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ABSTRACT 

Purpose: To evaluate if an artificial intelligence (AI) model can better select candidates that 

would demonstrate visual field (VF) progression in order to shorten the duration or the number 

of patients needed for a clinical trial 

Design: Retrospective cohort study 

Methods: 7,428 eyes of 3,871 patients from the University of Washington Department of 

Ophthalmology VF Dataset were included. Progression was defined as at least 5 locations with 

greater than 7 dB of change compared to baseline on two consecutive tests. Progression for all 

patients, a subgroup of the fastest progressing based on survival curves, and patients selected 

based on an elastic net Cox regression model were compared. The model was trained on 

pointwise threshold deviation values of the first VF, age, gender, laterality and the mean total 

deviation (MD) at baseline. 

Results: 13% of all patients met the criteria for progression at five years. Differences in survival 

were observed when stratified by MD and age (p < 0.0001). Those at risk of progression 

included patients 60 to 80 years old with an initial MD < -5.0. This subgroup decreased the 

sample size required to detect progression compared to the entire cohort. The AI model-

selected patients required the lowest number of patients for all effect sizes and trial lengths. For 

a trial length of 3 years and effect size of 30%, the number of patients required was 1656 [95% 

confidence interval (CI), 1638–1674] , 903 [95% CI, 884–922], and 636 [95% CI, 625–646] for 

the entire cohort, the subgroup, and the model-selected patients, respectively. 

Conclusion: An AI model can identify high risk patients to substantially reduce the number of 

patients needed or study duration required to meet clinical trial endpoints. 

 

INTRODUCTION 

Glaucoma is a slowly progressive, sight-threatening optic neuropathy that affects over 

80 million people worldwide.1 The intraocular pressure (IOP) is the only modifiable risk factor for 

                  



 

glaucoma progression. Although many treatments to decrease the IOP exist such as topical 

therapy, laser, and surgical interventions, a substantial portion of patients will progress with 

continuous optic nerve damage and visual field loss despite being on treatments.2,3 Therefore, 

given the number of people with glaucoma, additional benefit from neuroprotective treatments, 

even if modest, could prevent blindness in thousands of people. 

 Progression of visual field (VF) loss is an important clinical endpoint in glaucoma, in 

particular when assessing the efficacy of treatments. The Federal Drug Administration (FDA) 

has stated that VF loss has likely occurred if ≥5 VF locations have significant change beyond 

the 5% probability level or if there is at least a 7 dB between-group mean difference for the 

entire field.4 Subsequently, the FDA has defined the criteria for VF progression as at least 5 

locations with greater than 7 dB of change in prior regulatory studies. However, conducting 

clinical trials of new therapy using the FDA progression criteria has led to significant follow-up 

time and resources resulting in key challenges. One solution would be to recruit patients that 

are more likely to exhibit progression, thus magnifying the differences and increasing the power 

of clinical trials. These patients are often identified based on their baseline features, such as 

age, ethnicity, IOP and initial visual field damage.3,5–12 However, it can be challenging to find the 

most informative combination of these baseline parameters to identify patients that are more 

likely to exhibit VF damage progression. 

Artificial intelligence (AI) has shown many promising applications in healthcare recently 

and could offer a better solution for selecting ideal candidates. Although previous studies have 

primarily been on automated analyses, diagnostics, and outcome predictions, the potential 

application of AI in clinical trials is particularly attractive.13 In this study, we explore whether AI 

could identify patients who will progress rapidly using baseline data and analyze how that would 

impact the required follow up period for clinical trials. We hypothesized that AI could identify 

high-risk patients thus resulting in clinical trials that require significantly shorter follow up periods 

to meet the clinical endpoints.   

                  



 

 

METHODS 

 This study was exempted from the University of Washington Institutional Review board 

due to de-identified data usage. All research in this study conformed to the Declaration of 

Helsinki. The University of Washington Department of Ophthalmology VF database was used as 

the data source for this study. The VF dataset has been previously detailed14 and can be found 

publicly online at https://github.com/uw-biomedical-ml/uwhvf. In short, all patients in the dataset 

underwent Humphrey Field Analyzer (HFA) II 24-2 stimulus size III VFs, performed with either a 

Swedish Interactive Thresholding Algorithm (Standard or Fast) or a full-threshold strategy. 

