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Abstract
The research presented is based on the study of music, the study of mind and the study of 

machine. Most of it deals with the low level rhythm perception mechanisms that process 

the perceived time intervals roughly corresponding to a note, and infer rhythmic 

categories, a sense of tempo and local deviations thereof, and expectations for the events to 

come.

This main thread of the work consists of the first four articles. They deal with 

different methods of quantization, propose a connectionist model and compare it to a 

symbolic one, and elaborate an expectancy measure that can be used as the basis for higher 

level rhythm perception processes. Thus starting from the perspective of a technical tool 

the work develops towards cognitive theories of human rhythm perception.

Then two papers follow a side-track that deals with AI programming in LISP.

They explain the programming style used in the various articles and apply it in a case 

study to a large computational model.

The next three articles follow a main line that studies the expressive timing signal 

extracted by quantization. The first of these tries a statistical approach, analyzing the 

tempo variations in a performance using autocorrelation. The second, in the form of a 

fictitious story, warns against a simplistic notion of tempo curves by showing that any 

transformation or manipulation based on the implied characteristics of such a notion is 

doomed to fail. The third concludes the thesis, linking expressive timing and structure in an 

attempt to enable transformations of expression. The motivation for this last article is the 

need for measurement instruments and tools that can cope with the complexity of 

performance data and are much more sophisticated than tempo curves. It assumes an 

intimate link between expression and structure - or rather the foundation of the concept of 

expression on structural musical units.
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Preface

The research to be presented is essentially multi-disciplinary. It is based on the study of 

music, the study of mind and the study of machine. Nowadays each of these topics is linked 

to the other in various research disciplines. In computer music, ways to design machines to 

make music are explored. In music cognition, mental processes that perceive and apprehend 

music are investigated. In artificial intelligence the mind is approached as a machine - and 

machines are built to learn more about mind. Though the articles in this thesis focus each on 

a narrow topic, the research in these various domains forms the ground work on which it 

was possible to base this contribution.

In this preface I will show how the articles relate. I will also sketch the research 

paradigm that underlies this work - and deal with some controversies within that 

paradigm. Because the articles that form the heart of this thesis are written in quite 

precise and technical terms, and intentionally so, I will feel free to explore some more 

intuitive insights and to ventilate speculative ideas here. These thoughts, arising 

sometimes in discussions with colleagues, motivated me in the present research and form 

the inspiration for future work. I will first give some observations on the methodology that 

is based on the relations between music, mind and machine and then focus on the subject of 

this thesis: expression and structure in music.

Music

Music never functions in a vacuum: it is carried by pressure waves in air. It can studied as a 

sound signal that is emitted by a performer, travels through the air and is picked up by the 

listeners ears. This is the domain of acoustics, (the behaviour of the sound in space) and of 

psycho-acoustics (the conversion of pressure waves into musical percepts in the ear and in 

parts of the brain) which form complex fields of study in their own right. Music also never 

functions in a social and cultural vacuum. The perception of music can be changed in subtle 

ways by the visual impression of the performer, sociological factors, fashion, the listener's 

associations and a multitude of other factors studied in sociology, anthropology and 

ethnomusicology. All these presuppose the human ability to remember and recognize

musical fragments or even a specific style, composer or performer, high level tasks
I

investigated in psychology. Those musical styles and periods can also be explored in their 

own right, independent of cognition, as is done in musicology.

In this thesis all these issues, however interesting, are ignored. And to name another severe 

restriction: the examples used all stem from the western classical music.

But what is this research about, if so much is excluded? Most of it deals with the 

early rhythm perception mechanisms that process the perceived time intervals roughly 

corresponding to a note, and infer rhythmic categories, a sense of tempo and local deviations
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thereof and expectations for the events to come. All the caveats were necessary because 

even the most simple questions about the form, role and function of expressive timing and 

tempo are quite difficult to tackle. That is also one of the reasons why the subject was 

approached in a rather technical way - based on simple elapsed time intervals between 

performed note onsets.

One can question whether with such restrictions to simple measurable quantities, 

one can still study meaningful matters. Or does the scientific, technological approach kill 

the magic of music? In a sense it does, and in a sense it doesn't. It does kill magic by refusing 

to assume any direct communication of human emotion from performer to listener by 

wizardry. But by assuming that, if such things are communicated at all, they must be 

communicated via the music signal itself, it takes the unraveling of this signal as its 

primary goal. Technology then becomes very helpful, and the discovery of subtle and 

intricate patterns of musical performance, the almost unbelievable consistency in fraction- 

of-second timing of human performers and the delicate ways in which musical structure is 

communicated exposes a great wealth of wonder and magic. Besides, music always has been 

filled with techniques and technology, aiming towards the mastery of it, be it in instrument 

building, composition or control over the instrument in performance.

This reliance on objective measurements does not give researchers the right to 

dismiss other realities. When a music teacher teaches a student how to play e.g. 'sadly' 

certainly something is conveyed. And the fact that it might be difficult to discover this 

sadness in the measured musical signal does not mean it is not there. More often than not 

performers know very well what happens in the music even if they state it in unobservable 

terms. It is the researcher's task to make sense out of it in objective ways. Once some progress 

is made in that direction, what happens in music can still only be described - not 

prescribed. More than once researchers have made serious mistakes in this matter - to the 

point of circularity, like Manfred Clynes (1987) who claims that a performer who does not 

play according to his theory of the 'composers pulse' does not play well.

Mind

The modern cognitive and computational approach to the musical mind differs quit a lot 

from the older psychology of music, in that it develops formalized, testable models of 

aspects of the musical mind instead of intuitive, metaphorical concepts. Nevertheless 

there is an old metaphorical approach to the musical mind that has reappeared recently 

and that is, in my opinion, dangerous and misleading. Before I present an alternative I will 

explain this theory. It is based on an apparent similarity between musical and physical 

motion. Helmholz (1885) was already quite explicit in his appreciation of the similarities, 

and even attributes to them a central role in the evocation of emotion.
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it becomes possible for motion in music to imitate the peculiar characteristics of motive 

forces in space, that is, to form an image of the various impulses and forces which lie at the 

root of motion. And on this as I believe, essentially depends the power of music to picture 

emotion. (Helmholz, quoted in Todd, 1989)

But he still pictures music that chooses to resemble physical motion - not in any magical 

way forced to do so. Todd starts to blur the distinctions involved:

For example, it seems intuitively appealing that by increasing the energy the maximum 

velocity or tempo increases. Every musician knows that the faster the tempo the more work 

they have to do. It may be that the 'energy' is also salient to the listener which could make 

a contribution to affect. (Todd, 1989 p 156)

However appealing these similarity-based theories might be to naive bystanders, there is 

no evidence whatsoever that a walnut is good for the brain because it looks like one (to 

name a theory built on the same foundations). I do not object to the testing of the possible use 

of square root functions to model musical ritards, or the use of constant acceleration of 

musical velocity in modelling expressive timing - just because both ideas happen to describe 

physics of falling objects and constant gravity as well. However, I do object to the idea that 

physical motion is more than a mere metaphor in these matters. Some authors move from 

the simplicity of falling physical bodies to moving bodies of human performance and 

explain the similarity as embodiment of musical thought, and thus propose a healthy 

alternative to the wholly mentalistic approach AI researchers tend to take. Furthermore 

this approach is again open for scientific inquiry (Clarke, forthcoming; Davidson, 1991) 

and my criticism is not aimed in that direction.

To understand my objections to the reliance on metaphor it is important to note that 

in the search for simple similarities, alternative explanations of the phenomena are easily 

overlooked, as is shown by some studies of the final ritard. This large deceleration at the 

end of a piece is often observed to have a certain form (a square root curve) and it can indeed 

be modelled as the speed of a mass under a constant deceleration, a constant braking force 

(Kronman & Sundberg, 1987).

However, there is another explanation possible that is based on the structure of the 

music and the architecture of temporal perception itself. For a large tempo change such as a 

final ritard to be still perceivable as a slowing down, it should not slow down too fast, 

otherwise the rhythmic categories will not be communicated intact and tempo cannot be 

perceived. Any quantizing and tempo tracking model like the models proposed by Longuet- 

Higgins (1976) and Desain & Honing (1989) will predict a form of maximal deceleration 

that can still be followed. It might be that a good model can indeed predict - by its
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limitations - the limits of acceptable rubato and final ritard. Because of the nature of these 

models they will also predict that a) these limits are different for various rhythmic 

structures and b) the slowing down might well be required to work in stepwise fashion - 

because the models propose separate tempo tracking mechanisms on different levels of the 

metrical hierarchy. Both predictions are consistent with the findings that music from 

different composers or style periods require different final ritards to work well musically, 

and some evidence that in final ritards there is indeed a tendency to decrease tempo in a 

stepwise manner (Clynes, 1987). Such observations immediately show the importance of 

investigating this possible explanation further. If it can be shown to hold, it will be a much 

more attractive explanation than the physical motion theory because it explains 

properties of good music performance directly from the musical material and from the 

perceptual processes themselves. I am convinced that music is based on, plays around with, 

and makes use of the architecture of our perceptual systems much more than that it imitates 

our physical surroundings.

Machine

Artificial Intelligence research (AI for short) has always had two faces, a technological 

and a cognitive one. The first solely strives to design technical systems (machines) that 

behave intelligently and the latter seeks to make testable, formal models of intelligent 

human behaviour. My own orientation towards Artificial Intelligence in this thesis is 

mainly motivated by the possible understanding of human cognition that it might bring. 

Curiosity about the musical mind is the main driving force and practical applications e.g. 

for music production that may come out of the research are considered a by-product. The 

occurrence of the word system or model in publications gives one a fair guess about the 

approach a researcher takes. A problem arises when the terms (and the orientations) are 

confused: a successful system only has to behave up to input-output specification but the 

internal mechanisms of a successful model are supposed to tell us something about reality. It 

may not be a problem in the initial stages of the research that this issue is sometimes 

unclear, but finally, if one is to learn something about human intelligence, it must be made 

explicit how the model relates to the phenomenon modelled. This testing of artificial 

intelligence models, or even stating the models in ways that generate testable predictions, 

is a field that is barely developed. There is a huge gap between experimental psychology, 

with its sophisticated tools for testing simple processes, and cognitive science which has 

hardly any tools for testing their more complex models. Even the way in which 

computational models can be described such that it is clear what it is that is modelled, and 

what is simple implementation detail, is problematic, especially since programming 

languages do not support the specification of those issues. However, an adequate 

programming style, a clear description of these issues and the publication of the program in
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the form of a micro version helps in determining the value of an algorithm as a model for a 

cognitive function. Artificial Intelligence at its worst can be seen in articles that make 

anthropomorphic claims about unpublished programs. The laborious so-called rational 

reconstruction of those programs by others to check the claims is then the only remaining 

route to scientific progress (Ritchie & Hanna, 1990).

Artificial Intelligence is not a very homogeneous domain. At present there is 

within AI a clash of two competing paradigms: Connectionism and the Symbolic 

paradigm. Since in my own research the use of connectionist and/or symbolic 

representations is a recurrent theme, it is good to dwell on both a bit more. The so 

called Good Old Fashioned Artificial Intelligence, (i.e. the symbolic approach) has 

established itself firmly as a research methodology in the past decades. The 

methods and tools it uses are symbolic, highly structured representations of domain 

knowledge and transformations of these representations by means of formally stated 

rules. At the heart of this methodology is the use of symbols that have no content in 

themselves: information processing is of a syntactic nature. It is easy to misinterpret 

the behaviour of such a system since the symbols often carry suggestive name tags 

that may seduce one into attributing more sense, more intelligence, to the program 

than is actually implemented in the rules themselves. One has to realise that some of 

these clever programs actually do not achieve very much, being based on a very 

smartly developed knowledge representation that solved, or evaded the problem 

beforehand. Any extension of these systems, however small, or any attempt to 

generalize the results is doomed to fail because the knowledge representation is 

designed just to give ad-hoc solutions to a small set of problems. I feel that this 

approach carries the symbolic approach to its ridiculous extreme.

However, other kinds of symbolic AI have contributed more or less 

generalizable theories to the field, and have proposed models of human information 

processing. These rule-based theories can function as abstract formal descriptions of 

aspects of cognition. Some authors even go beyond that and claim that mental 

processes are symbolic operations performed by mental representations of rules.

Until the connectionist paradigm emerged there was no real alternative to 

this view. In the new paradigm the departure from a reliance on the explicit mental 

representation of rules is central, and the approach to cognition is fundamentally 

different. Connectionism opens the possibility of defining models which have 

characteristics that are hard to achieve in traditional A I , in particular robustness, 

flexibility and the possibility of learning. The connectionist boom has produced lots 

of interesting work , although many researchers have lost their critical attitude 

impressed as they were by the good performance of some prototypical models. This 

has resulted in thousands of papers presenting more and more examples of problems
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that could be learned by a neural net, the proof being the simulation of such. Levelt, 

bothered by this waste of effort, concluded that connectionist models are, mutatis 

mutandis, as handy as a city map on a 1:1 scale (Levelt, 1989). Indeed more study is 

needed of the limitations of these models. A connectionist model that 'works' well, 

constitutes in itself no scientific progress, if questions like the scalability to larger 

problems and the dependency of the model on a specific input representation, cannot 

be answered.

The theoretical observation that a connectionist system can simulate any 

symbolic computation machine (is Turing machine equivalent) and vice versa tends to 

dismiss the relation between the paradigms as a non-issue. I think that the language 

in which problems are stated and the level at which research is conducted is of major 

importance - each language obscures some matters while clarifying others. A related 

idea about the relation between the paradigms is the presentation of Connectionism 

as an implementation level theory, which can coexist with a more abstract symbolic 

theory on a higher level. This view is often associated with the claim that 

connectionism is superior to the symbolic approach because the computational units 

resemble cells found in the brain (the term 'neural networks' stems from that 

postulated isomorphism). This has to be rejected firmly. The simple computational 

method used in connectionism is miles away from true biological modelling and the 

choosen computational level of abstraction can never be a ground for superiority.

Against the background of this debate within AI and cognitive science on the 

role of connectionist models, some researchers have concentrated on a technical 

examination of the weak and strong points of both symbolic and neuro-computing, to be 

able to combine them in so-called hybrid systems. They claim that because symbolic 

computing is best suited for higher level functions such as reasoning and planning, and 

neuro-computing is more applicable for low-level, perceptual and classification tasks, 

systems containing modules from both paradigms should be devised. This approach is 

not free of problems, to put it mildly. At its worst it can be described as: 'we do not 

understand how neural nets work, we do not know how rule-based systems work, let's 

combine them and see what happens'. Such a pragmatic approach can only obscure 

the real issues.

There is, however, another way to deal with the challenge of connectionist 

work. By comparing both paradigms one quickly discovers that the formalisms used 

are often of such an idiosyncratic nature that it is impossible to make claims about the 

behaviour of models from both paradigms. Concentrating on general abstract 

descriptions of behaviour then becomes a very fruitful activity. It yields new ways to 

look at the connectionist and the symbolic models and to characterize them further - a 

positive contribution in itself. For example, consider the benefits of describing the



input-, state- and solution spaces, a trivial exercise for connectionist systems. In 

symbolic systems these constructs often remain hidden in the program code and are not 

made explicit in the articles, but they can help enormously in characterizing such 

systems. These analyses also yield ways to describe connectionist systems on a more 

general level than simulation runs can. One such point that is often neglected is the 

representation:

[for most aspects of connectionist modelling] there exists considerable formal 

literature analyzing the problem and offering solutions. There is one glaring 

exception.: the representation problem. This is a crucial component, for a poor 

representation will often doom the model to failure, and an excessively generous 

representation may essentially solve the problem in advance. Representation is 

particularly critical to understanding the relation between connectionist and 

symbolic computation, for the representation often embodies most o f the relation 

between a symbolically characterized problem (e.g. a linguistic task) and a 

connectionist solution. (Smolensky, 1990)

In representation issues the symbolic paradigm has, because of its very nature, much 

to offer to connectionism. I think a combined study of both paradigms might overcome 

the controversy. In the end the differences may turn out not to be that essential. One 

example supporting this view is the research that showed that a certain kind of 

network can still support modularity and recursive (de)composition of constructs 

(Pollack, 1990) - a central issue in symbolic AI. However, at the moment we are still 

confronted with a new and hardly understood paradigm.

I expect further progress from the elaboration of continuous knowledge 

representations, the most eye catching feature of connectionism in comparison to the 

symbolic paradigm that uses discrete concepts (be it memory locations, categories, 

inference operations or production rules). Continuous learning curves are a sine qua non 

of multi-layer learning algorithms. And the behaviour of neural nets has been 

described, with great benefit, as continuous over time, making the whole apparatus of 

partial differential equations applicable. Simulation of such networks on computers 

is done by applying time-sampling as an approximation to the time-continuous change 

of state in a network. It might prove beneficial to carry this idea to its extreme. It is 

strange indeed that the discreteness of the individual network cells has not yet been 

considered to be a space-sampling of a basically space-continuous computing model. 

Instead of a vector space, the input, output and state space of the system then become 

function spaces. It might even be possible to consider the cell layers of a network as 

space-sampled, continuous, two dimensional computation. Instead of a network we can
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then metaphorically talk about a lump of 'computing material'. It might well be that 

the analytical methods available for systems of differential equations for continuous 

functions, and sampling theory, can thus again be applied to connectionist systems, 

and produces results for unanswered questions like the number of hidden layers or the 

number of cells in those layers needed for a certain task.

This finalizes some methodological considerations. I hope to have sketched some of 

the ways in which the concepts of music, mind and machines interrelate and how these 

relations can be a fruitful basis for research. After these detours we now have to home in on 

the topics of this thesis: expression and structure in music.

expression

Perhaps contrary to common usage, the word expression in this thesis does not denote what 

music expresses to the individual listener. All the links to musical affect, to emotion and 

even to a esthetics are considered too complex to tackle before more mundane issues are 

understood. Expression is assumed to be a syntactical concept - dealing only with the form of 

the music. In the first stages of the research expression was defined as the pattern of 

deviations of attributes of performed notes from their value notated in a score. Everything 

added by the performer to the score, all deviations from a strict mechanical performance, 

was termed expression. This definition, however useful in the initial study, soon lost its 

attractiveness. In general listeners can appreciate expression in music performance without 

knowing the score and a full reconstruction of the score in the form of a mental 

representation is impossible. Take for instance the notion of the loudness of notes. Should a 

listener be required to fully reconstruct the dynamic markings in the score before it is 

possible to appreciate the deviations from this norm as expressive information added by 

the performer? Such a nonsensical conjecture indeed follows from a rigid definition of 

expression as deviation from the score. Seashore was a bit more careful (albeit a bit more 

vague too) when he defined expression, independent of a score, as:

artistic deviation from the fixed and regular: from rigid pitch, uniform intensity, fixed 

rhythm, pure tone . (Seashore, 1938, quoted in Todd, 1989)

It is possible to find more elaborate ways of defining expression on the basis of performance 

information only. In later stages of the research this was achieved by basing expression on 

the notion of structural units, using this working definition: expression within a unit is the 

pattern of deviations of its parts with respect to the norm set by the unit itself. Take e.g. a 

metrical hierarchy of bars and beats. The expressive tempo within a bar can be defined as 

the pattern of deviations of the tempo of each beat from the tempo of the bar. Or take the 

loudness of the individual notes of a chord. The dynamic expression within a chord can be
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defined as the set of deviations of the loudness of the individual notes from the mean 

loudness of the chord. Using this definition, expression can be extracted from the 

performance data itself, taking more global measurements as reference for local ones, based 

on the concept of known units. Thus the structural description of the piece becomes central, 

both to establish the units which will act as a reference and to determine the sub-units that 

will act as atomic parts whose internal details will be ignored. A similar definition works 

well for the expression carried by the difference of two voices or formed by the difference 

between e.g. a theme and a variation. Expression between two units is defined as the 

pattern of deviations of their parts with respect to a norm set by both units themselves. The 

norm could be some kind of average, or even one of the units themselves . E.g. the timing of 

the accompaniment could be taken as the reference when considering the expression carried 

by the timing lead the melody voice has over it in ensemble timing. In taking on this 

intimate link between expression and structure - or rather the foundation of the concept of 

expression on structural units - the nature of the structural description becomes a crucial 

concern.

Structure

Structure in music is not a simple concept, because of the multitude of structural descriptions 

in use. Let us start with hierarchical structures like metre, rhythmic grouping and phrasing 

in which the structural links are part-of relations. These overlaying structural analyses, 

concerned with different aspects of the piece, may violate each others boundaries - like a 

phrase ending in the middle of a measure. There can be ambiguity: multiple mutually 

exclusive analyses or interpretations of the same aspects of a piece. There may be local 

violation of otherwise hierarchical structure, like two overlapping phrases (a situation 

seldom encountered in linguistics). The need for local structural relations like grace notes 

and other ornamentations is obvious too. These can be described by a part hierarchy, but 

there are also structural relations that cannot be treated likewise, like symmetrical 

associations between recurrent motives. Besides these collections of musical events, and the 

simple relations between them, we need formalization of the various rhythmic, melodic 

and harmonic roles that can be ascribed to such collections. I think that the complexity 

sketched mirrors the complexity found in the expressive signal itself, since the various 

structures are the source of expression and are conveyed to the listener by that means. A full 

theory of expression should be able to link these various structural descriptions to the 

components of the expressive signal. This thesis can only offer a small contribution to this 

long-term aim.
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Contents of the thesis

Because this thesis consists of a number of published articles, that have to be more or less 

independent, some overlapis unavoidable. Each article has several links to the others 

which makes it quite difficult to impose a linear order. The present ordering highlights 

two main lines, and a side track. The first main thread consist of the first four articles. It 

deals with different methods of quantization, proposes a connectionist model and compares 

it to a symbolic one, and elaborates an expectancy measure that can be used as base for 

higher level rhythm perception processes. Then two papers follow a side-track that deals 

with AI programming in LISP. They explain the programming style used in the in the 

various articles. The next three articles follow a main line that studies the expressive 

timing signal extracted by quantization. The first one tries a statistical approach. The 

second warns against a simplistic notion of tempo curves. The third concludes the thesis, 

linking timing and known structure in an attempt to enable transformations of expression. 

Details of publication can be found in the contents.

The Quantization Problem: Traditional and Connectionist Approaches 

This paper constitutes a first attempt to understand quantization and the research done in 

this field. It still approaches the problem from the perspective of a technical tool. It was 

presented at the AI and Music Workshop in 1988 in Cologne and will appear in a book on 

Musical Intelligence. Traditional and AI methods for quantization are explained and 

compared. Simplified algorithms of the described methods are included as micro versions.

Quantization of Musical Time: A Connectionist Approach

In this paper a connectionist model is elaborated that converges from performed time 

intervals to an equilibrium state in which the score durations can be read out. It was 

published in the Computer Music Journal and will appear in a book on neural networks and 

music. For this book an addendum was written containing a mathematical description of the 

network plus some material from a presentation at the International Computer Music 

Conference in 1989 in Columbus, Ohio.

A Connectionist and a Traditional AI Quantizer. Symbolic versus Sub-svmbolic Models of 

Rhythm Perception

Two incompatible quantization models, namely the Longuet-Higgens Musical Parser and 

the Desain & Honing connectionist quantizer, were studied further in order to find ways to 

compare and evaluate them. Different perspectives to describe their behaviour were 

developed. This paper was presented partly at the Horssen Workshop on Rhythm 

Perception and Production in 1990 and in full at the Music Cognition Conference in 

Cambridge later that year. It will appear in the proceedings thereof.



A (De)composable Theory of Rhythm Perception

Out of the study of the two incompatible models arose a measure of the expectancy of events 

projected into the future by a complex temporal sequence. It can be decomposed into basic 

expectancy components projected by each time interval implicit in the sequence. A 

preliminary formulation of these basic curves is proposed and the (de)composition method 

is stated in a formalized, mathematical way. The resulting expectancy of complex 

temporal patterns is believed to be useful to model topics such as clock and meter 

inducement, rhythmicity, and the perceived similarity of temporal sequences. This 

theoretical paper will appear in Music Perception.

Lisp as a Second Language, Functional Aspects

Looking at the LISP programs emerging from the computer music community, the old 

imperative style can often be seen between the lines of LISP code. It is a pity to neglect the 

elegant ways of expressing algorithms in LISP, and doing so will often result in 

disappointing performance and maintainability. In this article the functional style of 

programming is explained and illustrated with examples from computer music. It appeared 

in Perspectives of New Music and was used as material for several programming workshops 

for composers.

Parsing the Parser, a Case Study in Programming Style

This paper takes, as an example, the musical parser designed and described by Longuet- 

Higgins and re-implements it in a functional programming style in LISP. This yields a micro 

version that makes the theoretical issues stand out more clearly. It was published in 

Computers in Music Research.

Autocorrelation and the Study of Musical Expression

In this paper a method was designed to analyze the tempo variations in a performance 

using autocorrelation. Peaks in the autocorrelation function are interpreted as periods of 

repeated components in the musical structure. Partial autocorrelation is used to remove the 

multiples of a fundamental period. It was presented at the International Computer Music 

Conference in Glasgow in 1990 and appeared in the proceedings thereof.

Tempo Curves Considered Harmful

This fictitious story shows that we have to be aware of the notion of a Tempo Curve, 

because it lulls its users into the false impression that it has a musical and psychological 

reality. There is no abstract tempo curve in music, nor is there a mental tempo curve in the 

head of a performer or listener. It shows that any transformation or manipulation based on



the implied characteristics of such a notion is doomed to fail. It will appear in 

Contemporary Music Review and it will be presented at the International Computer Music 

Conference of 1991 in Montreal.

Towards a Calculus for Expressive Timing

This paper is an attempt to identify ways in which structural knowledge can be used to 

enable transformations of musical performances that make musical sense. The motivation 

for this work is the need for measurement instruments and tools that can cope with the 

complexity of performance data and are much more sophisticated than tempo curves. This 

paper is submitted to Psychology of Music.

Communication

The working title of this thesis was 'The Communication of Structure by Expressive Timing 

in Music Performance’. The link between structure and expression was indeed one of the basic 

hypotheses underlying most of the work. However, I have not yet been able to deduce 

effective procedures to generate timing from structure or by which a listener can infer 

structure from timing . This was partly because a lot of ground work and tool building had to 

be done first. That work is reported on in this thesis. The recent work of Longuet-Higgins & 

Lisle (1989), Todd (1989) and Drake & Palmer (in preparation) indicate that there might 

be ways in which the communication of structure by expressive timing can be formalized. 

However, no clear picture that deals in a unified way with all kinds of structure (metrical, 

rhythmic, phrase, local surface etc.) has emerged yet. I hope that my work has produced 

results that may in the long run contribute to the understanding of that issue.
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A b s t r a c t

Quantization separates continuous time fluctuations from the discrete metrical 

time in performance of music. Traditional and AI methods for quantization are 

explained and compared. A connectionist network of interacting cells is 

proposed, which directs the data of rhythmic performance towards an 

equilibrium state representing a metrical score. This model seems to lack some 

of the drawbacks of the older methods. The algorithms of the described 

methods are included as small Common Lisp programs.

KEYWORDS

Quantization, rhythm perception, connectionism, expressive timing.

1. THE QUANTIZATION PROBLEM

Musical time can be considered as the product of two time scales: the discrete time intervals of a 

metrical structure, and the continuous time scales of tempo changes and expressive timing 

(Clarke 1987). In the notation of music both kinds are present, though the notation of continuous 

time is less developed than that of metric time (often just a word like rubato or accelerando is 

notated in the score). In the experimental literature, different ways in which a musician can 

add continuous timing changes to the metrical score have been identified. There are systematic

■f This paper was presented at the first AI and Music Workshop, St. Augustin, Germany in September 1988. It 
has been updated with references to new work and some material from (Desain & Honing 1991). Micro 
versions of the main algorithms were added as well.

The Quantization Problem 1



changes in certain rhythmic forms e.g. shortening triplets (Vos & Handel 1987) and consistent 

time asynchronies between voices in ensemble playing (Rasch 1979). Deliberate departures from 

metricality such as rubato seem to be used to emphasize musical structure, as exemplified in the 

phrase-final lengthening principal formalized by Todd (1985). Alongside these effects, which 

are collectively called expressive timing, are non-voluntary effects, such as random timing 

errors caused by the limits in the accuracy of the motor system (Shaffer 1981), and errors in 

mental time-keeping processes (Vorberg & Hambuch 1978). These non-intended effects are 

generally rather small, in the order of 10 milliseconds.

To make sense of most musics, it is necessary to separate the discrete and continuous components 

of musical time. We will call this process quantization, although the term is generally used to 

reflect only the extraction of a metrical score from a performance. This quantization process 

transforms incoming time intervals between subsequent note onsets, i.e. inter-onset intervals, 

into discrete note durations (as can be found in the score) and a tempo factor that reflects the 

deviation from this exact duration. It is solely based on inter-onset intervals: any other 

information like note offsets, dynamics and pitch is ignored. The output of the quantization 

process can serve as input for processes extracting higher level structural descriptions like 

meter.

Apart from its importance for cognitive modelling, a good theory of quantization has technical 

applications. It is one of the bottle-necks in the automatic transcription of performed music, and 

is also important for compositions with a real-time interactive component where the computer 

improvises or interacts with a live performer. It is indispensable in the study of expressive 

timing of music for which no score exists.

2. TRADITIONAL METHODS

The quantization problem has been approached from different directions, the resulting 

solutions ranging from naive and inept to elegant and plausible. We will describe here first the 

methods that construct the solution in a straightforward numerical way.

2.1. Inter-onset quantization

This simple method rounds the inter-onset intervals of the notes to the nearest note duration on 

a scale containing all multiples of a smallest duration (time-grid unit or quantum). In Figure 1 

an architecture for this method with standard signal processing modules is shown. Note that 

this method runs in event-time: one cycle of processing is done for each new incoming inter-onset 

interval, resulting in a quantized interval. The module divides the input by the smallest 

allowed value and rounds it to the nearest integer. It also yields a relative error in proportion 

to the quantum (between -0.5 and 0.5). When given a list of intervals and a value for the
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quantum the method will produce a list of quantized intervals with respect to this quantum. 

Given the inter-onset intervals of the rhythm of Figure 2, and a quantum of 100 ms (32th triplet 

at tempo 50), it will result in the list of multiples of this quantum (12 6 3 3 4 3 4 6 6 3 3 3 312) 

which'does not represent the right quantization: (12 6 3 3 4 4 4 6 6 3 3 3 3  12). This method, when 

it makes a round-off error, will shift the absolute onset of all subsequent notes. When used in 

polyphonic music, an error in one stream of notes will permanently de-synchronize it with 

respect to the other streams.

Figure 1. Inter-onset quantizer.

2.2. Onset quantization

At first sight, quantizing the absolute onsets of the notes themselves, instead of the inter-onset 

intervals, will be a solution to the de-synchronization problem. This method simply maps each 

onset-time to the nearest point in a fixed grid with a resolution equal to the quantum. Small but 

consistent deviations in the inter-onset intervals, as occur in slight tempo fluctuations, will 

add-up and produce an onset-time deviation that is the sum of all previous interval deviations. 

So this method is more sensitive to small tempo fluctuations then inter-onset quantization. 

Occasionally an onset-time will topple over the boundary between two grid points and the note 

will not be quantized correctly, but the quantized data will not be permanently de-

synchronized.

Commercially available sequencer and transcription software packages use this simple onset 

quantization method. They cannot notate a non-trivial piece of music without errors (see Figure 

2). This is not surprising, considering the large deviations of up to 50% and the ambiguity that 

has to be dealt with, especially in the case where both binary and ternary divisions are 

present. Most of these packages force the interpreter to play along with a metronome to give an
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acceptable result, or require a precise tuning of parameters (e.g. are triplets allowed) for 

different sections of the piece.

1.177 0.592 0.288 0.337 0.436 0.337 0.387 0.600 0.634 0.296 0.280 0.296 0.346 1.193

5M
1S..V .

■ — ______ _____ ______ _ ___ J  J  J  -
s. ^ *-— -1

-igure 2. Played score (performance inter-onset intervals in seconds) and its quantization by a 
commercial package (using a resolution of 1/64 note).

23. Tempo tracking

The methods mentioned above can be enhanced by repeatedly adapting the duration of the 

quantum to the performance. When the performer accelerates, the onset times will all tend to 

fall before the grid points. Adapting the quantum (decreasing it) will enable the system to 

follow the tempo change of the performer and to keep quantizing correctly. This set-up is shown 

in Figure 3. A required adjustment is calculated that, when the quantum is increased with this 

value, would have accounted for the interval perfectly. The fastest response possible for the 

tempo tracker would be to increase its quantum (one interval later) with that proportion. But 

such a progressive approach may allow the tempo to stray on the first note that is played 

imprecise. It is rather difficult to design a good control module that adjusts tempo fast enough to 

follow a performance, but not so fast that it reacts on every 'wrong' note. A common solution is to 

build in some conservatism in the tempo tracker by using only a fraction of the proposed 

adjustment. If this fraction, called the adjustment speed, is set to 0.5 the new tempo will be the 

mean of the old tempo and the proposed ideal.
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Figure 3. Tempo tracker.

2.4. Tempo tracking with confidence based adjustments

A more sophisticated tempo tracker adapts its tempo only when there is enough confidence to 

do so. An onset that occurs almost precisely between two grid points will give no evidence for 

adjusting the tempo (because it is not sure in what direction it would have to be changed). In 

Figure 4 the details are shown. The quantization error (the difference between the incoming 

interval and the quantized output of the system) is expressed as a fraction of the quantum . A 

simple function will calculate a confidence level, on the basis of this error and has a maximum 

near zero errors. The confidence level also depends on the parameter 'trust', that expresses its 

sensitivity for errors. If we now use this confidence level as a scale factor for the adjustment 

speed of the tempo tracker will enhance its performance.

Of course, even this method is vulnerable to errors. Dannenberg and Mont-Reynaud report a 30% 

error rate for their ’real time foot tapper’ which uses a variant of this method (Dannenberg and 

Mont-Reynaud 1987). This poor performance, considering their careful tuning of parameters and 

their preprocessing of the musical material (taking only ’healthy’ notes into account), is 

disappointing.
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Figure 4. Tempo tracker with confidence based adjustment.

2.5. The Algorithm

Since the methods mentioned above can be considered as extensions of each other, the last 

method can emulate the less sophisticated ones by supplying zero- or one-valued parameters.

In Appendix I a micro version of a this general traditional quantizer is given. Experimenting 

with it, changing parameter values and feeding it with different musical material quickly 

shows the limitations of these kinds of systems and their lack of robustness.

3. USE OF STRUCTURAL INFORMATION

Because of the poor performance of the methods described above, techniques that make use of 

knowledge of the hierarchical structure of rhythms were proposed for quantization. Longuet- 

Higgins (1987) describes a hybrid method based on tempo tracking plus the use of knowledge 

about meter. In this method the tempo tracking is done with respect to a beat (that can span one 

or more notes). This beat is recursively subdivided in 2 or 3 parts looking for onset times near the 

start of each part. The best subdivision is returned, but the program is reluctant to change the 

kind of subdivision at each level. The start and length of the beat or subdivision thereof is 

adjusted on the basis of the onsets found, just as in the simple tempo tracking method. Next to 

the quantized results, this program delivers a hierarchical metrical structure. A more detailed 

study of the behavior of this elegant method can be found in (Desain, 1991b).

The Quantization Problem 6



3.1. The Algorithm

Because Longuet-Higgins published the rather complicated program in POP-2, it seems 

appropriate to restrict ourselves here to a stripped version (see Appendix II), concentrating only 

on the essential aspects (see Desain, 1991a). It incorporates the basic ideas about stability of 

meter, the tolerance with respect to which all decisions on onsets are made, and the beat length 

that has to be supplied as an initial state of the system. But the analysis of articulation, 

delivery of metrical structure and the sophisticated tempo tracking is removed. When given 

the inter-onset intervals of the rhythm in Figure 2, it will result in the correct quantization: (1 

1/21/41/41/31/31/31/21/21/41/41/41/41). ‘

4. KNOWLEDGE BASED METHODS

The automatic transcription project at CCRMA (Chowning et al. 1984) is a particularly 

elaborate example of a knowledge based system. It prefers simple ratios and uses context 

dependent information to quantize correctly. This knowledge based approach uses information 

about melodic and rhythmic accents, local context, and other musical clues to guide the search 

for an optimal quantized description of the data. Using even more knowledge could possibly 

contribute to the quantization problem, e.g. harmonic clues could be used to signal phrase 

endings where the tempo may be expected to decrease at the boundary (phrase final 

lengthening) and repetition in the music could be used to give more confidence in a certain 

quantization result. However these knowledge based approaches seem to share the same 

problems of all traditional AI programs: the better they become, the more domain dependent 

knowledge (depending on a specific musical style) must be used for further advance, and such 

programs will break down rapidly when applied to data outside their domain.

5. MULTIPLE ALTERNATIVES

All methods above can be enhanced by using them repeatedly on the same data, but with 

different parameters, searching for the best solution. These analyses could even go on in 

parallel. Dannenberg and Mont-Reynaud (1987) propose multiple 'foot tappers' all running at 

the same time. For Chung (1989) the parallel exploration of multiple alternatives is essential. 

Using Marvin Minsky's paradigm (Minsky 1986) he describes his system as consisting of 

multiple intelligent agents. These proposals are distributed models with a 'coarse' grain: each 

part-taking processor consists of a complete traditional symbolic AI program. However, it is 

possible to use a very fine grained parallelism to tackle the quantization problem, where each 

processor is very simple, but the interaction between them is crucial.
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6. CONNECTIONIST METHODS

Connectionism provides the possibility for new models which have characteristics that 

traditional AI models lack, in particular their robustness and flexibility (see Rumelhart & 

McLeland 1986). Connectionist models consist of a large number of simple cells, each of which 

has its own activation level. These cells are interconnected in a complex network, the 

connections serving to excite or inhibit other elements. The general behavior of such a network 

is that from a given initial state, it converges towards an equilibrium state. An example of the 

application of such a network to music perception is given by Bharucha (Bharucha 1987) in the 

context of tonal harmony, but the connectionist approach has not yet been used for quantization. 

The quantization model that will be presented now is a network designed to reach equilibrium 

when metrical time intervals have been achieved, and which converges towards this end point 

from non-metrical performance data. It is implemented as a collection of relatively abstract 

cells, each of which performs a complex function compared to standard connectionist models. 

We will now give a condensed overview of the model.

6.1. A Connectionist Quantizer

The proposed network consists of three kinds of cells: the basic-cell with an initial state equal 

to an inter-onset interval, the sum-cell to represent the longer time interval generated by a 

sequence of notes, and the interaction-cell that is connected in a bidirectional manner to two 

neighboring basic- or sum-cells. Figure 5 shows the topology of a network for quantizing a 

rhythm of four beats, having its three inter-onset intervals set as initial states of the three 

basic-cells, labeled A, B, and C, and the two summed time intervals A+B and B+C represented 

by the corresponding sum-cells. There are four interaction-cells connecting cell A to cell B, B to 

C, A+B to C and A to B+C respectively. Each interaction-cell steers the two cells, to which it is 

connected, toward integer multiples of one another, but only if they are already close to such a 

multiple.
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Figure 5. Topology of a connectionist network of a rhythm of three inter-onset intervals.

The two connected cells receive a small change calculated from the application of an 

interaction function (see Figure 6) to the quotient of their states. One can see that if the ratio is 

slightly above an integer it will be adjusted downward, and vice versa. The interaction function 

has two parameters: peak, describing how stringent the function requires an almost integer ratio 

to calculate a correction and decay, expressing the decreasing influence of larger ratios. Each 

cell accumulates the incoming change signals from the connected interaction-cells. The 

interaction of a sum-cell with its basic-cells is bidirectional: if the value of the sum-cell 

changes, the basic-cells connected to it will all change proportionally, as well as the other way 

around. This process is repeated, updating the values of the cells a little bit in each iteration, 

moving the network towards equilibrium. The system produces promising results. It is context 

sensitive, with precedence of local context. For this reason the example in Figure 2 is quantized 

correctly (for more details see Desain & Honing, 1991). The system also exhibits graceful 

degradation. When the quantizer breaks down in a complex situation it is often able to 

maintain musical integrity and consistency at higher levels. The resulting error will only 

generate a local deformation of the score.
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Figure 6. Interaction function.

6.2. The Algorithm

A micro version of the program is given in Appendix III. In this program the sum-cells are not 

represented explicitly, their value is recalculated from the basic-cells. Also the interaction- 

cells are not represented explicitly. Their two inputs from the connecting sum-cells are 

calculated in the main loop, as is their final effect on basic-cells. All updates to the basic-cells 

are collected first, only to be effectuated once per iteration round (i.e. synchronous update).

7. RECENT RESEARCH

Since this paper was written we elaborated on several aspects of the model. It has been 

extended to a process model (Desain, Honing, & de Rijk, 1989), a rigorous mathematical 

description is given in Desain & Honing (1991), and a detailed comparison with the Longuet- 

Higgins model and its interpretation as a cognitive model is described in Desain (1991a).
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APPENDIX I, The traditional algorithm.

;;; MICRO TRADITIONAL QUANTIZER

;;; (0 1990, Desain & Honing

;;; in Common Lisp (uses loop macro)

;;; utilities

(defun square (x)(* x x))

(defun quantize (intervals Skey (speed 0.0) (trust 1.0)

(quantum (first intervals)))

"Quantize time intervals in multiples of quantum"

;; speed = 0, trust = 1 :inter-onset quantizer 

;; 0<speed<l, trust = 1 :tempo tracker 

;; 0<speed<l, 0<trust<l :tempo tracker with confidence 

(loop for in in intervals

as out = (quantize-ioi in quantum)

as error = (quantization-error in out quantum)

do (incf quantum

(* (delta-quantum error out quantum) 

(confidence error trust) 

speed))

collect out))

(defun quantize-ioi (time quantum)

"Return approximation of time in multiples of quantum"

(round (/ time quantum)))

(defun quantization-error (in out quantum)

"Return error of quantization"

(- (/ in quantum) out))

(defun delta-quantum (error out quantum)

"Return the quantum change that would have given a zero error" 

(* quantum (/ error out)))

(defun confidence (error trust)

"Return amount of confidence in a possible tempo adjustment"

(- 1 (* (- 1 trust) (square (* 2 error)))))

;;; example: real performance data: no luck 

(quantize '(1.177 0.592 0.288 0.337 0.436 0.337 0.387 0.600 

0.634 0.296 0.280 0.296 0.346 1.193)

:quantum 0.1 :speed 0.5)

-> (12 6 3 3 4 3 4 6 6 3 3 3 4 13)
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APPENDIX II, The Longuet-Higgins algorithm.

;;; LONGUET-HIGGINS QUANTIZER 

; ; ; (0 1990, Desain

; ; ; Stripped version: no articulation analysis, metrical structure or tempo tracking 

; ; ; in Common Lisp (uses loop macro)

; ; ; utilities

(defun make-onsets (intervals)

"Translate inter-onset intervals to onset times"

(loop for interval in intervals 

sum interval into onset 

collect onset into onsets 

finally (return (cons 0.0 onsets))))

(defun make-intervals (onsets)

"Translate onset times to inter-onset intervals"

(loop for onsetl in onsets

for onset2 in (rest onsets) 

collect (- onset2 onsetl)))

(defun alternative (metre irest states)

"Return alternative metre plus unaltered states"

(cons (case (first metre) (2 '(3)) (3 '(2)))

states))

(defun extend (metre)

"Return alternative metre plus unaltered states"

(or metre 1 (2)))

;;; main parsing routines

(defun quantize (intervals Skey (metre '(2)) (tol 0.10)

(beat (first intervals)))

"Quantize intervals using initial metre and beat estimate"

(loop with start = 0.0

with onsets = (make-onsets intervals) 

for time from 0 

while onsets

do (multiple-value-setq (start figure metre onsets)

(rhythm start beat metre onsets time 1 tol)) 

append figure into figures

finally (return (make-intervals figures))))

The Quantization Problem 13



(defun rhythm (start period metre onsets time factor tol)

"Handle singlet and subdivide as continuation"

(singlet

start (+ start period) metre onsets time tol 

#'(lambda (figure onsets)

(tempo figure start period metre onsets time factor tol))))

(defun singlet (start stop metre onsets time tol cont)

"Handle singlet note or rest"

(if (and onsets (< (first onsets) (+ start tol)))

(singlet-figure stop metre (list time) (rest onsets) tol cont) 

(singlet-figure stop metre nil onsets tol cont)))

(defun singlet-figure (stop metre figure onsets tol cont)

"Create singlet figure and subdivide in case of more notes"

(let* ((onset (first onsets))

(syncope (or (null onset) (>= onset (+ stop tol))))

(more? (and onset (< onset (+ stop (- tol))))))

(if more?

(apply t'values (funcall cont figure onsets))

(values (if syncope stop (first onsets)) 

figure metre onsets syncope))))

(defun tempo (figure start period metre onsets time factor tol)

"One or two trials of subdivision using alternative metres"

(rest (generate-and-test #'trial

#'(lambda (syncope stop Srest ignore)

(and (not syncope)

(< (- stop tol)

(+ start period)

(+ stop tol))))

#'alternative

metre figure start period onsets time factor tol)))

(defun generate-and-test (generate test alternative trest states) 

"Control structure for metre change"

(let ((resultl (apply generate states)))

(if (apply test resultl) 

resultl

(let ((result2 (apply generate (apply alternative states))))

(if (apply test result2) 

result2 

resultl)))))

The Quantization Problem 14



(defun trial (metre figure start period onsets time factor tol)

"Try a subdivision of period"

(loop with pulse = (pop metre)

with sub-period = (/ period (float pulse)) 

with sub-factor = (/ factor pulse) 

repeat pulse

for sub-time from time by sub-factor 

do (multiple-value-setq

(start sub-figure metre onsets syncope)

(rhythm start sub-period (extend metre) onsets 

sub-time sub-factor tol)) 

append sub-figure into sub-figures 

finally 

(return

(list syncope start (append figure sub-figures) (cons pulse metre) 
onsets))))

;;; example

(quantize '(1.177 0.592 0.288 0.337 0.436 0.337 0.387 0.600 0.634 

0.296 0.280 0.296 0.346 1.193) :tol 0.15)

->(1 1/2 1/4 1/4 1/3 1/3 1/3 1/2 1/2 1/4 1/4 1/4 1/4 1)
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APPENDIX III, The connectionist algorithm.

