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Abstract 
With maker culture and its emphasis on DIY and personal creation now firmly embedded in society, more 
end-user developers—for example, artists, hobbyists, researchers and designers—have been drawn 
towards developing interactive physical computing devices—microcontroller-based systems that interact 
with the physical environment via sensors and actuators—using popular development platforms such as 
Arduino. However, developing these devices usually involves 1) constructing an electronic circuit and 2) 
programming its behaviour—activities which can present challenges to end-user developers, particularly 
inexperienced ones. Inability to overcome these challenges may result in them failing to complete their 
projects or even abandoning their physical computing ambitions altogether.  

Decades of research have focused on understanding the problems that end-user programmers and 
novice programmers face when programming software, and developing support for overcoming these. 
Physical computing development might benefit from similar approaches but prior to this thesis there had 
been little empirical work to determine what difficulties end-user developers experience in this domain, 
their natural behaviours when dealing with them, or how they might be supported in overcoming them. 

To fill this gap, this thesis aims to answer the following, overarching research question: 

How can end-user developers be supported in overcoming problems they experience when 
developing physical computing artefacts? 

Answering this question involved four stages of work: 

1. An exploratory, empirical study, investigating the problems that end-user developers experience 
when developing a physical computing device. 

2. Deeper analysis of data from the same study, to identify end-user developers’ natural behaviours 
when troubleshooting circuit bugs—the type of bug identified as most likely to impede success. 

3. Informed by this empirical work and inspired by creativity support cards, the development of a 
novel, physical card-based tool, to support end-user developers when troubleshooting.  

4. Evaluation of the support tool in a study with novice end-user developers, to observe its impact 
on troubleshooting, and elicit feedback about their first-hand experience of using it. 

This research is the first empirical investigation into the problems, behaviours and support needs of adult, 
end-user developers using platforms such as Arduino to develop physical computing devices. The main 
contributions of this thesis, are: 

1. Empirically grounded knowledge of the problems experienced by end-user developers when 
constructing and programming a physical computing device, including the types, location and 
number of problems, and whether they are overcome. 

2. Empirically grounded knowledge of end-user developers’ natural behaviours when 
troubleshooting circuit bugs that they have introduced during development, including the tactics 
they employ, resulting in suggestions for types of support from which end-user developers might 
benefit when troubleshooting in this domain.  

3. A novel, physical card-based tool to support end-user developers in troubleshooting physical 
computing problems. The tool provides ideas for different troubleshooting tactics and is 
designed to encourage more thoughtful troubleshooting. 

4. Insights into how a physical card-based support tool might be used and perceived by novice 
end-user developers when troubleshooting circuit bugs in a physical computing task. 
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Chapter 1 
 

Introduction 

The Maker Movement and the growth of maker culture worldwide, has drawn more non-experts, 

for example, hobbyists, artists, designers and researchers, to physical computing development—

constructing and programming interactive prototypes and devices themselves, rather than 

relying on professionals to do it for them (Dougherty, O’Reilly, and Conrad 2016). Popular open-

source physical computing platforms such as Arduino have lowered the barriers to this type of 

development, however, as I will demonstrate in this thesis, this new population of end-user 

developers, who may lack formal training in electronics and/or programming, can still struggle 

to engineer and troubleshoot their creations. 

This thesis seeks to understand the challenges faced by end-user developers 
when developing physical computing artefacts, and investigates how to 
support them. 

The remainder of the Introduction chapter is structured as follows: I first motivate the work 

described in the thesis, introducing the domain and population of study, and outlining the 

research gaps to be addressed. I then present the research questions that were investigated in 

the course of this work, outline the resulting contributions, and clarify the scope of the research. 

Finally, I summarise the methodological stance from which the work was conducted, and the 

primary research methods, and conclude with an outline of the structure of the thesis. 

1.1 Background and motivation 

1.1.1 The Maker Movement 

The emergence of the Maker Movement (Dougherty 2012), in the early 2000s, saw a cultural shift 

towards DIY and personal creation (Mota 2011), facilitated by advances in technology that 
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connected individuals and communities across the globe, and made affordable, open source 

software and hardware widely available. The tools of technological production are now no 

longer just in the hands of experts (Kuznetsov and Paulos 2010) and a wealth of online 

resources, underpinned by platforms and technologies that facilitate communication and 

sharing, provide novice makers with tutorials, guides, inspiration, encouragement and feedback. 

Offline maker communities have also been key to this growth. Numerous local makerspaces, 

hackerspaces, Fab Labs and maker groups—both formal and informal—have emerged world-

wide, as people explore physical computing, digital fabrication and other types of making, in the 

places where they live, study and work, accessing and sharing resources, projects and expertise 

with other makers, in social, educational, work and community environments. 

One of the most popular activities in this space is physical computing development, attracting 

many different types of established or fledgling maker, excited by the possibilities it affords, or 

even just for the pleasure of making something which interacts with the world. 

1.1.2 Physical computing 

Physical computing integrates the digital world with the physical world, usually in the form of 

electronic devices or systems that interact with the environment (Igoe and O’Sullivan 2004), 

affording opportunities for new interfaces and interaction. These artefacts often take input 

through sensors that measure aspects of the environment, such as temperature, proximity, or 

light, and respond in some way, for example, though sound, motion or vibration, using actuators 

(Bird, Marshall, and Rogers 2009; Gallacher et al. 2015).  

Developing a physical computing artefact usually involves constructing a physical, 

microcontroller-based prototype (electronic circuit) and programming its behaviour. It therefore 

requires some measure of skill in both electronics and programming—activities which can 

present challenges for end-user developers, particularly those without training or experience in 

either or both of these disciplines. 

1.1.3 End-user development 

Put simply, end-user development is activity in which individuals—often non-expert developers—

engage in some aspect of development, to support their own work or personal goals. In the 
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context of programming software, this is also referred to as end-user programming—a term 

initially popularised by Nardi (1993).  

This thesis focuses on end-user development in a physical computing context. As physical 

computing incorporates constructing physical circuits (hardware), as well as writing programs 

(software) to control their behaviour, I have adapted1 an existing definition of end-user 

development, extending it beyond software alone, to be applicable to this domain: 

“End-User Development, in a physical computing context, is a set of methods, 
techniques, and tools that allow users of hardware and software systems, who are 
acting as nonprofessional developers, at some point to create, modify, or extend a 
physical computing artifact.”  

(adapted from Lieberman et al. 2006 p.2) 

End-user programming and end-user development have been studied extensively in domains 

such as spreadsheets (formulas are considered to be a type of programming) and web 

development, particularly to identify and understand the difficulties that end-user developers 

experience in these activities, their behaviours when programming and debugging, and to 

determine how they might be supported. However, until my work, little was known about end-

user development in the domain of physical computing. A study that I conducted during my MSc 

uncovered some evidence of learning barriers for novice end-user developers undertaking short 

programming tasks in visual and textual Arduino programming environments (see section 2.2.2; 

full details published in Booth and Stumpf 2013), however, to my knowledge, until the work in 

this thesis, there had been no further investigation into the difficulties experienced by end-user 

developers when developing physical computing prototypes—constructing and programming 

microcontroller-based circuits—nor any work to understand their behaviours, or establish how 

they might be supported in this type of endeavour. This thesis addresses that gap.  

1.1.4 End-user developers in physical computing: Makers 

To understand end-user development in this domain, we can first look at who is doing it and to 

what ends. As makers, end-user developers’ applications of physical computing technologies 

are multifarious, for example: 

 

1 The underlined portions of text indicate the amendments made to the original definition, extending it 
beyond just software. 
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 Artists create interactive artworks that express their artistic vision (Gibb 2010). 

 Designers and researchers develop devices to conduct research, explore ideas and 

prototype solutions to real-world problems (Cressey 2017).  

 Hobbyists build smart home devices for the Internet of Things, monitoring and 

interacting with their home environments (Jenkins and Bogost 2014). 

 Individuals with chronic conditions take charge of their own well-being and health 

by adapting medical devices and developing health-related information appliances 

(Ananthanarayan et al. 2014)(O’Kane et al. 2016). 

 Hobbyist e-textile crafters develop interactive soft-circuits, embedding 

microcontrollers into clothing and accessories (Buechley and Hill 2010). 

 Amateur and professional scientists build and adapt devices that enable them to 

tinker and experiment with materials, to “open source science” (Kuznetsov et al. 

2012).  

As new and different groups become aware of physical computing technologies and the creative 

and functional possibilities they afford, new applications of physical computing emerge 

(Buechley and Perner-Wilson 2012). However, while the backgrounds and motivations of end-

user developers may vary, physical computing development requires a number of core skills 

that can prove challenging to those without training, irrespective of their goals. 

1.1.5 Supporting end-user developers’ physical 
computing development 

Programming is challenging for non-experts, as is electronics engineering. Prior to the work in 

this thesis it had already been suggested that in combining both of these activities, physical 

computing development potentially puts even greater demand on end-user developers, in 

terms of the knowledge and skill required to build—and troubleshoot—their creations (Tetteroo, 

Soute, and Markopoulos 2013). 

For many years, physical computing development presented significant barriers to those 

without expertise in electronics and programming. Creating circuits required in-depth 

knowledge of electronics and electrical circuit theory; programming circuits required firstly, the 

ability to program in itself, and secondly, expert knowledge of how to interface software with 

hardware, including uploading programs to microcontrollers and controlling hardware 
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components programmatically. Additionally, many of the tools required for physical computing 

development were not easily accessible to those outside the domains of engineering and 

programming, due to cost, for example, and/or availability, and were often difficult to master. 

Thus, developing physical computing artefacts was often beyond the reach of those without 

specialised knowledge and/or access to specialised tools and equipment. 

However, in recent years, platforms and tools have emerged that aim to make physical 

computing development easier for non-experts, including children and end-user developers. A 

key example is Arduino (Mellis et al. 2007)—a low-cost, open source prototyping platform, 

comprising a range of microcontroller boards of varying specification, and a simple, notepad-

style development environment (IDE) (Figure 1). Originally developed to teach physical 

computing to interaction designers, the Arduino platform has achieved wide adoption by many 

types of end-user developer, both expert and non-expert. Championed by high profile names 

within the maker community (e.g., ‘Make’:, n.d.), and endorsed, from its early days, as an easy 

point of entry into the physical computing world, the Arduino platform is the foundation upon 

which immeasurable numbers of physical computing projects have been developed. As the de 

facto physical computing platform of choice for end-user developers, it was an appropriate 

platform to use in the research described in this thesis, where, as I demonstrate, there is still 

some way to go in identifying and addressing the challenges that end-user developers face in 

physical computing development. 

 
Figure 1. An Arduino UNO board and the Arduino IDE 
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1.1.6 HCI research in the physical computing domain 

Making is empowering, and can be transformative—society’s relationship with technology is 

evolving as a result (Mota 2011). By engaging in DIY physical computing development practices, 

end users no longer just consume technology, they are producing it, making this an area of 

interest to HCI research, including those interested in facilitating or supporting the building of 

interactive systems and devices by a broader range of individuals, not just experts or those with 

a technical background. (De Roeck et al. 2012).  

Prior to the work described in this thesis, there had, however, been little user research to 

determine what difficulties end-user developers experience when developing physical 

computing devices, their behaviours when doing so, or how to support them in overcoming their 

problems. Much of the research into physical computing had focused on 1) developing novel 

development tools and/or investigating the adoption or potential uses of them, or 2) assessing 

the opportunities and impact of these technologies, as well as wider maker culture and 

practices, in respect to specific groups—for example, children and young people—or society at 

large—for example, education, innovation, and manufacturing. Focusing more on the outputs, 

outcomes and opportunities of physical computing, not much attention had been paid to the 

challenges of actually doing it, particularly for adult end-user developers, who often operate 

outside of supported/formal learning environments.  

As this thesis will demonstrate, much remains to be done to ensure that physical computing 

development is truly accessible to all those who are enticed to try it, or who may benefit from 

being able to develop or adapt a physical computing device. While platforms such as Arduino 

make physical computing development easier and more accessible than it used to be, these 

technologies can still present challenges to end-user developers, including those with limited or 

even no experience in electronics and programming. 

To provide end-user developers with tools that meet their needs, we need to know what 

difficulties they face during development and how they naturally attempt to overcome these 

problems. The work described in this thesis, which was informed by user research undertaken in 

other end-user programming/development domains and followed a user-centred approach, 

addresses this gap, and enables us to identify how we can support end-user developers in 

overcoming their problems and achieving their physical computing ambitions.  
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1.1.7 A physical card-based tool to support end-user 
developers’ troubleshooting 

A key challenge in supporting physical computing development lies—like the challenge for end-

user developers learning in this domain—in the fact that it involves both hardware (electronic 

circuit construction) and software (programming). As I will demonstrate in the coming chapters, 

end-user developers experience problems in both of these aspects of development, but also in 

interfacing between them.  

There are a number of ways in which end-user developers might be supported in developing 

and troubleshooting physical computing prototypes. As active users (Carroll and Rosson 1987), it 

has been shown that end-user programmers benefit most from support situated within their 

tasks (Carroll 1998), and several software tools have been developed to support or scaffold their 

programming and/or debugging, in applications such as spreadsheets and web mashup 

environments (e.g., Cao et al. 2015). More recently there has been research to develop hardware 

tools (e.g., Drew et al. 2016; Wu, Shen, et al. 2017) for visualising otherwise hidden aspects of 

electronic circuits, while solutions such as basic troubleshooting checklists aimed at makers 

operate outside of technology-based platforms (Craft 2013). 

The medium that I chose for developing a tool to support/scaffold end-user developers’ 

troubleshooting of bugs during development—a physical deck of cards—was inspired by 

popular creativity and design support tools such as IDEO’s popular Method Cards (‘IDEO Method 

Cards’ n.d.) and the Tiles IoT ideation toolkit (Mora, Gianni, and Divitini 2017). Physical cards 

have been used in a number of domains, for example, to support game design (Wetzel, Rodden, 

and Benford 2016; Mueller et al. 2014), consideration and discussion of information privacy / 

data protection issues (Luger et al. 2015), and the design of children’s technology (Bekker and 

Antle 2011). However, the tool I describe in this thesis is, to my knowledge, the first application of 

physical cards for supporting end-user developers in troubleshooting physical computing 

problems. Besides being a flexible, low-tech medium familiar to most people, physical cards 

provide other potential benefits to end-user developers, as a diverse population with diverse 

needs, working styles and goals. This thesis describes how such a tool might be designed and 

developed, informed by both initial empirical work and the literature, and reports an evaluation 

of its use by end-user developers, providing insights into the opportunities and challenges it 

affords. 
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1.2 Research questions 

The overarching research question that guided the work in this thesis was: 

How can end-user developers be supported in overcoming problems they 
experience when developing physical computing artefacts? 

The aim of the work I will describe extends upon research in other end-user development 

domains, to increase our knowledge of this particular population, and determine how they can 

be supported in their physical computing development activities, specifically in overcoming the 

most significant problems which arise during development. 

In the process of meeting this aim, four main research questions2 were developed: 

TRQ1: What problems do end-user developers experience when developing a 
physical computing artefact? (Chapter 3) 

TRQ2: How do end-user developers troubleshoot the most significant problems that 
arise during development, and from what support might they benefit?      
(Chapter 4) 

TRQ3: How can we design a deck of physical cards to support end-user developers in 
troubleshooting physical computing problems, particularly circuit bugs?  
(Chapter 5) 

TRQ4: What role might a card-based tool play in supporting end-user developers in 
the process of troubleshooting circuit bugs in a physical computing prototype? 
(Chapter 6) 

Over the course of the coming chapters, each of these thesis-level research questions will be 

broken down further into sub-questions and addressed. 

 

2 These thesis-level research question numbers are prefixed with ‘T’ to differentiate them from research 
questions defined in respect to individual studies 
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1.3 Summary of contributions 

This thesis provides four main contributions, summarised as follows. Each is described in 

greater detail in the final chapter. 

Contribution 1: 

Empirically grounded knowledge of the problems experienced by end-user 
developers when constructing and programming a physical computing 
device, including the types, location and number of problems, and whether 
they are overcome. (TRQ1) 

By addressing TRQ1, I gained knowledge of what difficulties end-user developers experience 

when developing physical computing artefacts. I identified the types of problems that arise, and 

the specific aspects of physical computing that prove particularly difficult and which have the 

most significant impact on development success, thereby establishing where support might be 

best targeted, i.e., the troubleshooting of circuit bugs. 

Contribution 2: 

Empirically grounded knowledge of the behaviours of end-user developers 
when troubleshooting physical computing problems, particularly circuit 
bugs, as well as suggestion for support from which they might benefit. (TRQ2) 

By addressing TRQ2 I gained knowledge of end-user developers’ natural behaviours when 

troubleshooting circuit bugs, for example, what tactics they employ and whether these are 

effective. I discovered that end-user developers, like end-user programmers in other 

development domains, often use unproductive troubleshooting tactics, and would benefit from 

specific types of support, and in general, being more thoughtful/reflective when 

troubleshooting.  

Contribution 3: 

A novel, physical card-based tool to support novice end-user developers in 
troubleshooting physical computing problems, particularly circuit bugs. 
(TRQ3) 

The knowledge and insights gained from answering TRQ1 and TRQ2 were used to identify 

recommendations for supporting end-user developers in troubleshooting their bugs, and to 

design and evaluate support for end-user developers’ troubleshooting of physical computing 

problems, particularly those relating to circuit bugs (TRQ3). This support was in the form of a 
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novel, physical card-based tool, inspired by creativity support card decks. The tool aims to 

provide end-user developers with ideas for troubleshooting tactics and encourage them to 

think/reflect more during troubleshooting. 

Contribution 4: 

Insights into how a card-based support tool might be used and perceived by 
end-user developers when troubleshooting circuit bugs in a physical 
computing prototype. (TRQ4) 

An evaluation of this novel card deck delivers insights into the role that such a tool might play in 

the troubleshooting process, and how it might be perceived by novice end-user developers. 

1.4 Research Scope 

This research in this thesis investigates how adult end-user developers might be supported in 

overcoming problems which arise during the development of a physical computing prototype.  

Excluded from this work are considerations of problems that other groups or populations may 

experience in this domain, for example, children or young people, or professional developers of 

physical computing devices and systems. 

While the first study in this thesis (Study 1A)—an exploratory investigation of problems that end-

user developers encounter—looks at all problems experienced by the participants during a 

given task, the second study (Study 1B) focuses primarily on the troubleshooting of circuit bug-

related problems. An in-depth analysis of how end-user developers troubleshoot program bugs 

in physical computing devices is out of scope for this work.  

While end-user developers might also benefit from support in other aspects of physical 

computing development, for example, the ideation of solutions, or in how to go about 

developing a physical computing device, this thesis focuses only on troubleshooting support. 

See section 7.3 for further discussion of the decision to focus on troubleshooting.  

Finally, while there are many potential ways in which support could be provided to end-user 

developers, this thesis does not claim to have established that the approach I took—a physical 

card-based support tool—is the most effective. Establishing the best medium for supporting 
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end-user developers in physical computing development is again outside of the scope of this 

thesis. Taking into consideration the insights gained through the initial studies, this is just one 

way in which this type of scaffolding might be presented. 

1.5 Methodology and approach 

My PhD research and prior to it, the research I conducted for my MSc in Human-Centred Systems 

dissertation project (Booth and Stumpf 2013), were both inspired by in-the-wild encounters with 

end-user developers in a Women’s Technology and Arts group, initially as a participant in 

introductory physical computing workshops and later as an assistant instructor. Through these 

workshops, and in casual conversations with attendees who were less confident in their 

programming and electronics abilities, I became aware that the promised easy entry into 

physical computing, via platforms such as Arduino, might not be easy for everyone, particularly 

those with little or no training or experience in programming, electronics, or both.  

1.5.1 An empirical, user-centred approach 

Throughout my career I have been a staunch advocate for a user-centred approach (Sharp, 

Preece, and Rogers 2019, 47–49) to the design and development of user-facing technology, 

therefore the adoption of a user-centred methodology for investigating this real-world problem, 

with a view to developing support for end-user developers in their physical computing 

ambitions, seemed only natural—focusing my research from the outset on actual users (end-

user developers) and their tasks meant that any subsequent design work would be well-

grounded in an understanding of real-world needs and behaviours, rather than based on 

speculation and assumption about where difficulties may lie. 

I therefore began with rigorous empirical user research to understand the landscape of end-user 

developers’ physical computing development problems and identify requirements for 

supporting end-user developers in this domain. Thereafter, I applied my findings to the design 

and development of a support tool prototype—again involving end-user developers in the 

process. I subsequently evaluated this tool in a further user study with end-user developers. 
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When encountering User-Centred Design as an approach within Human-Computer Interaction, it 

is more often than not in respect to the development of technology-based artefacts—software, 

hardware, or both. The tool I have created, described in Chapter 5, is designed to support end-

user developers when they are using technology—both software (programming) and hardware 

(microcontroller-based circuit construction)—to create technological artefacts, but does not do 

so through the medium of technology. 

When I set out on my PhD journey, I anticipated that the destination would be likely to involve 

designing something to support end-user developers in physical computing development, or to 

make physical computing development easier for them in some way, but had no solid 

preconception of what form this might take. Through my initial literature review, I became aware 

of several software-based tools developed to support end-user programming—including 

debugging—but found no tools to support end-user developers in the construction or 

troubleshooting of electronic circuits, or in physical computing development more generally. 

During the course of my research, I became aware of new work to support learners in 

troubleshooting (debugging) electronic circuits, however, both programming support tools and 

electronics support tools have relied heavily on some kind of automated analysis of what was 

being developed. Observing end-user developers, first-hand, struggling to develop and 

troubleshoot physical computing prototypes, experiencing problems with both hardware and 

software, led me to consider whether support provided via an alternative medium might present 

some advantage. Therefore, the choice of a physical card-based medium for the support tool 

flowed organically from the findings of my initial studies—a decision driven by a user-centred 

consideration of the needs of end-user developers, particularly novices, informed by an in-depth 

understanding of the challenges they face, gained through empirical work.  

As is customary within a User-Centred Design process, my research followed a staged approach, 

with each stage informing the next, and with representative users involved at each stage.:  

1) An exploratory study (Study 1A, Chapter 1) 

2) Deeper analysis of a specific subset of the same data, resulting in a set of requirements 

(Study 1B, Chapter 4) 

3) Design activities to develop a prototype instantiating these requirements (Chapter 5) 

4) Evaluation of the prototype in a final user study (Chapter 6). 
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1.5.2 Research methods and methodological stance 

As a researcher, I am most interested in creating knowledge that can be used. To determine how 

to support end-user developers in physical computing development I formulated research 

questions that I felt would lead to useful—actionable—insights into the difficulties they 

experience, and their support needs. 

Answering these questions meant collecting a range of data—both qualitative and 

quantitative—and employing a variety of research methods. Broadly, the empirical studies 

described in this thesis were designed and conducted using a mixed methods approach to data 

collection and analysis, reflecting a Pragmatist worldview—focusing on “what works rather than 

what might be considered absolutely true or real” (Frey 2018), and using whatever methods 

would provide “the best understanding of a research problem” (Creswell and Creswell 2018, 48). 

Methods do, however, still carry with them assumptions regarding what is or isn’t of value to this 

process (Mertens 2017, 20), and as a researcher, I am conscious that my views about ‘what 

works’ have been shaped by my own knowledge and experiences, not only through academic 

study but also professional education and practice, as I discuss further in section 7.4. The 

methods employed at each stage were as follows. 

Understanding the problem and generating requirements: Studies 1A & 1B 

Study 1A (Chapter 3) sought to gain insights into end-user developers’ difficulties in physical 

computing development. A commonly used HCI research method for identifying specific 

usability problems—difficulties—in the use of technology is user-based testing—observing 

“representative users attempting representative tasks” (Lazar, Feng, and Hochheiser 2017). As 

this was, to my knowledge, the first in-depth investigation of end-user developers constructing 

and programming physical computing prototypes, I conducted an exploratory study—a first-

hand observation of end-user developers undertaking a given physical computing development 

task while thinking aloud. Through analysing a specific subset of the same data, Study 1B 

(Chapter 4) aimed to identify participants’ troubleshooting behaviours, determine the 

effectiveness of these, and from these the findings establish some requirements and/or 

recommendations for support. Unlike more typical troubleshooting/debugging studies—

including the one described in Chapter 6—these participants were dealing with failure resulting 

from bugs that they themselves had organically introduced during development. 
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A mixture of qualitative and quantitative data was collected and analysed, including task videos, 

program files, digital images, and questionnaire data. In these two studies, rather than following 

a specific, major mixed methods study design (such as one of those suggested by Creswell and 

Plano Clark (2011, 73), although some characteristics are shared with convergent parallel design 

within that typology), qualitative and quantitative approaches were blended in a multi-layered 

series of transitions, moving back and forth between analysis modes and within the data, in an 

“iterative, cyclical approach to research”—a core characteristic of mixed methods research 

(Teddlie and Tashakkori 2010).  

 Quantitative data were captured through questionnaires measuring aspects of 

participants’ backgrounds, including self-efficacy and self-ratings of their expertise. 

 Qualitative data, such as written transcripts of the task videos (verbal protocol of the 

think aloud, and descriptions of participants’ actions)—in conjunction with the 

videos themselves—were categorised using inductive and deductive coding 

methods. 

 The categories (codes) were also then used to quantify these data (Srnka and 

Koeszegi 2007)—transforming it into numerical data that could be used in 

quantitative analysis, for example, to summarise (e.g., frequency of problem types 

instances), compare (e.g., frequency of tactics used by successful/unsuccessful 

participants), or to look for significant relationships (e.g., correlation between 

problems experienced and self-ratings of expertise).  

 Quantitative findings were also used to highlight or identify parts of the data for 

further qualitative analysis—for example, the discovery in Study 1A that circuit bugs 

were by far the most frequent cause of task failure, led directly to Study 1B’s focus on 

analysing the troubleshooting behaviours of participants dealing with circuit bugs. 

This aligns with what has been referred to as an integrated elaboration model (Srnka 

and Koeszegi 2007; Mayring 2001), allowing “the problem under investigation [to] be 

more exhaustively elaborated”. 

Rather than adhering to a specific qualitative analysis method in full, analysis of the qualitative 

data followed a general qualitative approach that broadly aligned with the integrated 

generalization design outlined by Srnka and Koeszegi (2007), involving stages common to a 

number of qualitative methods (material sourcing; transcription; unitization; categorization and 

coding), and with systematic rigour in application, including reliability and validity checks 
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throughout. Analysis focused on categorising data—with a view to describing it, either by 

deductively recognising pre-existing concepts drawn from—or inspired by—the literature, or 

developing new categories or schemes inductively from the data, by identifying and naming 

patterns of thinking and/or behaviour. The process began with immersion in the data, and 

coding was iterative, involving frequent revisiting and comparing of previously coded data. In 

these respects, the approach therefore shares some characteristics with methods such as 

Content Analysis (Krippendorff 2012) and Thematic Analysis (Braun and Clarke 2006); like Content 

Analysis, it also involved unitisation and quantification of categorised data. However, the 

intention was not to develop complex, multifaceted themes, or seek deep meaning through 

interpretation, and while in some qualitative methods, analysis focuses only on a textual verbal 

protocol, or on communication in some form, in these studies, participants’ actions were also 

analysed, for example, their prototype development activities. Again, analysis was driven by 

what was felt to make sense in terms of the research questions, would be useful to the overall 

aim of the research and was practical within the constraints of the data I was able to capture. 

Support tool development 

Designing and developing the deck of troubleshooting support cards (described in Chapter 5) 

also followed an iterative process, as is typical of a user-centred approach to design (Sharp, 

Preece, and Rogers 2019, 49). Knowledge gained through studies 1A and 1B resulted in 

identification of the most significant problems affecting end-user developers’ development 

success, as well as a set of suggestions—loose requirements—to guide the development of the 

support tool. These findings were then used, along with a targeted review of academic and non-

academic literature on troubleshooting, debugging and problem solving, to compile a list of 

potential troubleshooting tactics for inclusion in the support tool. A similarly targeted design 

review of card-based tools was conducted, from the academic literature and other sources, 

including commercial card decks, and from this, a number of key considerations for the design 

of a card-based tool identified. These, along with findings from the empirical studies, were then 

used to create an initial prototype of a support tool—a set of troubleshooting tactics 

instantiating support in the form of physical cards. A small, proof-of-concept study, involving 

two end-user developers using these cards in troubleshooting tasks, established the need for 

further design work, and that it would be better to focus on novice end-user developers as the 

target user group for the support tool. 
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In two focus groups with novice end-user developers, typical UX methods then were used to 

elicit feedback from representative users on several design variants and some options for 

content and form, as well as to test a potential information architecture for the deck. Findings 

from these focus groups were used to further refine the design of the cards and their 

categorisation. 

Evaluating the support tool 

The final stage of the work in this thesis involved trialling the support tool prototype in a user 

study with twenty novice end-user developers. A within-subjects study design was used (Lazar, 

Feng, and Hochheiser 2017, 49)—participants undertook two troubleshooting tasks, one with, 

and one without the tool—enabling comparison of participants’ performance and experience 

with and without the support tool. Evaluation was therefore based on first hand use/experience 

of the tool by representative users in a representative task. 

This piece of user research also used a mixed methods approach, collecting and analysing both 

qualitative and quantitative data, although, analysis followed a different approach than in the 

previous studies.  

Task performance was measured, providing quantitative data about troubleshooting success 

with and without the support tool. However, in a pivot from the previous studies’ predominant 

focus on analysing qualitative data captured during task execution, the main focus of analysis in 

this study was upon participants’ subjective feedback about the support tool, captured via a 

questionnaire and a semi-structured debriefing interview, following its use. Rich data, in the 

form of textual transcripts of the video-recorded interviews were subjected to a thematic 

analysis (Braun and Clarke 2006), using primarily inductive coding to explore these data, and 

elicit themes in relation to participants’ use and experience of the support tool. Themes were 

shaped and refined through immersion in and repeated iteration over the interview dataset. Not 

only can the findings be used to inform a further design iteration of this particular support tool, 

but they also—most importantly, in terms of the aim of this study—provide rich insights into the 

potential for such a tool to support novice end-user developers in this domain. 
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1.6 Thesis outline 

This thesis is structured as follows: 

Chapter 1: Introduction (this chapter) 

This chapter introduces the research described in this thesis, including the domain 

and population of study, first providing a motivation for the work. It states the 

research questions addressed and outlines the academic contributions of the work. 

Chapter 2: Related work 

An overview and discussion of research undertaken by others, to-date, in related 

areas of the literature, including the problems of non-experts with programming 

and circuits, and the work which has addressed supporting them. 

Chapter 3: Problems experienced by end-user developers in a physical computing task 
(Study 1A) 

This describes the first research study conducted for this thesis, investigating the 

problems faced by end-user developers when developing a physical computing 

device—an observation of 20 adult end-user developers of varying expertise, 

developing an Arduino prototype to a given specification but without any further 

instruction or guidance. 

Chapter 4: How end-user developers troubleshoot circuit bugs (Study 1B) 

Further analysis of data collected during the first study, this time diving deep into 

the troubleshooting behaviours of participants dealing with failure due to circuit 

bugs which they had introduced when building the physical computing device. 

Findings lead to suggestions for support from which end-user developers might 

benefit when troubleshooting in this domain. 

Chapter 5: Developing a physical card-based tool to support end-user developers’ 
troubleshooting 

This chapter describes the design and development of a novel, card-based tool to 

support end-user developers in troubleshooting physical computing development 

problems. I present a rationale for providing support in this medium, and some 

considerations for designing cards, informed by a review of the literature, followed 
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by description of the design process, the tool itself, and the card production 

process. 

Chapter 6: Evaluating the troubleshooting support cards with novice end-user developers 
(Study 2) 

I describe and report findings from an evaluation of the card-based support tool, in 

a within-subjects user study involving twenty novice Arduino users—adult end-user 

developers—who each undertook troubleshooting tasks with and without the tool.  

Chapter 7: Discussion, limitations, and future work 

A final discussion of, and reflections upon, the work described in this thesis. The 

research questions are revisited, and the contributions are described in full, in 

relation to the literature. The main limitations of this work are described, the 

approach and methods used are reflected upon, as is the decision to focus on 

troubleshooting, and finally, some areas for future work are suggested.  
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Chapter 2 
 

Related Work 

Physical computing involves both programming and electronics. Until the work in this thesis, 

little was known about end-user developers in the physical computing domain, however, there 

have been decades of research investigating the problems and typical behaviours of both novice 

and end-user programmers, and finding ways to support them in creating, modifying, and 

debugging software. 

In this chapter, the literature in areas related to my work, is reviewed and discussed, in the 

following order: 

2.1 End-user developers—characteristics of end-user developers in comparison to novice, 

expert and end-user programmers, and the disadvantages they face. 

2.2 Non-experts’ problems in programming—common difficulties, the causes of software 

error, learning barriers, and problems with strategies. 

2.3 Non-experts’ problems with circuits—including difficulties observed in learning 

circuit theory. 

2.4 Problems affecting end-user developers in physical computing—including recent 

evidence from e-textiles/STEM education, echoing my own findings. 

2.5 Supporting end-user developers—challenges in supporting this population, and the 

case for situated support. 

2.6 Supporting non-expert programmers—approaches that have been taken to make 

programming easier. 

2.7 Supporting physical computing development—approaches that have attempted to 

make programming and circuit construction easier, including modular platforms. 

2.8 Supporting troubleshooting and debugging—troubleshooting as a process; work to 

support end-user programmers in debugging; the current lack of support for end-user 

developers’ debugging in physical computing, and recent work to address this. 
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2.1 End-user developers 

The term ‘end-user programming’, originally popularised by Nardi (1993), usually refers to the 

writing of software programs by end users, rather than professional programmers. Nardi made 

the distinction that for this type of programmer, the act of programming is not the end in itself, 

but the means by which they achieve the things they want to do, in their work and hobbies. End-

user programming has since been studied extensively in a number of different domains, for 

example, spreadsheets (e.g. Kissinger et al. 2006), web development (e.g. Kuttal, Sarma, and 

Rothermel 2013) and intelligent user interfaces (e.g. Kulesza et al. 2009). This thesis focuses on 

the development (and troubleshooting) of physical computing artefacts by end-user developers, 

which encompasses both programming and circuit construction. To recall, the definition I use in 

this thesis, adapted from Lieberman and colleagues, is as follows: 

“End-User Development, in a physical computing context, is a set of methods, 
techniques, and tools that allow users of hardware and software systems, who are 
acting as nonprofessional developers, at some point to create, modify, or extend a 
physical computing artifact.” 

(adapted from Lieberman et al. 2006 p.2) 

I now turn to the literature that positions end-user developers within the broader field of 

development. 

2.1.1 End-user vs novice and professional programmers 

Whereas professional programmers are paid to create and maintain software for others to use, 

end-user programmers write programs to support their own goals, “in their own domains of 

expertise”, to use themselves. “End user programmers might be secretaries, accountants, 

children, teachers, interaction designers, scientists or anyone else who finds themselves writing 

programs to support their work or hobbies.” (Ko et al. 2011). 

It is important, say Ko and colleagues, not to conflate end-user programming (or end-user 

development) with a lack of programming expertise—not all end-user programmers are novices 

(although some certainly are). A professional programmer may develop software for their own 

personal use, and in this be considered an end-user programmer; equally, someone not 

employed as a professional programmer may have previous programming experience that they 
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draw upon to write programs to support some aspect of their primary work, or personal 

interests. Intent, rather than expertise, they state, should therefore be the defining characteristic.  

Defining end-user development in terms of expertise or area of application, argue Burnett and 

Myers (2014), risks “siloing” end-user developers and their tools from the learnings from, benefits 

of, and advancements in, professional software development Defining it, instead, as a role, 

based on a dimension of intent, means that research can consider and address the needs and 

practices of end-user developers at different levels of expertise, and in different areas of 

application. Accordingly, the end-user software engineering (EUSE) research area seeks to bring 

considerations of quality into end-user development, for example, by encouraging end-user 

developers to engage in professional software development practices such as testing (Burnett, 

Cook, and Rothermel 2004; Burnett 2009; Burnett and Myers 2014; Ko et al. 2011). The work I 

describe in Chapter 3 and Chapter 4 provides further evidence in support of this position. 

Pragmatically, when studying end-user developers, expertise is still a crucial factor to consider, 

as I discuss further in the next section. Some end-user developers are, of course, more 

experienced than others, and we can probably agree that someone without professional 

experience of developing physical computing devices may have greater support needs than 

someone who does. Therefore, the scope of the definition of end-user developer I use within this 

thesis—particularly when recruiting for the studies I undertook—does not include individuals 

currently (or previously) involved in professional physical computing development, even if they 

do, at times, develop physical computing devices for their own personal use. And while my 

initial studies involved end-user developers of varying levels of expertise, the novel support tool I 

developed, which I describe in Chapter 5, was designed with novice end-user developers in 

mind, by which I mean less-experienced end-user developers. 

It is worth, however, noting the distinction between the terms end-user programmer and novice 

programmer within the literature. Academic literature on programming, particularly since 

Nardi’s seminal book on end-user programming (Nardi 1993), typically uses the term novice 

programmer to refer to those who are learning to program with the aim of becoming 

professional or expert programmers—that is, those learning with the intention of developing or 

improving their mastery of programming as a craft. Whereas, according to Nardi and others, an 

end-user programmer is programming to achieve some other end and, if inexperienced in 

programming, may have little interest in learning the craft of programming, but instead be more 

concerned with the final result (Nardi 1993; Ko et al. 2011). While this may not always be true in 
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respect to end-user development in physical computing (see section 2.1.3), a focus more on the 

outcome or output of development has important implications for both learning and support, as 

I discuss further in section 2.5.1 (The challenge of supporting end-user developers). 

2.1.2 The disadvantages of non-experts 

It stands to reason that when it comes to developing software, non-experts have it harder than 

their more expert counterparts. Certainly, in many aspects of programming and software 

development, expert or professional programmers have significant advantage over 

inexperienced or less-experienced programmers, regardless of whether the literature would 

class them as novice programmers or end-user programmers. Experts have considerably more 

programming (and software engineering) knowledge and experience to draw upon, not only in 

planning, creating and debugging their own programs, but also, for example, when adapting or 

borrowing opportunistically from programs created by others—a common practice for end-user 

programmers/developers (Brandt et al. 2009; Rosson and Carroll 1993; Lau et al. 2021). Pertinent 

to the consideration of quality mentioned in the previous section, experts and professional 

programmers also have a better understanding of how to test the reliability and accuracy of 

their program results. This knowledge and these skills can take years, and much effort, to 

acquire. Programming is hard, even for experts, and can be cognitively challenging to learn and 

master. My work provides evidence that end-user development is challenging in physical 

computing too, but also that expertise in one aspect of physical computing development, for 

example, professional programming or engineering experience, does not always translate into 

fewer problems, more effective troubleshooting, or greater success for end-user developers in 

this domain. 

2.1.3 End-user developers as makers 

End-user developers of physical computing artefacts—who I also refer to as makers—are a 

heterogeneous population, coming from all types of backgrounds and occupations, for 

example, artists, designers, hobbyists and researchers, and as a result, their skills and needs are 

varied. As with end-user programmers, not all end-user developers in this space are novices. A 

maker may be a professional programmer, but still be inexperienced in electronics, or they make 

come from an engineering background but have little programming experience. Others may 

have considerable knowledge and skill in both programming and engineering, but not be 



 

23 

 

employed to develop physical computing devices. However, some end-user developers lack 

experience in both programming and electronics, and they, of course, potentially face some of 

the biggest challenges, particularly if they are more interested in the output of development—

the resulting artefact—than in acquiring the knowledge and developing the skills needed to 

produce it. 

However, unlike in some end-user programming domains, making is not necessarily always just 

getting about the job done—in this domain, an end-user developer may have motivations 

beyond realisation of the end product. Hands-on making can be a pleasurable activity in itself, 

and the act of physical creation satisfying (Tanenbaum et al. 2013), while much is made also of 

the social and community aspects of these practices (Kuznetsov and Paulos 2010). Intrinsic 

motivation has a positive effect on performance in learning to program (Bergin and Reilly 2005), 

and bricoleurism—tinkering, making and fixing things—has been shown to correlate with 

intrinsic motivation in end-user programming (Aghaee et al. 2015). If end-user developers are 

intrinsically motivated to create physical computing devices, this may provide a boost in their 

efforts to learn the skills to do it, stick at it, or to see any problems they encounter through to 

resolution. 

The next section will discuss some of the work from the considerable body of research 

investigating the problems of novice and end-user programmers. 

2.2 Non-experts’ problems in programming 

Much is known about the problems of inexperienced programmers. Novices’ numerous 

difficulties in learning to program—and in the various activities involved in programming—are 

covered extensively in the Computer Science literature, spanning several decades of work. While 

discussing all of these problems, or the work of all those who have investigated them, is beyond 

the scope of this thesis, a small sample of the literature provides some flavour of the difficulties 

that others have observed in this field.  

There is consistent evidence that novice programmers can struggle with concepts and activities 

that are fundamental to programming. For example, Spohrer and Soloway (1986), studying the 

mistakes of novice programmers, note problems with learning and understanding the semantics 
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of constructs—even the most basic ones, for example, variables—and applying them 

appropriately. They also report novices’ difficulties in interpreting problems and tasks, and in 

composing plans—as well as a tendency to rely upon existing knowledge when doing so. In a 

longitudinal study, Garner, Haden, and Robins (2005) asked teachers of introductory Computer 

Science to report problems that students sought assistance with—the main difficulties were with 

the basic mechanics of programming (e.g., basic syntax), program design, basic program 

structure, and problems understanding what a program is supposed to do; students also 

experienced conceptual and implementation problems with arrays, arguments/parameters and 

return types/values, loops, constructors, and control flow. Problems with variables, arrays and 

loops also feature in the common novice programmer mistakes described by du Boulay (1986).  

A similar set of problems was reported in a study by Lahtinen, Ala-Mutka and Järvinen (2005), 

asking 559 students and thirty-four teachers across six universities what they had found and 

observed, respectively, to be difficult in learning to program. Notably, these authors also found 

that students considered debugging to be the most difficult activity in learning to program and 

error-handling the most difficult concept to learn. The ability to debug faulty programs—to 

locate and resolve the causes of error (Katz and Anderson 1987)—is crucial to programming 

success, and there is much work attesting to the difficulty of this type of problem solving, not 

only for novice and end-user programmers but even experts, and investigating ways to support 

them (see sections 2.2.3, 2.8 and 2.8.1 for further discussion).  

While it would be reasonable to assume that novice end-user developers will face similar—or 

analogous—difficulties when learning to develop and troubleshoot physical computing 

prototypes, the work in this thesis provides the first evidence of this, in respect to both 

programming and circuit construction. 

2.2.1 Causes of software error 

Perkins and Martin (1986) suggest that novices’ problems with programming stem from fragile 

knowledge—including knowledge that is missing (not yet learned), inert (known but failed to be 

retrieved), or misapplied in some way—in combination with poor problem-solving strategies. 

Subsequent work by Ko and Myers (2005) focusing on the causes of software errors, based on 

research into human error (Reason 1990), has suggested that errors are due to cognitive 

breakdowns, in which programmers (including end-user programmers) encounter problems in 

the application of skills, rules, or knowledge. Ko and Myers suggest that breakdowns can be 
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investigated by classifying the action being performed, the interface the action is performed on, 

and the information being acted on—in the first study in this thesis (Chapter 3), analysis of end-

user developers’ problems was informed by this approach, looking at breakdowns, and the 

locations in which these occurred. 

2.2.2 Learning barriers 

One way to classify problems that can lead to error, seen frequently in the end-user 

programming literature, is in terms of learning barriers (Ko, Myers, and Aung 2004). In a study 

investigating problems experienced by end-user programmers learning Visual Basic, the authors 

identified six frequently encountered barriers—obstacles which a learner must overcome in 

order to make progress. When encountering these barriers, learners’ invalid assumptions—

caused by knowledge breakdowns—can result in error, stalled progress, or further barriers.  

 Design barriers—“I don’t know what I want the computer to do…” 

 Selection barriers—“I think I know what I want the computer to do, but I don’t know 
what to use…” 

 Coordination barriers—“I think I know what things to use, but I don’t know how to make 
them work together…” 

 Use barriers—“I think I know what to use, but I don’t know how to use it…” 

 Understanding barriers—“I thought I knew how to use this, but it didn’t do what I 
expected…” 

 Information barriers—“I think I know why it didn’t do what I expected, but I don’t know 
how to check…” 

Most of the barriers these authors observed were Understanding barriers—participants struggled 

to diagnose unanticipated behaviour or failure at compile-time or runtime, often a result of 

error. Use barriers were also prevalent, for example, participants’ difficulties in determining 

correct syntax, as were Coordination barriers, in which working out the ‘invisible rules’ of 

combining programming interfaces proved challenging. 

Relationships between barriers were also observed, with invalid assumptions made when 

overcoming barriers leading to new barriers—overcoming Coordination barriers frequently 

resulted in further Understanding or Use barriers; Design barriers led frequently to Selection 

barriers or Coordination barriers; Selection barriers led to Use barriers and Use barriers tended to 

result in Understanding barriers, which in turn led to Information barriers. These “common paths 

of failure”—chains of breakdowns—and their impact upon performance, point to value in 
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identifying where such obstacles may lie in systems and environments used by end-user 

developers, and investigating whether there are opportunities to mitigate or reduce these 

through targeted support and/or better design of development tools. In the first study of this 

thesis (Chapter 3), analysis of problem locations provides insight into where support for end-

user developers might best be targeted. 

Learning barriers have been identified in other end-user programming domains—albeit differing 

in frequency, which suggests that factors such as the type of environment or task may affect 

which obstacles (or chains of obstacles) end-user programmers will encounter in a particular 

programming context. For example, Selection and Coordination barriers proved most prevalent 

in studies of end-user programmers debugging intelligent agents (Kulesza et al. 2009) and 

machine learning in spreadsheets (Sarkar et al. 2015), while in a study of end-user programmers 

programming web mashups with Yahoo Pipes, Understanding and Use barriers were most 

common (Kuttal, Sarma, and Rothermel 2013). Although they do not report the frequency of 

barriers, Cao and colleagues, in an end-user web mashup programming study using Popfly, 

found a close tie between Design barriers and unproductive framing episodes—where users try 

to understand a problem, but fail to generate an idea for action—suggesting that these barriers 

frequently lead to an inability to make progress in this environment (Cao et al. 2010). 

2.2.2.1 Learning barriers in programming environments for 
physical computing  

There is already some evidence of learning barriers, for end-user programmers, in programming 

environments for physical computing (Booth and Stumpf 2013). In this study, conducted for my 

MSc dissertation project, I compared the benefits and effects of textual and visual programming 

environments for Arduino, for end-user developers new to Arduino. I found Use barriers to be the 

most frequently observed barrier type in both of these environments, highlighting that end-user 

developers programming Arduino devices can struggle to use the basic building blocks of the 

language correctly. Additionally, Understanding barriers were common in the textual 

environment—participants struggled to understand system feedback within the environment—

and Selection barriers were common in the visual environment—participants had difficulty 

deciding which of the available programming constructs would achieve what they wanted to do. 

Again, these results suggest that the type of environment can affect the type of obstacles 

experienced. 
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While the study provides some insight into barriers faced by novice end-user developers when 

programming a physical computing device, the electronic circuits used in the tasks were 

prebuilt, therefore, there was no analysis of problems relating to circuit construction—

participants only programmed the circuits; they did not create or modify them. In the first study 

of this thesis, described in Chapter 3, I focus on identifying the problems—including obstacles 

(barriers)—that end-user developers experience in a development task involving both 

programming and circuit construction. 

2.2.3 Strategies 

Developers adopt different strategies for solving programming problems, for example when 

debugging. Unsurprisingly, novices and experts can differ in their use of debugging strategies 

(Nanja and Cook 1987; Vessey 1985), and novice programmers’ poor choice and application of 

strategies can lead to unproductive troubleshooting behaviours (Murphy et al. 2008). Strategies 

adopted by less-experienced programmers may even be destructive, for example, Perkins and 

colleagues found that students who choose to tinker unsystematically when debugging—

making lot of changes in the hope of fixing bugs—often introduce new bugs, making programs 

worse, rather than improving them (Perkins et al. 1986). Investigating the strategies that 

developers use can provide insight into the challenges they face in applying them, and help 

identify opportunities to address these difficulties (LaToza and Myers 2010). Equally, comparing 

successful and unsuccessful debuggers can help to identify the types of approaches—thinking—

that might be encouraged in order to improve debugging skill (McCauley et al. 2008). 

Following from this, knowing what strategies—or patterns of behaviour—end-user developers 

naturally employ when problem solving, and whether these are successful or lead to additional 

problems, can help us to identify what approaches are problematic for end-user developers, 

what strategies they lack, and whether they might be guided towards particular or more 

productive behaviours, in order to help them solve their problems more efficiently and 

successfully (Grigoreanu, Burnett, and Robertson 2009).  

To this end, several studies have looked at end-user programmers’ debugging strategies. A study 

by Kissinger and colleagues analysed end-user programmers’ information gaps when debugging 

spreadsheets and found 30% of these to be in respect to what strategy to use (Kissinger et al. 

2006), for example, how to find or fix errors, or how to test their spreadsheets—users were 

frequently unsure whether values and formulas were correct, or how to establish this. Similar 
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findings have been reported in other studies, where end-user programmers have been observed 

to have difficulty knowing how to get started, or generating ideas to help them proceed (Cao, 

Fleming, and Burnett 2011). When debugging, failure can manifest in a different location from 

the actual fault, and choice of strategy has been shown to matter in the success of finding these 

faults (Prabhakararao et al. 2003). Also, certain types of bugs may be localised quicker through 

particular strategies, however, end-user developers may not have the knowledge or skill to 

choose the strategies most likely to help them. 

Gender differences have been observed in end-user programmers’ choice of strategies and their 

success in using these to resolve bugs. In one study, males were more likely to follow 

dependencies or use tests, and were more successful when they did so, whereas females 

inspected their code and checked it against the specification more often, which also resulted in 

greater success (Subrahmaniyan et al. 2008). While gender does not feature in any analysis of 

performance or behaviour in this thesis, Subrahmaniyan et al.’s findings suggest, as other have 

argued (Beckwith 2007; W. Jernigan et al. 2015), that support for end-user development should 

consider and accommodate different users’ different information processing styles. 

Finally, the development environment itself can also have an effect on the choice and successful 

use of debugging strategies. In the Popfly web mashup environment, where blocks representing 

functionality are, in effect, black boxes, participants in one study had trouble inspecting their 

‘code’ (a common strategy), being unable to see the inner workings, and had difficulty 

understanding the links between blocks when trying to follow dependencies (Cao et al. 2010). 

This highlights the importance of ensuring that the design of environments aimed at end-user 

developers supports the problem-solving behaviours that they naturally employ, and of helping 

end-user developers to adopt strategies and tactics that are appropriate for a particular 

environment or type of development, and can be used effectively in that context. 

Inspired and informed by the work discussed in this section, the study described in Chapter 4, 

extends our knowledge of end-user developers’ problem-solving behaviours into the domain of 

physical computing. Analysis of how end-user developers troubleshoot circuit bugs during 

development identifies several common patterns of behaviour, while subsequent examination 

of the efficacy of these approaches—including a comparison of the tactics employed by 

successful and unsuccessful troubleshooters—provides insights into how end-user developers 

might be supported when troubleshooting in this domain.  
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2.3 Non-experts’ problems with circuits 

While I had no difficulty finding literature about the problems and behaviours of novice and end-

user programmers, or evidence of difficulties that students experience with circuit theory in an 

educational context (as I will shortly describe in section 2.3.1), I found very little about end-user 

developers constructing electronic circuits. Although hobbyist electronics kits have been around 

for many years—for example, the Heathkit construction kits that were popular with amateur 

electronics enthusiasts for most of the latter half of the twentieth century (Brueschke and Mack 

2019)—I found no literature on problems or behaviours observed in hobbyist or amateur 

electronics construction, prior to the advent of the Maker Movement. More recently, however, 

Wakkary and colleagues report having difficulty using tutorials—a common approach for novice 

makers—to construct electronic devices, in part due to problems with instructional materials of 

inconsistent quality, or the assumption of a particular level of knowledge (Wakkary et al. 2015). 

In the same year that the findings from the study described in Chapter 3 were published (Booth 

et al. 2016), David Mellis, Leah Buechley and colleagues, investigating how to engage amateurs 

in the fabrication of electronic devices using PCBs (printed circuit boards), report that 

participants found it challenging to troubleshoot circuits consisting of low-level components, 

and struggled to generate hypotheses for the causes of failure (Mellis et al. 2016). This further 

confirms the need for work to identify and understand the difficulties experienced by non-

experts—including end-user developers—when working with circuits. 

2.3.1 Circuit theory: problematic for learners 

Despite the dearth of literature in respect to end-user developers’ problems with circuits, there 

is, however, plenty of work attesting to the difficulties that children and even much older 

students have in learning and applying the theories of electricity that are fundamental to 

understanding and constructing electronic circuits. Numerous studies in the educational 

literature show that learners struggle to fully grasp important, abstract concepts such as current, 

voltage (potential difference) and resistance, and in the case of some of these concepts, even fail 

to differentiate between them—current and voltage, for example, are frequently confused.  

Research in this space has identified common misconceptions—alternative views—of how 

electricity works, that affect students’ reasoning about even simple circuits (McDermott and 

Shaffer 1992). Several alternative conceptual models have been identified in children, including, 
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for example, that current is stored in a battery and consumed over time, or that current is used 

up by components in the order of the direction of the current (Shipstone 1984; 1988). Many of 

these misconceptions are still evident in high school students and university students 

(McDermott and Shaffer 1992), including those studying to be engineers (Periago and Bohigas 

2005), electrical engineers (Métioui et al. 1996) or physics teachers. Even university science 

teachers have been found to hold some of the same, faulty mental models (McDermott and 

Shaffer 1992). These preconceived ideas prove resistant to change, even after instruction in the 

scientific theory (Engelhardt and Beichner 2004). 

As has been demonstrated repeatedly in the literature, these misconceptions affect students’ 

reasoning about circuits, and thus, their ability to accurately interpret circuits or construct new 

ones reliably and successfully. Many students have a great deal of trouble reading circuit 

diagrams—for example, they have difficulty understanding parallel circuits, and recognising 

these when represented in different configurations within circuit diagrams (schematics), tending 

to focus on the lines between components rather than on the electrical connections these 

represent (McDermott and Shaffer 1992). Equally, while resistance is a crucial part of circuit 

theory, many students struggle with this concept and are therefore unable to accurately predict 

its effects on the behaviour of a hypothetical circuit (McDermott and Shaffer 1992). 

