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Abstract

This practice-based research, which consists of this dissertation, a portfolio of
compositions, and a programming library for Python, explores the role played
by metaphors and mental models in providing a framework for algorithmic
composers to operate within. When working with algorithms, the composer
approaches the act of music creation through an algorithmic lens which, in turn,
can often suggest specific compositional ideas. To put it simply, in order to
compose with algorithms, the composer must think algorithmically, which, in
turn, affects how they conceive their musical ideas in the first place. We are
shaped by our tools.

This research argues that this algorithmic musical thinking is often realised
with the aid of metaphors and mental models. These cognitive mechanisms are
crucially important not only for algorithmic conceptualisation but also for their
potential to suggest specific ways of organising and manipulating algorithmic
ideas, directly influencing the final artwork. As such, this work presents a novel
way of approaching algorithmic composition, one in which the composer is
consciously designing specific (and possibly idiosyncratic) mental models. From
this perspective, composition becomes an investigation of the potentials of these
mental models, aligning itself with the notion that algorithmic music can serve
as a form of exploration to reach musical results not entirely planned a priori.

This approach is utilised throughout the accompanying portfolio of composi-
tions, which is also analysed in this dissertation. The mental models employed
in these compositions—particularly those involving musical repetition—are con-
nected to a specific set of aesthetic concepts that underpins this research. The
accompanying programming library, Auxjad, provides classes and functions writ-
ten in Python that directly implement these specific mental models. This library
is publicly available online under a permissive free software license, allowing
other composers to adapt and incorporate its code into their own practices.
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Chapter 1

Introduction

Life imitates art. We shape our tools and thereafter they shape us.
These extensions of our senses begin to interact with our senses.
The new change in the environment creates a new balance among
the senses. No sense operates in isolation.
—John M. Culkin (1967, p. 70)

A fundamental notion when composing algorithmic music is that algorithmic
thinking often suggests specific mental frameworks for the composer to operate
within. While the composer selects and manipulates the tools used in their
compositional process, they are also affected by this act of selection and manipu-
lation. In other words, in order to work with algorithms, one must be able to
think algorithmically, which, in turn, affects how one formulates their algorithms.
This is an important epistemological notion that also holds true in relation
to programming in general; as Chowning (1996, p. xii) profoundly remarks,
‘programming concepts can suggest functions that might not occur to one outside
of the context of programming.’ Likewise, compositional ideas developed while
working with algorithmic music might not occur to a composer engaged with a
more traditional and non-algorithmic approach.

This research focuses on how working with computers can lead to abstractions
of musical processes and materials that are algorithmic-specific. It is particularly
centred on the role played by metaphors in algorithmic conceptualisation: that
is, how they can aid us in interpreting abstract and complex ideas through more
palpable mental constructions. Metaphors are a crucial mechanism for creating
the mental models that enable us to better grasp abstract concepts (Lakoff &
Núñez, 2000, p. 39). Mental models, which Norman (2013, p. 26) defines as
‘the conceptual models in people’s minds that represent their understanding
of how things work’, can help us not only to comprehend an idea but also

1



suggest specific ways of organising and manipulating them. When working with
algorithmic composition, metaphors and mental models thus serve the critical
role of devices for framing epistemological conceptions. By being able to grasp a
complex abstract idea through a concrete mental model, the model itself becomes
substantially more malleable and may suggest new forms of operation that might
not have been thought of originally.

This practice-based research—consisting of this dissertation, a portfolio of
compositions, and a programming library—presents a novel way of approaching
algorithmic composition, one in which the composer’s starting point is the
conscious design of specific (and possibly idiosyncratic) mental models. That
is, the main characteristics of mental models are conceived beforehand, and
the act of composing becomes an exploration of the potentials of these mental
constructs—an idea that has broader applications to other forms of algorithmic
art. It is important to emphasise that this is not a linear process since, during
the design of a composition, the composer may go back to the metaphors and
mental models in order to reevaluate and adjust them accordingly. In other
words, metaphors and mental models do not only impact the algorithmic design
but can also be influenced back by it, as shown in the diagram of Figure 1.1. As
will be demonstrated in Chapter 5 with my Cartographies series (2017–2020),
a single mental model can be used as the departing point of multiple pieces,
each forming a unique sound world but which, nevertheless, could not have
been thought of with traditional stochastic methods. This approach is not only
discussed in this dissertation but also applied in practice in the compositions
that make up my portfolio, as well as implemented in my programming library,
Auxjad (Agostinho, 2021).

Metaphors

Mental
Models

Algorithmic
Design

Conceptual Domain

Figure 1.1: Diagram of the conceptual domain of my work
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One of the starting points of my investigation into the application of mental
models to algorithmic music is the research done by Lakoff & Núñez (2000),
who apply ideas from cognitive sciences in order to formulate a general theory
about how our minds engage with mathematical thinking. Lakoff & Núñez’s
main argument is that sophisticated and complex mathematical ideas are often
conceptualised in our minds through metaphors, building on the previous research
done by Lakoff & M. Johnson (2003). These metaphors can map complex abstract
concepts into much simpler and more concrete ideas, which are often based on
objects that belong to our physical world, thus evoking our experience of them.
This mapping between abstract concepts and concrete mental models makes the
process of interacting with mathematical ideas substantially more graspable and
intuitive, as one can think in terms of these physical objects more instinctively.1

Grounding abstract ideas using more concrete and tangible metaphors have
implications in fields far beyond the domain of mathematics. In the field of
music, one can frame a musical concept such as a tonal scale as a container
of ordered elements that is transformable through specific procedures such as
transposition. Framing these abstract ideas in such a way can both facilitate
musical thinking and lead to new avenues of musical thought. In my own practice
as a composer, I use very particular—and somewhat idiosyncratic—mental
models when conceiving my compositions. For example, in my Cartography series
(see Chapter 5), I employ a mental model that I straightforwardly refer to as
‘container’. This abstraction has very distinctive properties that dictate how
its elements can be manipulated and how they are randomly selected by the
piece’s algorithm. Its formulation leads to a different approach towards stochastic
techniques: musical entities are seen as objects that can be moved around in
specific and idiosyncratic ways inside containers of fixed partitions, which are
then used as the pool from which the random selections are made. In this same
series of works, I also employ other mental models such as a looping window
of constant size and the notion of ‘input music’, which is the piece of music
generated by the algorithm for the sole purpose of being the source for the
looping process, and which is thus never heard in its original state. These mental
models enable me to more easily conceptualise my musical ideas while, at the

1One of the many concrete examples that Lakoff & Núñez write about relates to how we are
able to conceptualise the infinite set of real numbers R, which are values that can be expressed
by an infinite decimal expansion, through a metaphor of points along a line. Each value is
associated with a measurable distance from a fixed origin point in the line, and arithmetic
operations are realised by shifting distances (Lakoff & Núñez, 2000, pp. 71–74). Therefore,
through the easily understood notion of measuring distances along a line, one can grasp—and,
most importantly, manipulate—an infinite set of numbers, each with an infinite number of
digits.
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same time, suggesting specific compositional routes to be taken.
This conceptualisation of mental models bears many similarities with the

concept of abstraction in programming, which refers to the modelling of complex
structures and behaviours through less complex ones. This is an essential idea
when working with the object-oriented programming paradigm (Weisfeld, 2004,
pp. 22–29). Objects are algorithmic entities that encapsulate both data and
behaviour and which can be derived from others or combined together—through
what is known as inheritance and composition, respectively—in order to form
increasingly complex structures. Higher-level objects can be directly manipulated
and allow for far more straightforward and direct ways to handle complex
algorithmic structures.2

By working with programming languages that support object-oriented ap-
proaches, algorithmic composers can gradually build tailor-made toolboxes de-
rived from the already available tools, making them more suitable for their
own compositional needs. Object-oriented programming provides a very flexible
environment for the user: classes written by others can be extended or altered,
further customising one’s tools. An example of this approach can be seen with my
own Auxjad library (Agostinho, 2021), which consists of a collection of classes
and functions written in Python intended to extend Abjad 3.4 (Bača et al., 2021)
to better suit my own compositional needs. This library, which will be discussed
in detail in Chapter 4, contains high-level implementations of many algorithmic
procedures and mental models that I use in my compositions. These serve as the
building blocks that I use to conceptualise and conceive my work.

1.1 Processes, Materials, and Aesthetics

One of the main preoccupations of my recent music is to create ambiguous and
disorienting listening experiences while employing linear and strict algorithmic
processes. Despite the linearity of these processes being evident to the eye when
looking at a score, the resulting listening experience often suggests a far richer
and more complex design. A significant factor for this comes from my use of
repetition and, in particular, the ‘looping window’ mental model that I employed
in many of my recent pieces. Loops are algorithmic processes by nature and, as
such, are highly suitable for examination through algorithmic means. When used
with the right set of looping parameters and input materials, these processes

2Similarly to how mental models and algorithmic design influence one another, designing and
manipulating higher-level objects is often not an orderly and tidy process as the programmer
frequently needs to reevaluate and adjust its lower-level parts during usage.
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can sound less strict than their implementation might suggest. This further
challenges the listener’s ability to assess whether the music is changing or not,
giving rise to a sense of disorientation and blurriness. These musical processes
can often suggest specific musical materials to be used as input, materials that
emphasise some of the processes’ characteristics. However, the choice of musical
materials can also influence the design of these processes, as the generated music
results from the combination of both. This two-way relationship is represented
by the diagram shown in Figure 1.2.

Musical
Processes

Musical
Materials

Musical Domain

Figure 1.2: Diagram of the musical domain of my work

Besides this interest in perceptual disorientation, another significant element
that informs the aesthetics of my practice is the notion of emergence. In the
context of algorithmic music, emergence is the phenomenon that refers to complex
high-level properties and behaviours of a system that cannot be accounted for
solely by its parts and simple rules (Pearson, 2011, p. 108). The concept of
emergence is present in many fields, including not only programming but also
sciences and arts. One such example from biology is the behaviour of flocks of
birds: although each individual bird in a flock reacts only to its own stimuli and
surroundings, the flock itself behaves as a single coherent entity that moves as
one, despite lacking any centralised decision-making. In the case of my music,
complex emergent structures can arise from interactions of the simple algorithmic
processes that create these pieces. Emergent structures predominantly occur
at the borders of consecutive looping windows, where materials that were not
originally consecutive are heard side by side. In the right circumstances, such as
when elements display pitch and temporal proximities (Bregman, 1990, pp. 455–
528), these now consecutive notes and chords can end up grouped by our ears
as one single linked structure. In such cases, emergence results from the same
mental model initially employed to intensify the listener’s disorientation. At the
same time, emergence can also contribute to the overall sense of disorientation
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of a piece: when emergent structures appear at the borders of looping windows,
they help mask the location of these borders, further obfuscating the linearity of
the looping process taking place. The mutual influence between these aesthetic
concepts is represented in Figure 1.3.

Disorientation

Emergence

Aesthetic Domain

Figure 1.3: Diagram of the aesthetic domain of my work

My work also displays a predilection for fragile musical materials—namely,
those that are soft and slow. In my music, this type of material serves not only an
aesthetic purpose but also a perceptual one: they contribute to the disorientation
caused by the use of near-repetition procedures, making the resulting music
more challenging to be grasped solely by ear. Similarly to the case of emergent
structures, the edges of the looping windows are often not apparent to the listener
due to these fragile materials, and, as such, they can help mask the linearity of the
musical process that is constantly unfolding in the background. Therefore, there
is a clear link between these aesthetic and musical notions: repetition processes
and fragile materials are employed for their ability to generate disorienting
experiences and emergent structures, while these aesthetic principles also suggest
specific materials and processes. This relationship is shown in Figure 1.4.

Musical
Processes

Musical
Materials

Musical Domain

Disorientation

Emergence

Aesthetic Domain

Figure 1.4: Diagram of influences between the musical and aesthetic domains of my work

6



These musical and aesthetic notions are also intrinsically dependent on the
conceptual entities that formalise the algorithmic composition. Specific aesthetic
concerns, musical processes, and musical materials are not only informed by the
algorithmic process but can also suggest specific metaphors and mental models,
as well as influence how they are reshaped during the algorithmic design phase.
As such, these concepts form an entangled network: that is, each informs and is
informed by all others, an idea represented in the diagram shown in Figure 1.5.

Metaphors

Mental
Models

Algorithmic
Design

Conceptual
Domain

Musical
Processes

Musical
Materials

Musical
Domain

Disorientation

Emergence

Aesthetic
Domain

Figure 1.5: Diagram of influences between all domains of my work

1.2 Algorithmic Exploration

Algorithms allow us to create whole worlds in which artistic discourse can take
place. Abstraction is a crucial component for shaping these worlds: it enables
the creation of high-level entities—the objects the artist interacts with when
working—while, at the same time, keeping the lower-level implementation and
mechanisms out of sight. While abstractions serve as a fundamental programming
technique for structuring code, mental models and metaphors serve as equivalent
notions for how our minds conceptualise these entities. Roberts & Wakefield
(2018, p. 303) argue that abstraction is not a mere ‘structural convenience’ but
can actually lead to a ‘model of the world’ which the musician interacts with
during their creation process. This notion is supported by Rohrhuber, Campo,
& Wieser (2005), who write:

Programming languages allow the formulation of such algorithms, not only
for the computer to actualize them, but at the same time, to maintain a
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discourse with a model, a portrait of some world with its own rules.

This interwoven relationship between the algorithmic world and our concep-
tualisation of it emphasises a critical aspect explored in the research of Hamman
(2000c, pp. 7–8): algorithms are never ideologically neutral. As such, Hamman
argues that technology becomes embedded in the algorithmic work itself and
thus informs part of its aesthetics. Because of this, the technological origin of
these works become an intrinsic part of the final artwork. This aligns algorithmic
music closer to conceptual art, where neither the process of creation nor the
object of art itself can be disassociated from one another (LeWitt, 1967a). Some
authors, such as Nake (2010) and Mohr (quoted in Hattrick & Mohr, 2012), go
as far as to argue that algorithmic art and conceptual art are, in fact, two highly
similar attitudes to art, mainly due to their use of recipes for realisation, focus on
processes, and neglect of materiality. Both argue that the main difference between
these two approaches lies in the hierarchy between concept and realisation: while
conceptual art gives more weight to the former, algorithmic art considers both
as essential aspects of the final artwork (Nake, 2010; Hattrick & Mohr, 2012).

An essential aspect of algorithmic art is that it enables artists to create works
that could not otherwise be conceived using non-algorithmic techniques. This is
a consequence of the idea that the algorithms can suggest specific frameworks
within which one operates—as such, working with algorithmic music becomes
an exploratory activity guided by heuristics, particularly when the algorithmic
systems are not deterministic. Essl (2007, p. 108) notes that computers enable
him to transcend a ‘limited personal horizon’, while Brün (2004, p. 120) writes
that he ‘learns’ from the aesthetics of his results. Code thus became part of the
compositional process as well as of the composition itself (Magnusson & McLean,
2018, p. 262). Such ‘formalised abstractions’ (a term used by McLean & Dean,
2018a, pp. 5–6) extend our musical thinking and, in the process, expand our
musical horizons. As such, music created with algorithmic means is inherently
algorithmic in nature: algorithms are not merely tools used for applying musical
processes to the composition materials, but they are also part of the nature of
these very processes and materials.

In this context, the computer can be considered as means for expanding
personal horizons, enabling composers to reach musical results outside the scope
of non-algorithmic music. Because of this, the algorithmic compositional process
becomes fundamentally interactive: the musical results will contain elements
that were not pre-planned by the composer—particularly when working with
generative methods—and therefore, the composer is constantly shifting between
tweaking the system and evaluating its partial results. Even in a deterministic
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context, it is impossible for someone to foresee all details of a complex algorithmic
composition. As Oberholtzer (2015, p. 246) states, ‘Any sufficiently complex,
but finite, fixed pattern of values is liable to be indistinguishable to a listener
from a random sequence.’ This brings algorithmic music towards the post-human
territory: the composer’s perspective is expanded by the machine, allowing for
previously unreachable results that are created through a form of symbiotic col-
laboration. Algorithmic music, and more generally algorithmic art, can therefore
become a significant method for investigating the relationship between people
and technology.

1.3 Notes on Terminology

My work is aligned with what Landy defines as ‘note-based music’, which is the
type of algorithmic music focused on generating music scores for instrumental
performance, as opposed to ‘sound-based music’, whose primary focus lies in audio
manipulation (2008). I am particularly interested in automatic systems that,
once set in motion, can run by themselves, requiring no further intervention by
the composer (Reich, 2002b, p. 34; Eno, 1996, pp. 330–331). When describing this
approach, the term ‘generative music’ will be used according to the categorisation
done by Levtov (2018), who defines ‘generative’ as referring to algorithmic
music that runs without user input, in contrast with the terms ‘reactive’ and
‘interactive’, which refer to music that responds to environmental input and
music that requires end-users to directly interact with the algorithm in order to
produce output, respectively. Although the focus of this dissertation resides on
the type of music that is the most relevant for my own compositional practice,
the ideas explored are applicable to other types of algorithmic music too.

These definitions are particularly necessary in the field of algorithmic music
since much of the terminology used carries historical and aesthetic connotations
with them and often have slightly different meanings depending on the composer
or group of composers being addressed (Ariza, 2005, p. 4; McLean & Dean, 2018a,
pp. 5–6; Roads, 1996). As such, I will avoid the terms ‘computer music’, ‘stochastic
music’, ‘computer-aided composition’, and ‘automatic music’ concerning my work,
although, occasionally, I will use them in relation to composers who used that
terminology to describe their own work. The word ‘automatic’ will be used in
relation to automatic systems or automatic processes, while ‘stochastic’ will be
used in the context of random procedures.
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1.4 Dissertation Structure

Chapter 2, ‘Why Algorithms Matter’, sets out the context of this research project,
identifying key literature sources. There are five key points that this chapter will
focus on. First is the notion that algorithmic composition can be approached
as a form of exploration, particularly when algorithmic systems are designed
using non-goal-oriented strategies. Next is the idea that technology embeds
itself into the final artwork, becoming an integral part of the aesthetics of the
result. This chapter also discusses the different approaches composers can take
when designing algorithmic systems, giving particular attention to generative
systems. Next, it examines how algorithmic thinking takes place and how it
relies on metaphors and mental models as fundamental aids for constructing
compositional frameworks. Finally, the interdisciplinary relevance of this research
topic is addressed, together with its relation to other art forms.

Chapter 3, ‘Aesthetic Dimensions’, focuses on the set of aesthetic concepts
that underpins my compositional practice. Individual sections are dedicated
to each of the four main aesthetic concepts I explore in my music, namely
‘slippage’, ‘fragility’, ‘emergence’, and ‘liminality’. This chapter establishes how
these concepts developed from my looping processes and their relationship to
repetition, a key element of my recent music. It also demonstrates how these
concepts interact with one another, as well as how they can be used for creating
music that is ambiguous and perceptually disorienting despite being composed
using linear algorithmic processes. These concepts will be framed from the point
of view of perception and listening experience, exploring their relation to Gestalt
grouping mechanisms.

Chapter 4, ‘The Auxjad Library’, focuses on the methodology employed
in my programming library, Auxjad. It discusses how mental models can be
formalised as code through object-oriented programming and how they can be
used to build ever-more complex algorithmic entities. The main tools that I use
to compose my music, namely LilyPond (Nienhuys & Nieuwenhuizen, 2003) and
Abjad (Bača et al., 2015), will be introduced together with my own programming
libraries, lilypondLibrary (Agostinho, 2019) and Auxjad (Agostinho, 2021). The
latter is the focus of a large section of this chapter in which I first discuss the
motivations behind it and then illustrate its capabilities by going over some of
its members.

Chapter 5, ‘Commentary on My Music’, consists of an extended discussion
on the music that makes up my portfolio of compositions. It starts with an
overview of the methodology used in these works, particularly the definition and
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characteristics of the ‘container’ mental model, which was the starting point of
my Cartographies series. This chapter discusses how this specific mental model
led to particular ways of approaching and formalising the works in Cartographies
and how it is connected to the aesthetics of these pieces. Musical repetition, and
in particular the use of the ‘looping window’ mental model, are also the focus of
the discussion. Selected pieces from this series will be analysed, together with
works written shortly after it, in order to illustrate the ideas explored in this
dissertation up to that point.

Lastly, Chapter 6, ‘Summary and Conclusion’, contextualises the research
findings of this project and demonstrate how my portfolio aligns with the ideas
explored in this dissertation. Possible future directions for this research are
addressed, both in terms of writing as well as composition.

In combination with this written dissertation, this practice-based research
project also consists of a portfolio of compositions and a programming library writ-
ten in Python, which will be discussed in depth in Chapters 4 and 5, respectively.
My portfolio of compositions informs and showcases many of the ideas discussed in
this text, addressing questions such as how mental models can shape compositions
and how the specific set of aesthetic concepts addressed in this text can be articu-
lated in practice. Table 1.1 lists all compositions submitted as part of this doctoral
project, with their year of composition, instrumentation, duration, and availabil-
ity of recording as of December 2021. Links to all scores and available recordings
can be found at https://github.com/gilbertohasnofb/PhD_portfolio. With
my programming library, Auxjad (Agostinho, 2021), I sought to demonstrate
how the mental models used in my work could be implemented using an object-
oriented approach and to develop a practical toolkit of compositional tools
for my own use. This library is publicly available online, released under the
MIT License, granting permission to any other composers to adapt and dis-
tribute its code as they wish. Auxjad’s source code and documentation page
are available in the links https://github.com/gilbertohasnofb/auxjad/ and
https://gilbertohasnofb.github.io/auxjad-docs/, respectively.
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Chapter 2

Why Algorithms Matter

Algorithms are everywhere. Ever since the so-called ‘Algorithmic Revolution’ took
place in the 1930s (Weibel, 2007; 2004), technology has silently taken over most
aspects of our lives, becoming entrenched in both social and political spheres.
Since the 1960s, artists of various disciplines have employed algorithmic ideas in
their practice, not only for their potential for generating open-ended exploratory
approaches to art-making (Eno, 1996, p. 330) but also for the epistemological
framework they provide for artistic investigations (Hamman, 2004, p. 121).

This chapter will focus on the questions raised by the use of algorithms as well
as the literature on the topic that supports my research project. It will discuss
some of the motivations for working with algorithms in the context of art creation
and the aesthetic and epistemological questions that this type of practice raises.
Then, it will consider various approaches taken when designing algorithmic music
systems, and in particular generative systems. This algorithmic thinking will then
be connected with the notions of metaphors and mental models and will examine
how these can affect the formalisation of algorithmic systems in the context
of arts. Finally, this discussion will be expanded to consider interdisciplinarity,
exploring the relevance of algorithmic thinking in other artistic disciplines such
as architecture, painting, photography, sculpture, and literature.

2.1 Algorithmic Composition as a Form of Exploration

One of the biggest allures of working with algorithmic composition is that it
facilitates the creation of musical results that were not entirely planned a priori.
Algorithms may not only suggest specific aesthetic and epistemological questions,
but they also enable artists to achieve results that would not be imaginable
without the computer. This is not solely due to the computer’s ability to promptly
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carry out complex computations—which are orders of magnitude faster than
manual calculations—but also because working with algorithms constitutes an
entirely different framework for an artist. Therefore, the relationship between
composer and computer is one of extension, as opposed to a merely utilitarian
link: the device widens the composer’s artistic horizons, allowing them to create
musical results that could only be conceived by working within an algorithmic
framework. Concerning this extension enabled by the computer to the composer,
Ariza (2005, p. 2) writes:

It is an error to think of algorithmic composition as a replacement of humans
with music-writing machines. The techniques of algorithmic composition
are employed at a great variety of compositional levels, often in a complex
mixture of algorithmic procedures and human choice, and always bound
by musical interpretation of a human composer. The levels and mixture
may be so intermingled as to make crisp distinctions impossible. Often, a
composer’s original materials are modified by composer-designed processes.
Often, the composer is expanded, not removed. Fixed materials, algorithms,
and the tuning of algorithms all become compositional materials.

This ‘tuning of algorithms’, described by Ariza above, constitutes an es-
sential aspect of working with algorithmic music. While a composer might
initially write a system with concrete musical ideas in mind, most algorithmic
systems—particularly generative ones such as those employed in my creative
practice research—will produce a complex output that the composer cannot
entirely predict. One of the reasons for this is that such systems often employ
processes whose sheer combinatorial complexity goes beyond what the human
mind is capable of calculating within a reasonable time frame. Furthermore,
generative systems that make use of stochastic processes or randomly generated
material will produce output that is the result of random procedures, which,
by design, cannot be wholly anticipated prior to generation. For example, in
relation to his own generative systems, Brian Eno (1996, p. 330) writes that ‘the
point of [his systems] was to make music with materials and processes I specified,
but in combinations and interactions that I did not.’

Therefore, one of the main advantages of working with algorithms is that
‘the autonomous system does all the heavy lifting; the artist only provides the
instructions to the system and the initial conditions’ (Pearson, 2011, p. 4). This
is perhaps the most important technological aspect enabling the exploration
of artistic territories beyond the limits of more traditional approaches. When
unshackled of the limitations of manual implementation, artists can quickly
explore a vast number of different processes, materials, initial conditions, and
constraints before committing to a specific result. The intermediary results from
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this experimentation phase may well suggest new paths to be explored for the
final artwork, paths that were not visible beforehand. As Nierhaus (2010, p. 56)
describes it, ‘Even simple algorithms stretch beyond our cognitive resources,
because of lack of precision, lack of speed, or limited working memory. So, the
only way to predict the result is to execute the algorithm.’

The algorithmic composition process, therefore, will often require a high
degree of experimentation and heuristics, creating a feedback loop of delineation
of algorithmic processes and evaluation of the output. In my own practice, it is
often at this experimental phase of the compositional process that the work starts
to take shape: specific characteristics of the musical output can be amplified or
dampened, alternative models can be tested out, parameters can be coupled and
decoupled, single processes can be extended as multiple different procedures, and
compositional elements can be multiplied or deleted altogether. By the end of
this process, the final work can bear little semblance to the original conception
of the system and its initial output. In relation to this ‘expanded investigation’,
Essl (2007, p. 108) writes,

[the use of computers] enables one to gain new dimensions that expand
investigation beyond a limited personal horizon. From this basis, algorithms
can also be regarded as powerful means to extend our experience—they
might even develop into something that may be conceived as an ‘inspiration
machine’.

Algorithms thus become an extension with which artists create. They are
not mere implementations of pre-conceived materials or pre-defined processes
but instead are entities that interact with the artist, allowing for unseen and
unforeseen materials, processes, and, above all, results. When working with
computers, ‘code becomes increasing [sic] important to the creative process, in
generating surprising results that are otherwise beyond the imagination of the
programmer’ (Magnusson & McLean, 2018, p. 262).

Supper identifies three distinct categories for classifying algorithmic music:
modelling traditional non-algorithmic procedures, modelling original algorithmic
procedures, and using algorithms from other disciplines (2001, p. 48). The first
category, algorithmic music that models traditional non-algorithmic procedures,
was the most prevalent in the beginnings of computer music when composers
implemented established compositional approaches such as the twelve-tone system
or Fuxian species counterpoint. Examples of works created with these procedures
include some of the early experiments by Lejaren A. Hiller & Leonard M. Isaacson
(Supper, 2001, p. 49; L. A. Hiller & Isaacson, 1958), Gottfried Michael Koenig’s
programs Projekt 1 and Projekt 2 (Essl, 2007, p. 115; Koenig, 1983, p. 30), and
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the work of David Cope, who uses algorithms to compose tonal music which
imitates the styles of specific Baroque and Classical composers (1991; 2004).
The second category, modelling original algorithmic procedures, is perhaps the
most representative of the three and the one utilised most frequently in my
compositional practice. It includes the majority of computer music works by early
pioneers such as Herbert Brün (2004) and Iannis Xenakis (1992), as well as works
such as George E. Lewis’s Voyager (1987), a real-time improvisation system
(Lewis, 2000; Steinbeck, 2018), Karlheinz Essl’s Lexikon-Sonate (1992–2020), a
piano sonata for real-time computer-controlled piano (Essl, 2018), and Clarence
Barlow’s Çoǧluotobüsişletmesi (1975–1979), generated using the author’s own
AUTOBUSK system (Barlow, 1990; Supper, 2001, pp. 49–50). The final category
relates to music created using algorithms from other disciplines, such as those
inspired by natural phenomena. Hanspeter Kyburz’s Cells (1993–1994) is an
example of such composition; it makes use of L-systems, which are generative
self-similar systems that can be used to model the morphology of plants (Supper,
2001, pp. 50–53). Some of Xenakis’s pieces can also be considered as being part
of this category. These include works such as Pithoprakta (1955–1956), which
uses equations from statistical mechanics of gases, and N’Shima (1975), which
implement ideas of Brownian motion (Xenakis, 1992, pp. 15–18, xiii). The work
of Agostino Di Scipio, in particular his Audible Eco-Systemic Interface project,
is another example fitting of this category. Di Scipio implements what he calls
‘bio-cybernetic principles’, biologically inspired algorithms for modelling dynamic
interactions of audio signals (Di Scipio, 2003; Eldridge & O. Brown, 2018).

Naturally, there are multiple ways of categorising a field as vast as algorithmic
music. Arguably, Supper’s last two categories—modelling original algorithmic
procedures and using algorithms from other disciplines—can be considered
subcategories of a single larger one, defined by an intrinsically-algorithmic
approach to music. Nierhaus similarly defines only two categories of algorithmic
music which he names ‘style imitation’ and, somewhat controversially, ‘genuine
composition methods’ (2010, pp. 259–260). From my own perspective as a
composer, the notion of the algorithm embedding itself in my musical work is of
significant importance to me. The main focus of this creative research lies in the
investigation of how algorithms affect my music and my musical thinking rather
than simply reaching pre-defined goals. As Shanken (2014, p. 13) succinctly
describes:

The computer’s most profound aesthetic implication is that we are being
forced to dismiss the classical view of art and reality which insists that
man stand outside of reality in order to observe it, and, in art, requires
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the presence of the picture frame and the sculpture pedestal.

Harper’s conception of composition as manipulation of musical objects also
reinforces this idea (2011, pp. 83–87). By abstracting musical material as objects
that can be manipulated as well as interact with one another, Harper effectively
invites composers to think in terms of relationships of objects and processes, both
of which are fundamental to algorithmic thinking. What distinguishes Harper’s
musical objects from traditional music parametrisation (such as the division of
sound into pitch, duration, dynamic, and timbre) is that they can accommodate
relative and subjective entities as well (2011, pp. 88–91). Moreover, his objects
can be joined together, creating new higher-level ones in the process; music is
then built through the relationships between increasingly complex objects. This
conception is highly suitable to be implemented using computers and very closely
models the approach utilised throughout the accompanying portfolio.

2.2 Aesthetics of Algorithmic Art

An important principle of technological art forms, such as algorithmic music, is
that technology is not aesthetically neutral and, as such, embeds itself in the
final artwork. By making use of technology, artists engage with its aesthetic
questions, which cannot be completely disassociated from the final artworks.
In other words, technology becomes an intrinsic part of the artistic output. In
relation to algorithmic music, these ideas are supported by Hamman (2000c,
pp. 7–8), who writes:

A musical work can no longer be accounted for purely through examination
of the acoustical experience it engenders or the formal structure it may
exhibit. As technological, the work constitutes both the result and the
technological forms by which the result was realized. These include the
particular technical tools plus the attitude of the subject under whose
unfolding those tools were taken up and applied. To equate music solely
with the results of its productive activity is to disembody the result from its
technique—it is to fetishize the musical work, converting it from a catalyst
for experience into a commodity to be traded within an economy, whether
financial or ideological.

For Hamman, technology is an integral part of the artwork and thus con-
stitutes a critical element of the resulting aesthetic posture.1 This approach

1When writing about Xenakis’s ST/10-1, 080262 (1962), Keller & Ferneyhough go as far
as to argue that, due to its stochastic nature, understanding this composition’s underlying
mechanisms is a prerequisite for understanding the piece itself (2004, p. 161). Although I myself
do subscribe to Hamman’s view that technology becomes an intrinsic part of the resulting
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requires understanding technology as both social and cultural phenomena in-
stead of a simple utilitarian tool used to reach pre-defined goals. Based on the
ideas of Andrew Feenberg, Hamman writes about two contrasting approaches
to the use of technology in arts, namely ‘instrumental theory’ and ‘substantive
theory’ (2004, p. 116). Instrumental theory considers technology merely as a tool
that exists beyond any social and cultural influences. From this point of view,
technology is intrinsically apolitical and stands apart from society. Substantive
theory comprises an opposite approach: technology is anything but neutral and
can serve as a tool for social and political dominance, which in turn can lead to
a total rejection of technology (Hamman, 2004, p. 116). Hamman then defines a
third approach which he calls the ‘critical theory of technology’. It states that
the relation of technology and society is malleable, as opposed to the immutable
notion used by both preceding theories. From this point of view, the social,
cultural, and political contexts in which technological tools are created become a
fundamental aspect for our understanding of them (Hamman, 2004, pp. 116–117).
It is through the lens of the critical theory of technology that I consider my own
use of algorithms.2

For Hamman, composers working with algorithmic systems will often chal-
lenge the instrumental view of technology that is commonplace outside the
algorithmic art world (2000c, p. 8). Algorithmic composers can use technology
in ways that transcend the simplistic ‘problem-solving tool’ metaphor. In doing
so, technology helps inform the context in which the artwork is created and
determine both cognitive and epistemological aspects of the resulting piece. As
Hamman (2000c, p. 8) writes,

technology preserves the problematic of compositional process rather then
[sic] attenuating it, while the technical thing is transformed from an object
for the social mediation of cognitive and epistemological activity to an
object through which humans explicitly and experimentally participate
directly in the shaping of that activity.

These points bear parallels to some of the core ideas of McLuhan’s writings on

music and is strongly connected with its aesthetic results (2000c, pp. 7–8), I do not believe
that the listener must understand the intricacies of the algorithmic mechanisms by which
these pieces are created in order to understand and appreciate the resulting music. To me, the
acknowledgement that a work is the result of a purely technological process, one that engages
with generative and stochastic processes and whose automatism is dependent on computers, is
enough to inform the listener of the context by which the piece was created and help guide
them towards a different way of listening.

2It is important to point out that the notion of technology not being aesthetically neutral
is not a recent idea; as Roads points out, this idea had already been raised in relation to
algorithmic music by Herbert Brün in as early as the 1960s (1996, p. 857).

18



medium theory: technology, as an integral part of the artwork, also becomes part
of the artwork’s message. McLuhan (1964, p. 23) writes, ‘the personal and social
consequences of any medium—that is, of any extension of ourselves—result from
the new scale that is introduced into our affairs by each extension of ourselves,
or by any new technology.’ To consider algorithmic music solely as the sounding
result that emerges at the end of the creation process is to selectively disregard
the technology that enabled such music: in other words, it is to ignore part of
the artwork’s message as well.

Another important aspect that informs algorithmic art is the fact that
algorithms have become pervasive entities, permeating virtually every single
aspect of our social and cultural lives. This phenomenon is the result of what
Weibel calls the ‘Algorithmic Revolution’, a silent revolution which saw algorithms
being disseminated into every corner of our lives. According to him, this revolution
lay entirely behind us and went practically unnoticed, resulting in these invisible
algorithms (Weibel, 2007; 2004). This latter idea is also supported by Hertz
(2009, p. 59), who argues:

Computers have become devices at once ubiquitous and practically in-
visible. Microprocessors hide in plain sight in cars and kitchens. Digital
communications span the globe. The personal computer and the internet
are only the most obvious sites of computational technology. Every medium
bears its mark, as do the clothes we wear and the food we eat. It permeates
our society, yet we are oddly oblivious to it. For a while, everything new
and wonderful was ‘digital’—now the term elicits little more than a yawn,
the consumer’s ultimate revenge.

Against this passive attitude towards technological progress, algorithmic
artists can be instrumental in raising awareness with their audiences, inviting
them to engage with certain aspects of technology that would commonly go
unnoticed—or merely elicit a ‘yawn’. When technology becomes embedded in
artworks, it invites the audience to acknowledge and react to it, which in turn
can challenge preconceived notions that they may have. Uliasz makes the case
that through ‘misuse’ and ‘appropriation’, an artist can overcome pre-established
perspectives of a given technology, purposefully shifting it towards an anti-
capitalist and non-commodified aesthetics (2017). She writes:

In my practice, I identify my fundamental aim to engage with such a
‘perversion’ through working with pre-existing structures and systems.
Through a practice of misuse, decontextualizing technologies from a typical
structure of information transmission and production is used to reveal the
structure of the technology itself. My background in the humanities and lack
of formal education or corporate involvement with information technology
has required that I perceptually and ethically understand the tool before I
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might begin to figure out how to work with it. My role as an artist rather
than a developer, as someone that is working from within an altogether
different ‘structure of participation,’ is not to develop a technology in order
to advance or complicate its function, but rather to develop an alternative
use that may seem unintuitive or even counterproductive to some.

It is through these notions of misuse and appropriation that machines origi-
nally designed for calculations can become music boxes, that spreadsheets can be
filled with poetry, that military technology can be used in art installations, and
that artefacts of the computing world—the hardware, the cables, the screens,
the noise—can become raw material for the creation of art. In the case of my
own musical practice, the algorithm itself becomes a malleable material, one that
is sculpted through the feedback loop of heuristic experimentation previously
described in Section 2.1. As Burnham (2015, p. 115) states, ‘In evaluating systems
the artist is a perspectivist considering goals, boundaries, structure, input, output
and related activity inside and outside the system.’ He argues that while objects
have fixed shapes, a system—and, therefore, an algorithm—‘may be altered in
time and space, its behaviour determined both by external conditions and its
mechanisms of control’ (Burnham, 2015, p. 115). This concept of a malleable
system that can be altered externally (such as by an artist) reinforces the notion
that algorithmic works result from, and can only with, a two-way interaction
between artist and technology.

Such preoccupations were already present in the artworks and writings of
the early pioneers of algorithmic art. Reichardt, for instance, highlights the
non-utilitarian use of computers to produce art in the early 1970s (1971b,
p. 8), while, during the same period, Brün writes about the possible roles of
the composer in a technological era (2004, pp. 163–176). He also argues that
composition systems can only become meaningful when they are based on
human decisions during their creation (Brün, 1969, p. 119), emphasising the
importance of understanding these systems as extensions of the composer and
not as isolated tools. Around the same time, Bense wrote extensively on what he
called ‘generative aesthetics’, which can be understood as the aesthetics resulting
from the application of generative methods to computer art together with the
epistemological questions that it raises (1971, pp. 57–58). Bense also had some
more contestable ideas about computer aesthetics, particularly relating to the
role played by randomness in computer art. Reichardt writes that ‘Professor
Max Bense [. . .] has pointed out that randomness involved in computer graphics
replaces that aspect in art which is described as intuitive. Thus the randomizing
procedures in computer technology are analogous to an artist’s intuition’, an
idea which she finds questionable (Reichardt, 1971b, p. 89). On the other hand,

20



she does point out that such efforts show that ‘attempts are being made to
find equivalence between human activities in the sphere of creativity and the
realization of those activities with the aid of a cybernetic device’ (Reichardt,
1971b, p. 89).

It becomes evident from these texts that a major preoccupation of early
practitioners of the field was to relate technical aspects of algorithmic music to
non-technological approaches to composition. On this point, Burnham warns
of the dangers of ‘craft-fetishism’, which, according to him, are the basis of
modern formalism (2015, p. 114). He argues that relevant artists should seek
means of production for their artwork that are closer to their own society,
engaging with it in the process. For him, ‘the artist becomes a symptom of the
schism between art and technics. Progressively the need to make ultra sensitive
judgements as to the uses of technology and scientific information becomes
“art” in the most literal sense’ (Burnham, 2015, p. 114). The development
of algorithmic composition can also be approached using Sontag’s notion of
‘new modes of sensibility’ (2018). In her essay from 1965, Sontag identifies a
transformation in the role of art that emerged as a reaction to the technological
developments of society. She then describes how the perceived chasm between arts
and science—what she calls a conflict between ‘two cultures’—is but an illusion,
with artists contemporary to her challenging these boundaries and developing
an entirely new sensibility towards art-making, one that bridges the gap by
transforming the role of art altogether, often by embracing these technological
developments (Sontag, 2018, pp. 39–41). This is an important idea that is very
relevant to this day, with a similar position articulated by Hamman (2000c, p. 2),
who writes that ‘technological art penetrates technology as means. In this way,
its activity understands the technological as aesthetic, and vice-versa.’

2.3 Systems of Algorithmic Music

2.3.1 General and Composition-Specific Systems

Composers working with algorithmic music systems commonly adopt one of two
different design approaches: they can either create general systems that will be
used for multiple different compositions or design a system tailored for a specific
work (Bown & Martin, 2012, p. 9).

General systems are designed to be flexible: the composer interacts with
the system through an interface that can be used for setting parameters and
initial conditions, which, in turn, will affect the musical output (Ariza, 2005,
p. 18). These systems tend to implement general compositional ideas and are
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designed to create more than one different piece of music. Some composers
publicly release their general systems for others to use, suggesting that they may
not view the system as part of any resulting artwork but rather the composer’s
selected subprocesses and chosen initial parameters. Notable examples of this
approach include Koenig’s Projekt 1 and Projekt 2 systems (commonly referred
to as PR1 and PR2), used to compose his 3 ASKO Pieces (1982) and 60 Blätter
(1992), respectively (Koenig, 1983, p. 27; Ariza, 2005, pp. 46–47; Clarke, Dufeu,
& Manning, 2020, pp. 59–60); Xenakis’s Stochastic Music Program (SMP), used
to compose the ST series of compositions written in 1962, which include ST/10-1,
080262, ST/48-1, 240162, Atrées, and Morsima-Amorsima (Ariza, 2005, p. 46);
and Barlow’s AUTOBUSK program, used to compose variazioni e un pianoforte
meccanico (1986) and Orchideae Ordinariae or The Twelfth Root of Truth (1989),
among other pieces (Barlow, 1990, p. 168; Hajdu, 2016, p. 182).

