure doesn’t look
like)

Inspect for build
errors / faults

Visual checks, including
for common or typical
errors

Check for bad
connections; Cross-
check

Thorough inspection

Generate more
data

Generate additional data
that may be useful in
diagnosis

Measure something;
Logging statements

Focused analysis of
runtime behaviour /
output; Focused testing

Perform a test

Planned intervention or
modification in order to
test a hypothesis,
establish boundaries or
evaluate correctness

Swap working and non-
working; Change test
input

Focused testing

Try a quick fix

Common fixes that are
quick to perform, ideally
low risk and often easily
reversed

Reverse orientation;
Reseat

Focused testing; Also
inspired by the concept
of ‘good’ tinkering

Check Access useful information | Copy an example; Get Thorough inspection
component about equipment more help

wiring

Simplify Make the problem space Reduce dependencies; Problem decomposition

smaller in some way

Divide & conquer

5.3.1 Proof of concept (informal pilot)

These cards were trialled in an informal, formative pilot / proof of concept study with two
moderately experienced end-user developers (according to their own self-ratings), who develop
physical computing prototypes to conduct their PhD research. In a ninety-minute session, |
observed each use the card deck to troubleshoot buggy Arduino prototypes based on the
simplified Love-O-Meter, while thinking aloud. The main findings from this informal evaluation
were that 1) the deck contained too many categories and these could be more effective, 2)

component information was seen as very useful, 3) some content could be improved, including

139

the tactic and category titles, and the questions that were designed to act as the main source of
support, and 4) a better way to present and access the cards within their categories was needed,

including a more distinct design for the category cards.

Additionally, having observing these two moderately-experienced end-user developers using the
cards, | felt that to get the most out of the cards and the final (i.e. evaluation) study (Chapter 6), it
would be better to focus more specifically on novice—i.e., less-experienced—end-user
developers, rather than end-user developers in general, as it is reasonable to assume that less-
experienced end-user developers would also have less troubleshooting experience. This would
not preclude end-user developers with more experience from using the cards, rather it meant
that design and content could be more tightly focused on the needs, preferences and
experiences of novices, and evaluation could assess how this sub-population of end-user

developers would fare with them.

Finally, an observation in respect to studying end-user developers’ use of the cards, was that
when using these cards for the first time, future participants would benefit from first having
dedicated time in which to familiarise themselves with the deck as a whole, and the cards

themselves, before undertaking any practical tasks with them.

In the next stage of the support tool’s development, design input was sought from novice end-

user developers, this now being the target population for the design and evaluation of the cards.

5.4 Astudy to inform the design of the card
deck

Building further on my review of the literature, and informed by the pilot studies, | conducted a

small study, to help further design the card deck, through input from representative users.

I ran two focus group sessions, each involving a pair of novice end-user developers (ages ranging
from 30 to 42; one female pair, one male-female pair). All were new to Arduino and had limited
experience of both programming and electronics. Potential participants were sent a study
information sheet prior to taking part (Appendix K) and full ethical clearance to undertake the

study was granted by the university (Appendix J).

140

In a preparatory session with one of my supervisors (physical computing development expert),
the forty candidate troubleshooting tactics were discussed, one by one, and consolidated where
we agreed there to be redundancy or duplication. Together we whittled the set down to thirty-
four tactics, tentatively grouped into seven categories through another paired card sort that
used the existing categories as a starting point. Based on this set, materials were developed for

use in the focus group sessions.

During the focus group sessions, participants were asked for feedback in terms of card
information content, physical form, and visual appearance, as well as categorisation of the
cards. With participants’ permission, | video-recorded the focus groups, and took notes during

them. The notes and transcripts of the video recordings were used for analysis.

5.4.1 Focus group sessions

Participants first completed a background questionnaire capturing their experience in physical
computing and were interviewed, as a pair, about their experience of Arduino and the
environments where they typically used—or would like to use—Arduino, priming them for
considering a context of use for the cards. Participants then undertook four exercises. Pair
discussion within each exercise was guided by a prompt card, suggesting things they might wish

to consider, for example, “Are there any obvious advantages/disadvantages to ...]

5.4.1.1 Exercise 1: Physical card format

In the first exercise, the pair of participants considered four physical card formats—a smaller,
playing card size and one double that size, in both landscape and portrait orientations—and
ranked these in order of preference. Cards were blank and cut from a decent cardstock, so that
participants would focus on physical form and handling, rather than potential content or visual
design, and could experience what a deck might be like to handle—multiple cards of each
option were provided. An Arduino prototype (the simplified Love-O-Meter) was placed in front of

each participant, as it might be during an actual troubleshooting task.

Outcome: Participants much preferred the smaller cards, in portrait orientation, being a

familiar, standard playing card size and easier to handle than the larger cards:

“All card games are this size. There is a very good reason for it. They feel very nice in
the hand, and you can flick through them very easily. (PB1)”.

141

Participants thought smaller cards would take up less space and be laid out easier when there
was not much room, particularly if they wanted to work with several cards at once. They felt

landscape cards in both sizes to be harder to hold and flip through.

5.4.1.2 Exercise 2: Information content

Prior to the sessions, | created sample information content for two tactics: one a lower-level
tactic (Inspect for poor connections), intended to prompt an end-user developer to visually
inspect their circuit for a particular type of bug; the second, a higher-level tactic (lsolate part of
the system), requiring an end-user developer to think about how they might simplify and test
their prototype to narrow in the location of a bug. Each piece of content was printed on blank
paper. In the second exercise, participants were asked to consider three different types of

sample information content for each of the two tactics, and rank these by preference:

e ‘Questions to ask’—Designed to encourage thought or reflection. For example: “How
could this help you to narrow in on the cause of failure, or rule something out?”.

e ‘Can apply to'—Information to guide troubleshooting to the bug location. For example:
“Jump wire ends in breadboard holes or Arduino pins”.

e ‘Ways to apply’—Things to do, supporting specific trouble-shooting activities. For

example: “Check component legs in the breadboard”.

Outcome: ‘Questions to ask’ was ranked as most useful, followed by ‘Ways to apply’.

Encouraging reflection through the use of questions was appreciated by most participants:

"I think ‘Questions to ask ‘should be the first thing. Because that's how you diagnose a
problem... you'd start from there, right?" (PA2).

“this is what | would love to have, to spark some thinking in myself, so | could kind of

direct my investigations” (PB2).
However, an exchange in Pair A shows that even if novices see value in thinking through things
themselves, some may prefer to be told what to do. As one of the aims of the support tool is to
encourage novices to be more thoughtful troubleshooters, this response is worth noting.

PAL: "I just want ‘ways to apply’, and I'm like (mimes following the Ways to apply’

list)... but I guess I'm not thinking about what I'm doing".

PA2: "But you don't know what's the problem yet, which is why you ask the questions,
that's the way you decide.”

PAI: "I don't like it, but I think you're right"

142

PA2: "You don't want to ask questions?"

PAL: "No, I want it to tell me ‘Do this, do this’ (laughs)"

| also observed that having one main or ‘lead’ question may lead to it being treated as a binary

determinant of usefulness, rather than prompting thought:

“If the answer [to the lead question] is ‘No’, then you can ignore it (the card)" (PA2).

What I took from this is that a short summary of the tactic, using active wording, might be better
than a main/lead question, in helping novices decide whether a card is useful. It may also be

helpful in explaining why or how a particular tactic can be useful.

While participant did like the concrete instructions of ‘Ways to apply’, they appeared to assume
that both ‘Ways to apply’ and ‘Can apply to’ would act as comprehensive checklists, which is
unfeasible—a card could not contain instructions for every possible context in which a particular
tactic might be applied. There is therefore a risk that ‘Ways to apply’ or ‘Can apply to’ may lead
novices to assume these are the only things they need to do/check. Equally, care should be
taken that questions are always worded to prompt thinking, for example, Where could there be
a poor connection?’ rather than as potential things to check off, e.g. ‘Are all components seated

securely in the breadboard?’

5.4.1.3 Exercise 3: Visual design and content

In the third exercise, participants then considered 30 different designs, each for a potential front
or back of a card. As well as in size, orientation and information, designs differed in colour
coding, typography, titling (full titles and single-word titles), and iconography (including size and
location). Through discussion, each pair created three potential ‘whole card’ designs, ranked by
preference. There were no restrictions, for example, cards could be single or double-sided, and
different orientations could be chosen for the front and back of a single card. Participants could
also sketch alternative card designs, should they wish to do so—blank card was provided for this

purpose.

Outcome: All participants felt that, as novices, having iconography, categorisation and colour
coding would aid understanding, recognition, and selection, and that single-word titles were too
ambiguous. The top-ranked card created by each pair was identical: a smaller-sized, portrait-
oriented, double-sided card, with a distinct, uncluttered front (full title, large icon, brief

summary) and more detailed information on the rear.

143

5.4.1.4 Exercise 4: Categorisation (card deck structure)

Finally, in the fourth exercise, participants performed a card sorting exercise, using the set of 34
tactic titles and seven category titles, in order to inform the information architecture of the card
deck. This was a closed card sort, as it was felt that having prompts for category names would
be more likely to lead to some consensus across the two groups, than allowing novices to create
categories for tactics with which they may not be familiar, however, participants were free to
suggest new category names, or changes to existing ones. Working through the set, participants
discussed each tactic and, as a pair, agreed on which category to put it into. If unsure, they could

also place tactics into a “?” category.

Outcome: While both pairs sorted most tactics into the categories to which | had originally
assigned them (Pair A 26/34; Pair B 20/34), this exercise helped to identify some confusing or

ambiguous wording and the need for some categorisation changes.

5.5 The Tactical Troubleshooting toolkit

Informed by the findings of the focus groups, the card set was revised. Twelve tactics and two
categories were renamed or reworded slightly, to make them easier to understand (for example,
changing ‘Check the type’ to ‘Check the type(s) used’, as focus group participants had
misinterpreted the former as ‘check the (typed) code’). Five tactics were also reassigned to
different categories and three categories removed. Further discussion led to a new category of
tactic: ‘Stop... think’, explicitly encouraging thinking/reflection, and the addition of two new

tactics.

As well as tactics, the card set also included two other types of card: Best Practice cards
(previously referred to as troubleshooting wisdom), in their own category, and Component cards,
assigned to the Get Help category, as they contain information about specific components—
these latter cards were not used in the final study of this thesis (Chapter 6). The list of cards used

in the final study is available as Appendix L.

The troubleshooting card set currently comprises 46 cards: 36 Tactics cards and four

Component cards in five categories, as well as six Best Practice cards. (see Table 14, Figure 51;

144

Figure 52). Additionally, each category has what is essentially a header or index card, which |

refer to as Category cards (e.g., Figure 46). There are therefore 52 cards in total.

Table 14. Card categories and their contents

Category Contents Description

Analyse runtime | 1x Category card Tactics encouraging end-user developers to define

behaviour /data | 8 x Tactic cards symptoms of failure, and analyse runtime behaviour or
output in a targeted way, including through the use of
specific tools.

Inspect 1 x Category card Tactics to make end-user developers aware of specific

hardware / 14 x Tactic cards types of inspection they can perform—what they can

software look at and why. Most are essentially hypotheses for

where faults may lie, including common problems,
instantiated in the form of tactics.

Conduct a test

1 x Category card
7 x Tactic cards

Tactics encouraging end-user developers to perform
specific tests which may help them to diagnose their
problems, localise faults, and evaluate behaviour, as
well as approaches to help them narrow in more closely
on areas of functionality that may contain faults. All of
these tactics involve making changes of some kind.

Stop... think 1 x Category card Tactics encouraging end-user developers to take a step
4 x Tactic cards back from action, to think or reflect instead
Get help 1 x Category card Tactics suggesting ways in which end-user developers

3 x Tactic cards
4 x Component cards

might use external help, as well as cards containing
information about common components and how to
use them—currently these only include components
used in the Love-O-Meter prototype.

Best practice

1 x Category card
6 x Best Practice cards

Each card instantiates a piece of good practice that
end-user developers should bear in mind when
troubleshooting.

Figure. 44 shows the front of a card from each category. Images of the full set of tactics and best

practice cards (front and back) can be viewed as Appendix M. The cards will now be described in

greater detail.

_ > E— o) =
Identify the Isolate part onsider Compare to K K
symptoms Check of the system || Similar / familiar " exampl aep frac

orientation Yy problems an example
* S || s .o || zer || 2
: 3% || W& &
u oo Keep track of things you've fried
Recognise (and be able Make sure that " Think about whether you've se an example fo judge and what the results were
to describe) what fallure components are seated Iﬁf :y:gzli;ﬁ::lg?ozf sean thig problem bafore, or whether something is Make & note {mental ar written) of
looks like - what is and the right way around from the rest something iika iL and what correct what did/didn't work and under
st working that could tell you what circumstances.

Inspect hardware / software

Analyse run-time behaviour / data

Conduct a test

145

—cT—

Figure. 44. An example card from each category

5.5.1 Tactic cards

Physical form: The tactic cards (Figure 45) are rectangular, and of standard playing card
dimensions (64mm x 89mm)—a familiar size that is easy to hold and manipulate, including when
holding multiple cards. Cards are cut from a decent-quality card stock that allows easy shuffling
through multiple cards—several types of card stock were physically tested in order to establish
this—and card corners are rounded, for easy handling (section 5.6 discusses the production
process in greater detail). Cards are double-sided, and content on both sides is portrait-
oriented, making it easy to simply turn over a card and read the content without further

reorientation.

Information content: The cards aim to scaffold end-user developers’ troubleshooting of
problems—particularly circuit bugs—in physical computing prototypes, and therefore, contain
content useful to this process—tactics which can be used to diagnose and fix bugs, and evaluate
the success of any fix attempts. As described in section 5.3, the choice of tactics was informed by
the empirical studies described in Chapter 3 and Chapter 4, as well as academic and non-
academic literature on novice, end-user and professional debugging, physical computing,
systems troubleshooting, electronics troubleshooting, and general and creative problem

solving.

As different types of approaches can be useful in troubleshooting, including both system-
specific procedures and common problem-solving techniques (Gick 1986), the tactics in the card
deck deliberately vary in their specificity—some, for example the ‘Serial Monitor’ card, are
specific to some aspect of circuit bugs, physical computing or the Arduino platform, while others
are more general, for example problem-solving tactics such as ‘Divide and Conquer’. Also, while
some tactics are very practical, including tactics for localising common circuit bugs, such as
‘Check orientation’, others, such as ‘Question Your Assumptions’, are more thought-provoking or
vague. Where appropriate, tactics are also worded in such a way that they might be adapted to
different contexts, for example, ‘Check Values’ could apply to the size (in ohms) of resistors used
in a circuit, variable values within a program, or the values of settings configured within the IDE.
Therefore, much of the content in the card deck is relevant for troubleshooting physical

computing problems in general, not just circuit bugs.

146

m Question your assumptions

What you're taking for granted

Qu estion you r ? might not be as true as you

think.
H Think about where you are
assumptlons making assumptions and then

check how valid they are.

? A Think about...

* How sure are you that your
current thinking is correct?
« What are you assuming or

taking for granted?

Think about what you * What are you relying on as true

might be taking for granted that might not be?
and Whe,ther you n?Ed ,to * How can you find out if your
reconsider / question it assumptions are correct?

Stop... think Stop... think

Figure 45. Tactics card design, front (left) and rear (right)

Both sides of the tactics cards contain information—adopting a layering approach
(Shneiderman 2003), with simple information on the front—title, icon and simple description,
i.e., enough to give a novice end-user developer some indication of what the tactic is about—

and more detailed information on the rear.

At the top of the rear of the card is a short explanation of why or how a tactic might be useful,
providing context for its adoption. Beneath this, rather than a list of instructions, there is a
bulleted list of questions, to guide end-user developers in using the tactic. These questions are
deliberately worded to prompt thinking or reflection (Morgan and Saxton 1991, 63), reinforced
by the title of this panel, i.e, Think about...’, and are similar to the prompts used to help
participants overcome their difficulties, in Perkins and Martins’ study of novice programmers’

knowledge and strategies (Perkins and Martin 1986).

Wording of all titles, descriptions/explanations and questions uses simple, everyday language,
avoiding jargon where possible, although in some cases, terms common to physical computing
have been used—for example, ‘pinout’—to enable end-user developers to use these terms in
searches for external help—where domain-specific terms have been used, the description,
written in simple language clarifies their meaning. Titles and descriptions are succinct, so as not
to overwhelm end-user developers with too much information, or take up too much space on

the card.

147

Visual design: Visually, the cards have a simple but striking and eye-catching design, making
good use of white space and different sizes and weights of typography to draw attention to—
and differentiate between—areas of content. The two sides are visually distinct, making it easy

to determine, at a glance, which side is currently visible.

The front of the card contains three main elements: the title, in a large, bold font, a black and
white icon, and a short explanation of the tactic, in the form of a simple summary of what using
the tactic will entail. | chose black and white icons from the Noun Project icon repository (‘Noun
Project’ n.d.)—simple rather than complex imagery—with each relating to the title of the card in
some way, in some cases playing upon the wording, to aid memorability, for example, an image
of a wooden log on the ‘Logging (Print) Statements’ tactic. These icons serve as visual interest,
breaking the monotony of text, but also act as secondary information that can help an end-user
developer to interpret the meaning of the card, and aid in recognition, including when an end-
user developer is scanning or shuffling through several cards, or when a card is turned over—a

smaller version of the icon is repeated on the rear of the card.

Colour-coding is used to differentiate between different categories of cards, using a colour
scheme designed for maximum visual difference (Harrower and Brewer 2003)—each card is
bordered in the colour of the category to which it belongs, and bands of the same colour are
used to separate the different panels of content on the rear. Additionally, the tactic title is
repeated in a small, unobtrusive font size at the top of the rear of the card, and the category

name appears at the bottom of both sides.

Structure: Informed by the focus groups with novice end-user developers, the tactics are
organised in five categories: ‘Inspect Hardware/Software’, ‘Analyse Runtime Behaviour/Data’,
‘Conduct a Test’, ‘Get Help” and ‘Stop... Think’. The number of tactic categories was deliberately
kept small, so not to overwhelm novice end-user developers with too many options. Category
titles are worded to indicate the main type of activity involved in the cards they contain, for
example, ‘Inspect...” implies visual inspection, while the ‘Conduct a Test’ category deliberately
classifies some of the good speculative changes observed in the previous empirical studies as
‘tests’ to reinforce a more thoughtful, hypothesis testing-focused approach to these kinds of

changes.

148

5.5.2 Category cards

The category cards act as header or index cards (Figure 46) for the categories of tactics cards
and the Best Practice cards category. As described in the previous section, colour is used to
visually differentiate the different categories, and the category cards are slightly taller than the
other cards, so that the titles are visible above them, facilitating visual scanning of the category
names, and easy selection of cards in a particular category. On the rear of each category card is
a bulleted list of the cards that the category contains, making it easy to visually scan the content

of each category, including when the cards are placed in a stand (Figure 50).

Inspect hardware In this group
| software

@ Analyse the program / circuit
@ Trace / identify dependencies
@ Cross-check between things

B
Keep track

@ Check circuit completeness
@ Check power
@ Check component pinout
@ Check for poor connections
@ Check order (spatial)
@ Check orientation
@ Check the type(s) used
Can you find the source of @ Check the value(s) used
the problem by looking at @ Check for special cases / uses

what's been implemented, or @® Check for missing things
what it's created in/on?

Keep track of things you've tried

and what the results were
@ Check location of the failure .
Make a note (mental or written) of

what did/didn't work and under
what circumstances

See also

[Gethelp
Inspect hardware / software

Figure 46. Category card design, front (left) and rear (right) Figure 47. Best Practice card design

Best practice

5.5.3 Best Practice cards

A sixth category of cards—Best Practice’—contains cards which suggest best/good practice that
should be followed when troubleshooting, for example, ‘Keep track’, which encourages end-user
developers to keep track of their troubleshooting actions and the results of these efforts. These
cards (Figure 47) follow a similar design to the tactic cards, but are currently single-sided and
contain a description rather than questions, as the aim is to inform, rather than to prompt

thinking something through.

149

5.5.4 Component cards

The component cards (Figure 48) provide information about specific components—currently
these are components used in the Love-O-Meter prototype: Arduino board, LED, resistor and
TMP36 temperature sensor. These cards are larger (89mm x 128mm), as they contain far more
information and more complex imagery, including component pinout images, specifying correct
connection types, and basic circuit wiring information, as well as other information key to using
or controlling the component. These cards were not used in the final study (Chapter 6), as the
focus of that study was on use of the tactics cards (see section 6.2.4.5), my main interest being in

supporting the troubleshooting process (see section 7.3).

Arduino UNO c1)
development board

« The Arduino is connected to the computer via the USB connector.
« 13 x digital input/output pins.

« * Digital pins 0 (TX) and 1 (RX) can also be used for transmitting
& receiving data between the computer and the Arduino board.

+ 5x analog input pins.

« 2 x ground pins (one on either side of the board)

« 2 x power supply pins (5V and 3.3V)

« The power LED lights up when the Arduino board receives power.

« The TX and RX LEDs light up when data is being transmitted or
received between the Arduino and the computer.

« The on-board LED mirrors activity on digital pin 13.

« Pushing the reset button will reboot the Arduino

- Reset button |

Digital
input/output
pins

[*TX & RX pins

Get help: Component & wiring info

Figure 48. Component card design

5.5.5 Playmat

The findings from the analysis reported in Chapter 4 suggested that end-user developers might
benefit from support in structuring and planning their troubleshooting. Inspired by boardgames
and some card games, | designed a playmat (Figure 49) that novice end-user developers can use

to help structure and support the process of troubleshooting.

150

A playmat is, generally, a portable surface upon which cards and/or other relevant items can be
placed during a game. Playmats may be plain, or purely decorative, but for some games
playmats contain designated areas—zones—in which cards can be placed, whether for

organisation/storage, or to support and/or guide the method or rules of play.

The playmat designed for the troubleshooting toolkit gently guides end-user developers
towards using the cards in a systematic way. It does this by providing two specific, demarcated
areas/zones in which cards can be placed: 1) a ‘shortlist’ area (Ideas), to hold a selection of
potential tactics to try—thus encouraging end-user developers to plan their actions, considering
and prioritising different options/hypotheses—and 2) an ‘active’ area (Current), to hold the
current card(s), that is, the chosen line of enquiry. Each of these zones is just slightly larger in

dimensions than the tactics cards, visually implying that cards should be placed on them.

The playmat additionally serves to remind end-user developers of good troubleshooting
process: a flowchart in the centre of the playmat reinforces the cycle of ‘Diagnose - Fix >
Evaluate’, encouraging end-user developers to diagnose before attempting fixes, and then to

evaluate the result of any fix attempt before any further action.

1. DIAGNOSE ﬂ.}

IDEAS (SHORTLIST) (dentify the symptoms o CURRENT (ACTIVE)

of failure, then localise
the cause of them 'm'\

¥
‘% . ﬁ;keFlinges to i

resolve the problem "l_j“,.a

' ' 3. EVALUATE
Determine whether
‘ the fix attempt was ﬁ{?

successful

Figure 49. Troubleshooting toolkit playmat

151

5.5.6 Card stand

Finally, to hold and display the cards in a structured, space-efficient way, | 3D modelled and 3D
printed a three-tier stand (Figure 50). When cards are placed in the stand, within their categories,
it provides end-user developers with visual prompts about the different tactical approaches
available to them and makes the cards in a category easier to access. There is an additional,

wider slot on the third tier, to hold the larger component cards.

~ ¥ pgestpractic® |
Get help /1

Figure 50. Card stand

5.6 Card production process

In parallel with the design research, the production of the cards evolved, through
experimentation with different materials and methods. While conscious that | was developing a
prototype, | also wanted to ensure that the production quality of the cards would not negatively
affect any use or evaluation of the tool as a potential support medium in the final study, and that
it would afford the types of handling that are associated with card use, for example, holding,

fanning, dealing, picking up, stacking and shuffling.

The earliest prototypes were simply printed on A4 printer paper and cut to size with a rotary
guillotine, but these ‘cards’ were too flimsy to handle effectively. Heavier weight paper (light
card) was better, but still had too much friction, for example, when shuffled or fanned. Clear
plastic protective card sleeves also improved sturdiness while retaining flexibility, however

slipperiness of the sleeves, even matte versions, affected both shuffling and stacking into piles. |

152

sourced several different weights and textures of card stock, cutting and testing the handling of
multiple blank cards. A linen-textured card stock, similar to that used in some professionally

manufactured playing card decks, proved optimal.

Card designs were created in Microsoft PowerPoint—the use of Slide Masters to compose design
templates made it easy to add new cards, or rapidly change the design of all/multiple cards at
once. | later experimented with the use of Adobe Illustrator, as a more professional design tool,
but PowerPoint proved simpler and more efficient for my workflow. This also meant that the
designs could be easily adapted by anyone with access to commonly available software and

basic presentation editing skills.

When, as a result of the design focus groups (section 5.4), the card design became double-sided,
this presented further challenges. Reliably accurate print registration proved too difficult to
achieve when printing double-sided with a home inkjet printer. Better results were achieved by
printing both sides single-sided—Appendix M shows these designs at a smaller scale—and then
folding the cards, which meant sourcing a lower weight of linen-textured card stock, to avoid the
cards being too thick. Rounding corners with a corner cutter tool, also for better handling,
proved laborious with a large number of cards, as was even cutting the straight edges with a
guillotine. | therefore | designed a round-cornered cutting template for use with a Cricut Maker

die cutting machine.

For the support toolkit used in the evaluation study (see section 6.2.4.5), the card designs were
printed onto lightweight linen textured card stock and a Cricut Maker machine used to
automatically cut out multiple cards at once. Card designs were then folded in half and spray
glue used to join the two sides. Finally, both faces of the cards were sprayed with a very thin coat
of clear resin, one which did not affect shuffling or print quality, to protect the printed design

and prevent smudging (for example, due to handling) that might affect text legibility.

5.7 Discussion

In this chapter | have described the design, development and production of a novel, physical
card-based tool to support novice end-user developers in troubleshooting physical computing

problems during development, particularly those related to circuit bugs.

153

The general aim of the card deck is to provide novice end-user developers with a wide range of
troubleshooting tactics that can be used to improve diagnosis of physical computing problems,
fixing of bugs, and evaluation of fixes, and to facilitate thinking/reflection during this process.
The goal is not to give exhaustive and prescriptive checklists of instructions, but rather to

encourage a creative and exploratory approach to troubleshooting.

The troubleshooting card tool was inspired by popular creativity-support card decks, and
content was informed by empirical work to identify the problems that end-user developers
encounter when developing a physical computing device, and analysis of their natural
troubleshooting behaviours, as well as a review of the academic and non-academic literature on
software debugging, hardware troubleshooting and general problem solving. The design of the
card deck was informed by a design review of the literature on card-based tools, identifying key
considerations when designing card-based tools, and focus groups with novice end-user

developers.

The next chapter describes an evaluation of these cards in a study with novice end-user
developers. In this study, I investigate the role that these cards might play in a troubleshooting
process and any effect on the outcomes thereof, as well as how support in this medium might

be perceived by novice end-user developers.

154

A. Tactic cards (front sides only)

how it works

Inspect hardware / software

are complete

Inspect hardware / software

types of connections have
been used for a component

Inspect hardware / software

connections are properly
seated and secure

Inspect hardware / software

) =)) :
Analyse the Check circuit Check Check for poor Check for Check if
program / circuit completeness component connections special cases something’s
J, pinout [uses missing
63 || o & wi
o] i
> T
Analyse th , circuit Make that the circuif N p ” i
or both, 0 see how t 5. (a:deaﬁlgfeils pos :;Lc:sn) Check whether the right Make sure all e e oo oY ool mpartantor nccessary o
constructed, what it does &

cases or properties of things
which might be having an
effect

Inspect hardware / software

important or necessary is
missing from the system

Inspect hardware / software

the system where failure was
observed

Inspect hardware / software

connected or implemented
in the right order

Inspect hardware / software

Make sure that
components are seated
the right way around

Inspect hardware / software

powered and that there is
enough power, of the right
amount, to all parts of it

Inspect hardware / software

- = =)
Check location Check order Check Check power Check the Check the
of failure (spatial) orientation type(s) used value(s) used
e (2| e ||
= N X
I
Look for arrors In the part of Make sure that things are Make sure the circuit is

Make sure that the right
types of things have been
used

Inspect hardware / software

Check whether the values
used (in hardware and/or
software) are appropriate /
correct

Inspect hardware / software

o
6 OG2

Make sure that things in
different places match
where they are

Identify what affects what
and what is affected by what.
\ o

Inspect hardware / software

between things

Inspect hardware / software

Systematically reducing
the system, until you've
found the source of the
problem

Conduct a test

Test a smaller portion of
the system, in isolation
from the rest

Conduct a test

) B o) @) Red)
Cross-check Trace / identify Divide & Isolate part _Redo Reduce
(between things) | | dependencies conquer of the system (reimplement dependencies

the same way)

Reimplement something in
exactly the same way, to see
if it fixes the problem

Conduct a test

L 3K
{ 'R
144
i
Reduce the number of
factors potentially affecting

/influencing behaviour or
output

Conduct a test

o)

R

R |

Restart Swap working Test for a faulty Analyse Analyse Analyse
. & non-working component conditions frequency / normality
I e consistency
: @
O: O cﬁg ® & Ra
(S
Try restarting (or Conduct a test to if)
a ¢ . onduct a test to see if a Look at th .
’”‘;2",}%{;";‘2;’,‘;’,? to use f:;‘if‘:;;:‘:; works component s fauly oondition(;_(()ci::um:h_anoes) Look at the pattem of hgi‘)egr::i::‘f/‘ :‘airréi:‘is
disappears doesn't work under which behaviour or avious or output normal or abnormal
output occurs over time
)))))
Analyse Identify the Logging Measure Serial Compare to
sequence symptoms (print) something Monitor an example
o statements Dem
“ °
Py ? >—

(o B

Look at the sequence of
behaviour or output

Recognise (and be able
to describe) what failure
looks like - what is and

Analyse run-time behaviour / data Analyse run-time behaviour / data Analyse run-time behaviour / data Analyse run-time behaviour / data Analyse run-time behaviour / data w

isn’t working

&

Use ‘print’ statements to
output hidden run-time
data to the Serial Monitor

Use a tool to expose hidden
data and/or see if something
is working as expected

Use the IDE’s Serial
Monitor window to view
data outputted by ‘print’

Use an example to judge
whether something is
correct

Figure 51. Tactics cards (front sides only)

155

statements in the program

B. Category cards

Inspect hardware
| software

\

Can you find the source of
the problem by looking at
what's been implemented, or
what it's created infon?

See also

W Gethelp

Analyse run-time
behaviour / data

o

e

taes

Whatis happening at
run-time, e.g. behaviour
or output / data?
What does it tell you?

See also

M Conductatest
W Gethelp

Conduct a test

g
(855

What could testing
'something tell you?
What tests might be useful?

See also

M Analyse run-time behaviour / data
1 Gethelp

9
Q]

Take a moment to think about
the problem and how else you
might diagnose or resolve it

See also

W Gethelp

Get help

What could other resources
tell you?
What other information do
you need and where can
you find it?

See also

M stop... think.

Best practice

Useful and important things
to bear in mind when
troubleshooting

C. Best practice cards

)
Avoid haphazard
trial & error

Changes that aren't thought
through may not only not solve a
problem, they also add new bugs

It better to focalise the cause of
failure before trying to fix i, or to have
aclear idea of what a change might
‘achieve or tell you

Best practice

)

Diagnose, Fix,

Evaluate result

Follow the steps in order.

If the problem isn't fixed, retum

to diagnosis

Best practice

)
Keep track

Keep track of things you've tried
and what the results were
Make a note (mental or written) of
what did/didn't work and under
what circumstances

Best practice

D. Component information cards

—

Make it easy
to undo

If you want to try something,
make it easy to get back to
where you were.
Commenting out lines

instead of deleting them is a
good example of this

Best practice

One ‘fix’
at a time

.

It's easier to see (or test) the
effect / result of a single fix
attempt.

They are easier to track
They are easier to undo

Best practice

Undo failed —
‘fixes’

ES)

If you try something and it doesn't
work, change it back, or you might
make the problem bigger and
more difficult to solve
BUT bear in mind you may have
partially solved a problem or
solved one of multiple problems!

—

TMP36

——————————
Arduino UNO

development board

LED

Resistors
(light-emitting diode) . Rei\slovs vsslnn or limit the flow of current

i PRYITEE

temperature sensor

\

the

+ 13 x digital input/output pins.
o 1

&

* 5 analog input pins.
+ 2.x ground pins (one on eiher side of the board)
+ 2x power supply pins (5V and 3.3V)

received between the Arduino and the computer.
+ The on-board LED mirrors activity on digital pin 13
+ Pushing the reset button will reboot the Arduino

Power jack |-

+ The power LED lights up when the Arduino board receives power.
+ The TX and RX LEDs light up when data is being transmitted or

U8 connector

cant
> |4 Anode

s o

+ Usually an LED's anode is
connectedto

Ground source.

LED wiring - simple configuration

power source and
the cathode is connected to a

+ LEDs are diodes. Current

e ity of s el e comet
tin ohms -the symbol

direction.

+ Astandard LED usually has 2
legs: an anode and a cathode.

+ The cathode of a standard
LED is often shorter in langth
than the anode.

control an LED, the source of

TX&RX
LEDs

Oigital
| input/output

pin.
using the Arduino

+ Depending on the LED.
specification and circuit

+ The LED can then be controlled

digitalirite() function.

configuration, an LED may need a

Analog H
input pins. ")

Get help: Component & wiring info

[FX&xpins |

an appropriate value

resistor (connected in series with
o

prevent it from drawing too
urtent. The resistor should be of

much

Get help: Component & wiring info

 Fixd resistors are the most common type.
They have 3 main uses:
' LeDs)
2.Dividing oltage between parts of a cicuit
3.Contolinga time delay
Wiring
* UnboLEDs, sndar

resistors d o0
ey ey condct (o1
resist) current equallyin

ol drecions, o canbe
connaciedtohe oot
e arcton, () (ow) o) (o)
- When used vih LEDS, 5
resiorsshoud b oran
Sopropnaavalue - 300
St

Rositorsyrbolin

Resistor values

+ Resistance value is shown
by a series of coloured
bands, read from leftto ight.

+ There is usually a space
between the multplier band
and the tolerance band.
“The higher the value, the

the resistance.

Get help: Component & wiring info

Fatsile + The TMP36 temperature sensor
is an analog sensor.

+ Ithas 3legs: one for the signal
(voltage out), one for power
(voltage in), and one for Ground.

+ You can change the
temperature read by

votagen Y R
e osn Tasingetesag e sans.
o

Ground

TMP36 wiring — simple configuration

* Withthe fla side of the sensor
facing towards you, connect the

* Leftleg to a power pin, e.g.5V.

+ Middle leg to an analog pin —
the pin the program willread

* Rightleg to a Ground source.

* The senorcanthen b read
using the
Shatogrand () function

+ Because it s an analog sensor,
readings willbe in the range 0-
1023, depending on the
temperature (40°C 10 125°C)

+ NB: If the program converls the
readings to voltage, Celsius or
Farenheit the conversion
calculation needs 1o ake the

power pin voltage into account,

Get help: Component & wiring info

E. Playmat

F. Cards stand

IDEAS (SHORTLIST)

1. DIAGNOSE

Identify the symptoms
of failure, then localise
the cause of them

® nE

&

¥
2. FIX

Make changes to

resolve the problem "U!L&

v

3. EVALUATE
Determine whether
the fix attempt was
successful

O

CURRENT (ACTIVE)

ur / dat:

Analyse run-time

Figure 52. Category cards (fronts only), Best Practice cards, Component cards, Playmat, Card stand

156

Chapter 6

Evaluating the troubleshooting support cards
with novice end-user developers (Study 2)

6.1 Introduction

This chapter describes and reports an evaluation of the physical card-based support tool
(Chapter 5), in a study with novice end-user developers. The study addressed the following

thesis-level research question:

TRQ4 What role might a card-based tool play in supporting end-user developers in
the process of troubleshooting circuit bugs in a physical computing prototype?

| broke this down into two study-level research questions:

RQ1l: What effect does a physical card-based support tool have on end-user
developers’ success in troubleshooting circuit bugs in physical computing
prototypes?

RQ2: How do end-user developers view the physical card-based support tool, having
used it to troubleshoot circuit bugs in physical computing prototypes?

6.2 Method

6.2.1 Overview

To answer the research questions, I conducted an empirical, within subjects user study in which
twenty novice end-user developers—Arduino users—each undertook two hands-on

troubleshooting tasks—one with and one without the support tool—while thinking aloud.

157

In each task, participants had a set amount of time to locate and fix preseeded circuit bugs in an
Arduino prototype—each a prebuilt instantiation of the simplified Love-O-Meter device used in

my first study—until its behaviour met a given specification.

| collected a range of data for this study, including video recordings of the tasks, as well as a

questionnaire and interview capturing participants’ opinions of the support tool.

While the results report a comparison of performance measures such as task success and bug
fixing success, analysis focuses, for the most part, on the qualitative analysis of participants’

subjective feedback about the support materials.

6.2.2 Study design

The main goal of the study was to evaluate the card-based support tool. | therefore chose to
conduct the evaluation as a user study or usability study—"Representative users attempting
representative tasks in representative environments, on early prototypes of computer interfaces”
(Lazar, Feng, and Hochheiser 2017; citing Lewis 2006)—in which the support tool—the
prototypical interface in this instance—was assessed through observation of hands-on use and

the analysis of feedback about the experience of using it.

| considered—and rejected—several alternative methods. For example, as | wanted to directly
observe participants using the tool, rather than only relying on subjective feedback, | decided
against a diary study. | also considered whether to observe end-user developers troubleshooting
in pairs, but rejected this as adding complication to recruitment that | was already concerned
about (section 7.2 discusses some of the challenges | encountered when recruiting for my

studies).

A Within Subjects study (Lazar, Feng, and Hochheiser 2017, 49) in which each participant
undertook tasks with and without the support tool, would allow me to compare performance
measures. It also meant that participants would have experienced troubleshooting with and

without the support tool, and could consider this in their feedback.

Other factors played into my choice of a Within Subjects, rather than a Between Subjects study
design. Recruiting my quota of twenty participants had not been easy in the first study. In a
Within Subjects study, all participants would experience the support tool, providing the

maximum number of data points in respect to the research questions; this might also be useful

158

for further refining the design of the tool. Secondly, a recognised challenge when studying
development is that variability in skill/expertise of developers can affect results (Ko, LaToza, and
Burnett 2015), for example, performance and user experience data. One way to control for this is
by ensuring that participants recruited are equally skilled, however, besides my recruitment
concerns, to my knowledge, no reliable measure of expertise in physical computing exists as yet,
and it would have been impractical to design and validate one within the constraints of my PhD
work. Also, the effect of different experience, for example, previous exposure to certain bugs,

could also affect results. A Within Subjects design minimises the effect of individual differences.

One disadvantage, however, is the potential for a learning or transfer effect across conditions,
which can also affect results. Counterbalancing—varying the order of exposure to conditions—is
a typical way to mitigate this. In this study, | counterbalanced the order of exposure to the
support tool—participants were randomly assigned to one of two groups, determining whether
they had access to the support tool in the first or second task. However, as both task prototypes
were based on the simplified Love-O-Meter device, a learning effect still seemed likely. Despite
this, | chose to proceed with this study design, for reasons explained further in Section 6.2.4.5 (in
Buggy prototypes), taking care to minimise the learning effect to the greatest degree possible, for

example in the design of the two prototypes and the order of exposure to them.

6.2.3 Participants

Once ethical clearance had been granted by the university (Appendix N), twenty adult, novice
end-user developers were recruited.

Table 15 shows the inclusion/exclusion criteria used to screen prospective participants.

Eligibility was narrower than in the first study, in respect to expertise—participants must have
had at least some experience of using Arduino, but also had to consider themselves to be novice
Arduino users. In addition, they also had to consider themselves to be novice in either
programming or electronics, or both. As before, participants needed to be end-user developers
in physical computing and should have been exposed to using LEDs and at least one type of

analog sensor.

159

Table 15. Study 2 inclusion/exclusion criteria for participation

Inclusion criteria Exclusion criteria

Adult: Aged 18 or older Aged under 18

At least some practical (hands-on) experience of No practical (hands-on) experience of using
using the Arduino platform, with, as a minimum, the Arduino platform.

both of the following (although not necessarily in

the same project):

= Exposure to using LEDs in an Arduino Exposure to using either LEDs or analog
project AND sensors in an Arduino project, but not both.

= Exposure to using at least one type of
analog sensor in an Arduino project

End-user developer: Has only developed physical ~ Previously or currently

computing prototypes/devices for own use. employed/commissioned specifically to
develop physical computing
prototypes/devices.

Novice in programming, electronics or both Expert in programming and electronics

Able to attend a 1.5-hour session in-person Unable to attend a 1.5-hour session in person

6.2.3.1 Recruitment

Participants were recruited via hackspaces and other Maker community groups, using flyers
(Appendix O) and mailing lists, and through personal networks. As | wanted to recruit novices, |
also targeted university programmes where physical computing was taught. The timing of the
study meant that data gathering coincided with earlier weeks of first semester teaching, which
was ideal for catching potential participants at exactly the right time in their studies—they
would, by this stage, know enough to take part, but not enough to be considered too
experienced. The call for participation was also posted on social media (Twitter and Facebook)
at regular intervals, and others were asked to share these posts with their networks. A poster
was also put up at several universities. Given the time commitment required (2 hours), | offered

participants an incentive of a £20 Amazon gift voucher as a token of thanks for taking part.

All respondents were sent a copy of the participant information sheet (Appendix P) explaining
the study and eligibility criteria in full, as well as what participation would entail, so that they
could determine their eligibility and make an informed decision about whether they wished to
participate. Respondents who met all of the criteria for participation were invited to attend an

individual session, lasting two hours, in the Interaction Lab at City, University of London.

160

6.2.3.2 Who took part?

A background questionnaire (Appendix R, described further in section 6.2.4.2) was completed by
participants at the start of the session they attended. It captured participant demographics, as
well as data about experience, perceived expertise (self-rated) and training. Data from the
completed paper questionnaires were entered into an Excel spreadsheet. Length of experience
was converted to a decimal figure (years), and all data were summarised using descriptive
statistics. Table 16 shows the age, gender and occupation of those who took part. See Appendix

W for a table summarising the remainder of the data.

Twenty novice end-user developers took part in the study—10 male and 10 female, all adults,
ranging in age from 20 to 51, with a mean age of 32.75 years (SD=10.84). | will now describe the

sample in greater detail.

Table 16. Study 2 Participants

Ptc Age Gender Occupation

P110 41 Male Web Developer

P120 28 Female PhD student (Media & Art Technology)

P130 26 Male Masters student (Human-Computer Interaction)
P140 39 Male Electrician

P150 21 Male Undergraduate student (Biomedical Engineering)
P160 21 Male Undergraduate student (Engineering)

P170 35 Female Creative

P180 51 Female Sound engineer

P190 21 Male Undergraduate student (Computer Science)
P200 38 Male Charity consultant

P210 31 Male Lab technician

P220 48 Female Masters student (Computational Art)

P230 20 Female Undergraduate student (Mechanical Engineering)
P240 51 Female Masters student (Computational Art)

P250 20 Female Undergraduate student (Creative Computing)
P260 28 Male PhD Student (Media & Art Technology)

P270 47 Female Finance

P280 21 Female Masters student (Design)

P290 37 Male Freelance educator (Primary school)

P300 31 Female Research Fellow (Human-Computer Interaction)

161

Occupation

Eleven participants were students (four Undergraduates, four Postgraduate Masters students

and two PhD research students), while nine were primarily working/employed in some capacity.

No participant had ever been employed as an electronics engineer, although one (P140) stated
their current occupation as ‘Electrician’—in the screening they had only mentioned having had
some exposure to practical electronics and did not consider themselves to be an expert. Two
engineering students (Undergraduate) took part, but both reported having little programming

experience.

Four participants had been employed as programmers at some point—one was employed as a
web developer at the time of the study, while two were Computer Science students (MSc and
BSc, respectively), and one was employed as a HCl researcher, although without any

programming responsibilities.

Training / instruction

Over half of the participants had received some sort of training or instruction in Arduino
(14/20)—ten in the form of a university/HE institution module (previous or current), three only
attended short workshops, and one only reported using online materials)—with slightly fewer
(12/20) having had training/instruction in electronics. All participants, however, had received
some form of training/instruction in programming and for sixteen this had been in the form of at

least one module at university or another HE institution.

