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Achieving broad access to health services (a target within the sustainable development goals) requires

reaching rural populations. Mobile healthcare units (MHUs) visit remote sites to offer health services to

these populations. However, limited exposure, health literacy, and trust can lead to sigmoidal (S-shaped)

adoption dynamics, presenting a difficult obstacle in allocating limited MHU resources. It is tempting to

allocate resources in line with current demand, as seen in practice. However, to maximize access in the long

term, this may be far from optimal, and insights into allocation decisions are limited.

We present a formal model of the allocation of MHU resources, i.e., the frequency of visits to each site, to

maximize long-term uptake of preventative health services. We formulate the problem as the optimization of

a sum of sigmoidal functions. While the problem is NP-hard, we provide closed-form solutions to particular

cases of the model that elucidate insights into the optimal allocation. For example, more visits should

generally be allocated to sites where the cumulative demand potential is higher and, counterintuitively,

often those where demand is currently lower. To apply our insights in practice, we propose a practical

method for estimating our model’s parameters from pre-existing data. Our estimation approach achieves

better predictions than standard methods. Finally, we demonstrate the potential of our approach by applying

our methods to family planning MHUs in Uganda. In particular, we show that operationalizable heuristic

allocations, grounded in our insights, outperform allocations based on current demand.
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1. Introduction

Achieving broad and affordable access to health services is necessary to fulfill the Sustainable

Development Goals (SDGs) (Keskinocak and Savva 2020). Currently, half the world’s population

lacks access to essential services (WHO and The World Bank 2017), even though universal health

coverage is a target of SDG 3: Good Health and Well-Being. This inaccessibility can have important

negative consequences for other SDGs by reducing productivity (Stenberg et al. 2014) and educa-

tional attainment (Jukes et al. 2007). Broadening access to health services requires strengthening

delivery to rural areas, where approximately half of humanity lives (The World Bank 2018), but

rural populations’ access tends to be significantly worse than urban populations’, leading to stark

differences in health outcomes, especially in developing countries (Strasser et al. 2016). Aside from
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physical barriers—geographical isolation (Crouse et al. 2010), a lack of affordable transportation

(Hodgson et al. 1998), the concentration of resources within cities (Strasser 2003)—lower educa-

tional levels (van Maarseveen 2020) and health literacy (Aljassim and Ostini 2020), and a lack of

exposure to and trust in services and providers (Wickstrom et al. 2013) effectively reduce rural

populations’ access to health services. We summarize the latter as informational barriers to access.

In this paper, we analyze the resource allocation problem faced by humanitarian organizations

attempting to broaden access of rural populations to health services with the help of mobile health-

care units (MHUs). Also referred to as outreach teams, MHUs establish temporary service delivery

sites near rural populations. They can provide a resource-efficient alternative to stationary clinics

and hospitals that may be prohibitively costly due to low population density (Doerner et al. 2007).

However, even if MHUs can overcome physical barriers to access, infrequent contact with health

services and service providers does not necessarily alleviate the informational barriers. This is par-

ticularly true in the case of health services for which the need is not immediately obvious, such

as preventative care, as opposed to evident needs such as emergency care (Berkman et al. 2011).

Nonetheless, in the absence of stationary providers, MHUs play an active role also in delivering ser-

vices with high informational barriers, such as vaccination (Vaahtera et al. 2000), cancer screening

(Mauad et al. 2011), HIV counseling (Mabuto et al. 2014) and family planning (Wickstrom et al.

2013). The gradual spread of information through word-of-mouth within rural communities driven

by previous adopters can overcome informational barriers and enhance adoption (Neke et al. 2018).

MHUs may support it by actively building trust (Aung et al. 2015).

Humanitarian organizations that allocate MHU resources to improve access to such services face

two interrelated challenges: (i) understanding the complex adoption dynamics driven by word-of-

mouth effects, often in an environment with limited data and poor computational infrastructure

(Ergun et al. 2014, Besiou and Van Wassenhove 2020), and (ii) strategically allocating scarce

resources, taking into account slow build-up for adoption demand and eventual saturation. More-

over, in the humanitarian context, planning solutions need to be interpretable to verify adherence

to standards of practice and improve trust and applicability (Gralla and Goentzel 2018).

Our work aims at helping humanitarian organizations overcome these challenges. We provide a

formal model for allocating available MHU resources for organizations aiming to broaden access

to health services whose adoption is hindered by informational barriers. We adapt the Bass (1969)

model to reflect the resulting adoption dynamics and predict the adoption levels engendered by

potential allocations. We choose this model for its flexibility, interpretability, and established per-

formance in practice. Our allocation model maximizes adoption as derived from the Bass model,

rather than incorporating also returning clients. This choice is appropriate when informational bar-

riers have a distinct impact on initial adoption, and intervals between subsequent service demands
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are long enough that repeat clients can be served effectively with a baseline visit frequency, as in

the examples above. Moreover, we abstract from the shorter-term scheduling of MHUs to focus on

the complexities introduced by long-term changes in adoption patterns. We identify solutions that

enable organizations to improve resource allocations in two ways. First, we derive operationalizable

insights that can help guide long-term decision-making, especially in environments with little data.

For example, counter to intuition, more resources should be devoted to those sites within a priori-

tized group with lower current adopter demand to anticipate saturation effects. Second, we provide

interpretable and implementable procedures to predict adopter demands and to allocate MHU

resources by relying on an approach with low requirements for data collection and computation.

Through a collaboration with MSI Reproductive Choices (henceforth MSI), we have had access

to data, documentation, and interactions with experts on the operations of family planning MHUs.

MSI is a non-governmental organization that provides family planning services in 37 countries

across the world. We consider the problem of planning 25 MHUs that MSI employs to serve rural

populations in Uganda. We apply our model to this setting and evaluate the benefits of our insights

compared to current practice. MSI is an ideal testing ground for our research because family

planning services are a prime example of the use of MHUs and play a central role in the sustainable

development agenda. In particular, unwanted pregnancies negatively impact the health of mothers

and children (Conde-Agudelo et al. 2012), making family planning essential to achieve SDG 3:

Good Health and Well-Being. It is estimated that each dollar spent on improving access to modern

contraceptive services saves $1.4 in maternal and child health care (Singh and Darroch 2012).

Family planning services are also essential for progress towards other SDGs (Starbird et al. 2016).

For example, adolescent pregnancies have large lifetime opportunity costs in the form of foregone

work and education opportunities (Narita and Diaz 2016). Hence, they can form an obstacle to

achieving SDG 1: No Poverty and SDG 4: Quality Education. The ability to freely choose whether

and at what age to be pregnant is essential to empower women (Plambeck and Ramdas 2020). Thus,

SDG 5: Gender Equality explicitly requires universal access to sexual and reproductive health.

The remainder of the paper is structured as follows. In Section 2, we discuss how our work

contributes to the operations management literature. In Section 3, we develop a model to optimally

allocate MHU resources to sites, given complex adoption dynamics at each site. We analyze this

model in Section 4 before developing a procedure to predict demand in Section 5. We exemplify

our approach in Section 6 with the case of MSI Uganda before concluding in Section 7.

2. Literature review

We contribute to three streams of literature: (i) team deployment in the humanitarian sector, (ii)

diffusion of innovations, and (iii) resource allocation with sigmoidal objectives.
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2.1. Team deployment in the humanitarian sector

The routing and scheduling of MHU visits in developing countries have been studied as part of

the vast literature on vehicle routing and covering tour problems (see, e.g., Laporte 1992), but

with modified objectives for the humanitarian context (Hodgson et al. 1998, Doerner et al. 2007).

A similar problem also arises in the disaster relief literature (de la Torre et al. 2012, Ferrer et al.

2018). These works are concerned with finding the shortest path over a network of sites while

satisfying constraints on the visited sites. While such decisions are relevant for planning visits in

the short-term, we focus on the long-term resource allocation to a large number of sites.

In this vein, McCoy and Lee (2014) describe a problem in which resources, in the form of visit

capacities, are allocated to sites with the objective of providing equitable and efficient service, using

the concept of α-fairness. Our objective function allows us to incorporate a measure of fairness by

weighing sites differently. We also include lower bounds on the allocated resources to guarantee a

certain level of service. de Vries et al. (2021b) proposes a model for epidemic control where limited

resources are allocated to screening the populations at different sites. Their goal is to minimize

disease transmission, which means that demand follows different dynamics than the adoption of

health services we consider. Most closely related to our work, de Vries et al. (2021a) propose a

model for the resource allocation problem of family planning MHUs. Their objective is to maximize

the number of clients reached during visits, including new adopters and existing clients, assuming

that demand depends on visit frequencies. They observe in their data set that demand has a

concave (logarithmic or square root) relationship with the time between two visits. As in de Vries

et al. (2021a), we build simplified policies based on our model’s optimal solution, considering that

a limited number of different frequency choices is more practical. Unlike the authors, however, we

focus on the longer-term objective of broadly enabling health service adoption, taking into account

that adoption follows complex dynamics driven by word-of-mouth and saturation effects. Based on

our model, we are able to derive novel managerial insights into the resource allocation problem for

organizations that are concerned foremost with broadening access. While health service access for

existing clients is important, we ensure a sufficient level of service through a constraint. We do not

consider the effects of visit frequencies on demand, as we observe that these are weaker for adopters

than existing clients—existing client demand may accumulate when team visits are infrequent.

Also in the context of family planning services, Van Rijn et al. (2020) consider assigning MHUs

to sets of sites. In particular, they analyze the performance of decentralized approaches to this

assignment problem. In this paper, we focus on allocating resources in the form of visits to sites.

This planning task can occur either globally, before sites are assigned to mobile units, or locally,

to plan individual MHUs’ resource allocations.
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2.2. Diffusion of innovations

Diffusion of innovations is a large area of research within the behavioral sciences (Rogers 2010). The

Bass (1969) model was developed to quantify the behavioral concepts in the diffusion of durable

goods. It relies on three parameters with a clear interpretation: innovation coefficient, imitation

coefficient, and market potential. The result is a sigmoidal (S-shaped) function of the cumulative

number of adopters of an innovation over time, henceforth termed Bass function. In addition to

simplicity and interpretability, the Bass model has been shown to perform well in forecasting sales

of innovations (cf. Bass 1980). Therefore, we implement the Bass model to capture the demand for

MHU services, where each visit to a site corresponds to a step forward in the Bass function.

To estimate the model’s parameters, Bass (1969) proposed ordinary least squares. The resulting

estimates may be biased and unstable, so several other procedures have been proposed, including

non-linear least-squares and maximum likelihood methods (Meade and Islam 2006). These tech-

niques also tend to suffer from estimation issues, mainly when the inflection point of cumulative

demand has not yet been observed (Boswijk and Franses 2005). This problem comes up, e.g.,

when sales in new markets or new products need to be estimated with little data. Data from old

markets is only an imperfect proxy because the diffusion dynamics vary due to differing product

characteristics, economic and cultural conditions, and marketing measures (Peres et al. 2010).

