

City, University of London Institutional Repository

Citation: Desain, P.W.M. (1991). Structure and expressive timing in music performance.

(Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/28495/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Structure and expressive timing
in music performance

Submitted by P.W.M. Desain
to the City University, London
as a thesis for the degree of Doctor of Philosophy
in Music
July, 1991

I certify that all the material in this thesis which is not my own work has been identified
and that no material is included for which a degree has been previously been conferred upon
me.

Contents

Preface

The Quantization Problem: Traditional and Connectionist Approaches.
Desain, P. & H. Honing. (1991). The Quantization Problem: Traditional and Connectionist
Approaches. In M. Balaban, K. Ebcioglu & O. Laske (Eds.) Musical Intelligence. Menlo Park:
The AAAI Press, (forthcoming).

Quantization of Musical Time: A Connectionist Approach.
Desain, P. & H. Honing. (1991). Quantization of Musical Time: A Connectionist Approach. In
P.M. Todd and D. G. Loy (Eds.) Music and Connectionism. Cambridge, Mass.: MIT Press,
(forthcoming).

A Connectionist and a Traditional AI Quantizer, Symbolic versus Sub-symbolic Models of
Rhythm Perception.

Desain, P. (1991). A Connectionist and a Traditional AI Quantizer, Symbolic versus Sub-
symbolic Models of Rhythm Perception. In I. Cross (Ed.) Proceedings of the 1990 Music and
the Cognitive Sciences Conference. London: Harwood Press, (forthcoming).

A (De)composable Theory of Rhythm Perception.
Desain, P. (forthcoming). A (De)composable Theory of Rhythm Perception. To appear in
Music Perception.

Lisp as a Second Language, Functional Aspects.
Desain, P. (1990). Lisp as a Second Language. Perspectives of New Music. Vol. 28(l):192-222.

Parsing the Parser, A Case Study in Programming Style.
Desain, P. (1991). Parsing the Parser, A Case Study in Programming Style. In Computers in
Music Research. Vol. 2 :39-90.

Autocorrelation and the Study of Musical Expression.
Desain, P. & S. de Vos. (1990). Autocorrelation and the Study of Musical Expression. In
Proceedings of the 1990 International Computer Music Conference. San Francisco: Computer
Music Association. 357-360.

Tempo Curves Considered Harmful.
Desain, P. and H. Honing, (forthcoming). Tempo curves considered harmful. To appear in
Contemporary Music Review.

Towards a Calculus for Expressive Timing.
Desain, P. and H. Honing, (forthcoming). Towards a Calculus for Expressive Timing.
Submitted to Psychology of Music.

Statement of co-authorship

The first two articles: "The Quantization Problem: Traditional and Connectionist
Approaches" and "Quantization of Musical Time: a Connectionist Approach" are
70% P. Desain's work. The last two papers: "Tempo Curves Considered Harmful"
and "Toward a Calculus for Expressive Timing" are 70% H. Honing's work and
30% P. Desain's work. For article number 7 "Autocorrelation and the Study of
Musical Time" Desain developed the initial ideas, and S. de Vos designed the
programs and the formula for partial autocorrelation, reflecting an equal
division of the work.

Signed Utrecht, 7 September 1991

Peter Desain

Abstract
The research presented is based on the study of music, the study of mind and the study of

machine. Most of it deals with the low level rhythm perception mechanisms that process

the perceived time intervals roughly corresponding to a note, and infer rhythmic

categories, a sense of tempo and local deviations thereof, and expectations for the events to

come.

This main thread of the work consists of the first four articles. They deal with

different methods of quantization, propose a connectionist model and compare it to a

symbolic one, and elaborate an expectancy measure that can be used as the basis for higher

level rhythm perception processes. Thus starting from the perspective of a technical tool

the work develops towards cognitive theories of human rhythm perception.

Then two papers follow a side-track that deals with AI programming in LISP.

They explain the programming style used in the various articles and apply it in a case

study to a large computational model.

The next three articles follow a main line that studies the expressive timing signal

extracted by quantization. The first of these tries a statistical approach, analyzing the

tempo variations in a performance using autocorrelation. The second, in the form of a

fictitious story, warns against a simplistic notion of tempo curves by showing that any

transformation or manipulation based on the implied characteristics of such a notion is

doomed to fail. The third concludes the thesis, linking expressive timing and structure in an

attempt to enable transformations of expression. The motivation for this last article is the

need for measurement instruments and tools that can cope with the complexity of

performance data and are much more sophisticated than tempo curves. It assumes an

intimate link between expression and structure - or rather the foundation of the concept of

expression on structural musical units.

1

Preface

The research to be presented is essentially multi-disciplinary. It is based on the study of

music, the study of mind and the study of machine. Nowadays each of these topics is linked

to the other in various research disciplines. In computer music, ways to design machines to

make music are explored. In music cognition, mental processes that perceive and apprehend

music are investigated. In artificial intelligence the mind is approached as a machine - and

machines are built to learn more about mind. Though the articles in this thesis focus each on

a narrow topic, the research in these various domains forms the ground work on which it

was possible to base this contribution.

In this preface I will show how the articles relate. I will also sketch the research

paradigm that underlies this work - and deal with some controversies within that

paradigm. Because the articles that form the heart of this thesis are written in quite

precise and technical terms, and intentionally so, I will feel free to explore some more

intuitive insights and to ventilate speculative ideas here. These thoughts, arising

sometimes in discussions with colleagues, motivated me in the present research and form

the inspiration for future work. I will first give some observations on the methodology that

is based on the relations between music, mind and machine and then focus on the subject of

this thesis: expression and structure in music.

Music

Music never functions in a vacuum: it is carried by pressure waves in air. It can studied as a

sound signal that is emitted by a performer, travels through the air and is picked up by the

listeners ears. This is the domain of acoustics, (the behaviour of the sound in space) and of

psycho-acoustics (the conversion of pressure waves into musical percepts in the ear and in

parts of the brain) which form complex fields of study in their own right. Music also never

functions in a social and cultural vacuum. The perception of music can be changed in subtle

ways by the visual impression of the performer, sociological factors, fashion, the listener's

associations and a multitude of other factors studied in sociology, anthropology and

ethnomusicology. All these presuppose the human ability to remember and recognize

musical fragments or even a specific style, composer or performer, high level tasks
I

investigated in psychology. Those musical styles and periods can also be explored in their

own right, independent of cognition, as is done in musicology.

In this thesis all these issues, however interesting, are ignored. And to name another severe

restriction: the examples used all stem from the western classical music.

But what is this research about, if so much is excluded? Most of it deals with the

early rhythm perception mechanisms that process the perceived time intervals roughly

corresponding to a note, and infer rhythmic categories, a sense of tempo and local deviations

1

thereof and expectations for the events to come. All the caveats were necessary because

even the most simple questions about the form, role and function of expressive timing and

tempo are quite difficult to tackle. That is also one of the reasons why the subject was

approached in a rather technical way - based on simple elapsed time intervals between

performed note onsets.

One can question whether with such restrictions to simple measurable quantities,

one can still study meaningful matters. Or does the scientific, technological approach kill

the magic of music? In a sense it does, and in a sense it doesn't. It does kill magic by refusing

to assume any direct communication of human emotion from performer to listener by

wizardry. But by assuming that, if such things are communicated at all, they must be

communicated via the music signal itself, it takes the unraveling of this signal as its

primary goal. Technology then becomes very helpful, and the discovery of subtle and

intricate patterns of musical performance, the almost unbelievable consistency in fraction-

of-second timing of human performers and the delicate ways in which musical structure is

communicated exposes a great wealth of wonder and magic. Besides, music always has been

filled with techniques and technology, aiming towards the mastery of it, be it in instrument

building, composition or control over the instrument in performance.

This reliance on objective measurements does not give researchers the right to

dismiss other realities. When a music teacher teaches a student how to play e.g. 'sadly'

certainly something is conveyed. And the fact that it might be difficult to discover this

sadness in the measured musical signal does not mean it is not there. More often than not

performers know very well what happens in the music even if they state it in unobservable

terms. It is the researcher's task to make sense out of it in objective ways. Once some progress

is made in that direction, what happens in music can still only be described - not

prescribed. More than once researchers have made serious mistakes in this matter - to the

point of circularity, like Manfred Clynes (1987) who claims that a performer who does not

play according to his theory of the 'composers pulse' does not play well.

Mind

The modern cognitive and computational approach to the musical mind differs quit a lot

from the older psychology of music, in that it develops formalized, testable models of

aspects of the musical mind instead of intuitive, metaphorical concepts. Nevertheless

there is an old metaphorical approach to the musical mind that has reappeared recently

and that is, in my opinion, dangerous and misleading. Before I present an alternative I will

explain this theory. It is based on an apparent similarity between musical and physical

motion. Helmholz (1885) was already quite explicit in his appreciation of the similarities,

and even attributes to them a central role in the evocation of emotion.

2

it becomes possible for motion in music to imitate the peculiar characteristics of motive

forces in space, that is, to form an image of the various impulses and forces which lie at the

root of motion. And on this as I believe, essentially depends the power of music to picture

emotion. (Helmholz, quoted in Todd, 1989)

But he still pictures music that chooses to resemble physical motion - not in any magical

way forced to do so. Todd starts to blur the distinctions involved:

For example, it seems intuitively appealing that by increasing the energy the maximum

velocity or tempo increases. Every musician knows that the faster the tempo the more work

they have to do. It may be that the 'energy' is also salient to the listener which could make

a contribution to affect. (Todd, 1989 p 156)

However appealing these similarity-based theories might be to naive bystanders, there is

no evidence whatsoever that a walnut is good for the brain because it looks like one (to

name a theory built on the same foundations). I do not object to the testing of the possible use

of square root functions to model musical ritards, or the use of constant acceleration of

musical velocity in modelling expressive timing - just because both ideas happen to describe

physics of falling objects and constant gravity as well. However, I do object to the idea that

physical motion is more than a mere metaphor in these matters. Some authors move from

the simplicity of falling physical bodies to moving bodies of human performance and

explain the similarity as embodiment of musical thought, and thus propose a healthy

alternative to the wholly mentalistic approach AI researchers tend to take. Furthermore

this approach is again open for scientific inquiry (Clarke, forthcoming; Davidson, 1991)

and my criticism is not aimed in that direction.

To understand my objections to the reliance on metaphor it is important to note that

in the search for simple similarities, alternative explanations of the phenomena are easily

overlooked, as is shown by some studies of the final ritard. This large deceleration at the

end of a piece is often observed to have a certain form (a square root curve) and it can indeed

be modelled as the speed of a mass under a constant deceleration, a constant braking force

(Kronman & Sundberg, 1987).

However, there is another explanation possible that is based on the structure of the

music and the architecture of temporal perception itself. For a large tempo change such as a

final ritard to be still perceivable as a slowing down, it should not slow down too fast,

otherwise the rhythmic categories will not be communicated intact and tempo cannot be

perceived. Any quantizing and tempo tracking model like the models proposed by Longuet-

Higgins (1976) and Desain & Honing (1989) will predict a form of maximal deceleration

that can still be followed. It might be that a good model can indeed predict - by its

3

limitations - the limits of acceptable rubato and final ritard. Because of the nature of these

models they will also predict that a) these limits are different for various rhythmic

structures and b) the slowing down might well be required to work in stepwise fashion -

because the models propose separate tempo tracking mechanisms on different levels of the

metrical hierarchy. Both predictions are consistent with the findings that music from

different composers or style periods require different final ritards to work well musically,

and some evidence that in final ritards there is indeed a tendency to decrease tempo in a

stepwise manner (Clynes, 1987). Such observations immediately show the importance of

investigating this possible explanation further. If it can be shown to hold, it will be a much

more attractive explanation than the physical motion theory because it explains

properties of good music performance directly from the musical material and from the

perceptual processes themselves. I am convinced that music is based on, plays around with,

and makes use of the architecture of our perceptual systems much more than that it imitates

our physical surroundings.