H B
M Yes
12

=N
o O

20
14

Participants (n)
=
(@)

(@)

(@)

Arduino Electronics Programming

Figure 53. Participants' training

162

Length of experience

On average, participants had been using Arduino for less than half a year (Mean=0.47 years,

SD=0.35), but had twice as much electronics experience (Mean=1.04 years; SD=0.65) and again

more programming experience (Mean=2.54 years; SD=2.64). There was far more variance in

participants’ length of programming experience than in their electronics or Arduino experience.

Table 17. Study 2 Participant length of experience (in years)

Time spent (in years) Mean SD
Arduino 0.47 0.35
Electronics 1.04 0.65
Programming 2.54 2.64

Self-rated expertise

Years

10

M Arduino
[Electronics

Programming

i B

Figure 54. Participants' length of experience (in years)

Participants also, on average, rated their programming expertise highest, their electronics

expertise to be lower, and perceived themselves least skilled in the use of Arduino, although

there was approximately twice as much variance in the electronics and programming expertise

ratings than there was in respect to Arduino. Only two participants rated themselves as

complete beginners (rating=1) in any of the three areas (electronics: P110 & P180) and no

participant considered themselves to be a complete expert in any of the three skills.

Table 18. Study 2 Participant perceived expertise (1-7)

Perceived expertise Mean SD Median
Arduino 2.70 0.73 3.00
Electronics 2.95 1.32 3.00
Programming 3.70 1.42 3.50

163

Rating

NWw Ao

M Arduino
[Electronics

Programming

i

Figure 55. Participants' self-rated expertise

@ Arduino M Electronics Programming

;
6 |
=5]
()]
34 * n . | =
2
23 = e AR 2R L 2 L 2] L 2 L
&
12 @ | AR 2R ORR JRORR 2R 2R J L
1 | [|
o o o o O O O O O o o o o o o o o o o o
— N o < .n © N~ oo o o 4 N OO 9 O .n O >~ oo o o
- =4 =4 4 -4 4 4 — A o~ o~ N NN N N N M
0 T A T A T £ £ A A 0 A A A A T A A A A Y I

Figure 56. Individual participants' self-rated expertise, from 1 (Complete beginner) to 7 (Complete expert)

Self-rated troubleshooting expertise

Given their experience and expertise ratings, it is unsurprising that participants considered
themselves, on average, to be most skilled at troubleshooting program bugs, although this time

least skilled in electronics troubleshooting, rather in troubleshooting bugs in Arduino projects.

7
6
Table 19. Study 2 Participants perceived expertise in ' .
troubleshooting (1-7) w 5 M Arduino projects
A X N % 4 [Circuit bugs
Perceived expertise Mean SD Median [
3 Program bugs
Arduino projects 2.65 0.88 250 5
Circuit bugs 2.50 1.50 2.00 1
Program bugs 3.35 153 3.00
Figure 57. Participants' self-rated troubleshooting expertise in
Arduino, Electronics, Programming
; @ Bugs in Arduino projects M Circuit bugs Program bugs
26 u
g5 | |
= o
s 00 ® ®
£8: m o @ e ® * ®
=Y & @ ¢ #® oG 0o EHBHO »
1 | | | [B O
o o o o o o o o o o o o o o o o o o o o
— o~ o < n O M~ [ee] [e)] o — N o™ < Ln O M~ e8] D o
— — — — — — — — — [\ o~ o~ o~ [\ ~N o~ (] o~ o~ ™
o o o o o o [o o [o o o o o [o o o o

Figure 58. Individual participants’ self-rated troubleshooting expertise: bugs in Arduino projects, circuit bugs and program
bugs, from 1 (Complete beginner) to 7 (Complete expert)

164

6.2.4 Materials

6.2.4.1 Informed consent form

As with the previous studies, an Informed Consent form (Appendix Q) was created, to capture
each participant’s agreement to taking part, and their consent to data collection—including

video recordings of the session—and the subsequent use of any data collected.

6.2.4.2 Background questionnaire

A background questionnaire (Appendix R) was created, to capture participants’ personal and
demographic information, as well as data about their experience and perceived expertise (self-
rated) in physical computing (Arduino), programming and electronics, and whether they had
received any external training or instruction, and if so, of what kind. This questionnaire was an
adaption of the questionnaire used in Study 1A—questions were added about participants’
perceptions of their expertise in troubleshooting 1) bugs in Arduino projects, 2) circuit bugs (in

general, not just in Arduino), and 3) program bugs (likewise, in general).

6.2.4.3 Support Materials questionnaire

A questionnaire was created to capture participants’ opinions of the Support Materials.
(Appendix S). In this, participants were asked to rate the usefulness of different elements of the
Support Materials, provide brief written feedback about any specific likes and dislikes, and
indicate the extent of their agreement/disagreement with a number of statements in respect to
perceived effectiveness, usability and fitness for purpose (see section 6.2.6.5 for further

information about the data collected by this questionnaire, and how it was analysed).

6.2.4.4 Interview topic guide

| created a topic guide (Appendix U) to guide a semi-structured interview conducted at the end
of the session. Questions aimed to elicit more detail about participants’” perceptions of the
effect/impact of the Support materials upon their troubleshooting, and to find out what they
thought of them, thus supplementing and triangulating data captured via the Support Materials

Questionnaire.

165

6.2.4.5 Troubleshooting tasks

A variety of materials were created for use in the tasks, including the Support Materials, two
buggy prototypes, two task instruction sheets and a demo video of the desired prototype

behaviour. Participants were also given access to a laptop and some additional equipment.

Support Materials

Chapter 5 describes the design and development of the card deck and supplementary materials
(together referred to as the support tool, or Support Materials) used in this study, with section

5.5 (The Tactical Troubleshooting toolkit) describing each element in detail.

To summarise, the support materials used in this study comprised 36 Tactics cards, 6 Category

cards, 6 Best Practice cards, the playmat and the cards stand.

7

IDEAS (SHORTLIST) e Tocan CURRENT (ACTIVE)

Figure 59. Cards in card stand, and playmat

| decided not to include the component cards in this study. During a pilot run of the study, the
end-user developer participant focused mainly on using those cards, even when repeatedly
reminded to use the Tactics cards. As my main interest, for this study, was in respect to the
Tactics cards, and the process of troubleshooting, the component cards were not included in

the support materials.

For this study, the Support Materials also included an index card, containing a short set of rules.
Rather than prescribing a specific method in detail, it stated that participants were required to
use the cards, including the questions on the back, advised them to use the playmat, and

reminded them of the ‘diagnose = fix > evaluate’ cycle. It also suggested that if participants got

166

stuck, they should take a random (i.e., any) card from the stand. No other rules were specified in

respect to the use of the support materials.

Buggy prototypes

Two buggy prototypes were created: Buggy Prototype A (BPA) used in Task 1 and Buggy
Prototype B (BPB) used in Task 2. Rather than counterbalancing the order of exposure to the
prototypes as well as the support materials, | chose, instead, to ensure that the prototypes were

equivalent in complexity/difficulty.

| chose to base the buggy prototypes on the same project used in Study 1—a simplified* version
of the ‘Love-O-Meter’ project in the official Arduino Starter Kit (‘Arduino Starter Kit’ n.d.)—
because the study had provided much insight into the problems that end-user developers can
encounter when building that particular project, including specific bugs that can be introduced
during the process. Using the same base prototype per task meant that a participant would not
potentially encounter circuits or components of differing familiarity to them, which might affect
their performance and skew their opinion of the two tasks. Although it also meant that there was
potential for a learning effect to affect performance, it was agreed, in discussion with my PhD

supervisors, that the benefits outweighed this, and that my analysis could take it into account.

As the bugs observed in Study 1A had been introduced organically by end-user developers, |
used a subset of these for the tasks in this study. A shortlist of potential bugs was created, in
preparation for choosing a final six for use in the study. Using six different bugs, of varying levels
of difficulty, in the study, meant that all participants would hopefully be presented with at least

some challenge, irrespective of their previous experience or level of expertise.

How many bugs per buggy prototype?

Once it was agreed that tasks would involve the simplified Love-O-Meter, a small pilot study,
involving two end-user developer participants, was conducted, to decide whether to use one

circuit bug per prototype, or multiple circuit bugs per prototype in the study. Participant 1

* The original project included code that converted the raw ADC (analog to digital conversion) readings
(read from the analog pin), first to voltage and then Celsius. The program | used in this study included no
conversion.

167

undertook six consecutive tasks, each involving a Love-O-Meter prototype preseeded with a
single bug. Participant 2 undertook two tasks, each involving a prototype preseeded with three

bugs. Each participant performed half of their tasks with the Support Materials and half without.

A very strong learning effect was observed for Participant 1, who, after managing to find and fix
the first bug (i.e., successfully complete the first task) and then encountering the same prototype
in the second task, merely replicated the working circuit (by comparing their memory of what
‘perfect’ looked like) for the remainder of the tasks—having only one bug to find and fix per
prototype made this a relatively straightforward activity. | decided to minimise the learning

effect by having multiple bugs per prototype.

Focus group with Arduino experts, to choose bug sets

To decide on the two sets of bugs with which to preseed the two prototypes, | conducted a two-
hour focus group with six Arduino/physical computing experts from the Bristol University
Interaction group—five had at some point been employed or commissioned to develop physical
computing prototypes, three also had experience of teaching physical computing and all

developed physical computing prototypes as part of their current work.

In this session | demonstrated a working Love-O-Meter, then presented each bug to the group,
describing the fault(s) it consisted of, and the symptoms of it at runtime. The group then
discussed and ranked the bugs in order of complexity / challenge, taking into account that the
troubleshooting study would involve novice Arduino users. In preparation for the focus group, |
had created a number of buggy prototypes, instantiating the bugs, which the experts were able
to use in these discussions. A kit of spare components (LEDs, sensors, resistors) was also

available, so that the experts could modify the prototypes, if they wished.

The experts collectively brainstormed possible equivalent combinations of three bugs per
prototype, taking into account not only the complexity of individual bugs and the knowledge
required to resolve them, but also the effect of the bugs in combination and how partial
resolution of one or more bugs would affect runtime behaviour, i.e., symptoms of failure. Of

these combinations (bug sets), the group selected two which they felt to be most equivalent.

These two bug sets were then hallway-tested (an impromptu, observed think-aloud debugging
session involving a passing member of the department) and subsequently deemed equivalent in

debugging complexity. The group also suggested the specific order in which these two buggy

168

prototypes should be exposed to the participants, to minimise potential carryover effect to the

greatest degree possible.

The final buggy prototypes

Two buggy prototypes were created for use in the tasks. Both of these were based on the
simplified ‘Love-O-Meter’ project in the official Arduino starter kit, which lights up three LEDs in a
specific order, in response to readings of body temperature, when a temperature sensor is held
between the fingers. The ‘ideal’ or model circuit and program for this project are described in

detail in section 3.2.3.4.

Each buggy prototype was preseeded with three bugs—one of the two bug sets chosen by the
focus group. As mentioned, all of these bugs had been introduced by one or more participants

in the first study.

Buggy prototype A (Task 1)

Figure 60. Buggy Prototype A (Task 1)

The bugs preseeded into this prototype were:

= Al LEDs connected to RX/TX: Two of the LEDs (green and yellow) are connected to
digital pins 0 and 1, which also transmit and receive data when serial communication is

used at runtime.

169

= A2, LEDs the wrong way round: All three LEDs are seated the wrong way around in the
breadboard. Their anodes are therefore connected to Ground and their cathodes are
connected to digital pins.

= A3. Ground rail not connected to Ground pin. The breadboard rail (-, blue) set up to
provide a shared Ground connection for the 3 LEDs is not connected to an Arduino
Ground pin. Instead, the wire that comes from the Ground pin is connected to the

adjacent rail (+, red).

All three of these bugs were visible to the eye if the participant knew what to look for, although
for A2 the participant would have to look very closely at the LEDs. A2 is an extremely common
bug—inserting an LED the wrong way around in a breadboard (i.e., incorrect orientation) is a
very easy mistake, one which even experts make—a participant in study 1A described checking
LED orientation as “the obvious thing to do”. A3 was also classed as an easy bug and could be
found by simply tracing (following) the wire from Ground to the breadboard, or from the LEDs to
the rail, i.e., checking for circuit completeness. A1 was the most complex bug. It required the
participant knowing (or discovering) that the first two digital pins (0 and 1) have additional
functions when serial communication is employed—additional labelling of those pins on the

Arduino indicates that there is something different about them from the others.

Buggy prototype B (Task 2)

2dsd l I

XL
[l

IIIII
[[[[[

O€tnpuy mmXy

Q)

Figure 61. Buggy Prototype B (Task 2)

This prototype contained the following bugs:

170

= BI1. LED resistoris too high a value: The resistor connected to the third (red) LED is 220K
ohms instead of 220 ohms.

= B2 Sensor Ground and signal swapped: The sensor is miswired, with the Ground pin of
the sensor connected to an Arduino analog pin (Al) instead of a Ground pin, while the
signal (voltage out) pin of the sensor is connected to an Arduino Ground pin instead of
an analog pin.

= B3. LED digital pins in non-consecutive order: Instead of the LEDs being connected to

pins 2, 3,4, in sequential order, the order of connection is pins 2, 4, 3.

Once again, all bugs in this prototype were visible to the eye. Many participants in Study 1 had
miswired the sensor and struggled greatly with the diagnosis and resolution thereof—
particularly when the prototype was completely built, as in these buggy prototypes—therefore
B2 was considered to be the most difficult bug in this prototype. B3 could be discovered by
tracing each of the wires from the LEDs to the digital pins, however | deliberately used the same
colour of wire for each LED and wire lengths were very long, making this bug less visible. The
resistor bug (B1) was a relatively easy bug to solve but with only one differently coloured band
differentiating visually between the 220 and 220K resistors, the error might not be obvious to the

untrained eye, particularly as resistors are quite small.

Note: to successfully complete a task, participants did not have to replicate the model circuit
and/or program exactly but merely to modify the prototype so that the specification of correct
runtime behaviour was met. This required resolving/fixing all preseeded bugs, but it would be
up the participant to decide what circuit or program changes to make in order to achieve that—
some bugs could be fixed in different ways, for example, by changing the program or the circuit,

or by changing different parts of the circuit.

Additional task resources

Two task instruction sheets were created (Appendix T)—a ‘With Support’ instruction sheet and a
‘Without Support’ instruction sheet. Each explained the task goal and specified the prototype
runtime behaviour (how it should work) that would be used to judge task success. They also
listed constraints within which the participant must operate, for example the amount of time
allocated, and any do’s and don’ts, for example, a reminder to think-aloud. The ‘With Support’
task instruction sheet contained additional instructions/rules for the use of the support

materials within that task.

171

"'%miu

Figure 62. Still image from the video in which the correct prototype behaviour at runtime was demonstrated, showing the
temperature sensor and LEDs, but none of the wiring.

Avideo was created to demonstrate the target runtime behaviour, i.e., how the prototype should
behave when all bugs had been fixed—Figure 62 shows a still image from this video. It also
showed participants how to interact with the sensor in order to trigger changes in LED state. The
video frame was angled to show a hand interacting with the temperature sensor, and the
resulting LED behaviour, but not any aspect of the construction or configuration of the circuit or

program, for example the wiring. The same demonstration video was used for both tasks.

The microcontroller board used for the buggy prototypes was an official Arduino UNO R3 board.
The IDE was the official Arduino IDE, and it was installed on a laptop computer running the

Windows 10 operating system.

The parts kit was very similar to that provided in Study 1. It contained TMP36 temperature
sensors, 3 colours of LEDs (red, yellow, green) and resistors in a wide range of values (4.7Q), 2200,
3300, 5600, 1k Q, 10kQ, IMQ, 10MQ). All component compartments were labelled and several of
each component were provided. A spare USB cable and a digital multimeter was also provided,

along with a selection of jumper wires of different lengths and colours.

6.2.5 Procedure

6.2.5.1 Overview of procedure

Each participant individually attended a two-hour-long session at a pre-arranged time

convenient for them. The session sequence of activities is also shown in Figure 63.

172

After completing the background questionnaire, the participant undertook two hands-on
troubleshooting tasks—Task 1 then Task 2—while thinking aloud (verbal protocol). In each task,

the participant had a set amount of time to find and fix all bugs in a specific ‘buggy prototype’.

Each participant undertook one task with the support tool and one without. Participants were
randomly assigned to one of two groups, determining for which task number (and therefore
buggy prototype) they had the support materials. Table 20 shows the groups and order of

conditions.

Table 20. Participant task groups and order of conditions

Task 1 Task 2
Group Buggy Prototype A Buggy Prototype B
NSWS No Support (NS) With Support (WS)
WSNS With Support (WS) No Support (NS)

Before the ‘With Support’ task, the participant was given time to familiarise themselves with the

support materials, and ask questions about them.

After the tasks, the participant completed the support materials questionnaire and, finally, was

interviewed.

6.2.5.2 Sequence of activities

On entering the room, the participant was seated at a desk with a laptop on it. They were given a
verbal overview of the session, in which they were also deliberated misinformed that the devices
in the two task would be different. After signing the informed consent form, they filled in the

background questionnaire.

Thereafter—the main part of the session—the participant undertook the two tasks, one after the
other, the group to which they had been assigned determining whether they had the support

materials for the first or second task.

173

NSWS group participant

WSNS group participant

Welcome & introduction to study

Welcome & introduction to study

v

v

Consent form

Consent form

v

\ 4

Background questionnaire

Background questionnaire

v

\ 4

Task 1 (T1) Buggy Prototype A
No Support

Task brief & instructions

Support Materials introduction &
familiarisation

v

v

Task execution
(25 mins, think-aloud)

Task 1 (T1) Buggy Prototype A
With Support

Task brief &instructions

v

v

Support Materials introduction &
familiarisation

Task execution
(25 mins, think-aloud)

v

'

Task 2 (T2) Buggy Prototype B
With Support

Task 2 (T2) Buggy Prototype B
No Support

Task brief & instructions

Task brief & instructions

v

v

Task execution
(25 mins, think-aloud)

Task execution
(25 mins, think-aloud)

v

v

Support Materials questionnaire

Support Materials questionnaire

v

h 4

Semi-structured Interview

Semi-structured Interview

Figure 63. Session sequence of activities for participants in each of the two groups

Immediately prior to the ‘With Support’ task, the participant was shown the support materials.
Following a verbal introduction to the information structure of both toolkit and cards, the
participant was given dedicated time (up to fifteen minutes) to familiarise themselves with the
support materials, while thinking aloud. During this time, the participant could also ask

questions about the support materials.

Before the task timer was started, the participant was given the buggy prototype (although not
yet allowed to inspect it) and the task instructions. The physical prototype (circuit) was
connected to the laptop and placed on the desk in front of them, and the program was opened
within the IDE on the laptop. They were taken through the task instructions verbally, and shown

the demo video, ensuring that they understood the target runtime behaviour and what was

174

required of them. They were given no indication of where the bugs might be located—that is, in
the circuit or program—or how many bugs were in each buggy prototype. The participant had
access to the task instruction sheet and demo video throughout the task and were asked to

keep the physical prototype (circuit) within an area marked on the desk.

Figure 64. Setup for With Support task. The troubleshooting cards can be seen, in their stand, top left, and the playmat is
bottom left. The buggy prototype is in a taped area, directly in front of the participant, with the parts kit above it.

For the ‘With Support’ task, the support materials were placed on the desk, to the left of the
physical prototype (circuit), where they could be easily seen and were in close reach. The cards
were in the stand, grouped within their categories, with the playmat directly in front of the stand.
The participant was told that they must use the cards for the ‘With Support’ task, as | wanted to
see what happened when participants used them, not if they used them, and that they must use
the reflective questions on the rear of the cards, to guide their thinking when troubleshooting.
During the ‘With Support’ task, if it became obvious that the participant was not using the
support materials as required, I would remind them to do so, by holding up one of two notices—
‘Use the cards’ or ‘Use the questions’, depending on what the participant was neglecting to do.
The participant was encouraged to use the playmat, which was explained to them, but could
use the cards however they wished. | advised them that if they had difficulty choosing a card to

use, they should take a random card—i.e., randomly draw any card—from the stand.

In each task, the participant was given 25 minutes to find and fix bugs in the buggy prototype
and asked to ‘think aloud” while doing so—as well as general thoughts, they were specifically to
articulate any troubleshooting-related thoughts. In addition to the laptop, they had a parts kit of

spare components, cables and a multimeter. They had access to the internet, via the Chrome

175

browser on the laptop, and could also use the IDE’s built-in help. They were not allowed to
search for a project which matched the exact functional design of the buggy prototype—that is,
a project which used readings from a temperature sensor to control the behaviour of LEDs—but
had no other search constraints. They could ask me questions to clarify the brief, but could not

ask for hints, advice, or anything else that might help them with the task.

The task stopped either at the end of the 25 minutes, or if the participant decided that they had
met the brief—it was up to the participant to decide when they thought they had found and
fixed all the bugs, based on the written specification and demo video. They were asked to
demonstrate the final runtime behaviour and were not told how successful they had been in

finding or fixing bugs.

After all tasks were completed, the participant completed the Support Materials questionnaire.
This happened when both tasks were finished, rather than straight after the ‘With Support’ task,
so that the participant would have experienced troubleshooting with and without the support

materials and could factor any observed differences into their answers.

Finally, once the questionnaire had been completed, the debriefing interview was conducted.

6.2.6 Data collection and analysis

6.2.6.1 Video recordings

The main source of data about how participants thought and behaved during the tasks, as well
as their feedback in the interviews, was in the form of video recordings. The sessions were video-
recorded, using a combination of screen-recording software (to capture all on-screen activity),
laptop webcam and three external video cameras—a close-up, birds-eye view of the prototype, a
wider view of the desk and participant, and an over-the-shoulder view of the participant’s use of
the support materials. As in Study 1A, all videos recorded for each participant were pre-
processed and synchronised to a single, composite, split-screen video, using Adobe Premiere

video-editing software (Figure 65).

176

Figure 65. Still from a composite video of a participant task recording, showing in clockwise order from top left 1) the
participant’s head and shoulders view, 2) desk-facing view, 3) screen capture, 4) overhead view of the circuit and 5) over-the-
shoulder view of support materials use

6.2.6.2 Participant-created task artefacts

After each session, digital photographs were taken of each buggy prototype (circuit), from
several angles. As the buggy prototypes were reused for subsequent sessions, a digital
representation of the final state (at task end) of each buggy prototype was created, using the
Fritzing software application, recording its final, physical configuration, later double-checked for
accuracy against the photographs. During this process, the buggy prototypes were scrutinised
for circuit bugs—as well as recording these graphically within the resulting Fritzing layout

images, they were also noted in writing. These bug data were later captured to a spreadsheet.

Programs edited—or created—by each participant were saved. Any bugs within them were

noted and later captured to the same spreadsheet as the circuit bugs.

Any notes or diagrams created by the participant were digitally scanned.

177

Figure 66. Photograph (left) and Fritzing image (right) capturing the final state of a prototype at the end of a task

6.2.6.3 Analysis: Task success

Based on the artefact and video data, participants’ success in completing each task was
recorded as a binary 1 (Yes) or 0 (No), within a spreadsheet. A participant was said to have
completed the task successfully (task success = 1/yes) if, at the end of the task, the prototype
behaved as specified in the task brief (instruction sheet and demonstration video) and the
program and circuit contained no bugs that would interfere with correct (i.e., specified)
behaviour. Task success was not based purely on whether the preseeded bugs had been
resolved. If a participant had found and resolved all of the preseeded bugs in a buggy prototype
but had introduced new bugs which still remained at the end of the task, they failed the task.
The task programs and circuits were scrutinised after the sessions, for any bugs not obvious at
runtime, and the details recorded to a spreadsheet. This, along with the facilitator notes made
during the session and watching the task videos—specifically, the close-up view of runtime

behaviour—was used to reliably determine task success.

| counted and compared the number of participants who achieved task success within each task
(T1/72), as well as how many achieved task success within each condition, i.e., with or without

the support materials (NS/WS).

6.2.6.4 Analysis: Bugs fixed; Bugs remaining

When recording details of remaining bugs to a spreadsheet, the bug location (circuit or program)
was noted, along with a very brief summary of the bug, i.e., what was incorrect. For each task, |
noted whether each of the preseeded bugs had been resolved/fixed (Yes=1; No=0) and whether
any new bugs remained in the circuit (Yes=1; No=0) or program (Yes=1; No=0). | did not count the

number of new bugs remaining, only whether or not bugs remained.

178

| counted how many of the preseeded bugs had been fixed by each participant, per task (T1, T2),
as well as how many had been fixed in each support condition (NS, WS). | also calculated how
many participants had bugs (preseeded circuit bugs, new circuit bugs and new program bugs)

remaining at the end of each task (T1/72), also for each support condition (NS, WS).

6.2.6.5 Support materials questionnaire data

Data captured via the Support Materials Questionnaire (Appendix S) included the participants’
ratings, on a seven-point scale—from Not at all useful (1) to Extremely useful (7)—of the
usefulness of each of the different elements of the support materials (tactics, categories,
playmat & rules, card stand), and of the card format as a medium for delivering support. Two
freeform text questions captured, in brief, written feedback of anything the participant
specifically did or did not like about the support materials. Finally, nineteen questions captured
the extent of a participant’s agreement or disagreement with a number of statements regarding
the perceived effectiveness (eight questions), usability (seven questions) and fitness for purpose
(4 questions) of the support materials, again on a seven-point scale—from Strongly disagree (1)
to Strongly agree (7). Only the endpoints of the scales were labelled descriptively, and

participants provided a rating by circling a number on the scale.

After the session, the paper questionnaires were digitally scanned and then the data entered

into a spreadsheet, where it was summarised using descriptive statistics.

6.2.6.6 Debriefing interview data

The semi-structured debriefing interview, guided by the interview topic guide (Appendix U), was
video recorded. Besides questions about participants’ perceptions of the effect/impact of the
support materials upon their troubleshooting, and what they thought of them, the interview also

probed any interesting observations noted during the tasks.

Avideo sequence was extracted, from the composite video recordings, that covered the specific
period from the point at which the participant began to fill in the Support Materials
Questionnaire (as many participants had chosen to comment verbally on some of their ratings,
explaining them) until the end of the debriefing interview, which immediately followed the
questionnaire completion. | used Otter.ai (Otter.ai Inc. n.d.) to first automatically transcribe the

audio tracks of these videos and then manually edited them for accuracy, creating a full record

179

of everything said during this part of the sessions. | downloaded these transcripts and imported
them into MAXQDA (VERBI Software GmbH n.d.), along with the video files, linking and aligning
each video with the appropriate verbal transcript. To familiarise myself these data, with a view to
extracting themes from them through coding, | watched each video within MAXQDA while
simultaneously reading the verbal transcript of it, occasionally amending the transcript with
contextual information in brackets, where | felt it necessary, for example, if a participant pointed
to something specific while speaking. As the intention of my coding was not theoretically driven,
my coding process was loose and pragmatic, rather than following any strict or specific
inductive or deductive method. | was interested in what people thought of the support tool,
including specific components and design aspects of it, but also evidence of any thinking or
behaviours it engendered, to enable me to assess whether—and if so, how—it had or had not
met the aims behind its development, and identify any particular aspects of the tool that might
be improved in a future iteration. As the designer of the support tool, | was mindful of potential
bias when coding, taking care to ensure that the coding decisions | made would enable me to
paint as accurate a picture as possible of participants’ opinions of the tool and of its success in
fulfilling its aims as a potential medium for scaffolding end-user developers’ troubleshooting.
Initial coding was guided by, but not limited to, the questions (and categories thereof) in the
support materials questionnaire, the card design principles derived from the literature, and the
aims and features of the support tool, but also revisiting and recoding previously coded
transcripts when additional patterns began to emerge. Over several rounds of the dataset, |
reviewed and refined my codes, merging and/or renaming them, and grouping them into

categories appropriate to the developing themes.

6.3 Results

The results will be reported in respect to the research questions they answer, first looking at the
effect, on task performance, of participants having used the support materials (RQ1) and then at

participants’ subjective opinions of the support materials (RQ2).

180

6.3.1 What effect do the cards have on helping end-user
developers troubleshoot?

To answer this question, | looked at the effect of the support materials on the outcomes of

participants’ troubleshooting, that is:

e Whether participants managed to successfully complete the tasks (task success)
e Whether participants managed to find and resolve the preseeded bugs in each task
e Whether additional bugs had been introduced, into the circuit or program, which

remained unresolved at the end of the tasks.

| compared the performance of the two groups (NSWS and WSNS), as well as, irrespective of

group, performance with and without the support materials, in the two tasks.

6.3.1.1 Task success

Atask was counted as successfully completed if, at the end of the task, the prototype contained
no bugs that would prevent the prototype from behaving as specified, irrespective of whether

the participant was aware of them.

Many participants struggled to successfully complete the tasks, particularly the first task. Figure
67 shows the number of participants in each support condition who achieved task success in
each task. Only one participant completed Task 1 successfully, and did so without the support
materials (NSWS group). One other participant, in the same group (NSWS), did manage to find
and resolve all of the preseeded bugs in Task 1, while using the support materials, however,
program bugs that they had introduced while troubleshooting (incorrect operators and

temperature thresholds in their conditional statements) still remained at the end of the task.

5

4 | With support
= | No support
= 3
8
S 2 4
= 3
<1

0

Task 1 Task 2

Figure 67. Participants who achieved task success, with and without the support materials, in each task

181

| had anticipated improvement for the second task, given participants’ familiarity with the Love-
O-Meter by this stage, and it was subsequently observed. Seven participants, in total, completed

Task 2 successfully, slightly more without the support materials (4, NSWS) than with (3, WSNS).

Overall, each group successfully completed the same number of tasks (4), in total, and while
slightly more tasks were successfully completed without the support materials (5), than with (3),

the differences were small.

What this shows is that there was no obvious effect of the support materials upon task success.
Many participants struggled, particularly in the first task, and while improvement was noted for
the second task, as expected, there was little difference, overall, between the two groups or

support conditions.

6.3.1.2 Bugs
I then looked at the bugs that participants resolved, firstly at the preseeded bugs.

Each buggy prototype contained three bugs for participants to find and fix. Overall, far more
preseeded bugs were fixed in Task 2 (Figure 68). Again, | had expected some improvement, given
the potential for a learning effect between the two tasks, i.e., the participants becoming familiar

with the simplified Love-O-Meter prototype as a result of being exposed to it in Task 1.

20

Il With Support (29)
15 I No Support (31)
10 19 [19
5 12
(R | N |

Task 1 Task 2

Bugs (n)

Figure 68. Preseeded bugs fixed with and without the support materials in each task

Overall, the group who had the support materials in the second task (NSWS), fixed slightly more
preseeded bugs (31) than the group who had them in the first task (WSNS, 29) and, slightly more
preseeded bugs were fixed when participants did not have access to the support materials (31)

than when they did (29), however, again, the differences were small.

182

Specific bugs

| looked at the specific bugs that had been preseeded in each task, to see if particular groups

had been more successful in fixing any of them.

There were no notable differences between groups (i.e. support conditions), for either task
(Figure 69). While the Al bug (LEDs connected to RX and TX pins)—classed as difficult in the
focus group with Arduino experts—was fixed by only two participants, both in the NSWS group
and therefore troubleshooting without support materials, each of these participants mentioned

having experienced this bug previously. Other than that, very similar numbers of participants in

—

Participants (
O NWDAUIONOWOWO

each group fixed each of the other bugs.
| With support

I No support
77 7
4 5 5 5

FixedAl FixedA2 FixedA3 | Fixed Bl Fixed B2 Fixed B3

Task 1 Task 2

Figure 69. Participants (n), per support condition, who fixed specific preseeded bugs in each task. The WSNS group had the
support materials in T1; NSWS had them in T2.

Participants with bugs remaining—preseeded and new

| then looked at all bugs remaining at the end of each task, not just preseeded ones. As
preseeded bugs were not described at the level of individual faults (i.e., connections to be
rectified), | chose to count the number of participants with bugs remaining., rather than the
number of bugs remaining—this meant that the same, unambiguous unit of measurement could

be used for both preseeded and new bugs.

Some difference between groups is noted—however, there are no discernible patterns to this,

and again, the difference is not large (Figure 70).

183

W With support
Il Nosupport

Participants (n)

O NWMUOUGIO)N0WOWO

Preseeded New bugs New circuit Preseeded New bugs New circuit New
bugs (all) bugs program bugs (all) bugs program
bugs bugs
Task 1 Task?2

Figure 70. Participants (n) per support condition, with bugs (preseeded, new, new circuit bugs, new program bugs) remaining
at the end of each task. (Note: ‘New bugs’ counts participants with any new bugs remaining, irrespective of their location)

Preseeded bugs were the most common type of bug remaining, particularly in Task 1 (18

participants).

In both tasks, participants in both groups had introduced—and subsequently failed to resolve—
new circuit bugs and new program bugs. Almost half (9) of the participants had new program
bugs remaining at the end of Task 1. This suggests that participants’ troubleshooting led to

them changing—incorrectly—parts of the program, as was also observed in the first study.

Looking at Figure 71, we note that more participants had new bugs and new program bugs
remaining at the end of the tasks in which they did not have the support materials. While the
difference in numbers is relatively small, this is encouraging. Conversely, slightly more
participants had new circuit bugs remaining at the end of tasks in which they did have access to
the support materials. Although disappointing, this may suggest that participants were at least
making changes in the correct location, i.e,, the circuit rather than the program, however, again
numbers are small.
20
16

14
12

B With support

[Nosupport

Participants (n)

16
13
i i

Preseeded Newbugs New circuit New program
bugs bugs bugs

—
ON DO O

Figure 71. Participants (n) with bugs (pre-seeded, new bugs (all), new program bugs and new circuit bugs) remaining at the
end of tasks with or without support

184

Level of success in fixing preseeded bugs

However, there is some evidence that participants were more likely to make at least some

progress when they had the support materials, than when they did not.

| looked at what level of success participants had fixed the preseeded bugs, counting the bugs

fixed, and putting these numbers into bands: All (3 fixed), Some (1 or 2 fixed), and None (0 fixed).

| noticed that overall (Figure 72), while fewer participants (4) had fixed all preseeded bugs when
they had access to the support materials than when they did not (7), fewer participant (3) fixed
none of the preseeded bugs (compared to 7 without support), i.e. more of them (17) had fixed at

least 1 of the preseeded bugs when they had the support materials than when they did not (13).

20

18 _ Fixed

16 7

All

T 14 -
v 12 Some
& 10
3 W None
S 8
5 6

2

;

No support With support

Figure 72. Participants (n) who fixed none, some or all of the preseeded bugs, with and without support.

Breaking this down further by task (Figure 73), | then noticed that only three participants in the
WSNS group fixed none of the preseeded bugs in Task 1, when they had access to the support
materials, compared to half of the participants in the NSWS group, who did not have them, while
in Task 2, all participants who had access to the support materials fixed at least one preseeded
bug. This suggests that the support tool may succeed in helping end-user developers to make at

least some progress, even if they do not resolve all of their problems—more so than without.

10
:] »
m Al
6
Some

Participants (n)
~

Il None
2 3 e
0

With support No support | With support No support
(WSNS) (NSWS) (NSWS) (WSNS)

Task 1 Task 2

Figure 73. Participants (n) per support condition who fixed none, some or all of the preseeded bugs in each task

185

Also encouraging, is that most (8/10) of the participants, who had access to the support
materials in Task 1 (WSNS), managed to fix at least one preseeded bug in Task 2, while half
(5/10) of them managed to fix all of the preseeded bugs, even without access to the support
materials in this task. This suggests perhaps there may be a learning effect associated with the
support materials. Certainly, as I will shortly discuss, comments made by some participants in
the debriefing interview support the suggestion that the support materials lead to learning that
transfers to future troubleshooting, even when the support materials are not available (see A

positive priming / learning effect in section 6.3.2.2 What did the support materials achieve?).

While none of WSNS group completed T1, the majority (7) made at least some progress. In T2 we
see a dramatic improvement for this group, with half completing the task and three others fixing

at least one bug. Only two participants failed to make any progress in this task.

Having looked at the outcomes of participants’ use of the support materials (RQ1), | now turn my

attention to participants’ feedback on the design and use of them (RQ2).

6.3.2 How do end-user developers view the support tool?

To answer RQ2, | analysed the data collected via the Support Materials Questionnaire (SMQ) and
the debriefing interview. In this section | report some of the key results from the questionnaire
analysis, supplemented with thick descriptions of themes identified in the interviews,

substantiated with participant quotes.

Ratings in the SMQ were captured using a 7-point scale and only the ends were labelled
descriptively. When reporting results from the SMQ, | refer to anything above 4 (the midpoint) as
agreement (with a statement or as being useful) and anything below 4 as disagreement. The
midpoint is reported as neutral. Strong disagreement means a score of 1, strong agreement a

scoreof 7.
This section is structured as follows:

» |nsection 6.3.2.1 | present feedback about the design of the cards, and other aspects of
the support materials, structured as follows:
= The physical card format
= Card content & design

= Organising and using the cards

186

= Insection 6.3.2.2 | then discuss what the support tool appeared to achieve, based on
feedback from participants, in terms of the aims of its development:
= Providing/prompting ideas
= Making end-user developers think more when troubleshooting
= Apositive priming / learning effect
= Recognition of value in changes to process

= Suitability for novices

Notatalluseful m1 m?2 3 m4 m5 m6 m7 Extremelyuseful

Usefulness of Features
Usefulness of the troubleshooting tactics cards
Usefulness of the categories

Usefulness of the play mat &rules

Usefulness of the card stand

Usefulness of having the troubleshooting tactics in the form of playing cards

Strongly disagree W1 m2 3 m4 m5 m6 m7 Stronglyagree
Effectiveness

The support materials helped me find or fix at least one bug

The support materials gave me usefulideas for troubleshooting

The support materials helped me to remember things that | already knew

The support materials made me aware of new things that I didn't already know about
The support materials made me think/reflect more about what | was doing

The support materials helped me to consider different hypotheses/ideas

The support materials helped to structure my troubleshooting

The support materials were appropriate for the tasks

Usability & UX
The support materials were easy to use
The support materials were confusing 3
The support materials made troubleshooting more complicated
The support materials were time-consuming to read
The support materials were fun to use
I would have liked more detail / information in the support materials

I'would have liked less detail / information in the support materials

Fitness for purpose
The support materials make me feel more confident about Arduino troubleshooting
Iwould like to use the support materials for future troubleshooting

The support materials would be useful for novice Arduino users

The support materials would be useful for expert Arduino users

Figure 74. Support Materials questionnaire responses. Participants gave each question a rating from 1 to 7. The number within
each coloured box represents the number of participants who chose that rating. Green represents the midpoint (rating = 4)

187

6.3.2.1 Feedback about the design of the cards

While the support materials, in the context of the study, comprised several different elements,
the cards were the main vehicle through which support was provided, with the thirty-six tactics
cards representing the primary form of content. In the SMQ, thirteen participants rated these as
useful (Figure 74). The interviews provide insights into what participants did and did not like

about the cards, and why.

The physical card format

Slightly more than half of the participants (11) found it useful to have troubleshooting tactics in
the form of physical cards (Figure 74), with a further six participants feeling neutral about this.
Several expressed their appreciation for the format, acknowledging some of the advantages

discussed in section 0, and the benefits over having support in a different medium.

For example, P120 reaffirmed the flexibility of cards in a physical space. As has been noted in
other studies, cards can be quickly and easily manipulated, as a kind of external cognition,
which can also be helpful in tracking. This participant reflected that while comments in
programs can be used to track what has been done, there is no analogue for hardware, and
suggested that cards could provide this to some degree, potentially through additional areas on
the playmat. They also felt the cards format to be less distracting than switching between
hardware and software, enabling them to stay focused on their task:

“So that's why I'm proposing | can use the card as a record as well. So it's gonna be

easier for me to manage. [...] | mean, in, in software, it's easy to do that because you

comment things out and you look back [...] ‘Okay. I've done this for the hardware'”
(P120)

“With this card, it's just putting it there (mimes putting a card into a pile). It's more

helpful for me to concentrate, rather than switching between different media.” (P120)
Another perceived advantage of providing support in the form of physical cards was that it is
neither software nor hardware based—P180 felt that this encouraged them to take a step back
from their circuit and program. They suggested that screen-based support may even lead them
to focus more on the program, which was something | had speculated about as a potential
cause for the large number of program-related problems in the first study, and the frequent

misdiagnosis of circuit bugs as program bugs.

188

“Having something to pick up and hold [...] it got me moving away.. 'What am | doing?
Move away from that board, move away from that screen. [...] As opposed to 'Oh, it's
on the screen. Let me just Google this". Google is a distraction. If something else was
screen-based, | could have thought 'Well as I'm here, let me just jump to this code.
[...]" (P180)

Some, however, were concerned about space that physical cards would require, for example,

P160 would prefer to have them in digital form:

‘I would have preferred if it was software based. [...] At home [...], | don't think I'll be
able to have, like, space to put cards on and do all that (P160)

Card content & design

Some participants felt the card format to also have advantages for information delivery—
presenting support content as smaller chunks of information/advice makes it easier to absorb,

or more memorable:

‘I do like that it's broken up into small pieces. | think that makes it more manageable
and easier to take, like, individual suggestions.” (P230)

“Wise advice in a digestible format” (P140)

The ‘information iceberg’

Feedback validated the decision to layer information across two card sides, keeping the front

very simple and consigning the bulk of the text to the rear:

‘I like that you've used both sides so that there's less in one go. (P270)

“in a way this (points at the card title) is the tip of the iceberg. Actually, this side of the
card, right? [the front] And this back is like what is underneath.” (P170)

Although participants were instructed to use the list of questions on the back of the cards to
guide their thinking, they usually focused mainly on the front sides when reviewing and selecting
cards. This confirms that distinct, comprehensible titles are crucial to effective use of the cards
within an end-user developer troubleshooting workflow.

“Questions are helpful, but | think for me, even just having the bold reminder on the

front is what | really needed more. It was just, like, the reminder to do.. like, the general
idea.” (P230)

Participants’ views were mixed when it came to the amount of information on the cards—some

found it acceptable or ideal, some wanted more, and others less (Figure 74), As people have

189

different information processing styles and reading abilities, this was unsurprising. While this
study required participants to use the questions on the rear of the cards, in a more naturalistic
setting, end-user developers would have agency to choose which—or how much—information

on the cards to engage with, so double-sided cards have the potential to satisfy multiple styles.

Imagery

The use of icons on the cards was well-received. Several participants—including some with
reading difficulties—felt the icons helped them to understand the concepts and spoke
favourably about the simplicity of these images. As in my first study, some participants
mentioned struggling to understand more technical imagery in other resources:

‘I like that they were quite to the point. From the front of it, you could get what it was

about. [...] instead of it just being text, having an actual image to tie it to, is good.”
(P210)

“What I did like was how the icons are more relatable to what | might understand than
typical Arduino. [...] | don’t understand the.. especially in a circuit, they always mess
up the circuit with the drawings and it doesn’t translate to me” (P280)

Visual puns—used for attention and to aid memorability—were also well-received, for example,
P260 felt this made the cards feel more fun and approachable:

“They’re very funny. It’s interesting. Like writing logging’ as a log. [...] | like that. It just

makes you laugh [...] It just doesn't take things seriously. | think it's a big problem in

any sort of engineering computer science field that people are just really boring.”
(P260)

The use of open questions

The chief aim behind delivering the main content as questions, rather than instructions or more
direct signposting, was to encourage end-user developers to think more when troubleshooting,
while simultaneously helping them to develop their problem-solving skills by highlighting lines
of thought that might prove helpful. However, as | will discuss in section 6.3.2.2, not all were
happy with this extra cognitive load. Participants’ views were fairly polarized regarding the use of
questions. Many recognised why this approach had been taken, and found it useful, for example
P180, who reflects that this is actually how they learn best, while even some of the participants
who found the questions time consuming within the constraints of the study (e.g., P250 and

P190) saw valuein it.