Three general approaches use data from previous markets to predict adoption dynamics in new

markets: (i) a hierarchical Bayesian approach implements priors based on previous markets and

updates as sales data is observed (e.g., Lenk and Rao 1990); (ii) a comparative approach estimates

coefficients for markets with a long history and then makes predictions based on market charac-

teristics (e.g., Lee et al. 2014); and (iii) a regression approach replaces coefficients with functions

of product, market, and marketing characteristics within the estimation process and can make

predictions for new markets solely based on characteristics observed early on (e.g., Gatignon et al.

1989). We estimate demands at geographically isolated sites, which relates to estimating demand

for the same product in independent markets with similar characteristics. Both the first and second

approaches require some sites with a long demand history. In our case, we have many sites with

few observations that can, nonetheless, provide valuable information, rendering the third approach

ideal. We extend this approach with machine learning tools.

2.3. Resource allocation with sigmoidal objective

We formulate the resource allocation problem as a knapsack problem with a sum of Bass functions

as the objective, each representing the demand for health service adoption at a site. We analyze the

more general case where the objective is a sum of sigmoidal functions. Several solution procedures

have been proposed in the literature. Aǧrali and Geunes (2009) present a dynamic programming
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approach that finds an approximate solution in pseudo-polynomial time. Srivastava and Bullo

(2014) propose an algorithm that uses Lagrangian relaxation to find a solution in polynomial time

within a constant factor of the optimal solution. Udell and Boyd (2014) propose a branch and

bound algorithm that is guaranteed to converge to the optimal solution, albeit in exponential time.

We do not aim at improving algorithmic solutions but rather at providing structural results and

insights that help organizations allocate their MHU resources. In doing so, we consider simplified

versions of the general model by adding additional assumptions. Ginsberg (1974) provides results

for the case when all sigmoidal functions are the same. We provide stronger results by making

the additional assumption that the sigmoidal functions are point-symmetric around the inflection

point (an assumption satisfied by the Bass function and many other functions used in practice).

Moreover, we provide results when the demand functions are all shifted forms of the same sigmoidal

function and derive insight into more complicated settings using comparative statics.

3. A model of resource allocation under sigmoidal demands

We now formalize the resource allocation problem of an organization that provides well-defined

health services and deploys mobile healthcare units to reach clients in remote areas. Let u denote

the number of MHUs that visit the set of sites N = {1, . . . , n}. The organization decides how many

visits each site receives during a planning horizon of H units of time, denoted with π= (πi)i∈N . To

generate insights with our model, in line with McCoy and Lee (2014) and de Vries et al. (2021b),

we do not constrain πi to integer values, nor do we prescribe the exact scheduling and routing.

As outlined in the introduction, we assume that the organization’s ultimate objective is to

broaden access to its health services, expressed by the number of new service adopters during a

visit. To capture the total demand of new adopters during all visits to a site i ∈ N during the

planning horizon, we use the function ψi(πi). We will discuss the dynamics underlying this function

in the next subsection. Because the impact of providing access may differ between sites, we use

βi ∈ [0,1] to weight adopter demands. For example, MSI generates more impact when serving

younger and poorer populations. Thus, the objective is to maximize effective adopter demand

Ψ(π) =
∑

i∈N βiψi(πi), subject to a number of constraints, which we outline next.

First, the total number of visits is limited by available MHU capacity. We assume the total visit

time, including travel, is constant across sites and normalize this to one unit of time. For example,

in the context of the application we discuss in Section 6, MHUs usually visit one site per day.

With this normalization, Π
Def.
= uH is the total capacity. The organization may also have a limited

budget for performing its services. We assume such a constraint is not binding because the costs

of running an MHU (e.g., labor, vehicles) are comparatively high. Hence, budget constraints affect

the number of teams rather than the number of clients served by each team and are reflected in Π.
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Our discussions with MSI support this assumption. Second, a site can only be visited effectively

by one MHU at any given time, meaning that the planning horizon H limits the number of visits.

Other constraints arise due to the need to prepare and announce visits. An upper bound on the

number of visits T , with T ≤H, allows us to combine these considerations. Finally, the organization

may impose a minimum number of visits to each site F to fulfill ethical and medical requirements

regarding the repetition or discontinuation of its services. The organization solves

max
π

∑
i∈N

βiψi(πi) (1a)

s.t.
∑
i∈N

πi ≤Π (1b)

F ≤ πi ≤ T, ∀i∈N. (1c)

In practice, sites may be assigned to specific MHUs. This can be captured by optimizing each

mobile unit’s allocation individually, defining N as the set of sites served by the MHU.

3.1. Specifying the adoption dynamics—the Bass diffusion model

The adoption of health services provided by MHUs follows complex dynamics. Potential clients

may be unaware of a service, unconvinced of its benefits, or mistrust the provider. The community

can then be an important driver of adoption by showcasing the service’s benefits and safety.

The Bass (1969) model captures exactly such dynamics while being sufficiently flexible to rep-

resent demand in many practical applications. The model has three parameters: (i) the innovation

coefficient reflects the share of innovators in the population who demand a product or service even

when nobody else uses it; (ii) the imitation coefficient reflects the share of imitators who demand

a product or service only if they observe others using it (when the innovation coefficient is low,

but the imitation coefficient is high, word-of-mouth effects play a major role in building demand);

(iii) the market potential signifies the level at which demand saturates.

We assume that adopter demand faced by MHUs at site i follows the diffusion process defined

by the Bass model. Specifically, after πi visits to the site, the cumulative number of clients is

Yi(πi) =mi

1− θie−(pi+qi)πi

1 + qi
pi
θie−(pi+qi)πi

. (2)

Here, pi ≥ 0 and qi ≥ 0 are the innovation and imitation coefficients, respectively, in units of 1/visit.

The market potential, the maximum cumulative number of clients, is denoted by mi > 0, i.e.,

limπi→∞ Yi(πi) = mi. The parameter θi = pi(mi − ci)/(pimi + qici) is used to simplify notation,

where ci = Yi(0)≥ 0 denotes the cumulative number of clients at the start of the planning horizon.

If ci = 0, then θi = 1 so that (2) simplifies to the exact expression in Bass (1969). The cumulative

number of clients in the Bass diffusion model is exemplified in Figure 1.



8

Figure 1 The Bass diffusion model
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While the Bass model was derived for the adoption of durable goods in continuous time, clients

in the present context can only receive services when an MHU visits. Thus, we discretize time into

intervals of unit length. Taking a long-term view on allocating resources, we do not prescribe an

exact visit schedule. Hence, we assume that a site’s adopters are given by the next step in the

discretized Bass function whenever a team visits. Implicit here is that inter-arrival times do not

affect adopter demand. de Vries et al. (2021a) indicate that client demand is an increasing and

concave function of inter-arrival time. However, the need to prepare visits lower-bounds the inter-

arrival time and limits this effect. As a result, adopter demand during visit k ∈N is Yi(k)−Yi(k−1),

and total demand during the planning horizon (the objective function) can be rewritten as ψi(πi) =

Yi(πi)− ci. Alternatively, one can think of πi as the cumulative marketing effort in a generalized

Bass model (Bass et al. 1994), which would lead to the same expression for the demand function.

The above model assumes a fixed market potential mi. In practice, however, the long-run market

potential may be affected by population growth. If the population growth rates are similar for all

sites, the effect on the allocation is negligible. Appendix E provides evidence that MSI’s sites in

Uganda have similar growth rates.

Finally, we point out that the Bass (1969) model assumes no repeated services and captures only

the demand generated by new adopters of the service. Existing clients may require service again

from time to time. While this impacts the number of clients served, it does not affect the percentage

of the population that serves as a driver for word-of-mouth effects and, thus, the adoption by new

clients. Constraint (1c) ensures that sites receive a minimum number of visits. If this is sufficient

for existing clients to obtain services at a reasonable frequency, removing their demands from

consideration is in line with the stated objective of broadening access to health services.

With the above considerations, we can reformulate the organization’s problem as follows:

max
π

∑
i∈N

βi(Yi(πi)− ci)

s.t. (1b) and (1c).

(3)
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4. Optimal allocation of visits to sites

In this section, we analyze Problem (1) to characterize the optimal allocation. We consider special

cases in Sections 4.1 and 4.2 that allow us to gain intuition about the optimal allocation and provide

actionable insights for the decision-maker. Section 4.3 provides an algorithm to approximate the

solution to (1) in the general case. In Section 4.4, we present comparative statics results that yield

further understanding of how the optimal allocation depends on the adoption dynamics and site

composition. We summarize our insights in Section 4.5. All proofs are found in Appendix B.

While our focus is on the Bass function, we present results for a more general set of demand

functions that includes the Bass function as a special case. Namely, we assume throughout the

analysis that adopter demand fulfills Assumption 1:

Assumption 1 (Sigmoidal demand function). The demand function ψi :R≥0→R≥0 for any

site is twice continuously differentiable, strictly increasing, and there is a unique inflection point

πinfl
i ≥ 0, such that ψ′′i (πi)> 0 for πi <π

infl
i , and ψ′′i (πi)< 0 for πi >π

infl
i .

Before moving to the main results, we show in Proposition 1 that the Bass function in (2) satisfies

Assumption 1. The proposition further shows that the Bass function is point-symmetric around

the inflection point, a property that we will assume for certain results.

Proposition 1. The function ψ̃i(πi)
Def.
= Yi(πi)− ci is twice continuously differentiable, strictly

increasing, and has the unique inflection point πinfl
i = max{log(θiqi/pi)/(pi + qi), 0} such that

ψ̃′′i (πi)> 0 if πi < πinfl
i and ψ̃′′i (πi)< 0 if πi > πinfl

i . In addition, ψ̃i(πi) is point-symmetric around

πinfl
i , that is ψ̃i(π

infl
i + ε)− ψ̃i(πinfl

i ) = ψ̃i(π
infl
i )− ψ̃i(πinfl

i − ε) ∀ε∈
[
0, πinfl

i

]
.

With the assumptions of our model in hand, we state Proposition 2, which formalizes a guarantee

that all capacity is used in (1):

Proposition 2. A maximizer π∗ = (π∗i )i∈N of (1) exists and either satisfies the capacity con-

straint with equality,
∑

i∈N π
∗
i = Π, or all the upper bounds with equality, π∗i = T, ∀i∈N .

If the allocation πi = T, ∀i ∈N , is feasible, this also trivially constitutes the optimum. This is

the case if and only if nT ≤Π. In the remainder, we assume nT >Π and that (1b) is replaced by

an equality constraint in (1), which is without loss of generality according to Proposition 2. Any

optimal solution must then fulfill the following set of Karush-Kuhn-Tucker (KKT) conditions:

(πi−T )(πi−F )(βiψ
′
i(πi)−λ) = 0, ∀i∈N,

(πi−T )(βiψ
′
i(πi)−λ)≥ 0, ∀i∈N,

(πi−F )(βiψ
′
i(πi)−λ)≥ 0, ∀i∈N,

(4)
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where λ is the Lagrange multiplier of the equality constraint. The KKT conditions imply that

either πi = T , πi = F , or πi satisfies

βiψ
′
i(πi) = λ. (5)

For a given λ, there are at most two solutions to (5): one in the concave region (πi ≥ πinfl
i ) and one

in the convex region (πi ≤ πinfl
i ). We use π̂i(λ)≥ πinfl and π̃i(λ)≤ πinfl to denote the two potential

solutions to (5) for a site i. If no solution exists, we define π̂i(λ) = πinfl and π̃i(λ) = πinfl, respectively.