;;; MICRO CONNECTIONIST QUANTIZER

;;; (0 1990, Desain S Honing

;;; in Common Lisp (uses loop macro)

;;; utilities

(define-modify-macro multf (factor) *)

(define-modify-macro divf (factor) /)

(define-modify-macro zerof 0 (lambda(x) 0))

(defmacro with-adjacent-intervals

(vector (a-begin a-end a-sum b-begin b-end b-sum) tbody body) 

"Setup environment for each interaction of (sum-)intervals" 

'(loop with length = (length ,vector) 

for ,a-begin below (1- length)

do (loop for ,a-end from ,a-begin below (1- length) 

sum (aref »vector ,a-end) into ,a-sum 

do (loop with ,b-begin = (1+ ,a-end)

for ,b-end from ,b-begin below length 

sum (aref »vector ,b-end) into ,b-sum 

do ,Sbody))))

;;; interaction function

(defun delta (a b minimum peak decay)

"Return change for two time intervals"

(let* ((inverted? <<= a b))

(ratio (if inverted? (/ b a)(/ a b)))

(delta-ratio (interaction ratio peak decay)) 

(proportion (/ delta-ratio (+ 1 ratio delta-ratio)))) 

(* minimum (if inverted? (- proportion) proportion))))

(defun interaction (ratio peak decay)

"Return change of time interval ratio”

(* (- (round ratio) ratio)

(expt (abs (* 2 (- ratio (floor ratio) 0.5))) peak)

(expt (round ratio) decay)))

The Quantization Problem 16



; ; ; quantization procedures

(defun quantize (intervals ikey (iterations 20) (peak 5) (decay -1)) 

"Quantize data of inter-onset intervals"

(let* ((length (length intervals))

(changes (make-array length : initial-element 0.0))

(minimum (loop for index below length

minimize (aref intervals index))))

(loop for count to iterations

do (update intervals minimum changes peak decay) 

finally (return (coerce intervals 'list)))))

(defun update (intervals minimum changes peak decay)

"Update all intervals synchronously"

(with-adjacent-intervals intervals

(a-begin a-end a-sum b-begin b-end b-sum)

(let ((delta (delta a-sum b-sum minimum peak decay)))

(propagate changes a-begin a-end (/ delta a-sum))

(propagate changes b-begin b-end (- (/ delta b-sum))))) 

(enforce changes intervals))

(defun propagate (changes begin end change)

"Derive changes of basic-intervals from sum-interval change"

(loop for index from begin to end

do (incf (aref changes index) change)))

(defun enforce (changes intervals)

"Effectuate changes to intervals"

(loop for index below (length intervals) 

do (multf (aref intervals index)

(1+ (aref changes index)))

(zerof (aref changes index))))

;;; example (the result is rounded)

(quantize (vector 1.177 0.592 0.288 0.337 0.436 0.337 0.387 0.600 

0.634 0.296 0.280 0.296 0.346 1.193))

->(1.2 .6 .3 .3 .4 .4 .4 .6 .6 .3 .3 .3 .3 1.2)

The Quantization Problem 17
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Introduction

Musical time can be considered to be the product of 
two time scales: the discrete time intervals of a 
metrical structure and the continuous time scales 
of tempo changes and expressive timing (Clarke 
1987a). In musical notation both kinds are present, 
although the notation of continuous time is less de-
veloped than that of metric time (often just a word 
like "rubato" or "accelerando" is notated in the 
score). In the experimental literature, different ways 
in which a musician can add continuous timing 
changes to the metrical score have been identified. 
There are systematic changes in certain rhythmic 
forms: for example, shortening triplets (Vos and 
Handel 1987) and timing differences occurring in 
voice leading with ensemble playing (Rasch 1979). 
Deliberate departures from metricality, such as 
rubato, seem to be used to emphasize musical struc-
ture, as exemplified in the phrase-final lengthening 
principle formalized by Todd (1985). In addition to 
these effects, which are collectively called expres-
sive timing, there are nonvoluntary effects, such as 
random timing errors caused by the limits in the 
accuracy of the motor system (Shaffer 1981) and 
errors in mental time-keeping processes (Vorberg 
and Hambuch 1978). These effects are generally 
rather small—in the order of 10-100 msec. To 
make sense of most musical styles, it is necessary 
to separate the discrete and continuous compo-
nents of musical time. We will call this process of 
separation quantization, although the term is gen-
erally used to reflect only the extraction of a metri-
cal score from a musical performance.
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Perception of Musical Time

Human subjects, even without much musical train-
ing, can extract, memorize, and reproduce the dis-
crete metrical structure from a performance of a 
simple piece of music—even when a large continu-
ous timing component is involved. This is surpris-
ing, given that the note durations in performance 
can deviate by up to 50 percent from their metrical 
values (Povel 1977). Indeed, it seems that the per-
ception of time intervals on a discrete scale is an 
obligatory, automatic process (Sternberg, Knoll, and 
Zukofsky 1982; Clarke 1987b). This so-called cate-
gorical perception can also be found in speech per-
ception and vision. By contrast, the perception and 
reproduction of continuous time in musical perfor-
mance seems to be associated with expert behavior.

Once the discrete and continuous aspects of tim-
ing have been separated by a quantization process, 
each can function as an input to other processes. 
The induction of an internal clock (Povel and Es- 
sens 1985) and the reconstruction of the hierarchi-
cal structure of rhythmical patterns (Mont-Reynaud 
and Goldstein 1985) both rely on the presence of a 
metrical score, while Todd (1985) has developed a 
model in which hierarchical structure is recovered 
from expressive timing alone.

Applications of Quantization

Apart from its importance for cognitive modeling, 
a good theory of quantization has technical applica-
tions. It is one of the bottlenecks in the automatic 
transcription of performed music, and is also im-
portant for compositions with a real-time, interac-
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Fig. 1. Example of a per-
form ed score and its quan-
tization by a commerical 
MIDI Package using a 
resolution of 1/64 note.

tive component where the computer improvises or 
interacts with a live performer. Last but not least, a 
quantization tool would make it possible to study 
the expressive timing of music for which no score 
exists, as in improvised music.

Known Methods

Few computational models are available in the 
literature for separating a metrical score from ex-
pressive timing in performed music (Desain and 
Honing 1988). Available methods produce a consid-
erable number of errors when quantizing the data. 
The traditional approach is to expand and contract 
note durations according to a metrical grid that is 
more or less fixed— the grid being adjustable to in-
corporate different, low-level subdivisions (e.g., for 
triplets). Commercial MIDI software uses this 
method, which often gives rise to a musically ab-
surd output, as shown in Fig. 1. Better results are 
obtained when the system tracks the tempo varia-
tions of the performer (Dannenberg and Mont- 
Reynaud 1978), though the system still returns an 
error rate of 30 percent. More sophisticated artifi-
cial intelligence (AI) methods use knowledge about 
meter (Longuet-Higgins 1987) and other aspects of 
musical structure. A particularly elaborate system 
originated at the CCRMA center at Stanford Uni-
versity in the automatic transcription project 
(Chowning et al. 1984). This knowledge-based 
method uses information about different kinds of 
accent, local context, and other musical clues to 
guide the search for an optimal quantized descrip-
tion of the data. It is entirely implemented in a 
symbolic, rule-based paradigm. This approach can 
be seen as the antithesis of our approach, in which 
all knowledge in the system is represented im-
plicitly. We took the connectionist approach be-
cause knowledge-based approaches seemed to offer 
no real solution to manifest inadequacies of the 
simplistic metrical grid method. As with the major-
ity of traditional AI programs, the sophisticated 
knowledge these AI methods use is extremely do-
main dependent (depending on a specific musical 
style), causing the systems to break down rapidly 
when applied to data foreign to this style.

Connectionist Methods

Connectionism provides the possibility for new 
kinds of models with characteristics traditional AI 
models lack, in particular robustness and flexibility 
(Rumelhart and McClelland 1986). Connectionist 
models consist of a large number of simple ele-
ments, each of which has its own activation level. 
These cells are inconnected in a complex network, 
with the connections serving to excite or inhibit 
other elements. One broad class of these networks, 
known as in tera ctiv e activation a n d  constraint 
satisfaction n etw orks, generally converge towards 
an equilibrium state given some initial state.

An example of the application of these networks 
to music perception is given by Bharucha (1987) in 
the context of tonal harmony. These networks have 
not yet been used for quantization. The quantiza-
tion model presented in this paper is a connectionist 
network designed to converge from nonmetrical 
performance data to a metrical equilibrium state. 
This convergence is hard wired into the system, 
and no learning takes place. The model is thought 
of as a collection of relatively abstract elements, 
each of which performs a rather complex function 
compared to standard connectionist models. While 
it may be possible to express these functions in 
terms of one of the formalisms for neural networks, 
this lies beyond the scope of the present article.

Basic Model

Consider a network with two kinds of cells: the 
basic cell, with an initial state equal to an inter-
onset interval, and the interaction  cell, which is 
connected in a bidirectional manner to two basic 
cells. Figure 2a shows the topology of a network for 
quantizing a rhythm of four beats, having its three
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Fig. 2. Topology of a basic Fig. 3. Interactive time in-
network (a) and a com- tervals in a basic network
pound network (b). (a) and a compound net-

work (b).

Fig. 2 

(a)

Inter-onset interval 

•4-------------► Interaction
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Fig. 4. Interaction function 
with a peak at 4 and decay 
equal to —1.

Fig. 4

inter-onset intervals set as states of the three basic 
cells, labeled A, B, and C. There are two interaction 
cells connected to the basic cells A and B, and B 
and C, respectively. Each interaction cell steers the 
two basic cells to which it is connected toward in-
teger multiples of one another, but only if they are 
already near this state. It applies the interaction 
function to the quotient of their states (ratios smaller 
than 1 are inverted). If this ratio were close to an 
integer (e.g., 1.9 or 2.1), the interaction function 
would return a change o f ratio that would steer the 
two states toward a perfect integer relation (e.g., 2). 
Figure 3 illustrates the interactions that are rele-
vant in quantizing the four-beat rhythm. One can 
see that if the ratio is slightly above an integer, it 
will be adjusted downward, and vice versa as in 
Fig. 4.

There are constraints to be taken into account for 
interaction functions. First, the function and its de-
rivative should be zero in the middle region be-
tween two integer ratios. In this region it is not 
clear if the integer ratio above or below is the proper 
goal, so no attempt is made to change the ratio. 
Second, the derivative around integer ratios should 
be negative to steer the ratio towards the integer, 
but greater than - 1  to prevent overshoot that would 
result in oscillations. Third, the magnitude of the 
function should decrease with increasing ratios to 
diminish the influence of larger ratios. A large class 
of functions meet these constraints. At present we 
use a polynomial section around each integer ratio.
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Fig. 5. State as a function 
of iteration count for the 
rhythm 2, 1. 3 in a basic 
network (a). State as a

function of iteration count 
for the rhythm 1,2,  3 in a 
basic network (b).

The degree of the polynomial, called the peak  pa-
rameter, is typically between 2 and 12. To realize 
the decreasing magnitude of the interaction func-
tion, each section is scaled with a multiplication 
factor that is a negative power of the integer ratio. 
This power is called the decay param eter, and is 
typically between - 1  and - 3 .  This interaction 
function is defined as

F[r) = (round(r) -  r) *

|2(r -  entier(r) — 0.5)|r * 
round) r)d,

in which the first term gives the ideal change of 
ratio, the second term signifies the speed of change 
which is at maximum near an integer ratio (with 
peak parameter p), and the third term scales the 
change to be lower at higher ratios (with decay pa-
rameter d ). It is simple to prove that this interac-
tion function satisfies the constraints mentioned.

From the change of ratio F[a/b), new intervals 
a + A and b — A are calculated without altering the 
sum of both intervals.

a + A a / a 
b -  A "  b + F \b

which implies

bF
A = ----------

In simulating the network, each interaction cell up-
dates the states of the two basic cells to which it is 
connected. This process is repeated, moving the 
basic cells slowly towards equilibrium. Equilibrium 
is assumed when no cell changes more than a cer-
tain amount between two iterations. For example, 
let us take a rhythm with inter-onset intervals of 2,
1.1, and 2.9 csec. As the representation of duration 
is currently unimportant in the model, they are 
treated as relative values (tempo has no influence 
on the quantization). This rhythm is represented in 
a basic network as three cells with the initial states 
2 .0 :1 .1 :2.9. Iterating the procedure outlined above

Number of iterations

(b)

for the interactions between cells labeled A and B, 
and cells B and C will adjust the durations toward 
2 :1 :3 , where the net reaches an equilibrium. Fig-
ure 5a is a graph of the state of each basic cell as a 
function of the iteration count.

This type of network can of course only quantize 
very simple rhythms. Consider for instance the 
rhythm 1.1:2.0:2.9, which should converge to 
1 :2 :3 . The cell representing 2.9 only interacts with 
its neighbor 2.0, the resultant ratio 1:45 being a 
long way from an integer. The basic net adjusts 
these values to 1.2:2.4:2.4, as seen in Fig. 5b.

What the model fails to take account of is the 
time interval 3.1, the sum of the first two dura-
tions. If this interval were incorporated into the 
model, it would interact successfully with the third 
interval (2.9) in such a way that the pair of intervals 
would gravitate toward the ratio 1. This observa-
tion leads to a revised model.
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Fig. 6. State as a function 
of iteration count for a 
complex rhythm in a com -
pound network.

Compound Mode!

In order to represent the longer time intervals gen-
erated by a sequence of notes, sum cells are postu-
lated. These cells sum the activation levels of the 
basic cells to which they are connected. The inter-
action of a sum cell with its basic cells is bidirec-
tional; if the sum cell changes its value, the basic 
cells connected to it will all change proportionally. 
The sum cells are interconnected to cells represent-
ing adjacent intervals by the same interaction cells 
that are used in the basic model. The function of 
the interaction cells is once again to try to steer the 
interconnected cells—which may be sum cells, or a 
mixture of sum cells and basic cells—toward an in-
teger ratio as was shown in Figs. 2b and 3b.

Our earlier example—a duration sequence of 1.1, 
2.0, 2.9—is now quantized correctly due to com-
bined effects of interacting sum cells and the inter-
actions between the basic cells. Let us consider a 
more complex example using the real performance 
data shown in Fig. 6. In this rhythm the final six-
teenth note is played longer than the middle note 
of the triplet. Nonetheless the local context of the 
two intervals steers each note towards its correct 
value as seen in Fig. 6. The compound model pro-
duces promising results, even though the network 
is rather sparse, allowing only adjacent time inter-
vals to interact. A compound network for a rhythm 
of n intervals consists of n basic cells, [(n + 1)
(n — 2)/2] sum cells, and [n(n2 — l)/6] interac-
tion cells.

Understanding the Model

In connectionist systems the global behavior 
emerges from a large number of local interactions. 
This makes it very difficult to study the behavior 
of the network at a detailed level. While it may 
initially seem attractive to use descriptions like 
"winning cells," "pulling harder," etc., a better 
understanding of the patterns of change within the 
network and of the influence of context requires 
the development of specialized methods. An ap-
proach that has proved very useful is what we call 
the clamping m ethod. This entails the clamping, or *
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fixing, of the states of all but one of the cells. The 
remaining cell is given an activation level in a rea-
sonable range (the independent variable). Then the 
resulting change that would have taken place— 
after one iteration—if the cell were free to change 
its activation level is monitored (the dependent 
variable). In order to facilitate the interpretation of 
this measure (the amount of change), the function 
is negated and integrated to give a curve with local 
minima at stable points. The state of the experi-
mentally varied cell will tend to move towards a 
minimum, like a rolling ball on an uneven surface. 
As such, it can be interpreted as a curve of poten-
tial energy. These minima and maxima can now be 
evaluated and judged in light of the context set up
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Fig. 7. Clamping curve for cell with a left context of 
a cell with a left context of 2, 1 (b). Clamping curve 
1 (a). Clamping curve for a for a cell with a left con-

by the surrounding clamped cells. We call the inter-
val between two neighboring local maxima the 
catch range. A value occurring within this range 
will move towards the minimum between these 
two maxima, provided the context does not change. 
The size of the interval where the potential energy 
stays close to a minimum is called its flatness value. 
It is a measure of the lack of clarity in the context; 
simple and clear contexts give rise to sharp minima.

Figure 7a shows the potential energy curve of two 
cells in a basic network; the first has a state of 1, 
while the other varies between 0 -5 . The figure 
shows prominent local minima at 1, 2, 3, 4 and so 
on, and at the inverse ratios (.5, .33, and so on). 
These will be the equilibrium states of the second 
cell. Note the flatter minima at larger ratios.

A graph of the basic interaction (without sum 
cells) in a 3 cell net with the first two cells clamped 
to the values 2 and 1 would yield the same curve,

text of 2, 1, 1 (c). Clamp- different parameters 
ing curve for a cell with for the interaction 
a left context of 2, 1 with function (d).

Id)

Inter-onset interval

since the first cell does not interact with the vary-
ing third cell. Introducing sum cells, however, gives 
a different curve as can be seen in Fig. 7b. A mini-
mum is shown at 3 caused by the interaction of the 
sum of the first and second basic cells with the last 
cell (3:3 yielding a ratio of 1). The minimum at 3 
being strengthened by the interaction of the first 
cell with the sum of the second two (2:4, yielding a 
ratio of 2). This interaction also results in a weaker 
minimum at 1.5 (3:1.5, a ratio of 2). With a left 
context of 2 : 1 : 1  the minimum at 3 almost disap-
pears as in Fig. 7c. There is now a strong minimum 
at 2 because the sum cell—which combines the du-
rations of the second and third cell—is also 2. The 
sum of the first three cells give rise to the mini-
mum at 4. This clamping method thus gives a clear 
picture of the mechanisms involved in the complex 
interactions through a simplification of the process 
that assumes fixed values in most of the cells. The
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Fig. 8. Clamping curves of 
two notes in the context of 
an idealized complex 
rhythm (a). Clamping

curves of two notes in the 
context of a performed 
complex rhythm (b).

same method can also be used to study the influ-
ence of the parameters of the interaction function. 
In Fig. 7d, which uses the same context as in Fig.
7c, the peak and decay parameters have been 
changed, showing the effect on the catch range.

If we now return to the more elaborate example 
shown in Fig. 6, we can study the behavior of the 
net using the clamping method. Fig. 8a shows the 
potential energy curves resulting from applying the 
clamping method to the middle note of the trip-
let and the final sixteenth note. It shows clearly 
that the different contexts in which they appear re-
sult in different curves and that both will be di-
rected towards the appropriate values. Note the 
wide catch ranges that allow rather large deviations 
to be quantized correctly and the smoothness of the 
curves. This smoothness (the lack of small local 
minima in the curve) is a result of the large number 
of interactions (364 and 91 for the triplet and six-
teenth notes, respectively), which combine addi- 
tively to yield each point on the curve. When the 
clamping experiment is rerun with performance 
data as context, more complex curves result, with a 
smaller catch range and a greater flatness, which is 
shown in Fig. 8b. Nonetheless, the durations still 
converge towards the correct metrical values.

The position of local maxima in the energy curves 
constitute the boundaries between the categories 
into which the data will be quantized. As a result, 
precise predictions can now be made about the per-
ceptual interpretation of rhythmical sequences 
with a range of experimentally adjusted durations.
It is our intention to compare these predictions 
with the results of empirical studies.

Implementation

In simulating a connectionist network, the calcu-
lated change in the state of one cell can be effectu-
ated immediately (asynchronous update), or can be 
delayed, effectuating the change of all interactions 
at once (synchronous update). For asynchronous 
updates, a random order of visiting cells is gener-
ally preferred. In Table 1, a simplified implementa-
tion of the quantization model is given in Common 
Lisp (Steele 1984), based on synchronous updates.
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—  triplet —  sixteenth

triplet — sixteenth

Inter-onset interval

The basic cells are represented as a vector of inter-
onset intervals. The sum cells are not represented 
explicitly, but are recalculated, summing the repre-
sented interval of basic cells for each interaction. A 
macro is provided that implements the iteration 
over adjacent sum intervals. The described inter-
action function is the one we used for the Figs. 5 
and 6. This simplified version requires the mini-
mum inter-onset interval to be around 1. More 
elaborate versions run in Common Lisp and in C on 
stock hardware (Macintosh II and Atari ST series 
machines).

Further Research

The model we have presented needs high peak val-
ues to stabilize accurately. Because this results in 
smaller catch ranges, we are currently studying the 
automatic increasing of the peak parameter while
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Table 1. Micro version of the connectionist quantizer in CommonLISP

;;; MICRO CONNECTIONIST QUANTIZER
;;; IHflfl P.Desain and H.Honing

;;; Utilities

(defmacro for ((var &key (from 0) to) &body body)
»Iterate body with var bound to successive values»
(let ((to-var (gensym)))

'(let ((,var ,from)(,to-var ,to))
(loop ,(when to '(when (> ,var ,to-var) (return)))

, Sbody
(incf ,var)))))

(defmacro max-index (vector)
»Return index of last element in a vector»
'(- (array-dimension ,vector 0) 1))

(defmacro zero-vector! (vector)
»Set elements of a vector to zero»
'(for (index :from □ :to (max-index ,vector))

(setf (aref ,vector index) 0.0)))

(defmacro incf-vector-scalar! (a b from to)
»Increment elements in a range of a vector»
'(for (index :from ,from :to ,to)

(incf (aref ,a index) ,b)))

(defmacro incf-relative-vector-vector! (a b)
»Increment elements of a vector proportionally»
'(for (index :from 0 :to (max-index ,a))
(incf (aref ,a index) (* (aref ,a index) (aref ,b index)))))

(defun print-vector (times vector &optional (stream t))
»Print all elements of vector»
(format stream »~%~3d: » times)

(for (index :from 0 :to (max-index vector))
(format stream »-3,1,5$ » (float (aref vector index)))))

;;; control structure for iteration over intervals

(defmacro with-all-intervals (vector (begin end sum) (start
finish) &body body)

»Iterating over all intervals contained in [start,finish]»
' (let ( , sum)

(for (,begin -.from ,start :to ,finish)
( setf ,sum 0.0)
(for (,end :from ,begin :to ,finish)

(incf ,sum (aref ,vector ,end))
,Sbody))))

(corn'd)

Desoin and Honing 63



(defmacro with-intervals (vector (begin end sum) (start 
finish) &body body)

»Iterating over intervals»
'(let ((,sum 0.0)(,begin ,start))

(for (,end :from ,start :to ,finish)
(incf ,sum (aref ,vector ,end))
,dbody) ) )

(defmacro with-adjacent-intervals
(vector (a-begin a-end b-begin b-end a-sum 
b-sum) &body body)

»Iterating over interval pairs»
'(let ((max-index (max-index ,vector)))

(with-all-intervals ,vector (,a-begin ,a-end 
,a-sum) (0 (1- max-index))

(with-intervals ,vector (,b-begin ,b-end ,b-sum)
((1+ ,a-end) max-index)
,Sbody))))

;;; Main quantization procedures

(defun quantize! (durations «¿optional (peak 4) (decay -1)) 
»Quantize data in durations vector»
(let ((changes (make-array (length durations) :initial- 

element D.0)))
(for (times :from D)

(print-vector times durations)
(update! durations changes peak decay))))

(defun update! (durations changes peak decay)
»Update all durations synchronously»
(zero-vector! changes)
(with-adjacent-intervals durations

(a-begin a-end b-begin b-end a-sum b-sum)
(let ((delta (if (> a-sum b-sum)

(delta (/ a-sum b-sum) peak decay)
(- (delta (/ b-sum a-sum) peak decay)))))

(incf-vector-scalar! changes (/ delta a-sum) a-begin 
a-end)
(incf-vector-scalar! changes (- (/ delta b-sum) b-begin 
b-end)))

(incf-relative-vector-vector! durations changes))
(defun delta (ratio peak decay)
»Return change of time interval»
(let ((delta-ratio (interaction ratio peak decay)))

(/ delta-ratio (+ 1 ratio delta-ratio))))
__________________  (corn’d)
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(defun interaction (ratio peak decay)
»Return change of ration
(let ((position (1- (* 2 (- ratio (floor ratio)))))

(goal (round ratio)))
(* (- goal ratio)

(abs (expt position peak))
(expt goal decay))))

; »• »• usage examples
»•;»• minimum element in data should be larger than 1 

»•(quantize! (vector 1.1 2.0 2 . T ) )
»•(quantize! (vector 1 1 . 7 7  5 . f i 2 2 . AA 3 . 3 ? 4 . 3 b 3 . 3 7  3 . A 7

b . 0 0  b . 3 4 2 . T b  2 . AO 2 . T b  3 . 4 b 1 1 . ^ 3 ) )

the network comes to rest. The dependency of the 
model on absolute time and absolute tempi is still 
an open question. The most difficult rhythmic 
cases for this model are: (1) those that involve ad-
ditive durations that emerge when rests and tied 
notes occur in the data and (2) divisive rhythms, 
such as when a quintuplet is adjacent to a triplet. 
Our aim is to be able to characterize exactly the 
limits of the model and to evaluate the computa-
tional requirements and the psychological plau-
sibility of the results. A further aim is to develop a 
robust technical tool for real-time quantization 
using a process model. Tempo tracking is then an 
absolute necessity.

Conclusion

We consider the compound model presented here to 
be promising. In difficult cases the system under-
goes a graceful degradation instead of a sudden 
breakdown: that is, the range in which rhythms arc 
caught and quantized correctly becomes more and 
more limited. However, it is a paradoxical problem 
with connectionist models that their adaptability 
means that even a rough first implementation, with 
obvious bugs, may exhibit appropriate behavior. In 
order to increase an understanding of the process 
involved, it is necessary to develop specialized tools 
for diagnosis and investigation. The clamping

method described here seems to have considerable 
potential, and we are confident that further tools of 
a similar sort will develop as connectionist model-
ing gathers momentum.
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Corrections to the original article:

(1) The name of the first institution mentioned in the article should be changed from Centre 
for Art, Media and Technology into Center for Knowledge Technology

(2) Caption of figure 6 should be changed:
a) The arrows should come from the A and B.
b) More space is needed between A and B, and the x-axis of the figure.
c) The number 3 underneath the triplet was left out. See correction of figure 6 (sent 
earlier).

(3) In the text -because of an improvement to the Lisp code (see 4)- the line "This simplified 
version requires the minimum inter-onset interval to be around 1" under the paragraph 
named Implementation should be removed.

(4) Lisp code in Table 1 should be replaced with the new code using the loop macro. The 
enclosed code is considerably improved. See the notes preceeding the Table for remarks 
on lay-out.

(5) The reference Desain & Honing (1988) should be replaced by:

Desain, P. & H. Honing (1991) The Quantization Problem: Traditional and Connectionist 
Approaches. In M. Balaban, K. Ebcioglu & O. Laske, eds. Musical Intelligence. Menlo 
Park: The AAAI Press.

since the AIM Proceedings were never published.
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Addendum
Peter Desain, Henkjan Honing, and Klaus de Rijk

More Tools for Inspecting the Network

As mentioned previously, the design of special tools and methods to study the network is of 

great importance, allowing us to explain and predict behavior for particular data, to 

examine the influence of the parameters on network performance, etc. The clamping method 

described earlier is one of these tools. A second method visualizes the state space of the 

system by only taking rhythms of three inter-onset intervals into account. The 3 degrees of 

freedom are mapped to 2 dimensions by normalizing the total length of the rhythm. Each 

point (x,y) represents a rhythm of three inter-onset intervals x : y : l - x - y i n a  net of 

interacting cells. Drawing the rhythm after each iteration yields a trajectory towards a 

stable point in this space: the quantized version of the three intervals.

Plotting the trajectories of different rhythms exhibits the behavior of the network and 

the stable attractor points in this two dimensional space. They are positioned on straight 

lines that represent rhythms with an integer ratio of two durations or their sums (x=y, 

x+y=z, 2x=y, etc.). Figure 9 shows this state space diagram with a variety of trajectories 

traced on it. One can see relatively large areas of attraction around the simple rhythms and 

relatively small areas around more complex rhythms. These so called basins of attraction 

depend on the parameters of the interaction function; when the peak parameter is set to a 

higher value (see Figure 9b), more basins of attraction around complex rhythms appear.

Diagrams, as shown in Figure 9, can form the basis for experiments to test the validity of 

the connectionist quantizing method as a cognitive model for rhythm perception. For 

example, we can plot the analogous diagram for human listeners performing a categorical 

perception experiment on part of the rhythm space, and compare it with the output of the 

quantizer method. The results can be used to adjust the interval-interaction function of the 

model to more closely match human performance.

++++ Insert Figure 9. around here +++++
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A third method amounts to a systematic exploration of the space of all possible 

parameter settings. A mapping can be made from this space to the number of correct 

quantizations of a set of performances. Figure 10 shows this mapping for a set of about 50 

relatively simple rhythms, varying in length from 3 to 14 inter-onset intervals, performed 

by a musical expert. In this way, we defined implicitly what a ’correct' quantization is.

The vertical axis shows the percentage of correct quantizations of the system, the other 

axes show the parameters peak and decay. This visualization brings out specific 

characteristics of the model. First, it shows the models sensitivity for its parameters.

Often connectionist models behave badly in this respect, they need specific parameter 

settings for different problems. But Figure 10 shows the system behaves quite well with 

respect to parameter sensitivity. The surface between a peak value of 4 and 6 and a decay 

value between 0 and -2 is almost flat. Secondly, it shows that the two parameters peak and 

decay are more or less independent. A decay value between 0 and -1 is most successful, fairly 

independent of the peak parameter.

Furthermore, families of rhythms with particular characteristics could be made (e.g., 

rhythms that change meter, syncoped rhythms, rhythms with swing, sloppy performed 

rhythms) and tested, yielding insights in the limitations of the model for these specific 

type of rhythms and the musical and cognitive interpretation to the parameters. We did 

not do any work in this direction yet.

++++ Insert Figure 10. around here +++++

However, the best understanding of such a complex system arises from a mathematical 

description through which one can search for analytical solutions, prove convergence and 

stability properties, etc. The present state of the work done on a mathematical description 

is given below, but much remains to be done.

Mathematical Model
Suppose a rhythm is given by a vector x of durations xj with 1 < i < N. Each update a new 

duration vector is computed by

x* = x + D(x)
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Where D in this case is a kind of 'update' function. With a certain initial vector x, we can 

construct a set of vectors, x*, x**;... hopefully approaching equilibrium. To characterize D 

we begin by decomposing it into an update of individual basic-cells

xi* = xi + Di(x)

An interaction-cell connected to cells with values a and b should accomplish an increment of 

their ratio given by the interaction function.

a A  
b + F (b>

We convert this change of ratio to a change of time interval A(a,b) under the constraint 

that the sum of the intervals stays the same:

a* + b* = a + b

a* = a + A(a,b)

b* = b - A(a,b)

This combines in the definition of the change effectuated by an interaction-cell

f <b >
A(a,b> = b — -------~

1 + b + F ( b>

In a basic net, each basic-cell (except the left- and rightmost cell) is connected to two 

interaction-cells . Their change is computed by summing the change from each interaction.

Di(x) = A(xi,xi+i) -  A (xi_i,xi)

This describes the complete behavior of the basic network. In the compound network, the 

value of the sum-cells is defined as

q
sp,q= X xj i ^ p ^ q ^ N  

j=p
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Suppose a sum-cell Sp^q is changed by an update function Dp7q

S*p,q = Sp/q + Dp/q(x)

A sum-cell Sp,q is interacting with a number of sum-cells Sq+1/. on the right and a number 

of sum-cells Svp-1 on the left, yielding the following definition of Dp,q

N p-1
Dp,q(x) = X^P/q'Sq+l/iO - X^(Si7p-l'i5p,q) 

r=q+l r=l

Here, if q=N the first term vanishes because there are no right neighbors. Likewise if p=l 

the second term vanishes.

The change of the sum-cells is propagated proportionally to all the basic-cells connected to 

it. In each basic-cell the change from all connected sum-cells is summed.

1 N  Xi
Di(x)= £  £  Dp,q(x) ^

p=i q=i p 4

Summarizing the above and taking care of leftmost and rightmost intervals, gives

i N-l N q r x-
= 1  E Z A( ¿xi' ¿xP

p=l q=i r=q+l j=p j=q+l £ x .

j=P

i N p-1 p-1 q
- ¿ I S  A ( £ x j , f x j )

P=2q=i r=l j=r j=p

This describes the behavior of the compound model.

Until now we assume a > b in the definition of A(a,b). We modify it to take care of this.

A, F(g(a,b))
A(a,b) -  h(a,b) 1 + g(a b) + F(g(a,b))

where h(a,b) and g(a,b) are defined by
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h(a,b) =
b

-a
if a > b 

otherwise

g(a,b) = i
a
b

b
a

if a >b

otherwise

When we implemented these systems, the results were inaccurate or unstable because the 

change in large sum-cells tended to swamp the influence of smaller, local interactions. 

Therefore we scaled the interaction with the inverse of the interval b. This gave a 

precedence to local interactions that worked well. Because we still want to refrain for the 

moment from modelling the dependence of quantization on absolute global tempo, which 

was introduced implicitly by this change, we normalized this factor with the minimum 

duration. The factor can be incorporated in the definition of h(a,b):

if a>b

otherwise

We have to characterize the equilibrium state for which

Di(x) = 0

In the simplified network, it can be proven that this condition only holds when all 
A(xi,xi+i) are zero. This implies that the interaction function F has to be zero for all ratios,

which in turn means that all ratios are integers or integers plus 0.5. When the sum cells are 

introduced the system is much harder to analyze. All equilibrium points of the simplified 

system are also equilibrium points of the complete system, but there are many 

additional equilibrium points as well. In fact it is not clear yet what exactly are the 

(stable) equilibrium points of the complete system.

h(a,b) = <

m in xj 
l<j<N J

- m in xj 
l l<j<N

Process model and tempo tracking

A system that takes all of the data into consideration is, of course, not feasible when the 

aim is to develop a robust technical tool for near real-time quantization of longer pieces, nor
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is such an algorithm plausible as a cognitive model. Luckily, it proved quite simple to 

design a process version of the quantizer which operates upon a limited window of events.

In this system, new inter-onset intervals shift into the window and metrical durations shift 

out, being quantized on the way through. With such a model, tempo tracking becomes an 

absolute necessity since slow global tempo changes spanning a time lapse larger then the 

window cannot be operated upon nor corrected for.

The architecture makes use of two main modules, the quantizer and a tempo curve fitter 

(see Figure 11). They work in mutual corporation, communicating via a window of inter-

onset intervals. In phase 1, the quantizer tries to quantize the data in the window. The 

result is passed together with the original data to the tempo curve fitter. This process tries 

to explain the difference between the quantized and original data as a global tempo change 

instead of random fluctuations, by fitting a third order tempo curve to the quantized and 

original data. With the resulting tempo model the data window is reinterpreted and any 

consistent global change in tempo is removed from the original data in phase 2. The 

resulting sequence is now simpler for the quantizer module to operate upon. In phase 3 it is 

given a chance to remove the remaining deviations. Finally, in phase 4, a quantized inter-

onset interval is shifted out of the window and a new interval is shifted in, after being 

interpreted according to the expected tempo. Then the whole process is repeated.

As a result a rhythm can be quantized differently depending on the context established by 

the preceding data. Which of course is the same as we would expect from human listeners. 

For the implementation of the curve fitter special care was taken to use appropriate 

numerical methods, as numerical inaccuracies build up because of the feedback architecture 

used in the method, resulting in oscillations.

++++ Insert Figure 11. around here +++++

Polyphony

The system described so far is unable to deal with inter-onset times that should move 

towards zero (as in chords or music with multiple voices). Although it may be possible to 

use other means to 'clean' the data before quantizing it, such as rules for recognizing chord 

chunks, the general connectionist approach used in the quantizer seems a much better
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alternative. This is because the context can be taken into account when deciding if for 

example something is to be considered a chord with some spread or a regular run of notes or 

an arpeggio that has its own metrical structure. By introducing note durations, the system 

can distinguish between sequential and simultaneous inter-onset intervals (i.e. overlapping 

intervals indicate polyphony). We are currently experimenting with multiple interlocking 

networks that can handle polyphony. The preliminary results seem to be promising.

Main Characteristics of the System

In summary, the connectionist quantization system has three main characteristics: 1) It is 

context sensitive, with precedence of local context, as we demonstrated with the example in 

Figure 6 and the results of the clamping method. 2) The system has no explicit musical 

knowledge. There is no pre-conceived knowledge of metrical or rhythmical structure used to 

quantize the performance data other than the notion of "integer ratios". All information is 

derived from the data itself. 3) The system exhibits graceful degradation. When the 

quantizer breaks down in a complex situation it is often able to maintain musical integrity 

and consistency at higher levels. The resulting error will only generate a local deformation 

of the score. Furthermore, this deformation will always be a simplification of the rhythm, 

not a very complex fragment as produced by some traditional systems (see Figure 1). On the 

other hand, when more difficult rhythms are fed into the quantizer they imply a smaller 

range of deviations that can be accurately captured by the system. Thus, they will be 

quantized correctly when performed with a higher accuracy or consistency. Such behavior 

could be another possible link to human cognitive performance.
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Table 1. Micro version of the connectionist quantizer in Common Lisp.

;; ; MICRO CONNECTIONIST QUANTIZER 
;;; (C)1990, Desain & Honing
;;; in Common Lisp (uses loop macro)

;;; utilities

(define-modify-macro multf (factor) *)
(define-modify-macro divf (factor) /)
(define-modify-macro zerof () (lambda(x) 0))

(defun print-state (time intervals)
"Print elements of interval vector"
(loop initially (format t "~%~2D: " time) 

for index below (length intervals) 
do (format t "~2,1,5$ " (aref intervals index))))

(defmacro with-adjacent-intervals
(vector (a-begin a-end a-sum b-begin b-end b-sum) &body body) 

"Setup environment for each interaction of (sum-)intervals" 
(loop with length = (length ,vector) 

for ,a-begin below (1- length)
do (loop for , a-end from ,a-begin below (1- length) 

sum (aref ,vector , a-end) into ,a-sum 
do (loop with ,b-begin = (1+ ,a-end)

for ,b-end from ,b-begin below length 
sum (aref ,vector ,b-end) into ,b-sum 
do ,@body))))

;;; interaction function

(defun delta (a b minimum peak decay)
"Return change for two time intervals"
(let* ((inverted? (<= a b))

(ratio (if inverted? (/ b a)(/ a b)))
(delta-ratio (interaction ratio peak decay)) 
(proportion (/ delta-ratio (+ 1 ratio delta-ratio)))) 

(* minimum (if inverted? (- proportion) proportion))))

(defun interaction (ratio peak decay)
"Return change of time interval ratio"
(* (- (round ratio) ratio)

(expt (abs (* 2 (- ratio (floor ratio) 0.5))) peak)
(expt (round ratio) decay)))
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;;; quantization procedures

(defun quantize (intervals &key (iterations 20) (peak 5) (decay -1)) 
"Quantize data of inter-onset intervals"
(let* ((length (length intervals))

(changes (make-array length :initial-element 0.0))
(minimum (loop for index below length

minimize (aref intervals index))))
(loop for count to iterations

do (print-state count intervals)
(update intervals minimum changes peak decay))))

(defun update (intervals minimum changes peak decay)
"Update all intervals synchronously"
(with-adjacent-intervals intervals

(a-begin a-end a-sum b-begin b-end b-sum)
(let ((delta (delta a-sum b-sum minimum peak decay)))
(propagate changes a-begin a-end (/ delta a-sum))
(propagate changes b-begin b-end (- (/ delta b-sum))))) 

(enforce changes intervals))

(defun propagate (changes begin end change)
"Derive changes of basic-intervals from sum-interval change"
(loop for index from begin to end

do (incf (aref changes index) change)))

(defun enforce (changes intervals)
"Effectuate changes to intervals"
(loop for index below (length intervals) 

do (multf (aref intervals index)
(1+ (aref changes index)))

(zerof (aref changes index))))

;;; examples

»•(quantize (vector 1.1 2.0 2.9))
»•(quantize (vector 11.77 5.92 2.88 3.37 4.36 3.37 3.87 6.00 6.34

2.96 2.80 2.96 3.46 11.93))
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Figure 9. Trajectories in state space of a rhythm of three notes adding up to 
3/4. The peak parameter is set to 2 and 6 respectively.
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Abstract
The Symbolic AI paradigm and the Connectionist paradigm have produced some incompatible 
models of the same domain of cognition. Two such models in the field of rhythm perception, 
namely the Longuet-Higgins Musical Parser and the Desain & Honing connectionist quantizer, 
were studied in order to find ways to compare and evaluate them. Different perspectives from 
which to describe their behavior were developed, providing a conceptual as well as a visual 
representation of the operation of the models. With these tools it proved possible to discuss their 
similarities and differences and to narrow the gap between sub-symbolic and symbolic models.

Keywords
Rhythm Perception, Quantization, (Sub-)Symbolic Processing, Connectionism
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Introduction
The so called Good Old Fashioned Artificial Intelligence has established itself firmly in the 
past decades as a research methodology. The methods and tools it uses are symbolic, highly 
structured representations of domain knowledge and transformations of these representations by 
means of formally stated rules. These rule based theories can function (and are vital) as abstract 
formal descriptions of aspects of cognition, constraining any cognitive theory. However, some 
authors go beyond that and claim that metal processes are symbolic operations performed on 
mental representations of rules (see Fodor, 1975). Until the connectionist paradigm emerged there 
was no real alternative to that view. But now, in this new paradigm, the departure from reliance 
on the explicit mental representation of rules is central, and thus the conception of cognition is 
fundamentally different (Barucha & Olney, 1989). This holds regardless of the fact that the 
behavior of connectionist models could be formally described in rules. These distributed models 
consist of a large number of simple elements, or cells, each of which has its own activation level. 
These cells are interconnected in a network, the connections serving to excite or inhibit others. 
Connectionism opened the possibility of defining models which have characteristics that are 
hard to achieve in traditional A I, in particular robustness, flexibility and the possibility of 
learning (Rumelhart & McClelland, 1986). The connectionist boom brought forth much interesting 
work , also in the field of music (Todd & Loy, forthcoming). Although many researchers lost 
their critical attitude, impressed by the good performance of some (prototypical) models, it 
became soon clear that more study was needed to the limitations of these models. A connectionist 
model that 'works’ well, constitutes in itself no scientific progress, when questions like the 
sensitivity to parameter changes, the scalability to larger problems and the dependency of the 
model on a specific input representation, cannot be answered. However, it is possible to describe 
the behavior of a connectionist model from different abstract perspectives that provide more 
insight in its limitations and its validity as a cognitive model than simulations or test runs alone. 
These perspectives are also fruitful for the analysis of traditional AI models. In this article we 
pursue this approach for a connectionist and a traditional AI model of rhythm perception as a 
case study for the wider issue how the paradigms themselves relate.

The Quantization Problem
In performed music there are large deviations from the time intervals as they appear in the score 
(Clarke, 1987). Quantization is the process by which the time intervals in the score are recovered 
from the durations in a performed temporal sequence; to put it in another way, it is the process by 
which performed time intervals are factorized into abstract integer durations representing the 
notes in the score and local tempo factors. These tempo factors are aggregates of intended timing 
deviations like rubato and unintended timing deviations like noise of the motor system. This 
process of separating different discrete and continuous aspects of musical timing, however simple 
at first sight, and indeed forming a rather basic musical skill, proved to be very hard to model 
(Desain & Honing, forthcoming). As an example one could try to recover the intended rhythmic 
interpretation of the following temporal sequence (in milliseconds):

476 : 237:115 :135 :174 :135 :155 :240 : 254 :118 :112 :118 :138 :476

This task, however hard by calculation, yields an obvious and simple answer when the data is 
converted to an auditory stimulus: a sequence of drumbeats (the solution is given in note 1).

Known Methods
The simplest method of quantization, used by most commercially available music transcription 
programs, is the round-off of any point in time to the nearest point on a fixed time grid, with a 
resolution equal to, or an integral factor smaller than, the smallest duration to be expected. This 
method is totally inappropriate: even when enhanced with facilities like user control over the 
grid resolution, it yields results that makes no musical sense, even when the performer is forced to 
play along with a metronome.

However, this method can serve as the basis of more reasonable models in which the time grid is 
adapted if consistent deviations (notes being late or early) are detected. In this so called 'tempo- 
tracking' the design of the control behavior becomes crucial: the extraction of an error signal 
between time grid and note onsets, and the way in which this error influences the tempo of the
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grid. The most elaborate example is the 'real time foot tapper' (Dannenberg & Mont-Reynaud, 
1987 and Boulanger, 1990), but a still a 30% error ratio is reported for this system.

A symbolic, rule based system for quantization was in place at the Stanford automatic 
transcription project (Chowning,.Rush, Mont-Reynaud, Chafe, Schloss & Smith, 1984). It used 
knowledge about preferable ratios between time intervals as a basis for an optimal quantized 
description of the data. In such a knowledge based system it is relatively easy to use information 
from other domains (e.g. dynamic, harmonic) to help the quantization process, but one has to keep 
in mind that this increases the risk of style dependency and therefore brittleness. Because of its 
design as an unordered collection of rules it is, like all rule based systems, impossible to 
characterize its behavior in non-operational terms.

The musical parser (Longuet-Higgins, 1987) comprises another symbolic AI approach to 
quantization, besides methods of tonal and articulation analysis that will be ignored here. It is 
highly hierarchical in its music representation and has a reasonable good performance, 
Furthermore it had the advantage of a published program being available. A Lisp version of this 
program is published in Desain (1990).

The connectionist quantizer (Desain & Honing, 1989,1991; Desain, Honing & de Rijk, 1989) is a 
distributed model of fairly simple processing elements. This model displays desirable properties 
like robustness, graceful degradation and precedence of local context, but as a model it is hard to 
understand why it works so well, and what its limitations are.

These last two methods will now be described in more detail.

The Longuet-Higgins Musical Parser, a Symbolic Model
Using just a little knowledge about meter, and exploiting that to the extreme, the Longuet- 
Higgins Musical Parser builds a metrical tree from performance data, and thus implicitly 
manages to quantize it. This method is supplied with an initial notion of a time interval called 
the beat. This interval is subdivided recursively in 2 or 3 parts looking for onset times near the 
start of each part, until the interval contains no more onsets. The 'best' subdivision is then 
returned. At each recursive level the interval length is adjusted on the basis of the onsets found, 
just as in simple tempo-tracking methods.