These programs are all examples of ‘composition agnostic’ systems: they
do not contain procedures or musical operations specific to a single work but
rather general functions that can be used to create many different works by
anyone who uses them. Composers using such systems will then choose, during
the compositional process, what algorithmic procedures will be used and also set
parameters to values of their liking.3 Although fundamentally responsible for the
musical output, these programs are not themselves the artwork, even though they
will invariably suggest particular aesthetic and technical preferences (e.g. Koenig
implemented serial procedures in his system, Xenakis’s system is specifically
designed for stochastic processes, Barlow’s system uses evaluation functions based
on his own musical theories to manipulate and select material). Even though
composers often write these programs for their own use, some made their systems
freely available to others, emphasising that these are general music systems that
any composer can use to create their own works. The aforementioned systems,
Koenig’s PR1, Xenakis’s SMP, and Barlow’s AUTOBUSK, are all publicly
available, with Xenakis having already released the source code of his software
back in 1965 (Ariza, 2005, p. 46; Barlow, 2000).

Regarding the operation of these general systems, Xenakis (1992, p. 144)
poetically writes:

With the aid of electronic computers the composer becomes a sort of pilot:
he presses the buttons, introduces coordinates, and supervises the controls

3Regarding Koenig’s PR2, Berg (2009, p. 79) writes that it ‘can be considered an open
system which required the user to construct a structural formula and specify a great deal of
input data (about 60 questions needed to be answered). Input was not only extensive, it was
also quite complicated.’
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of a cosmic vessel sailing in the space of sound, across sonic constellations
and galaxies that he could formerly glimpse only as a distant dream. Now
he can explore them at his ease, seated in an armchair.

While Xenakis’s systems are complex cosmic vessels to be piloted by anyone
with access to them, other composers have approached algorithmic systems
in a different way: they create their own personal vessels which, after much
testing, are to be entirely run on autopilot, with all buttons and levers hidden
away from any prospective passengers. These are composition-specific systems
designed by a composer to create a specific work. In this case, it becomes
difficult to differentiate the system from the artwork itself: the choices made
when designing the algorithm—such as those related to musical processes, input
material, system constraints, and initial values—are hardcoded in the system
itself. Therefore, these systems are often highly idiosyncratic rather than being
focused on realising any other compositional ideas, be they of the designers
themselves or of other composers (Bown & Martin, 2012, pp. 9–11; G. Wang,
2017, pp. 72–73). Generative systems used to create indeterminate performances
or ever-changing series of works are also included in this category since these are
not general tools to be used by others but rather tailor-made machines designed
with specific compositions in mind.

Works that make use of such systems include Jem Finer’s Longplayer (1999),
a deterministic thousand-year-long algorithmic composition (Longplayer, 2019);
Agostino Di Scipio’s Audible Eco-Systemic Interface project, a generative system
that interacts with its external environment (Di Scipio, 2003; Eldridge & O.
Brown, 2018, p. 232); Karlheinz Essl’s Lexicon-Sonate (1992–2020), a real-time
composition for computer-controlled piano (Essl, 2007, pp. 122–124; Essl, 2018);
Josiah Wolf Oberholtzer’s note-based works Aurora (2011), Plague Water (2014),
and Invisible Cities (2014–2015), generated with Abjad (Oberholtzer, 2015);
Tom Johnson’s Automatic Music (1997) and Tilework series (2003), which use
numeric algorithms and tiling techniques in their musical processes (T. Johnson,
1998; 2011; 2006); Brian Eno’s Music for Airports (1978), originally created with
a system of tape loops of different lengths (Essl, 2007, pp. 121–122); and Kevin C.
Baird’s No Clergy (2004), a real-time score synthesis composition (Baird, 2005).

Despite this separation of two contrasting approaches, it is important to
note that composers working with composition-specific systems will likely reuse
ideas from their past works. They may reuse compositional ideas as well as code
itself. This is the case of my own music: each piece is written as a standalone
program whose execution will generate only that very composition. However,
I have written two open-source libraries that provide the framework for my
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algorithmic compositions (see Chapter 4). The first, lilypondLibrary (Agostinho,
2019), allows users to generate LilyPond scores using Fortran syntax. It is a
very general library that does not contain implementations of musical processes,
serving only as a bridge between Fortran and LilyPond. The other, Auxjad
(Agostinho, 2021), serves as a musical toolbox for algorithmic composers and,
as such, contains implementations of specific mental models and algorithmic
processes frequently used in my compositional research but which are general
enough to be of interest for others. Both libraries are publicly available online
under permissive free software licenses and can be used and adapted by other
composers, a common approach taken by many other algorithmic composers (see
Section 4.5).

Musical systems may also be designed with multiple specific compositions
in mind, and in which case, the system itself may evolve as each piece is
composed. This approach can be found in Bernhard Lang’s Computer-Aided
Design for Musical Applications system, commonly referred to as CadMus. In
addition to various cutting and looping processes, a substantial part of CadMus
consists of cellular automata algorithms that can be used to manipulate musical
material (Dysers, 2019, pp. 57–62). Originally written in 1997, Lang reworked and
expanded his system when composing the first piece of the Monadologie series
(2007–present) and used it in every composition of this series until abandoning it
with Monadologie XXIX (Dysers, 2019, p. 57). This blurred boundary between
a single evolving system and a series of different pieces is acknowledged by
Lang himself, who argues that ‘the Monadologies are all versions of a single
composition’ (Lang as quoted in Dysers, 2019, p. 57).

It is important to recognise that algorithmic music can also be designed and
implemented without the aid of computers or other technological apparatuses.
Pieces such as Steve Reich’s Clapping Music (1972), Arvo Pärt’s Spiegel im
Spiegel (1978),4 and John Cage’s Music of Changes (1951) can all be fully defined
with automatic procedures and are thus suitable for algorithmic implementation
with computers, even though the composers did not use them (Reich, 2002a;
Supper, 2001, p. 48; Shvets & de Paiva Santana, 2014; Pritchett, 1996, pp. 78–
88).5,6 In relation to his process pieces, Reich (2002b, p. 34) writes that ‘once

4In the case of Arvo Pärt, he has adopted the term ‘computer music’ to describe his
compositions that employ algorithmic methods, despite not using computers in his compositional
process (Supper, 2001, p. 48).

5Cage’s piece would, of course, result in a different score due to the intrinsic randomness of
his chance operations.

6A notable early example of an almost entirely automatic composition is Pierre Boulez’s
Structures Ia (1951), often considered the first work of total serialism. Despite nearly all
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the process is set up and loaded it runs by itself.’ Any distinction between
composition and algorithm is completely absent in the case of Process Music,
with Reich (2002b, p. 34) arguing that he composes ‘pieces of music that are,
literally, processes.’

2.3.2 Designing Music Systems

The designer of an algorithmic music system must always address the questions
related to what Roads calls the ‘representation issue’: how is the musical data
represented in the program, how is this data displayed in the interface, and,
in the case of general music systems, what controls are made available to the
user (1996, pp. 856–857). In other words, the representation issue is, at its heart,
a question of musical mapping: how are musical elements mapped into data
structures and how can those be manipulated by the system itself and its users.
This mapping is of utmost importance for a system designer since it acts as the
interface between the musical objects and computer code.

Specific mappings can also suggest specific ways of working. For types of
music that are naturally parametrised (particularly those that use distinct and
decoupled parameters), this mapping can be very straightforward. An example
of this can be seen in the work of serial composers, who employed simple numeric
mappings and manipulations. This was done by first mapping a source of basic
material (usually a pitch-class set) into a series of numbers. These numbers could
then be manipulated, with the result mapped back into musical parameters such
as pitch, duration, dynamics, and articulations (Boulez & Cage, 1995, p. 101;
Wuorinen, 1994, p. 130). This type of mapping can be very easily implemented
with a computer, as composers have done since the 1950s (Ariza, 2005, p. 65;
L. A. Hiller, 1981, p. 12).

However, this does not mean that more complex musical objects—and,
therefore, more complex mappings—cannot be accomplished using computers.
As Ariza (2005, p. 139) writes:

Many early CAAC [computer-aided algorithmic composition] systems, and
numerous modern systems, treat musical parameter values exclusively as
data symbols. This data is either numeric (such as time or pitch values) or
symbolic (such as dynamic symbols or performance articulations). With
object-oriented programming, it is possible to model musical materials
and procedures as specialized objects. Although not necessarily offering

of its parameters being processed by deterministic serial procedures, the piece is not fully
automatic because one parameter, namely register, was arbitrarily selected by the composer
on a note-by-note basis, as opposed to being implemented using a serial procedure (Brindle,
1987, pp. 25–33).
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computational advantages, such techniques allow for more intuitive controls,
transformations, and interactions of musical material.

As opposed to the simpler mapping of parameters into numbers or symbols,
object-oriented programming allows the composer to map complex musical
entities and their behaviours into a single structure known as a ‘class’. This
allows for higher-level manipulations, as these entities resemble the musical
structures we traditionally use in music, as opposed to working with arbitrary
numerical mappings. A class serves as a blueprint for creating multiple instances
of these entities. These instances contains attributes (i.e. their data) as well as
methods (i.e. the functions used to manipulate this data). All data manipulations
are realised by invoking the methods available in an instance, as opposed to using
functions defined outside the class, a concept known as encapsulation (Weisfeld,
2004, pp. 10–21; Pearson, 2011, pp. 112–125). Classes allow programmers to
construct increasingly complex structures: they can ‘inherit’ attributes and
methods from a so-called parent class as well as be made of instances of other
classes, a technique known as ‘composition’ (Weisfeld, 2004, pp. 21–27). Working
with object-oriented programming allows for a much more natural mapping
of musical concepts into computer code (Treviño, 2013, pp. 12–23). This is
because objects provide both representational advantages over simple numeric
data processing and allows for complex interactions between them (Ariza, 2005,
p. 139). These ideas will be discussed in more detail in Chapter 4, which will
also show how these techniques can be used to model high-level musical ideas
(Bača et al., 2015; Oberholtzer, 2015, pp. 11–17).

Composers can use similar objects to the ones described above even outside
the realm of computer-aided composition, such as by approaching composition
using the extended definition of musical objects proposed by Harper. For him,
musical objects can be both ‘nouns and verbs’, so that a single parameter, a
whole musical note, or even a whole piece of music can all be considered as
objects, as well as any processes such as reverb or tempo changes (Harper, 2011,
pp. 83–87). This concept is as powerful as it is simple: it provides a direct
framework for approaching the problem of musical mapping into code, and it
translates especially well into object-oriented code.

Interestingly, Harper also includes relative objects in his definition of musical
objects. These include simple subjective ideas such as ‘harsh’ or ‘loud’ as well as
more complex and flexible instructions such as ‘play music for twenty seconds’
(Harper, 2011, p. 88). These can still be very useful when designing algorithmic
processes or selecting constraints for a system; for instance, a system might use
a simple lookup table to store arbitrary harshness values for a list of instruments
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and their several playing techniques, a list subjectively created by the composer.
This table can then be used by the system when making algorithmic decisions
during the system’s runtime.

For Harper, a musical object can be anything that holds or transforms musical
information: individual note parameters, small-scale structures such as notes and
musical cells, large-scale structures such as phrases, sections, and form, as well as
any musical process and function. These can be applied not only to other objects
but also to themselves. Effectively, musical objects are the building blocks of any
musical abstraction. This is of crucial importance since, as Roberts & Wakefield
(2018, p. 303) write, ‘Abstractions are not merely structural convenience: through
their constraints and affordances, abstractions effectively present a model of a
world with which a live coder maintains discourse.’ Their remark is valid not
only for live coders but also for all algorithmic composers.

By engaging with systems through objects, artists also engage with a partic-
ular framework within which they operate. Malleable and interactive objects are
more accessible to be abstracted by our minds than vectors and matrices of purely
numeric or symbolic data. This very process of abstracting concepts can lead to
particular ways of thinking, suggesting specific procedures and materials in the
process. Therefore, the formalisation of the system and the act of composition
become more closely aligned than in more data-driven approaches to algorithmic
music. Even the simple act of naming objects, attributes, and methods affect the
system’s affordances, which will affect how users perceive and approach them.
As Magnusson & McLean (2018, p. 262) argue:

High-level pattern languages are useful as they are minilanguages or high-
level systems that provide bespoke and often idiosyncratic ways of thinking
and performing music. In the design of pattern systems, the naming of the
functions suggests affordances: they are linguistic abstractions of processes
that may or may not be easy to write in a standard language. [. . .] The
system’s method names thus become semantic entities in the compositional
thinking of the composer or performer. They outline the scope of the
possible.

These affordances are crucial in establishing the system’s relevance and
significance to the composer as they signal the system’s structure and information
potential (Brün, 2004, p. 207).

2.3.3 Generative Systems

Composers have explored rigorous systems for generating music much before
the first experiments in algorithmic composition from the 1950s. One of the
first known examples dates back to the 11th century when, in his Micrologus de
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disciplina artis musicae (ca. 1030), Guido d’Arezzo described a rigorous method
for converting any text into melodic lines. This is done by using a fixed mapping
between the vowels of the text’s syllables and musical pitches (Palisca & Pesce,
2001). Despite the deterministic nature of this procedure, the resulting music
will vary according to the input text and is carried out automatically. Johannes
Ockeghem’s 15th-century Missa cuiusvis toni is another early example of a
work in which the composer is partially ceding control, creating a predecessor
to Eco’s notion of an open work (1989). This mass is notated without clefs,
allowing performers to interpret the same music in any of four distinct musical
modes: Phrygian, Mixolydian, Lydian, or Dorian (Mengozzi, 2008, p. 56). Some
other early examples also show a more direct use of indeterminacy. Wolfgang
Amadeus Mozart’s apocryphal Musikalisches Würfelspiel (1787) requires dice
throws to select and combine measures of pre-composed music, while John
Clinton’s Quadrille Melodist (1865) consists of a deck of cards containing musical
fragments that are freely combined by the pianist (Edwards, 2011, pp. 60–61).

However, musical indeterminacy would only gain a prominent role in com-
position with the work of John Cage, who started experimenting with chance
operations in the 1950s (Pritchett, 1996, pp. 70–71). Cage’s ideas were born
from his studies of Zen Buddhism: for him, chance operations provided a method
for removing himself from his music, avoiding his own ‘individual taste and
memory’ (Griffiths, 2011, pp. 26–30). Cage’s approach was highly influential,
reaching not only his close group of American composers but also Europe’s
leading serial composers, such as Karlheinz Stockhausen and Pierre Boulez, both
of whom experimented with notions of indeterminacy in their works (Griffiths,
2011, pp. 30–33, 107–13).

Although computers are not the only available tools capable of generat-
ing random data—Cage himself initially relied on coin tosses (Griffiths, 2011,
p. 26)—their main strength lies on their speed: computers can ‘flip’ many si-
multaneous coins at extraordinary speeds, allowing for vastly more complex
random procedures than those carried out manually. Most programming lan-
guages provide a built-in pseudorandom number generator (often abbreviated
with the acronym PRNG). PRNGs are deterministic mathematical functions
that output seemingly random numbers; although the resulting sequence of
numbers from a PRNG is deterministic, these functions are designed to ensure
that certain statistical properties are respected over long sequences (Park &
Miller, 1988). In other words, for most purposes, the output of these functions
will be indistinguishable from factual randomly generated sequences, particularly
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for the use cases found in generative art systems (Pearson, 2011, p. 52).7

Randomness has been an integral technique used by algorithmic composers
since the very first experiments of computer music. In what is considered the
first computer-aided composition, Illiac Suite (1956) for string quartet, Lejaren
Hiller and Leonard Isaacson used random and statistical procedures such as
Markov chains and random walks (Edwards, 2011, p. 61). Xenakis further
developed these ideas through what he termed ‘stochastic music’, i.e. music
created using strict probabilistic procedures often inspired by scientific disciplines
such as physics, statistics, and mathematics (1992, pp. 1–42). Although his early
stochastic compositions, such as Pithoprakta (1956) and Achorripsis (1957),
were laboriously implemented without computers, Xenakis gained access to an
IBM-7090 mainframe computer in Paris in the early 1960s, which he used to
formalise and implement the methods employed in his earlier pieces, leading to
his renowned ST computer algorithm, completed in 1962 (Xenakis, 1992, pp. 131–
144; Essl, 2007, pp. 116–117). This algorithm was used to create compositions
including ST/48, 1-240162 (1962) for large orchestra, ST/10, 1-080262 (1962)
for ten soloists, Atrées (1962) for ten soloists, and Morsima-Amorsima (1962)
for four soloists (Xenakis, 1992, p. 144). Xenakis’s stochastic music marks an
important moment in the history of computer music, shifting the focus from
technical experimentation towards the creation of ambitious artworks composed
for the concert hall. For him, the computer was not merely a tool for generating
music artefacts but rather a new avenue for artistic experimentation which
transcended a more simplistic rationalist discourse (Hamman, 2004, p. 121).
According to Hamman (2004, p. 121), ‘automation provided [Xenakis with] a
framework for epistemological investigation concerning the very nature of sound
and music.’

Any algorithmic system that employs randomness is able to output different
results at each execution, allowing composers to engage with Eco’s idea of the
open work (1989). Even pieces that exist as a single score can be thought of
as being ‘conceptually open’ since the system that created it is also able to
create multiple other versions of the same composition. In relation to his piano
piece Çoǧluotobüsişletmesi, realised with the AUTOBUSK software (Barlow,
1990), Clarence Barlow states that ‘The actual piece is only one of many possi-
ble realizations’ (Supper, 2001, pp. 49–50). This is because AUTOBUSK is a

7Some specific fields may require more robust random number generators. For instance,
regular PRNGs, such as those found in Python’s random module, are not secure enough for
cryptographic use. Python 3.6 introduces the module secrets for generating cryptographically
strong random numbers.
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generative system capable of outputting randomised MIDI data for a fixed set
of parameters. Therefore, in this case, Brian Eno’s ‘ever-changing music’ (1996,
pp. 330–332) is replaced by a system with ‘never-ending potential’, i.e. a system
capable of producing a nearly infinite pool of musical realisations from which the
note-based composer must select. A single piece such as Çoǧluotobüsişletmesi
exist as a single realisation and is, therefore, a closed work, but the system that
was used to generate it can be considered itself as a form of open work since
each new execution will produce different sounding that nevertheless obey the
same set of rules (Eco, 1989, pp. 1–4). Keller & Ferneyhough similarly argue
that individual compositions in Xenakis’s ST series ‘might be understood as
instantiations of a general model’ (2004, pp. 161–162). Concerning this approach,
Essl (2013, p. 299) remarks,

by transforming a compositional idea into a more generalized abstract
model I could use this ‘formula’ for obtaining an infinite number of struc-
tural variants of the same piece. In so doing, the traditional concept of a
deterministic and untouchable work (an opus magnum et perfectum) is
transformed into a fluid and open process which can be expressed by an
algorithm.

Generative techniques such as these allow composers to work with defined
procedures and materials but let the system create their combinations and
interactions, resulting in music that is, ultimately, unforeseen. This is exactly the
technique used by Eno in his generative systems, which are based on probabilistic
rule-sets to generate music that is new at each execution. He writes that part of
his enjoyment of this type of music came especially from ‘the knowledge that the
music I was hearing at any given moment was unique, and would probably never
be heard in exactly that way again’ (Eno, 1996, pp. 330–331). This method of
‘growing’ rather than composing music shows a strong parallel with the approach
taken by generative visual artists, as Pearson (2011, p. xviii) highlights:

Generative art isn’t something we build, with plans, materials, and tools.
It’s grown, much like a flower or a tree is grown; but its seeds are logic
and electronics rather than soil and water. It’s an emergent property of
the simplest of processes: logical decisions and mathematics. Generative
art is about creating the organic using the mechanical.

Therefore, generative techniques transform the role of the composer into that
of a gardener who grows their systems while heuristically exploring its potential,
becoming ‘an audience to the results’ in the process (Eno, 1996, p. 5). This idea
of a composer relinquishing control and becoming an audience to their own work
requires a different mentality than that commonly found in more traditional
musical environments. This mentality is very candidly described by Dahlstedt
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(2001, p. 122) while writing about his relation to his own generative music during
the compositional process:

When confronted with a large body of material, such as a MIDI file or
a sound file coming from a program of mine, I get very mixed feelings. I
have a slight feeling I did not write that music, and yet I am quite sure
no one else did. I designed the algorithm, implemented it and chose the
parameters, and still I feel alienated. Mentally I am just a consumer of the
music, because I could not predict the results of my algorithms. [. . .] This
feeling of alienation has to be eliminated, and the cure is to listen and listen
again, until the material is assimilated by the mind, incorporated into my
intuition making my circle of imaginable music expand. This process of
assimilation takes a lot of time, but it is absolutely necessary. Without it,
I will not be able to assemble the material in a meaningful way, and more
importantly, I will not have any moral right to put my name on it. Even
if I do not change much in the generated structure before putting a title
on it and publishing it, I have made it a part of me. I have become the
composer by changing myself to accommodate to the result.

Algorithmic composition allows the composer to modify any minute part of
a system and immediately observe how all parts will then interact and how the
resulting music will change. This experimental approach further emphasises the
exploration aspect of algorithmic composition previously discussed in Section 2.1:
as they work, the composer must delve into previously unseen lands, scrutinising
and mapping its potentials, but never entirely sure of what lies ahead. When
working with generative systems, the composer is invariably faced with an
inescapable duality: although they are responsible for the creation of the system
and may, at any point, modify any of its parts, they are also unable to predict its
full generative potential at any given point—i.e. they cannot foresee all possible
results. As such, algorithmic composition becomes a cyclical heuristic activity of
creation, exploration, and evaluation.

In the case of my own systems developed as part of this research, which
employ stochastic procedures for the generation of input material as well as for
some of its transformation procedures, I commonly fix their random selections
in place by utilising what is known as a ‘random seed’. A random seed ensures
that all functions that generate random numbers will output the same sequence
of values at every execution of the program; in other words, each possible value
of the random seed is mapped into a single series of the randomly generated
output. Although each different seed will produce completely different musical
results, the composer can fix any given result by setting this random seed to a
specific value, making the musical output of the system reproducible. As such,
one can consider the whole, ‘unfixed’ system as a network of musical potentials,
while setting different seeds and observing the results as akin to looking for an
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objet trouvé, that is, a found object that will constitute the final work without
any alteration (Chilvers & Glaves-Smith, 2009, p. 521).

2.3.4 Software for Note-based Algorithmic Composition

There is a vast body of literature concerning software that can be used to
generate note-based algorithmic music. The advent of GNU LilyPond has been
of particular importance to the field (Nienhuys & Nieuwenhuizen, 2021; 2003).
LilyPond is an engraving program that takes plain-text files as input and compiles
them into a score. Due to its plain-text-based nature—as opposed to other
notation software such as Sibelius, Finale, and Dorico—LilyPond’s input can
be manipulated algorithmically: that is, any programming language can be
used to generate plain-text files containing LilyPond syntax, which can then
be compiled into a score and output as a PDF file. This feature led to the
proliferation of multiple software packages and APIs that act as intermediaries
between users and LilyPond. These include Abjad for Python (Bača et al., 2021;
2015), Fosc, Fomus, and LilyCollider for SuperCollider (Armstrong, 2021; Barros,
2018; 2019, respectively), notes for Pure Data (Oliver La Rosa, 2018), and my
own lilypondLibrary for Fortran (Agostinho, 2019). LilyPond itself comes with a
built-in Scheme interpreter, allowing users to write Scheme functions directly in
their LilyPond input file (Nienhuys & Nieuwenhuizen, 2003).

Abjad has been crucially important to this research project and, together
with my own library Auxjad (Agostinho, 2021), forms the basis of my current
compositional method (see Chapter 4). Abjad’s API makes full use of Python’s
object-oriented model of programming, and, as such, its objects can then be
manipulated in very natural ways by composers (Bača et al., 2015, pp. 165–
167), leading to a modular approach to algorithmic composition. Details of the
operation of Abjad can be found in Oberholtzer’s PhD dissertation (2015), as
well as information on his Consort library, which includes classes and functions
that extend Abjad beyond its original capabilities (2015, pp. 159–217).

Other notable libraries and software capable of generating music notation but
which do not use LilyPond for engraving include Bach (Agostini & Ghisi, 2015),
MaxScore (Didkovsky & Hajdu, 2008), and the DECIBEL Scoreplayer (Hope &
Vickery, 2015), all for Max/MSP, Gemnotes for Pure Data (Kelly, 2011), and
IRCAM’s standalone OpenMusic (Assayag et al., 1999, pp. 64–71). OpenMusic
tends to be particularly popular among composers who generate and manipulate
materials in the context of computer-assisted composition, while the software
mentioned above are prominent in the field of real-time notation.
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2.4 Algorithmic Thinking

A crucial source for this research project—and one that has greatly influenced
my recent series of compositions Cartographies (see Chapter 5)—is the work of
Lakoff & Núñez (2000). The authors build on the previous research by Lakoff
& M. Johnson (2003), particularly on the notion that the human brain uses
conceptual metaphors as tools for grasping the complex phenomena it experiences
(2003, pp. 3–6). In Where Mathematics Comes From, Lakoff & Núñez apply
these ideas to mathematics and use cognitive science theories to study how our
minds engage with and construct mathematical thinking. Their main argument
is that every complex mathematical theory is built upon other less complex
notions, which are built using several types of metaphors (Lakoff & Núñez, 2000,
pp. 1–11). ‘Grounding metaphors’ serve as the primary type for mental constructs
as they yield basic concepts that are immediately graspable. Examples include
abstracting sets as containers, its members as physical objects, and operations
such as addition and subtraction as adding or removing objects to or from a
collection (Lakoff & Núñez, 2000, pp. 52–53). Another type of metaphor, ‘linking
metaphors’, deals with more abstract ideas and yields higher-level concepts.
They are used, for instance, when abstracting the real numbers as points on a
continuous line. This is by no means a trivial construct but one that enables very
natural manipulations of real numbers, despite these consisting of an infinite set
whose majority of members are irrational (Lakoff & Núñez, 2000, pp. 52–53).
Lakoff & Núñez (2000, p. 39) describe:

Metaphor, long thought to be just a figure of speech, has recently been
shown to be a central process in everyday thought. Metaphor is not a mere
embellishment; it is the basic means by which abstract thought is made
possible. One of the principal results in cognitive science is that abstract
concepts are typically understood, via metaphor, in terms of more concrete
concepts.

These ideas have ramifications that go far beyond the application of cognitive
sciences to pure mathematics. Every composer engaging with algorithmic music
must deal with the ‘representation issue’ (Roads, 1996, pp. 856–857), that
is, the problem of mapping musical ideas into programming structures to be
implemented using a computer. This mapping is realised using metaphors such as
those described by Lakoff & Núñez (2000). By framing the representation issue
and other algorithmic and musical constructs using high-level metaphors, the
composer can become aware of specific types of solutions that were not initially
conceived. As such, digital artists do not simply code with ones and zeroes—those
are not the raw materials of their artworks. Instead, they create, relate, and
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manipulate high-level entities that map to concepts in their fields, leading to
a much more natural way of working. This idea of creating high-level entities
that then serve as building blocks is a fundamental principle of programming,
particularly when working with the object-oriented paradigm (Weisfeld, 2004,
pp. 129–136), which will be further explored in Section 4.5. In his foreword to
Roads’s The Computer Music Tutorial (1996), Chowning (1996, p. xii) writes,

there is a less tangible effect of programming competence which results from
the contact of the composer with the concepts of a programming language.
While the function a program is to perform can influence the choice of
language in which the program is written, it is also true that a programming
language can influence the conception of a program’s function. In a more
general sense, programming concepts can suggest functions that might
not occur to one outside of the context of programming. This is of signal
importance in music composition, since the integration of programming
concepts into the musical imagination can extend the boundaries of the
imagination itself. That is, the language is not simply a tool with which
some preconceived task or function can be accomplished; it is an extensive
basis of structure with which the imagination can interact, as well.

This is a profound remark. Computers are often reduced to mere tools,
simple problem-solving machines that should, at best, go unnoticed or, at worst,
cause as little hassle as possible (Hamman, 2000c). Chowning’s conception of
programming as a different mental paradigm adds another layer of complexity
on top of the notion of a programmer simply giving orders to the machine: the
characteristics and behaviours of the device itself influence back the programmer’s
approach. The resulting interaction between them, therefore, becomes a feedback
system of mutual influence.8 This bi-directional relationship between system and
artist is also noted by Brün (2004, p. 177), who remarks:

The link between the computer system and the composer of music is ‘The
Program.’ Composers may think of themselves and their minds and their
ideas in any way they please, until they decide to use the computer as an
assistant. From that moment on, composers must envisage themselves, their
minds, and their ideas as systems, since only systems can be translated into
that language, the program, which can generate their analog appearances
in the computer.

Such two-way exchange between programmer and computer can only become
possible if interface designers do not consciously limit the possible modes of

8According to Di Scipio, a concrete example of this can be observed in the electroacoustic
works of Xenakis and Brün. He writes that, ‘In some of their work, “sound synthesis” and
“music composition” become one and the same’, leading to what he calls ‘emergent sonorities’,
that is, sound properties that emerge from the interaction of algorithmic processes (Di Scipio,
2002, pp. 23–24).
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interactions available in their software or programming language. Such limita-
tions—often implemented in the name of ‘user-friendliness’—can end up reducing
a programmer into a mere ‘user’, bounded not by the limits of their technological
means but rather by arbitrary decisions imposed by someone else (Hamman,
2000c; 2004). Even though a user-friendly approach may seem innocuous at first,
it severely limits the modes of interaction that are available, particularly in the
context of artistic creation and innovative thinking. It discourages experimen-
tation and provides a ‘caged’ interaction between software and user. Hamman
(2004, p. 118), a fierce critic of such user-friendly interfaces, argues:

By simplifying the interface, computer interface designers have reinvigorated
the mechanistic legacy that computers threatened to undue when they
forced the computer user to communicate by writing computer programs.
[. . .] ‘Ease-of-use’ has triumphed over representational flexibility, while the
GUI (graphical user interface) has replaced programming as the primary
means for communication.

Exchanging flexibility for ease-of-use can severely limit the number of inter-
action modes available between artist and machine. Hamman writes that such
an approach emphasises an instrumental view of technology, transforming the
computer into just a ‘device’. This leads to users thinking in terms of ‘expected’
results, effectively neutralising their subjective thinking, which is essential for
non-goal oriented activities such as creating digital art. In a similar argument to
both Lakoff & Núñez and Chowning, Hamman argues that interface metaphors
are fundamentally connected with the system’s affordances, thus affecting how we
conceptualise the system and communicating how we interact with it (Hamman,
1999, p. 92). This dependency of the user on the interface is made very explicit
by Ehn (1988, p. 164), who writes:

[The] functionality of a computer artifact is a relation between the user
and the artifact, something that is found in the use activity, not just a
property of the artifact. The user interface is both form and function, in
the sense that it from the user’s point of view conditions not only how but
also what can be done through the artifact. The functionality comprises the
remaining possible actions when the user’s intentions have been constrained
by the user interface.

It is thus fundamental for the artist to not only be aware of these limitations
that are imposed on them but also to attempt to break free from any imposed
modes of reasoning that may limit their subjective thinking. The main danger of
user-centric approaches is that it risks locking its users into specific patterns of
activity and cognition, severely affecting the activity of using the computer as well
as any planning and thinking related to it (Hamman, 2000b). Such user-friendly
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environments have their uses, particularly when applied to goal-oriented tasks,
but they are seldom appropriate for creative and subjective work (Hamman,
2000b).

Hamman also argues that when composers do not get involved with software
development, they end up with tools that are handed over to them and which can
‘carry huge ideological and epistemological payloads to which the composer must
accede’, possibly leading to a commodified approach to music production as well
as to the propagation of the system designer’s own ideologies (2000a, pp. 91–92).
An obvious way for artists to fight back against these imposed ideologies is by
directly engaging with programming languages or programming environments,
thus becoming the designer of their own systems and bearer of the responsibility
for the ideological weight of their designs (Hamman, 2004, pp. 118–119).

An interesting parallel can be drawn between Hamman’s arguments above
and Lakoff & Núñez’s conclusion that mathematics is inherently non-Platonic.
Lakoff & Núñez argue that the building blocks for mathematical thought arise
from human thinking alone and, thus, are bound by the human intellect (2000,
pp. 1–3); in other words, mathematics is a human construct devised by us for our
own use. Similarly, by framing the design of computer systems as a form of human
activity, Hamman focuses his attention on this activity’s social and political
aspects. Systems are built upon ad hoc, arbitrary, and possibly idiosyncratic
values imposed by their designers. This arbitrariness is emphasised by Brün
(1969, p. 119) in the following passage:

Without the concept of systems, the concepts of relevance and significance
are meaningless. They are equally meaningless with regard to so-called
‘universal’ or ‘natural’ systems, in which everything is as it is and could
not be otherwise because that is the way it is, ‘it’ being everything. For
anything to be of relevance to something, to be of significance to someone,
a system has to be created; an artificially limited and conditioned system
has to be imagined and then defined.

All systems are but ‘artificial’ ones, constructed with mental models and
metaphors that allow us to grasp their behaviour. As Hamman (1999, p. 102)
remarks, ‘the computer is itself a tool for the construction of tools—tools with
which one might generate epistemological frameworks for imagining and solving
problems of compositional significance.’ By becoming their own toolmakers, it is
the artists themselves that define what problems are of compositional significance
to them and in what epistemological frameworks they will operate.

36



2.5 Interdisciplinarity

Algorithmic thinking is a highly interdisciplinary activity, touching disciplines
from both sciences and arts. As such, this dissertation will draw from sources from
a wide range of fields other than music, including programming, mathematics,
cognitive science, visual arts, and architecture, among others. This section will
focus on the interdisciplinary literature that has not been discussed in the
preceding sections.

Algorithmic visual arts have a similar origin to algorithmic music, with their
early practitioners being contemporaries to composers such as Hiller, Xenakis,
and Brün. A key figure in this field is Manfred Mohr, who has worked with
generative drawings and digital art since the 1960s (Hattrick & Mohr, 2012). He
has given an extensive number of interviews in which he discusses computer art
in general, often repeating his unwavering position that algorithmic art is nothing
more than Conceptual Art ‘that gets realised’ (Hattrick & Mohr, 2012). His work
indeed bears conceptual similarities to that of Sol LeWitt (1967a), who writes
that ‘The idea becomes a machine that makes the art.’ However, it is the ideas
themselves that are the main artistic agent for LeWitt’s conceptualism, while
Mohr’s interest lies in their execution. Mohr writes, ‘it doesn’t matter where you
start. The starting point is arbitrary, but what happens then is not arbitrary’
(Hattrick & Mohr, 2012). Regarding the abstract nature of his processes—the
driving force behind his work—he remarks that ‘These “conceptual rules” are
not necessarily based on already imaginable forms, but often on abstract and
systematic processes. They are parametric rules, which means that at certain
points in the process, choices have to be made as to which way a calculation
should continue’ (Mohr, 2000, p. 441).

Frieder Nake is another pioneer algorithmic visual artist and a contemporary
to Mohr. Nake also shares Mohr’s stance that algorithmic art is, by definition,
always conceptual. However, Nake (2010, p. 57) argues that concepts must always
be clear descriptions of operations in digital art as, otherwise, they cannot be
translated into programming code for mechanical execution. Therefore, these
are static descriptions of dynamic processes that must always be definable and
executable, a constraint that non-algorithmic conceptual art is not bound by
(Nake, 2010, p. 57). Nake often relates his ideas back to Sol LeWitt, one of the
first proponents of Conceptual Art. The fact that one of Nake’s texts is entitled
‘Paragraphs on Computer Art, Past and Present’—a wordplay on LeWitt’s
Paragraphs on Conceptual Art—must not go unnoticed. Nake (2010, p. 58)
writes:
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The algorithm is the concept in its strictest form of description. [. . .] Some
years before Sol LeWitt wrote this in 1967, algorithmic art had already
eliminated the skilled craftsman. We see: algorithmic art is the final form
of art in times of industrial production. Beyond all craftsmanship and aura,
the work is produced automatically.

Sol LeWitt’s ideas are indeed very relevant to artists working with algo-
rithmic art, including music. His view of conceptual artworks as descriptions
of blind mechanical processes (LeWitt, 1967a) is very much in line with the
understanding of algorithmic art as a form of exploration (as previously discussed
in Section 2.1). The notion of artists as generators of ideas is applicable to both
algorithmic and conceptual arts. His writings on Serial Art are also very relevant
to this research project since his approach is highly suitable for algorithmic explo-
ration, as algorithms are excellent tools for exploring and exhausting all possible
permutations of a single idea (LeWitt, 1967b; Reichardt, 1971b, p. 25). My own
music often deals with serialised explorations of ideas through mechanical means,
as can be observed in the multiple pieces that make up my Cartographies series;
all pieces in this collection share common algorithms and mental models, and
differ primarily in their initial conditions and constraints (see Section 5.1).

LeWitt’s notions of serialisation and conceptualism can both be related to
a genre of photography called ‘deadpan’. Artists who work in this tradition
aim at creating inexpressive and emotionless images that are detached from
the photographer’s own personal views and opinions (Cotton, 2009, pp. 81–
113), an attitude that bears a strong similarity to Cage’s attempts of avoiding
individual taste and memory in his music (Griffiths, 2011, pp. 26–30). Deadpan
photographers often use serialisation as a tool for the methodical exploration of
their subjects (often vernacular in nature), creating encyclopaedic-like catalogues
of images in the process—an approach that resemblances Sol LeWitt’s notion of
mechanical processes being blindly carried out (1967a). A notable parallel can be
made between the deadpan attitude and the systematic and low-interventional
compositional approach employed in my accompanying portfolio (see Section 3.5).

A contemporary approach to digital visual art can be found in Bohnacker
et al., a comprehensive book on the Processing programming language and its
capabilities for algorithmic art (2012). The authors not only write about specific
technical elements of Processing but also showcase artworks created with it.
These include thirty-five case studies that demonstrate many different artistic
approaches to algorithmic visual art. Pearson is a similar source and focuses
on practical concerns related to creating digital art with Processing (2011).
Pearson’s book concentrates on the use of randomness in generative art and how
it can lead to the phenomenon known as emergence (see Section 3.4). He also
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showcases several digital artworks created with Processing. Generative strategies
are employed by artists in numerous fields of algorithmic art, including that of
algorithmic music. This importance of generative approaches is noted by Nake
(2010, p. 58), who states that ‘The algorithmic artist does nothing that is not
generative. [. . .] The artist turned algorithmic is a generative artist by birth.’

As such, randomness plays a vital role in algorithmic art. In the context of
music, although one can find earlier isolated examples of artworks that embrace
some level of uncertainty (such as the previously mentioned Musikalisches Wür-
felspiel, apocryphally assigned to Wolfgang Amadeus Mozart), it was only in
the first half of the 20th century that randomness became a topic for serious
artistic exploration.9 An example of this early use of chance can be found in
the work of Jean Arp (also referred to by his German birth name of Hans Arp).
Arp, a member of the Dada movement, would employ randomness to create
aleatoric visual compositions. One of his techniques consisted of dropping torn
pieces of painted paper onto a surface, with the final composition resulting from
their random arrangement (Umland, Sudhalter, & Gerson, 2008, pp. 44–49);
this approach can be observed in his Collage With Squares Arranged According
to the Laws of Chance (1916–17). In music, the work of John Cage has been
paramount for the popularisation of randomness as compositional technique.
Pritchett writes extensively about Cage’s work and includes detailed analyses of
most of his major works (1996). This book also focuses on his early period, his
transition from choice to chance, and his use of charts, coin flips, and the I Ching.
Cage has had an immense influence in other artistic-related fields, including
the philosophy of arts. This influence can be observed in Groos & Froitzheim’s
catalogue for the exhibition [un]erwartet. Die Kunst des Zufalls, which contains
a diverse collection of texts about the philosophy of chance and its use in visual
arts, literature, cinema, and music (Groos & Froitzheim, 2016). In relation to
architecture, Verbeeck investigates how analogue randomness, such as that found
in Jackson Pollock’s drip technique and John Cage’s chance operations, can be
translated into digital strategies for architecture (2006). For him, randomness
enables an exploratory approach to architectural design, as opposed to working
with fixed rules set a priori and using the computer simply as a tool for carrying
them out. He writes that, ‘In the early phase of design[,] precision should not be
required, only ideas, notions of, and wants are’ (Verbeeck, 2006, p. 7).

9It is interesting to note that this renewed artistic interest in chance takes place at the
same time as the deterministic views of classical physics are shaken by the discoveries of the
late 19th and early 20th centuries, which led to an inherently probabilistic view of nature with
quantum mechanics.
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Generative and parametric approaches have a long history in relation to
architecture. Woodbury writes about the use of parametric modelling strategies
in architectural design. His focus lies on how algorithmic systems can be used for
this architectural design and how they are created using mathematical functions
to shape the final results. His view of parametric architecture as the design of
dynamic systems offers a remarkable parallel to the ideas previously discussed in
Section 2.1. He views parametric systems as tools that enable the architect to
dynamically explore new sets of possibilities ‘that are not practically reachable
otherwise’ (Woodbury, 2010, pp. 36–39). This idea echoes much of the motivation
for the use of algorithmic systems expressed by composers such as Xenakis (1992,
p. 144), Brün (2004, p. 177), and Barlow (Supper, 2001, pp. 49–50).