For any π and λ, we thus denote four mutually exclusive sets, L, G, E1, and E2:

L(π,λ) = {i∈N : πi = F},

G(π,λ) = {i∈N : πi = T},

E1(π,λ) = {i∈N\(L∪G) : πi = π̂i(λ)}, and

E2(π,λ) = {i∈N\(L∪G∪E1) : πi = π̃i(λ)}.

(6)

The sets L(π,λ) and G(π,λ) are the sites for which the inequality constraints (lower and upper

bound, respectively) are tight. The sets E1(π,λ) and E2(π,λ) are the sites for which equation (5)

is satisfied. For all sites i ∈ E1(π,λ), ψ′′(πi) ≤ 0, and we say that i is in the concave region (see

Figure 1a). Similarly, for all sites i∈E2(π,λ), ψ′′(πi)> 0, and we say that i is in the convex region.

Using the above first-order necessary conditions, as well as second-order necessary conditions

introduced in the proof, we show that any optimal solution can be partitioned into these four sets,

with some additional properties:

Proposition 3. Let π∗ be an optimal solution to (1). Then there exists a λ∗, as well as mutually

exclusive sets L∗ =L(π∗, λ∗), G∗ =G(π∗, λ∗), E∗1 =E1(π∗, λ∗), and E∗2 =E2(π∗, λ∗), such that

(a) N =L∗ ∪G∗ ∪E∗1 ∪E∗2 (the sets are also exhaustive);

(b) if i∈L∗, then βiψ
′
i(F )≤ λ∗;

(c) if i∈G∗, then βiψ
′
i(T )≥ λ∗;

(d) |E∗2 | ≤ 1 and, if i∈E∗2 and j ∈E∗1 , then βiψ
′′
i (π∗i )≤−βjψ′′j (π∗j ).

We provide a complete proof in Appendix B. Parts (a)-(c) follow from the first-order conditions,

which require that the derivatives of all sites in the interior (in E∗1 or E∗2) are the same and equal

to the Lagrange multiplier. The intuition for this result is the following. Assume, to the contrary,

that two sites i and j are in the interior of the solution and have different derivatives. Say, for

example, that the derivative is smaller for site i. Then one can obtain an improved feasible solution

by adding a small enough ε to πj and subtracting ε from πi. Thus, the problem can be reduced to

finding the optimal λ∗ and deciding which sites belong to which set in (6). Figure 2 illustrates the

four possible visit numbers of an optimal allocation for a fixed λ.
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Figure 2 The allocation of visits to sites for a given λ and the corresponding set memberships
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The assumption that ψi is continuously differentiable allows us to show that part (d) is a neces-

sary condition, compared to Theorem 3 of Aǧrali and Geunes (2009) that shows the existence of a

solution with such a property when assuming Lipschitz continuity. Interestingly, the second-order

conditions do not guarantee that E∗2 is empty, but instead that it contains at most one site. In

Sections 4.1 and 4.2, we show that, under some additional conditions, there exists a solution where

E∗2 is empty unless E∗1 is empty, and we use this fact to derive solutions to simplified models.

4.1. Optimal allocation for homogeneous sites

In this subsection, we assume that sites are homogeneous: ψi = ψ and βi = β ∀i ∈ N . This is a

useful assumption when there is little historical data to go by, and populations around the different

sites are not too varied in terms of their size, as well as economic and social conditions.

Ginsberg (1974) provides an analysis of this case. We additionally assume that the cumulative

demand function ψ is point-symmetric, as applies to the Bass function (cf. Proposition 1). The

additional assumption allows us to show stronger results:

Proposition 4. Assume a homogeneous set of sites N with ψi = ψ for all i ∈ N , and let ψ

be point-symmetric around the inflection point πinfl. Moreover, assume a homogeneous weighting

βi = β. Then, it is optimal to either

(i) select any x∗ sites that are visited equally often with πi = F +(Π−Fn)/x∗, while the remaining

n−x∗ sites are visited with πi = F , where x∗ = arg maxx∈{1,...,n} x
[
ψ
(
F + Π−Fn

x

)
−ψ(F )

]
; or

(ii) select x∗∗ = b(Π−nF )/(T −F )c sites that are visited equally often with πi = T , while the rest

is visited with πi = F , except for one site that is visited with πi = Π−x∗∗T − (n−x∗∗− 1)F .

Under these conditions, the problem is reduced to optimizing a single variable: x∗, the number of

sites to be visited equally often with a relatively high frequency. We refer to such sites as prioritized.

The remaining sites are visited only the minimum number of times (π∗i = F ).

This result uncovers a problem of equity even for identical sites. Some sites receive the bare

minimum of resources, while other sites receive a large fraction. Therefore, it is critical to set the

lower bound F appropriately such that every site receives a satisfactory level of service.
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Before turning to the analysis of other cases, we briefly discuss the effect that the underlying

adoption dynamics have on the number of prioritized sites x∗. For this purpose, we assume that

T is sufficiently large such that Case (i) above applies, that ψ follows the Bass function, and that

x∗ can take non-integer values. The effect of a small change in a parameter of the Bass function

can then be identified easily through implicit derivation. An increase in c can be interpreted as

shortening the convex part of the Bass function. This means that the number of adopters per visit

begins to saturate more quickly, and, thus, it is beneficial to choose a larger set of sites. When m

increases, assuming c > 0, the opposite happens—the convex part is lengthened, and x∗ decreases.

An increase in p implies that innovation is more prominent and that adopter demand grows more

quickly but saturates faster. Early on, it may thus be optimal to visit a smaller number of prioritized

sites x∗ more frequently. However, if cumulative demand is already close to the inflection point, an

increase in p leads to an increase in x∗. An increase in q has more complex effects tied to c: the

benefits of increasing q scale with the number of existing clients because they enable imitation, but

saturation effects act as a counterweight and also scale with existing clients.

4.2. Optimal allocation for homogeneous sites with different starting points

Next, we assume a set of sites with the same impact multipliers and point-symmetric demand

functions but a different number of existing clients. This is a useful assumption when populations

around sites are not too different, but sites have previously been served with varying frequencies.

Let ψ be the demand function that all of the sites follow and let π0
i be the number of previous

visits to the site, that is, ψ(π0
i ) = ci. Then, ψi(πi) = ψ(π0

i + πi)−ψ(π0
i ). Moreover, let πinfl be the

inflection point of ψ and π̂(λ) the point that satisfies the KKT condition in (5) within the concave

region of ψ. Let C1 = {i ∈ N : π0
i + F ≥ πinfl} (resp. C2 = {i ∈ N : π0

i + F < πinfl}) be the set of

sites for which the starting point, i.e., previous visits plus minimum number of visits F , is strictly

greater (resp. lower) than the inflection point in ψ.

Proposition 5. Assume ψi(πi) =ψ(π0
i +πi)−ψ(π0

i ) for all i∈N , and let ψ be point-symmetric

around the inflection point πinfl. There exists an optimal solution π∗ to (1) such that

(a) E∗2 = ∅ or E∗1 = ∅;
(b) if i, j ∈C2, i∈L∗, and π0

i >π
0
j , then j ∈L∗;

(c) if i, j ∈C1, i∈L∗, and π0
i <π

0
j , then j ∈L∗; and

(d) if i∈E∗1 and j /∈L∗, then π0
j +π∗j ≤ π0

i +π∗i .

Proposition 5 allows us to find the optimal allocation through a greedy search by sequentially

taking sites out of the set L. This idea is formalized in Corollary 1:

Corollary 1. Assume a set of sites as in Proposition 5. Wlog, reorder the sites such that



13

(a) if j ∈C1, i∈C2, then i < j;

(b) if i, j ∈C2, π0
i ≥ π0

j , then i < j; and

(c) if i, j ∈C1, π0
i ≤ π0

j , then i < j.

There exists l∗ ∈ {0, . . . , |C2|} and λ∗ such that an optimal allocation π∗ exists that satisfies either

π∗i =

min{(π̂(λ∗)−π0
i ) , T} , if i≤ l∗

F, if i∈C2 and i > l∗

min{max{π̂(λ∗)−π0
i ,F}, T} , if i∈C1

for all i∈N, or (7)

π∗i =

{
Π, if i= 1
F, if i > 1

for all i∈N. (8)

We propose an algorithm in Appendix A that finds an optimal allocation through a search for

l∗ and λ∗, requiring a constant number of line searches only. Here, we provide an overview. For

any l sites with a starting point in the convex part (sites in C2), the procedure computes the best

allocation when those sites are prioritized. The prioritized sites are those with the highest current

demand (adopters per visit). For each choice of l, some sites are also prioritized with a starting

point in the concave part. However, this is limited by all prioritized sites having the same number

of adopters per visit at the end of the planning horizon. As a result, the prioritized sites from C1 are

those with the lowest current demand. Finally, we note that prioritized sites receive more resources

the lower their cumulative demand level and other sites receive only the minimum number of visits.

4.3. Optimal allocation for heterogeneous sites

When sites are heterogeneous, the allocation problem is NP-hard (Aǧrali and Geunes 2009, Theo-

rem 1). The algorithm of Srivastava and Bullo (2014) is a heuristic approach for solving the general

allocation problem that links to the intuitive development we have done here. The algorithm uses

a relaxation of (1) to search for the Lagrange multiplier and then allocate resources given this

multiplier. We apply this algorithm in Section 6.3 to obtain a proxy of the optimal allocation.

4.4. The impact of adoption dynamics on the optimal allocation

Without a closed-form solution, it is difficult to intuit how differences in the underlying adoption

dynamics affect the optimal allocation: should a site with more imitators be visited more often, or

one with more innovators? What does it mean for the visit frequency at one site when the number

of existing clients at another site is large? We can provide intuition into how an optimal allocation

is affected by small differences between the adoption dynamics at sites. This can also be useful

when an organization aims to affect a site’s parameters, for example, through marketing.

We analyze the effects of a small change in a parameter s that affects one site’s demand function.

Suppose that π∗ is an optimal allocation and, without loss of generality, assume that the inequality

constraints are not binding for sites i= 1, . . . , n̂, that is F < π∗i <T , but binding for all other sites.
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Assume further that the change in s does not impact whether any inequality constraints are binding.

