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Computationally-efficient surrogate models based on a Polynomial Chaos Expansion (PCE) are developed
to quantify the uncertainties in the fracture behavior and lifetime of a self-healing thermal barrier coating
system (SH-TBC) and a benchmark conventional TBC system. The surrogate models are built using deter-
ministic information from micromechanical finite element simulations of thermal cycling of the systems,
which are conducted until failure by spallation. Fracture and healing events are simulated using a
cohesive-zone based crack healing model. The thermally-grown oxide layer (TGO) interface amplitude
and its growth rate, the diameter and volume fraction of healing particles, and the mean distance of par-
ticles from the interface are used as training variables. Statistical characteristics and sensitivity indices
are obtained from the trained models. It is found that the interface amplitude is the most significant con-
tributor to the variance in the TBC lifetime, with other parameters displaying a relatively minor influence.
Healing particles extend the expected value of TBC lifetime, however they also increase the uncertainty of
thermal fatigue life. The analysis of self-healing TBCs exemplifies how PCE-based surrogate models can
serve as a powerful tool for deriving design insights in complex material systems.
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1. Introduction

Thermal barrier coatings (TBC) are thermal insulation layered
systems applied in high temperature environments in order to pro-
tect the underlying structural substrate from oxidation and ther-
mal degradation while enabling a higher operating temperature
range and thus higher thermodynamic efficiency [1]. In the aero-
space industry, TBCs play a prominent role since it is the most
commonly used process to protect jet turbine blades. Conse-
quently, the safety and integrity of the turbines as well as mainte-
nance and reparation schedules strongly depend on the lifetime of
these coating systems.

A cross-section of a barrier coating manufactured by air-plasma
spray is shown in Fig. 1. The top side is exposed to a high-
temperature environment and the substrate that needs to be pro-
tected is located at the bottom (not shown in the figure). This TBC
system is composed of a metallic bond coat (BC) layer and a top
coat (TC) layer which is made up of a ceramic material. High tem-
perature diffusion of oxygen through the top coat leads to oxida-
tion with the metal-rich bond coat and the formation of a thin
thermally grown oxide (TGO) layer at the TC/BC interface. During
thermal cycling, stresses are generated within the TBC due to a
mismatch in the thermomechanical properties of the individual
layers as well as the growth of TGO layer which lead to develop-
ment of microcracks [1,2]. With the progression of thermal cycles,
these microcracks can grow and coalesce, eventually causing spal-
lation, which exposes the underlying substrate to extreme temper-
atures. As a result, the TBC lifetime is measured by the number of
thermal cycles that the TBC can sustain until spallation. In order to
arrest the cracks and potentially improve the TBC lifetime,
researchers have investigated the implementation of self-healing
particles within the coatings [3–6]. One of the most widely studied
methods of incorporating self-healing properties in a TBC is to
include encapsulated healing agents within the top coat, which is
the location where cracks typically appear in TBCs (see Fig. 1). Once
activated by a growing microcrack, they initiate a chemical reac-
tion which fills the crack and restores the mechanical integrity.

Finite element simulations have been extensively used to study
the influence of self-healing particles and other microstructural
parameters on the TBC lifetime [7–18]. These numerical simulation
techniques can in general capture the experimentally-observed
damage process that occurs in metallo-ceramic material systems
[19,20]. However, finite element methods are deterministic in nat-
Fig. 1. Unit cell for the self-healing TBC system.
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ure, neglecting the randomness in the output as a result of possible
uncertainties in the inputs. These uncertainties can arise due to
partial or incomplete knowledge about the process, structure or
properties of the system which is being simulated. Propagating
these input uncertainties through the system helps to quantify
the uncertainty in the output, hence promoting robust designing.
This can be achieved with the help of an uncertainty quantification
framework. This framework can be utilized to quantify the uncer-
tainties in input variables using stochastic calibration with the
existing data, which is then followed by quantifying the uncer-
tainty propagation in the output quantities [21].

One commonly-used approach towards uncertainty propagation
is Monte Carlo sampling. This is a random sampling technique that
involves evaluating a deterministic computational model at points
that are sampled from the input variable distributions in order to
obtain the output distribution. However, Monte Carlo sampling is
ineffective in practical terms due to the requirement of large sam-
ple size and hence the computational costs for achieving space-
filling characteristics within the input variable space [22]. In order
to circumvent this issue, surrogate modelling can be utilized. Surro-
gate modelling (or metamodeling) is a technique in which a com-
putationally inexpensive model is developed which approximates
the predictions of the original model with the help of a limited
number of sample evaluations [23]. One of the widely used meta-
models is polynomial chaos expansion (PCE) [24] in which the vari-
ation in the output or the quantity of interest is represented using
orthogonal polynomials in uncertain input variables. Surrogate
modelling approaches have been applied for the design of compos-
ites [25–27] as well as the study of crack growth [28,29].

Self-healing TBC systems are defined by various material and
geometric parameters that are inherently uncertain in nature. Fur-
ther, owing to the expensive computational costs associated with
lifetime predictions of such TBC systems, Monte Carlo sampling
and similar techniques are currently not feasible from a practical
point of view. In this context, the present work aims to develop a
surrogate model that approximates the self-healing TBC microme-
chanicalmodel for evaluation of TBC lifetime and the determination
of sensitivity to microstructural parameters. This information can
be used for a robust material design of self-healing thermal barrier
coatings.

The work is organized as follows: Section 2 reports the details of
the PCE model and the implemented framework for training the
surrogate model. The deterministic model for a self-healing TBC
system is summarized in Section 3, which includes the modeling
details of the self-healing TBC unit cell along with a description
of the utilized micromechanical model. The SH-TBC trained surro-
gate model, the supporting discussion, and the model validation
process have been described in Section 4. Section 5 includes two
extensions for the use of surrogate models, namely a surrogate
model for the benchmark system (conventional TBC without heal-
ing particles) and a surrogate model for crack growth (instead of
lifetime). A comparison between the SH-TBC and benchmark TBC
responses is made in order to determine whether the use of self-
healing particles helps to improve the expected value of TBC life-
time. The surrogate model for crack growth rate is used to eluci-
date the uncertainty in the damage process instead of the
accumulated damage itself. Finally, Section 6 provides the conclu-
sion and recommendations based on the obtained results.

2. Surrogate model for the lifetime of a self healing thermal
barrier coating system

2.1. Background

For the present work, the particle-based self healing thermal
barrier coating system presented in [5] is used as the main tem-
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plate to generate a surrogate model for its lifetime. This is due to
the fact that the corresponding computational framework was
developed to simulate the complete thermal cycling evolution of
the material system until failure, thus allowing to predict its life-
time. However, it is relevant to mention that the methodology pre-
sented here for the surrogate model can be applied for the lifetime
of other material systems or to establish surrogate models for
other quantities of interest with suitable modifications.

The uncertain input variables that are taken into account for the
lifetime are essentially of two types:

(a) Microstructural features that have been previously identi-
fied, either experimentally and/or through simulations, as
likely to have a strong influence in the lifetime of a TBC sys-
tem and

(b) Design parameters for a self-healing TBC that are not easily
controllable during manufacturing or that can vary between
a given design range.