190

“For me, this sort of thing works better than if someone had said, 'Here are the
instructions to build this circuit'. | will build the circuit, but I will not learn. | will simply
follow directions. And that's not the same.” (P180)

“Questions make you think about things a lot more [...] and then that'll make you
understand what you're doing a lot more in general. [...] they prompted me to try and
discover things that | didn't know, which is kind of good. | guess that's because they
didn't give away the answer but encouraged me to try and find it myself.” (P250)

‘I think questions are good because you can't apply an instruction to a lot of
situations, but you can apply a question to lots of situations.” (P190)

However, others, such as P160, felt that concrete information would be more helpful than open
questions. | had anticipated that some participants would prefer direction over reflection, from
the pilot study and card design focus groups. Participants’ use of external help in my studies
demonstrates end-user developers’ need for information about the tools and equipment they
use. While this study focused on troubleshooting tactics, the Component cards (section 5.5.4)
represent one way to satisfy some fundamental information needs of this type.

‘It feels somewhat patronizing (laughs). | personally just prefer having information,

like, saying for this temperature sensor ‘This is the ground, in, out. Make sure that the
orientation is correct,” rather than 'Why does orientation matter?"” (P160)

Some difficulties with the questions were reported, for example, not being able to answer them
made one participant feel “anxious”. As | later discuss, feelings of anxiety or stress regarding the
support materials often seemed to be related to the pressure under which participants felt
themselves to be in the study, but P280’s feedback suggests a need for additional routing or
suggestions for end-user developers who struggle to make any headway using open questions:

“It's not answering anything as well, it's just providing more questions for me to.. that |
don't have answers for” (P280)

Tactic specificity

As | describe in section 5.5.1, tactics deliberately vary in specificity—the deck contains general
problem-solving tactics as well as very specific ones, and while some tactics are very practical,
others are deliberately more thought-provoking. Participants’ reactions to this also varied:

‘I do like that some of these are very practical, sort of.. technical, sort of, approaches,

whereas some of them are just about, you know, this 'stop and think" and just sort of

using lateral thinking and, and sort of taking a step back from it, that type of thing”
(P110)

191

‘I think the level there is a bit of confusion in terms of, um... the things, whether it's
specific or not. [...] this one is quite sort of general. And this one is sort of very specific”
(P120)

At least some confusion stemmed from focusing on certain aspects of the cards and not paying
attention to others. P120 changed their opinion of one card upon taking a closer look at it. At
first glance, this may not seem like a particularly important observation, however, it suggests
that this end-user developer may have dismissed, as not relevant, tactics that may have been of
use to them. It may be that time pressure played a part in this, however, it is still worth noting.

‘I now read this, it's clear, I mean. | was reading mainly this [the title]. So, | wasn't
paying attention on the specific words here [the description].” (P120)

One participant suggested splitting cards into ‘general’ and ‘specific’ categories. It is possible
that differentiating, somehow, between levels of specificity might not only improve end-user
developers’ understanding of a particular support tool, but also of troubleshooting in general—a
future study could explore this.

“Have one category that is just really specific and a whole category that is just more

general, maybe. [...] maybe | want to look for really specific answers, for Arduino, |
don't want to be bothered with more general problem-solving techniques.” (P260)

Organising and using the cards

Encouragingly, most (15) agreed that the support materials were easy to use and most (16)

disagreed that they were confusing (Figure 74),

Participants had no constraints regarding card organisation—they could work however they
wished. While most (16) agreed that the stand was useful (Figure 74), a few felt it would be more
helpful to have more tactics visible at once, for example:

“Where you can see everything as you think, it’'s more helpful for me [...] if something's

more visual, | could maybe like look across and see like, ‘'Oh, yeah, | forgot to do that'
or something.” (P280)

More than half (13) of the participants agreed that the categories were useful (Figure 74) and the
interviews provide some insight into differences in opinion. For example, P180 found the
categories distinct and easy to understand—their interpretation matching the logic behind the
grouping, whereas feedback from P160 suggests that not all end-user developers may find these

categorisations understandable or useful:

192

“Analysing is different from inspecting. Analysing requires sort of a systematic
Judgment of behaviour, whereas inspecting is more what | was doing: 'Is that circuit
correct?' So those two are definite. Conducting a test is different from analysing it. It's
the predecessor to analysing it. If you don't conduct it, you can't analyse.” (P180)

“A lot of the categories, to me they look the same. [...] if they were, like, a little bit more
distinct, it would make more sense.” (P160)

Participants also had no constraints regarding how many cards they could use at any one time,
and | had assumed that in some cases it would make sense to work with more than one.
Correspondingly, P120 found it helpful to have cards from multiple categories active, for
example, a card from the ‘Conduct a test’ category and a card from ‘Analyse behaviour/data’.
Again, this illustrates yet another advantage of using physical cards, i.e., on-the-fly creation of
value or meaning through combination—a technique common to the methods suggested by
several creativity support card tools (section 0).
“when | bonded to one section or category, | find it a bit difficult. But then | realized,

‘Oh, there are things that | can combine’, like, there are kind of mixing things, | started
to put them together and then that's easier for me” (P120)

The playmat

Participants were encouraged to use the playmat, and advised to follow the Diagnose - Fix >

Evaluate (DFE) cycle.

Participants’ opinions of the playmat were very polarised. Only seven rated the playmat and

rules as useful; over half (11) disagreed (Figure 74).

The ease and convenience of using the physical cards for tracking has already been mentioned,
with P120 suggesting extending the playmat to include even more areas. Similarly, another
participant likened the playmat to the Kanban-style boards commonly used by software teams
to plan and track their activities, with separate columns—usually some kind of variation on ‘to-
do, ‘in progress’, and ‘done’—to show the status of different tasks.

The Shortlist area of the playmat encouraged participants to filter or triage the cards for
usefulness/relevance. Separating the consideration of options (i.e., planning) from acting/doing
was seen as helpful by P290, while P280 actually found shortlisting enjoyable:

“The playmat was great, actually. [...] And | think it's really useful to separate the
process. 'Right, okay, so what might be useful in this?" If you have a quick look and
then say 'Ok, I'm gonna try that and try that and try that and try that.”” (P290)

193

“The only thing that | found, like, quite fun was having this [playmat] and having to
pick out the ones I'm going to use. | was like structuring my to do list or something.”
(P280)

A few felt that the playmat was useful for keeping them focused and on track. Having cards put
aside on the playmat prompted P280 to revisit the tactics they had planned to use, while for
P180 it had benefits beyond the practical, keeping them calm in the face of time-pressure:

‘I did like the playmat. That was useful in the sense that it makes you put aside what

you have to think now. [...] that was good. Because if it's sitting around there, it's like
forcing me to look through it again.” (P280)

“The mat [...] was about Where am I. It was really useful. [...] Again, keeping track of
where | was, you know? It's 'What am | doing? | am doing this'. And also, with that, |
was monitoring my thinking process, as opposed to racing ahead going Aaaaaaa'[...]
And it stopped me panicking. Because | was aware of the time.” (P180)

Others, however, were less positive about the playmat, for example, P230 and P190 both felt that
the cards would be enough by themselves:
‘I don't entirely understand the purpose, I think, of the playmat. [...] | do like how it

reminds you of just the general process, but as far as having a shortlist and active, |
think that most people can kinda make makeshift piles on their own.” (P230)

‘I felt like I was using the mat just because you told me to. But | think the cards on their
own probably do a better job. | wasn't listening or looking at that [the DFE cycle] but |
was subconsciously doing that anyway.” (P190)

Although shortlisting was suggested, not enforced, some felt it an unnecessary hindrance—a
time-consuming extra step that slowed progress. A few already had an idea of what they wanted
to do—as soon as possible; for others, shortlisting conflicted with their usual way of working.

‘I prefer having all of them there and just reading all of them. [...] | prefer a mess

(mimes dealing cards in front of them; laughs). For example, | might go through them

and just put them on the desk and then read through them one by one rather than
having an idea shortlist” (P160)

Two participants, including P200, did not like having additional items like the playmat on their

work surface:

“‘I'm not a 'having things out' kind of person. I like things up (points up, in front). Or
there (points front left)... there (points front right). But this kind of desk chaos makes
me slightly uneasy.” (P200)

194

Method: Where to start? Where to go next?

Despite most (15) rating the support materials as easy to use, one issue for a few participants
was the lack of guidance or signposting in selecting which cards to use. Although cards were
categorised, there was no indication of a starting point, or cards to prioritise, for example, in the
early stages of troubleshooting. While some participants did not appear troubled by this, for
others it presented a challenge, for example, neither P110 nor P200 were sure how to correlate
the cards with their problems, so relied, in part, on random card draw, to help them choose:

‘I didn't understand the basic fundamentals of how it's supposed to work. [...] it

wasn't immediately obvious to me which category | sort of needed to look at. So | was

picking them a bit at random, and just hoping that something would come out of
there that would trigger a chain of events.” (P110)

“Pick a random card [...] there was almost a bit of relief when | read it. | was like 'Oh
actually, at least, know, I'll just take one and then | can work with that'.” (P200)

More than one participant, including P260, felt that a more structured method, or some kind of
signposting between cards would have been useful, while two participants, including P210,
suggested that familiarity and experience would mitigate this issue.

‘I think the cards don't really connect to each other. | look at the card and | think it

would be great if it tells me 'Oh, also look at this. If you've done this, do this. And if

you've done this, do this.'" It kind of gives you different pathways through

troubleshooting. Other than that, it's just like 'Okay, | have these cards, but this didn't
work, which card do | take next?"” (P260)

“Now [wouldn't have that problem, you know? And the other thing is, | would probably
start to have my own methods [...] I'd probably start to have cards that | start off with,
that might not be the same cards that other people start off with. So | think that only
applies really to your first time using it. [...] It's just not being used to it” (P210)

This feedback echoes what some other researchers have observed—while some users are happy
to work with cards in a more freeform manner, or devise their own methods, others would
prefer, or benefit from, a more structured method (Lockton et al. 2009). However, as the support
tool is aimed at novices, it seems worth exploring whether it would help to provide a starting
point—at least, some suggestions for good (or common) tactics to begin with—and/or, some

kind of linking between cards, to aid navigation within the deck.

195

6.3.2.2 What did the support materials achieve?

I will now describe some of the benefits observed within this particular sample in terms of the

aim of the support tool. They can be summarised as follows, and will be discussed in this order:

e Providing/prompting ideas, including reminders

e Making end-user developers think more when troubleshooting
e Apositive priming / learning effect

e Recognition of value in changes to process

e Suitability for novices

Providing/prompting ideas

In the first study, | observed some participants running out of ideas, repeating unsuccessful
diagnosis tactics, resorting to speculative changes or even giving up troubleshooting. A primary
aim of the support tool was, therefore, to provide novice end-user developers with plenty of
options to consider—hence the large number of tactics in the deck. Encouragingly, feedback
from participants suggests that this was achieved, as most (17) agreed that the support

materials gave them ‘useful ideas for troubleshooting’ (Figure 74).

As earlier discussed (section 2.8), troubleshooting, particularly, problem diagnosis, is a
hypothesis-driven activity, and poor or incorrect hypotheses can not only hinder progress, but
also cause further problems. For example, while end-user developers often look for external help
when troubleshooting, they do not always know what to search for—as observed in my first
study, where poorly worded or incorrect searches led participants to wrong or misleading
information. P190 felt the tactics cards offer an advantage when seeking help, by providing
readymade suggestions:
“When you look something up in a book or online, you have to give the query. So, in

that sense, cards are useful, because when you're not sure what you're looking for, you
can go there to know what to look for.” (P190)

Feedback from some participants appears to support the hypothesis in section 6.3.1.2, that
participants were less likely to make no progress, when they had the support materials. For
example, P110 almost gave up part-way through Task 1 (No Support), despairing at being
completely out of ideas, and eventually resorting to unsuccessful speculative fixes that resulted

in new bugs. In Task 2, however, the tactics cards helped them overcome similar humps. Feeling

196

at a loss can dent self-efficacy, which in turn affects motivation and resilience in problem solving
(Bandura 1978). If end-user developers are less likely to be completely stuck when using the
cards, this may have positive implications for their perseverance in troubleshooting.

“when something doesn't work in Arduino, | think | have this feeling of helplessness,

because I'm aware that | don't really know what's going on. [...] | was completely lost.

Iwas just.. | was looking for things lining up. But beyond that, [...] | didn't have much of

a clue. So these were useful because at least they gave me things to try and different
aspects.. different things to look at” (P110)

Another technique for getting participants ‘unstuck’ was the suggestion to take a random (i.e.,
any) card, which several participants found helpful.

sometimes | just get to a point and I'm like, ‘Okay, I'm done". [...] But it gives you that

nudge to say ‘Actually, is it facing the right way around? Did you think of that? Did you

actually think that maybe your temperature sensor has the wires crossed? No, you

didn't.” (P180)
Many creativity-support card decks employ random card draw as a device not just to elicit ideas
but also novel or different ideas—an effect which was recognised in this study too. P210 (NSWS)
felt the cards would have helped them in the first task, while others also noted that the
questions—and the cards in general—prompted different thinking and behaviours, with positive
outcomes:

"' think it would just got me out my thought pattern. And stopped me thinking down

the path | normally think.” (P210)

“What | liked about them is that they offer questions which you might not have thought
of previously, which kind of help you progress.” (P250)

“‘they were useful mostly in directing my attention towards an aspect or a side of
things that | was ignoring previously, you know, they were good at just 'Oh, yeah, |
should take a look at that'. And in a couple of those circumstances, | was thinking, ‘Oh,
I've seen something wrong here.” So, | don't know how long how long that would have
taken me without that prompting, to have noticed that myself.” (P110)

Sometimes chains of events led to discovery, while P210 felt that even just having cards visible

on the mat prompted further ideas:

‘I sort of started looking at something else and then while | was looking at that, | sort
of saw some.. and you know, so | think that sometimes they indirectly led to me
discovering something” (P110)

“often this happened, | would have one card. And that card would lead me on to
another card. And if | just put that card back with the card that led me on, | would

197

forget about it, but to have it down, and like, you know, there, is good. [...] it was just
like, you know, a jumping board” (P210)

Reminders of existing knowledge

If their development sessions are sporadic/infrequent—more likely, outside of the routine and
obligation of professional practice—less-experienced end-user developers are further
disadvantaged in troubleshooting. They not only lack the enhanced knowledge that comes with
more experience, but extended periods of time between development can degrade previously
acquired knowledge, making it slower or more difficult to retrieve, and increasing the potential
for misapplication. For example, it had been over five years since P300 last used Arduino:

‘I was confused with the connections and things and was like ‘Oh this is like connected

right or wrong?’ [...] | thought that things could come to me naturally, but | was like,

'Oh, is it right?" 'Is it in the right place?” (P300)
Providing end-user developers with reminders was another aim of the cards and most (15)
participants agreed that this was successful (Figure 74). It sometimes made a big difference to
how well-equipped participants were to diagnose or evaluate behaviour. For example, in Task 2,
the cards reminded P290 of the existence of the IDE’s Serial Monitor, and by using this, they were
able to view the sensor readings, which had been hidden from them in the first task. Similarly,

P190 was reminded of a common testing tactic which they hadn’t yet considered:

1

‘I totally forgot that was an option. So, when | saw that [card] | was like 'Ah, of course!
(P290)

“swapping in for a faulty one [...], that would probably occur to me at some point, but
it didn't occur to me right away. But the cards made me think about it on the spot.
(P190)

”

Timely reminders sometimes led directly to participants locating and fixing bugs:

‘I knew that from day one, that a circuit has to be complete. But just the fact that [...] |
read that, made me think, 'Hang on, let me just check if they're all going to the same
ground point'. And then it was 'Oh no, they're not'.” (P140)

And sometimes, as | will discuss next, even just a reminder to take a step back was valuable:

“Stop, think' is a good reminder that maybe you've been trying too hard to fix
something in one way.” (P260)

198

Making end-user developers think more when troubleshooting

Encouraging end-user developers to be more thoughtful troubleshooters was another key aim of
the tool, informed by the empirical work described in the previous chapter. Several mechanisms
were used to support this, chiefly 1) open questions on the tactic cards, and 2) the ‘Stop... Think’
category of tactics—all promoting thinking rather than doing. Additionally, by encouraging
participants to shortlist tactics, | had hoped to get them to reflect on different options and make

conscious choices, before acting.

Most participants (17) agreed with the statement “the support materials made me think/reflect
more about what | was doing” (Figure 74), with six giving this the highest rating. Slightly fewer
(12) agreed that the support materials made them “consider different hypotheses/ideas”. As
many tactics could be viewed as potential hypotheses, it is surprising that more did not agree.

Nonetheless, very few (4) disagreed and five gave it the highest rating.

As discussed, participants’ opinions varied regarding the use of open questions. But while some
found using them time-consuming (see section 6.4), most were unable to avoid them entirely
(although some tried to), with evident effect on their thinking:

‘they were definitely kind of forcing me to think a lot more about what | was doing. |

don't think I would have been thinking so much about, like, smaller things if | wasn't

reading the cards, because they were asking so many questions, so it kind of led me
to.. made me more determined to try and figure out what was wrong with it.” (P250)

Several mentioned finding the ‘Stop... Think’ category helpful, as well as specific cards within it,
particularly ‘Question your Assumptions’, which seemed to resonate with many:
‘the 'Stop.. think' card was actually really helpful. Because | think this is something |

would.. | like to do, to over-obsess about a certain thing. And then after, sometimes
hours, realize that it was a really easy thing to fix. | just didn't take a step back.” (P260)

However, not everyone found the extra thinking and reflection comfortable. For example, P170
felt more conscious of their troubleshooting process—usually more of a trial-and-error
approach—and questioning this made them feel less confident about troubleshooting—perhaps
a temporary effect of the study, but still worth noting. And rather than seeing the thinking
prompted by the support materials as useful to the troubleshooting process, P140 felt it
distracted them from actual troubleshooting:

‘it made me consider my own thought process and how | approach troubleshooting
Arduino, my knowledge. So in a way, it was more difficult because | was less confident

199

of the process itself [...] it sort of collapse with my own process, which is a little bit
more chaotic, and I try and fail, you know .. it's more about trial and error. [...] And
with these | was all the time questioning [...] So, it made it slower in the sense of
having to consider what | should do and questioning my method” (P170)

“they did make me think about what | was doing. But in the moment, | don't think that
was helpful. [...] It's like asking an athlete, in the moment of throwing the javelin,
'Where's your elbow now?'[...] they don't think about it, but the moment you ask them
to, it's probably gonna just throw them off.” (P140)

A positive priming / learning effect

Several participants who had the support materials in the first task reported a positive carryover,
or learning effect, to the second task. This may be one reason for the large improvement in task
performance for this group (section 6.3.1). For example, P200 felt that the knowledge they
gained from the cards in task 1 had more impact on task 2—reflecting upon the ‘Undo failed
fixes’ card had made them conscious of their tendency to not do this, so they monitored their
behaviour more closely than usual in task 2, potentially avoiding new program bugs:

‘it really stuck with me as something that's a bit of a weakness in the way | approach

things. And so when | was looking at changing the numbers there and doing all of that,

I was much more careful, I think, to make sure that | put things back to how they were,
than | would have been otherwise.” (P200)

Both they and P140 reported getting most benefit from the time spent familiarising themselves
with the cards before they undertook their first task, rather than actually using them in the task:

‘I think learning it and then applying, is genuinely more meaningful for me than when
I've got the (mimes holding the cards in front of them) [...] | actually think they're most
helpful when I've looked at them and then I'm working without them.” (P200)

“the fact that | was made to read through them before doing either of the tasks helped

both of them. And | think that was the more useful part of it than having to do it

during.” (P140)
A priming effect was reported by P240 as well, with the cards putting them in the right state of
mind and reminding them of their existing troubleshooting knowledge after a lengthy period of
not having using Arduino. This translated into tangible benefit in the second task. While the
support tool has been designed for use during troubleshooting, feedback from these
participants suggests an additional use, that may even be preferred by some end-user
developers—frontloading the information in the cards, whether to remind them of tactics in

advance, or just to get them into a troubleshooting state of mind.

200

“because | looked at them beforehand as well, it sort of reminded me of all the things
I'm actually meant to do when troubleshooting. Because some of this I've obviously
learned already.”[...] (P240)

“it's almost like, you know, you just want to look through them reqularly, you know,
and just sort of keep getting your brain going. Yeah, they're almost like warm-up
exercises. [...] To get you in the right brain state, a problem-solving brain state.” (P240)

Recognition of value in changes to process

Using the support materials meant, for most participants, a change in troubleshooting process.
Using the cards—enforced to the greatest degree possible; some participants required several
reminders—required a degree of thinking prior to action, which was out of character for some.
As | have discussed, the playmat supported this process, encouraging participants to shortlist
potentially useful tactics and then to choose at least one tactic card to work with, while

simultaneously reminding them to follow the Diagnose - Fix - Evaluate cycle.

Structure

Opinions were mixed on whether the support materials helped to structure troubleshooting.
nine participants agreed—six strongly—while six disagreed and five were neutral (Figure 74). In
the interviews, several participants spoke of the support materials providing structure and
encouraging structured thinking—both positive boons. For some participants, including P210
and P150, there was a noticeable difference between the two tasks, with their thinking and
behaviour becoming more structured and on track when using the support materials:

‘really useful to give you a direction and just a framework, really, to help you make
sense of what you're trying to do. | guess a lot of people work very intuitively. But that
can sometimes be in a sort of spiral type of fashion. This seemed to help in my thought
process a lot.” (P290)

‘it helped me also to structure things, because | had to, like, go through them. And
then ‘Which one am | actually using first?’. [...] these helped me to say 'No, I'm doing
this one first, and then I'm doing this. I'm not checking the code before I've checked
whether all the connections are right’. [...] In that sense it's really good because it
helps you organize your thoughts.” (P240)

“They kept me organized in what | was doing. | didn't branch off to different things.
[...] | put stuff down and returned to it. | think when | was doing the first one, it was a
lot more disorganized, | would start troubleshooting one thing and then I'd notice one
problem, and then forget that | was troubleshooting one thing and then not come
back to it.” (P210)

201

‘It definitely made me more structured, in what | was thinking. [...] In the first task,
when | started, | was thinking quite chaotically. It was like, 'Do | jump to software now?
Should | check hardware? Should | check this?' [...] But like with this, it was sort of
step-by-step, and structured.” (P150)

Transformative reflection

When reflection upon an experience or new knowledge includes evidence of a changed or
different perspective, Fleck and Fitzpatrick refer to this as transformative reflection (Fleck and
Fitzpatrick 2010). Several participants’ demonstrated this in the interviews, indicating that they
had learned from the experience and felt their usual behaviour needed to change. In some this
involved some recognition of the value of thinking prior to action. For example, for P180, the

recognition of weakness in their existing troubleshooting process was revelatory.

“[it was] preventing me going down rabbit holes. [...]. It pulled me back on track. | did
one thing at a time when | had the cards. | didn't get ahead of myself, thinking 'Oh, let
me change this, this, this and this." | kept pulling it back to ‘check your assumptions’.
One thing at a time. [...] my instinctive thing is 'give me that fucker'. [...] | start going
in, all balls blazing. Having the cards forced me to slow down. Think. Proceed with
logic. [...] without the cards, | just ripped the whole thing out and started wiring it
again. [...] I didn't do that when | had the cards. [...] So that was really, really useful.
[...]I've done it, the rip it up, start again, for years. | needed an intervention stopping
me from doing that.[...] it was really interesting, looking at my process compared to a
more structured process. And a real good insight into how [just react instead of act. |
don't analyse. | don't think, I just react.” (P180)

P170’s reflection upon their usual troubleshooting process led them to realise that they usually
stick to what they know, avoiding more ‘technical’ practices. Previously assuming their lack of
Arduino knowledge to be their main shortcoming, using the support tool led them to recognise
that their troubleshooting knowledge itself could improve:

‘I fly through things basically [...] like the more technical parts of the process | usually

don't consider because | don't know how to, or I'm not that familiar because I'm not

that expert. [...] it's the same as debugging, when you're coding something. | never

debug because, it's like, I don't know how that works, right? So I just.. if it doesn't work,

maybe | spend two days trying to figure out what I've done wrong [...] And that these

[the cards] is, in a way, to say like, ‘Okay, maybe it's not that you're not an expert [in
Arduino].” (P170)

Other participants who struggled with the cards also took something away from the experience.

For example, both P110 and P220 came to the realisation that their current approach to learning

202

Arduino is failing to develop their knowledge or understanding, with significant impact on their
ability to troubleshoot problems.

‘Ilearned a lot. [...] I learnt that | should not rely on readymade exercises. [...] if | put

away the book, and try to do the exercise on my own | will learn much more, because |

will do so many mistakes that | took for granted, doing, following the steps [...] And by

doing so many mistakes, that's how I'll learn. Because following the steps might take

me half an hour to finish, but doing it blindfolded, it might take me a day. But | will
learn much more.” (P220)

“just copying exactly what someone else is doing is maybe not such a great way of
learning Arduino because you're not really learning. You're just seeing what works, but
not really understanding why. [...] | think you've exposed a crucial vulnerability, you
know, a crucial gap in my in my knowledge.” (P110)

Speculative changes

“I'm not always sure what I'm doing. So I'm always trying, ‘let me try this and let me try

that’ [...] It's because I'm not sure. I'm not confident enough to know exactly what I'm

doing.” (P220)
When used thoughtfully and deliberately, rather than by default or as a last resort, speculative
changes can provide value within a troubleshooting process. However, in the first study, as
observed in studies of non-expert programmers, some end-user developers made speculative
changes in lieu of more thoughtful diagnosis, many of these resulting in new bugs. | hoped that
encouraging participants to think more when troubleshooting would lead to fewer haphazard

speculative changes, also explicitly warned against in the Best Practice cards.

Several participants noticed a difference in their behaviour in this regard. For example, P130, a
self-confessed ‘tinkerer’, observed a change to their approach in the second task (With Support),
as did P250, who noticed that they made far fewer changes to their program. This feedback
suggests that the support materials may help to tackle a sometimes-destructive troubleshooting
behaviour that is characteristic of non-experts.

“Every time | got stuck at a point, | would just look over and see if there's anything that

would help me. And then if | saw something, then I'd immediately jump back into it.

[Facilitator: What would you do normally?] I'd tinker around to, like, think of another
solution.“ (P130)

‘I know that | didn't change as much in the code, which I did do in the first one. So,
yeah, maybe it led me to think more about my actions, so | didn't feel like | needed to
speculate. I'd thought about it more.” (P250)

203

Suitability for novices

Encouragingly, most (15) participants agreed that the SM would be useful for novice Arduino

users, nine strongly so; only three participants disagreed (Figure 74).

One of the many reasons for choosing the medium of cards to provide support was the potential
for it to encapsulate useful troubleshooting knowledge in easily digestible pieces. Additionally, |
wondered whether cards might be seen as a little more playful than traditional forms of support
and therefore appeal to non-experts. Both points were reaffirmed by P230, who thought the
format to be particularly good for young people, like them, who might be resistant to reading
lengthy guides and be more receptive to something simpler and a bit more fun. Likewise, P260
found them “cute” and “very approachable”, with the “game-like” feel a welcome counterpoint
to conventional forms of guidance.
“especially for young people who are just starting to learn [Arduino], it draws your

attention, it's easy to get through and like | say, | do like that it's broken into very small
pieces. | think that makes it much simpler. And they're just a little more fun.” (P230)

“It's very game-like. [...] It's very different from what | would expect. It breaks like this
kind of very dry, normal set of programming where you just read black and white long
texts [...]It's a more fun approach maybe to troubleshooting or programming” (P260)

Although scaffolding end-user developers’ troubleshooting is a primary aim of the support tool,
informally educating novice end-user developers through using it is also of interest, similar to
the Idea Garden, which helps end-user programmers become better problem solvers (Cao 2013).
P150 felt that the support tool teaches valuable best practice and ways of thinking that are
usually imparted by teachers, or gained through experience, while P160 felt the practical
knowledge in the cards could be immensely valuable to novices:

“‘going through the disciplines that this sort of teaches you is very good. [...] all of this

is about thought process. [...] It's just about how you think. It's literally these three

steps (points at the flowchart on the playmat). Yeah. And people fail to do a lot of this
when they try to do stuff, when they first begin.(P150)

“when | was a very, very beginner, | knew how to code on this (points at the IDE), but |
had no clue what the Serial Monitor was. [...] So, obviously, for a beginner, for a
novice, they might know how to output and how to connect an Arduino to the circuitry,
but they might not know how useful a Serial Monitor is, or where it is even.” (P160)

204

Ideally, think P200 and P290, the knowledge encapsulated in the cards would eventually be fully
assimilated, through repeated use, until no longer needed:

“If you were to get to the point where you just naturally apply all of those principles to

what they're doing, that's the kind of, | guess, the best end result.” (P200)

‘I think you'd get used to it and you'd get to know it. It's the kind of thing I'm
wondering if you'd use very intensively to start with and then not need it anymore.”
(P290)

However, as discussed, one challenge facing end-user developers, particularly novices, is that
the physical computing knowledge they do build up can get lost, or degrade, over time if it is not
used. The learning/priming effect of the cards, even when perused upfront, rather than only in
the act of troubleshooting, has the potential to address this. As well as providing reminders
during troubleshooting, both P240 and P170 felt the cards would be a good way to refresh their
knowledge when returning to Arduino after some time, as happened when they participated in
this study. For P170 this has concrete, practical benefits, while in P240’s case, the reminder that
they do already have knowledge also served to boost their confidence and self-efficacy:

‘I hadn't touched an Arduino in a year. [...] | don't even remember how the

breadboard works. That's why my knowledge is spread throughout time. And then

when | get back it's like, 'Oh my god, | need to go again to the internet because | don't

remember how this works. [...] And this is basically a reminder of that. Like, you know,

remember that this works this way. Remember that you have to think of these things.
It's like, 'Yeah, right, so I'm in the Arduino world, again'” (P170)

“They definitely make me feel more confident. [...] for me, this is a really important one
[...]. It's more about getting myself in the right state for something like that, right? |
need to feel | know, already, a lot. ‘I can do this’, right? [...] | like this, because it makes
me feel confident that I've got a brain and that | can solve problems” (P240)

As a novice end-user developer, P120 even feels that the awareness—suggested by the large
number of tactics cards—that there are numerous options/ideas yet to explore, is comforting,
and acts as a kind of emotional support, while P240 also reports finding a degree of comfort and
support in the presence of the cards, not just the knowledge they impart. As novice end-user
developers can find troubleshooting stressful, the suggestion that the cards may also provide
this type of support, in addition to practical scaffolding, is very encouraging.

‘| feel they get me kind of comfortable in a way. [...] I've still got options here’

(laughs). Like, ‘I can do things here, don't worry’. It's sort of like, uh, support from an
emotional way. [...] I still have choices.” (P120)

“‘But it's more like, for me to surround myself with stuff | know (lays out several of the
Inspect cards). This is how I normally approach stuff. (Exhales loudly) Safe. Calm. [...]

205

Sometimes | just need to watch a Schiffman video just to relax, you know, get myself in
the right state of doing coding or whatever. And the same way, these cards just get you
in that state.. and | think that's a really important role of the cards here. They could
also be like little objects, little guardians (laughs).” (P240)

6.4 Discussion

| will now expand upon some of the frustrations expressed by participants, before finishing the

chapter with a summary of the study findings.

6.4.1 Task-related frustration

As already mentioned, several participants found having to use the support materials frustrating.

“They're very wise advice but it was an annoyance to have to keep referring to them.”
(P140)

Shortlisting was encouraged, rather than required, but even participants who chose not to
shortlist still had to use the cards. They had been given some time upfront to familiarise
themselves with the card deck, but with no signposting as to which cards might be relevant or
more/most useful, it was up to the participants themselves to determine this. How easy or quick
they found the process of assessing cards depended on factors such as their existing knowledge
and how much of a card they needed to read in order to make a judgement, further impacted by
their reading ability/speed. And, as established, using the support materials also gave

participants more to think about, as I intended.

For P220, who had rated their expertise in all types of development as low, the extra cognitive
load of choosing cards from an unfamiliar deck, then working out how to apply them felt

overwhelming;

‘there's a lot. | mean, there's six categories there. And that takes time and, you know,
trying to categorize.. your problems. Is it the orange? Brown? It's already enough in my
brain trying to figure out the circuitry.[...] And then trying to figure out the colour
scheme, and the categorization, the titles and then there's the one side of the card and
then the other side of the card, and the other side of the card is split in two. So there's
a lot of things going on that need more dedication from me, that | can't afford right
now, because I'm trying to concentrate on the circuit. (P220)

206

Several participants spoke about the impact that the time constraint had on their card use. It is
obvious that there was a difference between how participants wanted—or planned—to use the
cards, and what actually happened.

“At the beginning | put the cards out so that they'd give me ideas. And then at the end |

didn't have time to go through half of them” (P300)

‘It was quite time consuming to read them. That's why | was kind of, like, going
through and very quickly discarding ones | didn't think were useful.. but if it wasn't a
time-pressured task, then maybe | would read them more.” (P270)

Several also reported feeling that the cards might be more useful/effective under more
naturalistic circumstances, in which they felt less pressure and had greater agency.
“If there was like a smaller amount and | was stuck on something, and | needed a

prompt, | think | genuinely would use them and they'd be very useful. | think just
because of the conditions it was in, it was just a bit more tense.” (P250)

‘I just feel like | had too little time to really use these cards. | think my experience is
relatively negative because it was kind of a hindrance in this scenario. Because | would
operate quicker, maybe, or differently, just with my own set of rules.” (P260)

‘I felt that | was under time pressure. [...] having to read the support materials, then
thinking about them, then applying them to my project was a little bit difficult.
Because usually when | read, it takes me a while to read and then process, then apply.
[...] But if it was, like, me at home, if | had these, or even if it was on the computer, |
would be like, skimming through them, maybe, like, the title may come to me and |
would be like, 'Oh, yes', and then go back to it.” (P160)

It seems that for some participants, at least, the circumstances and constraints of the study led
to a more difficult, and therefore possibly more negative, experience of the support tool—a
limitation of this study that should be acknowledged. This and further limitations of the study

are discussed in section 7.2.

6.4.2 Summary

This was a study to evaluate the novel support tool, described in Chapter 5. It aimed to answer

two research questions:
RQ1l: What effect does a physical card-based support tool have on end-user

developers’ success in troubleshooting circuit bugs in physical computing
prototypes?

207

RQ2: How do end-user developers view the physical card-based support tool, having
used it to troubleshoot circuit bugs in physical computing prototypes?

To answer RQ1 | analysed participants performance in two hands-on troubleshooting tasks,
comparing the outcome of participants’ troubleshooting with and without the support tool. |
found little difference in measures of task success, the number of preseeded bugs resolved,
which preseeded bugs were resolved, or the number and location of bugs, including new ones,
remaining at the end of the task. However, | noticed that more participants made at least some
progress—fixed at least one bug—when they had access to the support tool, suggesting that it
may reduce the likelihood of end-user developers being completely stuck—making no

progress—when troubleshooting. More work would be required to establish this with certainty.

To answer RQ2, I analysed participants’ subjective feedback about the tool, collected via the
support materials questionnaire and a debriefing interview. Key points from this analysis

include:

= Many found the physical card format useful. Some felt it to be potentially less distracting
than software-based support, although a few would have preferred a digital tool.

= Participants confirmed some of the benefits of cards seen in other projects, for example,
flexibility in ways of working, and the creating of new meaning through spatial
arrangement. Grouping cards also provided a convenient way for participants to track
their troubleshooting.

= Card content was seen as useful and relevant to the tasks. The informality of the cards
was seen by some, as a fun and accessible way to approach an otherwise dry topic.

* The information design has the potential to accommodate different reading abilities
and information-processing styles. Instantiating content as small chunks of information,
makes it easy to digest, compared to other support media, e.g., lengthy texts.

= Many found open questions useful, as a way to prompt thinking and independent
problem solving, although some wanted more instruction/direction, or the addition of
concrete facts or signposting.

= The tactics succeeded in giving participants useful ideas for troubleshooting. They
helped to remind them of their existing troubleshooting knowledge and were seen as a
good way to refresh degraded knowledge—a common problem for end-user
developers. This had practical benefits in the moment, but also served to increase some

participants’ feelings of confidence and self-efficacy in their troubleshooting abilities.

208

= Some participants even found the cards comforting, providing reassurance that they
still had plenty of troubleshooting options available. This perception of the cards as
emotional support was an unforeseen benefit.

= Participants also reported the cards having a positive priming or carryover effect—from
upfront familiarization with the deck, or having used them in the previous task.

= The cards did succeed in encouraging participants to think or reflect more when
troubleshooting, and the ‘Stop... think’ category, resonated with some participants as a
reminder to step back from 'doing' and consider other lines of thought. However not all
participants were comfortable with having to think more, and felt it distracted them
from ‘actual” troubleshooting.

= Some participants would prefer a starting point, or signposting in selecting cards.
Random card draw was helpful in getting some participants ‘unstuck’, leading them to
areas of investigation they had not considered.

= Participants’ opinions of the playmat were polarised. Some found the playmat and
shortlisting useful, as a way to focus thinking, and plan/structure troubleshooting. It
helped them stay on track and avoid some of their usual pitfalls—several observed
thinking and behaving less ‘chaotically’ than they did without the support materials,
making fewer speculative changes. However, others found the playmat a hindrance and
the act of shortlisting time-consuming—having to think upfront conflicted with their
usual approach, for example, trial-and-error tinkering.

= Some participants showed evidence of transformative reflection—using the support

tool made them aware of shortcomings in their existing process.

In summary, although the cards format did not suit all participants, and certain aspects of the
tool were polarising (for example, the playmat), participants were mostly positive about the
support tool, particularly the cards, or specific aspects of them, and felt them to be useful for
novice end-user developers using Arduino. Feedback also suggests that the support tool met a

number of the key aims behind its development, including:

= Making participants think/reflect more during troubleshooting

= Providing participants with useful ideas for things to try—giving them options and
getting them unstuck

= Reminding participants of their existing knowledge

= Encouraging a change in process that some participants found helpful

209

Additionally, it was suggested that the cards may have a positive learning or priming effect,

which may benefit future tasks, although more work would be required in order to establish this.

While some participants found it frustrating to have to use the support materials, particularly
within the constraints of the study, feedback paints a fairly promising picture of the potential for
support in the form of physical cards to help some end-user developers troubleshoot physical

computing bugs.

This chapter concludes the detailed description of the work that | have undertaken during the
course of my PhD research. In the next and final chapter of this thesis, | will summarise this work,

including the key findings, and situate it in respect to the literature.

210

Chapter 7

Discussion and conclusion

To recall, the overarching aim of the work | have described in this thesis was to answer the

following research question:

How can end-user developers be supported in overcoming problems they experience
when developing physical computing artefacts?

To answer this, | first needed to increase our knowledge of end-user developers in this domain—
the problems that they experience and whether they are successful in overcoming them, how
they go about solving those problems, and whether their behaviours are effective. This was
accomplished through two pieces of empirical work, observing end-user developers developing
an Arduino-based physical computing device to a given specification—data analysis first
focusing upon problems observed, and then upon troubleshooting of the most significant
problems. By addressing these knowledge gaps, | was able to determine the support most
needed by end-user developers when troubleshooting in this domain. I instantiated this support
through the design and development of a novel, card-based tool for scaffolding end-user

developers’ troubleshooting, which | then trialled in a study with novice end-user developers.

In the remainder of this chapter, which concludes this thesis, | will first revisit my findings from
the research undertaken, and highlight the contributions to the literature, including
relationships to previous work. Thereafter, | will discuss some limitations of my research, reflect
upon the approach and methods | adopted in this work, and the decision to focus specifically on

troubleshooting, and conclude with an outline of opportunities for future work.

211

7.1 Contributions

A number of contributions resulted from this work. | will now summarise these in respect to the

four primary research questions posed in the Introduction chapter of this thesis.

7.1.1 Contribution1

Empirically grounded knowledge of the problems encountered by adult end-user
developers when constructing and programming physical computing artefacts,
including the frequency and location of problem types, and which problems are most
likely to cause task failure.

This contribution was achieved by addressing the following;

TRQ1l: What problems do end-user developers experience when developing a
physical computing artefact? (Chapter 3, Study 1A)

This study resulting in this contribution builds upon my work prior to this thesis (Booth and
Stumpf 2013), now investigating problems which arise when end-user developers construct and

program a physical computing device from scratch.

To address this research question, | conducted an empirical study involving twenty end-user
developers—Arduino users of varying background and expertise—who undertook a hands-on
task, developing an Arduino-based physical computing prototype to a given specification. The

first analysis of the data collected (Chapter 3, Study 1A) revealed the following key findings:

= All participants in this study, irrespective of their previous experience, encountered
problems during the development task: all experienced obstacles (barriers to
overcome), while most experienced breakdowns (errors in thought or action) and
introduced bugs (faults) in their circuit, program, or both.

= While most problems occurred in respect to programming the device, the majority of
task failures were primarily due to circuit-related problems—10 of the 14 participants
who failed the task did so due to errors in circuit construction.

= Circuit-related task failures were mainly attributed to two types of bugs: Miswiring, for

example, providing the wrong connections from the Arduino board to the sensor, and

212

missing components, for example, failing to use resistors with LEDs. Participants had
serious difficulties localising these faults.

= |n diagnosing the symptoms of circuit bugs that they had introduced, participants did
not always realize that the fault(s) lay in the circuit and incorrectly tried to resolve the
problem by modifying the program, leading to new program bugs; In other cases,
participants misjudged which part of the circuit contained the fault(s), and modified a
different part of the circuit, again, leading to new circuit bugs. This pattern of
misdiagnosis resulting in new bugs proved fatal to task success for several participants.

= Background factors such as self-efficacy and self-rated expertise did not predict whether
participants would successfully complete the task, nor the number, types and locations

of problems they experienced.

Decades of work has shown that novice and end-user programmers experience problems when
creating and modifying programs. This study provides the first evidence that end-user
developers experience problems when developing physical computing devices too, and that
some of these problems have grave implications for development success. From this study, we
now know where problems are most likely to occur, which problems are most prone to
misdiagnosis, leading to the new problems and more likely to prevent end-user developers from
successfully building a working physical computing device. As in previous research investigating
the problems of novice and end-user programmers (e.g., du Boulay 1989; Spohrer and Soloway
1986; Lahtinen, Ala-Mutka, and Jarvinen 2005), we see that end-user developers in this domain
experience difficulties with some of the most fundamental aspects of development—for
example, declaring and using variables, and, specific to this domain, the wiring of LEDs or
sensors in simple circuits. Similarly, participants’ difficulties understanding runtime behaviour—
i.e. obstacles involving both program and circuit— echoes previous work too, for example, Ko
and colleagues’ (Ko, Myers, and Aung 2004) finding that Understanding barriers are particularly
challenging for end-user programmers and them lead to chains of further problems that lead to
bugs is similar to the patterns of misdiagnosis | report here. This study also seems to confirms
the previous suggestion that end-user developers can face even more challenges when trying to
resolve physical computing problems due it involving both programming and circuits (Tetteroo,
Soute, and Markopoulos 2013). Finally, research by others since publishing this work in Booth et
al. 2016, has confirmed similar findings to mine, for students new to Arduino (Sadler, Shluzas,
and Blikstein 2017; DesPortes and DiSalvo 2019), however, to my knowledge, my work was the

first to address this area. While the sample is small, a search of the official Arduino forums for

213

'Love-O-Meter' turns up numerous posts describing many of the same problems that
participants in this study experienced. This suggests that the participants and their problems are

not atypical and that the findings will generalize.

Understanding the problems faced by end-user developers is crucial step towards determining
how to support them. My next contribution—knowing what troubleshooting behaviours they

naturally employ, and whether these are effective—takes us one step closer.

7.1.2 Contribution 2

Empirically-grounded knowledge of the natural troubleshooting behaviours of end-
user developers troubleshooting failure resulting from circuit bugs—the type of bug
observed to have most significant impact on task success—and suggestions for
support that might benefit end-user developers when troubleshooting these types of
bugs.

This was achieved through a study addressing the following question:

TRQ2: How do end-user developers troubleshoot the most significant problems that
arise during development, and from what support might they benefit?
(Chapter 4, Study 1B)

A second, deeper analysis of data collected in Study 1A, this study sought to address a lack of
knowledge about how end-user developers troubleshoot circuit bugs, and whether their
approaches are effective. Building upon previous work in end-user programming, | identify
tactics used by end-user developers when attempting to diagnose and resolve circuit bug-
related problems, and show that as in other domains, end-user developers often use
unproductive or destructive tactics when troubleshooting physical computing problems. One
advantage of this study was that | could observe end-user developers troubleshooting bugs that
they themselves had introduced while developing a physical computing prototype. Even though
the study was in a controlled environment and participants had to complete their physical
prototype within a specified time, their behaviour was arguably more naturalistic than it would
have been in a formal debugging study where participants are required to troubleshoot
preseeded bugs. In particular, | was able to observe how participants troubleshot a variety of

bugs, some of which I might never have anticipated. Key findings include:

214

= Participants used a number of tactics to diagnose their problems, fix their bugs and
evaluate their fixes, however, these were not always effective.