All of this has important implications for end-user developers’ physical computing development, 

particularly for end-user developers who are less experienced in electronics. While many end-

user developers may have been taught electrical circuit theory at school, they may have 

inaccurate mental models of the fundamental concepts, which might affect their ability to apply 

these successfully—several studies show evidence of students reverting to their previous, non-

scientific views after a period (e.g. Mackay and Hobden 2012). As a result, some end-user 

developers may struggle to plan their circuits, or understand existing ones, for example, if 

wanting to use and adapt something they have found—reuse is a common behaviour for makers 

(Oehlberg, Willett, and Mackay 2015). If end-user developers do not properly understand the 

relationships and dependencies between different variables in a circuit and cannot predict the 

effect of changes to it, they may have trouble diagnosing and fixing problems they encounter. 

Whatever beliefs end-user developers hold will inform their decisions and actions when 

developing and troubleshooting their devices. 
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2.4 Problems affecting end-user developers in 
physical computing 

We know from the literature that programming is difficult for novice and end-user programmers, 

and physical computing development involves both programming and electronics. It also 

involves coordinating those two types of activity to achieve a particular goal, therefore in order 

to achieve this, an understanding is needed of how the two relate and can be coordinated, or 

what coordination between them is required.  

Until the early work in this thesis, however, there was little knowledge of the problems affecting 

end-user developers in this domain. While the large number of user posts asking for help in 

online communities (e.g., ‘Arduino Forum’ n.d.; ‘Adafruit Customer Support Forums’ n.d.) 

suggests that people experience a lot of problems when developing physical computing devices, 

it would be difficult to ascertain which or how many of these problems were reported by end-

user developers. 

Little was also known about how end-user developers troubleshoot problems which arise when 

they are developing or modifying physical computing devices, or the difficulties they face when 

doing so, but, again, as we know that debugging programming problems alone is hard, 

particularly so for those lacking programming knowledge, skills and experience to draw upon 

when recognising, diagnosing and resolving problems, it is likely to be so too in this domain. It 

also stands to reason, as others have suggested (Tetteroo, Soute, and Markopoulos 2013), that 

troubleshooting physical computing problems may be even more difficult for end-user 

developers, firstly, because there is more to know in order to fully understand the domain, and 

secondly, with both circuit and program involved, the problem space is more complicated. 

Research has shown that as complexity increases, troubleshooting performance decreases—the 

more components or relationships to consider, the greater the likelihood of misdiagnosis 

(Morris and Rouse 1985).  

Evidence of this has been reported in another domain popular with makers, which similarly 

involves interactions and dependencies between hardware and software: 3D printing. Here, 

suboptimal or failed results are common, but can be tricky to diagnose (Ludwig et al. 2014). For 

example, there may be a mechanical problem with the printer, an error in the configuration of 

the printer, or in the software that controls it, or some error in the 3D model itself, while 
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environmental or physical factors can also have an effect, for example, the temperature of the 

room. These faults and errors can also co-occur and interact, resulting in a tangled knot of 

failure that the user must analyse and unpick, in order to resolve their problems and achieve a 

better end result. 

In principle, all of this this can apply in physical computing development too. Unexpected or 

erroneous output may be the result of problems with the physical construction or configuration 

of the circuit or its individual components (including the microcontroller board), problems with 

the system hardware or software on the computer upon which the IDE is running and to which 

the circuit is connected, problems with the IDE application or configuration thereof, problems in 

the program(s) that the user has written, or with any external programs or libraries they are 

referencing. And likewise, environmental factors may contribute to failure or unexpected 

behaviour, particularly where a circuit involves sensors, for example, heat, light, sound, or any 

physical properties of a user’s interaction with a prototype (e.g., skin temperature or speed of 

movement). Any of these factors, alone or in combination, can cause unexpected or erroneous 

output or device behaviour. 

2.4.1 Existing evidence of problems in physical computing 

While much had been written or said about how platforms such as Arduino—originally created 

for use by designers (see section 2.7.3)—could make developing physical computing devices 

easier for non-experts, by the start of my PhD research there appeared to have been little 

investigation into the problems or challenges that end-user developers might experience in 

using them. 

It does seem that there is still room for improvement in the design of tools within the physical 

computing development space. As discussed earlier, in section 2.2.2, a study I undertook during 

my MSc (Booth and Stumpf 2013) found evidence of learning barriers in visual and textual 

programming environments for Arduino, including the official Arduino IDE, however this did not 

look at circuit construction, only programming. There have also been calls for pedagogical tools 

more suited to the needs of young learners (Blikstein 2015), from researchers/educators 

concerned about the usability issues that maker-centric platforms present to children, and the 

potential for ‘black box’ toolkits to conceal information vital to learning. 
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Some studies have looked at the problems experienced when creating or troubleshooting e-

textiles projects, but these have mostly been in supported learning environments, or have 

involved children or young people in groups. For example, Jayathirta and colleagues analysed 

student interviews and project reports for evidence of debugging problems and found that 

problems were experienced in both programming and circuitry, just over a third of programming 

problems could be classed as more complex, and that collaboration was a key resource when 

debugging (Jayathirtha, Fields, and Kafai 2018). Further work by some of these authors 

investigated ways to develop students’ e-textiles debugging skills (e.g., Fields, Searle, and Kafai 

2016; Kafai et al. 2014), however, again, these are in respect to pedagogical environments, 

usually with a focus on developing curricula and specific interventions to engender STEM 

learning through e-textiles development. 

Since the first study described in this thesis (Chapter 3; Booth et al. 2016)—an empirical 

investigation of the problems experienced by end-user developers when developing a physical 

computing device—there has been some work looking at the problems of novices (students) 

when using Arduino. Sadler and colleagues, recoding data from a previous study by Jung and 

colleagues (Jung et al. 2014) in which high school students prototyped the most simple Arduino 

project (making a single LED blink), followed by open-ended exploration, discovered that 

failures (obstacles which required human intervention) were dominated by circuit wiring errors 

(all but one of the twenty participants experienced these), while programming errors (nine 

participants) and design ideas due to misconceptions and knowledge gaps were also reported 

(Sadler, Shluzas, and Blikstein 2017)—the types of failure reported echo my own findings. More 

recently, DesPortes and DiSalvo adapted the coding schemes (problem types and problem 

locations) reported in Booth et al. 2016 (Chapter 3)—in a qualitative analysis of the problems of 

university students using Arduino for the first time (DesPortes and DiSalvo 2019). As in my study, 

participants experienced more software-related problems than hardware-related ones, and 

problems were observed in both programming and circuit construction, as well as in interaction 

between the two, again echoing my findings. These studies, like my work preceding them, 

provide further evidence that novices experience problems with the most basic concepts and 

tasks fundamental to physical computing development, for example, LED polarity errors and 

problems with open (incomplete) circuits. While both of these studies involved students, my 

own work focuses on adult end-user developers, and in the first two studies, end-user 

developers with a wide range of skills—representative of the wider maker population. As I will 
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show, all end-user developers experience problems when developing a physical computing 

device, irrespective of their background or level of expertise. 

Until my work, however, there was no empirical evidence of these problems, including how end-

user developers attempt to troubleshoot their physical computing bugs, or how successful they 

are in doing so, making it difficult to know where support might be best targeted. Analysing the 

types of bugs that end-user developers introduce during physical computing development, how 

these bugs manifest, and whether they are able to recognise them, accurately diagnose the 

symptoms of failure in runtime behaviour they observe, and fix them, helps to establish where 

some of the pain points lie. Knowing what troubleshooting behaviours end-user developers 

employ, in their attempts to overcome problems, helps us to determine what aspects of 

troubleshooting they could most benefit from help with. 

2.5 Supporting end-user developers 

It stands to reason that a lack of knowledge about programming and electrical engineering 

concepts, and the relationships between the two, may limit novice or less-experienced end-user 

developers in their prototype development ambitions, lead to frustrating bouts of 

troubleshooting, or even prevent them from completing their projects. Supporting them in 

overcoming their problems and developing their knowledge, however, is not a simple case of 

providing the right education or training. 

2.5.1 The challenge of supporting end-user developers 

Much of the literature addressing students’ difficulties with circuits and programming suggests 

pedagogical methods that encourage the development of good mental models (Mayer 1981; du 

Boulay 1989; Liégeois et al. 2003; Shaffer and McDermott 1992), however, supporting end-user 

developers in their tasks requires a different approach. Educators can design courses and 

learning materials to support the incremental development of students’ knowledge and skill in 

programming and electronics (e.g., Buechley, Eisenberg, and Elumeze 2007; Fields, Searle, and 

Kafai 2016), but end-user developers are often self-taught, and their learning situated in a task 

they are trying to accomplish—learning is likely to be more ad hoc and less structured than for 

those in educational settings. 
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While there is no shortage of books, online tutorials, forums and examples available to guide 

end-user developers in physical computing development, they may not be able to locate, assess 

or use these effectively, as my work in this thesis will demonstrate (see Chapter 3 and Chapter 4). 

Without sufficient domain knowledge to draw upon it may be difficult for an end-user developer 

to judge the quality or relevance of a resource, recognise whether or how it might be useful, or 

determine how it might be applied or adapted for their needs. They may also have limited time 

available for study and/or be subject to a “production bias” that disinclines them from acquiring 

any more knowledge than they need to get by—“the paradox of the active user” (Carroll and 

Rosson 1987). Blackwell’s Attention Investment theory (Blackwell 2002) also suggests that end-

user developers will weigh up the benefits of learning something new, in terms of the cognitive 

cost of doing so and the risk that it may not be worth the effort, or result in failure—yet another 

potential barrier to end-user developers’ learning, with implications for how support might be 

presented. 

The case for situated support 

End-user programming and end-user development research has taken a pragmatic view of how 

to support end-user programmers/developers in the activities of programming. Minimalist 

theory suggests that users get more value from support situated within their tasks (Carroll 1998), 

and studies have established the effectiveness of providing in situ scaffolding for problem 

solving in existing end-user programming environments (e.g. Cao et al. 2015), however, until the 

work in this thesis there had been no research to investigate this in the context of physical 

computing development. To provide effective, situated support in this domain we must first 

establish what support end-user developers might benefit from in these activities, starting with 

the problems they experience that can impact their progress and success, and the difficulties 

they encounter when trying to overcome them.  

2.6 Supporting non-expert programmers 

Numerous usability issues have been identified in the design of programming languages and 

environments for novice programmers, and recommendations made for how to address these 

Concerned by the tendency for the design of new programming systems to be driven by 

technical considerations, rather than taking into account the considerable learnings from 
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research into novice programmers’ issues, Pane and Myers (1996) compiled a summary report of 

work in this area, with the aim of making this knowledge more easily available to those 

designing programming languages and environments. However, not all programming systems 

aimed at non-expert programmers are concerned with improving skill. A comprehensive 

taxonomy of novice programming languages and environments collated by Kelleher and Pausch 

(2005) groups them into two broad categories: 1) systems for teaching—created to help novices 

to learn to program and ultimately transition to general-purpose languages and 2) enabling 

systems—created to empower novices or inexperienced programmers to program more easily 

and quickly. This latter category includes many systems used by end-user programmers that 

enable them to achieve their task goals. 

2.6.1 Making programming easier 

Much work addressing novice and end-user programmers’ difficulties focuses on simplifying 

programming languages or environments. 

A common approach to simplifying programming is through the use of visual programming 

languages (VPLs), which use a visual representation instead of, or in addition to, more 

traditional textual representations of program source code. Examples of VPLs aimed at end-user 

programmers include Forms/3 (Burnett et al. 2001) in the spreadsheet paradigm, LabVIEW 

(‘National Instruments LabVIEW’ 2013), which uses a box-and-wire notation for instrument 

control and industrial automation, and Max (‘About Max’ n.d.), which again uses a box-and-wire 

notation, for programming music and multimedia. Other VPL tools allow end users to 

manipulate machine learning datasets (Sarkar et al. 2015) or interrogate, explore and interact 

with web service data (Chang and Myers 2016), both within the familiar visual interface of a 

spreadsheet. In the popular Scratch VPL (Resnick et al. 2009), developed to teach children how 

to program using animations, programs are created by snapping together graphical blocks of 

different colours, and the shapes of these blocks determine what they can connect with, thus 

avoiding syntax errors common in text-based languages. This building-block metaphor has been 

adopted by several other VPL environments, for example, MIT’s App Inventor web application, 

which helps end-user programmers develop Android and iOS applications (‘MIT App Inventor’ 

n.d.; Wolber 2011).  

There are other approaches, beyond visual programming. For example, Programming-by-

Demonstration eases the effort of learning a programming language by allowing users to 
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demonstrate how they would undertake a task, as a means of program creation—the system 

records the user’s actions as a program, for later reuse and/or modification (Lieberman 2001; 

Cypher et al. 2010). Natural Programming attempts to bridge the gap between humans’ natural 

language and behaviours in describing problems and their solutions, and the rather less natural 

instructions usually required to program computers (Pane and Myers 2006).  

Some programming environments combine paradigms. For example, Flip (Good and Howland 

2017) employs both visual programming and natural language, enabling programmers to 

compose game event scripts using visual blocks, while simultaneously providing a natural 

language representation of the resulting script, which can aid learners in sense-checking and 

debugging their programs . The use of multiple representations to support novices in learning to 

program is also a feature of a visual programming environment for physical computing 

development that I used in a previous study with novice Arduino users (Booth and Stumpf 2013). 

I will discuss this in the next section, along with other ways in which the visual programming 

paradigm has been used to make the programming of physical computing devices easier, both 

for children and end-user developers.  

2.7 Supporting physical computing 
development 

Several tools have been developed to make developing physical computing devices easier. 

Some focus on one aspect of physical computing, be that programming or circuit construction, 

while others address both. 

2.7.1 Easier programming in physical computing 

Some research in this area has focused on lowering the bar for programming physical 

computing devices, by providing visual programming environments. For example, Stanford 

University’s d.tools platform enables designers of interactive devices to lay out and connect 

software duals of smart, physical components (e.g. Phidgets (Greenberg and Fitchett 2001)), 

plugged into a dedicated hardware interface connected to their computer, in a visual statechart-

inspired editing environment (Hartmann et al. 2006). They can then use this visual environment 
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to define the interaction behaviours of their device, test these behaviours, and iterate rapidly 

through different design ideas. Motivated by their work with d.tools, the same authors 

developed a tool which employs Programming-by-Demonstration techniques with physical 

computing devices, using direct manipulation to make the programming of interaction easier 

and more efficient (Hartmann et al. 2007; Fourney and Terry 2012).  

Several visual programming environments have been developed for Arduino. For example, 

Modkit Micro (Millner and Baafi 2011), which I used in an earlier study (Booth and Stumpf 2013), 

adopts the same blocks-based metaphor as Scratch, as does Scratch for Arduino (S4A) (‘S4A: 

Scratch for Arduino’ n.d.), allowing users to create Arduino programs by snapping together 

blocks representing different Arduino code elements. In Modkit, a user can switch back and forth 

between the graphical view and a text view of their program, enabling them to see how the 

blocks program translate into Arduino code, and changes made in one view update the other. 

S4A goes one step further by sending the states of sensors and actuators back to the IDE, where 

they can be monitored. Both of these environments present a potentially easier route into 

programming Arduino-based devices, but I have not yet found evidence of significant adoption 

of either environment, or any other VPL for Arduino, by end-user developers. 

2.7.2 Easier circuits in physical computing 

Some work has aimed to make it easier to construct the electronics or hardware aspect of 

physical computing devices. For example, the Programmable Bricks created at MIT Media Labs 

enabled children to easily create physical computing devices by connecting sensors and motors 

to a computer embedded in a LEGO brick and program them using the Logo programming 

language (Resnick et al. 1996). A variation of these bricks, the MIT Cricket, was developed for use 

in science and engineering education, to help children create easily devices that they can use in 

active, hands-on exploration and investigation of concepts (Resnick, Berg, and Eisenberg 2000). 

Some tools have been aimed at end-user developers, rather than children. Parallax’s BASIC 

Stamp, released in 1992, was a microcontroller board incorporating sensors and outputs, aimed 

at hobbyist engineers (Benchoff 2015). These boards dominated the hobbyist electronics market 

for many years, but connecting components to them required soldering, and they could only be 

programmed in one language—BASIC. Other tools aimed to facilitate rapid prototyping by non-

engineers, for example, the MetaCricket—an offshoot of MIT’s Cricket aimed at designers (Martin, 

Mikhak, and Silverman 2000), Phidgets—'physical widgets', developed to help designers and 
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programmers build physical interfaces, with minimal electronics knowledge, and no need for 

soldering (Greenberg and Fitchett 2001), and Calder, which allowed designers to control the 

behaviour of prototypes constructed from modular components—or even traditional circuits 

constructed on a custom breadboard component—through Macromedia Director (Lee et al. 

2004). Gadgeteer (Villar, Scott, and Hodges 2011), also aimed to make it easier for end-user 

developers to build interactive physical interfaces through plug-and-play hardware 

components, however, while it eased the creation of physical devices, programming these 

required knowledge of fully-fledged, general-purpose programming languages and 

environments such as Visual Studio, perhaps limiting its adoption by end-user developers less 

experienced and less confident in programming.  

2.7.2.1 Virtual circuits 

Taking a different approach, some tools enable end-user developers to plan their circuits 

virtually before creating them with physical components. For example, Fritzing (Knörig, Wettach, 

and Cohen 2009), a popular, open source virtual circuit prototyping tool, allows users to 

graphically lay out circuits on a virtual breadboard (see Figure 16, on page 69, for an example of 

a virtual circuit created with this tool). Building upon this, AutoFritz extends Fritzing with 

autocomplete functionality, using datasheet schematics and a database of projects from the 

Fritzing community, to automatically suggest wiring configurations and further modules to add, 

for inserted components (Lo et al. 2019). 

Some tools aim to automate the translation between physical and virtual circuits. CircuitSense 

(Wu, Wang, et al. 2017) translates physical circuits into virtual ones, automatically detecting the 

placement of components and wires in the pins of a custom breadboard and predicting 

component identity. A virtual version of the circuit is then visualised in Fritzing’s Breadboard 

view, where users can perform further editing, for example, revising incorrectly identified 

component types. CircuitStack (Wang et al. 2016) addresses the opposite problem, that is, the 

translation of virtual circuits (breadboard schematics) into physical ones, by sandwiching 

printed circuit paper and a breadboard between custom PCBs. 

Autodesk's 123D Circuits Electronics Lab web application (‘123D Circuits Electronics Lab’ n.d.), 

now discontinued as a standalone product, took virtual circuits one step further, by combining 

virtual circuit construction with a code editor and a simulator, so that end-user developers could 

'upload' their program to their virtual circuit and simulate runtime behaviour. A version of 123D 
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Circuits now exists within Autodesk’s Tinkercad environment, online, along with a number of 

tutorials (‘Learn How to Use Tinkercad’ n.d.). Tinkercad’s 3D modelling tool has proven very 

popular with makers and young people—I used it to design the cards stand described in Chapter 

5—however it is not clear how widely its virtual circuit tools have been adopted. 

Finally, some tools have also proposed ‘blending’ the digital and the physical. Proxino (Wu et al. 

2019) uses physical proxies to bridge between virtual circuits and the physical world, allowing 

circuit designers to test interaction with a virtual circuit via real I/O components.  

In theory, virtual prototype construction and simulation. may help end-user developers to 

identify potential problems with their planned circuits and work out how to rectify these before 

physically building them, however, I have yet to see formal, empirical studies confirming this. In 

practice, this approach may even present different issues. 

2.7.3 Making circuits and programming easier 

Some physical computing development tools tackle the difficulty of both circuit construction 

and programming. A platform that has proven popular with hobbyist roboticists is the LEGO 

Mindstorms robotic construction platform (‘LEGO Mindstorms’ n.d.), which evolved out of MITs 

work with Programmable Bricks. This combines the LEGO Technics system with a 

programmable ‘Intelligent brick’ and modular sensor and actuator components. The brick is 

programmed via a visual programming environment that previously used the LabVIEW engine 

but is now based on Scratch. 

The tool currently most popular with makers—Arduino (Mellis et al. 2007; ‘Arduino’ n.d.)—was 

originally developed to teach physical computing to designers, but has since become the de 

facto physical computing platform for many types of end-user developers constructing 

interactive devices. An open source hardware and software platform, it evolved out of Hernando 

Barrágan’s Wiring project (Barragán 2004; 2016), which allowed non-experts to easily connect 

sensors and actuator components to a microcontroller board, without soldering, and to 

program these circuits in a simple environment based on the Processing IDE (‘Processing’ n.d.). 

Using standard headers, additional hardware circuit boards, called shields, can be stacked on 

top of Arduino boards, to extend their capabilities, for example, to add Wi-Fi or Bluetooth 

communication.  
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As the Arduino platform is open source, there have been numerous clones, extensions and 

adaptations of its hardware designs, for example, an offshoot of Arduino, LilyPad Arduino, was 

developed specifically for e-textiles, by Leah Buechley (2005). The LilyPad microcontroller board 

and components (e.g., sensors and LEDs) are designed to be sewn onto fabric and connected 

using conductive thread rather than wires. LilyPad was enthusiastically adopted by crafting 

communities, and has been used successfully to engage otherwise underrepresented groups in 

STEM activities, for example the creation of programmable wearable, interactive devices 

(Buechley and Hill 2010). Studies have also shown the potential for e-textiles toolkits and 

curricula to help learners understand STEM concepts (Peppler and Glosson 2013; Fields, Searle, 

and Kafai 2016), including some of those mentioned earlier, which are prone to misconception. 

Arduino’s relative ease of use, compared to previous ways of developing physical computing 

devices, is one of its biggest draws for end-user developers, however, using the Arduino platform 

still requires some measure of knowledge and skill in programming and electronics. The Arduino 

IDE—a no-frills, notepad-style editor—has a simple, uncluttered interface that appears to 

simplify the programming of Arduino-based devices. However, while many refer to the “Arduino 

language”, the user is, in fact, programming in C/C++ (Williams 2015), albeit with the benefit of 

additional libraries, referenced as standard within the IDE. These make communication between 

the computer and Arduino board easier (including the uploading of programs to the 

microcontroller—previously not an easy task for non-experts), and abstract some of the more 

complex C/C++ code that users would otherwise have to write to achieve the same results, into 

useful functions specific to the platform. It is therefore unsurprising that the novice Arduino 

programmers in my earlier study—all end-user developers—experienced numerous learning 

barriers when using it (Booth and Stumpf 2013). Equally, it may be easy to connect Arduino to a 

solderless breadboard, but in connecting components to the Arduino board and one another, to 

create a circuit, the same concepts and rules apply as in any other circuit—i.e., electrical circuit 

theory that so many learners struggle to understand and apply (section 2.3). 

We might conclude that modular hardware platforms based on plug-and-play components will 

remove the need for end-user developers to acquire knowledge of electronics engineering—

certainly, these platforms show promise within a rapid prototyping context (Sadler, Shluzas, and 

Blikstein 2017)—and that environments which simplify programming considerably, for example, 

visual environments, will take all of the pain out of programming physical computing devices. 

However, with the exception of LEGO Mindstorms, to date there is limited evidence of adoption 
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of these tools by end-user developers. By comparison, there is undeniable evidence of Arduino’s 

popularity in physical computing hobbyist communities, despite it potentially requiring more 

specialised knowledge to use than some of the other tools. What might explain this? Perhaps 

these tools present different types of barriers and constraints.  

Cost may be a factor. Arduino has a relatively low cost of entry—the boards are affordable, 

especially clones, and many of the components used to create Arduino-based circuits—with the 

exception of shields—are standard, off-the-shelf electronic components. By comparison, 

modular hardware platforms are typically more expensive. An artist wishing to create an 

installation involving a large number of LEDs, for example, may therefore face considerable 

expense if they were to use modular LEDs instead of standard ones. The form factor of modules 

may also physically constrain what can be developed, sometimes being larger than standard 

components, due to the additional circuitry they contain, or they may rely on proprietary types 

of connection, limiting their flexibility. However, for some end-user developers, the limitations or 

trade-offs of modular hardware platforms may be well-outweighed by the ease of use in rapidly 

developing a working prototype, without the difficulty of conventional circuit construction and 

its potential obstruction to creativity (Sadler, Shluzas, and Blikstein 2017). 

Programming environments and notations may also impose constraints. For example, visual 

programming has achieved recognition, increasingly so in recent years, as a way to make 

programming easier for non-experts, particularly children. However, a common criticism of 

visual programming tools like Scratch is that while they may be useful for learning some of the 

basic concepts in programming, in practice their simplicity sometimes limits what is 

programmatically achievable. I am not aware of any empirical work establishing the boundaries 

of what physical computing devices can be developed using visual programming tools, and this 

is beyond the scope of my research, but it is worth noting. 

The Arduino platform’s association with the Maker Movement, from its outset, no doubt boosted 

its popularity, leading to a plethora of Arduino-related learning and community resources, both 

online and offline. Currently, Arduino is still probably the most well-known physical computing 

platform, which may also go some way to explaining why it continues to be the most widely 

used, despite the potential challenges it may present to novices. 

Recently, alternatives beyond the ‘Arduino monoculture’ (Blikstein 2015) have begun to appear, 

in the HCI research community at least, for easier creation of physical computing prototypes 
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using off-the-shelf components. Taking a generative design approach, Trigger-Action-Circuits 

(TAC) (Anderson, Grossman, and Fitzmaurice 2017), allows novices to specify high-level 

behaviours using a visual programming metaphor. The system then generates candidate circuit 

designs for the user to choose from, according to their needs or preferences, for example, cost, 

component availability or ease of construction. A visual representation of each circuit is 

provided, for the user to copy/reproduce, along with detailed assembly instructions. In a user 

study, participants using TAC to develop the simplified Love-O-Meter (a popular choice for 

physical computing study tasks since its use in Booth et al. 2016) performed much better than 

those using the normal Arduino tools, both in task success and time to complete. The authors 

acknowledge that this kind of high-level design/development may not lead to the same degree 

of learning, but for end-user developers focused mainly on the end product of their efforts, it 

may be an effective way to take some of the pain out of developing physical computing devices. 

The caveat, of course, as with the other tools involving virtual circuits as a precursor to physical 

circuit creation, is that the user still needs to reproduce the physical circuit—my studies show 

that end-user developers can still experience problems and make mistakes, introducing bugs, 

when physically reproducing even simple circuits from images. 

2.8 Supporting troubleshooting and debugging 

Software engineering deals, to a great extent, with finding and fixing bugs:  

"the realization came over me with full force that a good part of the remainder of my 
life was going to be spent in finding errors in my own programs" (Wilkes 1985) 

End-user developers should not only be supported in creating their physical computing devices, 

they should be also supported in troubleshooting any problems which arise in process of doing 

so, for example, finding and fixing any bugs they introduce, or any failure of their device to 

behave as expected. 

Troubleshooting is a form of problem solving (Jonassen 2000). In typical use, the term describes 

the process of locating and rectifying faults in electronic systems or circuits, in the same way 

that debugging describes the act of finding and fixing program faults that a developer has 

introduced. In fact, debugging has previously been referred to as an instance of troubleshooting 

in which program errors rather than device errors are located and corrected (Katz and Anderson 
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1987). In physical computing, particularly in materials aimed at end-user developers or makers 

(e.g. Banzi 2009), the terms troubleshooting and debugging are sometimes used 

interchangeably, as I do at various points in this thesis. 

 

Figure 2. General model of troubleshooting. From Katz and Anderson, 1987 

Troubleshooting (or debugging) is typically modelled as an iterative process, as in the Katz and 

Anderson General Model of Troubleshooting (Figure 2) (Katz and Anderson 1987)—in this model, 

iterations comprise 'Test System', 'Locate error', and 'Repair error' activities. During Test System, 

the developer tries to confirm the existence of a bug; in Locate error, they attempt to localise and 

identify the bug; in Repair Error, they fix the bug; finally, it needs to be verified that the fix has 

been successful, which leads back to Test System. If the test confirms that a bug still exists, the 

developer returns to localisation… and so on.  

In practice, particularly for end-user developers, as I will also show in my studies, these activities 

sometimes co-occur, or happen in a different order, for example, end-user programmers often 

make a number of changes until they establish what fixes the problem or results in the desired 

behaviour (Ko et al. 2011), using ‘repairs’ to locate error—a strategy that Rosson and Carroll refer 

to as “debugging into existence” (Rosson and Carroll 1993). 

Knowing where to look for bugs, what evidence to look for, how to test for the existence of bugs 

and how to interpret the result of testing, is crucial to successful troubleshooting (Morris and 

Rouse 1985). These are diagnostic activities in which hypotheses play a key role (Pennington and 

Grabowski 1990; Jonassen 2000)—troubleshooting activities are directed by ideas about the 

possible or probable cause of symptoms, and false assumptions made by novice programmers 



 

45 

 

and end-user programmers when hypothesising during debugging have been shown to result in 

new bugs (e.g., Ko and Myers 2003; Gugerty and Olson 1986). Successful troubleshooting 

requires a broad range of domain-specific and more generic knowledge—system knowledge, 

procedural knowledge and strategic knowledge, for example—which experts build up over time, 

forming deep and complex mental models that provide a bedrock for successful fault diagnosis 

(Jonassen 2000; Lesgold and Lajoie 1991). However, without the right knowledge, end-user 

developers—particularly less-experienced ones—may have difficulty forming hypotheses (Ko, 

Myers, and Aung 2004), be unable to identify appropriate strategies or procedures to test their 

hypotheses (Kissinger et al. 2006), or lack the practical know-how to put their ideas into action 

(Ko, Myers, and Aung 2004). 

2.8.1 Troubleshooting software problems (debugging) 

As discussed in section 2.2.3, much has been done to understand how end-user programmers 

debug software in order to find ways to support them, and a number of tools, informed by this 

work, have been developed to help end-user programmers diagnose problems, generate and 

test hypotheses, and localise bugs. 

A popular approach for tools developed to support end-user programmers’ debugging is 

through providing features directly within the programming environment, in order to support 

problem-solving activities during programming. The Idea Garden, an extension to end-user 

programming environments, scaffolds end-user developers’ problem solving during 

programming and debugging, suggesting appropriate strategies for overcoming barriers, and 

providing information about useful concepts and patterns (Cao et al. 2015). This situated 

support tool, informed by problem-solving theory (Cao et al. 2013, referring to Simon 1980) and 

Minimalist theory (Carroll 1998), gently guides end-user programmers in developing their own 

problem-solving skills, rather than solving their problems for them. The WYSIWYT (What You See 

Is What You Test) testing methodology has proven effective in helping end-user programmers 

test and localise spreadsheet bugs by providing visual feedback about the “testedness” of cells 

containing formulas (Ruthruff, Burnett, and Rothermel 2005). This methodology uses a strategy 

the authors refer to as “Surprise-Explain-Reward”, again informed by Minimalist theory and 

Attention Investment theory, to reveal information useful to the user in debugging a 

spreadsheet. A variant of this latter tool—WYSIWYT/ML—adapted for machine learning 

environments, helps end-user programmers successfully debug problems in an intelligent agent 



 

46 

 

system (Kulesza et al. 2011). Also in the spreadsheet domain, StratCel, an add-in for Microsoft 

Excel, was designed to support a common strategy used by end-user programmers when 

debugging—"to-do listing”. It enables end-user programmers to offload some of the cognitive 

effort of planning and then tracking what they test, by first automatically generating a list of 

things to check and then allowing the user to mark these off as they progress (Grigoreanu, 

Burnett, and Robertson 2010). In a study, using this tool, end-user programmers found and fixed 

far more bugs than those not using it, demonstrating that support tools which adopt a strategy-

based approach can increase end-user programmers’ success in localising and resolving their 

bugs. Addressing a different problem, the Whyline explicitly supports novice programmers’ 

hypothesis formation during debugging, by allowing them to ask “why did” and “why didn't” 

questions about their programs' behaviour, and mapping these to the sections of code 

potentially responsible for failure (Ko and Myers 2004; 2008).  

To design tools to support end-user developers in the physical computing domain, we can 

potentially draw much inspiration from this work, but we first need to know what they need 

support with. My work addresses this gap. 

2.8.2 Troubleshooting physical computing problems 

Until recently, there were few support tools for troubleshooting the simple circuits typically 

involved in end-user developers’ physical computing prototype development. Most systems 

supporting the troubleshooting of electronics-based systems were aimed at professionals, or 

those training to be professionals, for example, SHERLOCK (Lesgold et al. 1992), an environment 

for teaching sophisticated electronics troubleshooting to fighter airplane engineers.  

Since publication of the findings from the first study in this thesis, other researchers have 

developed a number of novel hardware addons or tools to help novices troubleshoot electronic 

circuits. Most of these tools address the lack of visibility about the internal operating states of 

physical computing prototypes at runtime, employ some kind of enhanced (instrumented) 

breadboard, with measurement data collected (automatically or on demand) from the circuit, 

and present this visually via a GUI, along with additional debugging features, in some cases. For 

example, Toastboard, aimed at novices and informed by interviews with domain experts, 

measures and visualises voltage, and can alert the user to common errors (Drew et al. 2016), 

while CurrentViz uses the virtual ‘Breadboard’ view in Fritzing to show calculated real-time 

visualisation of current flow within a breadboard circuit (Wu, Shen, et al. 2017). These tools show 
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promise, however, I have yet to see more formal empirical studies demonstrating their efficacy 

in typical end-user development tasks. Also, most only support the troubleshooting of circuits, 

not program-related problems.  

While, as discussed in section 2.7, there are now platforms and environments which make 

physical computing development somewhat easier for non-experts, they usually lack the 

sophisticated types of debugging tools found in most professional programming environments. 

The current Arduino IDE has a message console, where compiler errors are displayed, as well as 

a Serial Monitor terminal that can display program output and which is often used for 

debugging, but until a recent beta version of Arduino IDE, which contains a live debugger, there 

was no specific debugging support available within the platform. Certain plugins enable the 

debugging of Arduino projects in Microsoft Visual Studio, however, as others have argued, a 

fully-fledged professional IDE may be daunting to inexperienced end-user developers 

(Repenning and Ioannidou 2006). Equally, novice end-user developers appreciate the simplicity 

of the Arduino’s notepad-style programming interface, despite it providing them with very little 

assistance in troubleshooting their problems (Booth and Stumpf 2013). 

Bifröst (McGrath et al. 2017) is the first tool I have found aimed at end-user developers that 

provides tools to help users debug or troubleshoot their programs, circuits and the interaction 

between these. Like some of the circuit troubleshooting support tools previously mentioned, its 

dashboard-style interface exposes visualisations of electrical activity (digital and analog signals) 

alongside an enhanced serial console and code editor, and allows users to set breakpoints, 

monitor variables and navigate back and forth within a recorded trace. Electrical signals are 

captured from the Arduino pins via a custom PCB shield, connected to a logic analyser.  

To my knowledge, the circuit debugging tools I have described are still at the conceptual 

research prototype stage, and without further studies, beyond the exploratory work reported, 

there remain unanswered questions regarding their efficacy in helping end-user developers, 

particularly novices, resolve their problems, or whether they pose different problems. In the 

meantime, there is currently still little support for this population in troubleshooting. Some 

websites and books provide checklists for troubleshooting problems and failure (e.g. Taylor 

2010; Craft 2013), but as previously discussed, end-user developers in this domain might benefit 

from different approaches to scaffolding their troubleshooting—the physical card-based 

support tool I developed, which I will describe in Chapter 5 (see also Booth et al. 2019), informed 

by the empirical work I will reported in the next two chapters, represents such an approach.  
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Chapter 3 
 

Problems experienced by end-user developers in 
a physical computing task (Study 1A) 

3.1 Introduction 

To support end-user developers in developing physical computing devices, we need to 

understand what challenges they face. 

In this chapter I describe a study investigating the problems faced by end-user developers when 

developing physical computing devices. This was an exploratory study, with the goal of 

addressing a lack of knowledge about end-user developers in this domain, and establishing 

what they have most trouble with during development.  It aimed to address the following. 

Firstly, the lack of empirical knowledge about the type and extent of the problems faced by end-

user developers during development, and the locations or activities in which these occur. As 

physical computing development involves both programming and electronics, there is potential 

for different problems than have been observed in programming alone. 

Secondly, knowing whether factors such as self-rated expertise and self-efficacy play a role in 

the problems, performance and success of end-user developers developing in this domain, 

should indicate whether some end-user developers are more in need of certain types of support.  

Finally, knowing what types of problems end-user developers are able to resolve, and which are 

more likely to result in task failure, will enable us to address/target support efforts towards 

helping end-user developers to overcome the most difficult and severe issues. 
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The study seeks to answer the following thesis-level research question: 

TRQ1: What problems do end-user developers experience when developing a 
physical computing artefact? 

This has been broken down into the following three study-level research questions: 

RQ1: How many problems do end-user developers encounter, and where do these 
problems occur? Are there aspects of physical computing development that 
are particularly prone to problems? 

RQ2: How do end-user developers' self-rated expertise and self-efficacy affect the 
challenges they face in a physical computing development task? 

RQ3: What problems are overcome by end-user developers, and what problems 
prove insurmountable? 

Work that has helped to determine how end-user programmers can be supported in 

programming and debugging spreadsheets or web mashups is underpinned by empirical data 

about the difficulties that end-user programmers experience in these domains. The main part of 

the study was therefore an observation of the problems which arose when end-user developers 

undertook a hands-on physical computing development task. 

3.2 Method 

3.2.1 Overview 

To answer the research questions, I conducted an empirical user study. Participants were given 

45 minutes to develop a physical computing device from scratch to a set brief, while thinking 

aloud; all were given the same task specification and equipment. A rich set of data was 

collected: questionnaires captured information about participants’ backgrounds and self-

efficacy, the task was video recorded (on-screen and off-screen activity), a post-task interview 

captured participants’ understanding of the physical computing concepts involved in the task, 

and any program and circuit artefacts created during the task were saved for later scrutiny. 
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3.2.2 Participants 

Once full ethical approval for the study had been granted (Appendix A), twenty adult end-user 

developers were recruited. Eligible participants had to have some experience of using Arduino, 

but only for personal projects (for example, a hobbyist developing a microcontroller-based 

music-making device), or to support their own work (for example, a researcher developing an 

interactive prototype for use in a study they were running). They could not be (or have ever 

been) employed or commissioned by others specifically to create physical computing 

prototypes, whether or not for monetary gain.  

As this was an exploratory study, I hoped for a broad mix of backgrounds and skills in 

electronics, programming, and physical computing across the sample. As discussed in the 

previous chapter (section 2.1.1), not all end-user developers in physical computing are novices. 

Some may have more experience in a particular aspect of development, for example, an end-

user developer might be employed as a professional programmer, but dabble with Arduino in 

their spare time, and be relatively new to working with electronics. I wondered if any disparity in 

skill might reveal anything interesting—for example, whether participants who rated themselves 

higher in programming expertise might experience fewer programming problems than those 

who rated their programming expertise lower. Therefore, even professional programmers or 

engineers could take part, but only if they met the end-user developer criterion with regards to 

physical computing.  

Table 1. Study 1A inclusion/exclusion criteria for participation 

Inclusion criteria Exclusion criteria  

Adult (Aged 18 or older) Aged under 18 

At least some practical (hands-on) experience of 
using the Arduino platform, with, as a minimum, 
both of the following (although not necessarily in the 
same project): 

 Experience of using LEDs in an Arduino 
project AND 

 Experience of using at least one type of 
analog sensor in an Arduino project 

No practical (hands-on) experience of using the 
Arduino platform. 

Experience of using either LEDs or analog sensors in 
an Arduino project, but not both. 

End-user developer: Has only developed physical 
computing prototypes/devices for own use. 

Previously or currently employed/commissioned 
specifically to develop physical computing 
prototypes/devices. 

Able to attend, in person, a 1.5-hour session  Unable to attend, in-person, a 1.5-hour session  
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As a minimum, participants had to have experience of using LEDs in an Arduino project, as well 

as at least one type of analog sensor, although not necessarily together. This would ensure 

some familiarity with the types of components involved in the task, and the methods used to 

programmatically control them. 

Table 1 summarises the inclusion and exclusion criteria for participation in the study. If a 

prospective participant met all of the inclusion criteria, they were deemed eligible to take part; a 

person meeting any of the exclusion criteria was deemed ineligible. 

3.2.2.1 Recruitment 

Recruitment was via several channels. As I wanted to target hobbyists, I contacted a number of 

different Maker communities (e.g., London Hackspace, MzTEK, London threads-space, London 

Arduino meetup group, Not Just Arduino group, and Dorkbot London, and with permission, sent 

a call for participation to their mailing lists. To reach end-user developers in other communities,  

makers in my personal network disseminated my call for participation online and offline, 

including via several university student mailing lists, and a poster pinned to noticeboards at 

several London universities (Appendix B). I also posted on social media at regular intervals 

(Twitter and Facebook), first setting up a Google document containing basic information about 

the study that I could link to, keeping emails and posts succinct. 

Interested respondents were sent a copy of the participant information sheet (Appendix C) 

providing full details about the study, so that they could determine their eligibility and decide 

whether they wished to participate. Prospective participants were screened for eligibility and 

only those who met all of the criteria for participation were invited to take part. 

3.2.2.2 Who took part? 

Twenty adult end-user developers were recruited—8 females and 12 males, with a mean age of 

31.8 years. Table 2 shows the ages, gender, and occupations of those who took part. 

Demographic, experience and expertise data were collected from participants via a background 

questionnaire (Appendix E, described in sections 3.2.3.1 and 3.2.5.1); self-efficacy ratings were 

captured via a second questionnaire (Appendix F, described in sections 3.2.3.3 and 3.2.5.2).  
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Descriptive statistics were used to summarise these data (Appendix V). As hoped, there was a 

broad mix of backgrounds and experience across the sample, which I will now describe in 

greater detail.  

Occupation 

Participants included both students (6) and professionals (14) and came from a variety of 

disciplines. Only two people currently employed as IT professionals took part—one software 

developer and one systems analyst—but seven participants indicated that they had been 

employed as programmers at some point. Only one engineering professional—a broadcast 

engineer—took part. All were end-user developers in physical computing, as specified. 

  

Table 2. Study 1A participants 

Ptc  Age Gender Occupation 

P01 27 Female Post-Doctoral Researcher (Human-Computer Interaction) 

P02 27 Male Broadcast Engineer 

P03 22 Female PhD Student (Computer Science) 

P04 25 Female PhD Student (Media & Arts Technology) 

P05 32 Female Project Manager (Arts) 

P06 46 Male Events/Content Producer 

P07 30 Male PhD Student (Media & Arts Technology) 

P08 33 Male Restaurant owner 

P09 29 Female Director and Research Consultant (Technology & Arts) 

P10 34 Female Project Manager (Media & Technology) 

P11 53 Male High School Substitute Teacher (English Literature) 

P12 41 Female University Lecturer (Fashion Marketing) 

P13 38 Female Student (Science & Human Physiology) 

P14 32 Male Software Developer 

P15 32 Male Post-Doctoral Researcher (Computer Science) 

P16 29 Male Systems Analyst 

P17 28 Male PhD Student (Human-Computer Interaction) 

P18 30 Male Education Programme Manager (Science) 

P19 26 Male Industrial & Web Designer 

P20 22 Male MSc Student (Computer Science & Embedded Systems) 
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Experience 

As shown in Figure 3, participants generally had more years of programming experience 

(mean=10.89, SD=7.53) than electronics experience (mean=6.75, SD=7.63) or physical computing 

development experience (mean=3.23, SD=2.03). 

 
Figure 3. Participants’ experience, in years 

Training / instruction 

Most (16 participants) had received some form of training or instruction in programming (Figure 

4), ranging from one-off workshops to formal education—twelve had attended at least one 

programming module at a university level. Fewer had received training in electronics (9) or 

physical computing (13). Most physical computing instruction had been in the form of 

workshops, often introductory, although three participants had taken a university module. 

Instruction in electronics was least represented. Five had taken at least one module at university 

level, while four had been taught electronics at school or attended specific workshops. 

 
Figure 4. Participants' training 

Self-rated expertise 

To succeed in a physical computing task, end-user developers need to be sufficiently proficient 

at programming, and at constructing an electronic circuit, but we would hardly expect them to 

be experts. Participants rated their expertise in programming, electronics and physical 
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computing on a scale of 1 (complete beginner) to 7 (total expert). On average, rated themselves 

slightly higher in programming expertise (mean=4.40, SD=1.47) than electronics (mean=3.10, 

SD=1.33) or physical computing (mean=3.60, SD=1.19) (Figure 5). These are then not all complete 

novices but represent a good cross-section of end-user developers in physical computing. 

 
Figure 5. Participants’ self-ratings of expertise in physical computing, programming and electronics 

 
Figure 6. Individual participants' self-ratings of expertise (1-7) 

Self-efficacy 

Self-efficacy is an individual’s belief in their capability to accomplish something, even in the face 

of difficulty. Participants’ self-efficacy was captured via a separate questionnaire (Appendix F, 

described in sections 3.2.3.3 and 3.2.5.2), with analysis resulting in a single self-efficacy score per 

participant, out of a maximum of 100. As shown in Figure 7, most participants were relatively 

self-confident at tackling a physical computing task of moderate complexity using the Arduino 

platform, with a mean score of 69.70 for the sample (SD=10.78).  

 

 

Figure 7. Individual participants’ self-efficacy scores (out of a maximum of 100) 
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3.2.3 Materials 

A variety of materials were developed for this study. These will now be described. 

3.2.3.1 Background questionnaire 

This questionnaire (Appendix E) captured demographic information from each participant, as 

well as information about their background and experience in programming, electronics and 

physical computing. This was created using online survey software (SurveyGizmo, now known as 

Alchemer (Alchemer LLC, n.d.)) and was completed by participants in advance of the in-person 

lab session, to keep the time required for in-person participation to a minimum (see section 

3.2.4.1). An initial statement asked participants to indicate their consent to this data collection, 

prior to answering any questions.  

3.2.3.2 Informed consent form 

An informed consent form (Appendix D) was created to capture each participant’s agreement to 

taking part in the study and their acknowledgement that they understood what this would 

entail, including video recording of the session, and the uses of any data gathered.  

3.2.3.3 Self-efficacy questionnaire 

The self-efficacy questionnaire (Appendix F) was based on a validated, standard questionnaire 

about self-efficacy in computer use (Compeau and Higgins 1995), and captured participants’ 

self-efficacy in completing a physical computing task of moderate complexity using the Arduino 

platform.  

3.2.3.4 Physical computing development task 

The main part of the in-person session was the hands-on physical computing development task. 

For this task, participants were asked to develop a physical computing device, from scratch, to a 

given brief, using the Arduino platform.  
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The task was designed to involve some of the most fundamental concepts in physical 

computing. It was a simplified3 version of the third project in the official Arduino Starter Kit 

(‘Arduino Starter Kit’ n.d.), which is aimed at people new to the Arduino platform. As this is an 

early project in the set of ten Starter Kit project tutorials, it was reasonable to assume that 

participants would already have some exposure to most, if not all, of the concepts involved in it, 

for example, connecting LEDs to an Arduino and programmatically controlling them, or 

connecting a sensor to an Arduino and programmatically reading data from it. 

The device that participants were asked to build was a “Love-O-Meter”, which uses three LEDs to 

visualise the readings from a temperature sensor (Figure 8). The successfully constructed device 

should behave as follows: When the sensor measures the ambient room temperature, no LEDs 

should be lit. As temperature increases, LEDs should light up in turn, as specific temperature 

thresholds are reached, until all 3 LEDs are lit. As the temperature drops, the LEDs should turn 

off, one by one, as the same temperature thresholds are reached, until the ambient room 

temperature is reached, and no LEDs are lit. Temperature is changed by holding the sensor 

between the fingers (to increase the temperature) or releasing it (to decrease the temperature).  

 
Figure 8. Love-O-Meter prototype in action 

Building the Love-O-Meter device requires creating an electronic circuit and programming it to 

achieve the specified behaviour. It is possible to first build the whole circuit and then write the 

whole program, or alternatively, to decompose the task into smaller parts, building the circuit 

 

3 The original project included code that converted the raw ADC (analog to digital conversion) readings 
(read from the analog pin), first to voltage and then Celsius. The specification used in this study included 
no conversion, reducing the complexity of the program. 
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and writing the program for discrete functional units (e.g., the sensor circuit and code), and 

establishing that they work as expected before extending or combining them. Indeed, such an 

incremental approach to development is considered good practice, however, to give an idea of 

what is involved in constructing the circuit and writing the program, I will here describe them as 

two separate activities:  

Building the circuit 

Building the circuit requires seating 7 electronic components (1 x temperature sensor, 3 x LEDs 

and 3 x resistors) in a solderless breadboard and connecting them to appropriate pins or sockets 

on the Arduino microcontroller board, and to one another, where appropriate. Figure 9 shows 

an annotated layout of the simplest circuit that could be built to satisfy the task brief.  

 
Figure 9. Model Love-O-Meter circuit 

The temperature sensor is an analog device, therefore it must be connected to an analog pin on 

the Arduino board, so that continuous temperature values can read from it. At runtime, the 

Arduino will convert these analog values (voltage readings) into digital values (in the range 0-

1023) that can be used by the program. The sensor has 3 legs, and each requires a specific type 

of connection. Although more complex configurations can be used, the sensor requires, at the 

very least, a connection to Ground, a connection to power (e.g., the 5V pin on the Arduino) and 

the connection to an analog pin already mentioned. Connecting the sensor legs incorrectly (e.g., 

swapping two of the connection types) can result in erroneous behaviour, or even damage to 

the sensor. 
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The LED anodes must be connected to digital pins on the Arduino board, so that these pins can 

be used as switches, by the program, to turn the LEDs on or off. The LED cathodes must be 

connected to Ground. LEDs are diodes, which means they have polarity—they work only in a 

specific direction. Therefore, it is crucial that these connections are not reversed, or the LEDs will 

not work. A resistor should be connected in series with each LED, either between the cathode 

and Ground, or between the anode and the digital pin, to regulate current. Not doing so can 

lead to burning out the LEDs prematurely or even damaging the Arduino. The resistor needs to 

be of a value appropriate for the LED, in the context of the circuit. Too low a value and the 

resistor will not prevent damage; too high and the LED will not light up.  

As the sensor and LED components require, in total, four connections to Ground, but the 

Arduino board only has three Ground pins, it is necessary to create a Ground rail on the 

breadboard, which allows multiple components to share a common Ground connection. 

Finally, connecting the circuit, via the USB port on the Arduino board, to a USB port on the 

computer, enables communication between the IDE and the Arduino board, so that information 

can be sent back and forth between them, for example to upload the program to the 

microcontroller or to return values from the microcontroller to the IDE. This connection also, 

importantly, provides power to the Arduino board and thereby the rest of the circuit.  

Writing the program 

Creating the program requires writing code that reads the current temperature from the 

temperature sensor, compares this value to specified temperature thresholds, and then turns 

the LEDs on or off, as appropriate. Figure 10 shows what the program might look like. 

An Arduino program always contains two specific functions: the Setup() function, which is run 

once when the Arduino is started, and the Loop() function, which runs repeatedly in a loop 

once the Setup() function has been processed and contains the main body of the program.  

Pins on the Arduino to which the sensor and LEDs are connected must be specified, in code, as 

input or output, in the Setup() function. A Serial.begin() statement must also be 

added to the Setup() function, to enable serial communication between the Arduino and the 

IDE. Variables can be created to store the temperature values read. In the main body of the 

program—the Loop() function—the temperature is read by using the analogRead() 

function, which reads the current value of the sensor pin. The main logic of the program, i.e., the 
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code which compares the current temperature value to specified threshold values and turns 

LEDs on or off, as appropriate, is implemented in the form of conditional statements. 

To determine appropriate values for the temperature thresholds, it is necessary for the 

participant to find out what values are being read from the temperature sensor. This is done by 

using the Serial.println() function to output values read from the sensor to the IDE’s 

Serial Monitor—a terminal window that can be launched within the IDE, often used for 

debugging. Observing the values output to this window, will enable the participant to identify 

first, the value for the ambient room temperature (when the sensor is not held) and second, the 

rate of increase in values when the sensor is held, so that threshold values can be chosen for use 

in the main logic of the program, that is, appropriate values at which to turn the LEDs on or off. 

 
Figure 10. Model Love-O-Meter program 

 



 

60 

 

LEDs are turned on/off with the digitalWrite() function, using the argument HIGH to turn 

an LED on, and LOW to turn an LED off. The delay() function is used to pause for a specified 

number of milliseconds between sensor readings.  

Task resources 

A task instruction sheet (Appendix G) was created, specifying the prototype requirements, 

including desired behaviour and details of any constraints within which the participant was 

expected to operate, for example, the task time, and rules for use of external resources. 

The development board chosen for use in the task was the official Arduino UNO revision 3. This 

is a commonly used starter board, included in the official Arduino Starter Kit. The development 

environment used was the official Arduino IDE (version 1.61 for Windows), running on a Microsoft 

Windows 7 desktop PC. The PC had access to the internet and the Chrome browser was 

available for browsing the Web. 

A kit of equipment was created, for use in the task, starting with a selection of electronic 

components from the Arduino Starter Kit. This included TMP36 temperature sensors, different 

coloured LEDs (red, green, yellow, blue) and resistors in a wide range of different values (4.7Ω, 

220Ω, 330Ω, 560Ω, 1kΩ, 10kΩ, 1MΩ, 10MΩ). Several of each component were provided, in case 

participants wanted (or needed) to swap out components during the task, and only new 

components were provided, so that there was no chance of a participant using a component 

that had been damaged by previous use, or choosing a particular resistor because it had been 

used by a previous participant (used resistors are obvious in that they are no longer perfectly 

straight). The components were labelled and only component types needed for the task were 

provided, as I was more interested in whether participants could develop the prototype, than in 

whether they were able to recognise components. Several values of resistor were provided as 

this would allow me to see whether participants were able to select appropriate values of 

resistor for use with the LEDs. The kit also contained jumper wires (also known as jump wires), 

which are a type of wire designed for prototyping convenience—they terminate in a hard pin at 

each end, making it easy to insert them into breadboard holes or the pins on an Arduino board. 

Several different colours of wire were provided, to enable participants to follow wiring colour 

conventions (e.g., red for power, black for ground, different colours for different 

signals/components etc) should they wish to do so. The kit also contained a USB cable, for 
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connecting the Arduino board to the PC, and a digital multi-meter, in case participants wished 

to measure any aspect of their circuit.  

3.2.3.5 Interview topic and questions guide 

A guide was created to direct questioning in the interview that followed the task, to elicit 

participants’ understanding of physical computing concepts. Topics and questions related to 

the concepts and equipment involved in the task. To create it, a range of resources were 

consulted, including books about physical computing and Arduino, websites about physical 

computing development, online physical computing tutorials, and literature on programming, 

electronics and physical computing. Although captured, interview data were not analysed—I 

originally planned to also look at mental models as part of this investigation into end-user 

developers’ problems, but decided instead to investigate troubleshooting, in depth, (Chapter 4), 

with that ultimately becoming the focus of this PhD (discussed further in section 7.3). 

3.2.4 Procedure 

Once it was established that a respondent was eligible and wished to take part in the study, a 

date and time were agreed for them to attend an in-person session in the Centre for HCI Design’s 

Interaction Lab at City, University of London. They were then sent a confirmation email 

containing instructions for attending the session, and a link to the background questionnaire, to 

be completed prior to the session. 