In the first category, the roughness of the TC/BC interface and
the growth rate of TGO layer are taken as uncertain input variables.
For the second type, the volume fraction of the healing particles in
the top coat layer, the diameter of the healing particles and their
mean distance from the TC/BC interface have been chosen as
uncertain input variables. All other model parameters, including
material properties, are taken as deterministic values. In principle
it is possible to include more uncertain variables in the analysis but
the associated computational costs of each new input random vari-
able may be significant. Correspondingly, the choice of uncertain
input variables is taken as a compromise between incorporating
previous experience in the analysis while providing enough flexi-
bility to the simulation framework to discover previously unknown
relations. The following subsections describe the key ingredients of
the computational framework and discuss the procedure in the
development of the surrogate model in detail.
2.2. Uncertainty propagation using polynomial chaos expansion

Consider an uncertainty characterized by an output random
variable Y that depends on input random variables collected in
a vector / ¼ /1; . . . ;/Kð Þ, with K being the number of input vari-
ables. Polynomial chaos expansion is a stochastic approach in
which Y can be represented as an infinite series expansion of
orthogonal polynomials wi; i ¼ 0; . . . ;1ð Þ that form a basis with
respect to the joint probability density function of the input vari-
ables /. In turn, the polynomials wi are obtained by carrying out a
tensor product of univariate orthogonal polynomials
Pj; j ¼ 1; . . . ;Kð Þ [30,24]. Correspondingly, the random variable Y
can be represented as

Y ¼
X1
i¼0

yiwi /ð Þ with wi /ð Þ ¼
YK
j¼1

P
ai
j

j /j

� �
; ð1Þ

where yi are the representation coefficients of Y and ai
j corresponds

to the order of the univariate orthogonal polynomial Pj for the
orthogonal polynomial wi (e.g., Hermite polynomials for normally
distributed random variables or Legendre polynomials for uni-
formly distributed random variables).

The series expansion given in (1) is often truncated to a polyno-
mial of finite order n since the response of the system converges
after a certain number of terms and consideration of additional
terms does not make any notable contribution towards the system

response [26]. Hence, the truncated expansion bY � Y can be
expressed as
3

bY ¼
XQ�1

i¼0

ŷiwi /ð Þ with Q ¼ K þ nð Þ!
K!n!

and 0 6
XK
j¼1

ai
j 6 n;

ð2Þ
thus the polynomial expansion is approximated with Q terms,
which is a function of the number of input random variables K
and the maximum order of the expansion n.

A simple surrogate model bY for a random variable Y can be
obtained by specifying the coefficients ŷi; i ¼ 0; . . . ;Q � 1ð Þ, in the
truncated polynomial chaos expansion given in (2). This can be
done by calibrating the coefficients ŷi with the help of responses
from the original model at selected sample points from the space
of input variables. In the present context, the random variable Y
of interest is the SH-TBC lifetime and the original model refers to
a detailed finite-element simulation of the healing and damage
process due to thermal cycling until failure by spallation, which
provides the lifetime measured as the number of cycles until fail-
ure. The detailed finite element simulation, including cracking
and healing constitutive models, corresponds in the present work
to the so-called complex simulator.

Generally, the techniques used to compute the coefficients ŷi
are divided into two classes: intrusive and non-intrusive methods.
Intrusive methods involve modification of the original finite ele-
ment code in which residual minimization has to be carried out
in the weak form of the mathematical model or the utilization of
the Galerkin approach. This weak form can be generated by pro-
jecting the original model on the polynomial chaos basis function
[31]. The inelastic nature of the problem at hand creates a chal-
lenge in terms of using intrusive methods. Alternatively, the non-
intrusive methods do not require alteration in the original deter-
ministic finite element code and this approach is adopted in the
sequel.

A commonly-used non-intrusive technique is the least squares
approximation or the point collocation approach in order to train
the PCE surrogate model [22]. In this approach, the original model
needs to be evaluated for a number N of sampled points from the
space of the input variables. The sampled points
/ jð Þ; j ¼ 1; . . . ;Nð Þ, are transformed to their corresponding standard
distributions c jð Þ (e.g., symmetric, zero mean and unit standard
deviation for a normal distribution), and the original model is used
to compute the values of Y c jð Þ� �

for each data point j. Subsequently,
the sum S of squares of residuals between the outputs of the orig-
inal model and the approximated PCE representation given in (2) is
calculated as [25]

S ¼
XN
j¼1

Y c jð Þ� ��XQ�1

i¼0

ŷiwi c
jð Þ� � !2

: ð3Þ

Equating the partial derivative of the residual with respect to each
of the coefficients to zero and solving the resulting system of linear
equations provides the required coefficients, i.e.,

@S
@ŷi

¼ 0 i ¼ 0;1; . . . ;Q � 1: ð4Þ

Correspondingly, the training process requires a design of experi-
ments (or design of simulations in the present case) for the gener-
ation of the trained data set. To this end, a Latin Hypercube
Sampling approach is chosen [32]. This quasi-random technique is
commonly used since it requires a relatively small number of sam-
ple points for covering the input space as compared with other sam-
pling techniques. As shown in the next section, the total number of
sample points is chosen as a compromise between the accuracy and
variance of the surrogate model and the associated computational
cost [33]. The overall workflow to develop a PCE-based surrogate
model is summarized in Fig. 2.



Fig. 2. Framework to develop the PCE surrogate model.

Table 1
Statistical characteristics of random input variables.

Input Description Distribution Parameters

A Interface amplitude Uniform Amin ¼ 15lm
Amax ¼ 25lm.

c TGO growth coefficient Uniform cmin ¼ 2:5lm
cmax ¼ 3lm

n Volume fraction healing
particles

Normal Mean: 7.5 %,
std dev = 1 %

d Diameter healing particles Uniform dmin ¼ 10lm
dmax ¼ 20lm

l Mean distance from
interface

Uniform lmin ¼ 45lm
lmax ¼ 80lm
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2.3. Definition of input variable uncertainties

As indicated above, the output random variable of interest is the
TBC lifetime subjected to thermal cycling and the uncertain input
variables that are considered are (i) the TC/BC interface amplitude,
(ii) the TGO growth rate, (iii) the volume fraction of the healing
particles, (iv) the diameter of the healing particles and (v) the
mean distance of the healing particles from the TC/BC interface.
The joint probability distribution can be derived by defining the
individual input variable distributions, which in turn can be
decided based on experimental observations, existing information
and expert understanding [34].

The morphology of the TC/BC interface, where eventually the
TGO appears and grows during thermal cycling, is known to have
a significant influence on the TBC lifetime. As illustrated in Fig. 1,
this interface is often modeled using a sinusoidal shape with a
given amplitude. In order to observe the influence of the TC/BC
interface morphology on the TBC lifetime, a uniform distribution
of values of the interface amplitude A is considered within the
range Amin;Amax½ �, with Amin ¼ 15lm and Amax ¼ 25lm. This repre-
sentative range is chosen based on experimental observations and
finite element simulations [35–37]. For the second input variable
considered, a logarithmic function is utilized to fit the experimen-
tally observed TGO growth curves that indicate the TGO thick-
nesses hTGO as a function of number of thermal cycles m P 1, with

hTGO ¼ c lnm ð5Þ

where the coefficient c allows to quantify the TGO growth rate for a
given thermal cycle (see [5,38]). Accordingly, the variation in TGO
growth rate has been quantified with the assumption that c varies
uniformly in the range cmin; cmax½ �, with cmin ¼ 2:5lm and
cmax ¼ 3lm. As explained in more detail below, this distribution
has been identified with the help of prior simulations, which were
carried out for a range of TGO growth rate coefficient values in order
to determine the viability of duration of simulations for the avail-
able computational resources. Observe that, in principle, it is also
possible to model the TGO growth based on a coupled diffusion–re-
action process, see e.g., [39,40]. However, for the purposes of the
present analysis, it is more convenient to directly impose the
growth rate from experimentally-observed curves since this allows
to directly establish the influence of this parameter on the system’s
lifetime.