Generative systems can also be created without digital computers, as the
work of Jean Tinguely illustrates. Tinguely created kinetic sculptures that bear
many similarities to algorithmically designed systems. These works consist of
electro-mechanical automata whose primary materials are found objects and
pieces of junk, leading to artworks that naturally decay with time (Bek, 2004,
p. 46). Some of Tinguely’s sculptures have a natural musicality, with their
mechanisms making rhythmic noises as they operate (Bek, 2004, pp. 44–45). He
also made direct use of sound in some of his pieces, such as his Méta-Harmonie
(1978–1985), a series of four colossal sound sculptures that employ noise-making
mechanisms as well as musical instruments. Some of his artworks are literally
self-destructing machines, ephemeral visual and sonic systems that eventually
come to a halt (Chau, 2014, pp. 399–401). Chau interprets Tinguely’s infamous
Homage to New York (1960), a self-destructing artwork that was deliberately put
on fire, offering a critique of the abundance of a consumerist society (2014, p. 401).
Although algorithmic music is not ephemeral in the way that Tinguely’s decaying
work is, the relation between art and capitalism, methods of production, and
commodification are often key points explored by algorithmic artists (Hamman,
2004; Shanken, 2002; Wieser, 2018; Vitalis, 2016).

In literature, the French group of writers and mathematicians known as
Oulipo10 would explore how constraints could be applied to the art of writing.
They used formal and mathematical constraints to create literary works such
as the ‘N + 7’ rule, which requires replacing all nouns in a text by the seventh
entry that follows them in a dictionary (Baetens, 2012, pp. 117–118), or the rule
that the text should be written without a specific letter, such as Georges Perec’s

10Sometimes stylised OuLiPo, this name comes from the contraction of Ouvroir de littérature
potentielle, which is typically translated as ‘Workshop on Potential Literature’ (Buchanan,
2010b).
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novel La Disparition (1969), written without the letter ‘e’—the most frequent
letter of the French language (Despeaux, 2015, p. 239). Christian Bök uses a
similar constraint in his novel Eunoia (2001),11 which employs a constraint that
limits each chapter to use only one single vowel in all of its words (Baetens, 2012,
p. 122; Despeaux, 2015, p. 239). Raymond Queneau, one of Oulipo’s founders,
wrote the combinatoric poem Cent mille milliards de poèmes (1961), which can
be considered as a generative poem. It consists of a short ten-page booklet,
each page containing 14 lines of text. The pages are cut into horizontal strips
containing one line each, allowing each strip to be flipped separately from all
others. This allows the reader to explore combinations of these lines: ten options
for the first line, ten options for the second, and so on, until the fourteenth line.
Although this is a very concise book from a physical standpoint, there are a
total of 1014 possible combinations of all lines, resulting in 100,000,000,000,000
different poems. Oulipian constraints provided a strong influence for the self-
imposed limitations employed in my Cartography series, in which each piece
must be completely defined within a single A4 page (see Section 5.1).

All of these interdisciplinary sources point to the fact that algorithms, and,
more specifically, the computer, can transcend a utilitarian instrumental view of
technology: they can be used as more than mere calculators that retrieve concrete
solutions to concrete problems. As such, computers do not exist in a cultural
vacuum but rather within the realm of society and culture and, therefore, must be
understood as one of its devices. The ubiquity of technology has made computers
and algorithms virtually invisible (Hertz, 2009, p. 59; Weibel, 2004), leading to
social and political dominance through such tools (Hamman, 2004, pp. 116–117).
It is precisely for this reason that authors such as Uliasz have promoted the
purposeful misuse of technology—a form of technical perversion—which can
serve as an ethical approach to the use of algorithmic technology (2017). By
using technology as their primary artistic tool, artists are addressing these issues
above, critically engaging with capitalist and positivist aspects connected to such
technologies. Similar to Lakoff & Núñez’s views of mathematics being inherently
non-Platonic (2000), algorithms can also be understood as human constructs
that cannot be untangled from the context in which they are created—in other
words, they carry in themselves their creator’s values and beliefs. It is in this
vein that Hamman argues that the act of programming a computer generates
much more than simple source code: it generates human interaction through
collaborations, research papers, and public forums, both online and offline

11It must be noted that Christian Bök is not a member of Oulipo, although his work is
inspired by and often associated with the French group.
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(Hamman, 2004, p. 119).12 Similarly, Ehn argues that computers and their
output should be considered enablers of communication, supporting individual
and cooperative activities, and augmenting human capabilities (1988, p. 234).
Lewis is yet another author supporting this non-instrumental view of computers,
particularly concerning music creation; he writes (2009, p. 457):

Understanding computer-based music-making as a form of cultural produc-
tion obliges a consideration of the discourses that mediate our encounters
with the computer itself. Increasingly, new imaginings of history, culture,
and artistic practice are finding the computer at their centers, and particu-
larly since the mid-1980s, digital technologies have served as a critical site
for interdisciplinary exploration, accelerating the blurring of boundaries
between art forms.

2.6 Conclusion

Algorithms provide a unique framework for artists to operate within. They enable
a truly exploratory approach to art-making, one in which the autonomous system
does all the ‘heavy lifting’ (Pearson, 2011, p. 4). Unshackled from the constraints
of manual implementation, artists are able to explore multiple open-ended ideas
and processes through a combination of experimentation and heuristics (Essl,
2007, p. 108). Through these interactions between human and machine, both
agents shape one another: while the composer employs algorithms in order to
implement their musical ideas, the algorithms can also suggest specific modes of
thinking or routes of action. In other words, working with algorithms expands our
way of conceiving ideas, which in turn become inherently algorithmic (Chowning,
1996, p. xii). As Culkin (1967, p. 70) remarks, ‘We shape our tools and thereafter
they shape us.’

Artists working in this manner will inevitably engage with epistemological
questions concerning the role of algorithms in their art. That is, algorithms are
not merely tools used to achieve a concrete goal but are instead an intrinsic
part of the final artwork which cannot be entirely disregarded (Hamman, 2000c,
pp. 7–8). Technology embeds itself into the final work and, as such, must be
acknowledged by both artist and audience.

The following chapters will examine how these ideas about algorithmic art

12This social aspect of software development is particularly evident in relation to open-source
and free software, of which I am an ardent advocate. This type of software often generates
interactions on public forums that aim at an open discussion of ideas. Virtually all tools I use
to create my compositions are open-source and free software; these include the Linux operating
system, the Python, Fortran, and Pure Data programming languages, and software such as
LilyPond, Abjad, LATEX, and my own Auxjad and lilypondLibrary libraries.
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relate to the specific methodologies and aesthetic qualities of my musical works.
Chapter 3 will introduce the aesthetic concepts related to my music and discuss
how they are connected to my algorithmic thinking. Chapters 4 and 5 will then
explore how algorithmic thinking, and particularly the notion of mental models,
influence my compositional approach and the implementation of my musical
processes.
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Chapter 3

Aesthetic Dimensions

In recent years, I have developed compositional methods that employ musical
repetition as their primary operating element. In my pieces, repetition is used not
just as a structural tool but also for its potential to affect the listener’s perception
of the music, creating a sense of disorientation during the listening experience.
This disorientation is further intensified by the quiet and slow materials featured
prominently in my work, as well as by the non-goal-oriented and emergent
approaches to form and musical processes also employed.

This chapter will discuss the set of aesthetic concepts that underpins my
recent work as a composer. It will focus on the notions of slippage, fragility,
emergence, and liminality. It will trace the aesthetic origins of these concepts,
discuss their relation to my algorithmic processes, and demonstrate how they
are interrelated to one another in my compositional practice.

3.1 Compositional Context

For the past decade, I have primarily composed using algorithmic methods. My
interest in algorithmic music started in 2011–2012, specifically when I began
working on my composition On the Origin of Pitches (2012) for solo vibraphone
(see Figure 3.1 for an excerpt of one possible version of this work). Heavily
influenced by the ideas of John Cage and Brian Eno, I aimed to create an
instrumental open-work whose content would completely change at each and
every performance. The idea of music that rewrites itself at every hearing (Eno,
1996, pp. 330–332) was immensely attractive to me, especially since it also
seemed to support the Cagean notion of silencing one’s ego through the use of
indeterminate procedures (Pritchett, 1996, pp. 60–62), a notion I was fascinated
with at the time. Since On the Origin of Pitches is an algorithmic open-work, it
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does not exist as a single score but can instead be understood as the solution
space of a given system: that is, it encompasses all possible musical realisations
satisfying the composition’s system of algorithmic constraints. To put it simply,
every execution of those computer programs would generate a completely new
score with music that had never been heard before. This is an idea I continued
to explore and develop up until late 2017.
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Figure 3.1: First systems of one possible realisation of On the Origin of Pitches

At that time, I began to support the notion that one cannot entirely separate
technology from aesthetics in the context of algorithmic art. I promptly realised
that algorithms were not mere tools for quick experimentation, as they also
suggested aesthetic routes to be taken. I thoroughly embraced the generative
and repetitive aesthetics of the pieces created with those methods and started
exploring how algorithms help me compose new music that could not have been
thought of by non-algorithmic means.

During this research project, my music has gone through a significant shift.
Most notably, I have stopped composing algorithmic open works in favour of
selecting a single fixed version for each composition. This decision was primarily
driven by practical needs: first, the open-work approach required an unreasonable
amount of effort from performers, who were required to discard a previously
learned version of a piece and learn an entirely new score for each new perfor-
mance; secondly, it limited the instrumental demands and notational approaches
that could be explored in those compositions, as I needed to ensure that the
scores were always fully playable and readable in all possible versions that could
be generated by those systems. Despite not working in this manner any longer,
generative aesthetics and automatic systems remain essential to my recent work.
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With my current compositional methods, the final composition is but one se-
lected version among infinite possibilities that a system could have generated.
The difference is simply that, in this case, a composition is crystallised in the
form of a single final score, with all other potential possibilities being left as
unrealised contingencies of the solution space. This new approach solved most
of the practical issues described above while, at the same time, allowing me to
continue working with generative techniques and automatic systems.

Besides working with fixed versions of my scores, my recent compositions
also sprung from different preoccupations than my earlier algorithmic works, in
particular from questions of musical perception and algorithmic formalisation.
My current research focuses on the relation between repetition-based algorithmic
methods and the creation of disorienting and perceptually ambiguous music. I
am particularly interested in the unstable perceptual phenomena that can arise
from the interactions of strict algorithmic methods with fragile materials (which,
in the context of my music, can be understood as those that are soft and slow).
In my artistic practice, I explore how my algorithmic systems can maximise
these perceptual instabilities and ambiguities as well as what types of aesthetic
and emergent characteristics can arise from them.

In the works of the accompanying portfolio, I am concerned with two related
notions that I refer to as ‘slippage’ and ‘liminality’. I use the term slippage to refer
to the local disorientation caused by repetition-based algorithmic procedures,
particularly when applied to fragile materials. Slippage is a local phenomenon: it
arises when looped material undergoes slight changes at each iteration that are
either entirely imperceptible or too difficult to pinpoint precisely. With subtle
changes occurring at each loop, the listener is often left unable to grasp what
has changed from the previous iteration of the process—if anything. This is
further emphasised by the fragile materials employed in most of my works from
these past four years, which further help to disguise the subtle changes present
in this music and intensify the disorientation caused by the musical processes
(Harrison, 2007, p. 33). The notion of liminality is used to describe the formal
disorientation perceived in these pieces on a larger scale. Liminality is concerned
with being in a transitory state, a condition of having left a place behind but
without reaching the destination yet. It relates to notions of in-betweenness,
unfolding, and becoming, which are evoked by these compositions as a whole.
These recent works also engage with the concept of ‘emergence’, which describes
the unaccounted for but observable complexity that arises from simple rules
that constitute the algorithmic systems. In my music, emergence takes place
in the form of musical structures that are perceived as aurally meaningful (i.e.
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linked together by Gestalt principles of grouping) but which, in fact, arise from
collisions of otherwise unrelated material. These often appear at the borders
of consecutive looping windows and, as such, are unstable structures that can
change unexpectedly with each iteration of the process. This phenomenon, in
turn, further helps to mask the exact looping points of the algorithmic process,
contributing to the local sense of slippage. The intention behind the pieces
written as part of this research project was to compose music that is perceptually
disorienting and ambiguous, music that creates non-linear listening experiences
for the listener despite being generated using strict linear processes.

3.2 Slippage

The notion of ‘slippage’ describes a key perceptual aspect of my recent music:
the disorientation caused by near-repetition procedures when applied to fragile
materials. This section will investigate how this concept can be linked to the
specific algorithmic processes and mental models employed in my work and how
certain types of musical materials can emphasise it.

Slippage concerns the tension between a slow but constantly unfolding
musical process and our inability to grasp its movement. This unfolding can
become imperceptible to the listener in specific sonic contexts, presenting itself as
identical repetition—somewhat akin to a déjà vu experience. Identical repetition
can slowly lead to the illusion that sonic transformations are taking place in
the looped material, as demonstrated by the research of Margulis (2014) and
Deutsch, Henthorn, & Lapidis (2011). Although this psychoacoustic effect can
significantly contribute to a sense of sonic disorientation by itself, my work tends
to be primarily focused on near-repetitions, e.g. by using moving looping windows
and other similar repetition-based processes. Even though these processes are
continually unfolding in my music, the emerging sonic results can sometimes be
locally indistinguishable from previous windows, creating the illusion of identical
looping. Slippage is thus a local phenomenon, taking place on a moment to
moment basis and engaging with our short-term memory; this will later be
contrasted in Section 3.5 with the notion of ‘liminality’, a term used to describe
the long-term disorientation and overall unfolding of a piece.

In my music, I am very interested in the friction created between the logical
algorithmic processes that I employ and the perceptual disorientation and
ambiguity that they create. The degree of this disorientation can vary from
moment to moment within the same piece. In some moments, the process can
become evident to the listener, allowing them to ‘anchor’ their perception on
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its mechanisms, leading to a low degree of slippage. In other situations, the
exact nature of the algorithmic process can become difficult to pinpoint precisely,
leading to a high degree of slippage. This often happens in situations that
challenge the listener’s memory, such as when consecutive windows are highly
similar or when the processed materials are particularly fragile. The emergence
of structures at the border of consecutive windows further contributes to the
overall sense of slippage, as they further disguise the logical process taking place
in the composition.

The musical processes found in my music are purposefully repetitive and slow.
In some of my compositions, an overarching process is responsible for the form of
the whole work. In other words, these pieces have a clear directionality in terms
of form, going uninterruptedly from a specified initial state to a specified final
one over the course of the whole work. This main process is the defining element
of these types of pieces and can be clearly perceived by the listener, aligning
these compositions with the long tradition of Process Music (Reich, 2002b,
p. 34; T. Johnson, n.d.). However, the main difference between my approach
and compositions usually associated with process music, such as Steve Reich’s
Piano Phase (1967) and Alvin Lucier’s I Am Sitting in a Room (1969), is that I
manipulate material with multiple parallel processes while the master process is
being executed, as opposed to delegating all transformations to a single formative
process.

A concrete example of this approach in my music can be observed in Cartogra-
phy #1. Its form is dictated by a crossfade process applied to the density of notes
of the piano and the vibraphone. Alongside the unfolding of this overarching pro-
cess, the musical content of every single vertical moment is nevertheless decided
through stochastic processes that select material from container-like objects
common to all Cartographies (the container mental model will be discussed in
detail in Section 5.1.2). However, most of my recent works—particularly those
written after Cartography #8—are far less directional than this: rather than
going from a state A to a state B, these pieces start at a pre-defined initial state
and then evolve through small transformations. There is no particular end state
to be reached, even if the music must finish at some point; instead, it is the path
itself that is the focus, with its ever-present kaleidoscopic transformations. These
non-goal-oriented works can be well described by what Kramer (1981, p. 542)
calls ‘nondirected linearity’:

This music [. . .] is in constant motion created by a sense of continuity and
progression, but the goals of the motion are not unequivocally predictable.
I call this new species of musical time ‘nondirected linearity’—a temporal
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mode unthinkable, even self-contradictory, in earlier Western music but
quite appropriate given the breakdown of goal orientation in much of the
music of [the 20th] century.

Repetition is crucial to the types of processes I employ in my recent music
and is the main element used to achieve this sense of non-linear yet constantly
unfolding motion. I aim to achieve what Harrison (2007) defines as ‘a sense
of implied motion [. . .] but not of musical progress.’ By constantly revisiting
previously heard materials, looping windows and other near-repetition processes
became essential techniques that I use to create this condition of unfolding
without progress. Lang (2003) also views the use of loops and circular motion
as a way of ‘escaping linearity’; for instance, in his Monadologie series (2007–
present), Lang employs subtle variations in his loops so that they ‘seem to
be drifting, as they aimlessly wander about without any particular goal or
destination in mind’ (Dysers, 2019, p. 104).

The repetition processes and input materials that I employ are purposefully
designed to amplify this sense of drift and aimlessness. My use of slow-moving
looping windows and other repetition-based mental models is crucial for achieving
this, as they often give the impression that the composition is not moving at
all on a local scale. With the right set of materials—particularly those that are
quiet and slow—and suitable window and step sizes, the overall impression is
of nearly identical or even literal repetition. The working principle of looping
windows can be observed in Figure 3.2 (see Subsections 5.1.4 and 5.1.9 for their
technical applications). This figure is a visual representation of the first five
iterations of the looping window process, with the result shown at the bottom.
At each iteration, the looping window is moved forwards by a specific step size
and its content is appended to the final score. Although each consecutive output
of the looping window looks very similar to the previous one—sometimes to the
point of being indistinguishable from the surrounding ones—it is clear that the
process will gradually move towards new territories. As this process advances,
familiar material is gradually left behind and new materials are uncovered

The materials processed by these looping algorithms, here referred to as
‘input music’, are first generated by my computer programs. This notion is
analogous to Roland Kayn’s concept of the ‘super-signal’: a master source whose
sole purpose is to serve as input material for an algorithmic process (Pickles, 2016,
p. 75). I consider such input music as residing in the domain of ‘pre-composition’.
However, in the context of algorithmic composition, the distinction between
what effectively constitutes composition per se, as opposed to pre-composition, is
often unclear, with definitions varying substantially from composer to composer
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Result:

Figure 3.2: Visual representation of the looping window mental model

(Doornbusch, 2005, pp. 47–48). The input music used in my compositional
approach can also be related to Xenakis’s concepts of ‘outside-time’ and ‘inside-
time’ structures. For Xenakis, a composer works with outside-time structures
when generating raw non-temporal materials, which will later become musical
events in the composition when articulated by time (1992, pp. 181–183). An
example of this distinction, given by Xenakis (1992), is that of a pitch scale
(an outside-time structure) becoming musical events in the form of a melody
(an inside-time structure). In the case of my input music, it lies somewhere in
between these two notions: on the one hand, it already contains temporal relations
between its elements, as it is often generated as a fully-developed stochastic
‘piece’ which will serve the sole purpose of becoming the input material for the
looping process; on the other hand, this music is never heard in its unadulterated
form by the listener, and, as such, it does not take place in the same temporal
reality as the final composition. In other words, the temporal relationships in the
input music will be distorted by the looping process and will not be accessible to
the listener in its unadulterated form. Nevertheless, such input music is created
with specific materials that will emphasise certain characteristics of the processes
later applied to them in the final output (see Section 3.3).

Moving looping windows are prevalent in Bernhard Lang’s music and the
films of Martin Arnold and Rafael Montañez Ortiz. These artists have used
repetition to explore and examine materials borrowed from other sources. In his
Monadologie series of compositions, Lang works primarily with borrowed musical

50



materials1 and offers them new readings by using looping and slicing procedures
carried out using his software CadMus (Dysers, 2019, pp. 57–62; Lang, 2002).
Similarly, both Arnold and Ortiz appropriate early 20th-century Hollywood
films. By using looping techniques to manipulate the original narratives, Arnold
and Ortiz bring out new meanings to otherwise mundane scenes (Dysers, 2019,
pp. 144–148). While my use of loops shares many similarities with the techniques
utilised by these artists—particularly the moving looping window technique used
by Lang (2002)—my music does not feature appropriation or musical borrowing
since the input music is always generated from within my own systems, prior
to the looping processes. Moreover, the sonic results of my use of loops are
substantially different to those found in the loop-based works of composers such
as Bernhard Lang, Eric Wubbels, and Alex Mincek; this is primarily due to
my choice of material, which tends towards the quiet and slow, and the time
frames that my looping windows tend to operate on, which generally last for
several seconds. These aesthetic decisions align my work closer to that of Bryn
Harrison, who also tends to work with rather fragile materials that are repeated
to generate disorienting musical textures. This approach leads to a substantially
different sonic world than the jittery and sharp loops prominent in the work of
Lang, Wubbels and Mincek.

Another repetition-based mental model that I recently began to employ in
my compositions, beginning with adrift (2020), is what I refer to as ‘fader’. A
fader consists of a straightforward algorithmic process where a repeated musical
cell has a single note added to or removed from it at each iteration. In the case
of adrift, I combine two musical layers, each with its own fader. While one fades
material in, the other fades material out, thus creating a stepwise metamorphosis
between materials—i.e. a non-continuous crossfade (these mental models will be
discussed in detail in Section 5.3). The fader mental model was partially inspired
by a compositional technique described by Feldman (2000, pp. 193–194):

One of the problems with variation in twentieth-century music is that they
make the variation too obvious. You heard that it was a variation. I am
interested now in a lot of music where the variation is so discreet, I would
have the same thing come back again, but I would just add one note. Or I
have it come back and I take out two notes. And I would vary the notes
and keep the pulse, but very subtle.

However, an essential difference can be observed between my use of these

1Out of the 38 compositions that make up the Monadologie series until 2019, only four
use original material written by the composer as input for his looping and slicing processes
(Dysers, 2019, pp. 205–206).
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mental models and Feldman’s compositional approach: despite the shared interest
in subtle variations at a local level, my compositional focus lies on the slow
transformations created by algorithmic processes, while much of Feldman’s music
displays no such large-scale directionality (Feldman, 2000, pp. 134–139). My
music often exhibits a sense of overall forward motion, even if, on a local level,
the perception of such processes can become fuzzy and prone to slippages. This
is especially true in the case of the crossfader, in which a specific musical cell
morphs into another. Although the path taken by the process is stochastic and
the slow and subtle changes can be imperceptible to the listener, the algorithm
is ultimately moving from point A to point B. Likewise, looping windows can
also be considered directional since they linearly move from the beginning of the
input music towards the end. Thus, it is the oscillation in how graspable these
processes are, particularly on the local level, that gives rise to slippage.

Similar to Lang in relation to his Monadologie series, my interest lies in
microvariations of musical material rather than in literal repetition (Dysers, 2019,
p. 104). On a local level, my compositions are concerned with the recontextualisa-
tion of previously heard materials and our capacity to grasp their microvariations.
In the case of looping windows, they create disorientation through their slow
forward motion (which can result in nearly-identical repetitions) as well as by
unfolding new musical structures—and, as such, creating friction at the borders of
consecutive windows. At these borders, new relationships between materials can
often arise, as the process causes a disjunction in the input music due to the back-
wards leap of the looping window process. These new relationships—emergent
properties of both the process and the specific set of materials used—are often
ephemeral: a note at the beginning of a given window might not be present in
the next iteration of the process, or, alternatively, a new note might materialise
at the end of a window. As such, these relationships create a type of emergent
structural ambiguity: despite the strict process that can be readily grasped
when looking at the musical score, the sonic outcome of the resulting music is
substantially more ambiguous. This ambiguity results from emergent relation-
ships often being perceived as structurally meaningful despite being the result
of coincidental collisions of unrelated entities. This phenomenon is particularly
powerful when such structures stand out from the surrounding texture, be it due
to register, pitch content and interval, dynamic level, articulation, or melodic
shape (Bregman, 1990, pp. 455–528; Tenney & Polansky, 1980).2 Similar or
identical structures can often appear in borders of multiple consecutive looping

2The notion of emergent structures and their relation to Gestalt grouping principles in my
music is discussed in detail in Section 3.4.
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windows, giving them the impression of being intrinsically interconnected to one
another. In other words, loops give structural legitimation to sound objects that
would otherwise simply slip by (Harrison, 2012, pp. 59–60).

The obfuscation of the exact looping points further amplifies these emergent
relationships. The fragility of my materials—namely, their quietness and slow-
ness—significantly contribute to these blurred boundaries. Although identical
repetitions are not employed in my Cartographies series (its looping windows
always move forwards at each iteration), the music often reaches moments of
stasis during which near-repetitions can sound as literal loops. This takes place
when a looping window moves forwards but finds no new notes in the input
music nor leaves any note behind in relation to its last iteration. An example
of this can be observed in the opening measures of Cartography #11 (2018),
shown in Figure 3.3. The score’s notation shows that the musical content moves
leftwards by one semiquaver (in this composition, the looping window has the
length of a whole measure). However, the listener perceives the first five measures
as identical loops lasting for fifteen semiquavers (one fewer than the actual size
of the looping window) as no new notes enter the window, nor do any old notes
leave it. The following three measures (measures 6–8) display the same property,
as do the following two (measures 9–10).3 This apparent stasis is a type of
emergent behaviour that these systems display: although the algorithmic process
constantly moves forward by a fixed step at one iteration per measure, the slow
forward movement often seems to come to a complete halt before resuming
motion. As such, the musical flow is perceived as being far more complex and
less mechanical than the process behind it might initially suggest.
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Figure 3.3: First systems of Cartography #11

These periods of stasis also serve another purpose: they create moments

3Figure 5.23 in Subsection 5.1.10 illustrates how these initial measures could be renotated
to show the way they are effectively perceived.
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of uniformity, tying the material together. While different notes in the input
music are only related by sharing the same stochastic procedure that gave rise
to them, looping techniques emphasise their inner relationships. That is, when
the process gives the appearance of total stasis, these relationships are amplified
to the highest degree of importance. As Sabbe (1996, p. 12) writes:

Immediate repetitions (such as occur ever more in Feldman’s late works)
are often a means of establishing uniformity (‘those huge, uniformly colored,
hued sound surfaces of varying extension’) over longer periods and thus
creating the illusion of a permanently accessible, available, continually
present, identical ideal object—an illusion, because even when remaining
completely unchanged in notation, the sound object changes over time in
perception.

Figure 3.4: Longplayer ’s looping windows at 10:49pm on the 7 July 2021; this image has
been reproduced with the kind permission of Jem Finer and the Longplayer Trust

The emergent behaviours that arise from these looping windows are similar
to those found in Jem Finer’s Longplayer (2000), a sound installation designed to
last for a thousand years. Finer first created six layers of sounds upon which he
applied slow-moving looping windows. Using layers with different total lengths
and looping windows of different sizes, Finer was able to calculate that the looping
windows will be back at their initial position precisely one thousand years after
the piece started. However, from the listener’s perspective, this music often
sounds static as nothing enters nor leaves any of the six asynchronous looping
windows. Figure 3.4 shows a visual representation of these layers (Longplayer,
2019); each of the six layers is displayed as a concentric circle, while the looping
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windows, highlighted in yellow in each layer, slowly move clockwise. All six
looping windows started at the 12 o’clock position when the sound installation
began on 1 January 2000, and will align back at that position on 31 December
2999.

This approach thus gives rise to a duality in our perception of time: while the
processes themselves must, by definition, have some degree of internal movement,
they are also able to create nearly static situations, particularly when working
with repetition, long durations, and materials that emphasise this staticity. Even
a purely directional process, such as the looping windows of Longplayer, can give
rise to music which, on the listener’s scale, lacks perceivable forward movement.
This is keenly observed by Frey (2004), who writes:

It may easily be that, at the end of a performance of static music that has
remained motionless, the listener is in himself no longer where he started
out—just as, conversely, directed, mobile music that lays a path need not
always take the listener along on a journey.

3.3 Fragility

In my recent work, I became interested in exploring the concept of fragility,
particularly through the use of quiet and slow looped materials. These types of
materials not only contribute to the sonic surfaces that arise in my music but
are also an intrinsic part of the algorithmic processes I employ; they augment
the sense of disorientation and slippage created through algorithmic processes
and, in the process, create music that is sonically fragile.

Fragility can occur in music due to a broad range of phenomena; these not only
include the presence of quiet and slow sounds but can also occur due to other less
ostensible musical factors such as musical structure, psychoacoustic phenomena,
choices of notation, and performance situations, among many others (Epstein,
2017). In her work on the typology of musical fragility, Epstein argues that
repetition can act as a fragmentation tool which, in turn, can lead to structural
fragility in a composition (2017, p. 44). Although my music does not display
the same level of fragmentation observed in the works cited by her—namely
Bernhard Lang’s Differenz/Wiederholung 1.2 (2002) and Eric Wubbels’s This
is This is This is (2009–2010)—my looping processes are nevertheless a source
of musical discontinuity, causing instability in a piece’s sense of directionality
(Epstein, 2017, p. 44). This is then amplified by the quiet and slow materials I
employ, which help mask the exact nature of the repetition-based algorithmic
processes taking place in the background, thus contributing to the perceptual
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instability of the piece. In other words, these materials make the repetition
process less obvious, more disorienting, and more challenging for the listener to
grasp. It is not the structures themselves that are necessarily fragile, but rather
the disorienting experience they present to the listener.

Repetition can initially work as a microscope, enlarging both material and its
inner relationships: the listener’s focus becomes free to wander around at each
loop, and the ear can focus on, decompose, and analyse different aspects of the
music at each loop, placing the musical content outside of time (Margulis, 2014,
p. 7). However, literal repetition also affects how we perceive the content itself
that is being repeated, particularly over long periods of time (Margulis, 2014,
pp. 26–54; Sabbe, 1996, p. 12). According to Sabbe, the identical repetition of a
musical object creates the illusion of permanent accessibility while, in fact, the
object keeps changing with each repetition, even if its notation remains identical.
This phenomenon is supported by the experiments of Deutsch, Henthorn, &
Lapidis related to the so-called ‘speech-to-song illusion’: in their research using
looped recordings of speech, they show that literal repetition affects how we
perceive the content of these recordings, with the pitch and rhythmic content
of the voice becoming more and more prominent as the semantic content loses
perceptual importance (2011). This illusion is related to the notion of ‘semantic
satiation’, a term originally coined by Jakobovits in 1962. He describes how
continual repetition of a spoken word can result in a temporary ‘detachment’ of
its meaning from its sound for the listener (Jakobovits, 1962, pp. 18–36); in other
words, utterances temporarily become meaningless sounds devoid of syntactic
content.

These types of auditory phenomena have been the focus of both psychoacous-
tic research and the practice of composition. Some composers have employed this
directly in their pieces. An example of this can be observed in Tom Johnson’s
Same or Different (2004), a participatory composition in which all audience
members are invited to say the words ‘same’ or ‘different’ out loud after hearing
two similar or identical musical cells. As the cells grow, it becomes increasingly
challenging to evaluate their likeness with a high degree of confidence, with the
diverging shouts of the audience members testifying to how different people
will experience repetition dissimilarly.4 Another example of the compositional
application of these psychoacoustic phenomena can be found in the early tape

4It is important to note that psychoacoustic phenomena might not be the only contributors
to the audience’s responses but that human psychology might also play a significant role in it.
For instance, in Same or Different No. 7, all twelve pairs of cells are identical; however, an
audience member might be less inclined to shout ‘same’ twelve times in a row, thinking they
might need to adjust their responses due to their lack of statistical uniformity.
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compositions of Steve Reich. In pieces such as It’s Gonna Rain (1965) and Come
Out (1966), Reich works with short loops of recorded speech that undergo a
slow and gradual phasing process; as one listens to these pieces, the semantic
content of the speeches gradually disappears as they, effectively, become melody
(Simchy-Gross & Margulis, 2018, p. 1).5 A similar principle can be observed in
Gavin Bryars’s Jesus’ Blood Never Failed Me Yet (1971), although Bryars’s loops
are substantially longer and, therefore, display a less intense auditory illusion of
loss of semantic content.

The uncertainty of whether a repetition is literal or not is also explored by
Feldman, who famously writes that his use of repetition is a way of ‘ “formalizing”
a disorientation of memory’ (2000, pp. 137–138); he compares his method to
‘walking the streets of Berlin—where all the buildings look alike, even if they’re
not ’ (2000, p. 138). Feldman’s solution for achieving this disorientation was
to combine subtle variations in the repeated structures together with fragile
materials. Somewhat surprisingly, quiet and slow materials can, in fact, pose
a perceptual hurdle to the listener since they decrease musical contrast and,
with it, mask structures that would otherwise be readily identifiable and serve
as reference points for the ear. This type of music thus requires an additional
commitment from the listener, as Harrison (2007, p. 33) points out:

For me, working at a low dynamic volume has had the added effect of
removing timbral differentiation as well as allowing me to create a softer
palette. In all music which inhabits a quiet sound world, such as Feldman’s,
the sounds are no longer projected towards the spectator. Thus the listener
is forced to bring something of themselves to the listening experience, to
meet the sounds half-way and thus intensify the experience.

In my music, I have been especially influenced by the ‘reverence for silence’
of the post-Cagean composers of the Edition Wandelweiser (such as Jürg Frey,
Eva-Maria Houben, and Michael Pisaro) and the ‘reverence for quietness’ of the
post-Feldmanian composers whose music has been published by Another Timbre
(such as Bryn Harrison, Laurence Crane, Catherine Lamb, Ryoko Akama, and
Adrián Demoč, among many others). Be it through punctuations with extremely
long silences, musical stillness, or repetition of quiet materials, a common element
to the highly unique music of all these composers is that the experience of time
while listening to them is seldom linear. It is often the case that this type of
music creates a listening experience that is fragile and fleeting; as Frey (1996)
writes about his own work:

5Interestingly, Simchy-Gross & Margulis point out that these two compositions by Reich
predate the discovery of the speech-to-song illusion by science (2018, p. 1).
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With this music, we do not have a memory of moments of particular
intensity after the concert. The situation is not at all shaped by memory.
There is indeed the feeling that the music is already gone.

Besides working with quiet materials, I also tend to work with a very limited
sound palette. My music often employs homogeneous sounds, and changes of
playing technique are rare. When I employ changes of instrumental technique,
they are always accounted for by the algorithm and are often used to create
multiple structural layers rather than continuous transitions of timbre. Thus,
these are not subtle slow variations of bowing angle or lip pressure; instead,
they are sudden changes that emphasise the algorithmic nature of these works.
I also have a predilection for simpler timbres, and my music seldom features
any extended techniques at all. Part of my reason is to avoid too much timbral
differentiation, which can help draw the listener ‘inside’ the work’s texture
(Harrison, 2007, pp. 32–33). My use of piano pedalling (which I usually require to
be half or fully depressed for a whole piece) and predilection for long sustained
notes can help to further increase the blurriness of my soft musical textures.

Stillness is another significant characteristic of the materials I work with;
when coupled with the repetition-based processes I use, stillness helps create
the gradual and sometimes imperceptible changes that my music often displays.
It invites us to focus our attention on the more minor details of textures and
structures. This, in turn, can serve as a form of ‘musical misdirection’: while our
attention shifts towards the microstructure of these loops, global changes can
sometimes go unnoticed. This type of fragility can thus emphasise a mode of
listening in which sudden changes in our perception of musical context can occur;
as Frey (2004) states, ‘a seemingly static, monochrome sound gradually allows
us to recognise that we are suddenly somewhere totally different.’ The listener
invariably oscillates between listening locally and globally, further contributing
to the slippage displayed by the composition.

The relationships between fragility, staticity, repetition, and experience are
also prevalent in other art forms. For instance, Post-Minimal artists often work
with simple shapes that emphasise process and manipulation of material (Honour
& Fleming, 2010, p. 853). The work of Agnes Martin, which has had a great
influence on me, is one such example. Varnedoe (2006, p. 241) describes her work
as essentially incorporeal, and her type of abstract painting as sensual rather
than cerebral. He writes:

In order to understand this art, you have to be there to feel the touch of
the pencil, the lightness with which it hits the surface, to feel the subtlety
of the tint. Martin’s art is all about experience—on the part of both the
artist and observer. (Varnedoe, 2006, p. 241)
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Figure 3.5: Agnes Martin’s Untitled #5 (1994); image available at https://www.tate.org.
uk/art/artworks/martin-untitled-5-ar00177

The focus is thus not on the object which constitutes the artwork itself but
instead on the experience of observing it. This is evoked by the materials used by
Martin: the pale shades of her palette, the repetition of lines and visual patterns,
the tiny details of her technique revealed only at close inspection. An example
of this type of painting can be seen in her work Untitled #5 (1994), shown in
Figure 3.5, in which she divides a large square canvas of over a metre and half in
length in eleven bands, which are then filled one by one with a fixed sequence of
three extremely pale tints. This methodical exploration of simple shapes using
faded colours is typical of her work and which, similarly to music composed
with fragile materials, draws the observer inside the painting: these are artworks
that require a high degree of commitment on the part of the observer due to
their highly subtle materials with low contrast. This commitment has a strong
parallel with that observed by Harrison (2007, p. 33) regarding the requirements
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imposed on listeners by music that is very quiet and lacks timbral contrast.

3.4 Emergence

In the context of algorithmic design, emergence refers to the observed complex
behaviours that can arise from a system made out of much simpler parts (Pearson,
2011, p. 108). These parts are often defined using straightforward rules that
cannot account for all the system’s complexity from an observer’s perspective.
It is important to emphasise that emergence is a property that relates to our
perception of a system: all sophisticated patterns that may arise from simple
interactions are, by definition, contained in the system itself, even if they are
not apparent to us (Crutchfield, 1994, pp. 2–4).

Emergence can be widely observed in the natural world. Complex—and
sometimes perplexing—collective behaviours can arise from the interaction of
multiple individuals in situations where no one plays the role of a leader; examples
of this include the formation flying of flocks of birds, the grouping behaviour of
schools of fish, and the complex societies of ants that lack any central source of
coordination (Crutchfield, 1994, pp. 1–2).

Although emergence can arise from random interactions in a generative sys-
tem, randomness is not a prerequisite for its existence. In fact, many deterministic
systems display emergent properties, such as is the case of chaotic dynamical
systems (Crutchfield, 1994, pp. 2–3).6 Deterministic musical processes can also
display emergent properties, such as in Alvin Lucier’s Music for Piano with
Slow Sweep Pure Wave Oscillators (1992) and Phill Niblock’s Five More String
Quartets (1991). Both of these pieces employ glissandi that interact with other
tones during their trajectory and, in the process, generate emergent auditory
phenomena in the form of acoustic beats. The frequencies of these beats will
vary in time since they are dependent, at every given moment, on the constantly
changing frequencies of the glissandi tones and their surrounding pitches. Both
of these pieces make use of multiple simultaneous glissandi that move at different
rates, creating sonic results that are both complex and impossible to be precisely
accounted for from simply looking at the pieces’ scores. This complexity emerges

6In mathematics, the notion of chaos refers to dynamic systems whose behaviours are
very sensitive to their initial states and appear to be completely random, despite the systems
themselves being deterministic. With such systems, it is impossible to predict a specific long-
term future state since even the slightest difference between initial states will lead to vastly
different future ones. Despite this impossibility, the collection of all possible trajectories of
such a system can reveal a patterned structure—an emergent pattern that arises from the
system’s chaotic nature (Strogatz, 2000, pp. 2–4).
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from the local interactions that take place during the pieces’ executions, while
the scores are only concerned with notating their execution but not the sonic
results.

Other examples of deterministic emergence can be found in the phasing
pieces of Steve Reich, such as in his Piano Phase (1967), as well as the previously
mentioned It’s Gonna Rain (1965) and Come Out (1966). In Piano Phase, two
pianists start by playing the same series of notes in unison at the same constant
tempo. After several initial repetitions, the second pianist is instructed to speed
up their tempo ever so slightly while the first pianist holds the same initial
one. This change of speed marks the effective start of the phasing process: the
notes of the second piano will begin to gradually move ahead of the first piano,
desynchronising the music. At first, both pianos seem to continue to play in
perfect unison, but soon thereafter, when the melodies of each piano have phased
enough apart from each other, the combined sound is perceived as having a
short echo. As the phasing process continues, this echo will be transformed into
two separated but identical melodic lines that are delayed from one another.
As these two lines continue to move apart, the attacks of one melody will, at
some point, fall precisely in between consecutive attacks of the other, creating an
interlocking pattern that will sound twice as fast as the original melody; these
two melodic lines will then continue to move out of phase with one another,
halting the perception of a perfect interlocking. The attacks of both melodies
will later start to sync up again, although the pitches are now phased by one
semiquaver. This rich listening experience, with its multiple perceptual threshold
crossings, emerges from and can be wholly accounted for by a very simple process
that is notated as shown in Figure 3.6.
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Figure 3.6: Excerpt from Steve Reich’s Piano Phase (1967)

In my music, emergence manifests itself primarily as a consequence of my use
of loops. As previously discussed in Sections 3.2 and 3.3, the looping techniques
I use, coupled with the fragile materials I tend to work with, significantly
contribute to an overall sense of disorientation in music that is otherwise created
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through very linear processes. Most of my pieces use looping windows with fixed
lengths and step sizes, which could, in theory, lead to highly predictable sonic
results. In reality, the listening experience offered by these pieces is far richer
and subtler than their linear processes might suggest: the relatively long looping
windows pose a challenge to our memory and thus make the identification
of what is changing (if anything) difficult to assess, creating a disorienting
listening experience. This is further reinforced by my use of short step sizes
between consecutive looping windows, which often result in a perceived identical
repetition of material. Therefore, by engaging with the listener’s memory in this
way, the superimposition of simple linear processes coupled with the right set of
materials can, from a perceptual point of view, create non-linear and complex
entities.