The participation procedure is summarised as follows: 

1. The participant first completed a background questionnaire online, at an emailed URL. 

2. They subsequently attended a scheduled in-person session, structured as follows: 

2.1. Completion of a self-efficacy questionnaire to measure their confidence in 

physical computing development tasks.  

2.2. A hands-on task, in which they developed a physical computing prototype, 

from scratch, to a given brief, using equipment provided, while thinking aloud. 

At the end of the task, they demonstrated what they had built. 

2.3. A post-task interview, in which they explained the prototype workings, and 

answered questions about the concepts involved in the task.  
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Figure 11 shows the sequence of activities, which will now be described in detail. 

 
Figure 11. Study 1A: Sequence of activities 

3.2.4.1 Background questionnaire (online completion) 

Participants were asked to complete the background questionnaire online, in advance of the 

session, as the in-person session would already take a considerable amount of time (1.5 hours). 

A link to the questionnaire was sent in the participation confirmation email. On being opened, 

the questionnaire required participants to digitally provide their consent for this data collection 

prior to answering any questions. 

3.2.4.2 In-person session 

On arrival at the Interaction Lab the participant was given a verbal introduction to the study, 

asked to read the participant information sheet again, and signed the informed consent form. 

Self-efficacy questionnaire: Participants completed the self-efficacy questionnaire, after first 

being familiarised with the content, including clarification of what was meant by “a task of 

moderate complexity”—an Arduino development task that involved prototyping a circuit which 
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involved a sensor and three LEDs, and writing a program to coordinate and control their 

behaviour. 

Physical computing development task: Participants were then given the physical computing 

development task. They were first taken through the task information sheet verbally, ensuring 

that they understood the specification of the device they were being asked to develop. They 

were shown the equipment they could use, and the constraints within which they were expected 

to operate were explained. Participants were given 45 minutes to complete the task and asked 

to think-aloud while doing so. Should they forget to think aloud during the task, they were 

reminded to do so. During the task they could ask questions to clarify the brief but could expect 

no other help or advice in the development of the prototype. Participants were also allowed to 

use additional resources to help them complete the task, for example, they could use help 

content and example programs built into the Arduino IDE, or search online for other sources of 

information. They were allowed to copy code and use resources to guide the construction of the 

circuit, as reusing and adapting code or other content created by others is a common behaviour 

for end-user developers, but could not search for and copy an exact solution to the brief, i.e., a 

project in which LEDs are controlled in response to readings from a temperature sensor. Finally, 

they were asked to keep the prototype within a marked area of the desk during development (to 

keep it within the video recording frame). 

When the participant was happy that they understood what they were being asked to do, the 

task commenced. Beyond reminders to think aloud, the only facilitator intervention was if there 

was any danger of harm to the participant, or if any problem with the equipment was observed 

that was unrelated to anything the participant had done (for example, with the PC hardware or 

the software running on it). Towards the end of the 45 minutes, they were given a verbal 

reminder of the time remaining. 

At the end of the task, participants were asked to demonstrate the final behaviour of their 

prototype. If they had not succeeded in constructing and programming a physical prototype 

that met the given specification, they were asked to show how far they had got. 

Post-task interview: Participants were first asked to give an overview of what they had created, 

explaining what they had used, how the program and circuit were structured and how the 

individual aspects worked together as a whole. They were then asked questions about the 

concepts involved in the task. Note, again, that these data were not analysed. 
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3.2.4.3 Pilot 

The Starter Kit estimated 30 minutes as the expected time to complete the Love-O-Meter 

project, however, that would obviously be with the benefit of the step-by-step instructions in the 

manual, whereas I wanted to give participants a broad specification of what the prototype 

should achieve and see how they fared without further instructions. I trialled the task and on the 

basis of the results, increased the time to 45 minutes. The entire procedure and materials were 

piloted with an end-user developer who had experience of using Arduino. As a result of this, 

some questions in the background questionnaire (relating to experience of alternative physical 

computing platforms) were removed, and some questions were reworded for clarity. 

3.2.5 Data collection 

3.2.5.1 Background questionnaire data 

The Background Questionnaire (Appendix E) contained 21 questions, capturing two types of 

data: firstly, personal and demographic information (age, gender, occupation) and secondly, 

information about participants’ backgrounds and experience in physical computing, 

programming and electronics. The background and experience questions were grouped by these 

three activities and ordered so that participants were first exposed to the questions about 

physical computing, and then programming and electronics. 

Length of experience: Participants were asked to indicate, in years and months, how long they 

had been doing each activity, from the approximate date at which they had first started. This is 

not an accurate measure of the amount of experience a participant has—for example, they may 

not have programmed frequently or even regularly since they first started programming— but it 

provides an idea of how long they had been exposed to the concepts involved in each activity. 

Level of expertise (self-rated): Participants rated their expertise in each activity, using a scale 

from 1 (complete beginner) to 7 (total expert). While we cannot take this as an objective 

measure of their expertise, it provides some indication of the level of knowledge and skill they 

felt themselves to have in each activity, enabling me to look for any correlation with 

performance or problems (RQ2). 
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Knowledge acquisition: Participants were asked to indicate how they felt they had acquired 

their knowledge and skills in each activity. This was in a multiple-choice question, containing 5 

statements that ranged from ‘totally self-taught’ to ‘totally through training and instruction’.  

Training and instruction: Participants were also asked whether they had received training or 

instruction in each activity (Yes/No). If yes, they were asked to provide a brief summary of the 

training or instruction.  

Employment: Participants were also asked whether they had ever been employed as a 

professional programmer (Yes/No) or to construct/troubleshoot electronic circuits (Yes/No).  

3.2.5.2 Self-efficacy questionnaire data 

The self-efficacy questionnaire (Appendix F) was based on a validated questionnaire about self-

efficacy in computer use (Compeau and Higgins 1995), that has been used in a number of end-

user programming studies. The word of the questionnaire was adapted for the context of the 

study. It contained a main statement: “I could complete a physical prototyping task of moderate 

complexity using the Arduino platform..." followed by 10 questions that related to completing this 

task under particular circumstances, for example “...if I had only the built-in help facility for 

assistance”. When familiarising each participant with the questionnaire, “a task of moderate 

complexity” was verbally defined as a task that involved prototyping a circuit that involved a 

sensor and three LEDs and writing a program to coordinate and control their behaviour.  

In each question participants were asked to first indicate whether they thought they would be 

able to complete the task under the given circumstance (Yes/No). If yes, they had to rate their 

self-confidence in completing it on a scale of 1 to 10. The scores for these 10 questions were 

later summed to create a self-efficacy score out of 100, as is customary for this questionnaire. 

3.2.5.3 Task data 

A variety of data were collected in the hands-on task, chiefly video recordings and the prototype 

artefacts created by participants (program, photographs and Fritzing images of the final state of 

each participant’s physical circuit), and additionally, any notes made by myself or participants 

during the task, and participants’ browser history.  
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Video recordings 

Data about participants’ thoughts and behaviour during the task was captured through video 

recordings from four different vantage points, recording both on-screen and off-screen activity. 

Morae Recorder software was used to record on-screen activity, as well as video of the 

participant’s head and shoulders, using the computer’s webcam, so that their facial expressions 

should be visible. A standalone camera faced the desk from a short distance away, recording the 

participant’s body movement, including interaction with the equipment, and their movement 

between the computer and the rest of the equipment. A second standalone camera was 

positioned directly above the desk, framing a zoomed-in, overhead view of the physical 

prototype (circuit). A roughly A4-sized area of the desk was marked using black tape, and the 

participant was asked to keep the prototype inside this marked area, to ensure it stayed within 

the recording frame. Audio tracks were recorded for all videos, so that these could later be used 

to synchronise the videos—clapping hands together before the task began created an obvious 

spike in the waveform of each audio track, similar to how clapperboards are used in filmmaking 

to facilitate synchronisation of multiple recordings. 

 
Figure 12. Desk and equipment setup. An additional monitor (visible on the right-hand side of the image) mirrored the 

participant’s screen, enabling me to observe on-screen activity during the task in an unobtrusive way.  

In preparation for analysis, all videos recorded for each participant were later synchronised, 

using Adobe Premiere Pro video editing software, to a single, composite, split-screen video, 

showing all camera views at once. Figure 13 shows a still image from one of these videos. During 

analysis, these composite videos enabled me to see what was happening from multiple 

viewpoints simultaneously. 
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Figure 13. Still from composite split-screen video of a participant undertaking the task, showing 1) on-screen activity (large 

panel), 2) view of the participant’s head and shoulders (small panel embedded within the screen activity panel), 3) desk-facing 
view (top right panel) and 4) overhead, zoomed-in view of the circuit (bottom right panel) 

The content of these videos was transcribed, using Inqscribe multimedia transcription software 

(Inquirium, LLC, n.d.), creating a written record of what each participant said and did during the 

task, i.e., verbal and non-verbal behaviour. Quotation marks were used to indicate the start and 

end of verbatim quotes, to differentiate these from descriptions of behaviour. Creating these 

transcripts enabled me to immerse myself in the data, through repeatedly watching and re-

watching the videos, in order to capture the verbal protocol of what participants said during the 

tasks, and to observe and describe what else was happening. When describing actions or other 

non-verbal behaviour, the aim was not to create a full, comprehensive record of all activity at the 

most granular level possible—pragmatically, with approximately fifteen hours of task video this 

would have been impractical—but to summarise participants’ actions, for example “Removes 

the red LED from the breadboard”.  

These written records were imported into Excel, creating twenty transcript spreadsheets in 

total—one for each participant—all stored within one Excel workbook. Figure 14 shows an 

extract from one of these spreadsheets. When analysing task data—for example, to identify 

problems encountered by participants (section 3.2.6.2)—the transcript spreadsheets were used 

in conjunction with the composite videos—I not only read the written transcripts and applied 

codes to these, I also scrutinised the videos when doing so, as rich representations of activity. 
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Figure 14. Extract from a transcript spreadsheet 

Prototype artefacts: program and circuit 

After each session, any programs created by the participant were saved, and the participant’s 

circuit (the physical hardware part of the prototype, comprising the Arduino board, the 

solderless breadboard, and any components and wires that had been added to them) was 

digitally photographed from a number of angles. Figure 15 shows two examples of these 

photographs, taken of the same circuit.  

The Fritzing software application was also used to create a visual record of the final circuit 

configuration—as the Arduino boards and breadboards were reused in subsequent participant 

sessions. Figure 16 shows an example of a Fritzing image of a participant’s circuit. 

 
Figure 15. Photographs of a participant’s circuit 

Additional data 

A Chrome browser plugin was used to export the participant’s browser history to a separate file, 

to keep a record of all web pages that the participant had visited during the task, should these 

data prove useful during analysis. Any notes or diagrams created on paper by the participant 
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during the task or interview were scanned and saved as digital files, in case these also proved 

useful during analysis. During the task I sat close enough to the participant to observe them in 

an unobtrusive way (see Figure 12) and took handwritten notes—these were also scanned and 

saved as digital files. 

 
Figure 16. Fritzing image of a participant’s circuit, showing the Arduino board (left) and the solderless breadboard (right) 

3.2.5.4 Post-task interview data 

Participants’ answers to the post-task interview questions were captured as video-recordings, 

using the same camera angles, so that I could see not only the participant’s face (and therefore 

their expressions) but also any gestures they made, for example, when referring to their 

prototype. When discussing their program, participants were asked to use a mouse, rather than 

their fingers, to point to things on-screen, so that this would be captured by Morae Recorder.  

3.2.6 Data analysis 

To answer the research questions, I analysed the data using mixed methods, summarised as 

follows: 

RQ1: How many problems do end-user developers encounter, and where do these 
problems occur? Are there aspects of physical computing development that 
are particularly prone to problems? 

To address RQ1, the task transcripts and videos were analysed for evidence of problems evident 

in participants’ comments and behaviour (section 3.2.6.2). To determine the types of problems 
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experienced or introduced by participants, problem type codes were applied to the transcripts 

for each problem instance, (section 3.2.6.3). To determine where—i.e., in what aspects of 

development—participants experienced problems, location codes were applied, as sub-codes, 

to each of the problem type instances (section 3.2.6.4). 

These results were aggregated and summarised using descriptive statistics. 

The task data were also analysed for participants’ task success (section 3.2.6.6). I then looked for 

correlation between task success and the number of problems, problem types and locations of 

problems. I used statistical tests to check the results for significance. 

RQ2: How do end-user developers' self-rated expertise and self-efficacy affect the 
challenges they face in a physical computing development task? 

RQ2 was answered by analysing data from the background questionnaire and self-efficacy 

questionnaire data in conjunction with the coded datasets from answering RQ1. 

To identify any relationships between participants’ backgrounds and the problems they 

encountered, SPSS was used to check for correlation between background variables (self-

efficacy scores and self-rated expertise in programming, electronics, and physical computing) 

and the number of problems, problem types and problems per location. I also looked for 

correlation between these background factors and task success. Statistical tests were 

performed to check these results for significance. 

RQ3: What problems are overcome by end-user developers, and what problems 
prove insurmountable? 

RQ3 was addressed first by analysing the problem datasets (RQ1), now coding whether or not 

participants had managed to resolve/overcome each of the obstacles or bugs they had 

encountered (section 3.2.6.5). 

The resulting, coded dataset was analysed for the number and proportion of problems that 

participants did or did not overcome, individually and across the sample, and the types and 

locations of these problems. Further analysis included comparing the number and proportion of 

each type of problem resolved in each location. 

These results were analysed in conjunction with task success data (RQ1), to determine and 

compare how many (and what proportion of) problems, of what types and in which locations, 
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successful and unsuccessful participants were able to overcome. These results were further 

analysed in relation to program and circuit correctness (section 3.2.6.7), to check for any 

difference in performance between participants who failed the task but still managed to 

complete the program or circuit correctly, and those whose circuits or programs were incorrect.  

The task transcripts of unsuccessful participants were then used to determine the cause of each 

unsuccessful participant’s task failure (section 3.2.6.8). These results were then aggregated, to 

reveal what type (locations) of bugs were responsible for task failure. 

Finally, once it was established which bugs participants had struggled to overcome, and which 

bugs had led to most task failures, I was able to look deeper into the transcripts, to get a sense 

of participants’ difficulties in resolving these bugs. 

3.2.6.1 About the coding process 

In the above summary of analysis steps, and the descriptions of coding schemes that follow this 

section, the process of coding qualitative task data sounds far more linear than it was in 

practice. Coding occurred in roughly the order described, however, the coding schemes were 

developed and refined through considerable iteration over the dataset.  

In preparation for coding, I created an initial definition of ‘problem’, based on looking for 

evidence of difficulty or impediment to progress (see section 3.2.6.2). Creating the written 

transcripts had already made me aware of some of the difficulties or issues that I could expect to 

find in the dataset, but I also compiled a list of additional things to look out for, synthesized from 

the literature, my previous experience of coding learning barriers (Booth and Stumpf 2013), and 

my domain knowledge of physical computing and of development in general. Guided by these 

sensitizing concepts, I read closely through the transcripts, using the videos for extra 

context/detail, looking for any evidence of difficulty, or impediment to progress, and applying 

the problem code where appropriate, making note of any new rules. As I progressed through the 

dataset, encountering evidence of new and different challenges faced by participants, the 

coding rules and list of examples evolved. If unsure of something, it was flagged up for 

discussion. Transcripts were repeatedly revisited, to review in light of new rules, checking 

previous coding for consistency, and making amendments where appropriate. While inter-rater 

reliability checks were not formally conducted, portions of the dataset were discussed and 
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jointly coded with one of my PhD supervisors on more than one occasion, which helped to 

ensure validity of the codes and reliability of application. 

The pattern of iteration, rule refinement and revision applied to all of the qualitative analysis in 

this study, with frequently cycling within and between different levels of coding. For example, 

although coding began with problems, then progressed to problem types and locations, in 

practice, when coding the latter, I might re-encounter something which I felt, on reflection, 

should be coded as a problem, or become aware of a bug that had been somehow overlooked 

during the previous rounds. Notes made when coding instances of problems, in separate 

columns alongside the coded text, formed the basis from which the problem type and location 

codes developed—semi-inductively, as I was already sensitized to the concepts through 

familiarity with the literature. Final codes—and rules for application—were reviewed within my 

supervisory team before final application and extensive re-checking. This happened at two key 

points: firstly, when finalising the coding required to answer RQ1, and similarly, for RQ3, when 

the coded dataset was re-analysed, for evidence of problem resolution. 

As already mentioned, codes were applied to the task transcripts, but I also used the task videos 

throughout the coding process. The videos were a crucial source of rich data when coding, 

particularly in respect to external help seeking by participants, or changes to the program or 

physical circuit, which often required very careful scrutiny, involving repeated rewatching, 

and/or magnification of the video image. However, to verify certain problems—or their 

resolution—I sometimes even reproduced participants’ prototypes (circuit, program or both), to 

correspond with what I saw in the video. During the coding process, descriptions of changes to 

the circuit or program were amended in the transcripts where I felt this to be useful or 

important, for example, to add more granular details about a particular bug or bug fix.  

I will now describe the coding schemes, including the rules for application, in more detail. 

3.2.6.2 Problems 

The task transcripts were coded for evidence of problems. A problem was defined as any 

impediment to progress, that is, any difficulty, action or thought that halted progress or slowed it 

down, or had the potential to do so. In effect, anything that was not something an idealised 

maker would do—one who knew exactly how to complete the task, without assistance, and 

understood every aspect of it—was counted as a problem. Inspired by research into Learning 
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Barriers (Ko, Myers, and Aung 2004), this definition included any verbal or non-verbal evidence 

that the participant was having difficulty determining how to proceed, or in assessing or 

understanding something—similar to what others have also termed information gaps (Kissinger 

et al. 2006). Inspired by previous work on error classification (Reason 1990; Ko and Myers 2005), 

the definition included errors made in conscious planning, assessment and action, rule-based 

mistakes (where expertise failed), as well as knowledge-based mistakes (where expertise was 

lacking). It also included slips and lapses—unconscious errors in execution. I did not apply these 

classifications when coding, but they were catered for within the coding rules and examples. 

Types of evidence 

I looked for evidence of problems in the actions, verbal comments and other non-verbal 

behaviour of the participants, using the task video transcripts in conjunction with the task 

videos themselves to identify problem instances. In some cases, the evidence of a problem 

might be obvious, for example, a participant wiring up an LED incorrectly, or stating “I need to 

find out how to wire up this sensor”, or “Is this working? I really don’t know”. Other evidence might 

be less obvious, for example, a participant looking puzzled on viewing output in the Serial 

Monitor.  

It is also worth noting that participants were not always aware they had a problem. For example, 

a participant might introduce a bug but be unaware of it until some time later. All problems were 

coded, not just those of which participants were aware. 

Specific rules 

If multiple components or statements of the same type were involved, for example, a participant 

wired up all 3 LEDs incorrectly, or omitted a semi-colon from each of 3 variable declaration 

statements, these were coded as 3 separate problems. 

Once a problem had been noted, subsequent evidence of the same problem observed 

immediately after the evidence of the initial problem was not coded as a new problem. However, 

if any different activity occurred between evidence of a problem and further evidence of it, the 

second evidence was counted as a new problem, as it proved too difficult to track problems as 

unique problems (see next section). Often the problem might also have changed slightly, for 
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example, a participant may have formed a hypothesis that affected their assessment of the 

current situation and their challenge in addressing it. 

Difficulty in tracking problems 

I originally intended to track problems as unique problems, however, in practice this proved 

impractical. Problems were frequently nested. A single problem might subsequently decompose 

into further sub-problems, or lead to new, different problems before the original problem had 

been resolved. For example, when addressing an issue of not knowing how to wire up the 

sensor, the participant might find a wiring diagram online that showed how to do this, but 

subsequently have trouble deciding whether the configuration was appropriate for the current 

prototype, or determining which way around the sensor in the diagram was oriented, in order to 

map the connection information to the seating of the actual, physical sensor component in the 

breadboard. 

Participants also did not always deal with problems in a linear fashion. Sometimes a participant 

would leave a problem to deal with something else, possibly coming back to it later, but 

possibly not. For example, a participant might not be able to interpret the output in the Serial 

Monitor, resulting from incorrect wiring of the sensor, but decide to move onto adding and 

programming the LEDs regardless, and then later decide to return to looking at the sensor 

output. 

3.2.6.3 Problem types 

A scheme comprising 3 codes was developed to categorise problem instances by problem type. 

Different, more complex categorisation was considered, however, these three categories felt 

useful enough to proceed with, as descriptors of the most fundamental characteristics of 

impediments to participants’ progress. 

• Obstacles were coded on evidence of barriers to overcome. These were often due to 

knowledge gaps. 

• Breakdowns were coded on error in action or thinking, that is, when the participant said 

or did something that was incorrect. 

• Bugs were coded for faults introduced, most often in the circuit or the program. 
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The coding scheme evolved from notes made when applying the problem code, but was heavily 

inspired by Ko and colleagues’ work on software error classification (Ko and Myers 2005) and 

learning barriers (Ko, Myers, and Aung 2004). I was familiar with the concept of learning barriers 

as a schema for classifying hurdles encountered by learners when programming, and the 

potential for breakdowns to occur when they are attempting to overcome them. As I chose to 

include the concept of a barrier within my coding scheme, but not to use the learning barrier 

classifications (see section 2.2.2), the term obstacle was chosen instead, to avoid confusion. 

Table 3 shows each code and its definition, as well of examples of situations where each code 

would be applied. 

Table 3. Problem Type coding scheme 

Chains of problems 

As has been shown in previous work (Ko and Myers 2005; Kulesza et al. 2009) there can be chains 

of problems, for example: 

 An obstacle might lead to a breakdown: in trying to overcome an obstacle, a user may 

make a wrong decision, reach a wrong conclusion, or perform a wrong action. 

 An obstacle might lead to another obstacle: in trying to overcome an obstacle, a user 

may encounter another one. 

 A breakdown might result in another breakdown: wrong thinking—for example, an 

incorrect hypothesis—can lead to wrong action. 

 A breakdown might result in a bug: wrong action might introduce a fault. 

 A breakdown might result in an obstacle: wrong action or thinking can cause another 

barrier for the user to overcome. 

Code Definition Examples of code application 

Obstacle Barrier to overcome.  
Often due to inadequate 
knowledge 

- Not knowing how to connect the sensor. 
- Not knowing how to declare a variable. 
- Not knowing what readings in the IDE’s Serial Monitor mean. 
- Not knowing how to diagnose the cause of unexpected 

failure or erroneous output 

Breakdown Error in action or thought - Miswiring the sensor. 
- Not adding a semi-colon at the end of a variable declaration. 
- Wrong diagnosis of bug symptoms. 

Bug Fault introduced, usually 
in the circuit or program. 
Usually the result of a 
Breakdown. 

- Sensor connected to a digital pin, instead of an analog pin. 
- Syntax error in variable declaration, e.g., missing semi-colon 
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Table 4 illustrates how these chains of problems might occur: 

However, a breakdown might not necessarily result in a bug or a further obstacle. A participant 

might state something incorrect, for example, a misdiagnosis of the cause of unexpected 

prototype behaviour, but then not act upon it; a participant might incorrectly declare an 

unnecessary variable but then not actually use it. 

Table 4. Example chain of problems (partial), showing Problem Type codes 

 Activity / evidence Problem Type 

1 A participant does not know how to wire up the sensor. Obstacle 

2 They find a circuit diagram online that shows them how to do it but despite 
this information, they miswire the sensor, swapping two of the connections 

Breakdown 

3 This error results in circuit problems (faults) that they will need to fix 
although they are not yet aware that there is anything wrong. 

Bug 

4 On viewing the sensor reading values in the Serial Monitor, they note that the 
values are unpredictable. 

Obstacle 

5 The unpredictability of the readings is due to the incorrect sensor 
connections, but the participant wrongly concludes that it may be because 
they did not use a resistor with the sensor. 

Breakdown 

6 They subsequently—and wrongly—connect a resistor to the sensor, between 
the Ground leg and the analog pin. 

Breakdown 

7 This error results in yet another problem (fault) they will need to solve if they 
are to succeed in the task (although, they still show no evidence of realising 
they have done something wrong). 

Bug 

8 On viewing the new sensor reading values, they note that the values are 
different, yet still unpredictable. They do not understand why. 

Obstacle 

3.2.6.4 Problem locations 

A Location coding scheme was applied to the problems dataset, specifically as sub-codes of 

problem type codes, to record where participants experienced problems. This coding scheme, 

also inspired by Ko & Myers’ work analysing the cause of programming errors (Ko and Myers 

2005), eventually comprised four location codes. Although I began with two codes—Circuit and 

Program, the scheme evolved inductively during the process of coding, with two further codes 

added—IDE and Circuit+Program—as a result of encountering problems within the dataset that 

could not simply be coded with either of the two existing codes.  

Table 5 lists and defines these codes, and provides examples of the circumstances under which 

each code might be applied.  
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Where participants showed evidence of missing or incomplete knowledge, the location codes 

were assigned according to the area of knowledge. For example, if a participant searched for an 

example program, the 'Program' location code was assigned. If the participant was unable to 

figure out where to find a particular function/option in the IDE, the 'IDE' location code was 

assigned. A problem could be coded with more than one location, if applicable. 

Table 5. Problem Location coding scheme, with code abbreviation in brackets beneath the code name 

Table 6 illustrates how these codes might be applied to a chain of problems. Figure 17 shows a 

coded portion of a transcript. 

 Table 6. Example of Problem Location codes applied in conjunction with Problem Type codes 

 Activity / evidence Location & Problem Type 

1 A participant does not seat the Ground leg of the sensor properly 
in the breadboard. 

Circuit bug 

2 When they view the sensor readings in the Serial Monitor, the 
readings sometimes drop to zero. They have trouble deciding 
whether this shows evidence of a problem, or is to be expected. 

Circuit+Program Obstacle 

3 They wonder if they might have done something wrong in the 
program, causing this behaviour. 

Circuit+Program 
breakdown 

4 They subsequently act upon the incorrect hypothesis by 
modifying the program. 

Program breakdown 

5 In modifying the program, they introduce a syntax error. Program bug 

Code Definition Examples of code application 

Circuit 
(C) 

Obstacle, breakdown or bug 
involves understanding or 
manipulation of the circuit 

- Not knowing how to connect the sensor 
(Circuit obstacle). 

- Miswiring an LED (Circuit breakdown; Circuit 
bug). 

Program 
(P) 

Obstacle, breakdown or bug 
involves understanding or 
manipulation of the program 

- Not knowing how to declare a variable 
(Program obstacle). 

- Introducing a syntax error in an If statement 
(Program breakdown; Program bug). 

IDE 
(I) 

Obstacle, breakdown or bug 
involves the use or function of the 
IDE 

- Not knowing where to find the Upload option 
in the IDE (IDE obstacle) 

- Clicking on the wrong toolbar button in the 
IDE (IDE breakdown) 

Circuit+Program 
(B) 

Obstacle, breakdown or bug 
involves manipulating, 
understanding or interpreting 
interaction between both 
program and circuit 

- Not being sure why LEDs turn on or off at 
unexpected times (Circuit+Program obstacle) 

- Misdiagnosing bug symptoms in the Serial 
Monitor (Circuit+Program breakdown) 
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Figure 17. Portion of transcript coded with problem type (Obstacle, Breakdown, Bug) and location (Code abbreviations: 

C=Circuit; B=Both, i.e., Circuit+Program) 

3.2.6.5 Problems overcome 

Problems were analysed for whether participants managed to overcome them. A problem was 

counted as overcome if it was resolved. For this analysis, only obstacles and bugs were 

considered. As breakdowns were errors in action or thought, they could not be resolved—only 

the obstacles that led to them, or the bugs that resulted from them, could be resolved. 

Obstacles were counted as overcome if the participant managed to find a solution to the 

problem, whether by finding information to fill their knowledge gap or reasoning until correct 

understanding was reached. For example, an obstacle of a participant not knowing how to 

connect the sensor was counted as resolved if the participant managed to find out how to do 

this. If they subsequently made a mistake when applying the information that they had found, 

the obstacle was still counted as resolved, as the knowledge gap had been filled, irrespective of 

whether the participant had applied the knowledge correctly 

Bugs were counted as overcome if the participant rectified or removed the fault or transformed 

it into a new, different bug. For example, a syntax error bug introduced was resolved if the 

participant managed to rectify the syntax. If the participant introduced a different syntax error 

when rectifying the original bug, the original bug was still counted as overcome, because in 

effect, that particular bug no longer existed. 

Problems were usually overcome by trial-and-error (trying things out or guesswork), existing 

knowledge (participants using what they already knew to solve a problem or reason towards it), 

Activity Obstacle Breakdown Bug

Stares at the prototype, thinking B
Pushes the sensor, watching the LEDs.
Goes back to the datasheet, and scrolls through it. C
"I'm looking in the datasheet again, to see if there's any indication of, uh, what the 
application circuit is, without getting into too much complicated stuff. Which, I've come 
back to the same page again, and (shakes his head) I'm not seeing anything new."
Looks at an application circuit diagram on the datashet
"I can see there is a diagram with this particular sensor, but there's a voltage divider, and I 
don't really understand why there's a voltage divider"

C

"You know what? I'm just going to randomly put in an extra resistor, and make a voltage 
divider, because the datasheet says there is one, so maybe that will help, I don't know"

C

Takes a resistor and starts to change the wiring, adding in the resistor to the sensor C C
"So I've got one resistor going to Ground, which should pull it down, does pull it down, 
and one resistor coming out of here"

C
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or looking things up (using additional resources such as online examples or information, or help 

content in the IDE to find a solution) 

Each problem in the transcript was coded according to whether it was overcome or not. The 

transcripts and videos were used to trace whether each problem was overcome. 

3.2.6.6 Task success 

Task data were analysed for whether each participant had completed the task successfully, i.e. 

achieved the goal of the given task brief—task success was defined as the participant having 

successfully constructed a working prototype that met the specification in the task instruction 

sheet/brief, and with the circuit or program containing no fault(s) that would prevent it from 

behaving as specified—i.e. both correct (see section 3.2.6.7). Participants had demonstrated 

their prototypes at the end of the task, but the task video recordings were also used to 

determine whether the prototype behaved as specified. The saved programs and the circuit 

photographs and Fritzing images were also scrutinised for errors that were not evident in the 

prototype’s runtime behaviour—in some instances, a prototype might appear to behave as 

specified, but the program might contain an error that was not obvious at runtime, for example, 

the use of an incorrect operator in the conditional statements (>instead of >=) might leave a 

gap that was not perceptible to the eye, due to the speed at which the program statements were 

executed. 

3.2.6.7 Correctness of circuit and program 

Participants’ programs and circuits—using the circuit photographs and Fritzing diagrams—were 

analysed for correctness. A circuit or program was considered to be correct if it contained all of 

the elements required in order to meet the brief, configured in such a way as to meet the brief, 

and contained no bugs (faults) that would prevent the prototype from behaving as specified, 

irrespective of whether this failure was visible to the eye at runtime. Correctness did not equate 

perfection—extraneous elements that did not affect the prototype’s runtime behaviour, for 

example, program variables that had been declared but not used, were not counted as faults in 

this analysis, as they had no effect on behaviour. 
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3.2.6.8 Cause of task failure 

Task data were analysed for the cause of task failure. The cause of task failure was considered to 

be the location (circuit, program, IDE) of the first bug (fault) introduced that the participant failed 

to resolve which would prevent the prototype from working as specified, regardless of any 

subsequent, co-existing bugs still unresolved at the end of the task. Note that a participant need 

not have been aware of a bug’s existence, in order for it to be taken as the cause of failure. The 

cause of failure was determined through analysis of the task transcripts.  

3.3 Results 

I will now describe the results of the study, in roughly the order of analysis outlined in the 

previous section. 

3.3.1 How many problems? (RQ1) 

All participants experienced problems, some more than others, showing that each participant’s 

progress was impeded in some way (Figure 18). 

 
Figure 18. Total number of problems per participant. Participants whose columns are green successfully completed the task, 

i.e., developed a working prototype that met the task brief/specification. 

3.3.2 What types of problems? (RQ1) 

All participants experienced obstacles, all but one experienced breakdowns, and all but two 

introduced bugs—most participants (18) experienced all three types of problems. Participants 

encountered a mean of 41.60 obstacles (SD=14.17), 21.05 breakdowns (SD=13.4), and created 
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13.7 bugs (SD=9.85) over the 45 minutes they worked on the task. This means that participants 

struggled a great deal, even though the task was based on a relatively simple Arduino project 

aimed at learners.  

I then investigated whether task success was linked with how many problems were encountered 

(Figure 19). 

 
Figure 19. Number of each problem type, per participant, grouped by task success, ordered by total number of problems 

(obstacles + breakdowns + bugs) 

Only six of the twenty participants achieved task success. A Mann-Whitney test showed that the 

six participants who succeeded had significantly lower total numbers of obstacles (U=13.00, 

p=0.015) and breakdowns (U=10.00, p=0.006) than the fourteen participants who did not 

succeed. Furthermore, although not significant (U=18.00, p=0.051), successful participants also 

marginally introduced fewer bugs. It appears that the successful participants were simply better 

in some way at physical computing development—either knowing more, or doing fewer things 

wrong—than their unsuccessful counterparts. 

3.3.3 Where did problems occur? (RQ1) 

I was interested in where participants' problems were located. Figure 20 shows the count of 

problems in each location. Most problems related to programming, then circuit construction, 

then ‘circuit+program’, with only a few related to the IDE.  
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Figure 20. Number of problems by location 

Breaking these locations down further, by problem type, reveals that the overwhelming majority 

of obstacles (49%) occurred in relation to the program (mean=20.40, SD=8.93), followed by 28% 

associated with circuit construction (mean=11.55, SD=6.36), while 20% of obstacles occurred in 

the interaction between the program and circuit (mean=8.25, SD=7.87). The same pattern also 

held true for breakdowns: 52% occurred in the program (mean=10.95, SD=8.41), while 31% of 

breakdowns were circuit-related (mean=6.45, SD=5.97). This means that participants carried out 

more wrong actions, and made more incorrect assessments and factually incorrect statements, 

when they were programming, than when they were constructing the circuit. I also found that 

bugs introduced by participants related overwhelming to their program (66%) instead of their 

circuit (33%). 

 
Figure 21. Problem types by location 

Figure 21 shows the distribution of obstacles, breakdowns and bugs in the circuit, program, 

circuit+program and IDE. Only very few obstacles (3%) stemmed from use of the IDE (mean=1.05, 

SD=1.39). This echoes findings from end-user programming research which showed that users 

tend to have few information gaps about features of the programming environment and that the 

majority of problems arise due to issues in problem solving on a strategic level, that is, knowing 

how to test or debug, or what to do next (Kissinger et al. 2006).  
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3.3.4 Did self-rated expertise and self-efficacy have an 
effect? (RQ2) 

Recall that I was interested in whether background factors affected the number, type and 

location of the problems that participants experienced, and whether they were able to succeed 

in the task. As mentioned, only six participants successfully built a working prototype that met 

the specification, while fourteen failed to do so.  

To answer this research question (RQ2), the problems analysis results were imported into SPSS, 

along with the data from the background questionnaire and self-efficacy questionnaire. I then 

looked for relationships between participants’ task performance—firstly in respect to task 

success and then the type and location of problems encountered—and their self-ratings of 

expertise and self-efficacy.  

Using participants self-ratings of their own expertise and self-efficacy for this analysis enabled 

me to see whether participants’ perceptions of their own abilities had any correlation with their 

actual performance. While not an objective measure, the self-ratings of expertise do provide 

some indication of how skilled participants felt themselves to be; administering tests of 

competence in programming, electronics and physical computing would not have been 

practical within the constraints of the study. Participants’ self-efficacy ratings are an indication 

of how confident they are at being able to apply their skills—expertise—to a particular end, 

which in this case was specified as an Arduino development task of moderate complexity 

involving a temperature sensor and three LEDs. The greater a person’s self-efficacy in terms of a 

particular task, goal or activity, the more they believe that they will be successful.  

Figure 22 shows participants’ individual self-efficacy scores, and whether or not they successfully 

completed the task (indicated in green), while Figure 23 shows their self-ratings of expertise, and 

Figure 24 the number of problems each experienced.  

I found no significant relationships between task success and self-efficacy, nor between task 

success and self-rated expertise in programming, electronics, or physical computing. 
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Figure 22. Participants’ self-efficacy scores (out of 100), and task success/failure 

 
Figure 23. Participants' stacked self-ratings of expertise in programming, electronics, and physical computing (each out of 7) 

 
Figure 24. Stacked count of problems encountered by each participant, in the program, circuit and circuit+program locations 

Considering that, on average, participants rated their programming expertise higher than their 

electronics expertise, I was surprised that they experienced more program-related than circuit-

related problems. I did not find any significant correlation between their electronics expertise 

and how many circuit-related obstacles, breakdowns or bugs they had in constructing the 

prototype, or a relationship between their self-rated programming expertise and their program 

bugs. Although not significant, there was a marginal relationship between programming 

expertise and program-related obstacles (r=-0.431, p=0.058) and breakdowns (r=-0.400, p=0.081).  

Taken together, this means that, in general, participants in this study were poor judges of how 

good they are at constructing physical computing prototypes.  
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3.3.5 Were problems overcome? (RQ3) 

It might be tempting to deduce that programming was the major challenge for participants in 

the task, given that most of the problems were programming related. However, the number of 

problems encountered and where they occurred does not show the severity of problems or 

whether they were successfully resolved (overcome). Some problems might be more easily 

overcome than others by end-user developers. I now turn to my analysis of whether these 

problems could be overcome. 

 
Figure 25. Number and proportion of problems (obstacles and bugs) overcome, or not resolved. 

For this analysis, I looked only at obstacles and bugs, since they represent faults which can be 

overcome, whereas breakdowns manifest as actions or spoken thoughts that cannot be 

'undone'. Initially, it appeared that a large number of all obstacles and bugs were overcome by 

participants, wherever their location (Figure 25)—it is worth noting also that some bugs were 

also marked as resolved when participants transformed them into new bugs. However, when 

obstacles involved the interaction of the circuit with the program, less than half of these were 

resolved (46%), highlighting that these types of problems seemed to be particularly challenging. 

I then investigated differences between participants who successfully completed the task and 

those who were unsuccessful (Figure 26). Successful participants overcame 97% of their 

obstacles and all of their bugs. Unsuccessful participants, on the other hand, only overcame 

68% of their obstacles and bugs (69% and 64% respectively).  

 
Figure 26. Percentage of problems (bugs + obstacles) overcome, by each task success group 
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3.3.5.1 Cause of task failure 

I looked at the types of bugs that caused fourteen participants not to complete the task (Table 

7). Recall that the cause of task failure was taken as the first bug that participants failed to 

resolve that would prevent the prototype from working as specified. I made one exception to 

this rule—P13 had an otherwise perfectly constructed circuit and program, but because they 

could not figure out how to view the readings from the sensor in the IDE, they could not 

establish what temperature thresholds to set—an IDE-related obstacle they could not 

overcome, which ultimately caused their task failure. 

By far the main cause of failure was fault in circuit construction—ten participants—although in 

nine of these cases, the program was also wrong or incomplete.  

Table 7. Participants’ task performance and success 

  

Ptc 
Task 

success 

Location of first 
unresolved 
problem 

First problem that was not resolved that would 
cause task failure 

Circuit 
correct & 
complete 

Program 
correct & 
complete 

P01 N Circuit Sensor signal & Ground swapped N N 

P02 N Circuit No resistors with LEDs N N 

P03 Y - - Y Y 

P04 N Circuit Mis-seated sensor (Ground leg not in breadboard) N Y 

P05 Y - - Y Y 

P06 Y - - Y Y 

P07 Y - - Y Y 

P08 N Circuit No resistors with LEDs N N 

P09 N Program Mixed up variables in adapting copied code Y N 

P10 N Circuit LEDs wired to Power & digital pins, no ground N N 

P11 N Circuit No resistors with LEDs N N 

P12 N Circuit LED connected to sensor N N 

P13 N IDE Did not know how to display serial output Y N 

P14 N Circuit No resistors with LEDs N N 

P15 N Circuit No resistors with LEDs N N 

P16 N Program Wrong operator in conditional statement (||). Y N 

P17 Y - - Y Y 

P18 Y - - Y Y 

P19 N Program Wrong operator in conditional statement (> not >=) Y N 

P20 N Circuit No resistors with LEDs N N 
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Four participants failed the task due to at least one unresolved fault in their program code, 

however, all four did manage to construct the circuit correctly. These participants did much 

better than the rest of the unsuccessful participants, in both overcoming obstacles and resolving 

bugs, not just those involving the circuit, but particularly those obstacles involving interaction 

between the circuit and the program: participants who correctly constructed the electronic 

circuit overcame 63% of 'circuit+program' obstacles, while participants who did they overcame 

only 35% (Figure 27). This suggests that circuit construction is something that end-user 

developers could really benefit from support with. 

  
Figure 27. Circuit correctness as a factor in performance in overcoming obstacles 

I wondered what activities caused the fatal problems in developing these physical computing 

prototypes. I present the analysis in the next section. 

3.3.6 What went fatally wrong? (RQ3) 

I now present a detailed analysis of what participants did which caused them to not complete 

the task, that is, problems that led eventually to task failure or were very difficult to address. It 

should be noted that while the primary cause of task failure was taken from a single problem, 

often a chain or series of bugs were introduced, each further compounding the difficulty of 

overcoming them.  

Program construction 

Four participants constructed the circuit correctly but had some fault(s) in their program that 

prevented them from successfully completing the task. Common faults included using the 

wrong temperature thresholds in conditional statements, incorrect conditional logic, and 

numerous problems with variable declarations, assignment and referencing.  
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For example, participant P16 forgot to add a statement to read the sensor in their program and 

then referred to the wrong variable in their conditional statements. As a result, the participant 

saw temperature readings that always remained at zero, regardless of whether they touched the 

sensor. Attempting to remedy this, they copied code from an example, but the code that they 

copied did not address the previous two bugs. To compound the issue, they also forgot to 

change the variable names in the code that they had copied, so now these did not match the 

ones they were already using in their program.  

Challenges in learning to program have been explored extensively within the literature and it 

seems that many participants in this study struggled with very basic and common programming 

activities too. 

Circuit construction 

The most common fatal error that caused ten participants—half of the sample—not to succeed 

in the task, was some kind of fault in circuit construction. I looked in more detail at what went 

wrong in these cases. 

A high number of breakdowns involved miswiring i.e., incorrectly connecting circuit components 

to the circuit. I observed 87 of these miswiring breakdowns. All but one of the unsuccessful 

participants encountered these mistakes, and for five participants this caused bugs which 

prevented them from completing the task successfully. The most common miswiring 

breakdown was connecting the legs of the temperature sensor or LEDs to the wrong types of 

Arduino pin. For example, P01 accidentally miswired the sensor very early in the task, resulting in 

unpredictable sensor readings. Unsure of whether these readings were “normal”, and wondering 

if there might be an "accuracy" problem, they searched online for ways to programmatically 

make the readings more reliable, and copied in unnecessary code, to no avail. Forum posts 

found online—none of which were relevant to the bug—led this participant to make yet more 

changes to both their circuit and program, none of which addressed the original miswiring bug, 

and eventually they gave up:  

"It's the world. It's just unpredictable in the world. […] It's technically doing what I 
want it to do, but it's the world that's breaking, as in, I can't get it to get to the right 
temperature" (P01). 

A particular type of miswiring—poor seating of a component or wire into the breadboard—was 

observed for three participants. In one case, the participant did not realise that a poorly seated 
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sensor—connection had not been properly established with the contacts inside the breadboard 

and therefore the rest of the circuit—was the cause of the unpredictable sensor readings they 

observed in the IDE’s Serial Monitor, which intermittently dropped to zero.  

"So why does the sensor don't work? [sic] It should be work. [sic] So it goes to zero. I 
didn't change anything with the sensor" (P04). 

Like P01 they were unsure as to whether this behaviour was normal, so looked for help online, 

however, incorrectly assuming that an error in the program was the cause, searched for 

program-related rather than circuit-related guidance. They made several trial-and-error changes 

to their program—none of which addressed the bug—to see if the readings would improve. They 

did not, and this bug went unresolved, eventually leading to task failure: 

Another kind of circuit construction error that prevented task success involved five participants 

not using resistors with the LEDs. In this task, the missing resistors caused a very insidious 

problem, by affecting the behaviour of the temperature sensor, making readings very 

unpredictable—the large amount of current drawn by the LEDs affected the sensor readings: 

values rose higher and quicker than normal, and dropped more slowly. 

"I mean, it should work. The problem is just that the sensor doesn't seem to be very 
responsive. Because it starts at 150 and when you put your hand there it went over 
180, and never came back to 150" (P20). 

None of these five participants ever localised or fixed this bug. Instead, unable to determine the 

fault location in the circuit, three tried to address the problem through extraneous program 

code, or modifying otherwise perfect code, while one also added extraneous resistors to the 

temperature sensor. 

I also noticed that four participants chose too high a value of resistor to use with the LEDs. 

Although this did not prove fatal to the success of three of these participants—the LEDs lit up 

but were dimmer than they should have been—one participant wired a single resistor of such a 

high value to all of their LEDs that two did not light up and the third only blinked intermittently. 

To address this, they disconnected the resistor from two of the LEDs, causing the same insidious 

sensor readings problem mentioned previously—a problem they never resolved. 

Two participants connected the LED cathodes to digital pins and anodes to 5V power (rather 

than anodes to digital pins and cathodes to ground). If these connections were reversed, an LED 

would not work at all, however, with this bug, the LEDs will work in an unexpected way: the LED 
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lights up when it should be off and turns off when a signal is sent to turn it on. Both participants 

assumed that the error lay in their program and tried to address it there, making and testing 

several changes to the temperature thresholds in the conditional statements that specified the 

logic controlling the LED behaviour:  

"I'm sure my code is not right, about the If statements. I'm pretty sure the If statements 
are not right. But I'm pretty sure that if I change 24 to something else..." (P10) 

While P10 was correct in their hypothesis that there was something wrong with their If 

statement, as it did indeed contain a bug, this was not at the root of the erroneous behaviour 

they were seeing. Neither participant resolved this circuit bug, and both failed to complete the 

task. 

Testing 

Testing a physical computing artefact can be more complex than testing a program alone. In 

two instances, participants who had constructed their prototype correctly, touched their 

temperature sensor and the LEDs did not light up. In fact, they had cold fingers, that is, their test 

'input' was bad. In one instance, this led a participant to believe there was a fault when there 

was not. In software, a more appropriate test strategy would be to use a variety of test inputs 

including edge cases. 

Debugging 

Professional software development environments usually provide a debugger, which helps 

programmers to locate and fix faults, and end-user programming environments have started to 

do similar. Unfortunately, the Arduino platform does not yet have analogous debugging tools 

and thus it was sometimes difficult for participants in this study to identify what the problem 

was.  

However, characteristics of some problems proved helpful in guiding participants towards the 

source of a fault. One particular miswiring fault that four participants were able to identify and 

fix was when they erroneously reversed the power and ground connections of the temperature 

sensor. This error led to the component heating up, and as a result they felt momentary 

discomfort when they touched it: although very unexpected, this feedback, experienced in the 

location of the fault, helped them to localise the fault immediately to that particular component 

in the circuit. 
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A pattern of misdiagnosis leading to bugs: I have already highlighted the insidious problem 

resulting from missing resistors. The only way that participants were able to spot this problem 

was by noticing that the sensor readings were incorrect when viewing them in Arduino IDE. 

However, perhaps because their focus was on the programming environment at this point, they 

usually tried to debug this issue by making changes to their program code. This proved to be a 

fairly common pattern: bug → misdiagnosis (breakdown) → wrong action to resolve (breakdown) 

→ bug. A similar pattern has been observed in studies of end-user programming, although here it 

is also more complicated in that a wrong hypothesis as to the cause of failure can lead to the 

end-user developer making changes in a completely different location altogether. 

Summary 

Why did it go so wrong for many of the participants? The study showed that problems in 

physical computing are to be expected, even for users who are eventually successful, but it also 

showed that some circuit construction errors were particularly hard to identify and remedy. Five 

participants did not even realize that a circuit-related error was preventing their prototype from 

working and attempted to fix the perceived fault by changing their program code. Obviously, 

that proved in vain and in fact caused four of them to introduce more bugs into their program. 

This might also explain why I observed so many program-related obstacles, breakdown and 

bugs, and the high proportion of problems that were associated with the interaction of circuit 

and program—once participants started to incorrectly believe that the issue was in the program 

instead of the circuit, they often created further problems in this location. A major contributory 

factor here might be that testing and debugging physical computing prototypes are both very 

challenging and appropriate support tools are not currently available. 

3.4 Discussion 

The study revealed the following: 

• All participants encountered problems when developing the device—all experienced 

obstacles (barriers), and the vast majority also experienced breakdowns (errors in fault 

or action) and introduced bugs (faults), in their circuit, program or both (RQ1). 



 

92 

 

• While most problems occurred in programming the device (RQ1) the majority of task 

failures—inability to develop a working prototype that met the task brief—were 

primarily due to circuit-related problems (RQ3). 

• Circuit-related task failures were mainly attributed to two types of bugs: miswiring, for 

example, providing the wrong connections from the Arduino board to the sensor, and 

missing components, for example, failing to use resistors with the LEDs. Participants had 

serious difficulties localising the circuit faults that caused them to fail the task. (RQ3). 

• In diagnosing the symptoms of these bugs, participants did not always realize that there 

was a fault or error in their circuit and often incorrectly tried to fix the perceived problem 

by modifying their program, leading to new program bugs. In some cases, they also 

chose to modify a different part of the circuit, also introducing new circuit bugs. (RQ3), 

• Background factors such as self-efficacy and self-rated expertise did not predict whether 

participants would complete the task, nor the number, type and location of problems 

they experienced (RQ2). 

A number of limitations should be acknowledged for this study—these are detailed in section 

7.2, and include, for example, the small sample size. However, there appear to be clear 

opportunities to help end-user developers overcome their problems, drawing on insights from 

studies of end-user developers’ problems in software development. Targeting support at the 

most severe problems—the circuit bugs that led to so many new problems and prevented 

participants from successfully completing a working prototype—seems a logical approach, but 

while the analyses described in this chapter identifies the type and location of problems most 

likely to cause end-user developers the most trouble, at this point, we still do not know why they 

failed to resolve them. 

My next task was therefore to find out why participants failed to overcome these bugs. What 

behaviours did end-user developers employ when troubleshooting and why did these fail? Might 

different tactics have helped these participants to diagnose and resolve their bugs? If so, what 

are the critical points at which end-user developers could be caught and guided towards 

information that might help them troubleshoot? 

The next chapter describes work undertaken to answer these questions, namely a deeper 

analysis of the same data, this time focusing specifically on participants’ troubleshooting of 

problems resulting from circuit bugs introduced during development.  
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Chapter 4 
 

How end-user developers troubleshoot circuit 
bugs (Study 1B) 

4.1 Introduction 

A second analysis of data collected in the previous study, this new study now sought to address 

the lack of knowledge about how end-user developers troubleshoot their physical computing 

problems and whether their approaches are effective, and in doing so, answer the second 

research question guiding this thesis: while Study 1A aimed to identify the problems that end-

user developers encountered when developing a physical computing device (TRQ1), the next 

analyses of these data—Study 1B—sought to identify and understand end-user developers’ 

troubleshooting behaviours (TRQ2) when attempting to find and fix circuit bugs—the type of bug 

associated with most task failures (section 3.3.5.1). 

In the previous analyses I observed many instances of participants failing to localise their circuit 

bugs successfully, and introducing numerous new problems in the process of troubleshooting. I 

now wanted to understand where participants went wrong in their troubleshooting attempts, 

and why, for half of the sample, inability to resolve this type of bug resulted in task failure. I was 

also curious to find out what had enabled some participants to successfully resolve at least 

some—if not all—of their circuit bugs. 

The decision to now focus on troubleshooting behaviours was informed by the novice and end-

user programming literature. Research into end-user programmers’ debugging behaviours (e.g., 

Kissinger et al. 2006; Grigoreanu, Burnett, and Robertson 2010; Kulesza et al. 2009) has proven 

valuable in determining avenues of support for them (e.g., Cao et al. 2015), in part by identifying 

problematic areas to address. For example, work has shown that end-user programmers can 
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employ unproductive or destructive strategies, or simply do not know which strategies might 

help them (see section 2.2.3).  

Having observed several participants struggle to diagnose their circuit bug-related problems, 

and having noticed some specific patterns of misdiagnosis, I wondered whether looking deeper 

at the troubleshooting behaviours of these participants might yield insights into how to support 

end-user developers dealing with these types of problem.  

Therefore, rather than collecting new data, this new piece of work built upon the first set of 

findings with further, deeper analysis of the same data, identifying the behaviours employed by 

end-user developers when troubleshooting the effects of circuit bugs that they themselves had 

introduced, and determining whether these are effective.  

The study addresses the following thesis-level research question: 

TRQ2: How do end-user developers troubleshoot the most significant problems that 
arise during development, and from what support might they benefit? 

This has been broken down into two more-specific research questions, guiding this analysis: 

RQ1: How do end-user developers troubleshoot circuit bugs? What troubleshooting 
tactics do they use? 

RQ2: Are end-user developers’ troubleshooting behaviours effective in helping to 
resolve their circuit bugs? 

4.2 Method: Data Analysis 

This section begins with an overview of the analysis, including an outline of the data 

segmentation and of the process of coding. Thereafter I describe the segmentation and coding 

schemes in detail, including rules for application.  

4.2.1 Overview  

Analysis now focused on participants’ troubleshooting of circuit bugs—the problems that had 

proven most severe in preventing the successful building of a working prototype. A participant 
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was said to be troubleshooting a circuit bug when they showed evidence of noticing the 

symptoms of one at runtime—irrespective of whether they realised it was a circuit bug causing 

the symptoms—and made some attempt to investigate or address it, or if they noticed or 

suspected—correctly—a potential circuit bug when building their prototype and then took steps 

to investigate or resolve it. 

The dataset consisted of the task data collected for fourteen of the twenty study participants—

that is, all those who encountered and troubleshot one or more circuit bug-related problems. 

Data from the other six participants was not analysed because they either experienced no bugs 

at all, or only experienced program bugs. 

The main source of data in this study was the task transcripts from the previous analysis, again 

supplemented with the task videos. Recall that the transcript spreadsheets contained a written 

record of participants’ think aloud comments and actions during the task—one spreadsheet per 

participant. Previous coding—specifically, problem types and problem locations—now made it 

easy to identify the fourteen participants who had introduced and dealt with circuit bugs. 

4.2.1.1 Data segmentation and coding schemes 

 
Figure 28. Hierarchy of units of analysis , and the coding schemes applied at each level. A task contains one or more 

troubleshooting runs. A run consists of one or more episodes. An episode consists of one or more events. 