In the simulations, the healing particles are embedded in a sub-
layer of the TC, located close to the TC/BC interface. This critical
sub-layer is prone to development of cracks due to a mismatch
of thermomechanical properties of individual layers, which is
aggravated by the growth of the TGO between the TC and BC layers
during thermal cycling. The volume fraction n of healing particles
within this sub-layer, measured in percentage as the ratio between
4

the volume occupied by the particles and the volume of the sub-
layer, is represented using a normal (Gaussian) distribution with
a mean value of 7.5% and a standard deviation of 1%. In this case,
the normal distribution represents uncertainty in the manufactur-
ing of a self-healing system with a given design volume fraction
that was previously chosen based on a parametric analysis. The
diameter of the healing particles is assumed to be characterized
by a uniform distribution in the range dmin; dmax½ �, with
dmin ¼ 10lm and dmax ¼ 20lm. These are representative values
for (encapsulated) healing particles that have been previously pro-
posed and manufactured. A uniform distribution is chosen instead
of, for example, a normal distribution, in order to represent distinct
design choices. Similarly, the value for the mean distance of heal-
ing particles from the TC/BC interface has been distributed uni-
formly between lmin; lmax½ �, with lmin ¼ 45lm and lmax ¼ 80lm.
These values are chosen such that the healing particles encompass
a range of possible designs of sub-layers concentrated close to the
TC/BC interface covering the considered range of volume fraction
and diameter of healing particles. The input variable uncertainties
have been summarized in Table 1.
2.4. Selecting the Polynomial Chaos Expansion order and the number
of sample points

The first step to obtain the orthogonal polynomials for the joint
probability distribution of the input parameters is to select the
order of the PCE. It has been observed that there are no specific
guidelines to set a particular order since the optimum order may
vary in different underlying models [25]. In general, a choice can
be made for (i) the total number of sample points N, (ii) the num-
ber of random variables K used as input for the PCE and (iii) the
maximum order of the polynomial n with the goal of reaching a
compromise between the accuracy and variance of the surrogate
model and the associated computational cost. The number of sam-
ple points N is related to the number of coefficients Q in the trun-
cated PCE (2) through the so-called oversampling ratio np ¼ N=Q .
As a guideline, it has been suggested to use an oversampling ratio
np ¼ 2, which provides an idea of the required number of sample
points N for a given number of input random variables K and PCE
order n [41]. In view of (2), the number of sample points N required
with the suggested oversampling ratio np ¼ 2 is shown in Table 2.
Each sample point corresponds to a computationally expensive
simulation. For example, running a simulation with the computa-
tional model used in [5] with 10 processors in a cluster takes an
average execution time of 60 h (not including pre and post-
processing). As a result, for the present work, a PCE order n = 2
has been chosen such that, in combination with the chosen num-
ber of input random variables K ¼ 5 and the oversampling ratio
np ¼ 2, it requires N ¼ 42 simulations. The chosen quadratic order
satisfies current computational constraints and is also able to cap-
ture the possible non-linearities in the response of the underlying



Table 2
Number of sample points N with PCE order n and number of input variables K for an
oversampling ratio np ¼ 2. For the present work, the combination K ¼ 5 and n ¼ 2
was chosen, resulting in N ¼ 42 sample points.

K
n 1 2 3 4 5 6

1 4 6 8 10 12 14
2 6 12 20 30 42 56
3 8 20 40 70 112 168
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model as well as the interactions between the input variables. It
has also been observed in the literature that a second-order PCE
is able to demonstrate sufficient accuracy in determining the mean
and standard deviation of the response, whereas a higher order
might be required in order to accurately determine higher order
statistical moments such as skewness and kurtosis [42]. Once the
input variable uncertainties are defined in terms of their distribu-
tions, they can be utilized to obtain the orthogonal polynomials
that will be used in the surrogate model. Simultaneously, as shown
in the workflow in Fig. 2, a Latin Hypercube scheme is used to
select the sample input points from the input variable space. These
sampled points are utilized as inputs to the underlying complex
simulator (see Section 3), the corresponding outputs of which are
used to train the surrogate model (i.e., finding the coefficients ŷi
in (2)). In the present work, the implementation of the PCE work-
flow is done using the Python-based toolbox Chaospy [43]. Rele-
vant details of the micromechanical model used to generate the
data points are given in the next section.

3. Complex simulator

3.1. TBC micromechanical finite element analysis

The self-healing TBC micromechanical model developed in [5]
has been utilized in order to obtain the number of cycles to TBC
failure as a consequence of exposure to thermal cyclic behavior.
Most of the applications of TBCs involve a typical thermal loading
cycle consisting of three distinct phases: heating, dwelling and
cooling. To this end, the simulation framework considers a heating
phase in which the temperature is increased from 30�C (nominal
ambient temperature) to 1100�C (test temperature). This is fol-
lowed by the dwelling phase in which the TBC is exposed to con-
stant elevated temperature of 1100�C. Finally, the cooling process
involves reduction of temperature from 1100�C to 30�C. It has been
assumed that during the dwelling phase, the TBC system does not
experience any thermomechanical stresses since the elevated tem-
perature is considered to be the coating deposition temperature.
Consequently, the cooling phase is responsible for the generation
of thermomechanical stresses due to the mismatch in thermal
expansion coefficients between different components of the TBC
system.

Fig. 1 describes a representative unit cell for the self-healing
TBC micromechanical domain, which repeats itself horizontally
along the substrate surface. A two-dimensional framework has
been utilized to model the unit cell under plane strain condition
during thermal cycling. It consists of separate constitutive models
for the thermoelastic and fracture behavior of the ceramic top coat,
metallic bond coat, thermally grown oxide layer at the TC/BC inter-
face, the self-healing particles and the splat boundaries in the top
coat that are characteristic of Air Plasma Sprayed (APS) TBCs. The
roughness of the interface as well as the splat boundaries have
been modeled in the form of sinusoidal curves. Typical samples
subjected to thermal cycling in an oven are made of a substrate
material coated with TBC to mimic the operating conditions. In
the present work, only the coating is modeled and the influence
5

of the substrate and the testing conditions are reproduced with
suitable boundary conditions. In particular, referred to a coordinate
system with the origin taken at the bottom-left corner of the unit
cell shown in Fig. 1 and with horizontal x and vertical y compo-
nents, the traction components tx and ty on the top (T) edge are
taken as zero (traction-free surface). Further, the effect of the sub-
strate is taken into account assuming that the thermoelastic defor-
mation of the substrate during thermal cycling is imposed on the
relatively thin TBC layer at the bottom (B). Finally, lateral periodic
boundary conditions are based on an assumption of an infinitely
long coated surface by imposing compatible conditions for ux and
uy displacement components, at the left (L) and right (R) edges of
the unit cell. In view of these assumptions, the boundary condi-
tions are as follows:

tTx x;Hð Þ ¼ tTy x;Hð Þ ¼ 0

uB
x x;0ð Þ ¼ 1þ msubð ÞasubDTxþ uB

x 0;0ð Þ
uB
y x;0ð Þ ¼ 0

uR
x w; yð Þ � uL

x 0; yð Þ ¼ 1þ msubð ÞasubDTw

uR
y w; yð Þ � uL

y 0; yð Þ ¼ 0

ð6Þ

where msub and asub represent, respectively, Poisson’s ratio and the
coefficient of thermal expansion values for the substrate, DT is the
change in temperature during thermal cycling, w is the width of
the unit cell and H its total height. The horizontal displacement
uB
x 0;0ð Þ of the origin of coordinates may be arbitrarily chosen and

it is taken as zero. Thermal equilibrium is assumed during thermal
cycling (quasi-static process), hence a uniform temperature is
imposed in the whole unit cell, which evolves according to the
imposed heating, dwelling and cooling times. The problem there-
fore consists on finding mechanical equilibrium in a quasi-static
process taking into account cracking and healing as well as the
growth of the TGO layer due to oxidation.