Emergent structures can also form at the borders of these looping windows.
These are places where some elements of the input music interact with one
another even though they are, in fact, not consecutive events in the input music.
Thus, these constitute moments when new structural relationships emerge from
the overarching process and cannot be completely accounted for solely from the
original material. Notes and chords that are apart in the input music suddenly
follow one another in direct succession, creating transient relationships in the
process. These relationships shift and disappear as the elements drift apart; for
instance, this can happen when the looping window leaves one of the elements
behind or when it uncovers a new element that is heard in between the previous
two. These new relationships often seize the listener’s attention in an act of
musical misdirection: depending on the properties of these new relationships, a
strong link is perceived, and these elements are grouped as a single structural
entity.

The laws that govern perceptual grouping were first studied by the psychol-
ogists of the Gestalt school in the early 20th century. They have shown that,
among the many factors influencing how our mind groups visual entities together,
proximity, similarity, and continuity are key attributes that influence the way
we perceive links (Wertheimer, 2012). The law of proximity states that when
observing a configuration of several entities with non-uniform distances from
one another, closer entities will be perceived as belonging to the same group
(Wertheimer, 2012, pp. 130–135). This can be observed in the first example
shown in Figure 3.7: because of the wider gaps between some of the vertical rows
of circles, an observer will perceive this configuration as three distinct columns
of two by six circles each. The law of similarity describes how we will group
objects with similar characteristics together (Wertheimer, 2012, pp. 135–139).
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An example of this is shown in the second diagram of Figure 3.7, in which the
yellow circles are grouped together while the pink ones form a second group.
The law of continuity (sometimes referred to as the law of good continuation)
states that objects in a path are perceived as a group that follows the smoothest
possible path (Wertheimer, 2012, pp. 149–160). This can be observed in the third
example of Figure 3.7, in which a series of circles is perceived as a wavy line.

Law of Proximity Law of Similarity Law of Continuity

Figure 3.7: Gestalt grouping principles

Gestalt principles can be applied to musical structures as well, as demon-
strated by the research of Bregman (1990).7 In music, the primary aspects
contributing to linkages are the temporal and pitch proximities between musical
elements (Bregman, 1990, pp. 455–528; Tenney & Polansky, 1980). When writing
about the application of Gestalt principles to music, Bregman uses the term
‘auditory stream’ when referred to the perceived groups of sounds, defining it as
the ‘perceptual grouping of the parts of the neural spectrogram that go together’
(1990, pp. 9–10). He demonstrates that certain sequences of sounds can give
rise to what he terms ‘auditory stream segregation’: that is, depending on the
temporal and pitch properties of the sounds in a sequence, such as fast alter-
nating high and low pitches, the listener may perceive them as two independent
streams of tones instead of a single stream (1990, pp. 642–644).8 This means
that the closer in the pitch field that these subsets of tones are, the more likely
they will be perceived as a single group—particularly if they are not too widely
separated in time. In my music, such groupings become very prominent when
their elements stand out from their surroundings, especially when some of their
parameters are novel in a given musical passage; for instance, when new notes

7Interestingly, when describing his law of similarity and its relation to the law of proximity,
Wertheimer uses musical pitches in some of his examples (2012, pp. 137–141), although they
are much simpler than those explored by Bregman (1990).

8Composers in the Baroque period have widely used a technique known as ‘virtual
polyphony’, which consists of a practical application of the notion of stream segregation:
a single monophonic sequence of tones played by a solo instrument is perceived as two or more
distinct musical voices through the alternation of high and low registers, thus creating the
illusion of true polyphony in the process (Bregman, 1990, pp. 464–465).

63



appear in a register that had not been previously used, their linkage will be
particularly strong. Since these emergent linkages occur at the transition points
between consecutive windows, it is often difficult to perceive precisely where
these borders are located when listening to this music, even if they are quite
evident to the eye when looking at the score. I also tend to use other elements
that further blur the location of these borders, such as nearly identical pitch
content between consecutive windows, constant use of piano and vibraphone
pedalling, long sustained notes, and notes tied across window boundaries. The
overall impression is one of a slowly shifting landscape that moves at an irregular
pace.

A concrete example of stream segregation and blurring of looping window
borders can be observed in Figure 3.8, which shows an excerpt of measures
49–56 of Cartography #11, for solo piano, with each auditory stream notated
by a different colour. In this example, the segregation between the two auditory
streams is primarily due to pitch proximity, with the pitches G5 and A[5
constituting one stream while E[4, E4, and F4 constitute another. The marcato
accents—the loudest articulation a note can have in this piece—that are present
at the start of each group from measure 50 onwards further contribute to the
perception of two separate streams, each of which displays relationships not
present in the input music.
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Figure 3.8: Auditory streams in Cartography #11, measures 49–56

Randomness can also play an important role in creating emergent structures.
As previously discussed, a system is not required to employ randomness in order
to promote emergent behaviours. However, randomness can be an excellent tool
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for creating emergent patterns as it can generate seemingly complex structures
through straightforward procedures. A visual example of this can be observed
in the so-called ‘Perlin noise’, a random function most often used to create
two-dimensional textures that are then applied to three-dimensional models in
3D design (Pearson, 2011, pp. 57–59). This function initially creates a matrix
of random numbers and then interpolates between neighbours in all directions,
creating smooth gradients between the randomly generated values. Although
this is a random procedure, the right set of parameters can promote emergent
structures to develop from this noise function, as shown in Figure 3.9. The
textures created with Perlin noise can show surprisingly natural and organic
structures, which is part of their main attractiveness to 3D modellers (Pearson,
2011, p. 57).

Figure 3.9: Example of Perlin noise

In my music, I often employ random procedures when generating the input
music upon which the repetition-based processes will operate. These are heavily
constrained random procedures which typically make weighted random selections
from a pre-defined pool of options. By carefully selecting these weights and
the elements available in these pools (or how the algorithm generates these
elements, in case they are also random), emergent structures can also appear in
the input music, similarly to the Perlin noise described above. The perception
of these structures is once again tied to their component’s temporal proximity
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and intervallic characteristics (Bregman, 1990, pp. 455–528; Tenney & Polansky,
1980). Even prior to applying any looping process at all, this randomly generated
and linear input music often displays identical or nearly identical repetitions of
material that can be picked up by the ear. Calls and responses, quasi-canonic
moments, and interwoven rhythms are all common musical structures that arise
in this input music but which are not directly defined in the algorithms. Instead,
their existence is fundamentally tied to how we perceive music: these are the
result of our brains looking for patterns in otherwise random events. In my
Cartographies series, I was particularly interested in exploring these emergent
structures that arise from my usage of the mental model of a container (which
will be discussed in Subsection 5.1.2).

Some deterministic procedures can also be perceived as ‘random’ due to their
complex nature and seemingly unpredictable results—that is, unpredictable only
to a human observer as, no matter how complex, a deterministic procedure will
always be, by definition, entirely calculable. This is the case of Bernhard Lang’s
use of cellular automata in his Monadologie cycle of compositions (2007–present).
Consecutive states in these compositions are generated through iterations of
a cellular automata model, which are then mapped into pitch and rhythm.
Although this technique is entirely deterministic, the results are chaotic enough
to appear random to the listener (Dysers, 2019, pp. 104–115).

A visual example of emergent structures appearing from a straightforward
random procedure can be observed in Sol LeWitt’s Wall Drawing #118 (1971),
a work that exists as a set of instructions to be executed on a wall. The original
instructions from the artist, as quoted in Russeth (2012, pp. 3–4), are:

On a wall surface, any
continuous stretch of wall,
using a hard pencil, place
fifty points at random.
The points should be evenly
distributed over the area
of the wall. All of the
points should be connected
by straight lines.

Each realisation of this work will, of course, create a different-looking result.
Figure 3.10 shows the result of a possible implementation of these instructions.9

As can be seen in this realisation, the connections between those fifty points
create regions of higher and lower densities of lines, in a visual result that is
not too dissimilar from the Perlin noise example previously shown in Figure 3.9.

9For the code that generated this image, see Appendix A.
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This rich result with a complex structure of lines and points emerges solely from
the straightforward instructions given by the artist.

Figure 3.10: Possible realisation of Sol LeWitt’s Wall Drawing #118 (1971)

3.5 Liminality

I use the term ‘liminality’ to describe a large scale quality of my recent music.
Whereas slippage relates to local phenomena—such as the disorientation caused
by consecutive iterations of a looping window—liminality is concerned with the
overall listening experience induced by the unfolding of the algorithmic processes.
Liminality thus relates to transience, referring to the overall ambiguity and
disorientation experienced when being on a threshold. As Buchanan (2010a)
describes it, ‘The liminal is the in-between, the neither one thing nor the other.’

The shape of my music is dictated by a series of states that undergo algo-
rithmic transformations. A state can be understood as a snapshot of a moment
in time, one that has the potential to morph into another by the unfolding of
algorithmic processes. In most of my pieces, it is the trajectory from the initial
state to the final one that defines the composition’s shape and, therefore, musi-
cal form becomes an emergent property of these systems, as opposed to being
imposed a priori. This approach of musical processes as agents of form helps
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emphasise the temporal mode that Kramer refers to as ‘nondirected linearity’
(1981, pp. 541–542; 1988, pp. 39–40). Kramer’s concept describes music that has
both inner motion and a sense of continuity, but that lacks an unequivocal goal
towards which it moves to. Even though the term ‘nondirected linearity’ does
not describe an attitude to musical form per se,10 the emergent approach to form
that I employ in my work produces music that lacks contrasting segments, which,
in turn, helps to further underline its sense of continuity without any specific
goals (Kramer, 1981, p. 542). In other words, by eschewing more dramatic formal
models and allowing form to emerge out of the musical processes themselves,
my compositions often seem to be in a single transient state for the duration
of the whole work. However, it is important to note that even a composition
written with multiple individual sections can lack this sense of destination, an
idea supported by Frey (1996), who describes his use of different sections in his
music as incidental:

When this music has individual sections, they are not developed from one
to the next, or linked by contrast—rather, the individual parts appear to
be tied to each other by an invisible thread. This means that each idea for
a new section must be a new beginning, dialectically unconnected with the
previous section. In this case, there are only the sections which occurred
to the composer, and these sections bring forth the identity of the piece.

Despite using algorithmic processes to shift between states, my music does
not employ a narrative, be it musical or extra-musical, with the exact trajectory
created by these processes being selected through stochastic procedures alone.
This, in turn, emphasises their lack of final concrete goals: the focus of the
pieces lies in the transformations themselves rather than in a clear destination
to be reached. The processes and materials I employ in my recent work are
never opposing one another, and thus there is no dialectic conflict to be resolved.
I am particularly fond David Lang’s description of Beethoven’s vastly more
dialectic music; he writes, ‘When I listen to Beethoven, the emotional trajectory
is incredibly erratic. That’s not an emotional life I want. I like to remain
in more or less one state’ (David Lang as quoted in Davidson, 2014). The
non-goal-oriented and ever-unfolding compositions of Morton Feldman are an
excellent counterexample to this more dialectic music. While Feldman’s music
goes through transformations over time, the changes occur in such a way that the
music flows without a clear sense of finality or a clear destination; as Coolidge

10That is, music that employs a more segmented approach to form can still make use of this
temporal mode. Kramer himself uses the term to describe music that displays substantially
more formal contrast than my own music (1981, p. 542).
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(1988, p. 128) describes it: ‘Feldman’s music seems never to manipulate, as if
never overdetermining its destination, so not rushing to insure the most ease
(audience) in getting there. An absolutely non-rhetorical music [. . .].’

This lack of clear musical goals on a larger scale coupled with the ever-
unfolding (but often ungraspable) inner motion of this type of music can give rise
to what I describe as ‘liminal music’. Liminality is a concept from anthropology
that characterises the transient aspects of certain rites of passage (Gennep,
1960, p. 11). The term has now become commonplace in subjects other than
anthropology; for instance, Cotton (2009, pp. 94–95) writes about ‘liminal spaces’
concerning architecture and photography, defining it as ‘areas [that] exist where
cracks in institutional or commercial definitions appear, and our sense of place is
dislocated.’ This term is often applied to describe situations or locations that are
intrinsically transitory and in which an individual feels displaced, such as crossing
a hallway, staying in hotel rooms, driving on motorways, or taking a commercial
flight—all of which have transient purposes but are never the destination in
itself.11 There exists thus a strong parallel between the notion of liminal spaces,
places of transition and dislocation, and the repetitive, ever-unfolding music
that attracts me, one that, as Harrison (2007) describes, gives the impression of
implied motion despite lacking traditional musical progress. In my own music,
liminality is interconnected with the notions of slippage and fragility; it is the
sense of constant disorientation and ungraspability that emerges from the ever-
present slippage and fragile materials that create these feelings of transition,
aimlessness, and dislocation.

Liminality also plays an essential role in the algorithmic work of composers
engaging with cybernetic systems, such as Roland Kayn and Agostino Di Scipio.
Cybernetic music can be described as music produced by self-regulatory networks
of electroacoustic devices through which audio signals can freely roam; these
audio signals affect one another, creating complex emergent behaviours through

11In the case of the liminal space of an airport, Huang, Xiao, & S. Wang (2018) argue
that airport lounges can create a sense of timelessness and placelessness that often affects the
behaviour of the passengers who temporarily make use of it, and who may feel uninhibited by
the apparent absence of social structures. The liminality of airports has been musically explored
by Eno in his seminal Music for Airports (1978), conceived as music to be continuously played
as a loop in the background of an airport lounge. Concerning the necessary characteristics to
such music effective, he writes, ‘It has to be interruptible (because there’ll be announcements),
it has to work outside the frequencies at which people speak, and at different speeds from
speech patterns (so as not to confuse communication), and it has to be able to accommodate
all the noises that airports produce. And, most importantly for me, it has to have something
to do with where you are and what you’re there for—flying, floating and, secretly, flirting with
death’ (Eno, 1996, p. 295). As such, Eno’s composition displays similar liminal characteristics
to that of the environment it was written for.
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feedback. These systems display an inherent goallessness and resemble living
entities that are able to self-regulate; in the case of Kayn, the composer first sets
up the machine (i.e. both the hardware wiring between the modules as well as
what audio signal will go through it) before exploring it in real-time through
experimentation with the system’s interface. These are systems that are thus
inherently liminal, chaotically transitioning between possible states but never
reaching a final destination. Pickles (2016, pp. 74–75) writes:

[Kayn equates] the systematic processes applied prior to the recording (the
routing of the modulation matrix and the order of the initial sound signals
from tape) with the systematic, human control processes he is utilising as
the real time operator of the compositional system.

Although I do not employ real-time strategies in my work—these are not
required as my focus is in generating notated scores—my systems are, nevertheless,
entities that can also roam, producing endless different results in the process.
Similarly to how Kayn is the real-time operator of his machines, so am I the
performer of my systems when I tweak their metaphorical ‘knobs and dials’ in
order to lead it towards certain directions, which are decided through a mixture of
previous experience, musical intuition, and pure blind experimentation. A system
can be tweaked not only by simple changes of variables and initial values but also
by completely rewriting parts of the system on the fly. This is why a modular
approach that uses multiple interrelated abstractions is fundamental for my
compositional workflow, as certain musical entities and algorithmic processes can
be modified independently from the others (see Chapter 4 for a methodological
discussion on the topic).

Due to its inherent transience and in-betweenness, liminality also implies
a sense of detachment, of leaving a place behind without having reached one’s
destination yet. A low-intervention approach to musical processes can further
accentuate this experience of detachment: by letting the process take over and
dictate the path to be taken in the composition, the composer is adding one
more layer of detachment, one at the systematic level of the work. This attitude
of using low-intervention is shared by many artists working with algorithmic
systems, as previously discussed in Section 2.3. About his automatic techniques
employed in Discreet Music (1975), Eno (1996, p. 330) writes that his interest
lay in defining the music’s materials and processes and then allowing their
combinations and interactions to emerge from the algorithm. In the case of
my own music, my interest lies in automatic processes that are carried out
throughout a composition, slowly transforming and distorting its fragile sonic
landscape and, in the process, creating a liminal sense of constant unfolding.
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A parallel can also be made between this detachment caused by low-interven-
tion coupled with systematic approaches and the ideas explored in the genre
of photography known as ‘deadpan’. This is a type of photography that is
impassive and expressionless, in which the photographer stares at a subject
with a detached and agnostic eye (Cotton, 2009, p. 81). While the photographer
chooses the subject at which they point their camera, the photograph happens
almost by itself, with the subject dictating the framing. Deadpan constitutes
the quintessential non-goal-oriented approach to art, one that is all about the
subject itself and not the photographer’s own views about it, an attitude that
bears a strong similarity to John Cage’s attempts of avoiding individual taste
and memory in his music (Griffiths, 2011, pp. 26–30). It is a low-intervention
type of photography in which the photographer stares at something for what
that something is, creating inexpressive and emotionless images in the process.
Deadpan photography often lends itself to serial exploration (LeWitt, 1967b)
through collections of related subjects upon which the deadpan look is cast
(Cotton, 2009, pp. 82–83). The methodical and repetitive approach towards its
subjects is an important characteristic of serialised deadpan photography, one
which is also very close to my attitude towards my own work as a composer.12

Two notable examples of deadpan photography can be found in the works of
Bernd & Hilla Becher and Rineke Dijkstra. The Bechers had an encyclopaedic
interest in architectural photography; their better-known series of works consists
of photographic catalogues of vernacular architectural structures photographed
from an identical perspective. The notions of seriality and repetition are thus of
primary importance to their work. Figures 3.11 and 3.12 shows examples from
two of their series, Water Towers (1988) and Pitheads (1974), respectively.

Rineke Dijkstra is well-known for her series of deadpan portraits of peo-
ple, often printed in near life-size. Her photographs display the characteristic
unsentimental, systematic, and detached photographic style often associated
with the deadpan aesthetic (Cotton, 2009, pp. 111–112). Figure 3.13 shows the
photograph De Panne, Belgium, August 7 1992 from her series Beach Portraits
(1992–2002), a series which deals with a particularly liminal topic: the transition
from adolescence into adulthood.

Algorithmic processes can, in fact, closely resemble this deadpan approach:
by algorithmically inspecting and manipulating musical material, the primary
focus of the composition can fall on the object itself, be it the mechanical process

12An example of this can be found in my series of compositions entitled Cartographies, in
which I explore how the same mental model can be used to create unique but interconnected
musical pieces. See Chapter 5 for an in-depth commentary on these pieces.
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Figure 3.11: Bernd & Hilla Becher’s Water Towers (1988); image available at https://www.
moma.org/collection/works/49624

Figure 3.12: Bernd & Hilla Becher’s Pitheads (1974); image available at https://www.tate.
org.uk/art/artworks/bernd-becher-and-hilla-becher-pitheads-t01922
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Figure 3.13: Rineke Dijkstra’s De Panne, Belgium, August 7 1992 (1992) from the series
Beach Portraits; image available at https://www.tate.org.uk/art/artworks/dijkstra-de-
panne-belgium-august-7-1992-p78328

that drives the composition, the generated material that is being processed, or
a combination of both. This is similar to Fink’s argument that Minimal and
Process Music gives a ‘deadpan attention to the “pure object” ’, particularly with
its focus on combinatoric processes (2005, pp. 30–31). Through its strict and
mechanical nature, algorithmic processes also enable a non-interventional and
dispassionate attitude towards the musical subject, inviting explorations into
the musical material itself.

3.6 Conclusion

Repetition has become one of the most important techniques I have used in my
recent work and is employed throughout my accompanying portfolio. I use it not
only for its structural properties but also as means for creating disorienting and
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ambiguous listening experiences. Repetition is generated in my music by linear
and strict algorithmic processes that nevertheless sound as if they are non-linear.
On a local level, this gives rise to slippage: that is, the listener is unable to fully
grasp the process’s constant movement and slow unfolding, with the resulting
music occasionally giving the appearance of complete stasis. The fragile input
materials that I tend to use—that is, those that are soft and slow—further
contribute to this disorientation, as they decrease musical contrast, creating a
lack of clear anchor points for the listener’s ear.

Repetition also gives rise to emergent structures that are formed at the borders
of consecutive iterations of my algorithmic processes. These are ephemeral
structures created by the random collision of musical entities that are not
present in the input music (that is, the music that serves as input for the
looping processes). In the right circumstances, notes and chords at the borders of
consecutive iterations of the process will be perceived as a single structure, further
obfuscating the compositional process and increasing the overall disorientation
experienced by the listener.

All these elements together can give rise to a liminal musical experience, one
that comes from a sense of constant musical unfolding without ever reaching a
final goal. As such, the focus of the pieces in my portfolio lies in the unfolding
of the musical processes themselves as well as the disorientation they create.
When designing my systems, I aim to maximise their potential for generating
results that I consider interesting and engaging, such as those that display a
high degree of emergent structures, perceptual fragility, and slippage, with the
version selected as the final output discovered along the way through a process
of heuristics and experimentation.
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Chapter 4

The Auxjad Library

Auxjad (Agostinho, 2021) is an open-source Python library that provides aux-
iliary classes and functions for Abjad 3.4 (Bača et al., 2021). It serves as a
compositional toolkit for the specific type of algorithmic thinking that under-
pins the accompanying portfolio. Auxjad contains high-level implementations
of algorithmic processes that can be applied to any arbitrary musical material.
These include traditional algorithmic processes such as looping, phasing, and
shuffling, as well as implementations of compositional procedures that are specific
to my own works (these will be discussed in detail in Section 4.6). Although
the latter consists of specialised procedures tailored for specific compositions
of mine, they are still general enough to be included in this collection in the
hope that other composers might find them useful. An advantage of working
with open-source, object-oriented code is that classes and functions can easily
be adjusted or readapted to suit one’s own particular needs (as will be discussed
in Section 4.5).

This library was written with its practical application in mind, and, as such,
it encompasses operations and musical metaphors used in my own practice. As
a result, this collection closely reflects my compositional interests: most of its
members were created with specific compositions in mind or, at least, originated
from compositional experimentation, even if they did not end up being used
in any of the works in my accompanying portfolio. Therefore, this library was
never intended as a general collection of algorithmic processes. While a public
release was not the primary motivator behind its development, the algorithmic
processes implemented in this library likely have broader applications beyond
my own compositional practice. I hope that other composers will find this library
useful and incorporate parts of it into their workflow, be it by direct use or
by borrowing and deriving elements from Auxjad, adjusting it to their own
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purposes.
Before examining the inner workings of the Auxjad library, this chapter

will briefly introduce LilyPond and Abjad, as some knowledge of these tools
is necessary for contextualising my own library. This will be followed by a dis-
cussion on the motivations behind the creation of the Auxjad library. This
chapter will then overview some of Auxjad’s main features, demonstrated
with practical examples. This is not intended as a comprehensive documen-
tation of this library; rather, the aim is to provide an insight into the rela-
tionship between my accompanying portfolio and the Auxjad library. For the
complete documentation of all members of Auxjad’s API, including all their
methods, attributes, and arguments, please see the documentation page in
the link https://gilbertohasnofb.github.io/auxjad-docs/. The documen-
tation page contains hyperlinks to Abjad’s own documentation, so all mentions
of Abjad’s classes and functions are linked to their individual documentation
pages.

4.1 Music Notation With LilyPond

LilyPond (Nienhuys & Nieuwenhuizen, 2021) is a cross-platform, open-source
music engraving software that uses plain-text files as source files for compiling
publication-quality music scores in PDF or PostScript formats, among others.
LilyPond is in many ways similar to SCORE (Smith, 2013), an older text-based
music engraving software for the DOS operating system, and LATEX (Lamport,
2021), a widely used typesetting system. These tools share a common design
principle: by interpreting commands entered by the user on a command line
or plain-text file prior to compiling the desired output, they all break with the
vastly more prevailing WYSIWYG (‘What You See Is What You Get’) software
paradigm.1

This separation between the user interface and output can be daunting at
first, particularly for new users. All three programs mentioned above are often
described as having a steeper learning curve than their WYSIWYG counterparts.
However, as this section will show, there are many advantages to this philosophy

1In computing, the WYSIWYG paradigm is used to describe computer software in which
the user interface displays the resulting formatted document in real-time. Examples of software
employing this paradigm include music engraving programs such as MuseScore, Dorico, and
Sibelius, and text editors such as LibreOffice and Microsoft Office. In contrast, programs such
as LilyPond, SCORE, and LATEX work within the WYSIWYM (‘What You See Is What You
Mean’) paradigm, in which descriptive commands are used for formatting the documents which
are later compiled.
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of software interface design. The most obvious one is the precision of formatting:
all information is entered as text and will reliably compile in the same exact
manner. Parameters, such as positions, distances, and angles, are input as
numerical values, which allows for utmost consistency. In contrast, WYSIWYG
software often relies on mouse input (such as clicking and dragging) to change
an element’s position. This can lead to issues in the engraving consistency of a
document, particularly when the positioning of elements is done solely by visual
means. Another advantage of these text-based programs is that they do not
need to perform in real-time and can thus use computationally more expensive
algorithms (Evans, 2019, p. 14). For instance, this allows LilyPond to have a
far better collision detection algorithm than most software using graphic user
interfaces, or LATEX to have a far more complex justification and hyphenation
algorithms than most WYSIWYG office suites (R. Zinkstok & J. Zinkstok, 2020).

Although users can type its syntax using in any text editor, LilyPond has
its own dedicated text editor named Frescobaldi (Berendsen, 2020). The main
advantage of using Frescobaldi over a regular text editor is that its interface is
divided into two halves, one showing the source code and the other the compiled
PDF file (which can be recompiled at the click of a button or press of a key). This
allows the user to see the previously compiled score while typing modifications in
the editing pane. Frescobaldi’s menus also offer shortcuts for much of LilyPond’s
syntax as well as notation snippets, enabling new users to more easily and quickly
produce high-quality musical scores.

In LilyPond, blocks of music can be assigned to variables, which can then
be reused at will. For instance, in the first code snippet below, four notes are
entered directly in a staff block, while in the second, the same notes are assigned
to a variable named notes , which is then used in the staff block. Both code
snippets are equivalent and will produce the same output, shown in Figure 4.1.

1 \new Staff {
2 c'4 d'4 e'4 f'4
3 }

Listing 4.1: Notes defined inside a Staff block

1 notes = {c'4 d'4 e'4 f'4}
2

3 \new Staff {
4 \notes
5 }

Listing 4.2: Notes defined in a variable
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� ��� 44 �
Figure 4.1: Example of LilyPond’s output using a variable

The advantage of using variables in LilyPond is that they can be reused in
later portions of the code as well as manipulated, such as by passing them as
arguments to more complex functions. In the example below, the variable notes

is used as argument for the functions \repeat and \transpose , resulting in
the output shown in Figure 4.2.

1 notes = {c'4 d'4 e'4 f'4}
2

3 \new Staff {
4 \repeat unfold 2 \notes
5 \transpose c e {
6 \repeat unfold 4 \notes
7 }
8 \transpose c d {
9 \repeat unfold 2 \notes

10 }
11 }

� �� ��� � ��� �� ��� 44 �� � � ��
�� � �� � � �� ��� �� �� � � �� ���

Figure 4.2: Example of LilyPond’s functions applied to a variable

This modular approach to music engraving highlights another advantage of
working with LilyPond: since the individual staves can be stored in their own
variables, it becomes trivial to create multiple versions of a score by grouping
these variables as required; this is particularly useful when extracting individual
parts or creating reduced scores (Nienhuys & Nieuwenhuizen, 2003). LilyPond
also allows for partial engraving (useful when dealing with large projects) and
structuring a project using multiple music segments (e.g. by breaking a complex
or longer score into several sections, each typeset into their own file).

LilyPond is also highly suitable for engraving contemporary music, as it can
handle very complex rhythmic structures and make use of customised graphical
objects (Evans, 2019, pp. 2–4). It has functions for drawing arbitrary ‘paths’,
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which can be combined with musical symbols or text characters from a regular
typeface to create composition-specific notation. For instance, this can be used
to create custom note-heads or add complex graphics to a score.

LilyPond comes with a built-in Scheme interpreter,2 allowing users to write
Lisp-like code directly in the source files of their scores (Nienhuys & Nieuwen-
huizen, 2003). By using this feature, composers can write complex functions
for handling both engraving and compositional procedures. Snippets of such
functions have been collected, curated, and maintained over the years by the
team behind the LilyPond Snippet Repository (Vigna, 2021).

4.2 Algorithmic Scores With lilypondLibrary

LilyPond uses a specific but consistent syntax that is read and interpreted from
a plain-text input file. This is a crucial feature of LilyPond since plain-text files
can be created not only by manually typing commands in a text editor but
also programmatically. As long as this generated file complies with LilyPond’s
syntax and semantics, its code will compile and generate a score. This approach
can then be generalised into a collection of functions and classes written in
such programming language that are then each mapped to specific elements of
LilyPond—such as notes, chords, rests, dynamics, time signatures, voices, and
staves—effectively allowing a programmer to write music for LilyPond using any
arbitrary programming language. I myself wrote a library with functions such as
these, named lilypondLibrary (Agostinho, 2019), for the Fortran programming
language. I used this library up until 2019, when I fully migrated to Python and
Abjad.

The use of Fortran is undoubtedly an odd choice. This is an ageing program-
ming language commonly used in fields that require vast numerical calculations,
such as computational physics and engineering.3 The single reason I worked
with Fortran when writing this library (as well as for several years after that) is
that it was the only programming language I was familiar with when I started
working with algorithmic composition.

Fortran is categorised as an imperative programming language4 that natu-

2A dialect of the Lisp programming language.
3The main attractiveness of Fortran for these fields is that it is cable of carrying out

extensive numeric calculations extremely quickly. Nowadays, some programmers interface
Fortran with other more modern programming languages, allowing them to use Fortran’s speed
for calculations while effectively writing code in a different programming language.

4More recent versions of Fortran do support object-oriented programming. However, from
my own experience, its usage is far more cumbersome than with more modern languages such
as Python or Java.
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rally lends itself to a top-down approach. This programming paradigm can be
contrasted with object-oriented programming, in which both data and functions
are encapsulated in a single entity known as a class. The latter approach is far
better suited for music representation (Pope, 1996), as it is far more natural
to conceptualise musical notation as the manipulation of interrelated objects
than sequential calls to functions. Classes serve as blueprints for making objects,
which are referred to as instances, and can model any entity such as notes, chords,
rests, time signatures, and dynamics, as well as higher-level structural concepts
such as scales, pitch sets, rhythmic patterns, musical cells, voices, and staves.
Each of these can be thought of as an object with both a state and a series of
methods for transforming this state. An example of this would be a scale, with
a state corresponding to its degree and mode, and methods for transposing it
and altering its mode. These principles of object-oriented programming will be
discussed in more detail in the following sections, particularly in Section 4.5.

lilypondLibrary’s origins can be traced back to my composition On the
Origin of Pitches (2012), for solo vibraphone. This was my first algorithmic piece,
consisting of a single-page flowchart that dictated how to generate the score.
Since it consists of a generative flowchart rather than a single performance-ready
score, this piece exists in multiple equally valid versions as any score that is
created using the flowchart is, in fact, a valid version of this piece. Initially, I
created different versions of it by hand, using dice to make random selections
and manually writing down notes on a score. Unsurprisingly, this type of manual
transcription was extremely laborious and time-consuming, even with a short
and simple solo piece.5 It became evident that automating this process would
save me from the laboriousness of manually transcribing the score and allow me
to explore multiple versions of this piece far more quickly. As such, I created a
Fortran library that mapped certain elements of LilyPond’s syntax into Fortran
subroutines, which could then be engaged with algorithmically. The example
below shows the type of syntax that this library uses:

1 program minimalexample
2 use lilypondLibrary
3 implicit none
4

5Multiple composers have addressed in the past the laboriousness of the manual imple-
mentation of generative ideas, particularly those working before computers became available
for music-making. In a letter to Pierre Boulez dated from 1952, John Cage writes about the
manual execution of his chance methods: ‘you must realize that I spend a great deal of time
tossing coins and the emptiness of head that that induces begins to penetrate the rest of my
time as well’ (Boulez & Cage, 1995, p. 133).
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5 call HEADER(title="Minimal Example", filename="minimalexample.ly")
6

7 call STAFF
8 call NOTE(60, "4")
9 call NOTE(62, "4")

10 call NOTE(64, "4")
11 call NOTE(65, "4")
12 call END_STAFF
13

14 call SCORE(autoCompile=.TRUE.)
15

16 end program minimalexample

� ��� 44 �
Figure 4.3: Minimal example of lilypondLibrary’s output

In this example above, each note was entered one by one, showing no advan-
tages over directly using LilyPond. In contrast, the example below showcases the
main advantages of this programmatic approach: notes are not entered sequen-
tially through individual commands but are instead created programmatically
(in this case, via a loop that generates sixteen random notes between C4 and
B5).

1 program randomnotes
2 use lilypondLibrary
3 implicit none
4

5 integer :: i, pitch
6 real :: r
7

8 call HEADER(title="Random Notes", filename="randomnotes.ly")
9

10 call STAFF
11 do i = 1, 16
12 call RANDOM_NUMBER(r)
13 pitch = FLOOR(r * 24) + 60
14 call NOTE(pitch, "4")
15 enddo
16 call END_STAFF
17

18 call SCORE(autoCompile=.TRUE.)
19

20 end program randomnotes
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Figure 4.4: Random notes generated with lilypondLibrary

Even though lilypondLibrary is fully functional and can be used to create
complex music—all compositions of mine up to and including the Cartography
series were written in Fortran using it—this library does have some severe
limitations. Its main limitation is that its subroutines, once invoked, directly
write into an output file, requiring users to structure their music linearly: for
instance, once a NOTE or CHORD subroutine is invoked, that note or chord will
be written into the output LilyPond file and cannot be changed any longer. In
other words, this library does not allow the user to revisit any musical entities
with a second pass of operations, which consists of a major restrictive aspect.
This is not to say that a better solution could not be achieved with Fortran, as
these limitations are in part a product of how this library was designed.

The solution used in my practice to address the need to invoke subroutines
linearly was to separate music creation from music notation. At that time, I
would create matrices of numerical data representing musical parameters evolving
in time. These matrices would later be mapped into musical representation using
subroutines from this library. Consequently, my music had to be created with
a very low-level approach, with these matrices and mappings needing to be
formulated on a piece-by-piece basis.

Although this was undoubtedly a cumbersome approach to programming
music systems—with its musical results being limited by what could be formulated
within this environment—this was not detrimental to the final compositional
results. As a matter of fact, it became very natural for me to approach algorithmic
composition from within the limitations of these tools and to intuitively formulate
the necessary mappings when writing those pieces. Effectively, I formulated my
algorithmic and musical thinking through the lens of what was possible given
my tools at the time, and these limitations became part of the technical and
aesthetic frameworks within which I composed (Culkin, 1967, p. 70; McLuhan,
1964, p. 23). Despite my current workflow with Python, Abjad, and Auxjad
being unquestionably better suited for the formulation and execution of my
current algorithmic musical thinking, one should always be conscious that all of
our tools carry ideological and epistemological payloads with them (Hamman,
2000a, pp. 91–92). This transition to a different set of tools—one that uses an
entirely different programming paradigm—required a complete reformulation of
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my approach to both writing and thinking algorithmic music.

4.3 Abjad and Formalised Score Control

Abjad (Bača et al., 2021) is an open-source package for Python which computa-
tionally models music notation. Similar to lilypondLibrary, Abjad is dependent
on LilyPond: it can be used to generate and compile files in LilyPond syntax
so that users can create scores from scratch from the Python command line. A
core concept in Abjad is what its developers termed ‘formalised score control’,
which they define as ‘the discipline of modeling and manipulating the typogra-
phy of common practice notation programmatically via software.’ (Oberholtzer,
2015, p. 3). Through this formalised score control, Abjad allows composers to
build scores gradually (Bača et al., 2015, p. 163). As such, this package is not
designed solely with algorithmic music applications in mind, as one can use it to
typeset any music score. Nevertheless, Abjad provides an excellent framework
for algorithmic composers interested in working with note-based systems.

Abjad is programmed using the object-oriented paradigm. Its implementation
of musical concepts is done mostly through classes that encapsulate both the state
of an entity and the available methods for altering this state. It models music
notation as a tree of elements grouped in three distinct categories: components,
indicators, and spanners. The nodes of the tree are made out of components,
which can be either a container (used for modelling musical objects such as
staves, voices, tuplets) or a leaf (which include musical objects such as notes,
chords, and rests). Each of these nodes can have multiple indicators attached to
them, such as clefs, dynamics, and tempo markings. Spanners, as their name
suggests, span across multiple components, and include objects such as hairpins,
slurs, and beams (Bača et al., 2015, p. 165; Oberholtzer, 2015, pp. 18–48).

Below is a comparison between LilyPond syntax and Abjad code, resulting
in the same score shown in Figure 4.5. The first listing shows the LilyPond code,
while the second contains the Python and Abjad code used to typeset the same
score.

1 upper_staff = {
2 c'4\p\<
3 d'4
4 e'4
5 f'4\f
6 }
7

8 bottom_staff = {
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9 \clef bass
10 \times 2/3 {
11 <c e>2
12 g,2
13 r2
14 }
15 }
16

17 \new Score <<
18 \new Staff \upper_staff
19 \new Staff \bottom_staff
20 >>

Listing 4.3: LilyPond syntax

1 >>> import abjad
2 >>>
3 >>>
4 >>> upper_staff = abjad.Staff([
5 ... abjad.Note("c'4"),
6 ... abjad.Note("d'4"),
7 ... abjad.Note("e'4"),
8 ... abjad.Note("f'4"),
9 ... ])

10 >>>
11 >>> bottom_staff = abjad.Staff([
12 ... abjad.Tuplet((2, 3), [
13 ... abjad.Chord('<c e>2'),
14 ... abjad.Note('g,2'),
15 ... abjad.Rest('r2'),
16 ... ])
17 ... ])
18 >>>
19 >>> abjad.attach(abjad.Dynamic('p'), upper_staff[0])
20 >>> abjad.hairpin('<', upper_staff[:])
21 >>> abjad.attach(abjad.Clef('bass'), bottom_staff[0][0])
22 >>>
23 >>> score = abjad.Score([
24 ... upper_staff,
25 ... bottom_staff,
26 ... ])
27 >>>
28 >>> abjad.show(score)

Listing 4.4: Abjad code
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Figure 4.5: Example of a score generated by Abjad

This example above showcases a few of Abjad’s classes and functions. Some
of them, such as abjad.Note , abjad.Dynamic , and abjad.Staff , correspond
to specific graphic objects in LilyPond. However, Abjad also has many classes
and functions that do not map one-to-one onto any of LilyPond’s internals.
An example of this is abjad.Selection , a class used for grouping score com-
ponents together so that they can be inspected, mutated, or assigned to an
abjad.Container .

Two key concepts in Abjad are those of inspections and mutations. Inspection
functions belong to the module abjad.get and are used to retrieve specific
information about objects which is not necessarily part of their public properties.
An example of this is abjad.get.duration() , which can be used to get the
duration of individual components such as notes, chords, and rests, as well as
the total duration of complex objects such as containers, tuplets, and selections.
Mutations are a type of function that mutates the state of an object while
producing no return value. In Abjad, these belong to the module abjad.mutate .
An example of this type of function is abjad.mutate.scale() , which can scale
up or down the duration of components, containers, and selections.

The previous code example also demonstrates another important feature of
Abjad: scores can be created interactively and incrementally (Bača et al., 2015,
p. 163). A composer working with Abjad can use the function abjad.show()

to see the fully notated score of their composition as well as any sub-elements
that make up this score (e.g. it is possible to compile just a subset of the
total staves or a certain range of measures of a specific staff). They can also
use the function abjad.lilypond() to check the LilyPond syntax of any of
their score’s components. These operations are only possible because the state
of any object is accessible to be read and modified at any point during a
program’s execution, unlike the case of lilypondLibrary. Coupled with other
built-in functions such as abjad.select() , abjad.attach() , and the functions
in the modules abjad.get and abjad.mutate , Abjad enables the composer
to interact with the musical material as they input the score. As the developers
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of Abjad themselves remark:

We hope this will encourage composers working with Abjad to transition
from working with lower-level symbols of music notation to modeling higher-
level ideas native to one’s own language of composition. (Bača et al., 2015,
p. 167)

Because of all these features, the composer can use Abjad not only to gradu-
ally notate a pre-composed score but also to accomplish complex algorithmic
manipulations of any arbitrary musical material, including those randomly cre-
ated using generative processes. As a simple example of this, the user can, for
instance, take any container of music, loop through its leaves, and randomise their
pitches by algorithmically modifying the abjad.Note.written_pitch property
of each individual leaf. This randomisation can be done using arbitrary rules, e.g.
by using a user-defined function that gives more weight to certain pitch classes
over others. Although manipulations such as these could be implemented directly
in the LilyPond source files using its built-in Scheme interpreter (Nienhuys &
Nieuwenhuizen, 2003), Abjad’s object-oriented modelling of LilyPond’s compo-
nents allows for far more control, flexibility, and clarity. This is partially due to
Python’s straightforward syntax and powerful external packages, making Abjad
an extremely capable tool for algorithmic composers working with note-based
music.

4.4 High-Level Manipulations in Abjad

As discussed in the previous section, Abjad contains not only classes representing
traditional notation concepts such as notes, chords, and dynamics, but also
high-level classes and functions that can generate and manipulate material. To
illustrate the latter, consider the simple example below in which a note is created
with a C4 pitch (numerically represented in Abjad by the number 0 ) and a
duration of a crotchet (represented by the tuple (1, 4) ).6 Using these two
variables as instantiation arguments for abjad.Note , Abjad creates the note
c'4 , as expected.

1 >>> pitch = 0
2 >>> duration = (1, 4)
3 >>> note = abjad.Note(pitch, duration)

6It is important to note that Abjad is very flexible regarding argument types for its
classes and functions. Pitches can be entered as strings, integers, floats, as well as instances of
abjad.NumberedPitch or abjad.NamedPitch ; durations can be entered as strings, integers, floats,
tuples, and instances of abjad.Duration . This is true for most of its classes.
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4 >>> abjad.show(note)

44� �
Figure 4.6: Example of abjad.Note

However, not all tuples of integers can be used to create valid durations
for a single note. For instance, attempting to create a note with a duration of
(5, 16) will raise an exception, as shown below.

