

City, University of London Institutional Repository

Citation: Anderson, P. (1990). Computer architecture for wafer scale integration.

(Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/28487/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Computer Architecture
for Wafer Scale Integration

Paul Anderson
Department of Computer Science

City University

December 1990

This thesis is submitted as part of the requirements for a Ph.D. in Computer
Science, in the Department of Computer Science of City University, London,
England.

Contents

Acknowledgements ... 7
Declaration ... 7
A bstract.. 9

0 Introduction 11
0.1 Wafer Scale Integration... 11
0.2 Wafer Scale Communications ... 13
0.3 Graph R edu ction 13
0.4 Formal Specification of H ardw are... 14
0.5 Contribution.. 15
0.6 Structure ... 15

1 W SI and Parallel Architectures 17
1.1 Review of WSI .. 17

1.1.1 Why WSI? .. 18
1.1.2 Implementation Is s u e s 22

1.2 Parallel Architectures...26
1.2.1 Specifying Parallel Architectures ... 27

1.3 Summary .. 28

2 Communications for WSI 29
2.1 Terminology, Metrics & Requirements.. 29

2.1.1 Terminology & M etrics.. 29
2.1.2 Requirements...32

2.2 R eview .. 32
2.2.1 Catt’s Spiral.. 33
2.2.2 Other netw orks..38

2.3 The Navigation A lgorithm ... 39
2.3.1 R o u t in g .. 39
2.3.2 Properties of the navigation a lg or ith m 48

2.4 The Paths Algorithm ... 52
2.4.1 R o u t in g ... 53

^2.4.2 Properties.. 53
2.5 The Signpost A lgorith m .. 60

3

2.5.1 R o u t in g ; 60
2.5.2 Properties... 61

2.6 Summary ... 62

3 A G raph R eduction Engine 65
3.1 Implementation Techniques for Functional Languages................. 66

3.1.1 Dataflow.. 66
3.1.2 Graph Reduction Architectures . : 66

3.2 Overview of COBWEB ... 70
3.2.1 Hope+ -> F L IC ... 70
3.2.2 FLIC -> Co b w e b ... 71

3.3 Specification of COBWEB.. 74
3.3.1 C o b w e b as a Term Rewriting S y s te m 74
3.3.2 COBWEB in P aragon .. 79

3.4 Translating Paragon to h ard w are................ 89
3.4.1 The Target Description...89
3.4.2 The translation process...90
3.4.3 A static synchronous system ... 91
3.4.4 A static asynchronous s y s te m .. 93
3.4.5 A Dynamic sy stem ... 96
3.4.6 The design of object p rocessors 97
3.4.7 A general purpose m ethodology................................ 104

3.5 Design of C o b w e b ... 105
3.5.1 Design of the COBWEB class topology105
3.5.2 Methods for the Object Processors 107

3.6 Results of Implementation... 114
3.7 S u m m a ry ..117

4 A Parallel W S I Cobw eb 119
4.1 A performance model for WSI multiprocessors............................ 119
4.2 Specification of a multiprocessor C obw eb 122

4.2.1 The new classes..123
4.2.2 Packets .. 124
4.2.3 A gents..129
4.2.4 The Processor Class .. 133

4.3 Design and Sim ulation...135
4.3.1 The design... 135
4.3.2 Assumptions.. 137
4.3.3 Code distribution............................ 137
4.3.4 Results..138

4.4 The performance of COBW EB... 140
4.5 Summary ..142

4

5 Conclusion * 143
5.1 Communications for W S I...143
5.2 Formal Specification of H ardw are...144
5.3 Graph Reduction for W S I ... 144
5.4 Further W o r k ... 145

Bibliography ..147

A C o b w e b as a TRS 153
A .l Directors.. 153
A .2 Strict built in operators ..154
A .3 Primitives ...155
A.4 Data Constructors/Selectors... 155
A . 5 Sequencing, Strictness and Termination............................. '. . 156

B C o b w e b in Paragon 157
B . l High level specification...157

B.1.1 Packets and A gents.. 157
B.1.2 R e w r ite ..158
B .l.3 N eed ..159
B .l.4 F i r e ..159
B .l.5 W a k eu p ... 159
B .l.6 Reduce...160

B.2 Transformed specification .. 173

5

Acknowledgements
This work was carried out in the Department of Computer Science at City
University from 1986 until 1990, firstly in my capacity as a Research Assistant
on the COBWEB project, and then as a lecturer in the department.

This work has been influenced by many discussions with colleagues and
friends throughout the years. The greatest single influence has been that
of my supervisor, Professor Peter Osmon. I wish to convey my heartfelt
thanks to Peter for his help, support, and inspiration and for fostering and
encouraging a lively research environment.

In addition, I would like to convey my thanks to the following, each of
whom has been especially helpful.

Steve Ashcroft
David Bolton
Simon Croft
Stephen Dedalus
Hugh Glaser
Chris Hankin
Paul Kelly
Malcolm Shute
David Till
Phil Winterbottom

My wife, Randi Kepecs deserves special recognition. As well as providing
some of the original encouragement for starting this work, she lent her sup-
port and inspired confidence, especially during the darker periods of writing
up. Finally, I would like to thank Noel and Phyll Anderson for their unwa-
vering help and support for the last twenty seven years.

Declaration
I grant powers of discretion to the University Librarian to allow this thesis
to be copied in whole or in part without further reference to me. This
permission covers only single copies made for study purposes, subject to
normal conditions of acknowledgement.

7

Abstract
This thesis addresses the problem of specifying, designing and implementing
parallel computer architectures based on wafer scale integration (WSI). The
requirements and constraints of WSI are considered and the class of computer
architecture that is most suited to the technology is identified. This takes
the form of a regular array of similar processors connected by a general
purpose communications network. The communications function of the array
is considered separately from the processing function.

Three routing algorithms for regular two dimensional arrays of proces-
sors are proposed. These are specified, and their properties are analysed.
The performance of each of these is measured by simulation under varying
conditions.

The problem of specifying and designing the processors is addressed next.
A functional language engine is chosen as the target architecture. The pro-
cessor specified and designed is a parallel graph reduction machine (named
Cobweb) that uses directors as the instruction set. The programs executed
on the machine are compiled from strictness analysed Hope+ via FLIC to a
director and parallelism annotated directed acyclic program graph.

A specification of a single processor, using a novel object-oriented paral-
lel graph rewrite notation (named Paragon) is given. A methodology for
translating Paragon specifications into a hardware design is given. This
methodology is applied to the Cobweb specification. The resulting design
is seen to be inefficient, so the specification is transformed, whilst retaining
its semantics, to make it more efficient, and the translation process applied
again. The resulting design has been simulated and some of the results from
the simulator are shown.

The COBWEB specification is expanded to a multiprocessor one. Some
of the problems in producing a specification for this type of machine are
discussed. This specification is used to produce a design.

The results from a simulation of the multiprocessor COBWEB along with
the results from the communications network chapter are used to predict the
performance of a multiprocessor WSI graph reduction machine.

The thesis ends with a discussion of the merits and problems of specifica-
tion and evaluation of this type of computer architecture. The communica-
tions architecture is found to be especially suitable for WSI; the specification
and design tools are found to be sufficiently powerful, although limited in
their scope. Finally the conclusion is drawn, with caveats, that WSI is a
suitable technology for parallel graph reduction.

9

Chapter 0

Introduction

The recurring dilemma in the study of the design of computer architecture
is whether raw speed is preferable to programmability. In traditional sys-
tems, this has been a simple tradeoff. However, as alternative programming
paradigms and implementation technologies emerge, it is becoming more rea-
sonable to expect speed as well as programmability. This thesis reports on
an investigation into one way of achieving this goal. We attempt this by
coupling two very different areas of computer science and engineering: Wafer
Scale Integration (WSI) for the increased performance; and parallel graph re-
duction as an implementation technique for a class of languages with highly
desirable features. In one line, the question that this thesis addresses is: “Is
graph reduction feasible on a wafer?” .

Inevitably, many other issues are raised as this question is addressed.
Two of these become particularly prominent in this work. These are commu-
nications for WSI, and the formal specification and derivation of hardware.

0.1 Wafer Scale Integration
Since the advent of the integrated circuit, the method of manufacture has
remained fairly constant. A large number of individual circuits are etched
using photolithographic techniques onto a large slice of ultra-pure silicon
known as a wafer. The wafer is then diced into “chips” , and each is tested
individually. Unfortunately, because of defects originally in the silicon crys-
tal, or introduced at the time of manufacture, many of the circuits will be
faulty and will not work. After testing, the working circuits are packaged
and delivered, and the non-working ones are discarded. The principle idea
behind WSI is that the entire wafer is packaged into a working product and
sold.

The motivation behind moving to wafer scale integration can be sum-
marised as follows. Basically WSI is

11

• cheaper <

• faster

• smaller

• more reliable

It is cheaper because the dominant costs in all phases of production are
reduced. It is faster because slow off-chip communications are reduced. It is
smaller because more components can be packed into a smaller space. It is
more reliable, because there are fewer unreliable off-chip connections. These
are compelling reasons, but the reason that WSI has not taken the world
by storm is because of the scale and the difficulty of the one dominating
problem. This is that the device must be guaranteed to work in the presence
of the inevitable defects, ie it must be fault-tolerant.

In the past, this problem has proved so intractable that despite the obvi-
ous benefits of WSI, designers have opted to stick with tried and tested VLSI
technology rather than attempt ambitious solutions to the fault-tolerance
problem. As they have demanded increasing levels of integration and speed
from their systems they have remained happy with their choice, because each
new generation of VLSI component has consistently managed to deliver more
performance over the previous. However, time is running out for VLSI. It is
becoming much harder to extract yet more speed, and to make circuits even
smaller.

What would a WSI device look like? Relatively vast areas of silicon are
available, yet we know that a lot of circuits will be unusable because of
faults. To get round this many circuits will be replicated, so that if one is
faulty, another can be used instead. The replication may be at many levels,
for example from extra rows and columns in a block of memory, to entire
microprocessor blocks being replicated across the silicon. It is the latter type
of system that we are most interested in.

At the same time WSI is offering substantial performance advantages
over VLSI. The most dramatic of these is the vast increase in communica-
tions bandwidth between system components on the wafer. VLSI systems
are limited by their off chip communications which tend to be slow, power
hungry, unreliable, and limited by their physical size. However communica-
tions between blocks on a wafer do not have any of these problems. Very
wide parallel data paths are fast, cheap and reliable.

Given such a system, where there are a large number of identical proces-
sors that can communicate with each other, we can separate the processor and
communication function and consider each in turn. We call the processor-
communication pair a node.

12

0.2 Wafer Scale Communications
Communications on a wafer are not straightforward. The nature of the tech-
nology is such that long connections must be avoided, so the natural solution
is one where each node can communicate with its physical neighbours only.
Communications then take place as a number of steps from neighbour to
neighbour. Communications between non-neighbouring nodes must then be
via a set of intervening nodes. Of course, if a node is faulty, then it must be
avoided. A suitable analogy is of an explorer in the dark equipped with a
weakly powered lamp. The explorer needs to get from A to B as quickly as
possible, and cannot afford to spend much time deciding where to go next.
Unfortunately the way is made dangerous by patches of quicksand randomly
placed in her way. The lamp allows her to see only a yard in frqnt, but
happily this is the length of her stride, so she can always avoid unwittingly
stepping into the quicksand. However, this does not stop her from getting
into a situation where she is totally surrounded by quicksand except for the
way she came in. We provide three ways of allowing the explorer to complete
the journey safely and in good time. The first is equivalent to planting a
homing beacon on the destination, so that she can see the direction in which
she should be going, and how far away she is. For the second, we provide a
set of instructions at the outset in the form of “two steps forward, turn right,
one step forward....” . For the third, we provide a roadsign at each position
that indicates “this way to your destination | —> | ” .

Each method has its advantages and disadvantages. For example, method
two will get her to the destination in fewer steps than method one, but if
even one of the instructions in method two is wrong, then our explorer will
end up anywhere but at the correct location.

Each of these methods has been designed as a communications algorithm
for WSI, and we will discuss and evaluate each in turn.

0.3 Graph Reduction
Since the invention of the electronic digital computer, the dominating archi-
tecture has been the “von Neumann” . This is the class of computer designs
that consist of a single processor plus some memory, where the program that
the processor runs is stored in the memory. The processor executes one in-
struction at a time, after which it computes where the next instruction to
be executed is located. This class of computer was designed for the efficient
execution of a particular class of languages known as the sequential impera-
tive languages. Over the years designs have become highly optimised for this
task, and present day von Neumann computers can now execute sequential
imperative programs fast and efficiently.

13

However, at the same time large programs written in the sequential im-
perative paradigm have become increasingly unwieldy. The problems of man-
aging large programs with complicated relationships of components are im-
mense. It is difficult to state that the programs match their specification,
and they are expensive to maintain. This has led to the “software crisis” —
the realisation that programming large systems is difficult.

Many solutions have been proposed to deal with this problem. The one
that is of interest to this thesis is the recognition that the underlying program-
ming paradigm — the imperative sequential one is fundamentally unsuited
to the requirements of constructing large software systems. There many
other paradigms — the object oriented paradigm is one that has received
most attention recently. However, the one we deal with in this thesis is the
functional paradigm. In this paradigm, programs are expressed as sets of
functions mapping input to output. As the functions are pure mathematical
entities, the task of reasoning about programs is made much easier than with
the imperative paradigm.

The paradigm has a hidden bonus — functional programs have the prop-
erty that expression evaluation is guaranteed to be side effect free. This
means that as a given expression will always evaluate to the same result, it
does not matter when it is evaluated as long as it is safe to evaluate it in the
first place. Many expressions can thus be evaluated concurrently. It is much
easier to exploit hidden parallelism in functional languages than it is in the
imperative paradigm.

Graph reduction is a technique for the execution of functional languages.
In this thesis we present a formal specification for a graph reduction archi-
tecture and translate it into a hardware design. We prototype the design
using a simulator, and we use the results from the simulator to predict the
performance of a graph reducer.

0.4 Formal Specification of Hardware
As the level of integration of hardware has increased, hardware systems have
become much more complex. In the past it has been acceptable to assert that
a hardware design is correct simply because it has been tested thoroughly.
However we have long been in the position where it is simply impractical to
test hardware designs completely because the number of test input/output
combinations has grown combinatorially with the complexity of the design.
At the same time, users of such systems are placing increasing confidence
in them, and are understandably becoming decreasingly tolerant of design
faults. When a safety critical application has a component whose reliability
cannot be guaranteed, then the usability of the entire system is brought into
question.

14

A proposed solution to this problem is the use of formal methods for hard-
ware design. This way, designers hope to exclude design faults by deriving a
design from a specification using rigorous mathematical techniques. Faults
can then be proved absent rather than tested for presence.

There are various notations for formally specifying hardware. Unfortu-
nately most of these are at a rather low level and express requirements in
terms of physical hardware blocks with a specified topology and certain tim-
ing characteristics. As these are at such a low level, they make for fairly easy
translation into hardware designs, and it is not hard to show that the design
conforms to the specification.

However, there are higher levels at which we wish to express our require-
ments. For example if we require a system that behaves dynamically, one
that grows and shrinks in size and capacity as demands are made of it, then
instead of specifying it at a level which emulates the dynamicism, we would
like a notation that allows us to express such behaviour directly. In this
thesis we use such a notation. It allows us to leave the implementation of
its behaviour to the system. Unfortunately this makes the process of pro-
ducing a hardware design much more difficult. Eventually the design must
be in terms of a physical hardware system, and as these systems cannot be
physically dynamic such behaviour must be emulated.

We provide a route from this very high level requirements specification to
a low level hardware design in terms of a number of logic circuits connected
by wires.

0.5 Contribution
The main contribution of this thesis is threefold. Firstly, designs and per-
formance results for a series of novel communications architectures for WSI.
This work builds on previous work in [KS86]. Secondly, a formal method-
ology for transforming very high level specifications into hardware designs.
This builds on the hardware specification language work of [BHK90]i Finally,
some insight into the properties and problems of wafer scale graph reduction.
This expands on some of the work done on the two Alvey COBWEB projects
[HOS85, AHK+87, ABH+89].

0.6 Structure
The structure of this thesis is as follows. In chapter 1 we introduce the
main subject areas of this thesis — wafer scale integration (WSI) and par-
allel architectures. We give the motivation for WSI and identify its major
strengths and weaknesses. We introduce parallel architectures, and identify

15

the requirement that they be specified rigorously. We identify the type of
architecture most suited to WSI. In chapter 2 we look at communication
architectures for WSI and identify one which is especially good. In chapter
3 we give a full specification for a graph reduction architecture at a very
high level, and propose a methodology for transforming such specifications
directly into hardware. We apply our methodology to our specification and
produce a prototype in the form of a simulator. In chapter 4 we estimate the
performance of a parallel graph reducer on a wafer. Chapter 5 presents the
conclusions, which in brief are that WSI is a suitable technology for parallel
graph reduction.

16

Chapter 1

W SI and Parallel
Architectures

The purpose of this chapter is to review the fundamental issues in the study
of the two main subjects addressed by this thesis. The first of these is Wafer
Scale Integration. The second is parallel computer architecture.

1.1 Review of WSI
Since the invention of the integrated circuit, the trend has been towards
further levels of integration. From single transistors on a chip, we have seen
an evolution to gates on a chip, to simple system functions, and on to entire
microprocessors.

From early in the history of the technology the method of manufacture
has been to etch many devices on a single wafer of silicon, dice the wafer
into individual devices, test each device, discard the non-functional ones and
package and deliver those that work. The idea behind WSI is that entire
systems are fabricated on a single slice of silicon, and it is this slice that is
packaged and delivered to a user.

There is a growing interest in WSI as reflected in the growing body of lit-
erature. [ST86, Lea87] report on two conferences on WSI. Later conferences
have been held, but proceedings have not yet been published. [Tew89] is the
definitive guide to the problems of implementing wafer scale systems. His in-
troduction provides a readable overview of the subject. Two major projects
in Europe and the UK have been investigating WSI. The Alvey project 073
is approaching completion. Its goal was to produce two technology demon-
strators, one a non-regular signal processor, the other a regular SIMD image
processing module. The ESPRIT 824 programme, started in 1986 aims to
produce three technology demonstrators: a large RAM, a systolic array, and
a highly fault tolerant microprocessor.

17

There are two major approaches to WSI: the monolithic and the hybrid
(or “jellybean”). The monolithic is where the device is constructed on a single
slice of silicon. The hybrid approach is where diced chips are bonded directly
onto the surface of the wafer. The wafer can then carry communications or
memory. The scope of this work is monolithic WSI only.

The discussion will outline the issues involved in WSI, concentrating on
those that are of relevance to the parallel computer architect. Physical im-
plementation issues are beyond the scope of this thesis, although work in
these areas will be referred to in many places.

1.1.1 W hy W SI?
As mentioned earlier, the reasons why WSI is a better technology than VLSI
are as follows:

• It is faster

• It is more reliable

• It is smaller

• It is cheaper

• It is the natural successor to VLSI

In this section we will explain why the technology has these properties in the
context of the differences between a WSI implementation of a system, and a
VLSI version of the same system with the same functionality. That is, say we
construct a system from VLSI from a number of discrete packages mounted
on a PCB, connected to each other using PCB tracks. If we construct a
functionally identical system in WSI, with each component written directly
onto the silicon, and connected using on-wafer connections, then what are
the properties of the WSI system compared to the VLSI implementation.

We will then discuss some of the problems associated with the implemen-
tation of wafer scale devices.

Technology Issues

WSI is in fact a fairly old idea, but has met with spectacular failures in
the past, notably and infamously with the Trilogy project [Pel83]. This is
not because the technology is fundamentally unsound, but is evidence of the
difficulty of solving the related problems in the context of a rapidly expanding
and vigorous VLSI industry.

Although WSI has been unsuccessful in the past, considerable progress
has been, and is being made in addressing the problems that WSI raises.

18

Much of this progress has arisen as the result of research into increasing
integration for VLSI. WSI can thus be considered not as a radical departure
from the conventional, but as another step, though in a different direction,
in the evolution of integrated circuits.

VLSI has evolved with spectacular speed and has consistently delivered
major performance and integration improvements from generation to gener-
ation. It has done so while many of the enabling underlying factors remain
constant. However the evidence is that these underlying factors are approach-
ing their fundamental limit.

Here we expand on the reasons VLSI is approaching its fundamental limit.

Feature Size. We have seen the continual shrinkage in the physical size
of VLSI structures. The evidence is that the laws of classical digital
electronics will not hold as devices get much smaller.

Feature sizes have been getting smaller at an exponential rate since the
introduction of VLSI [TewS9]. State of the art commercial processes
can now deliver chips with sub-micron devices. However the lower limit
is expected to be about 0.25//m.

As the feature size gets smaller, laws governing the behaviour of the
devices break down. The statistical laws that normally apply simply
cannot be relied upon when the number of charge carriers in a device
gets small. Devices begin to behave non-deterministically, displaying
behaviour that varies around an average.
As dimensions shrink, they begin to approach the physical dimensions
fundamental to the classical analysis of electronic devices. Quantum
effects come into play and also introduce non deterministic effects. Al-
though there might be a place and an application for such devices, they
are quite different from conventional electronic devices.

Integration We have seen increasing levels of integration. This has resulted
from the decreasing feature size, but also from improvements in com-
ponent density and packing efficiency.

Packing efficiency measures the fraction of silicon actually used for
devices. Silicon is unusable due to the requirement for minimum sep-
arations between devices. The packing efficiency has been increasing,
leading to a greater density of components on the silicon, but it will be
difficult to increase packing density much further.

Chip Size Of particular interest to the study of WSI is the projected in-
crease in chip size. Chip edge sizes have been increasing exponentially
since the introduction of the technology [Tew89]. However as the chip
size increases, it becomes increasingly difficult to make chips that are
free of fabrication defects.

19

The .manufacture of VLSI devices has until recently relied on the pre-
sumption of perfection. If a device has a fault, no matter how small the
defect that caused the fault, the entire device is discarded. This is be-
coming increasingly unreasonable. The system designer must provide
for the component to function effectively in the presence of faults.

At the same time it becomes more and more difficult to test these
chips as access to components located centrally through the peripheral
connections is not easy.

We can see from the above that VLSI has almost exhausted every avenue
available for increasing the number of components on a chip. The only avenue
left is the one that increases the size of the chip, and which deals directly
with new the issues implied. Thus there is a trend which will inevitably lead
the study of VLSI towards WSI.

Speed, Reliability and Size

As well as offering increased levels of integration, the technology of WSI offers
an increase in component connectivity which has implications on the speed
of the system, its reliability, and its size. The number of pins on a package,
and indeed in an entire system is a crucial limiting factor on VLSI systems
for the following reasons:

• Connections from chip packages to PCBs are the most unreliable com-
ponent of a system. •

• Driving pins involves transforming the on-chip voltage and current lev-
els to off chip levels, a process that consumes both time and power.

• VLSI packages are bulky compared with the chip itself.

These three reasons impose several limits on VLSI systems. First, the chip
pin-out must be kept low so as to enhance the reliability. At the same time,
the total number of connections in the system must be kept down, for the
same reasons of reliability, and because of the physical space occupied by
inter-chip connections. Second, the speed at which the chips are driven must
be kept artificially low because they are physically distant from each other
(compared with internal chip distances), and because driving pads at a high
frequency incurs a high overhead in terms of power consumption.

WSI avoids the above problems because connections between circuits on
a wafer are reliable, fast, and cheap to drive. Because the circuits are packed
much closer together, they can be driven at a much higher clock rate, al-
though for reasons given in section 1.1,2, it is not desirable for clocks to
be distributed across the entire wafer. The greatest boon to the designer is

2 0

that the level of connectivity between on-wafer circuits is much increased.
Extremely wide parallel data paths are easily achievable at levels VLSI can
never attain.

Economic Issues

The key question here is if a system designed from WSI components will be
cheaper than an equivalent system designed from VLSI components. The
cost of such a system can be broken down into five areas[Sum86]:

D ie cost includes the cost for processing the silicon, dicing the wafer into
chips, and testing using probes.

Component cost consists of packaging the device, and doing a final com-
ponent test.

Board cost consists the cost of the PCB the component is attached to,
mounting the component on the PCB, and a test of the PCB.

System Hardware cost will include the cost of connecting the PCBs to-
gether, cooling, supplying power, and the cabinet, and top level inter-
face.

Ownership cost includes the cost of maintaining the system throughout its
lifetime. The factors that influence this cost are the system’s reliability
and “diagnosibility” , and the cost of spares and services. .

We consider each of the above in turn, and focus on the cost differences
between a WSI system and a VLSI system.

Die cost The cost of a die is proportional to the number of working com-
ponents that can be yielded from the wafer. Because we throw away all the
non-working VLSI chips, the WSI approach is more cost-effective because we
can (nearly) always yield a working device. With a WSI system, no dicing
is done, and because testing is usually left until later, the amount of probe
testing will be minimal.

Component cost The cost of a package for an integrated circuit is pro-
portional to the number of pins. With a WSI system, only one device needs
to be packaged. With a VLSI system the packaging cost is replicated for each
component. Although the package for one WSI device will be more expensive
than one VLSI package, the total cost will be less simply because the total
number of pins will be less.

21

Board cost The board cost is dependent on its sophistication, and the
number of boards. A WSI system wins on both counts as higher integration
leads to simpler boards and less of them. The cost of testing a PCB once the
components have been mounted is proportional to the number of integrated
circuit pins attached to the board. Again, the WSI system has the edge.

System Hardware Cost The cost of board interconnection, the cooling
system, the power supplies, and the cabinet is directly proportional to the
number of boards. As the increase in integration leads to fewer boards, the
cost for a WSI system is less than for a VLSI system.

Ownership cost The cost of ownership includes the cost of services such
as space, cooling, and power. As a WSI system will be physically smaller
because it contains fewer boards, it will cost less in respect of space occupied.
However the situation regarding cooling, and thus power consumption is less
clear. The total cost of ownership is dominated by the maintenance costs
for the system, and is thus proportional to the reliability of the system. The
reliability of any integrated circuit is inversely proportional to the number of
pins, as the connections to the PCB are by far the most unreliable component
of any such system. So the WSI system wins again.

It is clear from this discussion that a WSI system offers substantial cost
benefits over an equivalent VLSI system.

1.1.2 Implementation Issues
The principal difficulty in the implementation of wafer scale systems is the
avoidance of the inevitable faults. The problem is approached at a two levels:
the circuit level, and the architectural level. Additional difficulties include
testing, electrical design issues such as power distribution, and physical de-
sign issues such as packaging and cooling. Here we summarise these issues.

Reconfiguration and Redundancy

Given a circuit with a defect, there are three basic methods of working around
that defect:

1. Physical repair including laser “zapping” to either cut connections and
thus bypass the fault, or to add connections and enable the use of spare
components.

2. Electronic switching using programmable switches.

3. Functional avoidance whereby a faulty circuit is simply ignored.

2 2

Each of the above methods requires some redundancy to be present. For the
faulty block that is configured out, there needs to be a spare present to be
configured in as a replacement. In some applications (for example memories)
it may be possible to use the spares as well. Redundancy is a double edged
sword however, as the discussion on yields will show.

Architectural Structures

A WSI architecture will typically consist of a number of circuits connected
together using an interconnect. These can be characterised as having a reg-
ular or irregular structure. There will need to be some type of architectural
reconfiguration mechanism to allow faulty units to be disconnected and re-
placed, or simply avoided. Standard reconfiguration techniques are explained
in [NSS89].

Regular arrays The wafer scale device might take the form of a large
number of identical or similar circuits replicated in a regular manner across
the wafer. This might be so for several reasons. The application area might
demand a regular architecture. For example systolic arrays demand an array
of identical processors operating in lock-step. However, this has the require-
ment that the architecture must be made to look regular even though faults
may have disrupted the physical layout.

Another reason for regularity is that the application might demand a
large number of identical units, irrespective of their topology. In this case
the application problem would be mapped on to a number of these units. In
this case the physical layout is unimportant.

This class of WSI device requires some sort of interconnect structure
exists to connect the elements together. Again there are several classes of
interconnect, for example an architecture might only allow a circuit to com-
municate to its nearest neighbour, or the circuits might be connected in a
tree fashion. Again the choice is very much application dependent.

Irregular structures A wafer scale device may simply be an extension
of a VLSI type device where the entire silicon area embodies one function,
albeit much more integrated. For example an entire CPU for a mainframe
computer implemented in random logic. Faults are much less forgiving in
this type of scheme — a small set of well placed faults can make the entire
wafer unusable. This type of structure requires a much more sophisticated
level of fault tolerance, and at several levels.

23

Defects, Failures and Yield Models

A defect is defined as a fault introduced at the time of manufacture. A fail-
ure is defined as a fault introduced after manufacture, typically appearing
as the device is begin used in service. Defects are caused by imperfections
in the manufacturing process. A wafer is manufactured from an ingot of sil-
icon which has undergone extensive purification. However the process is not
perfect, impurities are left behind and faults develop in the lattice structure
of the silicon crystal. As the wafer is processed it is subjected to further
stresses, such as impurities introduced by its chemical treatment, and ther-
mal expansion and cooling. The lithography process whereby the wafer is
etched may also be imperfect. Thus every wafer that is produced will have at
least some faults on it. These faults are not distributed randomly. Analysis
has shown that they are more likely to occur towards the edge of the wafer.