Representative values have been assigned to the geometrical
features in the unit cell, where hTC ¼ 500lm, hBC ¼ 200lm and
h ¼ 15lm indicate the thicknesses of the TC, BC and the splats
respectively whereas the wavelength of the sinusoidal interface
curve has been assigned the value of 60lm. The healing particles
have been assumed to be distributed near the TC/BC interface
within a layer of thickness hHL ¼ 150lm. The lengths of the splats
have been set in such a way that the overall aspect ratio is repre-
sentative of an APS-manufactured TBC [5,35]. A domain conver-
gence analysis has been carried out for different values of TBC
width w ¼ 240;360;480;600;720lm. It has been observed that
the change in the width normalized total crack size at failure is
within 10% for the last three values considered
(w ¼ 480;600;720lm). Hence the TBC width has been assigned
the value w ¼ 480lm for the rest of the analyses.

The computational framework involves a combination of sepa-
rate modules using MATLAB and GMSH [44] to generate the geom-
etry and the mesh (including cohesive elements that are inserted
on all edges of bulk elements) and to assign the loading and bound-
ary conditions as well as the material properties to different ele-
ment sets. Inserting cohesive elements throughout the whole TBC
domain ensures that the crack initiation and propagation is not
biased by the presence or absence of cohesive elements in specific
regions of the TBC domain. An input file is subsequently created to
execute a finite element simulation in ABAQUS. The region near the
TC/BC interface encompassing the healing particles has been dis-
cretized with a fine mesh having a characteristic size of 1lm. This
is because of the thermomechanical mismatch in properties near
the TC/BC interface and the presence of healing particles that cause
stress redistribution and eventually pave the way for initiation and
propagation of cracks. On the other hand, in order to reduce the
computational expense, the rest of the TBC domain has been dis-
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cretized with a coarser mesh having a size of 2lm. In the present
work, the same material properties are used as in [5], including
elastic and fracture characteristics of the TC, BC, TGO, healing par-
ticles, splats and interfaces. For detailed information regarding the
utilized material properties, the reader is referred to [5].
Fig. 3. TGO growth model in TC/BC interface.
3.2. Cracking and healing model

In order to describe the system behavior in response to cracking
and subsequent healing, the cohesive zone based self-healing
model developed by Ponnusami et al. [45] has been utilized. This
model is based on a bilinear traction-separation law that takes as
inputs the mode-I fracture energy and the normal fracture strength
of the cohesive element material. The incorporation of self-healing
and recovery of fracture properties is simulated with the help of a
composite-based constitutive model in which the overall normal
(n) and tangential (s) components of the traction ~t are described
as a weighted sum of the traction components of the original mate-
rial and the healing material as follows:

~tn ¼ w 0ð Þt 0ð Þ
n þw 1ð Þt 1ð Þ

n
~ts ¼ w 0ð Þt 0ð Þ

s þw 1ð Þt 1ð Þ
s ð7Þ

where the superscripts 0 and 1 represent the original and healing
materials, respectively and the weighting factors w 0ð Þ and w 1ð Þ can
be interpreted as the surface-based volume fractions of the original
and healing material, respectively, at the moment of activation of
healing. In this context, volume fraction refers to the fraction of
the crack area occupied by a material per unit crack opening dis-
placement. In a two-dimensional setting, the crack area fraction
refers to the crack length fraction per unit depth. The relation given
in (7) is used after the first healing event occuring at time t� in con-
junction with an equivalent crack opening D pð Þ for each material
(p ¼ 0 original material or p ¼ 1 healing material), with

D pð Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dn � d pð Þ�

n

D E2
þ c2 ds � d pð Þ�

s

� �2r
; t P t�; ð8Þ

where c is a parameter that controls the relative contribution from
the normal and tangential openings on the effective crack opening
for material p; d pð Þ�

n and d pð Þ�
s respectively measure the normal and

tangential shift in the zero opening for the cohesive relation due
to healing. In (8), the symbol �h i ¼ � þ j � jð Þ=2 refers to the Macauley
bracket.

The crack opening or closing conditions are monitored with the

loading function f D pð Þ;j pð Þ
� �

¼ D pð Þ � j pð Þ, where j pð Þ is the damage

history variable and corresponds to the maximum crack opening
displacement throughout the loading history. The model further
employs the classical Karush–Kuhn–Tucker relations for crack
loading and crack unloading, from which an equivalent traction
T pð Þ can be computed for the crack loading case using a linear

degradation relation T pð Þ ¼ r pð Þ D pð Þ
f � D pð Þ

� �
= D pð Þ

f � D pð Þ
i

� �
, with D pð Þ

i

and D pð Þ
f representing the initial and final (fully-cracked) crack-

opening displacements. The crack unloading case follows a linear
relation from D pð Þ ¼ j pð Þ to zero. Finally, the normal and tangential
components required in (7) are computed consistent with the work
equivalency relation ~t � ~d ¼ TD, with ~d being effective the crack
opening vector.

An important advantage of the proposed model is the ability to
simulate multiple and successive cracking and healing events with
possibly multiple healing materials p > 1. The model has been
incorporated into the framework of the simulation in the form of
an ABAQUS user-material subroutine (UMAT). For more details
regarding the process of identifying failed or fractured elements
and the implementation of healing mechanism, see [45].
6

3.3. Simulation of oxide layer growth

In order to protect the substrate against oxidation, TBC systems
usually have a controlled oxidation process in which the oxygen
diffusing inwards from the high temperature free surface reacts
with sacrificial aluminum in the metallic bond coating, forming
oxides such as alumina and thus preventing the oxygen from actu-
ally reaching the substrate [5,46,47]. The drawback from this oxi-
dation protection system is that the thermally grown oxide layer
at the TC/BC interface generates significant thermal stresses during
cycling due to the mismatch in stiffness and coefficients of thermal
expansion. Since the lifetime of a TBC system strongly depends on
damage triggered by thermal stresses, it is critical to include this
phenomenon in the finite element analysis.