1 >>> pitch = 0
2 >>> duration = (5, 16)
3 >>> note = abjad.Note(pitch, duration)
4 abjad.exceptions.AssignabilityError: not assignable duration: Duration(5, 16).

This error occurs because this duration is considered ‘non-assignable’: i.e.
even with multiple augmentation dots, this duration cannot be reduced to a
single note value. Instead, the composer must manually create the series of tied
notes that add up to the total duration of (5, 16) . For instance, they can tie
a crotchet to a semiquaver, as shown below.

1 >>> pitch = 0
2 >>> duration_1 = (1, 4)
3 >>> duration_2 = (1, 16)
4 >>> note1 = abjad.Note(pitch, duration_1)
5 >>> note2 = abjad.Note(pitch, duration_2)
6 >>> abjad.attach(abjad.Tie(), note1)
7 >>> staff = abjad.Staff([note1, note2])
8 >>> abjad.show(staff)

�44� �
Figure 4.7: Manually creating notes with a non-assignable total duration

This is, of course, a very low-level approach since the composer needs to
take care of individual leaves and ties. This becomes a problem if, for instance,
one randomly generates durations, some of which may be non-assignable. In
that case, a naive approach would be to create a function that checks for the
assignability of each of those durations; in case they fail this check, another
function could be used to break them down into multiple durations, which can

87



then be individually checked for assignability. Evidently, this adds a layer of
low-level complexity for the simple task of creating a note (or tied notes) with
a specific total length. Thankfully, Abjad comes with higher-level classes and
functions that can both generate and manipulate material. One such class is
abjad.LeafMaker , which takes pitches and durations as input and automatically
creates leaves by matching those together while taking care of any non-assignable
durations in the process. Using the same variables from the previous example,
we can see that abjad.LeafMaker creates a tied note with the correct total
length, as shown in Figure 4.8.

1 >>> pitch = 0
2 >>> duration = (5, 16)
3 >>> maker = abjad.LeafMaker()
4 >>> leaves = maker(pitch, duration)
5 >>> staff = abjad.Staff(leaves)
6 >>> abjad.show(staff)

�44� �
Figure 4.8: Example of abjad.LeafMaker

abjad.LeafMaker can take lists of values as well, as shown in the next
example. This is particularly useful when working with generative strategies,
in which pitches, durations, and other parameters are randomly generated by
stochastic procedures. The output of this example, shown in Figure 4.9, illustrates
another issue: although the individual length of each generated note is correct,
their rhythm is not ideally notated. While all assignable and non-assignable
durations are taken care of, the rhythm is poorly notated as abjad.LeafMaker

only considers single notes when splitting them into multiple tied leaves, but
it does not take the metric context into consideration. This makes the beat
structure of the 444

444 meter very unclear.

1 >>> pitches = [0, 2, 4, 5]
2 >>> durations = [(3, 16), (5, 16)]
3 >>> maker = abjad.LeafMaker()
4 >>> leaves = maker(pitches, durations)
5 >>> staff = abjad.Staff(leaves)
6 >>> abjad.show(staff)
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Figure 4.9: Output of abjad.LeafMaker with multiple pitches and durations

In order to improve its notation, the staff container can be mutated
by another of Abjad’s high-level members, abjad.Meter.rewrite_meter() .
This is a recursive function that renotates rhythms according to a given meter.
Applying this function to the output above creates a vastly more readable score,
as shown in Figure 4.10.

1 >>> meter = abjad.Meter((4, 4))
2 >>> abjad.Meter.rewrite_meter(staff[:], meter)
3 >>> abjad.show(staff)

� ����44� � ��
Figure 4.10: Example of abjad.Meter.rewrite_meter()

By using these higher-level members, the composer can focus on the act of
composing the music itself while deferring the process of individual leaf creation
and low-level rhythmic manipulations to Abjad. This also allows for the creation
of increasingly complex classes, as shown with the members of Auxjad library
discussed in Section 4.6 ( abjad.Meter.rewrite_meter() is used in virtually
every single core class of that library). Abjad thus enables me to focus exclusively
on structural relationships of material when designing my generative procedures,
knowing that the resulting music can be properly and easily notated.

4.5 Extending Abjad Through Object-Oriented Pro-
gramming Principles

Two paramount principles of object-oriented programming are those of ‘composi-
tion’ and ‘inheritance’, which can be used to create increasingly complex (and
thus higher-level) classes out of simpler ones. These concepts are fundamental to
object-oriented design as they promote, among other things, clear structural re-
lationships and hierarchies, code reuse, and minimise code redundancy (Weisfeld,
2004, pp. 129–136). A typical design strategy is to create base classes that are
general enough to be parents of multiple other classes through what is known
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as inheritance. These classes may not be intended to be used directly by the
user but can help create a clear structural tree of class hierarchies, which can be
very useful for building computational models of music notation (Pope, 1996,
pp. 56–57).7 Examples of this in Abjad include abjad.Leaf , the base class
for abjad.Note , abjad.Chord , and abjad.Rest , and abjad.Container , the
base class of abjad.Tuplet , abjad.Voice , abjad.Staff , and abjad.Score .

Composition is often described using a ‘has-a’ metaphor: classes are said to
employ composition when they contain instances of other classes (Weisfeld, 2004,
pp. 129–130). An example of this would be a class that models musical notes.
At its most basic, a note must have both pitch and duration, both of which
could be modelled solely within the note class. However, these two concepts are
general enough to be employed in other classes as well and, therefore, are better
suited to being defined as their own classes. For instance, chords have multiple
pitches, or instrumental ranges can be defined using two pitches, a minimum
and a maximum value; durations can be used for notes, but also for chords
and rests, as well as for a collection of those score components (measures, for
instance). As such, modelling pitch and duration as their own classes allows the
designer to define their behaviour in a single location and reuse them at will.
Any modification to these classes will also affect all others making use of them.

On the other hand, inheritance uses an ‘is-a’ metaphor: a class inherits
all methods and attributes from a parent class (Weisfeld, 2004, pp. 130–133).
This is very useful when multiple classes share common characteristics and
behaviours. In Abjad, the concepts of tuplet, voice, staff, and score all inherit
from a base class named abjad.Container . This class is used as a container
for score components, such as notes, chords, and rests. Its methods include, for
instance, one that appends a new component at the end of the container. Since a
class such as abjad.Tuplet inherits from abjad.Container , it inherits all of
its attributes and methods as well; as such, abjad.Tuplet also offers the same
method for appending new components.

These two notions are fundamentally important when designing a complex
system such as the one needed for modelling music representation. They allow
the creation of ever more complex classes on top of simpler ones, making them
increasingly specific and leading to a web of hierarchies and shared behaviours
(Weisfeld, 2004, pp. 129–134). As such, object-oriented programming languages

7However, it is important to note that deep class hierarchies, particularly those employing
multiple inheritance, can lead to overly complex designs that are very difficult to understand,
maintain, and extend. Therefore, a designer needs to strike a good balance when using these
techniques to design the parts of a complex and expandable system (Weisfeld, 2004, pp. 179–192;
Phillips, 2018, pp. 22–24).
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are particularly suitable for representing musical notation (Pope, 1996). They also
serve as mechanisms for extending a system, as users can create their own classes
that inherit from, or are composed of, classes from other libraries. This enables
users to accomplish more than simply create objects from blueprints designed for
them. As such, any user of Abjad can create their own classes that inherit from
any of Abjad’s classes, a technique employed throughout in the Auxjad library.
For example, auxjad.NaturalHarmonic and auxjad.ArtificialHarmonic in-
herit from abjad.Note and abjad.Chord , respectively; they model only the
necessary note head alterations for each harmonic type while using Abjad’s
default behaviour of notes and chords.

Child classes will inherit all of the methods and attributes from a parent class.
However, it is also possible to overwrite any attributes or methods inherited from
the parent class. Programmers can then adjust the behaviour of child classes as
necessary, according to their design purpose. As an example, consider the two
classes below, named Base and Child .

1 >>> class Base:
2 ... def method_1(self):
3 ... print('Base method 1')
4 ... def method_2(self):
5 ... print('Base method 2')
6 ...
7 >>> class Child(Base):
8 ... def method_2(self):
9 ... print('Child method 2')

10 ... def method_3(self):
11 ... print('Child method 3')

Child inherits all methods that are present in Base . But since Child

overwrites method_2() , any instance of Child invoking method_2() will use
the method as defined in Child , not Base :

1 >>> child_object = Child()
2 >>> child_object.method_1()
3 Base method 1
4 >>> child_object.method_2()
5 Child method 2
6 >>> child_object.method_3()
7 Child method 3

New methods and attributes can also be assigned to any classes, including
those imported from different packages. Consider the example below, in which
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a function named method_4() is first defined and then assigned as a method
to Child . All instances of Child , including those previously created, will now
have access this new method:

1 >>> def method_4(self):
2 ... print('Extension method 4')
3 ...
4 >>> Child.method_4 = method_4
5 >>> child_object.method_4()
6 Extension method 4

I have used this technique in Auxjad when adding new methods to some
of Abjad’s own classes, such as abjad.Score and abjad.TimeSignature . As
a result, simply importing both Abjad and Auxjad will ensure that these new
methods are added to Abjad’s default classes. As shown in the next section, all
mutation and inspection functions of Auxjad are also patched into Abjad’s own
mutation and inspection modules, i.e. abjad.mutate and abjad.get . This
means that Auxjad’s users do not need to recall what mutation or inspection
functions belong to each library, as those are available on both namespaces. This
type of technique is used by many Abjad users, as exemplified by Evans (2019,
p. 13), who writes:

Occasionally, I have found the need to tweak Abjad’s source code in
order for it to perform functions that I desire, but more often than this,
the composer will find the need to build tools to simplify the process of
engraving.

Another important aspect of these libraries is their public nature. Since both
Abjad and Auxjad are open-source software whose source code is freely available
to everyone, they naturally invite their users to build upon their codebase.
As a matter of fact, the Abjad library is itself made out of more than the
main package named abjad : it also consists of two other extension packages
named abjad-ext-rmakers and abjad-ext-nauert . These are not required
for Abjad’s basic functionality, and thus users can decide whether or not to install
them. Each of them caters to specific techniques for rhythm generation and
rhythmic quantisation, respectively. Extensibility is thus a core ideal of Abjad:
by allowing as much technological transparency as possible, Abjad ensures a
very high potential for being expanded by its users (Treviño, 2013, pp. 30–35).

Besides these extension packages provided by Abjad, many composers working
with this library have written and released their own collections of functions and
classes. As is the case with Auxjad, these collections seem to have all been created

92



by composers primarily for their own musical needs, a fact that is reflected in
their design choices. A notable example of this type of extension is the Consort
library written by Josiah Wolf Oberholtzer (2018). This library allows composers
to populate complex structures of segmented time spans with arbitrary musical
material, among many other included tools (Oberholtzer, 2015, pp. 158–217).
Other examples include the Evans library, written by Gregory R. Evans (Evans,
2021; 2019, pp. 54–57), the Calliope library, written by Randall West (West,
2016; Evans, 2019, p. 54), the Tsmakers and Mtools libraries, both written by
Ivan Alexander Moscotta (Moscotta, 2019; Evans, 2019, p. 54),8 and muda,
written by Davi Raubach Tuchtenhagen (2021).

Due to its open-source nature and object-oriented design, Abjad enables
composers to gradually build their own toolboxes based on the code written by its
developers as well as its users. Composers can thus develop a highly customised
version of the Abjad package by adding extensions and making modifications to
its source code. This flexibility of adjusting the tools to better suit one’s musical
needs is of great importance to algorithmic composers, as these malleable tools
can also suggest specific routes of musical experimentation.

4.6 Auxjad: Structure and Members

This section will discuss how the Auxjad library is structured and demonstrate
some of its main functionality. This text is not intended as a comprehensive
description of the Auxjad API9 but rather as an overview of its key components;
for an in-depth description of each of its members, see the Auxjad documen-
tation page available at https://gilbertohasnofb.github.io/auxjad-docs/.
Auxjad’s code is published under the MIT License and is publicly available
at the repository https://github.com/gilbertohasnofb/auxjad/. The MIT
License is a free software license that grants permission for anyone to adapt,
reuse, and distribute code published under it, aligning Auxjad with the core
values of open-source software development.

Auxjad is written for Python 3.9 or greater and should be used in conjunction
with the latest Abjad release, which is version 3.4.10 Abjad has experienced an
immense amount of development over the past couple of years. Unfortunately, it
has also undergone multiple structural and design changes during this period,

8Mtools is unfortunately no longer available in the repository cited by Evans (2019, p. 54).
9API stands for ‘application programming interface’. The API of an object-oriented library

describes all its public members as well as the attributes and methods used to interact with
them.

10As of December 2021.
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which invariably led to older user code becoming incompatible with its most
recent versions. Given that Auxjad is entirely dependent on Abjad in order to
function, I intend to continually maintain Auxjad as to keep it always up-to-date
with future releases of Abjad, although this may lead to backward compatibility
issues for all user code that employs it (including my own).11

As previously demonstrated in Section 4.3, Abjad can be used not only to
manually and interactively construct music scores but also to algorithmically
generate them. My library encourages composers to focus on the latter, as its
members are designed with automatic and generative strategies in mind. This
closely reflects my compositional approach, as Auxjad is primarily written as a
means of exploring and realising algorithmic strategies for this practice-based
research.

Given this practical origin, Auxjad displays a somewhat idiosyncratic nature
at times. The majority of this library’s core members were written for specific
compositions of mine, or at least with certain musical experiments in mind.
Despite this, Auxjad has a broad range of applications that are general enough
to be useful for many other composers. Therefore, even though my compositional
practice is embedded in Auxjad, it can produce open-ended results with significant
potential for wider applications beyond my own personal practice.

4.6.1 Package Structure

Auxjad is divided into eight subpackages that closely relate to Abjad’s own
structure. These subpackages are core , get , indicators , makers , mutate ,
score , spanners , and utilities . This division in subpackages serves the
sole purpose of structuring the library’s code since, from the user’s point of
view, all members of Auxjad other than those in get and mutate also reside
in the auxjad namespace and can, thus, be directly accessed using the syntax
auxjad.member . This type of project structure is similar to how Abjad itself
is designed: all of its members other than those in get and mutate reside in
the abjad namespace, even though their source code is organised in multiple
subpackages. In practical terms, this means that when using a member of
Auxjad, such as auxjad.LeafDynMaker , the user does not have to remember

11Since all previous releases of both Abjad and Auxjad are available online, any older score
can still be compiled using the specific versions of these packages that they were written for, as
long as these versions are known (one of the reasons as to why including a requirements.txt
file or a setup.py file in all Python projects is considered good practice). The main issue is
thus reusing code written for older versions of Abjad, as it will likely not be compatible with
newer versions without some rewriting.
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what subpackage it belongs to and can simply use the very straightforward
syntax:

1 >>> import auxjad
2 >>>
3 >>>
4 >>> maker = auxjad.LeafDynMaker()

The naming convention used in these subpackages closely resembles the
one used by Abjad itself. Abjad’s score component classes, which include leaf
classes (such as abjad.Note and abjad.Chord ) as well container classes (such
as abjad.Staff and abjad.Score ), reside in the module score . Indicator
classes, which include classes such as abjad.Clef , abjad.TimeSignature , and
abjad.Articulation , are located in the subpackage indicators .12 Spanner
functions, such as abjad.ottava() and abjad.piano_pedal() , reside in the
spanner module. Classes that create leaves, such as abjad.LeafMaker , are
located in the makers module. Inspection and mutation functions, which are
used to inspect and mutate the state of score component objects, reside in two
modules named get and mutate , respectively; these are two cases in which
the members of a module or subpackage are not imported directly into the
abjad namespace and therefore require the syntax abjad.get.function()

and abjad.mutate.function() .
With the above structure in mind, the naming of the subpackages of Auxjad

closely reflects the naming choices used in the Abjad project. indicators ,
makers , score , and spanners mostly contain classes that inherit from Ab-
jad’s own classes and extend their functionality. All inspection and muta-
tion functions from Auxjad are grouped into subpackages named get and
mutate , respectively, and which require the syntax auxjad.get.function()

and auxjad.mutate.function() . The only two Auxjad subpackages whose
names cannot be found in Abjad are core and utilities . These use names
of former subpackages that Abjad used to have and which I decided to keep.
Although these subpackages no longer exist in Abjad (and their members have
since been moved to different modules), their naming convention still proves

12In recent versions, Abjad has shifted from structuring using subpackages in favour of
modules that group classes and functions. indicators remains one of the few subpackages still
in use as of December 2021 but will likely be refactored as a module in a future release. I
have decided to continue using only subpackages in Auxjad as they allow functions and classes
to each reside in their own files, which are then organised in different directories for each
subpackage. In my opinion, this makes the code vastly more readable and the structure of the
library substantially clearer.
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useful in my library’s case. Auxjad’s core subpackage contains its main classes,
i.e. those that implement algorithmic manipulations of containers and which con-
stitute fundamental mental models for some of my compositions; these provide
the core functionality of this library. Auxjad’s utilities contain functions
that are neither mutations nor inspections.

When naming specific members of my library, my primary concern was to re-
main consistent with Abjad’s conventions while using names that hint at the mem-
ber’s functionality. In other words, I chose names that would allow users to have
an intuitive understanding of what to expect from these classes and functions only
by reading them; examples include auxjad.PitchRandomiser , auxjad.Phaser ,
and auxjad.mutate.enforce_time_signature() , all of which should hint at
the type of algorithms they implement. With that being said, some of Aux-
jad members—most of which are core classes—have somewhat poetic names;
these include auxjad.CartographySelector , which is named after my series
of compositions called Cartographies, auxjad.Fader , which implements a non-
continuous process of masking or unmasking leaves of a container and can be
understood through the metaphor of a ‘discrete fader’, and auxjad.CrossFader ,
which is composed of two auxjad.Fader ’s operating simultaneously but in dif-
ferent modes, thus creating a ‘discrete cross fade’ from a material A to a material
B.

Although these names can initially make the behaviour of these classes less
evident to the user, they were all created with these specific compositions in mind
and are idiosyncratic enough to make conventional naming too cumbersome.
Using the title of a composition of mine and other non-evident composition-
oriented metaphors in the name of a class could be criticised as somewhat
inadequate from a design point of view. However, from my perspective as a
composer, I would argue that this creates an environment where these names
correspond to how I conceptualise my own music and its processes.

The following subsections will focus on some of the individual members that
make up Auxjad and demonstrate some of their functionalities. It is important
to note that all examples in the following subsections assume that both Abjad
and Auxjad have been imported into Python 3.9 using the lines below.

1 >>> import abjad
2 >>> import auxjad
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4.6.2 The core Subpackage

The core subpackage contains the main classes of Auxjad. These are implemen-
tations of algorithmic processes that transform containers using composition-
oriented processes. Many of these classes constitute fundamental mental models
used throughout the accompanying portfolio. By including classes consisting of
high-level encapsulations of algorithmic manipulations that can be applied to
any music material, this library invites users to interact with its members as
building blocks for algorithmic music processes.

The classes in this subpackage can be further divided into two categories:
there are selectors, which are used to randomly select elements from lists, and
there are classes that algorithmically manipulate an abjad.Container (or child
class), returning an abjad.Selection for each iteration of the processes they
implement.

4.6.2.1 Selectors

Selectors form a category of classes that can randomly select elements from
input lists. Auxjad currently has three selector classes, auxjad.Cartography

Selector , auxjad.TenneySelector , and auxjad.GeneticAlgorithm . The
first two can be instantiated using only the input list from which the selection
takes place, while the latter requires further arguments (as shown further below).
For instance, auxjad.CartographySelector can be instantiated as:

1 >>> selector = auxjad.CartographySelector(['A', 'B', 'C', 'D', 'E', 'F'])
2 >>> selector.contents
3 ['A', 'B', 'C', 'D', 'E', 'F']

Calling a selector will return a randomly chosen element from that list. These
elements can be any Python object, including Abjad’s native types.

1 >>> selector()
2 'A'
3 >>> selector()
4 'D'

auxjad.CartographySelector applies different weights to each of its ele-
ments using a fixed decay rate associated with their indices. The decay rate
represents the ratio of probabilities of an index to its preceding one. For instance,
if the decay rate is set to 0.75 (which is its default value as well as the value
used in my Cartographies series of compositions), the probability of the element
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in index 1 of the input list being selected is 75% the probability of the element
in index 0, and the probability of the element in index 2 is 56.25% (i.e. 0.752)
the probability of the element in index 0. The probability P (n) of the n-th
element can thus be expressed as a relation to the probability of another element
k indexes apart using the formula:

P (n) = (3/4)k × P (n− k)

Individual weights are thus associated with specific indices of the input list
but not with its content itself.

1 >>> selector.weights
2 [1.0, 0.75, 0.5625, 0.421875, 0.31640625, 0.2373046875]

Manipulations of the positions of certain elements will thus result in a change
of their effective weights, even though the probability value for a given index
will remain the same. auxjad.CartographySelector comes with many of such
transformation methods. For instance, the method drop_first_and_append()

discards the first element of the contents, shifts all others leftwards, and then
appends the new element to the last index. Some other methods can rotate,
shuffle, and mirror elements. Applications of these will be further explored in
Section 5.1.2 which discusses the Cartographies series in detail.

auxjad.TenneySelector is an implementation of the ‘dissonant counter-
point’ algorithm by James Tenney, based on the description of this algorithm by
Polansky, Barnett, & Winter (2011). This class can be used to randomly select
elements from an input list, giving weight to elements proportionally to how
long they have not been selected in previous iterations. In other words, Tenney’s
algorithm uses feedback to lower the weight of recently selected elements, priori-
tising those that have not recently occurred. One of the resulting properties of
this algorithm is that the same element cannot be chosen twice in a row.

1 >>> selector = auxjad.TenneySelector(['A', 'B', 'C', 'D', 'E', 'F'])
2 >>> selector.probabilities
3 [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
4 >>> result = ''
5 >>> for _ in range(30):
6 ... result += selector()
7 >>> result
8 DAFDEFEBCECDAFBDECFDEACDFBCEDA
9 >>> selector.probabilities

10 [0.0, 4.0, 3.0, 1.0, 2.0, 5.0]
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The probability associated with each element is thus dynamic, as shown in
the code above. Each time an element is not selected, its probability of being
selected next increases. Each time it is selected, its probability is set to 0.0.
However, this increase of chance when an element is not selected does not need
to be linear: a property named curvature (with a default value of 1.0) can be
used to adjust how fast or slow the probabilities of non-selected elements grow
over each iteration. When setting it to a value between 0.0 and 1.0 (non-inclusive
on both extremes), the growth is said to be ‘concave’; as such, the chance of
an element that has not been selected in consecutive iterations will grow at
increasingly lower rates as the number of iterations increase. Setting it to values
larger than 1.0 will make the growth ‘convex’, and the chance of non-selected
elements will grow at increasingly higher rates the longer they are not selected.

The final selector, auxjad.GeneticAlgorithm , is a simple implementation
of a genetic algorithm, a type of stochastic algorithm inspired by Darwinian
evolution (Mirjalili, 2019). Genetic algorithms generate populations of data
structures through a continuous process of random generation and evaluation.
Individuals are evaluated by a ‘fitness function’ (the analogue to the Darwinian
environment) that gives a score to each individual in a population. High-scoring
individuals are then chosen to be the next generation’s parents: their data
structures (representing their genes) are then combined through the so-called
‘crossover process’, in which half of one parent’s data is combined with the other
half of the second parent. At this point, each individual can also be affected by
random mutations.

This process is repeated any specified number of times. Despite genetic
algorithms typically starting with a completely random population, the selection
of the fittest parents coupled with the introduction of random mutations will,
on average, result in new populations of individuals that are increasingly better
fit for the given environment.

My implementation of the genetic algorithm takes a list of genes, which can
be any Python object, and a ‘target’ list that represents the best possible combi-
nation of genes for the given environment. This target is used when evaluating
individuals: each gene of an individual is compared with the corresponding gene
of the target. The evaluation considers how close these two genes are in the gene
list, with identical genes are scored the highest.

This is a somewhat idiosyncratic implementation of a genetic algorithm.
In particular, this type of algorithm tends to be used with more open-ended
evaluation functions than a simple comparison to a target. This is because genetic
algorithms are most often used to heuristically find near-optimal solutions for a
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given problem. However, as a composer, my interest in them lies in the process
itself rather than the results it outputs; as such, defining the environment through
a list of ideal genes allows me to control the overall direction the algorithm will
take.13 This algorithm is the primary mental model employed in my composition
methinks it is like a weasel (2021), for violin, cello, and piano, which explores
how a genetic algorithm can slowly transform a population of musical measures
within a given environment.

The listing below demonstrates how this class can be used:

1 >>> ga = auxjad.GeneticAlgorithm(
2 ... target=['A', 'B', 'C', 'D', 'E'],
3 ... genes=['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'],
4 ... population_size=4,
5 ... select_n_parents=2,
6 ... )
7 >>> ga()
8 >>> ga.population
9 [['A', 'J', 'J', 'B', 'H'],

10 ['D', 'A', 'E', 'A', 'F'],
11 ['F', 'F', 'A', 'F', 'F'],
12 ['F', 'F', 'E', 'J', 'C'],
13 ]
14 >>> ga.scores
15 [0.209603072,
16 0.0912,
17 0.05638400000000001,
18 0.016396800000000003,
19 ]
20 >>> ga.fittest_individual
21 ['A', 'J', 'J', 'B', 'H']

At each call to an instance of this class, the processes of selection, crossover,
and mutation are carried out for one further iteration. As expected, each new
generation will become increasingly fitter in relation to the target. The listing
below prints out the fittest individual from ten consecutive generations (each
containing 50 individuals). In this particular case, both the target and the
number of genes are relatively small, and thus the genetic algorithm is able to

13My implementation could be considered as the combination of a genetic algorithm with
the ‘Goal Seeker’ design pattern, as defined by Woodbury (2010, pp. 269–274). A Goal Seeker
is a feedback model in which the output serves as the input for the next iteration of its process;
the output is evaluated against a target value, with the process ending once a threshold of
similarity is reached. My implementation works similarly to this but borrows the crossover,
mutation, and selection processes from a more traditional genetic algorithm implementation.
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quickly generate a near-optimal individual at its sixth iteration, with a single
gene differing from the target.

1 >>> ga = auxjad.GeneticAlgorithm(
2 ... target=['A', 'B', 'C', 'D', 'E'],
3 ... genes=['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'],
4 ... population_size=50,
5 ... )
6 >>> for _ in range(10):
7 ... ga()
8 ... print(ga.fittest_individual, ga.fittest_individual_score)
9 ['A', 'J', 'B', 'E', 'E'] 0.480000512

10 ['A', 'H', 'C', 'D', 'J'] 0.6000768
11 ['A', 'C', 'D', 'D', 'E'] 0.6799999999999999
12 ['A', 'C', 'D', 'D', 'E'] 0.6799999999999999
13 ['A', 'C', 'D', 'D', 'E'] 0.6799999999999999
14 ['A', 'C', 'C', 'D', 'E'] 0.8400000000000001
15 ['A', 'C', 'C', 'D', 'E'] 0.8400000000000001
16 ['A', 'C', 'C', 'D', 'E'] 0.8400000000000001
17 ['A', 'C', 'C', 'D', 'E'] 0.8400000000000001
18 ['A', 'C', 'C', 'D', 'E'] 0.8400000000000001

4.6.2.2 Loopers and Phaser

Auxjad has four classes that can shift musical material horizontally. They include
three loopers and one phaser. My accompanying portfolio makes extensive use
of these types of loopers; auxjad.WindowLooper and auxjad.LeafLooper are
used in many of my Cartographies, while auxjad.ListLooper has been used in
and thereafter they shape us (2019).

auxjad.WindowLooper implements the mental model of a looping window:
this algorithm slices and outputs a window of arbitrary duration from an input
musical material. After outputting this slice of material, the algorithm moves
the window forwards by a certain duration, which, in my work, is usually set
to a fractional value of the total window size. As a result, the process moves
forwards relatively slowly and often outputs notes and chords that were already
present in previous iterations. Depending on these parameters, the algorithm
can produce music that sounds nearly identical on a microscale but which has
forward momentum on a macroscale.

auxjad.WindowLooper takes an abjad.Container as well as window and
step sizes as input. At each call, the window is moved forward by the given
step size and an abjad.Selection of the current window is returned. Consider
the material shown in Figure 4.11, which will be used as input for the looping
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window process.

1 >>> container = abjad.Staff(
2 ... r"c'4\p( d'16-.) r8. e'4\mf( ~ e'8 f'8 g'2 a'8) r4."
3 ... )
4 >>> abjad.show(container)
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Figure 4.11: Material used as input for auxjad.WindowLooper and auxjad.LeafLooper

The following example uses the material above to initialise auxjad.Window

Looper together with a window size of three crochets and a step size of a
semiquaver. The method output_n() will be used to output four iterations of
the looping process. The result of the code below is shown in Figure 4.12.

1 >>> looper = auxjad.WindowLooper(container,
2 ... window_size=(3, 4),
3 ... step_size=(1, 16),
4 ... )
5 >>> notes = looper.output_n(4)
6 >>> staff = abjad.Staff(notes)
7 >>> abjad.show(staff)
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Figure 4.12: Output of auxjad.WindowLooper

Since all its properties can be overwritten during the program’s execution,
both window and step sizes can be set to different values after instantiation. This
class also has probabilistic options: the number of steps taken at each iteration
can be set to a range instead of a fixed value, and the direction of movement can
be set to a probabilistic value using a property that controls the overall forward
bias of the window.

auxjad.LeafLooper is a similar class to auxjad.WindowLooper in which
it takes an abjad.Container as input and outputs slices of it at each call.
However, instead of using a duration for the window size, its window is given by
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a certain number of musical elements (known as ‘logical ties’ in Abjad).14 Thus
its window length can vary in duration at each iteration since it depends on the
sum of the individual durations of its elements.

Initialising this class using the container previously shown in Figure 4.11 and
a window size of three logical ties will result in the following output after four
iterations:

1 >>> looper = auxjad.LeafLooper(container,
2 ... window_size=3,
3 ... )
4 >>> notes = looper.output_n(4)
5 >>> staff = abjad.Staff(notes)
6 >>> abjad.show(staff)
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Figure 4.13: Output of auxjad.LeafLooper

The final looper class is auxjad.ListLooper . Similarly to auxjad.Leaf

Looper , an integer number determines its window size. However, instead of
taking an abjad.Container as input as the two previous classes did, it simply
takes a list of any Python objects. For instance, if the initial list consists of
[A,B,C,D,E, F ] (where each letter represents an element of an arbitrary type)
and the looping window is set to length 3, its output would be:

A B C B C D C D E D E F E F F

This can be better visualised by displaying each iteration of the process in a
separate line:

A B C
B C D

C D E
D E F

E F
F

Each call to an instance of auxjad.ListLooper will output a slice of the
input list containing the number of elements set by window_size .

14In Abjad, a logical tie is a group of leaves that belong to the same note, chord, or rest. It
can consist of a single leaf (a single note, chord, or rest), or multiple tied notes or chords.
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1 >>> input_list = ['A', 'B', 'C', 'D', 'E', 'F']
2 >>> looper = auxjad.ListLooper(input_list, window_size=3)
3 >>> looper()
4 ['A', 'B', 'C']
5 >>> looper()
6 ['B', 'C', 'D']
7 >>> looper()
8 ['C', 'D', 'E']

Since the input list for auxjad.ListLooper can have any type of element,
it can also use any Abjad objects.15 Thus the looping window mental model can
be applied to arbitrary collections of complex musical cells.

Similarly to the previous two classes, both the window length and its step
size can be dynamically modified at any point after their instantiation using the
window_size and step_size properties. Likewise, this class also share other
properties for controlling parameters such as forward bias, initial head position,
chance of output repetition, and the maximum number of steps allowed per
iteration, among others.

auxjad.Phaser implements a simple phasing algorithm. An abjad.

Container is phased by a step_size at each iteration, with the result re-
turned as an abjad.Selection . Consider the container shown in Figure 4.14,
which will be used as input for a phaser further below.

1 >>> container = abjad.Staff(
2 ... r"c'2(\p\< d'4. e'8\f f'4\p\> g'2 a'4\pp)"
3 ... )
4 >>> abjad.show(container)
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Figure 4.14: Material used as input for auxjad.Phaser

Applying it to a phaser with a step size of a semiquaver will result in the
output of Figure 4.15 after five iterations.

1 >>> phaser = auxjad.Phaser(container, step_size=(1, 16))
2 >>> notes = phaser.output_n(5)

15All of the looper classes employ copy.deepcopy() when returning windows, so the output
of repeated elements will not conflict with Abjad’s exclusive membership requirement.
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3 >>> staff = abjad.Staff(notes)
4 >>> abjad.show(staff)
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Figure 4.15: Output of auxjad.Phaser

4.6.2.3 Randomisers

Auxjad has three classes that can output randomised versions of an input con-
tainer. The simplest one is auxjad.PitchRandomiser , which takes an abjad.

Container and a list of pitches (or, alternatively, a single abjad.PitchSegment )
and substitutes the pitches in the container with random ones from the pitch
list. By default, it uses a random distribution with equal weights when selecting
pitches, but the property weights can be used to give more probabilistic weight
to certain pitches over others. If the property use_tenney_selector is set to
True , this class will use an instance of auxjad.TenneySelector for the pitch
selection instead of a regular random selector with fixed weights.

Consider the material shown in Figure 4.16, which will be used as input in
the next example.

1 >>> container = abjad.Container(
2 ... r"<c' e' g'>8.(\p d'4) r8 r8. e'16-. <f' a'>8.--"
3 ... )
4 >>> abjad.show(container)
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Figure 4.16: Material used as input for auxjad.PitchRandomiser and auxjad.Shuffler

Using the container above as input for the randomiser together with the pitch
segment g af cs' d' e' fs' c'' df'' a'' bf'' resulted in the output of
Figure 4.17 after three iterations.

1 >>> pitches = abjad.PitchSegment(r"g af cs' d' e' fs' c'' df'' a'' bf''")
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2 >>> randomiser = auxjad.PitchRandomiser(container,
3 ... pitches,
4 ... )
5 >>> notes = randomiser.output_n(3)
6 >>> staff = abjad.Staff(notes)
7 >>> abjad.show(staff)
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Figure 4.17: Output of auxjad.PitchRandomiser

auxjad.Shuffler can be used to output copies of an input container with
shuffled logical ties. It also has a second mode in which only pitches are shuffled
while the original rhythmic structure remains intact.

Below is an example of the result obtained after three iterations of this
shuffler when initialised using the same container, as shown in Figure 4.16.

1 >>> shuffler = auxjad.Shuffler(container)
2 >>> notes = shuffler.shuffle_n(3)
3 >>> staff = abjad.Staff(notes)
4 >>> abjad.show(staff)
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Figure 4.18: Output of auxjad.Shuffler

The last randomiser, auxjad.Hocketer , can be used to create hockets; that
is, it will randomly distribute logical ties of an input container into a given
number of staves. It has many properties to control the final result, such as the
number of voices (given by n_voices ), the number of times each logical tie is
processed (given by the property k ), and a property that ensures that each logical
tie is present in k number of voices (given by the property force_k_voices ).
Unlike other classes which return abjad.Selection ’s, auxjad.Hocketer will
return a tuple of abjad.Selection ’s, making the process of assigning them
to an abjad.Score or multiple abjad.Staff ’s very straightforward. It is also
possible to retrieve individual selections for each voice via indexing.

The container shown in Figure 4.19 will be used as input for the hocketer in
the next example.
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1 >>> container = abjad.Container(
2 ... r"c'2-.\p\< d'2-.\f\> e'1 f'2.\pp\< g'4--\p "
3 ... r"a'2\ff\> b'2\p\> ~ b'2 c''2\!"
4 ... )
5 >>> abjad.show(container)
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Figure 4.19: Material used as input for auxjad.Hocketer

The hocketer below is initialised with the container shown above as well as
with three voices. Each logical tie will be processed twice (using k = 2), and
setting force_k_voices to True will ensure that each logical tie will appear
in exactly two voices. The results are shown in Figure 4.20.

1 >>> hocketer = auxjad.Hocketer(container,
2 ... n_voices=3,
3 ... k=2,
4 ... force_k_voices=True,
5 ... )
6 >>> music = hocketer()
7 >>> score = abjad.Score()
8 >>> for selection in music:
9 ... score.append(abjad.Staff(selection))

10 >>> abjad.show(score)
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Figure 4.20: Output of auxjad.Hocketer

4.6.2.4 Faders

auxjad.Fader is an implementation of the ‘fader’ mental model, which applies
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a process of gradually masking or unmasking notes of an input container so
that its notes ‘fade in’ from or ‘fade out’ into silence. It can be framed by the
metaphor of a ‘discrete fader’ that controls the density of notes of a musical
cell. The mode of the fader (either ‘in’ or ‘out’) is given by the property mode ,
and each call to an instance of this class will alter one element of the mask
before outputting the results. The mask can be overridden at any point using
the property mask . In the case of chords, individual notes are added or removed
independently.

For the following two examples, consider the container shown in Figure 4.21.

1 >>> container = abjad.Container(
2 ... r"<c' e'>4 ~ <c' e'>16 d'8. <gs e'>8 <bf f' a'>8 ~ <bf f' a'>4"
3 ... )
4 >>> abjad.show(container)
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Figure 4.21: Material used as input for auxjad.Fader

The code below instantiates abjad.Fader with mode set to 'out' and
uses the method output_all() to execute and output the entire fading process.
It results in the score shown in Figure 4.22.

1 >>> fader = auxjad.Fader(container, mode='out')
2 >>> staff = abjad.Staff(fader.output_all())
3 >>> abjad.show(staff)
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Figure 4.22: Output of auxjad.Fader with mode='out'

Using the same material from the preceding example but setting mode to
'in' will result in the score shown in Figure 4.23.

1 >>> fader = auxjad.Fader(container, mode='in')
2 >>> staff = abjad.Staff(fader.output_all())
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3 >>> abjad.show(staff)
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Figure 4.23: Output of auxjad.Fader with mode='in'

auxjad.CrossFader is a good example of the object-oriented principle of
composition, previously discussed in Section 4.5, as this class is composed of
two auxjad.Fader ’s of opposing modes. My composition adrift (2020), for two
pianos, is based primarily on this mental model. In the context of that piece,
a crossfader employs two of the previously discussed discrete faders, each on
different musical layers. These layers are processed in opposite directions, i.e. one
is fading out while the other fades in. At each iteration of this process, one of the
two faders is selected to be called while the other remains unchanged. Setting the
property fade_in_first to True ensures that a note from the layer starting
with silence will necessarily fade in before any note from the other layer fades
out. Similarly, fade_out_last ensures that the last step of the process will
necessarily remove a note from the layer fading out.

The following example shows auxjad.CrossFader in use. Figure 4.24 shows
the material that will be faded out, while Figure 4.25 shows the material that
will fade in.

1 >>> fade_out_container = abjad.Container(r"c'4.\p( e'8--\f ~ e'2)")
2 >>> abjad.show(fade_out_container)

��p
� 44 � ��f

Figure 4.24: Material to be faded out by auxjad.CrossFader

1 >>> fade_in_container = abjad.Container(
2 ... r"\times 2/3 {f'4-.\pp r4 d'4->\f ~ } d'2"
3 ... )
4 >>> abjad.show(fade_in_container)
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Figure 4.25: Material to be faded in by auxjad.CrossFader

Using the two containers above, the result of the entire crossfading process
is shown in Figure 4.26.

1 >>> fader = auxjad.CrossFader(fade_out_container,
2 ... fade_in_container,
3 ... fade_in_first=True,
4 ... fade_out_last=True,
5 ... )
6 >>> selection_a, selection_b = fader.output_all()
7 >>> score = abjad.Score([
8 ... abjad.Staff(selection_a),
9 ... abjad.Staff(selection_b),

10 ... ])
11 >>> abjad.show(score)
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Figure 4.26: Output of auxjad.CrossFader

4.6.3 The get Subpackage

The get subpackage contains several inspection functions that can retrieve
information about an object’s current state. Similar to Abjad’s own inspections,
these should be used with the syntax auxjad.get.function() .

When a user imports auxjad , all inspection and mutation functions of
Auxjad are automatically added as extension functions to abjad.get and
abjad.mutate , so it is possible to invoke them from the abjad namespace as
well as from auxjad . For instance, the function underfull_duration() is an
inspection from Auxjad that can be invoked from either auxjad and abjad

namespaces once Auxjad is imported, as shown by the equivalent lines 5 and 8
in the listing below:

1 >>> import abjad
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2 >>> import auxjad
3 >>>
4 >>>
5 >>> container = abjad.Container(r"c'4 d'4 e'4")
6 >>> # invoking underfull_duration() from auxjad's namespace
7 >>> auxjad.get.underfull_duration(container[:])
8 1/4
9 >>> # invoking underfull_duration() from abjad's namespace

10 >>> abjad.get.underfull_duration(container[:])
11 1/4

The main reason for this decision is to ensure that end-users do not have to
memorise which inspection and mutations were introduced by Auxjad and which
already belonged to Abjad.

The function auxjad.get.selections_are_identical() compares the con-
tents of two selections and evaluates whether they are identical. By default, it
compares all the components of these selections, including not only leaves but
also any subcontainers they may have, such as tuplets and grace note containers.