 Every VF for each eye was temporally aligned and the first VF was treated as the 

baseline VF for each eye. If there was more than 2.25 years between VFs then the eye was 

deemed to have been lost to follow-up. The criteria for progression based on at least 5 points of 

at least 7 dB decrease was measured against the baseline VF and only if two consecutive 

follow-up VFs had ≥ 7 dB loss in total deviation (TD) in the same ≥ 5 visual field locations 

compared to the baseline VF. Kaplan Meier survival curves were constructed. Eyes lost to 

follow up were censored. Additional survival curves were analysed based on age in decades 

and initial mean total deviation (MD). Of note, the HFA Mean Deviation makes use of a 

weighting system based on location-specific variability estimates, which cannot be extracted 

from the HFA device. Therefore, we reported mean total deviation, which is simply the 

arithmetic average of the TD values and whose interpretation is essentially equivalent.15,16 The 

log rank test was used to compare survival curves. A p value of less than 0.05 was used for 

significance testing.  

 The whole dataset was then split at the patient level 50% for training and 50% for held-

out test-set (Supplementary Figure). In the training set, a separate elastic-net Cox regression 

model was optimized for each time point (1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 years) using patient 

level 10-fold cross validation and the values for alpha, gamma, and lambda were optimized for 

                  



 

the best Harrell’s C-index. For input, the model had total deviation point-wise values as a vector 

of 54 points, age, gender, and laterality. After the parameters for the best fitting elastic-net Cox 

model were fitted, the training set was again run through the model and the upper 75th quartile 

of the risk probability was calculated. This value was set as the threshold for determining 

inclusion at inference time.  

 For the held-out test set, three different scenarios for selecting patients for simulating 

inclusion in a clinical trial were tested. The first was no selection and using all the patients in the 

test set; the second was a selection of the fastest progressing cohort, identified based on the 

results of Kaplan Meier survival curves built with the training set and stratified by baseline 

decade of age and initial MD at fixed cut-offs; the third was a selection based on the elastic-net 

Cox regression model for patients who were above the risk threshold determined from the 

training set. For each of these, the event rates were calculated at different time points for 

simulating trial length and a sample size calculation was performed by simulating a percent 

reduction in the event rate and using the two proportion, equal sample size estimation by Cohen 

et al (R, pwr package, version 1.3-0) for a power of 80% and an alpha of 0.05. The bootstrap 

method was performed to calculate robust means and 95% confidence intervals for the sample 

sizes.  

Python (https://www.python.org/, version 3.8.3) was used to perform preprocessing and 

R (https://www.r-project.org/, version 4.0.3) with the elastic-net library (glmnet, version 4.1-2) 

was used for fitting the model. The code for this paper was open sourced under the BSD license 

along with this paper (https://github.com/uw-biomedical-ml/uwhvf-endpoint). 

 

RESULTS 

The baseline demographics of this dataset have been previously described. All 7,428 

eyes of 3,871 patients were included in this analysis. The mean age was 61.8 (std: 14.8) years 

and 46% were male. Initial MD of all the VFs was -5.8 (std: 6.0) dB. The average time to event 

                  



 

interval was 2.2 years (std: 1.8) in eyes that exhibited progression. A total of 3614 eyes of 1,880 

patients were used for the training set of the machine learning model and the held-out test set 

included 3814 eyes of 1991 patients.  

A total of 13% of patients met the criteria for progression at five years from the initial 

visual field (Figure 1). Differences in survival curves by log rank test were observed when 

stratified by initial MD (p < 0.0001) or age (p < 0.0001). Faceting by both decade of life and by 

initial MD revealed that the age group of 60 to 80 with an initial MD of worse than -5.0 

progressed the most in the cohort (Figure 2). This criteria was used for the subsequent power 

calculation as the “subgroup” simulation.   

An elastic-net Cox regression model was fitted in the training set for each time-point of 

interest using the pointwise TD values of the first visual field, age, gender, tested eye and the 

MD at baseline. The fitted coefficient values of the model are shown in Supplementary Figure 2 

with darker regions corresponding to more strongly negative coefficient values.  

The trained models were used to select participants from the test set to include in the 

simulated clinical trial and the resulting sample size calculations are shown in Figure 3. For 

effect sizes of 10% to 50% and for every time point, the AI driven inclusion of participants gave 

the best statistical power and was the best strategy for reducing the number of patients needed 

for a clinical trial. The C-indexes ranged from 0.763 - 0.787. For example, the number of 

patients required for a three year trial with an effect size of 30% was 1656 [95% confidence 

interval (CI), 1638–1674] , 903 [95% CI, 884–922], and 636 [95% CI, 625–646]  for the entire 

cohort, subgroup, and model-selected patients, respectively. The C-index for the three year 

model was 0.765. For a 5 year trial, 30% effect size, the number of patients required was 750 

[95% CI, 741–759] , 306 [95% CI, 300–313], and 268 [95% CI, 263–273] for the entire cohort, 

subgroup, and model-selected patients respectively. The C-index for the five year model was 

0.767. 