= Lack of domain knowledge often led to poor or incorrect hypotheses, for example when
participants tried to interpret runtime behaviour or output—a frequently adopted
tactic—and reason backwards from as to the cause of failure.

= Participants frequently sought external help, but sometimes conducted poor/incorrect
searches, or had difficulty understanding, judging or applying what they had found.
Some also some made mistakes when using resources—over half of the episodes in
which participants copied examples introduced new bugs.

= |nspection was frequently observed, however, poor or incorrect hypotheses led some to
inspect parts of their prototypes that did not contain faults and make incorrect
assessments regarding its correctness.

= Participants struggling to diagnose, or running out of ideas, often resorted to making
speculative changes. Far more speculative changes were made by those who failed to
complete the circuit, and these types of changes resulted in over three times more bugs
than they fixed. In some cases, participants failed to reverse these, compounding their
problems. In contrast, when participants localised their bugs, the changes they made
resulted in far more fixes and far fewer bugs.

= When participants were stuck, they sometimes stopped troubleshooting and continued
developing while bugs still remained, adding further complexity to their prototypes,
making subsequent diagnosis and fault localisation even more difficult.

= Direct feedback in the location of a fault did help participants to localise some bugs, for
example, the sensor heating up due to miswiring.

= Prototype complexity played a role in whether participants were able to successfully
diagnose their problems. Bugs in simple circuits were often more easily localised and
resolved, however, when a prototype contained multiple dependencies, participants
struggle to diagnose failure, as runtime behaviour/output was more difficult to interpret.

= |ncrementally constructing and testing their prototypes, or reducing dependencies
through tactics such as isolation, increased the likelihood of end-user developers being
able to localise and fix their bugs successfully, however, not many who failed to resolve

their circuit bugs adopted these approaches.

Overall, participants’ difficulties in troubleshooting their problems are consistent with the

literature, including considerable work attesting to debugging being particularly challenging for

215

non-experts (e.g., Lahtinen, Ala-Mutka, and Jarvinen 2005). Similarly, some of the above findings
have been observed in studies of novice and end-user programmers, for example, the
tendencies for non-experts to make speculative changes and introduce new bugs (e.g., Perkins

et al. 1986; Cao et al. 2010; Gugerty and Olson 1986; Nanja and Cook 1987).

While novice and end-user programmer behaviours when debugging have been studied by
several other researchers (e.g., Katz and Anderson 1987; Cao et al. 2010), | believe this work to be
the first to have looked at these in the context of physical computing, specifically for adult, end-
user developers. Some of the tactics observed in this study have also been seen in studies of the
strategies of end-user programmers, for example, Inspection, and seeking Help, however, some
behaviours, for example, swapping in a component of exactly the same type and specification,
or changing the spatial orientation of a component, have no equivalent in programming that |
can think of. My work therefore complements the work on end-user programmers’ debugging
behaviours, extending it into a new domain—troubleshooting of problems within physical

computing development, specifically hardware bugs.

Based on these findings, | propose that support for end-user developers’ troubleshooting should
focus on 1) help with general approaches that will help them to become better troubleshooters,
and 2) specific support that will aid them in diagnosing the cause of bug-related problems, fixing

bugs, and in evaluating the success of bug fixes (section 4.4.2).
Support I suggest for specific aspects of troubleshooting includes:

* Planning and hypothesising: Considering and prioritising different hypotheses and
tactics, making more thoughtful decisions regarding what action to take.

» Recognising and defining failure: Better identification and analysis of the symptoms
caused by bugs, in order to generate better hypotheses.

= Focused analysis of runtime behaviour/output: Guidance in the types of analyses that
can be used to diagnose failure and evaluate the result of fixes.

* Problem decomposition: Ways to break a problem down or simplify it, e.g., reducing
dependencies through tactics such as isolation, to establish the boundaries of failure.

= Focused testing instead of haphazard speculative changes: Approaching speculative
changes in a more thoughtful way, as focused tests driven by hypotheses, ideally with a

clear idea of what to look for in the results; suggestions of tests to perform.

216

= Thorough inspection: Awareness of the types of visual checks—including for common
errors—that can or should be performed before making changes.

* Incremental, iterative progress: Incrementally building and testing prototypes; making
one change at a time, and immediately evaluating the result.

= Dealing with failed fixes—Reversing changes that did not resolve failure, rather than
building further upon them.

» Following an iterative process: Performing thorough diagnosis before a fix attempt,

and then immediately evaluating whether the fix was successful.
General principles for supporting end-user developers include:

» Encourage thinking/reflection: Thinking through their problems will help end-user
developers become better troubleshooters Support hypothesis generation and prompt
reflection—before, during and after action.

= Support perseverance with systematic troubleshooting: Reduce the risk of end-user-
developers giving up or making speculative changes, by providing them with
troubleshooting ideas and a process to follow.

= Encourage and support planning and tracking of troubleshooting: Help end-user
developers to consider and carry out necessary steps and remember what they have

tried.

The next contribution draws on contributions 1 and 2, instantiating the suggestions for

supporting end-user developers in the form of a novel support tool

7.1.3 Contribution 3

A novel, physical card-based tool to support novice end-user developers when they
are troubleshooting physical computing problems, particularly circuit bugs.

This contribution resulted from addressing the following research question:

TRQ3: How can we design a deck of physical cards to support end-user developers in
troubleshooting physical computing problems, particularly circuit bugs?
(Chapter 5)

In Chapter 5 | described the design and development of my third contribution: a novel, physical

card-based troubleshooting support tool for novice end-user developers of physical computing

217

artefacts. To my knowledge, this is the first tool to provide end-user developers with
troubleshooting support via the medium of physical cards, in physical computing or any other

domain.

The general aim of the card deck is to provide novice end-user developers with a wide range of
tactics that can be used to improve diagnosis of physical computing problems, fixing of bugs,
and evaluation of fixes, and to facilitate thinking/reflection during this process. The goal is not to
give exhaustive and prescriptive check lists of instructions, but rather to encourage a creative

and exploratory approach to troubleshooting, presented more as scaffolding than instruction.

Different approaches have been taken to provide end-user developer/programmers with
support or scaffolding when debugging software programs. Most have adopted a technology-
based approach, often relying on some form of background analysis of the program that is being
debugged. More recently, and often with reference to the findings from the first study in this
thesis (Booth et al. 2016), tools have begun to emerge to support the diagnosis of circuit bugs in
physical computing prototypes, again, relying on background analysis what an end-user
developer has built. To date, | have found only one tool which supports both programming and
electronics—Bifrost (McGrath et al. 2017)—again, technology-based. My work to support end-
user developers has taken a very different approach. Like most of these tools, and in accordance
with Minimalist Theory principles (Carroll and Rosson 1987), it provides support during the
process of debugging/troubleshooting. It aims to help end-user developers to solve their own
problems (Cao et al. 2015), encourages hypothesis generation (Ko and Myers 2008), instantiates
tactics or strategies (Cao et al. 2015) including planning and tracking of actions (Grigoreanu,
Burnett, and Robertson 2010), and supports troubleshooting of circuit bugs (Drew et al. 2016;
Wu, Shen, et al. 2017; McGrath et al. 2017), however it does all of these things through the
medium of physical cards, which have been shown to have benefit for non-experts within a
process, including ideation (Mora, Gianni, and Divitini 2017), the instantiation of knowledge

(Bekker and Antle 2011) and the encouragement of reflection (Friedman and Hendry 2012).

The tool was inspired by popular creativity-support card decks, and content was informed by,
firstly, empirical work which identified the most significant problems that end-user developers
encounter when developing a physical computing device and analysis of their natural
troubleshooting behaviours when dealing with these, and secondly, a review of the academic
and non-academic literature on software debugging, hardware troubleshooting, physical

computing and general problem solving. The design of the card deck was informed by a design

218

review of the academic literature on card-based tools, identifying key considerations when
designing card-based tools, as well as focus groups with novice end-user developers and an
informal pilot study, of an early prototype, with end-user developers. This process resulted in a
card deck comprising 36 troubleshooting tactics cards, in five categories, as well as four
component cards, and an additional category containing 6 best practice cards. The tactics
encourage thinking, reflection and independent problem solving through the use of open
questions. Other elements of the ‘Tactical Troubleshooting’ toolkit include a playmat
encouraging hypothesis generation/prioritisation through selection of tactics, and a stand in

which the cards can be stored/displayed.

Evaluation of this support tool delivers the next contribution of this thesis, which I will now

describe.

7.1.4 Contribution 4

Insights into how troubleshooting support in the form of physical cards might be used
and received by novice end-user developers.

The fourth contribution of this thesis resulted from addressing the following question:

TRQ4: What role might a card-based tool play in supporting end-user developers in
the process of troubleshooting circuit bugs in a physical computing prototype?
(Chapter 6, Study 2)

This contribution was achieved through an empirical, within-subjects user study in which twenty
adult, novice end-user developers undertook troubleshooting tasks with and without the novel,

card-based support tool.

While analysis of participants’ task success and bug-fixing performance did not find the tool to
have conclusive positive effect on the outcome of end-user developers’ troubleshooting, the

results suggest that it may decrease the likelihood of them being completely stuck.

Feedback from participants, via a questionnaire and interview, provides several insights into the
role that a physical card-based support tool might play in a troubleshooting process. |
discovered that support in form of physical cards may be well-received by some end-user
developers, but not all. Several participants in this study liked the card format, and saw it as

being less open to distraction than accessing support via a screen. Feedback suggests that

219

instantiating support as small chunks of information can make it easy to digest—a fun and
informal way to access useful information, compared to some other types of support media, for
example, lengthy texts and guides. The cards also show potential for accommodating different
information-processing styles and reading abilities, allowing end-user developers to engage
with as much or as little information as they wish. Participants in this study confirmed that
troubleshooting cards afford benefits seen in previous cards research, including the creation of
meaning or value through spatial arrangement—for example, grouping cards can be a

convenient way to structure and track troubleshooting.
A number of effects were observed via feedback, broadly meeting the aims of the support tool.

Firstly, the study suggests that tactics cards can succeed in prompting ideas for different
avenues of problem exploration and providing readymade suggestions for end-user developers
struggling to formulate hypotheses for potential problem causes. While some participantsin this
study would have preferred more signposting in navigating the card deck and selecting tactics,
drawing a random card can help to get end-user developers ‘unstuck’, leading them to areas of
investigation that they have not considered, resulting in fault localisation. Troubleshooting
tactic cards can also remind end-user developers of their existing troubleshooting knowledge—
feedback suggests that that this not only has practical benefit in the moment, but may also
increase end-user developers’ feelings of confidence and self-efficacy in their troubleshooting
abilities. Some participants in the study even found the cards comforting—the wide range of
tactics may reassure end-user developers that they still have plenty of troubleshooting options
available. This perception of the cards as emotional support was unforeseen but encouraging.
Feedback also suggests that support in this format may also have a positive priming or carryover
effect on troubleshooting— from using the cards in a previous task or merely scanning or
frontloading the tactics and best practice prior to troubleshooting. The cards may also serve as a
good way to refresh degraded knowledge after a lengthy period of not having used Arduino—a

common problem for end-user developers, experienced by several participants in this study.

Secondly, feedback indicates that support in this format can indeed succeed in encouraging
end-user developers to think or reflect more—the current tool does this through the use of open
questions, encouragement to shortlist tactics, and the ‘Stop... think’ category of cards, which
particularly resonated with some as a reminder to take a step back from doing, to reflect. Some
end-user developers find open questions helpful in guiding their thinking and encouraging

independent problem solving, however this may not suit everyone. Like a few participants in this

220

study, some end-user developers may prefer concrete advice, need additional guidance when
they struggle to answer open questions, or want additional information about components—the
Component cards omitted from this study represent one way to address the latter. Equally, not
all participants in this study were comfortable with the metacognitive activity of ‘thinking about
their thinking’—a few felt it distracted them from ‘actual’ troubleshooting, while two participants
found it cognitively overwhelming—effects perhaps exacerbated by the study constraints, but

still worth noting.

Finally, devices such as the playmat in the current toolkit can provide useful functions within a
troubleshooting process, but again this may not suit all end-user developers. Enforced use of the
support materials did affect participants’ troubleshooting process, but participants’ opinions
were polarised regarding this. Some found the playmat and shortlisting very useful, as a way to
focus their thinking, and plan/structure their troubleshooting, helping them to stay on track and
avoid some of their usual pitfalls—several observed thinking and behaving less chaotically than
they did without the support materials, and making fewer speculative changes. Others, however,
found the playmat a hindrance and the act of shortlisting unnecessarily time-consuming—
having to think upfront conflicted with their usual approach, for example, trial-and-error
tinkering. While these participants were resistant to effect on their troubleshooting, evidence of
transformative reflection was observed in others—using the support materials made some

aware of shortcomings in their existing process, which they now felt needed to change.

From the feedback reported, it seems that support in the form of physical cards shows potential
for scaffolding novice end-user developers’ troubleshooting, providing a number of benefits.
While this approach to support provision will not suit all end-user developers, it was well
received by some and showed evidence of having met its aims, contributing a novel way to

support novice end-user developers in their troubleshooting tasks.

7.2 Limitations of the work

The research undertaken in this thesis provides the first evidence of problems faced by end-user
developers in the domain of physical computing development. | achieved this through studies

involving representative users, i.e., end-user developers. As with any user study, limitations

apply.

221

Each study involved a relatively small sample (20 participants), and participation was limited to
those who were able to attend a 2-hour long in-person session in central London, at City,
University of London’s Interaction Lab. While London has a large maker community (e.g., the
main hackerspace had well over 1,000 members at the time of recruitment), | nonetheless found
it difficult to recruit participants, despite distributing my calls for participation widely and via
several channels. This echoed my experience of recruiting for a previous study involving Arduino
novices (Booth and Stumpf 2013). Recruitment for Study 2, focusing only on novices, proved

even more difficult, as the eligibility criteria were even narrower.

One possible explanation for this may be low self-efficacy or lack of confidence within the target
population. In the course of my associations with makers, before and during my PhD, | have
become aware that confidence can sometimes be an issue, particularly for novices. This is
unsurprising—for many people, confidence and feelings of self-efficacy grow with experience
and knowledge. However, this has implications for any researcher wishing to recruit non-
experts. While | did eventually meet my sample quota for each study, | must assume that my
sample included only participants who felt confident enough to apply to participate, which

means, they cannot be representative of all non-experts in this domain.

When | recruited participants for my first study, not much was known about this population. |
cast the net widely, and resultingly, my sample included end-user developers of varying
background and skill. As | have discussed, end-user developers are a diverse population with
many motivations for engaging in physical computing development, and varying competencies.
Whether different subsections of this population think or behave differently during development
is unknown—my small sample size would not allow me to make reliable predictions of this kind.
I am confident in my finding that end-user developers of all backgrounds experience problems,
however, more work is required to determine whether particular types of experience
unequivocally affect end-user developers’ performance and behaviour in both development and

troubleshooting of physical computing artefacts, beyond the analyses | do report.

The user studies | conducted took place under tightly controlled conditions, which may have
affected the results—in section 7.4.1 I reflect further on this approach. | did not study end-user
developers in their natural habitats, but in a laboratory setting, with strict time constraints, and
the tasks were chosen by me, rather than by the participants themselves. End-user developers’
behaviours may be different when working in more natural settings, upon projects of their own

choice, without any time limitations, and not under scrutiny by a third-party. Participants in both

222

studies reported nervous feeling under pressure—pressure to succeed in the tasks, as well as
time pressure. Although the tasks were relatively simple, as problem-solving tasks, they were still
challenging for the end-user developers in my studies, as the results clearly demonstrate, and
several participants showed frustration when they were unable to make progress or succeed in
completing them. As | discuss in the previous chapter, frustrations in the final study were
exacerbated by the additional requirement to use the support tool, again within specific
constraints—a further cognitive challenge of using an unfamiliar tool on top of the challenge of

troubleshooting in an unfamiliar system.

Think aloud may also have affected both participants’ thinking and behaviour in these studies—|
reflect further upon this in section 7.4.2. Several participants found it difficult to think aloud, and
required regular reminders to do so. | also observed that when participants were experiencing a
lot of difficulty, or became highly engrossed in problem solving, they required more reminders.
We therefore cannot assume that the verbal protocol is a complete representation of
participants thinking during the tasks. Pragmatically, therefore, much of my analysis in studies

1A and 1B involved not just what people said but my observations of what they did.

In the final study (Chapter 6), several participants performed better in Task 2 than in Task 1 (see
section 6.3.1). While some of the improvement might be attributed to the support tool,
evidenced by participants’ comments regarding a positive/priming effect from using the cards
(see section 6.3.2.2), other factors should be considered. Task 1 was participants’ first exposure
to the Love-O-Meter prototype, also, as they had been instructed not to refresh their knowledge
prior to the session, for several participants, Task 1 also involved refamiliarising themselves with
the platform. Additionally, while both groups were exposed to the additional challenge of having
to use the support materials for one of their tasks, the WSNS group faced this in Task 1, on top of
all of the challenges mentioned above. It seems reasonable to assume that performance in Task
1 and/or Task 2 may have been affected, to some degree, by any or all of these factors for some

or all participants.

It is also difficult to isolate participants’ opinion of the cards from their overall experience of the
support materials in their entirety. While, ultimately, | am more interested in end-user
developers’ experience of the cards as a support mechanism, as | have described, the interview
feedback confirms that the circumstances and constraints under which participants used the
cards affected their opinions of them. Equally, many participants did not like the playmat. Many

of the questions in the Support Materials Questionnaire referred to the ‘Support Materials’ rather

223

than the cards, making it impossible to determine exactly what participants were rating—with
hindsight, more specific wording could have been used. If participants—reasonably—interpreted
these questions as referring to the support materials as a whole, rather than the cards alone, or
participants’ ratings were weighted more towards particular elements of the support materials,

this may have affected those ratings.

While the cards have shown some promise as a way to support end-user developers’
troubleshooting in this particular task, we can only speculate as to whether similar effects would
be observed in a more complicated task, or one involving a different physical computing

platform. More work would be needed to determine this.

Although | originally intended to look at end-user developers’ mental models of physical
computing problems, the focus of this PhD changed in response to the initial findings—section
7.3 discusses this decision in more detail. How complete end-user developers’” mental models
are in this domain, and what impact this has on their performance and behaviour in developing

and troubleshooting physical computing prototypes, remain open questions.

Finally, | chose to use Arduino in my study, as it is currently the most well-known and widely
used physical computing development tool, however, it is not the only tool available. Further
work would be required to determine how generalisable the findings from my studies are to

physical computing development involving other platforms.

7.3 Thefocus on troubleshooting

At a certain point in my PhD, | decided to focus the remainder of my research upon end-user
developers’ troubleshooting. When | planned my first study, it was not only with the intention of
investigating end-user developers’ difficulties—problems—in physical computing development,
but also the mental models they held of physical computing concepts. This was inspired by the
literature reporting circuit theory and fundamental programming concepts to be problematic
for learners (discussed in sections 2.2 and 2.3.1, respectively). However, once data had been
gathered, and analysis began to shape the findings about the problems experienced by
participants during the hands-on development task, it became obvious that some patterns of

behaviour in dealing with some of these problems might benefit from further investigation. For

224

example, some participants appeared to spend a great deal of time engaged in unproductive
troubleshooting behaviours, and certain problems seemed particularly difficult to localise, and

more prone to misdiagnosis, leading to more bugs.

The subsequent decision to prioritise looking deeper into troubleshooting behaviours, instead
of analysing the interview data | had collected for mental models analysis, was therefore a
pragmatic response to my initial research findings. It was also informed by a number of studies
of end-user programmers’ debugging, and how findings from that work, particularly in respect to
strategies—patterns of debugging behaviour (section 2.2.3)—had proven useful in designing
effective support tools for end-user programmers (section 2.8.1). Given what | was seeing in the
study data | had gathered, investigating troubleshooting behaviours seemed a very logical
approach for the next stage of my work. It also enabled me to extend our knowledge of end-user

developers’ problem-solving behaviours into the domain of physical computing development.

It is apparent in the findings from Study 1A and 1B that shortfalls in end-user developers’
knowledge lies at the root of many of the problems they experience in physical computing
development, when constructing and programming device prototypes, but also when
troubleshooting. There are clear opportunities for support, however, as discussed earlier in the
thesis (section 2.5.1), addressing end-user developers’ knowledge gaps is more about situating

useful information within their tasks, than providing the right education.

In choosing what tack to take in developing support for this population, | was particularly
inspired by Jill Cao’s Idea Garden approach to supporting end-user programmers (Cao 2013),
that is, to help them to become better problem solvers, by gently suggesting approaches they

might take, rather than solving their problems for them.

The decision to focus support on the process of troubleshooting, and on suggesting potentially
useful tactics to use within it, was also very much a pragmatic choice. Dealing with problems is
an inevitable part of any kind of development—even expert programmers and engineers spend

a significant portion of their time debugging or troubleshooting.

There is consensus in the literature (e.g., Gick 1986; Perkins and Martin 1986; Jonassen 2010) that
troubleshooting and debugging require several different types of knowledge, both domain-
specific and generic, and that efficacy grows with experience. Knowledge gained through
exposure to different problems enables experienced troubleshooters/debuggers to quickly

determine strategies or avenues of inquiry most likely to aid in diagnosis of a problem, based on

225

their understanding of the system and historical, problem-related data they have assimilated.

This puts less-experienced end-user developers, including novices, at an obvious disadvantage.

Suggesting troubleshooting tactics—of varying specificity—that end-user developers might use,
addresses a particular knowledge gap—a deficit of troubleshooting knowledge—however, | am
conscious that this represents only one piece of the puzzle, and is certainly no panacea for all
end-user developers’ knowledge shortfall-related problems in this domain. Support addressing
different knowledge gaps might also be effective in helping end-user developers to troubleshoot,
or even avoid some problems, however, it is worth noting that more domain knowledge did not
always equate with better performance in the studies | conducted—a professional engineer
(P02) in Study 1A/1B (see section 4.4.1) still introduced errors in circuit construction which led

them to fail the task.

Providing end-user developers with different options to consider when troubleshooting has the
potential not only to aid in diagnosing any immediate problem, but also problems later down
the line, including when using different tools or platforms—many of the tactics are generic or
flexible enough to be applied to many different situations or contexts. The approach | have
taken is, | believe, a good first step in equipping end-user developers with tools to help them
tackle—and hopefully overcome—the problems that they will inevitably encounter during

development, irrespective of their physical computing expertise.

7.4 Reflection on methods and approach

Completing the thesis—and with it, my PhD journey—provides an opportunity to take stock, and
reflect on the research I have undertaken during the course of it, and what | have learned

beyond the research results and findings reported.

In section 1.5 | refer to the methodological stance underpinning my work, and the impact this
has had upon my general approach to research and my choice of research methods. | return to

some of these choices with a critical eye.

226

7.4.1 Taskobservation in a laboratory environment, under tight
constraints

First-hand observation or measurement of representative users undertaking tasks is the de facto
method within user research for uncovering problems in the use of technology—conventional
wisdom being that findings based on observable, measurable data are more reliable than the
subjective opinions of participants, the latter being subject to memory/attention constraints

and fallibilities, but also a number of potential biases (Nielsen 2001).

Two major rounds of data collection are described in this thesis. Both involved observing end-
user developers undertaking given tasks in a laboratory environment, subject to a number of
constraints, including strict time limits and a requirement to think aloud, while being video
recorded, but also a requirement to use materials—most specifically the support tool—in a way

that did not match their usual behaviours.

Both samples included novice end-user developers—some participants in the first study; all in
the final study—and tasks which, based on observed performance, were challenging for most.
For novices in these studies, participation meant doing something at which they were not very
skilled, or knowledgeable about—under scrutiny, with video cameras recording every aspect. As
a responsible researcher, | did everything possible to ensure that participants were treated both
ethically and well throughout their involvement, and took pains to try to put them at ease in the
laboratory sessions, however, | was conscious of the pressure clearly felt by some as a
consequence of the nature and circumstances of the study—at various points during the tasks,
in both studies, participants’ nerves, frustrations and/or performance anxieties were apparent,

whether in their verbal comments or body language.

The potential effect upon my study results has been acknowledged in the Limitations section of
this chapter (section 7.2), and | by no means feel that these factors invalidate the work | have
done, nor the findings that | report. However, it does make me pause to consider whether
alternative study designs or different methods might avoid or mitigate such an effect while

delivering at least equal, if not better, value. This remains an open question.

227

7.4.2 Problems with think aloud

Think aloud aims to expose what is in a participant’s head to the researcher—data that would

not otherwise be available—through verbalisation. All of my studies used this method.

Over the course of my research, | watched forty-four end-user developers spend a collective
total of almost 35 hours problem solving in physical computing tasks while thinking aloud. What
| observed is that while some end-user developers seem naturally capable of almost a verbal
stream of consciousness while undertaking a task—“/ think | talk like this anyway, even when no
one is around”™—far more find it challenging to think aloud effectively when engrossed in
problem solving, and require frequent prompts or reminders to do so. It also seems that some
participants are more inclined to provide very cursory descriptions of what they are doing—1am
removing the wire’—rather than relaying their thoughts. The resulting inconsistency of the verbal
protocol meant that | was forced to rely more on behavioural data—i.e., participants’ actions—
than originally planned for analysis in Study 1A and 1B. While | believe this to have been effective
in answering the research questions for these studies, my takeaway from this experience is that
the quality of a verbal protocol is highly dependent, at least in part, on how ‘good’ participants
are at think aloud—at verbalising their thoughts in parallel with performing the task itself,
particularly if the task is difficult or requires great concentration—and how comfortable they are

with speaking their thoughts aloud under scrutiny.

Others have reported problems with think aloud during debugging (e.g., Fitzgerald et al. 2008).
Threats to the validity of think aloud data have been raised within the literature (e.g., Russo,
Johnson, and Stephens 1989), and despite being very commonly used in HCI studies there is
inconsistency of opinion regarding how best the method should be applied (Boren and Ramey
2000). I am led to reflect upon whether applying this method in a different way, or employing a
different method altogether, in future studies, might offer some improvement, for example,
although recruiting pairs of participants may be more challenging, having two participants
talking to one another as they work together has been shown to yield more information than

one person thinking aloud (Dumas and Redish 1999, 31).

228

7.4.3 Approach to analysis

Although all of my empirical studies involved a mixed methods approach, there was a
considerable difference between the first two studies (study 1A and 1B) in comparison to the

final one (study 2).

Data analysis in studies 1A and 1B focused, primarily, on observable evidence of participants’
problems during development, and their behaviours in tackling them. Task data were carefully
transcribed, unitised, and categorised, using coding schemes informed by the literature, then
transformed into numerical data in order to subject them to quantitative methods, providing
measurements and comparisons of performance and behaviour. Verbatim quotes from the
think aloud are used to illustrate particular findings, however participants’ reflections upon their

performance in the task, or the difficulties that they experienced, are mostly absent.

In contrast, although study 2 provides some quantitative measures of performance and opinion,
qualitative analysis now focused on the post-tasks debriefing interview, using a thematic
analysis approach. This aimed to elicit participants’ subjective opinions of the support tool,
based on their first-hand experience of using it. Rather than seeking to categorise and quantify
the qualitative data captured, | teased themes from it that not only yielded feedback about the
tool, but also exposed some of the factors that potentially affected participants’ performance in
the tasks and coloured theirimpression of the tool, whether positively or negatively. Giving voice
to participants in a way that the previous studies had not was crucial to understanding the data
that had been captured, providing an additional layer of context to participants’ behaviour
during the tasks, their task performance results and their response to, and opinions of, the
support tool. It also prompted me to reflect, once again, on methods that | take for granted as

being ‘what works’ for a particular type of problem.

7.4.4 ‘What works’ vs ‘What might work better?’

While I would like to be able to provide unequivocal proof of the effects of the physical cards-
based support tool upon participants’ troubleshooting in Study 2, participants’ feedback
suggests that the study design was not ideal for this. | do believe that the findings reported
provide more than enough evidence that instantiating troubleshooting process support in the
form of physical cards does hold promise as a novel way to help end-user developers overcome

their difficulties. However, the value of the study, in terms of my own learning, extends beyond

229

the answers to the research questions, by highlighting that a typical, controlled ‘debugging
study’ design might not be the best way to evaluate this type of tool in this domain, and that any
future evaluation of this particular tool might benefit from a different approach. This might
include, for example, more naturalistic studies that are more in alignment with the ethos of

making as a creative and pleasurable activity, discussed earlier in the thesis (section 2.1.3).

7.5 Opportunities for future work

The limitations | have described, as well as the findings from my studies, and my reflections

upon the approach and methods I have used, highlight opportunities for future work.

As | have shown, many of the participants in the final study liked the cards and found them
useful, however the circumstances under which they were required to use them led to some
frustration. More work is needed to determine the efficacy of this tool, including analysis of the
behaviours it engenders and the benefits it may have, for example, improvements in
troubleshooting skill, including the choice of tactics, and whether learning transfers to
further/future tasks. Additionally, studies in a more naturalistic, or less constrained setting could
provide a better idea of how the tool would naturally be used by end-user developers outside of

a controlled environment.

Some participants had trouble working out how to use the cards and would have liked more
guidance, for example, in where to start and in selecting tactics to use. A future iteration of the
toolkit could explore the potential for a more structured method, or signposting end-user
developers towards content most appropriate for the problem they are experiencing. Similarly,
it would be interesting to explore a participant’s suggestion about indicating tactic specificity,
enabling end-user developers to filter tactics according to how general or specific an approach
they wanted or needed to take at a particular juncture. This may even have benefit beyond the
use of one particular tool or in this domain, in terms of increasing end-user developers’ general
troubleshooting knowledge. More work would be needed to determine the best way to

implement these suggestions.

While, based on interview feedback in the final study, the cards succeeded in making

participants think or reflect more when troubleshooting—one of the primary aims of the support

230

tool—participants suggested that additional information would be useful, for example, concrete
examples of how to connect certain components, or pointers to additional guidance, such as
component data sheets. There are, of course, the Component cards (section 5.5.4), which were
excluded from the evaluation study, to ensure focus on the troubleshooting tactics, however this
type of information could also be provided in different ways, including digitally, linked to from
the physical cards (for example, simply through a QR code), directly within a mobile application

equivalent, orin some other form.

As participants’ comments suggest, the support tool in its current form will not suit everyone.
The information it provided was generally seen as very useful, but while many appreciated the
physical card-based format, some would have preferred it in a different form, for example, a
software application, as was suggested by more than one participant. Some of the card tools
reviewed in the literature have digital equivalents, for example, the Game Design Deck of Lenses
(Arcila 2013), exists both as a physical card deck and a mobile phone app, as does the Oblique
Strategies deck (‘The Oblique Strategies’, n.d.). We could do similar with this tool. While some of
the flexibility of the cards would be lost in a digital form, for example, the ability to review, or
work with, a number of cards at once, or use spatial arrangements for planning and tracking,
there may be other benefits, for example, in the ability to filter or search for tactics by specific

criteria, or direct links to additional content.

However, more innovative hybrid physical/digital approaches could be explored, combining the
benefits of tangible cards, with the flexibility of a digital medium in respect to dynamic provision
of information. For example, the use of an interactive playmat TUI (tangible user interface) in
conjunction with cards printed using conductive ink, or embedded with NFC chips.
Augmented/mixed reality technologies could also be used to extend information beyond the

boundaries of physical cards.

It would also be interesting to see whether the tool has benefit in other contexts of use, beyond
use by individual adult end-user developers. | have already received interest in using the tool to
support and teach troubleshooting in education, for example, within school, adult education or
university classroom settings. One participant in the final study, a freelance educator, would like
to adapt the cards for use in the Scratch programming classes they teach at primary schools,

where they see they them being used in pair-based troubleshooting.

231

Finally, I intend to refine the cards in light of the results of the evaluation study, and make the
toolkit available for download, extension, and customisation. | see toolkits such as this as a vital

step towards greater adoption and continued use of physical computing technology by novice

end-user developers.

232

Appendices

Appendix A. Study 1A Ethics application

Ethics Proportionate Review Application: Staff and Research Students
Computer Science Research Ethics Committee (CSREC)

Staff and research students in the Department of Computer Science undertaking research that involves human
participation must apply for ethical review and approval before the research can commence. If the research is
low-risk, an application can be submitted for a proportionate review using this form. Applicants are advised to
read the information in the SMCSE Framework for Delegated Authority for Research Ethics prior to submitting
an application.

There are two parts:

Part A: Ethics Checklist. The checklist determines whether the research is low-risk. If it is, Part B of the form
should also be completed. If not, the checklist provides guidance as to where approval should be sought, but
the checklist itself does not need to be submitted.

Part B: Ethics Proportionate Review Form. This part is the application for ethical approval of low-risk research
and should only be completed if the answer to all questions (1 - 18) is NO.

Completed forms should be returned to the Chair of CSREC by email (address redacted).

Part A: Ethics Checklist

If your answer to any of the following questions (1 - 3) is YES, you must apply to an appropriate
external ethics committee for approval:

1. | Does your research require approval from the National Research Ethics Service (NRES)? (E.g. No
because you are recruiting current NHS patients or staff? If you are unsure, please check at
http://www.hra.nhs.uk/research-community/before-you-apply/determine-which-review-body-
approvals-are-required/)

2. | Will you recruit any participants who fall under the auspices of the Mental Capacity Act? (Such No
research needs to be approved by an external ethics committee such as NRES or the Social Care
Research Ethics Committee http://www.scie.org.uk/research/ethics-committee/)

3. | Will you recruit any participants who are currently under the auspices of the Criminal Justice No
System, for example, but not limited to, people on remand, prisoners and those on probation? (Such
research needs to be authorised by the ethics approval system of the National Offender Management
Service.)

If your answer to any of the following questions (4 - 11) is YES, you must apply to the Senate Research
Ethics Committee for approval (unless you are applying to an external ethics committee):

4. |Does your research involve participants who are unable to give informed consent, for example, but No
not limited to, people who may have a degree of learning disability or mental health problem, that
means they are unable to make an informed decision on their own behalf?

5. |Is there a risk that your research might lead to disclosures from participants concerning their No
involvement in illegal activities?

6. |Is there arisk that obscene and or illegal material may need to be accessed for your research study No
(including online content and other material)?
Does your research involve participants disclosing information about sensitive subjects? No

8. | Does your research involve the researcher travelling to another country outside of the UK, where No
the Foreign & Commonwealth Office has issued a travel warning? (http://www.fco.gov.uk/en/)

9. | Does your research involve invasive or intrusive procedures? For example, these may include, but No
are not limited to, electrical stimulation, heat, cold or bruising.

10.| Does your research involve animals? No

11. | Does your research involve the administration of drugs, placebos or other substances to study No
participants?

233

http://www.fco.gov.uk/en/

If your answer to any of the following questions (12 - 18) is YES, you must submit a full application to
the Computer Science Research Ethics Committee (CSREC) for approval (unless you are applying to an
external ethics committee or the Senate Research Ethics Committee). Your application may be referred
to the Senate Research Ethics Committee.

12.| Does your research involve participants who are under the age of 18? No

13.| Does your research involve adults who are vulnerable because of their social, psychological or No
medical circumstances (vulnerable adults)? This includes adults with cognitive and / or learning
disabilities, adults with physical disabilities and older people.

14.| Does your research involve participants who are recruited because they are staff or students of City | No
University London? For example, students studying on a particular course or module. (If yes,
approval is also required from the Head of Department or Programme Director.)

15.| Does your research involve intentional deception of participants? No
16. | Does your research involve participants taking part without their informed consent? No
17.| Does your research pose a risk to participants greater than that in normal working life? No
18.| Does your research pose a risk to you, the researcher(s), greater than that in normal working life? No

You must make a proportionate review application to the CSREC if your research involves human
participation and you are not submitting any other ethics application (i.e. your answer to all questions
1-18is “NO”).

Part B: Ethics Proportionate Review Form

If you answered NO to all questions 1 - 18, you may use this part of the form to submit an application for a
proportionate ethics review of your research. The form must be accompanied by all relevant information
sheets, consent forms and interview/questionnaire schedules.

Note that all research participants should be fully informed about: the purpose of the research; the procedures
affecting them or affecting any information collected about them, including information about what they will
be asked to do, what data will be collected, how the data will be used, to whom it will be disclosed, and how
long it will be kept; the fact that they can withdraw at any time without penalty.

Background Information

Name: Tracey Booth

Supervisor (if student): | Dr Simone Stumpf

Your Research Project

Title: Exploring How End-user Developers Think and Behave When Developing
Physical Prototypes

Start date: 13/03/2015

End date: 30/04/2016

The current 'Maker Movement' entices end users into constructing and programming microcontroller-based
prototypes for personal use, however, not much is know yet about this growing subgroup of end-user
developers (EUDs).

Poor or erroneous mental models affect students' learning and application of circuit theory, and are a
significant source of novice programmers’ difficulties. Additionally, 6 learning barriers have been identified,
which can stall end-user programmers' progress. Knowing how both apply in a physical prototyping context
will help us understand how technology can support EUDs.

My main research questions are:

RQ1. Whatlearning barriers do EUDs encounter when constructing and programming physical prototypes?

RQ2. What mental models of physical prototyping concepts do EUDs hold?

RQ3. Are there common incorrect mental models that impact EUDs' physical prototyping progress and
success?

Participants will be 20 adults, of varying background and ability, who use the Arduino platform to develop
physical prototypes for personal use. I will recruit via hackerspaces and other 'Maker' community groups.
People who respond to the initial email will be contacted and screened, including for disability, to ensure that
they meet the criteria for participation and are capable of performing the required activities.

Participants will be sent an online questionnaire, gathering data about their background and experience in
programming, electronics and physical prototyping. At the start of this questionnaire they are asked to provide
consent to their response data being stored and used for the purpose described. Once they have completed the
questionnaire, each participant will attend an hour-and-a-half-long session in City's usability lab, at a time

234

convenient for them. This session is structured into 3 phases:

1. Aself-efficacy questionnaire to measure their confidence in physical prototyping;

2. A hands-on task, in which they develop a physical prototype using the Arduino platform, a solderless
breadboard and a kit of components, with access to help resources. A verbal protocol (think aloud) will
be used, and both on and off-screen actions video recorded;

3. A semi-structured interview, in which they explain the prototype workings, and answer questions
(selected from a guiding list of topics as time allows) to elicit their mental models of the concepts
involved. I will also probe on issues observed, including misconceptions or areas of difficulty.

The session sequence takes into account the potential for each activity to affect data gathered in subsequent
phases. Participants will be asked to sign an Informed Consent form at the start of the session, before any data
is gathered.

Once gathered, any identifying data will be anonymised - participants will be represented by randomly
assigned ID numbers. Participant names will not be associated with the recordings or any other data, and will
not appear in any reports or presentations, including where any video clips or screenshots are used in which
faces are shown. All data will be password protected, stored securely, and backed up. Only myself, my
supervisors (Dr Simone Stumpf, Dr Sara Jones and Dr Jon Bird, and my external examiners, will have access to
the data. If a participant decides to withdraw from the study at any point, I will destroy any data already
gathered from them.

Analysis will involve mixed methods. RQ1 will be addressed by coding recording transcripts for learning
barriers - I will look for types and frequencies of barriers encountered. To answer RQ2 I will perform a
thematic analysis of the mental models elicitation data to determine the mental models held by EUDs of
physical prototyping concepts. To answer RQ3 I will identify common mental model types, misconceptions and
knowledge gaps in this thematic and investigate whether these are correlated with physical prototyping
performance and efficacy.

In addition, I have a number of secondary research questions, as follows:

RQ4. Is there a relationship between EUD's backgrounds and their mental models of physical prototyping
concepts, including any misconceptions they hold?
RQ5. Is there a relationship between EUDs' backgrounds and the learning barriers they experience when
constructing and programming physical prototypes?
RQ6. Is there a relationship between EUDs' self-efficacy and any other factor?
[will therefore look for correlations between participants' backgrounds, their self-efficacy scores, their mental
models and the learning barriers they experience. The task recordings will also allow me to analyse
participants' strategies for prototype development, such as whether and how they seek out and use existing
examples or instructions, and their behaviour and efficacy in the use of help content.

Attachments (these must be provided if applicable):

Participant information sheet(s) Yes

Consent form(s) Yes
Questionnaire(s) Yes

Topic guide(s) for interviews and focus groups Yes
Permission from external organisations (e.g. for recruitment of participants) Not applicable

235

Appendix B. Study 1A Recruitment poster

Arduino users needed

for a study at City University London

Do you use Arduino for personal projects
or to support/produce your own work?

I'm locking for people to take part in an exploratory study I'm conducting as
part of my PhD.

You don’t need to be an expert to take part, just to have experience of using
the Arduino platform, and be willing to attend an in-person session at City
University London, in which you do a hands-on task (using Arduino) and
answer some questions about it.