1 >>> container1 = abjad.Staff(r"c'4 d'4 e'4 f'4 <g' a'>2 r2")
2 >>> container2 = abjad.Staff(r"c'4 d'4 e'4 f'4 <g' a'>2 r2")
3 >>> container3 = abjad.Staff(r"r1 c'2 d'2")
4 >>> selections = [container1[:], container2[:]]
5 >>> auxjad.get.selections_are_identical(selections)
6 True
7 >>> selections = [container1[:], container3[:]]
8 >>> auxjad.get.selections_are_identical(selections)
9 False

Indicators can also be included by setting the argument include_

indicators to True .

1 >>> container1 = abjad.Staff(r"c'4\pp d'4 e'4-. f'4 <g' a'>2-> r2")
2 >>> container2 = abjad.Staff(r"c'4 d'4 e'4 f'4 <g' a'>2 r2")
3 >>> selections = [container1[:], container2[:]]
4 >>> auxjad.get.selections_are_identical(
5 ... selections,
6 ... include_indicators=True,
7 ... )
8 False

The function auxjad.get.leaves_are_tieable() compares the pitch con-
tent of two leaves in order to evaluate whether they can be tied or not.
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1 >>> leaf1 = abjad.Note(r"c'2.")
2 >>> leaf2 = abjad.Note(r"c'16")
3 >>> leaf3 = abjad.Note(r"f'''16")
4 >>> auxjad.get.leaves_are_tieable([leaf1, leaf2])
5 True
6 >>> auxjad.get.leaves_are_tieable([leaf1, leaf3])
7 False

By default, the function will return True if any single pitch from the first
leaf can be tied to the second leaf. If the argument only_identical_pitches

is set to True , the function will now only consider identical pitch content as
tieable, and leaves that only partially match will now return False .

1 >>> chord1 = abjad.Chord(r"<c' e' g'>4")
2 >>> chord2 = abjad.Chord(r"<c' e' g' bf'>16")
3 >>> auxjad.get.leaves_are_tieable([chord1, chord2])
4 True
5 >>> auxjad.get.leaves_are_tieable([chord1, chord2],
6 ... only_identical_pitches=True,
7 ... )
8 False

auxjad.get.selection_is_full() simply evaluates whether the last bar
of a container is completely filled or not.

1 >>> container1 = abjad.Container(r"c'4 d'4 e'4 f'4")
2 >>> container2 = abjad.Container(r"c'4 d'4 e'4")
3 >>> container3 = abjad.Container(r"c'4 d'4 e'4 f'4 | c'4")
4 >>> container4 = abjad.Container(r"c'4 d'4 e'4 f'4 | c'4 d'4 e'4 f'4")
5 >>> auxjad.get.selection_is_full(container1[:])
6 True
7 >>> auxjad.get.selection_is_full(container2[:])
8 False
9 >>> auxjad.get.selection_is_full(container3[:])

10 False
11 >>> auxjad.get.selection_is_full(container4[:])
12 True

Not all inspections return boolean values like the ones above. auxjad.get.

underfull_duration() , which is closely related to the function auxjad.get.

selection_is_full() shown above, will return an abjad.Duration with the
precise missing duration of the last bar of a container.

1 >>> container1 = abjad.Container(r"c'4 d'4 e'4 f'4")
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2 >>> container2 = abjad.Container(r"c'4 d'4 e'4")
3 >>> container3 = abjad.Container(r"c'4 d'4 e'4 f'4 | c'4")
4 >>> container4 = abjad.Container(r"c'4 d'4 e'4 f'4 | c'4 d'4 e'4 f'4")
5 >>> auxjad.get.underfull_duration(container1[:])
6 0
7 >>> auxjad.get.underfull_duration(container2[:])
8 1/4
9 >>> auxjad.get.underfull_duration(container3[:])

10 3/4
11 >>> auxjad.get.underfull_duration(container4[:])
12 0

auxjad.get.time_signature_list() will return a list with all time sig-
natures of a container, one per measure. When an initial time signature is
not present, it assumes a default value of 444

444 , since this is the fallback time
signature that LilyPond uses. This behaviour can be disabled by setting the
implicit_common_time argument to False .

1 >>> container = abjad.Container(r"\time 3/4 c'2. \time 4/4 d'1 e'1")
2 >>> time_signatures = auxjad.get.time_signature_list(container)
3 >>> time_signatures
4 [TimeSignature((3, 4)), TimeSignature((4, 4)), None]

auxjad.get.virtual_fundamental() is inspired by the so-called ‘virtual
pitch algorithm’ formulated by Terhardt (1979), although the former implements
a far simpler algorithm. While Terhardt’s algorithm can take complex tone signals
as input and uses their absolute frequencies in its calculations, Auxjad’s virtual
fundamental algorithm uses twelve-tone equal temperament to approximate the
overtone series. It returns the highest common fundamental shared by all pitches
in an abjad.PitchSegment or abjad.Chord .

1 >>> pitches = abjad.PitchSegment(r"c'' cs'' d'' ef'' e'' fs''")
2 >>> auxjad.get.virtual_fundamental(pitches)
3 d,,
4 >>> chord = abjad.Chord(r"<c'' cs'' d'' ef'' e'' fs''>4")
5 >>> auxjad.get.virtual_fundamental(chord)
6 d,,

4.6.4 The mutate Subpackage

The mutate subpackage contains functions that mutate the state of an object (in
this case, either an auxjad.Selection or an auxjad.Container ) in place and
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have no return value. These are the most numerous functions in this library, and so
this overview will focus on a small selection of them. Similarly to auxjad.get , all
functions in auxjad.mutate are added as extension functions to abjad.mutate .

Three of these functions can be used to move indicators and spanners of a
selection into better positions. auxjad.mutate.reposition_dynamics() will
handle dynamics as well as hairpins, adjusting them when rests are present.
auxjad.mutate.reposition_slurs() will handle unterminated slurs as well
as any slurs that cross over rests. Lastly, auxjad.mutate.reposition_clefs()

will shift clefs from rests to the next pitched leaf. These are extensively used
internally in Auxjad’s core classes since many of these convert notes into rests or
shift the start or endpoints of spanners. Figure 4.27 shows the material before
these three functions are applied, and Figure 4.28 shows the resulting output.

1 >>> staff = abjad.Staff(
2 ... r"c'4.\p( d'8 r2\f\> \clef bass r8 e8 ~ e4 f4) g8-.\pp a8-."
3 ... )
4 >>> abjad.show(staff)
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Figure 4.27: Material used for the reposition mutation functions

1 >>> auxjad.mutate.reposition_dynamics(staff[:])
2 >>> auxjad.mutate.reposition_slurs(staff[:])
3 >>> auxjad.mutate.reposition_clefs(staff[:])
4 >>> abjad.show(staff)
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Figure 4.28: Container after the reposition mutation functions

Other related functions are auxjad.mutate.remove_repeated_dynamics()

and auxjad.mutate.remove_repeated_time_signatures() , which respectively
remove dynamics and time signatures when they are equal to the effective ones
of the preceding leaf.

The mutation auxjad.mutate.enforce_time_signature() takes either a
single time signature or a list of time signatures and enforces it into a container,
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splitting leaves accordingly and rewriting the rhythmic notation. This is another
extremely useful mutation for improving the readability of a score and was
utilised extensively throughout the compositions of the accompanying portfolio.

1 >>> staff = abjad.Staff(r"c'1 d'1 e'1 f'1")
2 >>> abjad.show(staff)

��44� � �
Figure 4.29: Container before applying auxjad.mutate.enforce_time_signature()

1 >>> time_signatures = [(2, 4), None, None, (3, 4), None, (4, 4)]
2 >>> auxjad.mutate.enforce_time_signature(staff, time_signatures)
3 >>> abjad.show(staff)

� � � �44�24� � 34 ��
Figure 4.30: Container after applying auxjad.mutate.enforce_time_signature()

auxjad.mutate.respell_augmented_unisons() improves pitch spellings
of chords. By default, Abjad spells notes with a fixed pattern of accidentals,
using the following list: C], E[, F], A[, and B[. This works well for most non-
tonal music such as my own but can become problematic with some chords,
particularly when minor seconds are present. With this fixed spelling, some
minor seconds are spelt as augmented unisons. This function looks for those
cases and adjusts them. Figure 4.31 shows a comparison between Abjad’s default
spelling when using numbered pitches (upper staff) and the same staff processed
by auxjad.mutate.respell_augmented_unisons() (lower staff).

1 >>> pitches = [(0, 1), (8, 9, 12), (0, 4, 5, 6), (-1, 10)]
2 >>> durations = [(1, 8), (3, 8), (7, 16), (1, 16)]
3 >>> maker = abjad.LeafMaker()
4 >>> chords = maker(pitches, durations)
5 >>> staff1 = abjad.Staff(chords)
6 >>> staff2 = abjad.mutate.copy(staff1)
7 >>> auxjad.mutate.respell_augmented_unisons(staff2[:],
8 ... include_multiples=True,
9 ... )

10 >>> literal = abjad.LilyPondLiteral(r'\accidentalStyle dodecaphonic')
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11 >>> abjad.attach(literal, staff1)
12 >>> abjad.attach(literal, staff2)
13 >>> score = abjad.Score([staff1, staff2])
14 >>> abjad.show(score)
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Figure 4.31: Comparison between Abjad’s default pitch spelling and the output of
auxjad.mutate.respell_augmented_unisons()

Auxjad has two small mutations that can extend notes; these are auxjad.

mutate.sustain_notes() and auxjad.mutate.extend_notes() . The first ex-
tends the duration of notes and chords followed by rests until another note or
chord is reached. The second works similarly but takes a specific maximum dura-
tion for each note. They are both very useful in conjunction with procedures that
generate only attack points, which they can then convert into longer durations. I
used the former in adrift, which makes extensive use of crossfaders that generates
a multitude of rests. Removing these rests made the rhythms easier to read and
my musical intentions clearer. The latter function was used when writing follow
the well-worn path in the grass (2021). This piece makes use of a hocketer that
distributes notes among several staves of a six-instrument chamber ensemble.
auxjad.mutate.extend_notes() was then used to elongate those distributed
notes up to a specific duration, which blurred the texture further while still
allowing for breathing points for the wind instruments.

Figure 4.32 shows a measure with short notes. Applying auxjad.mutate.

extend_notes() with the duration of a crotchet results in the measure shown
in Figure 4.33 while applying auxjad.mutate.sustain_notes() results in the
measure shown in Figure 4.34.

1 >>> staff = abjad.Staff(r"c'16 r2... d'8 r2.. e'8. r16 r2. f'4 r2.")
2 >>> abjad.show(staff)

���� �������44� � �����
Figure 4.32: Container before applying auxjad.mutate.extend_notes()

116



1 >>> auxjad.mutate.extend_notes(staff, abjad.Duration((1, 4)))
2 >>> abjad.show(staff)

� �� ����� �44� � ��
Figure 4.33: Container after applying auxjad.mutate.extend_notes()

1 >>> auxjad.mutate.sustain_notes(staff)
2 >>> abjad.show(staff)

��44� � �
Figure 4.34: Container after applying auxjad.mutate.sustain_notes()

The function auxjad.mutate.prettify_rewrite_meter() is perhaps one
of the most peculiar mutations in this library. Its purpose is to fuse pitched leaves
according to specific hard-coded rules, improving the results of abjad.Meter.

rewrite_meter() . The latter is an extremely useful and powerful function that
can improve the rhythmic notation of a selection—which is particularly helpful
when generating notes and chords algorithmically. It does, however, output
less-than-ideal rhythmic notation in a couple of cases. See Figures 4.9 and 4.10
in Section 4.4 for an example of the typical usage of this mutation.

Although abjad.Meter.rewrite_meter() can improve notation in most
cases, it has a tendency to split and tie leaves that are offbeat but whose total
duration is still completely contained within a single beat.16 To illustrate this,
consider the container shown in Figure 4.35. The rhythm is not ideally notated,
with the note G4 crossing the third beat of the measure.

1 >>> staff = abjad.Staff(
2 ... r"\time 3/4 c'16 d'8 e'16 f'16 g'4 a'8."
3 ... )
4 >>> abjad.show(staff)

16 abjad.Meter.rewrite_meter() has a property called boundary_depth which can set different
depths for fusing and splitting leaves; unfortunately, there are still some specific cases (some of
which appear often in my music) in which rewrite_meter() fails to output the best possible
notation.
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Figure 4.35: Container before applying abjad.Meter.rewrite_meter()

abjad.Meter.rewrite_meter() takes care of that awkward rhythmic nota-
tion, as shown in its output in Figure 4.36 below.

1 >>> meter = abjad.Meter((3, 4))
2 >>> abjad.Meter.rewrite_meter(staff[:], meter)
3 >>> abjad.show(staff)

������34� � ���
Figure 4.36: Container after applying abjad.Meter.rewrite_meter()

This makes the rhythm of the second and third beats substantially clearer and
easier to read. But this example also shows the side effect previously mentioned
in which a leaf is split in two and tied together within the same beat, as is the
case with the D4 in the first beat of this example.

Due to the common occurrence of these rhythms in my music, I wrote a
dedicated function, auxjad.mutate.prettify_rewrite_meter() , to remedy
this issue. This function fuses those notes back together and takes care of some
other edge cases of rhythmic notation. Applying it to the container above results
in the notation shown in Figure 4.37.

1 >>> auxjad.mutate.prettify_rewrite_meter(staff[:], meter)
2 >>> abjad.show(staff)

������34� � ��
Figure 4.37: Container after applying auxjad.mutate.prettify_rewrite_meter()

Finally, auxjad.mutate.auto_rewrite_meter() automates the process of
applying abjad.Meter.rewrite_meter() and auxjad.mutate.prettify_

rewrite_meter() to a container. It is particularly useful when containers span
several measures and have time signature changes. abjad.Meter.rewrite_

meter() requires both a selection of a single measure as input and a meter
value corresponding to the effective one in the input measure. This means that
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the user needs first to extract a list of meters from the time signatures used in
the score, then select and group its leaves by individual measures, and finally
match each meter with its corresponding measure selection. The example below
shows how this process works in practice:

1 >>> staff = abjad.Staff(
2 ... r"\time 3/4 c'8 d'2 ~ d'8 "
3 ... r"\time 4/4 e'8 f'2 ~ f'8 g'4 "
4 ... r"\time 2/4 a'16 b'4 c''8."
5 ... )
6 >>> abjad.show(staff)

� 24 �� �����34� � �44 �
Figure 4.38: Container with multiple measures before applying abjad.Meter.rewrite_

meter()

1 >>> meters = [abjad.Meter((3, 4)),
2 ... abjad.Meter((4, 4)),
3 ... abjad.Meter((2, 4)),
4 ... ]
5 >>> measures = abjad.select(staff[:]).group_by_measure()
6 >>> for measure, meter in zip(measures, meters):
7 ... abjad.Meter.rewrite_meter(measure, meter)
8 >>> abjad.show(staff)

�� ��24 � ��44 ���34� � � �
Figure 4.39: Container with multiple measures after applying abjad.Meter.rewrite_

meter()

This is the type of scenario where auxjad.mutate.auto_rewrite_meter()

is extremely useful. It automatically detects the effective meter of each measure
in a container, individually applies abjad.Meter.rewrite_meter() to each
of them, and then invokes auxjad.mutate.prettify_rewrite_meter() . This
whole process takes a single call to this mutation, as shown below.

1 >>> staff = abjad.Staff(
2 ... r"\time 3/4 c'8 d'2 ~ d'8 "
3 ... r"\time 4/4 e'8 f'2 ~ f'8 g'4 "
4 ... r"\time 2/4 a'16 b'4 c''8."

119



5 ... )
6 >>> auxjad.mutate.auto_rewrite_meter(staff)
7 >>> abjad.show(staff)

�� ��24 � ��44 ���34� � � �
Figure 4.40: Container after applying auxjad.mutate.auto_rewrite_meter()

4.6.5 The makers Subpackage

The makers subpackage currently contains two makers. The first one, auxjad.

LeafDynMaker , is a good example of the type of extension that the object-
oriented paradigm allows and which was previously discussed in Section 4.5.
It inherits from abjad.LeafMaker and extends its behaviour. The latter is
a maker class that takes two lists as input, one for pitches and another for
durations, and generates logical ties using those lists. As explored in Section 4.4,
this class can automate the job of creating tied notes and chords when a
duration value cannot be reduced to a single note value (e.g. durations such as
abjad.Duration((5, 8)) , abjad.Duration((7, 16)) , etc.).17

1 >>> pitches = [0, 2, 4, 5, 7, 9]
2 >>> durations = [(1, 32), (2, 32), (3, 32), (4, 32), (5, 32), (6, 32)]
3 >>> maker = abjad.LeafMaker()
4 >>> notes = maker(pitches, durations)
5 >>> staff = abjad.Staff(notes)
6 >>> abjad.show(staff)

�� � � ��� 44 ���
Figure 4.41: Output generated by abjad.LeafMaker

auxjad.LeafDynMaker extends abjad.LeafMaker ’s functionality by adding
support for optional lists of dynamics and articulations. The example below
shows its basic usage, and the output is shown in Figure 4.42.

17These types of durations are known as non-assignable in Abjad. One cannot simply
instantiate a note using abjad.Note(0, (5, 8)) since no conventional duration values (even
those with multiple augmentation dots) add up to five quavers, and thus it requires at least
two tied leaves to be notated, such as a crotchet tied to a semiquaver. See Section 4.4 for
further details on this topic.
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1 >>> pitches = [0, 2, 4, 5, 7, 9]
2 >>> durations = [(1, 32), (2, 32), (3, 32), (4, 32), (5, 32), (6, 32)]
3 >>> dynamics = ['pp', 'p', 'mp', 'mf', 'f', 'ff']
4 >>> articulations = ['.', '>', '-', '_', '^', '+']
5 >>> maker = auxjad.LeafDynMaker()
6 >>> notes = maker(pitches, durations, dynamics, articulations)
7 >>> staff = abjad.Staff(notes)
8 >>> abjad.show(staff)
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Figure 4.42: Output of auxjad.LeafDynMaker

auxjad.LeafDynMaker also accepts partial lists or even single dynamics and
articulations, in which case they are applied only to the first elements. It can
also apply them cyclically by calling it with the optional keyword arguments
cyclic_dynamics and cyclic_articulations set to True .

The other maker, auxjad.GeneticAlgorithmMusicMaker , is composed of
two instances of auxjad.GeneticAlgorithm . It is a very idiosyncratic class,
which I used in my composition methinks it is like a weasel (2021). One of
the genetic algorithms handles the evolution of pitch while the other handles
attack points. auxjad.GeneticAlgorithmMusicMaker combines the results of
each of those genetic algorithms, scoring the combination of pitches and attack
points together, thus creating a single entity out of them.18 Similar to auxjad.

GeneticAlgorithm , each call to auxjad.GeneticAlgorithmMusicMaker will
select pitch and attack point parents, create offspring using the crossover process,
apply mutations to them, and rank the individuals created according to their
fitness score. In the case of auxjad.GeneticAlgorithmMusicMaker , a call to
an instance will return the fittest individual of a generation in the form of
an abjad.Selection , which is then ready to be used in a score. The prop-
erty target_music can be used to retrieve the environment’s target (also in
abjad.Selection form).

1 >>> maker = auxjad.GeneticAlgorithmMusicMaker(
2 ... pitch_target=["c'", "d'", "e'", "f'"],
3 ... pitch_genes=["c'", "d'", "e'", "f'", "g'", "a'", "b'", "c''"],

18For an overview of the basic functionality of my implementation of the genetic algorithm,
see Section 4.6.2.1.
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4 ... attack_point_target=[0, 4, 8, 12],
5 ... attack_point_genes=list(range(16)),
6 ... population_size=100,
7 ... )
8 >>> notes = maker.target_music
9 >>> staff = abjad.Staff(notes)

10 >>> abjad.show(staff)

� ��� 44 �
Figure 4.43: Target of auxjad.GeneticAlgorithmMusicMaker

The following example uses the genetic algorithm maker from the code above,
invoking it for six iterations. It shows how the fittest individual is continuously
progressing towards the defined environment target.

1 >>> notes = maker.output_n(6)
2 >>> staff = abjad.Staff(notes)
3 >>> abjad.show(staff)

�� � � � �� �� � �� �� ��� 44 �� ��
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Figure 4.44: Output of auxjad.GeneticAlgorithmMusicMaker after six iterations

The values of parameters such as population_size and select_n_

parents (which are also present in auxjad.GeneticAlgorithm ) together with
the number of genes in both the targets and the gene pool will affect how quickly
this convergence takes.

4.6.6 The Other Four Subpackages: indicators, score, spanners,
and utilities

The other subpackages of Auxjad mostly contain extensions for certain Ab-
jad’s own classes and functions. These include extension methods for abjad.

TimeSignature and abjad.Score and an extended version of abjad.piano_

pedal() . The subpackage score also contains two new types of leaves, auxjad.
ArtificialHarmonic and auxjad.NaturalHarmonic , which are helpful when
notating harmonics. They create notes with appropriate diamond note heads
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and allow for easy parenthesising of open strings and adding markup indicators
for string numbers. The code below shows a staff with both types of harmonics.

1 >>> staff = abjad.Staff([
2 ... auxjad.ArtificialHarmonic("<a e'>4."),
3 ... auxjad.ArtificialHarmonic(r"<g c'>8", is_parenthesized=True),
4 ... auxjad.HarmonicNote(r"a''2", markup='I.', style="#'harmonic-mixed"),
5 ... ])
6 >>> abjad.show(staff)
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Figure 4.45: Staff containing leaves created with both auxjad.ArtificialHarmonic and
auxjad.NaturalHarmonic

The core classes of Auxjad can make use of these harmonic classes too. For
instance, Figure 4.46 shows the result of using the staff above as input to an
auxjad.Phaser .

1 >>> phaser = auxjad.Phaser(staff, step_size=(1, 16), forward_bias=0.0)
2 >>> notes = phaser.output_n(3)
3 >>> staff = abjad.Staff(notes)
4 >>> abjad.show(staff)
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Figure 4.46: Output of auxjad.Phaser on a container with harmonics

I briefly debated whether or not to include these two classes in Auxjad, as
they differ substantially from the other classes and functions in this library in
terms of intent. On the one hand, Auxjad’s members are primarily focused on
transformations, be they algorithmic processes or simple extension methods for
altering object states. On the other hand, my compositional approach often
involves thinking of harmonic notes as single entities that can be used to make up
larger containers, which in turn can be algorithmically manipulated (an example
of this approach can be found in composition and thereafter they shape us). As
such, the practical advantages of including these classes outweighs any concerns
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about the potential lack of coherence in the overall design of this library.
Auxjad currently has a single spanner function, auxjad.piano_

pedal() , which extends the functionality of Abjad’s own abjad.piano_

pedal() . When Auxjad is imported, it automatically replaces Abjad’s na-
tive function with its extended version. Using it without the new arguments
will generate the same output as the original abjad.piano_pedal() . The new
argument half_pedal controls half-pedalling notation, replacing the original
pedal mark with ‘1/2Ped.’; until_the_end can be used to add an additional
‘→’ mark after the pedal glyph, commonly used when the piano pedal is to
be depressed throughout a whole piece or over substantial periods of time;
omit_raise_pedal_glyph removes the symbol for raising the pedal from the
last leaf. This is utilised extensively throughout the portfolio as the textures I
work with often require half or full pedalling throughout an entire composition.

1 >>> staff = abjad.Staff(r"c'4 d'4 e'4 f'4")
2 >>> abjad.piano_pedal(staff[:],
3 ... half_pedal=True,
4 ... until_the_end=True,
5 ... omit_raise_pedal_glyph=True,
6 ... )
7 >>> abjad.show(staff)
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Figure 4.47: Output of the extended abjad.piano_pedal() on a container

The subpackage utilities currently contains a single member, the function
auxjad.staff_splitter() , which is neither an inspection nor a mutation. This
function takes an abjad.Staff and splits it into two staves using a specified
threshold pitch. This splitting is extremely useful when working with piano
music.

1 >>> staff = abjad.Staff(
2 ... r"\time 2/4 a8( b c' d') \times 2/3 {<g b d'>2 <e' f'>4}"
3 ... r"\time 3/4 <d a c' g'>4-- r8 <f a bf>4."
4 ... )
5 >>> abjad.show(staff)
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Figure 4.48: Material used as input for auxjad.staff_splitter()

1 >>> staves = auxjad.staff_splitter(staff)
2 >>> score = abjad.Score(staves)
3 >>> abjad.show(score)
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Figure 4.49: Output of auxjad.staff_splitter()

This function can thus help separate the generation of the music for piano from
its notation. I used this function when composing adrift ; the two fading layers
are generated linearly and are later processed by auxjad.staff_splitter()

for a much-improved notation.

4.7 Conclusion

This chapter focused on overviewing Auxjad’s structure and the design choices
that were taken while developing it. Many of Auxjad’s classes and functions
consist of direct implementations of the mental models that I employ in my
current work. Most of these mental models—and, therefore, the Auxjad classes
that implement those—are related to the aesthetic concepts that I explore in
my music and which were previously introduced in Chapter 3, namely slippage,
fragility, emergence, and liminality.

Since all loopers and faders are based on repetition techniques, they can
be used to create perceptual instability in a composition. This is particularly
true when working with fragile input materials, such as those that are quiet and
slow, and with operating time frames that emphasise perceptual disorientation,
such as using looping windows that are several seconds long but with short step
lengths. In such cases, loopers and faders become essential contributors to the
overall sense of slippage of a composition. The slow and repetitive unfolding that
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is created will, in turn, contribute to the appearance of emergent structures as
well as to an overall sense of liminality in these pieces.

Emergence is another central concept explored in my music. Classes such as
my selectors can create the right conditions from which emergent structures can
appear in the resulting music. Although the selection process from these classes
is randomised, using a heavily weighted distribution and a small pool of elements
can emphasise certain random combinations over others, combinations which are
often grouped together by our ears as single linkages. As discussed in Section 3.2,
both loopers and faders are also able to create new emergent relationships of
materials, particularly at the threshold of consecutive looping windows.

Applications of this library will be discussed in the next chapter, which
will analyse some of the specific compositions that make up my accompanying
portfolio. It will discuss how these mental models and aesthetic concepts can be
realised in practice using Auxjad.
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Chapter 5

Commentary on My Music

5.1 Cartographies series

Cartographies is a series of chamber works written between 2017 and 2020. The
initial concept for this work was to create a series of automatic algorithmic
compositions exploring the metaphor of transformable containers. In the context
of these pieces, a container is an entity that can store any type of musical
object—from simple parameters such as pitch, duration, and dynamics, to
higher-level objects such as musical cells—which can then be randomly selected
by an algorithm. These containers have fixed probability values associated with
each of their indices, enabling particular types of operations for changing an
element’s effective probability. This happens because shifting an element to
another position in the same container will also shift its chance of being selected.
The types of transformations available to a container—such as rotation of
elements or discarding an element and shifting all others—form an intrinsic part
of them; that is, the available operations are embedded in the container metaphor
itself. Containers thus bear a strong relationship with the notion of classes in
object-oriented programming since both encapsulate a state and a specific set of
transformations. This composer-oriented metaphor allowed me to approach these
compositions differently than using more traditional stochastic methods, even
though the mechanics of these containers are not aurally perceivable by a listener.
Nevertheless, working within this framework allowed me to conceptualise this
series of compositions in a unique manner, resulting in music that would not
have been written had I utilised a traditional stochastic approach. Therefore,
all pieces in this series share this notion of a container and are built using it as
their primary compositional technique in a process that will be detailed in the
following subsections.
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When sketching the very first work of Cartographies, I decided to limit myself
to defining the whole piece within a single A4 page, which should thus describe
the individual containers of each parameter, the rules for their transformations,
and all values used to initialise the piece.1 The main reason for this self-imposed
limitation was to shift my focus from designing more complex algorithms to the
creation and selection of materials and constraints for shaping these pieces. I
was immediately surprised by how simple tweaks of procedures could lead to
vastly different results, which supported my initial aim of creating a series of
pieces sharing a common compositional framework. This led to a substantial
reformulation of my compositional approach as only a few rules could be set for
each piece, and, as such, experimentation became an even more critical step in
my compositional practice. The design of each piece’s algorithm was done solely
via the definition of three elements: the constraints of the algorithm (typically
containing the total length of the piece in question, the instrumentation, the
ranges of individual parameters), the transformation operations that are to be
applied to containers, and the initial states of these containers.

These are thus highly parametrised compositions that employed simulta-
neous containers for separately manipulating different parameters. Parametric
approaches to composition have a long history, dating back to before the advent
of computer music. For instance, since the late 1940s and early 1950s, composers
such as John Cage, Pierre Boulez, and Karlheinz Stockhausen have generalised
the ideas of the twelve-tone composers of the earlier generation and created
compositional frameworks that were highly parametrised (Griffiths, 2011, pp. 34–
56, Boulez & Cage, 1995). In computer music, this approach of splitting sound
events into separate parameters to be individually manipulated has remained
common since the earliest experiments in this field (L. A. Hiller & Baker, 1964;
Koenig, 1983; Barlow, 1990). Concerning working with independent parameters,
Kramer (1996, pp. 24–25) states:

Once listeners understand loudness and textural density, for example, as
independent, they can comprehend each of these parameters as providing
its own sense of direction. [. . .] these ideas [are] essentially modernist: a
structuralist attempt to redefine musical temporality by creating inde-
pendent structures in different parameters. But there are undercurrents
of postmodernist thinking evident as well, because what the parametric

1This type of artistic restriction bears a connection to those employed by the members of
the group commonly known as Oulipo, a French group of writers and mathematicians interested
in exploring how writing constraints could be applied to literature. These authors worked with
extreme self-imposed restrictions, such as writing a whole novel without using the letter ‘e’ or
replacing all nouns in a text by the seventh entry that follows them in a dictionary (Baetens,
2012, pp. 117–118; Despeaux, 2015, p. 239).
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concept actually does is deconstruct the previously holistic idea of musical
structure.

This deconstruction of the musical structure into independent layers is an
essential aspect of this series. Each algorithmically manipulated parameter in
these pieces is conceptualised as an individual container of elements undergoing
specific transformations. These containers can have different lengths from one
another as well as unique transformations that can be applied at independent
points in time. The resulting pieces are the sum of these independent processes,
each conceptualised as their own abstraction.

Besides sharing the container mental model, this series of works is also unified
by using a single probability distribution shared by all pieces. By working with
this fixed distribution, individual pieces are shaped solely through the use of
unique mappings and constraints together with the specific characteristics of
each of their containers. When I started working with this particular notion
of a container, I was largely influenced by Lakoff & Núñez’s ideas on cognitive
metaphors. They write:

Each such conceptual metaphor has the same structure. Each is a unidirec-
tional mapping from entities in one conceptual domain to corresponding
entities in another conceptual domain. As such, conceptual metaphors are
part of our system of thought. Their primary function is to allow us to
reason about relatively abstract domains using the inferential structure of
relatively concrete domains. (Lakoff & Núñez, 2000, p. 42)

I based the idea of a container in Cartographies on the fundamental concep-
tual metaphor of container of objects → map of musical entities (as shown in
Table 5.1). In the context of my pieces, a container is an entity made out of n
ordered partitions (i.e. the indices of the container) in which musical elements
can be placed, and which is then used as the source pool for random selection of
material. In other words, when the algorithm in any of the pieces in this series
must select and output a musical element into its score, it randomly selects
it from the population of its containers at that given point. Changes in the
composition are thus realised by altering this population over time.

Each container index has a fixed probability distribution independent of what
element is currently residing in it: that is, it is not the elements themselves that
have a specific chance of being selected but rather the container’s individual
indices. With this metaphor’s property of shift in position → shift in probability,
the mapping of parameters becomes fluid, inviting algorithmic manipulations.
The contents of these containers can be transformed in any number of ways,
such as by rotation, shifts of positions in either direction, and replacement of
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Source Domain Target Domain
Container of objects Cartography container

container → map
ordered partitions → index
physical objects → musical elements
shift in position → shift in probability
contents → algorithmic state
operations of movement of

→
methods of transformation

objects of elements’ indices

Table 5.1: Metaphors used to formalise the container of Cartographies

specific elements. Any transformation that shifts elements between indices will
thus alter their effective probability at that given point in the composition. These
particular transformations are an integral part of the container metaphor, as
operations of movement of objects → methods of transformation of elements’
indices. In these pieces, these transformations happen at fixed cycles for a given
container, although multiple containers may have different cycle lengths in a
single composition. These cycles range from just a few beats to many measures
and are used to slowly alter the available pool of elements for any given moment
in a composition.

Although all definitions above (including the transformations available in
specific containers) are deterministic in nature, stochastic processes are used
to create the resulting piece of music. A container, therefore, will dictate the
possible elements available at a given point in the piece and their associated
probability weights, but the selection of elements that end up in the score is
realised using probabilistic methods.

It is important to note that although I refer to this mental model as a
‘container’ throughout this chapter, its implementation in my Auxjad library
uses the term ‘selector’ for it, as in auxjad.CartographySelector 2 (see Sub-
section 4.6.2.1). The reason for this somewhat discrepant nomenclature is that
Abjad (the Python library upon which my Auxjad library depends) already
had an important class named abjad.Container that serves a very distinct
purpose.3 Since Auxjad is dependent on and must be used with Abjad, Auxjad’s

2The same is true for its related class auxjad.TenneySelector .
3In Abjad, an abjad.Container is a class whose data structure is made out of a tree

of components known as leaves. This class serves as the parent for other classes such as
abjad.Voice , abjad.Staff , and abjad.Score .
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API must respect the latter’s naming conventions. However, for the purpose of
this dissertation, I believe it is important to use the term ‘container’ as it helps
the visualisation of the metaphor behind this mental model, i.e. the metaphor of
physical objects being added to or removed from slots of a physical container,
each slot with specific characteristics, whereas the term ‘selector’ does not imply
any such manipulations.

5.1.1 Probability Distribution

All works in Cartographies share the same probability distribution function
shown in Figure 5.1, which assigns a probability value to any given index in
relation to its surrounding indices. The use of a single probability distribution
for all twelve works in this series not only helps to unify them under a shared
fundamental principle (and, in the process, bringing an extra layer of conceptual
coherence to the whole series) but also shifts the focus of the composition process
into the design of containers. It also allows for easier comparisons across different
pieces, with the whole cycle then showcasing twelve unique approaches to a
common compositional framework.

1 2 3 4 5 6 N 2 N 1 N

[ ]

Figure 5.1: Probability distribution given by P (n) = (3/4)k × P (n− k)

This probability distribution is given by the formula shown below, where P (n)

is the probability associated with the index n and P (n− k) is the probability of
the index n− k, which is k steps away from n. In other words, the probability
of any given index is 3/4 that of the index that just preceded it.

P (n) = (3/4)k × P (n− k)

For every random selection in a piece, the algorithm uses the distribution
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above to weight the elements of all containers according to their indices. Although
the probabilities of all individual indices are fixed, those of individual elements
can be changed by manipulating their position in a container using several types
of transformations. Figure 5.1 shows that the lower an index is, the higher is the
chance of it being selected and, with it, the element that currently occupies it.
Coupled with shifts of elements sideways (passing an element to the previous or
next index), this property of the probability distribution can be used to create
trends in the resulting music, since continuously shifting an element sideways
will, at each step, change its chance accordingly in the same direction. This
property will be further discussed in Subsection 5.1.2.

Since the probability of any given index is defined in terms of other indices,4

this distribution can be applied to containers of arbitrary sizes. For any length of
value N , the algorithm calculates the individual probabilities by initialising itself
with P ′(1) = 1.0, generating the probabilities P ′(n) for all values of n between
2 and N , and then calculating the normalised probability P (i) for all indices
between 1 and N using:

P (i)← P ′(i)∑N
n=1 P

′(n)
,∀i ∈ {1, 2, 3, . . . , N − 1, N}

The code below shows an implementation of this probability distribution written
in Python using a function that takes an arbitrary length as input and returns a
list with the same length containing the normalised probability values for each
of its indices. The resulting individual probabilities returned by this function for
containers with lengths ranging from 2 to 6 are displayed in Table 5.2 below.

1 def probability_generator(length: int) -> list:
2 """Returns a list with the probability values for each index of a
3 container of any given length.
4 """
5 probabilities = [1.0]
6 normalisation_factor = 1.0
7 for _ in range(length - 1):
8 next_probability = probabilities[-1] * (3 / 4)
9 probabilities.append(next_probability)

10 normalisation_factor += next_probability
11 probabilities = [value / normalisation_factor for value in probabilities]
12 return probabilities

4That is, the probability values are generated by a recursive function.
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Index

Length of container 1 2 3 4 5 6

2 57.1% 42.9%
3 43.2% 32.4% 24.3%
4 36.6% 27.4% 20.6% 15.4%
5 32.8% 24.6% 18.4% 13.8% 10.4%
6 30.4% 22.8% 17.1% 12.8% 9.62% 7.22%

Table 5.2: Absolute probabilities per index

5.1.2 Containers

The fundamental concept behind the containers of Cartographies is that the
mapping of musical elements is malleable since these elements point only tem-
porarily to specific indices of a given container. Consider the example shown
in Figure 5.2; seven arbitrary pitches (C]4, D4, F4, F]4, A[4, B[4, and B4)
are mapped in three different ways into a container with five indices. Each of
these will result in a different pool of pitches, shown on the right-hand side of
the figure. It is then from those pool of five pitches that an algorithm would
select pitches for notes in the composition, and each of those pitches would have
different weights given to them according to their position.

Figure 5.2: Diagram showing mutable mappings and the resulting containers

Some of the basic types of mapping transformations that I have explored in
this series of works (but by no means an exhaustive list of the possibilities of
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the container metaphor) are shown below. These transformations can also be
combined together to form other more complex ones.

1. rotation: e.g. [a, b, c, . . . , i, j]→ [b, c, . . . , i, j, a].
2. replacement: e.g. [a, b, c, . . . , i, j]→ [a, b, c, . . . ,m, x], with x being selected

according to some arbitrary process.
3. drop first element and append new one: e.g. [a, b, c, . . . , i, j] → [b, c, . . . ,

i, j, x], with x being selected according to some arbitrary process.
4. numeric operation on parameter values: e.g. [a, b, c, . . . , i, j]→ [f(a), f(b),

f(c), . . . , f(i), f(j)], with f(x) being an arbitrary function.

The main characteristic of the probability distribution used in this work is that
the chance of an element being selected increases if it shifts leftwards but decreases
if it shifts rightwards. This property can be used to generate seemingly continuous
musical transitions. For example, by using a transformation of the type ‘drop
first element and append new one’, such as [a, b, c, . . . , i, j] → [b, c, . . . , i, j, x],
the element x is introduced at an index that has very little chance of being
selected in comparison to the others. All other remaining elements (in this case
b to j) were already present before the transformation was applied and, thus,
the resulting pool of available elements closely resembles the previous one with
the exceptions that 1) the dominant element a disappeared, 2) a new element x
appeared but is rarely selected, and 3) all other elements have a slightly increased
probability of being selected. If such changes are applied at relatively long time
intervals (e.g. once every several measures), the result is a relatively smooth
but constant change of values for this parameter. This is aided by the fact that
selections are made stochastically, which helps to mask these non-continuous
changes in probability. The higher the number of indices, the smoother this
transition will seem.

I have chosen to apply these transformations at regular intervals (although
different containers can have different intervals from one another). It is important
to emphasise that this is purely a compositional choice and not an inherent
property of these containers. My predilection for constant rates of change is
connected with my interest in exploring how linear algorithmic processes can
generate non-linear listening experiences.5 As such, I am often drawn to simple
gradual processes in the form A→ B, where only the start and end points are
defined, and all points in between are a direct result of the process itself—a

5These constant rates of change and non-linear sonic results can also be observed in the
looping windows used in the later pieces of Cartographies (see Subsection 5.1.4).
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decision that further aligns my music with my aesthetic of low intervention.
In Cartographies, these gradual processes are not continuous due to the non-
continuous nature of the containers. By applying transformation at equally
distant points, the process results in a symmetrical staircase function that
‘approaches’ a gradual linear process, as shown in Figure 5.3.

A

B

Staircase Irregular intervals Linear

Figure 5.3: Comparison between linear and a staircase functions for the trajectory A→ B

Using transformations that remove and add only two elements at a time
(such as ‘drop first element and append new one’), it is, therefore, possible to
change the contents of a container into an entirely different set of elements
by continuously applying this same transformation. For example, consider the
container of pitches [E4, F4, F]4] undergoing the following transformations:

[E4, F4, F]4] → [F4, F]4, G4] → [F]4, G4, A[4] → [G4, A[4, A4]

In this example, the container’s initial pool of pitches is given by [E4, F4, F]4].
After a transformation, the contents of the container will be transformed using
the rule [a, b, c]→ [b, c, d], with the new element d being the pitch one semitone
above c. This rule is applied two more times to generate this container’s third and
fourth iterations. Figure 5.4 shows a simple musical realisation of this process
using notes with a constant duration of a quaver, and with transformations
taking place at every measure. Since every two consecutive iterations of this
container have two elements in common, the resulting music shows a smooth
transition of pitch content.

5.1.3 Constraints and Initial States

A fundamental step in the design of these algorithms consists of choosing their
constraints and initial states. These are essentially tied to the design of the
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Figure 5.4: Example of a transformation of type ‘shift with replacement’

containers themselves: it is not only their length and transformation rules that
affect the final output but also how they are initialised. The initial state of a
container is given by their initial set of elements, and its progression will be
dictated by both the transformation rules used and any constraints that these
transformations must obey. These constraints can be used to limit some of the
transformations, such as by restricting a parameter’s range or disallowing some
specific values. Other constraints that affect material progression include the
rate by which transformations are applied. Therefore, changing either the initial
state or the algorithmic constraints of a container will fundamentally alter the
resulting music. As such, composing becomes a heuristic act of balancing all
these decisions together since finding effective values will often involve much
trial and error.