Machine

Artificial Intelligence research (AI for short) has always had two faces, a technological

and a cognitive one. The first solely strives to design technical systems (machines) that

behave intelligently and the latter seeks to make testable, formal models of intelligent

human behaviour. My own orientation towards Artificial Intelligence in this thesis is

mainly motivated by the possible understanding of human cognition that it might bring.

Curiosity about the musical mind is the main driving force and practical applications e.g.

for music production that may come out of the research are considered a by-product. The

occurrence of the word system or model in publications gives one a fair guess about the

approach a researcher takes. A problem arises when the terms (and the orientations) are

confused: a successful system only has to behave up to input-output specification but the

internal mechanisms of a successful model are supposed to tell us something about reality. It

may not be a problem in the initial stages of the research that this issue is sometimes

unclear, but finally, if one is to learn something about human intelligence, it must be made

explicit how the model relates to the phenomenon modelled. This testing of artificial

intelligence models, or even stating the models in ways that generate testable predictions,

is a field that is barely developed. There is a huge gap between experimental psychology,

with its sophisticated tools for testing simple processes, and cognitive science which has

hardly any tools for testing their more complex models. Even the way in which

computational models can be described such that it is clear what it is that is modelled, and

what is simple implementation detail, is problematic, especially since programming

languages do not support the specification of those issues. However, an adequate

programming style, a clear description of these issues and the publication of the program in

4

the form of a micro version helps in determining the value of an algorithm as a model for a

cognitive function. Artificial Intelligence at its worst can be seen in articles that make

anthropomorphic claims about unpublished programs. The laborious so-called rational

reconstruction of those programs by others to check the claims is then the only remaining

route to scientific progress (Ritchie & Hanna, 1990).

Artificial Intelligence is not a very homogeneous domain. At present there is

within AI a clash of two competing paradigms: Connectionism and the Symbolic

paradigm. Since in my own research the use of connectionist and/or symbolic

representations is a recurrent theme, it is good to dwell on both a bit more. The so

called Good Old Fashioned Artificial Intelligence, (i.e. the symbolic approach) has

established itself firmly as a research methodology in the past decades. The

methods and tools it uses are symbolic, highly structured representations of domain

knowledge and transformations of these representations by means of formally stated

rules. At the heart of this methodology is the use of symbols that have no content in

themselves: information processing is of a syntactic nature. It is easy to misinterpret

the behaviour of such a system since the symbols often carry suggestive name tags

that may seduce one into attributing more sense, more intelligence, to the program

than is actually implemented in the rules themselves. One has to realise that some of

these clever programs actually do not achieve very much, being based on a very

smartly developed knowledge representation that solved, or evaded the problem

beforehand. Any extension of these systems, however small, or any attempt to

generalize the results is doomed to fail because the knowledge representation is

designed just to give ad-hoc solutions to a small set of problems. I feel that this

approach carries the symbolic approach to its ridiculous extreme.

However, other kinds of symbolic AI have contributed more or less

generalizable theories to the field, and have proposed models of human information

processing. These rule-based theories can function as abstract formal descriptions of

aspects of cognition. Some authors even go beyond that and claim that mental

processes are symbolic operations performed by mental representations of rules.

Until the connectionist paradigm emerged there was no real alternative to

this view. In the new paradigm the departure from a reliance on the explicit mental

representation of rules is central, and the approach to cognition is fundamentally

different. Connectionism opens the possibility of defining models which have

characteristics that are hard to achieve in traditional A I , in particular robustness,

flexibility and the possibility of learning. The connectionist boom has produced lots

of interesting work , although many researchers have lost their critical attitude

impressed as they were by the good performance of some prototypical models. This

has resulted in thousands of papers presenting more and more examples of problems

5

that could be learned by a neural net, the proof being the simulation of such. Levelt,

bothered by this waste of effort, concluded that connectionist models are, mutatis

mutandis, as handy as a city map on a 1:1 scale (Levelt, 1989). Indeed more study is

needed of the limitations of these models. A connectionist model that 'works' well,

constitutes in itself no scientific progress, if questions like the scalability to larger

problems and the dependency of the model on a specific input representation, cannot

be answered.

The theoretical observation that a connectionist system can simulate any

symbolic computation machine (is Turing machine equivalent) and vice versa tends to

dismiss the relation between the paradigms as a non-issue. I think that the language

in which problems are stated and the level at which research is conducted is of major

importance - each language obscures some matters while clarifying others. A related

idea about the relation between the paradigms is the presentation of Connectionism

as an implementation level theory, which can coexist with a more abstract symbolic

theory on a higher level. This view is often associated with the claim that

connectionism is superior to the symbolic approach because the computational units

resemble cells found in the brain (the term 'neural networks' stems from that

postulated isomorphism). This has to be rejected firmly. The simple computational

method used in connectionism is miles away from true biological modelling and the

choosen computational level of abstraction can never be a ground for superiority.

Against the background of this debate within AI and cognitive science on the

role of connectionist models, some researchers have concentrated on a technical

examination of the weak and strong points of both symbolic and neuro-computing, to be

able to combine them in so-called hybrid systems. They claim that because symbolic

computing is best suited for higher level functions such as reasoning and planning, and

neuro-computing is more applicable for low-level, perceptual and classification tasks,

systems containing modules from both paradigms should be devised. This approach is

not free of problems, to put it mildly. At its worst it can be described as: 'we do not

understand how neural nets work, we do not know how rule-based systems work, let's

combine them and see what happens'. Such a pragmatic approach can only obscure

the real issues.

There is, however, another way to deal with the challenge of connectionist

work. By comparing both paradigms one quickly discovers that the formalisms used

are often of such an idiosyncratic nature that it is impossible to make claims about the

behaviour of models from both paradigms. Concentrating on general abstract

descriptions of behaviour then becomes a very fruitful activity. It yields new ways to

look at the connectionist and the symbolic models and to characterize them further - a

positive contribution in itself. For example, consider the benefits of describing the

input-, state- and solution spaces, a trivial exercise for connectionist systems. In

symbolic systems these constructs often remain hidden in the program code and are not

made explicit in the articles, but they can help enormously in characterizing such

systems. These analyses also yield ways to describe connectionist systems on a more

general level than simulation runs can. One such point that is often neglected is the

representation:

[for most aspects of connectionist modelling] there exists considerable formal

literature analyzing the problem and offering solutions. There is one glaring

exception.: the representation problem. This is a crucial component, for a poor

representation will often doom the model to failure, and an excessively generous

representation may essentially solve the problem in advance. Representation is

particularly critical to understanding the relation between connectionist and

symbolic computation, for the representation often embodies most o f the relation

between a symbolically characterized problem (e.g. a linguistic task) and a

connectionist solution. (Smolensky, 1990)

In representation issues the symbolic paradigm has, because of its very nature, much

to offer to connectionism. I think a combined study of both paradigms might overcome

the controversy. In the end the differences may turn out not to be that essential. One

example supporting this view is the research that showed that a certain kind of

network can still support modularity and recursive (de)composition of constructs

(Pollack, 1990) - a central issue in symbolic AI. However, at the moment we are still

confronted with a new and hardly understood paradigm.

I expect further progress from the elaboration of continuous knowledge

representations, the most eye catching feature of connectionism in comparison to the

symbolic paradigm that uses discrete concepts (be it memory locations, categories,

inference operations or production rules). Continuous learning curves are a sine qua non

of multi-layer learning algorithms. And the behaviour of neural nets has been

described, with great benefit, as continuous over time, making the whole apparatus of

partial differential equations applicable. Simulation of such networks on computers

is done by applying time-sampling as an approximation to the time-continuous change

of state in a network. It might prove beneficial to carry this idea to its extreme. It is

strange indeed that the discreteness of the individual network cells has not yet been

considered to be a space-sampling of a basically space-continuous computing model.

Instead of a vector space, the input, output and state space of the system then become

function spaces. It might even be possible to consider the cell layers of a network as

space-sampled, continuous, two dimensional computation. Instead of a network we can

7

then metaphorically talk about a lump of 'computing material'. It might well be that

the analytical methods available for systems of differential equations for continuous

functions, and sampling theory, can thus again be applied to connectionist systems,

and produces results for unanswered questions like the number of hidden layers or the

number of cells in those layers needed for a certain task.

This finalizes some methodological considerations. I hope to have sketched some of

the ways in which the concepts of music, mind and machines interrelate and how these

relations can be a fruitful basis for research. After these detours we now have to home in on

the topics of this thesis: expression and structure in music.

expression

Perhaps contrary to common usage, the word expression in this thesis does not denote what

music expresses to the individual listener. All the links to musical affect, to emotion and

even to a esthetics are considered too complex to tackle before more mundane issues are

understood. Expression is assumed to be a syntactical concept - dealing only with the form of

the music. In the first stages of the research expression was defined as the pattern of

deviations of attributes of performed notes from their value notated in a score. Everything

added by the performer to the score, all deviations from a strict mechanical performance,

was termed expression. This definition, however useful in the initial study, soon lost its

attractiveness. In general listeners can appreciate expression in music performance without

knowing the score and a full reconstruction of the score in the form of a mental

representation is impossible. Take for instance the notion of the loudness of notes. Should a

listener be required to fully reconstruct the dynamic markings in the score before it is

possible to appreciate the deviations from this norm as expressive information added by

the performer? Such a nonsensical conjecture indeed follows from a rigid definition of

expression as deviation from the score. Seashore was a bit more careful (albeit a bit more

vague too) when he defined expression, independent of a score, as:

artistic deviation from the fixed and regular: from rigid pitch, uniform intensity, fixed

rhythm, pure tone . (Seashore, 1938, quoted in Todd, 1989)

It is possible to find more elaborate ways of defining expression on the basis of performance

information only. In later stages of the research this was achieved by basing expression on

the notion of structural units, using this working definition: expression within a unit is the

pattern of deviations of its parts with respect to the norm set by the unit itself. Take e.g. a

metrical hierarchy of bars and beats. The expressive tempo within a bar can be defined as

the pattern of deviations of the tempo of each beat from the tempo of the bar. Or take the

loudness of the individual notes of a chord. The dynamic expression within a chord can be

8

defined as the set of deviations of the loudness of the individual notes from the mean

loudness of the chord. Using this definition, expression can be extracted from the

performance data itself, taking more global measurements as reference for local ones, based

on the concept of known units. Thus the structural description of the piece becomes central,

both to establish the units which will act as a reference and to determine the sub-units that

will act as atomic parts whose internal details will be ignored. A similar definition works

well for the expression carried by the difference of two voices or formed by the difference

between e.g. a theme and a variation. Expression between two units is defined as the

pattern of deviations of their parts with respect to a norm set by both units themselves. The

norm could be some kind of average, or even one of the units themselves . E.g. the timing of

the accompaniment could be taken as the reference when considering the expression carried

by the timing lead the melody voice has over it in ensemble timing. In taking on this

intimate link between expression and structure - or rather the foundation of the concept of

expression on structural units - the nature of the structural description becomes a crucial

concern.

Structure

Structure in music is not a simple concept, because of the multitude of structural descriptions

in use. Let us start with hierarchical structures like metre, rhythmic grouping and phrasing

in which the structural links are part-of relations. These overlaying structural analyses,

concerned with different aspects of the piece, may violate each others boundaries - like a

phrase ending in the middle of a measure. There can be ambiguity: multiple mutually

exclusive analyses or interpretations of the same aspects of a piece. There may be local

violation of otherwise hierarchical structure, like two overlapping phrases (a situation

seldom encountered in linguistics). The need for local structural relations like grace notes

and other ornamentations is obvious too. These can be described by a part hierarchy, but

there are also structural relations that cannot be treated likewise, like symmetrical

associations between recurrent motives. Besides these collections of musical events, and the

simple relations between them, we need formalization of the various rhythmic, melodic

and harmonic roles that can be ascribed to such collections. I think that the complexity

sketched mirrors the complexity found in the expressive signal itself, since the various

structures are the source of expression and are conveyed to the listener by that means. A full

theory of expression should be able to link these various structural descriptions to the

components of the expressive signal. This thesis can only offer a small contribution to this

long-term aim.