The yield Y of an integrated circuit manufacturing process is the fraction
of working circuits to the total number manufactured. The principal problem
with manufacturing large chips including wafers is that the yield decreases
exponentially (or nearly so) with the area of the chip. Thus a whole wafer
chip, with no fault tolerance has an infinitesmally small chance of working.

Early yield models were applied to VLSI processes with some success. The
simplest model uses Poisson statistics and relates Y to the defect density D
of a process and the area of the chip as follows:

Y = e~DA

where D is measured in terms of the number of defects per unit area, and
is a constant for the entire wafer. However this model is inappropriate for
WSI in several respects. Firstly it takes no account of the fact that defects
tend to cluster together, and that different types of defects have different
tendencies to cluster. Secondly it does not address the fact that the defect
density varies over the surface of the wafer, with the purest section around
the center, and defects tending towards the edge.

More sophisticated models are sensitive to this clustering. [HS88] give the
generalised negative binomial model. The yield of a circuit is dependent on
the contributions of different types of defects. Each defect j has a coefficient
ctj that models its tendency to cluster. Higher values of a indicate lower
clustering, with unity indicating no tendency to cluster. The yield of a circuit
that has area prone to fault j , Aj depending on a fault type j is given by

Yj = (i + aj

and the yield of the entire cell Yc where there are m types of fault is given:
m D A -Yc = na+

J=1 a j

24

Whichever model is used, it can be seen that the yield of a circuit is
strongly dependent on its area. This has several important implications:

• A single large structure within a circuit may cause that circuit to yield
unacceptably. This large structure is known as a yield hazard. For
example long connections such as busses in WSI circuits are known to
be significant yield hazards.

• The addition of fault tolerant circuits may have a deleterious effect on
the yield. The extra area occupied may cause the entire cell to yield at
a lower level than before. The net effect might be fewer working cells
than if fault tolerance had not been attempted at all.

Recognition of the radial distribution of defects is important for WSI, as
a designer can choose to place critical circuits near the center of the wafer, or
the more robust circuitry towards the edge [HS88]. This is modelled using the
generalised negative binomial model by making D a function of the distance
from the center of the wafer.

Testing

As fault tolerance is of prime importance to WSI, testing of all circuits is
necessary so that the non functional ones can be configured out. Testing can
be performed either internally, or externally. Internal testing techniques allow
the circuits to test themselves or each other. A common technique is to wire
in a test circuit that generates a “signature” only if all the components of the
circuit are working correctly. The correct signature can be generated during
the design phase using simulation and can be hard-wired into the testing
circuitry for comparison. This technique is known as signature analysis.

External techniques usually take the form of generating test vectors, ap-
plying them to the inputs, and checking if the outputs are correct. The
number of test vectors required to rigorously test a circuit increases rapidly
with the number of inputs, so the number of test vectors for a WSI device is
expected to be unreasonably large. It is therefore necessary for test circuitry
to be built into the device so as to minimise the amount of external testing.

One technique for testing WSI systems is to have a configuration phase
when the device is powered up. This will consist of initiating internal test
sequences and constructing an external view of the wafer that indicates where
the faulty areas lie. This map can be used for several purposes, for example
to switch in spare circuitry, or configuring the communications so that the
faulty areas can be avoided.

25

Electrical issues include the distribution of power and signal. Signal distri-
bution is particularly difficult as clock skew is an unwanted effect associated
with distributing signals along long wires. A global clock is needed when all
the circuits on the wafer need to operate synchronously, such as in a systolic
array to give a regular example, or in a large processing unit. However more
liberal architectures will operate asynchronously, so the signal distribution
problem can be avoided.

Power distribution has not been identified as a major problem by any
of the workers in the field [WL87], although it is important to be able to
isolate power shorts. The major physical implementation issue is packaging
which comprises mounting, and heat dissipation. [ML86] shows that WSI
packaging is not simply an natural extension of VLSI packaging, assuming
SIMD processors. [Pit87] proposes some methods of cooling WSI devices.
The amount of heat generated is very application dependent. For example
the Anamartic wafer memory product generates so little heat that it does
not even need cooling fins.

Electrical and Physical Issues

1.2 Parallel Architectures
Since the invention of the electronic digital computer the dominant design has
been the “von Neumann” architecture. This architecture is characterised by
a single processor executing a program which stored in a linear memory along
with the data required for running the program. The model was designed for,
and is particularly suited to running a class of programs known as sequential
imperative programs.

However it is becoming evident that the premises on which the architec-
ture is based, ie: “imperative” and “sequential” are limited. Imperative lan-
guages have been blamed for the “software crisis” — a phenomenon whereby
the dominant cost in the production of most software is maintenance. At the
same time, as increasing performance is demanded from computer systems,
the single processor model is being being abandoned in favour of the multi
processor.

The multiprocessor model also demands a different model of computation.
Here there is a mismatch between the nature of the imperative paradigm, and
this new model of computation. That is, it is difficult to program impera-
tively so as to exploit parallelism. Again a promising solution to the prob-
lem of efficiently exploiting parallel architectures is a different programming
paradigm, where parallelism does not need to be made explicit.

More recently, as alternative programming paradigms have come to the
fore, it has been realised that the von Neumann architecture has some fun-

26

damental problems executing such programs efficiently. The cause that has
been identified is the memory bottleneck. This is a term that is used to
describe the single narrow access point to the memory, and the mismatch
between the speed of the processor and the relative sluggishness of the mem-
ory.

1.2.1 Specifying Parallel Architectures
If we are to implement a parallel architecture, we first need to be able to
specify it. Also, once we have a specification, we need to be able to trans-
form that specification into a design. Specification is a hierarchical process.
We start from requirements and move through stages of adding increasing
detail and constraints until we arrive at a design that is capable of being
implemented. As we progress through the stages we would like to be able to
assert with confidence that certain properties remain invariant

For example the stages in specifying an parallel architecture might be as
follows [BHK90]:

1. High level requirements statement, known as the logical model.

2. The systems architecture, which specifies logical processes and commu-
nications between these processes.

3. The processor architecture, where the logical processes are mapped
onto virtual processors.

4. The physical architecture, where the virtual processors are mapped
onto physical processors with associated memory and communications
medium.

The top level requirements statement should be in a language close to the
problem domain. However the process of getting down to the physical level
is not easy. Some of the problems are elucidated in [BHK90].

The problem of formally specifying hardware has been studied extensively.
Gordon at Cambridge has proposed a specification system based on higher
order logic [Gor86]. Inmos have specified a hardware floating point unit for
the Transputer [MK87]. The specification was originally written in Z, and
transformed to OCCAM and then compiled into silicon.

However the specification of hardware systems that consist of a number
of concurrently active agents, and especially those that communicate asyn-
chronously and are dynamic, poses special problems. Several teams have
proposed languages in which to specify this kind of architecture. DACTL
[GKS87] and Lean [BvEG+87] are languages based on term graph rewrit-
ing. FP2 is a language based on term algebras for transition systems [SJ89].

27

AADL is an axiomatic specification language [DD89], with behavioural spec-
ifications expressed in an extension of CSP.

1.3 Summary
In the light of the technological requirements and constraints, we can rec-
ommend a particular kind of parallel computer architecture as well-suited to
WSI.

This takes the form of a regular array of similar processors connected to a
general purpose communications network. The communications architecture
consists of a number of communication processors which communicate with
their nearest neighbours only. Each processor operates asynchronously. Fault
tolerance is handled mainly at the architectural configuration level, and each
processor has some built in test circuitry. A configuration phase at power up
time will arrange for the network and the processors to be tested both inter-
nally and externally by a controller. This controller will contain information
about the status of the wafer, eg the location of working processors.

We choose a regular array because this is easier to yield than a non-
regular architecture. We choose a general purpose communications network
so as not to pin down the nature of the processor at too early a stage. So
as to minimise yield hazards caused by large structures such as long busses,
we permit nearest neighbour communications only. Because of the problem
of distributing clock across the wafer, we will allow the processors to operate
asynchronously relative to each other.

As the processor will replicated across the wafer, and-because we cannot
guarantee a regular topology, the processor most suited to this kind of ar-
chitecture will be one that can operate concurrently with others, and which
does not require a regular topology, or synchronous communications. The
processor that we choose will be specified formally using a notation that
allows us to express requirements at a very high level.

28

Chapter 2

Communications for W SI

In chapter 1 we concluded that the type of architecture most suited to WSI
is one that is a regular array of similar processors connected by a general
purpose communications architecture. In this chapter we present several
communications architectures that match these requirements, and are inde-
pendent of any specific processing element.

To aid in the analysis of these architectures we first introduce some termi-
nology and metrics, and identify the requirements of a WSI communications
architecture over and above those of a more general purpose communications
architecture. We proceed with a review of other communications architec-
tures for WSI. Finally we present three new designs. The designs are pré-
sented in historical order of conception, rather than in order of merit. For
each design we say how it meets the requirements and estimate its perfor-
mance in terms of the metrics defined in section 2.1.

In several sections we present results that have been calculated using a
simulator. These results are generated by creating models of typical wafers
at random, and measuring their properties. The location of faulty CEs on
these synthetic wafers accurately reflects the radial distribution of defects
found in real wafers [HS88].

2.1 Terminology, Metrics & Requirements

2.1.1 Terminology &; Metrics

As explained earlier, the class of WSI computer we are studying here con-
sists of a regular array of processors connected by a communications net-
work. Each processor is connected to the communications network, and the
processor-connection pair is called a node. A node can be thought of as a
communications element (CE) connected a processing element (PE). Ideally,
the CE and PE are independent of each other, though this is not always the

29

case in implementation.
Two types of network are of interest — packet-switched, or store-and-

forward, and circuit switched. Processors communicate messages across the
network. In a packet-switched network, units of communication are called
packets which for this design will be units of 128 bits. Messages are then
sent as a series of one or more packets. A communications step in a packet-
switched system consists of the complete transfer of a packet from one node to
another. This is known as a hop. In order to complete a communication from
a source node to a destination node the packet must perform a number of hops
via a series of intervening nodes. In a circuit-switched network, messages are
broken up and sent in pieces from a source to a destination over a path that
is fixed and held open for the duration of the communication.

In order to be able to compare different communicatiops networks we
need to be able to describe these networks in terms of a number of network
terms and metrics. These are introduced here. Some of these are specific to
WSI.

C onnectiv ity is defined as the maximum number of nodes any given node
can be directly connected to. For example, a mesh type architecture, where
each node is connected to nearest four neighbours only, has a connectivity of
four.

R outing algorithm . A communications network I is a directed graph
/ = G (C , N) where N represents the set of nodes and C represents the set of
communication channels or links between nodes. A particular channel is de-
noted c,-, and an individual node is denoted n,-. Routing functions determine
where to route individual packets. Routing functions are denoted by a type,
eg: : JV x iV h C, that is a function that takes the current node and the
destination node, and produces the channel on which to forward the packet.
A routing function or algorithm is said to be correct if it correctly routes a
packet from its source to its destination in a finite time.

D eadlock freeness. One of the fundamental requirements of any routing
algorithm is that it be deadlock free. There are various ways of ensuring that
any particular algorithm is deadlock free, and these are reviewed for different
networks in the context of WSI in section 2.3. Deadlock occurs when a set of
processes is blocked because each is waiting for the exclusive use of a resource
which is held by one of the other processes in the set, and where no process
can back off.

Deadlock occurs in packet switched communication networks when there
is a cycle of dependencies in the packet buffer dependency graph. Figure 2.1
shows an example of how deadlock might occur in this manner. Deadlock

30

Dependency arc
►

Figure 2.1: Deadlock in a dependency graph

avoidance strategies in general involve either breaking the dependency graph
when it forms, or ensuring that it can never form in the first place.

CE/PE binding. A CE and a PE are logically independent blocks. In
principle a PE may be connected to a number of CEs. However a PE will
not in general be usable if its CE, or set of CEs do not work. A CE on the
other hand will generally be usable if the PE is faulty. A PE is tightly bound
to its CE (and vice versa) if the functionality of each is dependent on the
other. The elements are loosely bound if the CE can work independently of
the functionality of the PE. Obviously it is more advantageous in terms of
functionality if the elements are loosely bound, and can work independently.
Some architectures however are such that they are tightly bound.

Harvest/Sacrifice. A given CE/PE design will have a yield denoted Fce
and Fp e - Some CEs will be in strategically important positions on the wafer
such that if these do not work, then they will cause other nodes to be un-
reachable, that is, the only communications to them is broken. The Harvest
H is defined as the proportion of working nodes that can actually be used.
H is of course sensitive to Tc e - Usually there is a certain value of Yq e at
which H becomes unacceptably low. This is known as the Yield cutoff point
Pcutoff-

If the elements are loosely bound then some PEs will not be usable be-
cause their CEs will not be working. These PEs are said to be sacrificed.
Also, some nodes may be working, but unusable because there are no com-
munication paths to them. These are also said to be sacrificed.

31

Latency / is defined as the amount of time taken between dispatch of a
message by a sender, and its complete receipt at the destination. A given
network will have an average latency l and a maximum latency /max- The
average latency is defined as the average time taken to communicate a mes-
sage between a source and a destination chosen at random. The maximum
latency is defined as the time taken to communicate between the two furthest
removed nodes.

Performance. The performance of a network can be defined fairly loosely
as how it behaves in terms of metrics such as latency as certain parameters
are varied. Parameters of interest include yield, and load. For example if
the load rises, this can lead to increased congestion, and the latency might
increase.

Overhead is defined as the amount of information in addition to the pay-
load, a message must carry in order to complete successfully. This usually
includes the destination address.

2.1.2 Requirements

The requirements of a communications network for WSI are a superset of the
requirements of a general purpose communications network, that all messages
must be guaranteed to get to their destination within a finite time. A corol-
lary of this is that the network must be deadlock free.

WSI introduces some other requirements. The most important of these is
that the communications node must be sufficiently small and simple to allow
it to yield well. That is: Tc e > Fcutoff- A second requirement is that a WSI
communications architecture must be fault tolerant. That is it must be able
to guarantee delivery of messages in the presence of faulty nodes. This may
involve a configuration phase either when the WSI device is fabricated, or at
power on time when CEs are tested and, if necessary, informed of the state
of their neighbours.

2.2 Review

There have been a number of studies of communications networks for WSI.
This section reviews two of interest.

In the context of regular WSI communications networks, figure 2.2 shows
the convention for illustrating the functionality of nodes.

32

□ Functional node

■ Non-functional node

m Sacrificed node

i Unusable node

Figure 2.2: Diagramming convention

2.2.1 Catt’s Spiral

Catt’s Spiral was one of the original communications networks for WSI. It
was. proposed as a method for configuring working processors in a highly
regular array [AC78]. It has had some success. The Catt spiral has been
used in several designs for WSI machines. Cobweb-1 [Shu83, Kar87] used
the spiral as its communications network. Anamartic Ltd. manufacture a
wafer memory device using the Catt spiral [Cur89].

The spiral is basically a string of nodes linked together, usually start-
ing from an node close to the edge of the wafer. Each node on the spiral
is identified by an address which is relative to the start of the spiral. To
communicate with another node the packets are sent along the spiral in the
direction dictated by the difference between the current node address and the
destination node address. In the context of the spiral, this is known as serial
communication. Alternatively packets can be transmitted radially, that is a
packet can go from an outer shell of the spiral to an inner one in one hop. At
power up time the wafer controller initiates a test and configuration sequence
which arranges for the nodes to be tested and working ones configured into
the spiral.

The spiral is grown from a single node close to the edge of the wafer. This
means that a number of external devices wishing to access the wafer must
contend for access to this port. Any communication to the outside world
must also go via this port.

Figure 2.3 shows an example four-connected wafer configured as a spiral.
There are no dud CEs on this example wafer.

Figure 2.4 shows a typical node n,- with its connections to the nodes in
the “forward” , “backward” and “in” and “out” directions.

33

Figure 2.3: A wafer configured as a Catt spiral

Characteristics

Connectivity The standard Catt spiral with no radial routing has a con-
nectivity of two. However with radial routing, the connectivity goes up to
four. The spiral can also been proposed for wafers with connectivity six
and eight [Shu83], although because eight does not tessellate, some tricky
electronics are involved.

Routing algorithm The best thing that can be said about the spiral is
that the routing algorithm is so simple that it is extremely easy to implement
in hardware and as a result it is very fast. For the simple non-radial case each
node has a forward connection and a reverse connection to its neighbours in
the spiral. Each node has an address such that nodes near the start of the
spiral have low addresses and those towards the end have, high addresses.
The routing algorithm is then as follows: given the address of the current
node and the address of the destination node it returns the channel on which
to forward the packet.

7̂ -Catt ■ N x N C

ftcatt(n,-,nd) = <
for ward if i < d

C i,reverse if i > d
£i,home if i = d

(2 .1)

When there are radial connections the routing algorithm is more complex.
As well as having links to the forward and reverse directions, the node must
also have links to, and know the address of the nodes towards the center and

34

Direction of Spiral

Center of wafer

Figure 2.4: A single node in a Catt spiral

towards the edge of the wafer. These new directions are called “in” and “out”
respectively. Of course some nodes will not have links in these directions if
they are either on a corner of the spiral, or are next to a dud node. To
describe this algorithm we need to define the function link : C N which
takes a channel and returns the node that is connected to that channel (if
one exists). This new routing algorithm is as follows:

7^-Catt • N x N C
*

Q .home i f i = d
c t,in i f i < d A x < d
Ci .forward i f i < d A x > d
Ci .out i f i > d A y > d

, Cj.reverse i f i > d A y < d
where
nx = l i n k (c , iin)

riy — l i n k (c , iOUt)

Deadlock The Catt spiral is naturally deadlock free. This is because a
packet is routed either in the directions forward and in or the directions out
and reverse. Routing is essentially unidirectional. The cycle of dependencies
can thus never form.

Harvest &: Sacrifice One of the main problems with the Catt spiral is the
fact that in its simplest form, not all nodes can be configured for use, even

35

though they are working perfectly and they have perfectly working neigh-
bours. This is because there are situations where the spiral advances into
what are termed “blind alleys” — positions from which it cannot continue.
It must then backtrack and sacrifice the nodes along this section. Figure 2.5
shows an example of a wafer on which several nodes are sacrificed because
they are in a blind alley some nodes are sacrificed because the spiral cannot
use them.

Figure 2.5: Catt spiral sacrificing several nodes that are in “blind alleys” ,
and ignoring others that are unconfigurable.

This means that the harvest of working nodes is far from perfect.
Another problem with this is that Tcutoff is fairly high. So in order for

it to work, the designer of the CE must ensure that Vc e is high. Figure 2.6
shows the results of the simulation of the harvest given by the Catt spiral
against Tc e - It can be seen from this that the harvest is far from ideal. Here
we see the communications architecture dictating which PEs are usable. The
purpose of the CE is to serve the processors, not limit them.

36

Harvest versus CE ïield
H oU n ¿F CES1---------1-------- 1-------- r-

100

80

IV.v
O < O:

■f 60

40 mV '*
it Ì*

ç ri $20

10 20 30 10 50
Ter

60 70 60 90

Figure 2.6: Harvest versus Yield for Catt spiral

CE/PE binding Some of the original designs using the Catt spiral were
such that the CE and PE were tightly bound [Shu83]. This was because the
PE address was the same as the CE address. If the PE did not work, then
the CE could have no logical significance in the spiral, therefore it would be
sacrificed, despite working perfectly. However, later COBWEB designs and
the Anamartic wafer memory have the PE loosely bound to the CE.

Latency With the simple Catt spiral with no radial connections, if there
are x nodes configured into the spiral, then the average latency is proportional
to half the length of the spiral: / oc |.

With radial connections the latency is proportional to the dimension of
the wafer: l oc y/x. The Catt spiral has a fairly high average latency com-
pared to the average physical distance between nodes. Consider the example
in figure 2.7. The figure to the right shows path of the spiral, and to the left
the route taken by a packet. The packet must go all the way round the wafer
before it can get to its destination even though it is physically fairly close.
This is true even for a wafer with radial connections.

Performance The Catt spiral is essentially a serial configuration mecha-
nism. Although there may be many packets in flight at once in the machine,
they must all be travelling along the spiral, or along radial connections, with
the majority travelling along the length of the spiral. Queues inevitably
build up along the spiral and lead to congestion. The performance does not
respond well to increasing congestion[A088].

37

P ath from s o u rc e to de stin a tio n

Figure 2.7: An unnecessarily long route taken by a packet following the spiral

2.2.2 Other networks

Tree networks

Some teams have identified tree networks as the basis of possible commu-
nications architectures. Lea at Brunei University has developed the WASP
architecture for image processing based on string processors [JHL90] which is
based on a tree architecture. Brunei WASP is a radically different architec-
ture from the main subject of this thesis in that it is SIMD, and thus operates
synchronously, and requires a fairly regular physical topology. This topology
is achieved by linking a number of processors into “branches” around a cen-
tral “trunk” . The branches then link together to form a “string” . Thus it is
not subject to all of the terms and metrics described in section 2.1.

Although the team have had some success with the approach [JHL90],
the communications network is not recommended for all applications. This is
because a badly placed fault in the structure of the communications network
can have disastrous consequences. For example, if a node close to the root
of the tree fails, this can potentially cut off all the nodes on the other side of

38

the branch, and thuŝ waste many good nodes even though they might have
many working neighbours.

2.3 The Navigation Algorithm
As mentioned in the introduction the architecture for which this algorithm is
defined is a highly regular packet-switched communications architecture. All
nodes are identical except for a number of I/O nodes close to the boundary
of the wafer.

2.3.1 Routing
The Routing Algorithm

In order to achieve communications between non-neighbouring nodes, we
need a communication algorithm. To take a first step towards finding such
an algorithm, let us imagine a perfect wafer where everything works totally
reliably. Each node on this wafer is fully connected to its four nearest neigh-
bours. We can think of this wafer as a two-dimensional mesh. Each node
has a location in the mesh which can be written as the cartesian co-ordinates
of that node in the mesh relative to some origin. Each node has a set of
channels linking it to its neighbours. These can be envisaged as a set of
directions D = {north, east, south, west, home} as in figure 2.8.

A simple communications algorithm can be devised based on this address-
ing system. The routing function is shown below. This function maps the
current node and the destination node onto the channel on which to forward
the packet. It is a simple matter to prove this correct. For each hop, the
packet is routed to a node closer to its destination. As long as the path is
not blocked, the packet is guaranteed to be delivered.

7̂ -Nav N x N >—> C

^xd,yd) — '

i-i,j,home if (x ,y) = (xd,yd)
hc,2/, north if y > yd
Cx,i/,south if y < yd
Cx.j/.east if x > xd
Cx,y,west if x < xd

(2.3)

However, things are not so simple on a real wafer. The perfect mesh
assumed for this routing algorithm is inevitably disrupted by defects. Any
routing algorithm for WSI must take account of these defective areas and
cause the packet to avoid them. Of course these areas can be arbitrarily
complex. Figure 2.9 shows a particularly nasty wafer.

In a wafer that does form a perfect mesh, the. routing algorithm above
is sufficient. Indeed, there will be regions of a non-perfect wafer where this

39

Figure 2.8: Channels to neighbours as compass points

routing algorithm will work. However, when there are defective areas, this
naive routing algorithm leads packets into areas from where they cannot
progress closer to their destination. The packet cannot backtrack, because
the routing algorithm would take it right back to where it got stuck, leading
to a livelock situation.

The strategy we adopt is to let a packet know when it is blocked from
further progress and to let it then take evasive action. To implement this,
the packet must operate in two modes. We call these blocked and unblocked
modes. This algorithm has some origins in the cartesian routing algorithm
mentioned in [KS86]. However that algorithm requires CEs to be sacrificed
using convex wrapping so that “concavities” in areas of faulty CEs can be
filled.

The routing algorithm for when the packet is unblocked is simple and
is based on the previous routing algorithm with a minor modification. The
modification is based on the observation that at some points in the mesh, the
packet can move in more than one direction to get closer to its destination.
For example if a packet is on the south-western diagonal, it can go either
north or east. The modification to the routing algorithm is as follows: If the
packet cannot move in the optimal direction, it will be routed in one of the less
optimal directions. This relies on any particular channel knowing whether
or not it is connected to a working CE. The predicate dud : C {T ,F }
indicates if a particular channel is connected to a non-working CE.

40

The formal definition of the routing algorithm with the modification is
given below. It is easy to prove that this routing algorithm is correct. Again,
each step routes the packet closer to its destination.

7̂ -Nav N x N

7 £ n av(^'27,y5 Tlxd,yd)

where
north if

j _ south if
west if

. east if

C

{ dr,y,home if
dr,y, d if

y < yd
y > yd
x < xd
x > xd

(x ,y) = (xd,yd)
-'dud(d)

(2.4)

As defined here, this is non-deterministic. If a packet can go in one of two
directions, say north and east, then either can be chosen. However, the
hardware to implement such a routing algorithm would be deterministic and
would choose one direction in preference to the other.

If the packet cannot move in any direction that would take it closer to
its destination, then it becomes blocked. At the time it becomes blocked
the packet is effectively facing a wall of dud nodes. The purpose of the
routing algorithm is to move the packet into a position where it can become
unblocked and thus resume moving closer to its destination.

The condition that the packet will become unblocked when it is closer
to its destination than it was when it became blocked, is essential if we are
to prove that the routing algorithm works. If we can prove that when the

41

packet is blocked the routing algorithm manoeuvres the packet closer to its
destination then we can be sure that the routing algorithm is correct.

Figure 2.10: The routing algorithm in full action

In fact, getting into such a position is quite easy. All the packet has to
do is to follow the edge of the area of duds. This is guaranteed to bring it
closer to its destination. Figure 2.10 illustrates the action of the algorithm
in the blocked phase.

There is an important optimisation that can be made to the algorithm.
Consider the action of the algorithm when it encounters the physical edge
of the wafer. One of the options open to it is to crawl round the edge as if
the edge were just another area of duds. This is obviously non-optimal. The
optimisation that can be made is for the packet to recognise that it has hit
the physical edge and to simply go back the way it came. Figure 2.11 shows
this optimisation.

Obviously this routing algorithm requires the packet to carry some state,
which can change as the packet is routed towards its destination. For example
the mode needs to be changed as the packet becomes blocked and unblocked.

This requires the routing algorithm to be of type

U - . P x N x C ^ P x C

where P is the set of packet states. The “state” that the packet needs to
carry is denoted ps,b,h where each subscript denotes

42

Figure 2.11: Packets “bouncing” off the edge of the wafer

• A displacement field 0 < s < maxs where maxs is a constant whose
value is greater than the distance between the two furthest removed
nodes on the wafer

• A blocked bit b 6 B = { T , F }

• A handedness bit h € H = {L ,R }

The routing function can now be given in its complete form, but first some
auxiliary definitions are needed. A node nx>y has a number of channels cx<y,<* *
which connect to each neighbour where d € D If node nXiV receives a com-
munication from node nx»>y<, on channel then (x ,y) and (x',y') can be
related by x = x' -f modx(d) and y = y' + mody(d) where modx and mody
are functions:

modx(d) = «

mody(d) = <

1 if d = east
-1 if d = west

0 if d = north V d = south
1 if d = south

-1 if d = north
0 if d = east V d = west

(2.5)

Functions over directions are needed: opp : D i—> D which maps any direction
onto its opposite direction (eg: opp(north) = south); and inc : D x H D
which maps a direction, and the state of the handedness bit onto the direction
clockwise, or anti-clockwise depending on the state of the handedness bit.

43

For example, inc(east, L) = south and inc(east,R) = north Also, several
more predicates over channels need to be defined. These look at the state
of the CE that the channel is connected to: good , dud, and edge all of type
C {T, F }. Finally, the negation operator -> is defined over H such that it
delivers the opposite handedness: -'L = R and ->R = L.

So the routing function can now be defined

7̂ Nav : P x N x C \ - + P x C
sp / \ _ j (Pmaxs,F,hi C-x,y,d) if

5 'H'xd.ych C x'.y '.in) — S / _ \
 ̂ \Ps',Tyh 'i C x,y ,d ')

where

closer A good(cx<ytd)
-1closer V ~‘good(cXiyyd)

x =

closer —

d =

(d',h') =

f(d ,h) =

x' + modx(in)
y' + mody(in)
opp{in)
| x - xd | + | y - yd |< s
f prim if good (cXiy,pr;m)
1 alt if igood(^cx ŷfpYim>)
j | x — xd | + | y — yd | if ->b
I s if b
j f(prim , h) if -i6
| / (inc(in' , h) , h) if b

(d,h) if good(cXiyi(i)
< f(inc(d,->h),->h) if edge(cx<y>d)

f(in c(d ,h),h) if dud(cXiy<d)
(2 .6)

The first clause of 7̂ -Nav deals with the normal unblocked case and the case
where the packet is ready to leave blocked mode. The second clause deals
with when the packet is blocked, or if it is just about to become blocked.
The choice of direction is quite tricky, and is made trickier by its depending
on the direction of the channel on which the packet arrives at the node and
whether or not the packet was already blocked. The direction and the hand-
edness when blocked are chosen by the auxiliary function / . This function
implements a seek in the compass directions for the first good node available.
Handedness is flipped if the packet is at the edge, implementing the “bounce”
optimisation.