A substantial part of answering the two research questions entailed segmenting portions of the 

transcripts into specific units, to which a number of coding schemes were applied. Figure 28 

shows the organisational hierarchy of segmentation of the task transcript spreadsheet data, and 
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the coding which was applied at each level. Note that this diagram does not indicate the 

sequence in which segmentation or coding took place. 

 Each participant undertook one Task. The coding scheme applied at this level was 

Task success, i.e., whether the participant succeeded or failed to complete the task. 

 A task contained one or more troubleshooting Runs (section 4.2.3)—continuous 

periods when a participant was observed to be troubleshooting circuit bug-related 

problems. No coding schemes were applied at this level—runs serve mainly to 

demarcate periods of troubleshooting. 

 A troubleshooting run consisted of one or multiple Episodes (section 4.2.4)—

sequences of events (see next point) that could be easily described in terms of 

intentional behaviour. Two coding schemes were applied at this level: Activity Types 

(section 4.2.5), and Tactics (section 4.2.6).  

 Each episode consisted of one or more events—individual comments or action by the 

participant. The two coding schemes applied at this level were Event Types (section 

4.2.2), and Bugs—new bugs and bugs fixed, coded in the previous analysis (section 

3.2.6.3). As with bugs, a Location sub-code (e.g., Circuit or Program) was applied to 

Event Type codes, where appropriate.  

4.2.1.2 About the coding process 

In the previous study, the application of all coding schemes took place in Excel. In this study, 

coding began in Excel, but then transitioned to the hand-coding of printed visual 

representations of the data, before returning to Excel for the remainder of the analysis. As before 

the approach to coding was highly iterative, involving multiple passes through the dataset, and 

began with a period of familiarisation, this time focusing attention specifically on evidence of 

troubleshooting. 

The problem-coded transcript spreadsheets, supplemented with the task videos, were used to 

identify periods within the dataset during which circuit bug-related problems were troubleshot. 

Within these portions of the transcripts, events (actions or comments) associated with 

troubleshooting were coded with Event Type codes—a coding scheme developed inductively 

from the data—and refined through iteration and discussion. This coding was then used to 

identify episodes within the transcript spreadsheets. Episodes within a spreadsheet were 

numbered sequentially, as were runs if more than one was evident.  
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For coding the episodes with Activity Types and Tactics, however, rather than working with the 

transcript spreadsheets, I found it useful to view the data in a different form—the run and 

episode segmentation and the event type coding were used to create visual representations—

troubleshooting flow diagrams—of the sequence/flow of troubleshooting episodes. Appendix H 

shows an example. Beneath the summary of circuit bug(s) that the participant troubleshot, the 

sequence—and summarised content—of episodes is shown. Each numbered block represents 

an episode, annotated with transcript text to the right. The coloured rectangles within each 

episode block summarise the Event Types that were coded, in the order of their occurrence, for 

example, a sequence of several Get help events in which a participant looked at a number of 

different web pages online, would be represented by a single Get Help block. Event types were 

dual coded using words and colours in the transcript spreadsheets and the same colours were 

used in the troubleshooting flow diagrams, for visual clarity, for example, Change blocks are 

always orange, Inspect blocks always blue, etc. 

Episodes in the troubleshooting flow diagrams were coded with Activity Type, and subsequently, 

Tactic codes. The development of the Activity Type codes (section 4.2.5) followed an inductive 

approach, initially identifying lower level ‘goals’ of activity within the dataset and then later 

comparing and consolidating them. While coding of Tactics began, deductively, with initial 

codes and coding rules derived from or informed by the literature, this was supplemented with 

inductive coding. As in previous coding of the task data, these coding schemes were developed 

and refined through repeated iteration over the dataset and discussion with my supervisory 

team until code definitions were stable and rules deemed reliable. Once hand coding was 

complete, the coding was transferred to Excel, for further analysis. 

Although creating the troubleshooting flow diagrams was somewhat laborious, I found this 

more visual, summarised view very helpful when coding the episodes, given the large amount of 

data in the transcript spreadsheets. The process of creating these diagrams also provided a 

further opportunity to review the episode segmentation and amend this where appropriate. The 

diagrams were also very useful in discussing the segmentation and any specific coding decisions 

with others, for example, to ensure reliability.  

Much of the remainder of the analysis was done in Excel, using formulae and pivot tables, 

however Microsoft Access was also used to parse and query the spreadsheet data, including to 

transform it into structures that could be analysed more easily within Excel. My previous 

experience with Access development made this the easiest way to achieve what I wanted to do. 
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The segmentation and coding schemes, including the rules of application, will now be described 

in greater detail. 

4.2.2 Event Type codes 

Portions of the transcripts in which troubleshooting of circuit bugs took place were segmented 

into sequential units of analysis, with each unit representing a new action or statement by the 

participant—each, effectively, an event. 

A set of troubleshooting Event Type codes was developed (Table 8), focusing only on the low-

level ‘what’ of participants’ comments and actions, rather than ‘how’ or ‘why’: realising that 

there is a problem (fault recognition), hypothesising about something, visually inspecting 

something, making some kind of change; testing the system in some way, or seeking help. 

Table 8. Troubleshooting event type codes 

Code Description 

Fault Recognition The participant indicates they know or suspect there is a problem, or they 
see hard evidence of an error, e.g., a compiler error message, or the 
sensor feeling hot to the touch.  

Hypothesis The participant states a concrete idea of how to resolve a problem, what 
may be wrong, or why something is not (or may not be) working. Can 
include loose hypotheses, e.g., 'I think I may have done something wrong 
in the circuit’. 

Get Help The participant seeks or uses help from other sources. E.g., reading help 
content or examples built into the IDE, or copying circuit schematics in 
online tutorials  

Inspect The participant visually inspects some aspect of the circuit, program, or 
IDE, to evaluate correctness, locate a fault, or understand it. E.g., 
checking the sensor wiring 

Change The participant makes some kind of change, in an attempt to resolve a 
problem, isolate the cause of one, or determine whether there is a 
problem. E.g., swapping an LED with a new one from the parts kit, or 
changing the sensor wiring. 

Test System The participant tests or evaluates their prototype, or a part thereof, either 
to determine its correctness, or to isolate the cause of a 
perceived/suspected problem. E.g., watching LED behaviour, viewing 
sensor readings printed to the Serial Monitor, or holding and releasing 
the sensor to see the effect on behaviour or output. 
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The intention with this coding scheme was to see whether defining some fundamental building 

blocks of troubleshooting activity would later help in identifying patterns of intentional 

behaviour within the transcript spreadsheets. With so much data to analyse, this felt like a 

practical first step. Therefore, rather than using a predefined coding scheme, these codes were 

developed inductively from the data—familiarity with the task data, including from previous 

analyses, provided a starting point, but as previously, codes and the rules for applying them 

were refined over several iterations, and through discussion with my supervisory team. 

In applying the codes to a transcript, coding began at the participant's first voiced identification 

or suspicion of a circuit-related problem (irrespective of whether they realised the problem was 

circuit-related)—and stopped either when troubleshooting ceased, for example, if the problem 

was resolved or at the end of the task session if resolution did not occur. Multiple Event Type 

codes could be applied to each unit, and units could be ignored if it was felt that no codes 

applied. A portion of a coded transcript is shown in Figure 29. 

Location sub-codes were also applied, using the same sub-codes used previously (section 

3.2.6.4). For example, if a participant hypothesised that a perceived problem was caused by an 

error in their circuit, the Hypothesis code was applied to this statement, and sub-coded “C” (for 

Circuit). When coding Fault recognition, a ‘1’ flag was used, rather than a location sub-code.  

Only units with some relationship to the troubleshooting were coded. For example, if a 

participant stopped troubleshooting to attend to another aspect of development—for example, 

if they wrongly assumed they had solved the problem, or merely decided to move on to 

something else—then the units in which they were not troubleshooting were not coded. If a 

participant encountered another problem to investigate/resolve when troubleshooting the 

original problem, those units were coded, being somewhat embedded within the original line of 

troubleshooting. This meant coding some sequences of units where multiple, co-occurring 

problems were dealt with at the same time by a participant. In fact, participants sometimes 

introduced further bugs when troubleshooting, for example through misdiagnosis of the cause 

of a problem, or slips and mistakes made when implementing a potential fix. 

To establish the reliability of the code set, myself and another researcher independently coded a 

segment of the dataset in which a participant troubleshot a circuit miswiring bug. In addition to 

the transcript spreadsheet, we each had the video to refer to for further clarification. Coded 

transcripts were then compared, and areas of disagreement discussed, before the coding 
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scheme was adjusted, refining the definitions, and teasing out any ambiguity. Five separate 

rounds of this took place, involving three researchers and four different segments of the task 

videos, until agreement of 81.7%, calculated by the Jaccard index, was reached. Given the 

acceptable level of agreement, I then coded the remainder of the dataset. 

 
Figure 29. Event codes applied to a portion of a transcript spreadsheet. A letter within a coloured (coded) cell denotes the 

location subcode (C=Circuit; P=Program; B=Both, i.e., Circuit+Program). Note that rather than a location sub-code, the Fault 
recognition code contains a flag (‘1’) to indicate the point at which the participant became aware of the problem 

4.2.3 Runs 

The coded transcripts were used to identify the start and end of troubleshooting runs—any 

period of continuous troubleshooting of a circuit bug-related problem. A run ended either with 

evidence that troubleshooting had stopped, for example, if the participant indicated that they 

knew (or thought) they had resolved their problem and continued with further construction of 

the device, or at the end of the task, if resolution did not occur. As some participants had more 

than one continuous period of troubleshooting, a transcript could contain one or more runs. 

Time Event
Fault 

recognition Hypothesis Get help Inspect Change Test system

00:29:01 "Maybe I made a mistake, because we're already at 29 degrees." 1
00:29:13 Checks the circuit, specifically the wiring of the LEDs. C
00:29:23 Briefly removes and reseats the blue LED. C
00:29:27 Holds the sensor briefly, watching the LEDs. B
00:29:32 Watches the readings in the Serial Monitor. B
00:29:38 Switches back to the program and starts reading through it, 

checking it. "I have 11, 12, 13… I'm reading the voltage..." P

00:29:44 "It's probably my electronics skills" C
00:29:50 Goes back to the circuit and starts checking it. "Let's see…" C
00:29:52 Removes the yellow LED. C
00:29:55 "Oh, no. It's just remembering which direction I put them in" C
00:31:01 Reseats the yellow LED, the opposite way. C
00:31:03 Holds the sensor. The blue LED comes on, then starts to flicker 

on and off. B

00:30:11 Releases the sensor and stares at the LEDs. "Hmmmm" B
00:30:15 Checks the wiring again. C
00:30:26 "Let's see, ok, so I have the ground coming from here, then it's 

this resistor, then this one goes into here, and it goes back to 
the resistor, fine… then this one goes back, the shorter"

C

00:30:49 Removes the blue LED briefly and reseats it. C
00:31:04 "And this one (checking) the shorter" C
00:31:05 Removes the yellow LED C
00:31:08 Removes the blue LED C
00:31:10 "Let me just try if the LEDs actually work" C
00:31:12 Seats the yellow LED in the position vacated by the blue LED. C
00:31:14 Holds the sensor and watches the LEDs. B
00:31:16 "No." (The yellow LED hasn't come on)

00:31:19 "Is it that I burnt it by using it the wrong way round" C
00:31:21 Removes the yellow LED. C
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No coding schemes were applied to runs. The main use of runs was to demarcate or identify 

exactly which portions of each transcript spreadsheet were included in the analysis. This was 

helpful in summarising these data, for example, when calculating how much time participants 

had spent troubleshooting, and when creating the troubleshooting flow diagrams.  

In total, I identified 26 troubleshooting runs, across the 14 participants. 

4.2.4 Episodes 

Within runs, using the event codes, I then homed in on troubleshooting episodes. Episodes 

incorporated sequences of activity (events) that could be easily described in terms of intentional 

behaviour. This segmentation was inspired by Newell and Simon, who describe an episode as “a 

succinctly describable segment of behaviour associated with attaining a goal” (Newell and 

Simon 1972, 84). 

Working iteratively through the coded transcripts, I looked for obvious changes in activity and 

intention, based on what participants were doing and saying, marking each transition as the 

potential start of a new episode.  

While, in some cases, episodes included only one event, many included multiple. Consecutive 

events of the same type undertaken with roughly the same discernible intent were counted as 

belonging to the same episode. For example, if a participant spent a few minutes looking at 

several different web pages in succession, trying to find information about the correct wiring of 

LEDs—i.e., several Get Help events, all with broadly the same intent—this was counted as one 

episode, as, per Newell and Simon’s definition, I could reasonably describe this, succinctly, as 

‘looking online for information about the correct wiring of LEDs’. If they then made several 

changes to the wiring of the LEDs, to correct a perceived/suspected error, this was counted as 

another episode, this time consisting of multiple, consecutive ‘Change’ events. Subsequent 

running of (and runtime interaction with) the prototype to determine whether the fixes had been 

successful—i.e., one or more Test System events with the same intention—was counted as yet 

another episode. I also checked whether subsequent or preceding units should be included, for 

example, a participant explaining what they were going to do immediately prior to doing it.  

Often a transition from one type of event to another meant a new episode, as the participant 

was doing something new/different. However, if two types of event (action) could not be 
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reasonably be separated in their description, they were both included in the same episode, for 

example, a participant using an online diagram to guide them during the rewiring of a 

component involved rapid interleaving of Get Help + Change events. 

To establish the reliability of my segmentation, I went through several portions of the transcripts 

with one of my supervisors—a senior researcher and physical computing expert—until we were 

confident that segmentation was consistent. 

The two coding schemes which applied to episodes—Activity Types (4.2.5), and Tactics (4.2.6)—

will now be described. 

4.2.5 Activity Type codes  

The troubleshooting activity types coding scheme attempted to address the ‘why’ of 

troubleshooting activity, but at a very high level (Table 9). It was inspired by Katz and Anderson’s 

General Troubleshooting Model (Katz and Anderson 1987), but is even simpler than that model, 

focusing on the iteration of activity. Each episode was coded with either a single activity code or, 

in some cases, multiple activity types. 

The coding scheme, shown in Table 9, comprises three troubleshooting activity type codes: 

Diagnose, Fix and Evaluate Fix. These activity types were developed inductively from the data, 

and once again refined through much discussion and multiple iterations of application, but it is 

useful to compare them to the Katz and Anderson model which inspired the decision to focus 

on what can be seen as three primary goals of activity within the iterative cycle.  

Table 9. Activity Types coding scheme 

Activity Type Description 

Diagnose The participant knows or suspects that they have a problem and 
shows evidence of trying to understand it, confirm its existence, or to 
identify its cause 

Fix The participant attempts to directly resolve a problem through some 
kind of action, usually making one or more changes to the circuit, 
program, IDE, or USB connection between the PC and Arduino 
board. 

Evaluate Fix The participant evaluates the success of an attempted fix, ideally by 
conducting a test to establish that the problem has been resolved, 
but alternatively by double-checking their implementation, through 
inspection, for example, in comparison to an example. 
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In Diagnose, the participant knows or suspects that they have a problem and shows evidence of 

trying to understand it, confirm its existence, or to identify its cause—which naturally includes 

fault localisation. This activity type is characterized by the gathering of information and the 

processing of that information in order to reach a hypothesis or conclusion, for example, the 

potential cause of a problem, the location of an error causing a problem, or how to resolve a 

problem. In this definition, Diagnose amalgamates Understand System, Test System and Locate 

Error in the Katz and Anderson model. 

In Fix, the participant tries to resolve a problem through some kind of action, usually making one 

or more changes to the physical circuit, program, IDE, or USB connection between the PC and 

Arduino board. This activity type relates to Repair Error in the Katz and Anderson model when a 

participant has identified the cause or knows how to fix it, however, I also include cases where a 

participant makes speculative changes, that is, without being sure of the cause of a problem or 

whether the change that they were making would resolve it. 

Finally, in Evaluate Fix, the participant evaluates the success of an attempted fix, ideally by 

conducting a test to establish that the problem has been resolved, but alternatively by double-

checking their implementation through inspection, for example, by comparing it to an external 

resource, such as a wiring schematic. This activity type corresponds to Test System in the 

idealized troubleshooting model. 

As mentioned, the Activity Type codes were initially applied, by hand, to printouts of the 

troubleshooting flow diagrams (Appendix H). Later this coding was transferred to Excel. 

4.2.6 Tactics codes 

I also used the troubleshooting flow diagrams, in conjunction with the videos, to hand code the 

episodes with a second coding scheme, now addressing Tactics. This was inspired by previous 

work investigating software debugging strategies and troubleshooting hardware, supplemented 

with additional codes developed through an inductive process (Table 10).  

In this work, a tactic is designed as an observable pattern of troubleshooting behaviour. There is 

some inconsistency within the literature regarding the definition of the term strategy and I felt 

‘tactic’ to be closer to describing the level of some of the behavioural patterns I observed and 

considered worthy of representing in the coding scheme—strategic thinking was difficult to 



 

104 

 

deduce from the think aloud data and therefore coding was often based on what I could reliably 

deduce from participants’ actions in conjunction with their comments (section 7.4.2). Focusing 

on tactics was also inspired by discussion of tactics in the context of electronic testing 

procedures (Lesgold and Lajoie 1991) and Grigoreanu and colleagues’ definition of a tactic, 

adapted from Bates (1990), as “the use of one or more moves with the purpose of more quickly 

and accurately finding or fixing a bug” (Grigoreanu, Burnett, and Robertson 2009). While some of 

the patterns I report as tactics may be closer to what Grigoreanu and colleagues would term 

stratagems, and what others would refer to as strategies, I deliberately chose to keep codes at 

one level for this analysis, focusing simply on observable patterns, referred to as tactics. 

To develop this coding scheme, I first undertook a review of the literature on end-user and 

novice programmer debugging strategies (e.g. Grigoreanu, Burnett, and Robertson 2009; Murphy 

et al. 2008), then looked to the literature on hardware troubleshooting (e.g. Steinberg and 

Gitomer 1996), and problem solving (e.g., Wickelgren 1977), and finally, reviewed a selection of 

non-academic literature on software debugging and the troubleshooting of systems and circuits 

(e.g. Agans 2002; Craft 2013; Tomal and Agajanian 2014). From these sources—far more than are 

cited here—I collated an initial set of codes, which I adapted, where necessary/appropriate, for 

use in a physical computing context. I refined the code set through iteration across the dataset, 

looking for relevant patterns in the data, inductively developing further codes where a pattern of 

troubleshooting behaviour was evident but none of the existing codes applied. Candidate codes 

were discussed at length with one of my PhD supervisors, until there was consensus in the 

reliability of the definitions and under what conditions the codes might be applied. The final 

code set can be seen in Table 10.  

I applied the tactics codes to troubleshooting episodes in the troubleshooting flow diagrams, 

looking for evidence in participants’ comments and actions, for example, an episode in which a 

participant searched online for information about the TMP36 temperature sensor would be 

coded with Get Help. Where appropriate, episodes could be coded with multiple tactics, for 

example, an episode in which a participant removed an LED from the breadboard and re-seated 

it the opposite way around, to see (without any certainty) if that would solve the problem, would 

be coded with both ‘Speculative Change’ and ‘Reverse orientation’. Similarly, an episode in 

which a participant used a diagram found online to guide the wiring of the temperature sensor 

would be coded with the ‘Get Help’ tactic and the ‘Copy example’ tactic. Once hand coding of 

episodes was completed, it was transferred to Excel, for further analysis.  
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Table 10. Tactics coding scheme and frequency of code application (total count of episodes coded) across the sample 

Tactic Description 

Run and analyse Run and/or interact with the prototype and analyse the output or behaviour 

Inspection Visually inspect the program, circuit or IDE settings for error 

Speculative change Make a change to resolve a problem, without being sure of the cause and/or how to 
fix it. 

Serial Monitor Use the IDE’s built-in Serial Monitor tool to view program output 

Get help Search for, or use, external resources 

Causal reasoning from output Reason backwards from faulty behaviour/output to its possible cause 

Isolation Reduce a part of the system, for testing, or test an isolated part of the system 

Correct error Make a change to correct an error, having localised the cause and knowing how to 
fix it 

Compare example Compare implementation to an external resource, for example, an online wiring 
schematic, or program code. 

Copy example Copy or reproduce an external resource, e.g., an online wiring schematic or 
program code. 

Alternative physical input Use a different input source when interacting with the prototype, e.g., fanning the 
sensor or blowing on it, to cool it down  

Wiggle/push connection Physically push or wiggle a connection, to make sure it is seated properly or to see 
the effect upon runtime behaviour/output.  

System feedback Read or use the system feedback printed to the IDE’s error panel, for example, 
compile errors or board communication problems. 

Relocate Move a component or program statement(s) to a different location. 

System verify Compile, to test for correctness 

Undo Reverse a change; usually when a fix attempt is unsuccessful 

Reverse orientation Turn a hardware component around (180 degrees) in the breadboard. 

Change power Change the power source / supply  

Control execution speed Programmatically adjust the speed at which the program is executed (typically by 
using/modifying the delay() function) 

Restart Restart or reopen something in the hope that this action fixes the problem 

Swap for same Replace a hardware component with one of the same type and specification, for 
example, to check for a faulty component or test a particular sub-circuit 

Cross-check Visually check that things match where they are supposed to, for example, pin 
number used in the circuit and program, or baud rates in the program and IDE 

Measure Measure some aspect of the circuit with a specific tool, for example, a digital 
multimeter 

Press ahead, regardless Stop troubleshooting and return to building, even though there is some suspicion—
or even certainty—that there is still a problem 
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4.2.7 Bugs 

To determine whether participants’ behaviour was effective, I analysed the coded dataset in 

conjunction with the bugs and fixes coding from the previous analysis (Chapter 3), looking at 

whether they successfully resolved all their circuit bugs and how many bugs (of all types, not just 

circuit bugs) they fixed and introduced when troubleshooting circuit bug-related problems.  

4.3 Results 

Table 11 shows a summary of the troubleshooting analysed. Of the fourteen participants who 

troubleshot circuit bugs, only two participants succeeded in completing the task, successfully 

resolving all their circuit (and program) bugs, while a further two participants who failed the 

task, did manage to resolve all their circuit bugs but not all program bugs. The remaining ten 

participants in this analysis failed the task primarily due to their inability to resolve circuit bugs 

that they had introduced, either prior to the troubleshooting in this analysis, or during it. The 

table also details the number of runs, the number of episodes and the number of bugs (all or 

circuit bugs) introduced or fixed during the troubleshooting of circuit bugs, and the amount of 

time spent on this troubleshooting. As the event type coding was used primarily to facilitate 

subsequent segmentation (episodes) and coding (tactics and activity types), rather than as a 

measure of performance, I do not report the number or total of event type code instances. 

I will now present my findings in two parts. First, I analyse how participants troubleshot their 

circuit bugs, examining where their activity was focused and the tactics which they employed 

(RQ1). Then, I identify which tactics were effective for troubleshooting, looking at their outcomes 

and comparing participants who successfully resolved their circuit bugs with those who did not 

(RQ2). 
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Table 11. Summary of participants' troubleshooting of circuit bugs and the outcomes thereof 

Ptc 
Task 

success 

All circuit 
bugs 

resolved? 
No. of 
runs 

Time 
spent 

No. of 
episodes 

Bugs 
added 

(all) 

Bugs 
fixed 
(all) 

Circuit 
bugs 

added 

Circuit 
bugs 
fixed 

P01 N N 2 00:20:56 34 10 1 1 1 

P02 N N 2 00:29:15 86 28 18 15 11 

P04 N N 2 00:14:53 27 2 2 2 2 

P08 N N 2 00:06:38 21 4 1 0 0 

P10 N N 2 00:07:26 22 7 5 5 5 

P11 N N 1 00:04:04 3 1 3 1 3 

P12 N N 1 00:06:37 8 1 0 1 0 

P13 N Y 1 00:02:36 12 4 4 4 4 

P14 N N 2 00:25:18 60 12 6 1 1 

P15 N N 2 00:05:58 29 3 3 3 3 

P16 N Y 2 00:01:50 9 1 3 1 3 

P17 Y Y 1 00:15:16 47 14 16 8 10 

P18 Y Y 1 00:02:44 11 10 13 6 9 

P20 N N 5 00:20:32 70 23 15 11 11 

   26 02:44:03 439 120 90 59 63 

 

4.3.1 How do end-user developers troubleshoot circuit 
bugs? (RQ1) 

4.3.1.1 Activity Types 

I coded each troubleshooting episode with one or more of the three activity types: Diagnose, Fix, 

and Evaluate Fix—which I considered to be the three primary goals of troubleshooting activity 

within the iterative troubleshooting cycle. Figure 30 shows the number of episodes of each 

activity type coded for each participant. 

Across all participants, 251 of the 439 episodes (57%) were spent trying to Diagnose problems, 

while Fix was coded in 130 episodes and Evaluate Fix occurred 133 times (Table 12). Some 

episodes contained more than one activity type (see Figure 31), for example, 70 episodes were 

coded with both Evaluate Fix and Diagnose (28% of all 251 Diagnose episodes, and 53% of all 



 

108 

 

133 Evaluate Fix episodes). In these episodes, participants were often unsure as to whether a fix 

had been successful, and diagnosis was usually embedded in their evaluation of this. 

 
Figure 30. Number of Diagnose, Fix and Evaluate Fix episodes, per participant 

Recall that the Diagnose activity type code was applied to episodes where a participant knew or 

suspected that they had a problem and showed evidence of trying to diagnose it—for example, 

to confirm a problem, to explore or understand a problem, or to identify the cause of a problem. 

Over half of participants’ troubleshooting episodes involved these types of diagnosis activities 

(251/439) and they spent almost twice as many episodes trying to identify and localise their 

problems as fixing them (251 Diagnose episodes; 130 Fix episodes). 

Table 12. Activity Type episode counts, and the percentage of all (439) episodes these represent 

Diagnose Fix Evaluate Fix 

251 130 133 

57.2% 29.6% 30.3% 

 

  

Figure 31. Activity type episode counts, also indicating episodes where more than one Activity Type was coded, most notably 
where participants were evaluating and diagnosing (70 episodes), i.e., they were unsure if a fix had been successful 
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Next, I analysed the transitions between these activity types, that is, a move from one type of 

activity to another, or a particular sequence of moves. An idealized troubleshooting process, 

according to the general model presented in (Katz and Anderson 1987), is a sequence of 

transitions from Diagnose (locate error) to Fix (repair error) to Evaluate Fix (test system), with an 

assumption that a transition from Diagnose to Fix happens once the person troubleshooting has 

a clear idea what the problem is, i.e. they have located the cause of it. This idealized sequence 

occurred 93 times across all participants. There were frequent transitions between Diagnose and 

Fix (99) and between Fix and Evaluate Fix (107), as might be expected from the idealized 

troubleshooting model.  

 
Figure 32. Transitions between troubleshooting activity types 

Participants iterated a great deal within activity types, particularly within Diagnose (141), 

compared to within Evaluate Fix (21) and Fix (8). These iterations can indicate that a particular 

tactic has not achieved the intended goal, and that it either has to be repeated or a different 

tactic employed. For example, in a particular series of Diagnose episodes, P20 performs the 

following sequence of actions: 

1. Visually inspects the circuit, checking the wiring 

2. Switches focus to an online example image of sensor wiring, comparing it to their 

circuit. 

3. Reopens the Serial Monitor and interacts with the sensor, observes that the readings are 

too high and that transitions do not appear to be correct 

4. Visually cross-checks the baud specified in the program and the baud specified in the 

Serial Monitor window, to determine whether they are the same. 
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5. Turns off Auto-scroll in the Serial Monitor and interacts with the sensor while watching 

the readings, noting that they do not change as expected. 

6. Visually cross-checks the analog pin number referenced in the program with that used 

on the Arduino board, making sure they are the same. 

7. Visually inspect the sensor wiring again and notices that the Ground wire is seated in the 

wrong breadboard hole. 

I would not suggest that the above sequence of episodes is an example of poor troubleshooting. 

It does, however, serve to illustrate how the number of iterations within Diagnose (141) 

demonstrate that diagnosis tactics were often not successful in localising a circuit bug and did 

not lead directly to a fix attempt. Furthermore, as I describe in the next section, some 

participants transitioned from Diagnose to Fix and made changes to the circuit even though 

they had not been able to successfully diagnose the problem, i.e., locate the error that was 

causing it. 

4.3.1.2 Tactics 

I now turn to how participants employed different troubleshooting tactics in each of the activity 

types. I focus on the most frequently adopted tactics and some less frequently observed which I 

perceived to have impact (positive or negative) on participants’ troubleshooting, or are specific 

or unique to physical computing development or circuit troubleshooting. I provide examples of 

participant behaviours that were coded by these tactics and in how many episodes each tactic 

was observed across all participants.  

Tactics observed in Diagnose episodes 

Tactics coded within this activity type were characterized by the gathering of information, the 

processing of that information in order to reach some conclusion about a problem, or some 

understanding of the conditions under which a problem did or did not manifest. Episodes were 

coded with more than one tactic, if appropriate.  

The most frequently observed tactic was Run & Analyse (116 Diagnose episodes; 46%), where 

participants attempted to use the runtime behaviour of their prototype (for example, the LEDs 

turning on/off) or output from it (for example, readings from the temperature sensor printed to 

the Serial Monitor) to diagnose their problem. Participants were observed trying different 
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approaches to affect the runtime behaviour of their prototypes, for example, changing the 

temperature sensor’s readings by blowing on it, fanning it with a piece of paper, or swapping the 

hand with which they held it—Alternative Physical Input was coded for these 17 episodes (7% of 

all Diagnose episodes). The Causal Reasoning from Output tactic (56 Diagnose episodes; 22%) 

was coded where participants analysis of runtime output or behaviour resulted in verbal 

hypotheses—whether correct or not—about the cause of their problems. 

 
Figure 33. Tactics observed in Diagnose episodes 

Participants sometimes used tools to diagnose the runtime output or state of their prototype. In 

74 Diagnose episodes (29%), participants analysed output printed to the IDE’s built-in Serial 

Monitor, for example, the temperature readings from the temperature sensor. In 13 episodes 

(5%), they tried to use system feedback in the IDE’s error panel to diagnose their problems—

while feedback was often related to program errors, some circuit errors, for example, those 

relating to the connection between the Arduino board and the computer, resulted in error 

messages. Another tool-related tactic, less frequently observed but particularly relevant to 

circuit problems, was Measure (4 Diagnose episodes, 2%), where participants used a digital 

multimeter to measure some aspect of the circuit at runtime, for example, voltage. 

Sometimes, just having a good look at something can help to identify an error, or rule one out, 

thereby narrowing down the list of potential causes. The second most frequently observed 

Diagnose tactic was Inspection (87 Diagnose episodes; 35%), where participants visually 

inspected some aspect of their program, circuit, or IDE configuration, for example, checking that 

they had connected an LED to the correct Arduino pins, or that it was seated the right way 

around in the breadboard. Cross-check, a specific type of inspection tactic, was observed in 4 

Diagnose episodes (2%)—this involves checking that references correspond, for example, that 
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the digital pin numbers referenced in the program (software) match the numbers (labels) of the 

digital pins used on the Arduino (hardware). 

Participants did not always rely on their own knowledge to diagnose their problems. Get Help 

was observed in 45 Diagnose episodes (18%) where participants looked for and/or used external 

help to diagnose their problems, for example, they attempted to find information to explain the 

symptoms they were seeing. Similarly, in 17 Diagnose episodes (7%), participants employed 

Compare to Example as a tactic, where they compared what they had implemented to an 

external resource, for example, a circuit diagram online, in the hope of identifying any mistake 

they might have made which could be causing their current problem.  

Another tactic observed was to reduce the complexity of the system. I coded Isolation against 

the 43 Diagnose episodes (17%) in which participants were observed attempting to reduce 

system size or complexity as a tactic for homing in on the cause of a problem, or performing 

some sort of test upon a reduced system, for example, using direct connections from power and 

Ground to test whether LEDs were working.  

Finally, Wiggle/Push Connection (5 Diagnose episodes; 2%), was coded when participants 

speculatively prodded wires or components at runtime to see whether that changed the 

behaviour of the circuit, for example, if an LED lit up, or the values printed to the Serial Monitor 

changed. 

Tactics observed in Fix episodes 

Two very distinct tactics accounted for 126 of the 130 Fix episodes. The tactic used most 

frequently when participants attempted to fix their problems was Speculative Change (89 Fix 

episodes; 68%), where participants made it clear that they had not located the error or where 

there was evidence of speculation or a lack of confidence either in what the error was or that the 

change they were making would fix the problem. In contrast, 37 Fix episodes (28%) were coded 

as Correct Error, which involved participants carrying out a fix with a clear indication that they 

did have a good idea of what was causing their problem and/or had confidence that what they 

were attempting would help to rectify it. Some Fix episodes were also coded with a second 

tactics code, and I now describe these. 
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Figure 34. Tactics observed in Fix episodes 

In 16% of Fix episodes, participants used external resources in fixing (or attempting to fix) their 

prototype—the codes Get Help and Copy Example were applied to these episodes, which usually 

involved a participant reproducing a circuit wiring image/diagram, or copying code found 

online. However, almost half of these episodes (11/21) were also coded with Speculative 

Change—even when copying examples participants were not always sure that they were doing 

the right thing.  

I observed a number of other tactics that participants employed in the hope of fixing their circuit 

bugs. Relocate—for example, unnecessarily moving a component to a new position on the 

breadboard, or the end of a wire to a different position within the same breadboard row—was 

used in 10 (8%) of the Fix episodes. When using the Wiggle/Push Connection tactic in Fix 

episodes (8 episodes, 6%) participants pushed components or wires deeper into the 

breadboard or an Arduino pin. Reverse Orientation (7 Fix episodes, 5%) was sometimes used to 

determine whether an LED had been placed the wrong way round in a breadboard—a common 

mistake when constructing electronic circuits. Undo—reversing a fix attempt, for example, if it 

was unsuccessful (or felt to be unsuccessful) in resolving the problem—was coded against 7 Fix 

episodes (5%). Control Execution Speed—changing Delay() values in the Arduino code, 

primarily to change the rate at which the sensor was read—was seen in 5 Fix episodes (4%); 

Change Power (5 Fix episodes, 4%) usually involved changing the sensor’s power supply from 

one voltage to another. Swap for Same (5 Fix episodes, 4%)—involved swapping out a 

component for an identical one; and, finally, Restart—pressing the restart button on the Arduino 

board, or reuploading the program without having made any changes—was seen in 4 Fix 

episodes (3%).  
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Tactics observed in Evaluate Fix episodes 

In most of the 133 Evaluate Fix episodes, the tactics used involved looking at runtime behaviour 

to see if it met the specification in the brief. Consequently, as with the Diagnose activity type, 

Run and Analyse (108 Evaluate Fix episodes; 81%) was the most frequently used tactic, and the 

Serial Monitor (60 Evaluate Fix episodes; 45%) and Alternative Physical Input (14 Evaluate Fix 

episodes; 11%) tactics were also frequently employed. Many tactics for diagnosing problems are 

also applicable for evaluating fixes, demonstrated by participants’ use of Inspection (11 Evaluate 

Fix episodes; 8%), and Get Help (5 Evaluate Fix episodes; 4%) combined with Compare to 

Example (5 Evaluate Fix episodes, 4%), where participants used an external resource to 

determine whether a fix had been correctly implemented. Participants also used direct 

connections from 5V power to test whether LEDs were correctly wired within the circuit, i.e., a 

form of Isolation (9 Evaluate Fix episodes, 7%), temporarily removing other dependencies, for 

example, program logic.  

 
Figure 35. Tactics observed in Evaluate Fix episodes 

4.3.2 Are end-user developers’ troubleshooting 
behaviours effective? (RQ2) 

In the previous section I discussed tactics used by participants when troubleshooting their bugs. 
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To gain insight into why the Circuit Success group were successful and the Circuit Failure group 
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I first analysed the number of episodes spent by the two groups in the three different activity 

types and there were stark differences: the Circuit Failure group, on average, had more than 

twice the number of Diagnose episodes and close to twice as many Fix and Evaluate Fix 

episodes (Figure 36).  

 
Figure 36. Mean number of activity type episodes per circuit outcome group 

I then analysed whether there was a difference between the Circuit Success and Circuit Failure 

groups in how many bugs they fixed and added when they were troubleshooting (Figure 37). The 

Circuit Success group fixed, on average, more bugs than they introduced but the Circuit Failure 

group introduced almost twice as many bugs as they fixed. When I analysed what percentage of 

episodes had bugs added or fixed, I found that the Circuit Success group fixed bugs in a larger 

proportion of episodes than they introduced bugs; in contrast, the Circuit Failure group 

introduced bugs far more often than they fixed them. 

 
Figure 37. Mean number of bugs added/fixed per circuit outcome group 

4.3.2.1 Activity types and tactics 

I then analysed the troubleshooting tactics that the Circuit Success and Circuit Failure groups 

carried out in episodes coded with each of the three activity types, to see if I could identify what 

made the Circuit Success group more successful troubleshooters. 
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Diagnose episode tactics 

Figure 38 compares the average number of episodes that the Circuit Success and Circuit Failure 

groups spent carrying out different diagnosis tactics.  

 
Figure 38. Mean number of episodes coded with each Diagnose tactic used, by circuit outcome group  

On average, the Circuit Failure group spent almost three times more Diagnose episodes using 

the Run and Analyse tactic, that is, diagnosing their problems through the runtime output or 

behaviour of the prototype, and on average, made use of the Serial Monitor in eight Diagnose 

episodes, in comparison to the Circuit Success group which never used it. They averaged three 

times more Causal Reasoning from Output, episodes, trying to reason backwards from the 

system behaviour they observed to its possible causes, either watching the behaviour of the 

circuit, that is, the LEDs, or how temperature readings changed in the Serial Monitor, for 

example, when they varied the physical input to the sensor— the Circuit Failure group averaged 

two episodes of providing Alternate Physical Input to the temperature sensor, for example, by 

blowing on it. Analysing behaviour and other output—a ‘backwards reasoning’ strategy (Vessey 

1985) can be very useful in diagnosis, however I frequently saw participants in the Circuit Failure 

group having difficulty understanding the output they were seeing, or generating incorrect 

hypotheses as to what it might mean. For example, P20, struggling to work out whether the 

readings they were seeing were normal (they were not) surmised—incorrectly—that the 

precision of the sensor was the issue, and that this could be addressed by modifying the 

Delay() statement in the program, to control the frequency with which the sensor was read: 

"Oh, now it's going down. It takes a while, but, I mean, it works. Perhaps I should try to 
minimise this effect of the delay we have with the sensor, it's not very precise." (P20) 

Similarly, P14 decided to change the temperature thresholds in their program to address the 

problematic sensor readings they were seeing in the Serial Monitor: 
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"Hmmm, they're staying at 30. They haven't gone down as much. (Blows gently on the 
sensor and watches the readings. They don't drop) It's not doing anything. Ah no, now 
it's going down… no it's staying. That's odd. […] Yes, it's gone down to 25 again. I'm 
not entirely sure… what the reading is… 26. […] Yeah, so those two are too close 
together, I think. [...] So I might try changing the gap between each temperature" (P14, 
Circuit Failure group) 

In addition, I saw some unsuccessful participants repeatedly running their prototypes without 

having taken any action that would help them to narrow in on the area of fault, again 

demonstrating that participants in this group had difficulty using this tactic for diagnosis. Both 

groups did make some use of the Isolation tactic, however, looking at the underlying data, I saw 

that one participant was responsible for 68% of the Circuit Failure group’s Isolation diagnosis 

episodes. 

The Circuit Failure group used Inspection more frequently than the Circuit Success group, that is, 

examining their circuits looking for potential bugs, such as miswiring or wrongly seated 

components, however, it was clear that they did not always know what they were looking for. In 

some cases, they looked in the wrong location, for example, the program, rather than the circuit, 

and while some did inspect the circuit, they did not always look at the area of it which contained 

the bug—again, their hypotheses were poor. For example, P10, had miswired the LEDs, 

connecting their cathodes to digital pins and their anodes to a power rail. When the LEDs did 

not light up, they inspected their circuit and incorrectly concluded that the problem lay in the 

location of the sensor on the breadboard: 

“The LEDs aren't lighting up, so that means that I've messed it up. […] (Inspects the 
circuit) Oh! But I know why! I need to move this on the other side (pointing at the 
sensor wiring). I need to move the sensor on this part" (the other side of the central 
channel of the breadboard)” (P10, Circuit Failure group) 

As a result of their inability to localise bugs by analysing output or through inspection, 

participants in the Circuit Failure group were far more likely to try to Get Help, for example, by 

searching for information that would help them to interpret output, investigate their ideas, or 

determine whether parts of their prototype were correctly constructed (Compare to Example). 

However, these attempts to find help were not always effective—poor or incorrect hypotheses 

led to poor or incorrect searches, and in several cases, led participants to make incorrect 

decisions regarding what might help to resolve their bugs. For example, P14, struggling to 

resolve their problem, made unnecessary changes to both program and circuit as a result of 

earlier seeing information online about changing voltage from 5V to 3.3V. Running out of ideas, 
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they decided to try this, without really understanding it, leading to new circuit and program 

bugs, further increasing their confusion: 

"According to the instructions, it should just be a matter of changing kind of this one 
value, to tell it it's using a 3.3 volt signal. Um, but I've changed it and now I'm getting 
negative… (frowns slightly, looking at the program) negative temp… well it's not 
reading the right temperature, it seems. But I'm not entirely sure where I need to... if 
there's any other changes I need to make" (P14, Circuit Failure group) 

In contrast, the Circuit Success group as a whole only used Get Help twice and the Compare to 

Example tactic once. On average, the tactics used most frequently for diagnosis by the Circuit 

Success group were Run and Analyse, Inspection, and Isolation. The effectiveness of the different 

diagnosis tactics employed by the Circuit Success and Circuit Failure group become apparent 

when we compare how they fixed their problems. 

Fix episode tactics 

I first turn my attention to the outcomes, overall, of the tactics used in Fix episodes, as an 

indicator of whether participants tactics when attempting to resolve their problems were 

actually successful. Figure 39 shows the outcome of tactics used in Fix episodes, in terms of 

whether they resulted in bug fixes, new bugs, both bug fixes and new bugs, or neither. We see 

that some of the tactics most frequently used by end-user developers in this study, not only 

failed to reliably fix bugs, they actually introduced new ones.  

 
Figure 39. Outcome of tactics employed in Fix episodes, across the whole sample 
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For example, several end-user developers in this analysis used external resources (Get Help / 

Copy Example—in this activity, both code the same episodes) when attempting to fix their 

problems, however this was clearly not always effective—participants sometimes made 

mistakes when copying examples, due to knowledge gaps and poor understanding, or cognitive 

slips, resulting in new bugs or unnecessary, additional complexity. Overall, eleven of the Get Help 

Fix episodes resulted in new bugs (eight coded with Speculative Change), while only seven 

resulted in bug fixes (two coded with Speculative Change) and six of these episodes neither fixed 

bugs nor introduced new ones, where participants made unnecessary but otherwise harmless 

changes, for example, minor modifications to the time specified in the Delay() statement, to 

reflect what they had seen in example code online. 

Looking specifically at the two main tactics used in Fix episodes (Figure 40) we see the 

Speculative Change tactic led to very few bug fixes (17% of episodes, 20 bugs fixed) and actually 

introduced lots of new bugs (56% of episodes, 70 bugs added). In contrast, the Correct Error 

tactic did result in a lot of bug fixes (76% of Fix episodes, 63 bugs fixed) and far fewer new bugs 

(27% of Fix episodes, 21 bugs added). This reveals an important finding, namely, that the tactic 

that end-user developers used most often to fix their circuit bugs, not only failed to achieve the 

desired result, but actually introduced more problems. 

 
Figure 40. Episode outcomes of the two main Fix tactics used by participants 
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Failure group on average employed the Speculative Change tactic in over three times as many 

Fix episodes as Correct Error. 

 
Figure 41. Mean number of episodes coded with each Fix tactic used, by circuit outcome group  

It appears, from these results, substantiated by the video data, that when the Circuit Success 

group performed Fix actions, they more often had (or appeared to have) confidence that they 

knew were the error lay and/or how to rectify it, as a result of having effectively diagnosed their 

circuit problem. In contrast, those in the Circuit Failure group made far more changes without 

such confidence. The fact that the Copy Example fix tactic was, on average, more frequently used 

by the Circuit Failure group than the Circuit Success group (Figure 41) is also evidence that the 

Circuit Failure group was less certain about the nature of the circuit bugs they were trying to 

resolve—they were more likely to Get Help. In some cases, participants also did not understand 

the example they were copying, or struggled to interpret it. For example, P12, when trying to 

correct their sensor wiring, had difficulty trying to work out how the sensor was oriented in the 

diagram they found online, with the result that they actually recreated the bug that they were 

attempting to fix: 

"Either it's going to be... (Looks between the board and the image). How can I tell 
which way round it's going to be, just by looking at it? […] I may put it in the wrong 
way again” (P12, Circuit Failure group) 

The lack of confidence or certainty that the Circuit Failure group had about the cause of their 

circuit bugs and how to resolve them was evident in the type of language they used, for 

example, "Let's stick that in there and see what happens" (P01), “I’ll give it a try (P10). In fact, the 

Circuit Failure group often made changes to their program or circuit in the hope that doing so 

would help them to locate the source of the problem—a trial-and-error or tinkering approach to 

troubleshooting that in many cases led to additional problems.  
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Evaluate Fix episode tactics 

There are also differences in the Evaluate Fix tactics adopted by the Circuit Success and Circuit 

Failure groups (Figure 42). Although both groups used Run and Analyse in approximately the 

same proportion of their Evaluate Fix episodes (Circuit Success 83% of 23 episodes, Circuit 

Failure 81% of 110 episodes), the Circuit Failure group used it, on average, in almost twice as 

many episodes and made far more use of the Serial Monitor—53% of their Evaluate Fix episodes, 

in contrast to the Circuit Success group who only used this tactic/tool twice. 

 
Figure 42. Mean number of episodes coded with each Evaluate Fix tactic used, by circuit outcome group 

The whole Circuit Success group used Isolation to evaluate their fixes in eight episodes (35% of 

their Evaluate Fix episodes), in comparison to the whole Circuit Failure group who only used it 

once (1%). Both of these tactical differences reflect the fact that the Circuit Success group were 

more likely—and presumably more able—to evaluate the success of their fix attempts by 

focusing on a smaller part of the system, compared to the Circuit Failure group, who had to rely 

more often on program output to the Serial Monitor window. 

I will now discuss these results in the context of my research questions and their implications for 

how to support end-user developers in troubleshooting their bugs. 

4.4 Discussion 

This study aimed to answer two research questions:  

RQ1: How do end-user developers troubleshoot circuit bugs? What troubleshooting 
tactics do they use? 
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RQ.2: Are end-user developers’ troubleshooting behaviours effective in helping to 
resolve their circuit bugs? 

This analysis demonstrated that the natural troubleshooting behaviours of end-user developers 

can be very different from the idealised model (Katz and Anderson 1987). While a small number 

of participants were able to successfully troubleshoot all of their circuit bugs, the majority were 

not, on average spending roughly double the number of episodes on diagnosing their problems, 

attempting to fix them, and evaluating the success of their fix attempts.  

4.4.1 Troubleshooting tactics 

Participants often relied on analysing runtime behaviour to diagnose their problems, with 

limited success when they had difficulty understanding the output they were seeing, or judging 

its correctness. Successful participants made more use of tactics such as isolation—testing or 

evaluating a smaller functional part of the circuit. Although both successful and unsuccessful 

participants made use of inspection in attempting to diagnose their problems, in many cases, 

unsuccessful participants applied these visual checks to the wrong location of their prototype. 

Unsuccessful participants also made use of external help, but in several cases, this proved 

ineffective, particularly when participants’ hypotheses were poor or incorrect, affecting their 

searches and, in turn, the changes they chose to make in the hope of resolving their problems. 

Additionally, unsuccessful participants also made mistakes when using information found 

online, for example, when copying example circuit diagrams, or comparing them to what they 

had implemented. 

As we have seen, when participants failed to localise their circuit bugs, they often resorted to 

making speculative changes to their prototype, in the hope that this would fix and thereby reveal 

the error, however, this approach resulted in over than three times more bugs than it fixed—the 

majority of this type of fix attempt were made by the Circuit Failure group (80 out of 89 

episodes). In contrast, the Circuit Success group were far more successful at localising and 

resolving their bugs—their fix attempts resolved three times as many bugs as they introduced. 

Although the analysis in the previous chapter found no significant correlation between 

participants’ self-rated expertise and either their task success or the problems they experienced 

(section 3.3.4), there is evidence in the tasks transcripts and videos that participants’ lack of 

success in diagnosing and resolving their circuit bugs, and the further problems they 
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encountered when doing so, were sometimes related to a lack of domain knowledge, which led 

to poor or incorrect hypotheses, wrong actions and mistakes. However, it would be wrong to 

conclude that the participants in the Circuit Success group were all just more knowledgeable 

and better at troubleshooting than those in the Circuit Failure group. Participants in the Circuit 

Success group sometimes made speculative changes to their circuits and introduced new bugs; 

participants in the Circuit Failure group were able to successfully diagnose and fix some, if not 

all, of their bugs. For example, P02, who was in the Circuit Failure group, fixed more bugs than 

any other participant (18) but also introduced the most bugs (28). On some occasions P02 

demonstrated an exemplary approach to troubleshooting that followed the idealised model 

(diagnosing effectively, fixing a localised bug and then evaluating that the fix had been 

successful). However, they were also completely unable to diagnose one particular circuit bug 

and eventually resorted to making speculative changes which eventually proved fatal. It is 

informative to compare a bug that P02 solved with the one that led to task failure. 

P02 ‘LED orientation’ bug (Resolved): When P02, prior to writing any code, noticed an LED light 

up unexpectedly, they decided to conduct a test to see if the LEDs were correctly oriented: 

"I'm just going to test that the LEDs light up when I connect power to them, so I know 
they're the right way round. […] I like to make sure I'm doing the right thing before I 
get confused and start trying to code around a problem that was my fault in the first 
place" (P02) 

They isolated and tested LED subcircuits by temporarily connecting them directly to the Arduino 

5V pin—a direct power source. After conducting the test, P02 hypothesised (correctly) that the 

LEDs that did not light up were wrongly oriented:  

"it doesn't light up. So, therefore these are all the other way round." (P02) 

 P02 turned those LEDs around in the breadboard and touched each anode with a wire 

connected to the 5V pin. When each LED lit up in turn, P02 concluded—correctly—that all LEDs 

were now properly oriented and carried on with the task. 

P02 ‘Missing LED resistors’ bug (Unresolved): Unfortunately, when wiring up their LEDs, P02 

had failed to add resistors to them. Although this did not prevent the LEDs from lighting up, it 

meant they drew too much current from the Arduino, which in turn, affected the temperature 

sensor readings—the insidious problem mentioned in the previous chapter. Unlike the LED 

orientation bug that they successfully diagnosed and resolved, it was not easy to identify what 

was causing this problem. P02 carried out a series of exploratory tests and changes to the circuit 
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in the hope that one of these would reveal the problem, for example, removing sensor 

connections and wiggling wires, watching whether this changed the readings in the Serial 

Monitor: 

"So, I'm wiggling that wire, and I'm looking at the numbers coming back and they're 
changing… quite a lot.” (P02).  

However, observing these readings did not help P02 localise the problem:  

"Hmmm, some very weird numbers are coming out of this thing. I wonder if I… I 
haven't hooked it up backwards, have I? I'll have a look at the documentation again." 
(P02)  

Seeking external help led them to speculatively add an unnecessary resistor to the sensor:  

“It’s probably not right, but let’s see. Hopefully it won’t explode” (P02).  

This not only did not help them resolve or diagnose the problem, it also actually introduced a 

new bug, further complicating matters—in fact, they subsequently ended up adding new 

program bugs, as well as yet another resistor, making diagnosis even more difficult. Leaving the 

unnecessary resistors in place, and failing to make any sense of the output they were seeing, P02 

eventually failed the task. 

The ‘LED orientation’ circuit bug that P02 did resolve was less complex to diagnose than their 

‘missing LED resistors’ bug, as they were at an earlier stage in developing the prototype and thus 

there were fewer dependencies in place—similar to the bugs encountered by the Circuit Success 

group and some of the bugs that the Circuit Failure group did manage to resolve. Three of the 

Circuit Success group participants were troubleshooting LED wiring bugs, and at that point in 

development had either not added the sensor to the breadboard or, if they had, they had not yet 

written the program logic to control the LEDs in response to the sensor readings. It was 

therefore relatively straightforward to for them to deduce that the problem they were 

experiencing lay in their LED wiring. The fourth participant in this group had only wired up the 

sensor and written the program to read it when they discovered that temperature sensor was 

very hot to the touch—it had overheated due to being wired up incorrectly. This provided very 

clear feedback about the location of the circuit bug. In contrast, when troubleshooting the 

‘missing LED resistors’ bug, although the temperature readings in the Serial Monitor indicated to 

P02 that there was a problem, they provided no information about the cause or location of the 

problem. P02’s focus was on the erratic behaviour of the sensor, but this was caused by an 

unobvious dependency on a different component—the LEDs, which, lacking resistors, were 



 

125 

 

drawing more current. Despite their diagnosis efforts, at no point was P02 able to isolate the 

cause of the problem and they therefore resorted to making speculative changes, resulting in 

new bugs. 

Beyond end-user developers’ domain knowledge and skill in troubleshooting, there are 

therefore two additional factors that appeared to affect how end-user developers in this study 

troubleshot their circuit bugs and whether they were successful at resolving them: 1) the stage of 

development of the prototype—the less complex the prototype, the easier it was to localise 

bugs; and 2) the directness of feedback about the location of the bug—hot sensors are easier to 

diagnose than erratic readings from a temperature sensor that are resulting from hidden 

dependencies on other parts of the circuit. The Circuit Success group were able to solve all their 

circuit bugs by diagnosing successfully and making informed changes to the circuit. Whereas all 

participants in the Circuit Failure group failed to resolve at least one bug because they were 

troubleshooting a prototype with more complex dependencies and no direct feedback about 

the location of the bug, which meant they relied on observing the runtime behaviour of the 

prototype to determine whether there was a bug and if so, where it was located. In some cases, 

added complexity was due to participants deciding to stop troubleshooting, having failed in 

their initial diagnoses, to continue with building, making subsequent diagnosis even more 

difficult. As a result of participants’ inability to diagnose their problems and localise their circuit 

bugs, they made speculative changes. Not only did these mostly fail to resolve their problems, 

they also introduced more bugs, consistent with the literature on the problems of end-user and 

novice programmers (e.g., Gugerty and Olson 1986). These insights into the additional factors 

that influenced how end-user developers tried to troubleshoot circuit bugs in this study, along 

with other findings from the study, suggest ways that we can support end-user developers in 

troubleshooting problems in physical computing prototypes. 