9

Contents of the thesis

Because this thesis consists of a number of published articles, that have to be more or less

independent, some overlapis unavoidable. Each article has several links to the others

which makes it quite difficult to impose a linear order. The present ordering highlights

two main lines, and a side track. The first main thread consist of the first four articles. It

deals with different methods of quantization, proposes a connectionist model and compares

it to a symbolic one, and elaborates an expectancy measure that can be used as base for

higher level rhythm perception processes. Then two papers follow a side-track that deals

with AI programming in LISP. They explain the programming style used in the in the

various articles. The next three articles follow a main line that studies the expressive

timing signal extracted by quantization. The first one tries a statistical approach. The

second warns against a simplistic notion of tempo curves. The third concludes the thesis,

linking timing and known structure in an attempt to enable transformations of expression.

Details of publication can be found in the contents.

The Quantization Problem: Traditional and Connectionist Approaches

This paper constitutes a first attempt to understand quantization and the research done in

this field. It still approaches the problem from the perspective of a technical tool. It was

presented at the AI and Music Workshop in 1988 in Cologne and will appear in a book on

Musical Intelligence. Traditional and AI methods for quantization are explained and

compared. Simplified algorithms of the described methods are included as micro versions.

Quantization of Musical Time: A Connectionist Approach

In this paper a connectionist model is elaborated that converges from performed time

intervals to an equilibrium state in which the score durations can be read out. It was

published in the Computer Music Journal and will appear in a book on neural networks and

music. For this book an addendum was written containing a mathematical description of the

network plus some material from a presentation at the International Computer Music

Conference in 1989 in Columbus, Ohio.

A Connectionist and a Traditional AI Quantizer. Symbolic versus Sub-svmbolic Models of

Rhythm Perception

Two incompatible quantization models, namely the Longuet-Higgens Musical Parser and

the Desain & Honing connectionist quantizer, were studied further in order to find ways to

compare and evaluate them. Different perspectives to describe their behaviour were

developed. This paper was presented partly at the Horssen Workshop on Rhythm

Perception and Production in 1990 and in full at the Music Cognition Conference in

Cambridge later that year. It will appear in the proceedings thereof.

A (De)composable Theory of Rhythm Perception

Out of the study of the two incompatible models arose a measure of the expectancy of events

projected into the future by a complex temporal sequence. It can be decomposed into basic

expectancy components projected by each time interval implicit in the sequence. A

preliminary formulation of these basic curves is proposed and the (de)composition method

is stated in a formalized, mathematical way. The resulting expectancy of complex

temporal patterns is believed to be useful to model topics such as clock and meter

inducement, rhythmicity, and the perceived similarity of temporal sequences. This

theoretical paper will appear in Music Perception.

Lisp as a Second Language, Functional Aspects

Looking at the LISP programs emerging from the computer music community, the old

imperative style can often be seen between the lines of LISP code. It is a pity to neglect the

elegant ways of expressing algorithms in LISP, and doing so will often result in

disappointing performance and maintainability. In this article the functional style of

programming is explained and illustrated with examples from computer music. It appeared

in Perspectives of New Music and was used as material for several programming workshops

for composers.

Parsing the Parser, a Case Study in Programming Style

This paper takes, as an example, the musical parser designed and described by Longuet-

Higgins and re-implements it in a functional programming style in LISP. This yields a micro

version that makes the theoretical issues stand out more clearly. It was published in

Computers in Music Research.

Autocorrelation and the Study of Musical Expression

In this paper a method was designed to analyze the tempo variations in a performance

using autocorrelation. Peaks in the autocorrelation function are interpreted as periods of

repeated components in the musical structure. Partial autocorrelation is used to remove the

multiples of a fundamental period. It was presented at the International Computer Music

Conference in Glasgow in 1990 and appeared in the proceedings thereof.

Tempo Curves Considered Harmful

This fictitious story shows that we have to be aware of the notion of a Tempo Curve,

because it lulls its users into the false impression that it has a musical and psychological

reality. There is no abstract tempo curve in music, nor is there a mental tempo curve in the

head of a performer or listener. It shows that any transformation or manipulation based on

the implied characteristics of such a notion is doomed to fail. It will appear in

Contemporary Music Review and it will be presented at the International Computer Music

Conference of 1991 in Montreal.

Towards a Calculus for Expressive Timing

This paper is an attempt to identify ways in which structural knowledge can be used to

enable transformations of musical performances that make musical sense. The motivation

for this work is the need for measurement instruments and tools that can cope with the

complexity of performance data and are much more sophisticated than tempo curves. This

paper is submitted to Psychology of Music.

Communication

The working title of this thesis was 'The Communication of Structure by Expressive Timing

in Music Performance’. The link between structure and expression was indeed one of the basic

hypotheses underlying most of the work. However, I have not yet been able to deduce

effective procedures to generate timing from structure or by which a listener can infer

structure from timing . This was partly because a lot of ground work and tool building had to

be done first. That work is reported on in this thesis. The recent work of Longuet-Higgins &

Lisle (1989), Todd (1989) and Drake & Palmer (in preparation) indicate that there might

be ways in which the communication of structure by expressive timing can be formalized.

However, no clear picture that deals in a unified way with all kinds of structure (metrical,

rhythmic, phrase, local surface etc.) has emerged yet. I hope that my work has produced

results that may in the long run contribute to the understanding of that issue.

Acknowledgements

Besides the colleagues that helped me in the various stages of the research, and who are

credited in the appropriate articles, I want to express my gratitude to Eric Clarke. He did a

wonderful job, as a supervisor of this thesis, a close collaborator and last but not least as a

friend. Henkjan Honing has been a great companion, from our first wavering attempts at a

cooperative composition project in 1984 to the present solid patterns of collaboration in

research. At Nijmegen University, Gerard Kempen was the first to put me on the track of AI

research. At the Utrecht School of the Arts, Johan de Biggelaar and Ton Hokken shared

the vision of a Dutch research institute for AI, Art and Cognition, which proved to be a

mirage. I am thankful for their effort in the quest for research facilities during those years.

I would like to thank Dirk-Jan Povel, for supporting my future work in the field of music

cognition.

Copying

I grant powers of discretion to the University Librarian to allow this thesis to be copied in

whole or in part without further reference to me. This permission covers only single copies

made for study purposes, subject to normal conditions of acknowledgement.

13

References
Chandrasekaran, B. (1990) What Kind of Information Processing is Intelligence? A
Perspective on AI Paradigms and a Proposal. In T. Partridge and Y.Wilks (Eds.), The
foundations of artificial intelligence, a sourcebook. Cambridge: Cambridge University
Press.

Clarke, E.F. (forthcoming) Generativity, Mimesis and the Human Body in Music
Performance In I. Cross (Ed.) Proceedings of the 1990 Music and the Cognitive Sciences
Conference. London: Harwood Press.

Clynes, M. (1987) What can a musician learn about music performance from newly
discovered microstructure principles (PM and PAS)? in A. Gabrielson(Ed-) Action and
Perception in Rhythm and Music. Royal Swedish Academy of Music, No. 55.

Davidson, J. (1991) The Perception of Expressive Movement in Music Performance. Ph.D.
thesis, City University, London.

Desain, P. and H. Honing (1989) Quantization of Musical Time: A Connectionist Approach.
This volume.

Desain, P. (1991). A Connectionist and a Traditional AI Quantizer, Symbolic versus Sub-
symbolic Models of Rhythm Perception. This volume.

Drake, C & C. Palmer (in preparation) Recovering Structure from Expression in Music
Performance.

Gutknecht,M.,R. Pfeifer (1990) An Approach to Integrating Expert Systems with
Connectionist networks. AICOM vol 3(3).

Kronman, U and J. Sundberg Is the Musical Retard an Allusion to Physical Motion? In A.
Gabrielson(Ed-) Action and Perception in Rhythm and Music. Royal Swedish Academy of
Music, No. 55.

Longuet-Higgins, H.C. (1976) The Perception of Melodies. Nature 263.

Longuet-Higgins, H.C. & E.R. Lisle (1989) Modeling Music Cognition. Contemporary Music
Review 3(1).

Levelt, W.J.M. (1989) De Connectionistische Mode, Symbolische en Subsymbolische
modellen van Menselijk Gedrag. In C.Brown, P.Hagoort, T. Meijering (Eds.) Vensters op de
Geest, Cognitie op het Snijvlak van Filosofie en Psychologie. Utrecht: Stichting Grafiet.

Pollack, J.B. (1990) Recursive Distributed Representations. Artificial Intelligence 46.

Ritchie, C.D. & F.K. Hanna (1990) AM: A Case Study in AI Methodology. In T. Partridge
and Y.Wilks (Eds.), The foundations of artificial intelligence, a sourcebook. Cambridge:
Cambridge University Press.

Smolensky, P (1990) Tensor Product Variable Binding and the Representation of Symbolic
Structures in Connectionist Systems. Artificial Intelligence 46.

Todd, N.P. (1989) Computational Theory and Implementation of an Abstract Expression
System: a Contribution to Computational Psychomusicology. PhD thesis, University of
Exeter.

Touretzky, D.S. (1990) BolzCons: Dynamic symbol structures in a connectionist network.
Artificial Intelligence 46.

t h e Qu a n t i z a t i o n p r o b l e m :
TRADITIONAL AND CONNECTIONIST APPROACHES

(revised versionl)

Peter Desain & Henkjan Honing

Center for Knowledge Technology Music Department
Utrecht School of the Arts City University
Lange Viestraat 2b Northampton Square
NL-3511 BK Utrecht UK-London EC1V OHB

A b s t r a c t

Quantization separates continuous time fluctuations from the discrete metrical

time in performance of music. Traditional and AI methods for quantization are

explained and compared. A connectionist network of interacting cells is

proposed, which directs the data of rhythmic performance towards an

equilibrium state representing a metrical score. This model seems to lack some

of the drawbacks of the older methods. The algorithms of the described

methods are included as small Common Lisp programs.

KEYWORDS

Quantization, rhythm perception, connectionism, expressive timing.

1. THE QUANTIZATION PROBLEM

Musical time can be considered as the product of two time scales: the discrete time intervals of a

metrical structure, and the continuous time scales of tempo changes and expressive timing

(Clarke 1987). In the notation of music both kinds are present, though the notation of continuous

time is less developed than that of metric time (often just a word like rubato or accelerando is

notated in the score). In the experimental literature, different ways in which a musician can

add continuous timing changes to the metrical score have been identified. There are systematic

■f This paper was presented at the first AI and Music Workshop, St. Augustin, Germany in September 1988. It
has been updated with references to new work and some material from (Desain & Honing 1991). Micro
versions of the main algorithms were added as well.

The Quantization Problem 1

changes in certain rhythmic forms e.g. shortening triplets (Vos & Handel 1987) and consistent

time asynchronies between voices in ensemble playing (Rasch 1979). Deliberate departures from

metricality such as rubato seem to be used to emphasize musical structure, as exemplified in the

phrase-final lengthening principal formalized by Todd (1985). Alongside these effects, which

are collectively called expressive timing, are non-voluntary effects, such as random timing

errors caused by the limits in the accuracy of the motor system (Shaffer 1981), and errors in

mental time-keeping processes (Vorberg & Hambuch 1978). These non-intended effects are

generally rather small, in the order of 10 milliseconds.

To make sense of most musics, it is necessary to separate the discrete and continuous components

of musical time. We will call this process quantization, although the term is generally used to

reflect only the extraction of a metrical score from a performance. This quantization process

transforms incoming time intervals between subsequent note onsets, i.e. inter-onset intervals,

into discrete note durations (as can be found in the score) and a tempo factor that reflects the

deviation from this exact duration. It is solely based on inter-onset intervals: any other

information like note offsets, dynamics and pitch is ignored. The output of the quantization

process can serve as input for processes extracting higher level structural descriptions like

meter.