When the packet is unblocked, the algorithm chooses one of the directions
prim or alt representing the primary direction and the alternative. These can
be a simple table lookup with the keys being the x — xd and y — yd. The
table is as follows, with x — xd on the horizontal and y — yd on the vertical.

—ve 0 -\-ve
—ve west,south south east,south
0 west home east
+ve west,north north east, north

44

When there are two directions, either can be the primary or the alternative.
If there is only one, this must be the primary.

Deadlock Avoidance

As it stands, the routing algorithm is not deadlock free. Simulation shows
that it is in fact fairly prone to deadlock at medium loads, ie: when the
number of packets in flight approaches one per CE, the network will deadlock
very quickly. This is clearly unacceptable, and we must devise a way round
the problem. This section looks at some techniques for avoiding or breaking
deadlock, and their applicability to this architecture.

Deadlock Avoidance Buffers

One solution to the deadlock problem is to have a buffer associated with
every CE. The CE can guess that it is contributing to a deadlock situation
when it has failed to forward a packet on a link after a certain number of
cycles, and can then buffer the offending packet. This effectively breaks the
dependency cycle.

This strategy does not completely eliminate the chance of deadlock oc-
curring, but simply makes it less likely depending on the size of the buffer.
The designer of the CE can decide on an acceptable probability of deadlock
and can choose an appropriate buffer size. Unfortunately, for any realistic
probability, the buffer needs to be unacceptably large for a WSI design. Sim-
ulation shows that if the buffer is allowed to grow to the necessary size to
eliminate deadlock, then it takes up more space than is available for the CE
to yield at an acceptable level. Therefore this method can not be used for
WSI.

Structured Buffer Pool. A second solution to the deadlock avoidance is
to create a structured buffer. When packets can not be forwarded on their
appropriate link, they are inserted in this buffer. The difference • between
this method and the simple deadlock avoidance buffer mentioned above is
that packets are assigned an order as they are inserted in the buffer, and
are released from the buffer in this order. By this method, a network can
be proven to be deadlock free, as long as it is large enough. [BBG87] give a
suitable algorithm.

Unfortunately again, the addition of a buffer makes the CE design too
large for WSI standards, and we must reject this design.

Virtual Channels. Virtual channels are a novel solution to the problem
of solving the deadlock problem in communications networks [DS87]. The
method works as follows: Each CE has a number of virtual channels along

45

which packets can travel. For each direction, there is an partial order between
the channels such that packets can move to lower channels, but no packet on
a lower channel can move to a higher one. The channels are arranged so that
there is a route to every node by either staying on the current channel, or
via a series of channels in descending order. There is always a lowest channel
on which packets cannot be blocked by packets on higher channels. Using
this mechanism, the dependency graph is guaranteed to be acyclic and so
deadlock can never arise.

Virtual channels are ideal for regular networks. For example, a torus
network needs only two virtual channels [DS87]. In terms of hardware re-
quirements, each virtual channel requires one physical queue even if it is only
one packet long. Unfortunately, the WSI network and we are studying is far
from regular. It is not possible to prevent deadlock on such a network on a
wafer using only two virtual channels, and more than two would make the
design of the CE too large.

Chaining. So far, the deadlock avoidance strategies considered have been
rejected because their hardware implementation would take up too much
space. A solution appropriate to WSI should take up very little space. This
solution is based on [RD86], and is as follows: The communications algorithm
operates in a normal mode, but when deadlock is suspected it reverts to an
algorithm which may take longer to deliver the packet, but which guarantees
to deliver it within a specified number of hops k which is a predetermined
constant for a particular network. When in this mode, the CE must not
accept any new packets from the PE. After the time for k hops has elapsed,
the CE can revert to its normal mode, k is known as the chain delay.

To implement this we need to choose a simpler routing algorithm. The
one we have chosen connects every working CE in the network into a logical
“chain” . A packet is guaranteed to be delivered if it simply follows the chain
until its reaches its destination. Figure 2.12 shows a wafer that has been
configured as a chain. Every connectable node can be configured into a
chain in this way. The algorithm for connecting the nodes into a chain is
similar to the Catt spiral [AC78].

If there are n working CEs on the wafer, then every packet can be deliv-
ered to its destination in a maximum of n hops.

When a CE detects that it is contributing to a deadlock situation it first
signals to its neighbours that it is going into this mode. It then forwards all
the packets in turn on its input registers on one of the directions dictated
by the chain. The CE remains in this mode and continues to forward all
packets it receives until it has waited for the k hop times to elapse. It will
then return to normal mode.

A CE goes into chain mode if it detects either of two conditions:

46

Figure 2.12: A wafer configured into a “chain” * •

• It has been trying to forward packets for the last h hops and has not
succeeded, h is known as the chain constant.

• It receives a chain signal from a neighbour.

In each case it counts down from the initial value of the chain delay k, and
when it reaches zero it reverts to normal mode. The signal to go into chain
mode propagates from the original CE through to its neighbours, and on to
their neighbours, and thus to all CEs that are connected in a wave fashion.
If two distant CEs go into chain mode at the same time, the chain “waves”
will run into each other. If one chain is older than the other, then the chain
delay caused by the newest can be added onto the chain delay which already
exists.

The value of the chain delay is a crucial design decision. If there are n CEs
in the chain, then in the absence of congestion it takes n cycles to clear the
network. To be safe, the chain delay should be somewhat greater than n, at a
level that allows every CE to empty all its input registers. If the chain delay
runs out before all the packets have been delivered to their destination, then
as long as the packets are all marked as being unblocked, they will continue
to their destination as though they had just been generated. The worst that

47

could happen in this case is that the network could go into a livelock situation
where the same packets constantly cause congestion and thus chaining, and
are constantly routed back to where they came from by the CE operating in
chain mode. However, even this can be avoided by dynamically changing the
value of the chain delay. Going into chain mode would then have the effect of
simply redistributing the packets through the network seemingly at random.

This strategy is provably deadlock free, as long as k is large enough. It is
fairly harmless if k is not quite large enough to route all packets in the given
time as explained above. The amount of silicon needed to implement this
strategy in hardware is small, so this will be the deadlock avoidance strategy
adopted.

2.3.2 Properties of the navigation algorithm

Harvest &: Sacrifice

Unlike the previous communications architectures, the navigation algorithm
allows for all working PEs that can be connected to be used. Figure 2.13
shows the harvest for a wafer with 100 nodes. Tbutofr comes only when no
I/O registers can be connected to any other working nodes. For the more
interesting yield figures, ie between 70 and 90%, this scheme allows for almost
all working PEs to be used.

Harvest versus CE Xaeld

Figure 2.13: Harvest versus Yield for the navigation algorithm

48

Latency

Figure 2.14 shows how the average and maximum latencies vary with Fc e
for a wafer of 100 nodes. The unit of latency on the graph is one hop, the
time taken to make a routing decision and transfer a packet to a neighbour.

Average | Maximum lotencu versus Tield; dior»eter=l 1

50

o Averagè navigated path
+ Maximum navigated path

T

A0_

’30 _

20.

10

+ -f-*-

■r-

<r-w- -« - O ■ o - -0--0- 0- -0--«--0 -

75 80 85 80 85
Tee

Figure 2.14: Average and Maximum latencies versus Yield

Performance

In order to model the performance of such a communications architecture an
event driven software simulator has been written.

The performance of an individual routing from n,- to nj on a specific wafer
under some set of conditions is defined as

_ -¿ideal
-¿actual

where .¿¡deal is the latency of routing a packet from nt- to nj on a perfect
wafer in the absence of congestion, and LactUai is the latency under those
conditions. The performance of a wafer as a whole is defined as the average
performance of a large number of routings, while the conditions are held
constant. Measurement of the performance under differing conditions allows
us to choose certain design parameters, and to predict results.

What are the design parameters that we can vary? One of the most
important is the chain constant h. If this is too low then most routings will
be via the chain, and will take a relatively long time to complete. If it is too
high, then the network will take an inordinately long time to recover from

49

high congestion and the performance will suffer again. There must be an
optimal value for the chain constant.

Figure 2.15: Performance versus load for increasing chain constants

The most important relationship that can be measured is the relationship
between the performance and the load. The load is defined as the number
of packets “in-flight” . Each CE can contain a maximum of four packets in
its input buffers. The maximum number of packets in a given network is
equal to the number of connectable input buffers. A CE’s input buffer is
not connectable if it is up against a dud CE, or the boundary of the wafer.
A packet is in-flight during the time between its dispatch from the source
PE and its receipt at the destination PE. The results of simulation are quite
surprising. Figure 2.15 shows the results on performance for various values
of the chain constant. The performance levels out very early, prompting the
choice of 10 for the chain constant.

Overhead

The packet overhead associated with administering a routing algorithm is
defined as the amount of information additional to the payload that a packet
has to carry to ensure delivery. The following table shows the overhead per
packet for a wafer with a diameter of n nodes.

50

Overhead number of bits required
Address field 2 [log2 n]

Displacement field [log2 2ii\
Blocked 1

Handedness 1
Total 3 + 3 [log2 n]

If n is as large as 16, the overhead is 15 bits per packet.

Cost in hardware

The cost in hardware is defined in terms of the amount of silicon area needed
to implement the routing function. The requirements of WSI state that the
CE must yield well, and it will only do so if it is sufficiently small. In order to
estimate the amount of silicon needed, we need to do a “floorplan” . Figure
2.16 shows a proposed floorplan of the CE taken from [AKW90]. Using this

io c Interface
controller

Figure 2.16: Proposed floorplan for a node

design, the area of the node is bounded by the length of its edges, edges.

51

We are assuming 128 bit wide communications between nodes. For a 6 inch
wafer, we can lay out approximately 100 nodes of this size. The operation
of the CE is explained in detail in [AKW90]. Here we outline its function.
When a full input is detected, the CE controller clocks the first half of the
packet into the router. As the routing decision is being made, the second half
is clocked in, and by the time it settles, the decision will have been made,
and the controller can present the packet on one of the output ports, or to
the PE. The sizes of the blocks are calculated by using a gate equivalence
scheme. Assuming 1.5 /̂m CMOS, we have

Structure Area///2 Gate equiv
10 registers 1 .7 x l 0 6 5000

10 controllers 1 8 7 x l 0 3 400
Router 468 x lO 3 1000

CE Controller 936 x lO 3 2000
Routing bus 1 6 x l 0 6 0

Power supply 6.3 x lO 6 0

Assuming the defect density for random logic Dc is 3x 10-8 //r2, and the defect
density for the metal is 1x10-8 //x2. Using 1.5//m CMOS and assuming an
area of 98.6x 106/rm2, using the generalised negative binomial yield model,
with the clustering parameters ac and a,- to be 0.75 [HS88], we estimate Fc e
to be approximately 75% [AKW90]. This is a sufficiently high yield to make
the CE a feasible design.

2.4 The Paths Algorithm
The navigation algorithm 7̂ -Nav is deterministic. A packet from a source to a
destination will always follow the same route. This suggests a new approach
to routing. Instead of making the same set of decisions for the packet every
time it is routed, why not make them once. A network address can then be
defined as a list of directions in which to route the packet. These can be
determined externally for every source and every destination on the wafer,
and loaded into some memory associated with the PE. When the PE wants to
send a message to a particular node, it simply prepends the list of directions
to the packets comprising that message. The routing algorithm then becomes
trivially simple. The communications node can simply read the head of the
packet’s direction list and send it in that direction.

Clearly the directions need to be generated. Any communication network
is a graph, however, and there exist algorithms that will find the shortest path
between any two nodes in the graph. This is however not precisely>what we
need as we shall see later.

52

2.4.1 Routing

The Routing Algorithm

The routing algorithm is trivially simple, and is stated here. L is the set of
path lists. The following operations are defined on a path /,•:

• A predicate empty : L {T, F } which indicates if the list is empty.

• hd : L x N C which takes the list and a node and returns the channel
on which to forward the packet.

• tl : L L returns the remainder of the list after its head has been
removed.

7?path • L X N I— > L X C
V (l. n .\ - S if em piali) (2.7)
<pathf «, j V (tl(li),hd(li,nj)) if -iempt^U)

Deadlock

This scheme can use the same deadlock avoidance strategy as the navigation
scheme.

2.4.2 Properties

Harvest Sacrifice

This network uses essentially the same topology as the navigation algorithm,
so the harvest and sacrifice results are identical.

Latency

The major advantage of this scheme over the navigation scheme is that the
latency is decreased substantially. This is because we have taken care to
generate paths that are shorter than those generated by 7̂ -Nav In addition,
the time taken to make a routing decision will be less because all that is
required is for the chosen direction to be read from the head of the packet.

Figure 2.17 shows the maximum and average latencies for a wafer of
diameter 11 versus decreasing Vc e - The average latency remains fairly
constant as the yield decreases, and the maximum latency increases only
slightly.

53

IB
1G

11

12

rie
8
G

1

2

Averaoe & Haxinun latency versus T]eLdi 11 x 11 waFer
o Averogé path 1 1 1 1
+ Maximum path

+ + +
• • T ' f f T T ----- V-----+-*--+--•(--+-4- ___+ + " f t . r

75
J_________ I__
80 85

lice
90 95

Figure 2.17: Maximum and average latencies in hops using the paths algo-
rithm

Performance

The performance of a machine using the paths algorithm has been measured
in the same way as the performance for the navigation algorithm. The same
metric definitions apply here too. Figure 2.18 shows the performance for a
set of values of the chain constant. It can be seen from the graph that the
performance is better than the navigation algorithm, in that it tolerates load
better. Note that these performance graphs are modulo the average latencies,
so the scale of the increase in performance is not immediately apparent. That
is, to find the average latency at a given load, the performance should be read
from the graph and multiplied by the average latency from graph 2.4.2. The
effect of the chain constant seems to be less than with 7̂ Nav. The performance
peaks fairly early, and only starts to drop slowly when the chain constant
reaches 30.

Overhead

A path is simply a list of directions on how to get from one node to
another. For example to get from node S to node D in figure 2.19 the path
would read

[east ,east ,east, nor th ,eas t, east ,east, south ,east, east ,east,
north,east,east,east,south,res]

There are some other considerations that we need to take into account before
paths are generated. These have to do with the amount of space needed to

54

; store the paths in the CE, and the overhead in terms of bits per packet.
There are four possible directions in which a packet may be sent from any
particular node: north, south, east and west. These can be encoded as two
bits each. The length of the list also needs to be encoded. This can be
encoded as a count field which is to be decremented every time the head is
removed. The overhead per packet is defined as follows: For a particular
wafer, there will be some maximum number of hops that can be taken. Let
this be denoted M.

Field no. of bits
count P°g2 M]

directions 2 M

giving a total overhead of 2M + [log2 M] bits per packet. M is about 16 for
a wafer with diameter 11, this results in 37 bits.

37 bits per packet is too large an overhead per packet to be acceptable, so
we must devise a method to compress the paths information into a smaller
space. Run length encoding of paths is one way of compressing the address,
and there are (at least) two ways of doing this.

Method 1 The first two bits in the packet give the first direction to go
in. Each following bit instructs the router to either route the packet in the
same direction, or not. If not, then the following two bits indicate the next
direction. The number of changes of direction is given by c'

Field no. of bits
count pog2 M\

directions 3 + 3c' + (M - 1 - d)

For a wafer of diameter 11, with a Tc e of 75% the longest path is 16 hops
long. This involves about five changes of direction, so the overhead for this
is 28 bits. If the maximum number of changes of direction is eight, then the
overhead is 34 bits.

Method 2 This method involves thinking of the move to the PE as just
another direction. With this method we count the number of changes of
direction, and have a count field for that. The first two bits give the initial
direction. If the following bit is a 1 then keep going in the same direction. If
not, then the bit after that indicates whether to go to the left, or to the right
of the previous direction. When this is found, the count is decremented.
However when the count is,found to be zero, then this indicates that the
packet should be routed immediately to the PE.

55

Field no. of bits
count Rog2 c'l

directions 2 + (M - 1)

For a wafer of diameter 11, the longest path is about 16, and allowing d to
be a safe 8, the overhead is calculated to be 21 bits. This method has the
smallest overhead, so we choose this.

Path Generation

These results have several consequences for the generation of paths. The
most important of these is that whatever route is generated, it must have as
few changes of direction in it as possible. can be recast as an algorithm
that generates a list of directions. This happens to have the property that it
sends packets on paths that have few changes of direction. That is a packet
will be sent in a straight line rather than change direction. So we can use
this as a basis for generating the paths.

Because the program that generates paths has a more global view of the
wafer and can afford to be a lot more ’intelligent’ , it can make a number of
optimisations to the paths as they are generated.

These optimisations are as follows.

1. If a packet has to backtrack for any reason, then the section of the path
that the packet backtracks over can simply be deleted completely from
the path. This situation arises when a packet encounters the physical
edge of the wafer and changes its handedness.

2. A packet from a source to a destination may take a different path
depending on its handedness. The optimiser can simply choose the
shortest of these.

3. A packet from a source to a destination may take a longer way round
than a packet going in the reverse direction, i.e. from destination to
source. The optimiser can choose the shortest of these.

4. For each node in the path from source to destination, if there is a
shorter path from that node to any other node on the path, then the
optimizer can replace part of that path with the shorter section.

Figures 2.20, 2.21, 2.22 and 2.23 shows how these optimisations shorten
the paths. Obviously some of the optimisations overlap. The results reported
in section 2.4.2 are results for paths found after repeatedly applying all these
optimisations to the paths generated by the navigation algorithm

56

Cost in hardware

The cost in hardware of the paths communications algorithm is much lower
than that for the navigation algorithm. This is because the hardware involved
is much simpler. If we adopt the same design as in section 2.3.2, the only
thing that changes is the size of the router. The router is estimated to occupy
approximately 200 gate equivalents. As the hardware cost is dominated by
the area occupied by the 10 registers and the routing bus, the Yc e is not
affected much by the decrease in complexity of the routing algorithm, and
the estimated yield figure is 75%.

57

Figure 2.18: Performance versus load for increasing chain constants

Figure 2.19: An example path from a source to a destination

58

Figure 2.20: Optimisation one: Eliminate backtracking

Figure 2.21: Optimisation two: Choose handedness with shortest path

Forward Reverse

Figure 2.22: Optimisation three: Choose shortest of the forward and reverse

n
Figure 2.23: Optimisation four: Choose shortest paths to other nodes in the
path

59

2.5 The Signpost Algorithm
The signpost algorithm is based on the observation that the paths generated
for the paths algorithm remain constant for the wafer. Instead of having a
packet carry around the path, it only needs to carry around the address of
the destination processor. Now, instead of having a stateless communications
architecture, each CE has a small amount of memory indexed by the address
of the, processor. The memory contains the direction in which to route the
packet next. This set of directions is known as the “signpost” . The paths
can be generated beforehand in the same way as they were generated for the
paths algorithm, and loaded into each CE at system initialisation time.

As the paths are the same, many of the properties of this algorithm are
identical to 7£path.

2.5.1 Routing
The Routing Algorithm

The routing algorithm is defined in terms of the signpost. Each CE i has a
signpost set 5;. The function operates on the destination address, the current
address, and the signpost, and is thus trivially defined as follows:

f t SP : N x N x S ^ C
7̂ -SP =
where (2.8)
, _ J home if i = j

{ Sj,n if
The routing algorithm delivers the packet to its destination as long as the
signposts have been set up correctly. Therefore the burden of proof of correct-
ness is upon the path generator. As we have shown that the path generator
generates correct paths, we can assert that 7£sp is correct.

This algorithm is more powerful than it looks. It offers two features that
neither of the previous two offered. These are graceful degradation, and
dynamic routing. If a routing fails with either of or 7£path, we have a
problem. With 7̂ Nav there is potential for recovery but only if the packet is
not in blocked mode. If it is in blocked mode, then on average, it will never
get to its destination. With 7£path, if a direction is wrong, then because the
paths are context sensitive, the packet will end up anywhere but its correct
destination. With 7?-s p , if a direction is given wrongly by a faulty CE, then
as long as the packet is not returned to the faulty CE, then it will still get
to its destination.

The second advantage is with dynamic routing. In both and 7̂ path,
the route from source to destination is fixed. With 7̂ s p , the route is con-
trolled by the contents of the signpost at each CE. As this can be changed,

60

there is the potential for routes to be changed even as packets are being
routed. We might want to use this so as to avoid heavily used “highways”
on the wafer so as to minimise congestion. There is even no need for instan-
taneous consistency in the directions. A packet can get temporarily “lost”
without harm as long as all the signposts eventually become consistent. This
also has implications for graceful degradation. If a CE fails suddenly, then the
controller can route packets round it without halting the machine, although
detecting the failure is another story.

Deadlock Avoidance

We can use the same deadlock avoidance scheme as we did for 7̂ path.

2.5.2 Properties

Harvest &: Sacrifice

The results for harvest and sacrifice are identical to 7£path.

Latency

The latency results are identical to 7^ath.

Performance

The performance results are also identical to 7£path-

Overhead

The overhead for this algorithm is extremely low. Each packet only needs
to carry the identifier of the destination processor. For a wafer of n nodes,
there are y/n nodes in each dimension, so we have the overhead as follows:

Field no. of bits
destination address 2 x f ^ l

For a wafer with 16 nodes in each dimension, this is an overhead of only 8
bits.

As the overhead is constant, we no longer have the constraint of needing
to keep the number of changes of direction down. We can thus choose a path
generation algorithm freely.

61

Cost in Hardware

Again we use the same floorplan as in section 2.3.2. This algorithm is also
fairly easy to implement in hardware. It will consist of some memory to store
the signpost, plus a small amount of addressing logic. The total amount of
memory required for the signpost is given by the number of processors times
the number of bits required to store one direction. If the total number of
nodes on the wafer is 100, and there are four directions then this amounts to
100 x 2 = 200 bits. Using static RAM to store the directions, we estimate
this area to be 670 gate equivalents. This gives us a Tc e of approximately
75%.

2.6 Summary
We have shown introduced and studied three communications algorithms for
regular arrays on WSI. We have measured the performance by simulation of
these, and estimated their size, and therefore their yield. It is not immedi-
ately obvious which algorithm is best for a general purpose WSI product.
Each has its good and bad points.

All the designs for CEs yield at acceptable levels, however, as we have
seen, the area of the router is “in the noise” , so the yield is a property of the
CE design rather than the communications algorithm.

If a routing algorithm is to be chosen for a particular application, the best
depends very much on the requirements of that application, and in particular
on the number of nodes on the wafer.

The navigation algorithm has a higher latency than the others. For the
design shown it would not be chosen, but for a different application, where the
nodes are much smaller it might win over the other two. This is because the
properties of both 7£path and 7̂ sp are a function of the number of nodes on the
wafer. If we increase the number of nodes n on the wafer then the dominating
factor in the overhead for 7̂ -Nav is 30(log2 n), for 7̂ sp it is 0 (log2 n) and for
7̂ -Path it is However the dominating factor in the space for the router
is 0 (log 2 n) for 7?-sp and 7̂ -Nav, but less than this for 7£path.

Another factor to be taken into consideration is whether dynamically
changing routing, or some degree of graceful degradation is required. If these
are required the only suitable algorithm is 7?-sp.

If the number of nodes is very large, then 7̂ Nav wins overall in terms
of low overhead and high yield, despite its greater latency. If the number of
nodes is small, then 7̂ sp would win because of low latency compared to 7̂ Nav
and the dynamic routing capability compared to 7£path. Somewhere between
these two and,.in applications where the size of the router is critical, then
7 -̂Pathwould be the preferred choice.

62

So we have a variety of routing algorithms within a common design for
a CE. For this design IZsp is the preferred because of its low latency with
respect to TIn&v and its low overhead with respect to 7£path- A bonus is the
potential for dynamic routing and graceful degradation.

63

Chapter 3

A Graph Reduction Engine

One paradigm that promises to help solve some of the problems of the soft-
ware crisis, and some of the problems of exploiting parallelism is the func-
tional paradigm. The implementation of functional languages requires spe-
cial techniques not especially suited to conventional computer architectures.
Some alternatives to the von Neumann have been proposed which are better
suited to executing functional languages.

Basically there are two feasible methods for the implementation of func-
tional languages. These are graph reduction, and dataflow. This chapter
reviews computer architectures that have been devised to execute functional
languages efficiently, and introduces COBWEB — the parallel graph reduction
architecture that is the subject of this thesis.

An abstract machine for graph reduction can be specified at many levels.
The highest level at which we specify COBWEB is as a term rewrite system
(TRS). Using such a system we can make fairly strong assertions about a
machine. However while this is a considerable bonus this level tells us nothing
about what the lower level functions of the machine might be. In order to
complete a design for a machine from this specification we must proceed by
transforming the high level specification into a low level design.

We proceed in phases starting with the original specification. The input
to each phase will be a specification. The output from each phase will be a
specification which is at a lower level (ie more detailed) than the input one.
Each phase will thus consist of a process that adds constraints to the input
specification and translates it into a specification at a lower level. For each
phase we need to show that the output specification is correct with respect
to the input specification.

In this chapter we demonstrate the translation process at each phase of
the design process. The final output from this process is a design for an
abstract machine expressed in terms of a topology and a number of blocks
whose operation is described in terms of a low level imperative language. This
design is then translated into a working program which we use to determine

65

some architectural parameters, and to eventually decide if a graph reduction
engine using WSI is in fact feasible.

The chapter is structured as follows: We start with a brief review of
dataflow architectures for functional languages. Section 3.1.2 will present a
review of other work in the area of graph reduction architectures. To set
the following sections in context, section 3.2 will provide an overview of the
COBWEB system, and explain the route from a high level program written
in a functional language to a representation of that program running on
the machine. Two specification languages are used to specify COBWEB. The
languages, one a term rewrite system (TRS), the second an object based TRS
with message passing are introduced in section 3.3. This section goes on to
introduce the specifications themselves. Section 3.4 shows how to translate
a specification written in Paragon into a hardware design. Section 3.5 forms
the body of this chapter. This chapter discusses the transformation of the
high level specifications from section 3.3 into a low level design. Finally
section 3.6 discusses an implementation of the final design from section 3.5.

3.1 Implementation Techniques for Functional
Languages

As mentioned earlier, the two modern techniques for the implementation of
functional languages are dataflow and graph reduction. In this section we
review parallel computer architectures that are designed to execute functional
languages based on both techniques. A more general overview of the field
can be found in [Veg84].

3.1.1 Dataflow
Although dataflow is a feasible technique for the implementation of func-
tional languages, it is beyond the scope of this thesis. Parallel dataflow
computers for functional languages have been studied extensively. Arvind
and his team at MIT have designed the Tagged Token Dataflow Architecture
[AN87], and MONSOON [PC90]. Gurd and his colleagues have designed the
Manchester Dataflow machine [GKW85]. At Southampton University and
Imperial College Hugh Glaser leads the FAST project, which aims to have
an implementation of the m ’Tuki abstract machine running on a network of
Transputers [Gla90].

3.1.2 Graph Reduction Architectures
Although graph reduction is a standard technique there are many abstract
machine designs. The basic principle is that the functional program is rep-

66

resented as a graph. Applying transformation rules to the graph is known
as reduction. A reduction rule can only be applied to an expression which is
reducible — this is known as a redex. Repeated reduction of the graph will
eventually deliver the result of the program. Throughout this document we
discuss evaluating to weak head normal form (whnf) [Pey87]. This effectively
means that evaluation proceeds until there are no top-level redexes.

The standard mechanisms for the implementation of graph reduction are:

• Combinators [Tur79]

• Supercombinators [Hug84]

• Directors [KS81]

A set of combinators correspond to the instruction set of a simple imperative
computer, for example move and copy. Supercombinators can be described as
an instruction set that has been invented to suit the program being executed.
Directors can be thought of as annotations to the graph that indicate where a
parameter is needed. Directors can be shown to be equivalent to combinators.

Concurrency in graph reduction machines is exploited by observing that
many parts of the graph can be evaluated to normal form concurrently.
Which parts of the graph this can be applied to can be elicited using strictness
analysis, or by annotations added by the programmer.

Parallel machines can be tightly coupled or where the processors share
some global memory and any local memory is a cache, or loosely coupled
where the processors have local memory only. A machine is neighbour coupled
if memory access to close neighbours is quicker than memory access to other
processors.

Load balancing is achieved in tightly coupled machines by allowing idle
processors to evaluate reducible parts of the graph at will. The situation
with loosely coupled machines is more complex as the cost of exporting a
graph to be evaluated by another processor may be greater than waiting for
it to be evaluated locally.