Recall the first-order conditions βiψ
′
i(π
∗
i ) = λ∗ ∀i= 1, . . . , n̂, and the equality constraint

∑n̂

i=1 π
∗
i =

Π −∑n

i=n̂+1 π
∗
i . By taking derivatives with respect to s on both sides, we obtain βi

∂ψ′i
∂s

(π∗i ) +

βiψ
′′
i (π∗i )

∂π∗i
∂s

= ∂λ∗

∂s
and

∑n̂

i=1

∂π∗i
∂s

= 0 (because of our assumptions, the derivatives for sites i =

n̂+ 1, . . . , n are zero). Solving the system of equations for ∂π∗i /∂s and ∂λ∗/∂s, we have

∂π∗i
∂s

=
− 1
ψ′′i (π∗i )

∂ψ′i
∂s

(π∗i )
∑

j 6=i,j≤n̂
1

βjψ
′′
j (π∗j )

+
∑

j 6=i,j≤n̂
1

βiψ
′′
i (π∗i )ψ′′j (π∗j )

∂ψ′j
∂s

(π∗j )∑
j≤n̂

1
βiψ
′′
j (π∗j )

, and (9)

∂λ∗

∂s
=

∑
j≤n̂

1
ψ′′j (π∗j )

∂ψ′j
∂s

(π∗j )∑
j≤n̂

1
βjψ
′′
j (π∗j )

. (10)

Suppose that s only affects Site 1 and all sites i < n̂ are in E∗1 , i.e., ψ′′i (π∗i ) < 0 (this is not a

strong condition as at most one site is in E∗2 , see Proposition 3). Then, (9) and (10) simplify to

∂π∗1
∂s

=−
∑

j 6=1,j≤n̂
1

βjψ
′′
j (π∗j )∑

j≤n̂
1

βjψ
′′
j (π∗j )

1

ψ′′1 (π∗1)︸ ︷︷ ︸
>0

∂ψ′1
∂s

(π∗1),
∂π∗i
∂s

=

1
βiψ
′′
i (π∗i )ψ′′1 (π∗1)∑
j≤n̂

1
βjψ
′′
j (π∗j )︸ ︷︷ ︸

<0

∂ψ′1
∂s

(π∗1), ∀i= 2, . . . , n̂, and

∂λ∗

∂s
=

1
ψ′′1 (π∗1)∑

j≤n̂
1

βjψ
′′
j (π∗j )︸ ︷︷ ︸

>0

∂ψ′1
∂s

(π∗1).

Thus, the sign of the first-order change is fully determined by ∂ψ′1(π∗1)/∂s. If ∂ψ′1(π∗1)/∂s > 0, then

π∗1 increases, while π∗i decreases for i = 2, . . . , n̂. Interestingly, the shadow price of the capacity

constraint, λ∗, increases if and only if π∗1 increases.

Suppose now that ψ1(π1) is given by the Bass function Y1(π1) − c1. We can easily compute

derivatives with respect to the relevant parameters p1, q1, m1, and c1 to obtain the direction of

change. For reasons of space, we provide the formal results in Appendix C. We show that an

increase in the market potential of Site 1 always increases the optimal number of visits to that site

while decreasing the optimal number of visits to other sites. This is intuitive because a larger pool

of potential clients results in more adopters per visit. An increase in the number of existing clients

reduces the optimal number of visits to Site 1 while increasing the number of visits to other sites.

This is because, with more existing clients, there are fewer potential ones.

The results for p1 and q1 are more nuanced. Intuitively, p1 and q1 represent rates of diffusion:

p1 for innovators and q1 for imitators. Larger values imply faster diffusion. It may be optimal to

increase the number of visits to take advantage of this, or to decrease the number of visits because

the same number of adopters can be reached with fewer visits. In fact, if π∗1 is small, ∂Y ′1(π∗1)/∂s > 0
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for s ∈ {p1, q1}. For larger values of π∗1 , when adopter demand at the site is close to saturation,

∂Y ′1(π∗1)/∂s < 0. The point where the sign of ∂Y ′1(π∗1)/∂p1 changes is always in the concave region,

within the assumed range of π∗1 . The point where the sign of ∂Y ′1(π∗1)/∂q1 changes is in the concave

region if and only if q1 > p1, which is commonly observed in practice (see, e.g., Bass 1969).

4.5. Summary of managerial insights from the analysis

We summarize here the key insights for decision-makers, derived through the analyses in the preced-

ing sections. These insights may be used to develop a heuristic approach to the allocation problem,

especially in settings with poor historical data. We provide examples of heuristic approaches in

Section 6.3 and compare them to both myopic and optimal allocations.

There are three intuitively appealing approaches to allocating MHU resources that can be

observed, at least anecdotally, in practice. One is to allocate resources equally. The second is to

reserve most resources for a small group of sites with very high current (i.e., per-visit) adopter

demand. The third is to allocate resources in proportion to the current adopter demand. The opti-

mal allocation runs counter to these intuitive approaches but incorporates some of their elements.

As opposed to spreading resources equally, it is optimal to prioritize a subset of sites. Rather than

prioritizing only the top demand sites, this subset should be large enough to anticipate saturation

effects. While sites are more likely to be prioritized in the optimal allocation when current adopter

demand is high, this holds only for less developed sites, i.e., where the pool of existing clients is

relatively small compared to the potential. Prioritization amongst more developed sites may, in

fact, follow a reverse order. A more general yardstick for prioritization is the level of cumulative

adopter demand. When allocating resources between prioritized sites, as opposed to apportion-

ing them proportional to current demand, resources should be allocated such that the number of

adopters per visit at the end of the planning horizon is equal across sites. Therefore, sites with

higher adoption potential, which generally have lower current demand, should receive more visits.

These two interlinked decisions—which sites to prioritize and how to allocate resources between

prioritized sites—are influenced by the underlying adoption dynamics. In particular, more sites

should be prioritized when market potentials are smaller, there are more existing clients, or diffusion

rates are higher (both in the form of innovation and imitation). In terms of the allocated resources,

a particular site should be favored if it has higher market potential or fewer existing clients, ceteris

paribus. Similarly, higher diffusion rates at a site should mean that more resources are allocated

to that site unless saturation effects are already noticeable.

5. A procedure for predicting adopter demands

In order to allocate resources optimally, we need to be able to predict demand at all sites. Here,

we outline a method that combines the Bass diffusion model’s predictive power and machine
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learning. We assume that the adoption dynamics at each site follow a Bass function and use

a combination of data gathered in the field (visits) and publicly available data about the sites

(location, demographics, economy, . . . ) to estimate the parameters with machine learning methods.

In the context of MHUs, there are many concurrent markets for the same health services, and

adoption proceeds at each site largely independently because potential clients interact mostly

with people served at the same site. At the same time, while sites vary in the composition of

their population, there are many economic and cultural commonalities between populations, which

means that the underlying dynamics (specifically, the imitation and innovation coefficients) are

likely to be linked. Therefore, we take the approach of estimating the Bass parameters as a function

of site characteristics, thus pooling the demand data from all sites to get better estimates of the

Bass model for each site, especially for sites with little demand data available.

We address two additional issues relevant to the context of MHUs. First, there may be existing

clients that are not registered but contribute to the diffusion of health services through word-of-

mouth effects. Such a discrepancy may be due to a lack of quality data gathered in the field, e.g.,

many NGOs have only started gathering data at scale in recent years to increase efficiency and

accountability, leading to missing data on existing clients. Moreover, while the sites visited by

MHUs are typically isolated, some migration may occur and provide a baseline of clients that have

already obtained the service. Therefore, our approach is able to estimate existing clients at each

site, ci, from incomplete data on existing clients as well as site characteristics.

Second, while data gathered in the field may be limited, many data sources are becoming publicly

available that allow us to enhance predictions. In particular, we can estimate the market potential

from the population in proximity to a site. Our approach estimates mi as a fraction of the popula-

tion living in the catchment area of site i, where the fraction of potential clients in the population

is based on the experience from related settings and the demographic composition around the site.

The catchment area varies across sites, specifically between rural and urban areas (Doerner et al.

2007). However, it is likely that at sites with similar characteristics, people are willing to walk

similar distances, even if the population residing within that distance varies. Hence, we obtain

population data at different distances from a site, using the WorldPop project (Lloyd et al. 2019).

We represent the population in the catchment area as a function of the radius ri that people living

close to site i are willing to travel to obtain service. The parameter ri is then estimated as part

of the suggested procedure. The market potential mi is obtained by multiplying the population in

the catchment area by the fraction of the population that are potential clients.

We use gradient boosting, a state-of-the-art machine learning method (Natekin 2020), to estimate

each site’s Bass parameters. With gradient boosting, a function of the difference between actual and

predicted outcomes (the loss function) is minimized iteratively. In each iteration, pseudo-residuals
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of the predicted outcomes are regressed on observables using a weak learner, often a regression tree

model. The prediction model is then a weighted combination of the previous iteration’s model and

the model generated by the weak learner. We modify the standard approach in two ways: while

adopter demand for health services is the outcome of interest and the basis of the loss function, we

simultaneously use four regression trees in order to estimate pi, qi, ri, and ci as a function of site

characteristics, instead of estimating demand directly. We further add a penalty term to constrain

the model parameters within the relevant space of the Bass model.

Combining these aspects, we propose the following procedure for predicting the functions Yi(πi):

1. Determine the market potential of a site as a function of the site-specific radius, say mi(ri),

using the population density around the site multiplied by the fraction of potential clients.

2. Define a functional form of the innovation and imitation coefficients, the site-specific radius,

as well as the number of existing clients as functions of the site characteristics Xi, say p(Xi),

q(Xi), r(Xi), and c(Xi), to be learned from the data. We use a sum of weighted regression

trees. We also explore a linear form in Section 6.2.

3. Define a loss function. We use the mean squared error or quadratic loss function:∑n

i=1

∑vi
j=1 [yi,j −Y (j;p(Xi), q(Xi),mi (r(Xi)) , c(Xi))]

2
, where Y is the number of adopters

according to the Bass model at the j-th visit, given the model parameters at site i, yi,j is the

number of adopters observed, and vi is the total number of visits.

4. Estimate p̂(Xi), q̂(Xi), r̂(Xi), and ĉ(Xi) with a modified gradient boosting algorithm, in which

each iteration simultaneously updates the four models. If we use a linear functional form,

we can estimate the parameters directly by minimizing the quadratic loss function over the

coefficients, i.e., we obtain a non-linear least-squares estimator.

5. Predict Yi(πi) based on Equation (2) with Yi(πi) = Y (πi; p̂(Xi), q̂(Xi),mi (r̂(Xi)) , ĉ(Xi)).

The predictive power of our approach far outperforms that of a non-linear least-squares approach

(the mean squared error is approximately than a third). In fact, the approach has nearly the same

predictive power as a pure “black-box” gradient boosting approach. We implement this procedure

in the R programming language and make it available together with synthetic data at blinded

for peer review.

Experiments with synthetic data allow us to investigate the procedure’s accuracy. We observe

that predictions are highly accurate and that parameter estimates predict the inflection point of

the cumulative demand curve correctly. Estimates of qi, ri, and mi are accurate. Small inaccuracies

are possible in pi and ci estimates because nearly equivalent demand curves can be generated by

compensating lower (higher) values of pi with higher (lower) values of ci.
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6. Application to MSI Uganda

In this section, we apply our model to MSI Uganda, an organization that faces the resource allo-

cation problem discussed throughout this paper. We give some background on the organization in

Section 6.1 before applying our demand prediction techniques in Section 6.2. We use the model

parameters estimated to illustrate the impact of an optimal resource allocation in Section 6.3 and

compare the optimal allocation to current implementations, a myopic policy, as well as heuristics

that make use of our analytical insights.