The output of the system consists of a list of trees, one for every analyzed beat. Each tree is of a 
combined binary-ternary nature, which means that each node has 0 (in case it is a leaf of the 
tree) or 2 or 3 sub-trees. During the construction of the tree there is a horizontal flow of 
information through the layers of the tree, seeking to maintain the same kind of subdivision at a 
certain level as long as possible. The description of the proposed subdivisions at each level of the 
tree is called meter. During the construction of the tree a strict left to right order is maintained, 
and new sub-trees are created on a generate-and-test basis. This means that a proposed (and 
constructed) binary sub-tree may be rejected in favour of a tertiary one. The generate and test 
procedure is non-standard in that it may, after checking and rejecting the first alternative, still 
reject the second in which case as yet the first alternative is chosen.

There is one parameter (called tolerance) identified in the program. It is used in different places 
as the allowed margin of deviation in deciding if notes start or stop at a certain times. In this way 
the model does depend elegantly on global tempo by limiting the possibility of further 
subdivisions when an absolute time span (the tolerance) is reached: onsets that happen within 
the tolerance interval are considered synchronous.

The Desain & Honing Connectionist Quantizer, a Sub-Symbolic Model 
A class of connectionist models, known as interactive activation and constraint satisfaction 
networks generally behave so as to converge towards an equilibrium state given some initial 
state.The connectionist quantization model is designed to converge from non-metrical 
performance data to a metrical equilibrium. The network topology is fixed (hard-wired) 
and so is the kind of interaction between cells: no learning takes place.
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The net comprises cells for each time interval in a temporal sequence, be it basic (one inter-onset: 
interval) or compound (spanning several notes). Two cells representing neighboring time intervals 
may interact and push each other to their 'perfect' values implied by an integer ratio, 
propagating the changes through the net. After a while the net stabilizes and a quantized 
temporal sequence can be read out. The interaction between cells, the change of their ratio, 
depends only on the ratio of their durations, via a so called interaction function. Since the ratio of 
two time intervals is the only determinant of local behavior, the quantization result does not 
depend on absolute global tempo, nor can it handle polyphony. The interaction function is a 
section-wise polynomial with 2 parameters called peak and decay; the first reflects the size of 
the 'capture' range around an integer ratio, the second represents the decreasing influence of 
higher ratios. It has to be stressed that all aspects of the global behavior of the system are 
determined completely by these parameters.

A model that takes a whole temporal sequence into consideration at once is not feasible when the 
aim is to develop a cognitive model. Luckily, it proved quite simple to design a version of the 
quantizer which operates upon a window of events. In such a model tempo tracking can handle 
slow global tempo changes. For reasons of space this part of the connectionist quantizerwill not be 
described here.

Differences
The models described can be characterized as complete antipoles in a number of aspects. They are 
summarized roughly in the table in figure 1. The huge differences made comparing them quite 
hard, but in the end the work was gratifying . Because the systems are prototypical for the two 
main AI paradigms the results may well generalize to other cases.

****************************************************************************************
******** Insert figure 1 around here ********
****************************************************************************************

Different Perspectives
Different perspectives for describing these models will now be given, each at its own level of 
abstraction. Some perspectives will generalize over sets of inputs or parameters, some will reduce 
the amount of variability by keeping certain concepts fixed. I hope to show that this search for 
different representations of the behavior of a computational cognitive model, conceptual as well 
as visual, is fruitful, even for analyzing traditional symbolic AI programs.

The most direct and raw representation of a computational model is a trace of the computation 
itself, an overview of how the internal state of the system changes in the course of a complete 
calculation as a function of the computation-time or the number of computation steps taken. A 
visualizations of such a trace for the connectionist model is shown in (Desain & Honing, 1989) and 
for the Longuet-Higgins parser similar graphic representations can be devised.

A deficit of these representations is that they can only be given for one example input at a time, 
and thus are extremely dependent on the choice of input - in a sense it is easy to 'lie' with these 
examples by picking one that behaves well. But, on the other hand, these representations show in 
full detail the ongoing processes and thus enable interpretations and hypothesis forming .

At the other end of the spectrum of possible perspectives is the statistical method, reducing all 
the information to a number of correct responses. We can assume that, when a skilled performer 
plays a rhythm, the performed temporal sequence should be quantized as the presented score. 
Collecting a set of performances and counting the numbers quantized correctly by the model gives 
us then an indication of its validity. The number of correct quantizations will in general be a 
function of the possible parameter values given to the model. Visualization of this dependency is 
useful in the study of the parameter-sensitivity of the models. Often connectionist models behave 
badly in this respect. They might need specific parameter settings for different problems. Or they 
might not 'scale-up': for larger problems the model only works for an increasingly smaller range of 
parameter settings specific to the problem at hand. Parameters might also have no cognitive 
relevance, and as such could not be used to control the global emerging behavior of the model, or
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they might be highly dependent. A visualization of the parameter space can detect such 
problems. Both models behave well in this respect, but because of space limitations we cannot 
present the parameter spaces here.

Both perspectives have their drawbacks, one being too specific, the other one too general. If we 
give up some detail on the speed and order of processing that was available in the computation 
trace, and give up the free choice of musical material that was available in the parameter space 
we can characterize the precise behavior of the system for a family of sequences: all possible 
sequences of a fixed small length. This set can be considered to constitute a rhythm space: the 
problem space of quantization.

Rhythm Space Perspective
Let us consider the 3 dimensional space of all possible temporal sequences of 3 inter-onset 
intervals (four bangs on a drum). Every point in this space represents a unique temporal sequence. 
One could envisage this space projected in a room, with one comer as the origin. The distance 
along one wall represents the length of the first time interval, the distance along the second wall 
represents the length of the second interval, and the height above the floor represents the third. 
In this space certain points will be perfectly metronomical sequences, other points will represent 
performed deviations from them. Let us call this space 'rhythm space’ although 'temporal 
sequence space' would be more appropriate. A quantization process maps each point in this space 
to another; it assigns to each sequence a solution of the quantization. Thus the problem space of a 
quantization method is the whole rhythm space, the solution space is a set of points within this 
rhythm space. A further characterization of the solution space (e.g., what constraints limit the 
set of permisible quantizations - is, for instance, a complex temporal pattern such as 7 :11 : 2 to be 
considered allowable?) cannot be given at the moment, which is part of the reason why 
quantization is a difficult problem to define.

Trajectories in rhythm space
If the model has intermediate processing states that are temporal sequences themselves, as is the 
case with the connectionist model, the computation trace becomes a trajectory through this 
rhythm space. Otherwise a simple straight line can indicate the mapping from problem to 
solution. Easy visualization requires mapping of this space to 2 dimensions which can be done by 
assuming that the whole time-length of the temporal sequence is kept constant, the third 
interval then follows from the first two and the first two durations can be taken as the only 
independent variables: the x and y axes of a diagram. This normalization, which factors out 
global tempo, reduces the general applicability of the method if the theory is itself dependent on 
global tempo. The connectionist quantizer does not (but we admit that to model human rhythm 
perception accurately, it should). The Longuet-Higgins model does depend on global tempo and 
for this model the rhythm space can only be shown for one global tempo at a time.

If all three intervals are restricted between a minimum and a maximum time span, the allowed 
portion of the 2 dimensional projection forms a parallelogram. In figure 2a and 2b the rhythm 
space for the two models is shown, given an input sequence of three notes between a sixteenths and 
a double dotted quarter note. The whole sequence has a total duration of three quarter notes. The 
different solutions are indicated by small circles. Note that in the Longuet-Higgins model some 
solutions contain inter-onset intervals of length zero. That is because this model interprets two 
onsets that happen within the tolerance as synchronous.

****************************************************************************************
********* Insert figure 2 around here ********
****************************************************************************************

Regions in rhythm space
Because the behavior of the connectionist model is completely determined by a temporal 
sequence, any point on a trajectory will be mapped to the end point of that trajectory. This means 
that the connectionist model 'carves up' rhythm space into little compartments around each 
solution. Each compartment or region contains all the sequences that will be quantized 
equivalently. Now we can abstract from the trajectory from initial state to solution and only
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characterize the compartments. These areas, the so called basins of attraction, can be shown as a 
partitioning of the rhythm space, as is depicted in figure 3a.The Longuet-Higgins model does not 
behave such that the solution itself will always lie within the region that will map to that 
solution. But still the region of all points that map to the same solution (the equivalence classes 
of the mapping) can be shown as in figure 3b. We can now check the differences between the 
models. E.g. the region that maps to the rhythm of three quarter notes (marked A in the figures) 
is much larger in the Longuet-Higgins model than it is in the connectionist model. Another 
difference is the behavior around the region marked C in figure 3a, which corresponds to a 2:1:2 
rhythm. This solution is not present in the Longuet-Higgins model, because it is based on a five-
fold division.

****************************************************************************************
******** Insert figure 3 around here ********
****************************************************************************************

Influence of context
A good way to understand the influence of context (previously presented musical material) is to 
consider how these maps change under the influence of it. In figure 4 a a context of two dotted 
quarter notes was presented before the notes shown in the rhythm space. This context heavily 
biases the behavior of the connectionist model to quantize the following inter-onset intervals in 
subdivisions thereof as is shown by the enlargement of the area marked B. The area marked C 
completely disappears in the light of the contextual evidence for these subdivisions. Also in the 
Longuet-Higgins model the quantization is influenced (or even guided) by context. It does so by 
propagating the established meter to the processing of the remaining data. Using a duple meter 
as context, a very similar distortion of the regions in rhythm space can be seen (figure 4 b).

****************************************************************************************

******** Insert figure 4 around here ********
****************************************************************************************

Influence of parameters
These maps can also be used to understand the influence of the parameters of the model by 
interpreting their changes under the influence of different values. In figure 5a the so called peak 
parameter of the connectionist quantizer is slightly increased. This yields a denser map of 
smaller regions and adds new regions around 'difficult' rhythms. In the Longuet-Higgins model 
we can achieve a similar change by decreasing the tolerance. Now the model will behave more 
'precisely' and new solutions and small regions around them emerge.

****************************************************************************************

****»**,. Insert figure 5 around here ********
****************************************************************************************

Cognitive interpretation
We really need to compare these maps now to the corresponding maps for the human listener to be 
able to judge the cognitive validity of the models. In principle it is possible to obtain this 
empirical data in categorical perception experiments, presenting subjects with temporal sequences 
from the space in a transcription task. But mapping out the whole space will be a paramount task, 
even for such short sequences. Data about the borderlines betwen some regions can be found in 
Schulze (1989) and Clarke (1987).

Expectancy Space Perspective
The previous representations were based on the abstraction of a whole temporal sequence that 
served as input of the system. Since the full models work incrementally, a representation that 
makes explicit how a previously established context influences future decisions would be useful. 
We have to ignore here any influence of new incoming data back to the previously processed 
results, which is a reduction for both models. In the full process model of the connectionist 
quantizer we can 'clamp' the whole of the network state to the partial solution obtained and 
study what would happen to a new incoming onset. This virtual new onset, acting as a measuring
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probe, will be moved by the model to an earlier or a later time. If it is given a positive time shift 
to a later time, the model clearly had not yet 'expected' an event. If we postulate a measure of 
expectation of an event, it has to be larger at a later time for this 'early' event. Vice versa: a 
negative movement, a shift to an earlier time, indicates a dropping expectancy: the event is late. 
So we can integrate the movement to yield an expectancy measure. It forms a curve with peaks at 
places where an event, were it happen there, would stay in place. We could also rephrase this 
explanation in terms of potential and energy. The potential curve projected into the future by the 
network is then the inverse of the expectancy. But in the context of cognitive models expectancy 
seems a more appropriate concept. This process of calculating an expectancy can even be done in an 
incremental way: the expectancy is calculated until a real new event happens, that event is 
added to the context, and the process starts all over again. In figure 6 this curve is shown for a 
rhythm in 2/4 and the peaks in between and at the note onsets clearly are positioned at important 
metrical boundaries. Note that for the sake of clarity the input sequence is already idealized 
here to a metronomical performance.

****************************************************************************************
******** Insert figure 6 around here ********
****************************************************************************************

To show that these curves capture indeed an abstract property of the input data we can look at 
the last part of the curve in figure 6 (the last measure between time 16 and 20), and study that for 
different 2/4 contexts as is done in figure 7. It shows how the different rhythms project a very 
similar expectancy into the future. This even prompts the challenging thought that these curves 
constitute a kind of rhythmic 'signature' that can be compared to produce a kind of distance 
measure, a metric, of rhythms.

****************************************************************************************

******** Insert figure 7 around here ********
****************************************************************************************

One further corroboration of the usefulness of these curves is shown in figure 8. Here the 
expectanciesof two rhythms are compared: one in 6/8 (a division in 2 and then in 3) and the other 
with time signature 3/4 (a division in 3 and then in 2). The prominent peak in the curve of the 
first one is located at halvf the measure length, lesser peaks appear at 1/6 and 2/6, and at 4/6 
and 5/6. The curve of the second one has prominent peaks at 1/3 and 2/3 of the measure, and 
somewhat less pronounced peaks at 1/6,1/2 and 5/6. These findings clearly correspond with the 
musical notion of the importance of the different points in time given these meters.

****************************************************************************************

*’w**’w* Insert figure 8 around here ********
****************************************************************************************

For the Longuet-Higgins model it is a bit difficult to 'clamp' the internal state to a partial 
solution because of possible backtracking. However, no backtracking can take place across beat 
boundaries, and after each beat the model only propagates the established meter and the length 
of a beat (the tempo) to the processing of the next beat, expecting them to apply there too. So 
given a beat length and a meter, they will determine the points in time where notes will be found 
and assigned to a metrical level. Together with the resolution of this decision (the tolerance), a 
comparable kind of expectancy of future onset times can be postulated. Of course the expectancy 
can only be given on an ordinal scale: onsets at higher metrical levels are expected 'more'. In 
figure 9 such a measure is shown for a twofold two-division (2/4 meter) and at a beat length of one 
bar, together with the expectancy curve of the connectionist model from figure 6. It is striking to 
see how the peaks in both curves now coincide. I feel that this is the point where the two models 
meet. Meter, a symbolic, structural concept at the very heart of the Longuet-Higgins parser, 
emerges out of the global and abstracted behavior of the connectionist quantizer. Here we are on 
the verge of the possibility of 'reading-out' symbolic representations from a sub-symbolic model.

****************************************************************************************
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******** ********Insert figure 9 around here 
»»»*»»*»**»**»**»*»***»»»*»*»***■*******»»»*»»»******»»*»»»»********»*»*»»*****■****»*»*»*

Conclusion
It is possible to represent the behavior of two incompatible models of rhythm perception, the 
symbolic Longuet-Higgins musical parser and the Desain & Honing connectionist quantizer in 
different perspectives that make them comparable. These perspectives - the process state trace, 
the parameter and rhythm space, and the expectancy perspective - highlight different aspects 
of the models. Visualizations of these representations turned out to be crucial - even if the 
dimensionality or the flexability had to be reduced.
These methods also showed the richness of the topic of quantization, a process that lies at the 
heart of rhythm perception. It is central because it separates two fairly different kinds of timing 
data: the discrete and the continuous, each of which forms the postulated input of different 
theories of temporal perception. It is well known that the concept of meter is of great importance 
in encoding, interpretation and memory in musical tasks (Palmer & Krumhansl, 1990) and it is not 
surprising that this symbolic concept, even though not represented explicitly in the connectionist 
model, is still present implicitly and can emerge from the net with the help of an appropriate 
measuring method.
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Figure 1. A  summary of the differences of the two models under study.

W



Figure 2a. Trajectories through rhythm space in the connectionist model.
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Figure 2b. Mapping in rhythm space in the traditional A I model.
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Figure 8. Expectancy of onsets in 6/8 versus 3/4 rhythm in the connectionist model.
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Abstract

A definition is given of expectancy of events projected into the future by a complex temporal 

sequence. The definition can be decomposed into basic expectancy components projected by 

each time interval implicit in the sequence. A preliminary formulation of these basic curves 

is proposed and the (de)composition method is stated in a formalized, mathematical way. 

The resulting expectancy of complex temporal patterns can be used to model such diverse 

topics as categorical rhythm perception, clock and meter inducement, rhythmicity, and the 

similarity of temporal sequences. Besides expectancy projected into the future, the proposed 

measure can be projected back into the past as well, generating reinforcement of past events 

by new data. The consistency of the predictions of the theory with some findings in 

categorical rhythm perception is shown.



Introduction

Many incompatible theories about temporal perception and memory exist, which explain a 

number of phenomena well, but fail to predict others. A common theoretical basis for such 

work would be desirable. Connectionism might be an attractive paradigm in the search for 

such a basis, but most of its models lack compositionality. This means that the model as a 

monolithic whole might perform well, but it is impossible the decompose its complex 

behaviour into meaningful smaller parts. Chandrasekaran (1990) argues that the 

composability is a condition for successful cognitive modelling, even in the connectionist 

paradigm. In Desain (1990) the behavior of a sub-symbolic (connectionist) model of 

temporal quantization was described such that it could be compared with an incompatible 

symbolic model from the traditional AI paradigm. The paper concluded with an 

abstraction of the behavior of the quantizer in the form of an 'expectancy of events' with a 

temporal pattern as prior context. Expectancy turned out to be (de)composable which makes 

it possible to base a theory of perception of complex stimuli on a simple model for the 

perception of their constituting components. Because the expectancy concept seems to 

explain the dependency of perception of rhythmic structure on global tempo, the influence 

of context on categorical perception and other complex phenomena I propose to use it as a 

common basis for theories about temporal perception and memory. It is noteworthy that 

Povel (1984, 1985) has already remarked that high level cognitive judgements like 

rhythmicity might be based on, or be a byproduct of, low level rhythm perception processes 

that deal with quantization and tempo tracking.

"The experience of rhythmicity is supposed to result from the process that updates the 

internal clock in the light of the incoming stream of events. It may be noted that this 

process makes part of the normal process of listening to music in which the listener



constantly adjusts his internal clock (metrical fram e) to local temporal irregularities 

and tempo variations" (Povel,1984)

In this paper I will focus on the explanation and formalization of the theory and the 

composability of the definition of expectancy. The interpretation of the resulting curves, 

their possible use, and their relations to other research aimed at a higher level of rhythm 

perception, will be dealt with in Desain (in preparation). Although the theory looks 

attractive enough, I have to warn the reader that this paper is an account of recent work 

and it has yet to be empirically verified.

The Connectionist Quantizer

To illustrate how the theory develloped from a connectionist approach to the quantization 

of temporal sequences Desain & Honing (1989) a brief overview of that system will be given 

here. One by one the inter-onset intervals of a performed sequence are passed to a network of 

cells. The network acts as a complex shift-register: new inter-onset intervals shift in, are 

processed on the way through, and then shift out of the network as quantized durations 

(rhythmic catagories). Besides cells for performed time intervals there are cells for 

intervals spanning several basic intervals. Two cells interact if they represent neighboring 

time intervals: one ending where the other starts. Their interaction is such that the ratio of 

the two intervals is adjusted towards an integer, if the ratio is already close to this goal. 

The change in length of each interval is proportionally propagated to all the basic 

intervals that form part of it. This interaction proceeds untill a new inter-onset interval 

enters the network. All data is then shifted one position and the interaction process

resumes.



Expectancy

To make the link from the updating of time intervals, as is done in the connectionist 

quantizer, to expectancy, we can study what would happen to an imagined new incoming 

event whose corresponding time interval has just been shifted into the network. Its change 

is completely determined by the context of a temporal pattern that was presented before. 

When all but the last new interval in the network are clamped to a fixed state so that we 

can study the change of the new interval effectuated by the context while ignoring the 

influence of the new interval on the already perceived, but not yet fully processed data. 

The quantizer then can only effect a change in duration of this new basic interval. The 

imagined new onset ending this interval, now acting as a kind of measuring probe, will be 

moved to an earlier or a later time by the interactions. If the interval is increased, moving 

the onset to a later point in time, the model clearly has not yet 'expected' an event. If we 

postulate a measure of expectancy for this 'early' event, it will be larger at a later point in 

time. Conversely, a decrease of that time interval, a movement of the new onset to an 

earlier point in time, indicates a falling expectancy: the expectancy at an earlier time was 

larger. Finally, if the context inflicts no change to the new onset, expectancy is constant at 

that time. We can thus view the change of a imagined new onset time as the slope of an 

expectancy measure of an onset at that time. The pattern of expectancy forms a curve with 

extremes at places where an event, were it to happen there, would stay in place, because 

the derivative of the curve at this point (which is the change) is zero. The local maxima 

form the expected, 'perfect' places of onsets and the local minima form points of maximal 

confusion, places of unexpected events. Take e.g. the pattern [3,1, 2, x]. If x is just below 1, 

the quantizer network would effectuate a positive change. If x is equal to 1, the change 

would be zero. If x is just above 1, the quantizer would adjust it downwards, a negative 

change. Around 2 a similar situation occurs, but the changes are more pronounced because of 

the strong 1:1 interaction between the last to intervals. Around 3, 6 and even 12 the pattern



is similar as well: positive below, zero on, and negative above that value. If we now 

integrate the change over x, an expectancy curve results with local maxima at the values 

1,2,3 etc. Figure 1 shows some expectancy curves that were measured with longer temporal 

patterns represented as prior context in the network. They all have the same global 

characteristic, 2/4 meter, and produce very similar curves. Note the prominent peaks at the 

half-bar and bar boundary (at time 2 and 4, counting in eighth notes) and lesser peaks 

dividing these intervals further.

Figure 1 about here: Expectancy of onsets after presentation of different 2/4 patterns.

Decomposition

Expectancy is defined as the integral of the change generated by the sum of all interactions 

in the network. We can exchance integration and summation in this formulation and 

redefine the expectancy, given a prior complex pattern, as the sum of all the expectancies 

generated by each interval in that pattern. This effectively decomposes the theory for 

processing complex rhythms into a set of simple components, one for each time interval 

implicit in the pattern. Figure 2 is an attempt to depict this kind of decomposition. At the 

bottom left the presented temporal pattern is shown. Above it all the intervals implicit in 

this pattern are indicated (by heavy lines). To the right of each interval the pattern of 

expectancy projected by that interval is shown (light lines). This basic expectancy is a 

function of two parameters: the length of a time interval, and the time elapsed after the 

end of that interval. It peaks when the second parameter is an integer divisor or an integer 

multiple of the first. All the projected basic expectancies are summed and yield the curve at 

the lower right: the global expectancy curve projected by the complex temporal pattern. It 

has peaks at time points that can be considered as 'good continuations' of the pattern 

presented.



Figure 2 about here: (De)composition of expectancy.

This concept of expectancy seems closely related to ideas of Jones, and could function as a 

formalization of these.

It is such psychological trajectories that rhythmically guide our attentional 

energies along ideal paths. Attention is cast from some reference event at one point in 

time toward a target event scheduled for a later time. This approach demonstrates that 

attention itself is a dynamic, many levelled affair based upon nested internal rhythms. 

YJe continually cast ourselves forward by rhythmically anticipating future events that 

may occur within small and larger time intervals. These paths form the patterns of 

mental space and time and so can establish for us that sense of continuity and connection 

that accompanies comprehension." Jones (1981).

A more precise formulation of this principle of decomposition, which consitutes the core of 

the theory presented in this paper, will be given later. But first it is interesting to consider 

what happens if the grain of analysis is made a bit more coarse by lumping together the 

expectancy contributions of intervals that end at the same point in time. This gives a 

decomposition based on events instead of intervals. In Figure 3 the contributions of each new 

event are shown, incrementally building the total expectancy. The expectancy evolves 

during the presentation of the pattern and not only extends from the end of the pattern into 

the future, as was shown in figure 2. This kind of curve can show how a temporal pattern 

fails to realize a high expectancy (a syncope), or comes up with an unexpected event. It also 

enables one to see how a new event reinforces the already existing pattern of future 

expectancy or introduces new elements in it.



Figure 3 about here: Expectancy contributions of events in a temporal pattern.

Now we will make a slight detour to the concept of memory. According to Mari Jones 

expectancy and memory are closely related:

"[...] Paradoxically, a third implication of including time as a part of subjective 

structure results in an alternative view of memory. This new view casts remembering as a 

dynamic attentional process unfolding in negative time. That is, we can conceive of both 

expectancy and remembering as activities tied to the time dimension. [....] Expectancy 

and remembering then are opposite sides of the same coin." Jones (1981).

These rather puzzling remarks become clearer when one studies the influence that a new 

incoming event might have on the prior context. The new event can support one or the other 

of the previous interpretations and in retrospect contribute to a limited extent to the 

salience of already perceived stimuli. To visualize this we can simply construct all the new 

intervals created by a new incoming event and project their expectancy of events into the 

past (see Figure 4). This gives the amount of reinforcement given to each event in the 

pattern by the new incoming event. Temporal patterns that behave in a well-formed way, 

with high support of events by later ones, might be remembered better. This model thus 

predicts how a later event can facilitate or inhibit the memory of past ones, a rather 

spectacular feature. An example of this phenomenon is the often encountered 'closure' of a 

temporal pattern which concludes with an event in a highly expected place: an important 

metrical position.

Figure 4 about here: Relation of expectancy and memory.
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Concluding, we can state that the concept of expectancy as presented here has no time 

direction in itself. It is determined completely by two time intervals, but whether each of 

the time points marking the intervals was presented as stimulus in the past, or has yet to 

happen in the future, is irrelevant to the theory. One can thus speak about expectancy of an 

event at a future time generated by two time points in the past, the reinforcement of an 

event in the past by two time points happening later, or even the expectancy of an event at 

a certain time in between two time points. All these notions are equivalent at this level of 

the theory, and yield the same numerical values if the distance between the first and 

second time point is the same as the distance between the second and third time point in the 

three cases. This does not imply that the theory is symmetric with respect to time: 

swapping the distances between the first and second and between the second and third time 

point might yield different values, because the perception of a time interval followed by a 

multiple of its length might be different from the perception of that interval followed by a 

division of it by the same factor.

Besides the ratio of the two time-intervals, the basic expectancy function is supposed to 

depend on the absolute time duration of both of its parameters as well. This makes the 

theory sensitive to the time scale used (the absolute tempo). In Figure 5 the same pattern as 

in Figure 2 is used, but at half the tempo (note that for the sake of easy comparison the 

horizontal axis is 're-normalized' such that the figures have the same size). It is clear that 

what is often called 'the shift of level of attention through the levels of metrical 

hierarchy, prompted by different tempi' can be found here in the shift in relative 

importance of expectancy peaks.

Figure 5 about here: Expectancy at slow tempo.



We now get back to the details of the model. The shape of the basic expectancy curves is 

the part of the model that still has to be 'plugged in' to yield the full theory. The theory is 

'generic': given any method for calculating the basic expectancy of a time interval pair, it 

defines the method to calculate expectancies for any complex temporal pattern. I will 

discuss a first approximation of these basic expectancy curves and the possibilities of 

deriving them empirically.

Preliminary theory of basic expectancy

Before its mathematical formulation I will first give a graphic representation of the 

proposed basic expectancy. We can depict the basic expectancy of a time interval pair (A,B) 

for fixed A as a curve (see figure 6).

Figure 6 about here: Basic expectancy of interval pair A,B.

One can see clear peaks in expectancy when B equals A, 2A, 3A... and when B equals A/2, 

A/3 etc. The shape of the expectancy curve is determined by our capacity to perceive serial 

duration ratios, with higher ratios being more difficult and less expected (Jones & Boltz, 

1989). This may also be true for more complex ratios in terms of their prime divisors. These 

curves, projecting expectancy into the future, were used for Figure 2. Another visualization 

is given in Figure 7. It shows the expectancy of a subdivision of a unit time interval into the 

interval pair A,l-A. One can see here that the time-reversed interval pairs are still 

assigned the same expectancy in this preliminary theory (e.g. the pair 1/3, 2/3 and the 

pair 2/3,1/3)

Figure 7 about here: Basic expectancy of interval pair A,(l-A)



Sternberg, Knoll and Zukofsky (1982) showed that perceptual judgement is dependent both 

on the ratio of the intervals involved and on their absolute duration. Very long and very 

short time intervals are difficult to perceive accurately. The maximum in sensitivity occurs 

at about 600 ms, which is in the preferred tempo range (Fraisse, 1982). The total length of 

the interval pair will be used as a second determinant of the expectancy to model this 

dependency on the absolute time scale.

Because the sectionwise polynomials used in Desain & Honing (1989) are a bit difficult to 

treat mathematically, basic expectancy is defined as a sum of several Gaussian curves, one 

around each relevant ratio.

Eb(A,B) GAUSS(^-
D

„ „ A+B 
, R 'Tpref

1 1
Re{-,.., 2,1,2, ..,n)

( 1)

GAUSS (x,R,S) = C(R,S) e 'D(R'S) ( 2 )

The parameters of the Gaussians are determined by the ratio and the absolute tempo (the 

size of the sum interval in proportion to the preferred tempo). These last two values (R and 

S) determine the height (via function C) and the width (via function D) of the expectancy' 

curve peak at each integer ratio.

Measuring basic expectancy

To be able to proceed from a theory to a tested cognitive model we need a way to 

operationalize and measure basic expectancy. Although the material under consideration is 

very simple (just two successive temporal intervals), collecting empirical data on perceived 

expectancy might still be quite difficult. Carolyn Drake (personal communication) has



proposed a measure of accuracy in an adjustment task as used in her work on accents (Drake, 

Botte & Gérard, 1989). Goodness-of-fit judgements and memory confusion in discrimination 

judgments as used by Palmer and Krumhansl (1990) should also be considered. A more 

indirect measure might be derived from calculating the probabilities of time interval pairs 

A,B in a body of musical pieces. This is not the same as the frequency counts approach used 

by Palmer and Krumhansl (1990) as the latter makes use of a-priori knowledge of meter.

Complex expectancy

When the basic expectancy function Eb(A,B) is given, either by measurement or construction, 

the expectancy generated by an interval in a complex temporal pattern can be derived. Let 

X be a vector of basic time intervals Xj (l<i<N) and S(X,p,q) the time period spanned by 

intervals p through q.

When X contains the interonset intervals of a temporal fragment presented from time 0, we 

can define the interval expectancy Ei of a new onset at time T , generated by the interval 

spanning inter-onset intervals p to q in X, by applying the basic expectancy function Eb to 

the relevant time intervals.

q
S(X,p,q) = £ X i 

i=P
withp<q<N (3)

(4)

The complex expectancy E(X,T) of an event at time T, generated by the temporal pattern X 

presented from time 0, is then a sum of the interval expectancies Ej over all intervals

implicit in that pattern:



N N
E(X,T)= X  I  Ei(X,p,q,T) withT> S(X,1,N) (5)

p=lq=p

Figure 8 has the sam e structure as Figure 2, but it labels the relevant time intervals 

according to the formalism given above.

F ig u re  8 ab o u t h ere: Tim e intervals used in calculating expectancy.

The event-based expectancy of Figure 3 and the concept of reinforcement of Figure 4 m ay be 

formalized in an analogous w ay.

Because the basic expectancy Eb(A,B) will be small for large A or B there is a natural limit 

to the size of the context that will contribute to the total expectancy E(X,T), and the vector 

X can function autom atically as a short-term  m em ory construct.

A  nice consequence of the bidirectionality of the expectancy concept is that the sum  of the 

corroborations of each event in a pattern by a virtual new onset is the sam e as the 

expectancy of that onset generated by the pattern.

R elated w ork

The m easure of expectancy presented here can be related to a number of different theories 

and concepts. The Gestalt principle of Good Continuation, which is one of the underlying  

assumptions in m uch research in grouping mechanism s (Deutsch, 1982), can be linked closely 

to the expectancy construct. It is tem pting to interpret the relative height of the peaks in 

the expectancy curve directly as a m easure of m etrical boundary strength. H ow ever, instead 

of deriving a symbolic notion of m eter from these curves, it might be m ore productive to re-

think the concept of m eter as a continuous concept, an idealized expectancy curve, as 

discussed in Desain (in preparation). This allows the construct to be applied directly to the 

difficult areas of am biguous rhythm s, change of m eter and am ount of metricality. The
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expectancy curves are also promising for the study of the perceived rhythmicity of 

temporal patterns and their degree of syncopation (Povel, 1985). This is because it is easy to 

formalize the violation of a maximum in expectancy by the absence of an event at that 

time.

Given the numerous links with different aspects of the literature on rhythm perception, I 

will restrict myself here to some remarks on the predictions of the model for categorical 

rhythm perception.

Categorical rhythm perception

In general, categorization occurs when objects, on the basis of some continuously variable 

attribute, are placed in a small number of groups (see Repp, 1984). Sloboda argues for the 

existence of categorical perception in rhythm by noting how different the perception of 

rhythm and the perception of expressive timing are:

"[...] Identification of intended rhythm is a commonplace accomplishment for listeners, 

who are continually faced with the potentially confusing phenomenon of rubato and 

gradual changes in speed. In contrast, accurate perception of deviations from  

metricallity is difficult, and requires much specific training. It is almost impossible for 

one performer to imitate another exactly. All this strongly suggests that listeners 

achieve a categorization of the duration of the notes they hear into crotchets, quavers 

etc. [ ...] one would not wish to claim that categorical perception makes finer temporal 

discriminations impossible. We can hear rhythmic imprecision and rubato with 

appropriate training, but fine differences in timing are more often experienced not as 

such, but as differences in the quality (the 'life' or 'swing') of a performance. " (Sloboda 

1985, p. 30)
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Thus, in quantization the deviations from a strict m etrical perform ance are not throw n  

aw ay, but timing is separated into structural and expressive com ponents and then handled  

by different processes.

A discussion of the use of expectancy curves for a categorical perception model (a quantizer) 

will be left aside here since it involves m any technical points about the architecture of 

static vs. process m odels, the use of global tempo tracking etc. The m odels proposed in 

Desain & H oning (1991, addendum ) use hill-climbing in an expectancy landscape, but they 

vary in the extent to which the different dim ensions Colder’ and 'new er' time intervals) 

are allowed to vary. The following m aterial will discuss the expectancy curves them selves, 

assum ing that if local m axim a and minima em erge they can be used som ehow  to segm ent the 

continuous time axis into discrete regions, one for each rhythmic category.

Although categorical perception is a well established phenom enon in speech research, its 

existentence is m uch harder to dem onstrate in the rhythm  dom ain. In a well known set of 

experim ents, skilled musicians w ere asked to judge the length of tem poral intervals in 

rather sim ple integer ratios (Sternberg , Knoll & Zukofsky, 1982). Surprisingly, they w ere 

not able to do this accurately and boundaries between different categories turned out to be 

rather vague. Schulze (1989) w as som ew hat more successful in showing the existence of a 

categorical boundary in interpolations between patterns of three inter-onset intervals. In 

Clarke (1987) subjects were given a context of five or six inter-onset intervals in different 

metrical contexts, before the two experim entally m anipulated durations w ere presented.

He w as able to show  clear identification and discrim ination curves, that also show ed the 

predicted shift for the different context conditions. The general line in these findings thus 

seem s to be that categorical perception is facilitated by context. This is in agreem ent with 

the expectancy theory presented above: the expectancy curves become m ore pronounced if 

m ore context is available. In Figure 6 one can see that in an impoverished context the 

perception of simple patterns like [3,2] is not possible anyhow : there is no peak in



expectancy at B = 2 /3 A . A bit m ore context will allow correct perception of a 2 /3  ratio as is 

shown in Figure 9, w here the expectancy of an onset after the context [2,3,3] is given. N ote  

how  the local m axim um  at B = 2 em erges here. This general idea is consistent with the 

findings of Povel (1981) concerning an imitation task.

F ig u re  9 a b o u t h e re : Facilitation of the perception of the ratio 2 /3  by context.

Conclusion and discussion

The presented theory of expectancy seem s a promising candidate for a com m on basis for 

m any incompatible theories of rhythm  perception and m em ory. Its decom posability into 

simple com ponents that model perception of time interval pairs is attractive, not in the 

least because empirical results for sim ple simuli can be 'plugged' into the theory to yield  

predictions for m ore com plex tem poral patterns. The theory elegantly links expectancy  

projected into the future and reinforcement of past events by new data. Predictions following  

from  the theory are consistent with som e findings in categorical rhythm  perception. 

Em pirical verification of the theory will be the next step that is needed to further the 

research in this direction. Another field in which w ork needs to be done is the 

formalization of the use of expectancy in the different cognitive processes mentioned above, 

such as quantization, m eter and beat inducement, rhythm icity and sim ilarity of rhythm s.

It is clear that a full theory of rhythm  perception cannot be based on time alone but has to 

take other musical param eters into account as well. A  possible approach could be the use of 

a notion of salience to w eigh expectancy contributions of events.

It still is an open question whether an expectancy pattern is available as a whole for input 

to other processes, or w hether expectancy is m erely a changing sense of present anticipation  

and no access to future expectations is possible.



1 6

Acknowledgements

I would like to thank Piet Vos for organizing the Rhythm  Perception and Production  

W orkshop in Horssen and Ian Cross for his Music and Cognition Conference in Cambridge 

w here m any of these ideas w ere born. The research done with Eric Clarke at City  

University started m y interest in issues of expressive timing, it w as very stimulating to 

w ork with him. Johan den Biggelaar of the U trecht School of the A rts did his best to 

provide me with research facilities there. I also would like to thank Carolyn D rake, Mari 

Jones, Jeroen Schuit, Marie-jose Tienhooven, Siebe de Vos and Caroline van der W al who 

gave m any helpful com m ents on this paper. As alw ays, Henkjan Honing prevented me from  

sidetracking the m ain issues. W ithout him , I w ould have had less than half the fun in 

contriving these ideas.

*



References

Chandrasekaran, B. W hat Kind of Information Processing is Intelligence? A Perspective on 

AI Paradigm s and a Proposal. In T. Partridge and Y.W ilks (Eds.), The foundations of 

artificial intelligence, a sourcebook. C am bridge: C am bridge U niversity Press, 1990.

Clarke, E. C ategorical Rhythm  Perception, an Ecological Perspective. In A. Gabrielsson  

(Ed .), Action and Perception in Rhythm and Music. Royal Swedish A cadem y of M usic, 1987, 

N o. 55:19-33.

Desain, P. & H oning, H. Q uantization of musical time: a connectionist approach. Computer 

Music Journal, 1989 ,13(3 ) to be reprinted in P.M. Todd and D. G. Loy (Eds.), Music and 

Connectionism, Cam bridge, M ass.: MIT Press, 1991.

Desain, P. A Connectionist and a Traditional AI Q uantizer, Symbolic versus Sub-symbolic 

Models of Rhythm  Perception. In I. Cross (Ed.), Proceedings of the 1990 M usic and the 

Cognitive Sciences Conference, Contemporary Music Review. London: H arw ood Press.

Desain, P. M eter as a Continuous Concept. Report of the Center for Knowledge Technology. 

U trecht, (in preparation) .

Deutsch D. G rouping M echanism s in Music In D.Deutsch (Ed.), The Psychology of Music. 

Orlando: A cadem ic Press, 1982.

Drake, C . , Botte, M. C. & G erard, C. A perceptual Distortion in Simple Musical Rhythms. 

Proceedings of the International Society for Psychophysics Fifth Annual Meeting, C assis,

F ran ce,1989.



Fraisse, P. Rhythm  and Tem po In D.Deutsch (Ed.) The Psychology of Music. O rlando: 

Academ ic Press, 1982.

H andel, S. Listening, An Introduction to the Perception of Auditory Events. C am bridge Ma: 

MIT Press, 1989.

Jones, M.R. & Boltz, M. Dynamic Attending and Responses to Time. Psychological Review. 

96(3), 1989, 459-491.

Jones, M.R. Only Time Can Tell: On the Topology of Mental Space and Time. Critical 

Inquiry, 1981 .

Palm er C. & Krum hansl, C.L. M ental Representations for Musical M eter. Journal of 

Experimental Psychology: Human Perception and Performance. 16(4) 1990, 728-741.

Povel D.J. Internal Representation of Simple Tem poral Patterns. Journal of Experimental 

Psychology: Human Perception and Performance. 1981 , 7(1), 3-18.

Povel D.J. Time, Rhythm s and Tension: in search of the determ inants of rhythmicity. 

Internal Report 84FU 11, University of Nijmegen, 1984 .

Povel D.J. Time, Rhythm s and Tension: In Search of the D eterm inants of Rhythmicity In: 

M ichon J.A. & Jackson, J.L. (eds.) Time, Mind and Behavior. Berlin: Springer Verlag. 1985.



Repp, B.H. Categorical perception: Issues, m ethods and findings. In N . Lass (Ed.) Speech 

and Language. Vol 10: A dvances in basic research and practice. O rlando Fla: A cadem ic 

Press. 1984 .

Schulze, H. Categorical Perception of Rhythm ical Patterns. Psychological Research, 1989, 

51.

Sloboda, J.A . The Musical Mind: The Cognitive Psychology of Music. O xford: Oxford  

U niversity Press, 1985.

Sternberg, S. Knoll, R.L. and P. Zukofsky Timing by Skilled Musicians. In D.Deutsch (Ed.) 

The Psychology of Music. O rlando: A cadem ic Press, 1982.



ex
pe

ct
an

cy
context

time ( in eighth notes, after presentation of context)---- >

0

Figure 1. Expectancy of onsets after presentation of different 2/4 patterns.
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Figure 7. Basic expectancy of interval pair A,1-A
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LISP a s  a  Se c o n d  L a n g u a g e : 
Fu n c t io n a l  As pe c t s

LfU btl
P e t e r  D e s a in

Mo ti v a t io n  a s Prefa ce

LISP, w h ic h  wa s designed as early as 1960 by McCarthy (McCarthy 
1960) took a long time to be accepted by the computer music commu-

nity as a suitable language for expressing their problems and solutions 
(Boynton et al. 1986, Kornfeld 1980), but has now become the preeminent 
language for symbolic programming in research fields such as Computa-
tional Linguistics and Artificial Intelligence. Computer music, and in par-
ticular composition, is another field which can benefit from symbolic 
computation. This poses the interesting question of why the advantages 
LISP offers have been neglected for so long. Perhaps it is because the 
mainstream of computer-music research has been sound generation, which 
doesn’t involve many symbolic applications. In this field even present-day
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technology is barely fast enough, so it is only natural to reject the extra layer 
of a high-level language in favor of more efficient low-level ones.

However, nowadays there is a renewed interest in computer-music com-
position, interactive composition systems, user interfaces for programming 
synthesizers and the use of AI techniques in computer music. Fundamental 
music research also uses algorithmic models and in all of these fields 
symbolic computation is pervasive and so the use of languages like FOR-
TRAN or C is absurd. For the people entering the field of LISP program-
ming from a background of these languages, the transition process will be 
painful. This is not the result of the many parentheses in LISP, but because 
it is difficult to come to grips with a whole new style of programming (thus 
a new way of thinking) and to unlearn the old stereotypical solutions. The 
change will often be made with a kind of “minimal effort” approach which 
involves using the old programming style in the new language. And indeed 
looking at the LISP programs emerging from the computer-music commu-
nity, the imperative style can often be seen between the lines of LISP code. It 
is a pity to neglect the elegant ways of expressing algorithms in LISP, and 
doing so will often result in a disappointing performance and 
maintainability.

In this article I will try to make clear the functional aspects of LISP that 
cannot be found in the “old” languages. I hope this will result in more 
“ LISPish” LISP programs and will give computer-music composers better 
techniques to express their personal constructs directly in the form of a 
working program.

So me  Re ma r k s  as  I n t r o d u c t io n

This text comprises many examples. They were constructed for the sake of 
clarity, which means that they are not intended as a computer-music 
composition system. They rather show programming techniques that can 
be used in writing your own. The dialect chosen for the examples is 
Common LISP, but any LISP dialect with lexical scoping will do. Common 
LISP is likely to become a widely accepted standard although it yields less 
elegant programs compared to the purer LISP dialects like Scheme. The 
examples can be converted to Scheme by deleting the funcalls and function- 
quotes and adapting the function definition syntax. Readers not familiar 
with LISP may find the references to good introductory texts in the last 
paragraph useful. This article starts with a very condensed introduction to 
the basics of LISP in which the functions needed for the following sections 
are introduced as examples. Then the functional use of LISP is treated. 
More advanced topics such as continuations and coroutines will be treated in a 
subsequent paper.
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L is t s  a s t h e  Mai n  Da t a  St r u c t u r e

The primary data type of LISP is the list, which is notated as an open 
parenthesis followed by zero or more elements and a closing parenthesis. To 
give an example, the following list could be used as a representation for a 
MIDI note of two time-units’ duration, middle C (key number 60) and full 
amplitude (velocity 1.0).

(note 2 60 1)

Consider the choice of this primitive musical object here as an arbitrary 
one: we need just one such object in our examples. Of course the particular 
choice in a real program should be made on esthetic grounds—it expresses 
your idea of the atomic musical object and its parameters.

There is one special list, the empty list, notated as ( ) or nil. The 
elements of a list can be symbols, called atoms (like note or 60), or they can 
be lists. Thus a collection of notes can be represented as a list of lists.

( (note 1 60 1) (note 2 61 .7) (note 1 55 1))

If we wish to express control over the timing structure in the representa-
tion, ordering a collection of notes, we could form sequential and parallel 
structures. This way of specifying the time relations between objects is an 
alternative to the use of absolute start times found in most composition 
systems.

(sequential (note 1 60 1) (note 2 61 .7))

(sequential (parallel (note 1 60 1)

(note 2 63 1))
(note 4 55 .7))

For a discussion of these time relations see Desain and Honing 1988. A 
piano-roll notation of the second musical object is given in Example 1. Note 
that the words like note, sequential, and parallel do not have any 
intrinsic meaning here, since they are not built-in LISP functions. They are 
just used as arbitrary symbols, signalling our intention with the data in that 
list. In Common LISP there are of course other data types available, such as 
strings, arrays, hash tables, and so on, which sometimes are more appropri-
ate than lists. For the sake of clarity I will not use them here.
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E X A M P L E  1 : P I A N O - R O L L  N O T A T I O N  O F  T H E  E X A M P L E  S C O R E

Abst r a c t io n  a n d  Appl ic at io n  as  Dua l  M e c h a n is ms

The very heart of any functional programming language consists of a pair of 
dual constructs, the first of which is called application. It is the action of 
“calling” a Junction on one or more arguments. In the example below the 
function firs t  is applied to a representation of a note (the argument). The 
syntactical form of an application is the name of the function followed by its 
arguments, together enclosed by parentheses (prefix notation).

(f irs t  '(note 1601)) -»note

In the example the arrow (-► ) points to the result of the evaluation of an 
expression. A constant data list is preceded by a quote (') to distinguish it 
from an application. In the example above it prevented the LISP interpreter 
from recognizing (note 1 60 1) as an application of a function note to the 
arguments 1, 60 and 1.