In order to simulate the growth of the TGO layer and its effects
as a function of number of thermal cycles, a simplified TGO layer
growth framework has been utilized in the ABAQUS UMAT. Exper-
imentally determined isothermal TGO growth depicting the thick-
ness of the TGO as a function of number of thermal cycles [38,48]
have been utilized and the data have been fitted to the logarithmic
function (5), which can be used in the subroutine in order to deter-
mine the TGO layer thickness as a function of number of thermal
cycles. This curve fit is based on the assumption that most of the
TGO growth occurs isothermally during the dwelling phase. This
process has been simulated in the finite element model by an
incremental replacement of the bond coat thermomechanical
properties with those of the TGO material as a function of number
of thermal cycles. This implies a presence of a mixture zone at the
interface of the newly formed TGO layer and the existing BC layer
as illustrated in Fig. 3 The properties of the material within the
mixture zone have been assigned with the help of a weighted aver-
age of the constitutive properties of the pure TGO and BCmaterials,
i.e., for any thermoelastic property f, it is evaluated as

fmix y;mð Þ ¼ xf TGO þ 1�xð Þf BC ð9Þ
with

x y;mð Þ ¼
0 y > hTGO mð Þ þ hmix

1 y 6 hTGO mð Þ
y�hTGO
hmix

hTGO mð Þ < y < hTGO mð Þ þ hmix

8><>: ð10Þ

where x ¼ x y;mð Þ indicates the local fraction of TGO material in
the mixture zone, hmix is the thickness of the mixture zone, y is
the normal distance from a point in the mixture zone to the location
of the original TC/BC interface (before oxidation) and m indicates
the number of thermal cycles. During the simulations of thermal
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cycling, the original computational domain is kept the same as
shown in Fig. 1 but the region in the bond coat immediately adja-
cent to the TC/BC interface is updated after every cycle by combin-
ing (5) and (9). Effectively this allows to simulate the growth of the
TGO layer in the FEM analysis.

3.4. Artificially accelerated thermal cycling

Experimental results of thermal cycling of TBC systems for the
conditions stated in Section 3.1 indicate that in general the lifetime
is of the order of several hundred thermal cycles, which is compu-
tationally expensive to simulate with the chosen model. In order to
alleviate the overall computational cost while capturing the cyclic
damage and healing, an artificially accelerated TGO growth has
been considered, where one simulated cycle represents the TGO
growth of b actual cycles. Hence, denoting as ~m the number of
computational cycles, then m ¼ b ~m, where m represents the num-
ber of actual cycles. The assumption behind this approach is that
the accumulated damage and healing during b cycles can be cap-
tured as the damage and healing of a single cycle. In principle this
assumption contradicts the nature of inelastic processes that are
path-dependent (i.e., cyclic damage and healing is not equivalent
to a single damage event followed by a single healing event). How-
ever, due to the relatively slow growth of the TGO layer per actual
cycle, it is implicitly assumed that during b cycles it is possible to
represent the accumulated damage and healing since they occur at
approximately the same loading conditions. The path-dependent
nature of the process is then captured in larger increments of b
cycles.

To implement this artificially accelerated thermal cycling, the
growth model given in (5) is replaced by

hTGO ¼ ~c ln ~m ~c ¼ c ln b ~mð Þ
ln ~m

; ð11Þ

thus, despite the use of an accelerated growth, the same growth
rate parameter c was used as input as indicated in Section 2.3.
Based on previous numerical experimentation, the acceleration
factor was chosen as b ¼ 25, which is seen as a reasonable com-
promise between an approximation error and the corresponding
computational benefit. Complete failure of the TBC system is con-
sidered to have taken place when 90% of the TC layer has sepa-
rated from the TC/BC interface or the TGO layer. For
conciseness, detailed results of the simulations are not shown
here but the reader is referred to [5] for examples of similar
(but distinct) results.
4. Uncertainty quantification of self-healing TBC lifetime

4.1. The trained surrogate model

The number of computational thermal cycles until failure is con-
sidered as the quantity of interest while training the PCE surrogate
model. As indicated in the workflow in Fig. 2, the training data can
be used to find the coefficients of the orthogonal polynomials
derived from the Wiener–Askey scheme of polynomials [49,50].
Based on the aforementioned data, the resulting surrogate model
LSH�TBC for the lifetime of a self-healing thermal barrier coating is
given by

LSH�TBC ¼ 470:53� 38:14Aþ 0:53A2 þ 4:78Ac � 0:46Anþ 0:27Ad� 0:01Al

þ 13:73c � 1:56c2 � 9:63cn� 3:75cdþ 0:01cl

þ 23:44nþ 0:79n2 þ 0:12nd� 0:01nl

� 8:02dþ 0:27d2 þ 0:05dl� 1:19lþ 0:01l2 ð12Þ
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where LSH�TBC measures the computational thermal cycles until fail-
ure, which are scaled by a factor b from the actual thermal cycles
(see Section 3.4). As indicated in Section 2.3, the input random vari-
ables are the TGO interface amplitude A, the TGO growth coefficient
c, the volume fraction n of healing particles, the diameter d of the
healing particles and the mean distance l of the healing particles
to the TC/BC interface. The ranges for the random input variables
in (12) are summarized in Table 1.

Due to its simplicity, the surrogate model given in (12) can be
used in conjunction with Monte Carlo sampling in order to derive
the probability density function of the self-healing TBC lifetime. It
can also be used to observe the relative impact of each of the input
variables on the variation in the output or the sensitivity indices.
Additionally, after determination of the most sensitive input vari-
ables, the surrogate model can be helpful to obtain the statistical
characteristics of the variation of TBC lifetime as a function of
the sensitive variable while the uncertainties in the remaining
variables are propagated through the surrogate model. This
approach helps in the determination of the reliability of the surro-
gate model output in the form of standard deviations. However,
before extracting information from the surrogate model, its quality
and validity needs to be assessed.

4.2. Residual plot

To determine the validity of the actual data points and to have
an indication regarding the goodness of fit, a residual plot is pre-
sented in Fig. 4a along with a plot of the actual model values
against the surrogate model responses in Fig. 4b. In the residual
plot, the horizontal axis consists of the actual data points (compu-
tational thermal cycles until failure) whereas the corresponding
vertical axis indicate the residual between the actual values and
those produced by the surrogate model.

The results shown in the figures illustrate the goodness of fit
and, equally important, that the variation in the output can be
explained by the input variables as the residual data points are
scattered randomly around the zero line, which supports the valid-
ity of the trained model (i.e., there is no observable trend or non-
randomness in the residuals [51,52]).

Additionally, the goodness of fit can also be quantified with the
help of the coefficient of determination R2, which can be computed
for given sample points c jð Þ, (j ¼ 1; . . . ;N) as

R2 ¼ 1� etrainbV with etrain ¼ S
N
; ð13Þ

where, etrain is the training error, S is the sum of the squares of the

residuals given by (3) and bV represents the variance observed in the
responses of the trained surrogate model [53].

However, as the cardinality or the number Q of terms in the PCE
increases, the number of sampled points N also increases, which
can lead to overfitting of the model to the actual data points. This
phenomenon can lead to increased prediction errors while using
the surrogate model on new data. In order to take this into account,
the coefficient of determination can be modified and adjusted to
the number Q of PCE coefficients as follows [25]:

R2
A ¼ 1� N � 1

N � Q � 1

� �
1� R2
� �

: ð14Þ

Based on the N ¼ 42 data points used in the present analysis, the
trained surrogate model was such that R2 ¼ 0:97 and R2

A ¼ 0:94.
From these values, it can be observed that, despite the underlying
complexities and non-linearities in the self-healing TBC model,
the surrogate model is able to fit well to the actual data points.