4.4.2 Supporting end-user developers’ troubleshooting 

I will now summarise some of the key difficulties I observed in participants’ troubleshooting, 

before reflecting on one of the more problematic behaviours observed—speculative changes—

and then outlining types of support from which I believe end-user developers might benefit, 

based on my findings. 

In this study, several participants struggled to diagnose their circuit bug related problems, 

particularly those in which there were complex or hidden dependencies. A number of ineffective 
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behaviours were observed, including when participants ran out of ideas for things to try. For 

example, instead of conducting focused tests, attempting to reduce dependencies, or 

undertaking systematic inspection, some participants relied on repeatedly running (executing) 

their prototypes in the hope that this would reveal some clue—more often resulting in poor or 

incorrect hypotheses regarding the runtime behaviour or output they were seeing, especially if 

they did not understand what failure/success looked like. When participants did inspect their 

prototypes for error, they sometimes looked in the wrong place, again due to poor or incorrect 

hypotheses, while more through and systematic inspection, for example, not just of the location 

in which symptoms occurred, may have led them to localise their bugs. Additionally, when 

participants sought external help, to diagnose or fix their bugs, or evaluate their fixes, this was 

not always effective, because their searches were poor/incorrect (due to inadequate or incorrect 

hypotheses), or they lacked the knowledge to understand, judge or apply the resources they had 

found. In some cases, instead of attempting to analyse or understand the failure they were 

seeing, participants did little or no diagnosis before attempting fixes.  

Many of these ineffective troubleshooting behaviours resulted in participants making 

speculative changes to the program and/or circuit, few of which actually fixed bugs. While some 

instances of good/effective speculative changes were observed, most speculative changes 

introduced far more bugs than they solved. Participants sometimes left these bugs in place, 

rather than undoing them, which compounded their difficulties. They also added to their 

problems by choosing to make several changes in one go, rather than incrementally making and 

immediately testing changes. 

4.4.2.1 Speculative changes—tinkering 

Tinkering, as a pattern of behaviour, has been observed in novice and end-user programmers 

(e.g., Perkins et al. 1986; Cao et al. 2010) and it may even be that end-user developers in the 

current domain are particularly prone to it, due to the hands-on nature of circuit construction, 

and of making in general. Tinkering as a creative approach to making is part of Arduino's 

philosophy, where people who are not experts in programming or electronics are encouraged to 

'have a go', and to discover and learn from their hands-on experiences, including their mistakes 

(Banzi 2009). However, this study suggests that a ‘try it and see what happens’ approach without 

thinking or reflection is, in itself, a poor troubleshooting strategy. There is therefore an 

interesting tension between the informality of tinkering as a form of creative experimentation, 
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and the potential for a more structured, systematic approach to troubleshooting that could help 

end-user developers to locate their bugs and resolve their problems.  

It is not only unrealistic to expect end-user developers not to make any speculative changes 

when troubleshooting, there can be value in experimentation, both in terms of helping to 

diagnose and resolve problems within a troubleshooting process, and as opportunities for end-

user developers to learn through their experiments—other researchers have pointed out both 

negative and positive effects of novices’ tinkering when programming (Perkins et al. 1986). I did 

see instances of what we might call ‘good’—or what Perkins and colleagues would term 

effective—tinkering. These instances were often characterized by small, low-cost changes (in 

terms of time and effort) that were easy to evaluate, easily reversible, and which were unlikely to 

have adverse effects. When making these changes, participants often also seemed to have a 

clear idea of what outcome they were looking for—for example, P13 turned an LED around in the 

breadboard, to see if it was wrongly oriented, and then immediately turned it back when it did 

not light up. In this form, tinkering can be viewed more as focused hypothesis testing. 

Speculative changes in this study often worked best when fewer dependencies existed, either 

due to the stage of prototype development or to participants deliberately isolating the part of 

the system in which to test a potential hypothesis. In a nutshell, it seems that if end-user 

developers are more thoughtful when making speculative changes, they could avoid some of 

the additional problems introduced by participants in this study when troubleshooting. Equally, 

if end-user developers are better at diagnosing their problems through other tactics, this may 

also result in fewer speculative changes of the kind we saw the Circuit Failure group resort to 

when they ran out of ideas.  

Therefore, a general troubleshooting strategy that would encourage end-user developers to 

adopt a more considered and less speculative approach to troubleshooting is more 

thoughtful/reflective troubleshooting—thinking before, during and after action. 

4.4.2.2 Support for specific aspects of troubleshooting 

Chiefly, this study demonstrates that end-user developers would benefit from support for 

diagnosing their problems, including complex circuits that contain multiple dependencies. If 

end-user developers are better at diagnosis, they are more likely to localise their bugs and 

therefore make more informed changes to their prototypes, rather than haphazard speculative 

ones. Furthermore, if end-user developers have the ability to diagnose their problems, this will 
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also help them to evaluate the success of their attempted fixes too, as both activities employ 

some similar tactics. 

The study suggests that specific aspects of diagnosis/evaluation that would benefit from 

support include: 

 Planning and hypothesising: It would be unrealistic to expect end-user developers, 

particularly novices, to formulate complex plans upfront before acting, however, 

considering different hypotheses, and troubleshooting tactics, weighing up 

options, and making more thoughtful decisions regarding what action to take, 

should help end-user developers to become better troubleshooters. 

 Recognising and defining failure: Better identification and analysis of the 

symptoms caused by bugs could help end-user developers with problem diagnosis 

and fault localisation, but also in evaluating whether their attempted fixes have 

been successful. End-user developers should be encouraged to look for and define 

symptoms of failure, in order to generate better hypotheses. 

 More focused analysis of runtime behaviour/output: End-user developers could 

perform more focused analysis of the runtime behaviour and output they can 

observe, rather than just repeatedly running (executing) their prototypes and 

hoping that this will reveal some clue. End-user developers would benefit from 

guidance in the types of analyses they can perform. 

 Problem decomposition: Breaking a problem down or simplifying it can aid in 

diagnosis and fault localisation. Reducing dependencies, through tactics such as 

isolation, can help to establish the boundaries of failure and identify which 

elements of a circuit or program are contributing—and not contributing—to failure. 

End-user developers would benefit from suggestions to adopt these approaches. 

 Focused testing, rather than haphazard speculative changes: There is value in 

experimentation, however, potential risks and dependencies should also be 

considered. Ideally end-user developers should be more thoughtful when making 

speculative changes, approaching these as focused tests driven by hypotheses, 

ideally with a clear idea of what to look for in the results. This would also make it 

easier for end-user developers to evaluate the results of their experiments and 

reverse changes if needed. 
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 Thorough inspection: A number of visual checks should be performed before 

making changes. Suggestions of where to look and what to look for—particularly 

common errors—could help end-user developers to localise their bugs. 

End-user developers can also be supported by providing best practice for making changes to 

circuits, for example: 

 Incremental, iterative progress: End-user developers should be encouraged to 

make one change at a time and evaluate the results before making further changes.  

 Keeping track: Having a record of what was tried and what the results were could 

prevent end-user developers from repeating unsuccessful troubleshooting actions. 

 Undo failed fixes: End-user developers should be encouraged to reverse changes 

that did not fix their problems, rather than building further upon them. 

Finally, end-user developers should be encouraged to follow an iterative process—performing 

thorough diagnosis before a fix attempt, and then immediately evaluating whether the fix was 

successful. 

4.4.2.3 General troubleshooting support principles 

There are three over-arching principles to support end-user developers’ troubleshooting: 

First, as suggested, we should encourage end-user developers to be more thoughtful/reflective 

when troubleshooting and to avoid making speculative changes that typically result in more 

new bugs than fixes. Dewey (discussed in Miettinen 2000) distinguished this type of trial-and-

error behaviour from reflective problem solving, which he saw as an iterative cycle of: defining 

the problem; diagnosing and formulating a working hypothesis; reasoning; and testing the 

hypothesis through action. Fleck and Fitzpatrick (2010) define reflection as “serious thought or 

consideration” and identify five levels of reflection (R0-R4), where the lower levels are foundation 

for higher ones. The card-based support tool I describe in the next encourages end-user 

developers to reflect at the R2 level—Dialogic Reflection—that is: thinking about what they 

should be doing and why, considering alternatives, questioning their assumptions, generating 

and prioritising hypotheses to explore, and evaluating their fix attempts and the impact of their 

actions. In general, thinking through their problems should help end-user developers become 

better troubleshooters and increase the likelihood of them solving their own problems. 
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Second, support should facilitate end-user developers persevering with systematic 

troubleshooting. In this study, some participants gave up troubleshooting and continued 

building when they were not sure that they had solved their problem, or when they ran out of 

ideas.  

Third, end-user developers would benefit from support in planning and tracking their 

troubleshooting. This would help them carry out all necessary steps and also enable them to 

remember what they have tried and what the results were.  

In summary, I suggest that end-user developers can be supported in troubleshooting by 

providing them with alternative tactics to use, based on the recommendations for specific 

support I have outlined, and underpinned by some general principles, for example, encouraging 

end-user developers to be more thoughtful when troubleshooting. The aim is not to try to turn 

end-user developers into engineers, as a big appeal of physical computing is its creative, 

tinkering approach to making interactive devices. However, with this support I feel a number of 

unproductive—and in some cases, destructive—troubleshooting behaviours observed for some 

of the participants in this study could have been avoided. 

It is worth noting that while the above recommendations are made in respect to supporting 

end-user developers’ troubleshooting within a physical computing development context, most 

of these recommendations are reasonably high-level and would potentially be applicable to 

other development domains. 

Finally, as with the previous chapter, some limitations should be considered in respect to the 

findings in this study. Threats to validity include, for example, the small sample size, and 

representativeness of this sample of the wider end-user developer population, but also the 

potential effects of the study itself, for example time constraints and the pressures felt as a result 

of being observed and recorded. I discuss these and other limitations in section 7.2. 

In the following chapter, I will describe the design and development of a novel support tool 

which instantiates the suggestions for supporting end-user developers that are summarised 

above, in a physical card-based form.  
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Chapter 5 
 

Developing a physical card-based tool to support 
end-user developers’ troubleshooting 

5.1 Introduction 

The previous two chapters describe my empirical work investigating how end-user developers 

develop physical computing prototypes and troubleshoot circuit bugs which they introduce. 

These analyses enabled me to identify ways in which end-user developers could be supported, 

summarised in section 4.4.2. 

 Informed by these studies, I now describe the design and development of a novel, card-based 

tool to support end-user developers’ troubleshooting of physical computing problems, 

particularly circuit bugs, addressing the third main research question of this thesis: 

TRQ3: How can we design a deck of physical cards to support end-user developers in 
troubleshooting physical computing problems, particularly circuit bugs?  

The structure of this chapter is as follows: I first establish a context for the development of this 

new support tool, in comparison to previous work to support end-user developers. I then 

motivate the use of cards as a medium in which to provide support, and describe the design 

principles which guided the design and development of the card deck. I describe the 

development of an initial prototype and how trialling this in a small proof of concept study led 

to targeting the design of the tool more towards needs of novice end-user developers. 

Thereafter, I report the findings of two focus groups with novice end-user developers, to help 

shape the design of the final card set. Finally, I describe the card set that was used in the final 

study of this thesis, along with some supplementary materials in the toolkit, and detail the 

production process.  
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5.2 Designing cards to support troubleshooting 

As discussed in my review of the literature (section 2.8.1), there has been much work to find ways 

to support end-user programmers in debugging their software programs. For example, software 

tools such as the Idea Garden (Cao et al. 2015; William Jernigan et al. 2017) draw upon theories 

of learning and curiosity (Carroll and Rosson 1987; Robertson et al. 2004) to provide in-situ 

support for end-user programmers during their tasks, and help them to become better problem 

solvers. Tools such as these rely on background analysis of the user’s program, and have been 

shown to be effective, but only address programming issues. As the empirical work in the 

previous chapters demonstrates, end-user developers do experience problems with 

programming their physical computing prototypes, but circuit-related problems appear to have 

the most significant impact upon task success, with some circuit bugs proving particularly 

difficult to diagnose and resolve. Since that work, research prototypes have been developed by 

other researchers to help learners debug electronic circuits (section 2.8.2), however, with the 

exception of Bifröst (McGrath et al. 2017) these deal only with electronic circuits, not 

programming, and again rely on automated analysis of implementation, often requiring 

additional hardware and software. They also do not address some of the additional support 

needs I identified in the previous chapter. I am aware of no other tool aimed at end-user 

developers that, in addition to supporting the diagnosis of circuit bugs, specifically aims to 

scaffold the process of troubleshooting physical computing problems and help novice end-user 

developers to become better problem solvers in general. In the face of fragile knowledge, such 

as that demonstrated in the troubleshooting difficulties of participants in the previous chapter, it 

has also been suggested that simple prompts may perhaps play a better role than sophisticated 

strategies, in helping novices to think through their problems and build their knowledge 

effectively (Perkins and Martin 1986)—something worth considering for end-user developers too.  

As my empirical work suggests that end-user developers would benefit from applying more 

process and reflection to their troubleshooting activities, I looked to other domains for 

inspiration when considering through which medium to support might be provided. A popular 

method used to generate ideas, prompt reflection, and provide low-tech support for process in 

other domains, either in general, or for particular activities, is physical cards.   
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5.2.1 Why cards? 

Numerous card-based tools have been developed to support the generation and development 

of ideas within a creative or design process and/or to provide theoretical, domain-specific 

knowledge during one. Domain, problem or activity-specific card tools include: 

 Tango Cards—designing tangible learning games (Deng, Antle, and Neustaedter 

2014),  

 Mixed Reality Game Cards—designing mixed reality games (Wetzel, Rodden, and 

Benford 2016),  

 Exertion cards—designing exertion games, (Mueller et al. 2014),  

 DSD Cards—instantiating knowledge useful when designing technology for children 

(Bekker and Antle 2011),  

 Tangible Interaction Cards—designing tangible user interfaces (Hornecker 2010),  

 Information Privacy by Design Cards—considering data protection issues during 

design (Luger et al. 2015),  

 PLEX Cards—designing for playfulness (Lucero and Arrasvuori 2010),  

 Video Card Game—supporting User-Centred Design discussions (Buur and 

Soendergaard 2000),  

 The Design with Intent Toolkit—designing for behaviour change (Lockton et al. 2009) 

 Envisioning Cards—considering human values during design (Friedman and Hendry 

2012) 

 VNA—game design ideas (Kultima et al. 2008) and  

 Tiles IoT Toolkit—designing Internet of Things prototypes (Mora, Gianni, and Divitini 

2017).  

Card tools have been shown to afford a number of benefits. Antle and Wise, using theories of 

cognition and learning to inform TUI design, argue that “Using spatial, physical, temporal or 

relational properties can slow down interaction and trigger reflection” (Antle and Wise 2013), 

suggesting that physical cards, which end-user developers can easily and rapidly arrange to 

explore relations, and configure into meaningful spatial arrangements, are an appropriate 

medium for encouraging reflective troubleshooting. Bekker and Antle also found that cards were 

good for facilitating comparisons as they can be rapidly moved next to one another or formed 

into groups (Bekker and Antle 2011). Furthermore, if there are different categories of cards, they 
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can be combined in different ways to explore new possibilities. More generally, arranging cards 

can support the framing and reframing of a problem and lead to the generation of hypotheses—

something shown to be problematic for novices (Vessey 1985; Gugerty and Olson 1986). Having 

duplicate cards can support the generation of alternative hypotheses (Buur and Soendergaard 

2000) and the use of cards containing less-specific information can also help generate ideas and 

hypotheses (Wetzel, Rodden, and Benford 2016). Cards can not only embody or instantiate 

knowledge that will be useful during a process, they can also act as good memory prompts 

(Deng, Antle, and Neustaedter 2014), of relevant information, but also of where a user is in the 

current process, for example, they can be used to help break down a problem into individual 

steps and prevent important steps being missed out (Mueller et al. 2014). 

5.2.2 Design review of existing card sets  

To gain insight into designing a card-based tool, I looked to the academic literature—including 

but not restricted to the design, creativity, HCI and education literature—and also at tools 

originating outside of academic research, for example commercial card decks. The intention 

was not only to gain an understanding of the tools available and how the design of these tools 

supported their stated aims and uses, but also to uncover the different factors important in the 

process of designing a card-based tool, and delivering information via this medium.  

Additionally, I found suggested classifications of ideation card tools, which also informed the 

design process. For example, Wolfel and Merritt (2013) did a comparative analysis of eighteen 

card-based tools and described them in terms of five design dimensions: Intended purpose and 

scope; Duration of use / When in process; Methodology of Use; Customization; and Formal 

Qualities. More recently, Roy and Warren (2018) list several ways in which card sets can work 

within a process, for example, to stimulate creative thinking (e.g. Brian Eno’s Oblique Strategies 

cards ‘The Oblique Strategies’, n.d.), summarise useful information and knowledge (e.g. The 

Game Design Deck of Lenses, Arcila 2013) or to provide ideas and/or solutions for specific 

contexts or domains (e.g. the Design with Intent toolkit, Lockton et al. 2009). 

The next section presents my findings about the design of physical card-based tools, drawn from 

the academic literature. 
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5.2.3 Considerations when designing cards 

Based on my review of the literature, I identified five key categories of design considerations: 

Physical form 

The physical format chosen for a set of cards should take into account how they will be used, 

considering, for example, their handling and positioning. Physical properties, such as the size 

and thickness of cards, have been shown to matter: participants in a study to evaluate the DSD 

cards (Bekker and Antle 2011) felt that sturdier materials would have improved the cards’ 

tangible properties; similarly, in a study by Tudor et al., cards’ lack of stiffness affected how 

participants used them. These authors also found that over-sized cards were difficult to 

manipulate (Tudor et al. 1993). The orientation of card design can affect the readability of 

content when cards are used by groups (Buur and Soendergaard 2000), but orientation also has 

implications for handling and positioning by individual users too, as does sidedness—usually 

only one side of a card can be seen unless the user turns it over. Most cards typically use a 

rectangular format, but different shapes may afford ways to indicate differences or relationships 

between cards (Bekker and Antle 2011). 

Information content 

The information on a card should support its purpose and reinforce desired behaviour. When 

designing cards to prompt thinking or reflection, questions—particularly open ones—are one 

mechanism commonly used towards this end (Lockton et al. 2009; Hornecker 2010; Bekker and 

Antle 2011; Friedman and Hendry 2012; Mueller et al. 2014; Luger et al. 2015); others include 

providing minimal information (Kultima et al. 2008; Lucero and Arrasvuori 2010) or evocative 

imagery (Hornecker 2010; Lucero and Arrasvuori 2010; Friedman and Hendry 2012).  

Cards can provide context or instantiate knowledge (Bekker and Antle 2011; Friedman and 

Hendry 2012; Luger et al. 2015; Mora, Gianni, and Divitini 2017) and give concrete examples 

(Deng, Antle, and Neustaedter 2014; Mora, Gianni, and Divitini 2017) or instructions for activities 

(Friedman and Hendry 2012), however, establishing the right amount of information to have on 

a card is crucial—too much information can overwhelm the user and be time-consuming to read 

(Wetzel, Rodden, and Benford 2016), potentially distracting them from the flow of the activity 

that the tool is supposed to support (Deng, Antle, and Neustaedter 2014). Any descriptions and 
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definitions should therefore be succinct and easy to digest (Lockton et al. 2009; Lucero and 

Arrasvuori 2010).  

As information should be accessible to those who need to digest it, the knowledge level of 

prospective users should be taken into account (Deng, Antle, and Neustaedter 2014). Unfamiliar 

content can pose problems (Lucero and Arrasvuori 2010) and lead to users ignoring cards or 

information that might help them in their tasks (Deng, Antle, and Neustaedter 2014; Mora, 

Gianni, and Divitini 2017) or them focusing more on interpreting a card than on the activity it is 

supposed to support (Mueller et al. 2014). Ideally, information should be written in simple, 

everyday language, avoiding wording that could be difficult to understand, including jargon 

(Lockton et al. 2009; Bekker and Antle 2011; Deng, Antle, and Neustaedter 2014; Mueller et al. 

2014), However, in the simplification of complex concepts, detail is inevitably lost (Deng, Antle, 

and Neustaedter 2014)—trade-offs are often inevitable. 

Visual appearance 

Visual design can be used to reinforce information architecture and improve searchability (Deng, 

Antle, and Neustaedter 2014), using spatial layout, colour, iconography and typography, to make 

it easy to find specific cards, categories or types of content (Bekker and Antle 2011). It should be 

easy to differentiate cards (and categories) from one another (Deng, Antle, and Neustaedter 

2014), and if a card is double-sided, the two sides should be visually distinct (Bekker and Antle 

2011). Care should be taken with graphical imagery—some can be confusing or open to 

misinterpretation (Hornecker 2010; Lucero and Arrasvuori 2010; Deng, Antle, and Neustaedter 

2014). 

Structure 

An effective information architecture will aid users in navigating a set of cards and finding the 

information they need, whether within a set or on a card. It should support easy scanning of the 

card deck (or subsets of multiple cards) and of the information types upon a card (Deng, Antle, 

and Neustaedter 2014. Categories have the potential to subdivide a deck of cards into 

meaningful units, but should be simple (Lockton et al. 2009) and easy to understand. One way to 

help physically differentiate or separate different card types and categories is through the use of 

tabs (Deng, Antle, and Neustaedter 2014). 
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Method of use 

Any rules for card usage should again support the purpose of the cards and reinforce target 

behaviours (Lockton et al. 2009). A structured method may help (Lucero and Arrasvuori 2010; 

Mora, Gianni, and Divitini 2017) but different methods for different contexts (Lockton et al. 2009; 

Lucero and Arrasvuori 2010; Bekker and Antle 2011) or levels of experience (Wetzel, Rodden, and 

Benford 2016) may be appropriate—some users may want more guidance than others (Mueller 

et al. 2014). The learning curve for any method should not be too steep (Lockton et al. 2009).  

5.3  Initial prototype  

An initial low-fidelity prototype of the tool was created (Hanington and Martin 2012, 138), as an 

input to the next phase of design, instantiating some of the support suggestions derived from 

the empirical work in the previous chapter, as well as design considerations from the literature. 

 
Figure 43. Content from the initial prototype of the troubleshooting support tool 

To populate the card deck I identified forty candidate tactics for inclusion. This list of tactics was 

informed by both the literature and my empirical work, as follows. 

 Literature: When developing the tactics coding scheme (section 4.2.6), I undertook a 

review of literature on debugging, troubleshooting and problem solving, looking for 

potential strategies or tactics that might be relevant to, or could be adapted for, a 

physical computing development context, or which might inspire specific patterns to 

look for within the data. Sources included not only academic literature, for example, 

previous work on novice, end-user and professional programming strategies and 

systems troubleshooting, but also non-academic sources, for example, Arduino books, 

debugging books aimed at professional software developers, electronics 
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troubleshooting guides and handbooks for creative problem solving. I looked for 

common themes within these sources, but also for domain and activity-specific 

methods and techniques. I returned to this research when developing the initial 

prototype of the card deck. 

 Empirical work: Observing participants constructing a physical computing device had 

provided insight into problems that an end-user developer might encounter. Observing 

their troubleshooting behaviours had given me insight into tactics that proved useful in 

diagnosis, but also tactics that were problematic or less useful. Additionally, the 

recommendations for supporting end-user developers derived from my empirical work 

provided ideas for general and specific approaches that might help end-user 

developers, particularly in diagnosis.  

I also returned to the list of circuit bugs experienced by participants. For each of these, I 

considered what tactics led to successful localisation, but also considered what else 

might have been helpful, taking into account the characteristics of these bugs, for 

example, the directness of feedback and how visible they were to the eye. This included 

tactics I had observed, but also additional ideas from the literature.  

In a paired, open card-sorting exercise (Morville and Rosenfeld 2007, 255) with one of my PhD 

supervisors—a physical computing expert—the forty candidate tactics were grouped into eight 

initial categories. 

Table 13 lists these categories, with a description of what they contained, some examples of 

tactics in each category, and finally, the support recommendation(s) from study 1B (section 

4.4.2) that a category related to or instantiated. The full draft list of candidate tactics is available 

as Appendix I. 

In addition, the deck also held four cards containing troubleshooting ‘wisdom,’ and three cards 

containing basic component wiring information: LEDs, TMP36 temperature sensor, and Arduino 

Uno board. 
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Table 13. Structure and content of the initial prototype card deck, and the relationship of the tactic categories to the support 
recommendations from study 1B 

 
Category 

 
In brief 

 
Example tactics 

Related 
recommendation(s) 
from study 1B 

Understand 
(define) the 
problem 

Identify and define the 
symptoms of failure, by 
using focused testing and 
analysing the results 

Reproduce the problem, 
Check for abnormality 

Recognise and define 
failure; Focused analysis 
of runtime behaviour / 
output 
Focused testing 

Understand the 
system 

Familiarisation with a 
system or its 
requirements, in order to 
understand it—to help 
diagnose or evaluate 

Identify / trace 
dependencies; Check 
the brief 

Recognise and define 
failure (understand 
what failure doesn’t look 
like) 

Inspect for build 
errors / faults 

Visual checks, including 
for common or typical 
errors 

Check for bad 
connections; Cross-
check 

Thorough inspection 

Generate more 
data 

Generate additional data 
that may be useful in 
diagnosis 

Measure something; 
Logging statements 

Focused analysis of 
runtime behaviour / 
output; Focused testing 

Perform a test Planned intervention or 
modification in order to 
test a hypothesis, 
establish boundaries or 
evaluate correctness 

Swap working and non-
working; Change test 
input 

Focused testing 

Try a quick fix Common fixes that are 
quick to perform, ideally 
low risk and often easily 
reversed 

Reverse orientation; 
Reseat 

Focused testing; Also 
inspired by the concept 
of ‘good’ tinkering 

Check 
component 
wiring 

Access useful information 
about equipment 

Copy an example; Get 
more help 

Thorough inspection 

Simplify Make the problem space 
smaller in some way 

Reduce dependencies; 
Divide & conquer 

Problem decomposition 

5.3.1 Proof of concept (informal pilot) 

These cards were trialled in an informal, formative pilot / proof of concept study with two 

moderately experienced end-user developers (according to their own self-ratings), who develop 

physical computing prototypes to conduct their PhD research. In a ninety-minute session, I 

observed each use the card deck to troubleshoot buggy Arduino prototypes based on the 

simplified Love-O-Meter, while thinking aloud. The main findings from this informal evaluation 

were that 1) the deck contained too many categories and these could be more effective, 2) 

component information was seen as very useful, 3) some content could be improved, including 
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the tactic and category titles, and the questions that were designed to act as the main source of 

support, and 4) a better way to present and access the cards within their categories was needed, 

including a more distinct design for the category cards. 

Additionally, having observing these two moderately-experienced end-user developers using the 

cards, I felt that to get the most out of the cards and the final (i.e. evaluation) study (Chapter 6), it 

would be better to focus more specifically on novice—i.e., less-experienced—end-user 

developers, rather than end-user developers in general, as it is reasonable to assume that less-

experienced end-user developers would also have less troubleshooting experience. This would 

not preclude end-user developers with more experience from using the cards, rather it meant 

that design and content could be more tightly focused on the needs, preferences and 

experiences of novices, and evaluation could assess how this sub-population of end-user 

developers would fare with them. 

Finally, an observation in respect to studying end-user developers’ use of the cards, was that 

when using these cards for the first time, future participants would benefit from first having 

dedicated time in which to familiarise themselves with the deck as a whole, and the cards 

themselves, before undertaking any practical tasks with them. 

In the next stage of the support tool’s development, design input was sought from novice end-

user developers, this now being the target population for the design and evaluation of the cards. 

5.4 A study to inform the design of the card 
deck 

Building further on my review of the literature, and informed by the pilot studies, I conducted a 

small study, to help further design the card deck, through input from representative users.  

I ran two focus group sessions, each involving a pair of novice end-user developers (ages ranging 

from 30 to 42; one female pair, one male-female pair). All were new to Arduino and had limited 

experience of both programming and electronics. Potential participants were sent a study 

information sheet prior to taking part (Appendix K) and full ethical clearance to undertake the 

study was granted by the university (Appendix J). 



 

141 

 

In a preparatory session with one of my supervisors (physical computing development expert), 

the forty candidate troubleshooting tactics were discussed, one by one, and consolidated where 

we agreed there to be redundancy or duplication. Together we whittled the set down to thirty-

four tactics, tentatively grouped into seven categories through another paired card sort that 

used the existing categories as a starting point. Based on this set, materials were developed for 

use in the focus group sessions. 

During the focus group sessions, participants were asked for feedback in terms of card 

information content, physical form, and visual appearance, as well as categorisation of the 

cards. With participants’ permission, I video-recorded the focus groups, and took notes during 

them. The notes and transcripts of the video recordings were used for analysis.  

5.4.1 Focus group sessions 

Participants first completed a background questionnaire capturing their experience in physical 

computing and were interviewed, as a pair, about their experience of Arduino and the 

environments where they typically used—or would like to use—Arduino, priming them for 

considering a context of use for the cards. Participants then undertook four exercises. Pair 

discussion within each exercise was guided by a prompt card, suggesting things they might wish 

to consider, for example, “Are there any obvious advantages/disadvantages to [… ]”. 

5.4.1.1 Exercise 1: Physical card format 

In the first exercise, the pair of participants considered four physical card formats—a smaller, 

playing card size and one double that size, in both landscape and portrait orientations—and 

ranked these in order of preference. Cards were blank and cut from a decent cardstock, so that 

participants would focus on physical form and handling, rather than potential content or visual 

design, and could experience what a deck might be like to handle—multiple cards of each 

option were provided. An Arduino prototype (the simplified Love-O-Meter) was placed in front of 

each participant, as it might be during an actual troubleshooting task. 

Outcome: Participants much preferred the smaller cards, in portrait orientation, being a 

familiar, standard playing card size and easier to handle than the larger cards: 

“All card games are this size. There is a very good reason for it. They feel very nice in 
the hand, and you can flick through them very easily. (PB1)”.  
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Participants thought smaller cards would take up less space and be laid out easier when there 

was not much room, particularly if they wanted to work with several cards at once. They felt 

landscape cards in both sizes to be harder to hold and flip through. 

5.4.1.2 Exercise 2: Information content 

Prior to the sessions, I created sample information content for two tactics: one a lower-level 

tactic (Inspect for poor connections), intended to prompt an end-user developer to visually 

inspect their circuit for a particular type of bug; the second, a higher-level tactic (Isolate part of 

the system), requiring an end-user developer to think about how they might simplify and test 

their prototype to narrow in the location of a bug. Each piece of content was printed on blank 

paper. In the second exercise, participants were asked to consider three different types of 

sample information content for each of the two tactics, and rank these by preference:  

• ‘Questions to ask’—Designed to encourage thought or reflection. For example: “How 

could this help you to narrow in on the cause of failure, or rule something out?”. 

• ‘Can apply to’—Information to guide troubleshooting to the bug location. For example: 

“Jump wire ends in breadboard holes or Arduino pins”. 

• ‘Ways to apply’—Things to do, supporting specific trouble-shooting activities. For 

example: “Check component legs in the breadboard”. 

Outcome: ‘Questions to ask’ was ranked as most useful, followed by ‘Ways to apply’. 

Encouraging reflection through the use of questions was appreciated by most participants: 

"I think ‘Questions to ask ‘should be the first thing. Because that's how you diagnose a 
problem... you'd start from there, right?" (PA2).  

“this is what I would love to have, to spark some thinking in myself, so I could kind of 
direct my investigations” (PB2).  

However, an exchange in Pair A shows that even if novices see value in thinking through things 

themselves, some may prefer to be told what to do. As one of the aims of the support tool is to 

encourage novices to be more thoughtful troubleshooters, this response is worth noting.  

PA1: "I just want ‘ways to apply’, and I'm like (mimes following the ‘Ways to apply’ 
list)... but I guess I'm not thinking about what I'm doing". 

PA2: "But you don't know what's the problem yet, which is why you ask the questions, 
that's the way you decide." 

PA1: "I don't like it, but I think you're right" 
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PA2: "You don't want to ask questions?" 

PA1: "No, I want it to tell me ‘Do this, do this’ (laughs)" 

I also observed that having one main or ‘lead’ question may lead to it being treated as a binary 

determinant of usefulness, rather than prompting thought: 

“If the answer [to the lead question] is ‘No’, then you can ignore it (the card)" (PA2).  

What I took from this is that a short summary of the tactic, using active wording, might be better 

than a main/lead question, in helping novices decide whether a card is useful. It may also be 

helpful in explaining why or how a particular tactic can be useful. 

While participant did like the concrete instructions of ‘Ways to apply’, they appeared to assume 

that both ‘Ways to apply’ and ‘Can apply to’ would act as comprehensive checklists, which is 

unfeasible—a card could not contain instructions for every possible context in which a particular 

tactic might be applied. There is therefore a risk that ‘Ways to apply’ or ‘Can apply to’ may lead 

novices to assume these are the only things they need to do/check. Equally, care should be 

taken that questions are always worded to prompt thinking, for example, ‘Where could there be 

a poor connection?’ rather than as potential things to check off, e.g. ‘Are all components seated 

securely in the breadboard?’ 

5.4.1.3 Exercise 3: Visual design and content 

In the third exercise, participants then considered 30 different designs, each for a potential front 

or back of a card. As well as in size, orientation and information, designs differed in colour 

coding, typography, titling (full titles and single-word titles), and iconography (including size and 

location). Through discussion, each pair created three potential ‘whole card’ designs, ranked by 

preference. There were no restrictions, for example, cards could be single or double-sided, and 

different orientations could be chosen for the front and back of a single card. Participants could 

also sketch alternative card designs, should they wish to do so—blank card was provided for this 

purpose. 

Outcome: All participants felt that, as novices, having iconography, categorisation and colour 

coding would aid understanding, recognition, and selection, and that single-word titles were too 

ambiguous. The top-ranked card created by each pair was identical: a smaller-sized, portrait-

oriented, double-sided card, with a distinct, uncluttered front (full title, large icon, brief 

summary) and more detailed information on the rear. 
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5.4.1.4 Exercise 4: Categorisation (card deck structure) 

Finally, in the fourth exercise, participants performed a card sorting exercise, using the set of 34 

tactic titles and seven category titles, in order to inform the information architecture of the card 

deck. This was a closed card sort, as it was felt that having prompts for category names would 

be more likely to lead to some consensus across the two groups, than allowing novices to create 

categories for tactics with which they may not be familiar, however, participants were free to 

suggest new category names, or changes to existing ones. Working through the set, participants 

discussed each tactic and, as a pair, agreed on which category to put it into. If unsure, they could 

also place tactics into a “?” category.  

Outcome: While both pairs sorted most tactics into the categories to which I had originally 

assigned them (Pair A 26/34; Pair B 20/34), this exercise helped to identify some confusing or 

ambiguous wording and the need for some categorisation changes. 

5.5 The Tactical Troubleshooting toolkit  

Informed by the findings of the focus groups, the card set was revised. Twelve tactics and two 

categories were renamed or reworded slightly, to make them easier to understand (for example, 

changing ‘Check the type’ to ‘Check the type(s) used’, as focus group participants had 

misinterpreted the former as ‘check the (typed) code’). Five tactics were also reassigned to 

different categories and three categories removed. Further discussion led to a new category of 

tactic: ‘Stop… think’, explicitly encouraging thinking/reflection, and the addition of two new 

tactics. 

As well as tactics, the card set also included two other types of card: Best Practice cards 

(previously referred to as troubleshooting wisdom), in their own category, and Component cards, 

assigned to the Get Help category, as they contain information about specific components—

these latter cards were not used in the final study of this thesis (Chapter 6). The list of cards used 

in the final study is available as Appendix L. 

The troubleshooting card set currently comprises 46 cards: 36 Tactics cards and four 

Component cards in five categories, as well as six Best Practice cards. (see Table 14, Figure 51; 
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Figure 52). Additionally, each category has what is essentially a header or index card, which I 

refer to as Category cards (e.g., Figure 46). There are therefore 52 cards in total. 

Table 14. Card categories and their contents 

Category Contents Description 

Analyse runtime 
behaviour / data 

1 x Category card 
8 x Tactic cards 

Tactics encouraging end-user developers to define 
symptoms of failure, and analyse runtime behaviour or 
output in a targeted way, including through the use of 
specific tools.  

Inspect 
hardware / 
software 

1 x Category card 
14 x Tactic cards 

Tactics to make end-user developers aware of specific 
types of inspection they can perform—what they can 
look at and why. Most are essentially hypotheses for 
where faults may lie, including common problems, 
instantiated in the form of tactics. 

Conduct a test 1 x Category card 
7 x Tactic cards 

Tactics encouraging end-user developers to perform 
specific tests which may help them to diagnose their 
problems, localise faults, and evaluate behaviour, as 
well as approaches to help them narrow in more closely 
on areas of functionality that may contain faults. All of 
these tactics involve making changes of some kind. 

Stop… think 1 x Category card 
4 x Tactic cards 

Tactics encouraging end-user developers to take a step 
back from action, to think or reflect instead 

Get help 1 x Category card 
3 x Tactic cards 
4 x Component cards 

Tactics suggesting ways in which end-user developers 
might use external help, as well as cards containing 
information about common components and how to 
use them—currently these only include components 
used in the Love-O-Meter prototype. 

Best practice 1 x Category card 
6 x Best Practice cards 

Each card instantiates a piece of good practice that 
end-user developers should bear in mind when 
troubleshooting. 

Figure. 44 shows the front of a card from each category. Images of the full set of tactics and best 

practice cards (front and back) can be viewed as Appendix M. The cards will now be described in 

greater detail. 

 
Figure. 44. An example card from each category 
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5.5.1 Tactic cards 

Physical form: The tactic cards (Figure 45) are rectangular, and of standard playing card 

dimensions (64mm x 89mm)—a familiar size that is easy to hold and manipulate, including when 

holding multiple cards. Cards are cut from a decent-quality card stock that allows easy shuffling 

through multiple cards—several types of card stock were physically tested in order to establish 

this—and card corners are rounded, for easy handling (section 5.6 discusses the production 

process in greater detail). Cards are double-sided, and content on both sides is portrait-

oriented, making it easy to simply turn over a card and read the content without further 

reorientation. 

Information content: The cards aim to scaffold end-user developers’ troubleshooting of 

problems—particularly circuit bugs—in physical computing prototypes, and therefore, contain 

content useful to this process—tactics which can be used to diagnose and fix bugs, and evaluate 

the success of any fix attempts. As described in section 5.3, the choice of tactics was informed by 

the empirical studies described in Chapter 3 and Chapter 4, as well as academic and non-

academic literature on novice, end-user and professional debugging, physical computing, 

systems troubleshooting, electronics troubleshooting, and general and creative problem 

solving.  

As different types of approaches can be useful in troubleshooting, including both system-

specific procedures and common problem-solving techniques (Gick 1986), the tactics in the card 

deck deliberately vary in their specificity—some, for example the ‘Serial Monitor’ card, are 

specific to some aspect of circuit bugs, physical computing or the Arduino platform, while others 

are more general, for example problem-solving tactics such as ‘Divide and Conquer’. Also, while 

some tactics are very practical, including tactics for localising common circuit bugs, such as 

‘Check orientation’, others, such as ‘Question Your Assumptions’, are more thought-provoking or 

vague. Where appropriate, tactics are also worded in such a way that they might be adapted to 

different contexts, for example, ‘Check Values’ could apply to the size (in ohms) of resistors used 

in a circuit, variable values within a program, or the values of settings configured within the IDE. 

Therefore, much of the content in the card deck is relevant for troubleshooting physical 

computing problems in general, not just circuit bugs.  
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Figure 45. Tactics card design, front (left) and rear (right) 

Both sides of the tactics cards contain information—adopting a layering approach 

(Shneiderman 2003), with simple information on the front—title, icon and simple description, 

i.e., enough to give a novice end-user developer some indication of what the tactic is about—

and more detailed information on the rear.  

At the top of the rear of the card is a short explanation of why or how a tactic might be useful, 

providing context for its adoption. Beneath this, rather than a list of instructions, there is a 

bulleted list of questions, to guide end-user developers in using the tactic. These questions are 

deliberately worded to prompt thinking or reflection (Morgan and Saxton 1991, 63), reinforced 

by the title of this panel, i.e., ‘Think about…’, and are similar to the prompts used to help 

participants overcome their difficulties, in Perkins and Martins’ study of novice programmers’ 

knowledge and strategies (Perkins and Martin 1986).  

Wording of all titles, descriptions/explanations and questions uses simple, everyday language, 

avoiding jargon where possible, although in some cases, terms common to physical computing 

have been used—for example, ‘pinout’—to enable end-user developers to use these terms in 

searches for external help—where domain-specific terms have been used, the description, 

written in simple language clarifies their meaning. Titles and descriptions are succinct, so as not 

to overwhelm end-user developers with too much information, or take up too much space on 

the card.  
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Visual design: Visually, the cards have a simple but striking and eye-catching design, making 

good use of white space and different sizes and weights of typography to draw attention to— 

and differentiate between—areas of content. The two sides are visually distinct, making it easy 

to determine, at a glance, which side is currently visible.  

The front of the card contains three main elements: the title, in a large, bold font, a black and 

white icon, and a short explanation of the tactic, in the form of a simple summary of what using 

the tactic will entail. I chose black and white icons from the Noun Project icon repository (‘Noun 

Project’ n.d.)—simple rather than complex imagery—with each relating to the title of the card in 

some way, in some cases playing upon the wording, to aid memorability, for example, an image 

of a wooden log on the ‘Logging (Print) Statements’ tactic. These icons serve as visual interest, 

breaking the monotony of text, but also act as secondary information that can help an end-user 

developer to interpret the meaning of the card, and aid in recognition, including when an end-

user developer is scanning or shuffling through several cards, or when a card is turned over—a 

smaller version of the icon is repeated on the rear of the card.  

Colour-coding is used to differentiate between different categories of cards, using a colour 

scheme designed for maximum visual difference (Harrower and Brewer 2003)—each card is 

bordered in the colour of the category to which it belongs, and bands of the same colour are 

used to separate the different panels of content on the rear. Additionally, the tactic title is 

repeated in a small, unobtrusive font size at the top of the rear of the card, and the category 

name appears at the bottom of both sides. 

Structure: Informed by the focus groups with novice end-user developers, the tactics are 

organised in five categories: ‘Inspect Hardware/Software’, ‘Analyse Runtime Behaviour/Data’, 

‘Conduct a Test’, ‘Get Help’ and ‘Stop… Think’. The number of tactic categories was deliberately 

kept small, so not to overwhelm novice end-user developers with too many options. Category 

titles are worded to indicate the main type of activity involved in the cards they contain, for 

example, ‘Inspect…’ implies visual inspection, while the ‘Conduct a Test’ category deliberately 

classifies some of the good speculative changes observed in the previous empirical studies as 

‘tests’ to reinforce a more thoughtful, hypothesis testing-focused approach to these kinds of 

changes. 
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5.5.2 Category cards  

The category cards act as header or index cards (Figure 46) for the categories of tactics cards 

and the Best Practice cards category. As described in the previous section, colour is used to 

visually differentiate the different categories, and the category cards are slightly taller than the 

other cards, so that the titles are visible above them, facilitating visual scanning of the category 

names, and easy selection of cards in a particular category. On the rear of each category card is 

a bulleted list of the cards that the category contains, making it easy to visually scan the content 

of each category, including when the cards are placed in a stand (Figure 50). 

 

Figure 46. Category card design, front (left) and rear (right) 

 

Figure 47. Best Practice card design 

5.5.3 Best Practice cards 

A sixth category of cards—‘Best Practice’—contains cards which suggest best/good practice that 

should be followed when troubleshooting, for example, ‘Keep track’, which encourages end-user 

developers to keep track of their troubleshooting actions and the results of these efforts. These 

cards (Figure 47) follow a similar design to the tactic cards, but are currently single-sided and 

contain a description rather than questions, as the aim is to inform, rather than to prompt 

thinking something through.  
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5.5.4 Component cards 

The component cards (Figure 48) provide information about specific components—currently 

these are components used in the Love-O-Meter prototype: Arduino board, LED, resistor and 

TMP36 temperature sensor. These cards are larger (89mm x 128mm), as they contain far more 

information and more complex imagery, including component pinout images, specifying correct 

connection types, and basic circuit wiring information, as well as other information key to using 

or controlling the component. These cards were not used in the final study (Chapter 6), as the 

focus of that study was on use of the tactics cards (see section 6.2.4.5), my main interest being in 

supporting the troubleshooting process (see section 7.3).  

 
Figure 48. Component card design 

5.5.5 Playmat  

The findings from the analysis reported in Chapter 4 suggested that end-user developers might 

benefit from support in structuring and planning their troubleshooting. Inspired by boardgames 

and some card games, I designed a playmat (Figure 49) that novice end-user developers can use 

to help structure and support the process of troubleshooting.  
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A playmat is, generally, a portable surface upon which cards and/or other relevant items can be 

placed during a game. Playmats may be plain, or purely decorative, but for some games 

playmats contain designated areas—zones—in which cards can be placed, whether for 

organisation/storage, or to support and/or guide the method or rules of play.  

The playmat designed for the troubleshooting toolkit gently guides end-user developers 

towards using the cards in a systematic way. It does this by providing two specific, demarcated 

areas/zones in which cards can be placed: 1) a ‘shortlist’ area (Ideas), to hold a selection of 

potential tactics to try—thus encouraging end-user developers to plan their actions, considering 

and prioritising different options/hypotheses—and 2) an ‘active’ area (Current), to hold the 

current card(s), that is, the chosen line of enquiry. Each of these zones is just slightly larger in 

dimensions than the tactics cards, visually implying that cards should be placed on them. 

The playmat additionally serves to remind end-user developers of good troubleshooting 

process: a flowchart in the centre of the playmat reinforces the cycle of ‘Diagnose → Fix → 

Evaluate’, encouraging end-user developers to diagnose before attempting fixes, and then to 

evaluate the result of any fix attempt before any further action. 

 

 
Figure 49. Troubleshooting toolkit playmat  
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5.5.6 Card stand 

Finally, to hold and display the cards in a structured, space-efficient way, I 3D modelled and 3D 

printed a three-tier stand (Figure 50). When cards are placed in the stand, within their categories, 

it provides end-user developers with visual prompts about the different tactical approaches 

available to them and makes the cards in a category easier to access. There is an additional, 

wider slot on the third tier, to hold the larger component cards. 

 
Figure 50. Card stand 

5.6 Card production process 

In parallel with the design research, the production of the cards evolved, through 

experimentation with different materials and methods. While conscious that I was developing a 

prototype, I also wanted to ensure that the production quality of the cards would not negatively 

affect any use or evaluation of the tool as a potential support medium in the final study, and that 

it would afford the types of handling that are associated with card use, for example, holding, 

fanning, dealing, picking up, stacking and shuffling. 

The earliest prototypes were simply printed on A4 printer paper and cut to size with a rotary 

guillotine, but these ‘cards’ were too flimsy to handle effectively. Heavier weight paper (light 

card) was better, but still had too much friction, for example, when shuffled or fanned. Clear 

plastic protective card sleeves also improved sturdiness while retaining flexibility, however 

slipperiness of the sleeves, even matte versions, affected both shuffling and stacking into piles. I 
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sourced several different weights and textures of card stock, cutting and testing the handling of 

multiple blank cards. A linen-textured card stock, similar to that used in some professionally 

manufactured playing card decks, proved optimal. 

Card designs were created in Microsoft PowerPoint—the use of Slide Masters to compose design 

templates made it easy to add new cards, or rapidly change the design of all/multiple cards at 

once. I later experimented with the use of Adobe Illustrator, as a more professional design tool, 

but PowerPoint proved simpler and more efficient for my workflow. This also meant that the 

designs could be easily adapted by anyone with access to commonly available software and 

basic presentation editing skills. 

When, as a result of the design focus groups (section 5.4), the card design became double-sided, 

this presented further challenges. Reliably accurate print registration proved too difficult to 

achieve when printing double-sided with a home inkjet printer. Better results were achieved by 

printing both sides single-sided—Appendix M shows these designs at a smaller scale—and then 

folding the cards, which meant sourcing a lower weight of linen-textured card stock, to avoid the 

cards being too thick. Rounding corners with a corner cutter tool, also for better handling, 

proved laborious with a large number of cards, as was even cutting the straight edges with a 

guillotine. I therefore I designed a round-cornered cutting template for use with a Cricut Maker 

die cutting machine.  

For the support toolkit used in the evaluation study (see section 6.2.4.5), the card designs were 

printed onto lightweight linen textured card stock and a Cricut Maker machine used to 

automatically cut out multiple cards at once. Card designs were then folded in half and spray 

glue used to join the two sides. Finally, both faces of the cards were sprayed with a very thin coat 

of clear resin, one which did not affect shuffling or print quality, to protect the printed design 

and prevent smudging (for example, due to handling) that might affect text legibility.  

5.7 Discussion 

In this chapter I have described the design, development and production of a novel, physical 

card-based tool to support novice end-user developers in troubleshooting physical computing 

problems during development, particularly those related to circuit bugs. 
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The general aim of the card deck is to provide novice end-user developers with a wide range of 

troubleshooting tactics that can be used to improve diagnosis of physical computing problems, 

fixing of bugs, and evaluation of fixes, and to facilitate thinking/reflection during this process. 

The goal is not to give exhaustive and prescriptive checklists of instructions, but rather to 

encourage a creative and exploratory approach to troubleshooting. 

The troubleshooting card tool was inspired by popular creativity-support card decks, and 

content was informed by empirical work to identify the problems that end-user developers 

encounter when developing a physical computing device, and analysis of their natural 

troubleshooting behaviours, as well as a review of the academic and non-academic literature on 

software debugging, hardware troubleshooting and general problem solving. The design of the 

card deck was informed by a design review of the literature on card-based tools, identifying key 

considerations when designing card-based tools, and focus groups with novice end-user 

developers.  

The next chapter describes an evaluation of these cards in a study with novice end-user 

developers. In this study, I investigate the role that these cards might play in a troubleshooting 

process and any effect on the outcomes thereof, as well as how support in this medium might 

be perceived by novice end-user developers. 
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Figure 51. Tactics cards (front sides only) 
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Figure 52. Category cards (fronts only), Best Practice cards, Component cards, Playmat, Card stand 
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Chapter 6 
 

Evaluating the troubleshooting support cards 
with novice end-user developers (Study 2) 

6.1 Introduction 

This chapter describes and reports an evaluation of the physical card-based support tool 

(Chapter 5), in a study with novice end-user developers. The study addressed the following 

thesis-level research question: 

TRQ4  What role might a card-based tool play in supporting end-user developers in 
the process of troubleshooting circuit bugs in a physical computing prototype? 

I broke this down into two study-level research questions: 

RQ1: What effect does a physical card-based support tool have on end-user 
developers’ success in troubleshooting circuit bugs in physical computing 
prototypes? 

RQ2: How do end-user developers view the physical card-based support tool, having 
used it to troubleshoot circuit bugs in physical computing prototypes? 

6.2 Method 

6.2.1 Overview 

To answer the research questions, I conducted an empirical, within subjects user study in which 

twenty novice end-user developers—Arduino users—each undertook two hands-on 

troubleshooting tasks—one with and one without the support tool—while thinking aloud.  
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In each task, participants had a set amount of time to locate and fix preseeded circuit bugs in an 

Arduino prototype—each a prebuilt instantiation of the simplified Love-O-Meter device used in 

my first study—until its behaviour met a given specification.  

I collected a range of data for this study, including video recordings of the tasks, as well as a 

questionnaire and interview capturing participants’ opinions of the support tool. 

While the results report a comparison of performance measures such as task success and bug 

fixing success, analysis focuses, for the most part, on the qualitative analysis of participants’ 

subjective feedback about the support materials. 

6.2.2 Study design 

The main goal of the study was to evaluate the card-based support tool. I therefore chose to 

conduct the evaluation as a user study or usability study—"Representative users attempting 

representative tasks in representative environments, on early prototypes of computer interfaces” 

(Lazar, Feng, and Hochheiser 2017; citing Lewis 2006)—in which the support tool—the 

prototypical interface in this instance—was assessed through observation of hands-on use and 

the analysis of feedback about the experience of using it.  

I considered—and rejected—several alternative methods. For example, as I wanted to directly 

observe participants using the tool, rather than only relying on subjective feedback, I decided 

against a diary study. I also considered whether to observe end-user developers troubleshooting 

in pairs, but rejected this as adding complication to recruitment that I was already concerned 

about (section 7.2 discusses some of the challenges I encountered when recruiting for my 

studies). 

A Within Subjects study (Lazar, Feng, and Hochheiser 2017, 49) in which each participant 

undertook tasks with and without the support tool, would allow me to compare performance 

measures. It also meant that participants would have experienced troubleshooting with and 

without the support tool, and could consider this in their feedback. 

Other factors played into my choice of a Within Subjects, rather than a Between Subjects study 

design. Recruiting my quota of twenty participants had not been easy in the first study. In a 

Within Subjects study, all participants would experience the support tool, providing the 

maximum number of data points in respect to the research questions; this might also be useful 



 

159 

 

for further refining the design of the tool. Secondly, a recognised challenge when studying 

development is that variability in skill/expertise of developers can affect results (Ko, LaToza, and 

Burnett 2015), for example, performance and user experience data. One way to control for this is 

by ensuring that participants recruited are equally skilled, however, besides my recruitment 

concerns, to my knowledge, no reliable measure of expertise in physical computing exists as yet, 

and it would have been impractical to design and validate one within the constraints of my PhD 

work. Also, the effect of different experience, for example, previous exposure to certain bugs, 

could also affect results. A Within Subjects design minimises the effect of individual differences. 

One disadvantage, however, is the potential for a learning or transfer effect across conditions, 

which can also affect results. Counterbalancing—varying the order of exposure to conditions—is 

a typical way to mitigate this. In this study, I counterbalanced the order of exposure to the 

support tool—participants were randomly assigned to one of two groups, determining whether 

they had access to the support tool in the first or second task. However, as both task prototypes 

were based on the simplified Love-O-Meter device, a learning effect still seemed likely. Despite 

this, I chose to proceed with this study design, for reasons explained further in Section 6.2.4.5 (in 

Buggy prototypes), taking care to minimise the learning effect to the greatest degree possible, for 

example in the design of the two prototypes and the order of exposure to them. 

6.2.3 Participants 

Once ethical clearance had been granted by the university (Appendix N), twenty adult, novice 
end-user developers were recruited. 

Table 15 shows the inclusion/exclusion criteria used to screen prospective participants. 

Eligibility was narrower than in the first study, in respect to expertise—participants must have 

had at least some experience of using Arduino, but also had to consider themselves to be novice 

Arduino users. In addition, they also had to consider themselves to be novice in either 

programming or electronics, or both. As before, participants needed to be end-user developers 

in physical computing and should have been exposed to using LEDs and at least one type of 

analog sensor. 