The session will take about 1.5 hours and you'll receive a £20 Amazon gift
voucher as a token of thanks. (There will also be chocolate involved)

Interested? Drop me a line: tracey.booth.1@city.ac.uk
Tracey Booth
PhD research student | Centre for Human-Computer Interaction Design

School of Maths, Computer Science & Engineering | City University London

See also http:/ftinyurl.com/arduinostudy

CITY UNIVERSITY
/. LONDON

236

Appendix C. Study 1A Participant information sheet

zfo gafag

“PaYs UoneULIoUI SIU} pead 03 @ Wy 3y} Buryey oy nod jueyl

an18 0k0L 07000 b+ dn2e ARE| dums auows ums suows g dosiadadng gud
A 2e ANDEE | R0y Asdell yloog Aased] daupleasay
S|Ie1sp 152UGD pUE UOITe WOl sy

(03950) saniiwng
2T Yeasay a0Us12G JeindwoD uopuoT Alsiaalun A Ag pascidde uasg sey Apnis syl
chpms auy pamaraaa sey oym

uoize |efa) 4o) spunoufi asely Ae noA uayl
‘zauaf)fisu 5200305 01 3NP PALLIEY 4B NOA)| Uoesuadwod y2as 0 s)YBY |eB3) JnoA 12ae 10U
580p Sy uoiesuadwiod Wie o] 3|qi6)8 ag Aew noA Apnis syl ul ped Buiel Ag painfu) Jo pauuey
usag asey nod gy noA | Apms siyl o1 Ajdde yaiys ssioiod sxueinsul sploy uopuo Ausdasun A1

AN OE RO | B8 gUIEy EOUY [|IEWT
gHD ALDT UrpuoT
aJenbg uoidwelon)
uopuoT Alsdasln AT
FLZ3 220 Yaleasay
33LILIDD SOIY1T Y2leasay aleuss 0] Alelainag
Bisguiey euuy
1B AJBISJ28S 3L 01 1A 0SB N0 NOA

sadi1o1nld [easAug Buidojasag uauns aselyeg

pue Huly] sadojaaa Jasn-pu3g smoH Budojdx3 151 12aloud 2yl Jo SWeU U3 1L Way] W0l pue
2alILWD) S21Y13 Yoleasay aleuag 0] AE2I0aS 2yl 0] yeads 01 3Se ULl UED NoJ DFDE OF0L DZ0
auoyd 01 paau noA tApnis 2yl nodge uejdwoa o) caunpadold sjuledod Aisiaaun aul yenoag syl
0p ued noAtAlewuU o) uigduod o1 ysiv pue Addeyun LIELLEI NOA J| "LLES] YDJESSS) 34T J0 Jaguuail

e 0] ¥eads 0] SE pINoys noA 'Apnis s noge suoisenb 4o suigouod ‘swalgold Aue aaey nod g
cwaqoad e s| ausLp Il IEUM

‘patolEap
USLA PUB - S31ANIS AYSI3AIUN JDJ SUI1 LDNUSTa) IBRUEIS 3U] - Se 3k (| J0) 0aU0IS ag ||IM ele]
¢sdoys Apnis yosessad ayy usym usddey |j1m ey

UE(12E1310] 43INdLLIDI-UELLINY JO plal) 34} Ul S30USJa4UDD pUE S|ELIND| [EUCIIELLIZIU| U Uojeslgnd
aiepese Joy sBulpuly AW jwigns o} adoy | UDIIPpE U] UDRe|duuDD S} SPIBAD) B3RS EUN | SBIpNiS
1X3U BU] LLIDILI [|Im S)NSad 2yl pue sisayl Qud AL Jo Ued wuoy o dn uslium ag (is Apnis sty

& Apnis youessal ayy jo sjnsas o3 uaddey [j1m ey

‘suoneIuasald Jo spodal Aue Ul seadde Jou | pue "elep

JaL1o Aue 1o sBupInoad 311 Ylik PRIEIZ0SSE 30 10U 1M BLUEU IND A “A[3UN28s paJiols pue 'paiaLiel
22U0 PASILALDUE 30 W BIEQ J3AIMOL 'palaylel elep 2yl 01 552028 3ABL || 'SISLILIEXS |BLIETXE
puE (pag Ul 4 pUe saUor eles ag 'Jdwns auowis 10) Sioslaadns guyd A asAu AuD sa
élenuapyuod 3day aq Apnys ay3 ul ped Bupyes Aw iim

aouzuedxe 12730 B Y Wayl apiaoad pue "BuidAojond

lesAld Yl sduf 01180 01 ajdoad Jo) siawied syl Jamo) 01 IUEM apa pasoaul 126 01 ajdoad alow
Joj umsea 3 Gupjew Ag |eiaual u s SUnWLIDD Jaye) Aj21EL0IN 10 'S [ENPIAIPUL AUD 10U Jjauag
|t Youeesad siy) edoy aa Agautay] siave) aisou Apenoed 'ajdoad Joy speddns ajeudosdde
pue 5003 4o uBlSap AU3 LUl 0] pasn a0 ued 2Bpamouy Sigl wualabuo aoey Aoyl sabua)eya
J0 s2dA1 8yl pue ‘ouNply se yons suuofeld Buisn uaym aseyaq pue yuiyl ajdoad Juadagip

0y Jo BUIpUE]ISIZpUN JND 0] 8INGUIUDD |Is NOA Apnis s1yl Ul ded Burel AQ saa|aswiay) sWalsis
1ddepe pue aojaasp 01 SJ2sn pua Jamodwa 0] 5| Laleasad Juswdoaaap Jasn-pus Jo jeof ay
iHed Bupyjey jo sjyauaq aqissod ayy ade Jeyp

Z4o 1 28og

BalE SIY] Ul S3IpNis Xau AL LLIDJUI 0} pasn aq || sBulpuy syl pue aAjeyenb
AISOL 3 ||l SISAELE EIE(158140 JUSWLadxa ue Jou "Apms Auolelo|dxa ue S1SIY1IEY] 810U 8SE3 |4

ved Bupel Jo) squeL
Jo U0 ([eLs B se Jalanos YIE UDZELLY D73 B USAIT a0 ||w Apnls 3yl 238|dwod oym slUediaed

“opne BuipnEul pap0dad-0apiA 30 || UDISS3S AU
dojaasp nod adAcioud ayljnoge suonsanb [eqias swog (£
“Ajleuy pue "Jaug uesll B 01 (30] [RI2We + pieoq) wuoped ounpry sy Buisn
(Buiiuielfold pue 'uoInas U0 IN2D pUeogpeald) el BuidAolold (easiyd uo-spuey v (Z
‘alleuuonsanb sBunel Aoeciya-yes pous v (|
@sUAWng M pue sinoy g | Aleteuxoldde
24Be] [|Ik UDISS3S 3L] NoAIDJIUSILSAUDD BT E 18 G |07 (O Ul 3de(d a¥e] 0] 'uopun]
Astaaun A0 18 geT upiDelsiu| Byl Ul {yioog ASDEI]) BW YJk UDISS3S [ENEIAIPUL UE 3|Npayos
uaL [l apa Buawesfoad pue soweagoa)s ‘BurdAoiosd [esisdyd w eousuadxe pue puncibyoeq
INoAINDGOE ¥SE || Yo Iya ‘812D 01 NoA 1oj adleuUc)sank aulun Ue o] Uil B JUSS S0 IS} ||k No
éued ayey | 4 uaddey |im ey

paAniisap ag ||k NOA LUDIY Pa10a||00 2ABY

am EIEP AU pue Aem Aue Ul paBieluespesip o pasieuad a0 10U w nod - uoseal e Buiall nogie
HuE 3L ALE J8 AU 0 254 (IS Sde NG 'LLIDY TUSSU0D & UBIS 0] payse g || nod Jed ayel
0] apRap op noA Y ded a3el 01100 10 Jaylays apiaapn 01 noA ol dn s 3 - Aleunos S| uogednme
Sputw Aw sBueys uswy pue dn ubls | j susddey jeypn ¢ued ayel oy saey| eq

MD|20 paguUasap salAlee ayl Buiedapun woy nok

Wasald pinos eyl Apngesip asufios 1o edsdyd ou aaky pue plo sIeaA g 15E8| 18 30 05| 15N
noy adoad Jayie Ag paunissiLILLID? 0 "uDipuny gol ulew anoA se (noiaeyaq asy) Suwelfolrd
pue sunaan Buizeaint sadAloioad (eisAyd padojaasp aaey 10U 1SN0 ING (0] |12 QUE
alespueL]) Lojle|d ouinpdy 243 Buisn Jo 20uauadxa aLU0S 3ABL SN NO L [I1MS pUe aBpapaouy Jo
s[2A3] JUBI3HIP Ll 'SpunoByaeq jusaip woy ajdoad aAj0AUl 0] paaU | 05 'BsSiaAlp S AUNLIWIOD
fuidAyoioad (exsiyd ayl padxs ue ag ol pasu juop na L CApnIs s1yl Ul ed axe] ol palau Buiag
ale 'asn |guostad Joy sadAjoloud [eaisAyd a1ea10 01 Luope|d ouNply 341 35N oYM SIEME W INPE DT
£PaNAUI uaaq | aaey Ayp

sadAjoloud |ea1siyd

BLnuefold pue Buneais usym SABLUST QU HUILD SENEIAIRUL USSR Moy Jo aanjaid peolg

e 126 01 Buidoy w| "5 07 (Mdy W SHEIS y2igsm Apns Adoledo|dxa syl yBnody] BuiwwelBoad pue
s2IUDJI0E(2 Ul sPadxa ale (|2 10U Ing 'swuojie|d JEjILS puE ouinply Yl ob & 3aey o] spunoubyaeq
uaap wol) 3jdoad 240w pue 240w BUIpES| 51, IUBWEAC Y J3HE W, JUSLND 3U1 ' aleme Ajgegold

21E N0A Sy ounply se yons suuogeld Buidiioioud (eaisAyd Buisn pue Builies| ul peuoddns ag ued
adoad Moy FUILLIE1ER 0 51 Y2UBSSE. AL JO LU UIBLL BU | J8ME M LSS B pUE "UopuoT Alsiasun
Ao 1e (anH) ubiseg uonaesslu| BINdWoD-UEBLINH J0J 84U870 83U UIIUSPNIS Y2easad (Oud B |
¢fpnis ayy jo asodind ayy siyeypn

LIDIELLICU]
210U 231 PINoA NOA | 10 12312 10U 1 18UT BUILIAUE 51 21843 Jl SN S USIM NOA)| SI3UI0 Yl

U SSNISIP pue A|nyaied uonewl ol BUIMG |04 5L B3I 0 SLLIY 23] 3583|4 NoA 10} 3A|0ALL PINOM

1 12 ym pue suop Bulan =1 goueesad syl Aysm puelsiapun nod ey uenodun 51 ued ayel ol ey
pInoss NoA JaUE UM 3pIRan NoA adojag ApnIs Yadeasad e Ul ded axel 03 noA SNAUL 03 241 PINOA 340

sadijojoud [eosisiyyg
Buidopasg usyi aAeyag pue julyl ssadojaaag Jash-pug moH Budoldxg :Apms Jo sl

193ys uonewsoju| uedisiped

NOAaNO1 7
ALISHIAINN ALID

237

Appendix D. Study 1A Informed consent form

CITY UNIVERSITY
LONDON

INFORMED CONSENT
Study: Exploring How End-user Developers Think and Behave When Developing Physical
Prototypes
Please
initial box
1. | agree to take part in the above City University London research project. | have

had the project explained to me, and | have read the participant information sheet,
which | may keep for my records.

| understand this will involve:
« Completing a questionnaire about my confidence in completing physical
prototyping tasks.
» Using provided equipment, including a computer, to develop a physical
prototype.
¢ Being interviewed by the researcher
¢ Allowing the session to be video-recorded, with audio.

2. This information will be held and processed for the following purpose(s):
e PhD research

| understand that any information | provide is confidential, and that no information
that could lead to the identification of any individual will be disclosed in any reports
on the project, or to any other party. No identifiable personal data will be
published. The identifiable data will not be shared with any other organisation.

AND

| consent to the use of sections of the video recordings in publications and/or
presentations.

3. | understand that my participation is voluntary, that | can choose not to participate
in part or all of the project, and that | can withdraw at any stage of the project
without being penalised or disadvantaged in any way.

4. | agree to City University London recording and processing this information about
me. | understand that this information will be used only for the purpose(s) set out
in this statement and my consent is conditional on the University complying with its
duties and obligations under the Data Protection Act 1998.

5. | agree to take part in the above study.
Name of Participant Signature Date
Name of Researcher Signature Date

238

ionnaire

9/C 28ng

Appendix E. Study 1A Background Quest

(£ abod 03 sa3pbinnu) IXGN

& 42UbIsag u03oDI33U] {(SYIDJN)) 45403237 AdISIaAIUN [(32UBJ2S J3ndWo)) JUaPNIS aYd B3
01ss240.4d / uoizedn200 Jua4nd oA si Jey {7

3l]
3lews4 _H_

M ;1apuas JnoA s reym

L€ 0@ ‘sipaf uj
¢38e anoA s1 1eym 4

«423D] pasiwAuoup aq [jIm sIy] y300g A30041 "B°3 ‘BUIDU ISD] P BWIDU 1Sl
Zaweu |[nj anoA s Jeyn G

noA 1noqy :z @8ed

2.410UU01SaND PunoSyIng-10s

(Z 3Bbd 031 sapbinvu) IXaN

'paquIsap se pasn Sulaq
525u0dsal AW 03 JUSSUOD PUE JUBWISIEIS JUSSUOD PAULIOJU| 2] PUBISISPUN puE peaJ aney |]

«(2nunuos 01 ysim 1ou op noA 1ey; Aes o} sw e
pue ASAINS 3y} }IXa 0} MOPUIM 135MOIq SIY} 3502 asea|d ualy} JuUasuod Jou op noA J|) *paquasap Aem
a1 ul pash Sulaq e1ep S} 01 JUSSUOI PUE JUSWSLLLS SN0 3U] Peal dALY NOA 1Byl MOo[aq WIJUO) 35e3|d

‘suoljejuasald Jo suodas Aue ul seadde Jou |IM WU Jno “eiep Aue yum

P31BI1D0SSE 3¢ 10U [|IM PUB J3quinu @] UB Yyum pade|dal aq [|IM SWEeU JnoA 'Aj21n2as paiols pue ‘pasiwAuoue
3q ||IM B3RP 343 JAASMOY ‘SpInCJd NOA sa5U0dS3J 3] 03 SSIDB SARY ||IM SISUIWEXS [BUJIIIXS AW pue

(pA1g uor @ pue sauor edes g ‘4dwinis suowis aq) siosiaiedns ayd Aw ‘(yioog Asoed]) sw Ajup "uopuo
Anisssniun Ay e yauessas qud Aw jo asodund ayy Joj pasn aq |1m Asauns siyy ui apinoid noA sssuodsal ay |

JUasuo0d pawiojul

JELLI

‘syjueyy Auey

3yN2e°AYD@ T Y100q ASRI] IO HitH#H#HH##0 U0 Sw Joeju0d aseald ‘Asains

ay1 yum swajqoid Aue sney noA | *snuijuod 01 xoq ay3 328Yd pue Juswsalels SUIMO||0) 3Y) pes. ases|d
*$21U0J323|2 pue Sujwwesdold ‘BuidAiojold |ealsAyd ul aousiadxs pue punoadyoeq anoj € a8ed -
(uonednaoo ‘aopuas ‘@5e ‘sweu) s|lelep JNOA (7 28ed -

(a8ed s1y3) Juasuod pawou| ;T a8ed -

1SMO||0} SB painyonu)s si pue ‘saBed ¢ sey Asnuns siy |
‘yosessal Aw ul ped aye) 03 BuiesiBe 1o} noA yueys pue ojsH

juasuo) pawlojuj :T a5ed

aJleuuonsanb punoadoeg - Apnis SuidAjoload jeaisAyg

9/T 3vg ttoipsanh puno.rSyong-ros

239

‘Aipwiins b apinoad isnf
aspa|d ‘s|ipzap Jaquiawad 3,up2 noA Jj ‘[nfasn aq pjnom Buo] moy Jof pup ‘aiaym oym fo nap! uy
xéSuluiedy Jeym

ON[] @A[]

238 BULIoIN] ‘Sa[npow ‘sdoysyiom ‘sasino) ,Sululely pey aaey |

M ; SunuwesSoad ul uononaisul Jo Suluten Aue pey noA aney Jl{S
uonanasul/uiuiesy ysnoayy Ajezol O
uoianJysul/3uiulesy ysnodys Apsop O
uoionuysul/Bulurely ysnoayy pue ysnel-y|as Ajjenbg O
1yBney-yjes Apso [
yBnes-yies Alleiel [
M ;s|pjs pue 28pajmoun) SunweSoud 3ua1ind noA pasinboe noA Aes noA pjnom moH [l{ax
ON[] seA[]
M ;sawwesSoud |euoissajoud e se pakojdws usaq 1ane noA aney A
adxa d | O | | O = Jsuuisaqg
Alesor £ 9 S 14 € G T @edwod
M ;(jesouad ul) SuiwwesSoud je aue noA yuiyl noA op uadxe moH 4

swiy
SO sieap

M ; SunuwesSoad uaaq noA aney Suo| moH Hyns

(je4auas) Sujwwelsodd 'z

9/t 230d usanb punoLsyong-ros

‘Aapwiwins p apinoad jsnf
aspajd ‘s|ipjap saquiawial 3,upd noA Jj |nfasn aq pjnom buoj moy Jof pup ‘aiaym “pym fo papl Uy
xéBulurely y1eym

ON[] °A[]
*238 Bulioing ‘sajnpow ‘sdoysyiom ‘sasino) ,Suluredy pey aney |

M ; wioped SuidAjojoud jeoisAyd Jayjo
ue 10 ouinpiy yum sadAyojoud jeaisAyd Suidojaaap ui uoidnaisul Jo Suiuiesy Aue pey noA aneHy

(ot
uoianysul/3uiuies3 ysnodyl Ajjezol O
uoipnaysul/ulurely ysnoayy Ajzsoin m|

uoipniysui/Buluies; y3noayy pue jysnej-yjas Ajjenbz O

1y3nea-jjas Apson m]
1ysnel-jjas AjjeioL O

[y coulnply
Suipnjoui ‘sj|pjs pue a3pajmouy SuidAojoud jeaisAyd Juaiind snoA pasinboe noA Aes noA pjnom moH (S

1adxe H]| O | | O O O Jsuudaq
Alezor £ 9 S 4 € r4 T @edwod

M ;uuopeld ounpay ay3 y3im SuidAjojoud |esisAyd 1e ate noA yuiyy noA op padxa moH It
1adxe | O | O O | O Jpuudaq
Alesor £ 9 S 14 € z T ePdwod
M ; (jesauas ur) SuidAyojo.d [edisAyd je aie noA yuiyy noA op Jadxa moH VA
awnp
SYIUON sieap
M ; uwuojield oulnply ay} yum sadAjoloud [edisAyd Suidojanap uaaq noA aney Suoj moH (]
awil
syuop sieap
M ;sadAjoj0ad |eaishyd Suidojanap uaaq noA aney Suoj moH RN

(wuoyre)d ouinpay ay3 yum ‘82 ‘wayl Sulwwesdord gNY SiN2412 21U04323]2 Sulleal))
SuidAyojoud |eaisAyd 'T

duaiadx]y 1 punoudyoeg :¢ aded

9/¢ 280 a.4puionsand punoLSyong-ios

240

'alleuuonsanb ay3 Suie|duwos o) yanw Alaa noA yueyl

inoA jueyy

(noA yubyy o1 sapbinbu) IXEN

é3duauadxa Jo/pue punoiSjpeq JnoA 1noge ppe o3 ayji| pinom noA sjuswwod Jaylo Auy Mird

*Ajjeuty

9/9 23vd admuoysanh pino.syorg-ros

‘Aipwiwins o apinoad 3snf
aspa|d ‘sjipjap Jaquiawal 3,upd noA J |nfesn aq pjnom Buoj moy Jof pup ‘aisym ‘pym Jo bapr uy
4é8uluien ey

ON[] seA[]

'3 BulioIng ‘sanpow ‘sdoysyiom ‘sasinod ,Suluied) pey aney |

M ;sunoJp J1uoapse Sunooysajqnouy/Sunoniysuod ul Suiuiesy Aue pey noA aney [l{ir4
uoponasul/3uiuiesy ysnoaya Ajezol O
uonana3sul/Buiuiely ysnoays Asoln [

uopnasul/3uiurel; ysnoays pue 3ysnel-42s Ajjenb3 O
1yBnes-yes ApsoN
1y8nex-jjes AjjeroL O
M ;s|pjs pue aSpajmoun] $71U04193]3 Jua.4and JnoA pasnboe noA Aes noA pjnom moH {34
ON[] $2A[]
M ;5112410 21U0J173]3 100YS3|qN0.J1/10NJI5U0D
03 Ajjeayioads 4o ‘4oauiBua $OIU0J1D3]3 |euoissa04d e se paAojdwa uaaq JaA2 noA aneH JE3E
uadxa O || O | O] O Jsuuidaq
Aesor £ 9 S 14 € z T ®edwo)
M ;(jesaual 1) sunoup ouoaaje Sunooysajqnoal/Sundniisuod e aie noAHjuiyl noA op 1adxa moH VAN

awiL
SUUOIN sieap

M ;51IN24D $J1U04199)3 SunooysajqnoJti/Sunoniisuod uaaq noA aney Suo| moH M)A

(jeaauas) so1uoiyda|3 '€

9/¢ 28vd adpuuonsanh punodSyong-ros

241

ionnaire

Appendix F. Study 1A Self-efficacy quest

juapiuos
Alleel

uspues
Ajeroy

Juapyuoz
AeroL

juzpyuos
Allesey

FUCT-ITIEEY
AlleoL

juapyuod
AeroL

)
ot

()
ot

()
ot

()
o1

ot

ino yueyy

) [N ()] () [y 1) wepyuod
& 8 s g 5 ¥ £ [4 1 lIe 3 30N
«(534)1) Bupes asuapyuod

san()
on ()
+NSE1 3y3 3)ajdwod pjnod |
S} SWes ay3 op 03 JUO s1Y) a10jaq swiope|d Jejiuis pasn pey | 3 [[]4

8] () 0o (D B oot awspyues
6 g L 9 5 ¥ £ [4 T llB3e30N
+(534 1) Bunel asuapyuoly

oN{) saA()
«H5B1 3Y3 aja|dwes pnoa |

(B [[§]) () 0)) () uspyuoc
6 8 L 9 9 ¥ £ 7 T 1B 38 30N
L[58 1) Bupeds asuapyuo)

on{) saal)
WIse) 3y 313|dwoed pinea |

1inq aya Auo pey | 3 -~ [H

(B [(N () 0))0 wepyuoo
& g L 9 5 t £ z T lleieion
«(534 J1) Buped aouapyuoy

on{) saa()
+A5e1 2y1 ayajdwod pjnod |

0 () () t) () 0 t)) () wuspyuos
6 8 L 9 9 ¥ £ [4 T |E 38 30N
+(524 1) Bune. asuapyuoy

oN{) saA()
«H5B1 3Y3 aja|dwes pnoa |

(9] () 0 n () 0))0} uspyuod
6 8 L 9 9 ¥ £ 7 T |B 38 30N
«(534 J1) Buped aouapyuoy

on{) saal)
WIse) 3y 313|dwoed pinea |

Juapiucz
Ajesoy

uspluos
Aoy

Iplyuod
Ajesoy

juapyuod
Ajesoy

[§]
ot

()
o1

)
ot

9]
ot

() [§] () () (9] ())) () 3uspyuod
6 8 L 9 9 t £ 4 T 1& 38 30N
L[534 41) Bunes aavapyuo)

on) saal)
«H5E1 Y1 3j3jdwod pinoa |
ujAsy a104aq 3) Suisn asja auoawos uses pey | j - [

00 N0 00 N0 9]) () 3uspyues
3 8 L 9 H 4 13 z I lle3eion
«[53A 1) Bunes sauapyuod

oN() saa()
Y581 Yy} a33|dwos pjnoo |

)) 1))) 1) ()) [} wspyuos
6 8 L 9 9 t £ 4 T 1B 38 30N
<[s2a 41) Bunes azuapyuody

on() saa()
SH521 3y) 333|dwod pinos |

(0 I S (0 I S ()) () juspyuod
6 8 L 9 9 t £ 4 T 1& 38 30N
«[53A 1) Bunes sauapyuod

on () saA()
L5l 3y aja|dwod pnoa |
08 | Se Op 0} 3EYM BW |83 03 PUNO.E BUD ou sem a1ayl 4 - [

Wuwaopeld oupnpay

ay3 Suisn Ayxa|dwos sjelspouw jo ysey BuidAyojoad |eaishyd e s3ajdwods pjnoa |,

“ysel ay3 unajdwon ul a3uapyuod Jnok ajel asea|d JuUsWIELS

E 10y 53 J2MsUE NOA] "Mo|2g SIUSLWISIEIS 2Y] JO Y2e3 Joj uolsanb Buimoljoy 2yl Jamsue 3se3|d

150 Ao G oo gy s oo sl 3 LU [N ANOA S| JRYM

Adediyje-§19s rounpay yum SuidAjoload [eaisAyd

TR F-|5-CUNpIY- I -BU|dA030.4-[B2)5AUd /P TOR COC, 55/ W0 OLIZ|a an s mman] -ai3y

242

Appendix G. Study 1A Task instruction sheet

Hands-on physical prototyping task

Goal [

changes.

fingers.

e Please construct and program an Arduino-based physical prototype that uses a sensor
to read temperature, and at least 3 LEDs to indicate levels of warmth as temperature

o Use the sensor to read the temperature

o Astemperature increases, more LEDs should be lit.

o Astemperature decreases, fewer LEDs should be lit.

o No LEDs should be lit for the ambient room temperature.

¢ You can change the temperature that the sensor reads by holding it between your

Do v

Don't X

e Use the Arduino UNO board and IDE .
o Keepitsimple
e Remember to "think aloud'

e Use help/online resources, if needed,
e.g. to look up commands, components

Don't search online for an existing
solution and copy it.

Time &

You have up to 45 minutes for this task.

243

Appendix H. Study 1B Troubleshooting flow diagram

Avisual representation of the sequence/flow—and summarised content—of episodes within a run.

. Each sequentially numbered block following the Failure recognition oval represents an episode.

= Totheright of each episode is a summary of what occurred in it, and the associated text from the transcript.

. The coloured blocks within each episode block summarise the Event Types coded. E.g., in episode 8, the participant made
several changes to their circuit—the multiple Change event types coded in the transcript spreadsheet, each with the C
subcode, are here represented by a single ‘Change circuit’ block.

L] Event types were dual coded using words and colours in the transcript spreadsheets. The same colours were used in the
troubleshooting flow diagrams, for visual clarity, e.g., Change blocks are always orange, etc.

. The diagrams were hand-coded with Activity Type and Tactic codes. Episodes in the image below are annotated with this
coding, in purple—Activity Type codes are capitalised and underlined, with Tactic(s) beneath

DIAGNOSE
« Inspection

FIX
« Speculative change
- Reverse orientation

EVALUATE FIX
« Run & analyse

DIAGNOSE
« Inspection

DIAGNOSE

1

25

Failure / Fault confirmation.
Start troubleshooting

« Inspection

« Measure

« Isolate

- Causal reasoning from output

DIAGNOSE
« Inspection
+ Causal reasoning from output

DIAGNOSE
« Inspection
« Cross-check

DIAGNOSE
« Inspection

FIX
« Speculative change

EVALUATE FIX
+ Run & analyse

FIX
« Speculative change
« Reverse orientation

EVALUATE FIX
* Run & analyse

8.5

9.5

{

Stops troubleshooting
(Problem resolved)

Circuit bug: LED's resistor not seated properly in the breadboard (resolved)

FAILURE RECOGNITION
"That should really be blinking now, but it's not, so I've done something wrong. It doesn't surprise me."

Episode 1: (visually checks the circuit for error)
Inspects the prototype (looking for error)

Episode 2: (turns the LED around in the breadboard. BUGS)
"“I'l go for the obvious - the LED the wrong way".
Reverses the LED in the breadboard (reverses orientation).

2.5: the LED (run-ti

p) to see if the fix was successful)
Watches the LED but it doesn't come on. "No"

Episode 3: (visually checks the LED wiring for error)
Checks the wiring of the LED

Episode 4: (uses a multimeter to inspect voltage. BUGS)
Removes the LED from the board.
Picks up the multimeter and configures it
Unseats the ends of the signal (dPin) and GND wires from the breadboard
Holds the ends of the signal (dPin) & GND wires to the multimeter probes, to check the voltage between them.
"For some reason the LED's not lighting up, and | don't know what I've done. | thought I'd just check with the
multimeter, just to see whether there's power, blinking."

Episode 5: (visually checks the Arduino to see if it indicates the code is correct)
Looks at the Arduino board.
"l can see the light on the board's blinking as well, so it all looks like the blinky light.. the code's working."

pi 6: (visually h
"ltis pin 137 I'll just check" .
Checks the program.

"I'm sure it's pin 13 I've got it in"
checks the Arduino board

"Yes it's in pin 13"

ks pin #s/refs the prog and circuit)

Episode 7: (visually checks the resistor value)
Looks at the resistor and then at the parts kit (checking resistor value)

Episode 8: (moves LED & CONXNS to a different location. BUGS. FIXES)
Picks up the loose end of the signal wire and hovers over the breadboard, thinking.
Seats the loose end of the signal wire back into the breadboard, one row further than where it was.
Unseats one end of the resistor and reseats it in a hole in the same row as the signal wire.
“What I'm doing now is I'm just trying to figure out what I've done wrong. It does seem like I've done
something not quite right, shall we say?" (**Note: not enough to count as a diagnosis episode)
Seats the loose end of the GND wire back into the breadboard.
Seats the LED back into the breadboard.

Episode 8.5: (watches the LED to see the result of the changes)
The LED doesn't come on (**it's obvious in the video that they observe this)

Episode 9: (turns the LED around in the breadboard. FIXES)
Removes the LED from the BB and puts it back in the other way around (**reverses orientation)

Episode 9.5: (Watches the LED to see the result of the change)
The LED starts blinking. "Oh there we go!"
"Yeah, | think it must just have been a loose connection on the breadboard there"

244

Appendix I. Initial set of candidate tactics

A list of the tactics first compiled for potential inclusion in the troubleshooting support card deck. The
tactics are grouped by their initial categories. Please note that this is not the final set of tactics or

categories used in the final study. The final set is available as Appendix L.

Category title Tactic

Check component / wiring info Copy an example
Get more help

Generate more data Logging statements
Measure something
Use tools

Inspect for build errors / faults Check circuit completeness

Check for bad connections
Check for special cases/uses
Check location of failure
Check order / sequence
Check power

Check seating

Check the pinout

Check the type

Check the value

Check wiring

Compare to an example
Cross-check

Perform a test Change test input
Check for faulty component
Swap working & non-working
Unit test

Simplify Divide & conquer

Isolate
Reduce dependencies

Try a quick fix Redo (the same way)
Reseat
Restart
Reverse orientation
Swap for a different value
Swap for new identical
Understand (define) the problem Check conditions
Check for [ab]normality

Check frequency / consistency

Check order / sequence

Check output values

Reproduce the problem

Similar/familiar problem
Understand the system Check the brief

Identify / trace dependencies

245

Appendix J. Card design focus groups ethics application

Ethics Proportionate Review Application: Staff and Research Students
Computer Science Research Ethics Committee (CSREC)

Staff and research students in the Department of Computer Science undertaking research that involves human
participation must apply for ethical review and approval before the research can commence. If the research is
low-risk, an application can be submitted for a proportionate review using this form. Applicants are advised to
read the information in the SMCSE Framework for Delegated Authority for Research Ethics prior to submitting
an application.

There are two parts:

Part A: Ethics Checklist. The checklist determines whether the research is low-risk. If it is, Part B of the form
should also be completed. If not, the checklist provides guidance as to where approval should be sought, but
the checklist itself does not need to be submitted.

Part B: Ethics Proportionate Review Form. This part is the application for ethical approval of low-risk research
and should only be completed if the answer to all questions (1 - 18) is NO.

Completed forms should be returned to the Chair of CSREC by email (email address redacted).
Part A: Ethics Checklist

If your answer to any of the following questions (1 - 3) is YES, you must apply to an appropriate
external ethics committee for approval:

1. |Does your research require approval from the National Research Ethics Service (NRES)? (E.g. No
because you are recruiting current NHS patients or staff? If you are unsure, please check at
http://www.hra.nhs.uk/research-community/before-you-apply/determine-which-review-body-
approvals-are-required/)

2. | Will you recruit any participants who fall under the auspices of the Mental Capacity Act? (Such No
research needs to be approved by an external ethics committee such as NRES or the Social Care
Research Ethics Committee http://www.scie.org.uk/research/ethics-committee/)

3. | Will you recruit any participants who are currently under the auspices of the Criminal Justice No
System, for example, but not limited to, people on remand, prisoners and those on probation?
(Such research needs to be authorised by the ethics approval system of the National Offender
Management Service.)

If your answer to any of the following questions (4 - 11) is YES, you must apply to the Senate
Research Ethics Committee for approval (unless you are applying to an external ethics
committee):

4. |Does your research involve participants who are unable to give informed consent, for example, but |No
not limited to, people who may have a degree of learning disability or mental health problem, that
means they are unable to make an informed decision on their own behalf?

5. |Is there a risk that your research might lead to disclosures from participants concerning their No
involvement in illegal activities?

6. |Is there a risk that obscene and or illegal material may need to be accessed for your research study |No
(including online content and other material)?

Does your research involve participants disclosing information about sensitive subjects? No

8. |Does your research involve the researcher travelling to another country outside of the UK, where No
the Foreign & Commonwealth Office has issued a travel warning? (http://www.fco.gov.uk/en/)

9. |Does your research involve invasive or intrusive procedures? For example, these may include, but | No
are not limited to, electrical stimulation, heat, cold or bruising.

10. | Does your research involve animals? No
11. | Does your research involve the administration of drugs, placebos or other substances to study No
participants?

If your answer to any of the following questions (12 - 18) is YES, you must submit a full application to
the Computer Science Research Ethics Committee (CSREC) for approval (unless you are applying to an
external ethics committee or the Senate Research Ethics Committee). Your application may be

246

mailto:j.dykes@city.ac.uk
http://www.fco.gov.uk/en/

referred to the Senate Research Ethics Committee.

12. | Does your research involve participants who are under the age of 18? No

13. | Does your research involve adults who are vulnerable because of their social, psychological or No
medical circumstances (vulnerable adults)? This includes adults with cognitive and / or learning
disabilities, adults with physical disabilities and older people.

14. | Does your research involve participants who are recruited because they are staff or students of No
City University London? For example, students studying on a particular course or module. (If yes,
approval is also required from the Head of Department or Programme Director.)

15. | Does your research involve intentional deception of participants? No
16. | Does your research involve participants taking part without their informed consent? No
17. | Does your research pose a risk to participants greater than that in normal working life? No

18. | Does your research pose a risk to you, the researcher(s), greater than that in normal working life? | No

You must make a proportionate review application to the CSREC if your research involves human
participation and you are not submitting any other ethics application (i.e. your answer to all questions
1-18is “NO”).

Part B: Ethics Proportionate Review Form

If you answered NO to all questions 1 - 18, you may use this part of the form to submit an application for a
proportionate ethics review of your research. The form must be accompanied by all relevant information
sheets, consent forms and interview/questionnaire schedules.

Note that all research participants should be fully informed about: the purpose of the research; the procedures
affecting them or affecting any information collected about them, including information about what they will
be asked to do, what data will be collected, how the data will be used, to whom it will be disclosed, and how
long it will be kept; the fact that they can withdraw at any time without penalty.

Background Information

Name: Tracey Booth

Supervisor Dr Simone Stumpf

(if student): Dr Jon Bird

Your Research Project

Title: User review of design options for troubleshooting support materials aimed
at novice Arduino users (CSREC180209TB)

Start date: 26/02/2018

End date: 01/10/2020

Describe your project: overall aim(s) and method (up to 300 words)

Background

My first study (S1) established that end-user developers (EUDs) experience numerous problems when
developing physical computing prototypes with platforms like Arduino, and that circuit bugs are most likely
to prevent successful development of a working prototype.

In a subsequent, deeper analysis (S2) of data from the previous study, this time focusing on the natural
troubleshooting behaviours of EUDs, I discovered that EUDs struggle to diagnose circuit bug-related
problems and evaluate whether attempted fixes are successful. This is often the result of poor
troubleshooting strategies/tactics.

Extending upon this work, the rest of my PhD research aims to determine the effects of providing support
materials on EUDs’ troubleshooting of circuit bugs. To this end, inspired by creativity support card decks (e.g.
Thinkpak), I am currently designing a set of physical cards that contain information about different
strategies/tactics that EUDs can employ when troubleshooting.

This study

This new study (S3) will elicit user feedback on the early-stage design of
these materials. A number of design variants (pictured below) have been
created, based on the findings from studies 1 & 2, as well as a review of
the literature (program debugging; electronic circuit troubleshooting;
card-based tools).

In this study, to provide valuable user input into the design of the support
materials, six novice Arduino users will be asked to review and rank these
variants, focusing on specific aspects of the designs.

247

This research, involving representative users from the target population, will inform my outstanding design
decisions, resulting in a single set of support materials that will be used in my next study - an observation of
their effect on EUDs’ hands-on troubleshooting of Arduino circuit bugs (S4- date tbd but ethics approval has
already been granted).

Participants

Participants will be 6 adults (18+ years), who are novice Arduino users. They will be recruited through maker
and university networks, using flyers, social networks (Twitter and Facebook), mailing lists and personal
contacts. Participants must be relatively new to using Arduino (or any other physical computing development
platform) and not consider themselves to be experts in electronics or programming. Recruitment
respondents will be sent a detailed study information sheet and all potential participants will be screened for
eligibility, including their age and physical computing development experience. I will not be recruiting
anyone under the age of 18, and vulnerable participants will be screened out.

Procedure, incl. data gathering & analysis

Each participant will attend a one-hour-long session, to be held in the City Interaction Lab, at City, University
of London, at a pre-arranged time convenient for them. Each session will involve 2 participants - participants
will be randomly assigned to these pairs.

At the start of the session each participant will complete the informed consent form. They will then fill in a
brief background questionnaire, capturing their demographic details and their experience of developing
physical computing prototypes.

Participants will then verbally answer two questions about their use of Arduino. Then, working in pairs, they
will undertake a series of design review exercises, guided by the facilitator (me), using a semi-structured
topic guide, focusing on different aspects of the designs. In each exercise, participants will be asked to discuss
and provide feedback on the design variants in terms of a specific aspect, and rank them according to their
preferences. Aspects are:

e Physical format (Card size; Card orientation; Handling)
e Textual information (Types of information; Amount of information; Location of information)
e Visual design characteristics (Imagery / iconography; Use of colour; Typography)

The session will be video-recorded for later analysis, using an external video camera, capturing participants’
verbal comments about the designs, and any non-verbal activity, e.g. manipulation of the designs (please note
provisions made in the next section for anonymity regarding the use of these recordings). Any additional
notes or diagrams made by participants will be digitised following the session.

A thematic analysis of the recordings will be completed after all sessions have taken place. The findings will
be used to refine the design of the support materials.

Data security & privacy

Once gathered, identifying data will be anonymised - participants will be represented by randomly assigned
ID numbers. Participant names will not be associated with the recordings or any other data, and will not
appear in any reports or presentations, including where any video clips or screenshots are used in which
faces are shown.

When signing the consent form, participants can opt in for allowing their faces to be shown in any video clips
or stills used in presentations or publications. If a participant does not opt in for this, but still opts in to allow
recordings to be used in presentations or publications, their face will be pixelated or blurred in any such
presentations or publications, to anonymise them.

All data will be password protected, stored securely, and backed up. Only myself, my supervisory team (Dr
Simone Stumpf, Dr Jon Bird and Dr Sara Jones), and my examiners, will have access to the data. If a participant
decides to withdraw from the study at any point, I will destroy any data already gathered from them.

Attachments (these must be provided if applicable):

Participant information sheet(s) Yes
Consent form(s) Yes
Questionnaire(s) - background questionnaire Yes
Topic guide(s) for interviews and focus groups Yes
Permission from external organisations (e.g. for recruitment of participants) Not applicable

248

Appendix K. Card design focus groups participant

information sheet

zJoz abogq

8918 070 02(0) i+ ynoe AP@T Jdwnis suowls Jdwinis suowis ug :Josinuadns qyd
yn-oe'ANo@ T Y100q-Asdesy yloog Asoeu| :Jayoeasay
S|1e}ap JOEJUOI pue uoljewnojul Jayung

*(034sD)
99111WW0) $21Y13 Yyaueasay 22ualds Jandwo) uopuo Aysianiun Aud Aq panoisdde usaq sey Apnis siyl
«&ApN}s ay) pamainal sey oym,,

‘uonoe |e3s] 10j spunoJs aney Aew

noA uay) ‘@3uasi|Fau 5,9U03WOS 01 ANP pawLIey 3. NOA J| ‘uonesuadwod ya3s 01 s1ySu [e83] uNoA 1034
10U $20p SIy] ‘uolesuadwod wiep 03 9qi812 aq Aew noA ‘Apnis siy3 ul ped Sujel Aq painful o pawuey
u23q aAeY NOA [93) NOA §| “Apnis siy1 01 Aldde yaiym saidijod aaueunsul spjoy ‘uopuo jo Ausianun ‘Aud

49H0 ATO3 ‘uopuo?
asenbs uoidweyrion
uopuo jo Aussaaun ‘Al
173 ‘P40 Yosessay
291WWO) S$IIY1F Y21easay 91euas o} A1e1ainas
Siaquiey euuy
11e A1B12103S 81 01 31LM OS[E P|N0D NOA

sJasn ouinpay

310U 1e pawie sjedrew yoddns Sunnooysajgnosy 1oy suoirdo usisap Jo malnaa Jasn :si 1aafoid ayy

40 SWEU Y1 18] WY1 WIOJUI PUB S91)1IWWIO) SIIY1T Y21easay 31euas 0} Aie1audas ay) o) yeads 01 yse uayy
ued NoA “0p0E 00/ 070 duoyd 01 paau noA ‘Apnis ay1 Inoge ulejdwod o] “ainpado.d sjutejdwod AlsiaAiun
Y1 y3noJyi siy1 op ued noA ‘Ajjewsoy uejdwod 01 ysim pue Addeyun ulewas noA §| ‘weal yosessal syl

40 Jaqwiaw e 01 eads 03 yse p|noys NoA ‘Apnis siy3 INoge suollsanb 1o susaduod ‘swajqoid Aue aaey noA
«éwiajqoad e si a9y} 1 JeUM,,

‘paAosisap U3 pue - S3IPNIS AYSIBAIUN 10} BLII} UOUBIBI PIBPUR)S BY3 - SIBIA QT JO4 PaJ03s aq ||Im eleq
«¢sdols Apnjs yosseasas ay} uaym uaddey |jim ey,

‘uoioesalul JaIndwod-uewny Jo p|aly Y1 Ul S32UBIBJU0D

pue sjeusnof jeuorjeuaiul ul uoliedljgnd dlwapede 1oy sBulpuly Aw ywgns 01 adoy os|e | *siy} spJemol Apnis
4oJeasal 1Xau Aw wiojul |[1m S} Nsal ay) pue sisayl gyd Aw jo ped wioy 01 dn usnlim aq [|1m Apmis siy L
«&ApN1s yoieasal ayj Jo sjnsai ayj o) uaddey |m Jey,,

‘noA o1 dn AlSIIUS S|

SIY3 INQ ‘UMOYS B UED 92B) INOA 10U 10 JaYy1aym Sulpnjoul ‘suonejuasald Jo suoiiedljgnd ul pasn aq o} (s||13s
03pIA ‘8'3) SBUIPI0IAI BY] JO SUOIIIBS MO||E 0} U BY) dARY ||IM NOA ‘suolleluasald Jo suonedlignd Aue ul
Jeadde jou ||1m pue ejep Jay3o Aue 10 sBuIpJ0d3] Y3 YUM PIIIDOSSE 3q JOU [|IM SWweu INOA “Aj2INd3s paiols
30 ||!M pue paJay1es 33U pasiWAUOUE 3q ||IM el1eq ‘Pa.3Y1eS e1ep AU 0 $S900B SARY [|IM ‘SIBUIWEXD

Qayd Aw pue (sauof eles ug pue piig uor 4@ ‘Jdwnis suowis Q) siosiaadns gyd Aw ‘yjasAw Ajuo - sap
«&lenuapyuod ydoy aq Apnys ayy ui ped Buryey Aw M,

*sao1n0u Ajsenoiued ‘ouinpay se yans swaojeld Jo siasn Joy Joddns

uSisap 01 moy Jo 38pajmoud| JNo 01 AINQLIUOD ||Im NoA Apnis siyy ut Led Supyjel Ag "saAjasway) SadIASP
pue swajsAs 1depe pue dojaAsp 01 s19sn pua Jamodwa 0} S| Y21easas Juswdo[aAap Jasn-pusd Jo [eoS ay |
«Med Bupye) jo sjyouaq a|qissod ayj are Jeym,,

zJo 1 abod
‘ped Supey
10} SYUBY] JO UO] ||BWS B SE “49YINOA I UoZewy OTF e USAIS 3q [|Im Apnis ay1 913]dwod oym siuedidilied

"uoISsas
34 ||1M UOISSaS BY L

Y1 J31JB SOIPIA BY1 9SA[EUR/MBIABI UED | 1BY] OS ‘Olpne Sulpn|oul ‘papJ0dal-09

*s30ua.a)a.d InoA 03 Suipiodde
susisap ay1 Sujuey ‘pareald aney am susisap paseq-iaded Jo Jaqinu e Jo syoadse Jejnored
uo uojuido unoA Buipiroad ‘(mouy 1ou Aew noA oym) Juedioiued Jsyloue yum ‘ied e ul Supiom €

‘ouINpIy JO 3sn JNOA 1noge suoisanb |eqian may e Sulamsuy g

aJleuuonsanb punou8yoeq 1oys e Sunajdwo) ‘T

:9s1dwod |Im pue unoy T Aj91ewixoidde axel ||Im Uoissas ay L

‘NOA 10} JUBIUBAUOD BWIL B 1B ‘(g ATD3I ‘UOpuOT IS UYOr 1S 08¢) uopuoT Jo Ausiaalun ‘A11d 1e usissg
IDH J0j 3J3U3D 3Y3 Ul 8TOZ Y24eNl Ul 0e(d 23e3 01 (41009 ASDEIL) BW Y1M UOISSSS B 3|NPaYDS 1M 3
«éHed ayey | y1 uaddey |im jeym,,

*paAou1sap aq ||IM NOA WOl pa1I3||0d
aney am ejep Aue pue Aem Aue ul paSejueapesip 1o pasijeuad aq 10U ||Im NOA - awi) Aue 1e medpyiim o) aaJ)
S 31 INQ ‘W04 JUASU0I e USIS 01 payse aq ||Im NoA ‘Lied axel 01 apiap NoA 4| *Aselun|on si uonedidiled

«epuiw Aw abueyd uayy pue dn ubis | ji suaddey Jeym cued aye) o aAey | oq,,

*MO|[3q PaQLIISIP SIIHAIIIE Y]} 3BUSPUN 0] d|qe 3 PUE P|O SIedA 8T 1ses|

18 3¢ OS|e 3sNW NOA “SuiwwesSoid 10 $IIU0IIIB]D JBYYD Ul 13dXd UE 3 01 J|3SINOA J3PISUOI J0U P|NOM pue
(wuoyrejd yuawdojaaap Suinndwod eaisAyd Jayio Aue pue) ouinpay Suisn 0} mau AjaAne|al aq pjnom noA
Alleap| ‘ouinpJy 8uisn jo 8dualiadxa — BAISU3IXD 10U ING — BWOS ISE3| 18 SABY OYM S}NpPE Joj SuIjoo] We |
«&PaNAUL udaq | aAeY Aym,,

*$13sn oulnpJy Jadxa-uou o3 uonew.oyul poddns Suniooysajgnoul yuasaid o3 159q

Moy aulwia1ap 03 sh d|ay ||im Apnis Jejnoned siy| -oulnpay se yans swiojiejd Sunndwod |eaisAyd Suisn
pue Sujuies| ul papioddns aq ued ajdoad moy 1no puly 01 S| Yaessas Qyd Aw Jo wie ujew sy| ‘uopuo Jo
Ausianun ‘A 1e (QIDH) usisaq uoiaela1u J9INdwo)-UBWINK JOj 943U3D 341 Ul JUSPNIS Y2Ieasal Qyd e w,|
«&Apnys ayj jo asodind ay st Jeym,,

*sn yse asea|d ‘uollewoul a1ow 1| P|Nom NOA J1 10 Je3|d Jou | Jey) SulylAue s| aiayy

41 "YSIM NOA J1 SI9410 Y2IM 31 SSNISIP pue Ajjnja.ed uoilewiojul SUIMO||0) 3Y) peal 0] dwi} dxe] ased|d ‘NoA
10} BA|OAUI PINOM 11 1eYM puE 3uop Suiaq S| Yo1easal ay1 Aym pueisiapun noA jeys Juenodwi s, Led axer
03 31| pjnom noA Jayiaym ap1dap noA aiojeg "Apnis yoseasas e ul 1ied a)e3 01 NOA 1IAUl 01 9] PINOM A

$19SN ouINplY 991A0U
10} do uBisap Jo malnai sasq :Apnis Jo apIL

ddne B

e pawie sjeudjew

199yg uoneunoyu| juedionied Apnig yosseasay

0908 0+0£ 02(0) ¥+

wopBury pajun

GHO ALO3

uopuo

asenbg uojdweyponN
uopuo Jo Aussaaiun ‘AN

249

Appendix L. List of cards used in Study 2

Tactic cards

Analyse run-time behaviour/data

Analyse conditions

Analyse frequency / consistency
Analyse normality

Analyse sequence

Identify the symptoms

Logging (print) statements
Measure something

Serial monitor

Conduct a test

Divide & conquer

Isolate part of the system

Redo (reimplement the same way)
Reduce dependencies

Restart

Swap working & non-working
Test for a faulty component

Get help

Compare to an example
Read the requirements/specification
View component / wiring information

Inspect hardware / software

Analyse the program/circuit
Check circuit completeness
Check component pinout
Check for poor connections
Check for special cases / uses
Check if something's missing
Check location of failure
Check order (spatial)

Check orientation

Check power

Check the type(s) used

Check the value(s) used
Cross-check (between things)
Trace/identify dependencies

Stop... think

Consider alternatives

Consider recent events

Consider similar/familiar problems
Question your assumptions

Best Practice cards

Best practice

Avoid haphazard trial & error
Diagnose, Fix, Evaluate result
Keep track

Make it easy to undo

One 'fix' atatime

Undo failed fixes

250

Analyse the

program / circuit

Analyse the program, circuit
or both, to see howitis
constructed, what it does &
how it works

Inspect hardware / software

Check
component
pinout

['g

N

Check whether the right
types of connections have
been used for a component

Inspect hardware / software

Check for
special cases
/ uses

@l
nwni

Check if there are any special
cases or propetties of things
which might be having an
effect

Inspect hardware / software

03)
Check location

of failure

L

Look for errors in the part of
the system where failure was
observed

Inspect hardware / software

Analyse the program / circuit

Experienced developers often
try to understand the system
and how it functions, before
deciding what troubleshooting
action to take next

Think about...