 

                  



 

DISCUSSION 

 In this study we simulated the impact of current FDA criteria of VF progression used for 

regulatory approvals of new glaucoma treatments using longitudinal data of patients receiving 

care at a tertiary care academic practice. We found that the majority of our cohort did not meet 

the VF progression criteria of  ≥ 7 dB decrease in threshold sensitivity in ≥ 5 visual field 

locations even after being followed for 5 years. Due to varying rates of progression in patients, 

we calculated that the number of patients needed in a two-year clinical trial for this progression 

criteria would be over 4000 even if we assume a strong effect size of 30% reduction in 

progression rate.  While recognizing the resulting challenges of conducting clinical trials of long 

duration and large sample size, we demonstrate that using an AI model to identify and recruit 

high risk patients into clinical trials may shorten clinical trials by six months or substantially 

reduce the number of patients needed to meet the endpoint at most effect sizes and trial 

durations. For example, for an effect size of 30%, the AI based selection yielded a sample size 

of 636 for 80% power at three years, compared to 1656 patients when no selection was applied. 

Alternatively, the trial with no selection would need to last greater than 5 years to obtain the 

same power with a similar sample size (Figure 3).  

 The overall rate of progression was 13% as defined by the FDA criteria, which is lower 

than that of glaucoma trials such as the Early Manifest Glaucoma Trial (EMGT). The visual field 

dataset used for this study was curated from all patients who had visual field testing at a single 

academic center, which would also include glaucoma suspects.14 Other comparable cohorts 

also demonstrate a very slow rate of progression (median MD rate of -0.05 dB/yr).17  

In our cohort, older patients were more likely to meet the criteria for VF progression, 

specifically patients over the age of 60 years. Age has been found to be associated with faster 

rates of visual field decline in prior studies.12,18,19 In this study, patients with worse visual fields at 

baseline, MD < -5 dB, were also more likely to meet the VF progression criteria. This is 

consistent with some prior studies.7,20,21 The same trends for the association of initial sensitivity 

                  



 

on progression rates were observed within each age category. Of note, the AI algorithm was not 

trained to identify high-risk patients for clinical management.  

 IOP pressure reduction has been the mainstay of glaucoma treatment and for regulatory 

approval of new therapies and intervention. While IOP can delay onset and slow progression, it 

is only a risk factor for glaucoma, and many patients will progress despite treatment. 

Furthermore, similar IOP reductions can lead to different rates of VF loss.22  There are several 

IOP-lowering therapies, but no clinically-available neuroprotective agents for glaucoma.23 Thus, 

there are no non-inferiority metrics to compare neuroprotective agents, only what the FDA has 

set forth as clinically meaningful.4  

The phase III clinical trials for memantine as a neuroprotective agent for glaucoma were 

randomized, double-masked, placebo-controlled, 4-year studies that enrolled 2298 patients from 

128 centers.24 Criteria for SAP VF progression consisted of 5 or more visual field locations that 

demonstrated significant reductions from baseline in a confirmatory visual field obtained within 8 

weeks. The study found no difference between the control and treatment arms at the estimated 

cost of ~100 million dollars.25 These results cast a shadow of doubt on the feasibility of 

glaucoma neuroprotection trials. The current FDA criteria would likely require study designs that 

are resource-intensive and cost-prohibitive. Better VF criteria for trials exist and our work 

highlights a need for regulatory bodies to systematically review this literature. 

 Currently there is no reference standard for what constitutes visual field progression. 