An important constraint that was individually set for each of these pieces con-
sists of fixing the initial seed of the pseudorandom number generator (commonly
abbreviated as PRNG) to a specific value. PRNGs are deterministic functions
that output seemingly random numbers (i.e. numbers that obey specific sta-
tistical requirements) given a start value known as initial seed (Park & Miller,
1988). PRNGs are usually capable of self-initialisation by setting these initial
seeds to arbitrary values (e.g. using the computer’s internal clock as a source of
a random value that changes at every execution). To fix the PRNG to a specific
reproducible (and, thus, repeatable) series of outputs, the initial seed can be
manually set to an arbitrary value, which effectively ‘locks’ the resulting music
as the single specific version of the score. Even though these works use a fixed
initial seed, I consider that these systems exist beyond the realm of a single fixed
score, while the latter is only one of the infinitely many possibilities that could
have been realised by the system.

I made use of somewhat idiosyncratic constraints in most pieces of this series.
For instance, in Cartography #9 I employed a narrow pitch range of only two and
a half octaves shared by all instruments,6 while both Cartographies #7 and #8

6The effective range of the composition as observed in the final score is actually B3–B[5.
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use only the higher register of all instruments. In most of these pieces, dynamics
and articulations are used in a way as to produce music that is characteristically
quiet (e.g. fixing stronger articulations to the indices with the lowest probability
of being selected or by not using loud dynamics at all). These aesthetic choices
limit the palette of materials and contribute to the overall fragility of these pieces.
Accordingly, each of the resulting pieces becomes more distinctive, which further
emphasises the aim of this series of exploring different sonic worlds through a
shared algorithmic principle. The works in this series can be understood as the
application of the container metaphor to unique palettes of musical material.

Some of the typical constraints used in these pieces include the range of
the main parameters (pitch, duration, dynamics), set of available instruments
and instrumental timbres, total duration of the piece, length of the cycles of
transformation of containers, to name a few. In some cases, two containers of
the same length are linked together so that whenever the n-th element of the
first is selected, the n-th element of the second also is selected. I have used
this technique in multiple pieces of this series, such as the linked pitch and
articulations containers found in Cartography #5 and the linked dynamics and
duration containers in Cartography #10. However, this does not mean that
elements themselves are tied together for the whole piece, but rather that the
same indices of two containers are linked, allowing for elements to be shifted
or manipulated. To illustrate this, consider the linked containers [G4, F]5, B[5]
and [pp, mp, f ]; resulting random selections will pick among three options of
pitch-dynamic pairs: (G4, pp), (F]5, mp), and (B[5, f ). Figure 5.5 shows an
example of six random selections made with this process.

�
pp�

�
mp
��

f ��� mp
� � �pp��pp

Figure 5.5: Example of six random selections from the paired containers

Although their indices are linked, the mapping of these containers can be
changed individually by applying transformations to either of them. Suppose the
pitch container undergoes the following transformation [G4, F]5, B[5] → [F]5,
B[5, E[4], while the dynamic container remains the same. After the transforma-
tion is applied, the resulting pitch-dynamics pairs thus become (F]5, pp), (B[5,
mp), and (E[5, f ). Figure 5.6 shows twelve random selections made from these

This happened by chance due to the stochastic procedures not selecting notes in the lowest
part of the range (F3–B[3).
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containers, with the first six being chosen before the transformation is applied
and the subsequent six after it.

�� �
pp

�
pp
��

�
�
pp

�
f� mp
�

�pp� �pp
�
mp� �� � �pp�

�
mp

�
f
� �

mp
Figure 5.6: Example of twelve random selections from the paired containers

The choice of these initial states is fundamentally associated with both the
design of the container’s transformations and the total number of operations that
a container will undergo throughout the whole piece. As an example, consider the
numeric operation f(x) = max(x− 1, 1).7 When applied to each of the elements
of the container [5, 4, 3, 2], it yields [4, 3, 2, 1], maintaining the same relationship
between consecutive elements (i.e. the difference between consecutive elements
is still 1). However, if applied once more, it yields [3, 2, 1, 1], thus modifying
the relationship between the last two elements. After two more operations, the
contents reach the set [1, 1, 1, 1] and will not change any further by using that
numeric operation. Therefore, in this particular case, it is crucial to consider this
behaviour when selecting an initial state as well as the total number of operations
applied throughout a piece. Using the same example, if a programmer would not
use the max() function but instead define the transformation function simply as
f(x) = x− 1, the output values could end up becoming negative, which may be
undesirable if they are mapped to parameters that are expected to always be
positive (such as durations). It is thus crucial to consider the number of times
an operation will take place when designing their behaviour and selecting the
container’s initial state.

In terms of the pitch sets employed, most pieces in this series use straight-
forward sets made out of chromatic pitch fields that are sequentially separated
by one semitone. Table 5.3 shows the initial states of all pitch containers in
Cartographies. Other than Cartographies #1 and #3, all other pieces employ
chromatic ascending or descending initial pitch sets. Most of the pieces make use
of transformations that keep pitch-class sets chromatic; these employ the already-
mentioned ‘drop first element and append new one’ transformation, in which the
new appended element is a semitone above or below the preceding one (depending
on whether the set is ascending or descending chromatically, respectively). In

7This operation takes an input number, subtracts 1 from it and then outputs either the
result of this subtraction or the numeric value 1, whichever is the greatest; e.g. f(6) = 5,
f(4) = 3, f(1) = 1, f(0) = 1, f(−3) = 1, etc.

138



other words, the sets follow the transformation [a, b, c, . . . , i, j]→ [b, c, . . . , i, j, k],
with k mod 12 = (j mod 12) ± 1, and k at a uniformly randomly selected oc-
tave transposition selected from within the pitch range constraint for the given
instrument.

As can be seen in Table 5.3, there are exceptions to the chromatic approach
previously described. Cartography #3 is not formalised using pitches per se, but
instead uses a system that generates possible guitar fingerings from which pitches
are then derived. Cartography #5 starts chromatically, but the G4 pitch is fixed
at the first index (i.e. it is never shifted under any transformation), a decision
that emphasises the open G-string of the violin throughout this work. Given my
predilection for unique pitch classes in my sets, chromatic transformations would
not be possible while keeping the constant G4 since, at some point, the new pitch
class in the last element would shift from F] to A[, an interval of 2 semitones.
This is the reason behind the decision of starting the piece chromatically but
then selecting new pitch classes randomly, with the only constraint that pitch
classes must be unique within the same container. This approach is similar
to that found in Cartography #1, which was written before I started working
primarily with chromatic fields.

Most of the pieces that make up Cartographies display my clear preference
for chromatically saturated pitch fields. This comes in part due to the overall
‘flatness’ that such constant fields evoke during the listening experience, which
is also aided by the flatness of the other musical structures in this music (e.g.
non-hierarchical form, use of constant steps in looping windows, soft and quiet
textures). The flatness of the harmonic experience in these pieces comes mostly
from a non-hierarchical approach to pitches: all pitch classes are effectively
equal as they are derived from a single intervallic procedure of shifting one
semitone. A pitch-class set such as these will always cycle back to itself after
12 iterations (even though the container’s effective pitches might be located in
different octave transpositions). The aural result is that of a long-scale drift
(either upwards or downwards), akin to a stepwise Shepard tone: the process
gives the illusion of constant rise or falls when, in fact, the pitch classes change
cyclically. The periodical nature of these transformations can also be related to
another characteristic of these pieces, namely the predominant use of musical
repetition as a structuring device (a topic which will be discussed in the next
section). The pitch-class sets are thus cyclic and the process of shifting them is
realised by a constant operation of either f(an) = an−1 + 1 or f(an) = an−1 − 1

repeated over and over again. This ‘flatness’ and large-scale drift will further
contribute to a piece’s sense of slippage and liminality, two notions previously

139



C
ar
to
gr
ap

hy
#

In
it
ia
lP

it
ch

C
on

ta
in
er
(s
)

In
it
ia
lly

C
hr
om

at
ic

C
hr
om

at
ic

T
ra
ns
fo
rm

at
io
ns

#
1

[G
4,

D
4,

E
[4
,A

4,
F
4,

B
4]

n
o

n
o

#
2

[G
4,

F
]4
,F

4,
E
4,

E
[4
,D

4,
C
]4
,C

4]
ye
s

ye
s

#
3

se
le
ct
ed

th
ro
ug

h
ra
nd

om
is
ed

fin
ge
ri
ng

s
n
o

n
o

#
4

    [C
6,

B
5,

B
[5
,A

5,
A
[5
,G

5,
F
]5
,F

5]
[G

[3
,A

3,
B
[3
,B

3,
C
4,

C
]4
,D

4,
E
[4
]

[G
6,

F
]6
,F

6,
E
6,

E
[6
,∅

],
∅

=
re
st

ye
s

ye
s

#
5

[G
3,

A
[3
,A

3,
B
[3
,B

3,
C
4,

C
]4
]

ye
s

n
o

#
6

{ [F
4,

F
]4
,G

4,
A
[4
,A

4,
B
[4
]

[E
4,

E
[4
,D

4,
C
]4
,C

4,
B
3]

ye
s

ye
s

#
7

[C
6,

B
5,

B
[5
,A

5,
A
[5
,G

5,
F
]5
]

ye
s

ye
s

#
8

[A
5,

B
[5
,B

5,
C
6,

C
]6
,D

6]
ye
s

ye
s

#
9

[C
4,

C
]4
,D

4,
E
[4
,E

4,
F
4]

ye
s

ye
s

#
10

[C
6,

B
5,

B
[5
,A

5,
A
[5
,G

5]
ye
s

ye
s

#
11

[C
4,

C
]4
,D

4,
E
[4
,E

4,
F
4]

ye
s

ye
s

#
12

[F
4,

E
4,

E
[4
,D

4,
C
]4
,C

4]
ye
s

ye
s

T
ab

le
5.

3:
In
it
ia
lp

it
ch

co
nt
ai
ne

rs
fo
r
al
lC

ar
to
gr
ap
hi
es



discussed in Chapter 3.
Writing about non-hierarchical approaches to pitch will invariably evoke

connections to serial techniques. It could indeed be said that there are shared
aims between my techniques for pitch manipulation and traditional serial ones;
but as Xenakis famously pointed out, the complexity of the sonic result of serial-
ism—with pieces often being the polyphonic result of multiple parallel instances
of twelve-pitch series used at different transpositions and modes —has the effect,
at the perceptual level, of a single mass of sounds distributed statistically around
the whole chromatic field (1994). By narrowing the lengths of my containers to
values smaller than twelve (as shown in Table 5.3) and by using simple ordered
chromatic pitch classes that are shared among all instruments in a given piece,
the resulting music displays aurally recognisable harmonic fields that change
over time, with the transformations of harmony becoming transparent in the
process.

5.1.4 Use of Repetition

Repetition plays a crucial perceptual role in my recent work. As previously
discussed in Chapter 3, repetition is an important technique that I use in my
music to increase its sense of slippage as well as generate emergent musical
structures. My repetition-based procedures (such as looping windows) create
music that, on a local level, gives rise to micro-variations of material. These
are often subtle enough that changes become imperceptible, particularly when
the materials used are fragile. On this local scale, the ungraspability of these
repetition processes creates a sense of disorientation for the listener, which I
refer to as slippage. On a larger scale, these types of repetition processes give
rise to a sense of liminality: they create music that is in constant motion, leading
to a sense of transience and detachment on a larger scale. These are notions that
emerge from the repetition processes I employ and have become the main focus
of my recent work.

Although I only started working with looping processes from Cartography
#8 onwards, repetition also plays a role in earlier pieces of this series. By using
idiosyncratic constraints that narrow the available range of a piece’s parameters,
stochastic processes alone can yield very similar or even identical structures from
time to time. This stochastically created similarity is very compelling for the
listener: structures that emerge from randomness are picked by the ear, which
groups them together due to their temporal and pitch similarities, such as when
consecutive notes are placed on the same register (Bregman, 1990, pp. 455–528;
Tenney & Polansky, 1980). Thus, locally, these emergent patterns are often
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perceived as having interconnected musical relationships, even though, in fact,
they are the resulting shimmering in the surface of randomness. Such emergent
relationships are often present in the ‘input music’ that my algorithms first
generate, before any looping process is applied. Nevertheless, repetition processes
also play an important role in promoting emergent structures, as these can
often form at the borders of consecutive looping windows. These are moments of
disjunction in relation to the input music, which happen when the algorithm
jumps back to revisit a past point in time. At these borders, elements that are
not consecutive in the input music find themselves side by side, and can end up
linked together by our ears depending on their characteristics.

The nature of the containers used in Cartographies makes them particularly
favourable for generating such emergent structures. Since the probabilities of
a container’s indices are not equally distributed, some indices (and, therefore,
whatever element that happens to be residing in it) have a much higher likelihood
of being selected than others. Particular constellations of different musical
parameters can appear multiple times in short succession, further contributing
to creating structural links. Figure 5.7 shows one such example from the first
movement of Cartography #4. In measures 65–68, a small identifiable unit made
out of a semitone slide between D2 and D]2 is played multiple times in the harp.
This very same structure can also be heard once in measures 54–55 and then
once more in measures 59–60, but in measures 65–68, it becomes a dominant
presence. This little pattern is very recognisable due to its unique register in the
texture, as these happen to be the two lowest pitches in the whole movement. In
reality, the algorithm did not ‘prepare’ this pattern in the earlier two occurrences
in order to reintroduce it multiple times in short succession, but instead, these
two pitches were randomly chosen multiple times in a short span, leading our
ears to recognise them as a single structural group.

Starting with Cartography #8, I began working with the mental model of
a moving looping window. I have since explored two types of looping windows
in my work: one whose end points move note-wise (i.e. it always has n notes,
despite the sum of their durations) and another whose end points move according
to a given time unit (i.e. the looping window has a specified total duration).8

Practical applications of these two types of looping window will be discussed in
more detail in Sections 5.1.8 and 5.1.9, respectively, which focus on the pieces in

8These are implemented in the Auxjad library as auxjad.LeafLooper and auxjad.
WindowLooper , respectively. Auxjad also has a third looper class named auxjad.ListLooper ,
which is similar to the first one but handles lists with any type of elements as opposed to an
abjad.Container with multiple leaves.
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Figure 5.7: Excerpt of Cartography #4, first movement, measures 65–68

which I introduced these ideas.
Figure 5.8 shows an example of a looping window of the first type with a

length of four notes, with the resulting music shown at the bottom. Figure 5.9
illustrates the second type of looping window, which has a fixed size and moves
forward by one temporal unit (in this case, a semiquaver), with the resulting
music shown at the bottom.

���� �� ��� � � � �� � → ���� �� �� �� � �� ��

Result: �� �� �� ��� ����� � � ���� �
Figure 5.8: Example of a looping window moving forward by one note

���� �� ��� � � � �� � → � � ���� �� ��� �� � �� ���

Result: �� �� �� �� � �� ��� � �� � ��� � �
Figure 5.9: Example of a looping window moving forward by one temporal unit

In both cases, the algorithm first creates the input music, a complete piece
of music created using the previously defined initial states, constraints, and
container transformations for the sole purpose of serving as input material for
the looping process. After generating this input music, the algorithm applies
the looping window process to it in order to generate the final work. In these
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compositions, loops are thus used ‘as a means of deconstruction’ (Lang, 2003) of
this input music. My use of repetition thus consists of one more procedure on
top of a long chain of algorithmic processes used to create and deconstruct this
never-to-be-heard input music that is generated from within the algorithm itself.

These are thus process-based works that use linear musical processes to
create repetitive, disorienting, and non-linear listening experiences. As previously
explored in Chapter 3, the repetition processes employed in my pieces give rise
to both local and global disorientating phenomena, which I frame using the
concepts of ‘slippage’ and ‘liminality’, respectively. The mental model of looping
windows has been of crucial importance for investigating these two notions. With
the right set of materials, they can produce straightforward algorithmic processes
that generate perceptually ambiguous music.

5.1.5 Cartography #1

The first piece in this series, Cartography #1 (2017) for piano and vibraphone,
is also the first work of mine composed using the container mental model. After
coming up with the general idea of how containers could operate (as described in
the previous sections), I wanted to write a short piece to put them into musical
practice. As such, this series was not initially conceived as a large scale project
containing multiple individual compositions, but instead, it naturally evolved
towards that.

As a departing point for this first piece, I aimed at creating a gradual and
continuous ‘instrumental crossfade’, which was to be achieved solely by shifting
the mappings of multiple parametric containers. This idea came about from a
simple line of questioning: would these shifts in mappings be able to create a
convincing crossfade structure? Would the exact moments of shift be perceivable,
or would the listening experience be smooth as I aimed? Would these containers
be able to effectively handle parameters not involved in the crossfade process?
Would the idea of containers promote the development of emergent structures?

Gradual crossfades can be easily achieved using traditional stochastic tech-
niques: given two instruments A and B, the probability for the first can continu-
ously9 change from the maximum to the minimum value, i.e. PA = 1.0→ 0.0,

9Computers are actually not capable of producing true continuous changes of numeric
quantities. The data type commonly used to emulate this sort of operation are floating-point
numbers (commonly referred to as ‘floats’), which have a fixed precision value (i.e. the maximum
number of significant digits they can store). Since computers can handle floats with large
numbers of decimal places, they are considered an effective approximation of actual real
numbers (R). As such, small non-continuous increments of values can thus give the illusion of
actual continuity.
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while, at the same time, the probability of the second continuously change in
the opposite direction, i.e. PB = 0.0 → 1.0. In this work, I wanted to investi-
gate whether containers could also produce similar results with continuously
sounding changes despite their fixed probabilities. While the stochastic tech-
nique mentioned above require manipulation of the probability distribution of
individual parameters, containers have a fixed probability value assigned only
to their indices. However, shifting an element leftwards will increase its chance
of being selected, while the opposite holds for a rightwards shift. In the right
circumstances, the changes in the musical result created by this technique will
be perceived as smooth and gradual, despite its discontinuous realisation.

In order to achieve this illusion of continuity, this work uses two containers of
eight indices each, one for the durations of the piano and the other for those of the
vibraphone. These durations actually represent the distance between consecutive
attack points, with all notes notated as semiquavers. In this composition, I used
constant pedalling for both instruments as a blurring element, and therefore
these semiquavers will effectively last for a substantially longer time. At every
moment in this piece, there are eight values in the pool of available durations for
any given note of each instrument. The vibraphone starts with a container filled
with longer durations (resulting in less density of attack points); the contents of
this container will then gradually shorten until it is filled with attack points at
every single semiquaver. The piano follows the opposite procedure, starting with
a container filled with the minimum duration, which slowly moves towards the
initial density set for the vibraphone. These two procedures are formalised using
Transformations 5.1 and 5.2, which are applied to the vibraphone and piano,
respectively.

[a, b, c, . . . , g, h]→ [max(a+ 1, 1),max(a, 1),max(a− 1, 1),

. . . ,max(a− 5, 1),max(a− 6, 1)]
(5.1)

[a, b, c, . . . , g, h]→ [max(a− 1, 1),max(a− 2, 1),max(a− 3, 1),

. . . ,max(a− 7, 1),max(a− 8, 1)]
(5.2)

Using the initial states [10, 9, 8, 7, 6, 5, 4, 3] for the vibraphone, and [1, 1, 1, 1, 1,

1, 1, 1] for the piano, the application of these two Transformations above will
result in the changes of durations shown in Table 5.4. Each transformation step
takes place every 16 measures; this means that, at every 16 measures, a new
duration enters the container (although with a very low probability of being
selected), and the longest duration disappears, with all others receiving a small
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increment in their probability. The key aspect for creating this experience of
smooth changes is that two consecutive containers have almost the same content,
so the overall density of notes will change only ever so slightly. The musical
results of this process can be observed in Figure 5.10, which contains six excerpts
of a single measure, taken from distinct points in the composition’s trajectory.

Transformation # Vibraphone Piano

1 [10, 9, 8, 7, 6, 5, 4, 3] [1, 1, 1, 1, 1, 1, 1, 1]

2 [9, 8, 7, 6, 5, 4, 3, 2] [2, 1, 1, 1, 1, 1, 1, 1]

3 [8, 7, 6, 5, 4, 3, 2, 1] [3, 2, 1, 1, 1, 1, 1, 1]

4 [7, 6, 5, 4, 3, 2, 1, 1] [4, 3, 2, 1, 1, 1, 1, 1]

5 [6, 5, 4, 3, 2, 1, 1, 1] [5, 4, 3, 2, 1, 1, 1, 1]

6 [5, 4, 3, 2, 1, 1, 1, 1] [6, 5, 4, 3, 2, 1, 1, 1]

7 [4, 3, 2, 1, 1, 1, 1, 1] [7, 6, 5, 4, 3, 2, 1, 1]

8 [3, 2, 1, 1, 1, 1, 1, 1] [8, 7, 6, 5, 4, 3, 2, 1]

9 [2, 1, 1, 1, 1, 1, 1, 1] [9, 8, 7, 6, 5, 4, 3, 2]

10 [1, 1, 1, 1, 1, 1, 1, 1] [10, 9, 8, 7, 6, 5, 4, 3]

Table 5.4: Duration container progression in Cartography #1
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Figure 5.10: Excerpt from Cartography #1, measures 7, 30, 85, 119, 135, and 157

The tempo of this work and length of the transformation cycles are both
crucial for generating this impression of gradual transition. With the constraint
of composing a relatively short piece with less than five minutes in total duration,
I used trial and error to adjust those other parameters. I set on a tempo of ˇ “ = ca.
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84 and a total of ten transformations of sixteen 222
444 measures each, a combination

that generated the density of notes that I looked for and created a very smooth
impression of the probability changes. This type of heuristic approach for setting
some specific constraints is typical for all Cartographies.

While each instrument has its own duration container (necessary for achieving
the crossfade), containers with pitches and articulations are shared by both
of them. The pitch range used for the whole piece is F3–E5 so that the same
container can be used for both the vibraphone and the piano. The pitch container
is initialised as [G4, D4, E[4, A4, F4, B4] and is transformed using the procedure
[a, b, c, d, e, f ]→ [b, c, d, e, f, g], with g being a pitch with a new pitch class (i.e.
not in the container) and uniformly chosen within the shared pitch range.

The loudness of notes is notated solely using articulations; softer notes are
notated with no articulation at all, medium dynamic notes are notated with
marcato articulations, and louder ones are notated with both a martellato
articulation and a sf dynamic indication.10 Their container has length six and is
fixed throughout the work with the values [∅, ∅, ∅, ffi , ffi , » ], where ∅ represents
no articulation.11 This container is linked with the pitch container, and so the
rarest of the pitches will receive a martellato articulation while the pitches in the
fourth and fifth indices will receive a marcato articulation. This is a technique
that I used throughout this whole series: by linking louder dynamics to the least
likely pitches or durations, any newly introduced element in those containers
becomes more salient while misdirecting the attention of the listener from the
disappearing element that was just removed.

This piece also showcases an important aspect of working with containers:
they can promote the development of emergent structures. Due to the limited
pool of elements available in each container at any given time and the different
weights assigned to each of them, specific combinations of notes may happen

10Although I initially used only the martellato articulations, performers of this piece found
it easier to read the louder attacks when they also had a sf dynamic. These attacks seldom
appear in this composition due to their position in the articulation container, so a sf indication
makes it easier to recognise them.

11Most mapping functions I used in the containers of Cartographies are classified as bijective,
in which each index of a container is mapped onto a unique value of a parameter. In other
words, there are no repeated parameters in a container and, by definition, no repeated indices
either, creating a one-to-one correspondence. Occasionally, I have also employed surjective
functions, as is the case of the container [∅, ∅, ∅, ffi , ffi , » ]. In this case, different indices may
output the same value for a parameter as their mappings are not all unique. This technique
was particularly useful when I wanted to make an element even rarer in relation to others. In
this example, with three options for articulations, I found that using a smaller container such
as [∅, ffi , » ] was not resulting in the dynamic range I aimed for. Using surjective containers
allowed me to further adjust these relationships of probability while continuing to work with
this mental model for all parameters.
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repeatedly in short succession. Depending on their characteristics, such as sharing
the same register or having louder articulations, these notes can form structures
that are perceived as single groups by the listener (Bregman, 1990, pp. 455–528;
Tenney & Polansky, 1980), which are then emphasised and validated by the
near-repetitions that may occur. Although the strong links between specific
elements form relationships that are hearable by the listeners, they cannot be
accounted for in the notion of the container itself, which is blindly selecting
parameters on a note-by-note case. These relationships, thus, emerge from the
algorithmic process itself.

5.1.6 Cartography #4

Cartography #4 (2017, revised 2020), for flute, viola, and harp, is the only
composition written in multiple movements in this series. This work was originally
written as a single movement (which is the second one in the final version), but
during a revision in 2020, I decided to include two others. Through the use
of a multi-movement structure, Cartography #4 functions as a triptych: three
‘panels’ exploring the same thematic, which include similar textures, the use of
containers, and approach to pitch range.

The initial compositional idea for this work was to use containers for ex-
ploring particular uses of texture, pitch range, and timbre. The main textural
characteristics of each of these three movements arise from their individual
constraints: the viola’s use of sul ponticello tremolo in the second movement
and sul tasto in the last, the specific uses of harmonics throughout the piece,
and the contrasting instrumental colours of the different pitch ranges. Tempo
also plays an important role in this piece, with the first movement using it as a
structural element selected from a container of several fixed tempi. Figure 5.7
(on page 143) shows an excerpt of the first movement, while Figures 5.11 and
5.12 show the first bars of the second and third movements, respectively.

Unlike most of the other non-solo Cartographies, the instruments in #4 do
not share a common pitch range. The harp serves as the central unifying element,
being able to play notes within its full range on all movements. However, the flute
and viola are always confined to a single octave each, which is shared with one
another for most of the time. Table 5.5 shows the pitch range progression for all
movements of this work. Note in the table below that, in the third movement, the
pitch range for the viola and flute changes halfway through, creating a movement
structured in two clear sections.

For the first two movements, this pitch container has length eight, while for
the last movement, it has length six (with the rightmost index set to a fixed
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Figure 5.11: Excerpt of Cartography #4, second movement, measures 1–4
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Figure 5.12: Excerpt of Cartography #4, third movement, measures 1–5

value of ‘no pitch’, i.e. silence). Despite not employing a common pitch range in
this composition, all instruments share the same pitch container. Thus, when
choosing a pitch for a specific instrument, the algorithm uses a select and test
approach: it selects a random pitch and tests it against the allowed pitch range
for that particular instrument. If the pitch is allowed, it is then applied to the
note; otherwise, it is discarded, and a new pitch is selected and tested. Another
related constraint applied to this algorithm relates to adding a new pitch to
this container: the algorithm must always ensure that at least two pitches are
available for each instrument at any given time. This means that, while the harp
will likely be able to play any pitches in this container at all times, the flute and
viola will only have a subset of those available for them. When the flute and the
viola share the same pitch range (movements I and II, and the first section of
movement III), this smaller pool of available pitches creates another emergent
effect: these two instruments will often give the impression of following and
imitating one another, as there are fewer options for each note (see the opening
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Movement

I II III
Instrument mm 1–31 mm 32–60

Flute C5–C6 C4–C5 B[6–B[7 C4–C5
Viola C5–C6 C4–C5 B[6–B[7 C3–C4
Harp A[1–A6 A[1–A6 A[1–A6 A[1–A6

Table 5.5: Absolute probabilities per index

measures of the second movement in Figure 5.11 for an example of this). This
is an emergent musical characteristic that arises solely from the simple rules of
how containers operate coupled with the small number of available pitches.

5.1.7 Cartography #7

In Cartography #7 (2018), for four electric guitars, I wanted to explore how
containers could be used in conjunction with higher-level musical entities as
opposed to single parameters. Unlike the previous works in this series, all of
which employed a purely parametric approach to music generation, Cartography
#7 is created using pre-defined musical cells upon which pitch is then later
imposed. Using container transformations like those previously explored in this
chapter, the probability values of these cells can become variable, creating a
slowly changing musical texture. Cells at the leftmost indices of the container
are given priority, while cells at the rightmost index have less chance of being
selected. In this piece, form thus becomes an emergent property of this process,
i.e. the result of the list of available cells and their container’s transformations.

In this work, the primary type of container transformation used for mu-
sical cells is [a, b, c, d, e] → [b, c, d, e, f ]. This choice reflects a similar musical
intention as the crossfade effect in Cartography #1 (previously discussed in
Subsection 5.1.5): to create the illusion of smooth continuous transitions de-
spite working with stepwise operations. By introducing new musical cells at the
index with the lowest probability and keeping most of the contents identical
between operations, these changes are perceived as smooth by the ears. The size
of the container is of fundamental importance if these smooth changes are to
be perceived; Table 5.6 shows a list of ratios between the last and first indices
for a container of length ranging from two to six. The lower this ratio, the
‘smoother’ the changes will sound since the difference between the minimum and
maximum probability values is lowered, resulting in less abrupt changes. Also,
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the length of a container dictates the number of steps between these minimum
and maximum probabilities, so a higher length allows for smaller incremental
changes in probability, aiding the perception of smooth transitions.

Length of container Ratio between last and first indices

2 0.75
3 0.563
4 0.422
5 0.316
6 0.237

Table 5.6: Ratio between the last and the first indices of a container of a given length

For this work, I set on a container of length five for the musical cells. For
a container of length five, the last index is about three times less likely to be
selected than the first one. In this case, an element moving incrementally from
the last to the first index will, as given by Table 5.2, follow a trajectory of
absolute probabilities in the range 10.4%→ 32.8%.

The musical cells used in this work are listed below. Except for the first cell,
which has a cresc. from al niente, the dynamics of all other cells remain at a
soft level of p.

1. single note with cresc. from al niente
2. single tap harmonic
3. group of n consecutive semiquavers, with n selected from [2, 3, 4, 5, 6]12

4. single note with vibrato
5. single regular note
6. mixed group of m consecutive semiquavers, the last one with a vibrato,

with m selected from [4, 5, 6, 7, 8]13

Each cell type above is mapped to a number ranging from 1 to 6. These are
not merely arbitrary labels but also serve to manipulate the transformations
between cell types. In other words, the transformations of this container employ
numeric manipulations for deriving the new contents. The container used to
select the cell type is initialised with [1, 1, 1, 1, 1] (that is, the composition
starts only with cells of type 1). There are four stages for the transformation

12Note that the selection of the number of consecutive semiquavers for both groups 3 and 6
uses a container with the same distribution described on Figure 5.1. This means that shorter
groups are more likely to be selected.

13See footnote 12.
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mechanism of the cells. The first four transformations are given by [a, b, c, d, e]→
[b, c, d, e, e+ 1]. The next four are given by [a, b, c, d, e]→ [b, c, d, e, a]. The next
five are given by [a, b, c, d, e] → [b, c, d, e, 6]. The final five transformations are
given by [a, b, c, d, e]→ [b, c, d, e, f ], where f = (e mod 6)+ 1. This results in the
following states for this container (with a different type of transformation per
line):

[1, 1, 1, 1, 1]→ [1, 1, 1, 1, 2]→ [1, 1, 1, 2, 3]→ [1, 1, 2, 3, 4]→ [1, 2, 3, 4, 5]→

→[2, 3, 4, 5, 1]→ [3, 4, 5, 1, 2]→ [4, 5, 1, 2, 3]→ [5, 1, 2, 3, 4]→

→[1, 2, 3, 4, 6]→ [2, 3, 4, 6, 6]→ [3, 4, 6, 6, 6]→ [4, 6, 6, 6, 6]→ [6, 6, 6, 6, 6]→

→[6, 6, 6, 6, 1]→ [6, 6, 6, 1, 2]→ [6, 6, 1, 2, 3]→ [6, 1, 2, 3, 4]→ [1, 2, 3, 4, 5]

From the trajectory above, it can be seen that it is possible to use simple
container transformations to generate a complex evolution of the musical material.
The piece starts only with the first type of cell and slowly gets more diversified
(although, for the initial transformations, cell 1 remains the dominant one). Once
the contents reach [1, 2, 3, 4, 5], they are rotated leftwards, and so each cell takes
a dominant role once before being moved to the last index. When this rotation is
about to result in [1, 2, 3, 4, 5], the algorithm changes again and introduces a new
cell of type 6, albeit in the index with the lowest probability. This cell slowly
starts to dominate the container until the contents become [6, 6, 6, 6, 6]. Finally,
the initial five cells start to appear again, slowly taking over from the cell of
type 6, which is then not present any longer at the very end of the composition.

Figures 5.13–5.17 show five different excerpts during the first stage of the
transformations, with each cell type being highlight by a different colour: blue
for cell 1, red for cell 2, green for cell 3, yellow for cell 4, and purple for cell 5.

Figure 5.13: Excerpt of Cartography #7, measure 9, with highlighted cell types

Other than the container controlling these musical cells, only two other
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Figure 5.14: Excerpt of Cartography #7, measure 22, with highlighted cell types

Figure 5.15: Excerpt of Cartography #7, measure 37, with highlighted cell types

Figure 5.16: Excerpt of Cartography #7, measure 59, with highlighted cell types
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Figure 5.17: Excerpt of Cartography #7, measure 88, with highlighted cell types

containers control the pitch and duration parameters. The pitch container is
initialised with [C6, B5, B[5, A5, A[5, G5, F]5] and is affected by two processes:
first, pitch classes are manipulated using the transformation [a, b, c, d, e, f, g]→
[b, c, d, e, f, g, h], where h = (g − 1) mod 12. An octave transposition value is
then uniformly randomly selected, respecting the range constraint of E3–E6.
The pitch container is in constant transformation, with the process described
above happening at each and every measure. Selected pitches are then imposed
to whatever cell is selected at a given moment in the composition.

Durations are given in number of semiquavers and dictate the distance
between consecutive starting points of cells. The duration container is initialised
with [28, 27, 26, 25, 24] and has three stages of transformations. The first thirteen
transformations are given by [a, b, c, d, e]→ [a−1, b−1, c−1, d−1, e−1] so that
the distance between attack points becomes smaller and the texture denser. The
second stage starts with the fourteenth transformation and lasts until the coda
and is given by [a, b, c, d, e]→ [a+1, b+1, c+1, d+1, e+1], which will increase
the distance between attack points. Finally, the short coda starts one measure
after the last active note ends and uses a fixed set [24, 24, 24, 24, 24] (that is,
all attacks occur at every one and half 444

444 measures). The duration container
changes every six measures.

Besides the initial states of the already-mentioned containers, this piece
makes use of the following other constraints:

1. Number of pitch transformations: 217 (216 + 1 for the coda).
2. Number of duration transformations: 19 (18 + 1 for the coda).
3. Pitch range: E3–E6.
4. If a pitch below D4 is selected, the harmonic cell cannot be selected.
5. A semiquaver rest is added after a vibrato note.
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5.1.8 Cartography #8

Cartography #8 (2018), for flute, soprano sax, violin, violoncello, and accordion,
was the first piece in which I made use of the looping window mental model. In
the case of this piece, the looping window consists of a straightforward additive
method for generating windows of repeated measures, which can be understood
as a looping window moving forwards. First, the algorithm generates the input
music lasting for 40 measures, created without any repetition process. Each
of these measures contains a single note or rest per instrument, so the whole
composition is written in a homophonic texture. Once this input music is created,
the algorithm applies a three-stage process to generate the final score. The first
stage starts with a looping window whose only element is measure one; while
this window consists of less than 10 measures, it will append the next measure
at each iteration. Once the window is 10 measures long, the second stage starts,
and the window moves forwards by one measure in relation to the input music.
Once the window reaches the last measure (number 40), it will enter the third
stage, which is the opposite of the first one: starting with a looping window
of 10 elements, the algorithm discards the first measure of the window at each
iteration until only a single element is left. These three stages can be visualised
as:

[1]→ [1, 2]→ [1, 2, 3]→ · · · → [1, 2, 3, . . . , 9, 10]→

→[2, 3, 4, . . . , 10, 11]→ [3, 4, 5, . . . , 11, 12]→ · · · → [31, 32, 33, . . . , 39, 40]→

→[32, 33, 34, . . . , 39, 40]→ [33, 34, 35, . . . , 39, 40]→ · · · → [39, 40]→ [40]

This process results in the following sequence of measure numbers:14

1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 11 3 4 5 6 7 8 9 10
11 12 4 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 14 6 7 8 9 10 11 12 13
14 15 7 8 9 10 11 12 13 14 15 16 8 9 10 11 12 13 14 15 16 17 9 10 11 12 13
14 15 16 17 18 10 11 12 13 14 15 16 17 18 19 11 12 13 14 15 16 17 18 19 20
12 13 14 15 16 17 18 19 20 21 13 14 15 16 17 18 19 20 21 22 14 15 16 17 18
19 20 21 22 23 15 16 17 18 19 20 21 22 23 24 16 17 18 19 20 21 22 23 24 25
17 18 19 20 21 22 23 24 25 26 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23
24 25 26 27 28 20 21 22 23 24 25 26 27 28 29 21 22 23 24 25 26 27 28 29 30

14Extra-wide spaces were added between each iteration for a better visualisation of the
process.
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22 23 24 25 26 27 28 29 30 31 23 24 25 26 27 28 29 30 31 32 24 25 26 27 28
29 30 31 32 33 25 26 27 28 29 30 31 32 33 34 26 27 28 29 30 31 32 33 34 35
27 28 29 30 31 32 33 34 35 36 28 29 30 31 32 33 34 35 36 37 29 30 31 32 33
34 35 36 37 38 30 31 32 33 34 35 36 37 38 39 31 32 33 34 35 36 37 38 39 40
32 33 34 35 36 37 38 39 40 33 34 35 36 37 38 39 40 34 35 36 37 38 39 40 35
36 37 38 39 40 36 37 38 39 40 37 38 39 40 38 39 40 39 40 40

The length of this looping window poses a challenge to the listener’s memory
as it can consist of up to 10 measures—totalling up to 20 seconds, longer
than the commonly accepted upper range of our short-term memory, which is
around 10–12 seconds (Snyder, 2000, pp. 49–51; Huron, 2006, p. 228). Since,
at each step, only one new element is added, and only one element is removed,
the changes between each iteration of the window happen very gradually. The
monophonic texture helps amplify the disorientation caused by this process,
creating a constant sense of déjà vu. Emergent structures arise from the sequence
of measures, particularly at the borders between windows where material that
is not consecutive in the input music is placed side by side. The simplicity of
the material used, together with the straightforward texture and soft dynamics,
help to obfuscate these points further and, in turn, increase the sense of slippage
of this work. This, coupled with the long looping window, makes this otherwise
easy-to-grasp process substantially less evident to the listeners. Figure 5.18 shows
an excerpt of the first fifteen measures of this composition, with double measure
lines added between the transformations described above for extra clarity.

This piece also uses containers to control pitch, dynamics, hairpins, timbre,
measure length, and the number of instruments playing in a given measure.
Pitches, measure lengths, and dynamics use transformations of the type ‘drop
first element and append new one’, while the containers of dynamics, hairpins,
and the number of active instruments are fixed throughout the piece.

Some of the most relevant constraints are:

1. Total number of measures (pre-loop): 40
2. Note durations: all notes last for a whole measure
3. Pitch range: A[4–E7
4. Condition: at least one pitch in the set should be equal to or below C6 (to

ensure that all instruments have at least one available pitch)
5. Highest pitches per instrument: flute C7, soprano saxophone E[6, violin

E7 (harmonics from E6 and above), violoncello E7 (harmonics from G5
and above) and accordion C7

6. Hairpin range: hairpins always lead to a dynamic one step above/below
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the initial one

The algorithm uses a fixed container of length two containing two options
for timbre, which are instrument-specific:

Timbres

Instrument Option 1 Option 2

Flute ord. flageolet
Soprano saxophone ord. bisbigliando
Violin ord. sul ponticello
Cello ord. sul ponticello
Accordion 8’+8’ 8’+8’+4’

Table 5.7: List of timbral options used in Cartography #8

The number of active instruments in a measure and the hairpin parameter
both use fixed containers, [5, 4, 3, 2, 1, 0] and [none, cresc., dim.], respectively.

Other parameters shift continuously throughout the piece. Measure lengths
continuously shift from [ 777888 ,

666
888 ,

555
888 ] to [ 333888 ,

222
888 ,

111
888 ].

15 Dynamics shift from [pp, p] to
[mp, mf ].

The contents of the pitch container are affected by two processes: first,
pitch classes are transformed using [a, b, c, d, e, f ] → [b, c, d, e, f, g], where g =

(f + 1) mod 12. An octave transposition is then uniformly randomly selected,
respecting the range constraint of A[4–E7 as well as the conditional constraint
that at least one pitch in the container must be equal to or below C6.

5.1.9 Cartography #9

The subsequent work in this series, Cartography #9 (2018), for clarinet, viola,
vibraphone, and piano, builds upon the ideas explored in Cartography #8. In this
work, I once again employed a looping window, but this time the window has a
fixed duration (sixteenth semiquavers) and shifts by a fixed unit (one semiquaver),
as opposed to the measures with arbitrary sizes used as windows in Cartography
#8. Similar to the previous work, this composition is also implemented by
first generating its input music that is then processed by the looping window
procedure. Despite sharing a similar technique, the musical result of Cartography
#9 is substantially different than that of the preceding work: not only there are

15In the final score, these ratios are simplified to a crotchet denominator whenever possible.
For instance, a 666

888 time signature is notated as 333
444 .
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no literal repetitions of any measures, but also the looping window itself has
now a fixed length of approximately 3 seconds, which happens to be within the
typical range for our short-term memory.16 Therefore, the slippage in this piece
comes mostly from the disorienting near-repetitions of fragile materials and not
by burdening our short-term memory as in Cartography #8 ’s 20-second long
windows.