Apart from its importance for cognitive modelling, a good theory of quantization has technical

applications. It is one of the bottle-necks in the automatic transcription of performed music, and

is also important for compositions with a real-time interactive component where the computer

improvises or interacts with a live performer. It is indispensable in the study of expressive

timing of music for which no score exists.

2. TRADITIONAL METHODS

The quantization problem has been approached from different directions, the resulting

solutions ranging from naive and inept to elegant and plausible. We will describe here first the

methods that construct the solution in a straightforward numerical way.

2.1. Inter-onset quantization

This simple method rounds the inter-onset intervals of the notes to the nearest note duration on

a scale containing all multiples of a smallest duration (time-grid unit or quantum). In Figure 1

an architecture for this method with standard signal processing modules is shown. Note that

this method runs in event-time: one cycle of processing is done for each new incoming inter-onset

interval, resulting in a quantized interval. The module divides the input by the smallest

allowed value and rounds it to the nearest integer. It also yields a relative error in proportion

to the quantum (between -0.5 and 0.5). When given a list of intervals and a value for the

The Quantization Problem 2

quantum the method will produce a list of quantized intervals with respect to this quantum.

Given the inter-onset intervals of the rhythm of Figure 2, and a quantum of 100 ms (32th triplet

at tempo 50), it will result in the list of multiples of this quantum (12 6 3 3 4 3 4 6 6 3 3 3 312)

which'does not represent the right quantization: (12 6 3 3 4 4 4 6 6 3 3 3 3 12). This method, when

it makes a round-off error, will shift the absolute onset of all subsequent notes. When used in

polyphonic music, an error in one stream of notes will permanently de-synchronize it with

respect to the other streams.

Figure 1. Inter-onset quantizer.

2.2. Onset quantization

At first sight, quantizing the absolute onsets of the notes themselves, instead of the inter-onset

intervals, will be a solution to the de-synchronization problem. This method simply maps each

onset-time to the nearest point in a fixed grid with a resolution equal to the quantum. Small but

consistent deviations in the inter-onset intervals, as occur in slight tempo fluctuations, will

add-up and produce an onset-time deviation that is the sum of all previous interval deviations.

So this method is more sensitive to small tempo fluctuations then inter-onset quantization.

Occasionally an onset-time will topple over the boundary between two grid points and the note

will not be quantized correctly, but the quantized data will not be permanently de-

synchronized.

Commercially available sequencer and transcription software packages use this simple onset

quantization method. They cannot notate a non-trivial piece of music without errors (see Figure

2). This is not surprising, considering the large deviations of up to 50% and the ambiguity that

has to be dealt with, especially in the case where both binary and ternary divisions are

present. Most of these packages force the interpreter to play along with a metronome to give an

The Quantization Problem 3

acceptable result, or require a precise tuning of parameters (e.g. are triplets allowed) for

different sections of the piece.

1.177 0.592 0.288 0.337 0.436 0.337 0.387 0.600 0.634 0.296 0.280 0.296 0.346 1.193

5M
1S..V .

■ — ______ _____ ______ _ ___ J J J -
s. ^ *-— -1

-igure 2. Played score (performance inter-onset intervals in seconds) and its quantization by a
commercial package (using a resolution of 1/64 note).

23. Tempo tracking

The methods mentioned above can be enhanced by repeatedly adapting the duration of the

quantum to the performance. When the performer accelerates, the onset times will all tend to

fall before the grid points. Adapting the quantum (decreasing it) will enable the system to

follow the tempo change of the performer and to keep quantizing correctly. This set-up is shown

in Figure 3. A required adjustment is calculated that, when the quantum is increased with this

value, would have accounted for the interval perfectly. The fastest response possible for the

tempo tracker would be to increase its quantum (one interval later) with that proportion. But

such a progressive approach may allow the tempo to stray on the first note that is played

imprecise. It is rather difficult to design a good control module that adjusts tempo fast enough to

follow a performance, but not so fast that it reacts on every 'wrong' note. A common solution is to

build in some conservatism in the tempo tracker by using only a fraction of the proposed

adjustment. If this fraction, called the adjustment speed, is set to 0.5 the new tempo will be the

mean of the old tempo and the proposed ideal.

The Quantization Problem 4

Figure 3. Tempo tracker.

2.4. Tempo tracking with confidence based adjustments

A more sophisticated tempo tracker adapts its tempo only when there is enough confidence to

do so. An onset that occurs almost precisely between two grid points will give no evidence for

adjusting the tempo (because it is not sure in what direction it would have to be changed). In

Figure 4 the details are shown. The quantization error (the difference between the incoming

interval and the quantized output of the system) is expressed as a fraction of the quantum . A

simple function will calculate a confidence level, on the basis of this error and has a maximum

near zero errors. The confidence level also depends on the parameter 'trust', that expresses its

sensitivity for errors. If we now use this confidence level as a scale factor for the adjustment

speed of the tempo tracker will enhance its performance.

Of course, even this method is vulnerable to errors. Dannenberg and Mont-Reynaud report a 30%

error rate for their ’real time foot tapper’ which uses a variant of this method (Dannenberg and

Mont-Reynaud 1987). This poor performance, considering their careful tuning of parameters and

their preprocessing of the musical material (taking only ’healthy’ notes into account), is

disappointing.

The Quantization Problem 5

Figure 4. Tempo tracker with confidence based adjustment.

2.5. The Algorithm

Since the methods mentioned above can be considered as extensions of each other, the last

method can emulate the less sophisticated ones by supplying zero- or one-valued parameters.

In Appendix I a micro version of a this general traditional quantizer is given. Experimenting

with it, changing parameter values and feeding it with different musical material quickly

shows the limitations of these kinds of systems and their lack of robustness.

3. USE OF STRUCTURAL INFORMATION

Because of the poor performance of the methods described above, techniques that make use of

knowledge of the hierarchical structure of rhythms were proposed for quantization. Longuet-

Higgins (1987) describes a hybrid method based on tempo tracking plus the use of knowledge

about meter. In this method the tempo tracking is done with respect to a beat (that can span one

or more notes). This beat is recursively subdivided in 2 or 3 parts looking for onset times near the

start of each part. The best subdivision is returned, but the program is reluctant to change the

kind of subdivision at each level. The start and length of the beat or subdivision thereof is

adjusted on the basis of the onsets found, just as in the simple tempo tracking method. Next to

the quantized results, this program delivers a hierarchical metrical structure. A more detailed

study of the behavior of this elegant method can be found in (Desain, 1991b).

The Quantization Problem 6

3.1. The Algorithm

Because Longuet-Higgins published the rather complicated program in POP-2, it seems

appropriate to restrict ourselves here to a stripped version (see Appendix II), concentrating only

on the essential aspects (see Desain, 1991a). It incorporates the basic ideas about stability of

meter, the tolerance with respect to which all decisions on onsets are made, and the beat length

that has to be supplied as an initial state of the system. But the analysis of articulation,

delivery of metrical structure and the sophisticated tempo tracking is removed. When given

the inter-onset intervals of the rhythm in Figure 2, it will result in the correct quantization: (1

1/21/41/41/31/31/31/21/21/41/41/41/41). ‘

4. KNOWLEDGE BASED METHODS

The automatic transcription project at CCRMA (Chowning et al. 1984) is a particularly

elaborate example of a knowledge based system. It prefers simple ratios and uses context

dependent information to quantize correctly. This knowledge based approach uses information

about melodic and rhythmic accents, local context, and other musical clues to guide the search

for an optimal quantized description of the data. Using even more knowledge could possibly

contribute to the quantization problem, e.g. harmonic clues could be used to signal phrase

endings where the tempo may be expected to decrease at the boundary (phrase final

lengthening) and repetition in the music could be used to give more confidence in a certain

quantization result. However these knowledge based approaches seem to share the same

problems of all traditional AI programs: the better they become, the more domain dependent

knowledge (depending on a specific musical style) must be used for further advance, and such

programs will break down rapidly when applied to data outside their domain.

5. MULTIPLE ALTERNATIVES

All methods above can be enhanced by using them repeatedly on the same data, but with

different parameters, searching for the best solution. These analyses could even go on in

parallel. Dannenberg and Mont-Reynaud (1987) propose multiple 'foot tappers' all running at

the same time. For Chung (1989) the parallel exploration of multiple alternatives is essential.

Using Marvin Minsky's paradigm (Minsky 1986) he describes his system as consisting of

multiple intelligent agents. These proposals are distributed models with a 'coarse' grain: each

part-taking processor consists of a complete traditional symbolic AI program. However, it is

possible to use a very fine grained parallelism to tackle the quantization problem, where each

processor is very simple, but the interaction between them is crucial.

The Quantization Problem 7

6. CONNECTIONIST METHODS

Connectionism provides the possibility for new models which have characteristics that

traditional AI models lack, in particular their robustness and flexibility (see Rumelhart &

McLeland 1986). Connectionist models consist of a large number of simple cells, each of which

has its own activation level. These cells are interconnected in a complex network, the

connections serving to excite or inhibit other elements. The general behavior of such a network

is that from a given initial state, it converges towards an equilibrium state. An example of the

application of such a network to music perception is given by Bharucha (Bharucha 1987) in the

context of tonal harmony, but the connectionist approach has not yet been used for quantization.

The quantization model that will be presented now is a network designed to reach equilibrium

when metrical time intervals have been achieved, and which converges towards this end point

from non-metrical performance data. It is implemented as a collection of relatively abstract

cells, each of which performs a complex function compared to standard connectionist models.

We will now give a condensed overview of the model.

6.1. A Connectionist Quantizer

The proposed network consists of three kinds of cells: the basic-cell with an initial state equal

to an inter-onset interval, the sum-cell to represent the longer time interval generated by a

sequence of notes, and the interaction-cell that is connected in a bidirectional manner to two

neighboring basic- or sum-cells. Figure 5 shows the topology of a network for quantizing a

rhythm of four beats, having its three inter-onset intervals set as initial states of the three

basic-cells, labeled A, B, and C, and the two summed time intervals A+B and B+C represented

by the corresponding sum-cells. There are four interaction-cells connecting cell A to cell B, B to

C, A+B to C and A to B+C respectively. Each interaction-cell steers the two cells, to which it is

connected, toward integer multiples of one another, but only if they are already close to such a

multiple.

The Quantization Problem 8

Figure 5. Topology of a connectionist network of a rhythm of three inter-onset intervals.

The two connected cells receive a small change calculated from the application of an

interaction function (see Figure 6) to the quotient of their states. One can see that if the ratio is

slightly above an integer it will be adjusted downward, and vice versa. The interaction function

has two parameters: peak, describing how stringent the function requires an almost integer ratio

to calculate a correction and decay, expressing the decreasing influence of larger ratios. Each

cell accumulates the incoming change signals from the connected interaction-cells. The

interaction of a sum-cell with its basic-cells is bidirectional: if the value of the sum-cell

changes, the basic-cells connected to it will all change proportionally, as well as the other way

around. This process is repeated, updating the values of the cells a little bit in each iteration,

moving the network towards equilibrium. The system produces promising results. It is context

sensitive, with precedence of local context. For this reason the example in Figure 2 is quantized

correctly (for more details see Desain & Honing, 1991). The system also exhibits graceful

degradation. When the quantizer breaks down in a complex situation it is often able to

maintain musical integrity and consistency at higher levels. The resulting error will only

generate a local deformation of the score.

The Quantization Problem 9

Figure 6. Interaction function.

6.2. The Algorithm

A micro version of the program is given in Appendix III. In this program the sum-cells are not

represented explicitly, their value is recalculated from the basic-cells. Also the interaction-

cells are not represented explicitly. Their two inputs from the connecting sum-cells are

calculated in the main loop, as is their final effect on basic-cells. All updates to the basic-cells

are collected first, only to be effectuated once per iteration round (i.e. synchronous update).