This study used criteria set forth by the FDA for regulatory approval, but other methodologies to 

evaluate for visual field progression exist. In general, there are the following groups: clinical 

judgment, defect classification, event-based analysis, and trend-based analysis.26 A 

combination of these VF criteria have been used as the VF portion of the main outcome for 

major glaucoma trials. The EMGT used the presence of at least three test points with a 

measured sensitivity below the 5th percentile of test-retest variability expected from the baseline 

at the same locations over three consecutive tests for the VF portion of their main outcome 

                  



 

measure.27 The Advanced Glaucoma Intervention Study used a scoring system from 0 - 20 

based on the defect size, depth, and location.28 The Collaborative Initial Glaucoma Treatment 

Study also used a 20 point system, albeit with slightly different criteria.29 The United Kingdom 

Glaucoma Treatment Study’s VF criteria consisted of three locations worse than baseline at P < 

5% in two consecutive VF and three locations worse than baseline at the 5% levels in the two 

subsequent consecutive reliable visual fields.30 The locations meeting criteria at baseline did not 

have to be identical to the locations on subsequent fields.30 The Guided Progression Analysis 

(GPA) of the HFA is used as another clinical tool, and it highlights points on a probability plot if 

the change exceeds the variability of stable glaucoma patients.31  

 There may be alternative methodologies to decrease the time required to detect 

progression. Though not accepted for regulatory use, trend-based analysis may be able to 

decrease the time required to detect progression and offers the ability to extrapolate future VF 

data.32–34 De Moraes et al. argue that the criteria set forth by the FDA corresponds to a rate of 

progression ≤ -0.5 dB/year for ≥ 5 locations.35 As such trend-based analysis could offer the 

potential to extrapolate future VF behavior to earlier quantify treatment effect. Moreover, 

simulation studies have shown that trend-based analyses with hierarchical models can greatly 

improve the power compared to event-based methods, and might therefore be preferable.36 

Unfortunately the FDA has yet to clarify whether progression based on techniques such as 

trend-based analysis is acceptable. Machine learning has also been utilized to accurately 

predict future visual field loss.37 Other options to improve on neuroprotection study design 

include selecting for patients at risk of faster glaucoma progression, modifying VF testing 

intervals38, adding structural measures for glaucoma39,40, employing futility trials41, selecting 

patients that exhibit smaller variability in their VF test results42 or using the two eyes from the 

same patient for paired comparisons of treatment and placebo42. 

Limitations of this study include the lack of associated clinical information such as 

diagnosis, medication regimen, and concurrent surgeries. Additionally, reliability indices and 

                  



 

test-rest limits were not available in this dataset.  As such the GPA could not be reliably 

replicated.  A large number of patients were lost to follow-up as would be expected in a non-

study clinical setting. In addition, this analysis was performed on a large retrospective database 

from a single clinical center and may not generalize to other populations. As previously 

described, this cohort includes all patients at the University of Washington who underwent VF 

testing. The inclusion of glaucoma suspect patients and unreliable tests would presumably 

increase the sample size calculations, but the AI driven model was better at selecting visual 

fields at risk of progression compared to subgroup analysis of patients with known risk factors 

for VF progression. Furthermore, the VF testing intervals in this retrospective cohort do not 

reflect those that can be employed by clinical trials, such as multiple baseline tests, the “wait-

and-see” approach, multiple tests on the same day, and trend-based endpoints, which can 

reduce the sample size required.30,36,38 Future work can include comparison of different criteria 

for progression such as the GPA and incorporation of clinical information or optic nerve head 

structural data to improve model prediction.  

 In conclusion, we demonstrate the promise of AI approaches for identifying populations 

at higher risk of visual field progression to increase the power of clinical trials and reduce the 

trial duration or number of patients needed.  
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FIGURE LEGENDS 

Figure 1. Survival by baseline mean total deviation.  Kaplan-meier survival curve for no 

visual field progression as defined by a ≥ 7 dB decrease in total deviation from baseline in ≥ 5 

visual field locations for ≥ 2 consecutive visits stratified by initial mean total deviation. The 

shading represents the 95% confidence interval for each respective strata. MD = Mean Total 

Deviation 

 

 

                  



 

Figure 2. Survival by baseline mean total deviation and by decade of life. Kaplan-meier 

survival curve for no visual field progression as defined by a ≥ 7 dB decrease in total deviation 

from baseline in ≥ 5 visual field locations for ≥ 2 consecutive visits stratified by initial mean total 

deviation within each age group. The shading straddling represents the 95% confidence interval 

for each respective strata.  

 

  

                  



 

Figure 3. Sample size calculations using data from the held-out test set by three different 

selection criteria. These graphs plot the number of patients needed to detect a difference in 

visual field progression for different trial durations and treatment effect sizes. The red line 

simulates no selection criteria. The blue line represents using the criteria of recruiting patients 

who are 60 to 80 years of age with a starting mean total deviation of -5.0 or worse. The green 

line represents using the elastic-net Cox regression models (artificial intelligence model) for 

patient selection. 

 

 

                  