There are two selector functions that take lists apart: f irs t  and rest. 
(Their former names, car and edr, are considered obsolete.) There is one 
constructor function for building lists, called cons.

(rest 1 (note 1 60 1))-» (1601)

(f irs t  (rest 1 (note 1 60 1)))-* 1 

(cons 'notr'(1601))-» (note 1601)—
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Other functions for the construction of lists are also supplied as LISP 
primitives (e.g. append, which concatenates several lists, and list, which 
builds a list out of several elements at once), but they could be written by 
the programmer using only cons.

(append '(notel) '(601))-» (note 1601)

(lis t  ' note 1 60 1) -* (note 1 60 1)

(cons ' note (cons 1 (cons 60 (cons 1 n i l ) ))) -*

(note 1 60 1)

The second central construct is called functional abstraction and transforms 
an expression (a piece of program text) into a function. Our first function 
definition will define (by means of defun) a constant function without 
arguments called example that will just return, as a result, a simple constant 
musical structure. We will use this function a lot in the following 
paragraphs.

(defun example ()
1 (sequential (parallel (note 160 1)

(note 2 63 1))
(note 4 55 .7)))

(example)-♦
(sequential (parallel (note 1 60 1)

(note 2 63 1))
(note 4 55 .7))

Moving on, we will define functions that have one argument and select a 
specific element out of a list.

(defun second-element (lis t )
(f irs t  (rest l i s t ) ))

(defun third-element (lis t )

(f irs t  (rest (rest lis t ) ) ) )
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(defun fourth-element (lis t )
(f irs t  (rest (rest (rest l is t ) ) ) ) )

(second-element '(e d e  f gab))-* d 
(third-element l (c d e fg a b ))-> e  

( fourth-element '( c d e f g a b ) ) - * f

Now wc can introduce some selector functions that take a note representa-
tion apart and a constructor function that builds one.

(defun duration-of-note (note)
(second-element note))

(defun pitch-of-note (note)
(third-element note))

(defun velocity-of-note (note)
(fourth-element note))

(defun make-note (duration pitch velocity)
( l is t  'note duration pitch velocity))

(duration-of-note ' (note 3 60 1)) -* 3 
(pitch-of-note 1(note 3 60 1)) -» 60 
(make-note 3 60 1) (note 23 60 1)

In the first example above a function called “duration” is defined which 
has one parameter called note. Its body is the application of the function 
second-element on this parameter. In the definition the parameter note is 
said to be abstracted from the body. Only when duration-of-note is 
applied to an actual argument does the body becomes “concrete” in the 
sense that it “knows” what the parameter note stands for, so that its value 
can be calculated. In the same way we could program a set of selector and 
constructor functions as a data abstraction layer for sequential and parallel 
structures.

(defun make-sequential (structure-1 structure-2)

( l is t  'sequential structure-1 structure-2))
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(defun make-parallel (structure-1 structure-2)

( l is t  'parallel structure-1 structure-2))

(defun structure-l-of (complex-structure)

(second-element complex-structure))

(defun structure-2-of (complex-structure)

(third-element complex-structure))

(defun structural-type-of (complex-structure)

(f irs t  complex-structure))

(structural-type-of (example))-» sequential 

(structure-2-of (example))-* (note 4 55 .7)

The use of complex data structures (sequential and parallel) of two compo-
nents does not make them less general in use because they can always be 
nested:

(sequential (sequential (note 1 60 1)

(note 2 611))

(note 1 63 1))

However, Common LISP provides means of control for passing arguments 
to functions and we could use the so called lambda-list keyword ¿¡rest to 
signal LISP to collect all the arguments of the function in a list.

(defun make-sequential (&rest elements)

(cons ' sequential elements))

(defun make-parallel (&rest elements)

(cons 'parallel elements))

(make-sequential (make-note 1 60 1)

(make-note 162 1)

(make-note 163 1))-* ________

(sequential (note 1 60 1) (note 1 62 1) (note 1 63 1) )
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Also, optional parameters to a function, that will be assigned a default value 
when missing in the function call, can be defined by means of the 
¿¡optional lambda-list keyword.

(defun make-note (¿¡optional (duration 1) (pitch 60) (loudness 1)) 

( l is t  'note duration pitch loudness))

(make-note 2 6l) -* (note 2 611)

(make-note)-* (note 1601)

For the sake of clarity we will use only the make-sequential and make- 
parallel functions which have two arguments and the make-note func-
tion which has three arguments. Using the data abstraction layer provided 
by the selector and constructor functions for notes to implement transfor-
mations on notes produces very readable LISP code.

(defun transpose-pitch (pitch interval)
( + pitch interval))

(defun mirror-pitch (pitch center)
(- center (- pitch center)))

(defun transpose-note (note interval)

(make-note (duration-of-note note)

(transpose-pitch (pitch-of-note note) 
interval)

(velocity-of-note note)))

(defun mirror-note (note center)

(make-note (duration-of-note note)

(mirror-pitch (pitch-of-note note) center) 
(velocity-of-note note)))

(defun transpose-note-semitone (note)
(transpose-note note 1))

(defun mirror-note-around-middle-c (note)

-Xmlrrorrnote note 60))_____________________________________
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(transpose-note-semitone ' (note 160 1)) -*
(note 1611)

(mirror-note-around-middle-c ' (note 1 57 1))-*
(note 163 1)

Note that we first defined some general note-transforming functions and 
then used these in turn to define the dedicated ones required in the 
following chapter. The utility functions for the pitch arithmetic isolate the 
calculation of pitches from the note-transforming functions.

Application should be used as the only means to pass information to a 
function. This ensures the behavior of functions is not dependent upon the 
context of its call. This obviates the use ofglobal variables. They arc to be 
used only in cases where they represent truly constant values.

Re c u r s io n  a s Mai n  Co n t r o l  St r u c t u r e

From the beginning the use of recursion in LISP programs was pervasive. 
Consider the transposition of a collection, i.e. a list, of notes. When the list 
is empty the task is simple: the empty list has to be returned. Otherwise we 
cons the transposition of the first note in the result of transposing the rest 
of the list. The function required for transposing this smaller list is precisely 
the function we are writing at this moment, so it only has to call itself. This 
process of self-reference is called recursion.

(defun transpose-note-list-semitone (notes)
(when notes

(cons (transpose-note-semitone (firs t  notes))

(transpose-note-list-semitone (rest notes)))))

(transpose-note-list-semitone 

'((note 1601)(note 2 59 .7)(note 165 .7)))-*
((note 1611) (note 2 60 .7) (note 166 .7))

This simple form of recursion (called tail recursion) is recognized by any 
reasonable compiler, and internally transformed into plain iteration, thus 
overcoming the overhead usually associated with recursion, i.e. extra func-
tion calls and increased stack space. In LISP the empty list: ( ) and the truth 
value false are defined equivalent and called nil. Conversely, everything
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that is not n il is considered as true: t. This is used here in two ways. 
Firstly, the condition in the when clause will only be considered true when 
the note list is not empty, when there are notes left. Secondly, the result of 
the when clause when the condition is false will be n il, and this will 
function as the empty starting list for corning in transposed notes.

While newly designed languages accepted recursion as a control struc-
ture, LISP was augmented with “down-to-earth” and well-known iterative 
control structures, since it was recognized that in some cases these are 
simpler for humans to use than recursion. For complex cases however, the 
recursive form is often the more elegant and easier to read. For example, if 
we wish to define a transposition on a complex musical structure (built 
from parallel and sequential) we must first dispatch on the type of 
structure (using a case construct) and then apply the transformation 
recursively on the component structures, and finally reassemble the trans-
posed parts into their parallel or sequential order. The resultant program 
would look very messy when written iteratively.

(defun transpose-semitone (structure)

(case (structural-type-of structure)

(note (transpose-note-semitone structure))

(sequential (make-sequential

(transpose-semitone (structure-l-of structure)) 

(transpose-semitone (structure-2-of structure)))) 

(parallel (make-parallel

(transpose-semitone (structure-l-of structure)) 

(transpose-semitone (structure-2-of structure))))))

(transpose-semitone (example))-*

(sequential (parallel (note 1611)

(note 2 64 1))

(note 4 56 .7)))

case will evaluate its first argument, then select a subsequent clause starting 
with that value, followed by an evaluation of the second part of that clause.
In general it can be said that recursion is the natural control structure for 
hierarchical data. And hierarchical structures are common in music.
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Fu n c t io n s  as  F ir s t -Class  Obje c t s

In any good programming language all possible objects are allowed to 
appear in all possible constructs: they are all first-class citizens. However, in 
many programming languages this rule is often violated. In LISP even 
exotic objects such as functions can be passed as an argument to a function 
(in an application construct) or yielded as a result from a function. At first 
sight this may not seem unusual. PASCAL, for example, allows the name of 
a procedure to be passed to another one using an ad hoc construction. And 
in C, pointers to functions can be passed around. However, in LISP all 
functions are uniformly considered as data objects in their own right, and 
functions operating on them can be used. This provides an abstraction level 
that is really a necessity but that is lacking in many other languages. For 
composers of computer music it is quite natural to think in terms of 
abstract transformations on objects like time-mappings, which are func-
tions themselves.

Fu n c t io n s  a s Ar g u me n t s

Suppose we want to write a function mirror-around-middle-c which 
would look similar to transpose-semitone defined above but only uses 
mirror-note-around-middle-c instead of transpose-note-semitone as 
the bottom level transformation. Instead of just writing a new function for 
that purpose, it is better to abstract from the bottom transformation and 
write a general transform function. This function is now given the note 
transformation as an extra functional argument, which enables it to deal with 
all kinds of note transformations. Wherever it needs the result of the 
application of the note transformation function to a specific note, it calcu-
lates that with the LISP funcall construct.
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(defun transform (structure transform-note)
(case (structural-type-of structure)

(note (funcall transform-note structure))
(sequential (make-sequential

(transform (structure-l-of structure) 
transform-note)

(transform (structure-2-of structure) 
transform-note)))

(parallel (make-parallel
(transform (structure-l-of structure) 

transform-note)
(transform (structure-2-of structure) 

transform-note)))))

(transform ' (sequential (note 1 60 1) (note 2 63 1))
#1transpose-note-semitone)->

(sequential (note 1 611) (note 2 64 1))

(transform ' (sequential (note 1 60 1) (note 2 63 1))
H'mirror-note-around-middle-c)-+

(sequential (note 1 60 1) (note 2 57 1))

Note the use of the #' construct (called the function quote), which is used to 
signal to LISP that the following expression is to be considered as a function.

The possibilities of the chosen representation of musical objects and 
transformations on it are illustrated by the following example. Here each 
note is transformed into a sequence of two notes with half the original 
duration. This transformation, called double-note, is built from two other 
transformations. The first one, half-note, divides the duration of its 
argument by two. The second, twice-note, makes a sequence of two 
identical copies of its argument.

(defun twice-note (note)
(make-sequential note note))
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(defun half-note (note)
(make-note (/  (duration-of-note note) 2.0)

(pltch-of-note note)
(velocity-of-note note)))

(defun double-note (note)
(twice-note (half-note note)))

(transform (example) #'double-note)-*
(sequential

(parallel (sequential (note .5 601) (note .5 601))
(sequential (note 163 l)(note 163 1)))

(sequential (note 2 55 .7) (note 2 55 .7)))

The use of functions as arguments (so-called downward funargs) seems to 
give so much extra power that we might begin to wonder what good the 
passing of functions as results (so-called upward funargs) could give us.

Fu n c t io n s  a s Re su l t s

If we wanted to apply an octave transposition to a structure we would have 
to write a new function, transpose-note-octave, and use it as an argu-
ment for transform.

(defun transpose-note-octave (note)
(transpose-note note 12))

(transform (example) #1 transpose-note-octave) -*
(sequential (parallel (note 1 72 1)

(note 2 751))
(note A 67 .7)))

This means wc always have to define the possible transformations in 
advance. This is not satisfactory and instead we could use anonymous 
functions as an argument to the transform function. Anonymous functions 
arc not as bad as they look . They are merely a consequence of the rule of 
first class citizens. For example, it is perfectly normal for objects like 
numbers, lists, and strings to have a notation for the constant values. 
Functions should also have this property. The anonymous function of one 
argument that will transpose a note by an octave is notated like this:
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(lambda (note)

(transpose-note note 12))

This kind of function can be used as argument to the transpose function 
(remember the function-quote).

(transform (example)
§' (lambda(note)

(transpose-note note 12))) -*

(sequential (parallel (note 172 1)

(note 2 75 1))

(note A 67 .7))

(transform (example)
#' (lambda(note)

(mirror-note note 72))) -*

(sequential (parallel (note 1 84 l)
(note 2 811)

(note A 89 .7)))

Still, this is a little tedious to do, and we define a function transpose- 
note-transform that will calculate these transposition functions when 
given the correct number of semitones.

(defun transpose-note-transform (interval)

§' (lambda (note) (transpose-note note interval)))

(defun mirror-note-transform (center)

#' (lambda (note) (mirror-note note center)))

(transform (example) (transpose-note-transform 2)) -♦

(sequential (parallel (note 162 1)
(note 2 65 1))

(note 4 57 .7)))
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(transform (example) (mirror-note-transform 67)) -*
(sequential (parallel (note 174 1)

(note 2 711))
(note 4 79 .7)))

G e n e r a i.it y  a s Aim

Functional programming makes it possible to construct very general pro-
grams that are customized for specific purposes. These are the tools that are 
badly needed in software design. They deserve to be supplied in software 
libraries, so that programmers can stop reinventing the wheel each time. As 
a tool for composers these programs may aim to be as “empty” as possible, 
only expressing general abstract knowledge about musical structure and 
leaving open details about the specific material and relations used.

The transformations we have so far designed are not yet that general. 
They were structure preserving, and thus a transformation of a sequence 
would always yield a sequence. Only at the note level could the structure 
expand into a bigger one (e.g. when using double-note). Bearing this in 
mind, we are going to develop a more general transformation device. Our 
new transformation is like the old one, except that it takes two more 
arguments to calculate what a sequential and what a parallel structure 
transforms into.

(defun transform

(structure sequential-transform parallel-transform note-transform) 
(case (structural-type-of structure)

(note (funcall note-transform structure))

(sequential (funcall sequential-transform
(transform (structure-l-of structure) 

sequential-transform 

parallel-transform 
note-transform)

(transform (structure-2-of structure) 

sequential-transform 

parallel-transform 

____________ _______________ _ Tiote -Vrans f muf;))
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(parallel ( funoai i  parallel-transform
(transform (structure-l-of structure) 

sequential-transform 

parallel-transform 

note-transform)

(transform (structure-2-of structure) 
sequential-transform 

parallel-transform 

note-transform)))))

After this rather tedious definition we have available a very powerful 
transformational device. Let me first give a rather stupid example of its use: 
the no-transform transformation function which just rebuilds its argu-
ment.

(defun no-note-transform (note) note)

(defun no-transform (structure)

(transform structure
#'make-sequential 

#'make-parallel 
§ 'no-note-transform))

(no-transform (example))-*
(sequential (parallel (note 1 60 1)

(note 2 63 1))

(note 4 55 .7))

The results passed upward by no-note-transform, make-parallel, and 
make-sequential are musical structures (see Example 2). Using the same- 
idea but substituting the identity note transformation by another one, 
gives us the second example. It supports all structure-preserving 
transformations.
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(defun our-old-transform (structure transform-note) 
(transform structure

#1 make-sequential 

#'make-parallel 

transform-note))

Now some more useful transformations can be constructed. The results 
passed upward will be numbers. The first transformation calculates the 
duration of a complex musical structure by adding or maximizing the 
duration of substructures. Similarly it is possible to calculate the duration of 
the longest note, the number of notes in a piece, and the maximum 
number of parallel voices of a complex structure. Note how easily the 
transform function is adapted to these different purposes by “plugging in” 
different functional arguments (see Example 2).

(defun duration-of (structure)

(transform structure #'+ #'max #'duration-of-note))

(defun longest-note-duration (structure)

(transform structure #'max #'max #'duration-of-note) )

(defun count-one (note) 1)

(defun number-of-notes (structure)

(transform structure #'+ #'+ #'count-one))

(defun max-number-of-parallel-voices (structure)

(transform structure #'max #'+ #'count-one) )

(duration-of (example))-* 6 

(longest-note-duration (example))-* 2 

(number-of-notes (example))-* 3 

(max-number-of-parallel-voices (example))-* 2

To demonstrate again the generality of the transform, we will now write 
a program to draw a piano-roll notation of a musical structure as shown in 
Example 1. This program was inspired by a tree-drawing program of Joop 
Ringclbcrg. To draw a note at the correct place we need to know the
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E X A M P L E  2 :  T R A N S F O R M A T I O N S  O F  T H F .  E X A M P L E  S T R U C T U R E

absolute start time of a musical object, information that the transform 
function itself does not supply. When context information is missing, it is a 
well-known trick in AI programming to calculate a function of the (not yet 
known) context as temporary result. Indeed such a solution is possible 
here. The draw-note function can return a function that will draw a 
graphical representation of a note when given a start time. As the drawing is 
done as a side effect, this function can then return the end time of the note as 
context to use in further drawing. The draw-sequential function just 
receives two such draw functions as arguments and constructs the draw 
function that will pass its start time to the first and pass the end time 
returned by the first to the second, returning its end time as the result. 1 he 
function draw-parallel will pass its start time to both substructure draw 
functions returning the maximum end time they return. Thus neither 
numbers nor musical structures are passed upward as result of the transfor-
mation on substructures, but functions that can draw the substructure
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when given a start time. At the top level we will just have to apply the draw 
function resulting from the call to transform to time 0. An alternative 
draw-note function is given for a quick test of the code without imple-
menting the graphic procedure draw-horizontal-block.

( d e f u n  d r a w  ( s t r u c t u r e )

( f u n c a l l  ( t r a n s f o r m  s t r u c t u r e  

# ' d r a w - s e q u e n t i a l  

# ' d r a w - p a r a l l e l  

# ' d r a w - n o t e )

0))
( d e f u n  d r a w - n o t e  ( n o t e )

# ' ( l a m b d a  ( t i m e )

( d r a w - h o r i z o n t a l - b l o c k

t i m e

( p i t c h - o f - n o t e  n o t e )  

( d u r a t i o n - o f - n o t e  n o t e )

( v e l o c i t y - o f - n o t e  n o t e ) )

( +  t i m e  ( d u r a t i o n - o f - n o t e  n o t e

;  a s s u m e d  g r a p h i c a l  p r i m i t i v e  

;  l e f t  x - p o s i t i o n  

;  y - p o s i t i o n  

;  w i d t h  

;  g r e y  s h a d e  

;  e n d  t i m e

( d e f u n  d r a w - n o t e  ( n o t e )

#'  ( l a m b d a  ( t i m e )

( p r i n t  ( l i s t  ' t i m e  t i m e

; a l t e r n a t i v e  f o r  t e s t i n g  w i t h o u t  

;  g r a p h i c s

' p i t c h  ( p i t c h - o f - n o t e  n o t e )  

' d u r a t i o n  ( d u r a t i o n - o f - n o t e  n o t e )  

' v e l o c i t y  ( v e l o c i t y - o f - n o t e  n o t e ) ) )  

(  +  t i m e  ( d u r a t i o n - o f - n o t e  n o t e )  ) )  )

( d e f u n  d r a w - s e q u e n t i a l  ( a  b )

# ' ( l a m b d a  ( t i m e )

( f u n c a l l b  ( f u n c a l l a  t i m e ) ) ) )

( d e f u n  d r a w - p a r a l l e l  ( a  b )

#' ( l a m b d a  ( t i m e )

( m a x  ( f u n c a l l  b  t i m e )  

( f u n c a l l a  t i m e ) ) ) )

( d r a w  ( e x a m p l e ) )  - *  ' ' e x a m p l e  1 '  '

Having shown this general solution for dealing with context information, 
it is dear that this will not be always the best solution. When information
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like start time is used a lot, it may be simpler to adapt the transform 
function itself so that it passes this information as well to the note transfor-
mation function:

( d e f u n  t i m e - t r a n s f o r m  

( s t r u c t u r e

s e q u e n t i a l - t r a n s f o r m  p a r a l l e l - t r a n s f o r m  n o t e - t r a n s f o r m  

¡ ¡ ¡ o p t i o n a l  ( t i m e  0 )  )

( c a s e  ( s t r u c t u r a l - t y p e - o f  s t r u c t u r e )

( n o t e  ( f u n c a l l  n o t e - t r a n s f o r m  s t r u c t u r e  t i m e ) )

( s e q u e n t i a l

( f u n c a l l  s e q u e n t i a l - t r a n s f o r m

( t i m e - t r a n s f o r m  ( s t r u c t u r e - l - o f  s t r u c t u r e )  

s e q u e n t i a l - t r a n s f o r m  

p a r a l l e l - t r a n s f o r m  

n o t e - t r a n s f o r m  

t i m e )

( t i m e - t r a n s f o r m  ( s t r u c t u r e - 2 - o f  s t r u c t u r e )  

s e q u e n t  i a l - t r a n s  f o r m  

p a r a l l e l - t r a n s f o r m  

n o t e - t r a n s f o r m  

( +  t i m e

( d u r a t i o n - o f

( s t r u c t u r e - l - o f  s t r u c t u r e ) ) )  )  ) )

( p a r a l l e l

( f u n c a l l  p a r a l l e l - t r a n s f o r m

( t i m e - t r a n s f o r m  ( s t r u c t u r e - l - o f  s t r u c t u r e )  

s e q u e n t i a l - t r a n s f o r m  

p a r a l l e l - t r a n s f o r m  

n o t e - t r a n s f o r m  

t i m e )

( t i m e - t r a n s f o r m  ( s t r u c t u r e - 2 - o f  s t r u c t u r e )  

s e q u e n t i a l - t r a n s f o r m  

p a r a l l e l - t r a n s f o r m  

n o t e - t r a n s f o r m  

t i m e ) ) ) ) )

The time is made into an optional parameter to facilitate the omission of 
the start time zero in the call of time-transform at the top level. We now 
can build transformations, such as a fade-out (decrescendo), that are time 
dependent._________________ ______ ________ _________________
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( d e f u n  f a d e - o u t - t r a n s f o r m  ( b e g i n  e n d )

# ' ( l a m b d a  ( n o t e  t i m e )

( i f  (  <  b e g i n  t i m e  e n d )

( m a k e - n o t e  ( d u r a t i o n - o f - n o t e  n o t e )  

( p i t c h - o f - n o t e  n o t e )

( *  ( v e l o c i t y - o f - n o t e  n o t e )

( -  1 . 0  ( /  ( -  t i m e  b e g i n )

( -  e n d  b e g i n ) ) ) ) )

n o t e ) ) )

( t i m e - t r a n s f o r m  ( m a k e - s e q u e n t i a l ( e x a m p l e )  ( e x a m p l e ) )

# ' m a k e - s e q u e n t i a l  

# ' m a k e - p a r a l l e l  

( f a d e - o u t - t r a n s f o r m  0 1 0 ) )  - >

( s e q u e n t i a l  ( s e q u e n t i a l  ( p a r a l l e l  ( n o t e  1  6 0  1 )  ( n o t e  2  6 3  1 ) )

( n o t e  4  5 5  . 5 6 ) )

( s e q u e n t i a l ( p a r a l l e l  ( n o t e  1 6 0  . 4 ) ( n o t e  2  6 3  . 4 ) )  

( n o t e  4  5 5  . 1 4 ) ) )

Sometimes we wish to transform our musical objects to note lists where 
each note has as an extra first parameter an absolute start time, e.g. to play 
them using a system like John Rahn’s LISP Kernel (Rahn 1988, 1990). We 
can do that now easily. All that is required is a function to transform a note 
to a list of one note in the new format, and a function that will merge two 
sorted parallel note lists. An alternative for this function using the Com-
mon LISP merge primitive is given as well.

( d e f u n  a d d - a b s o l u t e - s t a r t - t i m e  ( n o t e  t i m e )

( l i s t  ( l i s t  ' n o t e  

t i m e

( d u r a t i o n - o f - n o t e  n o t e )

( p i t c h - o f - n o t e  n o t e )

( v e l o c i t y - o f - n o t e  n o t e ) ) ) )
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( d e f u n  m e r g e - n o t e - l i s t s  ( l i s t - 1  l i s t - 2 )

( c o n d  ( ( n u l l  l i s t - 1 )  l i s t - 2 )

( ( n u l l  l i s t - 2 )  l i s t - 1 )

( ( <  =  ( s e c o n d - e l e m e n t  ( f i r s t  l i s t - 1 ) )

( s e c o n d - e l e m e n t  ( f i r s t  l i s t - 2 ) ) )

( c o n s  ( f i r s t  l i s t - 1 )

( m e r g e - n o t e - l i s t s  ( r e s t  l i s t - 1 )  l i s t - 2 ) ) )

( t  ( c o n s  ( f i r s t  l i s t - 2 )

( m e r g e - n o t e - l i s t s  l i s t - 1 ( r e s t  l i s t - 2 ) ) ) ) ) )

( d e f u n  m e r g e - n o t e - l i s t s  ( l i s t - 1  l i s t - 2 )  ;  a l t e r n a t i v e  

( m e r g e  ' l i s t  l i s t - 1  l i s t - 2  # ' <  : k e y  # ' s e c o n d - e l e m e n t ) )

( d e f u n  m u s i c a l - o b j e c t - t o - n o t e - l i s t  ( o b j e c t )

( t i m e - t r a n s f o r m  o b j e c t

H' a p p e n d

§ ' m e r g e - n o t e - l i s t s  

# ' a d d - a b s o l u t e - s t a r t - t i m e ) )

( m u s i c a l - o b j e c t - t o - n o t e - l i s t  ( e x a m p l e ) ) - *

' ( ( n o t e  0  1  6 0  1 )  ( n o t e  0  2  6 3  1 )  ( n o t e  2  4  5 5  . 7 ) )

Co m bi n a to r s  a s Fu n c t io n  Bu il d e r s

Since it turned out to be so useful to be able to talk about functions as 
objects which arc passed to and from other functions, we arc now going to 
examine the possibilities of a special kind of these “other” functions, called 
combinators. A combinator is a higher order function that has only functions as 
arguments and returns a function as a result. The first one we will show is 
the combinator called twice. It can double the action of any function, and 
therefore (twice #'rest) will be a function that removes the first two 
elements from a list, (twice #'double-note) will yield a four-fold splitting 
of notes, and (twice #'mirror-note-around-middle-c) will be an abso-
lutely useless transformation (the identical transformation).

( f u n c a l l  ( t w i c e  K' r e s t )  ' ( 1 2 3 4 5 ) ) “ * ( 3 ^ 5 )
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( o u r - o l d - t r a n s f o r m  ( e x a m p l e )  ( t w i c e  # ' t r a n s p o s e - n o t e - o c t a v e ) ) - *  

( s e q u e n t i a l  ( p a r a l l e l  ( n o t e  1  8 4  1 )

( n o t e  2  8 7 1 ) )

( n o t e  4  7 9  . 7 ) ) )

Here is the definition of twice,

( d e f u n  t w i c e  ( t r a n s f o r m )

# '  ( l a m b d a ( o b j e c t )  ( f u n c a l l  t r a n s f o r m  

( f u n c a l l  t r a n s f o r m  o b j e c t ) ) ) )

The second combinator is the “function-composition” combinator. It can 
combine the actions of two transformations into a new one. It is important 
not to confuse Junction composition and musical composition,

( d e f u n  c o m p o s e  ( t r a n s f o r m - 1  t r a n s f o r m - 2 )

( l a m b d a ( o b j e c t )

( f u n c a l l  t r a n s f o r m - 1  ( f u n c a l l  t r a n s f o r m - 2  o b j e c t ) ) ) )

( f u n c a l l  ( c o m p o s e  #  ' f i r s t  # ' r e s t )  ' ( c d e f g a b ) ) - * d

To construct a transformation that is a doubling applied to the result of an 
octave transposition we could use this combinator to build it.

( o u r - o l d - t r a n s f o r m

( e x a m p l e )

( c o m p o s e  # '  d o u b l e - n o t e  § '  t r a n s p o s e - n o t e - o c t a v e ) ) - *

( s e q u e n t i a l

( p a r a l l e l  ( s e q u e n t i a l  ( n o t e  . 5  7 2 1 )  ( n o t e  . 5  7 2  1 ) )

( s e q u e n t i a l  ( n o t e  1  7 5  l )  ( n o t e  1  7 5  1 ) ) )

( s e q u e n t i a l  ( n o t e  2  6 7  . 7 )  ( n o t e  2  6 7  . 7 ) ) )

To show the usefulness of these constructions we will write a function 
that calculates a complex melody from a simple one by adding a parallel 
melody that is the doubling of the original one transposed one octave. This 
■ ft A UimftwW.WU'il'l t'llft'l'l used 1 1 1  Javanese Gamelan music. The score of the 
add-doubled transformation on the example object is shown in Example 3.
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( d e f u n  a d d - d o u b l e d  ( s t r u c t u r e )

( m a k e - p a r a l l e l

s t r u c t u r e

( o u r - o l d - t r a n s f o r m  s t r u c t u r e

( c o m p o s e  # ' d o u b l e - n o t e

# ' t r a n s p o s e - n o t e - o c t a v e ) ) ) )

e x a mpl e  3: RESULT o f  t h e  ad d -d o u bl e d  t r a n s f o r ma t io n

Note that we could have defined twice as a composition of a transform 
with itself.

( d e f u n  t w i c e  ( t r a n s f o r m )

( c o m p o s e  t r a n s f o r m  t r a n s f o r m ) )

Pa r a m e t e r s  a s Su pe r f l u o u s

When defun defines a function, it creates an anonymous function using the 
argument list and the body, and stores it in the function cell of the symbol 
thwi* the m m e rf#  function. This means tint the next two expressions.
are equivalent.
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(defun duration-of-note (note)
(second-element note))

^®etf ! assign to the function slot
(symbol-function 'duration-of-note); of the symbol 
#'(lambda(note) ; duration-of-note

(second-element note))) ; this anonymous function

defun can be considered as a device that makes the definition of a function 
easier to read, but it assumes the name of the function and the function 
body itself to be constants. Let us first make a similar construct that gives a 
little bit more power than defun, and then use it to define duration-of 
again.

(defun define-function (name function)

(setf (symbol-function name) function))

(define-function 'duration-of-note 
# ' (lambda(note)

__ (second-element note)))

( j J  Now we can calculate a function body instead of using a constant 
anonymous function. In the first example below the calculation merely 
finds the function definition of a symbol, to create a synonymous function. 
In the second it is really calculated by one of the transformations we defined 
above.

(define-function 'premier (symbol-function 'first))

(premier ' ( 1 2  3)) —► 1

(define-function 'transpose-note-octave

(transpose-note-transform 12))

(transpose-note-octave ' (note 1 60 1)) -> (note 1721)

Note that in the definitions above, the formal parameters which 
appeared in the argument list of the defun form are no longer needed. If we 
have access to enough combinators like twice and compose, we can even do 
completely without parameters.
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(define-function 'double-note (compose H' twice-note #'half-note) ) 

(define-function 'double-and-raise-note

(compose § ' double-note §' transpose-note-octave))

(define-function 'four-times (twice #'twice))

(define-function 'but-first-four (four-times #'rest))

(but-first-four '(ede f gab))-* (gab)

Note how twice is applied to itself to yield the four-times function.
Languages built on combinators using parameter-free programming arc- 

very useful in domains centered around one type of object and many 
transformations on this object (like the musical structures in our examples).
In these domains they facilitate the definition of higher levels of abstraction 
whereby transformations arc considered objects in their own right, so that 
they can be manipulated, combined, and modified. However, when deal-
ing with functions of many arguments we need a lot of combinators for 
juggling with the order of arguments, leading to programs that are difficult 
to read. For humans, an extra hook into our memory, by means of a 
mnemonic parameter name, is often indispensable. In addition, more 
heterogeneous domains consisting of different sorts of objects, all subjected 
to transformations that arc conceptually more or less the same, can be 
modelled better using another style of programming in LISP. In this style, 
named object-oriented programming, it is straightforward to express, e.g., 
how both a melody and a synthesizer can have their own definition of 
“transposition.”

So m e  Wo r d s  a s Co n c lu s io n

Exaggerating my standpoint, I will give a summary of a good style of 
LISP programming.

1. No function is longer than five lines.

2. Programs are written functionally.

3. No global variables are used.
4. Names of functions and parameters are long and descriptive.

5. Flow of control is done with recursion.



218 P e rspe c tives  o f  N e w  M u s ic

Such a clean and elegant style will result in programs that are easy to 
construct and maintain. One advantage that languages like FORTRAN and 
C still have when compared to LISP is their speed. Luckily good industrial 
Common LISP compilers make the difference quite small.
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LISP a s a  Bo o k  To pic

Since there are so many books on LISP it is difficult to select the one that 
will be of most use. A quick rule of thumb that can be used is: if a book on 
LISP starts by explaining SETQ (or SETF) it is unsuitable.

Abclson & Sussman 1985 is an almost perfect introduction to all the 
wonders of LISP programming and programming in general. There are 
extensive examples, but it is a pity they are all of the numerical and 
engineering type. It uses the Scheme dialect. Anderson et al. 1987 is a 
introductory textbook with lots of exercises. Friedman & Fclleisen 1986 is 
a very funny (and good) programmed instruction course. If you want to 
learn to write recursive list programs in LISP without a teacher and 
without prerequisites, try this. Watch out for the differences between 
editions. There is an MIT Press version as well. Henderson 1980 is a good 
and clear introduction to functional programming, with many examples. 
Steele 1984 is the defining report on Common LISP, not intended for 
learning LISP but indispensable as a reference. If you have the opportunity, 
take a look into the Symbolics manuals to gain a feeling for the size and 
power of the programming environment of a LISP machine. Winston and 
Horn 1981 is a general introduction to LISP.
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G los sar y

a t o m . In LISP: any symbol, number or other non-list.

access  e u n c t io n . A (unction which is part of a data abstraction layer (a 
selector or constructor function).

a n o n y mo u s  EUNCTiON. A function whose ‘ pure definition is given, not 
assigning it a name at the same time.

a ppl ic a t io n . Obtaining a result by supplying a function with suitable 
arguments.

COM in n a t o r . A function that has only functions as arguments and returns 
a function as result.

c o n s . A LISP primitive that builds lists. Sometimes used as verb: to add an 
element to the beginning of a list.

c o n s t a n t  e u n c t io n . A function that always returns the same value.

c o n s t r u c t o r  e u n c t io n . A function that, as part of the data-abstraction 
layer, provides a way of building a data structure from its components.

c o n t in u a t io n . A way of specifying what a function should do with its 
result.

c o r o u t in e s . Parts of the program that run in alternation, but remember 
their own state of computation in between switches.

da t a  a bs t r a c t io n . A way of restricting access and hiding detail of data 
structures.

da t a  t y pe . A class of similar data objects, together with their access 
functions.

d ia l e c t . A programming language can be split up into dialects that only 
differ (one hopes) in minor details. LISP dialects arc abundant and may 
differ a lot from each other even in essential constructs.

e ir s t -c l a s s  c it iz e n s . Rule by which any type of object is allowed in any 
type of programming construct.

EUNcriON. A program or procedure that has no side effects.

e u n c t io n  c o m po s it io n . The process of applying one function after 
another.

EUNCTIONAI. ABSTRACTION ((JR PRCXIEDURAI. ABS1RAC1 ION). A way of

making a piece of code more general by turning-part of it into a-
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parameter, creating a function that can be called with a variety of values 
for this parameter.

f u n c t io n a l  a r g u m e n t  (f u n a r g ). A function that is passed as argument 
to another one (downward funarg) or returned as result from other one 
(upward funarg).

f u n c t io n  q u o t e . A construct to capture the correct intended meaning 
(with respect to the current lexical environment) of an anonymous 
function so it can be applied later in another environment; a lexical 
closure. It is considered good programming style to use function quotes 
as well when quoting just the name of a function.

g l o ba l  v a r ia bl e s . Objects that can be referred to (inspected, changed) 
from any part of the program.

h ig h e r -o r d e r  f u n c t io n . A function that has functions as arguments.

impe r a t iv e  s t y l e . A programming style in which assignment and itera-
tion are the main constructs.

it e r a t io n . Repeating a certain segment of the program.

la mbd a -l is t  k ey w o r d . A keyword that may occur in the list of parameter 
names in a function definition. It signals how this function expects 
its parameters to be passed, whether they may be omitted in the call, 
and so forth.

l e x ic a l  s c o pin g . A rule that limits the “visibility” of a variable to a 
textual chunk of the program. Much confusion can result from the 
older—so-called dynamic scoping—rules.

o bj e c t -o r ie n t e d  pr o g r a m m in g . A style of programming whereby each 
data type is grouped with its own access function definitions, possibly 
inheriting them from other types.

pa r a me t e r -f r e e  pr o g r a m m in g . A style of programming whereby only 
combinators are used to build complex functions from simple ones.

pr e f ix  n o t a t io n . A way of notating function application by prefixing the 
arguments with the function.

q u o t e . A construct to prevent the LISP interpreter from evaluating an 
expression.

r e c u r s io n . A method by which a function is allowed to use its own 
definition.

s e l e c t o r  f u n c t io n . A function that as part of the data abstraction layer 
provides access to a data structure by returning part of it.
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s id e  e f f e c t . Any actions of a program that may change the environment 
and so change the behavior of other programs. 

s t a c k . A list of function calls that arc initiated but have not yet returned a 
value.

s t r u c t u r e  pr e s e r v in g . A way of modifying data that keeps the internal 
™ « i o n  intact but may change attributes attached to the structure.

t a il  r e c u r s io n . A type of recursion in which the recursive call is the 
“last” thing the program docs.
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Parsing the Parser: 
a case study 

in programming style
by Peter Desaiiri

INTRODUCTION

Much of my effort during the last years was directed at explaining 

neat programming styles and functional use of programming languages 
(Dcsain 1990). My audience however tended to question the realism of 
the beautiful three line programs I mostly used as examples. They 

doubt whether they were not just of a didactical worth, real world 

problems being to hard to handle without compromise in this way. To 

contradict such insinuations I went looking for a really complex 

problem, in the form of a published program which I could convert into 

a good functional programming style. In research in expressive timing 

in music I came across the excellent papers of Longuet-Higgins 
(Longuet-Higgins 1976, 1979) describing a musical parser that, next to 
tonal analysis, parsed performed music rhythmically. It produced a 

metrical hierarchical structure, while tracking tempo changes and 
rounding performance inaccuracies. The actual code of the program 

written in POP-2 was attached to the article as an appendix, which made

1 Christopher Longuet-Higgins is to be thanked here. His work is 
a continuous source of inspiration, and his encouragement was a great help 
in this research. With help from Hcnkjan Honing the first attack of the 
POP-2 code was made, and some of his good ideas were used in this article. 
This research was partly supported by an ESRC grant under number 
A413254004.

39



COMPUTERS IN MUSIC RESEARCH

the proposed endeavor possible.

Researchers should really be encouraged to publish the actual code 

or parts thereof, like Longuet-Higgins did. Firsdy it provides a means 

to verify or falsify the claimed results. Secondly it forces the author to 

account for every detail in the system. Especially if the algorithm is 

claimed to provide a cognitive model, it is important to study its 

internals, the data and control structures used, so as to be able to state 
the predictions it makes. Naturally, bulky programs arc not useful as 

appendices to articles as usually nobody takes the trouble to look at 

them. Of more use arc micro versions, from which unnecessary details

arc removed. Constructing such a micro version can be of benefit to the«
researcher too, being forced to decide what is essential and what arc mere 

'bells and whistles'. More than once I witnessed remarkable progress in 
research caused by the insight yielded while trimming a program to its 
bare minimum. In (Shank and Ricsbcck, 1981) good examples can be 

found of micro versions of some famous computer understanding 

programs.
In the case of the Longuet-Higgins parser it seemed that the code 

could indeed already be called a micro version, apart from the fact that 

the tonal and the rhythmical analysis, which arc being dealt with 
separately in the theory, were embodied in one program. However, 

speaking to several colleagues that had tried to understand the code, I 

discovered that the program did not at all function as a clarifying, and 
helpful addendum to the article itself. All readers (including myself) 

were put off by the difficulty of the program, even though the 

underlying theory was described extremely well. This was not because it 

was written in the (now obsolete) language POP-2, but because the
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program itself used many awkward programming constructs: side 

effects, different binding regimes and scoping rules, non-local exits and 

even a GOTO. The term spaghetti program seems to be a good 

description of this piece of code (and indeed prof. Longuet-Higgins is 

fond of Italian food), and one has to have an appetite for reverse 

engineering to rediscover the workings of the program from the code. 

But at least there was well described code available, which cannot be 

said of all publications about AI programs. It is a symptom of the 

general state of AI research that rational reconstruction is becoming an 

significant AI methodology. Campbell (1990) defines this technique as 
reproducing the essence of a programs behavior with another program 

constructed from descriptions of the purportedly important aspects of 

the original, trying to verify claims made about this program. It seems 

a waste of effort as these programs should have been published and 

described well in the first place, but it makes again clear that the 

equation 'the program is the theory' that has had a long standing history 

in AI, does not hold.
When finally Edward Lisle, Longuct-Higgins present collaborator, 

remarked that I would never be able to port the code to LISP because 
one needs to be an expert LISP programmer to do that, I had gathered 

enough incentive to embark upon the task of rewriting the program in 

an understandable style. In this paper I will describe the route I took in 

porting the program, in the hope that similar methods will be useful for 
the reader on other occasions. I will also show how the standard 

repertoire of the LISP and AI programmer can be used to create elegant 

and modular programs for complex problems. The resulting code is 

rather easy to read for humans—which is the main, but often forgotten,
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aim of programming—and can be much more easily experimented with, 

changed and tested.

But before I embark upon describing the program and the port, I 
first have to make clear that looking at the model so closely only 
boosted my admiration for the research itself. And although the flow of 
data and control needed for the theory is rather sophisticated, the 

questions involved are described very well in the two papers, and the 

performance of the algorithm is remarkable. Furthermore the code was 

written almost two decades ago when lots of the techniques I used, now 

common practice, had not yet found their way into the literature. Prof. 

Longuet-Higgins was so kind to encourage me on this task and clarify 

several issues. Any criticism in this article, in which I cannot hope to 

match his personal eloquent style and merciless polemics (sec 
Longuct-Higgins, 1983), has to be seen in the light of these remarks.

UNDERSTANDING THE THEORY

The parsing and quantization process is known to be very hard. 

Different methods can be found in (Desain & Honing 1989,1991) and a 

comparison of the performance of Longuct-Higgins' symbolic method 

and a connectionist model for the same task is given in (Desain, 1991). 
But first and foremost the reader must be asked to read the original 

papers, or the corresponding chapters of (Longuet-Higgins 1987), as I 
can only give a brief outline of the theory here.

The rhythmical part of the parser uses a hybrid method of tempo 

tracking plus the use of structural knowledge about meter. In this 

method the tempo tracking is done with respect to a time interval that
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can span zero or more notes. At top level this time interval represents a 

beat. It is subdivided recursively in 2 or 3 parts looking for onset times 

near the start of each part, until the interval contains no more onsets. 
The ‘best’ subdivision is returned, but the program is ‘reluctant’ to 

change the number of subdivisions (the pulse) at each level. At each 
recursive level the interval length is adjusted on the basis of the onsets 
found, just as in simple tempo tracking methods. An articulation 

analysis is then performed, dividing notes into tied parts and deciding 

where a rest occurs. Next to the quantized results this program delivers a 

hierarchical metrical analysis, whose top level is the beat and whose 

bottom level arc made up of notes and rests. From the article we can 

identify the input and output of the system, the data-types used, the 

parameters, the procedural modules and their communication. What 
follows is an outline of those issues, taking into account only the 

relevant ones from a rhythmical perspective.
The input of the system consists of an ordered list of notes. Each 

note has an onset time, an offset time and a pitch. The output of the 
system consists of a list of trees, one for every analyzed beat. A beat is 

just a period of time, slicing the data in consecutive intervals. Each tree 

is of a combined binary-temairy nature, which means that each node has 

zero (in case it is a leaf of the tree) or two or three sub-trees. The arity 

of each internal node is called the pulse. During the construction of the 

tree there is a horizontal flow of pulse information through the layers of 
the tree, seeking to maintain the same pulse at a certain level as long as 

possible. The list of proposed pulses for the tree at each level is called 

meter. During the construction of the tree a strict left to right order is 

maintained, and new sub-trees are created on a generate and test basis.
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This means that a proposed (and constructed) binary sub-tree may be 

rejected in favour of a tertiary one. The generate and test procedure is 

non-standard in that it may, after checking and rejecting the first 

alternative, still reject the second in which case as yet the first 

alternative is chosen. Notes, whose onsets happen in rapid succession 

(like in a trill) are collected in a group and treated as if they started at 

the onset of the first note in the group. Associated with each leaf of the 

resulting tree is a possibly empty, annotated list of sounding notes. 

There is one parameter identified in the program called tolerance which 

is used in different places as the allowed margin of deviation in deciding 

if notes start or stop at a certain times.

The main flow of control is dealt with in a mutual recursion of the 

procedures tempo and rhythm. Tempo decides if there is another 
subdivision needed, if not it calls singlet (bottom case of recursion). If 

there is, it calls rhythm which tries one or more subdivisions and calls 

tempo recursively on them. Rhythm then returns the best fitting 

sub-tree. There is some pre-processing (sift, takein), some top level 
initializauon, (startup) and the post-processing is mainly done in the 

form of printing procedures (typeout, reveal and describe). The 

call-graph (it is not a hierarchy because of the recursion) depicts it all 

neatly (Figure 1).
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Figure 1: Call graph o f the parser routines.
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Planning the endeavor
Because the flow of data and control in the program is so 

complicated, and because a complete rewrite from scratch could only use 

the text of the articles as specification, which seemed not enough, I 

planned the whole endeavor as follows. I would try first to reconstruct 

the system as a LISP program direedy translating the POP-2 constructs 

into LISP and staying as close as possible to the original code. During 

that stage some of the example input data incorporated in the articles 

could be used to test the program. It was planned to do only one change 

at a time and to keep all intermediate files for easy recovery and 

documentation. Every question about the working of the program was 

added as comment to those files. During that stage I would try to resist
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improving the code making the translation as algorithmic as possible. 