Fig. 4. Visualizing the goodness of fit for TBC lifetime prediction: (a): Residual plot and (b): surrogate model responses vs. complex simulator responses.
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However, it has been observed that the adjusted coefficient of
determination overpredicts the accuracy of approximation [54].
As a caveat, it is also relevant to mention that the evaluation of
residuals and the goodness of fit does not indicate how well the
trained model will perform on new data or unseen sample points.

4.3. Leave-one-out cross validation

The leave-one-out cross validation technique has been imple-
mented to validate the trained model and determine its predictive
performance. To this end, a collection of N surrogate modelsbY �ið Þare built by training them on all but the ith sample point. Each
metamodel is then used to predict the value of the original model Y

at the ith observation and the prediction error is evaluated, i.e.,

D ið Þ ¼ Y c ið Þ� �� bY �ið Þ c ið Þ� �
: ð15Þ

This process is repeated for all the sample points and the predicted
residual sum of squares or the leave-one-out cross validation error
is calculated as [53]

eL ¼ 1
N

XN
i¼1

D ið Þ
� �2

: ð16Þ

Furthermore, in order to observe how the PCE order n affects the
predictive performance of the surrogate model, the leave-one-out

error of the current model that uses second order, bY ¼ bYn¼2, has

been compared with that of a model bYn¼1developed using a PCE
of first order. Using the same training data, the leave-one-out errors

are eL bYn¼2

� �
¼ 28 and eL bYn¼1

� �
¼ 41, which confirms that the

order n ¼ 2 demonstrates a better predictive performance than
the one developed with a PCE of order n ¼ 1.

4.4. Sensitivity Analysis

In order to obtain the relative contribution of each input vari-
able to the output variance, a sensitivity analysis can be carried
out using the trained surrogate model. A commonly utilized
approach to evaluate sensitivity indices is Sobol’s method. Using
this method, the output variance is decomposed into contributions
associated with each of the input variables. For the random output
variable Y that is a function of input variables / ¼ /1;/2; . . . ;/Kð Þ
the method to calculate the sensitivity index of /i is to initially
fix the variable at a particular value /i ¼ qi and then calculating
8

the change in output variance or the conditional variance
V/�i

Y j/i ¼ qið Þ, which is computed considering the uncertainties

in all but the ith input variable. Since /i also depicts uncertainty
in terms of a distribution of values, a mean of the above-
mentioned conditional variance is evaluated over the distribution
of /i in order to obtain the expected value, i.e., E V/�i

Y j/ið Þ	 

. The

first order sensitivity index Di of /i is given as

Di ¼
V E/�i

Y j/i½ �� �
V Yð Þ ¼ 1� E V/�i

Y j/ið Þ	 

V Yð Þ ð17Þ

where V Yð Þ is the variance of the output variable and the alternative
expression of Di on the right hand side of (17) is obtained from the
law of total variance. The first order sensitivity Di is representative
of the influence on the output variance of each input variable taken
alone [42]. It is also convenient to determine the total sensitivity
indices DT

i , which include the possible interactions of input vari-
ables and hence their joint effect towards the output variance.
The total sensitivity indices are given as

DT
i ¼ E/�i

V/i
Yj/�ið Þ	 


V Yð Þ : ð18Þ

The first-order and total sensitivities of the random input variables
used in the surrogate model were computed using the Chaospy
module in Python and are shown in Fig. 5a.

It can be observed that the TC/BC interface amplitude is the
main contributor towards the variance in TBC lifetime. This implies
that relatively small changes in the value of the amplitude will
result in a high change in the TBC lifetime. In contrast, the uncer-
tainty in the TGO growth coefficient has a lesser but still significant
influence on the lifetime variance. Regarding the uncertainty of the
design parameters for healing particles, the variation in particle
diameter appears to be the most important within the range con-
sidered in Table 1, whereas the uncertainty in the volume fraction
around the nominal value (mean) and the uncertainty in the depo-
sition of healing particles (mean distance from particles to inter-
face) have a low sensitivity.

In order to quantify how the output variance depends on the
input variable sensitivity, two scenarios have been compared.
The first one considers the uncertainties in all the input variables
and hence provides a general response probability density function
(PDF). In the second case, the input variable having the highest
sensitivity index (in this case the TC/BC interface amplitude) has
been fixed at its mean value (Amean ¼ 20lm) while the uncertain-
ties in the rest of the input variables have been taken into account.
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The probability density functions for both scenarios, which are
obtained using the TBC lifetime responses from the surrogate
model, are shown in Fig. 5b.

As may be observed from the figure, the PDF for a fixed interface
amplitude of Amean has approximately the shape of a normal distri-
bution, whereas the PDF for an uncertain amplitude has a non-
normal distribution with a significantly higher spread. It can also
be observed that, if required for further processing, the PDF in
the general case could be fitted to, for example, a Weibull distribu-
tion with suitable parameters. In order to further compare the
degree of variance in the two above-mentioned scenarios, the coef-
ficient of variation (COV) has been calculated for both cases by tak-
ing the ratio between the standard deviation and the mean value
[25]. The COV for the first case (fixed interface amplitude) has been
found out to be 45% whereas the second case (uncertain interface
amplitude) has a COV of 22%. Since the TC/BC interface amplitude
value is the most significant contributor to the output variance,
controlling the TC/BC interface amplitude during manufacturing
is beneficial in order to minimize the dispersion in the TBC lifetime
and correspondingly increase the reliability of the TBC system.

4.5. Uncertainty propagation plots

To further visualize how the output changes while a particular
input variable is controlled, the variation in TBC lifetime is plotted
in Fig. 6 as a function of each random input variable /i while the
uncertainties in the remaining input variables /�i are propagated
through the surrogate model. The curves shown in Fig. 6 represent
the trend of the response surface generated using the Wiener–
Askey scheme of polynomials of order 2 for the considered PCE,
and may not accurately predict certain non-linearities that tend
to saturate. In particular, the results should be interpreted in terms
of monotonic trends (increase or decrease of lifetime) whereas
apparent local minimum values shown in Fig. 6 actually reflect
slow changes in lifetime.

4.5.1. Uncertainty propagation of microstructural features
It can be observed from Fig. 6a that the TBC lifetime varies the

most with changes in the TC/BC interface amplitude A. A decrease
in the interface amplitude value leads to a gain in TBC lifetime. This
observation has also been made by several researchers who have
carried out two-dimensional as well as three dimensional finite
element studies to understand the impact of roughness or the
Fig. 5. (a): Indices depicting first-order and total sensitivity of self-healing TBC lifetime t
fixing the input variable with the highest sensitivity index (TC/BC interface amplitude).
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TC/BC interface topography on damage growth and lifetime of
TBCs. Specifically, studies have indicated that an increase in the
value of interfacial waviness or roughness leads to increased mag-
nitude of stresses at the TC/TGO and TGO/BC interfaces as well as
the TC layer, thus affecting the fatigue life of TBCs [55,56]. It has
also been observed that the development of damage as a result
of thermal cycling is directly proportional to the interface rough-
ness values [57]. This implies that in order to predict the TBC life-
time, special efforts need to be taken while measuring the value of
interface amplitude. Additionally, focus should be given upon con-
trolling the feedstock powder size during manufacturing of TBCs to
obtain a desirable value of interface amplitude.