« Do you know what the system - or a
particular part of it - consists of?
Have you familiarised yourself with
what is implemented?

« Are you able to figure out how it
works? The program? The circuit?
How the program and circuit work
together?

« Does this provide you with any
clues for what to do next?

Inspect hardware / software

Check component pinout

A pinout diagram shows the right
types of connections for the

\,i i iz contacts or pins (including those
inside sockets) of an electrical
component.

« What connection types are required
by the components in the circuit?

« What effect might the wrong types
of connections have on run-time
functioning or behaviour?

« Where / how might you find a
pinout diagram for the
components?

Inspect hardware / software

Check special cases/uses

Some things have more than
one function, or have special
properties that which have a
particular effect in specific
circumstances.

+ Where in your circuit or
program could a secondary or
special use / property be
causing an undesired effect?

+ How might you find out whether
any secondary or special uses /
properties exist for any part of
the system?

Inspect hardware / software

Check location of failure

Sometimes it can help to see if
there is anything obviously
wrong with the system in the
location where the failure is
visible / occurs.

* Where do you see evidence of
failure?

« What, in this location, might be
causing the type of failure you
have seen?

« How can you establish whether
something in this location is
causing the failure?

Inspect hardware / software

251

[07)
Check circuit N
completeness

Make sure that the circuit
(and all of its sub-circuits)

are complete

Inspect hardware / software

m
Check for poor

connections

A

Make sure all
connections are properly
seated and secure

Inspect hardware / software

Check if
something’s
missing

Check whether something
important or necessary is
missing from the system

Inspect hardware / software

29)
Check order
(spatial)

)

Make sure that things are
connected or implemented
in the right order

Inspect hardware / software

Appendix M. Tactics and Best Practice cards

Check circuit completeness

For electrical current to flow within
the circuit (or a particular part of
it), there needs to be a continuous
path between a source of power
(e.g. power pin/rail or an output
pin) and ground.

Think about...

« How can you determine whether
the circuit - or the part that isn’t
working — is complete?

— Where should you look?
— What should you look at?
— What should you look for?

« What provides power within the
circuit, and to what?

+ What sources of ground are there?

Inspect hardware / software

Check for poor connections

Poor connections (including mis-
seated ones) can affect run-time
behaviour. Visually inspecting
connections can help identify any
that aren't properly seated / secure.

Think about...

« How / where do components
connect to the circuit?

* What other types of
connections do you have?

« What connections might be
loose or misaligned?

« How else might a connection
be ‘poor’?

Inspect hardware / software

Check if something’s missing

Failure may be caused by
missing program elements,
missing circuit components /
connections, or even a missing
cable or setting

Think about...

+ What should - or needs to — be in
place, but isn't?

« What program or circuit (or other)
element might be missing?

+ What might be missing that could
have led to the behaviour / data
you're seeing?

« If you're not sure, how can you find
out?

Inspect hardware / software

Check order (spatial}

Order can matter. Visually
inspecting the order (spatial
sequence) in which things are
connected or located, can help
to identify whether something is
in the wrong place.

Think about...

« In what order should things be
connected or located?

« Where does / doesn't order
matter?

« Might the order of something
be affecting run-time behaviour
or output? How?

Inspect hardware / software

Check
orientation

Make sure that
components are seated
the right way around

Inspect hardwa

25)
Check the

type(s) used

Make sure that the right

types of things have been
used

Inspect hardware / software

Cross-check
(between things)

R0
5G4
Make sure that things in

different places match
where they are supposed to

Inspect hardware / software

Divide &
conquer

]
[.! Iy
Systematically reducing
the system, until you've

found the source of the
problem

Conduct a test

Check orientation

Orientation matters a lot for some
(although not all) components.
Visually inspecting how something
is oriented, e.g. in the breadboard,
can help determine whether it is
seated the wrong way around.

« For which of the components does
orientation matter?

+ How should these components be
oriented? If you don't know, how /
where could you find out?

« If a component was the wrong
way around, what would the result
1 effect be at run-time?

Inspect hardware / software

Check the type(s) used

Having the right — or wrong — type
of something can make a
difference.

This applies to both hardware
(elements of the circuit) and
software (elements of the program
or IDE).

Think about...

« Where is there potential for the
wrong type of something to
have been used within the
circuit, program or IDE?

« Where and how might having
the wrong type of something
make a difference?

Inspect hardware / software

Cross-check (between things)
References to something can
exist in more than one place.

8 It's also important for software
(program or IDE) to reference the

®0 right hardware.

Think about...

« How / where is the circuit
referenced within the program?

« Where else is hardware
referenced?

« Where else in the system
should references between
things match?

Inspect hardware / software

Divide & conquer

A common & effective debugging
technique that can help narrow in
on the cause of a problem by
systematically reducing (or
halving) the system and testing it.
When halving is used, this is
known as the ‘half-split' method.

« Which part of the system should
you test first? Where is the error
most likely to be?

« How can you reduce the system?

« What test will you run and what
will you look for?

« What is the result of this test?

Conduct a test

Check power

P

Make sure the circuit is
powered and that there is
enough power, of the right

amount, to all parts of it

Inspect hardware / software

B
Check the

value(s) used

<>

Check whether the values

used (in hardware and/or

software) are appropriate /
correct

Inspect hardware / software

35)
Trace / identify
dependencies

Identify what affects what
and what is affected by what.

Understand relationships
between things

Inspect hardware / software

Isolate part
of the system

Test a smaller portion of
the system, in isolation
from the rest

252

Check power

For a system to behave correctly,
the circuit and any of its sub-
circuits need a source of power, a
source of ground, and to be
getting enough power.

Think about...

* What requires power and
where / how is it supplied?

« How much power is required?

» Where is there potential for the
circuit (or part of it) to not be
getting enough (or any) power?

* How might a lack of power - or
not enough power - affect
behaviour?

Inspect hardware / software

Check the value(s) used

Different values (or values of
things, e.g. components) used or
specified in the program, circuit,
or even the IDE, can affect
behaviour / output.

Think about...

« What values (or values of things)
are used and where?

« How might a particular value (or
values) be causing the failure
that you see?

« Might any values be
inappropriate or incorrect?

+ How can you determine whether
the values used are appropriate
or correct?

Inspect hardware / software

Trace / identify dependencies

When analysing failure, it helps
to identify what might be
contributing to it. Identifying
dependent relationships between
things is key to this approach.

« What is behaviour (or correct
behaviour) dependent on?

* What are all the
factors/elements that contribute
to (or affect) the behaviour or
output?

« What dependent relationships
exist between different
elements of the system?

Inspect hardware / software

Isolate part of the system

@@@ Focused testing of smaller,
L) functional parts of the system,
oo @ can help narrow in on the cause
of failure, or rule things out.

Think about...

« What functional parts of the system
can you isolate?

What parts of the circuit / program
will the test involve?

- What will still be included?

- What will you remove or bypass?
» What test(s) will you conduct?
« What are looking for?
« What is the result of this test?

Conduct a test

Redo
(reimplement
the same way)

Reimplement something in
exactly the same way, to see
if it fixes the problem

Conduct a test

Try restarting (or
reopening) something, to
see if the problem
disappears

Conduct a test

Test for a faulty
component

Conduct a test to see if a
component is faulty /
broken

Conduct a test

Analyse
frequency /
consistency

O

Look at the pattern of
behaviour or output
over time

Analyse run-time behaviour / data

Redo (reimplement the same way)
Errors aren't always easily
visible to the eye.

Re-implementing something
can sometimes resolve a
‘hidden’ error.

Think about...

« What could you redo
(reimplement)?

« What hidden errors might there
be and why/how might
reimplementation resolve them?

« Are there any risks to doing this?
How might you avoid them?

« What is the result?

Restarting something can
sometimes fix’ a problem.

“Turn it on and off again” is a
well-known example of this tactic.

« What could you restart and
how?

« What could you reopen?

« Why do you think this might
“fix' your problem?

« What is the result of this test?

« If the problem still exists, what
else might this tell you?

Conduct a test

Test for a faulty component

A faulty or broken component
can affect behaviour / output.

Testing can establish whether
this is happening, or rule it out.

« What might be faulty or broken?
» What might have failed?

« What might the effect of a faulty
component be? How might you see
/ notice it?

= What test(s) could you perform to
establish - with certainty - whether a
component is working?

+ What is the result of the test?

Conduct a test

Analyse frequency / consistency

To determine whether there is
(still) a problem, or diagnose a
potential cause, it can be helpful

to identify the pattern of
behaviour / output over time.

How often is behaviour/output
correct/incorrect? Always?
Sometimes? Never?

Is the behaviour/output (or
pattern), consistent?

If it's incorrect, is there a
pattern over time?

Does the pattern tell you
anything?

Analyse run-time behaviour / data

253

Reduce
dependencies

o'e
Reduce the number of
factors potentially affecting

/ influencing behaviour or
output

Conduct a test

[2)
Swap working

& non-working
o

Use something that works
to test something that
doesn’t work

Conduct a test

Analyse

conditions
C

Look at the
conditions(circumstances)
under which behaviour or

output occurs

Analyse run-time behaviour / data

Analyse
normality

Determine whether (and
how) behaviour / output is
normal or abnormal

Analyse run-time behaviour / data

Reduce dependencies

Reducing the number of factors
a that could be affecting behaviour
'."' or output can help isolate the
cause of failure.

« What is (or may be) affecting things?

» What dependencies could you
remove?

« What is/isn't crucial for functioning?

» How can you reduce (or bypass)
dependencies?

* What test(s) will you conduct?

= What will you be looking for?

« What is the result?

Conduct a test

Swap working & non-working

This can help you find out if a
component is faulty, or if

there's something wrong with
a particular part of the circuit.

Think about...

« What type of swap will be
useful? What makes most
sense?

- Swapping in a working
component, or

- Swapping in a non-working
component?

« What is the result of the test?

Conduct a test

0 TO determine whether there is a
problem, or diagnose a potential
C;) cause of one, it can be helpful to
identify the conditions
(circumstances) under which
certain things occur.

Think about...

« What conditions (circumstances)
can (or should) you check?

« How can you create conditions
in order to analyse the outcome?

+ Under what conditions does
certain behaviour / output occur?

+ Under what conditions doesn’t
certain behaviour / output occur?

Analyse run-time behaviour / data

Analyse normality

It can be helpful to establish
whether behaviour / output (or
pattern thereof) is what you
should be seeing, under the
circumstances.

Think about...

+ What should you expect to see?
What would be normal (or correct)?
« What would be abnormal (or
incorrect)?
If you think something is abnormal
or wrong, what evidence of this do
you have?
If behaviour or output is abnormal,
does it provide any clues as to why
it is happening?

Analyse run-time behaviour / data

Analyse
sequence

Look at the sequence of
behaviour or output

Analyse run-time behaviour / data

Logging
(print)
statements

Use ‘print’ statements to
output hidden run-time
data to the Serial Monitor

Serial
Monitor

>

H—

Use the IDE’s Serial
Monitor window to view
data outputted by ‘print’

statements in the program

Analyse run-time behaviour / data

Read the -
requirements /
specification

EE

Understand what things

are supposed to be like —
what should be in place
and how it should behave

Get help

Analyse sequence

-, Todetermine whether there is a
_o y problem, or diagnose a potential
/’ cause of one, it can help to
-0 identify the sequence in which

behaviour / output occurs.

Think about...

* What sequence do you expect?

« Is this what you see?

« If the sequence is incorrect /
unexpected, is there a pattern
to it?

« Does the pattern tell you
anything?

Analyse run-time behaviour / data

Logging (print) statements

You can use ‘print’ statements in
your program to log (output)
data, at run-time, to the Arduino
IDE’s Serial Monitor. You can
then analyse this data.

« What data would be useful to
see that is otherwise hidden?

* Where will you get this data?
What will you output?

« When viewing this data, what
will you look for?

« Is any additional information
required for you to be able
interpret the data?

Analyse run-time behaviour / data

Serial Monitor

The Serial Monitor - a separate
window in the IDE - displays
output (data) generated at run-
time by ‘Print’ statements in the
program. This otherwise hidden
data can then be analysed

Think about...

Do statements in the program output
data to the Serial Monitor? What
data will they output?

When viewing output data in the
Serial Monitor, what will you look
for?

Could/does the output data tell you
anything useful?

Is any additional information required
for you to be able interpret the data?

Analyse run-time behaviour / data

Read the requirements / spec

Understanding how things are
supposed to be, can help you

6 to determine what isfisn't
correct.

Think about...

* How is it supposed to work?
What is the desired or expected
behaviour?

« What is it supposed to look
like? What should be there?

« Does any of this differ from
what you see? In what way?

Get help

254

[0)
Identify the
symptoms

Q2

Recognise (and be able

to describe) what failure

looks like - what is and
isn’'t working

Analyse run-time behaviour / data

Measure
something

Use a tool to expose hidden
data and/or see if something
is working as expected

Analyse run-time behaviour / data

26)
Compare to

an example

my N

Use an example to judge
whether something is
correct

Get help
. 06)
View

component /
wiring info

[mm“‘r
=+

Find out the properties or
characteristics of
components or parts of the
circuit, and how to use them

Get help

Identify the symptoms

Before trying to fix a problem, try
to determine exactly what the
failure looks like

What is and isn't working? What
are the symptoms that tell you
there is a problem?

Think about...

What is happening that
shouldn’t be happening?
What isn't happening that
should be happening?

When / how / where does this
ocour?

When / how / where doesn'’t
this occur?

Analyse run-time behaviour / data

Measure something

You can use tools to measure
part(s) or aspects of the circuit
at run-time, making otherwise

‘hidden’ data visible.

Think about...

+ What could you measure?
+ How can you measure it
What will you look for?

What values would you expect to
see?

If you see different values, what does
this mean?

If you don’t understand the values
you see, how can you determine
what they mean?

Analyse run-time behaviour / data

Compare to an example

oen Comparing what's been built
to an example can help you to
judge whether it has been
implemented correctly.

Think about...

+ What example would be useful?

« What type or format of example
would be most helpful?

« How/where might you find it?

« How will you judge whether an
example you find is appropriate?

* How will you know if an example
you find is correct?

Get help

View component/wiring info

Supplement your own electronics
knowledge with facts & guidance
from other sources, for example,

information about components or
circuits in general.

Think about...

« What components or parts of the
circuit do you need information
about?

« What type of information might
be useful and why?

« What properties / characteristics
might be helpful to know?

« Where might you find this
information?

Get help

Consider
alternatives

Assess different ideas
or options before
deciding what to do

Stop... think

Consider @
similar / familiar
problems

3 £

Think about whether you've
seen this problem before, or
something like it and what
that could tell you

Stop... think

Avoid haphazard
trial & error

k=l

Changes that aren’t thought
through may not only not solve a
problem, they also add new bugs

It's better to /ocalise the cause of a
failure before trying to fix it, or to have
a clear idea of what a change might
achieve or tell you

Best practice

One “fix’
at a time

()

It's easier to see (or test) the
effect / result of a single fix
attempt.

They are easier to track
They are easier to undo

Best practice

Consider alternatives

Rather than going with the first

L4 ? thing that comes to mind, try to
* come up with different

possibilities / options and weigh
them up before acting.

Think about...

What other options are there?
What else might be causing the
problem?

How else might you diagnose the
cause of failure? What else could
you try?

— What could you inspect?

— What tests could you conduct?
— Where might you find help?

Stop... think

Thinking of problems which
are similar in some respect, or
which you may have
experienced previously, can
sometimes provide the seed of
an idea for what to look for or
how to diagnose or fix.

* Have you seen this problem
before, or experienced
anything even slightly similar?

* What caused the same /
similar problem?

* How was it diagnosed / fixed?

Stop... think
. =2
Diagnose, Fix,
Evaluate result

3. Evaluate result

Follow the steps in order.

If the problem isn't fixed, return
to diagnosis

Best practice

6)
Undo failed
‘fixes’

139

If you try something and it doesn’t
work, change it back, or you might
make the problem bigger and
more difficult to solve
BUT bear in mind you may have
partially solved a problem or
solved one of multiple problems!

Best practice

255

Consider
recent events

\

Think about what has
happened recently that
could have affected things

Stop... think

[36)
Question your
assumptions

2

Think about what you
might be taking for granted
and whether you need to
reconsider / question it

Stop... think

B
Keep track

Keep track of things you've tried
and what the results were

Make a note (mental or written) of
what did/didn’t work and under
what circumstances

Best practice

Consider recent events

If something was working but
now isn’t, or behaviour has
changed and you're not sure
why, think about anything that
may have happened recently
that could have affected it

Think about...

+ What changes have you made
recently?

» Could any recent change(s) be
contributing to the current failure or
behaviour?

+ Has anything else changed or
happened recently, not just in the
system itself, that may be affecting
things?

Stop... think

Question your assumptions

What you're taking for granted
might not be as true as you
think.

Think about where you are
making assumptions and then
check how valid they are.

Think about...

+ How sure are you that your
current thinking is correct?

* What are you assuming or
taking for granted?

* What are you relying on as true
that might not be?

+ How can you find out if your
assumptions are correct?

Stop... think

Make it easy
to undo

If you want to try something,
make it easy to get back to
where you were.
Commenting out lines

instead of deleting themis a
good example of this

Best practice

Appendix N. Study 2 Ethics application

Ethics Proportionate Review Application: Staff and Research Students

Computer Science Research Ethics Committee (CSREC)

Staff and research students in the Department of Computer Science undertaking research that involves human
participation must apply for ethical review and approval before the research can commence. If the research is
low-risk, an application can be submitted for a proportionate review using this form. Applicants are advised to
read the information in the SMCSE Framework for Delegated Authority for Research Ethics prior to submitting
an application.

There are two parts:

Part A: Ethics Checklist. The checklist determines whether the research is low-risk. If it is, Part B of the form
should also be completed. If not, the checklist provides guidance as to where approval should be sought, but
the checklist itself does not need to be submitted.

Part B: Ethics Proportionate Review Form. This part is the application for ethical approval of low-risk research
and should only be completed if the answer to all questions (1 - 18) is NO.

Completed forms should be returned to the Chair of CSREC by email (email address redacted).
Part A: Ethics Checklist

If your answer to any of the following questions (1 - 3) is YES, you must apply to an appropriate
external ethics committee for approval:

1. |Does your research require approval from the National Research Ethics Service (NRES)? (E.g. No
because you are recruiting current NHS patients or staff? If you are unsure, please check at
http://www.hra.nhs.uk/research-community/before-you-apply/determine-which-review-
body-approvals-are-required/)

2. | Will you recruit any participants who fall under the auspices of the Mental Capacity Act? (Such | No
research needs to be approved by an external ethics committee such as NRES or the Social
Care Research Ethics Committee http://www.scie.org.uk/research/ethics-committee/)

3. |Will you recruit any participants who are currently under the auspices of the Criminal Justice No
System, for example, but not limited to, people on remand, prisoners and those on probation?
(Such research needs to be authorised by the ethics approval system of the National Offender
Management Service.)

If your answer to any of the following questions (4 - 11) is YES, you must apply to the Senate
Research Ethics Committee for approval (unless you are applying to an external ethics
committee):

4. |Does your research involve participants who are unable to give informed consent, for example, |No
but not limited to, people who may have a degree of learning disability or mental health
problem, that means they are unable to make an informed decision on their own behalf?

5. |Is there a risk that your research might lead to disclosures from participants concerning their No
involvement in illegal activities?

6. |Is there arisk that obscene and or illegal material may need to be accessed for your research No
study (including online content and other material)?
Does your research involve participants disclosing information about sensitive subjects? No
Does your research involve the researcher travelling to another country outside of the UK, No

where the Foreign & Commonwealth Office has issued a travel warning?
(http://www.fco.gov.uk/en/)

9. |Does your research involve invasive or intrusive procedures? For example, these may include, |No
but are not limited to, electrical stimulation, heat, cold or bruising.

10. | Does your research involve animals? No

11. | Does your research involve the administration of drugs, placebos or other substances to study |No
participants?

If your answer to any of the following questions (12 - 18) is YES, you must submit a full application

to the Computer Science Research Ethics Committee (CSREC) for approval (unless you are applying

to an external ethics committee or the Senate Research Ethics Committee). Your application may be
referred to the Senate Research Ethics Committee.

256

http://www.fco.gov.uk/en/

12. | Does your research involve participants who are under the age of 18? No

13. | Does your research involve adults who are vulnerable because of their social, psychological or |No
medical circumstances (vulnerable adults)? This includes adults with cognitive and / or
learning disabilities, adults with physical disabilities and older people.

14. | Does your research involve participants who are recruited because they are staff or students of |No
City University London? For example, students studying on a particular course or module. (If
yes, approval is also required from the Head of Department or Programme Director.)

15. | Does your research involve intentional deception of participants? No
16. | Does your research involve participants taking part without their informed consent? No
17. | Does your research pose a risk to participants greater than that in normal working life? No
18. | Does your research pose a risk to you, the researcher(s), greater than in normal working life? No

You must make a proportionate review application to the CSREC if your research involves human
participation and you are not submitting any other ethics application (i.e. your answer to all
questions 1 - 18 is “NO”).

Part B: Ethics Proportionate Review Form

If you answered NO to all questions 1 - 18, you may use this part of the form to submit an application for a
proportionate ethics review of your research. The form must be accompanied by all relevant information
sheets, consent forms and interview/questionnaire schedules.

Note that all research participants should be fully informed about: the purpose of the research; the procedures
affecting them or affecting any information collected about them, including information about what they will
be asked to do, what data will be collected, how the data will be used, to whom it will be disclosed, and how
long it will be kept; the fact that they can withdraw at any time without penalty.

Background Information

Name: Tracey Booth

Supervisor (if student): Dr Simone Stumpf

Your Research Project

Title: Exploring how to support end-user developers in troubleshooting physical computing bugs

Start date: 01/07/2017

End date: 01/10/2020

Describe your project: overall aim(s) and method (up to 300 words)

Physical computing development involves the construction and programming of microcontroller-based
prototypes that interact with the world through sensors (e.g., light or temperature) and actuators (e.g.
motors or LEDs). It therefore requires knowledge and skill in both electronics and programming, however,
the Maker Movement has enticed many end users lacking this expertise into physical computing
development. While platforms such as Arduino have been developed, ostensibly, to make physical
computing development easier for end-user developers (EUDs), my first PhD study discovered that EUDs
experience numerous problems when developing prototypes. A deeper analysis of the same data found that
several participants had considerable difficulty troubleshooting circuit bugs - the main cause of task failure
in that study. Therefore, this next study - a formative, empirical user study - aims to determine the effect of
providing support materials, in the form of information about troubleshooting strategies/tactics and
components, on end-user developers’ troubleshooting (diagnosing, fixing and testing) of circuit bugs in
physical computing prototypes, with a view to discovering what does and doesn't help.

Participants

Participants will be 20 adults (18+ years), of varying background and ability, who use the Arduino platform
to develop physical prototypes for personal use. They will be recruited via hackerspaces and other Maker
community groups through flyers and mailing lists, and through direct personal contacts. People who
respond to the recruitment will be sent a detailed study information sheet. We will not be recruiting anyone
under the age of 18, and vulnerable participants will be screened out.

Procedure, incl. data gathering & analysis

Each participant will individually attend an hour-and-a-half-long session at a pre-arranged time convenient
for them. At the start of the session, they will complete the informed consent form. They will then fill in an
online background questionnaire, capturing their demographic details as well as data about their experience
in developing physical computing prototypes.

257

Following this, in the main part of the session—the tasks—we will present
a series of “buggy” physical computing prototypes to participants and ask
them to find the bugs and fix them. The prototypes will be the same as that
used in study 1, i.e. the “Love-o-meter” project in the official Arduino
starter kit, which lights up 3 LEDs in response to body temperature when
a temperature sensor is held. Figl shows an image of this prototype.

As participants work on these tasks, we will give them support materials
and observe how these support materials affect participants’
troubleshooting, the outcomes of troubleshooting actions, and which types
of information provided are used and at which points.

Participants will be asked to ‘think aloud’ (verbal protocol) when undertaking the tasks, and specifically to
articulate any troubleshooting-related thoughts and decisions, including any use of the support materials
provided. The session will be video-recorded for later analysis, using a combination of screen-recording
software (to record all on-screen activity) and two external video cameras, each recording a different view:
1) close-up view of the prototype and 2) wider view of the desk and support materials, also capturing
participants’ faces (note provisions made in the next section for anonymity regarding use of recordings).

After each task, participants will complete a very short questionnaire in which they rate the difficulty of the
task and their confidence in successfully completing it. Participants will not be told how successful they
were in finding or fixing the bugs. When all tasks have been undertaken, participants will complete a
questionnaire in which they will rate the usefulness of the support materials provided, including the types of
information presented. We will also hold a short debriefing interview to probe them for further detail on
these responses and their use of the support materials. The interviews will be video-recorded and later
analysed for comments.

Data security & privacy

Once gathered, identifying data will be anonymised - participants will be represented by randomly assigned
ID numbers. Participant names will not be associated with the recordings or any other data, and will not
appear in any reports or presentations, including where any video clips or screenshots are used in which
faces are shown.

When signing the consent form, participants can opt in for allowing their faces to be shown in any video
clips or stills used in presentations or publications. If a participant does not opt in for this, but still opts in to
allow recordings to be used in presentations or publications, their face will be pixelated or blurred in any
such presentations or publications, to anonymise them.

All data will be password protected, stored securely, and backed up. Only myself, my supervisory team (Dr
Simone Stumpf, Dr Sara Jones, Dr Jon Bird), and my examiners, will have access to the data. If a participant
decides to withdraw from the study at any point, I will destroy any data already gathered from them.

Attachments (these must be provided if applicable):

Participant information sheet(s) Yes

Consent form(s) Yes

Questionnaire(s) - background questionnaire, self-efficacy questionnaire, ‘usefulness’ questionnaire | Yes

Topic guide(s) for interviews and focus groups Yes

Permission from external organisations (e.g. for recruitment of participants) n/a

Research Study Amendments
Computer Science Research Ethics Committee (CSREC)

This form should be used to submit an amendment to research previously approved by the Computer Science
Research Ethics Committee (CSREC), City University London. Completed forms should be returned to the Chair of
CSREC by email.

Principal Investigator and Study Duration

Name: Tracey Booth (supervised by Simone Stumpf)

Email: (redacted)

Title of study: | Exploring how to support end-user developers in troubleshooting physical computing bugs
Start Date: 04 June 2018 (sessions to start)

End Date: 01 October 2020

Research Amendments

258

Type of Amendment/s (tick as appropriate)

Research procedure/protocol (including research instruments)

Participation group

Information Sheet/s

PR < < <

Consent form/s

Other recruitment documents

Sponsorship/collaborations

Principal investigator/supervisor

Extension to approval

Other

Details of amendments (give details of each of the amendments requested, state where the changes have
been made and attach all amended and new documentation)

e Participation group is now novice Arduino users, rather than just Arduino users. (Information Sheet)
e Participant sessions estimated to take 2 hours, rather than 1.5 hours. (Information Sheet)
¢ Study sessions will now take place in June 2018. (Information Sheet)

e Analysis has increased focus on reflection, requiring changes to questions in research instruments
(Support materials questionnaire; Debriefing interview topic guide)

e Consent form updated to the format approved for my previous study (CSREC180209TB)

Justification for amendments

o As the population most likely to benefit from troubleshooting support materials is novice (i.e. non-expert)
Arduino users, and the support materials have been designed specifically for them, recruitment will now
specifically target this subgroup of the original population. The Information Sheet has been updated to
reflect this.

e Two pilot runs of this study confirmed that participant sessions are more likely to take 2 hours. I believe it
is better to adjust the stated time to the more accurate estimate than rush the sessions or remove/reduce
parts of the procedure. The Information Sheet has been changed to reflect the revised estimate.

e The pilots also suggested that the study would benefit from some further design work on the support
(intervention) materials. Recruitment of participants was therefore delayed until after this work had
taken place. This included another study (CSREC180209TB conducted March 2018) in which design
options for the support materials were reviewed by representatives of the target audience. The
Information Sheet has been changed to reflect the new date of participant sessions.

e Qualitative analysis will now have an increased focus on reflection, requiring some changes to questions in
the Support Materials Rating questionnaire and the post-task Debriefing Interview Topic Guide.

¢ For my previous study (Mar 2018) I changed the consent form in response to some feedback from CSREC.
[have also applied these same changes to the consent form for this study.

If an extension is requested, specify the period

n/a

Other information (provide any other information which you believe should be taken into account during
ethical review of the proposed changes)

Please note that although the participant group has changed, it is now merely a subgroup of the original
group, rather than a different group entirely.

Declaration (to be signed by the Principal Investigator)

I certify that to the best of my knowledge the information given above, together with any accompanying
information, is complete and correct and I take full responsibility for it.

Signature Signature
Principal Investigator(s)))
(student and supervisor if student project) [Signature removed] [Signature removed]
Date 15/05/18

259

Appendix O. Study 2 Recruitment flyer

Relatively new to Arduino?

Help us to find out how to
support novice Arduino users’
troubleshooting

My PR, in the Centre for Human-Computer Interaction Design
at City, University of London, isexploring how to support
novice Arduine users in overcoming development problems

| am looking for adults (18+)who are

relatively new to Arduino, to participate
in a study in early June 2018

4
,:;E; To find out more, please visit: r@.r [=]
S http://tinyurl.com/ArduinoCity ¢
ATY

260

Appendix P. Study 2 Participant information sheet

N0 AIP@ T (100G #3007 10 W 3I0IU0D
aspayd 4pd axp3 03 A1j1q1B11a 1noA 1nogp Buipnjoul ‘“Apnis ay3 1noqo suoisanb AUD aaby noA Jj
*133Ys uoIIbW.Ioful sy} ppaJ 03 3wy 3yl bupjpy iof noA yunyy

8918 0v0Z 02(0) v+ yn-2e"Ad@ T Jdwinisauowls Jdwnis suowis ug :Josiasadns gyd

3yn-2e'ANd@ T Y300q-Asaesy yi00g Addes| 1Jayd1easay
S[ID}3P J20IU0I PUD UOIIPWIIOfU] 13YLIN

'(03¥52)
9911WWO) $31Y13 Yyaueasay 9oualds Jaindwo) uopuoi Alsianiun Au) Agq panoidde usaq sey Apnis siyL
éApnis ay) pamainai sby oym

‘uonoe |eSa) 4oy spunoid aney Aew
noA usy) ‘@2ualyZau s,2uoswWos 01 anp paw.iey aJe noA J| “uonesuadwod 3335 03 51y [e8s] JNoA 12aye
10U $20p sIy] "uonesuadwod wied 01 3|qi81e aq Aew noA ‘Apnis siya ui 1ed Suiyel Aq paanful o pawey

ua3q aney noA |34 noA J| *Apnas siya 01 Aldde yoiym saidijod asuelnsul spjoy ‘uopuo jo Ausiaaun ‘Aud

SNOEMP®@T diequiey BUUY :|i
gHO ATD3 ‘uopuo?
aienbs uoydweynon

uopuo jo Ausianun ‘Al
¥T23 ‘@440 ydJeasay
2911/WWO) $I1Y13 YdJeasay d1euds 01 Alelaldas
Siaquiey euuy
118 AIe12129S 3] 01 31LIM OS|E P|N0d NOA

s8nq Sunndwod |eaisAyd Sunooysajqnosy ui siadojanap Jasn-pua 1oddns 03 moy Suriojdxy :si 109foud ay1
4O BWEU 9y 18y} WYL WIOJUI PUB 9311WWIOY SIIY31T YdIeasay a1euas 0] A1e1a1das ayl 01 yeads 0} yse uayy
ued NOA "0F0€ 0F0L 00 duoyd 01 paau noA ‘Apnis ay1 Inoge uiejdwod o] "a1npadoid siuredwod Ausiaaun
3y1 ysnouya siy1 op ued noA ‘Ajjew.oy urejdwod o1 ysim pue Addeyun uiewsal noA | ‘wes1 yalessal ayl

40 Jaqwiaw e 03 yeads 01jse pjnoys NoA ‘Apnis siy3 Inoge suonsanb 4o suIddU0d ‘swid|qoid Aue aaey NOA 4|
écwajqoud o s1 a1y 1 30ym

‘paAouisap uayl pue - SaIpNIS AJISIBAIUN 1O SWI] UOIIUSII PIEPUB]S BY] - SIESA QT J40) PaJ0IS 3] ||IM BleQ
ésdols Apnys yaapasai ayy uaym uaddoy jjim 30ym

‘uoldeIa1Ul J2INdWOI-UBWINY JO P31j BY] Ul S90UDI2JU0D pue s|eulnol [euoieusalul ui uoiedljgnd
J1wapede oy sSulpuly Aw ywgns 01 adoy osje | 'sisayl qyd Aw jo 1ed wioy 01 dn UM 3q [|IM Apnas Siy |
¢Apnis Yaapasal ay3 fo synsai ayy o3 uaddoy [jim 30ym

'noA 01 dn A[SIIIUS sI SIy3 Inq ‘suoniejuasald Jo suonedijgnd ul pasn aq o1 (S||1s
0apIA "8'3) s8ulpJodal BY] JO SUOI1I8S MO||e 01 uondo 3yl aAey ||Im NOA “suoileluasald Jo suonedljgnd Aue up
Jeadde jou ||Im pue e1ep Jay10 Aue 4o S3UIpI023J 3Y1 YIIM PIIRIIOSSE 34 10U [|IM SWBU JNOA "Aj24ndas palols

94 ||Im pue pasayies aouo pasiwAuoue aq ||Im eleq ‘paJayles elep Aue 0] SS320E 9ARY ||IM ‘SIBUIWEXD
ayd Aw pue (ssuof eJes Q pue pJig uor g ‘Jdwms suowis 1q) siosiniadns gyd Aw ‘yasAw Ajuo - sap
éIpnuapifuod 1day aq Apnys aya ui 1aod Buiyoy Aw fjim

‘suadxa-uou / sadinou Aluejnaipied ‘oulnpay se yans swuojield Jo siasn 1o) 1oddns

uSisap 031 Moy Jo 9Spajmouy ay3 03 3INGLIIUOI ||IM NOA Apnis sy} ul 1ied Suiyel Ag ‘sanjasway) S92IABp
pue swa1sAs 1depe pue dojaaap 01 sJasn pua Jamodwa 01 SI yaueasal Juswdo|aAsp Jasn-pus Jo [eos syl
¢énd bunyoy fo sufauaq ajqissod ayy aip 10Yym

‘Jed Suel
10} S} UBY] JO USXO1 [[BWS B SB 4BYdN0oA I8 uozewy 0z3 e uaniS aq |im Apnis ay1 a19|dwod oym sjuedidinied

‘[erauapiyuod 1day aq [|im uonedidiuied JNoA 1ng ‘UoIsses
3y3 J31e SO3PIA 8yl 3sAjeue/malnal ued | 1eyl os ‘olpne Suipnjoul ‘papI0IBI-03PIA 3q [|IM UOISSSS By L

MBIAIBIUL BUYBLIGIP LOYS Y b
s|ealew poddns pue syse3 ayy Suney €
*s|eusiew 1oddns papinoad swos YyIm (JusWUOoIIAUD Juswdojansp
oulnpJy [BI21)40 8Yl + ONN OUINPJY) ouinpay Suisn sysel Su1100ysa|qnoJ] Uo-Spuey 1oys om| ‘g
aJleuuonsanb punoisyoeqy ‘T

:asudwod |[1m pue sinoy g Ajaewixosdde axe ||IM uoIssas ay |

‘NOA J0J JUBIUBAUOD BW B 1e (dgF ATI3 ‘UOpuoT 1S UYor 1S 08¢) uopuoT jo AlsisAlun
‘AuD 18 uBIsaQ 1DH 404 213ua) BY) ul dde|d Bye) 01 ‘(Y1009 A3EIL) BW YUM UOISSS B B|NPAYIS [|IM S
é1nd a3 | fi uaddoy jjim 1oym

‘paAoisap aq ||1m NOA wouy pa193||0d

aney am ejep Aue pue Aem Aue u) pagejuenpesip Jo pasijeuad aq J0u ||IM NOA - dwi} Aue 18 MBIPYHM O} 3314
1113s @48 INQ ‘WI0) 1USSUOD e uSis 0] payse aq [|IM NOA ‘Led ae1 01 3pIdap NoA 4| *Aselun|on si uoliedidiyied
épurw Aw abupyd uayy pup dn ubis | fi suaddoy 1oy i1and axpy 03 anoy | og

*MOJ9q PIQIIISIP SBIUAIIE D] DHRUSPUN 01 3| ¢ PUE PO SIEIA 8T 1SEJ| 1B 3¢ OS|E 1SN NOA

‘SulwesSoud 1o $31U0J3I3[8 JaYIIB Ul LadxXa Ue 8¢ 0] J|3SINOA JBPISUOD 10U OS[e pjnoMm
pue wuojie|d uswdojaasp Sunndwod [eaisAyd Jay1o Aue 1o ouinpay ul Ladxa ue jou aie noA ‘quedidiued
|9 ue sy "ouinpay 8uisn Jo 93ua1IadXa SAISUSIXD 10U ING ‘DUIOS SARY OYM S}npe Joj Sulyoo| we |

épanaul uaaq | anny AYym

‘way3 asn a|doad uaym suaddey 1eym 23s 0} Juem pue sjesalew poddns Suizooysajgnoul awos pausisap
aney 9\ "JuawdolaAap Sulnp J91unodud Ayl swa|qoid SuIWo3IDA0 Ul S13sh ouinply Jadxa-uou 1oddns
01 MOY 3UIWIR1IBp 01 Sh d|3y ||1m Apnis uendipied siy| “oulnpay se yans swuojie|d Suiandwod jeaisAyd

Buisn pue Sujules| ul payoddns aq ued ajdoad moy 1IN0 puly 03 S| Yd24easas Aw JO Wie ulew ay| "uopuo Jo
Ansianiun ‘Aud 1e (gIDH) usise@ uonoelsiu| J9InNdWo)-UBWINK J0) 843UdD 8] U JUBPNIS Yd4easal yd B W,
éApnis ayy fo asodind ay) s1 1ym

'sn yse asea|d ‘uoilewIoul 210W 31| P|NOM NOA JI 10 Je3)2 10U S| 1ey] SulylAue si aiayy

11 "YSIM NOA J1 S13Y10 Y1IM 11 SSNISIP pue Ajjnga.ed uonewsoyul BUIMo||of 8y peal 01 awi) ae] ases|d ‘NoA
10} SAJOAUI PINOM 11 1BYM pUER 3UOp Bulag S| YaJeasal ayl Aym pueisiapun noA 1eys Juenodwi s Led ayel
01 31| PINOM NOA J3y1aym 3pIaap NoA aiogeg ‘Apnis Yyoleasal e ul ed axe1 01 NOA 3lAUL 01 31| PINOM S/

s8nq Sunndwoo jesisAyd Sunnooysajqnody ui siadojaaap 1asn-pud Hoddns 03 moy Suniojdxg
:Apnys fo apiL

199Ys uonewJojuj yuedniaed Apnis ydieasay

151 ——
NOGNOT 4O ALISYIAINS

0908 0¥0Z 02(0) ¥+ > — — U
wopbury payjun

aHO ALO3
uopuo]

asenbg uojdweypoN
uopuo jo Aussaaun ‘Ao

261

Appendix Q. Study 2 Informed consent form

UNIVERSITY OF LONDON

EST 1894

INFORMED CONSENT

City, University of London
Northampton Square

London
EC1V OHB

United Kingdom

C ITY +44 (0)20 7040 5060

Study: Exploring how to support end-user developers in troubleshooting physical

computing bugs

Please
initial

1. | I confirm that | have had the study explained to me, and | have read the participant

information sheet, which | may keep for my records.

| understand that taking part in the study will involve:
e Filling in a background questionnaire
e Using provided equipment, including a computer, to troubleshoot bugs in physical
computing prototypes
Using provided support materials when troubleshooting, as requested
Filing in ratings questionnaires
Being interviewed by the researcher
Allowing the session to be video-recorded, with audio.

2. | l understand that data gathered will be held and processed for the following purpose(s):

e PhD research
e PhD assessment and examination
e Research publications and presentations

Public Task: The legal basis for processing your personal data will be that this research is a
task in the public interest, that is City, University of London considers the lawful basis for
processing personal data to fall under Article 6(1)(e) of GDPR (public task) as the
processing of research participant data is necessary for learning and teaching purposes and
all research with human participants by staff and students has to be scrutinised and
approved by one of City’s Research Ethics Committees.