It was decided to concentrate on the rhythmic part, leaving the simpler 

harmonic analysis for the future. When that program would work well a 

test suite had to be built to check the output using all of the available 

examples. Those two means, trying to translate the POP-2 code as 
directly (and mechanically) as possible and checking the input/output of 
this program, would hopefully insure a version (called LISP Program 1) 

that was semantically equivalent to the original. However, "testing can 

show the presence of bugs but not their absence" (Dijkstra in Bentley 

1988, p. 60). I planned then to add some trace code to check the internal 

workings of the program and clarify the list of questions that was 
building up. The tracing code and the test suite all belong to the 
necessary scaffolding that has to be erected when building or modifying 

a program (Bentley 1988). Although these techniques arc common 

practice for every experienced programmer it is a pity that they arc so 
often neglected in student texts on programming, and that support 

facilities for these temporary constructs are lacking from almost all 

programming environments. In the next stage some non-essential 
add-ons could be removed and then enormous changes would be 

necessary to clean up the code. Only semantic invariant program 

transformations were to be used, insuring that, however different its 
appearance, the behavior of the program was not changed by the 
surgery: it would still exhibit the same input-output behavior. After 
each change that would be checked, using a test run of the program 

suite. After resulting in a clean functional program (LISP Program 2) I 

suspected that the internal flow of information and control would be so 

much clarified that the remaining questions about the internal workings

46

PARSING THE PARSER

could be answered and the crucial theoretical concepts could be made 

apparent from the code itself. Then at last one might be able to point at 

possible improvements of the algorithm. With this plan in mind the 

next stage was started.

LIT E R A L  TRANSPORTATION

When starting this project I was not able to locate a POP-2 

manual. Afraid that the whole project would turn out to be a piece of 

computer science archeology I was glad to find that POP-11 (the 

successor of POP-2) is still widely used and a manual (Barett e.a. 1985) 

only left a few constructs found in the program unexplained. When I 
eventually found the POP-2 manual it was quit instructive to see the 

sloppy semantics (Burstall c.a. 1986 reference manual p. 14-15) of this 
language, which was used for a lot of large programming projccts.and 

has had a great influence in the Al-community in Britain for a long 
time. Common LISP (Steele, 1984) was chosen as the LISP dialect 

because of the wide availability of implementations of this standard, 
although SCHEME (Abclson & Sussman, 1985) would yield even 

more elegant code.
We will now take a dive into the details of the POP-2 and LISP 

code, anyone interested in a more global view may skip this part and 
start reading again at the section 'Lispizing the code' or even move 
ahead to 'Theoretical issues'. The relevant parts of the POP-2 code arc 
shown in appendix 1 .1 have inserted some comments (printed in italics) 

and added the line numbering. Any line numbers in the text refer to this 

appendix. Translations of POP-2 constructs in LISP arc shown in Table 

1.
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Table 1: Translation o f  relevant POP-2 constructs into LISP.

construct POP-2 syntax line LISP translation
assignment <cxpression> -> <variable>; 52 (sctf <variablcxcxprcssion>)
conditional if <condition> 

then <statcmcntl> 
else <statcmcnt2> 

close;

53 (if <condition> 
<statementl> 
<statemcnt2>)

multiple
conditional

if <conditionl> 
then <statementl> 
elseif <condition2> 
then <statement2> 
else <statemcnt3> 

close;

125 (cond (<conditionl> <statcmcntl>) 
(<condition2> <statemcnt2>)

(t <statement3>))

iteration loopif <condition> 
then <statemcnt> 

close;

25 (loop
(when <condition>(retum)) 
<statemcnt>)

goto
<Iabcl>: 

goto <label>

75,
99

(prog 0

<labcl>

(goto <labcl>)

function
application

<function>(<argumentl>,
•••»
<argumentn>);

or
<argument>.<function>;
or
<function>;

85

135

151

(<function> <argumcntl> 

<argumcntn>) 

(<function> <argumcnt>) 

(<function>)
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function
definition

'unction <function> <parameter 
:ist>
(unction <function> <paramcter 
listo

-> <output local list> 
vars <local list>;
<body>

end;

5l see Table 2

=> can be used instead of -> 2
constant list : . . . ] 125 ( . . . )
list selector hd 4 first or car
list selector tl 4 rest or edr
list
constructor

40 cons

list
constructor

42 (list . . . )

list mapping maplist 129 mapear
list iteration applist 128
list reversal rev 117 reverse
record type 
declaration

recordclass class slotl . . . 
slotn

1 (defstruct class slotl ... slotn)

function
composition

o 127

output pr 145 print
output new 
line

nl 141 terpri

pushing the 
stack

<expression>

popping the 
stack

->
or
.<function> 145
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temporary use 
□ f stack

if <condition> 
then expression 1 
else exprcssion2 
elosc -> var;

112 (setf var (if <condition> 
expression 1 
cxprcssion2)) 

or
(if <condition>

(setf var expression 1) 
(self var cxprcssion2))

<list>.dcstlist -><variablel> 101 (setf <variablcl> (first <list>)

-xvariablcn> <variablcn> (<nth> <list>))

<function call> -> <variablcl> 85 (multiplc-valuc-sctq(<variablel>

-xvariablcn> <variablcn>) 
<function call>)

variable
declaration

vars<variablcl>...<variablcn>; 17 (defvar <variablcl>) 

[dcfvar <variablcn>)
identity
function

identfn 10 identity

Points that may need further clarification are the following. 

Statements in POP-2 are separated by semi-colons. In list processing 

POP-2 only has syntactic differences from LISP. Function application 

(a function call) has a prefix syntax with arguments in brackets or a 

postfix syntax with a dot separating argument and function. In POP-2 

values can be left on an implicit global stack by any expression which 

yields a value. They can be popped off the stack and assigned directly to 
a variable or used as the arguments of a function. Happily in the 

program there were no values put on, and popped off the stack in a 

dynamic way (determined by program flow of control). For an example 

of typical short time static use of the stack in a conditional, a

PARSING THE PARSER

dcstructuring bind (assigning subsequent values from a list to several 

variables) and the return of multiple results by a function see Table 1 

and the corresponding lines of code. The return of multiple results is 

done by the declaration of so called output locals in the function 

definition. These act as local variables, but on returning from a function 

call their values arc left on the stack. These are best removed from the 
stack and assigned to variables immediately after the function call, as is 

done indeed in the program. Only in the lines 65 to 68 the results of 

singlet or tempo arc left on the stack slightly longer. The return of 

multiple results by a function is in LISP supported by the values 
construct. They can be caught by the caller using the 

multiple-value-setq assignment. Multiple values are not a really 

orthogonal designed construct in LISP, but they are saver then the 

POP-2 solution, as multiple values cannot be put on or popped of the 

stack at random times. Using this translation one has to be careful with 

non local exits as in line 95 where POP-2 implicitly leaves the current 

values of the output locals on the stack, where in LISP one has to 

return them explicitly.
The handling of variables (the binding regime) in POP-2 is 

completely clumsy and idiosyncratic. A function can have arguments, 

output locals and local variables. In line 105 nlist is a formal 

argument of the function tapout, sequence is its output local, and 

there is a list of local variables start, beat etc. The strange thing is 
that locals arc given a value upon entry of the function. As can be seen 

in line 35 where stop and period arc referred to before ever having 

received a value in the body of singlet. The values they are initialized 

to are the values of the corresponding variables in the calling
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environment: the output locals of rhythm declared in line 51. This 

ugly construct makes it impossible to study the behavior of a function 

in isolation—one has to search always for the part of the program that 

happens to call the function to decide upon the values of these variables 

on entry. In (Barett c.a 1985, p 37,38) this is called a convenient 

feature. Which only once again shows that one has to take care for the 

words like "handy" or "convenient". They inevitably signal danger when 

they occur in the description of the semantics of a programming 

language. A related problem is the fact that assignment to a local 

variable docs not change the value of the variable'with the same name 

in the calling context, but an assignment to a free variable (a variable 

that is not declared as argument or as output local or local), docs change 

the value of the corresponding variable in the calling code. So only after 
scanning the whole program one can decide that the assignment to 

nlist in line 54 of rhythm is really an assignment to the the nlist 

argument of tapout in line 105 just because rhythm happens to be 

called in tapout. Such so called dynamic scoping makes the behavior 
of a function depend upon the actual coding of the functions it uses and 

by which it is used, complicating the semantics of the language, and of 
any program written in it.

Things become worse when programmers do not understand these 
constructs or use them in a sloppy way: why is there a tol local 

variable in line 106, while there is also a global variable tol in line 30 
and it is used as a truly global constant? Why is there a local stop in 

line 51 when it is also declared as output local in the same line? Why is 

there a global metre, even declared twice in line 30 and 17, when it is 

clearly used in local backtracking in line 101 and 97? Indeed the whole
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program is a sloppy mess regarding scope and binding of variables. The 

translation of these aspects was the most difficult part of the port and I 
will try to outline how I tried to make all communication between parts 

of the program explicit and lexical, which means that only references 

and assignments arc made to variables that are local (and tcxtually 
visible) to the piece of code under construction. All the semantics then 

become static, which means that the meaning of a part of the program 
can be described independently from the actual computational route 

taken by calling and called routines, only depending upon the 

program-text of those routines. Let us consider the example function 

definition in Table 2 in which every possible use of variables is listed.

T a b le  2 :  Translation o f a POP-2 function into LISP.

co n stru ct P O P -2 l IS P  translation

(unction

definition

fu n ction  fun a  b ->  c  d 

v a rs  c  f; 

body with
g referred to but not assigned to 
h referred to and assigned to 
c,c referred to before assigned to 
d f  assigned to before referred to 

end;

(defun fun (a  b c  e  g  h) 

(le t  (d  0
translation o f body 

(v a lu e s  c  d h )))

function call f u n ( i j ) -> k -> l ; (m u ltip le-v alu e-setq  (k  1 h) 

(fun  i j c  e  g h ))

In the function body there arc formal arguments, output locals, 

locals, and free variables They arc used (referred to and assigned to) in 

different order. In the translation into LISP we have to add formal 

arguments to the function for some output locals and free variables,
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because they will be assigned an initial value by POP-2 upon entry of 

the function. Now we will do that initialization explicitly by adding 

them to the argument list in the function call. The output locals will 
have their values returned as the multiple results, which has to be done 
explicitly in LISP. Since the assignment to a free variable in the body 
will have effect in the calling context as well, we have to add this 

variable to the multiple results as well and do the assignment explicitly 

in the calling program. Note that not in each routine of the POP-2 code 

all the ways of treating variables are used, yielding a simpler 

translation. But as in general we now have added an assignment in the 

calling context, the caller may again change its translation, initiating 
more changes etc. Consequently the translation is not a very simple 

task. But after this translation all flow of information is clear and we 

can get rid of some the remaining global variables because the routines 

will be explicitly passed their values as arguments when they need 

them. Only metre and tol remain global and arc declared once at the 

begin of the program text to retain for the moment the spirit of their 
initialization (line 30).

For individual note a record datatype was used, which can be 

declared in POP-2 with the recordclass construct (line 1) which 

automatically defines accessor functions for each field of the record (in 

our case onset, pitch and offset in lines 21, 22 and 35) and a 

constructor function (in our ease consnote, line 10). I took the liberty 

of defining lists of note structures directly (see the end of Appendix 3), 

without reading an input file, and passing one such list as argument to 

startup thereby removing the need for the takein procedure (line 

150). Pitch names were inserted in the data, because it is then easy to
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check the output against the output shown in the articles, even though I 

left out the tonal analysis. The examples given in the articles are a 
simple musical cliché and two fragments of the cor anglais solo in the 
Prelude to Act III of Wagner’s Tristan und Isolde. All data is given in 
Appendix 2 retaining the original notation for pitches.

I could not resist the temptation to re-order the procedure 

definitions top down (using the call graph) and to separate them in 

several groups. Although this obscured the relation of the program with 

its POP-2 parent it is so much easier to navigate through code that is 

ordered well. The resulting program (LISP program 1) produced the 

same results as shown in the original article and I can assure you that I 

felt great relieve the moment I saw it parsing the input correctly. The 

only difference with the output listed in the articles is the output of the 

first 'count-down' beats, not shown in the original article. Later 

Christopher Longuet-Higgins affirmed me that his program docs output 

these as spurious rests at the beginning of its parse. Finally I have to 
mention one typographical error in the original program: the comma in 

line 21 should be a period.

“LISPIZING” THE CODE

Now the program could be trimmed to remove all aspects that were 

not to be part of a real micro version. For example the function sift is 

a trivial function to remove spurious key bounces that stem from the 
recording equipment used. The article should mention such 

pre-processing but it surely is no part of the parse algorithm itself, and 

it has even less relevance for the cognitive model. Another feature that 

should not be in the micro version is the grouping of a number of beats
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on one output line, faking an analysis above the beat level, while there 

is just a clever trick used: the musical data is played preceded by a 

measure of count down beats on the same low key, the number of 

which is used to collect the beats in measures on the output after 

analysis. This trick, explained in the article, could be well worth its 
value in a practical implementation, but it is again far from central to 

the theory and only distracts the reader of the program. The length of 

the last count down beat is used as a initial estimate for the beat length. 

This parameter of the program is thus concealed in the data, it will be 

cumbersome to experiment with different slices of data, or different 

initial estimates of the beat. But what is worse, a real issue that the 
theory does not tackle: how do human listeners pick up the initial beat 

of a piece of music, is hidden from view by inserting this information 

in the musical data. It must be said that it may be a wise decision to 
leave this difficult question aside in the theory, and the article is quite 

explicit about that, but then again it should be as easy to understand 

that fact from the program itself. Thus initial beat duration is changed 
into a parameter of the top level function (and for compatibility with 

the old data, it is optional and uses the old method if not specified).

As a general rule it is best not to do much processing in routines 
that produce text, because in textual output all internal structure is lost 

and other programs often cannot make use of the results in fiat text 
format. In our ease the scaffolding, like the test suite and programs that 
measure the sensitivity of the parser to parameter changes, is much 

easier to write if they can inspect the whole result structure from the 

parser. So any output side effects like printing results in a neat way 

should be postponed. And, if they are included at all, they should be
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written as an almost trivial add-on. Because the built-in LISP pretty 

printer (pprint) can do a nice textual layout of the result of the parser, 

handling indentation etc, I decided that in this case the parser should 

behave as a real function without side effects (note list in, structure out 
and no printing going on), and I moved the post-processing inside the 

parser itself.
As decided, all further transformations were done as semantic 

invariant program transformations. Examples of such transformations 

that retain the behavior of a piece of code but change its form, are the 

substitution of a function call for its body (with appropriate 

substitutions of variables), the collection of statements into a 
(help)function, the 'unwinding' of loops, the movement of statements 

in or out conditionals and function bodies, the removal of uneffcctive 

assignments, the change of order of independent statements, and the 

systematic change of variable names. To begin with the latter: some 

abbreviations of variable names seem silly (syncop instead of 

syncope, tollerance instead of tol, etc.), I changed these all to 

there full names, but I did not consider changing them to names that 

described their role better, nor did I change the name of any routines, so 

as to maintain the relation with the original program.
Since m etre was already an argument to the main parsing 

routines, stemming from the translation of function definitions, I could 

remove it completely as global variable, and turn it into a parameter of 
the top level notate function. And indeed, just like the initially 

expected beat period, the expected meter is conceptually an argument of 

the parser. The same was done for the tollerance parameter. This 

clean-up of global variables made the whole startup  routine
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superfluous.

Rewriting tapout as a recursive procedure, would made the output 

local sequence as a temporary hold of the growing structure 

unnecessary, and also would automatically built the structure in the 

correct order such that a final reverse (line 117) becomes obsolete. 
These simplifications come often for free when turning iteration into 

recursion. Using the loop macro, as was done here has the same 

benefits, and made the tapout function superfluous.

Some routines should really have been carved up into smaller 

units, cither because they arc just to large to comprehend as a whole, or 

because really a separate theoretical issue was being dealt with and 
modularization would show more clearly on which information the 

decisions taken were based. For example, in lines 34 to 45 an analysis 
of the type of articulation is taking place intertwined with some 

maintenance of data-structurcs (c.g., last: list of pending notes, and 

group). A simple separation of concern as implemented in the extra 

help function articulation-mark, makes it completely clear that the 

decision on the type of articulation is taken not on the basis of the gaps 

between notes, but on the basis of the gap between the end of a note 
and the beginning of the next metrical unit (Longuct-Higgins, 1987 p. 

127).

The collection of notes from note-list in a group in lines 53 to 

64 in rhythm is another complicated piece of code which deserves to 
be separated and cleaned up (the resulting function is called 

co lle c t-g ro u p ).  Of course the goto construction (line 55) is 

obscuring and completely unnecessary. If you are not convinced of this: 

(Dijkstra, 1968) is the standard text to explain the horrors of goto's.
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Defining helping functions (onset-before and offset-before) 

for deciding if the onset or offset of a note occurs before a certain point 

in time with a margin of tollerance in a certain direction, a frequent 

operation in the code, again makes the program more readable.
We can keep the data representation of a group a bit closer to the 

problem at hand. For efficiency reasons a group of notes is represented 
backwards in the original code. This obscures the calculation of the 

articulation mark (the actual mark is calculated on the basis of the latest 

note in a group, not on the basis of the first one as line 35 seems to 

suggest. Furthermore, in a later stage and in an unrelated piece of 

program text, this reverse coding has to be undone (line 40). In micro 

programs one should not worry about tiny gains in processing speed 

but either keep the data structures as close as possible to a 'natural' 
representation of the problem at hand—or hide an encoding in a data 

abstraction layer.
One further problem shows when looking closely at the code. In 

lines 57 to 60 subsequent notes arc removed from the note-list and 
put into the group. But in line 62 an actual undoing of the last of such 

actions might happen. This has severe consequences for high level 

descriptions of the parser as a process in which a stream of notes is fed 

in and a parsed structure per beat comes out. Unreading a stream is a 

rather awkward operation and might be psychologically unplausible. 
However, given the current algorithm I couldn't do better then change a 
'read' plus subsequent 'unread' into one 'peck' operation. Having a more 

decent sense of a timed input stream, it might be possible to judge on 

the basis of the offset of the previous note and the current time if no 

note-onset had arrived yet and the group may be closed and processed.
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We have now arrived at the most difficult part of the code: tempo. 

Firstly one can sec that although again is given a numerical value that 

is incremented each time through the loop, the loop is done twice at 
most. So again can be changed to a boolean. It is a common error in 

programming to use under-restricted data types. But to get some grip on 
the code it is better to unwind the loop, writing down its body twice 

and get rid of the again variable and the non-local exit of line 95. 

Looking through the processing of pulse and metre, which is done in 

an incredibly ugly way in lines 76, 79, 94, 97, 99, and 101, and the 

clumsy storing and retrieving of local state in lines 74 and 98, the 

control structure slowly emerges. A trial is done with initial values, if 
it succeeds, its results arc returned. If it docs not, its results are stored in 
a variable called new and a second trial is initiated with initial values 
reset to their old values, but with an alternative metre. If this one 

succeeds, its results arc returned, otherwise the results of the first trial is 

preferred because it used the expected meter. This gcneratc-and-tcst 

process calls for a help function (named trial) which might be called 

twice with partly the same arguments, to generate the alternatives, 
elevating the need for resetting variables to their old values. Now old 

can be removed. Making the control structure stand out clearly in this 

way facilitates discussions about its nature and the cognitive 
plausibility of such constructs. It also enables the design of custom 

flow of control, which can be done in LISP by adding continuations to 

the trial function—which are functional arguments that specify what 

should be done with the result of it (Abclson & Sussman, 1985)—with 

a new control structure programmed as a function with functional 

arguments to specify the details, or with the general macro facilities.
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The latter actually specifics an extra layer, a new programming 

language, in which the program is embedded. I choose here for the 
second construct because it completely isolates the control issue but is 
somewhat easier to write than macros. Note that the control structure 

cannot be called proper backtracking because failure or success is decided 
at the top level of each decision-subtree. It is implemented in the new 

function generate-and-test, which is given a way to generate a result 

(the function tria l), a way to evaluate this result (made by 

make-test), a way to make alternative arguments for the generator 

(called alternative), and some initial arguments for the generator to 

use in the first trial. It will return either the result of the first or of the 

second trial according to the rules given above.
Some details about the body of tempo still have to be clarified. In 

line 99 there is a expression (5 - pulse) which completely obscures 
the fact that pulse in the program can only be 2 or 3, and the effect of 
this expression is the switch from one to the other. Conceptually 2 and 
3 as possible values of pulse arc not related by their sum being 5 but 
by being the two smallest primes. Cleverness like this should be 

abolished from all micro programs (maybe even from all programs). By 

modularizing this operation into a function alternative-metre that 

calculates a changed meter (not just a changed pulse) a theoretical issue 

is again highlighted: in changing meter at a certain level, one disposes 

of all metrical structure below that level, which will again default to 
divisions into two, a assertion that clearly has cognitive relevance and 

can be tested as such. Modularizing the test for acceptability of a result 

into one function (made by make-test) again makes part of the theory 

stand out, showing that a different meter is tried if the metrical unit

61



COMPUTERS IN MUSIC RESEARCH

fails to end with a note (a syncope), or ends rather early or late 

(Longuct-Higgins, 1987, p. 129). The method of tempo tracking used 

in tempo stands out more clearly now. An extra parameter speed will 
make one more hidden parameter explicit: the speed of tracking tempo 

at beat level, taken as a constant 2 in line 113). The speed at lower 
levels can be seen to be equal to 1/pulse.

Because in the program most assignments are now assured to have 
only local effects within function bodies and arc done at most once, I 
could gradually change them into local binding constructs which made 

this even more clear. I changed m ultiple-value-setq's into 

multiple-value-bind's, moved initial assignments to local variables 
into the let headings where they were declared, and ended up with a 

program which was side-effect free except for two multiplc-valuc-setq's 

within a loop construct. This means that if spotting a variable referred 

to in the program, I could be sure that it was given an initial value only 

once and see immediately from the locally surrounding program text 

how that was done, and anywhere within the scope of that construct this 

variable would retain this value. Thus a computational variable would 

look much more like a mathematical one, and the actual dynamic 

aspects of computation-steps taken are now separated from- and 

irrelevant for- these issues.

The value of stop, returned from rhythm can be 0 (line 87), in 
which case it is used as a flag to indicate a detected syncope. It is in 
general unwise to store conceptually different types of information in 

one variable. So I made an extra result variable called syncope. Now 

one can return also a useful stop result in case of syncope: the initially 

estimated end of the unit Moving even the tempo-track calculation to a
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lower level made some more code simpler, to the expense of having to 

pass the estimated end of the unit (aim) and the tempo-track speed 

(speed) downward.
The next major surgery was the un-merging of structural analysis 

(based on the onset of notes) and articulation analysis (based on their 
offsets). Although they both use information about the tree being 

constructed (like start, stop and period) that is only available 

temporarily (during the local construction), I did feel that the 

maintenance of the list of still sounding notes in the last variable 

obscured the working of the structural analysis. And because it is well 
know that merging different algorithms into one is one of the main 
sources of bugs and confusion in programming, I decided to un-merge 

the algorithms. This would have the added advantage of making them 
available as separate modules. Tapout will now deliver tree structures 

in which the leaves contain only note groups whose onset start there 

but which arc annotated with the extra information needed by the 

articulation analyzer. And because part of the articulation analysis was 

already done at a later stage (during the printing in describe), moving 

all of it to a separate module did not seem such a essential change. 

There are of course cognitive arguments to consider the two processes 

as intertwined, but then again one could consider the program as being 
implemented on a lazy evaluator which would only do a round of 

structural analysis only when the articulation analysis needed the result, 
thus eliminating any psychologically unplausiblc long-term 

intermediate storage. It is very difficult to describe the relation of a 

program to a cognitive model, especially to describe where and how the 

algorithm and the language semantics ovcr-rcstrict the model (describe
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the model in more detail then intended) and I strongly disagree with any 
indication of ducking these issues as in: “the program is, of course, no 

more than an embodiment of these ideas in computational form” 

(Longuct-Higgins 1987, page 183). Although it has to be said that at 

the time of the original paper the very idea that a program can be a 

medium for expressing ideas about cognition was a novel one.

The last changes delivered the final code: LISP program 2 (see 

Appendix 2 for the full code plus an example of its use). One of the 

most heard (and silliest) arguments used against a clean programming 

style is the supposed expense in calculation speed and memory usage. 

This argument was again proven false by this program that performs 
even faster than version 1 (using the three examples, without output 

printing, running on a Mac Ilci in Allegro Common Lisp).

The test suite I used during the transformations described above was 

quite small. It consisted of the three examples shown in the articles and 

given in Appendix 3. Because I suspected that subtle bugs (e.g., in the 

tempo tracking) might produce correct results on these examples but on 
the basis of wrongly calculated internal values, I added cases in which 

the tolerance was just so far off that the program came up with a wrong 
answer. The test suite then used that value plus the wrong answer as a 

reference to judge a correct working of the modified program. This way 

I could catch any subtle errors in my port which would otherwise go 

unnoticed because of the rounding mechanism. For one aspect of the 
program representative examples were missing: collect-group only 

once comes up with a group of two notes (in example tris: the notes at 

1928 and 1932 centiseconds). The examples contain just not enough 

trills, grace notes etc. to test its working thoroughly.
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Because the number of arguments to functions is large and the data 

structures passed around may also be large, build-in trace facilities bury 

one in pages of text. I designed a custom tracer that produced only the 
relevant information. Because this is still a lot of information, a 

graphical trace program would be desirable.

TH EO R ETIC A L ISSUES 

Parameters

The different settings for the tolerance parameter used in parsing the 

examples in the article (0.10 sec. for the cliche example and 0.13 sec. 

for the others) raise the question how sensitive the model is for its 
parameters. It is easy to do an experiment to check the range of 

parameter values in which the parser works well for the examples. In 

Figure 2 these ranges arc shown for the tolerance parameter, with the 

initial beat estimate used as a second independent variable because it 

may disturb correct parsing.
It is hard to base a conclusion on the basis of this limited set of 

three musical examples, but the small size and the non-overlapping 

nature of the regions identify a problem concerning robustness here. A 
delicate parameter setting, to be done anew for each piece of data, may 

be justifiable in the context of a technical tool, it is not so in the 

context of a cognitive model. These maps show how the initial beat 

estimate is more or less independent of these results. Thus the tempo 
tracking taking place at the highest (beat) level is not the source of the 

problems, but the processing at deeper levels of subdivision is.
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Figure 2: P a ra m eter ra n g es  resulting in a co rrect p a rse.
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The same conclusion can be drawn from the fact that allowed settings 
for the speed parameter in the succesful regions are almost unrestricted 

within its full range between zero and one (not shown). This may 

indicate that for the data given, their is no heavy reliance on beat level 

tempo tracking. For definitive evaluations more data has to be used,

r.e.
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systematically mapping out the parameter space of the algorithm 
(parameter setting versus percentage parsed correctly). A line of further 

research that may make the parser more robust is the adaptation of the 

tollcrancc at deeper levels.

Tempo Tracking

The tempo tracking at the highest (beat) level is implemented in 

lines 113. It simply averages the expected beat length and the measured 

one if the latter is available. Around line 88 a complex process controls 

the tempo tracking at deeper levels of subdivision. It incrementally adds 

each deviation found in the subdivision to the total period, and 

proportionally divides this period to estimate the position of the onset 

ending the next sub-period. Onsets are allowed within the tollerance 

around each estimate. For a three-division this effectively amounts to a 

positive feedback from the timing of second to the third onset. For 

example, if the onset ending the first subdivision is too early, the next 

onset is expected early as well (by 2/3 of error of the first onset). This 

process goes on, and assuming the second is early as well, the third is 

expected to be even earlier. This would yield nonsensical behavior were 

it not that after the completion of the parse of each subdivision the total 
length is passed one level upwards and compared with the beat estimate 
at that level, allowing for a deviation of tollerancc. So here it turns out 
that after two short sub-divions the third should be long to pass this 
test. Because in the parser the tempo tracking mechanism interacts with 

the change of meter decisions it is quite hard to derive at the 

mathematical characterization of the set of performed temporal patterns 

that will be recognized by the parser as a triplet, but testing this
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empirically is quite simple.

Figure 3: Temporal patterns interpreted as triplets.

In Figure 3 a map of all possible subdivisions of a fixed beat 
length into three notes is given with the region that is identified by the 

parser as a triplet. The size of that region depends on the tollerance 

(which was taken as one tenth of the beat period). The initial pulse at 

that level was taken to be two. The idealized mctronomical triplet is
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located on the map at a point marked A. Given the performance of the 

parser it is not surprising that the actual form of the region is biased 

towards the pattern (short, short, long) found by Vos and Handel (1987) 

in their study of systematic deviations from the norm in their group of 

subjects who could play triplets well. This typical triplet pattern is 
located at point B. The same reasoning may be used to relate the 

behavior of the parser to empirical findings at higher metrical levels 

where elongation towards the end of the unit seems to be the rule (Todd, 

1985 and Clarke, 1987). This knowledge about common performance 

practice implicitly incorporated in the model, which may explain its 

success, was not identified in the original article.
The unconnected small regions that also signify patterns parsed as 

triplets arc a by-product of the interaction of the tempo tracking and the 
mechanism for meter chance. While the former allows for a large area of 
triplet parsing extending to the right, the latter decides for a duple meter 

in most parts of that area, but fails to do so for the two small islands. 

A large tollerance will enlarge the islands, finally linking them up with 
the main region. But in general it can be said that the equivalence 
classes induced by the parser, the set of temporal patterns that will be 

interpreted as performances of the same rhythm, do not form one 

connected region. I could not find indications about the plausibility of 

this result in the literature about human rhythm perception, but it will 

greatly complicate empirical verification of the model.

Change of Meter

The decision when to change meter is taken, among others, on the 

basis of an syncope occuring in the last subdivision. This sometimes
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seems too restricted, as syncopes in the other subdivisions might also 

contribute evidence for a change of meter. A more sophisticated model 

might adapt the reluctance to change the meter, to the metrical level in 
consideration, making the higher levels which resemble time signature 
less prone to changes than the lower levels. In the new program it is 
easy to experiment with this and other variants but in general the 
question seems very difficult to solve.

CONCLUSION

One can ponder what the truth is in the following quotation about 
the procedures in the musical parser

Such procedures arc, unfortunately, much more difficult to specify 
precisely in English than in a suitably designed programming 
language: but this fact only underlines the value of casting 
perceptual theories in computational for. (Longuct-Higgins 1987 
p. 109)

But if a programming language allows the programmer to express such 
difficult constructs in a program, will it then be possible to see the 

ramifications of the theory? Or has theory degenerated into a black box 

mechanism that can only be used, instead of understood. I tend to 
attribute more value to the adagio:

If you can't write it down in English, you can't code it. (Peter 
Halpcm in Bentley, 1988, p. 58)
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But because moulding a theory into an implementation greatly helps in 

understanding and describing the theory in plain English, a 

computational approach in which the process of developing theory and 
implementing go hand in hand, is still most attractive to most AI 

researchers. That the resulting program often contains vestigial remains 
of earlier versions (Longuct-Higgins, personal communication) just 

calls for one more round of cleaning up and rewriting, as I hope to have 

shown in this article. The rewrite, at first sight a scholarly exercise, 

soon became a major undertaking because of the tangled flow of control 

and data in the program. But finally the program was made much more 

open for experimentation, verification or falsification and possibly 

extension. It is now easier to maintain and immerse in systematic 

testing, the more so since the algorithm was implemented in POCO 
(Honing 1990), an environment for research in expressive timing. In 

the process of rewriting, semantic invariant program transformations 

turned out to be very helpful as a methodology for reverse engineering 

as was the availability of a test suite to automate some test runs after 

each change.
I think that computational psychology can be a fruitful approach to 

the study of music, complementing musicology, experimental 

psychology and other disciplines. But to play this role well, researchers 
must force themselves to state their algorithmic contributions in the 
form of clean micro-programs and clarify which parts of the program arc 

considered to model cognitive processes and which parts are 

implementation detail or technical tricks.
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Appendix 1: relevant parts of original POP-2 code
recordclass note pitch onset offset ..extra f ie ld s  declared here.  
function sift notefile=>notefile; 
maplist(notefile, lambda x; 
if x.tl.tl.hd-x.tl.hd<5 then else x.close 
end)->notefile; 

end;

function takein notefile=>nlist; 
maplist (notefile, lambda x;

consnote (applistfx, identfn), undef, undef, undef) 
end)->nlist; 

end;

functions res ,  int , modulate, hark, simplify, intervals , tuneup and vars 
f la g ,k , l ,m ,n ,p la c e  declared here

vars start beat position number group last metre nlist sequence; 

function startup;
nil->sequence; nlist.hd.onset->start; 
nlist.tl,hd.onset-start->beat; 
nlist.hd.pitch->position; 
nil->group; nil->last; 0->number;

loopif nlist.hd.pitch=position then 
nlist,tl->nlist; number+l->number 

close;
end;

vars tol metre; 13->tol; nil->metre;

function singlet->stop->fig; 
vars period mark; 
if group.null.not then

if group.hd.offset<stop-period/2 then "stc" 
elseif group.hd.offset<stop-tol then "ten" 
else "leg" 
close->mark;

group.rev->last; nil->group; mark::last;
else

[%"tac",applist(last,lambda x; 
if x .offset>start+tol then x 
close end)%] 

close->fig;
if nlist.null or nlist.hd.onset>stop+tol then 0
else nlist.hd.onset
close->stcp;

end;

function rhythm start period->stop->fig; vars stop; 
start+pericd->stcp;
if nlist.null.not and nlist.hd.onset<start+tol 
then nlist.hd::nii->group; nlist.tl->nlist; 
else goto label 
close;
loopif nlist.null.not and nlist.hd.onset<stop+tol 

and nlist.hd.onset<group.hd.onset+tol 
then nlist.hd::grcup->group; nlist.tl->nlist; 
close;
if group.hd.onset>stop-tol
then group.hd::nlist->nlist; group.tl->group 
close;
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64 label;
65 if nlist.null or nlist.hd.onset>stop-tol
66 then .singlet
67 else .tempo
68 close->stop->fig;
69 end;
70
71 function tempo->stcp->figure;
72 vars new old again pulse time count fig syncop;
73
74 [%nlist,last,group%]->old; 0->again;
75 loop:
76 if metre.null then 2::nil->metre
77 close;
78
79 metre.hd->pulse; met re.tl->metre;
80 nil->figure; period->time;
81 0->count; start->stop;
82 loopif count<pulse
83 then
84 count+l->count;
85 rhythm(stop, time/pulse)->stop->fig;
86 fig::figure->figure;
87 if stcp=0 then start+count*time/pulse->stop; true
88 else stop-start+(pulse-count)*time/pulse->time; false
89 close->syncop;
90 close;
91 again+l->again;
92
93 if not (syncop or stop>start+period+tol or stop<start+period-tol)
94 then figure.rev->figure; pulse::metre->metre;
95 exit;
96 if again=l then
97 [%nlist,last,group,figure.rev,stop,pulse::met re%]->new;
98 old.destlist->group->last->nlist;
99 (5-pulse)::nil->metre; goto loop;

100 else
101 new.destlist->metre->stop->figure->group->last->nlist;
102 close;
103 end
104
105 function tapout nlist->sequence;
106 vars start beat tol group last stop figure;
107 loopif nlist.null.not
108 then
109 rhythm (start, beat)->stop->figure;
110 figure::sequence->sequence;
111
112 if stop=0 then start+beat
113 else (stop-start+beat)/2->beat; stop
114 close->start;
115 close;
116 nil->metre;
117 sequence.rev->sequence;
118 end;
119
120 vars m a x , m i n , s y m b o l s ,symbol declared and initialzed here

121 function name declared here

1 2 2
123 function describe fig; vars word;
124 fig.hd->wcrd; fig.tl->fig;
125 if fig.null then [rest]
126 elseif word="tac" then
127 "tied"::maplist(fig,indexosymbol)
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128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

elseif word="leg" then maplist(fig, name) 
else [%applist(fig,name),word%) 
close; 

end;

function reveal figure; 
if figure.hd.isword 
then figure.describe 
else maplist(figure,reveal) 
close; 

end;

function typeout seq; vars count;
0->count; l.nl; 
applist(seq,lambda x;

if count = number then l->count; 2.nl 
else count+l->count 
close; x.reveal .pr 

end); 2. nl; 
end

function notate notefile; 
note file . takeir.->nlist;
. startup;
nlist.tapout->sequence; 
nlist.tuneup; 
sequence.typeout; 

end;
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APPENDIX - 2: The Parser

;; Longuet-Higgins Musical Parser,
;; Micro-version 2, in Common Lisp (uses loop macro), Peter
;; Desain, 1991.
********************** ****** ****** ****** ****** ****** ****** *
;top level

(defvar *tollerance*)

(defun notate (note-list Skey
(metre ' (2)) '
(tollerance 10)
(start (onset (first note-list))) 
(beat (- (onset (second note-list)) 

(onset (first note-list)))) 
(speed 0.5))

(setf *tollerance* tollerance)
(loop while note-list 

with figure 
with group = nil 
do (multiple-value-setq

(start figure group metre note-list beat)
(rhythm start beat group metre note-list 

(+ start beat) speed)) 
collect figure into figures 
finally (return (articulation figures))))

. * *** ****** ****** ****** **************************************
; main parsing routines

(defun rhythm (start period group metre note-list aim speed)
(let ((stop (+ start period)))

(multiple-value-bind (group note-list)
(collect-group group note-list start stop)

(if (or (null note-list)(not (onset-before
(first note-list) stop '-)))

(singlet start period group metre note-list aim speed) 
(tempo start period group metre note-list aim speed)))))
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(defun singlet (start period group metre note-list aim speed) 
(let* ((stop (+ start period))

(syncope (or (null note-list)
(not (onset-before (first note-list) stop '+)))) 

(end (if syncope aim (onset (first note-list)))))
(values end (list start stop period group) nil metre note-list 

(+ period (* speed (- end aim))) syncope)))

(defun tempo (start period group metre note-list aim speed)
(apply #'values
(rest (generate-and-test ..

#'trial
(make-test (+ start period))
J1 alternative
metre start period group note-list aim speed))))

(defun make-test (aim)
I '(lambda (syncope stop Srest ignore)

(and (not syncope)
(< (abs (- stop aim)) *tollerance*))))

(defun alternative (metre srest arguments)
(cons (alternative-metre metre) arguments))

; control structure for change of metre

(defun generate-and-test (generate test alternative Srest states) 
(let ( (resultl (apply generate states)))

(if (apply test resultl) 
resultl
(let ((result2 (apply generate

(apply alternative states))))
(if (apply test result2) 
result2 
resultl)))))
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. * * * * * * » * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * f * * * * * * * * * *
$

; subdivide a period

(defun trial (metre start period group note-list aim speed) 

(loop
with pulse = (pop metre) 
with sub-start = start
with sub-period = (/ period (float pulse)) 

with syncope
for count from 1 to pulse do 
(multiple-value-setq
(sub-start fig group metre note-list sub-period syncope) 
(rhythm sub-start sub-period group

(extent-metre metre) note-list
(+ start (* count sub-period)) (/ (float pulse)))) 

collect fig into figure
finally (return (list syncope sub-start figure group 

(cons pulse metre) note-list 
(+ period (* speed (- sub-start aim)))))))

. ★ A********************************** ★  ★ ★ ★ ★ ★ ★ ★ ★ ★ Hr***************
; metre calculus

(defun alternative-metre (metre) 
(case (first metre)

(2  ’ ( 3 ) )

(3  ’ ( 2 ) ) ) )

(defun extent-metre (metre)
(or metre '(2)))

.************************************************************** 

; collect group of synchronous notes

(defun collect-group (group note-list start stop)
(if (and note-list (onset-before (first note-list) start ’+)) 

(collect-new-group (list (first note-list))
(rest note-list) stop)

(values group note-list)))

PARSING THE PARSER

(defun collect-new-group (group note-list stop)
(if (and

(collect-group-test (first note-list) (first group) stop) 
(or (collect-group-test (second note-list)

(first note-list) stop) 
(onset-before (first note-list) stop '-))) 

(collect-new-group (cons (first note-list) group)
(rest note-list) stop)

(values (reverse group) note-list)))

(defun collect-group-test (notel note2 stop)
(and notel

(onset-before notel stop '+)
(onset-before notel (onset note2) ’+)))

.**************************************************************
; articulation analysis

(defun articulation (1 soptional last)
(cond ((null 1) (values nil last))

((listp (first 1))
(multiple-value-bind (resultl lastl)

(articulation (first 1) last) 
(multiple-value-bind (result2 last2)

(articulation (rest 1) lastl) 
(values (cons resultl result2) last2))))

(t (apply I'articulate-figure last 1))))

(defun articulate-figure (last start stop period group)
(let* ((new-last (or group (remove-if #1(lambda(note)

(offset-before note start '+)) 
last)))

(pitches (mapcar (('pitch new-last)))
(values (figure-describe group stop period pitches)

new-last)))

(defun figure-describe (group stop period pitches)
(if (null group)

(if pitches (cons 'tied pitches) '(rest))
(append pitches (articulation-mark (first (last group))

stop period))))
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(defun articulation-mark (note stop period)
(cond ((offset-before note (- stop (/ period 2.0))) 

' (stc))
((offset-before note stop '-)

' (ten) )
(t nil) ) )

(defun snoc (1 x) (nconc 1 (list x)) )

. ** *************** ***** ****** ****** ****** ****** ****** ****** *** ' '
; help functions

(defun onset-before (note time soptional (margin 0))
(< (onset note) (+ time (case margin

(+ *tollerance*)
(- (- »tollerance*))
(otherwise 0)))))

(defun offset-before (note time soptional (margin 0))
(< (offset note) (+ time (case margin

(+ »tollerance*)
(- (- »tollerance*))
(otherwise 0)))))

. ** ******** ****** ****** ****** ****** ****** ****** ****** *
; data abstraction for notes

(defstruct (note (¡constructor note (pitch onset offset)) 
(:conc-name nil)) 

pitch onset offset)

★ **★ ★ *★ *<
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; example of the use of the program

«I
defining a note list 
(defvar »cliche* (list (note • start 154 227)

(note ' c 285 294)
(note 'g 322 327)
(note 'g 336 341)
(note ' as; 349 383)
(note ■g 384 407)
(note ■b 445 453)
(note 1 c 484 527) ) )

calling the program:
(notate »cliche* ¡tollerance 10)

will produce the following results: 
((START TEN)
(((C STC)

((G STC)
(G STC)))

( (AS) (G TEN)) )
(((REST) (B STC) )
(C TEN)))
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APPENDIX - 3: Test Data

The TRIS example: a fragment of the cor anglais solo in the 
Prelude to Act III of Wagner's Tristan und Isolde.

Note Onset Offset
START 24 114
START 148 238
C 274 399
G 400 554
BB 551 587
AB 586 671
EB 669 711

AB 707 794
D 795 831
G 829 860
C 863 895
F 895 989
G 987 1021
F 1020 1145
EB 1140 1242
D 1268 1282
C 1289 1298
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BB 1308 1320
F 1332 1452
D 1450 1495
BB 1508 1517
A 1528 1536
AB 1546 1556
EB 1570 1696
C 1692 1734
AB 1752 1762
G 1774 1782
FS 1792 1808
D 1815 1930
F 1928 1934
EB 1932 2062
D 2059 2188
DB 2183 2446
C 2491 2628
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The STAN example: a fragment of the cor anglais solo in the 
Prelude to Act HI of Wagner's Tristan und Isolde.

3

Note Onset Offset
START 148 190
G 280 287
F 302 309
EB 322 329
BB 347 466
G 474 518
EB 538 548
D 559 566
CS 578 586
A 605 648
FS 646 657
D 669 678
CS 687 696
C 707 714
AB 729 760
F 769 777
DB 791 801
C 811 820
B 830 839
G 856 987

PARSING T H E  PARSER

EB 986 1027
C 1049 1054
B 1068 1075
BB 1087 1096
F 1111 1153
D 1152 1157
BB 1174 1183
A 1194 1202
AB 1211 1220
EB 1232 1270
C 1272 1279
AB 1295 1304
G 1316 1325
FS 1336 1348
D 1360 1619
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The CLICHE Example.

H>— R — I/l  * ___3 1 L 7 r  r  I\M7----------w ----- w
• J • • • ...1 B

Note Onset Offset
START 154 227
C 285 294
G 322 327
G 336 341
AS 349 383
G 384 407
B 445 453
C 484 527Thc
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Autocorrelation and the Study of Musical Expression

Peter Desain and Sicbe dc Vos

Music Department 
City University 
Northampton Square

Centre for Knowledge Technology 
Utrecht School of the Arts

Lange Viestraat 2B 
NL-3511 BK UtrechtGB-London EC1VOHB

ABSTRACT: In performances musical structure is conveyed as variations of timing 
and other parameters. A method was designed to analyse these variations using 
autocorrelation. Peaks in the autocorrelation function are interpreted as periods of 
repeated components in the musical structure. Care has to be taken in using the 
standard autocorrelation function in this domain. Partial autocorrelation was used to 
remove the multiples of a fundamental period.

Introduction
In musical performances the performer uses variations of timing, dynamics and articulation. An 
often posed hypothesis is that these expressive variations are closely linked to—and intentionally 
convey properties of—the musical structure, i.e., the performers interpretation of it [Clarke 1987]. 
In a research project on expressive timing we designed a set of tools, called POCO, to analyse, 
modify and generate musical expression [Honing 1990]. One of the tools analyses expressive data 
using autocorrelation in order to find regularities which, according to the hypothesis above, 
correspond to musical structure. In this article we focus on expressive timing, but other expressive 
parameters can be dealt with using the same method.
Any deviation from a strict metronomical performance is regarded as expressive timing. We 
assume that it mainly stems from a multiplicative combination of tempo factors at several 
structural levels and the exact metrical note durations in a the score. By dividing the duradons 
observed in the performance (the inter-onset intervals) by the durations in the score a measure of 
local tempo is obtained. This function from time (onset-time in the score) to relative duration, the 
expressive timing signal, the logarithm of which can depends linearly on the components.
As an example we will use Bach's C major prelude (WTCI), which was the subject of many other 
studies [Cook 1987, Lehrdahl and Jackendoff 1983, Povel 1977], All notes in this piece are of 
equal duration. The main structural units are half-bar, bar (16 notes) and 2 bars, at higher levels the 
metrical grouping is not trivial. Performers generally exhibit an amazing consistency in expressive 
timing over performances. The expressive timing of one of the performances is shown in Figure 1. 
Todd's approach in analysing this kind of timing data is to look at the local maxima [Todd 1985]. 
They indicate a slowing down and Todd’s analysis relates the relative height of these peaks directly 
to the structural boundary strength. Although it is not so difficult to spot obvious phrase-final 
lengthening, it is unlikely that a robust classification of peaks into structural levels can be made. 
Therefore we looked for more global methods to detect structure.
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Figure 1. Expressive timing of the Bach Prelude
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Regularity in musical structure will be reflected as periodicity in the expressive timing signal. We 
use autocorrelation as a statistical method to find periodicity, the periods found are interpreted as 
the lengths of structural components. We will assume here that musical structure is more or less 
homogeneous, at least for some time span and at some level.