The variation of TBC lifetime with the TGO growth coefficient c
shown in Fig. 6b indicates that the expected value of TBC lifetime
reduces with an increase in the TGO growth coefficient value. This
result agrees with the experimental and numerical investigations
that indicate the effects of TGO thickness values on stress redistri-
bution and damage growth in TBCs [46,58,59]. Thus, efforts can be
implemented in order to reduce the TGO growth rate. It has been
observed that the TGO growth rate can be controlled by modifying
the BC manufacturing process [60] or by carrying out a pre-
treatment of the BC, which constrains the initiation and growth
of cracks between the TC and TGO layers [61].
4.5.2. Uncertainty propagation of self-healing design
Regarding the design input variables for a self-healing system, it

can be observed from Figs. 6c,d,e that there exists less variation in
TBC lifetime across the considered ranges of healing particle vol-
ume fraction, particle diameter and the particle mean distance
from TC/BC interface, respectively. In general, the lifetime slightly
increases with increased volume fraction of healing particles, it
tends to slightly decrease with increasing healing particle diameter
and it tends to be insensitive to the average distance of the healing
particles to the TC/BC interface, albeit within the range considered.
This indicates that for the considered ranges of the design variables
associated with healing particles, controlling the manufacturing
process may not yield significant changes in the prediction of the
TBC lifetime. However, the sensitivity analysis does not provide
information regarding the effectiveness of the self-healing mecha-
nism in terms of extending the lifetime of a TBC system, which is a
critical technological question and it is addressed in the next
section.
o the random input variables. (b): Lifetime PDF of a SH-TBC and effect on the PDF by



Fig. 6. Predicted TBC lifetime as a function of the parameter indicated on the horizontal axis, while propagating the uncertainties in the remaining parameters. Figures (a)
through (e) correspond to the input variables indicated in Table 1, respectively. The gray region above and below the mean lifetime value corresponds to 	 one sta.ndard
deviation.
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5. Uncertainty quantification of benchmark TBC lifetime and
self-healing crack growth rate

5.1. Comparison with the benchmark TBC

In order to estimate how the use of self-healing particles in
TBCs affects the expected lifetime and the underlying scatter as
compared with the case of the conventional TBC without any heal-
ing particles, a separate PCE based surrogate model is developed
for the conventional (benchmark) system with the same procedure
as described in Fig. 2. This surrogate model considers the TC/BC
interface amplitude and TGO growth rate as the input uncertain
variables which are defined over the same respective distributions
as that in the surrogate model developed for the self-healing TBC.
In this case, K ¼ 2 input random variables are used and, choosing
an oversampling ratio of np ¼ 2 and a polynomial order n ¼ 2, there
are N ¼ 12 sample points required (see Table 2). Applying the same
procedure as for the self-healing TBC, the surrogate model for the
lifetime of the benchmark system is
Fig. 7. Box plot comparison of the lifetime realizations for the benchmark TBC
surrogate model (no-healing) and the self-healing TBC surrogate models.

Fig. 8. (a): Indices depicting first-order and total sensitivity of self-healing TBC average
crack growth in a SH-TBC system (negative values correspond to healing).
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LTBC ¼ 215:42� 7:94Aþ 0:11A2 þ 0:61Ac � 77:40c þ 11:65c2:

ð19Þ

In the above equation, LTBC represents the lifetime of the benchmark
TBC in number of computational thermal cycles as a function of the
TC/BC interface amplitude A and the TGO growth rate coefficient c.
The same characteristics for A and c are chosen as indicated in
Table 1.

Similar to the surrogate model for the self-healing TBC, the
model’s goodness of fit and its predictive performance are evalu-
ated computing the adjusted coefficient of determination and
leave-one-out cross validation error, which in this case are given
by R2

A;TBC ¼ 0:99 and eL;TBC ¼ 0:91, thus confirming that the surro-
gate model is able to capture reasonably well the predictions of
the complex simulator.

The trained surrogate model LTBC in (19) is utilized to acquire
the distribution of lifetime for the benchmark TBC. The so-called
box plots using the lifetime realizations of the surrogate models
for the benchmark and self-healing TBC cases are shown in Fig. 7.
As indicated in the figure, the surrogate model for the benchmark
case provides a mean lifetime value of 13 computational thermal
cycles while describing a coefficient of variation (COV) of 35%. On
the other hand, the surrogate model for the self-healing TBC
depicts a mean lifetime value of 29 computational thermal cycles
and a COV = 45%. This indicates that for the considered range of
values of the input variables, the use of self-healing particles helps
to improve the expected TBC lifetime value but at the same time
leads to increased scatter in the thermal fatigue life as compared
with the benchmark TBC without any healing particles. This obser-
vation regarding the increased scatter in lifetime could potentially
be attributed to the random distribution and inherent variations in
the individual positions of the healing sites within the self-healing
TBC. Additionally, the coupled effects of the considered input vari-
ables might affect the TBC lifetime, thus contributing to the scatter.
5.2. Uncertainty quantification of the self-healing TBC crack growth
rate

In addition to the surrogate model for the lifetime of a self-
healing TBC system, it is useful to develop alternative damage indi-
cators for progressive failure. In particular, crack growth rates can
be used to estimate the remaining lifetime of a system. To this end,
cyclic crack growth to the random input variables. (b): PDF of normalized average
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a surrogate model for the average growth rate of damage in self-
healing TBCs can be developed for the same random input vari-
ables as indicated in Table 1. This quantity measures the effective
crack growth, which accounts for cracking (positive crack growth)
and healing (negative crack growth). The growth rate, which is
mainly due to horizontal cracks, should be normalized by the
width of the computational domain (in the current simulations
w ¼ 480lm) due to the horizontal periodicity of the boundary
conditions.

The surrogate model for average crack growth, not shown here
for conciseness, has a coefficient of determination of R2 ¼ 0:91 and
a modified coefficient of determination of R2

A ¼ 0:82. The sensitiv-
ity indices and the PDF of the surrogate model for crack growth
are shown in Figs. 8a and 8b, respectively.

It can be observed from Fig. 8a that, similar to the previously
found results for lifetime, the interface amplitude is the main con-
tributor towards the variance in TBC crack growth rate. However,
its relative importance is smaller for crack growth than for lifetime.
In this case, the TGO growth coefficient and the self-healing
parameters exhibit a higher influence, particularly for the total
sensitivity index. This indicates that the self-healing variables act
in a coupled manner towards the variance of the average crack
growth. The probability density function for crack growth shown
in Fig. 8b exhibits an approximately normal shape with a mean
around 0.05 per cycle.
6. Conclusions

Surrogate modeling techniques provide an efficient way of
approximating complex and deterministic numerical frameworks.
These models are able to take into account the uncertainties in
the input variables that are used to design the underlying frame-
work in order to deliver reliable and computationally inexpensive
results. From the surrogate model for self-healing TBCs the main
findings are:

� The TC/BC interface amplitude is the most significant contribu-
tor towards the variance in TBC lifetime. This implies that rela-
tively small changes in the value of the interface amplitude will
result in large deviations in the lifetime. As a result, this calls for
special efforts to determine the TC/BC interface amplitude
value.

� The variables associated with healing particles have been found
to demonstrate relatively minor influence towards the variation
in TBC lifetime.

� The uncertainty propagation plots indicate that the expected
TBC lifetime reduces with an increase in the TC/BC interface
amplitude and TGO growth rate values. Therefore, in order to
increase the TBC lifetime, caution should be exercised during
the manufacturing of self-healing TBCs in the form of a control
of the powder size and bond coat processing techniques.