6.1. MSI Uganda’s family planning MHUs

Context. Family planning services are an important contributor to SDG 3: Good Health and

Well-Being. Reasons include the mental (Groupo Médico and Global Doctors for Choice Network

2011) and physical (Conde-Agudelo et al. 2012) adverse effects of unwanted pregnancies and quick

successions of childbearing, as well as the 25 million unsafe abortions yearly caused by undesired

pregnancies and resulting in 14–40 thousand deaths (WHO 2019b,a). Apart from adversely impact-

ing health, a lack of family planning is a major barrier to SDG 1: No Poverty, SDG 4: Quality

Education, and SDG 5: Gender Equality.

Organization. MSI Reproductive Choices (MSI) tries to address the need for family planning

services of underserved populations worldwide. In Uganda, MSI has been active for over 30 years.

Today, it is one of the largest providers of sexual and reproductive healthcare in the country. MSI

focuses on reaching predominantly young and poor clients within hard-to-reach rural locations and

in urban slums. To serve remote areas, the organization employs 31 MHUs in this country (MSI

Reproductive Choices 2021b).

We focus on visits by the 25 standard MHUs (in contrast to specialized teams, which we exclude

for consistency). Each unit operates with a driver and two to four family planning providers (doc-

tors, nurses) and is responsible for visiting a mostly exclusive set of villages. When visiting a village,

MHUs usually set themselves up at local health centers, where potential clients can approach them

for services. Such a visit is commonly announced multiple weeks in advance.

Currently, resource allocation decisions do not systematically consider the trade-offs arising from

adoption dynamics and the need to develop demand at sites. In fact, MSI’s guidelines state explicitly

that the frequency of visits should be based on current demand (MSI Reproductive Choices 2016).

Visit data. Between May 2015 and November 2019, standard teams provided contraceptive ser-

vices to 542,845 clients at 1,237 sites with known geolocations. We observe the acting team, basic

demographics and previous contraceptive status of the clients, and the services performed. In some

cases, we observe additional information, for example, about the perception of marketing tools. We

focus exclusively on client interactions regarding long-term contraceptive methods, i.e., intrauter-

ine devices and implants. There are two main reasons for this. First, MSI shows an increasing
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focus on expanding choice of contraceptive methods to include long-term methods, due to their

effectiveness and convenience (Duvall et al. 2014), and three-quarters of MSI clients worldwide now

use long-term methods (MSI Reproductive Choices 2020). In Uganda, long-term methods account

for 90% of client interactions and complement the short-term methods predominantly provided in

the public health sector. MHUs are usually deployed to a site only when there is no other provider

of long-term methods. Second, beyond MSI, long-term methods are seen as a cornerstone in scaling

up access to family planning in the developing world (WHO 2012, Shoupe 2016).

Client interactions concerning long-term methods fall into one of two categories: the client may

already be using such a method and require removal with or without replacement (existing clients),

or seek usage for the first time (adopters—MSI uses the term also for clients who are not using a

contraceptive method at the time of visit but may have used one in the past. If a client previously

used a long-term method, we consider them an existing client for this paper). We focus our attention

on adopter demand to reflect MSI’s ambition of broadening access to modern contraceptive methods

(MSI Reproductive Choices 2021a). Existing clients are significantly less hampered by informational

barriers to access. Their physical barriers to access can be overcome if their demands, e.g., for

removals or replacements, can realistically be met with a baseline visit frequency.

Demographic data. Uganda is subdivided administratively into districts, counties, sub-counties,

parishes, and villages. As of 2014, the time of the most recent publicly available census, there

were 7,557 parishes with an average population of 4,583. The census data is available at the

level of parishes and contains statistics on both individuals and households, which we use as site

characteristics, in addition to the data provided by MSI. There are other influences on demand,

e.g., religious and ethnic diversity in different regions that influence social norms around family

planning or variations in exposure to public promotional activities. While the census does not

capture these directly, it provides a wealth of information.

In order to estimate the population in the catchment area of a site, we rely on the Uganda 2020

dataset from the WorldPop project (WorldPop et al. 2018), which provides population estimates at

a resolution of 3 arc (approximately 100× 100 meters at the equator). Such a granular breakdown

allows us to define a site’s population (i.e., the population in the catchment area) as a function of

the radius that potential clients are willing to travel. To speed up computation, we define mi(ri)

as third-degree polynomials that fit the WorldPop data with an adjusted R2 ≥ 0.97. To derive the

market potential as a fraction of the site’s population, we make two calculations. First, we note that

among all observed MSI clients, 98.86% are female, and 99.59% are within the reproductive age

(15–49 years old, see UN 2019). Hence, we multiply the total population with the fraction of females

within reproductive age in the area around the site, as found from the census data. Second, based

on Track20’s classification of the stages of adoption of modern contraceptive methods (reported
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in Feyisetan et al. 2017), we assume that the prevalence of such methods reaches saturation at

approximately 80%, the highest contraceptive prevalence rate among developed countries. We thus

multiply the number from the previous step by 80%.

Impact of service delivery at a site. MSI’s impact from providing contraceptive methods depends

on the age and economic condition of clients. We compute poverty and age scores for each site and

multiply those to derive the impact of serving clients at a specific site. For the poverty score, we

use district-level GDP per capita data that we regress on the district-level census information. We

then use the parish-level census information to predict GDP per capita around the sites. The scores

are normalized, such that the site with the lowest predicted GDP per capita has a score of 1. To

compute the age score, we calculate the fraction of young persons (15–24 years old, see UN 2020)

out of the population in reproductive age. Again, the score is normalized so that the site with the

highest fraction of young persons has a score of 1. In summary, βi = (age score)i(poverty score)i.

In Appendix D, we describe in detail the process of cleaning and matching between the different

data sets and the auxiliary data sets used for this purpose.

6.2. Adopter demand prediction results

We aim to obtain accurate predictions of how demand evolves in the long term to incorporate

demand build-up and saturation effects into the planning procedure. For this purpose, we assume

that contraceptive service adoption by MSI’s target population follows a Bass model. Multiple

considerations drive the choice of this model. First, social interactions have been established widely

as a key driver for the adoption of contraceptive methods (see, e.g., Bongaarts and Watkins 1996).

Second, we are interested in long-term demand trends of entire sites rather than short-term effects

or individual behaviors. Given these two requirements, the healthcare modeling literature suggests

a system dynamics approach (Barton et al. 2004). The Bass model is likely the most used system

dynamics model to tackle questions of adoption. It is supported by well-established diffusion theory

and can represent a wide range of adoption dynamics.

Based on the assumed Bass dynamics, we predict adopter demands at different sites with the

estimation procedure outlined in Section 5. The observation period is limited, making it necessary

to evaluate our approach’s predictive performance in the short term. For this purpose, we split the

visit data into a training (May 11, 2015, until November 29, 2018; 12,876 visits) and a test period

(November 30, 2018, until November 29, 2019; 3,518 visits). This means that we use the last full

year of observations from MSI (21.46% of visits) as test data. We choose a date-specific cut-off to

simulate the prediction problem faced by MSI when planning its resource allocation based on the

information obtained from previous visits. In Figure 3a, we present a histogram of the deviation

between predicted and actual adopter demands in the test period. Figure 3b contains a histogram

of the absolute difference as a percentage of actual demands.



21

Figure 3 Difference between predicted and actual demands
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Note. Actual and predicted demands are denoted with d and d̂. The red lines represent 10%, 50%, and 90% percentiles,

from left to right. Panel (a) (resp. Panel (b)) trims 2.0% (resp. 2.9%) of observations from the test data for clarity.

We can use a model-independent state-of-the-art approach to derive an upper bound for predic-

tion accuracy in the short term. In particular, we implement a standard gradient boosting approach,

using the R-package gbm (Ridgeway 2019). The mean squared error in the test data using this

approach is 16% less than in our model-based approach. This indicates that the Bass model may

not capture some demand drivers. However, we point out that the limited test period puts more

emphasis on short-term variations in demand levels compared to the long-term variations captured

by the Bass model. To see this, note that the Bass estimates indicate that the adopters observed in

our data correspond only to 8% (resp. 6%) of the market potential of the mean (resp. median) site.

This reduces to 3% (resp. 2%) when considering only the test period. That our approach achieves

comparable predictive accuracy to a state-of-the-art approach without model constraints provides

important evidence for our assumption. At the same time, it is unlikely that a model-independent

approach will appropriately capture longer-term trends in the adopter demand.

Our model-based estimation approach further provides us with insights into the drivers of adop-

tion, as the procedure outputs p̂i, q̂i, m̂i, and ĉi for each site. Interestingly, we find that p̂i is

consistently estimated very low (median[IQR] = 1.23 · 10−9[9.97 · 10−10–1.76 · 10−9]) compared to q̂i

(median[IQR] = 3.59 · 10−2[2.99 · 10−2–4.57 · 10−2]). In comparison, the meta-analysis of Van den

Bulte and Stremersch (2004) finds that the imitation coefficient is on average two orders of mag-

nitude larger than the innovation coefficient. Thus, the data suggests that most adoption activity

is driven by imitation, in line with MHU experiences about the value of community spread (Wick-

strom et al. 2013). While there is little variance in p̂i between different sites, q̂i varies strongly (see

Figure 4a) and dominates the diffusion process. We also present the estimated market potential m̂i

in Figure 4b. Our estimation procedure adds a penalty term that ensures the radius is not estimated

much higher than 7km, a reasonable walking distance for health services (see Doerner et al. 2007),
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and the radius is consistently estimated close to this bound. However, m̂i has significant variance

due to the variation in population density at the sites. The estimates of ĉi are 8.2%[5.2%–13.9%]

of m̂i for the median[IQR] site. This suggests that a majority of sites are well below saturation.

Figure 4 Coefficient estimates
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Note. The red lines represent the 10%, 50%, and 90% percentiles, from left to right. Panel (b) trims 1.9% for clarity.

As the procedure uses regression trees within the gradient boosting framework, it allows us

to infer the importance of regressors in estimating different parameters. We highlight that these

connections are not causal. However, they may be useful by providing a sanity check and giving

a starting point for better understanding the impact that visits and marketing activities have on

sites. For example, the estimate ĉi is determined largely by the number of existing clients observed

during each visit, but also the average number of children of adopters has some influence. The

estimate p̂i, indicating the strength of innovation, is influenced by the number of MSI clients for

other services than the ones considered here, i.e., shorter-term methods. This gives some credence

to the assumption that experience with modern contraceptive methods affects the willingness to

adopt long-term methods, even if there is no prior community experience with the latter. Finally,

we highlight that the percentage of young people with work has a strong effect on the radius of the

catchment area and, thus, m̂i, lending further confidence in the method and potentially providing

insights into the optimal spacing between sites.

6.3. Resource allocation to MSI’s sites

We study the performance of an optimal allocation based on the estimated model parameters.