A u t o c o r r e l a t i o n
If a signal is periodic with a period P, it will resemble itself after an interval P. A well-known 
statistical measure of resemblance is correlation. By calculating correlations between a signal and 
the same signal delayed by different lags we obtain a series of values, the autocorrelation curve. 
When the signal contains a periodic component with period P, a peak in the autocorrelation curve 
occurs at- this value. Considering our domain we have to be careful in the use of the standard 
autocorrelation [Bowermann 1979, Priestley 1981]. The function must depend on time to be able 
to show changes in periodic structure. We realise this by placing a window on the samples. Then 
the autocorrelation at t is the autocorrelation in the window that ends in t, or X(i-W+l) ... X(t), 
where W is the window size and X the signal. The window size should depend on the lag, 
otherwise a change in the level of a component with a small period will go unnoticed since there 
are still many 'old' periods contained in the window. We choose a window proportional to the lag, 
in the examples we used a factor p=A. A second reason to use relatively small windows is that the 
signal cannot be assumed to be stationary, which means that its statistical properties like mean and 
variance change over time. But using small time intervals the error introduced may be neglected. 
This leads to the following definitions of mean and autocovariance:

, W-l

* w,. = 777£*('-0. 
w »=0

W-r-l

Rw/f) -  i77 ^
1=0

The factor 1/W‘instead of 1 fW-r corrects the values for greater lags which are calculated with only a 
fraction of the samples, as in the commonly used biased autocovariance estimator [Priestley 1981]. 
Tne autocorrelation is defined in terms of the autocovariance as:

. , ,  Rw.fj)
9w/f) R w M

and the time dependent autocorrelation function with proportional window size is given by:
P('/) = Pp rjr)

Figure 2 shows the autocorrelation of the signal in Figure 1. Note the prominent peaks at the lags 
corresponding to the length of metrical units. We found these peaks only in data of expert 
performers, showing their ability to produce consistent timing patterns. Note also that the 
autocorrelation definition used is not very meaningful in the smaller lags, because it depends there 
on a very small number of measurements.

Figure 2. Autocorrelation of the data of Figure 1 (beginning of bar 31, p=4).
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Partial autocorrelation
A problem occurs in interpreting the autocorrelation curve. When a signal repeats itself after period 
P, it will also be the same after period 2P, 3P, etc. To detect if there is additional regularity at 
these levels over and above the regularity originating from their 'fundamental', P, we use partial 
autocorrelation. Partial correlation determines the correlation between two variables, cancelling out 
the influence of other variables on both of them. In the case of autocorrelation it removes the effect 
of smaller periodicities on the autocorrelation for a certain lag. The partial autocorrelation at lag r, 
p(r/), is defined as [Bowerman 1979]:

P(U ) = P(D
Jfc-i

P(k) - % pmj)p(.k-D
p (kjc) =-------- --------------------  if A> 1,

1 - Zp(fc-W)pO)
7=1

P(kJ) = p(k -lj)  - p(kjc)p(k-ljc-j).
This formula depends on a statistically sound autocorrelation function. We cannot use the modified 
autocorrelation directly, but it is possible to retain the dependence on time and lag when we • 
recalculate the autocorrelation function for each lag of the partial autocorrelation:

P 0,r.r) = p(r,r) where p(k) = ppr/k ) .
The advantage of partial autocorrelation is seen in Figure 3: e.g. the peak at the 3.5 bar lag in 
figure 2, which arose only because it is a multiple of the half bar length vanishes in the partial 
autocorrelation.

Figure 3. Partial autocorrelation of the data of figure 1 (beginning of bar 31, p = 4).

Making use of the time dependency of the analysis we can show the relative stability of metrical 
units of 2 bars or smaller, throughout the piece (Figure 4). In this picture the data is truncated to 
zero for correlations smaller then 0.05. Note the conflicting evidence of a 3 bar and a 4 bar unit 
arising because of the inhomogeneity of the piece at higher levels.

Conclusion
Although we have not yet studied many performances of the Bach Prelude, nor other pieces, 
autocorrelation seems a promising method to study expressive timing and detecting metrical 
structure from expression. The method can also be used to detect structural changes in a 
performance and to investigate how absolute tempo determines the focus of attention of the 
performer to particular structural levels, changing the relative heights of the peaks in the partial 
autocorrelation. Although we only showed an example with notes of equal duration, other kinds of 
music can be treated with an interpolation scheme.
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However, the method has severe intrinsic limitations. It is based on the assumption that the 
expressive components at each structural level are more or less stable and periodic and it assumes 
independent combination of the components, an assumption that clearly limits the applicability of 
this method. Furthermore, no phase information is retained, statistical reliability is questionable 
for small windows and we can use the method only for generating hypothesis about the structure of 
the piece, not for testing them statistically.

Figure 4. Partial autocorrelation of the data of figure 1 through time (p = 4).

In further research we will work on different measures of expressive timing. We want to use the 
result of autocorrelation (and another kinds of analysis) to separate the independent structural 
components of the expressive timing signal. This will open up the possibility of 'micro surgery’ 
on expressive timing, in which modifications can be made at each structural level. Another 
application of the analysis method described is forecasting, in which the expressive timing curve 
can be extrapolated from a known segment. This might result in more robust methods of score 
following, tempo tracking and quantization. As this research tries to unravel the internal structure 
of the expressive timing signal, we hope to gain more insight in the musical and cognitive reality 
of tempo curves and their representation.
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A b s t r a c t

In the literature of musicology, computer music research and the psychology of music, 

timing or tempo measurements are mostly presented in the form of continuous curves. The 

notion of these tempo curves is dangerous, despite its widespread use, because it lulls its 

users into the false impression that a continuous concept of temporal flow has an 

independent existence, a musical or psychological reality, and that time can be 

perceived independent of events carrying it. But if one bases a transformation or 

manipulation of timing on the implied characteristics of such a notion, one is doomed to 

fa il.

KEYWORDS

representation of time, tempo curves, expressive timing
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T e m p o  c u r v e s  c o n s i d e r e d  h a r m f u l

Peter Desain & Henkjan Honing

In which we decided to have a good time, invited an expert, and had our 
first disappointment.

Not so long ago we decided to spend a Christmas holiday studying music and its 

performance. One of us is an amateur mathematician (M) and the other one likes to 

delve into old psychology textbooks (P), and because we enjoy impressing each other 

with new facts and insights, we often find ourselves in vehement discussions. Therefore 

we thought we might have a pleasant and peaceful time by putting our beloved hobby 

horses aside and embark upon a subject about which neither of us knew much: the timing 

aspects of music. We became interested in this field because we had noticed, while 

playing with the computer, our favourite toy, that adding just a bit of random timing 

noise to a program that played a score in an otherwise metronomically perfect way, 

made the music much more pleasant to listen to. It seemed as if we could make more 

sense of it. But we suspected that there was more to timing and expressive performance 

than adding bits of noise, so we invited a mutual friend who is a retired professional 

pianist to spend Christmas in our small but well equipped laboratory. Our friend has a 

great love for the piano and its music, but is completely ignorant of the advances of 

modern technology. To demonstrate to him our latest sequencer program we asked him to 

play the theme from the six variations composed by Ludwig van Beethoven on the duet 

Nel cor piu non mi sento, the score of which we had lying around (see Figure 1).
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Even though he was somewhat disturbed by the touch and harpsichord-like sound of 

the electronic piano, he was quite fascinated with the possibility of recording and 

playing back on the same instrument. Enthusiastically we told him that this system 

was more than just a modern version of the pianola: 'You can examine and change every 

detail you want; for instance, inspect the timing , accurately to the millisecond, add and 

remove notes, make notes longer or shorter, or louder or softer, and so on and so forth.' 

Our friend became quite excited and asked : 'Could your machine play my performance 

in a minor key?' We were a bit put off by the simplicity of his demand, but patiently 

demonstrated the key-change feature. After hearing his performance with the key 

changed to G minor our friend was not impressed. 'O dear, I’m afraid this sounds much 

too hasty. For example, the "dramatic" e-flat in bar 3 needs more time. Let me play it in 

minor for you.' When we looked at the timing data of his new performance it indeed 

showed a different pattern. Upon noticing our disappointed faces our friend remarked 

'this was not a minor change; it really turns it into another piece. We did not expect 

your device to know about that, did we?' We kept silent. 'But your machine can 

undoubtedly play the same piece at a faster tempo.' That set us in motion again. We 

changed the setting of the tempo knob to a tempo one-and-a-half times as high and 

pushed the play button. The face of our friend again did not show the expression we had 

hoped for. 'I’m awfully sorry, but this is not right! It sounds like a gramophone record 

played at the wrong speed, but without changing the pitches.' Suspiciously, we wanted 

some proof for his crude statement and asked him to play it the way he thought it 

ought to be performed. His version at the higher tempo was indeed different. We had 

to admit that it sounded more natural than our artificially speeded-up version. What 

made it sound so much better? We tried to unravel this mystery by examining the timing 

of the onsets and the offsets of the notes, since these were the variables that could be 

altered with our electronic keyboard, just like a real harpsichord.
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Temporal pattern is a series of time intervals, without any interpretation or structure.

Rhythm  is a temporal pattern with durational and accentual relationships and 

possibly structural interpretations (Dowling & Harwood, 1986).

Beat refers to a perceived pulse marking off equal durational units (Dowling & 

Harwood, 1986, p. 185). They set the most basic level of metrical organisation. The 

interval between beats is sometimes called a "time-span" (Lerdahl & Jackendoff, 1983), 

or, less abstract, beat duration, beat period or metrical unit (Longuet-Higgins & Lisle, 

1989).

Metre involves a ratio relationship between at least two time levels (Yeston, 1976). One 

is a referent time level, the beat period, and the other is a higher order period based on 

a fixed number of beat periods, the measure. It imposes an accent structure on beats, 

because beats initiating higher level boundaries are considered more important.

Tempo refers to the rate at which beats occur (often expressed as beats per minute), and 

is therefore closely linked to the metrical structure.

Density is used to refer to the average presentation rate taken across events of different 

duration (i.e. events per second) when a piece has events of different durations and the 

beat is hard to determine unambiguously, if at all (Dowling & Harwood, 1986).

It is important to note that rhythm, tempo, metre and density can be conceived 

independently: it is possible to maintain the same tempo while changing density; for 

example, a musical fragment can have a lot of embellishments (i.e. have a high 

density) and still be perceived as having a slow tempo. Furthermore, rhythm can exist 

without a regular metre and any type of rhythmical grouping can occur in any type of 

metrical structure (Cooper & Meyer, 1960).

Tactus is the tempo expressed at the level at which the units (beats) pass at a moderate 

rate (Lerdahl & Jackendoff, 1983). This rate is around the "preferred" or "spontaneous" 

tempo of about 100 beats per minute (Fraisse ,1982).

Tem po, M etre and Beat

Our sequencer, a very recent version, had a separate tempo track. In this track, the 

tempo can be changed from fragment to fragment, even from note to note. With this 

feature we could put the original score on one track and the timing of the performance, 

expressed as tempo changes per note, on the tempo track, although it took quite a bit of 

calculating and editing by hand. After a while we had completely recreated the 

original performance, but now as a score plus a separate track of expressive timing
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information. This tempo track looked like the graph in Figure 2a (for clarity we show 

only the timing of the melody). We could now compare the timing of this performance 

with the one played at tempo 90 (see Figure 2b). Their form was quite different even by 

visual inspection, although our ears were, of course, the only valid judges.

Figure 2. Tempo deviations in the performance of the theme at tempo 60 (a) and at tempo 90 (b).

What had happened? The sequencer had speeded everything up by the same amount 

(which we all agreed sounded awkward), while in the performance the expressive 

timing appears not to scale up everywhere by the same factor. Our friend adapted his 

rubato according to the tempo, which he explained to us as: 'My timing is very much 

linked to the musical structure and what I want to communicate of it in an artistic 

manner to the listener. If I play the piece at another tempo, other structural levels 

become more important; for instance, at a lower tempo the tactus will shift to a lower 

level, the subdivisions of the beat will get more "in focus", so to say, and my phrasing 

will have much more detail.' After some scratching with pen on paper, M found a quite 

elegant way of representing these changes using simple mathematics. We took the time 

interval between the onsets of every two succeeding notes and calculated the ratios of 

these time intervals in the two tempi. If the expressive timing pattern would scale-up 

linearly, we would find the ratios for all the notes to be around the ratio between the 

two tempi, and most ratios were indeed around 1.5. There was some variance around 

that factor, though, and we thought that could be explained by the more elaborate 

short-span phrasing at the lower tempo. But, even more noticeable was the fact that for 

some notes the ratio was close to 1. We found that these notes were notated as grace 

notes in the score. They did not change at all when performed at an another tempo. We 

also found that not all grace notes behaved like this. For example, the two grace notes 

that cover an interval of a sixth, in bar 7 and 19, were timed like any other note: they 

were actually played in a metrical way. Our pianist got really excited about our 

observations. He pointed at grace notes in the score that were notated in the same way,
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but that needed a different interpretation, and he started to lecture about the different 

kinds of ornaments, so popular in the eighteenth century, the difference between 

acciaccatura and appoggiatura , 'ornaments that "crush in" or "lean on" notes', about 

their possible harmonic or melodic function changing their performance, and so on and so 

forth. When he noticed that we were getting bored with his lengthy historical 

observations, he woke us up again with a new, sharp attack on our beautiful sequencer 

program: 'It might be forgivable that your program cannot play the onsets of ornaments 

correctly, but it also murders the articulation of most notes, especially the staccato ones. 

And have you heard what the program did to my detailed colouring of the timbre of 

chords?' Well, in fact, we had not, but we could well understand that the timbral aspect 

brought about by the chord spread (playing some notes in a chord a tiny bit earlier or 

later than others) was not kept intact when all timing information is just scaled by a 

certain factor. And we did not even dare to play the performance again at a lower 

tempo, afraid that each chord would turn into an arpeggio.

So our sequencer was not so wonderful after all. It could not be used to change  

something, not even such a minor thing as the key in which the piece was played. 

Again our pianist explained that a change of key was not a minor thing. The minimal 

variation that he could think of was the repetition of bars 5-8 at the end of the theme. 

'The only difference between them is the fact that the second segment is a repetition of 

the first, and I even expressed that minimal aspect by timing. This problem is 

exacerbated if the difference between two sections is the overall tempo. Then detailed 

knowledge about structural levels, articulation, timing of ornamentations and chords, is 

indispensable.' We had to agree. How dumb of us, after all, to assume that a tempo knob 

on a commercial sequencer package could be used to adjust the tempo.
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In principle, timing can be linked to any musical structural concept. The most concrete of 

those are the following.

Although the most obvious metrical units are bar and beat, this strictly hierarchical 

structure may extend above and below these levels. Special expressive marking of the 

first beat in the bar, either by timing, dynamics or articulation, is a common 

phenomenon (Sloboda, 1983).

Phrases may not be ordered in a strict hierarchy, and may cut across metrical structure. 

Phrase final lengthening is the most well-known way in which they are treated (Todd, 

1989)

A large proportion of the timing variance can be attributed to rhythmical groups 

(Drake & Palmer, 1990). Some standard rhythmical patterns, like triplets, seem to 

have a preferred timing profile (Vos & Handel, 1987).

Small timing asynchronies within a chord (called chord spread) are perceived as an 

overall timbral effect - the actual timing pattern is hard to perceive.

Ornaments, like grace notes and trills, can be divided in acciaccatura, so called timeless 

ornaments, and appoggiatura, ornaments that take time and can have a relatively 

important harmonic or melodic function. The former normally falls outside the metrical 

framework, the latter tends to get performed in a metrical way.

The independent timing of individual voices is sometimes hard to perceive because 

their components are immediately organised by the perceptual system in different 

streams (Bregman, 1990). This is not the case with (almost) simultaneous onsets that 

result in clear timbral differences. This can be heard in ensemble playing where often 

the leading voice takes a small lead of around 10 ms. (Rasch, 1979).

Any associative relation, e.g. between a musical fragment and its repetition, can be 

given intentional expression by using the same or different timing patterns.

Tem po, Tim ing and Structure

Wherein we looked at multiple performances, learned from a conductor 
and tried different hierarchies but had no success.

But we were convinced we could make our friend happy, and proposed to program some 

additions to the sequencer ourselves. We showed him a video tape about research done 

at MIT by Barry Vercoe and his collaborators on computer accompaniment of a real 

musician. In this project the computer is given a score and several performances of the 

piece. With that information it can be "trained" to follow and accompany the musician.
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Not that we were trying to do that, but we could use the idea to annotate each note in 

the score with its deviation in the performance, in our case in different tempi. Our 

friend friendly agreed to perform the Beethoven theme at four different tempi that 

were musically acceptable to him. We saw again that some notes exhibited a large 

change when tempo is changed, while others were less influenced by the tempo. But we 

could now use statistical methods to derive the right timing information for each tempo 

from this data. Our friend, who started to develop a little bit of suspicion, asked: 'Will 

that solve playing at different tempi then?' We were not quite sure. We definitely had 

more information now, but the representation of the music was still flat; no structural 

information was provided. It seemed we could not avoid incorporating some 

organisation above the note level into our program. Our friend agreed with a smile that 

was almost saying: 'are you stupid or am I?' We got a bit nervous. But after some 

discussion he agreed to concentrate on the timing of simple structural units like beats 

and bars only, leaving the note by note details aside for the moment.

Then we remembered Max Mathews working at CCRMA, Stanford University, who 

does important work in conductor systems (sort of the opposite of what Vercoe is doing). 

He made a system where one can conduct a sequencer on the beat level, which was just 

what we needed. The idea of a conductor shook our friend up; that sounded a much 

better approach than all those statistics we tried to explain to him before. We gave our 

friend an electronic baton, connected to our sequencer, and asked him to conduct the 

piece. In the score in the sequencer the beats were marked. The program followed the 

conductor by aligning each conducted beat with the corresponding mark in the score, and 

it tracked the tempo indicated by the conductor in doing so. At the high tempo, beating 

the baton very quickly, it seemed all right, but at the moderate tempo it was impossible 

to steer the timing deviations within the beat. 'It sounds too jumpy,' our friend 

complained. Since the beat level of the system of Mathews is arbitrary (he calls it 

'generalised'), we annotated the score with marks at a lower metrical level, which 

alleviated the problem a bit. But, as our friend was still complaining about the 

controlability, we eventually ended up by marking each note in the score. This gave 

complete control at last, though our poor pianist, out of breath by the acrobatics needed 

to draw each note out of the sequencer by means of a single baton, made a cynical remark 

about the wonderful invention, which we may have heard of, called a keyboard. We 

became a bit vapid and proposed to help our conductor by connecting three MIDI batons 

to the computer, the first two used by us to time the bars and the beats, and the third to 

be used by our friend to fill in the details, using batons inter-connected with a complex 

mechanism of wires, to keep the timing at all levels consistent. We fantasized for some
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time about a whole orchestra of conductors, leading one pianist before them. It was 

clearly time for a tea break.

Timing and Tempo, Patterns and Curves

In studying timing deviations a first distinction should be made between non-intended 

motor noise and intended expressive timing or rubato. The first category deviates in the 

range of 10 to 100 ms; the latter can deviate up to 50% of the notated metrical duration 

in the score.

Expressive timing is continuously variable and reproducible (Shaffer, Clarke & Todd, 

1985) and clearly related to structure (Clarke, 1988; Palmer, 1989).

It is important to note that there is interaction between timing and the other expressive 

parameters (like articulation, dynamics, intonation and timbre). For example, a note 

might be accented by playing it louder, a fraction earlier than expected or by 

lengthening its sounding duration. Which method of accentuation is used is difficult to 

perceive, even when the accentuation itself is obvious.

To refer to expressive timing, in computer music the term micro tempo is often used, 

comparable to the term local tempo used in the psychology of music (the tempo changes 

from event to event, expressed as a ratio of a performance time interval and a score time 

interval). For clarity, the term timing would be more appropriate here. It specifies the 

timing deviation on a note-to-note basis and is often referred to as the expressive timing 

profile (Clarke, 1985; Shaffer, 1981; Sloboda, 1983), timing pattern or rubato pattern 

(Palmer, 1989).

In these patterns, points are often connected, either stepwise with straight line 

segments or with a smooth interpolation, yielding a timing curve. Only the first 

representation maintains a proper relation with the time map in which points are 

connected with line segments. These continuous time maps are used by Jaffe (1985) and 

most people of the computer music community. Time maps can be superimposed, using one 

for each voice.

Time maps can also be constructed for uniformly spaced units in the score like bars or 

beats. The corresponding duration patterns form a true tempo pattern. The points in 

these patterns can be connected by line segments, yielding so called tempo curves. Some 

authors insist on stepwise tempo changes, like Mathews (Boulanger, 1990), in which 

they are linked to one level of the metrical structure.
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Over tea our friend told us about a series of programs on BBC radio, presented by the 

English conductor Denis Vaughan, on the composer's pulse he used in conducting. The 

pulse is a hierarchical, composer specific way of timing the beats. This pulse was an 

idea proposed and actually programmed by someone working in Australia. We went to 

our library and looked for some references that might tell us more on this composer's 

pulse. We ran into a collection of articles by Manfred Clynes who had invented the 

notion. This pulse, coincidentally, had precisely the characteristics we were looking 

for: hierarchical tempo patterns linked to the metrical structure. It basically entailed a 

system of automated hierarchical batons, and reduced the complexity further by 

postulating a fixed pattern for each baton. We took a final sip of our tea and hurried 

back to the lab and added Clynes' Beethoven 6/8 pulse as tempo changes in the tempo 

track to our sequencer. It divided the time for each bar into two unequal time intervals 

for the first and second half-bar and divided each half-bar into 3 unequal parts, one for 

each beat. With some adjustments here and there, we had our program running in no 

time. We called in our musical friend from the library to provide some professional 

judgements. He was definitely not unhappy with the result. 'This sounds much better 

than the things I've heard before/ he said.

Figure 3. Score of the first variation of Nel cor più non mi sento.
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'Let's do the first variation, and see how our system performs it/ our friend said, far 

more optimistic now. He was talking about "our" system. This was a good sign. 'This 

variation is written in an ornamental style,' our friend explained, while we loaded the 

score of the first variation (Figure 3) into our system and created the tempo track 

containing the Beethoven pulse for this material. The metrical and harmonic structure 

is the same for both theme and the first variation. The only difference is that there are 

more "ornamental" notes added,' he said in a patronizing tone. When everything was 

set we played him the result. 'Well, this is disappointing,' was his short and decisive 

answer. After seconds of uncomfortable silence he added, 'it lacks the general phrasing 

and detailed subtlety I think is essential to make it an acceptable performance. The 

rhythmical materials of the theme and the first variation are different. The sixteenth 

notes of the variation ask for a different kind of timing than the mainly short-long, 

short-long, short-long rhythm of the theme. This pulse plays only with the metrical 

structure, but musical structure has far more to offer than that.' So the composer's pulse 

could not just be mapped onto any rhythmic material. Furthermore, it only linked 

timing to the meter, and, as our friend made clear, phrasing and other musical structure 

was ignored.

That rang a bell. We remembered one of the articles by Neil Todd on a model of 

rubato, linked to phrase structure. His proposal is very similar to Clynes; it explains 

timing in terms of a hierarchical structure, but now phrase structure is the basic 

ingredient. The beat is again the lowest level; below that no timing is modelled. The 

abundance of mathematical notation in Todd's articles did not put off our amateur 

mathematician. Quite the contrary. 'This, on first sight, will give us a solid basis to 

work with. What he states here is that, if you remove all the constants from the 

formula, it is actually quite simple,' M said. Todd proposes to attach a parabola to 

each level of the hierarchical phrase structure, and sum their values to calculate the 

beat length.' He simplified a formula, found an error on the way and finally the model 

became easy to implement. We were quite conscious of the fact that we were the first 

really to hear Todd's model (he himself had never listened to it). It did not sound very 

pleasing because this model was expressed in terms of the phrase structure only (based 

on the idea of systematically lengthening the end of a phrase in a hierarchical way), 

and because it lacked all expressive timing below the level of beats.

Longing to show our collaborator that the computer could, in principle, also calculate 

detailed note-by-note timing, we looked for a model that would provide these. 

Happily we found masses of rules for those subtle nuances in the articles of Johan 

Sundberg and his colleagues. These rules formulated simple actions, like inserting a
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small pause in between two notes or shortening a note. The actions had to be performed 

if the notes matched a certain pattern, such as constituting a pitch leap or forming part 

of a run of notes of equal duration. In fact there were so many rule sets proposed in his 

articles that we got a bit lost in the details, but it has to be said that some rule- 

cocktails really seemed to work for our piece. Especially if their influence was adjusted 

to effect a subtle change only, the music gained some liveliness. But because these rules 

are based on the surface structure of the music only we could predict the judgement of our 

musical expert by now. And indeed he did not even bother to comment on the artificially 

produced performances. Instead he kindly reminded us that we might give up looking 

for a system that enabled us to generate a "musically acceptable" performance, given a 

score (that is what Clynes, Todd and Sundberg are aiming at), for the simple reason 

that we already had an "acceptable" performance, namely his own. It was true, the 

initial aim of our endeavour was to find ways of manipulating the timing in a musically 

and perceptually plausible way, given a score and a performance. Because the simple 

representations we had used proved unsuccessful, we had been sidetracked by studying 

even simpler representations that could at most model a small aspect of our friend's 

performances. We decided to close the session, look for more details in the literature, 

and give it another try the next day.
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Generative models

Clynes (1983; 1987) proposes composer specific and metre specific, discrete tempo 

patterns. This so called composer's pulse is assumed to communicate the individual 

composer's personality. E.g. in the Beethoven 6/8 pulse the subsequent half-bars span 49 

and 51% of the bar duration and each half bar is divided again in 35, 29 and 36%. 

Clynes is opposed to analysis of performance data: the pulses stem from his intuition. 

Repp (1990) has undertaken a careful evaluation of this model.

Todd (1985; 1989) proposes an additive model in which beat duration is calculated as a 

summation of parabola shaped curves, one for each level of hierarchical phrase 

structure. He complemented the model with an analysis method that calculates phrase 

structure from beat durations.

Sundberg et al. (1983; 1989) proposes a rule system to generate expression from a score 

based on surface structure. His research was done in an analysis-by-synthesis paradigm 

and captures expert intuition in the form of a large set of these rules. An example of a 

rule is "faster uphill": A duration of a note is shortened if it is preceded by a lower 

pitched note and followed by a higher pitched one. Van Oosten (1990) has undertaken a 

critical evaluation of this system.

In which we investigated discrete patterns and continuous curves, tried 
interpolation and failed again.

We found all kinds of references in the literature and read a lot that evening. It was 

amazing to find how much work actually was done on a problem that we had thought 

was not a problem at all. We became a little bit more conscious of the whole thing. It 

looked as if P's hobby horse, psychology, had to be given a chance. He explained that 

the perception of time had been modelled postulating a certain (often exponential) 

relation between objective time and experienced time. But this research had all been 

done with impoverished stimulus material, often consisting of just one time interval 

marked-off with two clicks. 'Other research,' P added, 'found that duration judgment 

depends on the way the interval is filled with more or fewer events, so unfortunately 

these simple laws cannot be directly applied to more complex material like real music.' 

Even P was disappointed with the results of his beautiful science. 'But psychology has 

something to offer to us here', he spoke in a defensive tone. 'Take a look at all the 

articles that present timing or tempo measurements in the form of continuous curves 

instead of just a scattergram of measurements. These curves more or less imply an 

independent existence, apart from the rhythmic material where they were measured
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from. But psychological research has shown that one cannot perceive timing without 

events carrying it.' He found this convincingly argued in an article by the psychologist 

James J. Gibson called "Events are perceivable but time is not". 'Can you imagine 

perceiving a rubato without any notes carrying it?' P asked. 'And vise versa: "filling 

up" time by adding an event between two measured points is problematic, isn’t it?' 

There seemed to be no possible argument.

Subjective Time, Duration and Tempo Magnitudes

Most psychophysical scales for time intervals are described by Stevens' Law, that 

relates the physical magnitude of a stimulus to its perceived magnitude as perceptual-

time = a-constant.physical-time  ̂ cons ân  ̂The b value differs from one dimension to 

the other. For time duration b is commonly found to be 1.1, slightly over estimation of 

the interval. However, for intervals shorter than 500 ms it is found that b is around 0.5, 

the square root of its physical duration (Michon, 1975).

Humans seem to have a relatively poor ability for time discrimination of intervals 

presented without context. The just notable differences (JND) are in the range of 5-10% 

(Woodrow, 1951) with an optimum near 600 ms intervals. However, in the context of a 

steady beat, the JND’s are around 3% with the same optimum interval (Povel, 1981).

Much research was done on the existence of a spontaneous tempo, preferred rate or 

natural pace (Fraisse, 1982). This tempo should occur as a preferred rate of spontaneous 

tapping, and material presented at that rate should be easy to perceive and remember. 

There is weak, but converging evidence for the existence of such a rate, again with 

intervals around 600 ms. There is no consistent evidence for physiological correlates like 

heart rate.

There has been quite some research done on the influence of different dimensions on time 

perception, mainly in the fifties. Evidence was found that, in general, the higher 

pitched the sound the longer the percept (Cohen et al., 1954), and the same holds for 

louder sounds (Hirsch et al, 1956). Evenly divided intervals seem longer than irregular 

divided ones (Ornstein 1969).

Time intervals shorter then 120 ms, preceded by a physically shorter neighbour time 

interval, are underestimated to such a remarkable degree that one can speak of an 

auditory illusion (Nakajima et al., 1989).

We decided to do the acid test using a feature of the sequencer program. In this 

program it was possible to copy tempo tracks from one piece to the other. We applied
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the tempo track of the original performance of the theme (see Figure 2) to the score of 

the first variation. The result was poor; even we could hear that. The timing made 

sudden jumps, like a beginner sight-reading and hesitating at unexpected points because 

of a difficult note. The expressive timing pattern found in the theme did not "fit" the 

variation. Our friend's performance of the variation was much smoother and had 

gestures on a larger scale, as far as we were able to judge (Figure 4). Also, the other way 

around, taking the timing data from the variation and applying it to the score of the 

theme had the same awkward effect. It seemed impossible to just add or remove notes 

using these stepwise tempo curves. We felt stupid again for having assumed that the 

independence of tempo tracks in the sequencer made musical sense. But it made us look in 

the literature for alternatives.
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Figure 4. Tempo deviations in the performance of the variation at tempo 60.

The answer was not far away. In the field of computer music research continuous 

rubato curves were used almost by default. We decided to take the path of the 

continuous timing functions, hoping it would get rid of this awkward "jumpiness". Thus 

M's hobby horse was brought out again. 'Functions are far easier to handle. One can 

calculate, given the right kind of function, a good timing curve for every piece,' M 

argued convincingly. This combined approach of formality (in the mathematical sense) 

and pragmatics reminded us of a method developed by David Jaffe of CCRMA to model 

the timing of different parts of a computer orchestra. Jaffe wanted the different 

instruments to have their own timing, but they had to synchronise at specific points as 

well. By using a time map, instead of tempo changes, coordination and synchronization
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became possible. 'What he actually does is to specify the timing for each event by 

means of a function from score time to performance time/ M explained, 'a blatantly 

simple idea indeed: to integrate velocity or one-over-tempo, as Jaffe calls it, to get 

time. This of course restrains the possible functions one can use to make up such a time 

map; they have to increase monotonously and one must be able to calculate a first 

derivative.' This was again a method, among many others, in which different authors 

presented their ideas of tempo curves (see Figure 5). We tried to bring some order to the 

ways the different representations were used.

Figure 5. A typical so called "Tempo Curve" with duration factors for each note as a function of

metrical time.

Soon M gave up, stating that it was a hopeless mess; no two authors used the same 

dependent and independent variables and measurement scales. And while in the end all 

the information needed could be extracted from most presentations, it was a difficult job, 

the more so because of the confusion in terminology. We decided to return to the 

practical application of the time map. We adapted the sequencer's tempo track to 

contain a time map (composed of line segments) instead of the discrete tempo changes 

we had used before. We then applied this continuous curve to the variation and had our 

pianist judge it. He thought it was much better than the direct application of the 

discrete curve of the theme to the variation. The interpolation (with line segments) did 

improve the smoothness of the timing, but he still complained about the sudden tempo 

jumps at the junctions of the curve. M remarked that one could restrict the allowed 

tempo map functions further or smooth the existing function, for instance, with splines. 

This brought us to an article describing work done at IRCAM by David Wessel and 

others, which indeed proposes the use of splines. We took an algorithm we had lying

Tempo curves considered harmful 18



around that did splines and added it to our tempo track algorithm. And there it was: 

with some twiddling of the parameters we could interpolate the timing pattern of the 

theme for its use on the variation. We almost thought that with this interpolation we 

had proven Gibson wrong. There was a smooth sense of timing in between events, and if 

one is smart enough one can tap it and hook new events onto it in a reasonable way. But 

our musical friend did not agree 'Reasonable?' he reacted angry, 'it sounds reasonable, 

yes, but your numerical calculations have nothing to do with the way I played it, 

whatsoever. The musical structure, my dear friends, remember the musical structure. 

How often do I have to repeat this. Timing is related to structure!' We suggested to him 

a cup of tea, in the hope that this would calm him down.
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Objective Time, Duration and Tempo Measurements

When an event happens (an onset of a note) one can measure the real time elapsed since 

the beginning of the piece (called performance time) and also the point in the score 

where this onset was notated (called score time). The latter can be measured either in 

seconds (taking the tempo marking in the score serious, or normalising the total score 

length to the performance), in metrical units like beats or quarter notes (called metrical 

time), or as an event count (called event time). The last loses so much information that 

the timing pattern cannot be reconstructed without reference to the score.

Performance time can be shown as a function of score time (called a time map), or vice 

versa. In these representations it is easy to spot (a)synchronies between voices because 

they depict points in absolute time.

Calculating differences between subsequent performance times in a time map makes the 

step from time to duration. Because in such a representation it is difficult to compare 

notes of different nominal duration, a proportional measure is better. It makes the step 

from duration to relative duration by dividing two corresponding durations. In case a 

performance duration is divided by a score duration, this forms a series of duration 

factors (often misleadingly called tempo). This measure is mostly notated in a graph 

with the independent axis labelled with metrical or event time. In the case of the 

inverse calculation, the ratios form the velocity, the local speed of reading the score.

In both cases the measured points are often filled in with line segments - implying the 

existence of a tempo measurement in between events. This is misleading - the more so 

because integration does not yield the original time map again.

Gabrielsson (1974) uses note duration expressed in proportion to the length of the bar. 

This allows for comparison with exact note values in different meters. The method 

might be generalizable to study timing at different levels of structure.

Tempo is sometimes presented on a logarithmic scale; this is a first step towards the use 

of subjective magnitudes.

An interesting hypothesis was given by Brown (1979). He argues that a musician makes 

use of a collection of discrete tempi: a collection of discrete physically possible tempi, 

where the choice is defined by musical and performing factors.

EPILOGUE

What this partly fictitious story (the characters are fictitious, but the examples and 

arguments are real!) shows is that we have to be aware of the Tempo Curve. Of course
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one should be encouraged to measure tempo curves and use them for the study of 

expressive timing. But it is a dangerous notion, despite its widespread use and 

comfortable description, because it lulls its users into the false impression that it has a 

musical and psychological reality. There is no abstract tempo curve in the music nor is 

there a mental tempo curve in the head of a performer or listener. And any 

transformation or manipulation based on the implied characteristics of such a notion is 

doomed to fail.

That does not mean that generic models that represent timing in terms of some sort of 

structure, even when they describe just a fraction of the many aspects of expressive 

timing, do not constitute a valuable contribution to the field. They only have to be seen 

in a proper perspective in which their limitations are understood as well. It also does 

not mean that certain features in computer music software and commercial sequencers 

should be forbidden. Their mere existence at least makes the realisation of their 

limited worth evident.

It should be noted here that the views expressed in this article comply more or less 

with the British school of expressive timing research (E.F. Clarke, H.C. Longuet- 

Higgins, L. Shaffer, J. Sloboda and N. Todd), in which the link between structure and 

timing is paramount. There are alternative views developing at the moment, denying 

such a strong link (Kendall & Carterette, 1991). We hope this controversy will 

eventually lead to more understanding of this wonderfully complex aspect of music 

performance.

In reality the experiments were done using POCO, an environment for analysing, 

manipulating and generating musical expression (Honing, 1990), which took a bit longer 

to build than one Christmas.

The holiday was almost over now and we felt that we had not found out many useful 

things. Our musical friend announced that he would go back to his own piano. He 

thanked us for the interesting sessions, from which he had learned a lot. But 

underneath these friendly remarks we could hear the cynicism. He advised us in a 

fatherly way to get rid of our research papers and start reading biographies of famous 

composers, in which the true facts about music and its performance could be found. This 

made the feeling of disappointment even more pronounced. But in a last irrational 

attack of bravery, we decided not to give in yet and we invited him to come back next 

Christmas, and to bring his biographies if he wished.

To be continued...
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T o w a r d s  a  c a l c u l u s

FOR EXPRESSIVE T IM IN G  IN  M U S IC

Peter Desain & Henkjan Honing

Center for Knowledge Technology 
Utrecht School of the Arts 

Lange Viestraat 2B 
NL-3511 BK Utrecht

This paper presents a calculus that enables expressive timing to be transformed on the basis 

of the structural aspects of the music. Expression within a unit is defined as the deviations of 

its parts with respect to the norm set by the unit itself. The behaviour of musical material 

under expressive transformations is determined uniquely by its structural description and the 

type of expression. Although the calculus separates different kinds of behaviour, it entails no 

musical knowledge of the transformations themselves and it also does not model music 

cognition. The algorithmic simplicity of the calculus combined with its elaborate knowledge 

representation mirrors the common hypothesis that the complex expressive timing profiles 

found in musical performances can be explained as the product of a small collection of 

simple rules linked to a relatively complex structure. The calculus (and the program 

implementing it) will hopefully prove to be a solid basis for formalised theories of music 

cognition.

INTRODUCTION

In Desain and Honing (in press, a) we argued that a simplistic notion of a tempo curve of a 

musical performance is a dangerous and harmful theoretical construct. Although the use 

of a tempo curve to describe time measurements is perfectly sound, the notion itself is 

often presented as a cognitive or musical concept. And tempo curves do not have any right 

to exist in those domains. In the above article, this was concluded from the fact that 

when it is used as a basis of transformations, inevitably the results make no musical 

sense. The cause of this failure can often be attributed to the lack of structural 

information in the tempo curve. For example, in changing the overall tempo of a 

performance, by manipulating the tempo curve alone, all time intervals of equal length 

between two notes are scaled in the same way. But some notes may constitute a particular 

kind of ornamentation, whose duration should be more or less unaffected by tempo. As a 

result the timing of the piece becomes unmusical. And there are many more examples of 

transformations that cannot be done on isolated tempo curves. Because the article had an 

essentially negative tone - identifying the problems and their causes - we felt compelled 

to follow it up with a study of possible solutions.
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This paper is an attempt to identify ways in which structural knowledge can be used to 

enable expression transformations on musical performances that do make musical sense.

In past research we considered expression merely as deviations of attributes of performed 

notes from their value notated in a score. This definition, however useful in the initial 

study of expressive timing, soon lost its attractiveness. In general, listeners can 

appreciate expression in music performance without knowing the score. And a full 

reconstruction of the score in the form of a mental representation is often impossible. Take 

for instance the notion of loudness of notes. Should a listener be required to fully 

reconstruct the dynamic markings in the score before it is possible to appreciate the 

deviations from this norm as expressive information added by the performer? Such a 

nonsensical conjecture indeed follows from a rigid definition of expression as deviations 

from the score. But it is possible to find ways of defining expression on the basis of 

performance information only. The more so since it became possible to model the 

quantization of performed note durations into discrete categories (Desain & Honing, 

1991), and therefore even the extraction of performed tempo is possible directly from the 

performance itself.

In this paper we will base expression on the notion of structural units in a working 

definition: expression within a unit is defined as the deviations of its parts with respect 

to the norm set by the unit itself. An example might make this more clear. Lets take, for 

instance, a metrical hierarchy of bars and beats; the expressive tempo within a bar can be 

defined as the pattern of deviations from the global bar tempo generated by the tempo of 

each beat. Or, take the loudness of the individual notes of a chord; the dynamic 

expression within a chord can be defined as the set of deviations from the mean chord 

loudness by the individual notes. Using this intrinsic definition, expression can be 

extracted from the performance data itself, taking more global measurements as reference 

for local ones, assuming that the structural units themselves are known. Thus the 

structural description of the piece becomes central, both to establish the units which will 

act as a reference, and to determine its subunits that will act as atomic parts whose 

internal detail will be ignored. A generalization of this concept can also deal with 

expression arising from the interplay of two or more voices.

It will be clear by now that any other connotations of the concept of musical expression, 

its link to human affect and extra-musical indexicality, however interesting, will be 

ignored here completely.

Before the details of the calculus are presented it might be fitting to give some 

explanation for undertaking for this work. First of all, we think that the research of 

expression in music is in need of measurement instruments that can cope with the enormous 

complexity of performance data and that are much more sophisticated than tempo 

curves. Some of the proposed transformations can be used as an "auditory microscope" by
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exaggerating expression at certain structural levels, like amplifying the timing lead, the 

melody often has over the accompaniment. Some of the tools presented can be used as 
"expression scalpels" for trimming away certain kinds of expression that might obscure 

other phenomena, like removing the tempo deviations within each beat, but holding the 

timing patterns of the beats themselves invariant. Other tools can "transplant" musical 

expression from one piece of music to the other, say from a theme to its variation. The 

availability of this 'machinery' will deepen our understanding of the intricacies of music 

performance expression.

A further motivation is the practical applicability of this work in systems for computer 

music. Especially the music editors and sequencer programs that are commercially 

available nowadays which are in need of better ways to treat musical information in 

musical ways. Expressive timing should not be considered a nasty feature of performed 

music, as it is in nowadays multi-track recording techniques where tempo, timing and 

synchronization are treated as technical problems. Instead expressive timing has to be 

regarded as an integral quality of performed music whereby the performer communicates 

structural aspects of the music to the listener (Clarke, 1988). We hope that our work can 

inspire new music software based on this view.

OVERVIEW OF THE CALCULUS 

Characteristics

The calculus has the following important characteristics:

The calculus is described here only for different brands of expressive timing. Dynamics 

could be formalised along the same lines, but for clarity we restrict ourselves to the 

domain of expressive timing. Other attributes that carry expression, like intonation, 

vibrato and timbre may require a different treatment.

The types of expression have to be computable to be within reach of this calculus. One 

must be able to calculate the expression at every level of the structural hierarchy, given 

the expression of their components (e.g. the timing of a chord must be computable when 

the timing of the embedded notes is given). One also must be able to state ways to 

effectively set the expression of the components once the expression of the whole is given 

(i.e. propagate a shift in timing down the hierarchy, to the basic objects carrying the 

expression). Types of expression that do not have this characteristic - or are not yet 

formalised as such- cannot be described.

Both performance and "score" timine of individual notes are clearly defined. Notes 

require attributes that can be measured more or less directly from the performance data 

like the note onset time and the offset time. At least the onset time must be clearly
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specified, which makes the calculus less appropriate for expressive performances by 

instruments for which onset times are not so clear cut. Secondly, the metrical note 

duration (the timing of the note as notated in the score) must also be available as a note 

attribute - either via quantization or by matching a performance to a known score. These 

processes are considered preprocessing here. Although the reference to score duration, 

score onset and score offset times is less appropriate in the context of our definition of 

expression - we will use this terminology, for lack of better terms.

The "score" timing of rests is clearly defined. Perhaps surprisingly, the rest plays a key 

role in some transformations. So we assume that it either can be inferred from the 

performance timing (Longuet-Higgins, 1976 shows a way of doing so), or it is recovered 

via the matching of a performance and a known score.

All proposed transformations are structure preserving. This means that the calculus is 

restricted to true expressive transformations: the score timing of the notes is known and 

fixed, and transformations will leave this and the structural description invariant.

The behaviour of musical material under expressive transformations is determined 

uniquely by its structural description and the type of expression.

The transformations are defined on a hierarchical structural description uniquely linking 

all material. Ambiguous structural descriptions (e.g. two or more possible structural 

descriptions) or incomplete descriptions cannot be dealt with. The obvious need for 

knowledge representations containing multiple structural descriptions (metrical, phrase, 

and rhythmical grouping structures, different analysis etc.) is not denied. We just require 

that such representations be preprocessed to select only one complete structural 

description. This is not a real restriction since transformations based on different kinds of 

structural knowledge of the same piece can always be done in sequence. Re-inserting the 

trimmed structural descriptions into a transformed piece is trivial because the 

transformations preserve the structure.

Naturally, the higher-level structural description of the piece must be consistent with 

the performance timing. For example, a structural description of the piece in which two 

notes are given a certain sequential time order (one after the other) - can only fit a 

performance in which at least the onset of the corresponding notes obey the same order. 

The precise rules will be given when the structural descriptions are introduced.

The transformations are defined to apply to a certain level of the hierarchical structural 

description, ignoring details from lower levels and keeping higher levels invariant. 

Means to select such a level are assumed. In sophisticated realisations of the calculus
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this may entail a match language ("the first bar of the piano solo that begins with a C") 

or a graphical representation. In this paper we will simply assume that each musical 

object has a name as attribute and defines a structural level as the set of objects with a 

certain name.

Although the calculus separates different kinds of behaviour, it entails no musical 

knowledee of the transformations themselves. Accordingly, the proposed knowledge 

representation does support for example, arbitrary descriptions of the metrical structure 

of a piece, but has no knowledge of "the best structural analysis". To give a second 

example: the proposed knowledge representation does support ways to modify timing 

(a)synchrony between voices, but it has no knowledge about correct or effective ways of 

using this in musical performance.

The calculus also does not model cognition. It does not state how, for example, voice-

leading helps auditory streaming, how phrase final lengthening beyond a limited range 

disables rhythm perception, or how structure is communicated by the expressive timing 

profiles. However, this work constitutes a solid basis for formalised theories about these 

issues, providing a powerful representation in which they can be expressed.