� The incorporation of healing particles helps in improving the
expected value of the TBC lifetime. However, it also leads to
an increased amount of scatter in the thermal fatigue life as
compared with that of the benchmark or the TBCmodel without
any healing particles.

� Variables associated with self-healing particles seem to act in a
coupled manner in order to contribute towards the variance in
crack growth rate, albeit their overall contribution is minor.

The current research illustrates the benefits of an additional
layer of analysis over the conventional deterministic approaches
in order to estimate the reliability of the results and draw informed
conclusions for the design of self-healing materials.
12
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[57] L. Saucedo-Mora, K. Slámečka, U. Thandavamoorthy, T. Marrow, Multi-scale
modeling of damage development in a thermal barrier coating, Surf. Coat.
Technol. 276 (2015) 399–407, https://doi.org/10.1016/j.surfcoat.2015.06.038.

[58] J. Jiang, W. Wang, X. Zhao, Y. Liu, Z. Cao, P. Xiao, Numerical analyses of the
residual stress and top coat cracking behavior in thermal barrier coatings
under cyclic thermal loading, Eng. Fract. Mech. 196 (2018) 191–205, https://
doi.org/10.1016/j.engfracmech.2018.04.031.

[59] T.S. Hille, S. Turteltaub, A.S.J. Suiker, Oxide growth and damage evolution in
thermal barrier coatings, Eng. Fract. Mech. 78 (10) (2011) 2139–2152, https://
doi.org/10.1016/j.engfracmech.2011.04.003.

[60] K. Ogawa, A. Nakano, Thermally grown oxide growth behavior and its
impedance properties of thermal barrier coatings with cold sprayed and low
pressure plasma sprayed bond coatings, J. Soc. Mater. Sci., Japan 62 (2) (2013)
131–136, https://doi.org/10.2472/jsms.62.131.

[61] W. Chen, M. Liu, J. Zhang, Z. Deng, J. Mao, High-temperature oxidation
behavior and analysis of impedance spectroscopy of 7YSZ thermal barrier
coating prepared by plasma spray-physical vapor deposition, Chin. J. Aeronaut.
31 (8) (2018) 1764–1773, https://doi.org/10.1016/j.cja.2017.12.008.

https://doi.org/10.1016/j.ceramint.2014.05.095
https://doi.org/10.1016/j.jeurceramsoc.2015.12.038
https://doi.org/10.1016/j.actamat.2009.01.022
https://doi.org/10.1016/j.engfracmech.2018.03.014
https://doi.org/10.1016/j.engfracmech.2018.03.014
https://doi.org/10.1007/s40192-020-00168-2
https://doi.org/10.1137/s1064827503424505
https://doi.org/10.1137/s1064827503424505
https://doi.org/10.1007/s10704-017-0210-6
https://doi.org/10.1007/s10704-017-0210-6
https://doi.org/10.1016/j.compstruct.2020.112538
https://doi.org/10.1016/j.compstruct.2020.112538
http://refhub.elsevier.com/S0264-1275(22)00595-0/h0135
http://refhub.elsevier.com/S0264-1275(22)00595-0/h0135
http://refhub.elsevier.com/S0264-1275(22)00595-0/h0135
http://refhub.elsevier.com/S0264-1275(22)00595-0/h0135
https://doi.org/10.1016/j.mechrescom.2014.12.005
https://doi.org/10.1016/j.probengmech.2013.04.002
https://doi.org/10.1016/j.probengmech.2013.04.002
https://doi.org/10.1007/s11831-017-9211-x
https://doi.org/10.2514/1.2220
https://doi.org/10.1016/j.surfcoat.2013.09.051
https://doi.org/10.1016/j.surfcoat.2013.09.051
https://doi.org/10.1016/j.jeurceramsoc.2020.05.082
https://doi.org/10.1016/j.jeurceramsoc.2020.05.082
https://doi.org/10.1016/j.surfcoat.2008.06.132
https://doi.org/10.1016/j.engfracmech.2011.04.003
https://doi.org/10.1016/j.engfracmech.2011.04.003
https://doi.org/10.1016/j.ijsolstr.2020.12.020
https://doi.org/10.1016/j.ijsolstr.2020.12.020
https://doi.org/10.3390/app9071407
https://doi.org/10.3390/app9071407
https://doi.org/10.3166/remn.15.825-866
https://doi.org/10.3166/remn.15.825-866
https://doi.org/10.1016/j.jocs.2015.08.008
https://doi.org/10.1002/nme.2579
https://doi.org/10.1016/j.ijsolstr.2017.11.004
https://doi.org/10.1016/j.matdes.2018.107543
https://doi.org/10.1016/j.ceramint.2019.09.207
https://doi.org/10.1016/j.ceramint.2019.09.207
https://doi.org/10.1016/j.surfcoat.2017.06.001
https://doi.org/10.1016/j.surfcoat.2017.06.001
https://doi.org/10.1137/s1064827501387826
https://doi.org/10.1016/j.ress.2007.04.002
https://doi.org/10.1016/j.ress.2007.04.002
https://doi.org/10.1016/j.asoc.2021.107281
https://doi.org/10.1016/j.molliq.2020.115061
https://doi.org/10.1016/j.jcp.2010.12.021
https://doi.org/10.1016/j.jcp.2010.12.021
https://doi.org/10.1016/j.ress.2010.06.015
https://doi.org/10.1016/j.actamat.2009.01.017
https://doi.org/10.1016/j.actamat.2009.01.017
https://doi.org/10.1016/j.surfcoat.2015.04.021
https://doi.org/10.1016/j.surfcoat.2015.06.038
https://doi.org/10.1016/j.engfracmech.2018.04.031
https://doi.org/10.1016/j.engfracmech.2018.04.031
https://doi.org/10.1016/j.engfracmech.2011.04.003
https://doi.org/10.1016/j.engfracmech.2011.04.003
https://doi.org/10.2472/jsms.62.131
https://doi.org/10.1016/j.cja.2017.12.008

	Uncertainty quantification of the lifetime of self-healing thermal barrier coatings based on surrogate modelling of thermal cyclic fracture and healing
	1 Introduction
	2 Surrogate model for the lifetime of a self healing thermal barrier coating system
	2.1 Background
	2.2 Uncertainty propagation using polynomial chaos expansion
	2.3 Definition of input variable uncertainties
	2.4 Selecting the Polynomial Chaos Expansion order and the number of sample points

	3 Complex simulator
	3.1 TBC micromechanical finite element analysis
	3.2 Cracking and healing model
	3.3 Simulation of oxide layer growth
	3.4 Artificially accelerated thermal cycling

	4 Uncertainty quantification of self-healing TBC lifetime
	4.1 The trained surrogate model
	4.2 Residual plot
	4.3 Leave-one-out cross validation
	4.4 Sensitivity Analysis
	4.5 Uncertainty propagation plots
	4.5.1 Uncertainty propagation of microstructural features
	4.5.2 Uncertainty propagation of self-healing design


	5 Uncertainty quantification of benchmark TBC lifetime and self-healing crack growth rate
	5.1 Comparison with the benchmark TBC
	5.2 Uncertainty quantification of the self-healing TBC crack growth rate

	6 Conclusions
	Data availability
	Declaration of Competing Interest
	Acknowledgments
	References