To identify an optimal allocation, we employ the algorithm of Srivastava and Bullo (2014) with

a subsequent local search. We first compare it against the allocation implemented by MSI. We

then develop operationalizable heuristics based on our managerial insights and compare those to

the optimal allocation. As a measure of comparison, we use effective adopters, i.e., the number of
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adopters weighted by the impact generated at the site where they demand service. We implement

computations in the Julia programming language and make them available together with synthetic

data at blinded for peer review.

6.3.1. Optimal vs. implemented allocation. Aside from the Bass model parameters esti-

mated in Section 6.2, the optimal allocation is based on four parameters: the planning horizon H,

the total visit capacity ΠH during the planning horizon, as well as the minimum and the maximum

number of visits to each site, FH and TH . We derive these from the test period, i.e., the last full

year of observations in the data. In particular, there are 1229 sites and 3509 visits, so for a planning

horizon of H = 1 year, we specify that Π1 = 3509. MSI requires several weeks to prepare a visit, so

we constrain the maximum number of visits to T1 = 12 per year. Moreover, to ensure a certain level

of service, we constrain the minimum number of visits to F1 = 1 per year. For any other planning

horizon, H, we scale the constraints accordingly: ΠH = Π1H, TH = T1H, and FH = F1H.

A key characteristic of the optimal allocation, compared to current practice, is that it recognizes

saturation effects and the resulting need to build up adopter demand at otherwise low-demand

sites. Hence, when the planning horizon is long enough, current demand is sacrificed to achieve high

demand in the future. We show this in Figure 5. Here, we assume a planning horizon H = 1, . . . ,12,

but measure the effective adopter numbers during the first year. For this purpose, we take the actual

observations from the test period whenever a visit occurred, or we impute the numbers based on our

estimated demand model. As a counterfactual, we use the allocation implemented in practice and,

thus, the actual adopters observed during the test period. With a planning horizon of H = 1 year

and the same total number of visits, the optimal allocation outperforms the implemented allocation.

As the planning horizon increases, however, current adopter demand is strategically sacrificed for

the benefit of future adopter demand, and the optimal allocation’s first-year performance decreases.

Figure 5 Effective adopters during the first year in the optimal compared to the actual allocation
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6.3.2. Optimal vs. heuristic allocations. The benefits of our approach become apparent

only when we also consider effective adopters in later years. Unfortunately, we do not observe a

counterfactual in the data because the test period is only one year. Thus, we simulate allocations

based on the estimated demand functions. We compare our approach to several heuristic alloca-

tions and display the results in Figure 6a. A myopic allocation assigns the maximum number of

visits to the sites for which the number of effective adopters is currently highest and the minimum

number of visits to all other sites. It is comparable to the optimal allocation for short planning

horizons. However, as the planning horizon increases, we also observe what we would expect from

the implemented allocation in the longer term: saturation of adopter demand. The myopic allo-

cation has to be adapted dynamically to counter this effect partially—we say “Myopic x” if the

allocation is adapted to current demand every x years. However, even with yearly adaptations, it

does not match the performance of the optimal allocation in the long term.

The remaining heuristics make use of the insights summarized in Section 4.5 to develop practical

allocations that avoid saturation without dynamic adjustments. Noting that E∗2 has at most one

member, we split the sites into the three sets L∗, G∗, and E∗1 , defined in (6). We ignore heterogeneity

between the sites in E∗1 and distribute resources equally among them to simplify implementation.

This is in line with de Vries et al. (2021a), who suggest splitting sites into few groups with identical

visit frequencies per group, and we thus use their naming, Three-Category Policy. The heuristic, as

defined here, still requires the computation of the optimal allocation. However, it simplifies imple-

mentation drastically, and Figure 6a shows that this is without a significant loss in performance.

Next, the Different Start heuristic uses the algorithm developed in Section 4.2, based on the

average values of the estimates p̂i, q̂i, and m̂i, but with the individual estimates ĉi for the number of

existing clients. This is appropriate when the adoption dynamics and market potentials at different

sites are highly similar, but the visit histories differ significantly.

The final heuristic makes use of the algorithm developed in Section 4.1 to determine how many

sites should be prioritized. The algorithm assumes entirely homogeneous sites, so we take averages

of p̂i, q̂i, m̂i, and ĉi. As sites are not actually homogeneous, we employ the following approach

to choose which of the sites to prioritize, termed Homogeneous, Largest c. The sites with the

largest values of ĉi are prioritized as long as they have not yet reached the inflection point in the

diffusion process. We exclude sites beyond the inflection point to avoid saturated markets. Using

ĉi for prioritization captures the results from Section 4.2. Visits are equally distributed among the

prioritized sites, so the complexity of implementing the allocation is much reduced.

The latter three heuristics indicate the usefulness of the insights derived in Section 4. Even

without frequent changes to the visit schedule and when based on the assumption of homogeneity,

they largely avoid saturation. Except for the Three-Category Policy, the heuristics are simpler to
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compute than the optimal allocation. At the same time, except for Different Start, the heuristics

are easy to implement. We believe that regional managers can further improve performance by

combining insight-based heuristics with information available on the ground.

Figure 6 Performance throughout the planning horizon of the optimal and heuristic allocations
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Note. Panel (a) assumes known Bass model parameter values, and Panel (b) assumes uncertain parameters.

6.3.3. Uncertainty in parameter estimates. To investigate the effect of uncertainty in

Bass parameter estimates, we simulate two dynamic heuristics. To this end, we perform 50 repli-

cations of the following procedure. We sample the true parameters by scaling each of the original

estimates by independent random variables uniformly distributed between 0.5 and 1.5. When allo-

cations are adjusted each year, we assume that estimates approach the true value. In particular, we

assume that the difference between a parameter’s true value and the estimated value is proportional

to 1 over the square root of the number of visits to the site. The Myopic 1 allocation dedicates

all resources, barring constraints, to the sites with the highest estimated current demand at the

beginning of the year. Another heuristic, based on the optimal allocation (“Optimal dynamic”),

dynamically updates the Bass estimates every year and reoptimizes the allocation for the remain-

ing planning horizon. Figure 6b shows the range of effective adopters across replications for both

allocations. When adapting allocations dynamically, the uncertainty does not significantly affect

performance, and our approach continues to outperform the myopic one in the long term.

7. Conclusions

A central objective within the sustainable development agenda is to provide broad and affordable

access to health services worldwide. Nearly half of humanity lives in rural areas, leading to difficul-

ties in expanding access. One promising approach is the use of mobile healthcare units that establish

temporary delivery sites close to rural populations. Different types of organizations employ MHUs

for a range of health services, each facing complex planning challenges. In this paper, we focus on
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organizations that provide specialized health services for which access is limited both by physical

barriers and informational barriers, for example, HIV counseling, disease screening, vaccination, or

family planning. The long-term allocation of resources has traditionally been based on the implicit

assumption of constant demands. This ignores the presence of informational barriers, which make

community interaction and trust-building essential, leading to complex adoption dynamics. We

analyze the resource allocation problem when such adoption dynamics are made explicit.

Our resource allocation model for MHUs allows us to derive several insights. First, we find that

it is optimal to prioritize a subset of sites while allocating the minimum necessary resources to all

remaining sites (recall that all sites are guaranteed an acceptable level of service). Thus, distribut-

ing resources equally among all sites can be far from optimal, but focusing on too few sites may

precipitate saturation effects. High current adopter demand can be a good criterion for prioritizing

amongst underdeveloped sites, but, in general, cumulative adopter demand should be preferred as a

metric. Second, among the prioritized sites, those with lower cumulative demand should be visited

more often because word-of-mouth effects can lead to demand snowballing. Thus, for prioritized

sites that are not yet experiencing saturation, more resources should be allocated to those where

current demand is lower. This is in contrast with the practice of allocating more resources to sites

with higher current demand. Third, our results confirm the intuitive effect of diffusion character-

istics on the optimal allocation. Sites with higher diffusion rates through innovation or imitation,

larger market potential, or fewer existing clients should generally receive more resources.

Our application to MHUs delivering family planning services in Uganda demonstrates the poten-

tial benefits of accounting for the future evolution of adopter demand when allocating resources. It

shows how to predict future demands without additional data-gathering efforts and how to make

decisions based on these predictions. Moreover, we find evidence in the data suggesting that imita-

tion dominates the diffusion of family planning services and that the willingness to use long-term

methods is associated with the prevalence of short-term methods in the community.

Naturally, our work has limitations. In particular, we make two assumptions about the organi-

zation employing MHUs. First, it aims to broaden access to a health service for which there are

significant informational barriers, in addition to the physical ones. Second, existing clients requiring

repeated services do not face those informational barriers, and a baseline frequency of visits can

guarantee their access to services. This excludes, for example, organizations that provide primary

care through MHUs. As with any model, we also need to make simplifying assumptions about a

complex reality. In particular, we only consider the (long-term) allocation of visits to sites, but

not their exact scheduling. Thus, we assume that there is no effect of the inter-arrival time on the

number of adopters. Recent research indicates that there is a positive relationship between client

volume and inter-arrival time (de Vries et al. 2021a), even though we verify that this is lower for
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service adopters than existing clients. We note that MHUs, whose resources are allocated based on

our model, can still react to this effect by adjusting their final visit schedule. In particular, they

may space out visits to a site when current demand is high (in the intermediate part of the Bass

curve) and increase the frequency of visits when demand is low (when demand is initially building

up). We believe that further research should integrate the long-term and short-term perspectives

while also considering other aspects of the visit schedule affecting demand, for example, its regu-

larity. Such research must overcome the dilemma of leaving enough flexibility to adjust schedules

in the face of uncertainties while scheduling sufficiently in advance to incorporate the long-term

demand dynamics described here.

We further assume the allocation of visits to be the only decision variable. In practice, organiza-

tions may directly influence the adoption dynamics through marketing or community engagement

activities. To do so systematically, however, requires an in-depth understanding of these activities’

effects. We provide an initial step in this direction. In terms of the estimation procedure, we point

out the limited time during which we observe client interactions. We hope to further validate our

approach in the future using longer time series. Finally, relying mainly on publicly available data

introduces some limitations on the granularity, accuracy, and timeliness of estimates. However, it

contributes to achieving a practicable and replicable approach to long-term planning of limited

organizational resources.

Our framework allows for an effective planning procedure that may contribute to broadening

access to health services and, thus, advance the sustainable development agenda. It also provides a

foundation to discuss the importance of long-term planning in this context. This can be of particular

importance because donors often push for short-term results with their funding decisions.
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Appendix A: Algorithm for identifying the solution in the case of Section 4.2

Define the capacity used by an allocation as described in Corollary 1: P (l, λ) =
∑l

i=1 min{(π̂(λ)−π0
i ) , T}+∑|C2|

i=l+1F +
∑

i∈C1
min{max{π̂(λ)−π0

i , F}, T} . Any optimal allocation satisfies P (l∗, λ∗) = Π. For a fixed l,

P (l, λ) is decreasing in λ, and it is increasing in l for a fixed λ. Hence, we can define the following algorithm

for finding the optimal allocation for sites with homogeneous and symmetric demand functions but different

starting points.