Representation

Several concepts are used in the calculus:

Musical objects arc either of a basic nature or form a structural description of a collection 

of musical objects. Basic musical objects consist of notes and rests. Notes are the only 

musical objects that carry the expressive information. Structural descriptions form 

collections of musical objects. They may describe hierarchical time intervals like 

metrical-, phrase- or rhythmical grouping, they can group the notes of chords and 

ornaments together, or form large horizontal slices through the piece, describing the 

separate voices etc. Mere collections (sets) of objects are too meager a basis for most 

transformations, therefore, structural descriptions specify the intended relations in time 

between these objects as well (Honing, 1991). Most transformations can be defined if two 

orthogonal characteristics of the structural description are given: the temporal nature 

and the ornamenting quality. The first describes whether a sequence or a parallelism (a 

so called successive or simultaneous construct) is represented. The second describes 

whether the musical object is considered an ornament attached to another object or not. 

Ornaments are shielded from certain modifications and refer to another object for certain 

attributes. These two binary characteristics result in four concrete types of structural 

description that will be described in detail later.
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Expressive m agnitudes are values of expressive measurement on a certain scale. The 

scales themselves are of course crucial in modeling effective transformations, in cognitive 

and musical senses. For example, a tempo scale on which a transformation to make 

something twice as fast actually yields a double perceived tempo is quite useful. But for 

the sake of simplicity we abstract from the perceptual processes and the instruments that 

generate the sound, and will just assume simple physical measurements of time and other 

expressive attributes.

Expression maps describe the expressive patterns of structured musical objects at a certain 

structural level. They consist of a section for each musical object at that level. A section 

lists the expressive values for all components of that object. They come in different brands 

- consistent with the type of musical structure where they w ere extracted from. 

Expression maps can be extracted from and applied to musical objects, with possibly a 

modification of the map in between.

Expression types are sets of procedures to extract a particular type of expression map from  

a musical object, to impose it on a musical object, and to modify the map. They capture the 

difference between expressive tempo, asynchrony, and articulation. They m ay become 

fairly sophisticated, like a brand of expressive tempo that knows how to keep the 

articulation of an individual note invariant when the timing of the note onsets is 

changed.

M odifications are defined as operations on expression maps. They m ay scale, interpolate, 

or do any other operation on the map. They are often designed such that certain  

characteristics are kept invariant, e.g. the total duration of a section while changing the 

timing of the parts.

T ran sfo rm atio n s are defined as operations on musical objects. They are often direct 

generalizations of the expression map modifications - first extracting the map, applying 

the modification and imposing the modified map. They also handle the selection of the 

level of structural description on which to apply the transformation. Furthermore, they 

m ay have means to maintain consistency among the affected level and other musical 

m aterial, e.g. making an accom panim ent obediently follow the transform ation in 

expressive tempo applied to the melody.

Implementation

Part of the work described in this paper was done in the design of the POCO system  

(Honing, 1990) for which a scaling operation of expressive timing linked to structural 

descriptions was implemented. But, in evaluating this rather complex piece of software, 

better abstractions arose. Especially the design of a set of data structures for music that
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capture the differences in behaviour under transformation proved beneficial. Which 

again illustrated the adage:

" G e t  y o u r  d a t a  s t r u c t u r e s  c o r r e c t  f i r s t ,  a n d  t h e  r e s t  o f  t h e  p r o g r a m  w i l l  w r i t e

i t s e l f ."  (David Jones, quoted in Bentley, 1988)

Because the constructs interact heavily, and because it should be easy to add unforeseen 

new constructs (like a new type of expression), musical objects, expression m aps and 

expression types are implemented as classes in an object-oriented language. In that w ay it 

is easy to express modifications and transformations as polymorphic operations that will 

behave according to the type (the class) of their arguments. The slicing-up of knowledge 

in classes means answering questions like: which part of the extraction procedure of an 

expressive tempo map of a sequential musical object is specific for expressive tempo only 

and should be stated within the expression type; which part only depends on the 

sequential nature of the musical structure, and should be part of the class for sequential 

musical objects; and which part describes the creation of an expression map and belongs to 

that class?

Although a good Object-Oriented Language (we used CLOS, a Lisp-based system) 

provides one with the program m ing-constructs needed to express these concepts, the 

actual process of factoring knowledge into these polym orphic procedures is still a 

difficult one, especially because during the design of the best structure of the classes - 

allowing for the most elegant factoring of the procedures - cannot be completely foreseen. 

This forced us to go through several re-design rounds before the concepts stabilized in 

their present form.

The following CLOS (Keene, 1989; Steele, 1990) constructs w ere used heavily in the 

implementation: multiple inheritance (forming class dependencies that are more complex 

than simple hierarchies), multi-m ethods (functions that are polym orphic in more  

arguments), mix-in type of inheritance (grouping of partial behaviour in an abstract class 

that must be mixed in with other classes to supply that behaviour to their instances), 

method combination (providing ways of combining partial descriptions of behaviour of 

one method for more classes). Together they make it possible to extend the system by 

adding program code only, instead of rewriting it.

The calculus will be incorporated in POCO. The other tools available in POCO, like 

score-performance matchers, multiple structural descriptions, storage and retrieval from 

standard MIDI-files, playback and editors for music text formats etc., will support a 

comfortable use of the calculus with real performance data. An implementation in the 

form of the microworld is given in the appendix and aimes at conciseness and elegance. 

Luckily, this goal only occasionally conflicts with computational efficiency.

The following five paragraphs will describe the calculus in more detail. The reader 

interested in the more general aspects of the calculus is advised to continue reading below 

T ran sforma tion s.
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MUSICAL OBJECTS

Musical objects come in different brands. Some types are specific enough to describe an 

object completely (the instandatable or concrete classes). Other types are used as a 

descriptive grouping of likewise behaviour (the abstract classes). The types of musical 

objects and their interrelations are shown in figure 1.

>- 1S-A

F i g u r e  1 . C l a s s e s  o f  m u s i c a l  o b j e c t s  a n d  t h e i r  i n t e r r e l a t i o n s .

Basic musical objects

Basic musical objects are notes and rests (In the program we use the word PAUSE to avoid 

the name dash with the Common Lisp primitive R EST). In examples we will use notes 

with clearly observable onset and offset times (called PERF-ONSET and PERF-OFFSET) 

measured in ms. from the beginning of the performance. Both notes and rests have as a 

property a time position in the score (called SCORE-ONSET and SCORE-OFFSET) 

measured in any kind of (beat)-count (a rational number). These score times are calculated 

automatically from the supplied score durations of notes and rests via the structural 

descriptions. This facilitates easy creation of large scores.

Rests are essential and cannot just be ignored, as is done in some low-level representations 

(e.g. the Midi-file standard). They are central e.g. in dealing with articulation - a short
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note followed by a rest behaves differently under transformation than a longer note 

played in a staccato way.

Structured musical objects

Multilateral structures

In research on music perception and cognition a distinction is often m ade between 

successive temporal processes that deal with events occurring one after another, and 

simultaneous temporal processes that handle events occurring around the same time (e.g. 

Bregman, 1990; Serafine, 1988). For the first type of events of the expressive means can be 

rubato - the change of tempo over the sequence. In the second one the expressive means can 

be chord-spread and asynchrony between voices, both m ore timbral aspects. These 

processes work differently in perception. Since we want to imply differences in behaviour 

mainly by differences in structural description a way should be found in which both these 

constructs can be represented.

We propose to use for this purpose the simple time structures S and P that functioned well 

in (Desain & Honing, 1988; Desain, 1990; Desain & Honing, in press, b). If a collection of 

musical objects is formed such that they occur one after another they are described as a 

successive structured object named S (for Sequential). If a collection of musical objects occur 

at the same time they can be collected in a simultaneous structured object called P (for 

Parallel). These structures serve as a general way to represent a collection together with 

the temporal relation between the components, as stated in the score. We call the objects 

multilateral because their components are considered to be of equal importance, and are to 

be treated as such in expressive transformations.

The score times of a structured object and its parts are constrained by consistency rules. 

They are described separately in frames 1 and 2. These constraints are enforced by 

specifying only notes and rests with a score duration. The constraints propagate these 

automatically when a structural description is created and set all score onset and offset 

times.

In calculating expression, the previous and subsequent context of musical objects is 

sometimes needed. For instance, consider articulation: possibly defined as the overlap  

between the sounding parts of a note and the next one, i.e. the time difference between the 

offset of the note itself and the onset of the "next" note. Besides "next material" a link to 

"previous material" is foreseen to be needed as well, e.g. in the calculation of local accent 

patterns. To formalize and generalize this notion of "previous" and "next" material a 

definition of the left and right context of a musical object is given. This notion also 

reflects the fact that some expressive values cannot be calculated because some contexts 

are not available or carry no expression e.g. the tempo of the last note in a piece, or the 

performance onset of a voice that starts with a rest. Expressive transformations must thus 

expect to com e across missing values in an expression map. The notion of context is
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explicitly represented in the program as attributes of the objects themselves. This is 

possible because the structural description is invariant and so are the contexts. Another 

possibility would be to represent them implicitly, recovering them by search via a bi-

directional part-of link between musical objects. Alternatively, they could be represented 

tacitly, i.e. supplying them by a general control structure that walks through structured 

musical objects.

Collateral structures (ornamented objects)

Some musical objects contain components that should maintain a dependency relation to 

one another. If such a collateral pair is transformed, the transformation should be carried 

out on the main component only, the submissive one obediently following the main 

com ponent's transformation, but not being transformed itself. An ornamented musical 

object like a graced note (a note preceded by a grace note), is a good example of a 

collateral object. For example, in the scaling of the expressive tempo of a melody which 

contains a graced note, the data on which the expressive transformation is carried out (in 

this case the performance onset) stems from the main object. The grace note is ignored. 

When in the actual transformation the graced note pair is stretched or compressed and 

moved to an other point in time, only the main note will undergo that operation. The 

ornament will just follow its shift in time.

A second use of this concept is made when the relation of an ornament to its main object, 

within such a collateral couple, is considered to be expressive, and a potential source of 

expressive transformations. In this case, the main object stays invariant, and only the 

ornam ent undergoes transformation. Take for example the asynchrony between the 

performance onset of a grace note and the note it is attached to. This time interval can be 

modified by appropriate means, resulting in local changes of the timing of the grace note 

- but keeping the timing of the main note invariant.

Collateral (ornamented) objects can again have two kinds of temporal nature: successive 

or simultaneous. The first one is called APPOG (for appoggiatura). It describes a "time-

taking" ornament where the ornament is considered to finish when its main object starts 

(all in terms of score times). The second is called ACCIA (for acciaccatura). It can 

represent a so called "time-less" ornament that is supposed to start at the same time as 

the object it is attached to. Note that both parts of a collateral pair are musical objects 

themselves and can have internal structure. The concepts of APPOG and ACCIA  

ornamented objects are an elaboration of the PRE and POST objects that were introduced 

in (Desain & Honing, 1988). Consistency rules for score times and context are described in 

frames 3 and 4.
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S, a multilateral successive structure

Son Soff

► context 
score times

F i g u r e  o f  S  o b j e c t

Consider an S structure of n components Cj with 0 < i < n-1 .

Assume that component Cj has score onset time Sonj, score offset time Soffj and that the 

whole structure has score onset time Son and score offset time Soff. Then the following 

must hold:

Son = Song 

Soff = Soffn.]

Soffj = Sonj+ j, for 0 < i < n-2

Assume that component Cj has performance onset time Ponj and that the whole structure 

has performance onset time Pon. Then the following must hold:

Pon = Pong

Ponj < Ponj+ -j/ for 0 < i < n-2

Assume that component C j has left context Lj and right context Rj and that the whole 

structure has left context L and right context R. Then the following holds:

L = Lo

R = ^n-1
Rj = C j+ ], for 0 < i < n-2 

Lj = C j.],  for 1 < i < n-1

F r a m e  1 . D e s c r i p t i o n  o f  a  S  s t r u c t u r e .
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Son Soff

P, a multilateral simultaneous structure

-----►- context
-------> score times

F i g u r e  o f  P  o b j e c t

Consider a P structure of n components Q  with 0 < i < n-1 .

Assume that component Q  has score onset time Sonj and score offset time Soffj and that 

the whole structure has score onset time Son and score offset time Soff. Then the 

following must hold:

Sonj = Son, for 0 < i < n-1 

Soffj = Soff, for 0 < i < n-1

Assume that component C j has performance onset time Pon; and that the whole structure 

has performance onset time Pon. Then the following holds:

Pon = M IN q  < j < n_] Ponj

Assume that component C j has left context Lj and right context Rj and that the whole 

structure has left context L and right context R. Then the following holds:

L = Lj, for 0 < i < n-1 

R = Rj, for 0 < i < n-1

Frame 2. Description of a P structure.
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APPOG, a collateral successive structure

Son Soff

Figure of APPOG object

Consider a APPOG structure of a ornament component CQ and a main component Cm . 

Assum e that component CG has score onset time SonQ/ score offset time SoffQ, that 

component Cm has score onset time Sonm and score offset time Soffm and that the whole 

structure has score onset time Son and score offset time Soff. Then the following must 

hold:

Sonm = Son 

Soffm = Soff 

SoffQ = Sonm

Assum e that com ponent CD has performance onset time Pon0 , com ponent Cm has 

performance onset time Ponm and that the whole structure has performance onset time 

Pon. Then the following holds:

Pon = Ponm 

PonQ < Ponm

Assume that component C G has left context L() and right context R0 , component Cm has 

left context Lm and right context Rm and that the whole structure has left context L and 

right context R. Then the following holds:

R = Rm 

Ro =
L0 = undefined

Frame 3. Description of an APPOG structure.
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ACCIA, a collateral simultaneous structure

Son Soff

-----►  context
----- • no context
-------score times

F i g u r e  o f  A C C I A  o b j e c t

Consider a ACCIA structure of a ornament component CQ and a main component Cj^. 

Assume that component C0 has score onset time SonD, score offset time SoffQ, that 

component Cm has score onset time Sonm and score offset time Soffm and that the whole 

structure has score onset time Son and score offset time Soff. Then the following must 

hold:

SonQ = Sonm = Son 

Soffm = Soff

Assume that com ponent CG has performance onset time PonQ/ component Cm has 

performance onset time Ponm and that the whole structure has performance onset time 

Pon. Then the following holds:

Pon = Ponm

Assume that component CQ has left context L0  and right context RQ/ component Cm has 

left context Lj^ and right context Rm and that the whole structure has left context L and 

right context R. Then the following holds:

L = = Lo
R = Rm

R0 = undefined

Frame 4. Description of an ACCIA structure.
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EXAMPLE OF THE REPRESENTATION OF A MUSICAL OBJECT

In figure 2 a fragment of a score is shown that will serve as a basis for the examples at the 

end of this article. It is the score of the last bars of the theme of six variations over the 

duet Nel cor più non mi sento, by Ludwig van Beethoven (with some adaptations), which 

is the same material used to study tempo curves in (Desain & Honing, in press, a). It 

contains examples of several kinds of musical structure: chords, voices, sequences, bars and 

beats, phrases and two types of ornaments. Figure 3 shows a graphical notation  

indicating two structural descriptions: a metrical hierarchy and a separation into voices. 

The way these structures are specified in Lisp is given in the appendix.

Ludwig van Beethoven.

S bars

P bar P bar P bar P bar
S top voice S lop  voice S lo p  voice.
P A U S E  ¡M O TE A P P O C

N O TE
A C C IA

N O TE N O TE N O TE
N O TE [ n o t e  I

j | n o t e

1---------------1

[ n o t e  I

S bottom  voice P chord P chord

P A U S E N O TE N O TE N O TE N O TE N O TE

N O TE N O TE

H O TE N O TE

P Iragmenl

S melody

j
P A U S E  j NOTE

A P P O G
NOTE

A C C IA
NOTE NOTE NO TE

NOTE (NÖTE x I

jÌN O T E [ n o t e  j

S accompaniment

P A U S E NOTE NOTE NOTE
P chord P Chord

NOTE NOTE

NOTE NOTE

NOTE NOTE

Figure 3. a) Structural description of the metrical hierarchy of the score in figure 2, and b) Structural

description of the voices in that piece.
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REPRESENTING EXPRESSION

There are three kinds of expressive timing: expressive tempo, expressive asynchrony and 

expressive articulation. The first two are based on performance onset times only, the 

third is based on performance onset and offset times (see figure 4).

( ) mixin class

abstract class

( Z D instantiate  class

>  IS-A 
V' mixin

F i g u r e  4 .  E x p r e s s i o n  t y p e  h i e r a r c h y .

One could imagine sophisticated algorithms that calculate the onset of a note and of 

parallel structures on the basis of their perceptual onset (P-center; see Vos & Rasch, 

1981). But for clarity we use a very simple definition of onset times, which was already 

given in the frames 1 to 4. In that way, all musical objects have performance onset times 

and so can be used as units on which tempo and asynchrony measures are built.

Expressive tempo

The notion of tempo is relevant only for successive structures. It is defined as the ratio of 

score duration and performance duration. This velocity-like notion the inverse of the 

notion of a tempo factor, as is used in the psychology of music literature.

Expressive asynchrony

The notion of asynchrony is relevant only for simultaneous structures. It is defined as the 

difference of performance onsets. It is thus independent of score dmes.
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Expressive articulation

Expressive articulation uses the performance offsets of individual notes. It simply 

assumes that they are given. A definition of performance offset of structured musical 

objects is not needed. Articulation is also independent of score times.

Articulation can be defined in several ways - but it is hard to find a way that will suffice 

in all circumstances. In the legato range the absolute overlap time of the sounding part of 
a note and the next one seems a good candidate for an articulation scale. In the staccato 

range the absolute sounding duration of the note seems the most prominent perceived 

aspect. In the intermediate range the relative sounding proportion is a good measure. For 

the moment we cannot do better than to supply these three concepts of articulation 

expression (overlap-, duration- and proportion-articulation) - leaving it for the user to 

choose the most appropriate one (see frame 5). For a multilateral structure the expressive 

articulation value is taken to be the average articulation of its parts. For a collateral 

structure the expressive articulation value is defined to be the articulation of its main 

part.

Definition of articulation

Consider a note with performance onset Pon, performance onset Poff and performance 
onset of its right context Ponr. There arc three alternative definitions of articulation A

given:

overlap articulation A = Poff - Ponr

duration articulation A = Poff - Pon
Poff-Pon

proportion articulation A  = ____ _________
Ponr - Pon

If a multilateral structure with articulation A has components Q  for 0 < i < n-1, and Q  

has articulation A j  then:

A = MEANn ,  . ,  ,A ;0 < l < n-1 1

If a collateral structure has articulation A, and its main component Cm has articulation 

Am then:

Fram e 5. D efinition of articulation expression .
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Estimate onsets

Because sometimes the performance onset of missing objects (like the virtual note after 

the end of the piece) or the performance onset of a rest are needed, we devised a set of 

procedures that estimates these missing values on the basis of performance onsets that 

can be found in the context, using a linear interpolation or extrapolation method. The set 

of procedures forms a mix-in class that can be combined with any expressive timing type 

enabling that kind of expressive timing to deal - in all operations - with missing values. 

Estimation is derived from the same structural level as the transformation itself. For 

example, a transformation on a beat structure in need of a missing expressive value at the 

end of the piece (cf. the onset the final barline in a score) will be estimated on basis of the 

two previous beats -not on the basis of any internal detail. In the case of extreme tempo 

variations, as occur in a final retard, the estimation feature cannot work well. In this case 

it is better not to use it.

Articulation invariance

When moving the onsets of notes around (e.g. in modifying the performance onsets) it is 

quite annoying that the articulation of the individual notes also changes - an effect that 

is very easy to perceive and which may well overshadow subtle modifications of onset 

timing. Therefore a set of procedures can be mixed-in with expressive tempo and 

asynchrony. They are given a chance to calculate the articulation of individual notes 

before onsets are changed and to reinstall it afterwards. This will insure that 
articulation is kept invariant under transformations of onset timing (see figure 12).

EXPRESSION MAPS

An abstraction of the expression of an object is useful for many operations because it can 

hide the irrelevant details of the structure and provides a means to transfer expression 

from one object to another. Therefore expression maps were introduced. They describe 

expression of musical objects at one level of a structural description. All objects at the 

level described must have the same structural type. Maps contain a list of sections, one for 

each of those musical objects. A section lists the expressive values of the components of 

that musical object. Of course maps may be partial - consisting of several sections with 

gaps in between, or even have missing values within a section.

Onset timing

The application of a (modified) map of performance onsets on an object works as follows. 

First, all objects at the indicated level are found, paired with their corresponding 

sections. Then each section is applied to its object. This means that the components of 

that object arc provided one by one with a new onset from that section.
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This setting of onsets is handled differently according on the structural type of the 

component. If this component is a note, the onset is set directly. For S components the 

whole structure is stretched between that onset and and the next onset (the onset of the 

succeeding component). A P component is set to the provided onset, but keeps its internal 

asynchrony invariant and truncates at the next onset. In the case of a ACCIA component, 

the main structure is set to the onset, with the ornament following the displacement of 

the main structure. Finally, for a APPOG component, the main structure is stretched 

between that onset and the next onset, with the ornament also simply following the 

displacement of the main object.

Now we have indicated how an expressive timing is applied to components of structured 

objects - it remains to be shown how such a change propagates when these components 

again are embedded structured objects themselves. This fairly complex process depends on 

the type of the embedded structured object and mirrors the decisions given above: S 

components are stretched, P components are shifted and truncated, and ornaments follow 

the shift of their main components.
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Figure 5. Propagation of change of onset within an S structure for different component types. This figure 
shows the propagation process for an S structure containing different types of structural components. We 
assume the components are moved around by an arbitrary transformation, parametrized by a factor. In 
this figure it is shown how this change is propagated to the internal structure of different kinds of 
components. The first component is an S structure and the onsets of its internal parts (lines marked with 
white circles) are stretched along proportionally. The second sub-structure is an APPOG structure and one 
can see that the onset of its ornament (line marked with upward pointing white triangles) shifts along 
with the main object. The third sub-structure is an ACCIA structure and the onset of its ornament behaves 
likewise. Note that the onset of the ornament is allowed to shift freely (line marked with downward 
pointing white triangles), even the order of notes is allowed to change here . The fourth sub-structure is a 
P structure and the onset of its components (lines marked with squares) are shifted and truncated at the 
end (the right context note; line marked with x's).

Articulation expression

In comparison, to set the articulation expression to a structured object is much simpler. 

When a section of an articulation map is applied to a multilateral or collateral structure 

the articulation of its components are set to their respective values from the section.

The propagation of a (modified) articulation value to a component works as follows. If 

that component is a note, a new offset is calculated from the articulation value and set 

directly, taking care to maintain reasonable offset times (e.g. not shifting before its 

onset). If that component is a multilateral structure, its articulation is calculated (the
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mean articulation of its components) and the difference with the required articulation is 

propagated as an increment to all components. If it is a collateral structure, its 

articulation is calculated (the articulation of its main component) and the difference 

with the required articulation is propagated as an increment to both main and ornament 

components.

OPERATIONS ON EXPRESSION MAPS

Operations on expression maps work section by section. In each section the expression of a 

structured musical object is represented. The operations delivers a new section to be 

applied to that object. Care was taken to maintain structural consistency in all 

operations even in case of extreme parameter values. Of course expression transformations 

are intended as subtle changes and truncation or extreme normalization should in practice 

never occur.

Scale maps

Scaling expressive tempo

Scaling tempo is done in an exponential way. Inverse tempi are considered to be related 

by a scale factor -1; twice as slow is considered to be the mirror image of half as slow. 

This exponential scaling of expressive tempo mirrors the exponential nature of notated 

note durations.
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Scaling the expressive tempo of an S section

The scaling of the expressive tempo of a multilateral successive structure works as 
follows. Assume the structure has n components named Q  with 0 < i < n-1 . Assume 

component C j  has score onset time Son; and performance onset time Ponp Assume the 

right context of the structure (and thus the right context of component C n . |  ) is object C n . 

It has score onset Sonn and performance onset time Ponn. A section of the expressive 

tempo map of the structure contains all Sonj and Ponj including Sonn and Ponn. The scale 

operation on such a section delivers a new section with performance onsets Ponj‘

according to the following rules:

Define the score inter-onset interval ASonj and the performance inter-onset interval 

APonj and the local tempo Tj for 0 < i < n-I (a better term would be velocity) as:

ASonj = Sonj+ ] - Sonj 

APonj = Ponj+ ] - Pon;

ASonj 

-  APonj

This ratio is scaled by an exponential factor f.

Then new raw performance durations APonj" are calculated:

ASon;
APonj" = ,

These are re-normalised such that the total performance duration is kept invariant.

Ponn-PonQ
APon;' = APon;" * —-----------1 1 n-1

APonj"

i=0

Starting at the same point, the new performance times are given as:

i-1
Ponj' = Pong + y^APonj' 

j=0

Fram e 6. Scaling the expressive tempo an S section.

Calculus 22



Figure 6 . Scaling the expressive tempo of an S section. This process is shown for a specific set of 
performance onsets Ponj .In this figure the horizontal axis is the performance time P. On the vertical axis 
the scale factor f is given. Thus at the horizontal line at scale factor 1  the performance times Pon;' are 
shown as markers on the line; they are identical to the original performance times Ponp This operation
(with scale factor 1) is the identity transformation with respect to the performance timing. At the 
horizontal line at scale factor 0 the performance times Pon;' are identical to the score times Sonj (modulo
normalization to the total performance duration). This operation (with scale factor 0) effectively 
removes the expressive timing of the performance. At factor .5 a diminished expressive timing profile 
will result, and at factor 2 an exaggerated rubato can be obtained. At negative values of the scale factor 
the expressive profile is inverted: a slower tempo becomes faster and vice versa. At extreme values of the 
scale factor the note that is played at the slowest tempo in the performance will gain almost the whole 
performance time interval spanned by the structure, pushing other notes to zero duration.
When the performance onset Ponn is not available, the scale transformation uses Ponn i instead, and
scales the tempo of the section with regard to the onset of the last component in the section - instead of 
the onset of the right context. This tempo scaling method works well for S constructs with many 
components and small tempo deviations.
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The scaling of the expressive tempo of a collateral successive structure works as follows. 
Assume this structure has a main component with score onset time Sonm and performance

onset time Ponm and a preceding ornament component with score onset time SonQ, and 

performance onset time PonQ. Assume the right context of the structure (and thus the 

right context of component Cm) is object Cr. It has score onset Sonr and performance onset 

time Ponr. An APPOG time map section contains this score and performance data. The

scale operation on such a map delivers a new map with performance onsets according to 

the following rules:

Define the main and ornament score inter-onset interval ASonm, ASonQ and the main and 

ornament performance inter-onset interval APonm, APonQ as:

ASonm = Sonr - Sonm 

ASon0 = Sonm - SonQ 

APonm = Ponr - Ponm 

APon0 = Ponm - Ponn

The ornament tempo T0 and the main tempo Tm are calculated as:

ASon0 
~ APon0 

ASonm 
APonm

T0/m is tempo of the ornament relative to the main tempo. This factor is scaled by an 

exponential parameter f, and a new ornament tempo T0‘ is calculated:

T
t  °ô/m -  t  1 m
To = Tm * T0/ n-/

This gives a new performance duration AP()', which yields the new performance times 
Ponm' and Pon0':

ASon0
APon0' = - .

1 o

P°nm = Ponm 
PonQ' = Ponm - APon0'

Frame 7. Scaling the expressive tempo of an APPOG section.

Scaling the expressive tempo of an APPOG section
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Figure 7. Scaling expressive timing of an APPOG section. This process is shown for a specific set of 
performance onsets. Note that only the performance timing of the ornament is affected. At scale factor 1 
the timing of the ornament is identical to the original timing. At scale factor 0 the ornament is performed 
at the same tempo as the main object (in this particular example the score duration of the ornament is 
half that of the main component). This operation (with scale factor 0) effectively removes the 
expressive way in which the ornament is performed, relative to the main component. At factor .5 a 
diminished expressive timing effect will result, and at factor 2 an exaggerated effect will be obtained. At 
negative values of the scale factor the expressive timing is inverted: a performance of the ornament at a 
lower tempo than the main component becomes one at a faster tempo and vice versa.

Scaling expressive asynchrony

Asynchrony occurs when two or more simultaneous musical objects - prescribed to happen 

at the same score time - have unequal performance onsets. The differences can be scaled 

linearly but care has to be taken not to disrupt the timing of higher levels.
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The scaling of the expressive asynchrony of a multilateral simultaneous structure works 
as follows. Assume the structure has n components named Cj with 0 < i < n-1. Component 

C j has performance onset time Ponj. Assume the right context of the structure (and thus 

the right context of all components) has performance onset Ponn. A parallel time map of 
the structure contains all Ponj including Ponn. The scale operation on such a map delivers 

a new Ponj' according to the following rules:

Let the global performance onset Pon and the performance onset asynchronies APonj be 

defined as:

Pon = MIN0 < i < n_] Pon,

APonj = Ponj - Pon for 0 < i < n-1

The asynchronies arc scaled by an multiplication factor f:

APonj' = APonj * f

New performance onsets Ponj' are calculated, shifting such that the global performance 

onset is kept invariant (min (Ponj') = min (Ponj) = Pon). The result is truncated such that 
the onsets never move beyond Ponn. Of these two safeguards the first applying in case f

is negative, the second applying in case f is large compared to the ratio of the 

asynchronies and performance duration of the whole structure. Together they ensure 

consistency with higher-level structural descriptions by keeping the components within 

the bounds of the structure.

Ponj' = MIN (Ponn, Pon + APonj' + MIN (APonj'))

Frame S. Scaling the expressive asynchrony of a P section

Scaling the expressive asynchrony of a P section
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Figure 8 . Scaling expressive timing of a P section. This figure shows this process for a specific set of 
performance times Pj (say a chord performed with some spread). At scale factor 1 the performance onsets
Pon;' are identical to their original Pon,. At scale factor 0 all Ponj’ occur synchronously at the minimum of 
their originals (i.e. removed chord spread). At factor .5 a diminished chord spread will result, and at 
factor 2 an exaggerated chord spread can be obtained. At negative values of this factor the spread is 
inverted: first notes becoming last and vice versa. At extreme values of the scale factor the notes are 
restrained from moving out of the chord structure into the next musical object by truncation. Note that the 
whole operation is independent of score times.
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The scaling of the expressive asynchrony of a collateral simultaneous structure works as 
follows. Assume the structure has a main component with performance onset time Ponm

and an ornament component with performance onset time PonQ. A time-map of the 

structure contains PonQ and Ponj^. The scale operation on such a map delivers new 

performance onsets according to the following rules:

Let the performance onset asynchrony APon be defined as:

APon = PonQ - Ponm

The asynchrony is scaled by a multiplication factor f, and a new performance onset PonQ' 

is calculated:

APon' = APon * f 
Pon0' = Ponm + APon'

Ponm' = Ponm

Frame 9. Scaling the expressive asynchrony of an ACCIA section.

Scaling the expressive asynchrony of an ACCIA section
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Figure 9. Scaling expressive timing of a ACC1A section. It shows this process for a specific set of 
performance times (a note preceded by an acciaccatura). At scale factor 1 all performance onsets are 
identical to their original. At scale factor 0 the ornament occurs synchronously with the main note 
(removed asynchrony). At negative values of this factor the order of onset of ornament and main note is 
inverted. Note that the ornament is allowed to shift freely - even outside the bounds of the whole 
ACCLA structure.

Scaling expressive articulation

The articulation of a note is interpreted (scaled) relative to the articulation of the 

structure that it forms part of. For multilateral structures this is the average 

articulation. If thus the first note in a bar is played with more overlap than the other 

notes, a removal of the overlap articulation expression (a zero scale factor) will set the 

overlap of all notes to the mean overlap of the notes in the structure. And exaggerating 

the articulation expression (a scale factor larger than 1) will move the individual 

overlaps away from the mean - but maintaining the average overlap of all the notes in 

the bar. Of course all articulation types maintain reasonable performance offsets in the 

case of extreme values (i.e. note offsets will not shift before their onsets).
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Assume a multilateral structure has n components C; with 0 < i < n-1. Component Q  has 

articulation A; (see frame 5 for the calculation of Aj). A section of the expression map of 

the structure contains all Aj. The articulation A of the structure itself is defined as:

A = MEANq < j < n-i Aj

Let the expression deviations be 

AAj = Aj- A for 0 < i < n-1

The deviations arc simply scaled by a multiplication factor f 

AAj' =f * AAj

The scale transformation delivers new articulations Aj' by adding the new deviations to

the reference articulation A such that the articulation of the whole structure is kept 
invariant (mean Aj' = A).

Aj = A + AAj

Keeping the expressive values in a reasonable range can only be done while applying 

them to the individual notes.

Frame 10. Scaling the expressive articulation of a multilateral section

Scaling the expressive articulation of a multilateral section
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Figure 10. Scaling of an S section with three different kinds of articulation. It shows the scaling of three 
types of articulation for a multilateral structure, in this instance an S structure with a specific set of 
performance onset and offset times. Here, at scale factor 1 articulations Aj '  are identical to the original 
performance. At scale factor 0 all Aj' are scaled to the mean articulation A. At a scale factor above 1 the 
deviation of each Aj '  with respect to A is exaggerated, with negative values constituting an inverse 
deviation: legato notes become more staccato and vice versa. Note that the mean articulation A is always 
kept invariant.
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Assume that a collateral structure has ornament and main components C0 and Cm. 

Component CQ has articulation A0 and component Cm has articulation Am (see frame 5 

for the calculation of A0 and Am). A section of the expression map of the structure 

contains these values. The articulation A of the structure itself is defined as:

A = Am

Let the expression deviation be 

AA = A0 - A

The deviation is scaled by a multiplication factor f 

AA' = f * AA

The scale transformation delivers a new articulation for the ornament by adding the 

new deviation to the reference articulation A.

A q  — A + AA 

Am = ^m

Keeping the expressive values in a reasonable range can only be done while applying 

them to the individual notes.

Scaling the expressive articulation of a collateral section

Frame 17. Scaling the expressive articulation of a collateral section.
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Figure 11. Scaling of an APPOG section with three different kinds of articulation. It shows three types of 
articulation scaling for an ornament (here an APPOG structure). At scale factor 1  the articulation AQ' is 
identical to the original articulation of the ornament. At scale factor 0 A0  is identical to the articulation 
of the main component Am At a scale factor above 1 the deviation of A0  with respect to the main 
component Am is exaggerated, negative values constituting an inverse articulation: legato ornament 
articulation become more staccato and vice versa.

Keeping articulation consistent in the scaling of expressive timing

In the scaling of timing of onsets we ignored the influence it should have on its offsets. To 

obtain some sort of articulation consistency we can use the three types of articulation (as 

described above) when scaling expressive tempo and expressive asynchrony. In figure 12, 

we use expressive tempo scaling for an S section as an example in illustrating the 

different types of articulation consistency.
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Figure 12. Scaling of an S section that keeps a particular type of articulation consistent. Shown for 

the same set of performance onsets as used in figure 6.
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Stretch maps

Sometimes it is useful to be able to keep a consistency in performance timing between 

voices when modifying one of them. Naming the modified material as the foreground and 

describing the rest as the background, the consistency requires that a series of 

performance onsets, at a selected background level, that happen between two 

performance onsets in the foreground are "stretched along" with the changes in the 

foreground. This feature is implemented by first extracting a timing map from the 

background, and "stretching" this map between the old and modified foreground map 

before it is reapplied to the background. The fore- and background must be parallel (must 

happen during the same score time interval) and have to be S structures. Maintaining the 

consistency between other kinds of structure remains a problem.

Interpolate maps

A more sophisticated notion of expression entails the difference in expression between 

two structured objects. The best known example is voice leading in ensemble playing 

(Rasch, 1979) whereby the leading instrument often takes a small but consistent timing 

lead (around 10 ms). Inter- or extrapolation between two extracted timing maps yields 

the possibility to scale this kind of expression.

Transfer maps

Sometimes it is useful to apply an expression map extracted from one object, to another 

object, possibly with a different structure, e.g. boldly applying the expressive timing of 

the melody to the accompaniment. This is supported via an operation on timing maps 

that uses the structure of one map but imposes expressive values of the other.

TRANSFORMATIONS

Transformations of musical structures are generalizations of the operations on expression 

maps. They handle the selection of a level of structural description, extract a map, do the 

operation and re-impose the map. However, they often become quite sophisticated 

because they also take care of maintaining consistency with a background (material that 

is not affected directly). The application of the modified map has its own complexity, 

whereby changes are propagated to lower levels depending on the types of musical 

structure encountered. Finally, in the setting of new performance onsets of the notes, also 

the offsets may change in order to keep the articulation invariant. Out of the wealth of 

possibilities we choose some examples to be illustrated further by means of figures. In the 

figures the performance onsets and/or offsets of the individual notes at different 

parameter settings are given. The structure of the musical objects transformed are shown 
underneath.
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In the following examples the same performance of a Beethoven theme is used (the 

fragment as shown in figure 2), allowing for comparison of the different transformations 

and to see the effect of applying the same transformation to different levels or types of 

structure. Note that for all the transformations the indentity transformation is shown at 

scale factor 1.
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Scale timing

Figure 13. Scaling the expressive tempo of bars in the Beethoven fragment. Underneath the figure a 
structural description of the fragment is shown in bars. Imagine what would happen if we asked a 
performer to emphasize his/her timing of the bars? One possibility would be to play the onsets of the 
bars, that were played slightly early, even earlier, and ones that were played late, later still. This 
particular transformation can be read from figure 12 as the lines with the black markers, indicating the 
component in the bar that carries the expressive timing. Both the performance onset of the first and the 
last bar of the enclosing bars' structure are not changed; the transformation is done at the level named 
"bars", with its timing kept invariant. The lines with white markers show the embedded material that 
follows the change of the performance onset of each bar. Note that the timing of the ornamented notes 
does not change (they keep the same distance with respect to the note they cling to), as does the spread of 
the chords.
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Figure 14. Scaling the expressive asynchrony of each bar in the Beethoven fragment. It shows the 
expressive transformation we might expect to happen when a performer is asked to exaggerate the 
asynchrony between the top-voice and bottom-voice at the onset of each bar. The figure shows the scaling 
of the asynchrony of the bottom voice onsets (the black squares), without changing the timing of the bars 
(lines marked with black circles and triangles). The embedded notes of the bottom voice (lines with 
white squares) just shift along with the expressive timing of their embedding structure. Here again, the 
ornament timing and the chord spread stay invariant.
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Figure 15. Scaling the expressive asynchrony of each chord in the Beethoven fragment. It shows another 
expressive transformation that exaggerates the chord spread, turning them almost into arpeggio's at 
high scale factors. At scale factor 0 the chord spread is completely removed. The timing of the rest of the 
fragment stays unaltered.
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Figure 16. Scaling the expressive tempo of the melody in the Beethoven fragment, a) without and b) with 
"stretching" the accompaniment. It shows that the timing of each note of the melody becomes 
exaggerated with a higher scale factor. Here the accompaniment (lines marked with white squares) is 
not affected at all. Figure 16b, on the other hand, shows a musically more reasonable transformation: the 
accompaniment follows the movements of the transformed melody, e.g. slowing down when the tempo of 
the melody slows down. Here the accompaniment is kept consistent with respect to the original 
performance (compare with the onsets at scale factor 1). Note that note order can change between melody 
and accompaniment, because of the structural description in two parallel voices.
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Keeping articulation consistent

In the above examples we showed the scaling of onset times and neglected what 

happened to the offset times. But, as we showed before, this cannot just be ignored in 

m usically relevant transform ations. We can select one of the described types of 

articulation to keep consistent, but we do not show this here (see figure 12 for a simple 

exam ple).

Scale intervoice expression

When the expression between voices is scaled, two parameters are used. The first one 

selects a reference level of expression (0 designates the expression of the first, 1 

designates the expression of the second, 0.5 is the mean of the two etc.). The second 

param eter determines in how far the voices are removed from that reference level (0 

means com pletely on reference level, 1 means as in original perform ance, 2 means 

exaggerated with respect to the reference etc.).
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Figure 17. Scaling the intervoice timing between the melody and the accompaniment in the Beethoven 
fragment, a) with the melody as reference, and b) with the mean of the melody and the accompaniment 
as reference. In figure 17a intervoice timing (one type of intervoice scaling) is scaled with the melody 
voice as the reference. It shows the scaling of the asynchrony between the accompaniment and the 
melody, as found in the performance (see the horizontal line where the scale factor is 1). Notes that are 
not synchronous (i.e. don't have the same score time) interpolate their change with respect to their 
surrounding performance onsets that are considered parallel (have the same score time). Note that the 
timing of the melody does not change because it is used as reference.
In figure 17b the mean of the melody and accompaniment timing is used as reference, resulting in 
displacements (with respect to this invisible reference) of both voices.
In both figures, the first event in the melody voice is unaffected since there is no measurable timing in the 
accompaniment (only a rest).

Calculus 42



CONCLUSION

In this paper we have presented a proposal for a calculus that enables expressive timing 

to be transformed on the basis of structural aspects. The program implementing the 

calculus, will hopefully prove to be a solid basis for formalised theories of music 

cognition. A micro version of this program is included in the appendix, open to further 

inquiry and immediate test. The proposed representation constructs allow  for easy 

maintenance and extension. An object-oriented programming style proved a good choice 

for this kind of modelling. The algorithmic parts became reasonably simple, but the 

program  can still be considered as quite complex, especially its elaborate knowledge 

representation. This algorithm ic sim plicity combined with structural com plexity  

m irrors, in this respect, the widespread hypothesis that the complex expressive timing 

profiles found in musical performances are more readily explained as the product of a 

small collection of simple rules linked to a relatively complex structure, than as the 

result of a large collection of interacting rules, with hardly any structure.

This research again confirmed that music is a very rewarding field for experimentation 

with knowledge representation concepts.
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A p p e n d i x

MICROWORLD EXPRESSION CALCULUS

•★★★★★★★★★a****************************************************************************** 
;* A CALCULUS FOR MUSIC PERFORMANCE EXPRESSION *
;* (c) 1991, Peter Desain S Henkjan Honing *
. * *

; * in CLOS (Common Lisp), uses loop macro *
.★ ***★ ★ ★ ★ ★ ★ ★ **★ ★ *★ ★ ★ ****★ *********★ *★ ★ *★ **★ ★ ★ **★ ★ ★ ***★ ****★ *★ *★ ****★ ***★ ★ ************★ ★ **

-**★*★******★*★★**★★*******★*******★****★*★*****★*★***********★************************** 
.★★**★******************************★****★**★**★***************************************** 
; MUSICAL OBJECTS
. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
• i t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
; abstract classes of musical objects 

(defclass musical-object ()
((name : reader name ¡initarg ¡name ¡initform 'no-name :type symbol)
(score-onset :reader score-onset :type rational :initform 0)
(left ¡reader left ¡initform nil)
(right ¡reader right ¡initform nil))

(¡documentation "Musical Object"))

(defclass structured (musical-object)
((score-offset ¡reader score-offset ¡type rational))
(¡documentation "Structured Musical Object"))

(defclass multilateral (structured)
((components ¡reader components ¡initarg ¡components))
(¡documentation "Multilateral Musical Object"))

(defclass collateral (structured)
((main ¡reader main ¡initarg ¡main)
(ornament ¡reader ornament ¡initarg ¡ornament)) 
(¡documentation "Ornamented Musical Object"))

(defclass successive (structured)
0
(¡documentation "Successive Musical Object"))

(defclass simultaneous (structured)
0
(¡documentation "Simultaneous Musical Object"))

(defclass basic (musical-object)
((score-offset ¡reader score-offset ¡type rational ¡initarg ¡score-dur))
(¡documentation "Basic Musical Object"))

.**************************************************************************************** 
; instantiatable classes of musical objects

(defclass
(defclass
(defclass
(defclass

S (multilateral successive) () (¡documentation "Sequential"))
P (multilateral simultaneous) () (¡documentation "Parallel"))
ACCIA (collateral simultaneous) () (¡documentation "Acciaccature")) 
APPOG (collateral successive) () (¡documentation "Appoggiature"))

(defclass NOTE (basic)
((dynamic ¡accessor dynamic ¡type float ¡initarg ¡dynamic)
(perf-onset ¡accessor perf-onset ¡type float ¡initarg ¡perf-onset ¡initform nil) 
(perf-offset ¡accessor perf-offset ¡type float ¡initarg ¡perf-offset ¡initform nil)) 

(¡documentation "Note"))

(defclass PAUSE (basic) () (¡documentation "Rest”))
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(defun S (name Srest components)
(make-instance 'S :name name ¡components components))

(defun P (name Srest components)
(make-instance 'P ¡name name ¡components components))

(defun ACCIA (name ornament main)
(make-instance 'ACCIA ¡name name ¡ornament ornament ¡main main))

(defun APPOG (name ornament main)
(make-instance 'APPOG ¡name name ¡ornament ornament ¡main main))

(defun NOTE (Skey name perf-onset perf-offset score-dur (dynamic 1))
(make-instance 'NOTE ¡name name

¡perf-onset perf-onset 
¡perf-offset perf-offset 
¡score-dur score-dur 
¡dynamic dynamic))

(defun PAUSE (Skey name score-dur)
(make-instance 'PAUSE ¡name name ¡score-dur score-dur))

.**************************************************************************************** 
; extra access functions for musical objects

(defmethod components ((object basic)) nil)
(defmethod components ((object collateral))
(list (ornament object)(main object)))

(defmethod all-notes ((object musical-object))
(loop for component in (components object) append (all-notes component)))

(defmethod all-notes ((object note)) (list object))

(defun has-name? (Srest names)
#'(lambda (object srest ignore)(member (name object) names)))

(defmethod find-parts ((object musical-object) pred)
(if (funcall pred object)

(list object)
(loop for component in (components object) 

append (find-parts component pred))))

- * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * x * * * * * * * * * * * * * * * * * * * *

; initialization of score times and context of musical objects

(defmethod initialize-instance ¡after ((object musical-object) srest ignore)
(object-check object)
(initialize-score-times object)
(initialize-context object))

(defmethod object-check ((object musical-object)) nil)

• * * * * * * * * x * * * * * * * * * * * * * * * * * * * * * * * * * * * x * * * * * * * * * * * * * * * * * * * * * * * * * * * * * x * * * * * * * * * * * * * * * * * * * * x

; initialization of score-onset and offset of musical objects

.****************************************************************************************

; creators for musical objects

(defmethod initialize-score-times ((object basic)))

(defmethod initialize-score-times ((object P))
(setf (slot-value object 'score-offset)

(slot-value (first (components object)) 'score-offset)))
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(defmethod initialize-score-times ((object S))
(loop with onset = 0

for component in (components object) 
do (shift-score component onset)
(setf onset (slot-value component 'score-offset)) 
finally (setf (slot-value object 'score-offset) onset)))

(defmethod initialize-score-times ((object collateral))
(setf (slot-value object 'score-offset)

(slot-value (main object) 'score-offset)))

(defmethod initialize-score-times :after ((object APPOG))
(shift-score (ornament object)

(- (slot-value (ornament object) ’score-offset))))

(defmethod shift-score ((object musical-object) shift)
(incf (slot-value object 'score-onset) shift)
(incf (slot-value object 'score-offset) shift)
(loop for component in (components object) do (shift-score component shift)))

; initialization of context of musical objects

(defmethod initialize-context ((object musical-object)))

(defmethod initialize-context ((object S))
(loop for component in (components object)

for next-component in (rest (components object)) 
do (set-contexts component next-component)))

(defmethod initialize-context ((object APPOG))
(set-context (ornament object) (main object) 'right))

(defmethod set-contexts ((left musical-object) (right musical-object)) 
(set-context left right 'right)
(set-context right left 'left))

(defmethod set-context ((object musical-object) (context musical-object) dir) 
(setf (slot-value object dir) context))

(defmethod set-context :after ((object P) (context musical-object) dir)
(loop for component in (components object)

do (set-context component context dir)))

(defmethod set-context :after ((object S) (context musical-object) dir)
(if (eql dir 'left)

(set-context (first (components object)) context dir)
(set-context (last-element (components object)) context dir)))

(defmethod set-context :after ((object collateral) (context musical-object) dir) 
(set-context (main object) context dir))

(defmethod set-context :after ((object ACCIA) (context musical-object) dir)
(when (eql dir 'left)

(set-context (ornament object) context dir)))
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.****★*★★★★★*★★★****★***★*★*★*****★★***★★**★****★***********★★****★*******★**★***★★*★★**★ 

.********★************************★******************★*********************************** 
; abstract classes of maps

(defclass map ()
((sections : accessor sections zinitarg : sections))
(:documentation "Expression Map"))

(defclass multilateral-map (map)())
(defclass collateral-map (map)())
(defclass simultaneous-map (map)())
(defclass successive-map (map)())

.**************************************************************************************** 
; instantiable classes of maps

(defclass P-map (multilateral-map simultaneous-map)())
(defclass S-map (multilateral-map successive-map)())
(defclass ACCIA-map (collateral-map simultaneous-map)())
(defclass APPOG-raap (collateral-map successive-map)!))