In this work, the looping window is moved forward by a unit and slices all
notes on its borders, with the resulting window becoming a new measure in the
final score. This means that notes whose attack points have already left the
looping window but are still sustained within it will receive a new attack on the
first beat of the output measure (see Figure 5.19 for a concrete example of this
process). This results in the effect that notes seem to shrink towards the left
border of the window, and new notes expand from the right border. This, in turn,
creates new relationships of material at these borders since two notes can be far
apart in the input music but happen to sound adjacent to one another due to
this looping process. This, in turn, can result in emergent structures, particularly
when these notes are grouped together by our ears due to their temporal and
pitch proximities.
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Figure 5.19: Excerpt from the piano part of Cartography #9, measures 63–76

16Lang argues that composing with loops lasting between 0.2 to 7 seconds is particularly
effective since this range matches our own short-term memory (2002, p. 4). Our short-term
memory’s precise upper range limit is context-dependent and will vary substantially according
to it (Snyder, 2000, pp. 49–51; Huron, 2006, p. 228). Snyder states that the average upper limit
is between 3 to 5 seconds but may occasionally reach up to 12 seconds in certain conditions
(2000, p. 50).
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Figure 5.20 illustrates these emergent relationships that appear at the border
of consecutive looping windows. At the top, there are three snapshots of a looping
window moving forwards by a semiquaver in relation to an arbitrary input
material, with the resulting music shown at the bottom. The note relationships
at the bar lines (marked with asterisks) are not present in the original non-looped
source.17
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Figure 5.20: Example of emergent relationships formed at the looping window borders

The relatively short steps of one semiquaver taken by the looping window
generate almost literal repetitions of material since each measure has nearly the
same content as the preceding one. In fact, two consecutive measures will differ,
at most, by two semiquavers: the one that left the looping window and the one
that entered it. Often, pitches leaving and entering the window are the same,
given the small pool of possibilities available in the container. The asymmetrical
probability distribution of different indices will also affect this since some pitches
are more likely to be selected than others. The result for the listener is often a
state of déjà vu: one is constantly recognising structures that were previously
heard but, slowly, these structures will slip away as the process is in constant flow.
That is, despite its local static nature with very similar consecutive measures,
the resulting music is always moving forwards, and any material will be gone

17In this example, the measure length happens to coincide with the looping window size (i.e.
the 444

444 measure and the window of 16 semiquavers have the same size). In my experience, this
type of notation helps performers better visualise the musical process taking place, but it is by
no means a requirement as the final music could easily be renotated with any combinations of
time signatures.
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after 16 iterations of the process (or about 48 seconds).
The instrumental constraints I used in this piece are crucial for creating

a sense of disorientation. All instruments share very narrow ranges, with all
pitches selected in the range F3–B[5 and dynamics between ppp and mf . This
will create a somewhat uniform texture with the music of all four instruments
being generated from the same algorithmic process. This piece also requires that
both the piano and the vibraphone players hold down the sustain pedals of their
instruments for the whole piece, creating a blurred landscape in which precise
identification of patterns becomes somewhat challenging.

Cartography #9 is one of the most straightforward pieces in this series when
it comes to the handling of parameters. Pitches, dynamics, and durations all
follow very similar processes as the ones previously discussed in this chapter.
The pitch container is initialised with [C4, C]4, D4, E[4, E4, F4] and is affected
by two processes: first, pitch classes are transformed using the transformation
[a, b, c, d, e, f ] → [b, c, d, e, f, g], where g = (f + 1) mod 12. An octave transpo-
sition is then uniformly randomly selected, respecting the range constraint of
F3–B[5. The pitch container is transformed once per measure of the input music.
The duration container changes more slowly, once every two measures. This
container is initialised with [10, 9, 8, 7, 6] and goes through the transformation
[a, b, c, d, e] → [b, c, d, e, f ], with f = e − 1. The dynamic container is fixed as
[ppp, pp, p, mp, mf ] and is linked to the duration container: if the duration
element on an index n is selected for a given note, then the dynamic element
at the index n of the dynamic container will also be applied to it. These two
containers thus give a statistical preference to soft and long notes, and the
link between them ensure that only the shortest available durations will have a
slightly louder dynamic value.

5.1.10 Cartography #11

The principles behind Cartography #11 (2018) for solo piano are, in many ways,
quite similar to those of Cartography #9. Most noticeably, both compositions
use a looping window of constant length that always moves forwards by a single
unit, and the container transformations and parameter constraints employed
are also quite similar. The primary methodological difference between these two
works is rather subtle: instead of using notes that last for several ‘shifting units’
(i.e. the duration by which the looping window shifts at each iteration, which is a
semiquaver for both pieces), all notes are notated as single semiquavers. On the
surface, this difference may appear to be solely notational, particularly as the
piano plays with the sustain pedal held down throughout the piece and, thus,
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will invariably extend those short notes into long decaying sounds. However, the
consequence of this decision is that once an attack point has left the shifting
window, that note will not receive a renewed attack as in Cartography #9 since,
by that point, it has no duration left inside the next looping window. Figure 5.21
illustrates the difference between these two processes using an arbitrary sequence
of notes, with the Cartography #9 approach notated on the top staff and the
#11 at the bottom.
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Figure 5.21: Comparison between the processes of Cartographies #9 and #11, with the
differences in attack points marked with an asterisk

The result is a substantially thinner texture than the previous compositions
in this series. However, it is precisely for this lower density of notes that the
boundaries of the looping windows become more blurred and, thus, more difficult
to pinpoint. In the previous piece, Cartography #9, the renewed note attacks
after bar lines made its window borders slightly more straightforward to be
aurally located. This is contrasted with Cartography #11, in which looping
windows can start with rests too. It is perhaps for this reason that this work
also has a stronger tendency to display emergent structures that are aurally
recognisable, more so than in any other piece addressed so far.

Other than increasing the number of emergent structures, this lack of renewed
attack points after a looping window border results in the perception of literal
repetition. In fact, while Cartography #9 could not be notated using explicit
loops with repetition bar lines, Cartography #11 can be rewritten as a series
of 151515

161616 measures (i.e, 444
444 minus a semiquaver), some of which are identical to

others. Compare the original score shown in Figure 5.22 with Figure 5.23, which
illustrates how the first ten measures could be renotated using explicit loops.

162



C
a

r
to

g
r
a

p
h

y
 #

1
1

G
il

b
e
r
t
o

A
g
o
s
t
in

h
o

�
��� �

�
��� ��

� �
��

�
�

�
� �

��
�

�
�

�� �
�

� ��
� �

�� �� �
��

�
	


�  = 
c
a

.
6

6

4 4 ½
�

→

	
P

ia
n

o
�

� � pp��
� �

�
� �

�
� ��

�
� �� ���

�

�
� ��

�
�

��
�

�
�

� ��
�

�� �� �
� �� �

�
�

�
� ��

�
�

��
�

� �
��

�
� �

�
�

��
� �

�
�

6



�

�� �
� ��

�
��

�
�

��
�

�
�

��
�

�
�

� �

�
� �� �

� �
�� �� �

�
�

��
�

��
�

�� �
��

� �� �
�

�� �� �
�

� ��
� �

�
� ��� �

�
�

�
�� �� �

��
1
0



��� �

�
�

�
�� �

�
�

�� �
� �

�� ���
�

�� �
�

�
�

� ��
�

�
�

�
��� �� �

��
��

�
�

� ��
�

�
� �

��� �
�� �� �

�
�

�
�

�
��

� ���
�

�
1
4

�



�
�� �

� ��
�

�
�

�� �
�

� ��
� ��

� �
�

��

���
� �

�
�

�
��

�� �
�

�
��

�
�

��
�

��
���

�
�

�� �� �
�� � ��

�
��

�
�

��
�

� �
�

�
�

1
9

�



�� �
� �

�
� �

� ���
� �

��
��

�
���

�
�

�
��

� �
��

�
�

�
�

� ��
�

� �
�

��
�

�� ��
� �

�
� �

�
� ��

�
�� �

��
� �

�
� ��

���� �
�

�� �
��� �

�
�

�
�� �

� �
�� �

�
2
3



�

��
�

��
�

��
�

�
���

��
�

��
��

� �
� �

�

��
���

�
�

� ��
�

���
�

�
� �

�
�

� �
�

��
�

� �� ���
��

� ���
� �

�����
�

�� ��
�

��
��

�
�

� �
2
8



���

� �
� ��

�
�

�
��

�
�

�
�

��
� �

�
�� � F
ig

u
re

5.
22

:
F
ir
st

pa
ge

of
C
ar
to
gr
ap
hy

#
11



���� ���� �� �� � �
�
����

�
���

5×

��� �� �
�
���

3×

�� �� �� �� ���
�
�� ��� ��

2×
� = ca.66

916	
½
 →

�1516 �pp�
�� �
�
�� � ��

Figure 5.23: First ten measures of Cartography #11 rewritten with explicit loops

The differences between these two ways of notating the same music demon-
strate the contrast between the strict linear looping process and how the resulting
music is effectively perceived by the listener. In other words, the music is created
using a looping window that moves forward every bar, which can be clearly
observed in the score shown in Figure 5.22; however, our ears will group identical
structures together and interpret them as literal repetitions, resulting in a far
less-linear experience, as shown Figure 5.23. This discrepancy between process
and perception is vital for creating a disorienting listening experience that leads
to high levels of slippage. This discrepancy is also a crucial contributor for the
appearance of emergent structures. We perceive this music as being made of
blocks with literal repetition, which helps mask the looping window’s border
that is in constant movement. It is often at these borders that new emergent
structures appear, as these are the locations in which distinct moments of the
input music find themselves side by side, creating new relationships.

The containers, transformations, and constraints in this composition are,
once again, relatively straightforward. The length of the input music that is first
generated by the algorithm is eight measures, the pitch range is set to C3–C7,
and the dynamic level is set to a constant pp, with variations in loudness being
notated using articulations. The pitch container is initialised with a chromatic
pitch field of [C4, C]4, D4, E[4, E4, F4] and follows an identical transformation
process as in Cartography #9 (described in Subsection 5.1.9). The same is
true for the duration container, which only differs for its initialisation values of
[12, 11, 10, 9, 8].

While this piece is notated using a single dynamic level of pp, it uses
articulations to notate changes in loudness. Articulations are not controlled by
a container but are actually the result of the superimposition of three voices,
each with their own dynamic level (represented by no articulation, marcato
articulation, and martellato articulation). The algorithm thus formalises this
work as a trio of highly rarefied densities, which are later merged into a single
staff. Despite using three levels of loudness, the overall dynamic level of the
piece is very quiet throughout, creating a very similar aesthetic world to that of
Cartography #9.
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5.2 and thereafter they shape us

and thereafter they shape us (2019), for solo violoncello, is the first instrumental
work I composed after my Cartographies series. Cartographies heavily influenced
this new piece in terms of composition technique as well as informed its aesthetic
world. The title of this work comes from an article by Culkin on the topic
of media theory and the work of Marshall McLuhan. Culkin (1967, p. 70)
writes, ‘Life imitates art. We shape our tools and thereafter they shape us.’ This
notion that the tools we choose will also shape our artistic approach is crucial
for algorithmic composers such as myself. According to Hamman, technology
becomes an integral part of the final artwork, embedding itself in the result
and informing its aesthetics (2000c, pp. 7–8). Our tools also influence how we
conceptualise the act of composing; that is, they are a fundamental part of the
framework within which we operate, and they can suggest not only technical
solutions to problems but also shape our compositional ideas themselves.

In this work, I set out to further explore some of the themes that have been
the focus of the Cartography series, particularly in relation to musical repetition
and looping. Due to its own nature, repetition is highly suitable for algorithmic
investigation, as it can be easily formalised with strict processes. This work
uses a similar technique to the looping window of Cartographies, but instead,
it applies these techniques to high-level musical objects, as opposed to single
notes generated with a parametric approach. Similarly to the later pieces in
Cartographies, new relationships of materials can emerge at the intersection of
consecutive instances of a looping window, challenging our ability to exactly
follow the process taking place. This is particularly pronounced in this work due
to its slow pace and extremely quiet dynamics.

On the surface, this is not a very challenging work for the cellist, as it is
constituted almost solely of long soft non-vibrato notes with occasional artificial
and natural harmonics. However, it is precisely for these characteristics that this
piece requires a high level of concentration and commitment from the performer,
as due to its transparency, it leaves them with ‘nowhere to hide’. and thereafter
they shape us is about tension in quietness, in which the fragile sounds are close
to their breaking point at every moment. The listening experience also demands
a high degree of concentration from the audience, as the soft repetitive structures
constantly challenge our memory. While pieces such as Cartography #8 test our
memory with its long patterns, the process here is reversed: the patterns are
moderately short in terms of the total number of elements (four measures long
for the looping process and six measures long for the shuffling process), but the
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cells used do not stand out from their surroundings. When listening to this work,
we are often in doubt if we hear new materials altogether or identical repetitions
of previously heard cells.

Most of the techniques in this piece are derived from those used in Cartogra-
phies. Its use of musical cells as building blocks is reminiscent of Cartography #7
(as well as the use of a short coda section); the looping window mental model is
applied similarly to #8 ; the use of multiple sections (looping–shuffling–coda)
can be related to the multi-movement structure of #4 ; the fragile, thin texture is
evocative of the sound world of #11. Despite all these observations, a significant
technical distinction between this piece and those in Cartographies is that it does
not employ the container mental model but rather a simple uniform distribution.
With this, there are no hierarchies of musical cells as those found in Cartography
#7, and the shape of the composition is dictated by its three sections—each
with its own algorithmic process.

The musical cells that make up this work are defined through generalised
instructions, that is, recipes for creating measures. Some use a single specific
duration, while others use durations chosen from within a given range. Patterns
of rests, notes, and grace notes can be pre-defined for some cells, as well as the
tuplet ratio that forms these structures. Some cells require specific techniques
(natural harmonics, artificial harmonics, use of chords), while others are open to
any technique from the list of all possibilities. Table 5.8 lists all of these cells and
their characteristics. In this table, parenthesised items represent sequences of
elements while square brackets contain options for uniformly distributed choices.

Structurally, the piece is written in three seamless sections that very gently
merge into one another. The first and longest section uses a looping window
as its primary algorithmic mental model, while the second applies a shuffling
method to musical cells. The piece finishes with a short coda made out only of a
single type of cell.

Although the looping section uses a shorter looping window in terms of the
number of elements, the total length in time (about 15 seconds on average) is
similar to that of Cartography #8. Perhaps somewhat surprisingly, the borders
created by the looping window are substantially more challenging to follow
aurally in this work. The similarity between the cells coupled with the small
number of elements (only four per window) makes the relationships between
cells somewhat unpredictable. To illustrate this point, consider the following
sequence of elements:

A B C D E F G

Applying a looping window of four elements and with a step size of one
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results in the following sequence:

A B C D

B C D E

C D E F

D E F G

This same pattern above can be rewritten as a linear sequence of elements:

A B C D B C D E C D E F D E F G

In the example above, the element D is present in all four iterations of this
looping window (the highest number of times an element can appear in a looping
window of length four). Yet, this element appears surrounded by different cells
in three of its four appearances. These patterns of three elements are:

C D B

C D E

C D E

F D E

In other words, element D appears in three distinct structural contexts. This
factor applies to every single element in this looping window, and therefore
it becomes no surprise that such a short number of elements coupled with a
long looping window creates such demands to our memory and capacity to
contextualise different elements.

Figure 5.24 shows this very process applied to the opening measures of this
work. The looping window starts with a single element and grows at the rate
of one more at every iteration, up to its maximum size of four, at which point
it starts moving forwards. The result of this operation is shown in Figure 5.25,
which contains an excerpt of the initial 18 measures of this composition. This
figure has double bar lines added between consecutive instances of the looping
window for clearer visualisation.

In the second section of this work, the looping window is replaced by a
shuffling algorithm, which uses a fixed window of elements but, at each iteration,
randomly swaps the positions of two of them. This section is made out of four
subsections. At each of those, the algorithm first generates a window with six
new cells, which is then shuffled four times. After four iterations of the shuffling
process, the cells are discarded, and the next subsection starts with a new window
of six random cells and a new round of shuffling. Figure 5.26 shows a diagram
with the first four iterations of this process.
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Figure 5.26: Shuffling process of and thereafter they shape us, measures 68–93

Similar to the looping window section, the shuffling section also poses a
demanding perceptual challenge for the listener. At each subsection, the total
material stays the same (i.e. the same six cells), but due to its partial position
changes, some of its inner relations (though not all of them) change with every
iteration. The impression is, again, of a déjà vu: the musical cells become familiar
through repetition, but their intra-relationships are difficult to grasp.

The piece ends with a short quiet coda. This is the moment when the tension
reaches a breaking point through an even more extreme use of fragility: long
chords with open strings are played sul tasto at pppp and non-vibrato. This is a
challenging section for the performer, as sound production may become unreliable
at this soft level, making playing these chords uniformly very demanding.

5.3 adrift

After working with looping windows and containers in the later Cartographies
as well as in and thereafter they shape us, I wanted to investigate what other
mental models could be employed in the exploration of musical repetition. Using
a metaphor that borrows from the electroacoustic studio, I wanted to explore
how the notions of fading and, later, crossfading could be applied to loops of
notated material. I aimed to morph one musical cell into another as smoothly as
possible without employing dynamics as the fading parameter.
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These ideas then gave origin to the mental model I refer to simply as ‘fader’.
Given a musical cell A with a sufficient number of notes, I realised that removing
one single note at every iteration of the process would result in the gradual
deconstruction of its contents (a parallel notion to fading out an electroacoustic
material), a process that can be represented by A→ ∅. The higher the number
of pitches in the input cell—and the longer its duration too—the ‘smoother’ the
fading process will appear to be. This happens because removing a single note
of a cell with many notes will produce a substantially similar new cell, to the
point which our memory is not sure whether any change has occurred at all.
Therefore, smoothness is achieved not by literal continuity—after all, this is a
discrete process—but through similarity between iterations. For the listener, it
‘feels’ as if the material is continuously fading, slowly dissolving into nothing.

Similarly, notes can also be added one by one at each iteration, reversing
the process above and resulting in a musical cell fading in. When starting from
silence, this process can be represented by ∅→ B. Our perception of this process
will once again become smoother the higher the number of pitches in the cell, as
it becomes increasingly difficult for our ears to pick up the difference between
consecutive iterations. In the case of fading in from silence, this means that the
start of a process is easier to grasp. This is the opposite of the fading out process,
which becomes more evident at the end when there are just a few notes left.

These two processes can then be alternately applied to two simultaneous
layers of distinct cells, creating an interwoven effect similar to a crossfading:

1 : A→ ∅→ C → ∅

2 : ∅→ B → ∅→ D

combined: A→ B → C → D

The resulting effect of such processes can be visualised in Figure 5.27, which
contains a diagram of the crossfading principle applied to multiple cells, each
represented by a unique colour, divided into two simultaneous layers. The
combined aural result from these two layers alternating between fading in and
out can then be visualised in Figure 5.28.

The starting point of the fading in process will tend to immediately attract
the listener’s full attention since, out of silence, a new sound emerges. In fact,
this property can actually be employed to create a type of auditory misdirection:
when a new note suddenly appears, our attention can get focused on just one of
the two layers, allowing the other to continue its fading out process unnoticed.
Thus, the combined fading processes often lead to a new listening mode, one
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Figure 5.27: Diagram showing the crossfading principle applied to multiple cells in two
simultaneous layers

Figure 5.28: Diagram showing the effective result from two layers crossfading in alternation

that constantly shifts our attention between two opposing entities: once we focus
on the layer that has notes appearing, the other layer’s slow disappearance will
go somewhat unnoticed; but if our attention shifts to the disappearing material,
notes suddenly seem to have been added to the other process out of nowhere. It
is thus the juxtaposition of these two contrary processes, pushing our attention
and memory capacities back and forth, that creates the perceptual tension upon
which this mental model relies.

These are the ideas that gave origin to adrift (2020) for two pianos. In this
work, I use faders to gradually morph between several pre-composed musical
cells.18 Figure 5.29 shows an excerpt of this work (measures 256–268), where
material played by the first piano gradually dissolves away while the second
piano’s material gains more and more notes. At each iteration of the process,
either a note is removed from the cell fading out or added to the cell fading in.
The process also has a very low chance of repeating a measure without altering
either cell, further contributing to the disorientation and uncertainty caused by
this music. The overall process thus consists of two simultaneous but contrary
subprocesses; when a change between iterations is too subtle to be picked up
by our ears, one is often left wondering what has changed from the previous
iteration—if anything.

By using two pianos and assigning one layer to each of them, the physical space
also becomes a property of the algorithmic process: given that consecutive cells
alternate between the two pianos, they are not only fading in and out through
time but also shifting across the physical performance space in alternation.
Although the two pianos can be considered as sound sources located in two fixed

18The mental models used in this work are implemented in my Auxjad library as the classes
auxjad.Fader , a single fader that either fades in or out, and auxjad.CrossFader , which is
made up of two faders of opposite types.
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Figure 5.29: Excerpt of adrift, measures 256–268

(and separate) points in space, the density of notes played by each instrument is
constantly and gradually changing through the algorithmic process. As a result,
the ‘spatial presence’ of each layer is slowly changing over time, and so is their
combined presence, which is constantly moving back and forth between two
points. This effect resembles a continuous stereo panning process, borrowing
another term from the electroacoustic studio.
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As the title of the composition suggests, my goal was to create a listening
experience of being adrift, with the listener being carried around aimlessly by the
drift of the algorithmic process. Coupled with the fading and spatial processes
described above, the type of material used as input for the algorithm is crucial
for achieving the desired sonic result. Figure 5.30 shows all twenty cells used in
this work. When composing these cells, I tried to emphasise highly chromatic
material, with virtually all vertical moments being made out of cluster-like
chords. This type of chord adds a further challenge to the listener’s memory
since adding or removing a single pitch in a dense and complex sound event is
far more inconspicuous than adding a new pitch to a readily graspable material.
Particularly when a pitch is removed or added at the middle of such dense
structures, the change in the overall sound can be so subtle as to become
imperceptible, leaving the listener questioning whether a change has occurred
at all. The soft dynamics used in all of these cells (all played at ppp) and
the continual blending of sounds created by the piano pedalling (depressed
throughout the piece) further amplify the perceptual challenge faced by the
listener.

When composing this material, I attempted to emphasise the ‘rhythmic
dissonance’ between consecutive cells by using tuplets of different ratios and
different offsets (created by initial rests). This helped create a jarring effect
between consecutive cells so that they become more clearly distinct from one
another. In principle, it could be argued that such separation of the individual
layers might cause the two simultaneous processes to become more distinct and,
therefore, more graspable for the listener. In reality, this clear separation only
adds to the cognitive demands imposed on the listener, who is tasked with a
constant attempt of following two simultaneous but distinct processes moving
in opposite directions. At certain points, the difference between consecutive
measures is subtle enough that it is not perceivable. When this happens, the two
processes fully blend together.

In order to achieve the psychoacoustic effect I was after, it was immediately
evident to me that my material needed to be repeated multiple times before the
fading out process started taking place. Familiarisation with the material is of
crucial importance before the subtle modifications are applied by the process.
These initial identical repetitions (generally of the order of around five loops) also
have the role of creating a false sense of musical stasis, helping to blur the fading
process even further: the starting point of the process becomes less noticeable
and, when one realises, the material might have been already substantially
modified. The process can thus sometimes seem to be temporarily suspended in
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time, emphasising a mode of listening that could be described as ‘snapshots of
memory’. This listening mode oscillates between the awareness of change and the
illusion of stasis, oscillations that result in sudden shifts of perception. A visual
representation of this notion is shown in Figure 5.31, which demonstrates how
changes are perceived at fixed and discrete times, as opposed to the ‘absolute’
process shown in Figure 5.28. The resulting effect is that of a constantly rotating
kaleidoscope whose changes are perceived suddenly but only at certain fixed
moments in time.

Figure 5.31: Diagram showing the perception of the crossfading process, where changes are
perceived only once in a while

5.4 what holds them together

what holds them together (2020) is a piece written for portative organ, a small
pipe organ that was particularly popular in the period ranging from the High
Middle Ages until the Renaissance. The portative organ is played with a single
hand on a keyboard while the other controls the bellows that supply the airflow
for its operation. This piece is written for Ryszard Lubieniecki, who commissioned
it as part of a project whose aim is to expand the new music repertoire of this
instrument. I wrote this piece with Lubieniecki’s own portative organ in mind,
as individual instruments can have unique characteristics, including pitch range,
tuning, and bellows capacity.

The first question I wanted to address when approaching this composition
was what type of musical material I would use. The portative organ I wrote for
uses Pythagorean tuning, with A4 tuned at 494 Hz (about a whole tone above
440 Hz). The pitch range of this instrument is B3–A5, but it does not have a key
for G]5. At somewhat soft dynamics, the instrument can start to detune, and at
extremely soft dynamics, the timbre becomes very unstable and the detuning
very pronounced. The instrument must also be allowed to ‘breathe’ reasonably
often so that the bellows can be refilled with air.19 These unique characteristics
of the instrument posed a substantial challenge to me, given the type of material
I tend to work with.

19Unlike accordions whose bellows can produce airflow regardless of the direction of their
movement, portative organs produce airflow in just one direction, thus needing short breathing
points for refilling it.
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My approach to this piece was to incorporate these instrumental idiosyncrasies
as much as I could into the material itself. In terms of pitch, I decided to work
solely with diatonic clusters, and thus the main parameters I worked with were
cluster spread and keyboard position, as opposed to working with pitches per se.
This allows for a very physical performance by the player, enabling them to use
fists or parts of their hands to depress multiple keys at once. The diatonic nature
of this material further emphasises this physicality since the ‘white’ keys20 are of
easier access for palm depression. Other than incorporating these performative
aspects and this particular instrument’s sonority in this piece, I also decided
to only use diatonic notes as a way of creating a dialogue with the history of
this instrument and the modal music often written for it. See Figure 5.32 for an
excerpt of this work.
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Figure 5.32: Excerpt of what holds them together, measures 1–12

The relatively frequent need for breathing demanded by the instrument also
dictated the type of material I used. The number of simultaneously depressed
keys is related to the amount of airflow used, which meant that a composition
composed solely with clusters (each containing up to seven notes) would need to
constantly deal with breathing points. My solution was to incorporate breathing
as an intrinsic part of the material itself: most clusters are to be played non-
legato, allowing the player to refill the bellows after each sonic event. I framed

20I.e. white keys as in the traditional piano keyboard, although the specific portative organ
I wrote for had no difference in colouration between the natural and the sharp keys.
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this need not merely as a practical requirement but as an essential element that
informs the piece’s aesthetics, so the performer must introduce these breaks
between these clusters, even if the bellows still have some air left. Together with
its large sways of dynamics (clusters are often connected by quick crescendi and
diminuendi hairpins), the final result is an organic and idiomatic composition
that allows the instrument to breathe naturally. I had initially written all four
sections of the composition with non-legato clusters, but with Lubieniecki’s
advice, I worked out a reasonable phrasing solution for the soft sections (i.e.
sections 2 and 4), allowing for more formal contrast.

Playing the portative organ at extremely soft dynamics will result in severe
detuning, together with spectral changes in the instrumental timbre. For this
piece, I notated the softest possible dynamic level in which such effects are not
present as p. The piece then goes on to use pp and ppp, thus incorporating
these effects. These are an intrinsic part of this instrument and, thus, an aspect
that I wanted to incorporate directly into the work itself. At its softest moments,
the sounds are incredibly fragile and barely held together, always on the verge
of breaking apart.

In terms of structure, I used four distinct sections that transition very
naturally from one into another. They all share similar principles and a common
algorithm but differ concerning playing techniques, dynamic range, use of hairpins,
and range used for the cluster parameters. In this work, I was particularly
interested in the notion of using random seeds to control the compositional
path. That is, I fixed individual random seeds for each section so that the
pseudorandom number generator gets locked in a specific state for each of them.
By working with individual seeds for each section, I was able to investigate each
section separately and, thus, explore their unique possibilities independently
from one another.

This work employs a similar looping window mechanism as used in Cartogra-
phy #8 (see Subsection 5.1.8). This can be observed in Figure 5.32, in which
each measure is the result of an instance of the looping process. During the first
section, this process is easy to be aurally followed due to its wide dynamic range
and large sizes of skips between consecutive clusters. These qualities help create
musical structures with strong characteristics, which, in turn, serve as easily
identifiable guiding points for our ears. In subsequent sections, the algorithmic
process becomes more chaotic: the looping window size becomes variable and
its movement erratic, with consecutive iterations sometimes skipping over a
random number of musical elements while, other times, repeating the same
material without any change. In the sections with softer materials, the emergent
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structures, such as the ones present at the beginning of the piece, disappear. This
is because the music becomes more uniform and, in turn, also more disorienting.

5.5 Conclusion

All pieces in the Cartographies series share the same mental model, which is based
on the underlying metaphor of maps as containers. This provided a common
framework for my algorithmic operations, leading to a decidedly simple but
highly unique toolbox. Once these tools were defined, the act of composing
became an exploration of what this toolbox could achieve. Experimentation and
heuristics became of primary importance, as the interest lay in discovering what
these tools could achieve instead of designing new complex ones for each new
composition. This approach has become common in my works after this series,
with all pieces borrowing some notions from Cartographies.

It can be argued that virtually all the pieces in this series could have been
generated using traditional stochastic methods that mapped the frequency of
an element to a probability value rather than the container index. However, in
order to create such an implementation, one would need to conceive probability
distributions that are very complex: first, they need to be unique for each
type of parameter or raw musical elements (since containers can have different
lengths, transformations, and transformation periods). Second, these probability
functions would need to shift in a seemingly arbitrary way in order to account
for the specific changes I used in these works. Such an approach would be
highly cumbersome, to say the least, and it is thus safe to assume that these
works would not have come to light in their current form if created with other
techniques. The elegance of using a single probability distribution coupled with
the simplicity of the container metaphor has led me to work with very specific
and idiosyncratic higher-level abstractions. Furthermore, these metaphors and
abstractions are responsible not only for shaping the work with their operations
and suggested materials but also for how I framed these works in my mind while
composing them. In other words, these tools provided me with a specific and
unique compositional framework within which these pieces were created. This
understanding of mental models as the basis for the compositional framework
is of extreme relevance for algorithmic composers; as Hamman (1999, p. 102)
writes, ‘the computer is itself a tool for the construction of tools—tools with
which one might generate epistemological frameworks for imagining and solving
problems of compositional significance.’ Problems are thus not only solved by
these tools but also imagined through them.
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The distribution chosen for these works has also been fundamental for the
resulting character of these pieces as well as for suggesting musical processes
that shaped them. Had the decay rate between the probabilities of consecutive
indices been much steeper than the chosen 3/4, the rightmost indices would
rarely be selected by the algorithms, thus concealing part of the containers.
Some elements would be disproportionally present while others would seldom
appear, making any type of ‘smooth’ operations impossible. But if this decay
rate had been too shallow, the difference between the chance of consecutive
indices would become too difficult to be perceived, rendering an almost uniform
distribution at its limit. A possible route for future exploration could be using
more complex relationships between the probability of these indices, i.e. using a
non-fixed decay rate. In my opinion, such complex relationships will likely get
lost in the final result, as we do not hear this function itself but the probabilistic
results generated by it. This is precisely the reason why smooth procedures can
be approximated with these discrete methods: we are not detecting the precise
probability values of these elements, and thus changes can feel gradual. It is
also interesting to realise that using an irregular probability distribution whose
values for individual indices do not continuously decay or rise would, surprisingly,
not necessarily result in different outputs. Effectively, such probability is simply
a reordering of a continuously decaying one, with specific indices of the first
mapped into different ones of the latter. Figure 5.33 illustrates this idea: by
mapping the irregular indices into ordered decaying ones, the distribution once
again resembles the one used in this series.

With the works of the accompanying portfolio, I hope to have demonstrated
the importance of the decisions that the system designer must make, in particular
when choosing constraints and transformation procedures. These ad hoc decisions
are some of the most important aspects dictating the final aesthetic results. This
is particularly evident in Cartographies #9 and #11, both of which demonstrate
that structurally rich music with particular sound worlds can be achieved with
very economical algorithmic means. Cartographies #1 and #7, on the other
hand, exemplified how these containers can be used to control form and generate
smooth changes, while Cartographies #8, with its idiosyncratic homophonic
constraint and use of repetition, presents another possible approach for the use of
loops. All these works, created with highly economical means, explore aesthetic
concepts such as slippage, fragility, emergence, and liminality (see Chapter 3).
By working within a very limited framework, the composer can more clearly
explore the richness available in a particular musical space (Harper, 2011, p. 95).
As Stravinsky (1970, p. 65) famously remarks,
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Figure 5.33: Process by which any irregular random distribution can be reordered into a
decaying one

my freedom will be so much the greater and more meaningful the more
narrowly I limit my field of action and the more I surround myself with
obstacles. Whatever diminishes constraint, diminishes strength. The more
constraints one imposes, the more one frees one’s self of the chains that
shackle the spirit.

The influence of this minimal algorithmic approach has remained with me in
my works written after Cartographies. In particular, I continue to be interested
in approaching new works with a few simple mental models that will guide both
algorithmic and musical processes. Some of these are adapted and reused in
new contexts, such as the variable looping windows of what holds them together.
Others implement new mental models, such as the faders of adrift and the
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shufflers of and thereafter they shape us. Regardless of the framework used to
compose these pieces, they all share the same aesthetic concern: the exploration
of repetition and the perceptual disorientation caused by it, particularly when
applied to fragile materials.
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Chapter 6

Summary and Conclusion

The serious artist is the only person able to encounter technology
with impunity, just because he is an expert aware of the changes in
sense perception.
—Marshall McLuhan (1964, p. 33)

This dissertation explored some of the questions that composers must consider
when working with algorithms and technology in general. Contrary to conven-
tional wisdom, technology can become much more than just a tool: it not only
embeds itself in the artwork it helps produce (Hamman, 2000c), but it also alters
the way our minds conceive technological thinking in the context of artistic prac-
tice (Chowning, 1996, p. xii). Technology thus demands a symbiotic relationship
with the artist, one in which the construction of tools is affected by the act of
using these very tools.

A crucial cognitive mechanism used when engaging with technology is the
development mental models through metaphors. These help us grasp abstract
algorithmic ideas by grounding them with more concrete models and familiar
concepts (Lakoff & Núñez, 2000), mediating our interaction with technology in
the process. By conceptualising an abstract idea with a mental model, we are able
to engage with substantially higher-level thinking since we can more readily grasp
the complexity embedded in that model. This can lead to a substantially more
malleable approach to algorithmic thinking, as the model can also suggest new
ways for operating it. Such metaphors and mental models become of uttermost
importance for the algorithmic composer: they not only allow the artist to better
conceptualise their musical and algorithmic ideas but can also suggest specific
epistemological paths to be explored.

Throughout my series of compositions entitled Cartographies, whose detailed
commentary can be found in Chapter 5, I have demonstrated how some of these
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mental models can be put into practice and how they affect the final artwork.
In all pieces of this series (totalling 12 individual works), I have employed a
unifying mental model called ‘container’. The idiosyncratic characteristics of
the container mental model—e.g. the mapping of elements into indices, the
association of probability values with indices and not elements, the encapsulation
of both elements and behaviours—has had a profound effect on the way I
approached these works from a compositional standpoint as well as how these
works actually sound. As detailed in that chapter, these pieces bear an integral
relationship with this mental model and could not have been thought of had
different compositional methods been used. The same series of works (as well as
later pieces also analysed in that same chapter) showcases other mental models,
such as looping windows that constantly move forwards and the notion of ‘input
music’. The latter consists of the musical composition generated by the computer
for the sole purpose of serving as input for the looping mechanism and, thus, is
never heard in its unaltered form.

As detailed in Chapter 4, my research also led me to create the Auxjad
programming library (Agostinho, 2021), which aims to extend the Abjad package
for Python (Bača et al., 2021) for my own personal use. Auxjad contains classes
and functions tailored to my own approach to algorithmic music, including
mental models employed in my recent music. Examples of this include the
container mental model explored in Cartographies (implemented as the class
auxjad.CartographySelector ), the ‘looping window’ mental model that is
used in multiple works from Cartographies as well as compositions written
after it (implemented as auxjad.WindowLooper , auxjad.LeafLooper , and
auxjad.ListLooper ), and the ‘fader’ mental model used to compose adrift
(implemented as auxjad.Fader and auxjad.CrossFader ).

Framing algorithmic composition as a form of exploration has also been
a crucial attitude in my practice. Given that the algorithmic system does all
the ‘heavy lifting’ for the artist (Pearson, 2011), experimentation becomes sub-
stantially more accessible than with more traditional compositional methods.
However—and perhaps much more crucially than simply enabling experimen-
tation—technology also opens up new routes of artistic endeavour that cannot
be entirely pre-planned or foreseen beforehand. In other words, it allows us to
create music using non-goal-oriented strategies and, in the process, to potentially
transcend our personal artistic horizons (Eno, 1996; Nierhaus, 2010; Essl, 2007).

Virtually all of my recent music employs looping procedures or quasi-repeti-
tions. Repetition is used not only as a way to structure my compositions but
also for the way it can affect our perception of the resulting music. It can
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be used to create music that is ambiguous and disorienting, obfuscating the
linear algorithmic processes that generated it. My work explores how algorithmic
processes can create and maximise perceptual instabilities as well as the aesthetic
properties that emerges from it.

The set of aesthetic concepts derived from these repetition techniques (first
introduced in Chapter 3) became key elements of my recent music. These include
the notions of slippage, fragility, emergence, and liminality. Slippage refers to
the perceived disorientation created locally by near-repetition processes such
as moving looping windows. When faced with consecutive windows in which
very little changes, the listener is often unsure whether something is changing
at all. This phenomenon is assisted by the fragile materials my music often
employs: soft sounds that offer little contrast and emphasise the ambiguity of the
musical texture. At the border of these windows, emergent structures can form
when elements display pitch and temporal proximities, among other possible
parameters (Bregman, 1990, pp. 455–528). As such, elements that were not
initially side-by-side in the input music will suddenly be heard sequentially;
if grouped together by our ear, this new emergent structure will obfuscate
the looping point even further, reinforcing the overall sense of disorientation
experienced by the listener. These elements can give rise to a large-scale liminal
experience, one that is caused by the constant unfolding of the algorithmic
process that never seems to reach a final destination. This music displays inner
motion and yet lacks a more traditional feeling of musical progress. Together, this
set of concepts leads to a schism between the strict process taking place in the
piece and our perception of them; as such, simple linear algorithmic procedures
will sound complex, disorienting, and non-linear.

The approach of working explicitly with mental models as compositional
tools—that is, constructing them intentionally as opposed to making use of
them unconsciously—is a powerful one. It has led to a substantial reformulation
of my musical practice, allowing me to develop a new compositional approach
and, more importantly, to compose music that sounds markedly different to my
work written prior to this research project. What initially started as a technical
endeavour has also led to a significant aesthetic shift in my music. The specific
design of a mental model can have a direct influence on the resulting aesthetics
of a composition, at the same time that specific aesthetic interests can inform the
design of the mental models themselves. In other words, the creation of mental
models, algorithmic systems, musical processes and materials, and aesthetics all
emerge from a single compositional strategy and mutually influence one another.

Similarly to how my Cartographies series was based on exploring a single
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unifying mental model—which, in turn, suggested specific approaches to those
pieces—other different mental models and metaphors can undoubtedly open up
new paths for my future compositional research. Even the mental models explored
during this research project are themselves far from being exhausted. In relation
to looping windows alone, many other approaches could have been taken; not only
the types of input materials can have an enormous effect on our perception of the
looping process, but different behaviours of the windows can result in music with
vastly different musical characteristics. These could include, for instance, looping
windows that move erratically or that change step size, length, or direction of
movement during its unfolding. Even a notion as simple as input music could be
extended much further: a piece of music could use multiple ‘input musics’, which
could then be combined and individually masked according to any arbitrary
process. The very source of this input music could be explored, for instance,
by using borrowed materials instead of internally generated pieces originating
from the same algorithmic system. All these potential new ideas could become
encapsulated into programming abstractions similar to those implemented in
Auxjad, further extending this library. I very much hope to continue contributing
to these topics as a composer, programmer, and researcher and, in the process,
continue exploring the unique music that algorithmic methods enable me to
create.
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Appendix A

Code for Sol LeWitt’s Wall
Drawing #118

This appendix contains the code for an implementation of Sol LeWitt’s Wall
Drawing #118 (1971) using Processing. The original instructions from the artist,
as quoted in Russeth (2012, pp. 3–4), are:

On a wall surface, any
continuous stretch of wall,
using a hard pencil, place
fifty points at random.
The points should be evenly
distributed over the area
of the wall. All of the
points should be connected
by straight lines.

Below is an implementation of these instructions using the Processing pro-
gramming language. See Figure 3.10 in Chapter 3 for an example of the output
of this code.

1 // implementation of Sol LeWitt's Wall Drawing #118
2

3 import processing.pdf.*;
4

5

6 int n_points = 50;
7 float[][] list_of_points = new float[n_points][2];
8 float[][] random_direction = new float[n_points][2];
9

10

11 void new_points() {
12 for (int i = 0; i < n_points; i++) {
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13 list_of_points[i][0] = random(50, width - 50);
14 list_of_points[i][1] = random(50, height - 50);
15 }
16 }
17

18

19 void setup() {
20 size(1280, 960, PDF, "sol.pdf");
21 background(248);
22 strokeWeight(0.5);
23 smooth();
24 new_points();
25 }
26

27

28 void draw() {
29 stroke(0, 32);
30 for (int i = 0; i < n_points - 1; i++) {
31 for (int j = i + 1; j < n_points; j++) {
32 line(list_of_points[i][0],
33 list_of_points[i][1],
34 list_of_points[j][0],
35 list_of_points[j][1]);
36 }
37 }
38 stroke(0);
39 fill(0);
40 for (int i = 0; i < n_points - 1; i++) {
41 circle(list_of_points[i][0],
42 list_of_points[i][1],
43 4);
44 }
45 exit();
46 }
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