7. RECENT RESEARCH

Since this paper was written we elaborated on several aspects of the model. It has been

extended to a process model (Desain, Honing, & de Rijk, 1989), a rigorous mathematical

description is given in Desain & Honing (1991), and a detailed comparison with the Longuet-

Higgins model and its interpretation as a cognitive model is described in Desain (1991a).

8. ACKNOWLEDGEMENTS

We would like to thank Eric Clarke, Jim Grant, and Dirk-Jan Povel, for their help in this

research, and their comments on the first version of this paper. This research was partly

supported by an ESRC grant under number A413254004.

9. REFERENCES

Bharucha, J.J. 1987. Music Cognition and Perceptual Facilitation, A Connectionist Framework.

Music Perception 5.

The Quantization Problem 10

Chowning, J., L.Rush, B. Mont-Reynaud, C. Chafe, W. Andrew Schloss, & J. Smith, 1984.

Intelligent systems for the Analysis of Digitized Acoustical Signals. CCRMA Report No.

STAN-M-15.

Chung, J.T. 1989. An Agency for the Perception of Musical Beats or If I Only Had a Foot. Masters

Thesis, Department of Computer Science, MIT, Boston.

Clarke, E., 1987. Levels of Structure in the Organization of Musical Time. Contemporary Music

Review 2:212-238.

Dannenberg, R. B. & B. Mont-Reynaud, 1987. An on-line Algorithm for Real Time

Accompaniment. In Proceedings of the 1987 International Computer Music Conference. San

Francisco: Computer Music Association.

Desain, P. & H. Honing,1989. Quantization of Musical Time: A Connectionist Approach.

Computer Music Journal 13(3), also in Todd & Loy (1991).

Desain, P., H. Honing, & K. de Rijk. 1989 A Connectionist Quantizer. In Proceedings of the 1989

International Computer Music Conference. San Francisco: Computer Music Association.

Desain, P. 1991a. A Connectionist and a Traditional AI Quantizer, Symbolic versus Sub-

symbolic Models of Rhythm Perception. In Proceedings of the 1990 Music and the Cognitive

Sciences Conference, edited by I. Cross. Contemporary Music Review. London: Harwood Press.

(French version, edited by I. Deli&ge at Brussels: Mardage Editions), (forthcoming).

Desain, P. 1991b Parsing the Parser, a Case Study in Programming Style. Internal Report.

Utrecht: Center for Knowledge Technology. (Submitted to Computer Music Research).

Longuet-Higgins, H.C.,1987. Mental Processes. Cambridge, Mass.: MIT Press.

Minsky, M. 1986. Society of Mind. New York: Simon and Schuster.

Rasch, R. A. 1979. Synchronization in Performed Ensemble Music Acustica 43(2):121-131.

Todd, P. & Gareth Loy. D. eds. 1991. Music and Connectionism, Cambridge, Mass.: MIT Press.

Forthcoming.

Rumelhart, D.E. & McClelland. J.E. eds. 1986. Parallel Distributed Processing. Cambridge,

Mass.: MIT Press.

Shaffer, L.H. 1981. Performances of Chopin, Bach, Bartók: Studies in Motor Programming.

Cognitive Psychology 13:326-376.

Todd, N.P. 1985. A Model of Expressive Timing in Tonal Music. Music Perception 3(l):33-58.

Vorberg, D. J. & R. Hambuch, 1987. On the Temporal Control of Rhythmic Performance. In: J.

Requin (Ed.) Attention and Performance VII.

Vos. P. & Handel, S. 1987. Playing Triplets: Facts and Preferences. In: A Gabrielsson (Ed.)

Action and Perception in Rhythm and Music. Royal Swedish Academy of Music. No. 55:35-

47.

The Quantization Problem 21

APPENDIX I, The traditional algorithm.

;;; MICRO TRADITIONAL QUANTIZER

;;; (0 1990, Desain & Honing

;;; in Common Lisp (uses loop macro)

;;; utilities

(defun square (x)(* x x))

(defun quantize (intervals Skey (speed 0.0) (trust 1.0)

(quantum (first intervals)))

"Quantize time intervals in multiples of quantum"

;; speed = 0, trust = 1 :inter-onset quantizer

;; 0<speed<l, trust = 1 :tempo tracker

;; 0<speed<l, 0<trust<l :tempo tracker with confidence

(loop for in in intervals

as out = (quantize-ioi in quantum)

as error = (quantization-error in out quantum)

do (incf quantum

(* (delta-quantum error out quantum)

(confidence error trust)

speed))

collect out))

(defun quantize-ioi (time quantum)

"Return approximation of time in multiples of quantum"

(round (/ time quantum)))

(defun quantization-error (in out quantum)

"Return error of quantization"

(- (/ in quantum) out))

(defun delta-quantum (error out quantum)

"Return the quantum change that would have given a zero error"

(* quantum (/ error out)))

(defun confidence (error trust)

"Return amount of confidence in a possible tempo adjustment"

(- 1 (* (- 1 trust) (square (* 2 error)))))

;;; example: real performance data: no luck

(quantize '(1.177 0.592 0.288 0.337 0.436 0.337 0.387 0.600

0.634 0.296 0.280 0.296 0.346 1.193)

:quantum 0.1 :speed 0.5)

-> (12 6 3 3 4 3 4 6 6 3 3 3 4 13)

The Quantization Problem 12

APPENDIX II, The Longuet-Higgins algorithm.

;;; LONGUET-HIGGINS QUANTIZER

; ; ; (0 1990, Desain

; ; ; Stripped version: no articulation analysis, metrical structure or tempo tracking

; ; ; in Common Lisp (uses loop macro)

; ; ; utilities

(defun make-onsets (intervals)

"Translate inter-onset intervals to onset times"

(loop for interval in intervals

sum interval into onset

collect onset into onsets

finally (return (cons 0.0 onsets))))

(defun make-intervals (onsets)

"Translate onset times to inter-onset intervals"

(loop for onsetl in onsets

for onset2 in (rest onsets)

collect (- onset2 onsetl)))

(defun alternative (metre irest states)

"Return alternative metre plus unaltered states"

(cons (case (first metre) (2 '(3)) (3 '(2)))

states))

(defun extend (metre)

"Return alternative metre plus unaltered states"

(or metre 1 (2)))

;;; main parsing routines

(defun quantize (intervals Skey (metre '(2)) (tol 0.10)

(beat (first intervals)))

"Quantize intervals using initial metre and beat estimate"

(loop with start = 0.0

with onsets = (make-onsets intervals)

for time from 0

while onsets

do (multiple-value-setq (start figure metre onsets)

(rhythm start beat metre onsets time 1 tol))

append figure into figures

finally (return (make-intervals figures))))

The Quantization Problem 13

(defun rhythm (start period metre onsets time factor tol)

"Handle singlet and subdivide as continuation"

(singlet

start (+ start period) metre onsets time tol

#'(lambda (figure onsets)

(tempo figure start period metre onsets time factor tol))))

(defun singlet (start stop metre onsets time tol cont)

"Handle singlet note or rest"

(if (and onsets (< (first onsets) (+ start tol)))

(singlet-figure stop metre (list time) (rest onsets) tol cont)

(singlet-figure stop metre nil onsets tol cont)))

(defun singlet-figure (stop metre figure onsets tol cont)

"Create singlet figure and subdivide in case of more notes"

(let* ((onset (first onsets))

(syncope (or (null onset) (>= onset (+ stop tol))))

(more? (and onset (< onset (+ stop (- tol))))))

(if more?

(apply t'values (funcall cont figure onsets))

(values (if syncope stop (first onsets))

figure metre onsets syncope))))

(defun tempo (figure start period metre onsets time factor tol)

"One or two trials of subdivision using alternative metres"

(rest (generate-and-test #'trial

#'(lambda (syncope stop Srest ignore)

(and (not syncope)

(< (- stop tol)

(+ start period)

(+ stop tol))))

#'alternative

metre figure start period onsets time factor tol)))

(defun generate-and-test (generate test alternative trest states)

"Control structure for metre change"

(let ((resultl (apply generate states)))

(if (apply test resultl)

resultl

(let ((result2 (apply generate (apply alternative states))))

(if (apply test result2)

result2

resultl)))))

The Quantization Problem 14

(defun trial (metre figure start period onsets time factor tol)

"Try a subdivision of period"

(loop with pulse = (pop metre)

with sub-period = (/ period (float pulse))

with sub-factor = (/ factor pulse)

repeat pulse

for sub-time from time by sub-factor

do (multiple-value-setq

(start sub-figure metre onsets syncope)

(rhythm start sub-period (extend metre) onsets

sub-time sub-factor tol))

append sub-figure into sub-figures

finally

(return

(list syncope start (append figure sub-figures) (cons pulse metre)
onsets))))

;;; example

(quantize '(1.177 0.592 0.288 0.337 0.436 0.337 0.387 0.600 0.634

0.296 0.280 0.296 0.346 1.193) :tol 0.15)

->(1 1/2 1/4 1/4 1/3 1/3 1/3 1/2 1/2 1/4 1/4 1/4 1/4 1)

The Quantization Problem 25

APPENDIX III, The connectionist algorithm.

;;; MICRO CONNECTIONIST QUANTIZER

;;; (0 1990, Desain S Honing

;;; in Common Lisp (uses loop macro)

;;; utilities

(define-modify-macro multf (factor) *)

(define-modify-macro divf (factor) /)

(define-modify-macro zerof 0 (lambda(x) 0))

(defmacro with-adjacent-intervals

(vector (a-begin a-end a-sum b-begin b-end b-sum) tbody body)

"Setup environment for each interaction of (sum-)intervals"

'(loop with length = (length ,vector)

for ,a-begin below (1- length)

do (loop for ,a-end from ,a-begin below (1- length)

sum (aref »vector ,a-end) into ,a-sum

do (loop with ,b-begin = (1+ ,a-end)

for ,b-end from ,b-begin below length

sum (aref »vector ,b-end) into ,b-sum

do ,Sbody))))

;;; interaction function

(defun delta (a b minimum peak decay)

"Return change for two time intervals"

(let* ((inverted? <<= a b))

(ratio (if inverted? (/ b a)(/ a b)))

(delta-ratio (interaction ratio peak decay))

(proportion (/ delta-ratio (+ 1 ratio delta-ratio))))

(* minimum (if inverted? (- proportion) proportion))))

(defun interaction (ratio peak decay)

"Return change of time interval ratio”

(* (- (round ratio) ratio)

(expt (abs (* 2 (- ratio (floor ratio) 0.5))) peak)

(expt (round ratio) decay)))

The Quantization Problem 16

; ; ; quantization procedures

(defun quantize (intervals ikey (iterations 20) (peak 5) (decay -1))

"Quantize data of inter-onset intervals"

(let* ((length (length intervals))

(changes (make-array length : initial-element 0.0))

(minimum (loop for index below length

minimize (aref intervals index))))

(loop for count to iterations

do (update intervals minimum changes peak decay)

finally (return (coerce intervals 'list)))))

(defun update (intervals minimum changes peak decay)

"Update all intervals synchronously"

(with-adjacent-intervals intervals

(a-begin a-end a-sum b-begin b-end b-sum)

(let ((delta (delta a-sum b-sum minimum peak decay)))

(propagate changes a-begin a-end (/ delta a-sum))

(propagate changes b-begin b-end (- (/ delta b-sum)))))

(enforce changes intervals))

(defun propagate (changes begin end change)

"Derive changes of basic-intervals from sum-interval change"

(loop for index from begin to end

do (incf (aref changes index) change)))

(defun enforce (changes intervals)

"Effectuate changes to intervals"

(loop for index below (length intervals)

do (multf (aref intervals index)

(1+ (aref changes index)))

(zerof (aref changes index))))

;;; example (the result is rounded)

(quantize (vector 1.177 0.592 0.288 0.337 0.436 0.337 0.387 0.600

0.634 0.296 0.280 0.296 0.346 1.193))

->(1.2 .6 .3 .3 .4 .4 .4 .6 .6 .3 .3 .3 .3 1.2)

The Quantization Problem 17

Centre for Art, Media, and Technology
Itrecht School of the Arts
ange Viestraat 2b
JL-3511 BK Utrecht
'he Netherlands

'eter Desain and Henkjan H on in g The Quantization of
Musical Time: A
Connectionist Approach

dusic Department
-ity University
'lorthampton Square
,ondon EC1VOHB
Jnited Kingdom

Will be published as: Desain, P. & H. Honing (1991) Quantization of Musical Time: A
Connectionist Approach. In Music and Connectionism, edited by P.M. Todd and G J . Loy.
Cambridge, Mass.: MIT Press.