3. | l understand that any information | provide is confidential, and that no information that could

lead to the identification of any individual will be disclosed in any reports on the project, or to
any other party. No identifiable personal data will be published. The identifiable data will not
be shared with any other organisation.

| DO / DON’T consent to the use of sections (clips or stills) of the video recordings in
publications and/or presentations (please indicate applicable option).
| understand that my name would not accompany any such stills or clips.

| DO / DON’T consent to my face being shown in sections (clips or stills) of any video
recordings used in publications and/or presentations (please indicate applicable option).
| understand that my name would not accompany any such stills or clips.

4. | I understand that my participation is voluntary, that | can choose not to participate in part or

all of the project, and that | can withdraw at any stage of the project without being penalised
or disadvantaged in any way.

5. | | agree to take part in this study.

Name of Participant Signature Date

Name of Researcher Signature Date

262

Appendix R. Study 2 Background questionnaire

Background questionnaire

A) PERSONAL DETAILS

1. Participant ID

2. What is your age? In years, e.g. 37

3. What is your gender?
[] Female
[Male
0

4, What is your current occupation / profession?
E.g. PhD student (Computer Science); University Lecturer (Maths); Interaction Designer

5. Have you ever been employed as a professional electronics engineer?

Yes No

6. Have you ever been employed as a professional programmer?

Yes No
B) EXPERTISE

7. How long, in total, have you been using Arduino?
Years Months

Time

8. How long, in total, have you been working with electronic circuits (in general)?
Years Months

Time

9. How long, in total, have you programming (in general)?
Years Months

Time
10. How expert do you think you are at using Arduino? (please circle applicable number)
Complete beginner 1 2 3 4 5 6 7 Completeexpert

11. How expert do you think you are at working with electronic circuits (in general)?

Complete beginner 1 2 3 4 5 6 7 Completeexpert

263

s|1e1ap Ja1iq ani8 asea|d - Jsy10
S|ELI0IN} PAINIONIIS JO S3SINOD BUIUQ

(uosiad-ur) sasinod Sujules) [BUOISSS40.d

(s)doysyiom 1ioys

(s3)ssejo jooyas ySiH

213135l UoNEINP3 JaySiy Jaylo Jo AlsiaAiun 1e (s)3|npoiAl
Ajddo 30y3 [213 35D3]d ¢uononaIsul / Bululesy leym Z'9T

oN SOA

SuiwwesSoud ui uononaysul Jo Sululedy pey aney | T°ST

¢Buruwessord uj uondnaisul Jo Sujutely Aue pey noA eney ‘gt

1e39p Jaliq 3AIS asea|d - 4310
U0
(uosiad-ur) sas4nod BululeJy |euolssajold

S|elloi1n] paJ4nionJis Jo SasJn0d 3

(s)doysxiom 1ioys
(s3)ssejo jooyas ySiH
21N1135ul UoeINpP3 JaySiy Jayo Jo AlsiaAiun e (s)s|npoin

Ajddp 30y3 [p Y213 35D3]d ¢uondNsul / Sululesyleym LT

oN SOA

S3IN2J12 21U0JII8S Ul UoldNIIsU Jo Sujulesy pey aney | T'LT

¢STINDII3 31UGII98[8 Ul uoldnaasul Jo Sujuresy Aue pey noA aney */T

1e39p Jaliq 3AIS asea|d - 4310

S|ELI03N} PAINIONIIS JO S3SIN0D BUIUQ
(uosiad-ur) sas4nod BululeJy |euolssajold

(s)doysxiom 1ioys

(s3)ssejo jooyas ySiH

21N1135ul UoeINpP3 JaySiy Jayo Jo AlsiaAiun e (s)s|npoin

Ajddp 30y3 [p Y213 35D3]d ¢uondnsul / Sululesyleym 9T

oN SaA

(4e

IS J0) GUINPJY ul uoyanisul Jo Sujulesy pey sney| 1°9T
(wioseld Sunnndwod jeaisAyd sejiwis e 10) ouinpay ul uoidnaasul Jo Suiuiesy Aue pey noA aneH ‘9T

ONINIVYL (a

adxaazadwoy L 9 S v € T T Jauulbaq 213/dwo)

¢s8nq Buluwieasoid Sunnooysa|qnoay 3e aJe noA yuiyl noA op 118dXe MoH 'ST
adxaazadwoy L 9 S v € T T Jauulbaq 213/dwo)

¢SENQ 3IN2J10 BURROOYSa|qNoJ] 38 aJe noA yulyl noA op 1SAXS MOH "HT
adxaazadwoy L 9 S v € T T Jauulbaq 213/dwo)

¢sy9foad ouinpay Ui s8nq unOoYsa|qno] 1e aJe noA uiyl noA op 1SdX3 MOH €T

DNILOOHSIT1ENOYL NI 3SILY¥IdX3 (D

adxaazadwoy L 9 S v € T T Jauulbaq 213/dwo)

¢(jesauas up) Suruwiersoad e aie noA yuiyl noA op 1SAXS MOH "ZT

264

Appendix S. Study 2 Support Materials Questionnaire

Support Materials Evaluation Questionnaire

1. ParticipantID

For each of the following questions, please circle one of the numbers (1-7)

Support material types

Generally, how useful were the following:
2. Troubleshooting tactics cards (Suggestions of tactics to try)

Not at all useful 1 2 3 4 5 6 7 Extremely useful

3. Categories (They group the tactics)

Not at all useful 1 2 3 4 5 6 7 Extremely useful

4. Play mat & rules (Mat upon which to place cards when troubleshooting, and constraints for use)

Not at all useful 1 2 3 4 5 6 7 Extremely useful

5. Card stand (Sectioned-stand that holds cards and displays categories)

Not at all useful 1 2 3 4 5 6 7 Extremely useful

Support materials format and general experience

6. How useful was it having the troubleshooting tactics in the form of playing cards?

Not at all useful 1 2 3 4 5 6 7 Extremely useful

7. What, specifically, did you like about the support materials?

8. Was there anything, specifically, that you didn’t like about the support materials?

265

29,60 Ajbuoiis L 9 § ¥ € T 1 22.P05Ip Abuosg

UROOUSS[GNG i S1MIN] 0] s|eyiaew Loddns 21 350 01 391] pInom | ™ *1Z

93460 Abuons L 9 s v € T 1 sa.b0sp A1BU0NS

aaubp Apuons Y 9 g v € ré 1 3a.ubpstp Abuo.is

S195n oulnply Hadxe 10} [njasn ag pjnom sjeuslew poddns ay) = -9z

32160 A1bucis L 9 § ¥ £ T 1 22.B051p ABu0sg

SI55N oUINPIY S3IA0U 10 [NJosn 24 pinom sjepsiew Hoddns ayL = '§2

32.bp A1buoiis L 9 S ¥ £ T 1 22.B0s1p Abu0sS

Bupooysajgno.s ouinpay inoge INSPLU0S SI0UW [994 SW Syew sjepaiew Loddns ay) = vz

aubn Ajpuoils Y 9 g v € z 1 3a4bostp Aipuosis

55n o] Unj aJam sjepalew poddns sy

aash Abuois L 9 § v £ T 1 22460510 Abuoss

sjepeiew poddns sy) ul TOREWIGIUL [[EF0p 559] Pajl| 2ALY PINoMm | = "2

29,60 Ajbuoiis L 9 § ¥ € T 1 22.P05Ip Abuosg

sjep2iew Loddns sy vy TOIEULIO U/ [IEISP /0t pajl| SAeY pnom | = TZ

PES1 03 BUIUNSU0I-SWIN 249Mm S|elaiew 1ioddns syl = 0z

22.Pn Apuons L 9 g 4 € z T 2a.40ns1p Abuons
Juisnuod a1em sjewelew Loddns syl - 61

9a.bo Apuons ¥4 9 g v £ z 1 2a.bpsip Atbuons
TSN O] ASED a1am sepsslew Lioddns syl = g1

92.00 Apuons L 9 g v £ z T Ja.bpsip Abuonis
SHYSE7 oL 10} 9Ie OCIO0E aaam s[elsa1ew Lioddns syl = 2T

90.Pp Ahuons L 9 g 4 € z T aa.40nsip Abuons
SESpI/SosoliodAY JUais JIp Joplsuos 01 aw pad|ay sjepsiew 1ioddns sy = 91

234bp Apuons Fi q 4 v € z T 3a4bpsip Apuons
Bunooysajqno 11 Aw SInpPnas o) padjay sjepsiew poddns ay) - ST

22.460 Abuosis L q g v £ z 1 224Bpsip Abuosis
Bulop sem | 1eYm IN0GE TIOW Do e HUIL W spew sjelalew Loddns syl = v1

22.Pn Apuons L 9 g 4 € z T 2a.40ns1p Abuons
PR1E3NdWICo 810W Supooysa|qnos. apew sjelsaiew 1oddns ay) = €1

90.Pp Ahuons L 9 g 4 € z T aa.40nsip Abuons
TNOCE MO APESIE ,UPIP | 1841 SSUIYT MaU JO S1eme Sl Spew sjeusiew poddns ay) = 21

22.60 Apuons ¥4] g v £ z 1 22.Bpsip Abuons
mawy Apeaije | 1eyl sSuly) ISquISiS] 01 sw padjsy sjepsiew voddns syl - 11

9a.b0 Abuons L 9 g v £ z T 2a4bosip Athuons
Bunooysa|qnon 10} SESP] NJASN SW 2ABT sjerssiew 1oddns ayL = 0T

234bp Apuons Fi q 4 v € z T 3a4bpsip Apuons
N0 U0 15e9] 1€ X1} 40 pul oW ped[oy s|eiaiew LoddnsayL = 6

ssoUINYasn 34nin4 ‘Ajiqesn “‘ssausAIBYT

266

Appendix T. Study 2 Task instructions

{52} 5143 J0) SANUIL GZ CF dn SABY NOA

awi|)

PInos AlELLIOU NOA USUM/L *S321IN05al
sUI|U0 Y30 Jo sa|duexs pue djay Ul-}ing 850 os|e UED Noj,

104 12U pUB
SupapisUeo/BulSn aJ,n0 SPIED Yz|YMm BUIpNjou| ‘S[elisjew

yoddns ay) yum uiop pus Buuiy] 84N0A JBYM 8QUSSI] =
1 Ado2 1’5037

U Josuss sumeleduws) e "9)eLl NOA SUOISIDaP AUB pue SUlop a1,N0A JeuMm ‘SuuIyl

94,ncA 1eYM 8qLSap — BUL00YSS|goi} 81,N0K S|IYM PUIL

joq saAj0AUl 1Ly 103foud
ino& YBno.y) BUIOR S1BUM ABS — pNoje YUIL), O JaquisLuay e

e Jo 'palold 0w oy

10} UDIess Uop a5es|d - S|eLd)ew Loddns Bu) 98N JSNUI NOA =

S8} SIUY o) SSINUIL GZ) dn 9ABY NOA

e

alul |

A

A

pnas AjBLLiou
oA USYA/I| 'S80IN0531 BUIUO 18110
o sa|dulexs pue djay ul-Ing asn ueo noj e

‘BHRL NOA SU0IS|DSp

5 Wuog 0

1 Adoo 01 5197 PUE Josuas alneladus) Aue pue 3uiop 24,N04 Jeym ‘BupjuIyl 91,N0A
B 1109 $9A/0AU] 1841 109f0ud B U0 12UA 9GLIDS3P — PUlL Jnok YBnoay) Bulos
"1oaloid NS 2U) Jo) Yoless 1L,UCD SSES|d e S1ByM ABS — PNOJB {UIY], 0] JogWaWSY
x huod A od

*s4aBul) JncA usamiaq Josuss sy Buipjoy Aq aumesadwal sy3 sBuBLD UBD No,

Y| 818 5] oU pUe payoeal S| smessduls) wool
JUSIGLWE BUY UN *BUS AQ SUO “HO WINY pInoys 5137 24 'sa5e2108p almelsdilsl sy ©

1| 242 £ |18 [NUn ‘3U0 &g auo ‘dn JyBi pinoys S SY) 'Sasealoul alnjeladal sy O
ainjesedwa) wool Jusique a4y) Jo) 1] 89 pjnoys Sg3TON ©

'sadueyD ainjeladulal
S UJWIBAM JO $19AS] 91BdIpUI 6) ST £ pLE 'BinjelsdLus] pesd 0] JOSU8S e sasn oaloid sy |

*s1adull Inok usamysq Josuss a1l Buipjoy Aq sinjeladws] al} s8UeYD LBD NOA

) 8le 5037 OU pUE PAYOES) §1 BINEISTLUS) LIOOJ
JUBIqUIB BU) [JuUN ‘U0 AQ BUO ‘PO WM pNoys (37 U3 'Sasealoap amjesadwal sy ©

J1 812 € ||B [3UN "3UC Aq sUC 'dn ySBI| pINOYS ST SU} 'sesealoul sinjeladwis) sy ©
2IMesaduIa). WO0J JUSIQUIE U] 404)1 39 PINOYS SO ON ©

-sagueyd aumesadws)
€2 LfILLIBM JO S|SA3| 8]B2IpUI 01 S0 & PUE "ainjeladils) peal 0] Josuas e sasn 1osloud sy

(*HoM PNDYS 1 MOL) UONEBIIHSadS InolAByag m

(10M pInoys } moy) uonesiyoads Inolreysg

mmjn QU sUlelLOD pUE MOjeq pallioads SE saABYyaq aloid syi pun

‘nok djay o S[elayell Loddns auy BUjSN 'SBng Xij pUe pujj o) §1 |80 JNoA

'$BNQ SUIBU0D uanE usaq 9A,n0A 108loud ouInpay By

'SBNQ OU SUIEIUCD PUE MO|aq pallaads se saarlaq 10aloid auy jun
'$8NQ X1 pue pul 0} §1 80T INOA

SBNG Suleuos UaAR Usaq SAnok 3a9foid ounply sy

[205) &

1209 A

(Hoddns yumy jelig yse|

(uoddns Inoypm) Jeug yse|

267

Appendix U. Study 2 Interview topic guide

Debriefing interview (semi-structured)

Topic guide
1. | What has their experience been with Arduino to | V.brief warm up) e.q. Why started?
date? How learnt? What done so far? How
much/often used it? Had problems?
2. | How did they find the tasks in this study? Easy,
difficult...?
3. | Did having the support materials make Perceived effectiveness; Usability. What
troubleshooting easier/quicker, or...? and why?
4. | Do they think it might have helped to have Did they prefer troubleshooting
support materials for the other task? Why? with/without support?
5. | What did they think of the Support materials Tactics, best proctice, etc. Which did
overall? they like / find useful {or not) etc
6. | What did they think about having the Tactics & | What did/didn’t they like about the
best practice presented as playing cards? format?
7. | What did they think of the Tactics in general? As a whole. Were they easy to use?
Easy to understand?
8. | Were any of the tactics particularly useful? Which and why?
9. | What did they think about the way that Was it helpful? Why do they think we
information was presented, i.e. as questions took this approach?
rather than instructions.
10.| What did they think about the playmat and What did/didn’t they like? Did they
rules for using the support materials? help/hinder? How?
11.| Did they learn anything from the support Probe for ‘what’ — specific tactics,
materials? The tactics? Best practice? The knowledge; process; anything
troubleshooting steps? metacognitive}
12.| Did the support materials have any effect on Probe for evidence of reflection;
their thinking during the task? considering alternatives / different
hypotheses; Did they prompt new ideas
13.| Did the support materials have any effect on Probe for whether it changed their
their behaviour during the task? troubleshooting process in any way
14.| Was there anything that would/could have
made the support materials more useful or
easier to use for them specifically?
15.| Do they think they might like to have these Why for why notj?
materials when they are troubleshooting
Arduino bugs in future?

268

Appendix V. Study 1A/1B Participant background data

Physical computing Programming Electronics
Ptc Age Gender Occupation Self-efficacy ~ Years Expertise Training Years Expertise Training Employed Years Expertise Training Employed
P01 27 Female Post-Doctoral Researcher (HCI) 62 5.00 3 No 9.00 4 Yes No 5.00 2 Yes No
P02 27 Male Broadcast Engineer 73 6.50 5 No 15.00 5 Yes No 5.00 5 Yes Yes
P03 22 Female PhD Student (Computer Science) 52 1.00 6 No 8.00 7 Yes Yes 1.00 5 No No
P04 25 Female PhD Student (Media & Arts) 67 2.25 4 Yes 4.00 3 Yes No 0.00 2 No No
PO5 32 Female Project Manager (Arts) 64 4.00 2 Yes 4.00 3 Yes No 4.00 2 No No
P06 46 Male Events/Content producer 86 2.50 3 No 30.00 5 Yes No 30.00 4 No No
PO7 30 Male PhD student (Media & Arts Technology) 70 1.50 4 Yes 8.50 6 Yes Yes 1.50 2 Yes No
P08 33 Male Restaurant owner 80 7.42 5 Yes 28.00 5 No No 20.00 5 No No
P09 29 Female Director/Research Consultant (Tech & Arts) 82 4.58 5 Yes 4.58 4 Yes No 4.58 5 Yes No
P10 34 Female Project Manager (Media & Technology) 68 2.50 3 Yes 2.50 2 Yes No 6.00 2 Yes No
P11 53 Male High School Substitute Teacher (English Lit) 73 2.25 3 Yes 12.67 2 No No 3.25 4 Yes No
P12 41 Female University Lecturer (Fashion Marketing) 41 2.00 2 Yes 15.00 5 Yes Yes 1.00 1 No No
P13 38 Female Student(Science and Human Physiology) 68 0.00 2 No 10.00 2 Yes No 15.00 2 Yes No
P14 32 Male Software Developer 73 5.00 4 Yes 11.00 6 Yes Yes 5.00 3 No No
P15 32 Male Post-Doctoral Researcher (Computer Science) 70 0.50 3 No 16.00 6 Yes Yes 16.00 5 No No
P16 29 Male Systems Analyst 84 1.67 4 Yes 7.00 6 Yes Yes 1.67 2 No No
P17 28 Male PhD Student (HCI) 73 6.00 5 Yes 16.00 5 Yes No 6.00 3 Yes No
P18 30 Male Education Programme Manager (Science) 4 4.00 3 No 5.00 4 No No 4.00 2 No No
P19 26 Male Industrial & Web Designer 58 3.50 2 Yes 7.00 4 No Yes 3.50 3 No No
P20 22 Male MSc Student (Comp.Sci & Embedded Systems) 76 2.50 4 Yes 4.50 4 Yes No 2.50 3 Yes No

269

Appendix W. Study 2 Participant background data

Arduino Electronics Programming
Ptc Group Age Gender Occupation Years Expertise TS Expertise Years Expertise TS expertise Employed Years Expertise TS Expertise Employed
P110 NSWS 41 Male Web Developer 0.92 2 2 0.92 1 1 No 8.00 6 4 Yes
P120 WSNS 28 Female PhD Student (Media & Art tech) 0.50 4 4 1.50 3 3 No 3.00 5 5 No
P130 NSWS 26 Male Masters Student (HCI) 0.92 3 2 0.92 2 2 No 2.42 6 6 Yes
P140 WSNS 39 Male Electrician 0.25 4 4 1.00 4 4 No 1.00 2 2 No
P150 NSWS 21 Male Undergrad. student (Biomedical Eng.) 0.25 3 3 2.17 4 5 No 0.42 3 3 No
P160 WSNS 21 Male Undergrad. student (Engineering) 0.50 3 4 2.00 6 6 No 0.54 2 2 No
P170 NSWS 35 Female Creative 1.00 3 3 1.50 3 3 No 2.17 4 3 No
P180 WSNS 51 Female Soundengineer 0.33 2 2 0.33 1 1 No 0.17 2 2 No
P190 NSWS 21 Male Undergrad. student (Computer Science) 0.92 2 3 0.67 5 1 No 3.17 6 6 Yes
P200 WSNS 38 Male Charity consultant 0.17 2 2 0.17 2 2 No 5.00 5 4 No
P210 NSWS 31 Male Lab technician 0.17 4 4 0.58 4 5 No 0.25 3 2 No
P220 WSNS 48 Female Mastersstudent (Computational Art) 0.42 3 2 0.42 2 2 No 0.83 2 2 No
P230 NSWS 20 Female Undergrad. student (Mech. Eng) 0.08 2 3 2.00 4 3 No 0.50 3 2 No
P240 WSNS 51 Female Mastersstudent (Computational Art) 1.25 3 2 1.00 2 1 No 2.00 2 2 No
P250 NSWS 20 Female Undergrad. student (Creative Computing) | 0.17 2 1 0.42 2 1 No 1.00 3 3 No
pP260 WSNS 28 Male PhD Student (Media & Art Technology) 2.00 2 3 1.50 3 2 No 2.00 4 5 No
P270 NSWS 47 Female Finance 6.00 2 2 1.00 2 2 No 4.00 3 3 No
P280 WSNS 21 Female Mastersstudent (Design) 2.00 3 2 0.17 4 1 No 0.42 4 1 No
P290 NSWS 37 Male Freelance Educator (Primary school) 3.00 2 3 0.50 2 3 No 4.00 4 5 No
P300 WSNS 31 Female Research Fellow (HCI) 6.00 3 2 2.00 3 2 No 10.00 5 5 Yes

TS: Troubleshooting

270

Bibliography

‘123D Circuits Electronics Lab’. n.d. Autodesk 123D Circuits. Accessed 12 July 2015. https://123d.circuits.io/lab.
‘About Max’. n.d. Cycling '74. Accessed 30 June 2016. https://cycling74.com/products/max/.
‘Adafruit Customer Support Forums’. n.d. Adafruit. Accessed 29 June 2016. https://forums.adafruit.com/.

Agans, David J. 2002. Debugging: The 9 Indispensable Rules for Finding Even the Most Elusive Software and Hardware
Problems. New York, NY, USA: American Management Assoc., Inc.

Aghaee, S., A. F. Blackwell, D. Stillwell, and M. Kosinski. 2015. ‘Personality and Intrinsic Motivational Factors in End-
User Programming’. In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 29-36.
https://doi.org/10.1109/VLHCC.2015.7357195.

Alchemer LLC. n.d. Alchemer (Formerly SurveyGizmo). https://www.alchemer.com/.

Ananthanarayan, Swamy, Nathan Lapinski, Katie Siek, and Michael Eisenberg. 2014. ‘Towards the Crafting of Personal
Health Technologies’. In Proceedings of the 2014 Conference on Designing Interactive Systems, 587-96. DIS "14. New
York, NY, USA: ACM. https://doi.org/10.1145/2598510.2598581.

Anderson, Fraser, Tovi Grossman, and George Fitzmaurice. 2017. ‘Trigger-Action-Circuits: Leveraging Generative
Design to Enable Novices to Design and Build Circuitry’. In Proceedings of the 30th Annual ACM Symposium on User

Interface Software and Technology, 331-42. Québec City QC Canada: ACM. https://doi.org/10.1145/3126594.3126637.

Antle, Alissa N., and Alyssa F. Wise. 2013. ‘Getting down to Details: Using Theories of Cognition and Learning to Inform
Tangible User Interface Design’. Interacting with Computers 25 (1): 1-20. https://doi.org/10.1093/iwc/iws007.

Arcila, Dave. 2013. ‘Testing Every Aspect of Your Game Design with a Deck of Lenses’. Envato Tuts+| Game
Development (blog). 6 February 2013. https://gamedevelopment.tutsplus.com/articles/testing-every-aspect-of-your-
game-design-with-a-deck-of-lenses--gamedev-4232.

‘Arduino’. n.d. Accessed 17 January 2013. http://www.arduino.cc/.

‘Arduino Forum’. n.d. Accessed 29 June 2016. https://forum.arduino.cc/.

‘Arduino Starter Kit. n.d. Arduino. Accessed 21 July 2015. https://www.arduino.cc/en/Main/ArduinoStarterKit.

Bandura, Albert. 1978. ‘Reflections on Self-Efficacy’. Advances in Behaviour Research and Therapy 1 (4): 237-69.
https://doi.org/10.1016/0146-6402(78)90012-7.

Banzi, Massimo. 2009. Getting Started with Arduino. 1 edition. Sebastopol, CA, USA: Make: Books, O’Reilly Media, Inc.

Barragéan, Hernando. 2004. ‘Wiring: Prototyping Physical Interaction Design’. Ivrea: Interaction Design Institute Ivrea.
http://wiki.wiring.co/images/7/76/Wiring_thesis.pdf.

Barragéan, Hernando. 2016. ‘The Untold History of Arduino’. 2016. https://arduinohistory.github.io/.

Bates, Marcia J. 1990. ‘Where Should the Person Stop and the Information Search Interface Start?’ Information
Processing & Management 26 (5): 575-91. https://doi.org/10.1016/0306-4573(90)90103-9.

271

Beckwith, Laura A. 2007. ‘Gender HCl Issues in End-User Programming’. Oregon State University.
http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/4954/FinalVersion.pdf.

Bekker, Tilde, and Alissa N. Antle. 2011. ‘Developmentally Situated Design (DSD): Making Theoretical Knowledge
Accessible to Designers of Children’s Technology'. In Proceedings of the 2011 SIGCHI Conference on Human Factors in
Computing Systems, 2531-40. New York, NY, USA: ACM. https://doi.org/10.1145/1978942.1979312.

Benchoff, Brian. 2015. ‘Before Arduino There Was BASIC Stamp: A Classic Teardown’. Hackaday (blog). 27 August 2015.
https://hackaday.com/2015/08/27/before-arduino-there-was-basic-stamp-a-classic-teardown/.

Bergin, Susan, and Ronan Reilly. 2005. ‘The Influence of Motivation and Comfort-Level on Learning to Program’. In
Proceedings of the 17th Workshop of the Psychology of Programming Interest Group. University of Sussex, Brighton, UK.

Bird, Jon, Paul Marshall, and Yvonne Rogers. 2009. ‘Low-Fi Skin Vision: A Case Study in Rapid Prototyping a Sensory
Substitution System’. In Proceedings of the 23rd British HCI Group Annual Conference on People and Computers:
Celebrating People and Technology, 55-64. BCS-HCI09. Swinton, UK, UK: British Computer Society. http://0-
dl.acm.org.wam.city.ac.uk/citation.cfm?id=1671011.1671018.

Blackwell, A.F. 2002. ‘First Steps in Programming: A Rationale for Attention Investment Models’. In IEEE 2002 Symposia
on Human Centric Computing Languages and Environments, 2002. Proceedings, 2-10.
https://doi.org/10.1109/HCC.2002.1046334.

Blikstein, Paulo. 2015. ‘Computationally Enhanced Toolkits for Children: Historical Review and a Framework for Future
Design’. Foundations and Trends®in Human-Computer Interaction 9 (1): 1-68. https://doi.org/10.1561/1100000057.

Booth, Tracey, Jon Bird, Simone Stumpf, and Sara Jones. 2019. ‘Designing Troubleshooting Support Cards for Novice
End-User Developers of Physical Computing Prototypes’. In End-User Development, edited by Alessio Malizia, Stefano
Valtolina, Anders Morch, Alan Serrano, and Andrew Stratton, 191-99. Cham: Springer International Publishing.

Booth, Tracey, and Simone Stumpf. 2013. ‘End-User Experiences of Visual and Textual Programming Environments for
Arduino’. In End-User Development: Proceedings of the Fourth International Symposium on End-User Development (IS-
EUD 2013), edited by Yvonne Dittrich, Margaret Burnett, Anders March, and David Redmiles, 7897:25-39. Lecture Notes
in Computer Science. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-38706-7_4.

Booth, Tracey, Simone Stumpf, Jon Bird, and Sara Jones. 2016. ‘Crossed Wires: Investigating the Problems of End-
User Developers in a Physical Computing Task’. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, 3485-97. CHI '16. New York, NY, USA: ACM. https://doi.org/10.1145/2858036.2858533.

Boren, Ted, and Judith Ramey. 2000. ‘Thinking Aloud: Reconciling Theory and Practice’. Professional Communication,
IEEE Transactions On 43 (October): 261-78. https://doi.org/10.1109/47.867942.

Boulay, Benedict du. 1986. ‘Some Difficulties of Learning to Program’. Journal of Educational Computing Research 2
(1): 57-73. https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9.

Boulay, Benedict du. 1989. ‘Some Difficulties of Learning to Program’. In Studying the Novice Programmer, edited by
Elliot Soloway and James C. Spohrer, 283-300. Hillsdale, New Jersey, USA: Lawrence Erlbaum Associates, Inc.

Brandt, Joel, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009. ‘Two Studies of
Opportunistic Programming: Interleaving Web Foraging, Learning, and Writing Code’. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 1589-98. CHI’09. New York, NY, USA: ACM.
https://doi.org/10.1145/1518701.1518944.

212

Braun, Virginia, and Victoria Clarke. 2006. ‘Using Thematic Analysis in Psychology’. Qualitative Research in Psychology
3(2): 77-101. https://doi.org/10.1191/1478088706qp0630a.

Brueschke, Erich E, and Michael Mack. 2019. ‘The History of the Heath Companies and Heathkits: 1909 to 2019’. The
AWA Review 32: 125-64.

Buechley, Leah. 2005. LilyPad Arduino: How an Open Source Hardware Kit Is Sparking New. Engineering and Design
Communities. MIT Media Lab, Cambridge. https://llk.media.mit.edu/courses/readings/democratized_LilyPad.pdf.

Buechley, Leah, Mike Eisenberg, and Nwanua Elumeze. 2007. ‘Towards a Curriculum for Electronic Textiles in the High
School Classroom’. In Proceedings of the 12th Annual Conference on Innovation and Technology in Computer Science
Education, 39:28-32. Dundee, Scotland, United Kingdom. https://doi.org/10.1145/1269900.1268795.

Buechley, Leah, and Benjamin Mako Hill. 2010. ‘LilyPad in the Wild: How Hardware’s Long Tail Is Supporting New
Engineering and Design Communities’. In Proceedings of the 8th ACM Conference on Designing Interactive Systems,
199-207. DIS’10. New York, NY, USA: ACM. https://doi.org/10.1145/1858171.1858206.

Buechley, Leah, and Hannah Perner-Wilson. 2012. ‘Crafting Technology: Reimagining the Processes, Materials, and
Cultures of Electronics’. ACM Trans. Comput.-Hum. Interact. 19 (3): 21:1-21:21.
https://doi.org/10.1145/2362364.2362369.

Burnett, Margaret M. 2009. ‘What Is End-User Software Engineering and Why Does It Matter?” In End-User Development,
edited by Volkmar Pipek, Mary Beth Rosson, Boris de Ruyter, and Volker Wulf, 15-28. Lecture Notes in Computer
Science 5435. Springer Berlin Heidelberg. http://0-link.springer.com.wam.city.ac.uk/chapter/10.1007/978-3-642-
00427-8_2.

Burnett, Margaret M., John Atwood, Rebecca Walpole Djang, James Reichwein, Herkimer Gottfried, and Sherry Yang.
2001. ‘Forms/3: A First-Order Visual Language to Explore the Boundaries of the Spreadsheet Paradigm’. Journal of
Functional Programming 11 (02): 155-206.

Burnett, Margaret M., Curtis Cook, and Gregg Rothermel. 2004. ‘End-User Software Engineering’. Communications of
the ACM 47 (9): 53-58. https://doi.org/10.1145/1015864.1015889.

Burnett, Margaret M., and Brad A. Myers. 2014. ‘Future of End-User Software Engineering: Beyond the Silos’. In
Proceedings of the on Future of Software Engineering, 201-11. FOSE 2014. New York, NY, USA: ACM.
https://doi.org/10.1145/2593882.2593896.

Buur, Jacob, and Astrid Soendergaard. 2000. Video Card Game: An Augmented Environment for User Centred Design
Discussions’. In, 63-69. ACM. https://doi.org/10.1145/354666.354673.

Cao, Jill. 2013. ‘Helping End-User Programmers Help Themselves - the Idea Garden Approach’. Corvallis, OR, USA:
Oregon State University.

Cao, Jill, Scott D. Fleming, and Margaret M. Burnett. 2011. ‘An Exploration of Design Opportunities for “Gardening”;
End-User Programmers’ Ideas’. In 2011 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
35-42. https://doi.org/10.1109/VLHCC.2011.6070375.

Cao, Jill, Scott D. Fleming, Margaret Burnett, and Christopher Scaffidi. 2015. ‘Idea Garden: Situated Support for

Problem Solving by End-User Programmers’. Interacting with Computers 27 (6): 640-60.
https://doi.org/10.1093/iwc/iwu022.

213

Cao, Jill, Irwin Kwan, Faezeh Bahmani, Margaret Burnett, Scott D. Fleming, Josh Jordahl, Amber Horvath, and Sherry
Yang. 2013. ‘End-User Programmers in Trouble: Can the Idea Garden Help Them to Help Themselves? In 2013 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 151-58.
https://doi.org/10.1109/VLHCC.2013.6645260.

Cao, Jill, Yann Riche, Susan Wiedenbeck, Margaret M. Burnett, and Valentina Grigoreanu. 2010. ‘End-User Mashup
Programming: Through the Design Lens’. In Proceedings of the 28th International Conference on Human Factors in
Computing Systems, 1009-18. CHI ’10. New York, NY, USA: ACM. https://doi.org/10.1145/1753326.1753477.

Carroll, John M. 1998. Minimalism Beyond the Nurnberg Funnel. Cambridge, MA, USA: MIT Press.
http://mitpress.mit.edu/books/minimalism-beyond-nurnberg-funnel.

Carroll, John M., and Mary Beth Rosson. 1987. ‘Paradox of the Active User’. In Interfacing Thought: Cognitive Aspects of
Human-Computer Interaction, edited by John M. Carroll, 80-111. Cambridge, MA, USA: MIT Press. http://0-
dl.acm.org.wam.city.ac.uk/citation.cfm?id=28446.28451.

Chang, Kerry Shih-Ping, and Brad A. Myers. 2016. ‘Using and Exploring Hierarchical Data in Spreadsheets’. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 2497-2507. CHI'16. New York, NY,
USA: ACM. https://doi.org/10.1145/2858036.2858430.

Compeau, Deborah R., and Christopher A. Higgins. 1995. ‘Computer Self-Efficacy: Development of a Measure and
Initial Test’. MIS Quarterly 19 (2): 189-211. https://doi.org/10.2307/249688.

Craft, Brock. 2013. ‘Ten Troubleshooting Tips'. In Arduino Projects For Dummies, 1 edition, 359-67. Chichester, West
Sussex, UK: John Wiley & Sons, Ltd.

Cressey, Daniel. 2017. ‘The DIY Electronics Transforming Research’. Nature News 544 (7648): 125.
https://doi.org/10.1038/544125a.

Creswell, John W., and J. David Creswell. 2018. Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches. 5th edition. Los Angeles: Sage Publications, Inc.

Creswell, John W., and Vicki L. Plano Clark. 2011. Designing and Conducting Mixed Methods Research. 2nd edition. Los
Angeles: Sage Publications, Inc.

Cypher, Allen, Mira Dontcheva, Tessa Lau, and Jeffrey Nichols. 2010. No Code Required: Giving Users Tools to Transform
the Web. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

De Roeck, Dries, Karin Slegers, Johan Criel, Marc Godon, Laurence Claeys, Katriina Kilpi, and An Jacobs. 2012. ‘l Would
DiYSE for Itl: A Manifesto for Do-It-Yourself Internet-of-Things Creation’. In Proceedings of the 7th Nordic Conference on
Human-Computer Interaction: Making Sense Through Design, 170-79. NordiCHI ’12. New York, NY, USA: ACM.
https://doi.org/10.1145/2399016.2399044.

Deng, Ying, Alissa N. Antle, and Carman Neustaedter. 2014. ‘Tango Cards: A Card-Based Design Tool for Informing the
Design of Tangible Learning Games’. In Proceedings of the 2014 Conference on Designing Interactive Systems, 695-704.
New York, NY, USA: ACM. https://doi.org/10.1145/2598510.2598601.

DesPortes, Kayla, and Betsy DiSalvo. 2019. ‘Trials and Tribulations of Novices Working with the Arduino’. In

Proceedings of the 2019 ACM Conference on International Computing Education Research, 219-27. ICER "19. New York,
NY, USA: ACM. https://doi.org/10.1145/3291279.3339427.

274

Dougherty, Dale, Tim O’Reilly, and Ariane Conrad. 2016. Free to Make: How the Maker Movement Is Changing Our
Schools, Our Jobs, and Our Minds. North Atlantic Books.

Drew, Daniel, Julie L. Newcomb, William McGrath, Filip Maksimovic, David Mellis, and Bjorn Hartmann. 2016. ‘The
Toastboard: Ubiquitous Instrumentation and Automated Checking of Breadboarded Circuits’. In Proceedings of the
29th Annual Symposium on User Interface Software and Technology, 677-86. UIST '16. Tokyo, Japan: ACM.
https://doi.org/10.1145/2984511.2984566.

Dumas, Joseph S., and Janice C. Redish. 1999. A Practical Guide to Usability Testing. Rev. ed.. Exeter: Intellect.

Engelhardt, Paula Vetter, and Robert J. Beichner. 2004. ‘Students’ Understanding of Direct Current Resistive Electrical
Circuits’. American Journal of Physics 72 (1): 98-115. https://doi.org/10.1119/1.1614813.

Fields, Deborah A., Kristin A. Searle, and Yasmin B. Kafai. 2016. ‘Deconstruction Kits for Learning: Students’
Collaborative Debugging of Electronic Textile Designs’. In Proceedings of the 6th Annual Conference on Creativity and
Fabrication in Education, 82-85. FabLearn "16. New York, NY, USA: ACM. https://doi.org/10.1145/3003397.3003410.

Fitzgerald, Sue, Gary Lewandowski, Renée McCauley, Laurie Murphy, Beth Simon, Lynda Thomas, and Carol Zander.
2008. ‘Debugging: Finding, Fixing and Flailing, a Multi-Institutional Study of Novice Debuggers’. Computer Science
Education 18 (2): 93-116. https://doi.org/10.1080/08993400802114508.

Fleck, Rowanne, and Geraldine Fitzpatrick. 2010. ‘Reflecting on Reflection: Framing a Design Landscape’. In
Proceedings of the 22nd Conference of the Computer-Human Interaction Special Interest Group of Australia on
Computer-Human Interaction, 216-23. New York, NY, USA: ACM. https://doi.org/10.1145/1952222.1952269.

Fourney, Adam, and Michael Terry. 2012. ‘PICL: Portable in-Circuit Learner’. In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology - UIST '12, 569. Cambridge, Massachusetts, USA: ACM Press.
https://doi.org/10.1145/2380116.2380188.

Frey, Bruce B. 2018. The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation. 2455 Teller
Road, Thousand Oaks, California 91320: SAGE Publications, Inc. https://doi.org/10.4135/9781506326139.

Friedman, Batya, and David Hendry. 2012. ‘The Envisioning Cards: A Toolkit for Catalyzing Humanistic and Technical
Imaginations’. In Proceedings of the 2012 SIGCHI Conference on Human Factors in Computing Systems, 1145-48. New
York, NY, USA: ACM. https://doi.org/10.1145/2207676.2208562.

Gallacher, Sarah, Jenny O’Connor, Jon Bird, Yvonne Rogers, Licia Capra, Daniel Harrison, and Paul Marshall. 2015.
‘Mood Squeezer: Lightening Up the Workplace Through Playful and Lightweight Interactions’. In Proceedings of the
18th ACM Conference on Computer Supported Cooperative Work & Social Computing, 891-902. CSCW ’15. New York, NY,
USA: ACM. https://doi.org/10.1145/2675133.2675170.

Garner, Sandy, Patricia Haden, and Anthony Robins. 2005. ‘My Program Is Correct but It Doesn’t Run: A Preliminary
Investigation of Novice Programmers’ Problems’. In Proceedings of the 7th Australasian Conference on Computing
Education - Volume 42, 173-80. ACE "05. Darlinghurst, Australia, Australia: Australian Computer Society, Inc. http://0-
dl.acm.org.wam.city.ac.uk/citation.cfm?id=1082424.1082446.

Gibb, Alicia M. 2010. ‘New Media Art, Design, and the Arduino Microcontroller: A Malleable Tool’. Pratt Institute.
http://aliciagibb.com/wp-content/uploads/2013/01/New-Media-Art-Design-and-the-Arduino-Microcontroller-2.pdf.

Gick, Mary L. 1986. ‘Problem-Solving Strategies’. Educational Psychologist 21 (1/2): 99.

215

Good, Judith, and Kate Howland. 2017. ‘Programming Language, Natural Language? Supporting the Diverse
Computational Activities of Novice Programmers’. Journal of Visual Languages & Computing, Special Issue on
Programming and Modelling Tools, 39 (April): 78-92. https://doi.org/10.1016/].jvlc.2016.10.008.

Greenberg, Saul, and Chester Fitchett. 2001. ‘Phidgets: Easy Development of Physical Interfaces through Physical
Widgets'. In Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, 209-18. UIST
'01. New York, NY, USA: ACM. https://doi.org/10.1145/502348.502388.

Grigoreanu, Valentina ., Margaret M. Burnett, and George G. Robertson. 2010. ‘A Strategy-Centric Approach to the
Design of End-User Debugging Tools’. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 713-22. CHI'10. New York, NY, USA: ACM. https://doi.org/10.1145/1753326.1753431.

Grigoreanu, Valentina ., Margaret Burnett, and George Robertson. 2009. ‘Design Implications for End-User Debugging
Tools: A Strategy-Based View’. http://ir.library.oregonstate.edu/xmlui/handle/1957/12443.

Gugerty, L., and G. Olson. 1986. ‘Debugging by Skilled and Novice Programmers’. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 171-74. CHI'86. New York, NY, USA: ACM.
https://doi.org/10.1145/22627.22367.

Hanington, Bruce, and Bella Martin. 2012. Universal Methods of Design: 100 Ways to Research Complex Problems,
Develop Innovative Ideas, and Design Effective Solutions. Beverly, MA: Rockport.

Harrower, Mark, and Cynthia A. Brewer. 2003. ‘Colorbrewer.Org: An Online Tool for Selecting Colour Schemes for
Maps’. The Cartographic Journal 40 (1): 27-37. https://doi.org/10.1179/000870403235002042.

Hartmann, Bjorn, Leith Abdulla, Manas Mittal, and Scott R. Klemmer. 2007. ‘Authoring Sensor-Based Interactions by
Demonstration with Direct Manipulation and Pattern Recognition’. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 145-54. CHI'07. San Jose, California, USA: Association for Computing Machinery.
https://doi.org/10.1145/1240624.1240646.

Hartmann, Bjorn, Scott R. Klemmer, Michael Bernstein, Leith Abdulla, Brandon Burr, Avi Robinson-Mosher, and
Jennifer Gee. 2006. ‘Reflective Physical Prototyping through Integrated Design, Test, and Analysis’. In Proceedings of
the 19th Annual ACM Symposium on User Interface Software and Technology, 299-308. UIST "06. New York, NY, USA:
ACM. https://doi.org/10.1145/1166253.1166300.

Hornecker, Eva. 2010. ‘Creative Idea Exploration within the Structure of a Guiding Framework: The Card Brainstorming
Game’. In, 101-8. ACM. https://doi.org/10.1145/1709886.1709905.

‘IDEO Method Cards’. n.d. IDEO. Accessed 17 January 2018. https://www.ideo.com/post/method-cards.

lgoe, Tom, and Dan O’Sullivan. 2004. Physical Computing: Sensing and Controlling the Physical World with Computers.
First Printing edition. Boston: Premier Press.

Inquirium, LLC. n.d. IngScribe: Simple Software for Transcription and Subtitling. https://www.ingscribe.com.
Jayathirtha, Gayithri, Deborah A Fields, and Yasmin B Kafai. 2018. ‘Computational Concepts, Practices, and
Collaboration in High School Students’ Debugging Electronic Textile Projects’. In Proceedings of the International

Conference on Computational Thinking Education 2018 (CTE 2018), 27-32. Hong Kong: The Education University of
Hong Kong.

2176

Jenkins, Tom, and lan Bogost. 2014. ‘Designing for the Internet of Things: Prototyping Material Interactions’. In CHI 14
Extended Abstracts on Human Factors in Computing Systems, 731-40. CHI EA’14. New York, NY, USA: ACM.
https://doi.org/10.1145/2559206.2578879.

Jernigan, W., A. Horvath, M. Lee, M. Burnett, T. Cuilty, S. Kuttal, A. Peters, I. Kwan, F. Bahmani, and A. Ko. 2015. ‘A
Principled Evaluation for a Principled Idea Garden’. In 2015 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), 235-43. https://doi.org/10.1109/VLHCC.2015.7357222.