 

  



 

160 

 

Table 15. Study 2 inclusion/exclusion criteria for participation 

Inclusion criteria Exclusion criteria  

Adult: Aged 18 or older Aged under 18 

At least some practical (hands-on) experience of 
using the Arduino platform, with, as a minimum, 
both of the following (although not necessarily in 
the same project): 

 Exposure to using LEDs in an Arduino 
project AND 

 Exposure to using at least one type of 
analog sensor in an Arduino project 

No practical (hands-on) experience of using 
the Arduino platform. 

 

Exposure to using either LEDs or analog 
sensors in an Arduino project, but not both. 

End-user developer: Has only developed physical 
computing prototypes/devices for own use. 

Previously or currently 
employed/commissioned specifically to 
develop physical computing 
prototypes/devices. 

Novice in programming, electronics or both Expert in programming and electronics 

Able to attend a 1.5-hour session in-person Unable to attend a 1.5-hour session in person 

 

6.2.3.1 Recruitment 

Participants were recruited via hackspaces and other Maker community groups, using flyers 

(Appendix O) and mailing lists, and through personal networks. As I wanted to recruit novices, I 

also targeted university programmes where physical computing was taught. The timing of the 

study meant that data gathering coincided with earlier weeks of first semester teaching, which 

was ideal for catching potential participants at exactly the right time in their studies—they 

would, by this stage, know enough to take part, but not enough to be considered too 

experienced. The call for participation was also posted on social media (Twitter and Facebook) 

at regular intervals, and others were asked to share these posts with their networks. A poster 

was also put up at several universities. Given the time commitment required (2 hours), I offered 

participants an incentive of a £20 Amazon gift voucher as a token of thanks for taking part. 

All respondents were sent a copy of the participant information sheet (Appendix P) explaining 

the study and eligibility criteria in full, as well as what participation would entail, so that they 

could determine their eligibility and make an informed decision about whether they wished to 

participate. Respondents who met all of the criteria for participation were invited to attend an 

individual session, lasting two hours, in the Interaction Lab at City, University of London. 
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6.2.3.2 Who took part? 

A background questionnaire (Appendix R, described further in section 6.2.4.2) was completed by 

participants at the start of the session they attended. It captured participant demographics, as 

well as data about experience, perceived expertise (self-rated) and training. Data from the 

completed paper questionnaires were entered into an Excel spreadsheet. Length of experience 

was converted to a decimal figure (years), and all data were summarised using descriptive 

statistics. Table 16 shows the age, gender and occupation of those who took part. See Appendix 

W for a table summarising the remainder of the data. 

Twenty novice end-user developers took part in the study—10 male and 10 female, all adults, 

ranging in age from 20 to 51, with a mean age of 32.75 years (SD=10.84). I will now describe the 

sample in greater detail. 

Table 16. Study 2 Participants 

Ptc Age Gender Occupation 

P110 41 Male Web Developer 

P120 28 Female PhD student (Media & Art Technology) 

P130 26 Male Masters student (Human-Computer Interaction) 

P140 39 Male Electrician 

P150 21 Male Undergraduate student (Biomedical Engineering) 

P160 21 Male Undergraduate student (Engineering) 

P170 35 Female Creative 

P180 51 Female Sound engineer 

P190 21 Male Undergraduate student (Computer Science) 

P200 38 Male Charity consultant 

P210 31 Male Lab technician 

P220 48 Female Masters student (Computational Art) 

P230 20 Female Undergraduate student (Mechanical Engineering) 

P240 51 Female Masters student (Computational Art) 

P250 20 Female Undergraduate student (Creative Computing) 

P260 28 Male PhD Student (Media & Art Technology) 

P270 47 Female Finance 

P280 21 Female Masters student (Design) 

P290 37 Male Freelance educator (Primary school) 

P300 31 Female Research Fellow (Human-Computer Interaction) 
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Occupation 

Eleven participants were students (four Undergraduates, four Postgraduate Masters students 

and two PhD research students), while nine were primarily working/employed in some capacity. 

No participant had ever been employed as an electronics engineer, although one (P140) stated 

their current occupation as ‘Electrician’—in the screening they had only mentioned having had 

some exposure to practical electronics and did not consider themselves to be an expert. Two 

engineering students (Undergraduate) took part, but both reported having little programming 

experience. 

Four participants had been employed as programmers at some point—one was employed as a 

web developer at the time of the study, while two were Computer Science students (MSc and 

BSc, respectively), and one was employed as a HCI researcher, although without any 

programming responsibilities. 

Training / instruction  

Over half of the participants had received some sort of training or instruction in Arduino 

(14/20)—ten in the form of a university/HE institution module (previous or current), three only 

attended short workshops, and one only reported using online materials)—with slightly fewer 

(12/20) having had training/instruction in electronics. All participants, however, had received 

some form of training/instruction in programming and for sixteen this had been in the form of at 

least one module at university or another HE institution. 

 
Figure 53. Participants' training 
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Length of experience 

On average, participants had been using Arduino for less than half a year (Mean=0.47 years, 

SD=0.35), but had twice as much electronics experience (Mean=1.04 years; SD=0.65) and again 

more programming experience (Mean=2.54 years; SD=2.64). There was far more variance in 

participants’ length of programming experience than in their electronics or Arduino experience.  
 

 

Table 17. Study 2 Participant length of experience (in years) 

Time spent (in years) Mean SD 

Arduino 0.47 0.35 

Electronics 1.04 0.65 

Programming 2.54 2.64 
  

Figure 54. Participants' length of experience (in years) 

Self-rated expertise  

Participants also, on average, rated their programming expertise highest, their electronics 

expertise to be lower, and perceived themselves least skilled in the use of Arduino, although 

there was approximately twice as much variance in the electronics and programming expertise 

ratings than there was in respect to Arduino. Only two participants rated themselves as 

complete beginners (rating=1) in any of the three areas (electronics: P110 & P180) and no 

participant considered themselves to be a complete expert in any of the three skills. 
 

 

Table 18. Study 2 Participant perceived expertise (1-7) 

Perceived expertise Mean SD Median 

Arduino 2.70 0.73 3.00 

Electronics 2.95 1.32 3.00 

Programming 3.70 1.42 3.50 
  

Figure 55. Participants' self-rated expertise 
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Figure 56. Individual participants' self-rated expertise, from 1 (Complete beginner) to 7 (Complete expert) 

Self-rated troubleshooting expertise 

Given their experience and expertise ratings, it is unsurprising that participants considered 

themselves, on average, to be most skilled at troubleshooting program bugs, although this time 

least skilled in electronics troubleshooting, rather in troubleshooting bugs in Arduino projects.  

Table 19. Study 2 Participants perceived expertise in 
troubleshooting (1-7) 

Perceived expertise Mean SD Median 

Arduino projects 2.65 0.88 2.50 

Circuit bugs 2.50 1.50 2.00 

Program bugs 3.35 1.53 3.00 
 

 
Figure 57. Participants' self-rated troubleshooting expertise in 

Arduino, Electronics, Programming 

 

 
Figure 58. Individual participants’ self-rated troubleshooting expertise: bugs in Arduino projects, circuit bugs and program 

bugs, from 1 (Complete beginner) to 7 (Complete expert) 
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6.2.4 Materials 

6.2.4.1 Informed consent form 

As with the previous studies, an Informed Consent form (Appendix Q) was created, to capture 

each participant’s agreement to taking part, and their consent to data collection—including 

video recordings of the session—and the subsequent use of any data collected. 

6.2.4.2 Background questionnaire 

A background questionnaire (Appendix R) was created, to capture participants’ personal and 

demographic information, as well as data about their experience and perceived expertise (self-

rated) in physical computing (Arduino), programming and electronics, and whether they had 

received any external training or instruction, and if so, of what kind. This questionnaire was an 

adaption of the questionnaire used in Study 1A—questions were added about participants’ 

perceptions of their expertise in troubleshooting 1) bugs in Arduino projects, 2) circuit bugs (in 

general, not just in Arduino), and 3) program bugs (likewise, in general).  

6.2.4.3 Support Materials questionnaire 

A questionnaire was created to capture participants’ opinions of the Support Materials. 

(Appendix S). In this, participants were asked to rate the usefulness of different elements of the 

Support Materials, provide brief written feedback about any specific likes and dislikes, and 

indicate the extent of their agreement/disagreement with a number of statements in respect to 

perceived effectiveness, usability and fitness for purpose (see section 6.2.6.5 for further 

information about the data collected by this questionnaire, and how it was analysed). 

6.2.4.4 Interview topic guide 

I created a topic guide (Appendix U) to guide a semi-structured interview conducted at the end 

of the session. Questions aimed to elicit more detail about participants’ perceptions of the 

effect/impact of the Support materials upon their troubleshooting, and to find out what they 

thought of them, thus supplementing and triangulating data captured via the Support Materials 

Questionnaire. 
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6.2.4.5 Troubleshooting tasks 

A variety of materials were created for use in the tasks, including the Support Materials, two 

buggy prototypes, two task instruction sheets and a demo video of the desired prototype 

behaviour. Participants were also given access to a laptop and some additional equipment.  

Support Materials 

Chapter 5 describes the design and development of the card deck and supplementary materials 

(together referred to as the support tool, or Support Materials) used in this study, with section 

5.5 (The Tactical Troubleshooting toolkit) describing each element in detail.  

To summarise, the support materials used in this study comprised 36 Tactics cards, 6 Category 

cards, 6 Best Practice cards, the playmat and the cards stand. 

 
Figure 59. Cards in card stand, and playmat 

I decided not to include the component cards in this study. During a pilot run of the study, the 

end-user developer participant focused mainly on using those cards, even when repeatedly 

reminded to use the Tactics cards. As my main interest, for this study, was in respect to the 

Tactics cards, and the process of troubleshooting, the component cards were not included in 

the support materials. 

For this study, the Support Materials also included an index card, containing a short set of rules. 

Rather than prescribing a specific method in detail, it stated that participants were required to 

use the cards, including the questions on the back, advised them to use the playmat, and 

reminded them of the ‘diagnose → fix → evaluate’ cycle. It also suggested that if participants got 
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stuck, they should take a random (i.e., any) card from the stand. No other rules were specified in 

respect to the use of the support materials. 

Buggy prototypes 

Two buggy prototypes were created: Buggy Prototype A (BPA) used in Task 1 and Buggy 

Prototype B (BPB) used in Task 2. Rather than counterbalancing the order of exposure to the 

prototypes as well as the support materials, I chose, instead, to ensure that the prototypes were 

equivalent in complexity/difficulty. 

I chose to base the buggy prototypes on the same project used in Study 1—a simplified4 version 

of the ‘Love-O-Meter’ project in the official Arduino Starter Kit (‘Arduino Starter Kit’ n.d.)—

because the study had provided much insight into the problems that end-user developers can 

encounter when building that particular project, including specific bugs that can be introduced 

during the process. Using the same base prototype per task meant that a participant would not 

potentially encounter circuits or components of differing familiarity to them, which might affect 

their performance and skew their opinion of the two tasks. Although it also meant that there was 

potential for a learning effect to affect performance, it was agreed, in discussion with my PhD 

supervisors, that the benefits outweighed this, and that my analysis could take it into account. 

As the bugs observed in Study 1A had been introduced organically by end-user developers, I 

used a subset of these for the tasks in this study. A shortlist of potential bugs was created, in 

preparation for choosing a final six for use in the study. Using six different bugs, of varying levels 

of difficulty, in the study, meant that all participants would hopefully be presented with at least 

some challenge, irrespective of their previous experience or level of expertise. 

How many bugs per buggy prototype? 

Once it was agreed that tasks would involve the simplified Love-O-Meter, a small pilot study, 

involving two end-user developer participants, was conducted, to decide whether to use one 

circuit bug per prototype, or multiple circuit bugs per prototype in the study. Participant 1 

 

4 The original project included code that converted the raw ADC (analog to digital conversion) readings 
(read from the analog pin), first to voltage and then Celsius. The program I used in this study included no 
conversion. 
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undertook six consecutive tasks, each involving a Love-O-Meter prototype preseeded with a 

single bug. Participant 2 undertook two tasks, each involving a prototype preseeded with three 

bugs. Each participant performed half of their tasks with the Support Materials and half without.  

A very strong learning effect was observed for Participant 1, who, after managing to find and fix 

the first bug (i.e., successfully complete the first task) and then encountering the same prototype 

in the second task, merely replicated the working circuit (by comparing their memory of what 

‘perfect’ looked like) for the remainder of the tasks—having only one bug to find and fix per 

prototype made this a relatively straightforward activity. I decided to minimise the learning 

effect by having multiple bugs per prototype. 

Focus group with Arduino experts, to choose bug sets 

To decide on the two sets of bugs with which to preseed the two prototypes, I conducted a two-

hour focus group with six Arduino/physical computing experts from the Bristol University 

Interaction group—five had at some point been employed or commissioned to develop physical 

computing prototypes, three also had experience of teaching physical computing and all 

developed physical computing prototypes as part of their current work.  

In this session I demonstrated a working Love-O-Meter, then presented each bug to the group, 

describing the fault(s) it consisted of, and the symptoms of it at runtime. The group then 

discussed and ranked the bugs in order of complexity / challenge, taking into account that the 

troubleshooting study would involve novice Arduino users. In preparation for the focus group, I 

had created a number of buggy prototypes, instantiating the bugs, which the experts were able 

to use in these discussions. A kit of spare components (LEDs, sensors, resistors) was also 

available, so that the experts could modify the prototypes, if they wished. 

The experts collectively brainstormed possible equivalent combinations of three bugs per 

prototype, taking into account not only the complexity of individual bugs and the knowledge 

required to resolve them, but also the effect of the bugs in combination and how partial 

resolution of one or more bugs would affect runtime behaviour, i.e., symptoms of failure. Of 

these combinations (bug sets), the group selected two which they felt to be most equivalent. 

These two bug sets were then hallway-tested (an impromptu, observed think-aloud debugging 

session involving a passing member of the department) and subsequently deemed equivalent in 

debugging complexity. The group also suggested the specific order in which these two buggy 
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prototypes should be exposed to the participants, to minimise potential carryover effect to the 

greatest degree possible. 

The final buggy prototypes 

Two buggy prototypes were created for use in the tasks. Both of these were based on the 

simplified ‘Love-O-Meter’ project in the official Arduino starter kit, which lights up three LEDs in a 

specific order, in response to readings of body temperature, when a temperature sensor is held 

between the fingers. The ‘ideal’ or model circuit and program for this project are described in 

detail in section 3.2.3.4.  

Each buggy prototype was preseeded with three bugs—one of the two bug sets chosen by the 

focus group. As mentioned, all of these bugs had been introduced by one or more participants 

in the first study. 

Buggy prototype A (Task 1) 

 
Figure 60. Buggy Prototype A (Task 1) 

The bugs preseeded into this prototype were: 

 A1. LEDs connected to RX/TX: Two of the LEDs (green and yellow) are connected to 

digital pins 0 and 1, which also transmit and receive data when serial communication is 

used at runtime.  
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 A2. LEDs the wrong way round: All three LEDs are seated the wrong way around in the 

breadboard. Their anodes are therefore connected to Ground and their cathodes are 

connected to digital pins.  

 A3. Ground rail not connected to Ground pin. The breadboard rail (-, blue) set up to 

provide a shared Ground connection for the 3 LEDs is not connected to an Arduino 

Ground pin. Instead, the wire that comes from the Ground pin is connected to the 

adjacent rail (+, red). 

All three of these bugs were visible to the eye if the participant knew what to look for, although 

for A2 the participant would have to look very closely at the LEDs. A2 is an extremely common 

bug—inserting an LED the wrong way around in a breadboard (i.e., incorrect orientation) is a 

very easy mistake, one which even experts make—a participant in study 1A described checking 

LED orientation as “the obvious thing to do”. A3 was also classed as an easy bug and could be 

found by simply tracing (following) the wire from Ground to the breadboard, or from the LEDs to 

the rail, i.e., checking for circuit completeness. A1 was the most complex bug. It required the 

participant knowing (or discovering) that the first two digital pins (0 and 1) have additional 

functions when serial communication is employed—additional labelling of those pins on the 

Arduino indicates that there is something different about them from the others. 

Buggy prototype B (Task 2) 

 
Figure 61. Buggy Prototype B (Task 2) 

This prototype contained the following bugs: 
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 B1. LED resistor is too high a value: The resistor connected to the third (red) LED is 220K 

ohms instead of 220 ohms.  

 B2. Sensor Ground and signal swapped: The sensor is miswired, with the Ground pin of 

the sensor connected to an Arduino analog pin (A1) instead of a Ground pin, while the 

signal (voltage out) pin of the sensor is connected to an Arduino Ground pin instead of 

an analog pin. 

 B3. LED digital pins in non-consecutive order: Instead of the LEDs being connected to 

pins 2, 3, 4, in sequential order, the order of connection is pins 2, 4, 3. 

Once again, all bugs in this prototype were visible to the eye. Many participants in Study 1 had 

miswired the sensor and struggled greatly with the diagnosis and resolution thereof—

particularly when the prototype was completely built, as in these buggy prototypes—therefore 

B2 was considered to be the most difficult bug in this prototype. B3 could be discovered by 

tracing each of the wires from the LEDs to the digital pins, however I deliberately used the same 

colour of wire for each LED and wire lengths were very long, making this bug less visible. The 

resistor bug (B1) was a relatively easy bug to solve but with only one differently coloured band 

differentiating visually between the 220 and 220K resistors, the error might not be obvious to the 

untrained eye, particularly as resistors are quite small. 

Note: to successfully complete a task, participants did not have to replicate the model circuit 

and/or program exactly but merely to modify the prototype so that the specification of correct 

runtime behaviour was met. This required resolving/fixing all preseeded bugs, but it would be 

up the participant to decide what circuit or program changes to make in order to achieve that—

some bugs could be fixed in different ways, for example, by changing the program or the circuit, 

or by changing different parts of the circuit. 

Additional task resources 

Two task instruction sheets were created (Appendix T)—a ‘With Support’ instruction sheet and a 

‘Without Support’ instruction sheet. Each explained the task goal and specified the prototype 

runtime behaviour (how it should work) that would be used to judge task success. They also 

listed constraints within which the participant must operate, for example the amount of time 

allocated, and any do’s and don’ts, for example, a reminder to think-aloud. The ‘With Support’ 

task instruction sheet contained additional instructions/rules for the use of the support 

materials within that task. 
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Figure 62. Still image from the video in which the correct prototype behaviour at runtime was demonstrated, showing the 

temperature sensor and LEDs, but none of the wiring. 

A video was created to demonstrate the target runtime behaviour, i.e., how the prototype should 

behave when all bugs had been fixed—Figure 62 shows a still image from this video. It also 

showed participants how to interact with the sensor in order to trigger changes in LED state. The 

video frame was angled to show a hand interacting with the temperature sensor, and the 

resulting LED behaviour, but not any aspect of the construction or configuration of the circuit or 

program, for example the wiring. The same demonstration video was used for both tasks. 

The microcontroller board used for the buggy prototypes was an official Arduino UNO R3 board. 

The IDE was the official Arduino IDE, and it was installed on a laptop computer running the 

Windows 10 operating system.  

The parts kit was very similar to that provided in Study 1. It contained TMP36 temperature 

sensors, 3 colours of LEDs (red, yellow, green) and resistors in a wide range of values (4.7Ω, 220Ω, 

330Ω, 560Ω, 1k Ω, 10kΩ, 1MΩ, 10MΩ). All component compartments were labelled and several of 

each component were provided. A spare USB cable and a digital multimeter was also provided, 

along with a selection of jumper wires of different lengths and colours. 

6.2.5 Procedure 

6.2.5.1 Overview of procedure 

Each participant individually attended a two-hour-long session at a pre-arranged time 

convenient for them. The session sequence of activities is also shown in Figure 63.  
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After completing the background questionnaire, the participant undertook two hands-on 

troubleshooting tasks—Task 1 then Task 2—while thinking aloud (verbal protocol). In each task, 

the participant had a set amount of time to find and fix all bugs in a specific ‘buggy prototype’. 

Each participant undertook one task with the support tool and one without. Participants were 

randomly assigned to one of two groups, determining for which task number (and therefore 

buggy prototype) they had the support materials. Table 20 shows the groups and order of 

conditions. 

Table 20. Participant task groups and order of conditions 

 
Group 

Task 1 
Buggy Prototype A 

Task 2 
Buggy Prototype B 

NSWS No Support (NS) With Support (WS) 

WSNS With Support (WS) No Support (NS) 

Before the ‘With Support’ task, the participant was given time to familiarise themselves with the 

support materials, and ask questions about them.  

After the tasks, the participant completed the support materials questionnaire and, finally, was 

interviewed. 

6.2.5.2 Sequence of activities 

On entering the room, the participant was seated at a desk with a laptop on it. They were given a 

verbal overview of the session, in which they were also deliberated misinformed that the devices 

in the two task would be different. After signing the informed consent form, they filled in the 

background questionnaire. 

Thereafter—the main part of the session—the participant undertook the two tasks, one after the 

other, the group to which they had been assigned determining whether they had the support 

materials for the first or second task.  
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Figure 63. Session sequence of activities for participants in each of the two groups 

Immediately prior to the ‘With Support’ task, the participant was shown the support materials. 

Following a verbal introduction to the information structure of both toolkit and cards, the 

participant was given dedicated time (up to fifteen minutes) to familiarise themselves with the 

support materials, while thinking aloud. During this time, the participant could also ask 

questions about the support materials. 

Before the task timer was started, the participant was given the buggy prototype (although not 

yet allowed to inspect it) and the task instructions. The physical prototype (circuit) was 

connected to the laptop and placed on the desk in front of them, and the program was opened 

within the IDE on the laptop. They were taken through the task instructions verbally, and shown 

the demo video, ensuring that they understood the target runtime behaviour and what was 
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required of them. They were given no indication of where the bugs might be located—that is, in 

the circuit or program—or how many bugs were in each buggy prototype. The participant had 

access to the task instruction sheet and demo video throughout the task and were asked to 

keep the physical prototype (circuit) within an area marked on the desk. 

 
Figure 64. Setup for With Support task. The troubleshooting cards can be seen, in their stand, top left, and the playmat is 

bottom left. The buggy prototype is in a taped area, directly in front of the participant, with the parts kit above it. 

For the ‘With Support’ task, the support materials were placed on the desk, to the left of the 

physical prototype (circuit), where they could be easily seen and were in close reach. The cards 

were in the stand, grouped within their categories, with the playmat directly in front of the stand. 

The participant was told that they must use the cards for the ‘With Support’ task, as I wanted to 

see what happened when participants used them, not if they used them, and that they must use 

the reflective questions on the rear of the cards, to guide their thinking when troubleshooting. 

During the ‘With Support’ task, if it became obvious that the participant was not using the 

support materials as required, I would remind them to do so, by holding up one of two notices—

‘Use the cards’ or ‘Use the questions’, depending on what the participant was neglecting to do. 

The participant was encouraged to use the playmat, which was explained to them, but could 

use the cards however they wished. I advised them that if they had difficulty choosing a card to 

use, they should take a random card—i.e., randomly draw any card—from the stand.  

In each task, the participant was given 25 minutes to find and fix bugs in the buggy prototype 

and asked to ‘think aloud’ while doing so—as well as general thoughts, they were specifically to 

articulate any troubleshooting-related thoughts. In addition to the laptop, they had a parts kit of 

spare components, cables and a multimeter. They had access to the internet, via the Chrome 
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browser on the laptop, and could also use the IDE’s built-in help. They were not allowed to 

search for a project which matched the exact functional design of the buggy prototype—that is, 

a project which used readings from a temperature sensor to control the behaviour of LEDs—but 

had no other search constraints. They could ask me questions to clarify the brief, but could not 

ask for hints, advice, or anything else that might help them with the task. 

The task stopped either at the end of the 25 minutes, or if the participant decided that they had 

met the brief—it was up to the participant to decide when they thought they had found and 

fixed all the bugs, based on the written specification and demo video. They were asked to 

demonstrate the final runtime behaviour and were not told how successful they had been in 

finding or fixing bugs. 

After all tasks were completed, the participant completed the Support Materials questionnaire. 

This happened when both tasks were finished, rather than straight after the ‘With Support’ task, 

so that the participant would have experienced troubleshooting with and without the support 

materials and could factor any observed differences into their answers. 

Finally, once the questionnaire had been completed, the debriefing interview was conducted. 

6.2.6 Data collection and analysis 

6.2.6.1 Video recordings 

The main source of data about how participants thought and behaved during the tasks, as well 

as their feedback in the interviews, was in the form of video recordings. The sessions were video-

recorded, using a combination of screen-recording software (to capture all on-screen activity), 

laptop webcam and three external video cameras—a close-up, birds-eye view of the prototype, a 

wider view of the desk and participant, and an over-the-shoulder view of the participant’s use of 

the support materials. As in Study 1A, all videos recorded for each participant were pre-

processed and synchronised to a single, composite, split-screen video, using Adobe Premiere 

video-editing software (Figure 65). 
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Figure 65. Still from a composite video of a participant task recording, showing in clockwise order from top left 1) the 

participant’s head and shoulders view, 2) desk-facing view, 3) screen capture, 4) overhead view of the circuit and 5) over-the-
shoulder view of support materials use 

6.2.6.2 Participant-created task artefacts 

After each session, digital photographs were taken of each buggy prototype (circuit), from 

several angles. As the buggy prototypes were reused for subsequent sessions, a digital 

representation of the final state (at task end) of each buggy prototype was created, using the 

Fritzing software application, recording its final, physical configuration, later double-checked for 

accuracy against the photographs. During this process, the buggy prototypes were scrutinised 

for circuit bugs—as well as recording these graphically within the resulting Fritzing layout 

images, they were also noted in writing. These bug data were later captured to a spreadsheet. 

Programs edited—or created—by each participant were saved. Any bugs within them were 

noted and later captured to the same spreadsheet as the circuit bugs.  

Any notes or diagrams created by the participant were digitally scanned. 
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Figure 66. Photograph (left) and Fritzing image (right) capturing the final state of a prototype at the end of a task 

6.2.6.3 Analysis: Task success 

Based on the artefact and video data, participants’ success in completing each task was 

recorded as a binary 1 (Yes) or 0 (No), within a spreadsheet. A participant was said to have 

completed the task successfully (task success = 1/yes) if, at the end of the task, the prototype 

behaved as specified in the task brief (instruction sheet and demonstration video) and the 

program and circuit contained no bugs that would interfere with correct (i.e., specified) 

behaviour. Task success was not based purely on whether the preseeded bugs had been 

resolved. If a participant had found and resolved all of the preseeded bugs in a buggy prototype 

but had introduced new bugs which still remained at the end of the task, they failed the task. 

The task programs and circuits were scrutinised after the sessions, for any bugs not obvious at 

runtime, and the details recorded to a spreadsheet. This, along with the facilitator notes made 

during the session and watching the task videos—specifically, the close-up view of runtime 

behaviour—was used to reliably determine task success. 

I counted and compared the number of participants who achieved task success within each task 

(T1/T2), as well as how many achieved task success within each condition, i.e., with or without 

the support materials (NS/WS). 

6.2.6.4 Analysis: Bugs fixed; Bugs remaining 

When recording details of remaining bugs to a spreadsheet, the bug location (circuit or program) 

was noted, along with a very brief summary of the bug, i.e., what was incorrect. For each task, I 

noted whether each of the preseeded bugs had been resolved/fixed (Yes=1; No=0) and whether 

any new bugs remained in the circuit (Yes=1; No=0) or program (Yes=1; No=0). I did not count the 

number of new bugs remaining, only whether or not bugs remained. 
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I counted how many of the preseeded bugs had been fixed by each participant, per task (T1, T2), 

as well as how many had been fixed in each support condition (NS, WS). I also calculated how 

many participants had bugs (preseeded circuit bugs, new circuit bugs and new program bugs) 

remaining at the end of each task (T1/T2), also for each support condition (NS, WS). 

6.2.6.5 Support materials questionnaire data 

Data captured via the Support Materials Questionnaire (Appendix S) included the participants’ 

ratings, on a seven-point scale—from Not at all useful (1) to Extremely useful (7)—of the 

usefulness of each of the different elements of the support materials (tactics, categories, 

playmat & rules, card stand), and of the card format as a medium for delivering support. Two 

freeform text questions captured, in brief, written feedback of anything the participant 

specifically did or did not like about the support materials. Finally, nineteen questions captured 

the extent of a participant’s agreement or disagreement with a number of statements regarding 

the perceived effectiveness (eight questions), usability (seven questions) and fitness for purpose 

(4 questions) of the support materials, again on a seven-point scale—from Strongly disagree (1) 

to Strongly agree (7). Only the endpoints of the scales were labelled descriptively, and 

participants provided a rating by circling a number on the scale. 

After the session, the paper questionnaires were digitally scanned and then the data entered 

into a spreadsheet, where it was summarised using descriptive statistics. 

6.2.6.6 Debriefing interview data 

The semi-structured debriefing interview, guided by the interview topic guide (Appendix U), was 

video recorded. Besides questions about participants’ perceptions of the effect/impact of the 

support materials upon their troubleshooting, and what they thought of them, the interview also 

probed any interesting observations noted during the tasks. 

A video sequence was extracted, from the composite video recordings, that covered the specific 

period from the point at which the participant began to fill in the Support Materials 

Questionnaire (as many participants had chosen to comment verbally on some of their ratings, 

explaining them) until the end of the debriefing interview, which immediately followed the 

questionnaire completion. I used Otter.ai (Otter.ai Inc. n.d.) to first automatically transcribe the 

audio tracks of these videos and then manually edited them for accuracy, creating a full record 
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of everything said during this part of the sessions. I downloaded these transcripts and imported 

them into MAXQDA (VERBI Software GmbH n.d.), along with the video files, linking and aligning 

each video with the appropriate verbal transcript. To familiarise myself these data, with a view to 

extracting themes from them through coding, I watched each video within MAXQDA while 

simultaneously reading the verbal transcript of it, occasionally amending the transcript with 

contextual information in brackets, where I felt it necessary, for example, if a participant pointed 

to something specific while speaking. As the intention of my coding was not theoretically driven, 

my coding process was loose and pragmatic, rather than following any strict or specific 

inductive or deductive method. I was interested in what people thought of the support tool, 

including specific components and design aspects of it, but also evidence of any thinking or 

behaviours it engendered, to enable me to assess whether—and if so, how—it had or had not 

met the aims behind its development, and identify any particular aspects of the tool that might 

be improved in a future iteration. As the designer of the support tool, I was mindful of potential 

bias when coding, taking care to ensure that the coding decisions I made would enable me to 

paint as accurate a picture as possible of participants’ opinions of the tool and of its success in 

fulfilling its aims as a potential medium for scaffolding end-user developers’ troubleshooting. 

Initial coding was guided by, but not limited to, the questions (and categories thereof) in the 

support materials questionnaire, the card design principles derived from the literature, and the 

aims and features of the support tool, but also revisiting and recoding previously coded 

transcripts when additional patterns began to emerge. Over several rounds of the dataset, I 

reviewed and refined my codes, merging and/or renaming them, and grouping them into 

categories appropriate to the developing themes. 

6.3 Results 

The results will be reported in respect to the research questions they answer, first looking at the 

effect, on task performance, of participants having used the support materials (RQ1) and then at 

participants’ subjective opinions of the support materials (RQ2). 
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6.3.1 What effect do the cards have on helping end-user 
developers troubleshoot?  

To answer this question, I looked at the effect of the support materials on the outcomes of 

participants’ troubleshooting, that is: 

• Whether participants managed to successfully complete the tasks (task success) 

• Whether participants managed to find and resolve the preseeded bugs in each task  

• Whether additional bugs had been introduced, into the circuit or program, which 

remained unresolved at the end of the tasks. 

I compared the performance of the two groups (NSWS and WSNS), as well as, irrespective of 

group, performance with and without the support materials, in the two tasks. 

6.3.1.1 Task success 

A task was counted as successfully completed if, at the end of the task, the prototype contained 

no bugs that would prevent the prototype from behaving as specified, irrespective of whether 

the participant was aware of them.  

Many participants struggled to successfully complete the tasks, particularly the first task. Figure 

67 shows the number of participants in each support condition who achieved task success in 

each task. Only one participant completed Task 1 successfully, and did so without the support 

materials (NSWS group). One other participant, in the same group (NSWS), did manage to find 

and resolve all of the preseeded bugs in Task 1, while using the support materials, however, 

program bugs that they had introduced while troubleshooting (incorrect operators and 

temperature thresholds in their conditional statements) still remained at the end of the task.  

 
Figure 67. Participants who achieved task success, with and without the support materials, in each task 
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I had anticipated improvement for the second task, given participants’ familiarity with the Love-

O-Meter by this stage, and it was subsequently observed. Seven participants, in total, completed 

Task 2 successfully, slightly more without the support materials (4, NSWS) than with (3, WSNS).  

Overall, each group successfully completed the same number of tasks (4), in total, and while 

slightly more tasks were successfully completed without the support materials (5), than with (3), 

the differences were small. 

What this shows is that there was no obvious effect of the support materials upon task success. 

Many participants struggled, particularly in the first task, and while improvement was noted for 

the second task, as expected, there was little difference, overall, between the two groups or 

support conditions. 

6.3.1.2 Bugs 

I then looked at the bugs that participants resolved, firstly at the preseeded bugs. 

Each buggy prototype contained three bugs for participants to find and fix. Overall, far more 

preseeded bugs were fixed in Task 2 (Figure 68). Again, I had expected some improvement, given 

the potential for a learning effect between the two tasks, i.e., the participants becoming familiar 

with the simplified Love-O-Meter prototype as a result of being exposed to it in Task 1. 

 
Figure 68. Preseeded bugs fixed with and without the support materials in each task 

Overall, the group who had the support materials in the second task (NSWS), fixed slightly more 

preseeded bugs (31) than the group who had them in the first task (WSNS, 29) and, slightly more 

preseeded bugs were fixed when participants did not have access to the support materials (31) 

than when they did (29), however, again, the differences were small. 
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Specific bugs 

I looked at the specific bugs that had been preseeded in each task, to see if particular groups 

had been more successful in fixing any of them. 

There were no notable differences between groups (i.e. support conditions), for either task 

(Figure 69). While the A1 bug (LEDs connected to RX and TX pins)—classed as difficult in the 

focus group with Arduino experts—was fixed by only two participants, both in the NSWS group 

and therefore troubleshooting without support materials, each of these participants mentioned 

having experienced this bug previously. Other than that, very similar numbers of participants in 

each group fixed each of the other bugs. 

 
Figure 69. Participants (n), per support condition, who fixed specific preseeded bugs in each task. The WSNS group had the 

support materials in T1; NSWS had them in T2. 

Participants with bugs remaining—preseeded and new 

I then looked at all bugs remaining at the end of each task, not just preseeded ones. As 

preseeded bugs were not described at the level of individual faults (i.e., connections to be 

rectified), I chose to count the number of participants with bugs remaining., rather than the 

number of bugs remaining—this meant that the same, unambiguous unit of measurement could 

be used for both preseeded and new bugs. 

Some difference between groups is noted—however, there are no discernible patterns to this, 

and again, the difference is not large (Figure 70). 
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Figure 70. Participants (n) per support condition, with bugs (preseeded, new, new circuit bugs, new program bugs) remaining 

at the end of each task. (Note: ‘New bugs’ counts participants with any new bugs remaining, irrespective of their location) 

Preseeded bugs were the most common type of bug remaining, particularly in Task 1 (18 

participants). 

In both tasks, participants in both groups had introduced—and subsequently failed to resolve—

new circuit bugs and new program bugs. Almost half (9) of the participants had new program 

bugs remaining at the end of Task 1. This suggests that participants’ troubleshooting led to 

them changing—incorrectly—parts of the program, as was also observed in the first study. 

Looking at Figure 71, we note that more participants had new bugs and new program bugs 

remaining at the end of the tasks in which they did not have the support materials. While the 

difference in numbers is relatively small, this is encouraging. Conversely, slightly more 

participants had new circuit bugs remaining at the end of tasks in which they did have access to 

the support materials. Although disappointing, this may suggest that participants were at least 

making changes in the correct location, i.e., the circuit rather than the program, however, again 

numbers are small. 

 
Figure 71. Participants (n) with bugs (pre-seeded, new bugs (all), new program bugs and new circuit bugs) remaining at the 

end of tasks with or without support 
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Level of success in fixing preseeded bugs 

However, there is some evidence that participants were more likely to make at least some 

progress when they had the support materials, than when they did not.  

I looked at what level of success participants had fixed the preseeded bugs, counting the bugs 

fixed, and putting these numbers into bands: All (3 fixed), Some (1 or 2 fixed), and None (0 fixed). 

I noticed that overall (Figure 72), while fewer participants (4) had fixed all preseeded bugs when 

they had access to the support materials than when they did not (7), fewer participant (3) fixed 

none of the preseeded bugs (compared to 7 without support), i.e. more of them (17) had fixed at 

least 1 of the preseeded bugs when they had the support materials than when they did not (13). 

 
Figure 72. Participants (n) who fixed none, some or all of the preseeded bugs, with and without support. 

Breaking this down further by task (Figure 73), I then noticed that only three participants in the 

WSNS group fixed none of the preseeded bugs in Task 1, when they had access to the support 

materials, compared to half of the participants in the NSWS group, who did not have them, while 

in Task 2, all participants who had access to the support materials fixed at least one preseeded 

bug. This suggests that the support tool may succeed in helping end-user developers to make at 

least some progress, even if they do not resolve all of their problems—more so than without. 

 
Figure 73. Participants (n) per support condition who fixed none, some or all of the preseeded bugs in each task 
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Also encouraging, is that most (8/10) of the participants, who had access to the support 

materials in Task 1 (WSNS), managed to fix at least one preseeded bug in Task 2, while half 

(5/10) of them managed to fix all of the preseeded bugs, even without access to the support 

materials in this task. This suggests perhaps there may be a learning effect associated with the 

support materials. Certainly, as I will shortly discuss, comments made by some participants in 

the debriefing interview support the suggestion that the support materials lead to learning that 

transfers to future troubleshooting, even when the support materials are not available (see A 

positive priming / learning effect in section 6.3.2.2 What did the support materials achieve?). 

While none of WSNS group completed T1, the majority (7) made at least some progress. In T2 we 

see a dramatic improvement for this group, with half completing the task and three others fixing 

at least one bug. Only two participants failed to make any progress in this task. 

Having looked at the outcomes of participants’ use of the support materials (RQ1), I now turn my 

attention to participants’ feedback on the design and use of them (RQ2). 

6.3.2 How do end-user developers view the support tool? 

To answer RQ2, I analysed the data collected via the Support Materials Questionnaire (SMQ) and 

the debriefing interview. In this section I report some of the key results from the questionnaire 

analysis, supplemented with thick descriptions of themes identified in the interviews, 

substantiated with participant quotes.  

Ratings in the SMQ were captured using a 7-point scale and only the ends were labelled 

descriptively. When reporting results from the SMQ, I refer to anything above 4 (the midpoint) as 

agreement (with a statement or as being useful) and anything below 4 as disagreement. The 

midpoint is reported as neutral. Strong disagreement means a score of 1, strong agreement a 

score of 7. 

This section is structured as follows: 

 In section 6.3.2.1 I present feedback about the design of the cards, and other aspects of 

the support materials, structured as follows:  

 The physical card format 

 Card content & design 

 Organising and using the cards 
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 In section 6.3.2.2 I then discuss what the support tool appeared to achieve, based on 

feedback from participants, in terms of the aims of its development:  

 Providing/prompting ideas 

 Making end-user developers think more when troubleshooting 

 A positive priming / learning effect 

 Recognition of value in changes to process 

 Suitability for novices 

 

Figure 74. Support Materials questionnaire responses. Participants gave each question a rating from 1 to 7. The number within 
each coloured box represents the number of participants who chose that rating. Green represents the midpoint (rating = 4) 
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6.3.2.1 Feedback about the design of the cards 

While the support materials, in the context of the study, comprised several different elements, 

the cards were the main vehicle through which support was provided, with the thirty-six tactics 

cards representing the primary form of content. In the SMQ, thirteen participants rated these as 

useful (Figure 74). The interviews provide insights into what participants did and did not like 

about the cards, and why.  

The physical card format 

Slightly more than half of the participants (11) found it useful to have troubleshooting tactics in 

the form of physical cards (Figure 74), with a further six participants feeling neutral about this. 

Several expressed their appreciation for the format, acknowledging some of the advantages 

discussed in section 0, and the benefits over having support in a different medium. 

For example, P120 reaffirmed the flexibility of cards in a physical space. As has been noted in 

other studies, cards can be quickly and easily manipulated, as a kind of external cognition, 

which can also be helpful in tracking. This participant reflected that while comments in 

programs can be used to track what has been done, there is no analogue for hardware, and 

suggested that cards could provide this to some degree, potentially through additional areas on 

the playmat. They also felt the cards format to be less distracting than switching between 

hardware and software, enabling them to stay focused on their task: 

“So that's why I'm proposing I can use the card as a record as well. So it's gonna be 
easier for me to manage. […] I mean, in, in software, it's easy to do that because you 
comment things out and you look back […] ‘Okay. I've done this for the hardware'.” 
(P120) 

“With this card, it's just putting it there (mimes putting a card into a pile). It's more 
helpful for me to concentrate, rather than switching between different media.” (P120) 

Another perceived advantage of providing support in the form of physical cards was that it is 

neither software nor hardware based—P180 felt that this encouraged them to take a step back 

from their circuit and program. They suggested that screen-based support may even lead them 

to focus more on the program, which was something I had speculated about as a potential 

cause for the large number of program-related problems in the first study, and the frequent 

misdiagnosis of circuit bugs as program bugs. 
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“Having something to pick up and hold […] it got me moving away.. 'What am I doing? 
Move away from that board, move away from that screen. […] As opposed to 'Oh, it's 
on the screen. Let me just Google this'. Google is a distraction. If something else was 
screen-based, I could have thought 'Well as I'm here, let me just jump to this code. 
[…]'” (P180) 

Some, however, were concerned about space that physical cards would require, for example, 

P160 would prefer to have them in digital form: 

“I would have preferred if it was software based. […] At home […], I don't think I'll be 
able to have, like, space to put cards on and do all that (P160) 

Card content & design 

Some participants felt the card format to also have advantages for information delivery—

presenting support content as smaller chunks of information/advice makes it easier to absorb, 

or more memorable: 

“I do like that it's broken up into small pieces. I think that makes it more manageable 
and easier to take, like, individual suggestions.” (P230) 

“Wise advice in a digestible format” (P140) 

The ‘information iceberg’ 

Feedback validated the decision to layer information across two card sides, keeping the front 

very simple and consigning the bulk of the text to the rear: 

“I like that you've used both sides so that there's less in one go. (P270) 

“in a way this (points at the card title) is the tip of the iceberg. Actually, this side of the 
card, right? [the front] And this back is like what is underneath.” (P170) 

Although participants were instructed to use the list of questions on the back of the cards to 

guide their thinking, they usually focused mainly on the front sides when reviewing and selecting 

cards. This confirms that distinct, comprehensible titles are crucial to effective use of the cards 

within an end-user developer troubleshooting workflow.  

“Questions are helpful, but I think for me, even just having the bold reminder on the 
front is what I really needed more. It was just, like, the reminder to do.. like, the general 
idea.” (P230) 

Participants’ views were mixed when it came to the amount of information on the cards—some 

found it acceptable or ideal, some wanted more, and others less (Figure 74), As people have 
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different information processing styles and reading abilities, this was unsurprising. While this 

study required participants to use the questions on the rear of the cards, in a more naturalistic 

setting, end-user developers would have agency to choose which—or how much—information 

on the cards to engage with, so double-sided cards have the potential to satisfy multiple styles.  

Imagery 

The use of icons on the cards was well-received. Several participants—including some with 

reading difficulties—felt the icons helped them to understand the concepts and spoke 

favourably about the simplicity of these images. As in my first study, some participants 

mentioned struggling to understand more technical imagery in other resources: 

“I like that they were quite to the point. From the front of it, you could get what it was 
about. […] instead of it just being text, having an actual image to tie it to, is good.” 
(P210) 

“What I did like was how the icons are more relatable to what I might understand than 
typical Arduino. […] I don’t understand the.. especially in a circuit, they always mess 
up the circuit with the drawings and it doesn’t translate to me” (P280) 

Visual puns—used for attention and to aid memorability—were also well-received, for example, 

P260 felt this made the cards feel more fun and approachable:  

“They’re very funny. It’s interesting. Like writing ‘logging’ as a log. […] I like that. It just 
makes you laugh […] It just doesn't take things seriously. I think it's a big problem in 
any sort of engineering computer science field that people are just really boring.” 
(P260) 

The use of open questions 

The chief aim behind delivering the main content as questions, rather than instructions or more 

direct signposting, was to encourage end-user developers to think more when troubleshooting, 

while simultaneously helping them to develop their problem-solving skills by highlighting lines 

of thought that might prove helpful. However, as I will discuss in section 6.3.2.2, not all were 

happy with this extra cognitive load. Participants’ views were fairly polarized regarding the use of 

questions. Many recognised why this approach had been taken, and found it useful, for example 

P180, who reflects that this is actually how they learn best, while even some of the participants 

who found the questions time consuming within the constraints of the study (e.g., P250 and 

P190) saw value in it. 
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“For me, this sort of thing works better than if someone had said, 'Here are the 
instructions to build this circuit'. I will build the circuit, but I will not learn. I will simply 
follow directions. And that's not the same.” (P180) 

“Questions make you think about things a lot more […] and then that'll make you 
understand what you're doing a lot more in general. […] they prompted me to try and 
discover things that I didn't know, which is kind of good. I guess that's because they 
didn't give away the answer but encouraged me to try and find it myself.” (P250) 

“I think questions are good because you can't apply an instruction to a lot of 
situations, but you can apply a question to lots of situations.” (P190) 

However, others, such as P160, felt that concrete information would be more helpful than open 

questions. I had anticipated that some participants would prefer direction over reflection, from 

the pilot study and card design focus groups. Participants’ use of external help in my studies 

demonstrates end-user developers’ need for information about the tools and equipment they 

use. While this study focused on troubleshooting tactics, the Component cards (section 5.5.4) 

represent one way to satisfy some fundamental information needs of this type. 

“It feels somewhat patronizing (laughs). I personally just prefer having information, 
like, saying for this temperature sensor ‘This is the ground, in, out. Make sure that the 
orientation is correct,’ rather than 'Why does orientation matter?'” (P160) 

Some difficulties with the questions were reported, for example, not being able to answer them 

made one participant feel “anxious”. As I later discuss, feelings of anxiety or stress regarding the 

support materials often seemed to be related to the pressure under which participants felt 

themselves to be in the study, but P280’s feedback suggests a need for additional routing or 

suggestions for end-user developers who struggle to make any headway using open questions:  

“It's not answering anything as well, it's just providing more questions for me to.. that I 
don't have answers for” (P280) 

Tactic specificity 

As I describe in section 5.5.1, tactics deliberately vary in specificity—the deck contains general 

problem-solving tactics as well as very specific ones, and while some tactics are very practical, 

others are deliberately more thought-provoking. Participants’ reactions to this also varied: 

“I do like that some of these are very practical, sort of.. technical, sort of, approaches, 
whereas some of them are just about, you know, this 'stop and think' and just sort of 
using lateral thinking and, and sort of taking a step back from it, that type of thing” 
(P110) 
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“I think the level there is a bit of confusion in terms of, um... the things, whether it's 
specific or not. […] this one is quite sort of general. And this one is sort of very specific” 
(P120) 

At least some confusion stemmed from focusing on certain aspects of the cards and not paying 

attention to others. P120 changed their opinion of one card upon taking a closer look at it. At 

first glance, this may not seem like a particularly important observation, however, it suggests 

that this end-user developer may have dismissed, as not relevant, tactics that may have been of 

use to them. It may be that time pressure played a part in this, however, it is still worth noting. 

“I now read this, it's clear, I mean. I was reading mainly this [the title]. So, I wasn't 
paying attention on the specific words here [the description].” (P120) 

One participant suggested splitting cards into ‘general’ and ‘specific’ categories. It is possible 

that differentiating, somehow, between levels of specificity might not only improve end-user 

developers’ understanding of a particular support tool, but also of troubleshooting in general—a 

future study could explore this. 

“Have one category that is just really specific and a whole category that is just more 
general, maybe. […] maybe I want to look for really specific answers, for Arduino, I 
don't want to be bothered with more general problem-solving techniques.” (P260) 

Organising and using the cards 

Encouragingly, most (15) agreed that the support materials were easy to use and most (16) 

disagreed that they were confusing (Figure 74), 

Participants had no constraints regarding card organisation—they could work however they 

wished. While most (16) agreed that the stand was useful (Figure 74), a few felt it would be more 

helpful to have more tactics visible at once, for example: 

“Where you can see everything as you think, it’s more helpful for me […] if something's 
more visual, I could maybe like look across and see like, 'Oh, yeah, I forgot to do that' 
or something.” (P280) 

More than half (13) of the participants agreed that the categories were useful (Figure 74) and the 

interviews provide some insight into differences in opinion. For example, P180 found the 

categories distinct and easy to understand—their interpretation matching the logic behind the 

grouping, whereas feedback from P160 suggests that not all end-user developers may find these 

categorisations understandable or useful: 
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“Analysing is different from inspecting. Analysing requires sort of a systematic 
judgment of behaviour, whereas inspecting is more what I was doing: 'Is that circuit 
correct?' So those two are definite. Conducting a test is different from analysing it. It's 
the predecessor to analysing it. If you don't conduct it, you can't analyse.” (P180) 

“A lot of the categories, to me they look the same. […] if they were, like, a little bit more 
distinct, it would make more sense.” (P160) 

Participants also had no constraints regarding how many cards they could use at any one time, 

and I had assumed that in some cases it would make sense to work with more than one. 

Correspondingly, P120 found it helpful to have cards from multiple categories active, for 

example, a card from the ‘Conduct a test’ category and a card from ‘Analyse behaviour/data’. 

Again, this illustrates yet another advantage of using physical cards, i.e., on-the-fly creation of 

value or meaning through combination—a technique common to the methods suggested by 

several creativity support card tools (section 0). 

“when I bonded to one section or category, I find it a bit difficult. But then I realized, 
‘Oh, there are things that I can combine’, like, there are kind of mixing things, I started 
to put them together and then that's easier for me” (P120) 

The playmat 

Participants were encouraged to use the playmat, and advised to follow the Diagnose → Fix → 

Evaluate (DFE) cycle. 

Participants’ opinions of the playmat were very polarised. Only seven rated the playmat and 

rules as useful; over half (11) disagreed (Figure 74). 

The ease and convenience of using the physical cards for tracking has already been mentioned, 
with P120 suggesting extending the playmat to include even more areas. Similarly, another 
participant likened the playmat to the Kanban-style boards commonly used by software teams 
to plan and track their activities, with separate columns—usually some kind of variation on ‘to-
do, ‘in progress’, and ‘done’—to show the status of different tasks.  

The Shortlist area of the playmat encouraged participants to filter or triage the cards for 
usefulness/relevance. Separating the consideration of options (i.e., planning) from acting/doing 
was seen as helpful by P290, while P280 actually found shortlisting enjoyable: 

“The playmat was great, actually. […] And I think it's really useful to separate the 
process. 'Right, okay, so what might be useful in this?' If you have a quick look and 
then say 'Ok, I'm gonna try that and try that and try that and try that.'” (P290) 
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“The only thing that I found, like, quite fun was having this [playmat] and having to 
pick out the ones I'm going to use. I was like structuring my to do list or something.” 
(P280) 

A few felt that the playmat was useful for keeping them focused and on track. Having cards put 

aside on the playmat prompted P280 to revisit the tactics they had planned to use, while for 

P180 it had benefits beyond the practical, keeping them calm in the face of time-pressure: 

“I did like the playmat. That was useful in the sense that it makes you put aside what 
you have to think now. […] that was good. Because if it's sitting around there, it's like 
forcing me to look through it again.” (P280) 

“The mat […] was about ‘Where am I’. It was really useful. […] Again, keeping track of 
where I was, you know? It's 'What am I doing? I am doing this'. And also, with that, I 
was monitoring my thinking process, as opposed to racing ahead going Aaaaaaa' […] 
And it stopped me panicking. Because I was aware of the time.” (P180) 

Others, however, were less positive about the playmat, for example, P230 and P190 both felt that 

the cards would be enough by themselves: 

“I don't entirely understand the purpose, I think, of the playmat. […] I do like how it 
reminds you of just the general process, but as far as having a shortlist and active, I 
think that most people can kinda make makeshift piles on their own.” (P230) 

“I felt like I was using the mat just because you told me to. But I think the cards on their 
own probably do a better job. I wasn't listening or looking at that [the DFE cycle] but I 
was subconsciously doing that anyway.” (P190) 

Although shortlisting was suggested, not enforced, some felt it an unnecessary hindrance—a 

time-consuming extra step that slowed progress. A few already had an idea of what they wanted 

to do—as soon as possible; for others, shortlisting conflicted with their usual way of working.  

“I prefer having all of them there and just reading all of them. […] I prefer a mess 
(mimes dealing cards in front of them; laughs). For example, I might go through them 
and just put them on the desk and then read through them one by one rather than 
having an idea shortlist” (P160) 

Two participants, including P200, did not like having additional items like the playmat on their 

work surface: 

“I'm not a 'having things out' kind of person. I like things up (points up, in front). Or 
there (points front left)... there (points front right). But this kind of desk chaos makes 
me slightly uneasy.” (P200) 
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Method: Where to start? Where to go next? 

Despite most (15) rating the support materials as easy to use, one issue for a few participants 

was the lack of guidance or signposting in selecting which cards to use. Although cards were 

categorised, there was no indication of a starting point, or cards to prioritise, for example, in the 

early stages of troubleshooting. While some participants did not appear troubled by this, for 

others it presented a challenge, for example, neither P110 nor P200 were sure how to correlate 

the cards with their problems, so relied, in part, on random card draw, to help them choose: 

“I didn't understand the basic fundamentals of how it's supposed to work. […] it 
wasn't immediately obvious to me which category I sort of needed to look at. So I was 
picking them a bit at random, and just hoping that something would come out of 
there that would trigger a chain of events.” (P110) 

“Pick a random card […] there was almost a bit of relief when I read it. I was like 'Oh 
actually, at least, I know, I'll just take one and then I can work with that'.” (P200) 

More than one participant, including P260, felt that a more structured method, or some kind of 

signposting between cards would have been useful, while two participants, including P210, 

suggested that familiarity and experience would mitigate this issue.  

“I think the cards don't really connect to each other. I look at the card and I think it 
would be great if it tells me 'Oh, also look at this. If you've done this, do this. And if 
you've done this, do this.' It kind of gives you different pathways through 
troubleshooting. Other than that, it's just like 'Okay, I have these cards, but this didn't 
work, which card do I take next?'” (P260) 

“Now I wouldn't have that problem, you know? And the other thing is, I would probably 
start to have my own methods […] I'd probably start to have cards that I start off with, 
that might not be the same cards that other people start off with. So I think that only 
applies really to your first time using it. […] It's just not being used to it” (P210) 

This feedback echoes what some other researchers have observed—while some users are happy 

to work with cards in a more freeform manner, or devise their own methods, others would 

prefer, or benefit from, a more structured method (Lockton et al. 2009). However, as the support 

tool is aimed at novices, it seems worth exploring whether it would help to provide a starting 

point—at least, some suggestions for good (or common) tactics to begin with—and/or, some 

kind of linking between cards, to aid navigation within the deck. 
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6.3.2.2 What did the support materials achieve? 