\

Centre for Art, Media, and Technology
Utrecht School of the Arts
Lange Viestraat 2b
NL-3511 BK Utrecht
The Netherlands

Music Department
City University
Northampton Square
London EC IV OHB
United Kingdom

P e te r Desain and Henkjan H oning

Introduction

Musical time can be considered to be the product of
two time scales: the discrete time intervals of a
metrical structure and the continuous time scales
of tempo changes and expressive timing (Clarke
1987a). In musical notation both kinds are present,
although the notation of continuous time is less de-
veloped than that of metric time (often just a word
like "rubato" or "accelerando" is notated in the
score). In the experimental literature, different ways
in which a musician can add continuous timing
changes to the metrical score have been identified.
There are systematic changes in certain rhythmic
forms: for example, shortening triplets (Vos and
Handel 1987) and timing differences occurring in
voice leading with ensemble playing (Rasch 1979).
Deliberate departures from metricality, such as
rubato, seem to be used to emphasize musical struc-
ture, as exemplified in the phrase-final lengthening
principle formalized by Todd (1985). In addition to
these effects, which are collectively called expres-
sive timing, there are nonvoluntary effects, such as
random timing errors caused by the limits in the
accuracy of the motor system (Shaffer 1981) and
errors in mental time-keeping processes (Vorberg
and Hambuch 1978). These effects are generally
rather small—in the order of 10-100 msec. To
make sense of most musical styles, it is necessary
to separate the discrete and continuous compo-
nents of musical time. We will call this process of
separation quantization, although the term is gen-
erally used to reflect only the extraction of a metri-
cal score from a musical performance.

Computer Music Journal, Vol. 13, No. 3, Fall 1989,
© 1989 Massachusetts Institute of Technology.

56

The Quantization of
Musical Time: A
Connectionist Approach

Perception of Musical Time

Human subjects, even without much musical train-
ing, can extract, memorize, and reproduce the dis-
crete metrical structure from a performance of a
simple piece of music—even when a large continu-
ous timing component is involved. This is surpris-
ing, given that the note durations in performance
can deviate by up to 50 percent from their metrical
values (Povel 1977). Indeed, it seems that the per-
ception of time intervals on a discrete scale is an
obligatory, automatic process (Sternberg, Knoll, and
Zukofsky 1982; Clarke 1987b). This so-called cate-
gorical perception can also be found in speech per-
ception and vision. By contrast, the perception and
reproduction of continuous time in musical perfor-
mance seems to be associated with expert behavior.

Once the discrete and continuous aspects of tim-
ing have been separated by a quantization process,
each can function as an input to other processes.
The induction of an internal clock (Povel and Es-
sens 1985) and the reconstruction of the hierarchi-
cal structure of rhythmical patterns (Mont-Reynaud
and Goldstein 1985) both rely on the presence of a
metrical score, while Todd (1985) has developed a
model in which hierarchical structure is recovered
from expressive timing alone.

Applications of Quantization

Apart from its importance for cognitive modeling,
a good theory of quantization has technical applica-
tions. It is one of the bottlenecks in the automatic
transcription of performed music, and is also im-
portant for compositions with a real-time, interac-

Computer Music Journal

Fig. 1. Example of a per-
form ed score and its quan-
tization by a commerical
MIDI Package using a
resolution of 1/64 note.

tive component where the computer improvises or
interacts with a live performer. Last but not least, a
quantization tool would make it possible to study
the expressive timing of music for which no score
exists, as in improvised music.

Known Methods

Few computational models are available in the
literature for separating a metrical score from ex-
pressive timing in performed music (Desain and
Honing 1988). Available methods produce a consid-
erable number of errors when quantizing the data.
The traditional approach is to expand and contract
note durations according to a metrical grid that is
more or less fixed— the grid being adjustable to in-
corporate different, low-level subdivisions (e.g., for
triplets). Commercial MIDI software uses this
method, which often gives rise to a musically ab-
surd output, as shown in Fig. 1. Better results are
obtained when the system tracks the tempo varia-
tions of the performer (Dannenberg and Mont-
Reynaud 1978), though the system still returns an
error rate of 30 percent. More sophisticated artifi-
cial intelligence (AI) methods use knowledge about
meter (Longuet-Higgins 1987) and other aspects of
musical structure. A particularly elaborate system
originated at the CCRMA center at Stanford Uni-
versity in the automatic transcription project
(Chowning et al. 1984). This knowledge-based
method uses information about different kinds of
accent, local context, and other musical clues to
guide the search for an optimal quantized descrip-
tion of the data. It is entirely implemented in a
symbolic, rule-based paradigm. This approach can
be seen as the antithesis of our approach, in which
all knowledge in the system is represented im-
plicitly. We took the connectionist approach be-
cause knowledge-based approaches seemed to offer
no real solution to manifest inadequacies of the
simplistic metrical grid method. As with the major-
ity of traditional AI programs, the sophisticated
knowledge these AI methods use is extremely do-
main dependent (depending on a specific musical
style), causing the systems to break down rapidly
when applied to data foreign to this style.

Connectionist Methods

Connectionism provides the possibility for new
kinds of models with characteristics traditional AI
models lack, in particular robustness and flexibility
(Rumelhart and McClelland 1986). Connectionist
models consist of a large number of simple ele-
ments, each of which has its own activation level.
These cells are inconnected in a complex network,
with the connections serving to excite or inhibit
other elements. One broad class of these networks,
known as in tera ctiv e activation a n d constraint
satisfaction n etw orks, generally converge towards
an equilibrium state given some initial state.

An example of the application of these networks
to music perception is given by Bharucha (1987) in
the context of tonal harmony. These networks have
not yet been used for quantization. The quantiza-
tion model presented in this paper is a connectionist
network designed to converge from nonmetrical
performance data to a metrical equilibrium state.
This convergence is hard wired into the system,
and no learning takes place. The model is thought
of as a collection of relatively abstract elements,
each of which performs a rather complex function
compared to standard connectionist models. While
it may be possible to express these functions in
terms of one of the formalisms for neural networks,
this lies beyond the scope of the present article.

Basic Model

Consider a network with two kinds of cells: the
basic cell, with an initial state equal to an inter-
onset interval, and the interaction cell, which is
connected in a bidirectional manner to two basic
cells. Figure 2a shows the topology of a network for
quantizing a rhythm of four beats, having its three

Desain and Honing 57

Fig. 2. Topology of a basic Fig. 3. Interactive time in-
network (a) and a com- tervals in a basic network
pound network (b). (a) and a compound net-

work (b).

Fig. 2

(a)

Inter-onset interval

•4-------------► Interaction

58

Fig. 4. Interaction function
with a peak at 4 and decay
equal to —1.

Fig. 4

inter-onset intervals set as states of the three basic
cells, labeled A, B, and C. There are two interaction
cells connected to the basic cells A and B, and B
and C, respectively. Each interaction cell steers the
two basic cells to which it is connected toward in-
teger multiples of one another, but only if they are
already near this state. It applies the interaction
function to the quotient of their states (ratios smaller
than 1 are inverted). If this ratio were close to an
integer (e.g., 1.9 or 2.1), the interaction function
would return a change o f ratio that would steer the
two states toward a perfect integer relation (e.g., 2).
Figure 3 illustrates the interactions that are rele-
vant in quantizing the four-beat rhythm. One can
see that if the ratio is slightly above an integer, it
will be adjusted downward, and vice versa as in
Fig. 4.

There are constraints to be taken into account for
interaction functions. First, the function and its de-
rivative should be zero in the middle region be-
tween two integer ratios. In this region it is not
clear if the integer ratio above or below is the proper
goal, so no attempt is made to change the ratio.
Second, the derivative around integer ratios should
be negative to steer the ratio towards the integer,
but greater than - 1 to prevent overshoot that would
result in oscillations. Third, the magnitude of the
function should decrease with increasing ratios to
diminish the influence of larger ratios. A large class
of functions meet these constraints. At present we
use a polynomial section around each integer ratio.

Computer Music journal

Fig. 5. State as a function
of iteration count for the
rhythm 2, 1. 3 in a basic
network (a). State as a

function of iteration count
for the rhythm 1,2, 3 in a
basic network (b).

The degree of the polynomial, called the peak pa-
rameter, is typically between 2 and 12. To realize
the decreasing magnitude of the interaction func-
tion, each section is scaled with a multiplication
factor that is a negative power of the integer ratio.
This power is called the decay param eter, and is
typically between - 1 and - 3 . This interaction
function is defined as

F[r) = (round(r) - r) *

|2(r - entier(r) — 0.5)|r *
round) r)d,

in which the first term gives the ideal change of
ratio, the second term signifies the speed of change
which is at maximum near an integer ratio (with
peak parameter p), and the third term scales the
change to be lower at higher ratios (with decay pa-
rameter d). It is simple to prove that this interac-
tion function satisfies the constraints mentioned.

From the change of ratio F[a/b), new intervals
a + A and b — A are calculated without altering the
sum of both intervals.

a + A a / a
b - A " b + F \b

which implies

bF
A = ----------

In simulating the network, each interaction cell up-
dates the states of the two basic cells to which it is
connected. This process is repeated, moving the
basic cells slowly towards equilibrium. Equilibrium
is assumed when no cell changes more than a cer-
tain amount between two iterations. For example,
let us take a rhythm with inter-onset intervals of 2,
1.1, and 2.9 csec. As the representation of duration
is currently unimportant in the model, they are
treated as relative values (tempo has no influence
on the quantization). This rhythm is represented in
a basic network as three cells with the initial states
2 .0 :1 .1 :2.9. Iterating the procedure outlined above

Number of iterations

(b)

for the interactions between cells labeled A and B,
and cells B and C will adjust the durations toward
2 :1 :3 , where the net reaches an equilibrium. Fig-
ure 5a is a graph of the state of each basic cell as a
function of the iteration count.

This type of network can of course only quantize
very simple rhythms. Consider for instance the
rhythm 1.1:2.0:2.9, which should converge to
1 :2 :3 . The cell representing 2.9 only interacts with
its neighbor 2.0, the resultant ratio 1:45 being a
long way from an integer. The basic net adjusts
these values to 1.2:2.4:2.4, as seen in Fig. 5b.

What the model fails to take account of is the
time interval 3.1, the sum of the first two dura-
tions. If this interval were incorporated into the
model, it would interact successfully with the third
interval (2.9) in such a way that the pair of intervals
would gravitate toward the ratio 1. This observa-
tion leads to a revised model.

Desain and Honing 59

Fig. 6. State as a function
of iteration count for a
complex rhythm in a com -
pound network.

Compound Mode!

In order to represent the longer time intervals gen-
erated by a sequence of notes, sum cells are postu-
lated. These cells sum the activation levels of the
basic cells to which they are connected. The inter-
action of a sum cell with its basic cells is bidirec-
tional; if the sum cell changes its value, the basic
cells connected to it will all change proportionally.
The sum cells are interconnected to cells represent-
ing adjacent intervals by the same interaction cells
that are used in the basic model. The function of
the interaction cells is once again to try to steer the
interconnected cells—which may be sum cells, or a
mixture of sum cells and basic cells—toward an in-
teger ratio as was shown in Figs. 2b and 3b.