The mapping of program code onto processor memories is another issue.
The goal is to reduce communication by maintaining locality of access as
much as possible. As machines get more tightly coupled, the problem of
mapping a program onto a set of processors gets more difficult.

Parallel machines in general can be categorised by their grain size. This
is defined by the size of a task, where a task is the minimum amount of
work a processor can do in parallel with another task. A fine grain machine
is one where a task might consist of a basic operation such as a copy, or
an add. A medium grain machine is one where a task might consist of a
small number of basic operations, perhaps at the function level. A large
grain machine is one where the amount of work in a task is large, usually

67

at the program level. Combinator machines are typically fine grain, whereas
supercombinator machines are medium grain.

GRIP

GRIP [PCS89] is a high performance graph reduction machine based on the
Spineless Tagless G-machine, a supercombinator based abstract machine. It
consists of a number of conventional CPUs attached to a number of memories
(IMUs) which are managed by a novel intelligent controller and a packet
switched bus. Each IMU contains a fixed segment of the global heap. Each
processor in the machine contains some local memory, known as the local
heap, in which new graph nodes are created, and which acts as a cache for
the global heap. The machine can be said to be “programmably” -coupled as
the level of coupling is dependent on the programming of thé IMU. Load is
distributed automatically by having idle processors poll IMUs for redexes.

Alice & FLAGSHIP

At Imperial College and at ICL the ALICE machine has been designed and
a prototype has been built. Alice is a tightly coupled medium grain packet
based reduction machine. It consists of a number of processors each of which
has access to a packet pool. Reduction proceeds by processors taking re-
ducible expressions from the pool, reducing them, and returning the result
plus any new packets generated to the pool. This process proceeds until the
packet that represents the result of the program has been reduced to normal
form. Load is distributed automatically by having idle processors scan the
pool for redexes.

A prototype machine has been built from Transputers connected by a
delta network.

FLAGSHIP, formerly a collaborative venture involving Imperial College,
Manchester University and ICL, is a descendant of the ALICE project [Kir89].
It is a system designed for declarative programming and so supports a larger
computational model than graph reduction for functional programming. The
heart of the FLAGSHIP system is an ALICE type graph reducer. The load
balancing system is more sophisticated, and is controlled by an intelligent
network. Each processor propagates some measure of how busy it is to the
network, which can route tasks from processors which are busy to those which
are idle.

The HDG-machine

The HDG machine is an abstract machine designed at GEC for the execution
of lazy functional languages using graph reduction [LB90, Bur89b]. The
machine has been designed to exploit evaluation transformers. These are a

68

way of expressing strictness in data structures, and functions which operate
on data structures as well as functions which operate on basic values. It is
based on the Spineless G-machine. The HD in the name indicates that it
is highly distributed. That is to say that the program graph is distributed
throughout the memory of the machine. This project is still in progress, and
the current literature does not specify a particular load distribution scheme.
A realisation of the abstract machine on a network of transputers is underway.

MaRS

MaRS is a graph reduction multiprocessor being developed by a team at
the Centre d ’Etudes et de Recherches de Toulouse in France [CCC+89]. A
programming language named “MaRS_LISP” has been developed which in-
cludes constructs to control parallelism explicitly. The instruction set is
indexed combinators which have a slightly larger grain than Turner style
combinators. There are several types of processor, the most important being
the reduction processors and the memory processors. It is a tightly coupled
machine with processors connected using an Omega network. The network
processors measure and control the spread of tasks throughout the machine.

ALFALFA

Paul Hudak at Yale leads a team at Yale University [GH86]. Their archi-
tecture is an implementation of distributed graph reduction on the iPSC, a
loosely coupled MIMD architecture. The source language is one of Alfl or
ParAlfl, the former being a functional language in the style of SASL, and
containing no parallelism constructs; and the former being a language that
permits the programmer to express parallelism. The grain of computation
is the serial combinator, which are larger than supercombinators, and which
contain no concurrent substructure. This enables parts of the program to
be evaluated using the conventional stack, rather than on the heap. Work is
distributed by diffusion scheduling whereby the program graph is distributed
throughout the machine based on workload and locality.

PAM

PAM is a parallel abstract machine being developed mainly at RWTH Aachen
in Germany [LKID89]. Their approach combines the work of Hudak on
serial combinators, and Burn on evaluation transformers. Parallelism is thus
detected automatically by the compiler. It is a medium grain architecture.
Redexes waiting to be evaluated are stored in the communications processor,
which can decide to export them to other processors if work is requested.
Each processor has some local cache, so it is shared memory architecture.

69

An implementation of the abstract machine has been implemented on a
network of transputers.

3.2 Overview of Co b we b

COBWEB is a parallel graph reduction architecture for functional languages.
This section gives a brief overview of the philosophy and operation of COB-
WEB. Much of the material introduced here will be expanded upon in later
sections. The purpose of this section is to explain how a program in a func-
tional language is run on the machine.

The way COBWEB runs programs is as follows. The functional language
Hope+ [Per88] (with pure lazy semantics) is compiled to the intermediate
code FLIC using the program hfc [Hun90]. A program in FLIC consists of a
set of definitions in the enriched A-calculus [PJ89]. One of these definitions
has the name MAIN. The result of evaluating the body of this definition is
the result of the program. Hfc produces a FLIC program with strictness
annotations in the form of evaluators and evaluation transformers [Bur89a].
This program is then compiled into a director graph using techniques from
[Pey87, BHK88]. The director graph is in the form of triples — each repre-
senting a node in the graph and consisting of a string of directors (including
strictness annotation), and the left and right subgraphs.

The graph is loaded into the machine and the result is requested. Execu-
tion proceeds by transforming the graph into weak head normal form.

3.2.1 Hope+ -> FLIC
Parallelism in a functional program can be detected using techniques known
as abstract interpretation, or projection analysis [Wad87, AH87, Bur87]. One
of the most important properties of a program that can be revealed by these
techniques is the strictness of functions. A function / is strict in its argument
iff:

/ JL = ±
where A-(bottom) represents the undefined expression. If it is known that a
function is strict in its argument, then it is safe to evaluate the argument in
parallel with the body of the function. This is the only source of parallelism
exploited in COBWEB.

Recently abstract interpretation has been used to reveal strictness of data
structures in functional programs [Bur89a]. Given a data structure and a set
of functions that operate on that data structure, this technique can reveal
how much “evaluation” of the data structure that function requires. For
example consider a list of 2-tuples. The function length returns the length
of the list. When applied to an argument it only needs to know how many

70

elements are in the top level list, and needs no evaluation of the tuples.
However, the function first which returns the list containing the first value
of the 2-tuple, needs to evaluate the structure of each tuple in the list. First
is said to do more evaluation than length.

Expressions and functions in a program can be annotated with informa-
tion indicating the amount of evaluation to be done. This type of annotation
is known as an evaluator. There are four evaluators:

£o indicates no evaluation

£1 means that the expression can be evaluated safely to whnf

£2 the spine of the list can be evaluated

£3 the spine of the list can be evaluated and all the element’s of the
list can be evaluated to whnf

These evaluators have an order:

6 > 6 > £1 > &

where the > indicates “does more evaluation than” . In our example, the
function first will be annotated with evaluator £3 and length will be annotated
with evaluator £2.

In addition there are evaluation transformers, which map evaluators for
an expression onto safe evaluators for its sub-expression. However these are
beyond the scope of this study.

The program hfc [Hun90] compiles programs written in Hope+ to FLIC
with strictness annotations of the form defined in [Bur87].

3.2.2 FLIC —> Co b we b

FLIC programs consist of a set of definitions. For example, consider the
following program in Miranda.

triple x = 3 * x
twice f = f . f

along with the application twice triple 7.
Ignoring for now the strictness annotations, this program will compile

into the following FLIC program:

M A I N (twice triple 7)
twice (A f At (f (f t)))
triple (Ax (* 3 x))

71

This program can be represented as a graph, as figure 3.1 shows.
The evaluation technique chosen for COBWEB is directors [KS81]. A di-

rector is an annotation on a graph node that indicates which subgraph of that
node an argument is needed in. A director simply defines a transformation
on the graph. Arguments to functions can be envisaged as being sent down
the graph following the directions indicated by the directors. At the leaves
of the graph are “boxes” which the argument will eventually slot into. The
process of transforming a program graph into a director graph is performed
by abstracting out all the A expressions. Figure 3.2 shows the program as a
director graph.

Figure 3.1: The program graph for twice triple 7

A C o b w e b program consists of a set of “triples” . Each triple represents a
node in the graph, and consists of the list of annotations plus the left and right
subgraphs of that node. Boxes are represented by the identity combinator
I. Directors are effectively the “machine-code” of COBWEB corresponding to
actions such as copying and moving data in a more traditional machine.

In addition to the directors, COBWEB uses some built-in functions and
data constructors/selectors mostly taken from the standard FLIC set.

For example, the above program compiles to the following COBWEB pro-
gram.

M A IN : [] MAIN_2 7
MA!N_2: [] twice triple
twice: [A\] 1 twice_2

72

MAIN

/ \
M AIN -2 7

Figure 3.2: The director graph for twice triple 7

twice_2: [/\] 1 1
triple: [\] triple_2 1
triple_2: [] X 3
M AIN ?

Each line represents a triple, or the name of a node to be reduced. The
result of this program will be the result of evaluating the node named M AIN .

Parallelism

COBWEB has two parallelism primitives. These represent context sensitive
strictness and context free strictness. The context free strictness operator
is the dyadic combinator P, whose semantics is that it evaluates. both its
operands in parallel. This operator is used in an application f x when it
has been deduced that / always needs the value of x. The context sensitive
parallelism primitive is an annotation written # which resides in the director
list.

These are fairly primitive parallelism operators, and take no account of
data strictness. The FLIC to COBWEB compiler compiles evaluators to ex-
pressions involving P and # .

If a function / is labelled as having an evaluator > on an argument x,
then this is compiled to the expression P / x. If a graph node is annotated
with the evaluator > then the context sensitive parallelism annotation is
added to the list of annotations.

73

3.3 Specification of Cob web

COBWEB is a parallel graph reduction architecture. We can describe the
machine at its instruction level using a term or graph rewrite system. This
system would describe the basic transformations to the graph. However,
a description of this form is at a fairly high level. It can only give us an
abstract view of how concurrency is exploited and how work is distributed
among processors.

We wish to specify the operation of the machine at a lower level, and
in particular we wish to describe the program graph and the mechanism by
which the graph is reduced in more concrete terms.

This section introduces two specifications of COBWEB. The first is a
traditional term-rewrite specification of the basic operations of the machine,
and the second is a specification in Paragon of the machine at a lower level.

3.3.1 C o b w e b as a Term Rewriting System
COBWEB can be described using a term rewriting system. A program in the
term rewriting system consists of an expression to be reduced. An expression
(e) has the syntax

<e> (e) (e)
1 ((e))
1 [(¿)](e)(e)
1 (P)

(d) ::= (d')(d)
1 e

(d>) ::= A | - | /

where (p) represents a primitive operator, combinator, or constant value for
example + , i, the numerical constants.

For example the program in section 3.2.2 can be represented by the term:

m \] i d/\] 11; ; (N (x s) i; ?)

Redexes and Directors

The next redex in a term rewriting system is implicit: as an expression is
reduced the leftmost outermost reducible expression is the next one to be
reduced.

The rewrite rules for directors are very simple. For example the “left”
director is defined as follows:

74

[d] (f x) a
[d] x a

([/::d] f a) x -»
([/::d] I a) x ->•

Appendix A gives a complete set of the term rewrite rules for the directors.

Primitives

The original COBWEB description in [BHK88] contained rules for a few of
the primitives of the machine, for example the strict basic dyadic operator
+ , and the parallel combinator P, as well as some of the directors. However,
the paper does not define a full set of primitives. A real specification for a
machine needs a full set of primitives for operations such as data construc-
tion/selection, as well as a full set of arithmetic and logic operators..

The choice of primitives is itself a problem. This reflects the traditional
debate between choosing a large set, and losing speed in the instruction
cycle and choosing a small set and implementing the more complicated oper-
ations in terms of these. The balance that was struck was to choose almost
the same set of primitives as are provided in the compiler target language
FLIC. These include conditionals, data constructors/selectors, a wide choice
of integer and floating point operators, and a few pragmatic primitives for
sequencing, strictness and program termination. These are specified using
a term-rewriting system in the FLIC report [PJ89], and are reproduced in
appendix A.

The main difference between FLIC and COBWEB primitives is that some
of the COBWEB primitives are indexed with integers. For example the selec-
tion primitive K-n-i is defined in FLIC so that it takes two integer arguments
followed by a number of following arguments depending on the value of one
of the integers:

K n i xo . . . xn —*• x,-

In COBWEB all of these types of primitive are indexed so that K-n and
K-n-i represent a family of primitives for a small set of values of n and i.
COBWEB only allows primitives without indexes. The presence of the indexes
is a syntactic requirement of FLIC, so the transformation from non-indexed
to indexed primitives is performed when FLIC is compiled to COBWEB-code.

Selection There are two selection primitives: K-n and K-n-i. The former
is a weaker form that rewrites into the latter when applied to an argument
as follows:

K-n i —> K-n-i

75

The full form is, as implied above:

K-n-z xo . . . xn_i —> Xi

Data Constructors/Selectors FLIC provides several data structure ma-
nipulation primitives. PACK, SEL, UNPACK and its strict version UNPACK!,
and finally CASE and TAG. Disregarding typing issues, the rest of the FLIC
primitives can all be written in terms of these.

Data structures are written as a tag, followed by the data. This is de-
noted (d | s o ,. . . , xn), where d is the tag, and a 0 < i < n is the zth data
component of the structure.

Packing PACK is the primitive for data construction. Given a number of
arguments and a tag, it packs these up into a structure.

PACK-n d - PACK-n-d
PACK-n-d x0 . . . xn_i —> (d|x0, . . . ,xn_i)

Selection from structures Selection of one element from a data structure
has two forms. SEL-n takes one argument to become SEL-n-z which in turn
expects one argument which is expected to be in the form (d | x q , . . . , xn-\).
SEL-n-z is strict, so it is defined as follows for n > 0, z < n:

SEL-n-z
1

xt-

Unpacking structures There are two primitives for unpacking: one strict
version and the other non-strict. These are defined for COBWEB as follows,
n > 1 :

SEL-n i
SEL-n-z X
SEL-n-z (d|x0, . . . ,x n_!)

UNPACK ! - n f l -+
UNPACKi-n f (d|x0}. .. ,xn_i) ->
UNPACK-n f e ->

X
f X o . . . X n _ i

f (SEL-n-0 e) ('SEL-n-(n—1) e)

Case analysis and tag extraction CASE-r does a case analysis on a list
of arguments and a data structure. CASE-r is defined for r > 1 , d < r as

CASE-r eo . . . er_i X
CASE-r e0 . . . er_i (d|x)

76

X
ed

Finally TAG is defined. This simply returns the tag of its argument, which
must have been evaluated to a data structure.

TAG X —> _L
TAG (d\x) -> d

B ooleans C o b w e b has the boolean values TRUE and FALSE and the
boolean operators IF, NOT, OR, AND and XOR.

However, not all the boolean operators are strict in both arguments. For
example AND and OR are defined:

OR 1 x —* 1
OR TRUE x -> TRUE
OR FALSE x -> x

AND l x -> 1
AND FALSE x -> FALSE
AND TRUE x -* x

Comparision and Numerical operators Several polymorphic compar-
ison operators are defined: POLY=, POLY!=, POLY>, POLY<, POLY< =
and POLY>=. These are all strict in both arguments. For example the
polymorphic comparison operator POLY= is defined

POLY= 1 -> 1
POLY= a b -> a = b
POLY= (d|x0, . . . ,x n) (d|x0, . . . ,x „) -> TRUE
POLY= (d|x) (d'|y) -> FALSE

C o b w e b arithmetic is with integers and floating point values. These are
all strict in their arguments. The full set for integer arithmetic is given in
the appendix. For a generic strict dyadic arithmetic operator f, and a generic
strict monadic operator g we can define them as follows:

f l b -> 1
f a l -> 1
f a b —» f a b

g-L 1

g a -* £ a

where the underlining indicates the actual result of applying the operator.

77

Lists Lists can be defined using the structure manipulation primitives de-
fined above as shown in the FLIC report.

Sequencing, Strictness & Termination Three primitives are defined.
SEQ forces its first argument to be evaluated before returning the value of
the second. STRICT is applied to a function and an argument, and forces the
argument to be evaluated before it is passed to the function. ABORT is used
for program termination. Any attempt to evaluate it results in an error.

SEQ J_ h -> 1
SEQ a h -> h

STRICT f ± 1
STRICT f x -* f x

ABORT -» ±

Parallelism

The two parallelism constructs represent context free and context sensitive
parallelism. The context free parallelism operator is P and is defined:

P a h —» a h

The intention is that both a and b are evaluated in parallel, however note
that this term rewriting system does not describe this.

The context sensitive parallelism construct is # which resides in the list
of directors:

([# ” d\ab) = ([d] a b)

Again the intention is that a and b are evaluated in parallel.

The example

Having defined the operation of the machine we can now see it in action.
The program defined earlier, twice triple 7 can be reduced to normal form
using the rules introduced above. The complete set of rules is reproduced in
appendix A.

78

m \] i (i n 11); (N (x 3) \) ?)
(AJ (AJ (x 3) \) (([/\] 11; (AJ (X 3) \)) 7)
((N (x 3) \) (d/\] 11; (AJ (x 3) \)) 7))
((x 3) (([/\] I i; (AJ (X 3) \)) 7))
((X 3) (AJ (M (X 3) \) \) 7))
((X 3) ((AJ (x 3) \) 7))
((x 3) ((x 3) 7))
((x 3) 21)
63

3.3.2 Co b we b in Paragon

The description of COBWEB in the term rewriting system is at too high a
level to be of immediate use to the designer. Before a design is attempted
the designer needs to know more about the following:

1. How to select the next redex. This needs to be made explicit. The
abstract machine cannot afford to look for the leftmost outermost ex-
pression as is implied by the term rewriting system. The next redex to
be reduced can always be derived from the current one being reduced.

2. How to distribute concurrency. That is how to execute the two arms
of a P operator or a # annotation, and how to distribute the work
throughout the machine.

The designer could then proceed with a design, but a description that ad-
dressed just these issues still leaves the designer with some problems. How is
the program represented? When has an expression been reduced to normal
form?

The original COBWEB specification is described in [BHK88] using a no-
tation named “Paragon” . Paragon is an message passing object based term
rewrite system. It is an experimental language and as such its syntax has not
yet settled. This thesis is written using the latest version. The specification
of COBWEB has highlighted some problems in the initial definition of the
language. Here we provide two extensions to the language to handle variable
sized left and right hand sides. This section gives a short explanation of
the language and the original COBWEB specification. The extensions to the
language are introduced as needed.

A Paragon specification consists of a number of class definitions Each
class has a number of instance variables, and a set of methods. The driving
force in Paragon is message passing. A Paragon specification for a method
consists of a number of rules. A typical rule has the following structure

79

S given m(x) when
Q
-> S'

then
C
where
B

Each rule has two sides, the lhs followed by the —> symbol (read “rewrites
to”) followed by the rhs. A rule basically says that when objects which
have state S receive the message m with arguments x , then if the conditions
specified in the guard Q apply, this object will be rewritten into state S ' ,
and the communications C are generated. A list of bindings of expressions
to names is provided in B.

The message m carries an optional list of arguments. The arguments can
be patterns, in which case the rule only matches when the pattern matches
the incoming message. Q consists of a set of pattern matching equations and
boolean expressions. The pattern matching equations can match on any of
the objects named in S or x. A underscore in a pattern matching equation
is a “don’t care” .

The rhs includes a list of message sending actions. These messages can be
synchronous or asynchronous denoted by the symbols ! and !! respectively.
The actions are composed in sequence using the ; operator, or in parallel
using the || operator.

Each rule can be given a name eg: [o x 4].
Figure 3.3 shows the partial syntax for a Paragon rule.
B introduces a list of bindings of expressions to names. We allow pure

functions to be defined here, but only if they run in constant space, ie iterative
or tail recursive and no dynamicism.

Expressions can contain references to s e lf which indicates the object re-
ceiving the message, or n il which indicates the null object. New objects are
created using the expression new(classname, initialstate). In addition to the
rules for messages a class may contain spontaneous rules. These have no
g iv e n clause and are thus applied whenever the left hand side matches.

There are two types of object in Paragon: class objects, which are objects
that can receive messages; and data objects which cannot receive messages,
but can only be created or matched. These are written in the same way.
All types are sums of products of types or basic types. These are written
in the style of Miranda, except that the notation (,) is used to denote the
anonymous data constructor when a type consists of just one product.

80

(rule)
(lhs)
(message)
(guard)

(rhs)

(tasks)

(outgoing)

—> (lhs) (rhs)
—► (state) [given (message)] [when (guard)]
—► (name) [((state) { , (state) }o)]
—» (name) = (state)

(predicate)
| (guard) A (guard)

(guard) V (guard)
I ((guard))

—» (state) [then (tasks)]

—> (name) ! (outgoing)
(name) !! (outgoing)
(tasks) || (tasks)
(tasks) ; (tasks)

| ((tasks))

where (bindings)]

synchronous
asynchronous

parallel composition
sequential composition

-> (name) [((expr) { , (expr) } 0)]

Figure 3.3: A partial BNF for Paragon rules

Packets and Agents

The original specification for COBWEB described two classes in the machine:
packets and agents. A program in COBWEB is represented by a number
of packets forming the program graph which is distributed throughout the
machine. Execution of this program takes place by repeated transformation
of this graph into a normal form. The class agent represents the objects
that perform the transformations on the packets. These transformations are
known as reductions.

Packets have instance variables representing their state. The state of a
packet is its left and right subgraphs, a list of directors, a flag indicating
if it is in normal form, a flag indicating if it is currently being reduced by
an agent, and finally a list of agents that are waiting for this packet to be
reduced to normal form. The packet class in the Paragon description is
defined:

class packet (rator.rand.string.m nf,act,list agent)
data rator : := packet | basic-value
data rand packet | basic-value
data innf N f | Notnf

81

d a ta act : := Active | Inactive

where a basic-value can be a built-in operator, or a literal constant.
Agents reduce packets to normal form. As an agent is reducing a packet,

it can be suspended as it waits for the result of a reduction of another packet,
typically one or both of its subgraphs. The agent goes to sleep until it receives
a “wakeup” message from a packet that has been reduced to normal form.
A packet has two instance variables: the identifier of the packet that it is
reducing, and a number that indicates the number of “wakeup” messages
it needs to receive before it can continue. The agent class is defined as
follows:

class agent (packet,integer)

Packets respond to three messages:

rewrite indicates that the packet is to be rewritten. The arguments
to this message are the new structure of the packet.

need indicates that the packet is needed by an agent.

fire indicates that the packet is to be evaluated to normal form.

Agents respond to two messages:

reduce indicates that the agent is to reduce the packet which is an
argument to the message.

wakeup indicates that the agent can resume reducing a packet.

For example, consider the strict basic operator x (multiply). Both arguments
to x need to be integers. If any are packets, then they need to be fully
evaluated to integers. In this case the agent sends a need message to the
packets that have to be evaluated further, and it sleeps until these have been
reduced to normal form.

This is modelled in Paragon by an agent receiving a reduce message. The
argument to this message is the packet to be reduced. The Paragon for this
operator is firstly for the case in which both arguments are integers and then
for the case in which both are packets.

[o x l]
(_,0) given reduce^) when

82

Pi = (P2 ,n1nil,__1,) A
p2 = (x .m .n i l , - , - , .) with
¡sJnteger(m) A isJnteger(n)
— > self

then
Pi ! re w rite (m x n ,n il,n il1Nf)

[ox 4]
(_,0) given reduce(pi) when

Pi = (p2, P 4 , n i l , A
P2 = (x ,p3, nil,
- * (P i - 2)

then
p3 !! need(self) ||
p4 !! need(self)

The first rule rewrites the target packet so that it contains the result of
multiplying m by n. The agent is no longer needed to reduce this packet,
and so its state is unchanged.

The second rule changes the state of the agent so that it is suspended
waiting for the packets p3 and p4 to be reduced to normal form. These
packets are sent need messages.

Redexes and Directors. The process of finding the next reducible ex-
pression is made explicit in the Paragon description. The Paragon rule is as
follows:

[ot]
(_,0) given reduce^) when

P4 = (P 2 , - ,n i l , A
P2 = Notnf,_,_)

- (Pi.l)
then
P2 !! need(self)

This rule corresponds to looking down the spine of the program graph for a
redex. The agent receives a message asking it to reduce the packet p\. If the
director list at this packet is empty, and the left subpacket is not in normal

83

form, then the agent sends p2 a need message, and it goes to sleep until it
receives one wakeup message. This vvakeup message will come when p2 is
reduced to normal form.

Primitives. In the term rewriting system, we defined several primitives
which take variable numbers of arguments. As defined in [BHK88] the lan-
guage only allows us to define rules in terms of a constant number of matches
on the lhs. For example, recall the definition of the selection primitive K-n-i:

K-n-i x0 . . . xn_i —> x,-

This is can be defined in Paragon, as the following illustrates:

[K-n-i]
(_,0) g ive n reduce(pn) w h en

P n = (P n - l ,Xn_i,ml,_,_) A

P n - l = (p„_21X„-2,nil,_,_) A

Po = (K-n-f,x0,nil,
- (-)

then
pn ! rewrite(x,-,nil,nil,notnf) ;
s e lf ! ! reduce(pn)

This involves a slight extension to the language in that it must now allow a
variable number of matches on the lhs. Of course we could have completely
defined the operation of K-n-i by writing n rules, one for each value of n,
which would have been tedious and unnecessary.

Data Constructors/Selectors A similar problem arises when we come to
specify the operation of some of the data constructors/selectors. PACK-n-d is
treated almost exactly like SEL-n-f above. However the main problem arises
this time from the rule requiring a variable number of packets on the rhs,
and is present in the data structure unpacking primitives UNPACK-n, and
UNPACKi-n.

The solution for the non-strict version is given here, as this is the most
complicated of the two unpacking primitives.

[UNPACK-n]

84

(_,0) given reduce(Pi) when
Pi = (P2, e , m l , A
P2 = (UNPACK-n,f,nil,_,_,_) A
n > 2
- (Pi.O)

then
Pi ! rewriteipn-a.Sn-i.nil.notnf) ;
self!! reduce(Pj)
where
s j — new(packet,(SEL-n-y,e,nil,notnf,inactive,nil))
p0 = new(packetl(f,s0,nil,notnf1inactive,nil))
Pj = new(packet,(pJ_1,Sj,nil,notnf,inactive,nil))

Unfortunately the n = 1 clause does not fit in to the general pattern and
needs to be stated separately.

[UNPACK-1]
(_,0) g iv e n reduce(Pi) w h e n

P i = (P 2,e,nil,_,_,_) A
P2 = (U N P A C K -U n i l , _,_,_)

- (Pi.O)
th e n
P i ! rew rite (f,p ,n il,notnf) ;
s e lf !! reduce(Pi)
w h e re
p = n e w (p a ck e t,(S E L -l-0 ,e , n i l , notnf, inactive, n i l))

Again, we have to add slightly to the language. In this case, we use the
where clause to allow us to introduce new packets using a schema for new
definitions. The variable n is bound to a value when the rule is matched. We
rewrite Pi to a packet that contains packets sn_i and p„_2. We then provide
a generic definition for the set of packets pj and Sj. As the definition for pj
is recursive, we provide the base case definition for po.

B o o le a n s It is worthwhile looking at the Paragon for the boolean operator
OR to demonstrate the strictness of the operator.

[b o o l l]
(_,0) g iv e n reduce(Pi) w h e n

P i = (P 2.y ,n il ,_,_,_) A

85

P2 = (OR,x,n i l , A
is_packet(x)

- (Pi.l)
then
x !! need(self)

[°rl]
(_,0) g iv e n reduce(Pj) w h e n '

Pi = (P2,y,n i l , A
P2 = (O R ,F A L S E ,n il,

- (-)
then
Pi ! re w rite (y ,n il,n il,n o tn f) ;
s e l f ! ! reduce(Pi)

[°rl]
(_,0) g iv e n reduce(Px) w h e n

Pi = (P 2,y ,n il,__ ,_) A
P2 = (O R ,T R U E ,n il,

- (->
then
Pi ! re w rite (T R U E ,n il,n il,n f)

There are three rules. The first indicates that the operator is strict in
its first argument. If it has not been evaluated, then it is sent a need, and
the agent waits for a response indicating it has finished. The second rule
applies when the first argument has been evaluated to FALSE. In this case
the result is the result of the second argument. The agent continues to reduce
the second argument to normal form. The final rule applies when the first
argument to OR has been evaluated to TRUE. In this case the result is TRUE
and no further evaluation needs to be done.

Comparison and Numerical operators The comparison and numerical
operators are all defined in terms of a generic, as they are all strict in both
their arguments. See the appendix for details.