Data: Set of sites N ordered as described in Corollary 1
Result: π∗

for l in 0, . . . , |C2| do
if ∃λ such that P (l, λ) = Π then

λ∗← solution of P (l, λ) = Π ;
π(l)← optimal allocation given l and λ∗ in (7);
Ψ(l)← objective value obtained by allocation π(l);

else
Ψ(l)← 0;

end
end
π(|C2|+ 1)← optimal allocation given in (8);
Ψ(|C2|+ 1)← objective value obtained by allocation π(|C2|+ 1);
l∗← arg maxlΨ(l);
π∗← π(l∗);

Appendix B: Proofs of mathematical claims in the main text

Proof of Proposition 1. Simple calculus shows that ψ̃′′i = Y ′′i (πi) =

−mipiθi(pi+qi)
3e(pi+qi)πi(pie(pi+qi)πi−qiθi)

(pie(pi+qi)πi+qθi)
3 . The sign of Y ′′i (πi) is determined by the sign of pie

(pi+qi)πi − qiθi,
which has a unique root at log(θiqi/pi) and is positive for πi < log(θiqi/pi) and negative for πi > log(θiqi/pi).

If log(θiqi/pi)< 0, then Yi is concave so we set πinfl
i = max{log(θiqi/pi),0}. By substituting the expression

for πinfl
i ± ε into Yi and some algebra, it follows that Yi is symmetric around πinfl

i . The term ci cancels out.

Proof of Proposition 2. First, a solution π∗ exists because the objective function is bounded and the

domain is compact. Now, suppose that for such a solution,
∑

i∈N π
∗
i <Π and there exists a j such that π∗j <T .

Let ε = min{Π−∑
i∈N π

∗
i , T − π∗j }. Consider the feasible allocation π′ = (π∗1, . . . , π

∗
j + ε, . . . , π∗n). Because

ψ is a strictly increasing function, we obtain
∑

i∈N βiψi(π
∗
i )−

∑
i∈N βiψi(π

′
i) = βjψj(π

∗
j )− βjψj(π∗j + ε)< 0,

which contradicts the assumption that π∗ is optimal. �

Proof of Proposition 3. The existence of a λ∗ such that (a), (b), and (c) follows directly from the KKT

conditions in (5). To prove (d), we use the second-order conditions. The second-order necessary conditions

require that the Hessian of the Lagrangian evaluated at a local maximum is negative semi-definite on the

hyperplane tangent to the active constraints (Luenberger and Ye 1984, section 11.8). Because the constraints

are linear, the Hessian H(π) of the Lagrangian is the Hessian of the objective function, which is diagonal with

entries βiψ
′′
i (πi). To test whether this matrix is negative semi-definite on the hyperplane of active constraints,

assume, without loss of generality, that the inequality constraints are tight for the set of sites such that j >m
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for some m ≤ n, i.e., πj = F or πj = T , while for the set of sites i ≤m, the inequality constraints are not

binding, i.e., F < πi <T .

To define the hyperplane tangent to the active constraints, first note that there are n −m + 1 active

constraints, so the hyperplane is (m− 1)-dimensional. For i <m, consider the vectors Ai, where all entries

are zeros, except for entry i that is a 1, and entry m that is a −1. For a solution π′ = π+ εAi, the inequality

constraints are still active because the components m+ 1, . . . , n are zeros, and the equality constraint is still

satisfied because any move of an additional ε units in the i-th direction is balanced by the −ε units moved in

the m-th direction. Moreover, the vectors Ai are linearly independent, so the matrix A= (A1 A2 · · · Am−1)

defines the hyperplane tangent to the active constraints: {y ∈Rm−1 :Ay= 0}. Thus, the second-order neces-

sary conditions reduce to A>H(π)A being negative semi-definite or equivalently −A>H(π)A being positive

semi-definite (see Luenberger and Ye 1984, sections 11.5-11.6 for an overview of this approach). E.g., for

m= 3,

−A>H(π)A=

(
−β1ψ

′′
1 (π1)−β3ψ

′′
3 (π3) −β3ψ

′′
3 (π3)

−β3ψ
′′
3 (π3) −β2ψ

′′
2 (π2)−β3ψ

′′
3 (π3)

)
.

A necessary condition for positive semi-definiteness is that all principal minors (not only the leading ones)

are non-negative (Prussing 1986). The m− 2 and m− 3 order principal minors, i.e., the determinants of

submatrices that delete all but one and two rows and columns, give us for i, j, k ∈ {1, . . . ,m} the following

necessary conditions:

−βiψ′′i (πi)−βjψ′′j (πj)≥ 0 (11a)

−βiψ′′i (πi)−βkψ′′k (πk)≥ 0 (11b)

−βjψ′′j (πj)−βkψ′′k (πk)≥ 0 (11c)

βiβjψ
′′
i (πi)ψ

′′
j (πj) +βiβkψ

′′
i (πi)ψ

′′
k (πk) +βjβkψ

′′
j (πj)ψ

′′
k (πk)≥ 0. (11d)

We do not require the conditions for higher-order principal minors for the theory developed here.

From the conditions in (11), we get that βiψ
′′
i (πi) + βjψ

′′
j (πj) ≤ 0 for any set of sites i, j ∈ E1(π,λ) ∪

E2(π,λ), i 6= j. It follows that, for an optimal solution π∗, no more than one of ψ′′i (π∗i ) for i∈E∗1 ∪E∗2 can be

positive, i.e., only one site can be a member of E∗2 . In addition, the member of E∗2 needs to have the smallest

second derivative in absolute value. �

Proof of Proposition 4. We first show that there exists an optimal allocation π∗ such that either E∗1 = ∅
or E∗2 = ∅ with a symmetric demand function. First, let π∗ be a solution to (1) such that j ∈ E∗2 (there is

at most one member of E2 by Proposition 3). If E∗1 contains more than one element, we can show that this

solution is dominated by an allocation where all or some capacity of site j is allocated to sites in E∗1 . Let π∗∗

be such that π∗∗j = π∗j − ε and π∗∗i = π∗i + ε/|E∗1 | ∀i∈E∗1 , where |E∗1 | is the number of elements in E∗1 and ε > 0

is small enough not to make any new inequality constraints binding. Because of the symmetry, it can easily

be shown that Ψ(π∗∗)>Ψ(π∗), implying that if E2 6= ∅ then E∗1 can have at most one member. If k denotes

a unique element of E∗1 , any solution that transfers some capacity from site j to k (or vice-versa) attains the

same objective value. Now, let π∗∗ be such that either π∗∗k = T or π∗∗j = F : π∗∗j = π∗j −min{T − π∗k, π∗j −F}
and π∗∗k = π∗k + min{T − π∗k, π∗j − F}. It follows that we can transform any optimal solution to one where
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either E∗1 = ∅ or E∗2 = ∅. Moreover, from part (c) in Proposition 3 follows that either E∗1 = ∅ or G∗ = ∅. Thus,

when considering all the possible allocations into the four sets, the two alternatives in the proposition will

always yield an optimal solution. In (i), we have E∗1 and L∗ non-empty, while E∗2 and G∗ are empty. In (ii),

we have E∗1 empty and at most one site in E∗2 . The expressions for x∗ and x∗∗ are such that they maximize

the respective configuration. �

Proof of Proposition 5. (a) follows from the same argument used in the proof of Proposition 4: any

optimal allocation with E∗1 and E∗2 nonempty can be transformed into an allocation with at least the same

rewards and one of the two being empty.

To prove (b), let π∗ be a solution such that i ∈ L∗ and j /∈ L∗. For such an optimal solution to exist,

the following condition has to hold: π0
j + π∗j ≥ π0

i + π∗i . This condition ensures that site j is further along

the curve; otherwise, because i, j ∈ C2, we could transfer ε > 0 units from site j to i and obtain a better

allocation. Now, consider the alternative allocation π∗∗ such that π∗∗j = π0
i − π0

j + π∗i , π
∗∗
i = π0

j − π0
i , and

π∗∗k = π∗k for all k 6= i, j. It is easy to check that ψi(π
∗∗
i ) = ψj(π

∗
j ) and ψj(π

∗∗
j ) = ψi(π

∗
i ) which implies that

π∗∗ attains the same objective as π∗. Thus, π∗∗ is also optimal, and we have shown existence. The same

argument does not hold if π0
i <π

0
j because the transformation would violate the constraints.

To prove (c), let π∗ be an optimal solution such that i∈L∗ and j /∈L∗. Consider the alternative allocation

π∗∗ such that π∗∗j = F and π∗∗i = π∗j and π∗∗k = π∗k for all k 6= i, j. Because i, j ∈C1, we can easily check that

π∗∗ obtains a higher reward. Thus, we reach a contradiction.

To prove (d), suppose to the contrary that π∗ is an optimal solution such that i∈E∗1 , j /∈L∗, and π0
j +π∗j >

π0
i + π∗i . Consider the alternative allocation π∗∗ such that π∗∗j = π∗j − ε and π∗∗i = π∗i + ε for 0< ε< π∗j − π∗i ,

and π∗∗k = π∗k for all k 6= i, j. Since π0
j + π∗j and π0

i + π∗i lie in the concave region, allocation π∗∗ dominates

π∗. Because π∗ is an optimal allocation, we reach a contradiction. �

Proof of Corollary 1. Given the constructed order of set N , Proposition 5 guarantees the existence of an

optimal allocation π∗ so that there exist k∗ and l∗ such that π∗i >F if i∈ {1, . . . , l∗}∪{|C2|+1, . . . , |C2|+k∗},
and πi = F otherwise. Moreover, either |E∗2 |= 1 and |E∗1 |= 0, or |E∗2 |= 0. For the former, (8) describes the

only possible optimal allocation. For the latter, we show that (7) is the optimal allocation with Lagrange

multiplier λ∗. The KKT conditions require that all members of the set E∗1 satisfy π∗i = π̂(λ∗)− π0
i for some

λ∗. Moreover, part (d) of Proposition 5 shows that for all sites i ∈G∗, we have that T ≤ π̂(λ∗)− π0
i . Thus,

for all i≤ l∗, we have that π∗i = min{π̂(λ∗)− π0
i , T}. Similarly, for sites i ∈ C1, i≤ |C2|+ k∗, we have that

π∗i = min{π̂(λ∗)−π0
i , T}. In addition, for i > |C2|+k∗, we know from Proposition 3 that βψi(F )≤ λ∗ and, as

i∈C1, this implies that π̂(λ∗)−π0
i ≤ F . Therefore, for any i∈C1, π∗i = min{max{π̂(λ∗)−π0

i , F}, T}. �

Appendix C: Formal results related to Section 4.4

Proposition 6.
∂Y ′i (π∗i )

∂mi
> 0.