Our earlier example—a duration sequence of 1.1,
2.0, 2.9—is now quantized correctly due to com-
bined effects of interacting sum cells and the inter-
actions between the basic cells. Let us consider a
more complex example using the real performance
data shown in Fig. 6. In this rhythm the final six-
teenth note is played longer than the middle note
of the triplet. Nonetheless the local context of the
two intervals steers each note towards its correct
value as seen in Fig. 6. The compound model pro-
duces promising results, even though the network
is rather sparse, allowing only adjacent time inter-
vals to interact. A compound network for a rhythm
of n intervals consists of n basic cells, [(n + 1)
(n — 2)/2] sum cells, and [n(n2 — l)/6] interac-
tion cells.

Understanding the Model

In connectionist systems the global behavior
emerges from a large number of local interactions.
This makes it very difficult to study the behavior
of the network at a detailed level. While it may
initially seem attractive to use descriptions like
"winning cells," "pulling harder," etc., a better
understanding of the patterns of change within the
network and of the influence of context requires
the development of specialized methods. An ap-
proach that has proved very useful is what we call
the clamping m ethod. This entails the clamping, or *

60

fixing, of the states of all but one of the cells. The
remaining cell is given an activation level in a rea-
sonable range (the independent variable). Then the
resulting change that would have taken place—
after one iteration—if the cell were free to change
its activation level is monitored (the dependent
variable). In order to facilitate the interpretation of
this measure (the amount of change), the function
is negated and integrated to give a curve with local
minima at stable points. The state of the experi-
mentally varied cell will tend to move towards a
minimum, like a rolling ball on an uneven surface.
As such, it can be interpreted as a curve of poten-
tial energy. These minima and maxima can now be
evaluated and judged in light of the context set up

Computer Music fournal

*

Fig. 7. Clamping curve for cell with a left context of
a cell with a left context of 2, 1 (b). Clamping curve
1 (a). Clamping curve for a for a cell with a left con-

by the surrounding clamped cells. We call the inter-
val between two neighboring local maxima the
catch range. A value occurring within this range
will move towards the minimum between these
two maxima, provided the context does not change.
The size of the interval where the potential energy
stays close to a minimum is called its flatness value.
It is a measure of the lack of clarity in the context;
simple and clear contexts give rise to sharp minima.

Figure 7a shows the potential energy curve of two
cells in a basic network; the first has a state of 1,
while the other varies between 0 -5 . The figure
shows prominent local minima at 1, 2, 3, 4 and so
on, and at the inverse ratios (.5, .33, and so on).
These will be the equilibrium states of the second
cell. Note the flatter minima at larger ratios.

A graph of the basic interaction (without sum
cells) in a 3 cell net with the first two cells clamped
to the values 2 and 1 would yield the same curve,

text of 2, 1, 1 (c). Clamp- different parameters
ing curve for a cell with for the interaction
a left context of 2, 1 with function (d).

Id)

Inter-onset interval

since the first cell does not interact with the vary-
ing third cell. Introducing sum cells, however, gives
a different curve as can be seen in Fig. 7b. A mini-
mum is shown at 3 caused by the interaction of the
sum of the first and second basic cells with the last
cell (3:3 yielding a ratio of 1). The minimum at 3
being strengthened by the interaction of the first
cell with the sum of the second two (2:4, yielding a
ratio of 2). This interaction also results in a weaker
minimum at 1.5 (3:1.5, a ratio of 2). With a left
context of 2 : 1 : 1 the minimum at 3 almost disap-
pears as in Fig. 7c. There is now a strong minimum
at 2 because the sum cell—which combines the du-
rations of the second and third cell—is also 2. The
sum of the first three cells give rise to the mini-
mum at 4. This clamping method thus gives a clear
picture of the mechanisms involved in the complex
interactions through a simplification of the process
that assumes fixed values in most of the cells. The

Desain and Honing 61

Fig. 8. Clamping curves of
two notes in the context of
an idealized complex
rhythm (a). Clamping

curves of two notes in the
context of a performed
complex rhythm (b).

same method can also be used to study the influ-
ence of the parameters of the interaction function.
In Fig. 7d, which uses the same context as in Fig.
7c, the peak and decay parameters have been
changed, showing the effect on the catch range.

If we now return to the more elaborate example
shown in Fig. 6, we can study the behavior of the
net using the clamping method. Fig. 8a shows the
potential energy curves resulting from applying the
clamping method to the middle note of the trip-
let and the final sixteenth note. It shows clearly
that the different contexts in which they appear re-
sult in different curves and that both will be di-
rected towards the appropriate values. Note the
wide catch ranges that allow rather large deviations
to be quantized correctly and the smoothness of the
curves. This smoothness (the lack of small local
minima in the curve) is a result of the large number
of interactions (364 and 91 for the triplet and six-
teenth notes, respectively), which combine addi-
tively to yield each point on the curve. When the
clamping experiment is rerun with performance
data as context, more complex curves result, with a
smaller catch range and a greater flatness, which is
shown in Fig. 8b. Nonetheless, the durations still
converge towards the correct metrical values.

The position of local maxima in the energy curves
constitute the boundaries between the categories
into which the data will be quantized. As a result,
precise predictions can now be made about the per-
ceptual interpretation of rhythmical sequences
with a range of experimentally adjusted durations.
It is our intention to compare these predictions
with the results of empirical studies.

Implementation

In simulating a connectionist network, the calcu-
lated change in the state of one cell can be effectu-
ated immediately (asynchronous update), or can be
delayed, effectuating the change of all interactions
at once (synchronous update). For asynchronous
updates, a random order of visiting cells is gener-
ally preferred. In Table 1, a simplified implementa-
tion of the quantization model is given in Common
Lisp (Steele 1984), based on synchronous updates.

62

— triplet — sixteenth

triplet — sixteenth

Inter-onset interval

The basic cells are represented as a vector of inter-
onset intervals. The sum cells are not represented
explicitly, but are recalculated, summing the repre-
sented interval of basic cells for each interaction. A
macro is provided that implements the iteration
over adjacent sum intervals. The described inter-
action function is the one we used for the Figs. 5
and 6. This simplified version requires the mini-
mum inter-onset interval to be around 1. More
elaborate versions run in Common Lisp and in C on
stock hardware (Macintosh II and Atari ST series
machines).

Further Research

The model we have presented needs high peak val-
ues to stabilize accurately. Because this results in
smaller catch ranges, we are currently studying the
automatic increasing of the peak parameter while

Computer Music Journal

S>e<z) proved version]*\)

Table 1. Micro version of the connectionist quantizer in CommonLISP

;;; MICRO CONNECTIONIST QUANTIZER
;;; IHflfl P.Desain and H.Honing

;;; Utilities

(defmacro for ((var &key (from 0) to) &body body)
»Iterate body with var bound to successive values»
(let ((to-var (gensym)))

'(let ((,var ,from)(,to-var ,to))
(loop ,(when to '(when (> ,var ,to-var) (return)))

, Sbody
(incf ,var)))))

(defmacro max-index (vector)
»Return index of last element in a vector»
'(- (array-dimension ,vector 0) 1))

(defmacro zero-vector! (vector)
»Set elements of a vector to zero»
'(for (index :from □ :to (max-index ,vector))

(setf (aref ,vector index) 0.0)))

(defmacro incf-vector-scalar! (a b from to)
»Increment elements in a range of a vector»
'(for (index :from ,from :to ,to)

(incf (aref ,a index) ,b)))

(defmacro incf-relative-vector-vector! (a b)
»Increment elements of a vector proportionally»
'(for (index :from 0 :to (max-index ,a))
(incf (aref ,a index) (* (aref ,a index) (aref ,b index)))))

(defun print-vector (times vector &optional (stream t))
»Print all elements of vector»
(format stream »~%~3d: » times)

(for (index :from 0 :to (max-index vector))
(format stream »-3,1,5$ » (float (aref vector index)))))

;;; control structure for iteration over intervals

(defmacro with-all-intervals (vector (begin end sum) (start
finish) &body body)

»Iterating over all intervals contained in [start,finish]»
' (let (, sum)

(for (,begin -.from ,start :to ,finish)
(setf ,sum 0.0)
(for (,end :from ,begin :to ,finish)

(incf ,sum (aref ,vector ,end))
,Sbody))))

(corn'd)

Desoin and Honing 63

(defmacro with-intervals (vector (begin end sum) (start
finish) &body body)

»Iterating over intervals»
'(let ((,sum 0.0)(,begin ,start))

(for (,end :from ,start :to ,finish)
(incf ,sum (aref ,vector ,end))
,dbody)))

(defmacro with-adjacent-intervals
(vector (a-begin a-end b-begin b-end a-sum
b-sum) &body body)

»Iterating over interval pairs»
'(let ((max-index (max-index ,vector)))

(with-all-intervals ,vector (,a-begin ,a-end
,a-sum) (0 (1- max-index))

(with-intervals ,vector (,b-begin ,b-end ,b-sum)
((1+ ,a-end) max-index)
,Sbody))))

;;; Main quantization procedures

(defun quantize! (durations «¿optional (peak 4) (decay -1))
»Quantize data in durations vector»
(let ((changes (make-array (length durations) :initial-

element D.0)))
(for (times :from D)

(print-vector times durations)
(update! durations changes peak decay))))

(defun update! (durations changes peak decay)
»Update all durations synchronously»
(zero-vector! changes)
(with-adjacent-intervals durations

(a-begin a-end b-begin b-end a-sum b-sum)
(let ((delta (if (> a-sum b-sum)

(delta (/ a-sum b-sum) peak decay)
(- (delta (/ b-sum a-sum) peak decay)))))

(incf-vector-scalar! changes (/ delta a-sum) a-begin
a-end)
(incf-vector-scalar! changes (- (/ delta b-sum) b-begin
b-end)))

(incf-relative-vector-vector! durations changes))
(defun delta (ratio peak decay)
»Return change of time interval»
(let ((delta-ratio (interaction ratio peak decay)))

(/ delta-ratio (+ 1 ratio delta-ratio))))
__________________ (corn’d)

64 Computer Music Journal

\ O

(defun interaction (ratio peak decay)
»Return change of ration
(let ((position (1- (* 2 (- ratio (floor ratio)))))

(goal (round ratio)))
(* (- goal ratio)

(abs (expt position peak))
(expt goal decay))))

; »• »• usage examples
»•;»• minimum element in data should be larger than 1

»•(quantize! (vector 1.1 2.0 2 . T))
»•(quantize! (vector 1 1 . 7 7 5 . f i 2 2 . AA 3 . 3 ? 4 . 3 b 3 . 3 7 3 . A 7

b . 0 0 b . 3 4 2 . T b 2 . AO 2 . T b 3 . 4 b 1 1 . ^ 3))

the network comes to rest. The dependency of the
model on absolute time and absolute tempi is still
an open question. The most difficult rhythmic
cases for this model are: (1) those that involve ad-
ditive durations that emerge when rests and tied
notes occur in the data and (2) divisive rhythms,
such as when a quintuplet is adjacent to a triplet.
Our aim is to be able to characterize exactly the
limits of the model and to evaluate the computa-
tional requirements and the psychological plau-
sibility of the results. A further aim is to develop a
robust technical tool for real-time quantization
using a process model. Tempo tracking is then an
absolute necessity.

Conclusion

We consider the compound model presented here to
be promising. In difficult cases the system under-
goes a graceful degradation instead of a sudden
breakdown: that is, the range in which rhythms arc
caught and quantized correctly becomes more and
more limited. However, it is a paradoxical problem
with connectionist models that their adaptability
means that even a rough first implementation, with
obvious bugs, may exhibit appropriate behavior. In
order to increase an understanding of the process
involved, it is necessary to develop specialized tools
for diagnosis and investigation. The clamping

method described here seems to have considerable
potential, and we are confident that further tools of
a similar sort will develop as connectionist model-
ing gathers momentum.

Acknowledgments

We would like to thank Dirk-Jan Povel, Steve Mc-
Adams, Marco Stroppa, the reviewers of Computer
Music Journal, and especially Eric Clarke and Klaus
de Rijk for their help in this research and their
comments on the first version of this paper.