Jernigan, William, Amber Horvath, Michael Lee, Margaret Burnett, Taylor Cuilty, Sandeep Kuttal, Anicia Peters, et al.
2017.‘General Principles for a Generalized Idea Garden’. Journal of Visual Languages & Computing, Special Issue on
Programming and Modelling Tools, 39 (April): 51-65. https://doi.org/10.1016/].jvlc.2017.04.005.

Jonassen, David H. 2000. ‘Toward a Design Theory of Problem Solving’. Educational Technology Research and
Development 48 (4): 63-85.

Jonassen, David H. 2010. Learning to Solve Problems: A Handbook for Designing Problem-Solving Learning
Environments. New York: Routledge.

Jung, Malte F., Nik Martelaro, Halsey Hoster, and Clifford Nass. 2014. ‘Participatory Materials: Having a Reflective
Conversation with an Artifact in the Making’. In Proceedings of the 2014 Conference on Designing Interactive Systems,
25-34.Vancouver BC Canada: ACM. https://doi.org/10.1145/2598510.2598591.

Kafai, Yasmin B., Eunkyoung Lee, Kristin Searle, Deborah Fields, Eliot Kaplan, and Debora Lui. 2014. ‘A Crafts-Oriented
Approach to Computing in High School: Introducing Computational Concepts, Practices, and Perspectives with
Electronic Textiles’. Trans. Comput. Educ. 14 (1): 1:1-1:20. https://doi.org/10.1145/2576874.

Katz, Irvin R., and John R. Anderson. 1987. ‘Debugging: An Analysis of Bug-Location Strategies’. Human-Computer
Interaction 3 (4): 351-99. https://doi.org/10.1207/s15327051hci0304_2.

Kelleher, Caitlin, and Randy Pausch. 2005. ‘Lowering the Barriers to Programming: A Taxonomy of Programming
Environments and Languages for Novice Programmers’. ACM Comput. Surv. 37 (2): 83-137.
https://doi.org/10.1145/1089733.1089734.

Kissinger, Cory, Margaret Burnett, Simone Stumpf, Neeraja Subrahmaniyan, Laura Beckwith, Sherry Yang, and Mary
Beth Rosson. 2006. ‘Supporting End-User Debugging: What Do Users Want to Know?’ In Proceedings of the Working
Conference on Advanced Visual Interfaces, 135-42. AVI '06. New York, NY, USA: ACM.
https://doi.org/10.1145/1133265.1133293.

Knorig, André, Reto Wettach, and Jonathan Cohen. 2009. ‘Fritzing: A Tool for Advancing Electronic Prototyping for
Designers’. In Proceedings of the 3rd International Conference on Tangible and Embedded Interaction, 351-58. TEI’09.
New York, NY, USA: ACM. https://doi.org/10.1145/1517664.1517735.

Ko, Amy J., Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret M. Burnett, Martin Erwig, Chris Scaffidi, et al.
2011. ‘The State of the Art in End-User Software Engineering’. ACM Comput. Surv. 43 (3): 21:1-21:44.
https://doi.org/10.1145/1922649.1922658.

Ko, Amy J., Thomas D. LaToza, and Margaret M. Burnett. 2015. ‘A Practical Guide to Controlled Experiments of

Software Engineering Tools with Human Participants’. Empirical Software Engineering 20 (1): 110-41.
https://doi.org/10.1007/s10664-013-9279-3.

207

Ko, Amy J., and Brad A. Myers. 2003. ‘Development and Evaluation of a Model of Programming Errors’. In 2003 IEEE
Symposium on Human Centric Computing Languages and Environments, 2003. Proceedings, 7-14.
https://doi.org/10.1109/HCC.2003.1260196.

Ko, Amy J., and Brad A. Myers. 2004. ‘Designing the Whyline: A Debugging Interface for Asking Questions About
Program Behavior’. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 151-58. CHI "04.
New York, NY, USA: ACM. https://doi.org/10.1145/985692.985712.

Ko, Amy J., and Brad A. Myers. 2005. ‘A Framework and Methodology for Studying the Causes of Software Errors in
Programming Systems’. Journal of Visual Languages & Computing 16 (1-2): 41-84.
https://doi.org/10.1016/].jvlc.2004.08.003.

Ko, Amy J., and Brad A. Myers. 2008. ‘Debugging Reinvented: Asking and Answering Why and Why Not Questions about
Program Behavior’. In Proceedings of the 30th International Conference on Software Engineering, 301-10. ICSE "08. New
York, NY, USA: ACM. https://doi.org/10.1145/1368088.1368130.

Ko, Amy J., Brad A. Myers, and Htet Htet Aung. 2004. ‘Six Learning Barriers in End-User Programming Systems’. In
Proceedings of the 2004 IEEE Symposium on Visual Languages - Human Centric Computing, 199-206. VLHCC 04.
Washington, DC, USA: IEEE Computer Society. https://doi.org/10.1109/VLHCC.2004.47.

Krippendorff, Klaus. 2012. Content Analysis: An Introduction To Its Methodology. 3 edition. Los Angeles; London: Sage
Publications, Inc.

Kulesza, Todd, Margaret Burnett, Simone Stumpf, Weng-Keen Wong, Shubhomoy Das, Alex Groce, Amber Shinsel,
Forrest Bice, and Kevin McIntosh. 2011. ‘Where Are My Intelligent Assistant’s Mistakes? A Systematic Testing
Approach’. In End-User Development, edited by Maria Francesca Costabile, Yvonne Dittrich, Gerhard Fischer, and
Antonio Piccinno, 171-86. Lecture Notes in Computer Science 6654. Springer Berlin Heidelberg. http://0-
link.springer.com.wam.city.ac.uk/chapter/10.1007/978-3-642-21530-8_14.

Kulesza, Todd, Weng-Keen Wong, Simone Stumpf, Stephen Perona, Rachel White, Margaret M. Burnett, lan Oberst,
and Amy J. Ko. 2009. ‘Fixing the Program My Computer Learned: Barriers for End Users, Challenges for the Machine’. In
Proceedings of the 14th International Conference on Intelligent User Interfaces, 187-96. 1UI’09. New York, NY, USA: ACM.
https://doi.org/10.1145/1502650.1502678.

Kultima, Annakaisa, Johannes Niemeld, Janne Paavilainen, and Hannamari Saarenpaa. 2008. ‘Designing Game Idea
Generation Games’. In Proceedings of the 2008 Conference on Future Play: Research, Play, Share, 137-44. Future Play
'08. New York, NY, USA: ACM. https://doi.org/10.1145/1496984.1497007.

Kuttal, Sandeep Kaur, Anita Sarma, and Gregg Rothermel. 2013. ‘Debugging Support for End-User Mashup
Programming’. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1609-18. CHI "13.
New York, NY, USA: ACM. https://doi.org/10.1145/2470654.2466213.

Kuznetsov, Stacey, and Eric Paulos. 2010. ‘Rise of the Expert Amateur: DIY Projects, Communities, and Cultures’. In
Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending Boundaries, 295-304. NordiCHI
’10. New York, NY, USA: ACM. https://doi.org/10.1145/1868914.1868950.

Kuznetsov, Stacey, Alex S. Taylor, Tim Regan, Nicolas Villar, and Eric Paulos. 2012. ‘At the Seams: DIYbio and
Opportunities for HCI". In Proceedings of the Designing Interactive Systems Conference, 258-67. DIS '12. New York, NY,
USA: ACM. https://doi.org/10.1145/2317956.2317997.

Lahtinen, Essi, Kirsti Ala-Mutka, and Hannu-Matti Jarvinen. 2005. ‘A Study of the Difficulties of Novice Programmers’.
SIGCSE Bull. 37 (3): 14-18. https://doi.org/10.1145/1151954.106 7453.

218

LaToza, Thomas D., and Brad A. Myers. 2010. ‘On the Importance of Understanding the Strategies That Developers
Use’. In Proceedings of the 2010 ICSE Workshop on Cooperative and Human Aspects of Software Engineering, 72-75.
CHASE '10. New York, NY, USA: ACM. https://doi.org/10.1145/1833310.1833322.

Lau, Sam, Sruti Srinivasa Ragavan, Ken Milne, Titus Barik, and Advait Sarkar. 2021. ‘Tweaklt: Supporting End-User
Programmers Who Transmogrify Code’. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, 1-12. Yokohama Japan: ACM. https://doi.org/10.1145/3411764.3445265.

Lazar, Jonathan, Jinjuan Heidi Feng, and Harry Hochheiser. 2017. Research Methods in Human-Computer Interaction.
2nd edition. Cambridge, MA: Morgan Kaufmann.

‘Learn How to Use Tinkercad’. n.d. Tinkercad. Accessed 7 June 2021. /learn/circuits.

Lee, Johnny C., Daniel Avrahami, Scott E. Hudson, Jodi Forlizzi, Paul H. Dietz, and Darren Leigh. 2004. ‘The Calder
Toolkit: Wired and Wireless Components for Rapidly Prototyping Interactive Devices'. In Proceedings of the 5th
Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, 167-75. DIS '04. New York,
NY, USA: ACM. https://doi.org/10.1145/1013115.1013139.

‘LEGO Mindstorms’. n.d. LEGO. Accessed 30 June 2016. http://www.lego.com/en-
us/mindstorms/?domainredir=mindstorms.lego.com.

Lesgold, Alan, and Susanne Lajoie. 1991. ‘Complex Problem Solving in Electronics’. In Complex Problem Solving:
Principles and Mechanisms, edited by Robert J. Sternberg and Peter A. Frensch, 287-316. Hillsdale, N.J: Lawrence
Erlbaum Associates, Inc.

Lesgold, Alan, Susanne Lajoie, Marilyn Bunzo, and Gary Eggan. 1992. ‘SHERLOCK: A Coached Practice Environment for
an Electronics Troubleshooting Job’. In Computer-Assisted Instruction and Intelligent Tutoring Systems: Shared Goals
and Complementary Approaches, edited by Jill H. Larkin and Ruth W. Chabay, 201-38. Technology in Education Series.
Hillsdale, NJ, England: Lawrence Erlbaum Associates, Inc.

Lewis, James R. 2006. ‘Sample Sizes for Usability Tests: Mostly Math, Not Magic’. Interactions 13 (6): 29-33.

Lieberman, Henry. 2001. Your Wish Is My Command: Programming By Example. 1st edition. San Francisco: Morgan
Kaufmann.

Lieberman, Henry, Fabio Paterno, Markus Klann, Volker Wulf, Henry Lieberman, Fabio Paterno, and Volker Wulf. 2006.
‘End-User Development: An Emerging Paradigm’. In End User Development, 1-8. Human-Computer Interaction Series
9. Springer Netherlands. http://0-link.springer.com.wam.city.ac.uk/chapter/10.1007/1-4020-5386-X_1.

Liégeois, Laurent, G'erard Chasseigne, Sophie Papin, and Etienne Mullet. 2003. ‘Improving High School Students’
Understanding of Potential Difference in Simple Electric Circuits’. International Journal of Science Education 25 (9):
1129-45. https://doi.org/10.1080/0950069022000017324.

Lo, Jo-Yu, Da-Yuan Huang, Tzu-Sheng Kuo, Chen-Kuo Sun, Jun Gong, Teddy Seyed, Xing-Dong Yang, and Bing-Yu
Chen. 2019. ‘AutoFritz: Autocomplete for Prototyping Virtual Breadboard Circuits’. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, 1-13. Glasgow Scotland Uk: ACM.
https://doi.org/10.1145/3290605.3300633.

Lockton, Dan, David Harrison, Tim Holley, and Neville A. Stanton. 2009. ‘Influencing Interaction: Development of the

Design with Intent Method’. In Proceedings of the 4th International Conference on Persuasive Technology, 5. Claremont,
CA, USA: ACM. https://doi.org/10.1145/1541948.1541956.

219

Lucero, Andrés, and Juha Arrasvuori. 2010. ‘PLEX Cards: A Source of Inspiration When Designing for Playfulness’. In
Proceedings of the 3rd International Conference on Fun and Games, 28-37. New York, NY, USA: ACM.
https://doi.org/10.1145/1823818.1823821.

Ludwig, Thomas, Oliver Stickel, Alexander Boden, and Volkmar Pipek. 2014. ‘Towards Sociable Technologies: An
Empirical Study on Designing Appropriation Infrastructures for 3D Printing’. In Proceedings of the 2014 Conference on
Designing Interactive Systems, 835-44. DIS '14. New York, NY, USA: ACM. https://doi.org/10.1145/2598510.2598528.

Luger, Ewa, Lachlan Urquhart, Tom Rodden, and Michael Golembewski. 2015. ‘Playing the Legal Card: Using Ideation
Cards to Raise Data Protection Issues within the Design Process’. In , 457-66. ACM.
https://doi.org/10.1145/2702123.2702142.

Mackay, James, and Paul Hobden. 2012. ‘Using Circuit and Wiring Diagrams to Identify Students’ Preconceived Ideas
about Basic Electric Circuits’. African Journal of Research in Mathematics, Science and Technology Education 16 (2):
131-44. https://doi.org/10.1080/10288457.2012.10740735.

‘Make’: n.d. Make: DIY Projects and Ideas for Makers. http://makezine.com/.

Martin, F., B. Mikhak, and B. Silverman. 2000. ‘MetaCricket: A Designer’s Kit for Making Computational Devices’. IBM
Systems Journal 39 (3.4): 795-815. https://doi.org/10.1147/s}.393.0795.

Mayer, Richard E. 1981. ‘The Psychology of How Novices Learn Computer Programming’. ACM Comput. Surv. 13 (1):
121-41. https://doi.org/10.1145/356835.356841.

Mayring, Philipp. 2001. ‘Combination and Integration of Qualitative and Quantitative Analysis’. Forum Qualitative
Sozialforschung / Forum: Qualitative Social Research 2 (1). https://doi.org/10.17169/fqs-2.1.967.

McCauley, Renee, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Simon, Lynda Thomas, and Carol Zander.
2008. ‘Debugging: A Review of the Literature from an Educational Perspective’. Computer Science Education 18 (2): 67—
92.

McDermott, Lillian C., and Peter S. Shaffer. 1992. ‘Research as a Guide for Curriculum Development: An Example from
Introductory Electricity. Part I: Investigation of Student Understanding’. American Journal of Physics 60 (11): 994-1003.
https://doi.org/10.1119/1.17003.

McGrath, Will, Daniel Drew, Jeremy Warner, Majeed Kazemitabaar, Mitchell Karchemsky, David Mellis, and Bjorn
Hartmann. 2017. ‘Bifrost: Visualizing and Checking Behavior of Embedded Systems across Hardware and Software’. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, 299-310. Québec City QC
Canada: ACM. https://doi.org/10.1145/3126594.3126658.

Mellis, David A, Massimo Banzi, David Cuartielles, and Tom Igoe. 2007. ‘Arduino: An Open Electronics Prototyping
Platform’. In Proceedings of the SIGCHI Conference on Human Factors in Computing (Alt.Chi), 11.

Mellis, David A., Leah Buechley, Mitchel Resnick, and Bjorn Hartmann. 2016. ‘Engaging Amateurs in the Design,
Fabrication, and Assembly of Electronic Devices’. In Proceedings of the 2016 ACM Conference on Designing Interactive

Systems, 1270-81. DIS '16. New York, NY, USA: ACM. https://doi.org/10.1145/2901790.2901833.

Mertens, Donna M. 2017. Mixed Methods Design in Evaluation. 1st edition. Evaluation in Practice. Los Angeles: SAGE
Publications, Inc.

280

Métioui, Abdeljalil, Claude Brassard, Jude Levasseur, and Michel Lavoie. 1996. ‘The Persistence of Students’
Unfounded Beliefs about Electrical Circuits: The Case of Ohm’s Law’. International Journal of Science Education 18 (2):
193-212. https://doi.org/10.1080/0950069960180205.

Miettinen, Reijo. 2000. ‘The Concept of Experiential Learning and John Dewey’s Theory of Reflective Thought and
Action’. International Journal of Lifelong Education 19 (1): 54-72. https://doi.org/10.1080/026013700293458.

Millner, Amon, and Edward Baafi. 2011. ‘Modkit: Blending and Extending Approachable Platforms for Creating
Computer Programs and Interactive Objects’. In Proceedings of the 10th International Conference on Interaction Design
and Children, 250-53.1DC’11. New York, NY, USA: ACM. https://doi.org/10.1145/1999030.1999074.

‘MIT App Inventor’. n.d. Accessed 22 January 2021. https://appinventor.mit.edu/.

Mora, Simone, Francesco Gianni, and Monica Divitini. 2017. ‘Tiles: A Card-Based Ideation Toolkit for the Internet of
Things'. In Proceedings of the 2017 Conference on Designing Interactive Systems - DIS ’17,587-98. New York, NY, USA:
ACM. https://doi.org/10.1145/3064663.3064699.

Morgan, Norah, and Juliana Saxton. 1991. Teaching, Questioning and Learning. London; New York: Routledge.

Morris, Nancy M., and William B. Rouse. 1985. ‘Review and Evaluation of Empirical Research in Troubleshooting’.
Human Factors: The Journal of the Human Factors and Ergonomics Society 27 (5): 503-30.
https://doi.org/10.1177/001872088502700502.

Morville, Peter, and Louis Rosenfeld. 2007. Information Architecture for the World Wide Web. 3rd ed. Farnham: O’Reilly.
http://proquest.safaribooksonline.com/?uiCode=aberdeen&xmlid=0596527349.

Mota, Catarina. 2011. ‘The Rise of Personal Fabrication’. In Proceedings of the 8th ACM Conference on Creativity and
Cognition, 279-88. C&C’11. New York, NY, USA: ACM. https://doi.org/10.1145/2069618.2069665.

Mueller, Florian, Martin R. Gibbs, Frank Vetere, Darren Edge, Florian Mueller, Martin R. Gibbs, Frank Vetere, and Darren
Edge. 2014. ‘Supporting the Creative Game Design Process with Exertion Cards’. In CHI "14: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 2211-20. New York, NY, USA: ACM.
https://doi.org/10.1145/2556288.2557272,.

Murphy, Laurie, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda Thomas, and Carol Zander. 2008.
‘Debugging: The Good, the Bad, and the Quirky - a Qualitative Analysis of Novices’ Strategies’. In Proceedings of the

39th SIGCSE Technical Symposium on Computer Science Education, 163-67. SIGCSE 08. New York, NY, USA: ACM.
https://doi.org/10.1145/1352135.1352191.

Nanja, Murthi, and Curtis R. Cook. 1987. ‘An Analysis of the On-Line Debugging Process’. In Empirical Studies of
Programmers: Second Workshop, edited by Gary M. Olson, Sylvia Sheppard, and Elliot Soloway, 172-84. Empirical
Studies of Programmers. Norwood, NJ, USA: Ablex Publishing Corp.

Nardi, Bonnie A. 1993. A Small Matter of Programming: Perspectives on End User Computing. Cambridge, MA, USA: MIT
Press.

‘National Instruments LabVIEW’. 2013. 2013. http://www.ni.com/labview/.
Newell, Allen, and Herbert A Simon. 1972. Human Problem Solving. Englewood Cliffs, N.J.: Prentice-Hall.
Nielsen, Jakob. 2001. ‘First Rule of Usability? Don’t Listen to Users’. Nielsen Norman Group. 4 August 2001.

https://www.nngroup.com/articles/first-rule-of-usability-dont-listen-to-users/.

281

‘Noun Project’. n.d. Noun Project. Accessed 18 March 2019. https://thenounproject.com.

Oehlberg, Lora, Wesley Willett, and Wendy E. Mackay. 2015. ‘Patterns of Physical Design Remixing in Online Maker
Communities’. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 639-48.
CHI’15. New York, NY, USA: ACM. https://doi.org/10.1145/2702123.2702175.

O’Kane, Aisling Ann, Amy Hurst, Gerrit Niezen, Nicolai Marquardt, Jon Bird, and Gregory Abowd. 2016. ‘Advances in DIY
Health and Wellbeing'. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing
Systems, 3453-60. CHI EA’16. New York, NY, USA: ACM. https://doi.org/10.1145/2851581.2856467.

Otter.ai Inc. n.d. Otter.Ai - Voice Meeting Notes & Real-Time Transcription. Accessed 25 March 2022. https://otter.ai/.

Pane, John F., and Brad A. Myers. 1996. ‘Usability Issues in the Design of Novice Programming Systems’. Technical
Report CMU-CS-96-132. Pittsburgh, Pennsylvania, USA: Carnegie Mellon University Institute for Software Research.
http://repository.cmu.edu/isr/820.

Pane, John F., and Brad A. Myers. 2006. ‘More Natural Programming Languages and Environments’. In End User
Development, edited by Henry Lieberman, Fabio Paterno, and Volker Wulf, 31-50. Human-Computer Interaction Series
9. Springer Netherlands. http://0-link.springer.com.wam.city.ac.uk/chapter/10.1007/1-4020-5386-X_3.

Pennington, Nancy, and Beatrice Grabowski. 1990. ‘The Tasks of Programming’. In Psychology of Programming, 45-62.
London, UK: Academic Press. https://www.cl.cam.ac.uk/teaching/1011/R201/ppig-book/ch1-3.pdf.

Peppler, Kylie, and Diane Glosson. 2013. ‘Stitching Circuits: Learning About Circuitry Through E-Textile Materials’.
Journal of Science Education and Technology 22 (5): 751-63. https://doi.org/10.1007/s10956-012-9428-2.

Periago, M. Cristina, and Xavier Bohigas. 2005. ‘A Study of Second-Year Engineering Students’ Alternative Conceptions
about Electric Potential, Current Intensity and Ohm’s Law’. European Journal of Engineering Education 30 (1): 71-80.
https://doi.org/10.1080/03043790410001711225.

Perkins, D. N., Chris Hancock, Renee Hobbs, Fay Martin, and Rebecca Simmons. 1986. ‘Conditions of Learning in
Novice Programmers’. Journal of Educational Computing Research 2 (1): 37-55. https://doi.org/10.2190/GUJT-JCBJ-
Q6QU-Q9PL.

Perkins, D. N., and Fay Martin. 1986. ‘Fragile Knowledge and Neglected Strategies in Novice Programmers’. In Papers
Presented at the First Workshop on Empirical Studies of Programmers on Empirical Studies of Programmers, 213-29.
Norwood, NJ, USA: Ablex Publishing Corp. http://dl.acm.org/citation.cfm?id=21842.28896.

Prabhakararao, Shrinu, Curtis Cook, Joseph R. Ruthruff, Eugene Creswick, Martin Main, Mike Durham, and Margaret M.
Burnett. 2003. ‘Strategies and Behaviors of End-User Programmers with Interactive Fault Localization’. In 2003 IEEE
Symposium on Human Centric Computing Languages and Environments, 2003. Proceedings, 15-22.
https://doi.org/10.1109/HCC.2003.1260197.

‘Processing’. n.d. Accessed 30 September 2012. http://processing.org/.

Reason, James. 1990. Human Error. Cambridge England; New York: Cambridge University Press.

Repenning, Alexander, and Andri loannidou. 2006. ‘What Makes End-User Development Tick? 13 Design Guidelines’. In
End User Development, edited by Henry Lieberman, Fabio Paterno, and Volker Wulf, 51-85. Human-Computer

Interaction Series 9. Springer Netherlands. http://0-link.springer.com.wam.city.ac.uk/chapter/10.1007/1-4020-5386-
X_4.

282

Resnick, Mitchel, Robbie Berg, and Michael Eisenberg. 2000. ‘Beyond Black Boxes: Bringing Transparency and
Aesthetics Back to Scientific Investigation’. Journal of the Learning Sciences 9 (1): 7-30.
https://doi.org/10.1207/s15327809jls0901_3.

Resnick, Mitchel, John Maloney, Andrés Monroy-Hernédndez, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon
Millner, et al. 2009. ‘Scratch: Programming for All'. Commun. ACM 52 (11): 60-67.
https://doi.org/10.1145/1592761.1592779.

Resnick, Mitchel, Fred Martin, Randy Sargent, and Brian Silverman. 1996. ‘Programmable Bricks: Toys to Think With’.
IBM Systems Journal 35 (3.4): 443-52. https://doi.org/10.1147/s}.353.0443.

Robertson, T. J., Shrinu Prabhakararao, Margaret Burnett, Curtis Cook, Joseph R. Ruthruff, Laura Beckwith, and Amit
Phalgune. 2004. ‘Impact of Interruption Style on End-User Debugging’. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 287-94. CHI’04. New York, NY, USA: ACM.
https://doi.org/10.1145/985692.985729.

Rosson, Mary Beth, and John M. Carroll. 1993. ‘Active Programming Strategies in Reuse’. In ECOOP’ 93 — Object-
Oriented Programming, edited by Oscar M. Nierstrasz, 4-20. Lecture Notes in Computer Science 707. Springer Berlin
Heidelberg. https://doi.org/10.1007/3-540-47910-4_2.

Roy, Robin, and James Warren. 2018. ‘Card-Based Tools for Creative and Systematic Design’. In Proceedings of the
Design Research Society DRS2018 Conference (TBC), 3:1075-87. Limerick, Republic of Ireland.
http://www.drs2018limerick.org/participation/proceedings.

Russo, J. Edward, Eric J. Johnson, and Debra L. Stephens. 1989. ‘The Validity of Verbal Protocols’. Memory & Cognition
17 (6): 759-69. https://doi.org/10.3758/BF03202637.

Ruthruff, Joseph R., Margaret Burnett, and Gregg Rothermel. 2005. ‘An Empirical Study of Fault Localization for End-
User Programmers’. In Proceedings of the 27th International Conference on Software Engineering, 352-61. ICSE "05.
New York, NY, USA: ACM. https://doi.org/10.1145/1062455.1062523.

‘S4A: Scratch for Arduino’. n.d. Accessed 18 March 2013. http://seaside.citilab.eu/scratch/arduino.

Sadler, Joel, Lauren Shluzas, and Paulo Blikstein. 2017. ‘Building Blocks in Creative Computing: Modularity Increases
the Probability of Prototyping Novel Ideas’. International Journal of Design Creativity and Innovation 5 (3-4): 168-84.
https://doi.org/10.1080/21650349.2015.1136796.

Sarkar, A., M. Jamnik, A. F. Blackwell, and M. Spott. 2015. ‘Interactive Visual Machine Learning in Spreadsheets’. In 2015
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 159-63.
https://doi.org/10.1109/VLHCC.2015.7357211.

Shaffer, Peter S, and Lillian C McDermott. 1992. ‘Research as a Guide for Curriculum Development: An Example from
Introductory Electricity. Part II: Design of Instructional Strategies’. American Journal of Physics 60 (11): 1003-13.
https://doi.org/10.1119/1.16979.

Sharp, Helen, Jennifer Preece, and Yvonne Rogers. 2019. Interaction Design: Beyond Human-Computer Interaction. 5th
edition. Indianapolis, IN: Wiley.

Shipstone, David. 1984. ‘A Study of Children’s Understanding of Electricity in Simple DC Circuits’. European Journal of
Science Education 6 (2): 185-98. https://doi.org/10.1080/0140528840060208.

283

Shipstone, David. 1988. ‘Pupils’ Understanding of Simple Electrical Circuits. Some Implications for Instruction’. Physics
Education 23 (2): 92. https://doi.org/10.1088/0031-9120/23/2/004.

Shneiderman, Ben. 2003. ‘Promoting Universal Usability with Multi-Layer Interface Design’. In Proceedings of the 2003
Conference on Universal Usability, 8. New York, NY, USA: Association for Computing Machinery. https://0-dl-acm-
org.wam.city.ac.uk/doi/10.1145/957205.957206.

Spohrer, James C., and Elliot Soloway. 1986. ‘Novice Mistakes: Are the Folk Wisdoms Correct?” Commun. ACM 29 (7):
624-32. https://doi.org/10.1145/6138.6145.

Srnka, Katharina J., and Sabine T. Koeszegi. 2007. ‘From Words to Numbers: How to Transform Qualitative Data into
Meaningful Quantitative Results’. Schmalenbach Business Review 59 (1): 29-57. https://doi.org/10.1007/BF03396741.

Steinberg, Linda S., and Drew H. Gitomer. 1996. ‘Intelligent Tutoring and Assessment Built on an Understanding of a
Technical Problem-Solving Task’. Instructional Science 24 (3): 223-58. https://doi.org/10.1007/BF00119978.

Subrahmaniyan, Neeraja, Laura Beckwith, Valentina Grigoreanu, Margaret Burnett, Susan Wiedenbeck, Vaishnavi
Narayanan, Karin Bucht, Russell Drummond, and Xiaoli Fern. 2008. ‘Testing vs. Code Inspection vs. What Else?: Male
and Female End Users’ Debugging Strategies’. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 617-26. CHI '08. New York, NY, USA: ACM. https://doi.org/10.1145/1357054.1357153.

Tanenbaum, Joshua G., Amanda M. Williams, Audrey Desjardins, and Karen Tanenbaum. 2013. ‘Democratizing
Technology: Pleasure, Utility and Expressiveness in DIY and Maker Practice’. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 2603-12. CHI "13. New York, NY, USA: ACM.
https://doi.org/10.1145/2470654.2481360.

Taylor, Chris. 2010. ‘Beginner Troubleshooting - SparkFun Electronics’. SparkFun. 29 November 2010.
https://www.sparkfun.com/tutorials/226.

Teddlie, Charles, and Abbas Tashakkori. 2010. ‘Overview of Contemporary Issues in Mixed Methods Research’. In SAGE
Handbook of Mixed Methods in Social & Behavioral Research, by Abbas Tashakkori and Charles Teddlie, 1-42. 2455
Teller Road, Thousand Oaks California 91320 United States: SAGE Publications, Inc.
https://doi.org/10.4135/9781506335193.n1.

Tetteroo, Daniel, Iris Soute, and Panos Markopoulos. 2013. ‘Five Key Challenges in End-User Development for Tangible
and Embodied Interaction’. In Proceedings of the 15th ACM on International Conference on Multimodal Interaction,
247-54. 1CMI’13. New York, NY, USA: ACM. https://doi.org/10.1145/2522848.2522887.

‘The Oblique Strategies’. n.d. http://www.rtge.net/ObliqueStrategies/.

Tomal, Daniel R., and Aram S. Agajanian. 2014. Electronic Troubleshooting. 4th ed. McGraw-Hill Education.
https://www.accessengineeringlibrary.com/content/book/9780071819909.

Tudor, Leslie Gayle, Michael J. Muller, Tom Dayton, and Robert W. Root. 1993. ‘A Participatory Design Technique for
High-Level Task Analysis, Critique, and Redesign: The CARD Method’. In Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, 37:295-99. SAGE Publications Sage CA: Los Angeles, CA.

VERBI Software GmbH. n.d. MAXQDA Analytics Pro 2020. Accessed 25 March 2022. https://www.maxgda.com/.

Vessey, Iris. 1985. ‘Expertise in Debugging Computer Programs: A Process Analysis’. International Journal of Man-
Machine Studies 23 (5): 459-94. https://doi.org/10.1016/S0020-7373(85)80054-7.

284

Villar, Nicolas, James Scott, and Steve Hodges. 2011. ‘Prototyping with Microsoft .Net Gadgeteer’. In Proceedings of the
Fifth International Conference on Tangible, Embedded, and Embodied Interaction, 377-80. TEI '11. New York, NY, USA:
ACM. https://doi.org/10.1145/1935701.1935790.

Wakkary, Ron, Markus Lorenz Schilling, Matthew A. Dalton, Sabrina Hauser, Audrey Desjardins, Xiao Zhang, and Henry
W.J. Lin. 2015. ‘Tutorial Authorship and Hybrid Designers: The Joy (and Frustration) of DIY Tutorials’. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing Systems, 609-18. CHI’15. New York, NY, USA: ACM.
https://doi.org/10.1145/2702123.2702550.

Wang, Chiuan, Hsuan-Ming Yeh, Bryan Wang, Te-Yen Wu, Hsin-Ruey Tsai, Rong-Hao Liang, Yi-Ping Hung, and Mike Y.
Chen. 2016. ‘CircuitStack: Supporting Rapid Prototyping and Evolution of Electronic Circuits’. In Proceedings of the
29th Annual Symposium on User Interface Software and Technology, 687-95. UIST '16. New York, NY, USA: ACM.
https://doi.org/10.1145/2984511.2984527.

Wetzel, Richard, Tom Rodden, and Steve Benford. 2016. ‘Developing Ideation Cards for Mixed Reality Game Design’. In
Proceedings of 1st International Joint Conference of DIGRA and FDG, 175-211. Dundee, UK.

Wickelgren, Wayne A. 1977. How to Solve Problems: Elements of a Theory of Problems and Problem Solving. San
Francisco, Calif: W H Freeman & Co.

Wilkes, Maurice V. 1985. Memoirs of a Computer Pioneer. First edition. Cambridge, MA, USA: The MIT Press.

Williams, Elliot. 2015. ‘Embed with Elliot: There Is No Arduino “Language”. Hackaday (blog). 28 July 2015.
http://hackaday.com/2015/07/28/embed-with-elliot-there-is-no-arduino-language/.

Wolber, David. 2011. ‘App Inventor and Real-World Motivation’. In Proceedings of the 42nd ACM Technical Symposium
on Computer Science Education - SIGCSE 11, 601. Dallas, TX, USA: ACM Press.
https://doi.org/10.1145/1953163.1953329.

Wolfel, Christiane, and Timothy Merritt. 2013. ‘Method Card Design Dimensions: A Survey of Card-Based Design Tools’.
In SpringerLink, 479-86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40483-2_34.

Wu, Te-Yen, Jun Gong, Teddy Seyed, and Xing-Dong Yang. 2019. ‘Proxino: Enabling Prototyping of Virtual Circuits with
Physical Proxies’. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, 121-
32. New Orleans LA USA: ACM. https://doi.org/10.1145/3332165.3347938.

Wu, Te-Yen, Hao-Ping Shen, Yu-Chian Wu, Yu-An Chen, Pin-Sung Ku, Ming-Wei Hsu, Jun-You Liu, Yu-Chih Lin, and Mike
Y. Chen. 2017. ‘CurrentViz: Sensing and Visualizing Electric Current Flows of Breadboarded Circuits’. In Proceedings of
the 30th Annual ACM Symposium on User Interface Software and Technology, 343-49. Québec City QC Canada: ACM.
https://doi.org/10.1145/3126594.3126646.

Wu, Te-Yen, Bryan Wang, Jiun-Yu Lee, Hao-Ping Shen, Yu-Chian Wu, Yu-An Chen, Pin-Sung Ku, Ming-Wei Hsu, Yu-Chih
Lin, and Mike Y. Chen. 2017. ‘CircuitSense: Automatic Sensing of Physical Circuits and Generation of Virtual Circuits to
Support Software Tools.” In Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology, 311-19. Québec City QC Canada: ACM. https://doi.org/10.1145/3126594.3126634.

285

	Title page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Publications arising from this thesis
	Chapter 1 Introduction
	1.1 Background and motivation
	1.1.1 The Maker Movement
	1.1.2 Physical computing
	1.1.3 End-user development
	1.1.4 End-user developers in physical computing: Makers
	1.1.5 Supporting end-user developers’ physical computing development
	1.1.6 HCI research in the physical computing domain
	1.1.7 A physical card-based tool to support end-user developers’ troubleshooting

	1.2 Research questions
	1.3 Summary of contributions
	1.4 Research Scope
	1.5 Methodology and approach
	1.5.1 An empirical, user-centred approach
	1.5.2 Research methods and methodological stance
	Understanding the problem and generating requirements: Studies 1A & 1B
	Support tool development
	Evaluating the support tool

	1.6 Thesis outline

	Chapter 2 Related Work
	2.1 End-user developers
	2.1.1 End-user vs novice and professional programmers
	2.1.2 The disadvantages of non-experts
	2.1.3 End-user developers as makers

	2.2 Non-experts’ problems in programming
	2.2.1 Causes of software error
	2.2.2 Learning barriers
	2.2.2.1 Learning barriers in programming environments for physical computing

	2.2.3 Strategies

	2.3 Non-experts’ problems with circuits
	2.3.1 Circuit theory: problematic for learners

	2.4 Problems affecting end-user developers in physical computing
	2.4.1 Existing evidence of problems in physical computing

	2.5 Supporting end-user developers
	2.5.1 The challenge of supporting end-user developers
	The case for situated support

	2.6 Supporting non-expert programmers
	2.6.1 Making programming easier

	2.7 Supporting physical computing development
	2.7.1 Easier programming in physical computing
	2.7.2 Easier circuits in physical computing
	2.7.2.1 Virtual circuits

	2.7.3 Making circuits and programming easier

	2.8 Supporting troubleshooting and debugging
	2.8.1 Troubleshooting software problems (debugging)
	2.8.2 Troubleshooting physical computing problems

	Chapter 3 Problems experienced by end-user developers in a physical computing task (Study 1A)
	3.1 Introduction
	3.2 Method
	3.2.1 Overview
	3.2.2 Participants
	3.2.2.1 Recruitment
	3.2.2.2 Who took part?
	Occupation
	Experience
	Training / instruction
	Self-rated expertise

	3.2.3 Materials
	3.2.3.1 Background questionnaire
	3.2.3.2 Informed consent form
	3.2.3.3 Self-efficacy questionnaire
	3.2.3.4 Physical computing development task
	Building the circuit
	Writing the program
	Task resources

	3.2.3.5 Interview topic and questions guide

	3.2.4 Procedure
	3.2.4.1 Background questionnaire (online completion)
	3.2.4.2 In-person session
	3.2.4.3 Pilot

	3.2.5 Data collection
	3.2.5.1 Background questionnaire data
	3.2.5.2 Self-efficacy questionnaire data
	3.2.5.3 Task data
	Additional data

	3.2.5.4 Post-task interview data

	3.2.6 Data analysis
	3.2.6.1 About the coding process
	3.2.6.2 Problems
	Types of evidence
	Specific rules
	Difficulty in tracking problems

	3.2.6.3 Problem types
	Chains of problems

	3.2.6.4 Problem locations
	3.2.6.5 Problems overcome
	3.2.6.6 Task success
	3.2.6.7 Correctness of circuit and program
	3.2.6.8 Cause of task failure

	3.3 Results
	3.3.1 How many problems? (RQ1)
	3.3.2 What types of problems? (RQ1)
	3.3.3 Where did problems occur? (RQ1)
	3.3.4 Did self-rated expertise and self-efficacy have an effect? (RQ2)
	3.3.5 Were problems overcome? (RQ3)
	3.3.5.1 Cause of task failure

	3.3.6 What went fatally wrong? (RQ3)
	Program construction
	Circuit construction
	Testing
	Debugging
	Summary

	3.4 Discussion

	Chapter 4 How end-user developers troubleshoot circuit bugs (Study 1B)
	4.1 Introduction
	4.2 Method: Data Analysis
	4.2.1 Overview
	4.2.1.1 Data segmentation and coding schemes
	4.2.1.2 About the coding process

	4.2.2 Event Type codes
	4.2.3 Runs
	4.2.4 Episodes
	4.2.5 Activity Type codes
	4.2.6 Tactics codes
	4.2.7 Bugs

	4.3 Results
	4.3.1 How do end-user developers troubleshoot circuit bugs? (RQ1)
	4.3.1.1 Activity Types
	4.3.1.2 Tactics
	Tactics observed in Diagnose episodes
	Tactics observed in Fix episodes
	Tactics observed in Evaluate Fix episodes

	4.3.2 Are end-user developers’ troubleshooting behaviours effective? (RQ2)
	4.3.2.1 Activity types and tactics
	Diagnose episode tactics
	Fix episode tactics
	Evaluate Fix episode tactics

	4.4 Discussion
	4.4.1 Troubleshooting tactics
	4.4.2 Supporting end-user developers’ troubleshooting
	4.4.2.1 Speculative changes—tinkering

	Chapter 5 Developing a physical card-based tool to support end-user developers’ troubleshooting
	5.1 Introduction
	5.2 Designing cards to support troubleshooting
	5.2.1 Why cards?
	5.2.2 Design review of existing card sets
	5.2.3 Considerations when designing cards

	5.3 Initial prototype
	5.3.1 Proof of concept (informal pilot)

	5.4 A study to inform the design of the card deck
	5.4.1 Focus group sessions
	5.4.1.1 Exercise 1: Physical card format
	5.4.1.2 Exercise 2: Information content
	5.4.1.3 Exercise 3: Visual design and content
	5.4.1.4 Exercise 4: Categorisation (card deck structure)

	5.5 The Tactical Troubleshooting toolkit
	5.5.1 Tactic cards
	5.5.2 Category cards
	5.5.5 Playmat
	5.5.6 Card stand

	5.6 Card production process
	5.7 Discussion

	Chapter 6 Evaluating the troubleshooting support cards with novice end-user developers (Study 2)
	6.1 Introduction
	6.2 Method
	6.2.1 Overview
	6.2.2 Study design
	6.2.3 Participants
	6.2.3.1 Recruitment
	6.2.3.2 Who took part?

	6.2.4 Materials
	6.2.4.1 Informed consent form
	6.2.4.2 Background questionnaire
	6.2.4.3 Support Materials questionnaire
	6.2.4.4 Interview topic guide
	6.2.4.5 Troubleshooting tasks
	Support Materials
	Buggy prototypes
	How many bugs per buggy prototype?
	Focus group with Arduino experts, to choose bug sets
	The final buggy prototypes
	Buggy prototype A (Task 1)
	Buggy prototype B (Task 2)

	Additional task resources

	6.2.5 Procedure
	6.2.5.1 Overview of procedure
	6.2.5.2 Sequence of activities

	6.2.6 Data collection and analysis
	6.2.6.1 Video recordings
	6.2.6.2 Participant-created task artefacts
	6.2.6.3 Analysis: Task success
	6.2.6.4 Analysis: Bugs fixed; Bugs remaining
	6.2.6.5 Support materials questionnaire data
	6.2.6.6 Debriefing interview data

	6.3 Results
	6.3.1 What effect do the cards have on helping end-user developers troubleshoot?
	6.3.1.1 Task success
	6.3.1.2 Bugs
	Specific bugs
	Participants with bugs remaining—preseeded and new
	Level of success in fixing preseeded bugs

	6.3.2 How do end-user developers view the support tool?
	6.3.2.1 Feedback about the design of the cards
	The physical card format
	Card content & design
	Organising and using the cards
	The playmat
	Method: Where to start? Where to go next?

	6.3.2.2 What did the support materials achieve?
	Providing/prompting ideas
	Reminders of existing knowledge

	Making end-user developers think more when troubleshooting
	A positive priming / learning effect
	Recognition of value in changes to process
	Structure
	Transformative reflection
	Speculative changes

	Suitability for novices

	6.4 Discussion
	6.4.1 Task-related frustration
	6.4.2 Summary

	Chapter 7 Discussion and conclusion
	7.1 Contributions
	7.1.1 Contribution 1
	7.1.2 Contribution 2
	7.1.3 Contribution 3
	7.1.4 Contribution 4

	7.2 Limitations of the work
	7.3 The focus on troubleshooting
	7.4 Reflection on methods and approach
	7.4.2 Problems with think aloud
	7.4.3 Approach to analysis
	7.4.4 ‘What works’ vs ‘What might work better?’

	7.5 Opportunities for future work

	Appendices
	Appendix A. Study 1A Ethics application
	Appendix B. Study 1A Recruitment poster
	Appendix C. Study 1A Participant information sheet
	Appendix D. Study 1A Informed consent form
	Appendix E. Study 1A Background Questionnaire
	Appendix F. Study 1A Self-efficacy questionnaire
	Appendix G. Study 1A Task instruction sheet
	Appendix H. Study 1B Troubleshooting flow diagram
	Appendix I. Initial set of candidate tactics
	Appendix J. Card design focus groups ethics application
	Appendix K. Card design focus groups participant information sheet
	Appendix L. List of cards used in Study 2
	Appendix M. Tactics and Best Practice cards
	Appendix N. Study 2 Ethics application
	Appendix O. Study 2 Recruitment flyer
	Appendix P. Study 2 Participant information sheet
	Appendix Q. Study 2 Informed consent form
	Appendix R. Study 2 Background questionnaire
	Appendix S. Study 2 Support Materials Questionnaire
	Appendix T. Study 2 Task instructions
	Appendix U. Study 2 Interview topic guide
	Appendix V. Study 1A/1B Participant background data
	Appendix W. Study 2 Participant background data

	Bibliography