I will now describe some of the benefits observed within this particular sample in terms of the 

aim of the support tool. They can be summarised as follows, and will be discussed in this order: 

• Providing/prompting ideas, including reminders 

• Making end-user developers think more when troubleshooting 

• A positive priming / learning effect 

• Recognition of value in changes to process 

• Suitability for novices 

Providing/prompting ideas 

In the first study, I observed some participants running out of ideas, repeating unsuccessful 

diagnosis tactics, resorting to speculative changes or even giving up troubleshooting. A primary 

aim of the support tool was, therefore, to provide novice end-user developers with plenty of 

options to consider—hence the large number of tactics in the deck. Encouragingly, feedback 

from participants suggests that this was achieved, as most (17) agreed that the support 

materials gave them ‘useful ideas for troubleshooting’ (Figure 74). 

As earlier discussed (section 2.8), troubleshooting, particularly, problem diagnosis, is a 

hypothesis-driven activity, and poor or incorrect hypotheses can not only hinder progress, but 

also cause further problems. For example, while end-user developers often look for external help 

when troubleshooting, they do not always know what to search for—as observed in my first 

study, where poorly worded or incorrect searches led participants to wrong or misleading 

information. P190 felt the tactics cards offer an advantage when seeking help, by providing 

readymade suggestions:  

“When you look something up in a book or online, you have to give the query. So, in 
that sense, cards are useful, because when you're not sure what you're looking for, you 
can go there to know what to look for.” (P190) 

Feedback from some participants appears to support the hypothesis in section 6.3.1.2, that 

participants were less likely to make no progress, when they had the support materials. For 

example, P110 almost gave up part-way through Task 1 (No Support), despairing at being 

completely out of ideas, and eventually resorting to unsuccessful speculative fixes that resulted 

in new bugs. In Task 2, however, the tactics cards helped them overcome similar humps. Feeling 
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at a loss can dent self-efficacy, which in turn affects motivation and resilience in problem solving 

(Bandura 1978). If end-user developers are less likely to be completely stuck when using the 

cards, this may have positive implications for their perseverance in troubleshooting.  

“when something doesn't work in Arduino, I think I have this feeling of helplessness, 
because I'm aware that I don't really know what's going on. […] I was completely lost. 
I was just.. I was looking for things lining up. But beyond that, […] I didn't have much of 
a clue. So these were useful because at least they gave me things to try and different 
aspects.. different things to look at” (P110) 

Another technique for getting participants ‘unstuck’ was the suggestion to take a random (i.e., 

any) card, which several participants found helpful. 

sometimes I just get to a point and I'm like, 'Okay, I'm done'. […] But it gives you that 
nudge to say 'Actually, is it facing the right way around? Did you think of that? Did you 
actually think that maybe your temperature sensor has the wires crossed? No, you 
didn't.'” (P180) 

Many creativity-support card decks employ random card draw as a device not just to elicit ideas 

but also novel or different ideas—an effect which was recognised in this study too. P210 (NSWS) 

felt the cards would have helped them in the first task, while others also noted that the 

questions—and the cards in general—prompted different thinking and behaviours, with positive 

outcomes: 

"I think it would just got me out my thought pattern. And stopped me thinking down 
the path I normally think.” (P210) 

“What I liked about them is that they offer questions which you might not have thought 
of previously, which kind of help you progress.” (P250) 

“they were useful mostly in directing my attention towards an aspect or a side of 
things that I was ignoring previously, you know, they were good at just 'Oh, yeah, I 
should take a look at that'. And in a couple of those circumstances, I was thinking, ‘Oh, 
I've seen something wrong here.’ So, I don't know how long how long that would have 
taken me without that prompting, to have noticed that myself.” (P110) 

Sometimes chains of events led to discovery, while P210 felt that even just having cards visible 

on the mat prompted further ideas: 

“I sort of started looking at something else and then while I was looking at that, I sort 
of saw some.. and you know, so I think that sometimes they indirectly led to me 
discovering something” (P110) 

“often this happened, I would have one card. And that card would lead me on to 
another card. And if I just put that card back with the card that led me on, I would 
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forget about it, but to have it down, and like, you know, there, is good. […] it was just 
like, you know, a jumping board” (P210) 

Reminders of existing knowledge 

If their development sessions are sporadic/infrequent—more likely, outside of the routine and 

obligation of professional practice—less-experienced end-user developers are further 

disadvantaged in troubleshooting. They not only lack the enhanced knowledge that comes with 

more experience, but extended periods of time between development can degrade previously 

acquired knowledge, making it slower or more difficult to retrieve, and increasing the potential 

for misapplication. For example, it had been over five years since P300 last used Arduino: 

“I was confused with the connections and things and was like ‘Oh this is like connected 
right or wrong?’ […] I thought that things could come to me naturally, but I was like, 
'Oh, is it right?' 'Is it in the right place?’” (P300) 

Providing end-user developers with reminders was another aim of the cards and most (15) 

participants agreed that this was successful (Figure 74). It sometimes made a big difference to 

how well-equipped participants were to diagnose or evaluate behaviour. For example, in Task 2, 

the cards reminded P290 of the existence of the IDE’s Serial Monitor, and by using this, they were 

able to view the sensor readings, which had been hidden from them in the first task. Similarly, 

P190 was reminded of a common testing tactic which they hadn’t yet considered: 

“I totally forgot that was an option. So, when I saw that [card] I was like 'Ah, of course!'” 
(P290) 

“swapping in for a faulty one […], that would probably occur to me at some point, but 
it didn't occur to me right away. But the cards made me think about it on the spot.” 
(P190) 

Timely reminders sometimes led directly to participants locating and fixing bugs: 

“I knew that from day one, that a circuit has to be complete. But just the fact that […] I 
read that, made me think, 'Hang on, let me just check if they're all going to the same 
ground point'. And then it was 'Oh no, they're not'.” (P140) 

And sometimes, as I will discuss next, even just a reminder to take a step back was valuable: 

“'Stop, think' is a good reminder that maybe you've been trying too hard to fix 
something in one way.” (P260) 
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Making end-user developers think more when troubleshooting 

Encouraging end-user developers to be more thoughtful troubleshooters was another key aim of 

the tool, informed by the empirical work described in the previous chapter. Several mechanisms 

were used to support this, chiefly 1) open questions on the tactic cards, and 2) the ‘Stop… Think’ 

category of tactics—all promoting thinking rather than doing. Additionally, by encouraging 

participants to shortlist tactics, I had hoped to get them to reflect on different options and make 

conscious choices, before acting. 

Most participants (17) agreed with the statement “the support materials made me think/reflect 

more about what I was doing” (Figure 74), with six giving this the highest rating. Slightly fewer 

(12) agreed that the support materials made them “consider different hypotheses/ideas”. As 

many tactics could be viewed as potential hypotheses, it is surprising that more did not agree. 

Nonetheless, very few (4) disagreed and five gave it the highest rating. 

As discussed, participants’ opinions varied regarding the use of open questions. But while some 

found using them time-consuming (see section 6.4), most were unable to avoid them entirely 

(although some tried to), with evident effect on their thinking: 

‘they were definitely kind of forcing me to think a lot more about what I was doing. I 
don't think I would have been thinking so much about, like, smaller things if I wasn't 
reading the cards, because they were asking so many questions, so it kind of led me 
to.. made me more determined to try and figure out what was wrong with it.” (P250) 

Several mentioned finding the ‘Stop… Think’ category helpful, as well as specific cards within it, 

particularly ‘Question your Assumptions’, which seemed to resonate with many:  

“the 'Stop.. think' card was actually really helpful. Because I think this is something I 
would.. I like to do, to over-obsess about a certain thing. And then after, sometimes 
hours, realize that it was a really easy thing to fix. I just didn't take a step back.” (P260) 

However, not everyone found the extra thinking and reflection comfortable. For example, P170 

felt more conscious of their troubleshooting process—usually more of a trial-and-error 

approach—and questioning this made them feel less confident about troubleshooting—perhaps 

a temporary effect of the study, but still worth noting. And rather than seeing the thinking 

prompted by the support materials as useful to the troubleshooting process, P140 felt it 

distracted them from actual troubleshooting: 

“it made me consider my own thought process and how I approach troubleshooting 
Arduino, my knowledge. So in a way, it was more difficult because I was less confident 
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of the process itself […] it sort of collapse with my own process, which is a little bit 
more chaotic, and I try and fail, you know .. it's more about trial and error. […] And 
with these I was all the time questioning […] So, it made it slower in the sense of 
having to consider what I should do and questioning my method” (P170) 

“they did make me think about what I was doing. But in the moment, I don't think that 
was helpful. […] It's like asking an athlete, in the moment of throwing the javelin, 
'Where's your elbow now?' […] they don't think about it, but the moment you ask them 
to, it's probably gonna just throw them off.” (P140) 

A positive priming / learning effect 

Several participants who had the support materials in the first task reported a positive carryover, 

or learning effect, to the second task. This may be one reason for the large improvement in task 

performance for this group (section 6.3.1). For example, P200 felt that the knowledge they 

gained from the cards in task 1 had more impact on task 2—reflecting upon the ‘Undo failed 

fixes’ card had made them conscious of their tendency to not do this, so they monitored their 

behaviour more closely than usual in task 2, potentially avoiding new program bugs:  

“it really stuck with me as something that's a bit of a weakness in the way I approach 
things. And so when I was looking at changing the numbers there and doing all of that, 
I was much more careful, I think, to make sure that I put things back to how they were, 
than I would have been otherwise.” (P200) 

Both they and P140 reported getting most benefit from the time spent familiarising themselves 
with the cards before they undertook their first task, rather than actually using them in the task: 

“I think learning it and then applying, is genuinely more meaningful for me than when 
I've got the (mimes holding the cards in front of them) […] I actually think they're most 
helpful when I've looked at them and then I'm working without them.” (P200) 

“the fact that I was made to read through them before doing either of the tasks helped 
both of them. And I think that was the more useful part of it than having to do it 
during.” (P140) 

A priming effect was reported by P240 as well, with the cards putting them in the right state of 

mind and reminding them of their existing troubleshooting knowledge after a lengthy period of 

not having using Arduino. This translated into tangible benefit in the second task. While the 

support tool has been designed for use during troubleshooting, feedback from these 

participants suggests an additional use, that may even be preferred by some end-user 

developers—frontloading the information in the cards, whether to remind them of tactics in 

advance, or just to get them into a troubleshooting state of mind.  
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“because I looked at them beforehand as well, it sort of reminded me of all the things 
I'm actually meant to do when troubleshooting. Because some of this I've obviously 
learned already.” […] (P240) 

“it's almost like, you know, you just want to look through them regularly, you know, 
and just sort of keep getting your brain going. Yeah, they're almost like warm-up 
exercises. […] To get you in the right brain state, a problem-solving brain state.” (P240) 

Recognition of value in changes to process 

Using the support materials meant, for most participants, a change in troubleshooting process. 

Using the cards—enforced to the greatest degree possible; some participants required several 

reminders—required a degree of thinking prior to action, which was out of character for some. 

As I have discussed, the playmat supported this process, encouraging participants to shortlist 

potentially useful tactics and then to choose at least one tactic card to work with, while 

simultaneously reminding them to follow the Diagnose → Fix → Evaluate cycle.  

Structure 

Opinions were mixed on whether the support materials helped to structure troubleshooting. 
nine participants agreed—six strongly—while six disagreed and five were neutral (Figure 74). In 
the interviews, several participants spoke of the support materials providing structure and 
encouraging structured thinking—both positive boons. For some participants, including P210 
and P150, there was a noticeable difference between the two tasks, with their thinking and 
behaviour becoming more structured and on track when using the support materials:  

“really useful to give you a direction and just a framework, really, to help you make 
sense of what you're trying to do. I guess a lot of people work very intuitively. But that 
can sometimes be in a sort of spiral type of fashion. This seemed to help in my thought 
process a lot.” (P290) 

“it helped me also to structure things, because I had to, like, go through them. And 
then ‘Which one am I actually using first?’. […] these helped me to say 'No, I'm doing 
this one first, and then I'm doing this. I'm not checking the code before I've checked 
whether all the connections are right’. […] In that sense it's really good because it 
helps you organize your thoughts.’ (P240) 

“They kept me organized in what I was doing. I didn't branch off to different things. 
[…] I put stuff down and returned to it. I think when I was doing the first one, it was a 
lot more disorganized, I would start troubleshooting one thing and then I'd notice one 
problem, and then forget that I was troubleshooting one thing and then not come 
back to it.” (P210) 
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“It definitely made me more structured, in what I was thinking. […] In the first task, 
when I started, I was thinking quite chaotically. It was like, 'Do I jump to software now? 
Should I check hardware? Should I check this?' […] But like with this, it was sort of 
step-by-step, and structured.” (P150) 

Transformative reflection 

When reflection upon an experience or new knowledge includes evidence of a changed or 

different perspective, Fleck and Fitzpatrick refer to this as transformative reflection (Fleck and 

Fitzpatrick 2010). Several participants’ demonstrated this in the interviews, indicating that they 

had learned from the experience and felt their usual behaviour needed to change. In some this 

involved some recognition of the value of thinking prior to action. For example, for P180, the 

recognition of weakness in their existing troubleshooting process was revelatory.  

“[it was] preventing me going down rabbit holes. […]. It pulled me back on track. I did 
one thing at a time when I had the cards. I didn't get ahead of myself, thinking 'Oh, let 
me change this, this, this and this.' I kept pulling it back to 'check your assumptions'. 
One thing at a time. […] my instinctive thing is 'give me that fucker'. […] I start going 
in, all balls blazing. Having the cards forced me to slow down. Think. Proceed with 
logic. […] without the cards, I just ripped the whole thing out and started wiring it 
again. […] I didn't do that when I had the cards. […] So that was really, really useful. 
[…] I've done it, the rip it up, start again, for years. I needed an intervention stopping 
me from doing that.[…] it was really interesting, looking at my process compared to a 
more structured process. And a real good insight into how I just react instead of act. I 
don't analyse. I don't think, I just react.” (P180) 

P170’s reflection upon their usual troubleshooting process led them to realise that they usually 

stick to what they know, avoiding more ‘technical’ practices. Previously assuming their lack of 

Arduino knowledge to be their main shortcoming, using the support tool led them to recognise 

that their troubleshooting knowledge itself could improve:  

“I fly through things basically […] like the more technical parts of the process I usually 
don't consider because I don't know how to, or I'm not that familiar because I'm not 
that expert. […] it's the same as debugging, when you're coding something. I never 
debug because, it's like, I don't know how that works, right? So I just.. if it doesn't work, 
maybe I spend two days trying to figure out what I've done wrong […] And that these 
[the cards] is, in a way, to say like, ‘Okay, maybe it's not that you're not an expert [in 
Arduino].” (P170) 

Other participants who struggled with the cards also took something away from the experience. 

For example, both P110 and P220 came to the realisation that their current approach to learning 
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Arduino is failing to develop their knowledge or understanding, with significant impact on their 

ability to troubleshoot problems.  

“I learned a lot. […] I learnt that I should not rely on readymade exercises. […] if I put 
away the book, and try to do the exercise on my own I will learn much more, because I 
will do so many mistakes that I took for granted, doing, following the steps […] And by 
doing so many mistakes, that's how I’ll learn. Because following the steps might take 
me half an hour to finish, but doing it blindfolded, it might take me a day. But I will 
learn much more.” (P220) 

“just copying exactly what someone else is doing is maybe not such a great way of 
learning Arduino because you're not really learning. You're just seeing what works, but 
not really understanding why. […] I think you've exposed a crucial vulnerability, you 
know, a crucial gap in my in my knowledge.” (P110) 

Speculative changes 

“I'm not always sure what I'm doing. So I'm always trying, ‘let me try this and let me try 
that’. […] It's because I'm not sure. I'm not confident enough to know exactly what I'm 
doing.” (P220) 

When used thoughtfully and deliberately, rather than by default or as a last resort, speculative 

changes can provide value within a troubleshooting process. However, in the first study, as 

observed in studies of non-expert programmers, some end-user developers made speculative 

changes in lieu of more thoughtful diagnosis, many of these resulting in new bugs. I hoped that 

encouraging participants to think more when troubleshooting would lead to fewer haphazard 

speculative changes, also explicitly warned against in the Best Practice cards. 

Several participants noticed a difference in their behaviour in this regard. For example, P130, a 

self-confessed ‘tinkerer’, observed a change to their approach in the second task (With Support), 

as did P250, who noticed that they made far fewer changes to their program. This feedback 

suggests that the support materials may help to tackle a sometimes-destructive troubleshooting 

behaviour that is characteristic of non-experts. 

“Every time I got stuck at a point, I would just look over and see if there's anything that 
would help me. And then if I saw something, then I'd immediately jump back into it. 
[Facilitator: What would you do normally?] I'd tinker around to, like, think of another 
solution.“ (P130) 

“I know that I didn't change as much in the code, which I did do in the first one. So, 
yeah, maybe it led me to think more about my actions, so I didn't feel like I needed to 
speculate. I'd thought about it more.” (P250) 
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Suitability for novices 

Encouragingly, most (15) participants agreed that the SM would be useful for novice Arduino 

users, nine strongly so; only three participants disagreed (Figure 74).  

One of the many reasons for choosing the medium of cards to provide support was the potential 

for it to encapsulate useful troubleshooting knowledge in easily digestible pieces. Additionally, I 

wondered whether cards might be seen as a little more playful than traditional forms of support 

and therefore appeal to non-experts. Both points were reaffirmed by P230, who thought the 

format to be particularly good for young people, like them, who might be resistant to reading 

lengthy guides and be more receptive to something simpler and a bit more fun. Likewise, P260 

found them “cute” and “very approachable”, with the “game-like” feel a welcome counterpoint 

to conventional forms of guidance. 

“especially for young people who are just starting to learn [Arduino], it draws your 
attention, it's easy to get through and like I say, I do like that it's broken into very small 
pieces. I think that makes it much simpler. And they're just a little more fun.” (P230) 

“It's very game-like. […] It's very different from what I would expect. It breaks like this 
kind of very dry, normal set of programming where you just read black and white long 
texts […] It's a more fun approach maybe to troubleshooting or programming” (P260) 

Although scaffolding end-user developers’ troubleshooting is a primary aim of the support tool, 

informally educating novice end-user developers through using it is also of interest, similar to 

the Idea Garden, which helps end-user programmers become better problem solvers (Cao 2013). 

P150 felt that the support tool teaches valuable best practice and ways of thinking that are 

usually imparted by teachers, or gained through experience, while P160 felt the practical 

knowledge in the cards could be immensely valuable to novices: 

“going through the disciplines that this sort of teaches you is very good. […] all of this 
is about thought process. […] It's just about how you think. It's literally these three 
steps (points at the flowchart on the playmat). Yeah. And people fail to do a lot of this 
when they try to do stuff, when they first begin.(P150) 

“when I was a very, very beginner, I knew how to code on this (points at the IDE), but I 
had no clue what the Serial Monitor was. […] So, obviously, for a beginner, for a 
novice, they might know how to output and how to connect an Arduino to the circuitry, 
but they might not know how useful a Serial Monitor is, or where it is even.” (P160) 
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Ideally, think P200 and P290, the knowledge encapsulated in the cards would eventually be fully 

assimilated, through repeated use, until no longer needed: 

“If you were to get to the point where you just naturally apply all of those principles to 
what they're doing, that's the kind of, I guess, the best end result.” (P200) 

“I think you'd get used to it and you'd get to know it. It's the kind of thing I'm 
wondering if you'd use very intensively to start with and then not need it anymore.” 
(P290) 

However, as discussed, one challenge facing end-user developers, particularly novices, is that 

the physical computing knowledge they do build up can get lost, or degrade, over time if it is not 

used. The learning/priming effect of the cards, even when perused upfront, rather than only in 

the act of troubleshooting, has the potential to address this. As well as providing reminders 

during troubleshooting, both P240 and P170 felt the cards would be a good way to refresh their 

knowledge when returning to Arduino after some time, as happened when they participated in 

this study. For P170 this has concrete, practical benefits, while in P240’s case, the reminder that 

they do already have knowledge also served to boost their confidence and self-efficacy: 

“I hadn't touched an Arduino in a year. […] I don't even remember how the 
breadboard works. That's why my knowledge is spread throughout time. And then 
when I get back it's like, 'Oh my god, I need to go again to the internet because I don't 
remember how this works. […] And this is basically a reminder of that. Like, you know, 
remember that this works this way. Remember that you have to think of these things. 
It's like, 'Yeah, right, so I'm in the Arduino world, again'” (P170) 

“They definitely make me feel more confident. […] for me, this is a really important one 
[…]. It's more about getting myself in the right state for something like that, right? I 
need to feel I know, already, a lot. ‘I can do this’, right? […] I like this, because it makes 
me feel confident that I've got a brain and that I can solve problems” (P240) 

As a novice end-user developer, P120 even feels that the awareness—suggested by the large 

number of tactics cards—that there are numerous options/ideas yet to explore, is comforting, 

and acts as a kind of emotional support, while P240 also reports finding a degree of comfort and 

support in the presence of the cards, not just the knowledge they impart. As novice end-user 

developers can find troubleshooting stressful, the suggestion that the cards may also provide 

this type of support, in addition to practical scaffolding, is very encouraging. 

“I feel they get me kind of comfortable in a way. ‘[…] I've still got options here’ 
(laughs). Like, ‘I can do things here, don't worry’. It's sort of like, uh, support from an 
emotional way. […] I still have choices.” (P120) 

“But it's more like, for me to surround myself with stuff I know (lays out several of the 
Inspect cards). This is how I normally approach stuff. (Exhales loudly) Safe. Calm. […] 
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Sometimes I just need to watch a Schiffman video just to relax, you know, get myself in 
the right state of doing coding or whatever. And the same way, these cards just get you 
in that state.. and I think that's a really important role of the cards here. They could 
also be like little objects, little guardians (laughs).” (P240) 

6.4 Discussion 

I will now expand upon some of the frustrations expressed by participants, before finishing the 

chapter with a summary of the study findings. 

6.4.1 Task-related frustration 

As already mentioned, several participants found having to use the support materials frustrating.  

“They're very wise advice but it was an annoyance to have to keep referring to them.” 
(P140) 

Shortlisting was encouraged, rather than required, but even participants who chose not to 

shortlist still had to use the cards. They had been given some time upfront to familiarise 

themselves with the card deck, but with no signposting as to which cards might be relevant or 

more/most useful, it was up to the participants themselves to determine this. How easy or quick 

they found the process of assessing cards depended on factors such as their existing knowledge 

and how much of a card they needed to read in order to make a judgement, further impacted by 

their reading ability/speed. And, as established, using the support materials also gave 

participants more to think about, as I intended.  

For P220, who had rated their expertise in all types of development as low, the extra cognitive 

load of choosing cards from an unfamiliar deck, then working out how to apply them felt 

overwhelming: 

“there's a lot. I mean, there's six categories there. And that takes time and, you know, 
trying to categorize.. your problems. Is it the orange? Brown? It's already enough in my 
brain trying to figure out the circuitry.[…] And then trying to figure out the colour 
scheme, and the categorization, the titles and then there's the one side of the card and 
then the other side of the card, and the other side of the card is split in two. So there's 
a lot of things going on that need more dedication from me, that I can't afford right 
now, because I'm trying to concentrate on the circuit. (P220) 
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Several participants spoke about the impact that the time constraint had on their card use. It is 

obvious that there was a difference between how participants wanted—or planned—to use the 

cards, and what actually happened. 

“At the beginning I put the cards out so that they'd give me ideas. And then at the end I 
didn't have time to go through half of them” (P300) 

“It was quite time consuming to read them. That's why I was kind of, like, going 
through and very quickly discarding ones I didn't think were useful.. but if it wasn't a 
time-pressured task, then maybe I would read them more.” (P270) 

Several also reported feeling that the cards might be more useful/effective under more 

naturalistic circumstances, in which they felt less pressure and had greater agency. 

“If there was like a smaller amount and I was stuck on something, and I needed a 
prompt, I think I genuinely would use them and they'd be very useful. I think just 
because of the conditions it was in, it was just a bit more tense.” (P250) 

“I just feel like I had too little time to really use these cards. I think my experience is 
relatively negative because it was kind of a hindrance in this scenario. Because I would 
operate quicker, maybe, or differently, just with my own set of rules.” (P260) 

“I felt that I was under time pressure. […] having to read the support materials, then 
thinking about them, then applying them to my project was a little bit difficult. 
Because usually when I read, it takes me a while to read and then process, then apply. 
[…] But if it was, like, me at home, if I had these, or even if it was on the computer, I 
would be like, skimming through them, maybe, like, the title may come to me and I 
would be like, 'Oh, yes', and then go back to it.” (P160) 

It seems that for some participants, at least, the circumstances and constraints of the study led 

to a more difficult, and therefore possibly more negative, experience of the support tool—a 

limitation of this study that should be acknowledged. This and further limitations of the study 

are discussed in section 7.2. 

6.4.2 Summary 

This was a study to evaluate the novel support tool, described in Chapter 5. It aimed to answer 

two research questions:  

RQ1: What effect does a physical card-based support tool have on end-user 
developers’ success in troubleshooting circuit bugs in physical computing 
prototypes? 
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RQ2: How do end-user developers view the physical card-based support tool, having 
used it to troubleshoot circuit bugs in physical computing prototypes? 

To answer RQ1 I analysed participants performance in two hands-on troubleshooting tasks, 

comparing the outcome of participants’ troubleshooting with and without the support tool. I 

found little difference in measures of task success, the number of preseeded bugs resolved, 

which preseeded bugs were resolved, or the number and location of bugs, including new ones, 

remaining at the end of the task. However, I noticed that more participants made at least some 

progress—fixed at least one bug—when they had access to the support tool, suggesting that it 

may reduce the likelihood of end-user developers being completely stuck—making no 

progress—when troubleshooting. More work would be required to establish this with certainty. 

To answer RQ2, I analysed participants’ subjective feedback about the tool, collected via the 

support materials questionnaire and a debriefing interview. Key points from this analysis 

include: 

 Many found the physical card format useful. Some felt it to be potentially less distracting 

than software-based support, although a few would have preferred a digital tool. 

 Participants confirmed some of the benefits of cards seen in other projects, for example, 

flexibility in ways of working, and the creating of new meaning through spatial 

arrangement. Grouping cards also provided a convenient way for participants to track 

their troubleshooting. 

 Card content was seen as useful and relevant to the tasks. The informality of the cards 

was seen by some, as a fun and accessible way to approach an otherwise dry topic. 

 The information design has the potential to accommodate different reading abilities 

and information-processing styles. Instantiating content as small chunks of information, 

makes it easy to digest, compared to other support media, e.g., lengthy texts. 

 Many found open questions useful, as a way to prompt thinking and independent 

problem solving, although some wanted more instruction/direction, or the addition of 

concrete facts or signposting. 

 The tactics succeeded in giving participants useful ideas for troubleshooting. They 

helped to remind them of their existing troubleshooting knowledge and were seen as a 

good way to refresh degraded knowledge—a common problem for end-user 

developers. This had practical benefits in the moment, but also served to increase some 

participants’ feelings of confidence and self-efficacy in their troubleshooting abilities. 
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 Some participants even found the cards comforting, providing reassurance that they 

still had plenty of troubleshooting options available. This perception of the cards as 

emotional support was an unforeseen benefit. 

 Participants also reported the cards having a positive priming or carryover effect—from 

upfront familiarization with the deck, or having used them in the previous task. 

 The cards did succeed in encouraging participants to think or reflect more when 

troubleshooting, and the ‘Stop… think’ category, resonated with some participants as a 

reminder to step back from 'doing' and consider other lines of thought. However not all 

participants were comfortable with having to think more, and felt it distracted them 

from ‘actual’ troubleshooting. 

 Some participants would prefer a starting point, or signposting in selecting cards. 

Random card draw was helpful in getting some participants ‘unstuck’, leading them to 

areas of investigation they had not considered.  

 Participants’ opinions of the playmat were polarised. Some found the playmat and 

shortlisting useful, as a way to focus thinking, and plan/structure troubleshooting. It 

helped them stay on track and avoid some of their usual pitfalls—several observed 

thinking and behaving less ‘chaotically’ than they did without the support materials, 

making fewer speculative changes. However, others found the playmat a hindrance and 

the act of shortlisting time-consuming—having to think upfront conflicted with their 

usual approach, for example, trial-and-error tinkering. 

 Some participants showed evidence of transformative reflection—using the support 

tool made them aware of shortcomings in their existing process. 

In summary, although the cards format did not suit all participants, and certain aspects of the 

tool were polarising (for example, the playmat), participants were mostly positive about the 

support tool, particularly the cards, or specific aspects of them, and felt them to be useful for 

novice end-user developers using Arduino. Feedback also suggests that the support tool met a 

number of the key aims behind its development, including: 

 Making participants think/reflect more during troubleshooting 

 Providing participants with useful ideas for things to try—giving them options and 

getting them unstuck 

 Reminding participants of their existing knowledge 

 Encouraging a change in process that some participants found helpful 
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Additionally, it was suggested that the cards may have a positive learning or priming effect, 

which may benefit future tasks, although more work would be required in order to establish this. 

While some participants found it frustrating to have to use the support materials, particularly 

within the constraints of the study, feedback paints a fairly promising picture of the potential for 

support in the form of physical cards to help some end-user developers troubleshoot physical 

computing bugs. 

This chapter concludes the detailed description of the work that I have undertaken during the 

course of my PhD research. In the next and final chapter of this thesis, I will summarise this work, 

including the key findings, and situate it in respect to the literature.   
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Chapter 7 
 

Discussion and conclusion 

To recall, the overarching aim of the work I have described in this thesis was to answer the 

following research question: 

How can end-user developers be supported in overcoming problems they experience 
when developing physical computing artefacts? 

To answer this, I first needed to increase our knowledge of end-user developers in this domain—

the problems that they experience and whether they are successful in overcoming them, how 

they go about solving those problems, and whether their behaviours are effective. This was 

accomplished through two pieces of empirical work, observing end-user developers developing 

an Arduino-based physical computing device to a given specification—data analysis first 

focusing upon problems observed, and then upon troubleshooting of the most significant 

problems. By addressing these knowledge gaps, I was able to determine the support most 

needed by end-user developers when troubleshooting in this domain. I instantiated this support 

through the design and development of a novel, card-based tool for scaffolding end-user 

developers’ troubleshooting, which I then trialled in a study with novice end-user developers. 

In the remainder of this chapter, which concludes this thesis, I will first revisit my findings from 

the research undertaken, and highlight the contributions to the literature, including 

relationships to previous work. Thereafter, I will discuss some limitations of my research, reflect 

upon the approach and methods I adopted in this work, and the decision to focus specifically on 

troubleshooting, and conclude with an outline of opportunities for future work. 
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7.1 Contributions 

A number of contributions resulted from this work. I will now summarise these in respect to the 

four primary research questions posed in the Introduction chapter of this thesis. 

7.1.1 Contribution 1 

Empirically grounded knowledge of the problems encountered by adult end-user 
developers when constructing and programming physical computing artefacts, 
including the frequency and location of problem types, and which problems are most 
likely to cause task failure. 

This contribution was achieved by addressing the following: 

TRQ1: What problems do end-user developers experience when developing a 
physical computing artefact? (Chapter 3, Study 1A) 

This study resulting in this contribution builds upon my work prior to this thesis (Booth and 

Stumpf 2013), now investigating problems which arise when end-user developers construct and 

program a physical computing device from scratch.  

To address this research question, I conducted an empirical study involving twenty end-user 

developers—Arduino users of varying background and expertise—who undertook a hands-on 

task, developing an Arduino-based physical computing prototype to a given specification. The 

first analysis of the data collected (Chapter 3, Study 1A) revealed the following key findings: 

 All participants in this study, irrespective of their previous experience, encountered 

problems during the development task: all experienced obstacles (barriers to 

overcome), while most experienced breakdowns (errors in thought or action) and 

introduced bugs (faults) in their circuit, program, or both. 

 While most problems occurred in respect to programming the device, the majority of 

task failures were primarily due to circuit-related problems—10 of the 14 participants 

who failed the task did so due to errors in circuit construction. 

 Circuit-related task failures were mainly attributed to two types of bugs: Miswiring, for 

example, providing the wrong connections from the Arduino board to the sensor, and 
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missing components, for example, failing to use resistors with LEDs. Participants had 

serious difficulties localising these faults. 

 In diagnosing the symptoms of circuit bugs that they had introduced, participants did 

not always realize that the fault(s) lay in the circuit and incorrectly tried to resolve the 

problem by modifying the program, leading to new program bugs; In other cases, 

participants misjudged which part of the circuit contained the fault(s), and modified a 

different part of the circuit, again, leading to new circuit bugs. This pattern of 

misdiagnosis resulting in new bugs proved fatal to task success for several participants. 

 Background factors such as self-efficacy and self-rated expertise did not predict whether 

participants would successfully complete the task, nor the number, types and locations 

of problems they experienced. 

Decades of work has shown that novice and end-user programmers experience problems when 

creating and modifying programs. This study provides the first evidence that end-user 

developers experience problems when developing physical computing devices too, and that 

some of these problems have grave implications for development success. From this study, we 

now know where problems are most likely to occur, which problems are most prone to 

misdiagnosis, leading to the new problems and more likely to prevent end-user developers from 

successfully building a working physical computing device. As in previous research investigating 

the problems of novice and end-user programmers (e.g., du Boulay 1989; Spohrer and Soloway 

1986; Lahtinen, Ala-Mutka, and Järvinen 2005), we see that end-user developers in this domain 

experience difficulties with some of the most fundamental aspects of development—for 

example, declaring and using variables, and, specific to this domain, the wiring of LEDs or 

sensors in simple circuits. Similarly, participants’ difficulties understanding runtime behaviour—

i.e. obstacles involving both program and circuit— echoes previous work too, for example, Ko 

and colleagues’ (Ko, Myers, and Aung 2004) finding that Understanding barriers are particularly 

challenging for end-user programmers and them lead to chains of further problems that lead to 

bugs is similar to the patterns of misdiagnosis I report here. This study also seems to confirms 

the previous suggestion that end-user developers can face even more challenges when trying to 

resolve physical computing problems due it involving both programming and circuits (Tetteroo, 

Soute, and Markopoulos 2013). Finally, research by others since publishing this work in Booth et 

al. 2016, has confirmed similar findings to mine, for students new to Arduino (Sadler, Shluzas, 

and Blikstein 2017; DesPortes and DiSalvo 2019), however, to my knowledge, my work was the 

first to address this area. While the sample is small, a search of the official Arduino forums for 
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'Love-O-Meter' turns up numerous posts describing many of the same problems that 

participants in this study experienced. This suggests that the participants and their problems are 

not atypical and that the findings will generalize. 

Understanding the problems faced by end-user developers is crucial step towards determining 

how to support them. My next contribution—knowing what troubleshooting behaviours they 

naturally employ, and whether these are effective—takes us one step closer. 

7.1.2 Contribution 2 

Empirically-grounded knowledge of the natural troubleshooting behaviours of end-
user developers troubleshooting failure resulting from circuit bugs—the type of bug 
observed to have most significant impact on task success—and suggestions for 
support that might benefit end-user developers when troubleshooting these types of 
bugs. 

This was achieved through a study addressing the following question: 

TRQ2: How do end-user developers troubleshoot the most significant problems that 
arise during development, and from what support might they benefit?      
(Chapter 4, Study 1B) 

A second, deeper analysis of data collected in Study 1A, this study sought to address a lack of 

knowledge about how end-user developers troubleshoot circuit bugs, and whether their 

approaches are effective. Building upon previous work in end-user programming, I identify 

tactics used by end-user developers when attempting to diagnose and resolve circuit bug-

related problems, and show that as in other domains, end-user developers often use 

unproductive or destructive tactics when troubleshooting physical computing problems. One 

advantage of this study was that I could observe end-user developers troubleshooting bugs that 

they themselves had introduced while developing a physical computing prototype. Even though 

the study was in a controlled environment and participants had to complete their physical 

prototype within a specified time, their behaviour was arguably more naturalistic than it would 

have been in a formal debugging study where participants are required to troubleshoot 

preseeded bugs. In particular, I was able to observe how participants troubleshot a variety of 

bugs, some of which I might never have anticipated. Key findings include: 
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 Participants used a number of tactics to diagnose their problems, fix their bugs and 

evaluate their fixes, however, these were not always effective. 

 Lack of domain knowledge often led to poor or incorrect hypotheses, for example when 

participants tried to interpret runtime behaviour or output—a frequently adopted 

tactic—and reason backwards from as to the cause of failure. 

 Participants frequently sought external help, but sometimes conducted poor/incorrect 

searches, or had difficulty understanding, judging or applying what they had found. 

Some also some made mistakes when using resources—over half of the episodes in 

which participants copied examples introduced new bugs. 

 Inspection was frequently observed, however, poor or incorrect hypotheses led some to 

inspect parts of their prototypes that did not contain faults and make incorrect 

assessments regarding its correctness. 

 Participants struggling to diagnose, or running out of ideas, often resorted to making 

speculative changes. Far more speculative changes were made by those who failed to 

complete the circuit, and these types of changes resulted in over three times more bugs 

than they fixed. In some cases, participants failed to reverse these, compounding their 

problems. In contrast, when participants localised their bugs, the changes they made 

resulted in far more fixes and far fewer bugs. 

 When participants were stuck, they sometimes stopped troubleshooting and continued 

developing while bugs still remained, adding further complexity to their prototypes, 

making subsequent diagnosis and fault localisation even more difficult. 

 Direct feedback in the location of a fault did help participants to localise some bugs, for 

example, the sensor heating up due to miswiring. 

 Prototype complexity played a role in whether participants were able to successfully 

diagnose their problems. Bugs in simple circuits were often more easily localised and 

resolved, however, when a prototype contained multiple dependencies, participants 

struggle to diagnose failure, as runtime behaviour/output was more difficult to interpret. 

 Incrementally constructing and testing their prototypes, or reducing dependencies 

through tactics such as isolation, increased the likelihood of end-user developers being 

able to localise and fix their bugs successfully, however, not many who failed to resolve 

their circuit bugs adopted these approaches. 

Overall, participants’ difficulties in troubleshooting their problems are consistent with the 

literature, including considerable work attesting to debugging being particularly challenging for 
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non-experts (e.g., Lahtinen, Ala-Mutka, and Järvinen 2005). Similarly, some of the above findings 

have been observed in studies of novice and end-user programmers, for example, the 

tendencies for non-experts to make speculative changes and introduce new bugs (e.g., Perkins 

et al. 1986; Cao et al. 2010; Gugerty and Olson 1986; Nanja and Cook 1987).  

While novice and end-user programmer behaviours when debugging have been studied by 

several other researchers (e.g., Katz and Anderson 1987; Cao et al. 2010), I believe this work to be 

the first to have looked at these in the context of physical computing, specifically for adult, end-

user developers. Some of the tactics observed in this study have also been seen in studies of the 

strategies of end-user programmers, for example, Inspection, and seeking Help, however, some 

behaviours, for example, swapping in a component of exactly the same type and specification, 

or changing the spatial orientation of a component, have no equivalent in programming that I 

can think of. My work therefore complements the work on end-user programmers’ debugging 

behaviours, extending it into a new domain—troubleshooting of problems within physical 

computing development, specifically hardware bugs.  

Based on these findings, I propose that support for end-user developers’ troubleshooting should 

focus on 1) help with general approaches that will help them to become better troubleshooters, 

and 2) specific support that will aid them in diagnosing the cause of bug-related problems, fixing 

bugs, and in evaluating the success of bug fixes (section 4.4.2).  

Support I suggest for specific aspects of troubleshooting includes: 

 Planning and hypothesising: Considering and prioritising different hypotheses and 

tactics, making more thoughtful decisions regarding what action to take. 

 Recognising and defining failure: Better identification and analysis of the symptoms 

caused by bugs, in order to generate better hypotheses. 

 Focused analysis of runtime behaviour/output: Guidance in the types of analyses that 

can be used to diagnose failure and evaluate the result of fixes. 

 Problem decomposition: Ways to break a problem down or simplify it, e.g., reducing 

dependencies through tactics such as isolation, to establish the boundaries of failure. 

 Focused testing instead of haphazard speculative changes: Approaching speculative 

changes in a more thoughtful way, as focused tests driven by hypotheses, ideally with a 

clear idea of what to look for in the results; suggestions of tests to perform. 
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 Thorough inspection: Awareness of the types of visual checks—including for common 

errors—that can or should be performed before making changes. 

 Incremental, iterative progress: Incrementally building and testing prototypes; making 

one change at a time, and immediately evaluating the result. 

 Dealing with failed fixes—Reversing changes that did not resolve failure, rather than 

building further upon them. 

 Following an iterative process: Performing thorough diagnosis before a fix attempt, 

and then immediately evaluating whether the fix was successful. 

General principles for supporting end-user developers include: 

 Encourage thinking/reflection: Thinking through their problems will help end-user 

developers become better troubleshooters Support hypothesis generation and prompt 

reflection—before, during and after action.  

 Support perseverance with systematic troubleshooting: Reduce the risk of end-user-

developers giving up or making speculative changes, by providing them with 

troubleshooting ideas and a process to follow. 

 Encourage and support planning and tracking of troubleshooting: Help end-user 

developers to consider and carry out necessary steps and remember what they have 

tried. 

The next contribution draws on contributions 1 and 2, instantiating the suggestions for 

supporting end-user developers in the form of a novel support tool 

7.1.3 Contribution 3 

A novel, physical card-based tool to support novice end-user developers when they 
are troubleshooting physical computing problems, particularly circuit bugs. 

This contribution resulted from addressing the following research question: 

TRQ3: How can we design a deck of physical cards to support end-user developers in 
troubleshooting physical computing problems, particularly circuit bugs? 
(Chapter 5) 

In Chapter 5 I described the design and development of my third contribution: a novel, physical 

card-based troubleshooting support tool for novice end-user developers of physical computing 
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artefacts. To my knowledge, this is the first tool to provide end-user developers with 

troubleshooting support via the medium of physical cards, in physical computing or any other 

domain. 

The general aim of the card deck is to provide novice end-user developers with a wide range of 

tactics that can be used to improve diagnosis of physical computing problems, fixing of bugs, 

and evaluation of fixes, and to facilitate thinking/reflection during this process. The goal is not to 

give exhaustive and prescriptive check lists of instructions, but rather to encourage a creative 

and exploratory approach to troubleshooting, presented more as scaffolding than instruction. 

Different approaches have been taken to provide end-user developer/programmers with 

support or scaffolding when debugging software programs. Most have adopted a technology-

based approach, often relying on some form of background analysis of the program that is being 

debugged. More recently, and often with reference to the findings from the first study in this 

thesis (Booth et al. 2016), tools have begun to emerge to support the diagnosis of circuit bugs in 

physical computing prototypes, again, relying on background analysis what an end-user 

developer has built. To date, I have found only one tool which supports both programming and 

electronics—Bifröst (McGrath et al. 2017)—again, technology-based. My work to support end-

user developers has taken a very different approach. Like most of these tools, and in accordance 

with Minimalist Theory principles (Carroll and Rosson 1987), it provides support during the 

process of debugging/troubleshooting. It aims to help end-user developers to solve their own 

problems (Cao et al. 2015), encourages hypothesis generation (Ko and Myers 2008), instantiates 

tactics or strategies (Cao et al. 2015) including planning and tracking of actions (Grigoreanu, 

Burnett, and Robertson 2010), and supports troubleshooting of circuit bugs (Drew et al. 2016; 

Wu, Shen, et al. 2017; McGrath et al. 2017), however it does all of these things through the 

medium of physical cards, which have been shown to have benefit for non-experts within a 

process, including ideation (Mora, Gianni, and Divitini 2017), the instantiation of knowledge 

(Bekker and Antle 2011) and the encouragement of reflection (Friedman and Hendry 2012). 

The tool was inspired by popular creativity-support card decks, and content was informed by, 

firstly, empirical work which identified the most significant problems that end-user developers 

encounter when developing a physical computing device and analysis of their natural 

troubleshooting behaviours when dealing with these, and secondly, a review of the academic 

and non-academic literature on software debugging, hardware troubleshooting, physical 

computing and general problem solving. The design of the card deck was informed by a design 
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review of the academic literature on card-based tools, identifying key considerations when 

designing card-based tools, as well as focus groups with novice end-user developers and an 

informal pilot study, of an early prototype, with end-user developers. This process resulted in a 

card deck comprising 36 troubleshooting tactics cards, in five categories, as well as four 

component cards, and an additional category containing 6 best practice cards. The tactics 

encourage thinking, reflection and independent problem solving through the use of open 

questions. Other elements of the ‘Tactical Troubleshooting’ toolkit include a playmat 

encouraging hypothesis generation/prioritisation through selection of tactics, and a stand in 

which the cards can be stored/displayed. 

Evaluation of this support tool delivers the next contribution of this thesis, which I will now 

describe. 

7.1.4 Contribution 4 

Insights into how troubleshooting support in the form of physical cards might be used 
and received by novice end-user developers. 

The fourth contribution of this thesis resulted from addressing the following question: 

TRQ4: What role might a card-based tool play in supporting end-user developers in 
the process of troubleshooting circuit bugs in a physical computing prototype? 
(Chapter 6, Study 2) 

This contribution was achieved through an empirical, within-subjects user study in which twenty 

adult, novice end-user developers undertook troubleshooting tasks with and without the novel, 

card-based support tool.  

While analysis of participants’ task success and bug-fixing performance did not find the tool to 

have conclusive positive effect on the outcome of end-user developers’ troubleshooting, the 

results suggest that it may decrease the likelihood of them being completely stuck.  

Feedback from participants, via a questionnaire and interview, provides several insights into the 

role that a physical card-based support tool might play in a troubleshooting process. I 

discovered that support in form of physical cards may be well-received by some end-user 

developers, but not all. Several participants in this study liked the card format, and saw it as 

being less open to distraction than accessing support via a screen. Feedback suggests that 
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instantiating support as small chunks of information can make it easy to digest—a fun and 

informal way to access useful information, compared to some other types of support media, for 

example, lengthy texts and guides. The cards also show potential for accommodating different 

information-processing styles and reading abilities, allowing end-user developers to engage 

with as much or as little information as they wish. Participants in this study confirmed that 

troubleshooting cards afford benefits seen in previous cards research, including the creation of 

meaning or value through spatial arrangement—for example, grouping cards can be a 

convenient way to structure and track troubleshooting. 

A number of effects were observed via feedback, broadly meeting the aims of the support tool.  

Firstly, the study suggests that tactics cards can succeed in prompting ideas for different 

avenues of problem exploration and providing readymade suggestions for end-user developers 

struggling to formulate hypotheses for potential problem causes. While some participants in this 

study would have preferred more signposting in navigating the card deck and selecting tactics, 

drawing a random card can help to get end-user developers ‘unstuck’, leading them to areas of 

investigation that they have not considered, resulting in fault localisation. Troubleshooting 

tactic cards can also remind end-user developers of their existing troubleshooting knowledge—

feedback suggests that that this not only has practical benefit in the moment, but may also 

increase end-user developers’ feelings of confidence and self-efficacy in their troubleshooting 

abilities. Some participants in the study even found the cards comforting—the wide range of 

tactics may reassure end-user developers that they still have plenty of troubleshooting options 

available. This perception of the cards as emotional support was unforeseen but encouraging. 

Feedback also suggests that support in this format may also have a positive priming or carryover 

effect on troubleshooting— from using the cards in a previous task or merely scanning or 

frontloading the tactics and best practice prior to troubleshooting. The cards may also serve as a 

good way to refresh degraded knowledge after a lengthy period of not having used Arduino—a 

common problem for end-user developers, experienced by several participants in this study. 

Secondly, feedback indicates that support in this format can indeed succeed in encouraging 

end-user developers to think or reflect more—the current tool does this through the use of open 

questions, encouragement to shortlist tactics, and the ‘Stop… think’ category of cards, which 

particularly resonated with some as a reminder to take a step back from doing, to reflect. Some 

end-user developers find open questions helpful in guiding their thinking and encouraging 

independent problem solving, however this may not suit everyone. Like a few participants in this 
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study, some end-user developers may prefer concrete advice, need additional guidance when 

they struggle to answer open questions, or want additional information about components—the 

Component cards omitted from this study represent one way to address the latter. Equally, not 

all participants in this study were comfortable with the metacognitive activity of ‘thinking about 

their thinking’—a few felt it distracted them from ‘actual’ troubleshooting, while two participants 

found it cognitively overwhelming—effects perhaps exacerbated by the study constraints, but 

still worth noting. 

Finally, devices such as the playmat in the current toolkit can provide useful functions within a 

troubleshooting process, but again this may not suit all end-user developers. Enforced use of the 

support materials did affect participants’ troubleshooting process, but participants’ opinions 

were polarised regarding this. Some found the playmat and shortlisting very useful, as a way to 

focus their thinking, and plan/structure their troubleshooting, helping them to stay on track and 

avoid some of their usual pitfalls—several observed thinking and behaving less chaotically than 

they did without the support materials, and making fewer speculative changes. Others, however, 

found the playmat a hindrance and the act of shortlisting unnecessarily time-consuming—

having to think upfront conflicted with their usual approach, for example, trial-and-error 

tinkering. While these participants were resistant to effect on their troubleshooting, evidence of 

transformative reflection was observed in others—using the support materials made some 

aware of shortcomings in their existing process, which they now felt needed to change. 

From the feedback reported, it seems that support in the form of physical cards shows potential 

for scaffolding novice end-user developers’ troubleshooting, providing a number of benefits. 

While this approach to support provision will not suit all end-user developers, it was well 

received by some and showed evidence of having met its aims, contributing a novel way to 

support novice end-user developers in their troubleshooting tasks.  

7.2 Limitations of the work 

The research undertaken in this thesis provides the first evidence of problems faced by end-user 

developers in the domain of physical computing development. I achieved this through studies 

involving representative users, i.e., end-user developers. As with any user study, limitations 

apply. 
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Each study involved a relatively small sample (20 participants), and participation was limited to 

those who were able to attend a 2-hour long in-person session in central London, at City, 

University of London’s Interaction Lab. While London has a large maker community (e.g., the 

main hackerspace had well over 1,000 members at the time of recruitment), I nonetheless found 

it difficult to recruit participants, despite distributing my calls for participation widely and via 

several channels. This echoed my experience of recruiting for a previous study involving Arduino 

novices (Booth and Stumpf 2013). Recruitment for Study 2, focusing only on novices, proved 

even more difficult, as the eligibility criteria were even narrower. 

One possible explanation for this may be low self-efficacy or lack of confidence within the target 

population. In the course of my associations with makers, before and during my PhD, I have 

become aware that confidence can sometimes be an issue, particularly for novices. This is 

unsurprising—for many people, confidence and feelings of self-efficacy grow with experience 

and knowledge. However, this has implications for any researcher wishing to recruit non-

experts. While I did eventually meet my sample quota for each study, I must assume that my 

sample included only participants who felt confident enough to apply to participate, which 

means, they cannot be representative of all non-experts in this domain.  

When I recruited participants for my first study, not much was known about this population. I 

cast the net widely, and resultingly, my sample included end-user developers of varying 

background and skill. As I have discussed, end-user developers are a diverse population with 

many motivations for engaging in physical computing development, and varying competencies. 

Whether different subsections of this population think or behave differently during development 

is unknown—my small sample size would not allow me to make reliable predictions of this kind. 

I am confident in my finding that end-user developers of all backgrounds experience problems, 

however, more work is required to determine whether particular types of experience 

unequivocally affect end-user developers’ performance and behaviour in both development and 

troubleshooting of physical computing artefacts, beyond the analyses I do report.  

The user studies I conducted took place under tightly controlled conditions, which may have 

affected the results—in section 7.4.1 I reflect further on this approach. I did not study end-user 

developers in their natural habitats, but in a laboratory setting, with strict time constraints, and 

the tasks were chosen by me, rather than by the participants themselves. End-user developers’ 

behaviours may be different when working in more natural settings, upon projects of their own 

choice, without any time limitations, and not under scrutiny by a third-party. Participants in both 
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studies reported nervous feeling under pressure—pressure to succeed in the tasks, as well as 

time pressure. Although the tasks were relatively simple, as problem-solving tasks, they were still 

challenging for the end-user developers in my studies, as the results clearly demonstrate, and 

several participants showed frustration when they were unable to make progress or succeed in 

completing them. As I discuss in the previous chapter, frustrations in the final study were 

exacerbated by the additional requirement to use the support tool, again within specific 

constraints—a further cognitive challenge of using an unfamiliar tool on top of the challenge of 

troubleshooting in an unfamiliar system. 

Think aloud may also have affected both participants’ thinking and behaviour in these studies—I 

reflect further upon this in section 7.4.2. Several participants found it difficult to think aloud, and 

required regular reminders to do so. I also observed that when participants were experiencing a 

lot of difficulty, or became highly engrossed in problem solving, they required more reminders. 

We therefore cannot assume that the verbal protocol is a complete representation of 

participants thinking during the tasks. Pragmatically, therefore, much of my analysis in studies 

1A and 1B involved not just what people said but my observations of what they did.  

In the final study (Chapter 6), several participants performed better in Task 2 than in Task 1 (see 

section 6.3.1). While some of the improvement might be attributed to the support tool, 

evidenced by participants’ comments regarding a positive/priming effect from using the cards 

(see section 6.3.2.2), other factors should be considered. Task 1 was participants’ first exposure 

to the Love-O-Meter prototype, also, as they had been instructed not to refresh their knowledge 

prior to the session, for several participants, Task 1 also involved refamiliarising themselves with 

the platform. Additionally, while both groups were exposed to the additional challenge of having 

to use the support materials for one of their tasks, the WSNS group faced this in Task 1, on top of 

all of the challenges mentioned above. It seems reasonable to assume that performance in Task 

1 and/or Task 2 may have been affected, to some degree, by any or all of these factors for some 

or all participants. 

It is also difficult to isolate participants’ opinion of the cards from their overall experience of the 

support materials in their entirety. While, ultimately, I am more interested in end-user 

developers’ experience of the cards as a support mechanism, as I have described, the interview 

feedback confirms that the circumstances and constraints under which participants used the 

cards affected their opinions of them. Equally, many participants did not like the playmat. Many 

of the questions in the Support Materials Questionnaire referred to the ‘Support Materials’ rather 
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than the cards, making it impossible to determine exactly what participants were rating—with 

hindsight, more specific wording could have been used. If participants—reasonably—interpreted 

these questions as referring to the support materials as a whole, rather than the cards alone, or 

participants’ ratings were weighted more towards particular elements of the support materials, 

this may have affected those ratings. 