•A************************* ***************** ***************** ***************** ***********
; creator for maps 

(defun make-map (sections)
(let ((ordered-sections (sort sections #'< :key #'score-onset)))

(cond ((null ordered-sections) nil)
((and (same-section-type? ordered-sections)

(not-overlapping? ordered-sections))
(make-instance (section-to-map (first ordered-sections))

: sections ordered-sections))
(t (error "attempt to merge incompatible sections into expression map")))))

.**************************************************************************************** 
; sections of maps
.**************************************************************************************** 
; abstract classes of sections of maps

(defclass section ()
((all-score-times : accessor all-score-times :initarg : all-score-times)
(all-expressions raccessor all-expressions rinitarg rail-expressions))
(:documentation "Expression Section"))

(defclass multilateral-section (section)())
(defclass collateral-section (section)())
(defclass successive-section (section)())
(defclass simultaneous-section (section)())

.*******★*****************★************************************************************** 
; instantiable classes of sections of maps

(defclass S-section (successive-section multilateral-section) () )
(defclass P-section (simultaneous-section multilateral-section)())
(defclass ACCIA-section (simultaneous-section collateral-section)())
(defclass APPOG-section (successive-section collateral-section)())

.★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ a********************************************************************* 
; compatibility relation between musical objects, expression maps and sections thereof

(defmethod object-to-section ((object musical-object))
(third (find (class-name (class-of object)) (object-network) :key #'first)))

(defmethod section-to-map ((section section))
(second (find (class-name (class-of section)) (object-network) :key #'third)))

•****************************************************************************************
.****************************************************************************************

;  MAPS
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(defun object-network ()
1 ( (S S-map S-section)

(P P-map P-section)
(ACCIA ACCIA-map ACCIA-section)
(APPOG APPOG-map APPOG-section)))

•  ★ *★ ★ ★ ★ ★ ★ ★ ★ ****★ *★ ★ ★ *★ ★ ★ ★ *★ **★ **★ ★ ★ ★ ★ ★ ★ ★ *★ ★ **★ *★ ★ **★ *★ ★ ***★ ★ ★ ★ *★ ★ **★ ★ ★ *****'*★ ★ ★ ★ •***★ *★ ★ **
; creators for sections of maps

(defun make-section (section-class all-score-times all-expressions)
(make-instance section-class

:all-score-times all-score-times 
:all-expressions all-expressions))

(defmethod make-new-section ((section section) expressions)
(make-section (class-of section)

(snoc (score-times section) (score-offset section))
(snoc expressions (next-expression section))))

(defmethod make-new-section-from-pairs ((section section) pairs)
(make-section (class-of section)

(snoc (mapcar #'first pairs) (score-offset section))
(snoc (mapcar #'second pairs) (next-expression section))))

. ********** ★ ******* ★ *********************************************************************
; extra accessors for sections of maps

(defmethod score-onset ((section section))
(first (all-score-times section)))

(defmethod score-offset ((section section))
(last-element (all-score-times section)))

(defmethod expressions ((section section))
(butlast (all-expressions section)))

(defmethod next-expression ((section section))
(last-element (all-expressions section)))

(defmethod score-times ( (section section))
(butlast (all-score-times section)))

(defmethod score-onset ((section collateral-section))
(score-main section))

(defmethod main-expression ((section collateral-section))
(second (all-expressions section)))

(defmethod ornament-expression ((section collateral-section))
(first (all-expressions section)))

(defmethod score-main ((section collateral-section))
(second (all-score-times section)))

(defmethod score-ornament ((section collateral-section))
(first (all-score-times section)))

(defun same-section-type? (sections)
(every #'(lambda (section) (class-of section)) sections))

(defun not-overlapping? (sections)
(loop for section in sections

for next-section in (rest sections)
never (> (score-offset section) (score-onset next-section))))
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(defmethod lookup-section-containing ((map map) score-time)
(loop for section in (sections map)

when (<= (score-onset section) score-time (score-offset section)) 
do (return section)))

.**********************************************************************-****************X*
; lookup expression value (via score time) in expression map

(defmethod lookup-defined-expression ((map map) score-time)
(lookup-defined-expression (lookup-section-containing map score-time) score-time))

(defmethod lookup-defined-expression (section score-time)
(and section

(loop for expression in (all-expressions section)
for map-score-time in (all-score-times section) 
when (= map-score-time score-time) 
do (return expression))))

(defmethod lookup-expression ((map successive-map) score-time)
(lookup-expression (lookup-section-containing map score-time) score-time))

•****************************************************************************************
; find section (containing score time) in expression map

(defmethod lookup-expression (section score)
(and section

(loop for expression in (all-expressions section)
for expression-next in (rest (all-expressions 
for score-time in (all-score-times section) 
for score-time-next in (rest (all-score-times 
while (> score score-time-next) 
finally (return (interpolate score-time score

expression expres

section))

section))

score-time-next 
sion-next)))))

.************************************************************************************* 
; lookup score time in a monotone rising expression map

(defmethod in-section-inverse? ( (section section) expression)
(and expression (<= (first (expressions section)) 

expression
(or (next-expression section)

(last-element (expressions section))))))

(defmethod lookup-inverse ((map S-map) expression)
(loop for section in (sections map) thereis (lookup-inverse section expression)))

(defmethod lookup-inverse ((section section) expression)
(and (in-section-inverse? section expression)

(loop for expression-next in (rest (expressions section)) 
for score-time in (score-times section) 
for score-time-next in (rest (score-times section)) 
while (> expression expression-next)
finally (return (list score-time score-time-next)))))

***************************************************************************************** 
; mapping through expression maps

(defmethod map-map (fun (map map))
(make-map (loop for section in (sections map) collect (funcall fun section))))

.**************************************************************************************** 
; mapping through filtered expression maps

(defmethod with-filtered-null-expression (fun (map map))
(unfilter-null-expression (funcall fun (filter-null-expression map))

(filter-null-expression-out map)))

(defmethod filter-null-expression ((map map)) 
(map-map #1 filter-null-expression map))
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(defmethod filter-null-expression ((section section)) 
(make-new-section-from-pairs section 
(loop for expression in (expressions section) 

for score-time in (score-times section) 
when expression
collect (list score-time expression))))

(defmethod filter-null-expression-out 
(mapcar #'filter-null-expression-out

(map map)) 
(sections map)))

(defmethod filter-null-expression-out ( 
(loop for expression in (expressions 

for score-time in (score-times 
for index from 0 
unless expression 
collect (list index score-time)

(section
section)
section)

) )

section))

(defmethod unfilter-null-expression ((map map) 
(make-map (mapcar #'unfilter-null-expression

rejections) 
(sections map) rejections)))

(defmethod unfilter-null-expression ( (section section) removed)
(if removed

(make-new-section-from-pairs section
(loop with expressions = (expressions section) 

with score-times = (score-times section) 
for index from 0 
while (or score-times removed) 
when (and removed (= index (caar removed))) 
collect (list (second (pop removed)) nil) 
else collect (list (pop score-times)

(pop expressions))))
section))
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rt***************************************************************************************
****************************************************************************************

EXPRESSION
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★it***************************
****************************************************************************************

(defclass expression () () )

•★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ I***********
; nil and rests carry no expression, nil expressions and sections are not set

(defraethod get-expression ((object null)(expression expression)) nil)
(defmethod get-next-expression ((object null)(expression expression)) nil)

(defmethod get-expression 
(defmethod set-expression

((object PAUSE)(expression expression)) nil)
((object PAUSE)(expression expression) value) nil)

(defmethod set-expression ((object musical-object) expression value-or-section) nil) 
(defmethod get-next-expression ((object musical-object)(expression expression)) 

(get-expression (right object) expression))

-*****************************************************************************★********** 
; get expression of notes

(defmethod get-notes-expression ((object musical-object) (expression expression))
(loop for note in (all-notes object)

collect (fetch-expression note expression)))

(defmethod set-notes-expression ((object musical-object) (expression expression) values ) 
(loop for note in (all-notes object) 

for value in values
do (set-expression note expression value)))

.**************************************************************************************** 
; propagate expression (interpolated, truncating-shift and shift)

(defmethod propagate-interpolated ((object S)
old-begin new-begin old-end new-end expression)

(loop for component in (components object) 
do (propagate-interpolated component

old-begin new-begin old-end new-end expression)))

(defmethod propagate-interpolated ((object P)
old-begin new-begin old-end new-end expression)

(loop for component in (components object)
do (propagate-truncating-shift component

(save—  new-begin old-begin) new-end expression)))

(defmethod propagate-interpolated ( (object collateral)
old-begin new-begin old-end new-end expression)

(let* ((ref (fetch-expression (main object) expression))
(shift (save—  (interpolate old-begin ref old-end new-begin new-end) ref))) 

(propagate-interpolated (main object) old-begin new-begin old-end new-end expression) 
(propagate-shift (ornament object) shift expression)))

(defmethod propagate-interpolated ((object NOTE)
old-begin new-begin old-end new-end expression)

(set-expression 
object expression
(interpolate old-begin (fetch-expression object expression) 

old-end new-begin new-end)))

(defmethod propagate-interpolated ((object PAUSE)
old-begin new-begin old-end new-end expression))
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. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
; propagate-truncating-shift

(defmethod propagate-truncating-shift : around 

(when shift (call-next-method)))

((object musical-object) 
shift end expression)

(defmethod propagate-truncating-shift ((object multilateral) shift end expression)
(loop for component in (components object)

do (propagate-truncating-shift component shift end expression)))

(defmethod propagate-truncating-shift ((object collateral) shift end expression) 
(propagate-shift (ornament object) shift expression)
(propagate-truncating-shift (main object) shift end expression))

(defmethod propagate-truncating-shift ( (object NOTE) shift end expression)
(set-expression object

expression
(save-min (save-+ (fetch-expression object expression) shift) end)))

(defmethod propagate-truncating-shift ((object PAUSE) shift end expression))

• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * x * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

; propagate-shift

(defmethod propagate-shift :around ((object musical-object) shift expression)
(when shift (call-next-method)) )

(defmethod propagate-shift ((object structured) shift expression) 
(loop for component in (components object)

do (propagate-shift component shift expression)))

(defmethod propagate-shift ((object basic) shift expression) 
(set-expression object

expression
(save-+ (fetch-expression object expression) shift)))

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * x X * * * * x * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

onset timing
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * x x x x * * * x x * x * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defclass expressive-timing (expression) ()) 
(defclass onset-timing (expressive-timing) ()) 
(defclass basic-asynchrony (onset-timing) ()) 
(defclass basic-tempo (onset-timing) ())

(defclass estimate-onset-timing (onset-timing estimate-mixin) ())

. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * H t x x x * * * x x * x x * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

; get expressive timing

(defmethod get-expression ((object NOTE) (expression onset-timing))
(perf-onset object))

(defmethod get-expression ((object S) (expression onset-timing))
(get-expression (first (components object)) expression))

(defmethod get-expression ((object P) (expression onset-timing))
(loop for component in (components object)

when (get-expression component expression) 
minimize it))

(defmethod get-expression ((object collateral) (expression onset-timing))
(get-expression (main object) expression))
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(defmethod set-expression ((object NOTE) (expression onset-timing) value)
(setf (perf-onset object) value))

(defmethod set-expression ((object S) (expression onset-timing) (section S-section))
(loop for new-expression in (expressions section)

for next-new-expression in (snoc (rest (expressions section))
(next-expression section)) 

for component in (components object) 
do (propagate-interpolated component

(fetch-expression component expression) 
new-expression
(fetch-expression (right component) expression)
next-new-expression
expression)))

(defmethod set-expression ( (object P) (expression onset-timing) (section P-section))
(loop for new-expression in (expressions section) 

for component in (components object) 
do (propagate-truncating-shift component

(save—  new-expression
(fetch-expression component expression)) 

(get-next-expression object expression) 
expression)))

(defmethod set-expression ((object ACCIA)
(expression onset-timing)
(section ACCIA-section))

(propagate-shift (ornament object)
(save—  (ornament-expression section)

(fetch-expression (ornament object) expression)) 
expression))

.****************************************************************************************

; set expressive timing

(defmethod set-expression

(propagate-interpolated

((object APPOG)
(expression onset-timing)
(section APPOG-section))
(ornament object)
(fetch-expression (ornament object) expression) 
(ornament-expression section)
(fetch-expression (right (ornament object)) expression) 
(main-expression section) 
expression))

.**************************************************************************************** 
; scale expressive-timing

(defmethod scale-expression ((section P-section)
(expression basic-asynchrony) 
factor)

(if (expressions section)
(make-new-section
section
(scale-P-expression-points (expressions section) factor)) 

section))

(defmethod scale-expression

(cond ((and (expressions 
(seale-S-section-]
( (rest (expressions 
(scale-S-section-> 

(t section)))

( (section S-section)
(expression basic-tempo) 
factor)

section) (next-expression section)) 
section factor)) 
section)) 
section factor))
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(defmethod scale-S-section-] ((section section) factor)
(make-new-section section (scale-S-expression-points

(snoc (score-times section)(score-offset section)) 
(snoc (expressions section) (next-expression section)) 
factor) ) )

(defmethod scale-S-section-> ((section section) 
(make-new-section section

(scale-S-expression-points

factor)

(score-times 
(expressions 
factor) ) )

section)
section)

(defmethod scale-expression ((section ACCIA-section)
(expression basic-asynchrony) factor)

(make-new-section section
(scale-ACCIA-points (main-expression section) 

(ornament-expression section) 
factor) ) )

(defmethod scale-expression ((section APPOG-section) (expression basic-tempo) factor) 
(make-new-section section

(scale-APPOG-points (ornament-expression section)
(main-expression section)
(next-expression section)
(score-ornament section)
(score-main section)
(score-offset section) 
factor)))

. ********************************************** ******************************************

(defun scale-P-expression-points (perf-onsets factor)
(let* ( (perf-begin (apply jf'min perf-onsets))

(perf-iois (mapcar #'(lambda (onset) (- onset perf-begin)) perf-onsets)) 
(raw-new-perf-iois (mapcar #' (lambda (perf) (scale-expression-lin perf factor))

perf-iois))
(shift (- (apply #'min raw-new-perf-iois)))
(new-perf-onsets (mapcar #'(lambda (ioi) (+ ioi shift perf-begin))

raw-new-perf-iois)))
new-perf-onsets))

(defun scale-S-expression-points (score-times perf-times factor)
(let* ((perf-iois (mapcar (rest perf-times) perf-times))

(score-iois (mapcar #'- (rest score-times) score-times))
(perf-begin (first perf-times))
(perf-end (last-element perf-times))
(raw-new-perf-iois (mapcar #'(lambda (score perf)

(scale-velocity score perf factor)) 
score-iois 
perf-iois))

(new-perf-iois (normalise raw-new-perf-iois (- perf-end perf-begin))) 
(new-perf-times (integrate new-perf-iois perf-begin))) 

new-perf-tiraes))

(defun scale-ACCIA-points (main-expression ornament-expression factor)
(let* ((expression-interval (- main-expression ornament-expression)) 

(new-expression-ornament (- main-expression
(scale-expression-lin expression-interval factor)))) 

(list new-expression-ornament main-expression)))
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(defun scale-APPOG-points (ornament-expression main-expression next-expression
score-ornament score-main score-end 

factor)
(let* ((score-ornament-ioi (- score-main score-ornament ))

(expression-ornament-ioi (- main-expression ornament-expression))
(score-main-ioi (- score-end score-main))
(expression-main-ioi (- next-expression main-expression))
(ornament-tempo (/ score-ornament-ioi expression-ornament-ioi))
(main-tempo (/ score-main-ioi expression-main-ioi))
(relative-tempo (/ ornament-tempo main-tempo))
(new-ornament-tempo (* main-tempo (expt relative-tempo factor))) 
(new-expression-ornament-ioi (/ score-ornament-ioi new-ornament-tempo)) 
(new-expression-ornament (- main-expression new-expression-ornament-ioi)))

(list new-expression-ornament main-expression next-expression)))

.**************************************************************************************** 
; expression scale methods

(defun scale-velocity (score perf factor)
"Exponential scaling"
(/ score (expt (/ score perf) factor)

) )

(defun scale-expression-lin (perf factor) 
"Linear scaling"
(* perf factor))

.*****************************************★*★******************************************** 
; stretch expressive-timing

(defmethod stretch-expression ((section S-section)
(old S-map)
(new S-map)
(expression onset-timing))

(make-new-section 
section
(loop for perf-time in (expressions section)

as (score-begin score-end) = (lookup-inverse 
collect (if (and score-begin score-end)

(interpolate (lookup-expression old 
perf-time
(lookup-expression old 
(lookup-expression new 
(lookup-expression new

old perf-time)

score-begin)

score-end) 
score-begin) 
score-end))

perf-time))))
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.★ **★ ********★ **★ ★ **★ **★ ★ *★ *★ ★ **★ ★ **★ ★ *★ ★ *★ ★ *★ ★ ★ ★ ★ *★ ★ ★ *★ ***★ **★ ★ ★ *★ ★ ★ *★ ★ ★ ★ ★ ★ ★ ★ *★ **★ ★ ***★ ★
; mixin to estimate expression in case of absence, by linear inter- or extrapolation 
•****************************************************************************************

(defclass estimate-mixin () () )

(defmethod fetch-expression ¡around ((object musical-object) (expression estimate-mixin)) 
(or (get-expression object expression)

(estimate-expression object expression)))

(defmethod fetch-expression ((object null) (expression expression)) nil)

(defmethod fetch-expression ((object musical-object) (expression expression)) 
(get-expression object expression))

(defmethod get-next-expression ¡around ((object musical-object)
(expression estimate-mixin))

(cond ((call-next-method))
((right object)
(estimate-expression (right object) expression)) 

(t
(estimate-next-expression object expression))))

(defmethod fetch-onset ¡around ((object musical-object) (expression estimate-mixin)) 
(fetch-expression object (find-expression 'estimate-onset-timing)))

(defmethod estimate-expression ((object musical-object) (expression expression)) 
(estimate-context (context-with-expression object expression #'left) 

object
(context-with-expression object expression #'right) 
expression 
t) )

(defmethod estimate-next-expression ( (object musical-object) (expression expression)) 
(let* ((left (context-with-expression object expression #'left))

(lefter (and left
(left left)
(context-with-expression (left left) expression #'left))))

(when (and left lefter)
(interpolate (score-onset lefter)

(score-offset object)
(score-onset left)
(get-expression lefter expression)
(get-expression left expression)))))

(defmethod estimate-context (left object right (expression expression) first-try) 
(cond ((and left right)

(interpolate (score-onset left)
(score-onset object)
(score-onset right)
(get-expression left expression)
(get-expression right expression)))

((and left (left left) first-try)
(estimate-context (context-with-expression (left left) expression #'left) 

object 
left
expression nil))

((and right (right right) first-try)
(estimate-context right 

object
(context-with-expression (right right) expression #'right) 
expression nil))

(t nil)))

(defmethod context-with-expression ((object musical-object)
(expression expression) direction)

(cond ((get-expression object expression) 
object)
((funcall direction object)
(context-with-expression (funcall direction object) expression direction)) 

(t nil)) )
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keeping articulation invariant: mixin for expressive timing expression 
****************************************************************************************

****************************************************************************************

(defclass 
(defclass 
(defclass 
(defclass

keep-articulation-mixin () () )
keep-overlap-articulation-mixin 
keep-duration-articulation-mixin 
keep-proportion-articulation-mixin

(keep-articulation-mixin)()) 
(keep-articulation-mixin)()) 
(keep-articulation-mixin)())

(defmethod articulation ((expression keep-overlap-articulation-mixin)) 
(find-expression 'basic-overlap-articulation))

(defmethod articulation ( (expression keep-duration-articulation-mixin)) 
(find-expression 'basic-duration-articulation))

(defmethod articulation ((expression keep-proportion-articulation-mixin)) 
(find-expression 'basic-proportion-articulation))

(defmethod set-map :around ((object musical-object)
map
(expression keep-articulation-mixin) 
ground)

(when map
(let* ((parts (find-parts object ground))

(articulation-collections 
(loop for part in parts

collect (get-notes-expression part (articulation expression)))))
(call-next-method)
(loop for part in parts

for collection in articulation-collections
do (set-notes-expression part (articulation expression) collection))))

object)

-****************************************>r-»r***********************x**********************
; resource for expression instances

(defvar xexpression-instances*)
(setf *expression-instances* nil)
(defvar Xuse-expression-resource*)
(setf *use-expression-resource* t)

(defun find-expression (class)
(or (and *use-expression-resource*

(cdr (assoc class *expression-instances*)))
(make-expression-instance class)))

(defun make-expression-instance (class)
(let ( (instance (make-instance class)))
(when *use-expression-resource*

(push (cons class instance) *expression-instances*)) 
instance))

* * * * * * * x x * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * x » r * * * * * * * * * * * * * * * * * * * * * * *

averaging expression
* * * * * * x x x * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * x x * * * * * * * * * * * * * * * * * * * * * * x

*********************

*********************

(defclass averaging-expression-mixin () ())

•* * * * * * * x # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * x * * * * * * * * * * * * * * * * * * * * * * * x x x * * * * * * * * * * * * * * * * * * * * *

; get averaging expression

(defmethod get-expression ((object multilateral) (expression averaging-expression-mixin)) 
(loop for component in (components object)

when (get-expression component expression) 
sum it into total
finally (return (/ total (length (components object))))))

(defmethod get-expression ((object collateral) (expression averaging-expression-mixin)) 
(get-expression (main object) expression))
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(defmethod set-expression ((object multilateral)
(expression averaging-expression-mixin)
(section multilateral-section))

(loop for component in (components object)
for new-expression in (expressions section) 
do (propagate-shift component

(save—  new-expression
(fetch-expression component expression)) 

expression)))

(defmethod set-expression ((object collateral)
(expression averaging-expression-mixin)
(section collateral-section))

(propagate-shift (ornament object)
(save—  (ornament-expression section)

(fetch-expression (ornament object) expression)) 
expression))

. ★ ★ * * ★ ★ * ★ * ★ ★ * * * * ★ * * ★ ★ * * ★ * * ★ ★ ★ ★ * ★ ★ ★ * * ★ * * ★ ★ * * * * ★ * * * ★ ★ * * * * ★ * ★ * * * * * * * ★ ★ * * * ★ ★ * * * * * • * * * * * ★ ★ * * * * *

; set averaging expression

•*********************************************************** ********■******■*★ **★ *****•*★ *•**
; scale averaging expression

(defmethod scale-expression ((section multilateral-section)
(expression averaging-expression-mixin) 
factor)

(let* ((mean-expression (mean (expressions section)))
(expression-deviations (mapcar #'(lambda(expression)

(- expression mean-expression)) 
(expressions section)))

(new-expressions
(mapcar #'(lambda (expression-deviation)

( + mean-expression
(scale-expression-lin expression-deviation factor))) 

expression-deviations))) 
(make-new-section section new-expressions)))

(defmethod scale-expression ( (section collateral-section)
(expression averaging-expression-mixin) 
factor)

(let* ((expression-deviation (- (ornament-expression section)
(main-expression section)))

(new-ornament-expression
(+ (main-expression section)

(scale-expression-lin expression-deviation factor))))
(make-new-section section

(list new-ornament-expression
(main-expression section)))))

-**************************************************************************************** 
; stretch averaging expression

(defmethod stretch-expression ((section S-section)
(old S-map)
(new S-map)
(expression averaging-expression-mixin))

(make-new-section
section
(loop for expression in (expressions section) 

for score-time in (score-times section)
as old-expression = (lookup-expression old score-time) 
as new-expression = (lookup-expression new score-time)
as stretched-expression = (if (and old-expression new-expression expression)

(+ expression (- new-expression old-expression)) 
expression)

collect stretched-expression) ) )
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ARTICULATION
*★ *★ ★ ***★ *★ *******★ ***★ ★ **★ ★ *★ ★ ★ ★ ★ **★ ***★ ★ ★ ★ *★ *★ ★ **★ *★ ★ *****★ **★ ***★ *★ ***★ *★ **★ ★ *★ ★ ★ *★ ★ ★

****************************************************************************************

(defclass
(defclass
(defclass
(defclass
(defclass

of fset-t lining 
articulation
basic-overlap-articulation
basic-duration-articulation
basic-proportion-articulation

(expressive-timing)())
(offset-timing averaging-expression-mixin)()) 
(articulation) () )
(articulation) () )
(articulation) ())

*****************************************************************************************

(defmethod get-expression ((object NOTE) (expression offset-timing))
(perf-offset object))

(defmethod fetch-onset ((object musical-object) (expression articulation))
(get-expression object (find-expression 'onset-timing)))

.****************************************************************************************
; get articulation

(defmethod get-expression ((object NOTE) (expression basic-overlap-articulation)) 
(when (right object)
(save—  (perf-offset object)

(fetch-onset (right object) expression))))

(defmethod get-expression ((object NOTE) (expression basic-duration-articulation)) 
(- (perf-offset object)

(fetch-onset object expression)))

(defmethod get-expression ((object NOTE) (expression basic-proportion-articulation))
(when (and (fetch-onset object expression)

(right object)
(fetch-onset (right object) expression))

(/ (- (perf-offset object)
(fetch-onset object expression))

(- (fetch-onset (right object) expression)
(fetch-onset object expression)))))

*****************************************************************************************
; set articulation

(defmethod set-expression ((object NOTE) (expression basic-overlap-articulation) value) 
(when (and (right object) (fetch-onset (right object) expression))
(setf (perf-offset object)

(max (fetch-onset object expression)
(+ (fetch-onset (right object) expression) 

value)))))

(defmethod set-expression ((object NOTE) (expression basic-duration-articulation) value) 
(setf (perf-offset object)

(+ (fetch-onset object expression)
(max 0 value))))

(defmethod set-expression ((object NOTE)
(expression basic-proportion-articulation) value)

(when (and (right object)(perf-onset (right object)))
(setf (perf-offset object)

(+ (fetch-onset object expression)
(* (- (fetch-onset (right object) expression)

(fetch-onset object expression))
(max 0 value))))))
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; empty expression (to recover only score times)
•★ ★ *★ ★ ★ *★ *★ *★ ★ ★ ★ ★ ★ ★ *★ ★ ★ ★ ★ **★ ★ ★ ★ ★ ★ *★ ★ ★ *★ ★ ★ ★ *★ ★ ★ ****★ *******★ *★ **■*★ ★ ★ ★ *★ *★ ★ ★ ★ ★ ★ ★ **★ ★ *★ *★ ★ **

(defclass empty-expression (expression) ())

(defmethod get-expression ((object musical-object) (expression empty-expression)) nil)

. ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ i t *

; mixing instantiable classes of expression
• ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ i t * * * * * * * * *

(defmacro class-mixer (Srest class-cocktail-pairs)
(list* 'progl t

(loop for tuples on class-cocktail-pairs by #'cdddr 
as name = (first tuples) 
as doc = (second tuples) 
as cocktail = (third tuples) 
collect ‘(defclass ,name ,cocktail ()

(:documentation ,doc)))))
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(class-mixer 
tempo " "
(basic-tempo)

asynchrony " "
(basic-asynchrony)

estimate-tempo " "
(basic-tempo estimate-mixin)

estimate-asynchrony " "
(basic-asynchrony estimate-mixin)

keep-overlap-articulation-tempo " "
(basic-tempo keep-overlap-articulation-mixin)

keep-duration-articulation-tempo " "
(basic-tempo keep-duration-articulation-mixin)

keep-proportion-articulation-tempo " "
(basic-tempo keep-proportion-articulation-mixin)

keep-overlap-articulation-estimate-tempo " "
(basic-tempo keep-overlap-articulation-mixin estimate-mixin) 

keep-duration-articulation-estimate-tempo " "
(basic-tempo keep-duration-articulation-mixin estimate-mixin) 

keep-proportion-articulation-estimate-tempo " "
(basic-tempo keep-proportion-articulation-mixin estimate-mixin)

keep-overlap-articulation-asynchrony " "
(basic-asynchrony keep-overlap-articulation-mixin)

keep-duration-articulation-asynchrony " "
(basic-asynchrony keep-duration-articulation-mixin)

keep-proportion-articulation-asynchrony " "
(basic-asynchrony keep-proportion-articulation-mixin)

keep-overlap-articulation-estimate-asynchrony " "
(basic-asynchrony keep-overlap-articulation-mixin estimate-mixin) 

keep-duration-articulation-estimate-asynchrony " "
(basic-asynchrony keep-duration-articulation-mixin estimate-mixin) 

keep-proportion-articulation-estimate-asynchrony " "
(basic-asynchrony keep-proportion-articulation-mixin estimate-mixin)

overlap-articulation " "
(basic-overlap-articulation)

duration-articulation " "
(basic-duration-articulation)

proportion-articulation " "
(basic-proportion-articulation)

estimate-overlap-articulation " "
(basic-overlap-articulation estimate-mixin)

estimate-duration-articulation " "
(basic-duration-articulation estimate-mixin)

estimate-proportion-articulation " " 
(basic-proportion-articulation estimate-mixin)]
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. ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ H r * * * * * * * * * * * * * * * * * * *

; EXTRACTING AND IMPOSING EXPRESSION MAPS OF MUSICAL OBJECTS USING EXPRESSION 
. ★ * ★ * ★ * * * * ★ ★ ★ ★ ★ ★ ★ ★ * ★ * * ★ * ★ * ★ ★ * ★ * * * * ★ * ★ * * ★ ★ ★ ★ ★ ★ * * ★ * * * ★ * * * * * * * * ★ ★ * * * * * ★ ★ ★ * * * * * ★ ★ * * ★ * * ★ * ★ * ★ * *  

• ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ H r

; extracting a expression map

(defmethod get-map ((object musical-object) expression ground)
(make-map (loop for part in (find-parts object ground)

collect (get-section part expression))))

(defmethod get-section ((object musical-object) expression)
(make-section (object-to-section object)

(snoc (mapcar #'score-onset (components object))
(score-offset object))

(snoc (mapcar #’(lambda (component)
(fetch-expression component expression))

(components object))
(get-next-expression object expression))))

.***************************************************************************************** 
; impose a expression map

(defmethod set-map ((object musical-objeer) map expression ground)
(loop for part in (find-parts object ground) 

for section in (sections map)
do (set-expression part expression section)) 

object)
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.**************************************************************************************** 
-**************************************************************************************** 
; OPERATIONS ON EXPRESSION MAPS
.**************************************************************************************** 
-**^************************************************************************************* 

; scale expression map

(defmethod scale-map ((map map) expression factor)
(with-filtered-null-expression #'(lambda (filtered-map)

(scale-filtered-map filtered-map expression factor)) 
map) )

(defmethod scale-filtered-map ((map map) expression factor)
(map-map #'(lambda (section)

(scale-expression section
expression
(get-parameter factor (score-onset section))))

map) )

.**************************************************************************************** 
; interpolate S-expression maps

(defmethod interpolate-maps ((mapl S-map) (map2 S-map) factor)
(map-map #'(lambda (section) (interpolate-section section

(filter-null-expression map2) 
factor))

mapl))

(defmethod interpolate-section ((section S-section) (map S-map) factor)
(make-new-section 
section
(loop for score-time in (score-times section) 

for expression in (expressions section) 
collect (in-between expression

(lookup-expression map score-time)
(get-parameter factor score-time)))))

(defmethod monotonise-map ((map S-map))
(map-map #'monotonise-section map))

(defmethod monotonise-section ( (section S-section))
(make-new-section 
section
(loop for expression in (expressions section) 

when expression 
maximize expression into state 
and collect state 
else collect nil)))

.**********************************************************************************»***** 
; get S-expression maps at sync points

(defmethod get-sync-map ((mapl S-map) (map2 S-map))
(map-map #' (lambda (section) (get-sync-section section map2)) mapl))

(defmethod. get-sync-section ((section S-section) (map S-map))
(make-new-section-from-pairs section 
(loop for score-time in (all-score-times section) 

for expression in (all-expressions section) 
as new-expression = (and expression

(lookup-defined-expression map score-time)) 
when new-expression collect (list score-time expression))))
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•★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ it*
; stretch expression map

(defmethod stretch-map ((map successive-map)
(old successive-map)
(new successive-map) 
expression)

(let ((filtered-map (filter-null-expression map))
(filtered-old (filter-null-expression old))
(filtered-new (filter-null-expression new))
(removed (filter-null-expression-out map)))

(unfilter-null-expression
(map-map
#'(lambda (section)

(stretch-expression section filtered-old filtered-new expression)) 
filtered-map) 

removed)))

***★ ★ ★ *****★ ★ *★ *★ ★ ★ *★ **•*★ ★ **★ **★ ★ ★ **★ **★ *★ ★ ★ ★ *★ ★ *****★ ★ ★ ****★ ****★ *****★ ★ *★ ★ ***********★  
★ ***★ ★ ★ ***★ **★ *★ ***★ *★ *★ *★ *★ *****★ ***★ *****★ *★ ■ ***★ *************★ **********★ ******★ ****** 

TIME-CHANGING PARAMETERS

*★ **★ *★ ****★ *****★ ★ **********★ ★ *★ ********★ ■*★ *★ ★ **********★ ****■*★ ***★ *■★ ***•*****★ **■*■***■*★ *

(defun get-parameter (factor score-time)
(if (numberp factor) 
factor
(funcall factor score-time)))

(defun make-ramp (xl x2 yl y2) ; as s-section ??
#*(lambda (x) (interpolate xl x x2 yl y2)))
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.★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ it*********************** 

. *****★ ★ *★ ★ ★ **★ ★ ★ ★ ★ ★ **★ ★ ★ ★ ★ ***★ ******★ *★ **★ ★ *★ *★ ★ ★ ****★ *★ **★ **★ ★ ★ ★ ***★ ***★ *★ ★ *****★ **★ *★ * 
; TRANSFORMATIONS ON MUSICAL OBJECTS
. ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ i t * * * * *

; transfer expression transformation

(defmethod transfer ((object musical-object) expression foreground background)
(let* ((foreground-map (get-map object expression foreground))

(background-map (get-map object (find-expression 1 empty-expression) background)) 
(new-background-map (interpolate-maps background-map foreground-map 1)))

(set-map object new-background-map expression background)) 
object)

•**************************************************************************************** 
; scale expression transformation

(defmethod scale ((object musical-object) expression foreground background factor) 
(let* ((old-foreground-map (get-map object expression foreground)) 

(new-foreground-map (when old-foreground-map
(scale-map old-foreground-map expression factor))) 

(when background
(get-map object expression background)))

(when old-background-map
(stretch-map old-background-map

old-foreground-map 
new-foreground-map 
expression))))

(old-background-map

(new-background-map

(when new-foreground-map
(set-map object new-foreground-map expression foreground)) 

(when new-background-map
(set-map object new-background-map expression background))) 

object)

- ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ « ★ »irKrxTrTr*******************************************

; scale intervoice expression transformation

(defmethod scale-intervoice ((object musical-object) expression
voicel voice2 factor ref)

(let* ((mapl (get-map object expression voicel))
(map2 (get-map object expression vcice2)))

(when (and mapl map2)
(let* ((original-sync-mapl (get-sync-map mapl map2)) 

(original-sync-map2 (get-sync-map map2 mapl))
(new-sync-mapl (monotonise-map (interpolate-maps

original-sync-mapl 
original-sync-map2 
(* ref (- 1 factor)))))

(new-sync-map2 (monotoni se-m.ap (interpolate-maps
original-sync-map2 
original-sync-mapl 
(* (- 1 ref) (- 1 factor)))))

(new-mapl

(new-map2

(set-map object 
(set-map object 

object))

(stretch-map
mapl original-sync-m.apl new-sync-mapl 
(stretch-map
map2 original-sync-map2 new-sync-map2 
new-mapl expression voicel) 
new-map2 expression voice2)))

expression)) 

expression)))
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****************************************************************************************
t***************************************************************************************

LISP UTILITIES
****************************************************************************************
****************************************************************************************

(defun last-element (list)
(first (last list)))

(defun snoc (list item)
(append list (list item)))

(defun mean (numbers)
(/ (apply #'+ numbers) (length numbers)))

(defun save-min (Srest list)
(let ((new-list (remove nil list)))

(and new-list (apply (t'min new-list))))

(defun save-max (Srest list)
(let ( (new-list (remove nil list)))
(and new-list (apply I'max new-list))))

(defun save—  (Srest list)
(and (notany #'null list)

(apply #'- list)))

(defun save-+ (Srest list)
(apply #'+ (remove nil list)))

(defun enforce-limits (minimum x maximum)
(max minimum (min x maximum)))

(defun integrate (list start)
(if (null list)
(list start)
(cons start

(integrate (rest list) (+ (first list) start)))))

(defun normalise (list dur)
(let ((factor (/ dur (apply #'+ list))))

(mapcar #'(lambda(item)(* factor item)) list)))

(defun interpolate (xl x x2 yl y2)
(cond ((eql yl y2) yD

<(eql xl x2) nil)
<(null x) nil )
((and xl (= x xl) ) yl)
t(and x2 (= x x2) ) y2)
<(and xl x2)
(in-between yl y2 (/

<t nil)))

(defun in-between (yl y2 a)
(cond ( (= a 0) yl)

((= a 1) y2)
( (and yl y2)
(+ yl (* a (- y2 yl)))

(t nil)))

x xl) (- x2 xl))))
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.**★★****★★★*★*★★★*★★****★*********★*****★**★★***★*★*★*****★★**★★*★★*******★****★★***★*★★ 

.*★★**★★★★★*★★★★*★★★★*★★★★★***★★★★★★★★★★**★***★*★*★★**★★★★★*★*★★★**★***★★*****★********** 
; EXAMPLES
.★ *★ *****★ ★ *★ **★ ★ *★ ★ ★ ★ ★ ★ *★ *★ *★ ★ **★ ****★ ***★ ★ ****★ ★ *★ *★ ***★ ★ ★ ***★ *★ ★ *★ ★ ★ *★ *★ ******★ ★ ★ ★ *★ ** 
.  ★ **★ *****★ **★ ★ ***★ ★ ★ *★ *★ ★ **★ **★ *★ ★ *★ ***********★ ★ *★ ★ **★ ****★ ★ ***************************
#1

(defun metre-example ()
(S 'bars 

(P 'bar
(S 'melody

(PAUSE :name 'pause : score-dur 1/4)
(NOTE :name 64 : score-dur 1/8

:perf-onset .30 :perf-offset 0.5 îdynamic .7))
(S 'accompaniment

(PAUSE :name 'pause :score-dur 3/8)))
(P 'bar

(S 'melody
(APPOG 'appoggiatura

(NOTE :name 64 : score-dur 1/8
:perf-onset .550 :perf-offset .680 îdynamic .75)

(NOTE :name 55 : score-dur 1/4
:perf-onset .675 :perf-offset 1.133 îdynamic .7))

(NOTE :name 55 : score-dur 1/8
:perf-onset 1.125 rperf-offset 1.475 îdynamic .7))

(S 'accompagniment
(NOTE îname 38 îscore-dur 1/8

îperf-onset .725 îperf-offset .90 îdynamic .6)
(NOTE îname 43 îscore-dur 1/8

îperf-onset .95 îperf-offset 1.2 îdynamic .6)
(NOTE îname 47 îscore-dur 1/8

îperf-onset 1.150 îperf-offset 1.475 îdynamic .7)))
(P 'bar

(S 'melody
(ACCIA 'acciaccatura

(NOTE îname 59 îscore-dur 1/16
îperf-onset 1.600 îperf-offset 1.7 îdynamic .65)

(NOTE îname 57 îscore-dur 1/8
îperf-onset 1.625 îperf-offset 1.880 îdynamic .7))

(NOTE marne 55 îscore-dur 1/8
îperf-onset 1.880 îperf-offset 2.256 îdynamic .6)

(NOTE marne 57 : score-dur 1/8
îperf-onset 2.256 îperf-offset 2.647 îdynamic .65))

(S 'accompagniment 
(P 'chord

(NOTE :nane 38 : score-dur 3/8 
:perf-onset 1.725 :perf-offset 2.500 î dynamic .7)

(NOTE :nase 42 : score-dur 3/8 
:perf-onset 1.775 :perf-offset 2.500 îdynamic . 65)

(NOTE : nace 4 8 : score-dur 3/8 
:perf-onset 1.800 :perf-offset 2.500 îdynamic -7))))

(P 'bar
(S 'melody

(NOTE marne 55 îscore-dur 3/8
îperf-onset 2.425 îperf-offset 4 îdynamic .7)) 

(S 'accompagniment 
(P 'chord

(NOTE :nair.e 43 : score-dur 3/8 
:perf-onset 2.500 :perf-offset 4 : dynamic .6)

(NOTE :name 47 : score-dur 3/8 
:perf-onset 2.550 :perf-offset 4 : dynamic .7)

(NOTE :name 50 :score-dur 3/8 
:perf-onset 2.580 :perf-offset 4..5 îdynamic .65))))))
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(defun background-example {)
(P 'fragment

(S 'melody
(PAUSE :name 'pause :score-dur 1/4)
(NOTE :name 64 :score-dur 1/8

:perf-onset 0.3 :perf-offset 0.5 rdynamic .7)
(APPOG 'appoggiatura

(NOTE : name 64 :score-dur 1/8
:perf-onset .550 :perf-offset .680 rdynamic .75) 

(NOTE rname 55 :score-dur 1/4
rperf-onset .675 rperf-offset 1.133 rdynamic .7)) 

(NOTE rname 55 rscore-dur 1/8
rperf-onset 1.125 rperf-offset 1.475 rdynamic .7)

(ACCIA 'acciaccatura
(NOTE rname 59 rscore-dur 1/16

rperf-onset 1.600 rperf-offset 1.700 rdynamic .65) 
(NOTE rname 57 rscore-dur 1/8

rperf-onset 1.625 rperf-offset 1.880 rdynamic .7)) 
(NOTE rname 55 rscore-dur 1/8

rperf-onset 1.880 rperf-offset 2.256 rdynamic .6)
(NOTE rname 57 rscore-dur 1/8

rperf-onset 2.256 rperf-offset 2.647 rdynamic .65)
(NOTE rname 55 rscore-dur 3/8

rperf-onset 2.425 rperf-offset 4 rdynamic .7))
(S 'accompagniment

(PAUSE rname 'pause rscore-dur 3/8)
(NOTE rname 38 rscore-dur 1/8

rperf-onset .725 rperf-offset .90 rdynamic .6)
(NOTE rname 43 rscore-dur 1/8

rperf-onset .950 rperf-offset 1.2 rdynamic .6)
(NOTE rname 47 rscore-dur 1/8

rperf-onset 1.150 rperf-offset 1.475 rdynamic .7)
(P 'chord

(P

(NOTE rname 38 rscore-dur 3/8
rperf-onset 1.725 rperf-offset 

(NOTE rname 42 rscore-dur 3/8
rperf-onset 1.775 rperf-offset 

(NOTE rname 48 rscore-dur 3/8
rperf-onset 1.800 rperf-offset

'chord
(NOTE rname 43 rscore-dur 3/8

rperf-onset 2.500 rperf-offset 
(NOTE rname 47 rscore-dur 3/8

rperf-onset 2.550 rperf-offset 
(NOTE rname 50 rscore-dur 3/8

rperf-onset 2.580 rperf-offset

2.500 rdynamic .7)

2.500 rdynamic .65)

2.500 rdynamic .7))

4 rdynamic .6)

4 rdynamic .7)

4.5 rdynamic .65)))))

;data at factor 2 in figure 13 
(scale (metre-example)

(find-expression 'tempo) (has-name? 'bars) nil
2 )

;data at factor 2 in figure 14 
(scale (metre-example)

(find-expression 'asynchrony) (has-name? 'bar) nil 
2 )

/data at factor 2 in figure 16a 
(scale (background-example)

(find-expression 'tempo) (has-name? 'melody) nil 
2)

/data at factor 2 in figure 16b 
(scale (background-example)

(find-expression 'tempo) (has-name? 'melody) (has-name? 'accompaniment)
2 )
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