Proof. It is easy to see that
∂Y ′i (π∗i )

∂mi
= e(pi+qi)π

∗
i (pi+qi)

2K[
(mi−ci)qi+(mipi+ciqi)e

(pi+qi)π
∗
i

]3 , with a K such that limπ∗
i
→0K =

mi(pi + qi)(m
2
i pi + c2i qi) > 0 and ∂K

∂π∗
i

= e(pi+qi)π
∗
i (pi + qi)(mipi + ciqi) (m2

i pi + 2miciqi− c2i qi). Note that

m2
i pi+ 2miciqi− c2i qi is concave in ci, with the maximum at ci =mi. Here, it takes the value m2

i (pi+ qi)> 0.

It follows that K is increasing in π∗i and, because K > 0 holds for π∗i = 0, it is always positive. �
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Proposition 7.
∂Y ′i (π∗i )

∂ci
> 0 if π∗i <π

infl
i and

∂Y ′i (π∗i )

∂ci
< 0 if π∗i >π

infl
i .

Proof. Assume that πinfl
i > 0. With some algebra, it follows that − ∂Y ′i (π∗i )

∂ci
=

e(pi+qi)π
∗
i m2

i (pi+qi)
3
[
−(mi−ci)qi+(mipi+ciqi)e

(pi+qi)π
∗
i

]
[
(mi−ci)qi+(mipi+ciqi)e

(pi+qi)π
∗
i

]3 . But −(mi − ci)qi + (mipi + ciqi)e
(pi+qi)π

∗
i > 0 ⇔ π∗i >

log
(

(mi−ci)qi
mipi+ciqi

)
pi+qi

⇔ π∗i >π
infl
i . If πinfl

i = 0, the result follows directly. �

Proposition 8.
∂Y ′i (π∗i )

∂pi
> 0 if π∗i < π̃i and

∂Y ′i (π∗i )

∂pi
< 0 if π∗i > π̃i for some π̃i >π

infl
i .

Proof. It is easy to see that
∂Y ′i (π∗i )

∂pi
= e(pi+qi)π

∗
i mi(mi−ci)(pi+qi)K[

(mi−ci)qi+(mipi+ciqi)e
(pi+qi)π

∗
i

]3 , with a K such that limπ∗
i
→0K =

m2
i (pi + qi)

2 > 0, limπ∗
i
→πinfl

i
= 4(mi− ci)qi(mipi + ciqi)> 0 (assuming πinfl

i > 0), limπ∗
i
→∞ =−∞, and ∂K

∂π∗
i

=

−(pi + qi)(mipi + ciqi)e
(pi+qi)π

∗
i

[
(mi− ci)

(
e(pi+qi)π

∗
i − 1

)
+ (pi + qi)π

∗
i (mipi + ciqi)e

(pi+qi)π
∗
i

]
< 0. �

Proposition 9.
∂Y ′i (π∗i )

∂qi
> 0 if π∗i < π̃i and

∂Y ′i (π∗i )

∂qi
< 0 if π∗i > π̃i for some π̃i, where π̃i ≥ πinfl

i if qi ≥ pi or

πinfl
i = 0, and π̃i <π

infl
i otherwise.

Proof. With some algebra, it follows that
∂Y ′i (π∗i )

∂qi
= e(pi+qi)π

∗
i mi(mi−ci)(pi+qi)K[

(mi−ci)qi+(mipi+ciqi)e
(pi+qi)π

∗
i

]3 , with a K

such that limπ∗
i
→0K = mici(pi + qi)

2 > 0, limπ∗
i
→∞ = −∞, and ∂2K

∂π∗
i
2 = −e(pi+qi)π

∗
i (pi + qi)

3(mipi +

ciqi) [ci +π∗i (mipi + ciqi)]< 0. Moreover, it holds that limπ∗
i
→0

∂K
∂π∗
i

=−(mi − ci)(pi + qi)
2(mipi + ciqi), so it

must hold that ∂K
∂π∗
i
< 0 everywhere. Additionally, assuming πinfl

i > 0, limπ∗
i
→πinfl

i
K = 2(mi−ci)(qi−pi)(mipi+

ciqi), which is non-negative if and only if qi ≥ pi. �

Proposition 10. Suppose that the inequality constraints are not binding for sites 1, . . . , n̂ and that all

sites i < n̂ are members of E∗1 . Then,
∂π∗1
∂β1

> 0,
∂π∗i
∂β1

> 0 for j ≤ n̂, j 6= i, and ∂λ∗

∂β1
> 0.

Proof. Take derivatives with respect to β1 on either side of the n̂+1 equations βiψ
′
i(π
∗
i ) = λ∗ ∀i= 1, . . . , n̂,∑n̂

i=1 π
∗
i = Π−∑n

i=n̂+1 π
∗
i . The resulting system of equations is

ψ′1(π∗1) +β1ψ
′′
1 (π∗1)

∂π∗1
∂β1

=
∂λ∗

∂β1

, βiψ
′′
i (π∗i )

∂π∗i
∂β1

=
∂λ∗

∂β1

∀i= 2, . . . , n̂,

n̂∑
i=1

∂π∗i
∂β1

= 0.

Solving this, we arrive at
∂π∗1
∂β1

=−
∑
j 6=1,j≤n̂

1
βjψ
′′
j

(π∗
j
)∑

j≤n̂
1

βjψ
′′
j

(π∗
j
)

1
β1ψ
′′
1 (π∗1 )

ψ′1(π∗1)> 0,
∂π∗i
∂β1

=
1

βiψ
′′
i

(π∗
i
)β1ψ

′′
1 (π∗1 )∑

j≤n̂
1

βjψ
′′
j

(π∗
j
)

ψ′1(π∗1), for i=

2, . . . , n̂ < 0, ∂λ∗

∂β1
=

1
β1ψ
′′
1 (π∗1 )∑

j≤n̂
1

βjψ
′′
j

(π∗
j
)

ψ′1(π∗1)> 0. �

Appendix D: Detailed description of the data matching process

Due to frequent changes to administrative regions at all levels and possible inaccuracies in the data, we

combine multiple sources to establish a robust matching between the sites and the corresponding census

and population information. We first enumerate the data sets used, the variables within those data sets

required for matching and providing population and census information, as well as their source:

[1] MSI sites. Data: site name, team, district. Source: MSI internal

[2] Facility information. Data: site name, coordinates, parish, sub-county, county, district. Source: http:

//catalog.data.ug/dataset/health-centres-uganda

[3] Site information. Data: site name, coordinates. Source: OpenStreetMaps, verified with MSI

http://catalog.data.ug/dataset/health-centres-uganda
http://catalog.data.ug/dataset/health-centres-uganda
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[4] Village shapes 2011. Data: shape, village, parish, sub-county, county, district. Source: http://catalog.

data.ug/dataset/cc5656d0-13e8-4540-adcc-7d21378c75c1

[5] Sub-county shapes 2014. Data: shape, sub-county, county, district. Source: http://catalog.data.ug/

dataset/uganda-subcounties-2014

[6] Uganda census 2014. Data: parish, sub-county, county, district, census information. Source: http://gh

dx.healthdata.org/record/uganda-population-and-housing-census-2014

[7] Uganda population 2020 (predicted). Data: squares, population. Source: https://www.worldpop.org/g

eodata/summary?id=6446

We next describe the procedure. We attempt to match on complete names. If there are no matches, the

closest strings (using the Levenshtein distance) are identified and manually controlled.

1. Clean [1].

(a) Change of district to pre-2016 name (23 of Uganda’s 135 districts were created during the span of

observations by splitting off from extant districts, so we use the old districts)

(b) Sites without district information: add district if sites can be matched based on name and team

2. Extend the list given in [2] with sites found in OpenStreetMaps or Google Maps. Match [2] and [3] to

[1] based on site name and manually correct any cases without full matching.

3. Match [4] to [1].

(a) Match if site name and village match, and districts identical.

(b) Coordinates in [1]: only accept matches if coordinates within village shape or less than 15km from

centroid. For multi-matches, accept that with smallest distance to village centroid.

(c) No coordinates in [1]: if match unique, accept and use the village centroid as coordinates.

4. Match [5] to [1], if coordinates within sub-county shape.

5. Match [6] to [1].

(a) Match on locality data from [2] if available and unique (in order of priority, at parish, sub-county,

county, or district level).

(b) Match on locality data from [3] if available and unique. If unique match with [4], use parish level.

(c) Match census information at lowest level (90.97% / 5.52% / 0.13% of sites matched at parish /

sub-county / county level). Remaining 3.38% without reliable location information dropped.

6. Match [7] to site clusters (referred to as “sites” throughout the paper).

(a) All sites within a radius of 5 km from another site belong to the same cluster.

(b) Record population of all squares in [7] within 8 km from any site in a cluster and corresponding

smallest distance to the site (“radius”).

(c) For radii between 1 and 8 km, use a third-degree polynomial to estimate a cluster’s population.

Average (resp. minimum) adjusted R2 is 0.9993 (resp. 0.9722).

(d) Remove clusters with total population at radius 5 km above 95% quantile (focus on remote clients).

http://catalog.data.ug/dataset/cc5656d0-13e8-4540-adcc-7d21378c75c1
http://catalog.data.ug/dataset/cc5656d0-13e8-4540-adcc-7d21378c75c1
http://catalog.data.ug/dataset/uganda-subcounties-2014
http://catalog.data.ug/dataset/uganda-subcounties-2014
http://ghdx.healthdata.org/record/uganda-population-and-housing-census-2014
http://ghdx.healthdata.org/record/uganda-population-and-housing-census-2014
https://www.worldpop.org/geodata/summary?id=6446
https://www.worldpop.org/geodata/summary?id=6446
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7. Compute cluster impact values.

(a) For each cluster, compute a poverty score

i. Regress district-level log GDP per capita (from Wang et al. 2019) on combinations of six

district-level census variables. The best model achieves adjusted R2 of 0.65.

ii. Using site-specific census data, predict GDP per capita for each site’s surrounding area.

iii. Normalize prediction to [0,1] poverty score: poverty scorei =
minj log GDP per capitaj

log GDP per capitai
.

(b) For each cluster, compute an age score.

i. Using site-specific census data, compute fraction of young persons (15–24 years old) out of

population in reproductive age (15–49 years old).

ii. Normalize to [0,1] age score: age scorei =
minj 1−fraction youngj

1−fraction youngi
.

(c) Compute cluster impact βi = (age score)i(poverty score)i.

Appendix E: Analysis of demographic changes

We verify that the population mix at a site remains relatively constant. We do not observe variation over

time in the census data, as we only make use of the 2014 census, and the previous one was taken in 2002,

judged to be too long ago for relevance. However, we observe the percentage of young clients, which we

take as a proxy for the percentage of young persons in the census population, one of the components of the

impact parameter βi. In particular, the percentage of young clients per visit exhibits a standard deviation of

0.13 (resp. 0.12) for the average (resp. median) site. If the percentage of young clients were entirely random,

the standard deviation should be approximately 0.5. For the percentage of young clients within the adopter

population, the standard deviation is 0.16 (resp. 0.15) on average (resp. in the median).

We also verify that population growth is relatively constant between sites. We compare the relative pop-

ulation growth at each site between 2015 and 2020, using the WorldPop database, described in Section 5.

The coefficient of variation of the empirical distribution is 0.55, so the variation can be considered low.
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