While the cards have shown some promise as a way to support end-user developers’ 

troubleshooting in this particular task, we can only speculate as to whether similar effects would 

be observed in a more complicated task, or one involving a different physical computing 

platform. More work would be needed to determine this.  

Although I originally intended to look at end-user developers’ mental models of physical 

computing problems, the focus of this PhD changed in response to the initial findings—section 

7.3 discusses this decision in more detail. How complete end-user developers’ mental models 

are in this domain, and what impact this has on their performance and behaviour in developing 

and troubleshooting physical computing prototypes, remain open questions. 

Finally, I chose to use Arduino in my study, as it is currently the most well-known and widely 

used physical computing development tool, however, it is not the only tool available. Further 

work would be required to determine how generalisable the findings from my studies are to 

physical computing development involving other platforms.  

7.3 The focus on troubleshooting  

At a certain point in my PhD, I decided to focus the remainder of my research upon end-user 

developers’ troubleshooting. When I planned my first study, it was not only with the intention of 

investigating end-user developers’ difficulties—problems—in physical computing development, 

but also the mental models they held of physical computing concepts. This was inspired by the 

literature reporting circuit theory and fundamental programming concepts to be problematic 

for learners (discussed in sections 2.2 and 2.3.1, respectively). However, once data had been 

gathered, and analysis began to shape the findings about the problems experienced by 

participants during the hands-on development task, it became obvious that some patterns of 

behaviour in dealing with some of these problems might benefit from further investigation. For 
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example, some participants appeared to spend a great deal of time engaged in unproductive 

troubleshooting behaviours, and certain problems seemed particularly difficult to localise, and 

more prone to misdiagnosis, leading to more bugs. 

The subsequent decision to prioritise looking deeper into troubleshooting behaviours, instead 

of analysing the interview data I had collected for mental models analysis, was therefore a 

pragmatic response to my initial research findings. It was also informed by a number of studies 

of end-user programmers’ debugging, and how findings from that work, particularly in respect to 

strategies—patterns of debugging behaviour (section 2.2.3)—had proven useful in designing 

effective support tools for end-user programmers (section 2.8.1). Given what I was seeing in the 

study data I had gathered, investigating troubleshooting behaviours seemed a very logical 

approach for the next stage of my work. It also enabled me to extend our knowledge of end-user 

developers’ problem-solving behaviours into the domain of physical computing development. 

It is apparent in the findings from Study 1A and 1B that shortfalls in end-user developers’ 

knowledge lies at the root of many of the problems they experience in physical computing 

development, when constructing and programming device prototypes, but also when 

troubleshooting. There are clear opportunities for support, however, as discussed earlier in the 

thesis (section 2.5.1), addressing end-user developers’ knowledge gaps is more about situating 

useful information within their tasks, than providing the right education.  

In choosing what tack to take in developing support for this population, I was particularly 

inspired by Jill Cao’s Idea Garden approach to supporting end-user programmers (Cao 2013), 

that is, to help them to become better problem solvers, by gently suggesting approaches they 

might take, rather than solving their problems for them.  

The decision to focus support on the process of troubleshooting, and on suggesting potentially 

useful tactics to use within it, was also very much a pragmatic choice. Dealing with problems is 

an inevitable part of any kind of development—even expert programmers and engineers spend 

a significant portion of their time debugging or troubleshooting.  

There is consensus in the literature (e.g., Gick 1986; Perkins and Martin 1986; Jonassen 2010) that 

troubleshooting and debugging require several different types of knowledge, both domain-

specific and generic, and that efficacy grows with experience. Knowledge gained through 

exposure to different problems enables experienced troubleshooters/debuggers to quickly 

determine strategies or avenues of inquiry most likely to aid in diagnosis of a problem, based on 
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their understanding of the system and historical, problem-related data they have assimilated. 

This puts less-experienced end-user developers, including novices, at an obvious disadvantage.  

Suggesting troubleshooting tactics—of varying specificity—that end-user developers might use, 

addresses a particular knowledge gap—a deficit of troubleshooting knowledge—however, I am 

conscious that this represents only one piece of the puzzle, and is certainly no panacea for all 

end-user developers’ knowledge shortfall-related problems in this domain. Support addressing 

different knowledge gaps might also be effective in helping end-user developers to troubleshoot, 

or even avoid some problems, however, it is worth noting that more domain knowledge did not 

always equate with better performance in the studies I conducted—a professional engineer 

(P02) in Study 1A/1B (see section 4.4.1) still introduced errors in circuit construction which led 

them to fail the task.   

Providing end-user developers with different options to consider when troubleshooting has the 

potential not only to aid in diagnosing any immediate problem, but also problems later down 

the line, including when using different tools or platforms—many of the tactics are generic or 

flexible enough to be applied to many different situations or contexts. The approach I have 

taken is, I believe, a good first step in equipping end-user developers with tools to help them 

tackle—and hopefully overcome—the problems that they will inevitably encounter during 

development, irrespective of their physical computing expertise.  

7.4 Reflection on methods and approach 

Completing the thesis—and with it, my PhD journey—provides an opportunity to take stock, and 

reflect on the research I have undertaken during the course of it, and what I have learned 

beyond the research results and findings reported. 

In section 1.5 I refer to the methodological stance underpinning my work, and the impact this 

has had upon my general approach to research and my choice of research methods. I return to 

some of these choices with a critical eye. 
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7.4.1 Task observation in a laboratory environment, under tight 
constraints 

First-hand observation or measurement of representative users undertaking tasks is the de facto 

method within user research for uncovering problems in the use of technology—conventional 

wisdom being that findings based on observable, measurable data are more reliable than the 

subjective opinions of participants, the latter being subject to memory/attention constraints 

and fallibilities, but also a number of potential biases (Nielsen 2001). 

Two major rounds of data collection are described in this thesis. Both involved observing end-

user developers undertaking given tasks in a laboratory environment, subject to a number of 

constraints, including strict time limits and a requirement to think aloud, while being video 

recorded, but also a requirement to use materials—most specifically the support tool—in a way 

that did not match their usual behaviours. 

Both samples included novice end-user developers—some participants in the first study; all in 

the final study—and tasks which, based on observed performance, were challenging for most. 

For novices in these studies, participation meant doing something at which they were not very 

skilled, or knowledgeable about—under scrutiny, with video cameras recording every aspect. As 

a responsible researcher, I did everything possible to ensure that participants were treated both 

ethically and well throughout their involvement, and took pains to try to put them at ease in the 

laboratory sessions, however, I was conscious of the pressure clearly felt by some as a 

consequence of the nature and circumstances of the study—at various points during the tasks, 

in both studies, participants’ nerves, frustrations and/or performance anxieties were apparent, 

whether in their verbal comments or body language. 

The potential effect upon my study results has been acknowledged in the Limitations section of 

this chapter (section 7.2), and I by no means feel that these factors invalidate the work I have 

done, nor the findings that I report. However, it does make me pause to consider whether 

alternative study designs or different methods might avoid or mitigate such an effect while 

delivering at least equal, if not better, value. This remains an open question. 
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7.4.2 Problems with think aloud 

Think aloud aims to expose what is in a participant’s head to the researcher—data that would 

not otherwise be available—through verbalisation. All of my studies used this method.  

Over the course of my research, I watched forty-four end-user developers spend a collective 

total of almost 35 hours problem solving in physical computing tasks while thinking aloud. What 

I observed is that while some end-user developers seem naturally capable of almost a verbal 

stream of consciousness while undertaking a task—“I think I talk like this anyway, even when no 

one is around”—far more find it challenging to think aloud effectively when engrossed in 

problem solving, and require frequent prompts or reminders to do so. It also seems that some 

participants are more inclined to provide very cursory descriptions of what they are doing—‘I am 

removing the wire’—rather than relaying their thoughts. The resulting inconsistency of the verbal 

protocol meant that I was forced to rely more on behavioural data—i.e., participants’ actions—

than originally planned for analysis in Study 1A and 1B. While I believe this to have been effective 

in answering the research questions for these studies, my takeaway from this experience is that 

the quality of a verbal protocol is highly dependent, at least in part, on how ‘good’ participants 

are at think aloud—at verbalising their thoughts in parallel with performing the task itself, 

particularly if the task is difficult or requires great concentration—and how comfortable they are 

with speaking their thoughts aloud under scrutiny. 

Others have reported problems with think aloud during debugging (e.g., Fitzgerald et al. 2008). 

Threats to the validity of think aloud data have been raised within the literature (e.g., Russo, 

Johnson, and Stephens 1989), and despite being very commonly used in HCI studies there is 

inconsistency of opinion regarding how best the method should be applied (Boren and Ramey 

2000). I am led to reflect upon whether applying this method in a different way, or employing a 

different method altogether, in future studies, might offer some improvement, for example, 

although recruiting pairs of participants may be more challenging, having two participants 

talking to one another as they work together has been shown to yield more information than 

one person thinking aloud (Dumas and Redish 1999, 31). 
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7.4.3 Approach to analysis 

Although all of my empirical studies involved a mixed methods approach, there was a 

considerable difference between the first two studies (study 1A and 1B) in comparison to the 

final one (study 2). 

Data analysis in studies 1A and 1B focused, primarily, on observable evidence of participants’ 

problems during development, and their behaviours in tackling them. Task data were carefully 

transcribed, unitised, and categorised, using coding schemes informed by the literature, then 

transformed into numerical data in order to subject them to quantitative methods, providing 

measurements and comparisons of performance and behaviour. Verbatim quotes from the 

think aloud are used to illustrate particular findings, however participants’ reflections upon their 

performance in the task, or the difficulties that they experienced, are mostly absent. 

In contrast, although study 2 provides some quantitative measures of performance and opinion, 

qualitative analysis now focused on the post-tasks debriefing interview, using a thematic 

analysis approach. This aimed to elicit participants’ subjective opinions of the support tool, 

based on their first-hand experience of using it. Rather than seeking to categorise and quantify 

the qualitative data captured, I teased themes from it that not only yielded feedback about the 

tool, but also exposed some of the factors that potentially affected participants’ performance in 

the tasks and coloured their impression of the tool, whether positively or negatively. Giving voice 

to participants in a way that the previous studies had not was crucial to understanding the data 

that had been captured, providing an additional layer of context to participants’ behaviour 

during the tasks, their task performance results and their response to, and opinions of, the 

support tool. It also prompted me to reflect, once again, on methods that I take for granted as 

being ‘what works’ for a particular type of problem. 

7.4.4 ‘What works’ vs ‘What might work better?’ 

While I would like to be able to provide unequivocal proof of the effects of the physical cards-

based support tool upon participants’ troubleshooting in Study 2, participants’ feedback 

suggests that the study design was not ideal for this. I do believe that the findings reported 

provide more than enough evidence that instantiating troubleshooting process support in the 

form of physical cards does hold promise as a novel way to help end-user developers overcome 

their difficulties. However, the value of the study, in terms of my own learning, extends beyond 
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the answers to the research questions, by highlighting that a typical, controlled ‘debugging 

study’ design might not be the best way to evaluate this type of tool in this domain, and that any 

future evaluation of this particular tool might benefit from a different approach. This might 

include, for example, more naturalistic studies that are more in alignment with the ethos of 

making as a creative and pleasurable activity, discussed earlier in the thesis (section 2.1.3). 

7.5 Opportunities for future work 

The limitations I have described, as well as the findings from my studies, and my reflections 

upon the approach and methods I have used, highlight opportunities for future work. 

As I have shown, many of the participants in the final study liked the cards and found them 

useful, however the circumstances under which they were required to use them led to some 

frustration. More work is needed to determine the efficacy of this tool, including analysis of the 

behaviours it engenders and the benefits it may have, for example, improvements in 

troubleshooting skill, including the choice of tactics, and whether learning transfers to 

further/future tasks. Additionally, studies in a more naturalistic, or less constrained setting could 

provide a better idea of how the tool would naturally be used by end-user developers outside of 

a controlled environment. 

Some participants had trouble working out how to use the cards and would have liked more 

guidance, for example, in where to start and in selecting tactics to use. A future iteration of the 

toolkit could explore the potential for a more structured method, or signposting end-user 

developers towards content most appropriate for the problem they are experiencing. Similarly, 

it would be interesting to explore a participant’s suggestion about indicating tactic specificity, 

enabling end-user developers to filter tactics according to how general or specific an approach 

they wanted or needed to take at a particular juncture. This may even have benefit beyond the 

use of one particular tool or in this domain, in terms of increasing end-user developers’ general 

troubleshooting knowledge. More work would be needed to determine the best way to 

implement these suggestions. 

While, based on interview feedback in the final study, the cards succeeded in making 

participants think or reflect more when troubleshooting—one of the primary aims of the support 
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tool—participants suggested that additional information would be useful, for example, concrete 

examples of how to connect certain components, or pointers to additional guidance, such as 

component data sheets. There are, of course, the Component cards (section 5.5.4), which were 

excluded from the evaluation study, to ensure focus on the troubleshooting tactics, however this 

type of information could also be provided in different ways, including digitally, linked to from 

the physical cards (for example, simply through a QR code), directly within a mobile application 

equivalent, or in some other form. 

As participants’ comments suggest, the support tool in its current form will not suit everyone. 

The information it provided was generally seen as very useful, but while many appreciated the 

physical card-based format, some would have preferred it in a different form, for example, a 

software application, as was suggested by more than one participant. Some of the card tools 

reviewed in the literature have digital equivalents, for example, the Game Design Deck of Lenses 

(Arcila 2013), exists both as a physical card deck and a mobile phone app, as does the Oblique 

Strategies deck (‘The Oblique Strategies’, n.d.). We could do similar with this tool. While some of 

the flexibility of the cards would be lost in a digital form, for example, the ability to review, or 

work with, a number of cards at once, or use spatial arrangements for planning and tracking, 

there may be other benefits, for example, in the ability to filter or search for tactics by specific 

criteria, or direct links to additional content. 

However, more innovative hybrid physical/digital approaches could be explored, combining the 

benefits of tangible cards, with the flexibility of a digital medium in respect to dynamic provision 

of information. For example, the use of an interactive playmat TUI (tangible user interface) in 

conjunction with cards printed using conductive ink, or embedded with NFC chips. 

Augmented/mixed reality technologies could also be used to extend information beyond the 

boundaries of physical cards. 

It would also be interesting to see whether the tool has benefit in other contexts of use, beyond 

use by individual adult end-user developers. I have already received interest in using the tool to 

support and teach troubleshooting in education, for example, within school, adult education or 

university classroom settings. One participant in the final study, a freelance educator, would like 

to adapt the cards for use in the Scratch programming classes they teach at primary schools, 

where they see they them being used in pair-based troubleshooting. 
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Finally, I intend to refine the cards in light of the results of the evaluation study, and make the 

toolkit available for download, extension, and customisation. I see toolkits such as this as a vital 

step towards greater adoption and continued use of physical computing technology by novice 

end-user developers. 
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Appendices 

Appendix A. Study 1A Ethics application 
 

Ethics Proportionate Review Application: Staff and Research Students 
Computer Science Research Ethics Committee (CSREC) 
Staff and research students in the Department of Computer Science undertaking research that involves human 
participation must apply for ethical review and approval before the research can commence. If the research is 
low-risk, an application can be submitted for a proportionate review using this form. Applicants are advised to 
read the information in the SMCSE Framework for Delegated Authority for Research Ethics prior to submitting 
an application. 
There are two parts: 
Part A: Ethics Checklist. The checklist determines whether the research is low-risk. If it is, Part B of the form 
should also be completed. If not, the checklist provides guidance as to where approval should be sought, but 
the checklist itself does not need to be submitted. 
Part B: Ethics Proportionate Review Form. This part is the application for ethical approval of low-risk research 
and should only be completed if the answer to all questions (1 – 18) is NO. 
Completed forms should be returned to the Chair of CSREC by email (address redacted). 

Part A: Ethics Checklist 

If your answer to any of the following questions (1 – 3) is YES, you must apply to an appropriate 
external ethics committee for approval: 
1. Does your research require approval from the National Research Ethics Service (NRES)? (E.g. 

because you are recruiting current NHS patients or staff? If you are unsure, please check at 
http://www.hra.nhs.uk/research-community/before-you-apply/determine-which-review-body-
approvals-are-required/)  

No 

2. Will you recruit any participants who fall under the auspices of the Mental Capacity Act? (Such 
research needs to be approved by an external ethics committee such as NRES or the Social Care 
Research Ethics Committee http://www.scie.org.uk/research/ethics-committee/) 

No 

3. Will you recruit any participants who are currently under the auspices of the Criminal Justice 
System, for example, but not limited to, people on remand, prisoners and those on probation? (Such 
research needs to be authorised by the ethics approval system of the National Offender Management 
Service.) 

No 

If your answer to any of the following questions (4 – 11) is YES, you must apply to the Senate Research 
Ethics Committee for approval (unless you are applying to an external ethics committee): 

4. Does your research involve participants who are unable to give informed consent, for example, but 
not limited to, people who may have a degree of learning disability or mental health problem, that 
means they are unable to make an informed decision on their own behalf?  

No 

5. Is there a risk that your research might lead to disclosures from participants concerning their 
involvement in illegal activities? 

No 

6. Is there a risk that obscene and or illegal material may need to be accessed for your research study 
(including online content and other material)? 

No 

7. Does your research involve participants disclosing information about sensitive subjects? No 

8.  Does your research involve the researcher travelling to another country outside of the UK, where 
the Foreign & Commonwealth Office has issued a travel warning? (http://www.fco.gov.uk/en/) 

No 

9.  Does your research involve invasive or intrusive procedures? For example, these may include, but 
are not limited to, electrical stimulation, heat, cold or bruising. 

No 

10. Does your research involve animals? No 
11.  Does your research involve the administration of drugs, placebos or other substances to study 

participants? 
No 

http://www.fco.gov.uk/en/
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If your answer to any of the following questions (12 – 18) is YES, you must submit a full application to 
the Computer Science Research Ethics Committee (CSREC) for approval (unless you are applying to an 
external ethics committee or the Senate Research Ethics Committee). Your application may be referred 
to the Senate Research Ethics Committee.  

12. Does your research involve participants who are under the age of 18? No 

13. Does your research involve adults who are vulnerable because of their social, psychological or 
medical circumstances (vulnerable adults)? This includes adults with cognitive and / or learning 
disabilities, adults with physical disabilities and older people. 

No 

14. Does your research involve participants who are recruited because they are staff or students of City 
University London? For example, students studying on a particular course or module. (If yes, 
approval is also required from the Head of Department or Programme Director.) 

No 

15. Does your research involve intentional deception of participants? No 

16. Does your research involve participants taking part without their informed consent?  No 
17. Does your research pose a risk to participants greater than that in normal working life? No 
18. Does your research pose a risk to you, the researcher(s), greater than that in normal working life? No 
You must make a proportionate review application to the CSREC if your research involves human 
participation and you are not submitting any other ethics application (i.e. your answer to all questions 
1 – 18 is “NO”). 

Part B: Ethics Proportionate Review Form 
If you answered NO to all questions 1 – 18, you may use this part of the form to submit an application for a 
proportionate ethics review of your research. The form must be accompanied by all relevant information 
sheets, consent forms and interview/questionnaire schedules. 
Note that all research participants should be fully informed about: the purpose of the research; the procedures 
affecting them or affecting any information collected about them, including information about what they will 
be asked to do, what data will be collected, how the data will be used, to whom it will be disclosed, and how 
long it will be kept; the fact that they can withdraw at any time without penalty. 

Background Information 
Name: Tracey Booth 

Supervisor (if student): Dr Simone Stumpf 

Your Research Project 

Title: Exploring How End-user Developers Think and Behave When Developing 
Physical Prototypes 

Start date: 13/03/2015 

End date: 30/04/2016 

The current 'Maker Movement' entices end users into constructing and programming microcontroller-based 
prototypes for personal use, however, not much is know yet about this growing subgroup of end-user 
developers (EUDs).  
Poor or erroneous mental models affect students' learning and application of circuit theory, and are a 
significant source of novice programmers’ difficulties. Additionally, 6 learning barriers have been identified, 
which can stall end-user programmers' progress. Knowing how both apply in a physical prototyping context 
will help us understand how technology can support EUDs. 
My main research questions are: 

RQ1. What learning barriers do EUDs encounter when constructing and programming physical prototypes? 
RQ2. What mental models of physical prototyping concepts do EUDs hold? 
RQ3. Are there common incorrect mental models that impact EUDs' physical prototyping progress and 

success? 
Participants will be 20 adults, of varying background and ability, who use the Arduino platform to develop 
physical prototypes for personal use. I will recruit via hackerspaces and other 'Maker' community groups. 
People who respond to the initial email will be contacted and screened, including for disability, to ensure that 
they meet the criteria for participation and are capable of performing the required activities. 
Participants will be sent an online questionnaire, gathering data about their background and experience in 
programming, electronics and physical prototyping. At the start of this questionnaire they are asked to provide 
consent to their response data being stored and used for the purpose described. Once they have completed the 
questionnaire, each participant will attend an hour-and-a-half-long session in City's usability lab, at a time 
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convenient for them. This session is structured into 3 phases:  
1. A self-efficacy questionnaire to measure their confidence in physical prototyping;  
2. A hands-on task, in which they develop a physical prototype using the Arduino platform, a solderless 

breadboard and a kit of components, with access to help resources. A verbal protocol (think aloud) will 
be used, and both on and off-screen actions video recorded; 

3. A semi-structured interview, in which they explain the prototype workings, and answer questions 
(selected from a guiding list of topics as time allows) to elicit their mental models of the concepts 
involved. I will also probe on issues observed, including misconceptions or areas of difficulty.  

The session sequence takes into account the potential for each activity to affect data gathered in subsequent 
phases. Participants will be asked to sign an Informed Consent form at the start of the session, before any data 
is gathered. 
Once gathered, any identifying data will be anonymised - participants will be represented by randomly 
assigned ID numbers. Participant names will not be associated with the recordings or any other data, and will 
not appear in any reports or presentations, including where any video clips or screenshots are used in which 
faces are shown. All data will be password protected, stored securely, and backed up. Only myself, my 
supervisors (Dr Simone Stumpf, Dr Sara Jones and Dr Jon Bird, and my external examiners, will have access to 
the data. If a participant decides to withdraw from the study at any point, I will destroy any data already 
gathered from them. 
Analysis will involve mixed methods. RQ1 will be addressed by coding recording transcripts for learning 
barriers - I will look for types and frequencies of barriers encountered. To answer RQ2 I will perform a 
thematic analysis of the mental models elicitation data to determine the mental models held by EUDs of 
physical prototyping concepts. To answer RQ3 I will identify common mental model types, misconceptions and 
knowledge gaps in this thematic and investigate whether these are correlated with physical prototyping 
performance and efficacy. 
In addition, I have a number of secondary research questions, as follows: 

RQ4. Is there a relationship between EUD's backgrounds and their mental models of physical prototyping 
concepts, including any misconceptions they hold? 

RQ5. Is there a relationship between EUDs' backgrounds and the learning barriers they experience when 
constructing and programming physical prototypes? 

RQ6. Is there a relationship between EUDs' self-efficacy and any other factor? 
I will therefore look for correlations between participants' backgrounds, their self-efficacy scores, their mental 
models and the learning barriers they experience. The task recordings will also allow me to analyse 
participants' strategies for prototype development, such as whether and how they seek out and use existing 
examples or instructions, and their behaviour and efficacy in the use of help content. 

 

Attachments (these must be provided if applicable):  

Participant information sheet(s) Yes 

Consent form(s) Yes 

Questionnaire(s) Yes 

Topic guide(s) for interviews and focus groups Yes 

Permission from external organisations (e.g. for recruitment of participants)  Not applicable 
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Appendix B. Study 1A Recruitment poster  
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Appendix C. Study 1A Participant information sheet 

 

  



 

238 

 

Appendix D. Study 1A Informed consent form 
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Appendix E. Study 1A Background Questionnaire 
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Appendix F. Study 1A Self-efficacy questionnaire 
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Appendix G. Study 1A Task instruction sheet 
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Appendix H. Study 1B Troubleshooting flow diagram 
A visual representation of the sequence/flow—and summarised content—of episodes within a run.  

 Each sequentially numbered block following the Failure recognition oval represents an episode. 
 To the right of each episode is a summary of what occurred in it, and the associated text from the transcript.  
 The coloured blocks within each episode block summarise the Event Types coded. E.g., in episode 8, the participant made 

several changes to their circuit—the multiple Change event types coded in the transcript spreadsheet, each with the C 
subcode, are here represented by a single ‘Change circuit’ block.  

 Event types were dual coded using words and colours in the transcript spreadsheets. The same colours were used in the 
troubleshooting flow diagrams, for visual clarity, e.g., Change blocks are always orange, etc. 

 The diagrams were hand-coded with Activity Type and Tactic codes. Episodes in the image below are annotated with this 
coding, in purple—Activity Type codes are capitalised and underlined, with Tactic(s) beneath 
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Appendix I. Initial set of candidate tactics  

A list of the tactics first compiled for potential inclusion in the troubleshooting support card deck. The 

tactics are grouped by their initial categories. Please note that this is not the final set of tactics or 

categories used in the final study. The final set is available as Appendix L. 

  
Category title Tactic 
Check component / wiring info Copy an example 
 Get more help 
Generate more data Logging statements 
 Measure something 
 Use tools 
Inspect for build errors / faults Check circuit completeness 
 Check for bad connections 
 Check for special cases/uses 
 Check location of failure 
 Check order / sequence 
 Check power 
 Check seating 
 Check the pinout 
 Check the type 
 Check the value 
 Check wiring 
 Compare to an example 
 Cross-check 
Perform a test Change test input 
 Check for faulty component 
 Swap working & non-working 
 Unit test 
Simplify Divide & conquer 
 Isolate 
 Reduce dependencies 
Try a quick fix Redo (the same way) 
 Reseat 
 Restart 
 Reverse orientation 
 Swap for a different value 
 Swap for new identical 
Understand (define) the problem Check conditions 
 Check for [ab]normality 
 Check frequency / consistency 
 Check order / sequence 
 Check output values 
 Reproduce the problem 
 Similar/familiar problem 
Understand the system Check the brief 
 Identify / trace dependencies 
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Appendix J. Card design focus groups ethics application 
 

Ethics Proportionate Review Application: Staff and Research Students 
Computer Science Research Ethics Committee (CSREC) 

Staff and research students in the Department of Computer Science undertaking research that involves human 
participation must apply for ethical review and approval before the research can commence. If the research is 
low-risk, an application can be submitted for a proportionate review using this form. Applicants are advised to 
read the information in the SMCSE Framework for Delegated Authority for Research Ethics prior to submitting 
an application. 

There are two parts: 

Part A: Ethics Checklist. The checklist determines whether the research is low-risk. If it is, Part B of the form 
should also be completed. If not, the checklist provides guidance as to where approval should be sought, but 
the checklist itself does not need to be submitted. 

Part B: Ethics Proportionate Review Form. This part is the application for ethical approval of low-risk research 
and should only be completed if the answer to all questions (1 – 18) is NO. 

Completed forms should be returned to the Chair of CSREC by email (email address redacted). 

Part A: Ethics Checklist 

If your answer to any of the following questions (1 – 3) is YES, you must apply to an appropriate 
external ethics committee for approval: 

1. Does your research require approval from the National Research Ethics Service (NRES)? (E.g. 
because you are recruiting current NHS patients or staff? If you are unsure, please check at 
http://www.hra.nhs.uk/research-community/before-you-apply/determine-which-review-body-
approvals-are-required/) 

No 

2. Will you recruit any participants who fall under the auspices of the Mental Capacity Act? (Such 
research needs to be approved by an external ethics committee such as NRES or the Social Care 
Research Ethics Committee http://www.scie.org.uk/research/ethics-committee/) 

No 

3. Will you recruit any participants who are currently under the auspices of the Criminal Justice 
System, for example, but not limited to, people on remand, prisoners and those on probation? 
(Such research needs to be authorised by the ethics approval system of the National Offender 
Management Service.) 

No 

If your answer to any of the following questions (4 – 11) is YES, you must apply to the Senate 
Research Ethics Committee for approval (unless you are applying to an external ethics 
committee): 

 

4. Does your research involve participants who are unable to give informed consent, for example, but 
not limited to, people who may have a degree of learning disability or mental health problem, that 
means they are unable to make an informed decision on their own behalf?  

No 

5. Is there a risk that your research might lead to disclosures from participants concerning their 
involvement in illegal activities? 

No 

6. Is there a risk that obscene and or illegal material may need to be accessed for your research study 
(including online content and other material)? 

No 

7. Does your research involve participants disclosing information about sensitive subjects? No 
8.  Does your research involve the researcher travelling to another country outside of the UK, where 

the Foreign & Commonwealth Office has issued a travel warning? (http://www.fco.gov.uk/en/) 
No 

9.  Does your research involve invasive or intrusive procedures? For example, these may include, but 
are not limited to, electrical stimulation, heat, cold or bruising. 

No 

10. Does your research involve animals? No 
11.  Does your research involve the administration of drugs, placebos or other substances to study 

participants? 
No 

If your answer to any of the following questions (12 – 18) is YES, you must submit a full application to 
the Computer Science Research Ethics Committee (CSREC) for approval (unless you are applying to an 
external ethics committee or the Senate Research Ethics Committee). Your application may be 

mailto:j.dykes@city.ac.uk
http://www.fco.gov.uk/en/
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referred to the Senate Research Ethics Committee.  

12. Does your research involve participants who are under the age of 18? No 
13. Does your research involve adults who are vulnerable because of their social, psychological or 

medical circumstances (vulnerable adults)? This includes adults with cognitive and / or learning 
disabilities, adults with physical disabilities and older people. 

No 

14. Does your research involve participants who are recruited because they are staff or students of 
City University London? For example, students studying on a particular course or module. (If yes, 
approval is also required from the Head of Department or Programme Director.) 

No 

15. Does your research involve intentional deception of participants? No 
16. Does your research involve participants taking part without their informed consent?  No 

17. Does your research pose a risk to participants greater than that in normal working life? No 
18. Does your research pose a risk to you, the researcher(s), greater than that in normal working life? No 
You must make a proportionate review application to the CSREC if your research involves human 
participation and you are not submitting any other ethics application (i.e. your answer to all questions 
1 – 18 is “NO”). 

Part B: Ethics Proportionate Review Form 

If you answered NO to all questions 1 – 18, you may use this part of the form to submit an application for a 
proportionate ethics review of your research. The form must be accompanied by all relevant information 
sheets, consent forms and interview/questionnaire schedules. 

Note that all research participants should be fully informed about: the purpose of the research; the procedures 
affecting them or affecting any information collected about them, including information about what they will 
be asked to do, what data will be collected, how the data will be used, to whom it will be disclosed, and how 
long it will be kept; the fact that they can withdraw at any time without penalty. 

Background Information 

Name: Tracey Booth  
Supervisor 
(if student): 

Dr Simone Stumpf  
Dr Jon Bird  

Your Research Project 

Title: User review of design options for troubleshooting support materials aimed 
at novice Arduino users (CSREC180209TB) 

Start date: 26/02/2018 
End date: 01/10/2020 

Describe your project: overall aim(s) and method (up to 300 words) 
Background 
My first study (S1) established that end-user developers (EUDs) experience numerous problems when 
developing physical computing prototypes with platforms like Arduino, and that circuit bugs are most likely 
to prevent successful development of a working prototype. 
In a subsequent, deeper analysis (S2) of data from the previous study, this time focusing on the natural 
troubleshooting behaviours of EUDs, I discovered that EUDs struggle to diagnose circuit bug-related 
problems and evaluate whether attempted fixes are successful. This is often the result of poor 
troubleshooting strategies/tactics. 
Extending upon this work, the rest of my PhD research aims to determine the effects of providing support 
materials on EUDs’ troubleshooting of circuit bugs. To this end, inspired by creativity support card decks (e.g. 
Thinkpak), I am currently designing a set of physical cards that contain information about different 
strategies/tactics that EUDs can employ when troubleshooting. 
This study 
This new study (S3) will elicit user feedback on the early-stage design of 
these materials. A number of design variants (pictured below) have been 
created, based on the findings from studies 1 & 2, as well as a review of 
the literature (program debugging; electronic circuit troubleshooting; 
card-based tools).  
In this study, to provide valuable user input into the design of the support 
materials, six novice Arduino users will be asked to review and rank these 
variants, focusing on specific aspects of the designs.  
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This research, involving representative users from the target population, will inform my outstanding design 
decisions, resulting in a single set of support materials that will be used in my next study – an observation of 
their effect on EUDs’ hands-on troubleshooting of Arduino circuit bugs (S4– date tbd but ethics approval has 
already been granted). 
Participants 
Participants will be 6 adults (18+ years), who are novice Arduino users. They will be recruited through maker 
and university networks, using flyers, social networks (Twitter and Facebook), mailing lists and personal 
contacts. Participants must be relatively new to using Arduino (or any other physical computing development 
platform) and not consider themselves to be experts in electronics or programming. Recruitment 
respondents will be sent a detailed study information sheet and all potential participants will be screened for 
eligibility, including their age and physical computing development experience. I will not be recruiting 
anyone under the age of 18, and vulnerable participants will be screened out. 
Procedure, incl. data gathering & analysis 
Each participant will attend a one-hour-long session, to be held in the City Interaction Lab, at City, University 
of London, at a pre-arranged time convenient for them. Each session will involve 2 participants – participants 
will be randomly assigned to these pairs.  
At the start of the session each participant will complete the informed consent form. They will then fill in a 
brief background questionnaire, capturing their demographic details and their experience of developing 
physical computing prototypes.  
Participants will then verbally answer two questions about their use of Arduino. Then, working in pairs, they 
will undertake a series of design review exercises, guided by the facilitator (me), using a semi-structured 
topic guide, focusing on different aspects of the designs. In each exercise, participants will be asked to discuss 
and provide feedback on the design variants in terms of a specific aspect, and rank them according to their 
preferences. Aspects are: 

• Physical format (Card size; Card orientation; Handling) 
• Textual information (Types of information; Amount of information; Location of information) 
• Visual design characteristics (Imagery / iconography; Use of colour; Typography) 

The session will be video-recorded for later analysis, using an external video camera, capturing participants’ 
verbal comments about the designs, and any non-verbal activity, e.g. manipulation of the designs (please note 
provisions made in the next section for anonymity regarding the use of these recordings). Any additional 
notes or diagrams made by participants will be digitised following the session. 
A thematic analysis of the recordings will be completed after all sessions have taken place. The findings will 
be used to refine the design of the support materials.  
Data security & privacy  
Once gathered, identifying data will be anonymised - participants will be represented by randomly assigned 
ID numbers. Participant names will not be associated with the recordings or any other data, and will not 
appear in any reports or presentations, including where any video clips or screenshots are used in which 
faces are shown.  
When signing the consent form, participants can opt in for allowing their faces to be shown in any video clips 
or stills used in presentations or publications. If a participant does not opt in for this, but still opts in to allow 
recordings to be used in presentations or publications, their face will be pixelated or blurred in any such 
presentations or publications, to anonymise them. 
All data will be password protected, stored securely, and backed up. Only myself, my supervisory team (Dr 
Simone Stumpf, Dr Jon Bird and Dr Sara Jones), and my examiners, will have access to the data. If a participant 
decides to withdraw from the study at any point, I will destroy any data already gathered from them. 

Attachments (these must be provided if applicable): 
Participant information sheet(s) Yes 

Consent form(s) Yes 

Questionnaire(s) – background questionnaire Yes 

Topic guide(s) for interviews and focus groups Yes 

Permission from external organisations (e.g. for recruitment of participants)  Not applicable 
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Appendix K. Card design focus groups participant 
information sheet 
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Appendix L. List of cards used in Study 2  

Tactic cards 
Analyse run-time behaviour/data Analyse conditions 

Analyse frequency / consistency 
Analyse normality 
Analyse sequence 
Identify the symptoms 
Logging (print) statements 
Measure something 
Serial monitor 

Conduct a test Divide & conquer 
Isolate part of the system 
Redo (reimplement the same way) 
Reduce dependencies 
Restart 
Swap working & non-working 
Test for a faulty component 

Get help Compare to an example 
Read the requirements/specification 
View component / wiring information 

Inspect hardware / software Analyse the program/circuit 
Check circuit completeness 
Check component pinout 
Check for poor connections 
Check for special cases / uses 
Check if something's missing 
Check location of failure 
Check order (spatial) 
Check orientation 
Check power 
Check the type(s) used 
Check the value(s) used 
Cross-check (between things) 
Trace/identify dependencies 

Stop… think Consider alternatives 
Consider recent events 
Consider similar/familiar problems 
Question your assumptions 

Best Practice cards 
Best practice Avoid haphazard trial & error 

Diagnose, Fix, Evaluate result 
Keep track 
Make it easy to undo 
One 'fix' at a time 
Undo failed fixes 
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Appendix M. Tactics and Best Practice cards 
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Appendix N. Study 2 Ethics application 

Ethics Proportionate Review Application: Staff and Research Students 
Computer Science Research Ethics Committee (CSREC) 

Staff and research students in the Department of Computer Science undertaking research that involves human 
participation must apply for ethical review and approval before the research can commence. If the research is 
low-risk, an application can be submitted for a proportionate review using this form. Applicants are advised to 
read the information in the SMCSE Framework for Delegated Authority for Research Ethics prior to submitting 
an application. 

There are two parts: 

Part A: Ethics Checklist. The checklist determines whether the research is low-risk. If it is, Part B of the form 
should also be completed. If not, the checklist provides guidance as to where approval should be sought, but 
the checklist itself does not need to be submitted. 

Part B: Ethics Proportionate Review Form. This part is the application for ethical approval of low-risk research 
and should only be completed if the answer to all questions (1 – 18) is NO. 

Completed forms should be returned to the Chair of CSREC by email (email address redacted). 

Part A: Ethics Checklist 

If your answer to any of the following questions (1 – 3) is YES, you must apply to an appropriate 
external ethics committee for approval: 

1. Does your research require approval from the National Research Ethics Service (NRES)? (E.g. 
because you are recruiting current NHS patients or staff? If you are unsure, please check at 
http://www.hra.nhs.uk/research-community/before-you-apply/determine-which-review-
body-approvals-are-required/) 

No 

2. Will you recruit any participants who fall under the auspices of the Mental Capacity Act? (Such 
research needs to be approved by an external ethics committee such as NRES or the Social 
Care Research Ethics Committee http://www.scie.org.uk/research/ethics-committee/) 

No 

3. Will you recruit any participants who are currently under the auspices of the Criminal Justice 
System, for example, but not limited to, people on remand, prisoners and those on probation? 
(Such research needs to be authorised by the ethics approval system of the National Offender 
Management Service.) 

No 

If your answer to any of the following questions (4 – 11) is YES, you must apply to the Senate 
Research Ethics Committee for approval (unless you are applying to an external ethics 
committee): 

4. Does your research involve participants who are unable to give informed consent, for example, 
but not limited to, people who may have a degree of learning disability or mental health 
problem, that means they are unable to make an informed decision on their own behalf?  

No 

5. Is there a risk that your research might lead to disclosures from participants concerning their 
involvement in illegal activities? 

No 

6. Is there a risk that obscene and or illegal material may need to be accessed for your research 
study (including online content and other material)? 

No 

7. Does your research involve participants disclosing information about sensitive subjects? No 
8.  Does your research involve the researcher travelling to another country outside of the UK, 

where the Foreign & Commonwealth Office has issued a travel warning? 
(http://www.fco.gov.uk/en/) 

No 

9.  Does your research involve invasive or intrusive procedures? For example, these may include, 
but are not limited to, electrical stimulation, heat, cold or bruising. 

No 

10. Does your research involve animals? No 
11.  Does your research involve the administration of drugs, placebos or other substances to study 

participants? 
No 

If your answer to any of the following questions (12 – 18) is YES, you must submit a full application 
to the Computer Science Research Ethics Committee (CSREC) for approval (unless you are applying 
to an external ethics committee or the Senate Research Ethics Committee). Your application may be 
referred to the Senate Research Ethics Committee.  

http://www.fco.gov.uk/en/
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12. Does your research involve participants who are under the age of 18? No 
13. Does your research involve adults who are vulnerable because of their social, psychological or 

medical circumstances (vulnerable adults)? This includes adults with cognitive and / or 
learning disabilities, adults with physical disabilities and older people. 

No 

14. Does your research involve participants who are recruited because they are staff or students of 
City University London? For example, students studying on a particular course or module. (If 
yes, approval is also required from the Head of Department or Programme Director.) 

No 

15. Does your research involve intentional deception of participants? No 
16. Does your research involve participants taking part without their informed consent?  No 

17. Does your research pose a risk to participants greater than that in normal working life? No 
18. Does your research pose a risk to you, the researcher(s), greater than in normal working life? No 
You must make a proportionate review application to the CSREC if your research involves human 
participation and you are not submitting any other ethics application (i.e. your answer to all 
questions 1 – 18 is “NO”). 

Part B: Ethics Proportionate Review Form 

If you answered NO to all questions 1 – 18, you may use this part of the form to submit an application for a 
proportionate ethics review of your research. The form must be accompanied by all relevant information 
sheets, consent forms and interview/questionnaire schedules. 

Note that all research participants should be fully informed about: the purpose of the research; the procedures 
affecting them or affecting any information collected about them, including information about what they will 
be asked to do, what data will be collected, how the data will be used, to whom it will be disclosed, and how 
long it will be kept; the fact that they can withdraw at any time without penalty. 

Background Information 

Name: Tracey Booth 
Supervisor (if student): Dr Simone Stumpf 

Your Research Project 
Title: Exploring how to support end-user developers in troubleshooting physical computing bugs 

Start date: 01/07/2017 
End date: 01/10/2020 
Describe your project: overall aim(s) and method (up to 300 words) 
Physical computing development involves the construction and programming of microcontroller-based 
prototypes that interact with the world through sensors (e.g., light or temperature) and actuators (e.g. 
motors or LEDs). It therefore requires knowledge and skill in both electronics and programming, however, 
the Maker Movement has enticed many end users lacking this expertise into physical computing 
development. While platforms such as Arduino have been developed, ostensibly, to make physical 
computing development easier for end-user developers (EUDs), my first PhD study discovered that EUDs 
experience numerous problems when developing prototypes. A deeper analysis of the same data found that 
several participants had considerable difficulty troubleshooting circuit bugs – the main cause of task failure 
in that study. Therefore, this next study – a formative, empirical user study - aims to determine the effect of 
providing support materials, in the form of information about troubleshooting strategies/tactics and 
components, on end-user developers’ troubleshooting (diagnosing, fixing and testing) of circuit bugs in 
physical computing prototypes, with a view to discovering what does and doesn't help. 
Participants 
Participants will be 20 adults (18+ years), of varying background and ability, who use the Arduino platform 
to develop physical prototypes for personal use. They will be recruited via hackerspaces and other Maker 
community groups through flyers and mailing lists, and through direct personal contacts. People who 
respond to the recruitment will be sent a detailed study information sheet. We will not be recruiting anyone 
under the age of 18, and vulnerable participants will be screened out. 
Procedure, incl. data gathering & analysis 
Each participant will individually attend an hour-and-a-half-long session at a pre-arranged time convenient 
for them. At the start of the session, they will complete the informed consent form. They will then fill in an 
online background questionnaire, capturing their demographic details as well as data about their experience 
in developing physical computing prototypes.  
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Following this, in the main part of the session—the tasks—we will present 
a series of “buggy” physical computing prototypes to participants and ask 
them to find the bugs and fix them. The prototypes will be the same as that 
used in study 1, i.e. the “Love-o-meter” project in the official Arduino 
starter kit, which lights up 3 LEDs in response to body temperature when 
a temperature sensor is held. Fig1 shows an image of this prototype. 
As participants work on these tasks, we will give them support materials 
and observe how these support materials affect participants’ 
troubleshooting, the outcomes of troubleshooting actions, and which types 
of information provided are used and at which points.  
Participants will be asked to ‘think aloud’ (verbal protocol) when undertaking the tasks, and specifically to 
articulate any troubleshooting-related thoughts and decisions, including any use of the support materials 
provided. The session will be video-recorded for later analysis, using a combination of screen-recording 
software (to record all on-screen activity) and two external video cameras, each recording a different view: 
1) close-up view of the prototype and 2) wider view of the desk and support materials, also capturing 
participants’ faces (note provisions made in the next section for anonymity regarding use of recordings). 
After each task, participants will complete a very short questionnaire in which they rate the difficulty of the 
task and their confidence in successfully completing it. Participants will not be told how successful they 
were in finding or fixing the bugs. When all tasks have been undertaken, participants will complete a 
questionnaire in which they will rate the usefulness of the support materials provided, including the types of 
information presented. We will also hold a short debriefing interview to probe them for further detail on 
these responses and their use of the support materials. The interviews will be video-recorded and later 
analysed for comments. 
Data security & privacy  
Once gathered, identifying data will be anonymised - participants will be represented by randomly assigned 
ID numbers. Participant names will not be associated with the recordings or any other data, and will not 
appear in any reports or presentations, including where any video clips or screenshots are used in which 
faces are shown.  
When signing the consent form, participants can opt in for allowing their faces to be shown in any video 
clips or stills used in presentations or publications. If a participant does not opt in for this, but still opts in to 
allow recordings to be used in presentations or publications, their face will be pixelated or blurred in any 
such presentations or publications, to anonymise them. 
All data will be password protected, stored securely, and backed up. Only myself, my supervisory team (Dr 
Simone Stumpf, Dr Sara Jones, Dr Jon Bird), and my examiners, will have access to the data. If a participant 
decides to withdraw from the study at any point, I will destroy any data already gathered from them. 

Attachments (these must be provided if applicable): 
Participant information sheet(s) Yes 

Consent form(s) Yes 

Questionnaire(s) – background questionnaire, self-efficacy questionnaire, ‘usefulness’ questionnaire Yes 

Topic guide(s) for interviews and focus groups Yes 

Permission from external organisations (e.g. for recruitment of participants)  n/a 
 

Research Study Amendments 
Computer Science Research Ethics Committee (CSREC) 

This form should be used to submit an amendment to research previously approved by the Computer Science 
Research Ethics Committee (CSREC), City University London. Completed forms should be returned to the Chair of 
CSREC by email. 

Principal Investigator and Study Duration 
Name: Tracey Booth (supervised by Simone Stumpf) 

Email: (redacted) 

Title of study: Exploring how to support end-user developers in troubleshooting physical computing bugs 
Start Date: 04 June 2018 (sessions to start) 

End Date: 01 October 2020 
 

Research Amendments 
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Type of Amendment/s (tick as appropriate) 

Research procedure/protocol (including research instruments) X 
Participation group X 
Information Sheet/s X 

Consent form/s X 
Other recruitment documents  

Sponsorship/collaborations  
Principal investigator/supervisor   

Extension to approval  
Other  

Details of amendments (give details of each of the amendments requested, state where the changes have 
been made and attach all amended and new documentation) 

• Participation group is now novice Arduino users, rather than just Arduino users. (Information Sheet) 
• Participant sessions estimated to take 2 hours, rather than 1.5 hours. (Information Sheet) 
• Study sessions will now take place in June 2018. (Information Sheet) 
• Analysis has increased focus on reflection, requiring changes to questions in research instruments 

(Support materials questionnaire; Debriefing interview topic guide) 
• Consent form updated to the format approved for my previous study (CSREC180209TB) 

Justification for amendments  

• As the population most likely to benefit from troubleshooting support materials is novice (i.e. non-expert) 
Arduino users, and the support materials have been designed specifically for them, recruitment will now 
specifically target this subgroup of the original population. The Information Sheet has been updated to 
reflect this.  

• Two pilot runs of this study confirmed that participant sessions are more likely to take 2 hours. I believe it 
is better to adjust the stated time to the more accurate estimate than rush the sessions or remove/reduce 
parts of the procedure. The Information Sheet has been changed to reflect the revised estimate. 

• The pilots also suggested that the study would benefit from some further design work on the support 
(intervention) materials. Recruitment of participants was therefore delayed until after this work had 
taken place. This included another study (CSREC180209TB conducted March 2018) in which design 
options for the support materials were reviewed by representatives of the target audience. The 
Information Sheet has been changed to reflect the new date of participant sessions. 

• Qualitative analysis will now have an increased focus on reflection, requiring some changes to questions in 
the Support Materials Rating questionnaire and the post-task Debriefing Interview Topic Guide. 

• For my previous study (Mar 2018) I changed the consent form in response to some feedback from CSREC. 
I have also applied these same changes to the consent form for this study.  

If an extension is requested, specify the period 
n/a 

Other information (provide any other information which you believe should be taken into account during 
ethical review of the proposed changes) 

Please note that although the participant group has changed, it is now merely a subgroup of the original 
group, rather than a different group entirely. 

 
 Declaration (to be signed by the Principal Investigator) 

I certify that to the best of my knowledge the information given above, together with any accompanying 
information, is complete and correct and I take full responsibility for it. 

Signature Signature 
Principal Investigator(s) 
(student and supervisor if student project) [Signature removed] [Signature removed] 

Date 15/05/18 
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Appendix O. Study 2 Recruitment flyer 
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Appendix P. Study 2 Participant information sheet 
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Appendix Q. Study 2 Informed consent form 
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Appendix R. Study 2 Background questionnaire 
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Appendix S. Study 2 Support Materials Questionnaire 
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Appendix T. Study 2 Task instructions  
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Appendix U. Study 2 Interview topic guide 
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Appendix V. Study 1A/1B Participant background data 
     

 Physical computing Programming Electronics 

Ptc Age Gender Occupation Self-efficacy Years Expertise Training Years Expertise Training Employed Years Expertise Training Employed 

P01 27 Female Post-Doctoral Researcher (HCI) 62 5.00 3 No 9.00 4 Yes No 5.00 2 Yes No 

P02 27 Male Broadcast Engineer 73 6.50 5 No 15.00 5 Yes No 5.00 5 Yes Yes 

P03 22 Female PhD Student (Computer Science) 52 1.00 6 No 8.00 7 Yes Yes 1.00 5 No No 

P04 25 Female PhD Student (Media & Arts) 67 2.25 4 Yes 4.00 3 Yes No 0.00 2 No No 

P05 32 Female Project Manager (Arts) 64 4.00 2 Yes 4.00 3 Yes No 4.00 2 No No 

P06 46 Male Events/Content producer 86 2.50 3 No 30.00 5 Yes No 30.00 4 No No 

P07 30 Male PhD student (Media & Arts Technology) 70 1.50 4 Yes 8.50 6 Yes Yes 1.50 2 Yes No 

P08 33 Male Restaurant owner 80 7.42 5 Yes 28.00 5 No No 20.00 5 No No 

P09 29 Female Director/Research Consultant (Tech & Arts) 82 4.58 5 Yes 4.58 4 Yes No 4.58 5 Yes No 

P10 34 Female Project Manager (Media & Technology) 68 2.50 3 Yes 2.50 2 Yes No 6.00 2 Yes No 

P11 53 Male High School Substitute Teacher (English Lit) 73 2.25 3 Yes 12.67 2 No No 3.25 4 Yes No 

P12 41 Female University Lecturer (Fashion Marketing) 41 2.00 2 Yes 15.00 5 Yes Yes 1.00 1 No No 

P13 38 Female Student (Science and Human Physiology) 68 0.00 2 No 10.00 2 Yes No 15.00 2 Yes No 

P14 32 Male Software Developer 73 5.00 4 Yes 11.00 6 Yes Yes 5.00 3 No No 

P15 32 Male Post-Doctoral Researcher (Computer Science) 70 0.50 3 No 16.00 6 Yes Yes 16.00 5 No No 

P16 29 Male Systems Analyst 84 1.67 4 Yes 7.00 6 Yes Yes 1.67 2 No No 

P17 28 Male PhD Student (HCI) 73 6.00 5 Yes 16.00 5 Yes No 6.00 3 Yes No 

P18 30 Male Education Programme Manager (Science) 74 4.00 3 No 5.00 4 No No 4.00 2 No No 

P19 26 Male Industrial & Web Designer 58 3.50 2 Yes 7.00 4 No Yes 3.50 3 No No 

P20 22 Male MSc Student (Comp.Sci & Embedded Systems) 76 2.50 4 Yes 4.50 4 Yes No 2.50 3 Yes No 



 

270 

 

Appendix W. Study 2 Participant background data 
 

     
Arduino Electronics Programming 

Ptc Group Age Gender Occupation Years Expertise TS Expertise Years Expertise TS expertise Employed Years Expertise TS Expertise Employed 

P110 NSWS 41 Male Web Developer 0.92 2 2 0.92 1 1 No 8.00 6 4 Yes 

P120 WSNS 28 Female PhD Student (Media & Art tech) 0.50 4 4 1.50 3 3 No 3.00 5 5 No 

P130 NSWS 26 Male Masters Student (HCI) 0.92 3 2 0.92 2 2 No 2.42 6 6 Yes 

P140 WSNS 39 Male Electrician 0.25 4 4 1.00 4 4 No 1.00 2 2 No 

P150 NSWS 21 Male Undergrad. student (Biomedical Eng.) 0.25 3 3 2.17 4 5 No 0.42 3 3 No 

P160 WSNS 21 Male Undergrad. student (Engineering) 0.50 3 4 2.00 6 6 No 0.54 2 2 No 

P170 NSWS 35 Female Creative 1.00 3 3 1.50 3 3 No 2.17 4 3 No 

P180 WSNS 51 Female Sound engineer 0.33 2 2 0.33 1 1 No 0.17 2 2 No 

P190 NSWS 21 Male Undergrad. student (Computer Science) 0.92 2 3 0.67 5 1 No 3.17 6 6 Yes 

P200 WSNS 38 Male Charity consultant 0.17 2 2 0.17 2 2 No 5.00 5 4 No 

P210 NSWS 31 Male Lab technician 0.17 4 4 0.58 4 5 No 0.25 3 2 No 

P220 WSNS 48 Female Masters student (Computational Art) 0.42 3 2 0.42 2 2 No 0.83 2 2 No 

P230 NSWS 20 Female Undergrad. student (Mech. Eng) 0.08 2 3 2.00 4 3 No 0.50 3 2 No 

P240 WSNS 51 Female Masters student (Computational Art) 1.25 3 2 1.00 2 1 No 2.00 2 2 No 

P250 NSWS 20 Female Undergrad. student (Creative Computing) 0.17 2 1 0.42 2 1 No 1.00 3 3 No 

P260 WSNS 28 Male PhD Student (Media & Art Technology) 2.00 2 3 1.50 3 2 No 2.00 4 5 No 

P270 NSWS 47 Female Finance 6.00 2 2 1.00 2 2 No 4.00 3 3 No 

P280 WSNS 21 Female Masters student (Design) 2.00 3 2 0.17 4 1 No 0.42 4 1 No 

P290 NSWS 37 Male Freelance Educator (Primary school) 3.00 2 3 0.50 2 3 No 4.00 4 5 No 

P300 WSNS 31 Female Research Fellow (HCI) 6.00 3 2 2.00 3 2 No 10.00 5 5 Yes 

TS: Troubleshooting 
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