Sequencing, Strictness and Termination Of the three operators SEQ,
STRICT and ABORT, SEQ is the most interesting. It is defined to evaluate
the first argument, then evaluate and return the second. There is no reason
why this needs to be done sequentially, as long as the first argument has been
fully evaluated before the second is returned. The Paragon for this might
be:

S6

[SEQ1]
(_,0) g iv e n reduce(Pi) w h e n

P i = (P 2la r g 2 , n i l , A
P2 = (S E Q . a r g l . n i l , A
- (P..2)

then
a rg l !! need(self) ||
arg2 !! need(self)

[SEQ2]
(_,0) g iv e n reduce(Px) w h e n

Pi = (P 2,arg21n il,__ ,_) A
P2 = (S E Q , a r g l , n i l , A
a rg l =

- (- 0)
then
P i ! rew rite (a rg2 ,n il,n il,notn f) ;
s e l f ! ! reduce(P i);

The first equation applies when argl has not been fully evaluated. We
can safely spawn the evaluation of arg2 in parallel with that of a rg l. The
second equation applies when arg l has been fully evaluated to normal form.
It is only then that we can continue the evaluation of arg2.

STRICT can also evaluate its arguments in parallel. This time however,
we must wait for the complete evaluation of the second argument before
returning the result of applying the first argument as a function to the second.
It can be defined in a similar way to SEQ and is included in appendix B.

ABORT handles exceptions. The graph is rewritten so that the ABORT
operator propagates all the way to the top level.

[ABORT]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (A B O R T .x , - , - , - , .) A
x ^ n i l
—► s e lf

th e n
Pi ! re w n te (A B O R T ,n il,n il,n f)

87

T h e In terface

The specification of C O B W E B given here introduces a new class named in-
terface. This class deals with loading the program graph into the machine
and starting it running. This is defined in terms of a number of “built-in”
objects and methods which define the Paragon system interface with the
outside world.

A Paragon specification has two objects already defined. These are named
i and o for input and output. The input object that can send messages
to objects within the system. Any object within the system can send the
message output to the output object. Input and output are meant to define
raw communication with the outside world.

The interface class for C O B W E B is defined in terms of these objects.
The function of this class is to load packets in, and arrange for them to be
executed by an agent. When the result is known, then the interface class will
be responsible for communicating the result to the outside world.

This class might be defined, as follows.

c lass interface (packet)

(_) g iv e n run(p)

- < P)

th e n
p !! fire

(p) w h e n
p = (- . - . - .n f , , , -)
—» s e lf

th e n
o !! output(p)

The only instance variable known to the interface is a packet identifier.
When the interface is given a packet to evaluate, then the interface fires
the packet. It then waits until the packet has evaluated to normal form,
whereupon it sends this packet to the outside world.

The system will be started with an instance of the class interface, and
will be told that the input object o will be able to communicate with this
instance.

In practice, this class will be more much complicated than this. For
example it will arrange for errors to be reported, and for the complete result
to be output if it is a data structure. We explain it here to introduce the
concept of input and output in a Paragon system.

88

3.4 Translating Paragon to hardware
The previous section gave a specification for C O B W E B in Paragon. This
section will show how to translate any Paragon specification into a hardware
design. The resulting general purpose design will be seen to be restrictive
in several senses, so we suggest a design methodology that will allow us to
avoid these restrictions.

3.4.1 The Target Description

Before addressing the problem of how to translate Paragon into hardware,
we need to identify what we are to translate the specification to.

Hardware systems consist of physical circuits connected by a physical
communications medium. This is the kind of design we wish to produce.
This requires us to produce two parts to the design, the first is the topology
of the blocks, and the second is a specification of the operation of those
blocks.

The topology can be presented as a directed graph, where the nodes are
the blocks, and the arcs are the connections. The direction of the arc specifies
the direction of communications. The operation of the blocks can be specified
in some target language.

As a language for describing hardware, the target language should be a
hardware description language (HDL) for example ELLA [E1186], or OCCAM
[MK87] that allows compilation to silicon. Silicon compilation techniques are
described in [Gaj88].

However Paragon is of course suitable for specifying systems other than
hardware, for example we might want to describe a simple program running
on a microprocessor in an embedded system. In this case the target language
would need to be a program in the machine code of the microprocessor, or a
program in a high level language that will compile to machine code for that
microprocessor.

Even if we are specifying hardware with Paragon, we might want to first
compile the Paragon to a program in a high level language so that we can
simulate it, and maybe fine-tune some parameters. Given these requirements,
the target language chosen is a procedural imperative language with some
message passing primitives. It is restricted in the sense that it must be static,
that is without dynamic storage management, or non-tail recursion. In this
respect it is similar to 0CCAM2, but with an algol-like syntax and data
structures.

A program in this language consists of a set of procedure definitions plus
a description of the initial state of the system. This describes objects plus
their connectivity in the same way as the main body of an OCCAM program.

89

There are three message passing primitives. Read from a connection,
write to a connection, and acknowledge that a message has been received.
Messages are written and composed using the same syntax as in Paragon,
except that only synchronous message passing is allowed, and that messages
can be replied to. For example we can write

a := o ! m(x)

meaning send message m with argument list x to object o and assign the
result to the variable a. In addition, the language has a reply x construct
which sends the value x back to the caller.

3.4.2 The translation process
The fundamental constructs of Paragon are objects and messages. Objects
have a state, and in a design this state must be stored somewhere. Objects
also have methods, and there must be some mechanism for executing these
methods after a message has been received. A simple first attempt at a hard-
ware solution is to have a block of logic with memory that can store the state
of the object, and execute the methods. We shall call these object processors.
If there are a number of static objects in the system, then we can have num-
ber of static object processors in our design, each of which corresponds to
an object in our Paragon specification. However in any system of reasonable
complexity, we inevitably need to create new objects dynamically, and as
we cannot create physical circuits dynamically, we can only use this solution
when there are only static objects.

Messages can be synchronous or asynchronous. A possible design for a
message passing medium is a physical synchronous connection joining two
object processors. However this will only be feasible if all the messages are
synchronous.

So the simplest Paragon system is one that is both static and synchronous.
We shall see that it is fairly easy to translate a specification of this type into
a hardware design. If we can translate a more general specification into
one that is synchronous and static, then this will provide a route towards a
general design methodology.

We can proceed by classifying Paragon specifications in increasing order
of complexity.

1. A system with a fixed set of objects, and synchronous communications
only.

2. A static system as above but with asynchronous communications as
well as synchronous.

90

3. A dynamic system with synchronous and asynchronous communica-
tions.

First we shall concentrate on producing a specification of the topology of the
system. Second we shall show how the specification of the operation of the
blocks is produced.

Before dealing with these systems, we introduce some terminology.
A specification (C , 0) is a tuple consisting of a set of classes, and a set

of objects. The set of objects is known as the configuration, and comprises
the objects that the system will start out with. A given class c is defined in
terms of its structure, and its methods. We denote the set of all instances of
a class c by 1(c) .

There are two types of communication in Paragon. An object o that
communicates synchronously with a set of objects 0 is said to be synchron ou s

in 0 . This is written S (o) = 0 . Similarly an object o that communicates
asynchronously with a set of objects 0 is said to be asynchronous in 0 , and
is written A (o) = 0 . Finally, an object o that can create objects which
are instances of the classes in C is said to be dynam ic in C , and is denoted
D (o) = C. We can define S and A over classes using the same criteria, but
note that if a class C is synchronous or asynchronous in a set of classes C ' ,
that does not imply that an object of class C , say o, is necessarily synchronous
in all objects, or indeed any objects of class C'. For example, an object may
be synchronous or asynchronous in another object depending on the value of
one its instance variables, or the value of one of the messages it receives. We
can potentially analyse our specification and find that these circumstances
can never arise. An object or a class can only be dynamic in a class however,
as it is meaningless to assert that an object is dynamic in another object.

A m essage is a data construction appearing in a g iv e n clause. The mes-
sage is identified by the constructor appearing outermost in this construction.
Such constructors must appear only there or as the object of the “ !” and
“ !!” message transmission operators. The signature of a class is the set of
messages to which it may respond— that is, the set of constructors appearing
in the class’s rules’ g iv e n clauses.

A message is total if, for the class to which it applies, it can always
be consumed. That is, the rules admitting the message must cover all the
possible values of the target object’s class. A message is partial (i.e. not total)
if pattern matching after message receipt can fail, requiring the message to
be retained for re-matching whenever the target object’s state changes.

3.4.3 A static synchronous system
The simple system is the static synchronous system, and as such is fairly
easy to translate into a hardware design.

91

Consider a specification (C, 0) which is static and synchronous with a
configuration 0 . As the total number of objects is constant, we can create an
object processor for each object in 0 . This might seem reminiscent of a CSP
description, but there is one crucial difference: in Paragon, the address of an
object can be communicated in a message, or indeed stored as an instance
variable. So the set of other objects that a given object can communicate
with is given by the union of all the domains of all the object variables known
to that object.

For example consider a Paragon system (C, O) with four objects Oq . . . O3,
involving three classes Co- - -C2 with the following rules: Oo is an instance of
Co, 0\ is an instance of C\ and both O 2 and O3 are instances of C2. The
classes have the following partial specification. The structures of the packets
have been omitted for clarity.

class Co ::= ()
() g iv e n m (x)

- 0
then
Ox ! z (x)

class C\ ()
() g iv e n n(c,x)

- 0
then
c ! y (x)

class C2 ::= ()
() g iv e n o (x)

- 0
then
0 \ ! n (se lf,x)

The first object Oo communicates only simple messages, and only ever to
0\. So Oo needs to be connected only to 0\, and only in one direction, as no
other object can send a message to Oo- 0 \ however can receive a message that
contains an object address c. The objects that send this message to 0\ are
O 2 and O3 , and we can see that the only addresses that they communicate are
the addresses of themselves. 0 \ must therefore be connected bidirectionally
to both O 2 and O3 Figure 3.4 shows the topology of this system.

In any system there may be some hidden communication between objects.
For example, consider the following Paragon specification.

92

Figure 3.4: The topology of objects Oq to O3

class a (integer,b)
class b ::= (in teger,in teger)

(B,c) given m(x)
w hen
c = (0,0)
- (B + l,c)

then
c ! n(x)

mis a message sent to objects of class a. This class contains an identifier
for objects of class b. We attempt to pattern match against the structure
of the object that this identifies. This requires a communication with the
object. As we shall see in section 3.4.6 these communications can be made
explicit.

Now the general case is when every object can potentially communicate to
every other object in the system. This implies that they must be all connected
directly. The obvious way of doing this is in hardware is by connecting all
the object processors together using a synchronous interconnection network
such as a synchronous bus, though we then lose some concurrency as object
processors contend for its use. We can now see that it is a fairly easy matter
to design a hardware system that will implement a Paragon specification that
is static and synchronous.

3.4.4 A static asynchronous system

The second class of Paragon specifications has static objects, but there are
asynchronous communications as well as synchronous. Given that we now
know how to design a hardware system for the static synchronous system,

93

then if we can transform our specification into one where all the communica-
tions are synchronous, then we can design a hardware system for this class
of specifications as well. In practice, this is easy. We can do this by creating
a new object called the task pool. The task pool is written T(C) where C is
a set of classes. T(C) is a task pool that can handle messages from all the
classes in C. The function of the task pool object is to buffer asynchronous
communications. We can then transform all the asynchronous communica-
tions to ones that communicate to the task pool. The task pool is made up
of a list of tasks, where a task is defined as a destination, a message and a
list of arguments. The task pool may be defined as follows.

class task-pool = list task
data task = (destination,message,args)

(M) given add(d,m,x)
- » (M+-}-(d,m,x))

((d,m,x)::M)
- (M)

then
d ! m(x)

Now all asynchronous communications, for example

a !! m(x)

can translated into

t ! add(a,m ,x)

where t is an instance of task-pool. We need an instance of task-pool for
every object that is asynchronous in any other object. Each instance of task-
pool associated with an object o must be shared with (ie connected to) every
object in which o is asynchronous.

Although the task pool is specified as being a list of tasks, for the system
to remain static, this list must have an upper bound. This inevitably con-
strains the specification. As the methods for the task pool are synchronous,
the whole system is now static and synchronous, so we can design a hardware
system using the same technique as before. For example, consider a system
consisting of four objects Oq . .. O3 with the following properties:

94

S(0o) = 0
A(O0) = {Or}
s(0 i) = {o3}
A (O x) = { 0 2,0 3}
S(O2,O0) = 0
A (0 2,0 3) = {Or}

This system will have a topology as shown in 3.5 Notice that the functions

Figure 3.5: The topology of a system of four objects.

S and A dictate the direction of message flow in the design.
In general, where all objects are both synchronous and asynchronous in

all others, we can design a system as follows. If we have a system (C, O) with
n objects in O numbered from 0 to n — 1 , then we can connect the objects,
and the task pool up to a bus as in figure 3.6.

Synchronous Interconnection Network

Figure 3.6: A general topology for a system from a static synchronous &
asynchronous Paragon specification

95

3.4.5 A Dynamic system

We can now turn our attention to the problem of designing a system that
is dynamic. The immediate problem is that we cannot simply create new
physical object processors in hardware to model the new objects in our spec-
ification. What we need to do is to transform the system somehow to make
it static. One solution is to say that all classes that are known to be dynamic
will use a heap to store instances of the class. Each heap will be specific to
its class. Individual objects will then be identified by their place in the heap.
New objects will be created by allocating space from the heap. If we have in
our configuration a class c that is dynamic, then we must replace this class
with two new objects in our configuration: H (c) which represents the heap
for objects of class c, and P (c) known as the class processor {or c which will
implement in hardware the methods for class c.

All objects in our configuration that are dynamic in c must now be con-
nected synchronously to H (c), and all objects that are synchronous or asyn-
chronous in c must now be connected in that manner to P(c).

The heap can be described as a static Paragon object, and will receive
messages such as new, to allocate space to objects, free to release it again,
and read and write to provide access. As the heap will be bounded, there
is a need to reclaim space so the heap must be garbage collected. We can
define the operation of the heap in Paragon, but it is better to define in the
target language, as certain messages need to be replied to.

The class processor P(c) is a static object to which all messages sent to
objects of class c are delivered. Objects of class c will now be identified by
their address in H (c) , so the operation of P (c) when it receives a message
will be to read the body of the object from H (c) , execute the method, and
write the object back if it has been rewritten.

The main issue that arises from transforming a configuration that is dy-
namic into one that is static but uses a heap is the loss of concurrency among
objects of the same class as they are now multiplexed in time over P(c). How-
ever there is no reason why there should not be many instances of P (c) each
with access to H (c) . This is a choice the designer must make based on knowl-
edge of the critical components of the system. Analysis of a specification can
also tell us if we can create multiple instances of H { c) . If two object proces-
sors o and o' are dynamic in a class c, we can potentially find out from static
analysis of the specification if H (c) and P (c) need to be shared physically
between the o and o'. For example if o and o' create instances of class c for
their personal use, and never communicate them directly or indirectly in a
message, then we know we can create an instance of H (c) and P (c) for each
object o and o'.

The most general system is one in which all the classes are dynamic in
all others and themselves. The topology of a completely general system is

96

shown in 3.7.

Synchronous Interconnection Network

Figure 3.7: The topology of a completely general dynamic system

Now the task-pool T is itself an object processor, and the task-pool class
can also be seen as a dynamic class. Therefore we can create a heap H (T)
and a processor P (T) for the set of task pools in the same way as we did for
the other dynamic classes.

We now have a clear separation of functions among object processors. For
each class we have a processor, and a heap. Although the heap is an object
processor itself, the methods for all the heaps are essentially the same, and
we can therefore unify all the heaps into one greater heap H(C,T) .

We can make a further generalisation by observing that we can create a
unified class processor P (C , T) that will execute methods for all the classes,
including the task pool. If we can express the methods for all these classes
as a stored program, then we can express all the class processors as a single
processor which takes its instructions from a heap. A processor of this type
would be written P (P (C , T)), and its heap H(P(C,T)) . This method heap
can then be merged with the object heap, and what we are left with is a
general processor P(P(C,T)) , plus some memory H(P(C, T) ,C ,T) .

It is interesting to derive what looks suspiciously like a conventional mul-
titasking von Neumann uniprocessor from a general purpose Paragon speci-
fication. However, we do not always need to go down this route to a design,
and can use analytical techniques on individual specifications to derive more
concurrent designs.

3.4.6 The design of object processors
As defined above, object processors are blocks of logic. So far, we have con-
centrated. on producing a static synchronous Paragon specification from a
dynamic general one. This gives us a fixed topology for the system. Here we

97

will discuss how we might translate the methods for the classes into specifi-
cations for the operation of the object processors.

One way of doing this is to transform all the original Paragon methods
into ones that use the heap and the task pool, and then translate these
methods into our target language. This proves to be fairly awkward because
Paragon has no mechanism for a “call-and-reply” type of construct, which
is necessary when performing operations such as requesting space from the
heap. So instead of transforming our specification into one that is static and
synchronous, we can translate the methods directly into a procedure in our
target language.

We start by giving a transformation scheme for a static synchronous sys-
tem, and proceed by saying how we would add to it to handle asynchronous
communications and dynamic classes.

We can describe a general rule TZj as follows:

Sj given m(x)
w hen G j

- 3
then C j

w here B j

A rule 7Zj, 0 < j < k has a list of guards Gj that operate on the
arguments passed by the message, and the variables bound by - S j . If these
evaluate to true, then the object which matches S j is rewritten to Sj and the
communications C j are generated. A list of bindings B j to names is provided.

In addition there may be a number of spontaneous rules for each class. If
there are l of these rules, they take the following form for 0 < j < l

Tj w hen Gj

- V
then C ' j

w here B ' j

We can produce a specification for an object processor given these rules. This
will listen on its inputs for messages, read them, and execute the methods
for these messages. It will also take care of executing the spontaneous rules.
This is described as an infinitely looping procedure defined in terms of its
connections.

98

def o b je ct-p ro ce sso r(co n n e ctio n s) =

w h ile true do

if there is a message pending then

if the spontaneous rule applies to the ta rget then

apply the spontaneous rule

fi;
execute the m ethod fo r tha t message;

if the m ethod has succeeded then acknow ledge sender fi

else a tte m pt to apply the spontaneous rule to the ta rget

fi

od

enddef

A message is pending if the sender has presented some data on a con-
nection. The message remains pending until it has been acknowledged by
the receiver. As there are a number of connections, the object processor will
arbitrate among the connections by checking whether a message is pending
on each one in turn.

Before we can define a translation function we need to address a problem
that arises with these spontaneous rules. Imagine a “stopwatch” class with
the following definition.

c lass stopwatch : := (in te g e r,s ta tu s)

(O.Off)
(n.On)
(n.Off)

ty p e status :: = On | Off

(n,on) -> (n-fl.On)
<-. -) g iven reset —>
(n--) given start —»

off) given stop —>
<n,-) given read(c)

-► (n--)
then
c !! reply(n)

This defines an object that behaves like a stopwatch and can be reset,
started, stopped and read by a user. This definition has one spontaneous
rule. We expect this rule to be applied spontaneously. If the class is dynamic
then we are storing objects of this class in a heap. One option is for the class
processor to cycle through every object in the heap and attempt to apply this
rewrite rule to each object in turn. This could be done when the processor
is idle waiting for a message. However if we are using the object processor
heavily, we do not want to lock out the spontaneous rewrite indefinitely.

99

A partial solution is to transform the rule so that the rewrite takes place
when a special message has been received. For example the new transformed
definition would read:

c lass stopwatch (in teger,sta tus)
t y p e status on | off

(n,on) g iv e n spontaneous
-> (n + l,o n)

th e n
s e lf ! ! spontaneous

g iv e n reset
-> (0,ofF)

(n,_) g iv e n start
-> (n.on)

th e n
s e lf !! spontaneous

(n,ofF) g iv e n stop
-»(n.oflF)

(n,_) g iv e n read(c)

(" -)
th e n
c !! reply(n) ||
s e lf ! ! spontaneous

That is, every time an object is rewritten into a form where the sponta-
neous rewrite might apply, we send the spontaneous message to that object.
When an object is created it will be sent this message.

Unfortunately, one of these rules might apply to an object even if it has
not been rewritten itself. Consider for example the following example for a
dynamic class:

class A ::= (a,a)
type a : := in te g e r | A

(x ,y) ^ w h e n
x = (0,0)

100

(y.y)

The spontaneous rewrite applies to an object, which contains other object
identifiers. Now the rewrite only applies when one of the sub objects has a
certain structure, the top level object may never be rewritten, yet the rewrite
might apply.

There are two alternative solutions to the problem: We can get the class
processor to cycle through all the objects in the heap when it is idling, or
we can send every object an spontaneous message every time they receive
any message not just when they are rewritten into a form where the rewrite
applies. These amount to the same thing, but the latter is the cleaner of the
two, and for now this is the solution we will adopt.

Our example will thus need to be transformed into

c lass stopwatch : := (in te g e r,s ta tu s)
t y p e status : := on | off

(n,on) g iv e n spontaneous
->• (n + l,o n)

th e n
s e lf !! spontaneous

g iv e n reset
-> (O.off)

th e n
s e lf !! spontaneous

(n,_) g iv e n start

- » (n.on)
th e n
s e lf !! spontaneous

(n.off) g iv e n stop
— > (n.oflf)

th e n
s e lf !! spontaneous

(n,_) g iv e n read(c)
-> (n,_)

th e n x
c !! reply(n) ||

101

s e l f !! spontaneous

We can sketch a set of translation functions that will translate the set
of rules into a procedure in an imperative language that will execute the
method for that message.

TM[[Paragon method]] which maps a complete set of Paragon rules for a
given message onto a procedure in our target language.

TO [[Object]] will map an object on the lhs of a Paragon rule onto a set of
statements that will both test if the current object matches and bind
names in the pattern match to values (if necessary). If the match is
successful, a flag success is set.

T B [[Where binding]] maps a set of Paragon where bindings onto a set of
similar binding statements for variables in the target language.

TC[[Communication]] will map the set of communications onto a list of
procedure calls that carry out these communications.

T G [[Guard]] will map the set of Paragon guards and required where bind-
ings onto a logical expression in the imperative language. These guards
will operate not only on the variables bound by the message, but also
on the variables bound by TO, the required subset of those bound by
TB and self.

TS [[Object]] will map an object onto an expression in the target language
representing the structure of that object.

The body of each method is defined as a procedure using an informal
pseudocode. For example TM[[K]] is defined in figure 3.8. The procedure
has the same name as the message being received and is defined in terms
of self which indicates the object receiving the message. We can refine and
optimise this procedure using standard techniques such as removing common
subexpressions, and omitting statements that can never be reached, such as
the FAIL which is not needed if the method is total.

Another issue with the specification is that all rules must be mutually
exclusive. This is a side effect of there being no matching order. For the
sake of proving the correctness of the specification, this is a bonus, but as a
specification for a physical machine that might be implemented, this might be
construed as a slight deficiency. The onus of specifying the order of matching
is left to the designer. An arbitrary order is not going to be the most efficient.
The designer must therefore inspect the rules and give to them an order which
will be most efficient.

We can now take a further look at the definition of the translation func-
tions.

102

def m (se lf, x 0, x ^ j) =

T O M ;
if success and T G [[? o]] (x o , . . . ,x n_ i , se lf)

then T B p 0]];
self := T S [[S f t] ;

T C [[C o]J
else T O P ,]] ;

if success and T G [p]] (x 0 l. . . , x „ _ i , se lf)

then . . .

else T O [[c > j t _ i]] ;

if success A T G p j t _ 1]] (x 0, . . . , x n - i , se lf)
then T B [[B fc_ j]] ;

else

self := T S P j U J J ;
T C [[C fc -i]]

fi
F A IL

fi

fi

enddef

Figure 3.8: Translation function TM[[7lj]

T C The translation of the communications is fairly easy. If the communica-
tion is synchronous and the target is a static object, then we can simply write
the communication as a synchronous procedure call. As communications are
composed in the same way as in Paragon, we can have:

TC[[a ! m(x)]] = a ! m(x)
TC[[x||y]] = TC[[x]] || TC[[y))

when a is a static object.
If it is asynchronous, we need to express the communication in terms of

the task pool for that object. That is:

TC[[a !! m(x)]] = T ! add(a,m,x)

when a is a static object, and where T is the task pool that has been assigned
to objects of the class that a belongs to.

If the target is in a dynamic class then we need to send the communication
to the class processor.

103

i TC[[a ! m(x)]] = P ! m(a,x)

when a is an object in a dynamic class, and where P is the class processor
for that class.

The final case is when the target is in a dynamic class and the commu-
nication is asynchronous. In this case we must send the message to the task
pool for that class.

TC[[a !! m (x)]] = T (P) ! add(P,m,(a,x))

that is, the target is the task pool for the class processor for a.

T B . The binding function is the easiest to define. Given that we are using
an imperative language, we can say that we have a number of variables to
hold the values of the bindings. However, if the rhs of the binding is a new
expression then this requires that we communicate with the heap associated
with the class that is being allocated. This will take the form of a synchronous
communication of the message new to the appropriate heap, and a wait until
it returns.

TO . This function is fairly difficult to define, as it needs to do three things.
It needs to test if the object on the rhs matches, and if so, it needs to bind
some values to names, and set a flag success if the match was successful. This
can be done in two stages — first check if the object matches the structure,
and then bind the names. This part of the procedure would benefit from
optimisation.

T G . The translation of the guards is also fairly difficult. The function
generated can be thought of as delivering true or false, and having the side
effect of binding some values to names. Techniques used for compiling pattern
matches for functional languages [Pey87] may be used here.

TS. This function simply returns an expression representing the structure
of its argument, and as such is fairly easy to define.

3.4.7 A general purpose methodology
The sections above suggest a general purpose methodology for translating a
specification in Paragon into a hardware design. This consists of the following
phases

1. Write down the system equations. That is for each object and class say
what objects or classes it is synchronous, asynchronous or dynamic in.

104

2 . ; Remove all dynamic classes by creating heaps and class processors for
these classes. All classes and objects that were dynamic in these classes
now become synchronous or asynchronous in these new objects depend-
ing on an analysis of the methods. Rewrite the system equations.

3. Remove all asynchronous objects by creating task pools. All objects
that were asynchronous in other objects now become synchronous in
the task pool allocated to those objects. The system equations should
now be in terms of the synchronous function S only. This completely
defines the minimum topology for the hardware design.

4. For each static object create an object processor, and specify the oper-
ation of each object by applying TR to each method.

Backtracking will possibly be necessary at any of these stages. For example
if any of the block definitions prove too complex, then we might want to
simplify some of the earlier rules.

This provides an algorithmic route from a specification to a design. In
the next section we shall see that we can derive some heuristics in order to
tune our design more closely to requirements not made explicit.

3.5 Design of COBWEB
In this section we shall apply our design methodology to the specification of
C O B W E B . We shall see that the specification as it stands is too complicated
to make an efficient machine, so we shall return to the specification to make
some amendments.

3.5.1 Design of the Co b we b class topology
There are three classes in the specification of C O B W E B : Agent (. 4) , Packet
(V), and Interface (T). The specification is ({.4 , V , l] , {¿ ,o }). By analysing
these classes by hand we come up with the following equations.

S(A) = { V } A(A) = { A , 9) D(A) = { A , V }
S(V) = 0 A(V) = M) D(V) = { A }
S (l) = M A (l) = { V) D (l) = { V)

Following the methodology we remove dynamic classes by creating heaps,
and class processors. The dynamic classes are V and A. For A we need
H (A) and P(A) , for V we need H(V) and P(V) . We shall merge the heaps
into one H(V, A). ^

Our set of objects becomes

105

{ H (A , V) , P(P) , 1, 0 }

and the new set of system equations is

S(P(A))
A(P(A))
S(P(V))
A(P(V))
S(H(A, V)) =
A (H (A , P)) =
m
A(i)

{ H (A , V))
{ H (A , V) , P (V) }
W A , p)}
{ H (A , V) , P (A)}
{ P (A) , P (V) }
{ P (A) , P { V) }
{ o ,H (V))
m

To deal with the asynchronous message passing we need to create a task
pool. This gives us the new object T(A, V , 2) , and the system equations now
read

S(P(A))
S (P (V))
S(H(A, V))
S (T (A , V , I))
S (l)
S(i)

{ H (A , V) , P (V) T (A , V , 1) }
{ H (A , V) , P (A) , T (A , V , X) }
{ P (A) , P (V) , T (A , V , 1) }
{ P (A) , P (P) , P (I) }
{ o , H (V , A) , T (A , V , I) }
{ X , T (A , V , 1) }

This defines the minimum necessary topology for C o b w e b . We can imple-
ment this topology using a bus as in figure 3.9. This introduces slightly
more generality than specified. For example i can now communicate with
H (V , A) , but this does no harm.

Figure 3.9: The topology of class processors for COBWEB.

106

3.5.2 Methods for the Object Processors

Now let us attempt to produce methods for the object processors. The object
processors are:

P(A)
P(V)
HIV, A)
T (1 , V , A)

The processor for the agent class.
The processor for the packet class.
The heap for packets and agents.
The task pool for the interface, packets,
and agents.
The input from the outside world of
class I .

The following procedures have been designed by applying T M informally.
As such each procedure has been refined quite substantially from the original
output from the T M function. TM[[reu;n7e]] is shown to illustrate the result
of simply applying the function blindly.

The interface

The interface has a structure that consists of one instance variable. This is
an identifier of a packet, and as one of the rules for the interface consists of
looking at the structure of this packet, then we need to look at the heap.

stru ct interface =

packet

endstruct

The class processor is defined as follows:

def In te rfa ce (se lf) =

if message = ru n (p) then

self := p;

T (I , P ,A) ! a d d (fire ,p)

else if message = spontaneous then

n f := H (P ,A) ! re a d (p a ck e t.n f);
if n f then

o ! o u tp u t(p)

fi
fi

T (I ,P ,A) ! add (se lf,spontaneous)

enddef

107

The Packet processor

In this definition, the parameter self refers to the state of the processor. The
parameter a refers to the heap identifier for the object that is receiving the
message. The packet processor itself has no state — all the packet state is
held in the heap. We pass the packet identifier as a parameter to the auxiliary
procedures. These will refer to this as self to indicate we are working with
the state of a packet, as opposed to the state of the processor.

def P a cket-p rocessor(se lf,a) =

if message = re w rite (o p ,a rg ,a n n ,fo rm) then

p a ck e t-re w rite (a ,o p ,a rg ,a n n ,fo rm);

else if message = need(agent) then
packet-need (a ,ag ent)

else if message = fire then
p ack e t-fire (a)

fi

enddef

Rewrite is a procedure that can benefit substantially from refinement.
TR[[reu?n7e]] will produce the following procedure. This is shown in a struc-
tured english form rather than as a syntactically correct program.

def p a c k e t-re w rite (se lf,o p ,a rg ,a n n ,fo rm) =

if (ann = n o tn f) then

H (P ,A) ! w rite (se lf,(o p ,a rg ,a n n ,n o tn f,

se lf.activ ity, se lfagentlis t))

else if (a n n = n f) then

H (P ,A) ! w rite (se lf,(o p ,a rg ,a n n ,n f,in a c tive ,

se lf.a g e n tlis t));

wakeup every agent in self.agentlist

else E R R O R
fi

enddef

This can be refined into the following procedure.

108

def p a ck e t-re w rite (se lf,o p ,a rg ,a n n ,fo rm) =

H (I ,P ,A) ! w r ite (s e lf .o p ,o p);

H (I ,P ,A) ! w rite (se lf .a rg ,a rg);

H (I ,P ,A) ! w rite (se lf.a n n ,a n n);

H (I ,P ,A) ! w rite (se lf .n f,fo rm);

if fo rm = n f then

a := H (I ,P ,A) ! read(se lf.agentlist)

w hile al ^ nil do

a := H (P ,A) ! re a d (h d (a l)) ;

T (I ,P ,A) ! add(a .w akeup);

al := t l(a l)

fi
enddef

Need is defined as follows. As fire has a similar method, we do not it here.

def packet-need(self,agent) =
packet := H(P,A) ! read(self);
if packet is active then

append(packet.agentlist,agent)
else if packet is in nf then

T(I,P,A) ! add(agent,wakeup)
else

append(packet.agentlist,agent);
new-agent := H(I,P,A) ! new(Agent);
T(I,P,A) ! add(new-agent,reduce,self)

fi;
H(I,P,A) ! write(self.packet)

enddef

The Agent processor

Spontaneous rewrites As explained in section 3.4.6 there is a problem
with spontaneous rewrites. We described a solution for the general case,
but with the C O B W E B specification we find that there is an easier solution.
The two rules of interest are [oul] and [ou2]. The presence of these rules
means that we need to make a check continuously to see if the conditions for
applying them exist as in section 3.4.6. This might seem a large overhead,
but in practice we narrow down the number of checks by observing that we
only need to apply these rules when we need a particular section of the graph.
Of course there is no point checking if a spontaneous rewrite might apply if

109

that part of the graph is no longer going to be used, so the check is made
only when it is known that the packet is known to be needed for evaluation.

The top level is defined as follows:

def A g e n t-p ro c e sso r(se lf) =

if message = wakeup then

a gent-w akeup(se lf)

else if message = re d u ce (p) then

agent-red uce (se lf.p)

else E R R O R

fi

enddef

Wakeup can be defined easily.

def agent-w ak eup(se lf)

agent := H (P ,A) ! re ad (se lf);
if agent.count > 2 then

agent.count := a gent.count - 1

else

T (I ,P ,A) ! add(self, reduce, se lf.packet)

fi;
H (P ,A) ! w rite (se lf,a g e n t)

enddef

Reduce. Defining the procedure for reduce is more difficult. The first
attempt at producing methods for this message runs into some difficulty.
This is because some of the rules are defined in terms of a variable number
of packets, ie some of the operators have a variable reach. This is a problem
because it implies that we never know an upper bound on how far to look
down the spine of the graph.

We need to backtrack into our specification somehow in order to simplify
things so that this situation does not occur. The design can proceed by
transforming some of the high level rules in the paragon specification into
simpler rules. This will yield a set of rules that will be closer to how the
machine will be implemented. There is a need to show that the semantics of
the original rule is preserved.

Reducing arities

It is the set of rules that are defined in terms of a variable number of packets
on the lhs that are particularly difficult to implement, so the first design

110

decision we make is to specify the machine so that it never needs to look
at more than two packets in any one step before applying a rule. That is
we make all operators short reach. This implies that all the primitives are
defined as having an arity less than or equal to two.

For example, the select K-n-i primitive can be defined as an arity two
primitive as follows using the TRS:

K-1-0 a —» a
K-n-0 a x —* K-(n—1)-0 a
K-n-i a x —► K-(n—l)- (i—1) x

It is a simple matter to prove this is equivalent to the original specification
for K.

The new Paragon specification for these is shown in appendix section B.2.
Note that these transformations do not change any of the system equations
we derived earlier, so we do not have to backtrack our design all the way to
the beginning.

The same problem exists with several of the primitives. IF takes three
arguments. The rule can be rewritten as follows in terms of K-n-i:

IF ± a b —► _L
IF TRUE a b - » K-2-0 a b
IF FALSE a b —> K-2-1 a b

In addition, as the above forms of K-n-i will be frequently used, we can
provide two specialised rules which are optimised for these forms:

K-2-1 a b -> b
K-2-0 a b —> a

The data constructor/selector primitives PACK and CASE in their general
forms take a variable number of arguments. Recall the definition of PACK

PACK-ra d -* PACK-n-d
PACK-n-d x0 . . . xn_i —► (d|x0, . . . ,x„_i)

We can transform PACK into an arity two primitive by introducing the
new primitive STRUCT-n-z. The new rules for PACK are:

PACK-n d
PACK-n-d a
STRUCT-n-(n—1) (d|x0,. . . x„_i) a
STRUCT-n-i (d|x) a

PACK-n-d
STRUCT-n-0 (d|a)
(d|xo, . . . ,xn_i, a)
STRUCT-n-(z+l) (d|x,... ,xn, a)

111

STRUCT-n-i is a primitive operator that takes two arguments. The first
is a structure type with a tag and a body. The second argument is an element
to be inserted into the structure. STRUCT-n-f is indexed with n and i where
n represents the number of elements expected in the structure, i represents
the number of elements that the structure so far contains. If n = i then the
structure is full. Again it is a simple matter to prove that this is equivalent
to the original definition.

Recall the definition of CASE:

CASE-r eo . . . er_i (d|x) —> ej

For C o b w e b we need to use an intermediate, DCASE-r.

CASE-r a —> DCASE-r (_|a)
DCASE-0 (_|x) (d\y) —> Xd
DCASE-n (_|x0r .. ,xjt) a —> DCASE-(n— 1) (_|x0, . .. ,Xk,a)

That is, CASE-r uses DCASE-n to package up its r arguments in a struc-
ture. When all have been packaged, DCASE-0 indexes into this structure
using the tag from its second argument which will also be a structure. The
tag of the first structure is unused.

Importantly, we observe that the transformation on the methods for the
reduce method does not invalidate any of the procedures that we have already
defined. We can now continue with a definition for the reduce procedure.

Reduce As this is by far the most complicated of the procedures, figure
3.10 is a structured description of the operation of the procedure. The agent
operates on a packet. The square brackets enclose the Paragon rule from the
transformed specification that may apply. This code references additional
procedures, for example execute-basic-operator which will include the methods
for monadic operators and rewriting to normal form.

112

def a g e n t-red u ce (se lf,p a ck et) =

[o l]; [o u l] ; [ou2];

if annota tion starts w ith # then

[#]
else case p acket.ra to r o f

Y : [o Y]

O P E R A T O R :

execute basic operator

P R IM IT IV E :

execute p rim itive

C O N S T A N T :

[onf]

P A C K E T :

[o u l] ; [on f];

if not in n f then

[ot]
else

if there are d irectors then

[directors]

else

[dyop] o r [2ary prim itives]

fi

fi

o therw ise: error

endcase

fi

enddef

Figure 3.10: The pseudocode for the method re d u ce

113

3.6 Results of Implementation
A working simulation of the COBWEB abstract machine based on the design
of section 3.5 has been developed. This has enabled us to validate that the
design works, and predict the performance of a single processor C o b w e b .
This section reports some results of running small programs on the simulator.

For example, consider the following small program in Miranda:

f x y = (x * y) - (x + y)

? f 10 20

This compiles into the following director code:

f: [#AA] f_2 f_5
f_2: [#\\] l-NT- f_3
f_3: [#/\] f.4 1
f_4: [#\] . INT* 1
f_5: [#/\] f_6 1
f_6: [#\] INT+ 1
MAIN: [] MAIN22 20
MAIN.2: [] P MAIN-3
MAIN-3: [] MAIN-4 10
MAIN.4:
MAIN ?

[] P f

When we run this on our machine, forty-eight Paragon rules from the
specification of appendix B.2 are applied to evaluate the expression. Figure
3.11 shows a graph to indicate the relative frequencies of rules applied, and
the number of the step at which each was applied.

In addition, we can trace the number of reducible expressions as the
program runs. Figure 3.12 is a diagram of this activity. The horizontal axis
represents time in terms of reductions performed, and the vertical represents
the total number of reducible expressions in the task pool at that time.

Of course the trace is simple for this program, and the number of redexes
never exceeds two. The number of redexes increases when a fire or need
message is sent to a packet. Note that this happens when the # annotation
is executed at steps five and sixteen; and when a strict basic operator is
executed at step twenty-three. The task pool shrinks when an packet that
has been the target of a fire reaches normal form.

The standard functional programming benchmark is nfib. In Miranda
this is defined as follows

114

[#] [5,6,15,16,36,37]
[d y o p l] [44,45,48]
[d yop 4] [23]

[o / l] [26,27]

[oP] [1.3]
[°\ 1] [19,21]

[o\2] [30,31,40,41]
[oAl] [9,11]
[onf] [7 ,8 ,10,17,18,20,22 ,28,29 ,38,39 ,42,43]
[ot] [2 ,4 ,12,13,14,24,25,32,33,34,35]
[o u l] [47]
[ou2] [46]

Figure 3.11: Relative frequencies of rules applied to the graph

Figure 3.12: A trace of reducible expressions

nfib n = 1, n < 2

= 1 + (n fib (n — 1)) + (n fib (n — 2)) , otherw ise

The special property of nfib is that it delivers the number of function
instantiations it has evaluated in calculating the result. In addition to the
code for the function, is an application of the function to an argument.

For example the execution of nfib to the argument 4 has a rule frequency
table as shown in figure 3.13 . The execution profile for this program is
shown in figure 3.14 .

115

#
IFO
IF1

P A C K -n -i
SE L -n -i
U N P A C K -n
d y o p l

dyop2
dyo p 3
dyo p 4
o / l

0 / 2
oY
o \ l

° \2
O A 1
o n f

ot

o u l
ou2

:[2 0 ,21 ,30 ,41 ,44 ,46 ,42 ,54 ,60 ,62 , 114 ,115 , 141 ,144 ,153 ,156 , 163 ,2 9 6 ,2 9 9 ,305 ,3 0 8 ,313]
:[3 6 ,129 , 131 ,273 ,275 ,277 ,279 ,374 ,376]
:[2 6 ,96 ,97 ,220 ,221 ,222 ,223,34 7 ,348]
: [280 ,281 ,282,3 77,3 78]
: [37 ,132 ,133 ,283]
:[8 ,75 , 183 ,326]
:[4 , 10 , 70 ,77 ,176 ,185 ,321 ,328]
:[1 ,6 ,73 ,181,324] ,
:[34 ,122 ,123 ,125 ,127 ,260 ,261 ,262 ,263 ,265 ,26 7 ,269 ,271 ,2 8 7 ,293 ,36 7 ,368 ,37 0 ,372 ,381 ,
385 ,387 ,390 ,392 ,395]

:[106 ,107 ,240 ,241 ,242 ,2 4 3 ,357 ,358]
:[67 ,171 , 173 ,318]
:[61 ,164 , 165 ,314]
.[17 ,27 ,88 ,89 ,9 8 ,99 ,108 ,109 ,204 ,205 ,206 ,207 ,224 ,22 5 ,226 ,22 7 ,244 ,245 ,2 4 6 ,247 ,3 3 9 ,340 ,349 ,
350 ,359 ,360]

:[2 ,42 ,5 7 ,142 ,159 ,297 ,310]
:[5 ,72 , 179 ,323]
:[7 ,13 ,2 4 ,5 1 ,5 3 ,56 ,64 ,65 ,6 9 ,74,82 ,92 ,9 3 ,152 ,154 ,157 ,158 ,167 ,168 ,169 , 170 ,
175 ,177 , 182, 194 ,212 ,213 ,214 ,215 ,304 ,306 ,30 9 ,316 ,317 ,32 0 ,32 5 ,33 3 ,343 ,344]

:[32 , 102 ,103 ,118 , 119,232 ,233 ,234 ,235 ,252 ,253 ,254 ,255 ,3 5 3 ,354 ,3 6 3 ,364]
■•[15 ,4 0 ,45 ,84 ,85 ,140 ,145 ,146 ,196 ,197 ,198 ,199 ,295 ,300 ,335 ,336]
:[14 ,2 2 ,23 ,25 ,31 ,33 ,43 ,47 ,4 9 ,54 ,58 ,59 ,6 3 ,6 6 ,8 3 ,94 ,9 5 ,104 , 105 ,116 ,117 ,120 ,121 ,143 ,147 ,155 ,
160 ,161 ,162 ,166 ,195 ,216 ,217 ,218 ,21 9 ,236 ,237 ,238 ,239 ,256 ,257 , 258 ,259 ,28 4 ,285 ,288 ,29 8 ,301 ,
307 ,311 ,312 ,31 5 ,334 ,3 4 5 ,346 ,355 ,356 ,365 ,36 6 ,379 ,382]

:[3 , 12 ,16 , 18 ,19 ,28 ,2 9 ,3 9 ,48 ,50 ,68 , 71,8 0 ,8 1 ,86 ,87 ,90 ,91 ,100 , 101 ,110 ,111 ,112 , 113 , 138 ,139 , 148 ,
149 ,150 ,151 ,172 ,174 ,178 ,180,190 ,191 ,192 ,193 ,200 ,201 ,20 2 ,203 ,20 8 ,209 ,210 ,211 ,228 ,229 ,230 ,
231 ,248 ,249 ,250 ,251 ,294 ,302 ,303 ,319 ,322 ,331 ,332 ,337 ,33 8 ,34 1 ,34 2 ,351 ,35 2 ,361 ,362]

:[11 ,3 8 ,78 ,79 , 135,137 , 186 ,187 ,188 ,189 ,290 ,329 ,330]
:[9 ,3 5 , 76 ,124 , 126,128 ,130 ,134 ,136 ,184 ,26 4 ,266 ,26 8 ,270 ,27 2 ,274 ,276 ,278 ,286 ,28 9 ,291 ,292 ,327 ,
369 ,371 ,373 ,3 7 5 ,380 ,3 8 3 ,384 ,386 ,38 8 ,389 ,391 ,393 ,394]

Figure 3.13: Rule frequencies for nfib 4

0 50 100 150 200 250 300 350

Figure 3.14: Profile of nfib 4

116

3.7 Summary
In this chapter we introduced and defined COBWEB — a computer architec-
ture for the execution of functional languages.

We began by identifying the various techniques for the implementation of
functional languages. For historical reasons, we concentrated on one of these
techniques — graph reduction. We reviewed contemporary parallel graph
reduction architectures.

We then described the operation of C o b w e b . COBWEB is a machine
that executes programs in the form of director graphs. The director graph
is generated from FLIC which has been generated from programs written
in Hope+. The Hope+ to FLIC compiler performs strictness analysis and
produces annotations on the FLIC output in the form of evaluators and
evaluation transformers. The FLIC to COBWEB compiler translates these
annotations into parallelism operators and directors.

We identified the need to specify computer architectures formally. COB-
WEB can be defined formally using a term rewrite system. We saw that this
method did not allow us to express some of the lower level details of how
we wish the machine to operate. We introduced Paragon as an object based
term rewriting system with message passing to specify COBWEB at a lower
level. In the course of specifying COBWEB we found that the language in its
original form was not suitable for specifying some aspects of the machine so
we introduced some minor extensions. Paragon is found to be an expressive
hardware specification language. Unlike other HDLs it can describe dynamic
systems cooperating using asynchronous message passing. We found that
this is precisely the level that is appropriate for the high level specifation of
graph reduction architectures.

Given that we wish to produce hardware designs from our specification
we defined a route from Paragon to hardware designs. As hardware systems
consist of static logic blocks connected by a synchronous communications
medium (wires), the methodology proceeds by translating the dynamic and
asynchronous objects into objects that are static and synchronous. This pro-
cess involves introducing heap storage for the dynamic objects, and task pools
to allow asynchronous communications. The output from the methodology
consists of a number of objects and a description of their connectivity. The
behaviour of these objects is described in a simple static imperative language
similar to a conventional HDL. The connectivity of the blocks is expressed
as a directed graph where the arcs are synchronous connections, and the
direction of the arcs indicate the direction of message flow. Applied to a
generalised Paragon description, the methodology produces a description of
a system that closely resembles a multi tasking von Neumann uniprocessor.
However, we noted that static analysis techniques can bemused to produce
better designs for less general specifications.

117

We applied the methodology to our specification of COBWEB and found
that the resulting design was inefficient in some respects due to the long reach
of some of the built in operators. We transformed our original specification
to reduce the reach of all operators and applied the methodology again. The
new design was satisfactory so we used the design to produce a prototype in
the form of a simulator.

We have compiled several programs written in Hope+ into C O B W E B code
and have executed them on the simulator. We have shown the results as
profiles of operations on the program graph, and as redexes available for
execution.

118

Chapter 4

A Parallel W SI Cobweb

In chapter 2 we introduced a communications architecture for WSI. In chap-
ter 3 we introduced a graph reduction architecture. In this chapter we bring
these threads together by designing a parallel graph reduction architecture
for WSI.

We proceed as follows. In section 4.1 we show how we can construct a
model for measuring the performance of a fairly general purpose loosely cou-
pled multiprocessor. In section 4.2 we expand our specification of chapter
3 to include support for multiprocessors. We apply the design methodol-
ogy of the previous chapter to this specification and produce a simulator as
a prototype. In section 4.3 we present the results of this simulation. Fi-
nally in section 4.4 we bring the results together to produce estimates of the
performance of a parallel graph reduction architecture for WSI.

4.1 A performance model for W SI multipro-
cessors

In [AKW90] we introduce a performance model for loosely coupled WSI
multiprocessors. We measure the performance as the total number of memory
accesses per second. The machine is modelled as a memory hierarchy. Each
processor has some local memory, and is connected to every other processor
in the system by a network. A processor can access the memory associated
with another processor by communicating a message to it, and waiting for a
reply.

Programs in this system are modelled by a single parameter, M , which
represents the percentage of non-local memory accesses. Two schemes are
modelled, characterised by whether their memory accesses are synchronous
or asynchronous. In the suspension scheme, the processor must wait idly
until the result of an access is returned. With the multiplexing scheme, the
processor schedules another program for running while it waits for the result

119

to be returned.

T h e P erform a n ce M o d e l

We model the performance in terms of the following parameters.

¿1 local memory access time.

¿hop time taken to transfer one packet between CEs.

N the number of working PEs.

L the loading factor, that is the percentage of working CEs that have a
working PE.

C(x) is the congestion function defined in terms of the number of messages
in the network per CE. This measures the ratio of hops taken to the
ideal minimum number of hops. This can be read straight from the
performance graphs in chapter 2 .

p is the average path length. Again, this can be read from the graphs of
chapter 2 .

(f> is the traffic level — the total number of messages in the network at
once. The number of packets per PE is <j>/N, the number per CE is
L(j>/N.

M is the miss rate — the number of memory accesses that are non local.

The PE is modelled by r, the time taken to access non-local memory. It
is the sum of three components:

ttx is the time taken to transmit

tTX is the time taken to receive a message

tcs is the time taken to restart the process upon receipt of a message.

The reply will become available after a latency. The average latency T
can be calculated in terms of the above as follows.

T = 2pthopC(L<t>/N)

This assumes a random non-local target.
The total average non-local memory access time igis thus given

ts = T + t

— 2pthopC'(T< /̂A)̂ + ftx + trx

We model two schemes:

120

T he suspension schem e. Under this scheme, all memory accesses are
synchronous. When a process attempts a non-local memory access, the CPU
must wait until the value has been returned. This means that the maximum
number of packets in the network will never exceed the number of working
processors, ie <j> < N. The performance in terms of the number of memory
accesses per second is given by

N
TM ~ M ts + (1 - M)t\

The m ultiplexing schem e. Under the multiplexing scheme we have a
number of processes per PE. When one process requests a non-local read, it
is stopped, and the CPU can schedule another to run until the result comes
back. The non-local access delay is now increased by the context switch time
tcs. We have a number of processes ready to run scheduled in a cycle. This
can increase congestion because each process may have a message pending
in the network, so we put an upper limit V on the number of messages a PE
can have current in the network. We can think of each process in the cycle as
a loop making 1/M local memory accesses followed by one non-local access.
If there are enough processors in the cycle then the PE need never be idly
waiting for a message to return. This is the latency concealment condition,
and it can be expressed

V(r + j } tl) > T

To increase latency tolerance, we increase V, but this also increases the
congestion in the network, and we may lose any benefit. If we can satisfy the
condition, then the overall performance is independent of T, so we have

tg — T — tix T Ux T tcs

and the overall performance is given by

N
TM " M r - f (1 - M)t\

Assuming latency concealment, then the multiplexing scheme wins over the
suspension scheme when

N
>

N
M (ttx T t™ + tcs) + (1 — M)t\ M(2pt^opC(L) + ttx -f tTX) + (1 — M)t\

or,
tcs < 2pihopC(T)

ie when the context switch time is less than the average round trip time.

121

Som e real numbers The results from the performance model when some
numbers are fed in are reported in [AKW90]. These are worth repeating
here. One figure that should be explained is the yield of the PE. We assume
a fairly small (eg Transputer sized without the floating point) PE with some
memory. The memory is arranged in blocks of 512 bytes. For a PE to work,
we need the first of these blocks to work. We can use all of the other blocks
that we can yield. The maximum amount of memory available to one PE is
25 kilobytes.

ti = 70 ns

ttx = 70 ns

tIX = 70 ns

tcs = 420 ns

¿hop = 100 ns

p = 6 hops. This is read from the graph for the average latency for the
7̂ -Path in chapter 2

L = Y PE = 62.7%

N — VpE x I c e x Nf.^ ~ 47 PEs.

M = 2%

For the suspension scheme, the result is approximately 370 million mem-
ory accesses per second. For the multiplexing scheme, as latency concealment
is easily satisfied, the result is approximately 590 million memory accesses
per second.

The only problem is the total amount of memory available — approx-
imately 1.5 megabytes per wafer. As explained in [AKW90] this could be
improved by use of a high density custom memory process.

4.2 Specification of a multiprocessor Cob-
web

The conclusion of the previous section is that multitasking within processors
is essential. The spécification of the previous chapter does not consider mul-
titasking because each agent needs synchronous access to the global heap. If
we are to do multitasking then we need to rewrite the specification. It is not
enough to just replicate this design a number of times.

122

We proceed by explicitly describing the role of processors as localities
where objects are processed. The key point is that every object in the system
is to be “associated” with a processor. Although the specification does not
need to say this explicitly, this effectively means that each object is stored in
a heap local to a particular processor. The program graph is now assumed to
be distributed throughout the machine, with each packet residing in the heap
associated with a particular processor. Similarly agents will be associated
with particular processors.

We then need to specify how we deal with agents that need to access
packets that are not on the same processor. We do this using a form of
remote copy. When an agent decides it needs to know about a packet that
is on a remote processor, then it sends a message to that remote processor
asking it for the values it needs. While it waits for the result, it goes to sleep.
In the interim another agent can be scheduled for execution by the processor.
Access to remote packets is now asynchronous, and we thus have achieved
multitasking.

Now that we have a collection of processors, we can arrange to have a
number of them evaluating different parts of the graph concurrently. We
do this by transmitting need and fire messages across the network, and by
exporting work to processors when necessary. Note that no load balancing
is attempted, just load distribution.

We specify this by labelling each packet and agent with the processor
identifier on which it resides.

We shall now discuss the new specification in terms of the new classes
and modified methods.

4.2.1 The new classes
We introduce a new class to deal with “remote” packets. The previous packet
definition will now be known as a local packet. A remote packet is identified
by the processor it resides in plus the local packet identifier. Any packets’
left and/or right subpackets can be situated on remote processors. We have
our new class definitions as follows:

class rpacket : := (processor,packet)
class packet : := (rator,rand,ann,activity,¡nnf,list agent)
d ata rator : := basic-value | rpacket
d ata rand : := basic-value | rpacket

We must also distinguish local agents from remote agents. We do this by
modifying our agent class so that it includes the name of the processor on
which the agent resides.

123

class agent ::= (processor.rpacket,integer)

The processors themselves are actually stateless.

class processor ()

We shall consider the methods for each class in turn.

4.2.2 Packets
S p on tan eou s tran sform ation s

Theré is a problem with spontaneous transformations on packets. For ex-
ample, consider the following two graph fragments to which a spontaneous
transformation applies.

Po

Pi g

f nil

Po

f Pi

g nil

In both cases the graph rewrites to f applied to g using a spontaneous rule.
However consider the case when pi is not on the same processor as po- The
rewrite can only be applied when the body of pi is known. We have the
situation where a spontaneous rewrite implies knowing the body of a non-
local packet.

We solve this problem by asking the processor associated with pi to say
whether the spontaneous rewrite applies. If it does, then thé remote proces-
sor can return the value of the appropriate packet. The rules for the first
spontaneous rewrite are as follows.

[spon tan eou s-loca l]
(x,lp) when

Ip = (Po.Pi-ann.flag,-,-) A

Po = (x,(f,nil,_,
- » (x^f.p^ann.flag,.,.))

[sp on tan eou s-rem ote]

124

(x ,lp) w hen
Ip = (p o , P i , A
Po = (y,rp) A
x ^ y

- » (X-!P>
then
y !! p-spontaneous(self,rp)

The first rule applies when a spontaneous rewrite applies to a packet that
is known locally. It is rewritten to eliminate the nil. The second applies
when the packet has a rator that is not local. The rule might apply, so a
message is send to the processor on which it resides. See section 4.2.4 for the
specification for p-spontaneous.

R e m o te Packets

We first deal with remote packets. These are a tuple consisting of the pro-
cessor name, and the packet body. Remote packets respond to two messages:
need and fire. When a packet is needed or fired, and it is not active or in
normal form, we create an agent to reduce it. Until we actually create the
agent, we have the freedom to choose where it will be situated. It is here
that we deal with load distribution, by asking a different processor to reduce
the packet. There is little point exporting the agent to another processor
if everything necessary for the agent to perform a reduction is local to the
current processor, so we only export an agent when we know that some of
the information needed is definitely on a remote processor.

For example consider the situation where the expression f g h receives a
fire or need message. The graph is shown in the first part of figure 4.1 Packet
pO is local to processor 0, and packet p i is local to processor 1. We do this
in three steps. The first step is to create an agent newagent to be responsible
for reducing this packet, and rewrite packet pO so that it is marked as being
active. In addition if the message received is need then the agent argument
is appended to pO’s pending list.

The second step is to send a message p-balance to the processor on which
p i resides. This message takes four arguments. The first three arguments
are the operator, operand and the annotations of pO. The fourth argument is
newagent. When this has been received by processor 1, the processor creates a
new packet p identical in contents to pO, but residing on a different processor.
The pending list of p is set to contain newagent. An agent then is created to
reduce the packet p.

The third step is to inform pO, which is now semantically equivalent to p
that it is being evaluated elsewhere. The processor sends a message p-return-
balance with arguments newagent and p to the original processor. Upon

125

pO

f

h

Packet pO on processor 0 receives a fire
message. To be reduced it needs p i which
is on processor 1. It is marked as active
and balance(pl,h,ann,newagent) is sent to
processor 1

Processor 1 receives the balance message,
and creates p and an agent to reduce p.
pO is unchanged.

Processor 0 receives the return-balance
message and rewrites pO

f g

Figure 4.1: The three stages involved in exporting agents to remote proces-
sors.

receipt of this message, packet pO is rewritten so that it has operator p, and
operand and annotations that are nil.

The Paragon for the fire message is as follows: The first two rules are
largely unchanged.

(_,lp) g iv e n fire
w h e n
Ip = Active,q)

—> self

(_,lp) g iv e n fire
w h e n
Ip = Nf, Inactive, q)
—> self

Rule [rem ote-fire] sends a message to a remote processor in the manner
described above.

126

[lo c a l-f ire]
(r,lp) g iv e n fire

w h e n
Ip = (rator,rand,annot,Notnf,Inactive,q) A
(unary(se lf) V (-> unary(self) A rator = (r,_)))
—> (r,(rator,rand,annot,Notnf, Active,q))

th e n
newag !! reduce(self)
w h e re
newag = n e w (a g e n t,(r ,se lf,0))

[re m o te -f ire]
(r,lp) g iv e n fire

w h e n
Ip = (rator,rand,annot,Notnf,lnactive,q) A
rator = (r',_) A r' / r A
- i unary(self)
— > (r,(rator,rand,annot,Notnf,Active,q))

th e n
r’ !! p-balance(rator,rand,annot,newagent)
w h e re
newagent = n e w (a g e n t,(r ,se lf,l))

The Paragon for need is similar. The only difference is that the needing
agent must be added to the packets pending queue.

(r,lp) g iv e n need(agent)
w h e n
Ip = (rator, rand, annotjsnf, Active, q)

-*■ (r -nP)
w h e re
np = (rator, rand, annotjsnf, Active, agent::q)

(r,lp) g iv e n need(agent)
w h e n
Ip = (_,_,_Nf,Inactive,.)
—> s e lf

th e n
r !! p-wakeup(agent)

[lo c a l-n e e d]

127

(r,lp) g iv e n need(agent)
w h e n
Ip = (rator,rand,annot.Notnf,Inactive,q) A
(unary(se lf) V (-> unary(self) A rator = (r,_)))
—>• (r, (rator, rand,annot,Notnf,Active,agent::q))

th e n
newag !! reduce(self)
w h e re
newag = n e w (a g e n t,(r ,se lflO))

[rem ote-n eed]
(r,Ip) g iv e n need(agent)

w h e n
Ip = (rator,rand,annot.Notnf,Inactive,q) and
rator = (r',_) A r ^ r’ and
unary(self)
—» (rator,rand,annot,Notnf,Active,agent::q)

then
r’ !! p-balance(rator,rand,annot,newagent)
w here
newagent = n e w (a g e n t,(r ,s e lf ,l))

There might be other reasons for exporting agents to remote processors.
For example each processor could maintain a map of which of its neighbours
are idle, and export the agent to them. However these are not considered
here.

L oca l packets

We only provide one method for local packets. This is rewrite. We always
know that all rewrites take place on the processor on which the packet resides.
Therefore we can keep the method almost exactly the same as before. The
only complication is that we need to send p-wakeup messages to all the agents
waiting on the packet via their processors.

(_,-------- act.q)
g iv e n rewrite(op,arg,ann,Notnf)
— > (op,arg,ann,Notnf,act,q)

act,as)
g iv e n rewrite(op,arg,ann,Nf)

128

(op,arg,ann,Notnf,act,nil)
then
q !! p-wakeup

4.2.3 Agents
The method for the reduce message is most affected by the changes we have
made. However due to our transformations of section 3.5, we know that every
rewrite of the graph in response to the reduce message is one of two forms,
a unary rewrite or a binary rewrite as shown below.

Po

f a

A unary rewrite can always be executed immediately because all the infor-
mation is available to the agent. Also, the agent can always tell if a unary
rewrite applies. However if a binary rewrite applies, and if the pi is associ-
ated with a different processor than the agent, then the agent must get the
body of px before it can decide which rule applies, and before it can continue.

Before giving the full specification, a short example is in order. Consider
a simple program as follows:

t l

t2

[\] t3 4

/ v ,
+

Say that we have two processors numbered zero and one, and that packets
t l and t2 are associated with processor 0, and that t3 is associated with
processor 1 .

To execute the program we create an agent on processor 0 to reduce
packet t l . We need to know which rule applies, and to do this we need to
look at the left subgraph of t l . That is, we need to look at the annotations
and the left and right subgraphs of t2. We can do this easily because t2 is
associated with the same processor as t l and the agent. A rule for executing
the / director applies, and the graph rewrites to the following form:

129

tl

+

4

That is, we create a new packet called t4 which is associated with processor
0, and rewrite t l .

The next rule to apply is to t4. However in order to know which rule
applies, we need to know about packet t3. As this is associated with another
processor, we cannot look at its body directly, but must ask that remote
processor to look at it. So we send a message to processor 1 to ask it to send
back the body of packet t3. The agent suspends while the body is returned,
and when the body does arrive back, the correct rule can be chosen. The
graph is transformed into the following:

t l

t4 4

+ 8

and finally the plus operator is executed and t l rewritten to 1 2 .
By asking the processors to handle delivering messages to agents and

packets, and to handle the copying of bodies of packets, we enforce a locality
of access. That is, an agent associated with one processor cannot directly
look at the body of a packet that is associated on another processor, therefore
the embodiment of the agent need not be directly connected to the packet
heap of the remote processor.

This mechanism is specified in Paragon as follows. These first two rules
specify when the reduction can be done locally. A reduction can be performed
locally when a unary rule applies, or when a binary rule applies and the
appropriate packet is local.

[reduce-unary]
(r,_,_) g iv e n reduce(p)

w h e n
unary(p)

(r,P>0)

130

th e n
se lf! reduce_unary(p)

[binary-local]
(r,_,_) given reduce(p)

when
-> unary(p) A

P = (r.lp) A
Ip = (rator,rand,annot,Nf,_,_)

- » (r -P-0)
then
s e lf ! reduce-binary(p,rator,rand,annot,Nf)

When the packet is not local, we send a message to its processor.

[binary-remote]
(r,_,_) given reduce(p)

when
1 unary(p) A

P = (r.lp) A
lP = (r ’ , -) A r ± r ’
-» (r.p.l)

then
r ’ !! p -getbody(p ,self)

The remote processor will return the body of the packet to the agent via
the local processor. The Paragon for this is as follows:

[return-body]
(r ,p , l) g iv e n return-body(rator,rand,annot,Nf)

- » (r-P.°)
then
s e lf ! reduce-binary(p,rator,rand,annot,Nf)

As the agent requesting the remote copy has been put to sleep, when the
body of the requested returns, it must be woken, and the reduction process
begun.

The reduce-binary message and reduce-unary are introduced above. These
effectively do the job of the reduce message in the specification of chap-
ter 3.5. For example the paragon for two of these messages are given be-
low.

131

[Y]
(r,_,0) g iv e n reduce_unary(p)

w h e n

P = (- I p) A
Ip = (Y ,f, n i l , __,_,)

- » (r.P.O)
t h e n .
Ip ! rew rite(f,p ,n il,Notnf) ;
s e lf !! reduce(p)

[\ i]
(r,_,0) g iv e n reduce-binary(p,rator,rand,annot,isnf)

w h e n

P = (r , lp) A
annot = n i l A
rator = (op,argl,\::ann,_)

-»• (r -P -°)
th e n
p ! rewrite(op,newp,ann,Notnf) ;
s e l f ! ! reduce(p)
w h e re
newp = ne w (p a ck e t,(ra n d ,a rg l,n il,N o tn f,In a ctive ,n il))

The final method we consider handles the case when a balance mes-
sage has been replied to by a processor as explained in the previous sec-
tion.

[re tu rn -b a la n c e]
(r ,p , l) g iv e n return-balance(p)

w h e n

P = (r.lp) A
Ip = Active,q)

(r.p.O)
th e n
Ip ! re w rite (p ,n il,n il,N o tn f,A ctive ,q)

Another rule not shown here simply ignores the message if the above rule
does not match.

132

4.2.4 The Processor Class
Processors act as a collators of requests that come in from remote processors
to operate on packets or agents. They also deal with requests for remote
copies, requests for spontaneous rewrites, and requests for the export of work.

Most of the methods are fairly straightforward, and simply embody the
purpose of the processor as a global collator of requests. Note that the state
of the processor never changes, but that we need to know its name. The
following three rules simply forward the appropriate message to the object
which resides in the processor.

[p-reduce]
g iv e n p-reduce(p)
—» s e lf

th e n
ag ! reduce(p)
w h e re
ag = n e w (a g e n t,(se lf,p ,0)))

[p-need]
g iv e n p-need(ag,rp)
—♦ s e lf

th e n
rp ! need(ag)

[p-fire]
g iv e n p-fire(rp)

s e lf
th e n
rp ! fire

The next two rules implement the remote copy. The first deals with a
request for a copy of a local packet. The agent that requested the copy is sent
copies of the instance variables of the packet in question via the processor
on which that agent resides.

The second rule deals with the copies being received by a processor.
The agent that requested the copy is woken and sent the binary-reduce mes-
sage.

[p-getbody]
given p-getbody(lp,ag)

133

w h e re
Ip = (rator,rand,annot,Nf,_,_)
—* self

then
r !! p-return-body(rator,rand,annot,Nf,ag)
w h e re
ag = (r , - , -)

[p-return-body]
g iv e n p-return-body(rator,rand,annot,Nf,ag)
—> s e lf

th e n
ag !! return-body(rator,rand,annotIN f)

The management of agent exporting is handled by the following messages.
When a balance message is received, the processor creates a packet, and an
agent to reduce the packet.

[p-balance]
g iv e n p-balance(f,g,annot,agent)
w h e n
agent = (r,_)
—> self

then
r !! p-return-balance(newp,ag) ||
newag !! reduce(newp)
where
newp = n e w (P a ck e t,(se lf,lp))
Ip = (f.g.annot.Notnf.lnactive,agent)
newag = ne w (A ge n t,(se lf,ne w p ,0))

[p-return-balance]
g iv e n p-return-balance(agent,newp)
—> self

then
agent !! return-balance(newp)

Finally, to deal with spontaneous rewrites on the graph, we have the
following methods. The first clause deals with when the graph is in a state
that can be rewritten. The first parameter to the message is the packet
(that is associated with processor y) that is to be rewritten. The second

134

parameter is the name of the local packet whose state is being tested. A
rule not shown simply accepts the message without changing anything if the
guards are not true. This is provided so that the p-spontaneous message is
not kept pending.

[p-spontaneous]
g iv e n p-spontaneous(rp,lp)
w h e n
rp = (s e lf^ ra to r.n il.a n n o t.N f,-,.)) A
Ip = (r,_)

self
then
r !! p-reply-spontaneous(lp,rator)

[p-reply-spontaneous]
g iv e n p-reply-spontaneous(rp,new-rator)
w h e n
rp = (_,lp) A
Ip = (_,rand,
—* self

then
Ip ! rewnte(new-rator,rand,annot,Nf);

4.3 Design and Simulation
In this section we outline a design that has been produced from the spec-
ification in the previous section. The design has been derived by applying
the methodology from chapter 3.4 to the specification. We then discuss the
metrics needed for measuring the performance of the machine. This design
has been prototyped as a simulator written in C, and we then present some
of the results of running programs on the simulator.

4.3.1 The design
The design that we produce is a result of applying the method of chapter
3.4 to the specification in the previous section. As the specification has been
written with a loosely coupled multiprocessor in mind, we first confirm that
the specification matches up to our expectations.

We begin by identifying the classes. These are:

• Processors abbreviated V,

135

• Packets V

• Local packets C

• Agents A

The system equations are as follows:

S (V) = { L , P)
S(C) = { i l
S(A) = { A , P , L)
S(K) = { A , P , L }

A(V) = { A , R)
A(C) = { P)
A(A) = { A , P , R }
A(R) = { P , A }

D(P) = {A }
D(C) = 0
D(A) = { A , P , L)
D(K) = { P , A)

The first thing to note is that nothing is dynamic in TZ, so we can implement
this system using a finite number of processors. Although we need heap
processors for packets and agents, we can distribute these by observing that
the objects only create or change packets and agents if they are on the same
processor.

The following is a description of a design for a single processor that satis-
fies the above equations. In the machine, it will be replicated several times.
Each instance will be connected to the communications network.

Our system consists of a number of class processors P{7V). As these are
stateless, there is no need for PI (TV). Processor are connected by a network.
The methodology states that the communications network connecting the
processors must be synchronous, and that it is controlled by a task pool T(7V).
However we note that 71 is not synchronous in TZ, so it can be asynchronous.

Packets, Local Packets and Agents are stored in H{7:>,C ,A) and con-
nected to P [V , C, A).

This can be physically implemented as in figure 4.3.
The design is clearly divided into a communications element and a pro-

cessing element. The Processing element consists of a heap and a proces-
sor. The heap embodies H(A, V, C, T(A, V, C)), and the processor embodies
P(A, V, C, T(A, V, C)). The communications element embodies P (7 l, T(7V))
and H{T(7l)) .

The simulation

A prototype of this design has been developed in the form of a simulator
written in C.
z It implements all the defined methods for the classes, with space for agents
and packets being allocated from a local heap.

136

Communications Network

Figure 4.2: A single processor

4.3.2 Assumptions

The primary assumption with the metrics is that one hop equals one reduc-
tion step. This includes the time taken to read from the CE buffer, calculate
a new direction, and to forward the packet in that new direction.

The second assumption we make is that the garbage collection has little
effect on the overall performance. This is confirmed in practice by the GRIP
architecture [HP90], where garbage collection is found to take no more than
2% of the total time spent executing programs.

4.3.3 Code distribution

There are many different ways that code may be distributed throughout the
machine. [Kel89] introduces the functional language Caliban which allows
the programmer to place functions on physical processors taking account of
their topology. However, no automatic methods have been implemented for
Cobweb. For these experiments, the code has been distributed by hand.

Several experiments were attempted based on the distribution of the code
for the function nfib. The simplest is to put all the code on one processor.
Because the machine does not attempt to balance the load, this meant that
the entire expression is evaluated on one processor.

The next experiment simply distributed the code at random throughout
all the processors available.

The third experiment was based on distributing identical copies of the
code onto all the processors. For example, nfib can be rewritten as follows.

137

Figure 4.3: A physical implementation of a Cobweb node

nfib n = 1, n < 2

= 1 + (m fib (n - 1)) + (o fib (n - 2)) , otherw ise

m fib n = 1, n < 2
= 1 + (o fib (n - 1)) + (n fib (n - 2)) , otherw ise

ofib n = 1, n < 2

= 1 + (n fib (n — 1)) + (m fib (n - 2)) , otherw ise

For this experiment, with three processors, the code for nfib was placed
on processor zero, and the code for m fib and o fib on processors one and two
respectively. The application code was placed on processor zero.

4.3.4 Results
The results for the first experiment, where all the code is on processor

zero are unsurprisingly identical to the results for the single processor case.
The execution profile for nfib 9 is shown in figure 4.4. The profile graph
includes one extra feature — the network traffic. This is a measure of how
many messages are in transit in the network. Being ‘in transit’ can include
waiting in a CE buffer. The single message shown in figure 4.4 is the message
sent to begin the computation.

The results for the random case are interesting. Figure 4.5 shows the
execution profile.

The third experiment was when the code for the main function was repli-

138

cated across three processors, with the application code on processor zero.
Figure 4.6 shows the execution profile for this case.

The results for when the code is distributed are disappointing. The above
show little speedup in time. This is a result of the large expense associated
with spontaneous rewrites. At low values of the argument to nfib, although
there are three processors sharing the work, the overhead of managing the
sharing causes it to take longer to execute than on one processor.

The following is a table showing speedups for a three processor COBWEB
executing nfib n.

n nfib n one rfib speedup msfib speedup

4 9 358 531 0.67 486 0.73

5 15 564 811 0.69 669 0.84

6 25 892 1233 0.72 894 1

7 41 1403 1887 0.74 1214 1.15

8 67 2219 2926 0.76 1756 1.26

9 109 3523 4601 0.77 2352 1.49

139

20

10
Network

0
0 1000 2000 3000 4000

Figure 4.5: Execution profile for when code is randomly distributed

The one column shows the number of steps taken to evaluate the expression
on one processor. The rfib column shows the result when the code is randomly
distributed. The msfib column shows the result when the code is replicated.
Each of the latter two columns have associated speedup columns which show
the absolute speedup over the single processor version.

4.4 The performance of COBWEB

Having done the simulation, we can now estimate the performance of a mul-
tiprocessor COBWEB. We will look at the results for calculating nfib 9, first
for the single processor COBWEB. The number of reduction steps needed to

140

0 1000 2000

Figure 4.6: Execution profile for when code is replicated

evaluate the expression is 3523. As nfib 9 = 109, this give us approximately
35 steps per function call. This is approximately the number of rewrites for
all values of n. A very rough estimate at the number of memory accesses
taken to execute the average reduction is 40. At 70ns per memory access
we have 10,000 nfibs per second on a one processor C o b w e b . A s a three
processor COBWEB goes 1.5 times faster for this computation, we can say
that a three processor COBWEB does 15,000 nfibs per second.

This result compares fairly unfavourably with current graph reduction
machines. For example, GRIP delivers a scalable 36,000 nfibs per second
per processor [HP90]. We see from the table of results that the parallelism
exploited increases as the size of the problem increases. Unfortunately it is
not at all clear if the parallelism scales well in COBWEB as the tools used to

141

generate the results break down ab higher levels. However, we can see from
this small set of data in conjunction with the network profile, that the level
of communications are a problem.

The reason that COBWEB does not perform as well as hoped is undoubt-
edly due to the grain size. The fact that the architecture cannot efficiently
exploit the inherent parallelism of one of the most parallel of all programs is
due to the communications overhead associated with the grain. Figure 4.6
shows that huge demands are made of the network despite the problem being
fairly small. We chose WSI as a technology mainly because of the very large
communications bandwidth. However we see here that despite this, directors
are still too fine a grain of computation to be a competitive technique for
graph reduction.

4.5 Summary
We have constructed a performance model for multiprocessors and identified
that in the context of WSI, multi-tasking in processors has significant perfor-
mance benefits. We have expanded our specification of chapter 3 to support
multi-tasking. We support this by implementing a remote read facility, and a
method for exporting agents to remote processors so as to enchance locality.
We do not attempt load balancing but identify the importance of placing
programs on processors so as to enhance locality and parallelism.

We have constructed a prototype in the form of a simulation and have
investigated running programs on it using three program placing techniques.
The results are not especially impressive. This is due to the grain of compu-
tation, which has resulted in a too large communications and synchronisation
overhead, and little speedup is obtained with modest sized problems.

142

Chapter 5

Conclusion

The initial aim of this work was straightforward. It was to determine if the
implementation of a parallel graph reducer on a wafer was feasible. The em-
phasis here was on the word feasible — the intention was never to produce
a competitive graph reduction implementation. Although a definitive con-
clusion on this may still be in some doubt, there is no question that several
positive results have emerged from this work.

5.1 Communications for WSI
The first positive result concerns communications for wafer scale integration.
At an early stage we identified the need to separate the communications
and processing functions of a WSI device. We then devised and investigated
three different routing algorithms for random point to point communications
between nodes in a highly regular arrays of processors on a wafer. Each
algorithm has been shown to be useful for different applications.

We have identified that the signpost algorithm is the superior solution
for the design presented. We have estimated its performance and found that
its average latency under a wide range of conditions is low. It is simple
to implement, and thus yields well — a crucial property for WSI. We have
indicated that the algorithm has untapped potential because of its ability to
be configured dynamically by the wafer controller.

Although the communications algorithms were designed with graph re-
duction in mind, they have more general properties and have potential ap-
plications in many areas of computer architecture. For example, we could
design a wafer memory device by having a large block of memory in place of
the processor at each node. This would be superior to the Anamartic wafer
memory device because it would have lower latency, and concurrent access.

Another application, which is being investigated in this department, is
neural networks. Each node consists of a number of artificial neurons which

143

can communicate directly, or remotely using the communications architec-
ture.

It is clear that there are many potential applications that could exploit the
high communications bandwidth of WSI using one of these communications
architectures.

5.2 Formal Specification of Hardware
We have found that the specification language Paragon with some extensions
is indeed suitable for specifying hardware. It allows expression of high level
constructs such as dynamicism and asynchronous communications, yet at
the same time can be used to specify much lower levels. It captures well
the nature of hardware designs as collections of communicating objects. It
is however limited in its scope, as in its. present form it is not suitable for
expressing very low level behaviour such as the control of timing.

The second positive result is that we have shown that there exists a
route from our very high level specification language to hardware designs
that can potentially be shown to be correct with respect to the specification.
This differs from previous work in this area in that the specification is at
a much higher level. We have shown how the methodology can be applied
by hand to a specification of a parallel graph reducer. The methodology has
demonstrated itself to be useful in several respects. First, it has allowed us to
spot undesirable properties in our specification — for example objects being
synchronous when we do not want them to be. Second it has provided us
with a prototype in the form of a simulator that has allowed us to experiment
with the architecture, and that has allowed us to estimate its performance.

5.3 Graph Reduction for W SI
As far as the feasibility of graph reduction on a wafer is concerned, the case
is not yet proven beyond all doubt. Although the communications latency
of WSI communications is extremely low, the overhead associated with such
a fine grain of computation as directors still seems to be a limiting factor.
However, having said that, the performance at least seems to be within an
order of magnitude of contemporary parallel graph reduction architectures.

In addition, we have shown just how important is the mapping problem
with such a fine grain of computation. The performance of our machine was
substantially impaired by careless mapping of programs onto processors.

To complete the study of whether graph reduction is feasible on a wafer,
we need to attempt computation at a higher grain, and we need to be able
to map programs onto processors with more confidence. Supercombinators

144

would probably offer a better grain of computation for WSI graph reduc-
tion. Any grain coarser than this would probably be unable to exploit the
potential of on-wafer communications. Static program analysis techniques,
and programmer annotations will lead to better solutions on the program
mapping problem.

5.4 Further Work
It is difficult to see how further study of the wafer scale communications ar-
chitecture would further advance knowledge in the area. We believe that any
of the communications architectures could easily be combined with a simple
processor and taken all the way to design and manufacture. An appropriate
application might be a wafer disk, or a communications switch.

Much of the work on the formal derivation of hardware from Paragon
would benefit from further investigation and experimentation. Although the
route has been sketched, some of the major problems have not been ad-
dressed. This includes proofs of the correctness of the method, which is
probably the most difficult of the problems.

Automation of the method, including facilities for the static analysis of
specifications is another area that would benefit from further research. In
fact, automation would not be useful unless tools for the analysis of spec-
ifications were available, because it is only from such analysis that we can
derive efficient designs.

Finally to decide if wafer scale is a suitable technology for graph reduction,
an investigation into a higher grain of computation with appropriate program
mapping techniques is needed.

145

Bibliography

[ABH+89]

[AC78]

[AH87]

[AHK+87]

[AKW90]

[AN87]

[A088]

[BBG87]

[BHK88]

Paul Anderson, David Bolton, Chris Hankin, Paul Kelly, and
Peter Osmon. COBWEB-2— a Declarative Language Multipro-
cessor Architecture for Wafer Scale Integration. In Fountain and
Shute [FS89].

Russell Aubusson and Ivor Catt. Wafer-Scale Integration - A
Fault-Tolerant Procedure. IEEE Journal o f Solid State Circuits,
Vol.SC-13, June 1978.

S. Abramsky and C.L. Hankin, editors. Abstract Interpretation
o f Declarative Languages. Ellis Horwood, 1987.

Paul Anderson, Chris Hankin, Paul Kelly, Peter Osmon, and
Malcolm Shute. COBWEB-2: Structured Specification of
a Wafer-Scale Supercomputer, pages 51-67. Springer-Verlag,
LNCS 259, 1987. City University TCU/CS/1987/10.

Paul Anderson, Paul Kelly, and Phil Winterbottom. The Feasi-
bility of a General-Purpose Parallel Computer using WSI. Fifth
Generation Computer Systems, July 1990.

Arvind and R.S. Nikhil. Executing a program in the MIT tagged-
token dataflow architecture. In de Bakker et al. [dBNT87].

Paul Anderson and Peter Osmon. A Fault Tolerant Communi-
cations Architecture for Wafer Scale Integration. In Proceedings
o f the Alvey Technical Conference, pages 504-507, 1988. City
University TCU/CS/1988/13.

Jacek Blazewicz, Jerzy Brezeziiiski, and Giorgio Gambosi. Time-
Stamp Approach to Store-and-Forward Deadlock Prevention.
IEEE Trans. Communications, Vol Com-35, No.5:490-495, May
1987.

David Bolton, Chris Hankin, and Paul Kelly. Parallel Object-
Orientated Descriptions of Architectures Specified by Graph
Rewriting Systems. City University TCU/CS/1988/11, 1988.

147

[BHK90] David Bolton, Chris Hankin, and Paul Kelly. Parallel object-
oriented descriptions of graph reduction machines. New Gener-
ation Computing, 1990.

[Bur87] G.L. Burn. Abstract Interpretation and the Parallel Evaluation
of Functional Languages. PhD thesis, Department of Computing,
Imperial College of Science and Technology, 1987.

[Bur89a] G.L. Burn. Deriving a parallel evaluation model for lazy func-
tional languages using abstract interpretation. In de Bakker
[dB89].

[Bur89b] G.L. Burn. Overview of a parallel reduction machine project ii.
In Odijk et al. [ORS89].

[BvEG+87] H.P. Barendregt, M.C.J.D. van Eekelen, J.W Glauert, J.R. Ken-
naway, M.J Plasmeijer, and M.R. Sleep. Term graph rewriting.

[CCC+89]

In de Bakker et al. [dBNT87].

A. Contessa, E. Cousin, C. Coustet, M. Cubero-Castan, G. Dur-
rieu, B. Lecussan, M. Lemaitre, and P. Ng. MaRS, a combinator
graph reduction multiprocessor. In Odijk et al. [ORS89].

[Cur89] L. Curran. Wafer Scale Integration arrives in ‘disk’ form. Elec-
tronic Design, 37(22):51—54, October 1989.

[dB89] J.W. de Bakker, editor. Languages for Parallel Architectures.
Design, Semantics, Implementation Models. Wiley series in par-
allel computing, 1989.

[dBNT87] J.W de Bakker, A.J. Nijman, and P.C. Treleaven, editors. Par-
allel Architectures and Languages Europe, Vol.I: Parallel Lan-
guages. Springer-Verlag, LNCS 258, 1987.

[DD89] W. Damm and G. Dohmen. AADL: A net-based specification
method for computer architecture design. In de Bakker [dB89].

[DS87] William J. Dally and Charles L. Seitz. Deadlock-Free Mes-
sage Routing in Multiprocessor Interconnection Networks. IEEE
Trans. Computers, Vol C-36, No.5:547-553, May 1987.

[E1186] The ELLA User Manual, 2.0 edition, 1986.

[FS89] T.J. Fountain and M.J. Shute, editors. Multiprocessor Computer
Architectures. North Holland, 1989.

148

[GH86]

[GKS87]

[GKW85]

[Gla90]

[Gor86]

[HOS85]

[HP90]

[HS88]

[Hug84]

[Hun90]

[Gaj88]

[IEE90]

Daniel D. Gajski, editor. Silicon Compilation. Addison Wesley,
1988.

B. Goldberg and P. Hudak. Alfalfa: Distributed graph reduc-
tion on a hypercube multiprocessor. Preprint, Yale University
Department of Computer Science, November 1986.

J.R.W. Glauert, J.R. Kennaway, and M.R. Sleep. D a c t l : a
computational model and compiler target language based on
graph reduction. Technical Report Report SYS-C87-03, School
of Information Systems, University of East Anglia, 1987.

J.R. Gurd, C.C. Kirkham, and I. Watson. The Manchester pro-
totype dataflow computer. Communications o f the ACM , 28(1),
January 1985.

Hugh Glaser. Personal communication on the fast project, 1990.

M.J.C. Gordon. Why higher order logic is a good formalism
for specifying and verifying hardware. In G.J. Milne and P.A.
Subrahmanyam, editors, Formal Aspects o f VLSI Design. North
Holland, 1986.

Chris Hankin, Peter Osmon, and Malcolm Shute. COBWEB— A
Combinator Reduction Architecture. In Functional Program-
ming and Computer Architecture, LNCS 201, pages 99-112,
Nancy, France, September 1985. Springer Verlag.

Kevin Hammond and Simon Peyton Jones. Some Early Experi-
ments on the GRIP Parallel Reducer, 1990.

Jim C. Harden and Noel R. Strader II. Architectural Yield Op-
timization for WSI. IEEE Transactions on Computers, 37(1),
January 1988.

R.J.M. Hughes. The design and implementation o f programming
languages. PhD thesis, Programming Research Group, Oxford,
1984. PRG 40.

Sebastian Hunt. HFC — a Ho p e + to FLIC Translator, May
1990.

The 17th International Symposium on Computer Architecture.
The IEEE Computer Society Press, May 28-31 1990.

149

[JHL9.0]

[Kar87]

[Kel89]

[Kir89]

[KS81]

[KS86]

[LB90]

[Lea87]

[LKID89]

[MI<87]

[ML86]

[NSS89]

I. P. Jalowiecki, S.J. Hedge, and R.M. Lea. ‘WASP’ : a demon-
strated wafer scale technology. In Proceedings o f the UI(IT90
conference, Southampton University, 1990. Alvey Conference
Publication no. 316.

R.J. Karia. An Investigation of Combinator Reduction on Mul-
tiprocessor Architectures. PhD thesis, Westfield College, Univer-
sity of London, 1987.

Paul H.J. Kelly. Functional Programming for Loosely-coupled
Multiprocessors. Pitman/MIT Press, 1989.

C. Kirkham. The Manchester Dataflow project. In Fountain and
Shute [FS89].

J. R. Kennaway and M.R. Sleep. Director Strings as Combina-
tors. Technical report, University of East Anglia, 1981.

Paul Kelly and Malcolm Shute. Cartesian Routing and Fault
Tolerance in a Wafer-Scale Multi-computer. In Proceedings o f the
IFIP Workshop on Wafer Scale Integration, Grenoble, France,
17-19 March 1986.

David R. Lester and Geoffrey L. Burn. An Executable Specifi-
cation of the HDG-Machine. GEC Hirst Research Centre, East
Lane, Wembley, 1990.

R.M. Lea, editor. WSIII. Proceedings o f the Second IFIP WG
10.5 Workshop on Wafer Scale Integration. North Holland, Sept
23-25 1987.

R. Loogen, H. Kuchen, K. Indermark, and W. Damm. Dis-
tributed implementation of programmed graph reduction. In
Odijk et al. [ORS89].

D. May and C. Keane. Compiling occam to silicon. Technical
Report 23, Inmos Ltd., 1000 Aztec West, Almondsbury, Bristol,
1987.

R.D. McKirdy and R.M. Lea. Physical design issues for WSI. In
Saucier and Trihle [ST86].

R. Negrini, M.G. Sami, and R. Stefanelli. Fault Tolerance
through Reconfiguration in VLSI and WSI arrays. MIT press,
1989.

150

[PC90]

[PCS89]

[Pel83]

[Per88]

[Pey87]

[Pit87]

[PJ89]

[RD86]

[Shu83]

[SJ89]

[ST86]

[Sum86]

[ORS89]

[Tew89]

E Odijk, M. Rem, and J.C. Syre, editors. Parallel Architectures
and Languages Europe, Vol.I: Parallel Architectures. Springer-
Verlag, LNCS 365, 1989.

Gregory M. Papadopoulos and David E. Culler. Monsoon: an
explicit token-store architecture. In IEEE [IEE90].

S.L. Peyton Jones, C. Clack, and J. Salkild. High-performance
parallel graph reduction. In Odijk et al. [ORS89].

D.L. Peltzer. Wafer Scale Integration: The limits of VLSI? VLSI
Design, September 1983.

Nigel Perry. Ho p e +. Reference IC /FPR /LA N G /2.5.1/7, Func-
tional Programming Research Group, Imperial College, 180
Queen’s Gate, London SW7 2BZ, UK, February 1988.

Simon L. Peyton Jones. The Implementaton o f Functional Pro-
gramming Languages. Prentice Hall, 1987.

K.D. Pitt. Wafer Scale Integration Packaging Problems. In Lea
[Lea87].

S.L. Peyton Jones and M.S. Joy. FLIC — a functional language
intermediate code, formerly UCL Department of Computer Sci-
ence internal report 2048, July 1989.

A.W. Roscoe and Naiem Dathi. The pursuit of deadlock free-
dom. Technical Report Technical monograph PRG-57, Oxford
University PRG, 1986.

Malcolm J. Shute. The role o f Simulation in the Study o f Mul-
tiprocessor, Control Flow and Data Flow Systems. PhD thesis,
Westfield College, University of London, 1983.

Ph. Schnoebelen and Ph. Jorrand. Principles of FP2: Term
algebras for specification of parallel machines. In de Bakker
[dB89].

G. Saucier and J. Trihle, editors. Wafer Scale Integration. North
Holland, 1986.

G.W. Sumerling. Cost Models for ULSI and WSI, 1986.

Stuart I<. Tewksbury. Wafer-Level Integrated Systems: Imple-
mentation Issues. Kluwer Academic, 1989.

151

[Veg84]

[Wad87]

[WL87]

[Tur79] David Turner. A New Implementation Technique for Applicative
Languages. Software Practice and Experience, pages 31-49, 1979.

Steven R. Vegdahl. A Survey of Proposed Architectures for the
Execution of Functional Languages. IEEE Transactions on Com-
putingr, December 1984.

P. Wadler. Strictness on non-flat domains. In Abramsky and
Hankin [AH87].

K.D. Warren and R.M. Lea. Electrical Design Issues for Wafer
Scale Integration. In Lea [Lea87].

152

Appendix A

Cobweb as a TRS

This appendix contains a complete description of COBWEB as a term rewrit-
ing system. As defined in 3.3.1 the syntax of a term is:

<e) : := (e)(e)
i m m
I ((e))
I (P)

(d) (d')(d)
nil

(d') ::= A | - | / | \ | #

where (p) represents a primitive operator, or constant.

A .l Directors

The full set of directors is given here.

Send the operand to the right subgraph.

([\::d] f a) x —* [d] f (a x)
([\ ::d]f\)x -> [d] f x

Send the operand to the left subgraph.

([/::d] f a) x —► [d] (f x) a
([/::d] \ a) x —y [d] x a

Discard the operand.

153

([~::d] f &) x

Send the operand to both subgraphs.

[d] f a

((A

(/A

(/A
i/A

d] { \) x
d] I a) x
d] \\)x
d] f a) x

[dì (f x) x
[d] x (x a)
[d] x x
[d] (f x) (a x)

Context sensitive strictness director.

(l # : : d l t *) [d] f a

A .2 Strict built in operators

The full set of strict dyadic operators is:

INT. INT+ INT- INT x
INT/ INT < INT% (remainder)
INT< INT= INT> INT >
INTyi
There is a similar set for floating point:
FLOAT. FLOAT+ FLOAT- F LO AT x
FLOAT/ FLOAT< FLOAT^ FLOAT=
FLOAT> FLOAT> FLOAT/

The only monadic strict operator for the integers is the negation operator
INT_ . The set for floating point numbers is:

SQRT SIN COS ARCTAN
EXP (natural exponential) LN (natural log)

And finally there are two conversion operators: INT—>FLOAT and FLOAT—dNT.

The generic rules for all these operators in terms of a monadic operator g
and a dyadic operator f:

f i b —» 1
f a i —> T
f a b — > f a b
g ± -L
g a - » g a

154

A .3 Primitives

The set of primitives includes the boolean operators, the selection operator,
the context free parallelism operator and the fixedpoint operator.

OR TRUE x
OR FALSE x
OR 1 x

AND FALSE x
AND TRUE x
AND 1 x

X O R x l
XOR 1 x
XOR x x

NOT 1
NOT FALSE
NOT TRUE

I F i a b
IF TRUE a b
IF FALSE a b

-> TRUE
—> x
-4 Jl

-* FALSE
—> x
-> 1

-> X
-* T
-> FALSE

-» 1
-► TRUE

FALSE

-> X
—> ¿L
—> b

K-n 1 —» K-n-i
K-n-i xq . . . xn —> x,-

P a h —> a b

Y f -> f (Y f)

A .4 Data Constructors/Selectors

Data constructors and selectors are given below.

155

PACK-n d ->
PACK-n-d x0 . . . xn- i —>

SEL-n i —»
SEL-n-z X —►
SEL-n-i (d|x0, . . . ,x n_i) —►

UNPACK\ - n f l -»
UNPACK!-« f (d|x0, . .. ,x„_i) —»
UN PACK-n f e -*

CASE-r eo . . . er_i (c/|x) —>
CASE-r eo . . . er_i X —>

TAG X -+
TAG (d|x) ->

P A C K -n -d
(d|xo, ... ,xn_i)

SEL-n-i
X
x,

1
f X0 . . . Xn_i
f (S EL -n -0 e j . . . (S E L -n -(n — 1) e)

e<*
1

X
d

A .5 Sequencing, Strictness and Termination

SEQ X b -c X
SEQ a b -> b

STRICT f X -» X
STRICT f x - f x

ABORT -» X

156

Appendix B

Cobweb in Paragon

This appendix contains the specification for COBWEB at two levels. The first
section describes the highest level, and contains a complete paragon speci-
fication for all the classes defined for the machine as introduced in section
3.3.2.

Section 3.5 contains a discussion of some of the design decisions made for
the machine. These were expressed as a set of simplified paragon rules. The
second section in this appendix contains these new rules.

B .l High level specification

B .l .l Packets and Agents

We first need to describe the packet and agent class

class Agent (packet.integer)
class Packet (rator,rand,string.innf,act,list agent)
data rator = packet | basic-value
data rand = packet | basic-value
data innf = Nf | Notnf
data act = Active | Inactive

A basic-value can be a constant integer floating point value, or boolean; or it
can be a basic operator or primitive. The full set of primitives is as follows:

B o o le a n s IF ,A N D ,O R ,X O R .N O T JR U E ,F A L S E

157

Selection K-n, K-n-i n > 0,0 < i < n

M iscellaneous SEQ, STRICT, ABORT, P, Y

D ata co n s tru cto rs /se le c to rs for n > 0,0 < i < n, r > 0
TAG, CASE-r, PACK-n, PACKET SEL-n, SEL-n-z, UNPACK!-«, UNPACK-?!

Packets respond to three messages:

rewrite indicates that the packet is to be rewritten. The arguments
to this message are the new structure of the packet.

need indicates that the packet is needed by an agent.

fire indicates that the packet is to be evaluated to normal form.

Agents respond to two messages:

reduce indicates that the agent is to reduce the packet which is an
argument to the message.

makeup indicates that the agent can resume reducing a packet.

B.1.2 Rewrite

{ - i - i - i - i - i p)
given rewnte(op,arg,ann,Notnf)
-> (op,arg,ann,Notnf,_,p)

(---------- p)
given rewnte(op,arg,ann,Nf)
—> (op,arg,ann,Nf,Inactive,nil)

then
p !! wakeup

Note that in the above rule p is a list of agents. There is an implied mapping
of wakeup onto all the elements in the list.

158

B.1.3 Need

Active,p) given need(agent)
-» Active,agent::p)

Nf,Inactive,p) given need(agent)
—> Nf,Inactive,p)

then
agent !! wakeup

(_,_,_,Notnf,Inactive,p) given need(agent)
—> Notnf,Active,agent::p)

then
new(Agent,(self,0)) !! reduce(self)

B.1.4 Fire

Active,p) given fire
-*• Active, p)

Nf,Inactive,p) given fire
Nf,Inactive,p)

Notnf,Inactive,p) given fire
—> Notnf,Active,p)

then
new(Agent,(self,0)) !! reduce(self)

B.1.5 Wakeup

(_,c) given wakeup when c > 2
- (-.c-1)

(P,l) given wakeup

self!! reduce(P)

B.1.6 Reduce

N o rm a l form and finding next red ex

[onf]
(_,0) given reduce(Pi) when

Pi = (o p , a r g , a : : x , A a / #

- (Pi.O)
then
Pi !! rewrite(op,arg,a::x,Nf)

[o t]
(_,0) given reduce(Pi) when

Pi = (P2,-nil,__,_) A
P2 = Notnf,_,_)
- (Pi.l)

then
P2 !! need(self)

U nlabelled rewrites

[ou l]
(Pi,0) w hen

Pi = (P 2.a,ann,flag,_,_) A
P2 = (f ,n il,n il,N f ,_ _)

- (Pi.O)
then
Pi !! rewrite(f,a1ann,flag)

[ou2]
(Pi,0) w hen

Pi = (f>P2lann,flag,_,_) A
P2 = (a ,n il,n il,N f,_ ,_)

- (Pi.O)
then
Pi !! rewrite(f,a,ann,flag)

160

F ix e d p o in t co m b in a to r

[oY]
(_,0) given reduce(Pi) when

Pi = (Y.arg,nil,
- <Pi.O)

then
Pi ! rewrite(arg,Pi,nil,Notnf) ;
self !! reduce(Px)

D ire c to rs

[o\l]
(_,0) given reduce(Pi) when

Pi = (P2 ,argl,nil,__,_) A
P2 = (op, arg2,\::ann,
- (Pi.O)

then
Pi ! rewrite(op,newpacket,ann,Notnf) ;
se lf!! reduce(Pi)
w here
newpacket = new(Packet,(arg2,argl, nil, Notnf, Inactive, nil))

[°\2]
(_,0) given reduce(Pi) when

Pi = (P2,argl,nil,___) A
P2 = (op,l,\::ann,_,_,_)
- (Pi.O)

then
Pi ! rewnte(op,argl,ann,Notnf) ;
self !! reduce(Pi)

[o / l]
(_,0) given reduce(Pi) when

Pi = (P2, a r g l , n i l , A
 ̂ P2 = (op,arg2,/::ann,

- (Pi.O)

161

th e n
Pi ! rewrite(newpacket,arg2,ann,Notnf) ;
s e l f ! ! reduce(Pj)
where
newpacket = n e w (P a ck e t,(o p ,a rg l,n il,N o tn f,In a ctive ,n il))

[o/2]
(_,0) g iv e n reduce(Pj) w h e n

Pi = (P 2,o p ,n il,_,_,_) A
P2 = (l,arg,/::ann,

- (P i . O)
th e n
Pi ! rewrite(op,arg,ann,Notnf) ;
s e l f ! ! reduce(Pi)

[°A1]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (P2la r g , n i l , A
P2 = (op,arg2,A::d,

- (Pi.O)
th e n
Pi ! rewrite(newop,newarg,d,Notnf) ;
s e lf !! reduce(Pi)
where
newop = new (Packet, (op, arg, n il , Notnf, Inactive, n i l))
newarg = new (P acket,(a rg2 ,a rg ,n il,N otnf,Inactive ,n il))

[oA2]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (P 2 .arg l ,n i l ,_,_,_) A
P2 = (I,a rg2 ,A ::d ,_,_,_)

- (P i . O)
th e n
Pi ! rew rite(argl,newarg,d,Notnf) ;
s e lf !! reduce(Pi)
where
newarg = new (P ack e t,(a rg 2 ,a rg l,n il,N o tn f,In a ctive ,n il))

[o A 3]

(_,0) g iv e n reduce(Pi) w h e n
Pi = (P i,a rg ,n il,_,_,_) A
P2 = (op,l,A::d,_,_,_)

162

<Pi.O>
then
Pi ! rewrite(newop,arg,d,Notnf) ;
s e lf !! reduce(Pi)
where
newop = new (P ack et,(o p ,a rg ,n il,N o tn f1lnactive ,n il))

[o A 4]
(_,0) g iv e n reduce(Pi) w h e n

P i = (P 2 ,a rg,n il,__,_) A

P2 = (I . I .A -d ,

- <Pi.0>
then
Pi ! rewrite(arg,arg,d,f\lotnf) ;
s e lf !! reduce(Pi)

[o-j
(_,0) g iv e n reduce(P i) w h e n

Pi = (P 2. a r g , n i l , A

P2 = (op,arg,-::d ,

- <Px.O)
then
Pi ! rew rite(op,arg,d,Notnf) ;
s e l f ! ! reduce(Pi)

[o #]
(_,0) g iv e n reduce(Pi) w h e n

P i = (op ,arg,# ::d ,n ,_ ,_) A

ispacket(arg)

- <Pi.O)
then
(arg !! fire ||
Pi ! rewrite(op,arg,d,n)) ;
s e lf !! reduce(Pi)

Context free parallelism

[o P]
(_,0) g iv e n reduce(Pi) w h e n

P i = (P 2,P3,nil,n,_,_) A

163

P2 = (P , f , A

ispacket(P3)

-> (Pi.O)
then
(P3 !! fire ||
Pi ! rewrite(f,P3ln i l ,n)) ;
s e lf !! reduce(P!)

Monadic strict primitive operators

[monopl]
(_,0) g iv e n reduce(Pi) w h e n

Px = (o p , n , n i l , A
isJnteger(n) Aarity(op) = 1

- <->
then
Pi ! rewrite(op n ,n il ,n il ,N f)

[monop2]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (op, P2, n i l , A
P2 = Notnf,_,_)

- (Pi.l)
then
P2 !! need(self)

Dyadic boolean operators

[b o o l l]
(_,0) g iv e n reduce(Pi) w h e n

P i = (P 2.y ,n iU _ ,_) A
P2 = (o p , x , n i l , A
is_packet(x) A
op = A N D or op - OR

[a n d l]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (P 2, y , n i l , A
P2 = (op,x ,n i l , A
op = A N D A x = T R U E

- { -)
then
Pi ! re w rite (y ,n il,n il,N o tn f) ;
s e lf !! reduce(Pi)

[° r l]
(_,0) g iv e n reduce(P!) w h e n

P i = (P 2,y.n il,__,_) A
P2 = (op,x ,n i l , A

op = OR A x = FALSE

- (->
then
Pi ! re w rite (y ,n il,n il,N o tn f) ;
s e l f ! ! reduce(Pi)

[and2]
(_,0) g iv e n reduce(Pi) w h e n

P i = (P 2,y,n il,__,_) A
P2 = (op,x,n i l , A
op = A N D Ax = FALSE

- <->
then
Pi ! re w rite (FA L S E ,n il,n il,N o tn f)
s e l f ! ! reduce(Pi)

[°r2]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (P 2, y , n i l , A
P2 = (o p , x , n i l , A
op = OR Ax = T R U E

-> (-)
then
P i ! re w rite (T R U E ,n il,n il,N o tn f)
s e l f ! ! reduce(Pi)

[IFl]
(_,0) g iv e n reduce(P l) w h e n

165

Pi = (P2. b , n i l , A

P2 = (P3. a , n i l , A
P3 = (IF,P4 ,nilI_,_,_) A
¡ S _ p 3 € k e ^ p 4 4))

then
P4 !! need(self)

[IF2]
(- .0) given reduce(Pl) when

Pi = (P2, b , n i l , A
P2 = (P3, a , n i l , A
P3 = (IF ,F A L S E ,n il ,A
is_packet(P4)
- (-)

then
Pi ! rewrite(b,nil,nil,Notnf) ;
self!! reduce(Pi)

[IF 2]
(-.0) given reduce(Pl) w hen

Pi = (P2, b , n i l , A
P2 = (P3,a,nil,__,_) A
P3 = (I F , T R U E , n i l , A
is_packet(P4)
—> (-,-)

then
Pi ! re w rite (a ,n il,n il,N o tn f) ;
s e l f ! ! reduce(Pi)

Dyadic strict primitive operators

[dyopl]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (P2, n , n i l , A
P2 = (op ,m ,n il,__,_) A
isJnteger(m) A isJnteger(n) A
arity(op) = 2

- (-)
then
Pi ! rewrite(op m n ,n il,n il ,N f)

166

[dyop2]
(_,0) g iv e n r e d u c e ^) w h e n

Pi = (P 2 ln1n il ,_ _ 1_) A
P2 = (op ,P 3 , n i l , A
P3 = (_,_,_,Notnf,_,_) A
isJnteger(n)

- (- 1)
th e n
P3 !! need(self)

[dyop3] ^
(_,0) given reduce(P!) when

P i = (P 2, P 3,n i l , A
P 2 = (o p , n , n i l , A
P 3 = (_,__,Notnf,_,_) A
isJnteger(n)
- (- 1)

then
P3 !! need(self)

[dyop4]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (P 2 .P 4 .n il ._ _ _) A
P2 = (op ,P 3 ,n il ,_ _ _) A
P3 = (_ _ _ N o tn f,_ _) A
P4 = (_ _ _ N o tn f,_ _)

- (-.2)
th e n
P3 !! need(self) ||
P4 !! need(self)

Primitives

[IFO]
(_0) g iv e n reduce(Pi) w h e n

Pi = (P 2 .a rg2 ,n il,___) A
P2 = (IF ,a rg l,n il ,_ _ _) A
is_bool(argl)

- (- 0)

167

th e n
Pi ! rewrite(K-2-n,arg2,nil,f\lotnf)
s e lf ! ! reduce(Pi)
where
n = 0, if argl = True
n = 1, if arg l = False

[IF1]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (P 2 , a r g 2 , n i l , A

P2 = (I F , a r g l , n i l , A
is_packet(argl)

- <p .. i >
th e n
a rg l !! need(self)

[SEQ1]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (P 2 , a r g 2 , n i l , A
P2 = (S E Q , a r g l , n i l , A

Notnf,_,_) argl

- <Pi.l)
th e n
arg l !! need(self)

[SEQ2]
(_,0) g iv e n reduce(Pi) w h e n

P i = (P 2 ,a rg2 ,n il,___) A
P2 = (S E Q , a r g l , n i l , w h e r e
not ¡s.packet(argl)

(- - 0)
th e n
Pi ! re w rite (a rg2 ,n il,n il,N otnf) ;
s e l f ! ! re d u c e ^)

[STRICT]
(_,0) g iv e n reduce(Pj) w h e n

Pi = (P 2 , a r g 2 , n i l , A
P2 = (S T R I C T , a r g l , n i l , A

(_,_,_,Notnf,_,_) arg2

- (Pi-1)
th e n

168

a rg l !! need(self)

[STRICT]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (P 2 ,a r g 2 , n i l , A

P2 = (S T R I C T , a r g l , n i l , w h e n
not is_packet(arg2)

- (-.0)
then
Pi ! rew rite(argl,arg2 ,n il,N o tn f)
s e l f ! ! reduce(Pi)

[ABORT]
(_,0) g iv e n reduce(Pi) w h e n

P i = (A B O R T , x , A

x ± n i l
—» s e lf

th e n
Pi ! re w rite (A B O R T ,n il,n il,n f)

Selection

[K-n]
(_,0) g iv e n reduce(Pi) w h e n

P i = (K - n , i , n i l , A

¡s_integer(n)

- (Pi.O)
then
Pi ! re w rite (K -n -i,n il,n il,N o tn f)
s e l f ! ! reduce(Pi)

[K-n]
(_,0) g iv e n reduce(Pi) w h e n

P i = (K - n , p , A

is_packet(p)

- (-.1)
then
p !! need(self)

169

[K -n - i]
(_,0) g iv e n reduce(pn) w h e n

Pn = (p „—1 |X„—i . n i l , _) A
P n -l = (Pn-2.Xn-2.nil,-,-) A

Po = (K-n-i, Xo, n il,

- <->
th e n
pn ! rew rite (x,,n il,n il,l\ lo tnf) ;
s e l f ! ! reduce(p„)

Data constructors

[PACK-n]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (P A C K -n ,d _____) A

isJnteger(d)

- (->
then
Pi ! re w rite (P A C K -n -d ,n il,n il,N f)

[PACK-n]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (P A C K - n , p , A

¡s_packet(p)

- (- 1)
then
Pi !! need(self)

[SEL-n]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (S E L - n , i , n i l , A

isJnteger(i)

- (-)
then
Pi ! re w rite (S E L -n -i,n il,n il,N f)

[SEL-n]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (S E L - n , p , n i l , A

¡s_packet(p)

170

(- .1)
then
p !! need(self)

[SEL-n-i]
(_,0) given reduce(Pi) when

Pi = (SEL-n-i,s,nil,_,_,_) A
is_struct(s)
- > (- 0) '

then
Pi ! rewrite(x_i,nil,nil,Notnf) ;
self !! reduce(Pi)
where
s = (d|x)

[SEL-n-i]
(_,0) given reduce(Pi) when

Pi = (S E L -n - i ,p ,n i l ,A
is_packet(p)
- (- 1)

then
p !! need(self)

[UNPACK-n]
(_,0) given reduce(Pi) when

Pi = (P2, e , n i l , A
P2 = (UNPACK-n, f, nil,
- <Pi.0>

then
Pi ! rewrite(pn_2,sn_i,nil,Notnf) ;
se lf!! reduce(Pi)
where
Sj = new(Packet,(SEL-n-j,e,nil,Notnf,Inactive,nil))
p0 = new(Packet,(f,So,nil,Notnf,Inactive,nil))
Pj = new(Packet,(p_,_i,Sj,nil,Notnf,Inactive,nil))

[UNPACK-1]
(_,0) given reduce(Pi) when

Pi = (P2,e,nil,_,_,_) A
(UNPACK-1, f, nil, _.,_)
- (Pi-0)

then

171

Pi ! rew rite (f,p ,n il,N otn f) ; ;
self !! reduce(P!)
where
p = n e w (P a ck e t,(S E L -l-0 ,e ,n il,N o tn f,In a ctive ,n il))

[UNPACK !-n]
(_,0) given reduce(Pi) when

Pi = <P2,(d|x),nil,__t_) A

P2 = (UNPACK!-n,f,nil,_,_,_)
-» (nodeniO)

then
Pi ! rewrite(f,Xo,nil,Notnf) ;
self !! reduce(node„)
where
nodei = new(Packet,(Pi,Xi,nil,Notnf,Inactive,nil))
nodej = new(Packet,(nodej_i,Xj_i,nil,Notnf,Inactive,nil))

[CASE-r]
(_,0) given reduce(Pi) when

Pi = (CASE-r,a,nil,_,_,_)
-

then
Pi ! rew rite (D C A SE -r,(_|a),n il,N f)

[TAG]
(- .0) given reduce(Pi) when

Pi = (TAG,s,nil,__,_) A

is_struct(s)
-

then
Pi ! rewrite(d,nil,nil,Nf)
where
s = (d|x)

[TAG]
(_,0) given reduce(Pi) when

Pi = (TAG,p , nil,_,_,_) A

is_packet(p)
- (- 1)

then
p !! need(self)

172

B.2 Transformed specification

The I combinator

[ol]

(- 0) given reduce(Pi) when
Pi = (I, P2,
- (Pi.O)

then
Pi !! rewrite(P2,nil,nil,Notnf) ;
self ! reduce(Pi)

Selection

[K-l-O]
(_,0) given reduce(Pi) when

Px = (K-1-0,argl,_,
- <Pi.0>

then
Pi ! rewrite(argl,nil,nil,Nf) ;
self !! reduce(Pi)

[K-2-0]
(_,0) given reduce(Pi) when

Pi = (P2, x , n i l , A
P2 = (K-2-0,a,nil,
-> (- 0)

then
Pi ! rewrite(a,nil,nil,Notnf) ;
self !! reduce(Pi)

[K-n-O]
(_,0) given reduce(Pi) when

Pi = (P2,x____) A
P2 = (K -n -0 ,a ,

- (Pi.0)
then
Pi ! re w rite (K -(n -l)-0 ,a ,n iI,N o tn f) ;
self !! reduce(Pi)

173

[K - n - i]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (K -n -i,

-> (->
then
Pi ! rewrite(K-(n-l)-(i-l),nil,nil,Nf)

Data Construction/Selection

[PACK-n-d]
(_,0) g iv e n reduce(Pi) w h e n

P j = (P A C K -n -d ,a_____)

- (->-)
then
Pi ! re w rite (S T R U C T -n -d ,a ,n il,n il,N f)

[STRUCT-n-(n-l)]
(_,0) g iv e n reduce(Pi) w h e n

P i = (P i , a , n i l , A
P2 = (S T R U C T -n -(n -l) ,(d | x) ,n il ,

then
Pi ! re w rite (S T R U C T -n (d | x+ -| -a),n il,n il,N f)

[STRUCT-n-n]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (P 2, a , n i l , A
P2 = (S T R U C T -n -n ,(d | x),n il,

th e n
Pi ! rew rite ((d|x),a ,n il,N f)

[STRUCT-n-i]
(_,0) g iv e n reduce(Pi) w h e n

Pi = (P 2,a,n il,__,_) A
P2 = (S T R U C T -n -i,(d | x) ,n il,

, - (-)
th e n

174

Pa ! re w r ite (S T R U C T -n -(i+ l) ,(d | x -f -fa) ,n il ,N f)

[DCASE-O]
(_,0) g iv e n reduce(Pa) w h e n

Pa = (P2, (d | y) , n i l , A
P2 = (D CA SE -O , (_ ,x), n il ,

- (Pi.O)
■ then

Pa ! rew rite(x_d ,n il,n il,l\ lotnf) ;
s e lf !! reduce(Pa)

[DCASE-n]
(_,0) g iv e n reduce(Pa) w h e n

Pi = (P 2 . a . n i l , A
P2 = (D C A S E -n ,(_|x),n il,

- (- 0)
then
Pa ! re w rite (D C A S E -(n -l) ,(x + -) -a),n il,N o tn f) ;
s e lf !! reduce(Pa)

175