References

Bharucha, J. J. 1987. "Music Cognition and Perceptual Fa-
cilitation: A Connectionist Framework." Music Per-
ception 5(11:1 -3 0 .

Chowning, J., et al. 1984. "Intelligent Systems for the
Analysis of Digitized Acoustical Signals." CCRMA Re-
port STAN-M-15.

Clarke, E. 1987a. "Levels of Structure in the Organiza-
tion of Musical Time." Contemporary Music Review
2 :2 1 2 -2 3 8 .

Clarke, E. 1987b. "Categorical Rhythm Perception: An
Ecological Perspective." In A. Gabrielsson, ed. Action
and Perception in Rhythm and Music. Stockholm:
Royal Swedish Academy of Music. No. 5 5 :1 9 -3 3 .

Dannenberg, R. B., and B. Mont-Reynaud. 1987. "An On-

Desain and Honing 65

line Algorithm for Real Time Accompaniment." Pro-
ceedings of the 1987 International Computer Music
Conference. San Francisco, California: Computer Mu-
sic Association, pp. 2 4 1 -248 .

Desain, R, and H. Honing. 1988. "The Quantization
Problem: Traditional and Connectionist Approaches."
Proceedings of the first Artificial Intelligence and M u-
sic Workshop. St. Augustin, West Germany: Gesell-
schaft für Mathematik und Datenverarbeitung.

Longuet-Higgins, H. C. 1987. Mental Processes. Cam-
bridge, Massachusetts: MIT Press.

Mont-Reynaud, B., and M. Goldstein. 1985. "On Finding
Rhythmic Patterns in Musical Lines." Proceedings of
the 1985 International Computer Music Conference.
San Francisco, California: Computer Music Associa-
tion, pp. 391 -397 .

Povel, D. J. 1977. "Temporal Structure of Performed Mu-
sic: Some Preliminary Observations." Acta Psycholog-
ica 4 1 :3 0 9 -3 2 0 .

Povel, D. J., and P. Essens. 1985. "Perception of Temporal
Patterns." Music Perception 2(4): 4 1 1 -440 .

Rasch, R. A. 1979. "Synchronization in Performed En-
semble Music." Acustica 43(2): 121-131 .

Rumelhart, D., and J. McClelland, eds. 1986. Parallel
Distributed Processing: Explorations in the Micro-
structure of Cognition, vol. 1. Cambridge, Massachu-
setts: MIT Press.

Shaffer, L. H. 1981. "Performances of Chopin, Bach, Bar-
tók: Studies in Motor Programming." Cognitive Psy-
chology 1 3 :3 2 6 -3 7 6 .

Steele, G. L. 1984. Common Lisp: The Language. Bed-
ford, Massachusetts: Digital Press.

Sternberg, S., R. L. Knoll, and P. Zukofsky. 1982. "Timing
by Skilled Musicians." In D. Deutsch, ed. The Psychol-
ogy of Music. New York: Academic Press.

Todd, N. P. 1985. "A Model of Expressive Timing in
Tonal Music." Music Perception 3 (1):33—58.

Vorberg, D. J., and R. Hambuch. 1987. "On the Temporal
Control of Rhythmic Performance." In J. Requin, ed.
Attention and Performance VII.

Vos, R, and S. Handel. 1987. "Playing Triplets: Facts and
Preferences." In A. Gabrielsson, ed. Action and Percep-
tion in Rhythm and Music. Royal Swedish Academy of
Music. No. 5 5 :3 5 -4 7 .

66 Computer Music fournal

Corrections to the original article:

(1) The name of the first institution mentioned in the article should be changed from Centre
for Art, Media and Technology into Center for Knowledge Technology

(2) Caption of figure 6 should be changed:
a) The arrows should come from the A and B.
b) More space is needed between A and B, and the x-axis of the figure.
c) The number 3 underneath the triplet was left out. See correction of figure 6 (sent
earlier).

(3) In the text -because of an improvement to the Lisp code (see 4)- the line "This simplified
version requires the minimum inter-onset interval to be around 1" under the paragraph
named Implementation should be removed.

(4) Lisp code in Table 1 should be replaced with the new code using the loop macro. The
enclosed code is considerably improved. See the notes preceeding the Table for remarks
on lay-out.

(5) The reference Desain & Honing (1988) should be replaced by:

Desain, P. & H. Honing (1991) The Quantization Problem: Traditional and Connectionist
Approaches. In M. Balaban, K. Ebcioglu & O. Laske, eds. Musical Intelligence. Menlo
Park: The AAAI Press.

since the AIM Proceedings were never published.

10/16/90 A d d e n d u m MB

Addendum
Peter Desain, Henkjan Honing, and Klaus de Rijk

More Tools for Inspecting the Network

As mentioned previously, the design of special tools and methods to study the network is of

great importance, allowing us to explain and predict behavior for particular data, to

examine the influence of the parameters on network performance, etc. The clamping method

described earlier is one of these tools. A second method visualizes the state space of the

system by only taking rhythms of three inter-onset intervals into account. The 3 degrees of

freedom are mapped to 2 dimensions by normalizing the total length of the rhythm. Each

point (x,y) represents a rhythm of three inter-onset intervals x : y : l - x - y i n a net of

interacting cells. Drawing the rhythm after each iteration yields a trajectory towards a

stable point in this space: the quantized version of the three intervals.

Plotting the trajectories of different rhythms exhibits the behavior of the network and

the stable attractor points in this two dimensional space. They are positioned on straight

lines that represent rhythms with an integer ratio of two durations or their sums (x=y,

x+y=z, 2x=y, etc.). Figure 9 shows this state space diagram with a variety of trajectories

traced on it. One can see relatively large areas of attraction around the simple rhythms and

relatively small areas around more complex rhythms. These so called basins of attraction

depend on the parameters of the interaction function; when the peak parameter is set to a

higher value (see Figure 9b), more basins of attraction around complex rhythms appear.

Diagrams, as shown in Figure 9, can form the basis for experiments to test the validity of

the connectionist quantizing method as a cognitive model for rhythm perception. For

example, we can plot the analogous diagram for human listeners performing a categorical

perception experiment on part of the rhythm space, and compare it with the output of the

quantizer method. The results can be used to adjust the interval-interaction function of the

model to more closely match human performance.

++++ Insert Figure 9. around here +++++

10/16/90 A d d e n d u m 2/8

A third method amounts to a systematic exploration of the space of all possible

parameter settings. A mapping can be made from this space to the number of correct

quantizations of a set of performances. Figure 10 shows this mapping for a set of about 50

relatively simple rhythms, varying in length from 3 to 14 inter-onset intervals, performed

by a musical expert. In this way, we defined implicitly what a ’correct' quantization is.

The vertical axis shows the percentage of correct quantizations of the system, the other

axes show the parameters peak and decay. This visualization brings out specific

characteristics of the model. First, it shows the models sensitivity for its parameters.

Often connectionist models behave badly in this respect, they need specific parameter

settings for different problems. But Figure 10 shows the system behaves quite well with

respect to parameter sensitivity. The surface between a peak value of 4 and 6 and a decay

value between 0 and -2 is almost flat. Secondly, it shows that the two parameters peak and

decay are more or less independent. A decay value between 0 and -1 is most successful, fairly

independent of the peak parameter.

Furthermore, families of rhythms with particular characteristics could be made (e.g.,

rhythms that change meter, syncoped rhythms, rhythms with swing, sloppy performed

rhythms) and tested, yielding insights in the limitations of the model for these specific

type of rhythms and the musical and cognitive interpretation to the parameters. We did

not do any work in this direction yet.

++++ Insert Figure 10. around here +++++

However, the best understanding of such a complex system arises from a mathematical

description through which one can search for analytical solutions, prove convergence and

stability properties, etc. The present state of the work done on a mathematical description

is given below, but much remains to be done.

Mathematical Model
Suppose a rhythm is given by a vector x of durations xj with 1 < i < N. Each update a new

duration vector is computed by

x* = x + D(x)

10/16/90 A d d e n d u m 3/8

Where D in this case is a kind of 'update' function. With a certain initial vector x, we can

construct a set of vectors, x*, x**;... hopefully approaching equilibrium. To characterize D

we begin by decomposing it into an update of individual basic-cells

xi* = xi + Di(x)

An interaction-cell connected to cells with values a and b should accomplish an increment of

their ratio given by the interaction function.

a A
b + F (b>

We convert this change of ratio to a change of time interval A(a,b) under the constraint

that the sum of the intervals stays the same:

a* + b* = a + b

a* = a + A(a,b)

b* = b - A(a,b)

This combines in the definition of the change effectuated by an interaction-cell

f
A(a,b> = b — -------~

1 + b + F (b>

In a basic net, each basic-cell (except the left- and rightmost cell) is connected to two

interaction-cells . Their change is computed by summing the change from each interaction.

Di(x) = A(xi,xi+i) - A (xi_i,xi)

This describes the complete behavior of the basic network. In the compound network, the

value of the sum-cells is defined as

q
sp,q= X xj i ^ p ^ q ^ N

j=p

10/16/90 A d d e n d u m 4/8

Suppose a sum-cell Sp^q is changed by an update function Dp7q

S*p,q = Sp/q + Dp/q(x)

A sum-cell Sp,q is interacting with a number of sum-cells Sq+1/. on the right and a number

of sum-cells Svp-1 on the left, yielding the following definition of Dp,q

N p-1
Dp,q(x) = X^P/q'Sq+l/iO - X^(Si7p-l'i5p,q)

r=q+l r=l

Here, if q=N the first term vanishes because there are no right neighbors. Likewise if p=l

the second term vanishes.

The change of the sum-cells is propagated proportionally to all the basic-cells connected to

it. In each basic-cell the change from all connected sum-cells is summed.

1 N Xi
Di(x)= £ £ Dp,q(x) ^

p=i q=i p 4

Summarizing the above and taking care of leftmost and rightmost intervals, gives

i N-l N q r x-
= 1 E Z A(¿xi' ¿xP

p=l q=i r=q+l j=p j=q+l £ x .

j=P

i N p-1 p-1 q
- ¿ I S A (£ x j , f x j)

P=2q=i r=l j=r j=p

This describes the behavior of the compound model.

Until now we assume a > b in the definition of A(a,b). We modify it to take care of this.

A, F(g(a,b))
A(a,b) - h(a,b) 1 + g(a b) + F(g(a,b))

where h(a,b) and g(a,b) are defined by

10/16/90 A d d e n d u m 5/8

h(a,b) =
b

-a
if a > b

otherwise

g(a,b) = i
a
b

b
a

if a >b

otherwise

When we implemented these systems, the results were inaccurate or unstable because the

change in large sum-cells tended to swamp the influence of smaller, local interactions.

Therefore we scaled the interaction with the inverse of the interval b. This gave a

precedence to local interactions that worked well. Because we still want to refrain for the

moment from modelling the dependence of quantization on absolute global tempo, which

was introduced implicitly by this change, we normalized this factor with the minimum

duration. The factor can be incorporated in the definition of h(a,b):

if a>b

otherwise

We have to characterize the equilibrium state for which

Di(x) = 0

In the simplified network, it can be proven that this condition only holds when all
A(xi,xi+i) are zero. This implies that the interaction function F has to be zero for all ratios,

which in turn means that all ratios are integers or integers plus 0.5. When the sum cells are

introduced the system is much harder to analyze. All equilibrium points of the simplified

system are also equilibrium points of the complete system, but there are many

additional equilibrium points as well. In fact it is not clear yet what exactly are the

(stable) equilibrium points of the complete system.

h(a,b) = <

m in xj
l<j<N J

- m in xj
l l<j<N

Process model and tempo tracking

A system that takes all of the data into consideration is, of course, not feasible when the

aim is to develop a robust technical tool for near real-time quantization of longer pieces, nor

10/16/90 Addendum 6/8

is such an algorithm plausible as a cognitive model. Luckily, it proved quite simple to

design a process version of the quantizer which operates upon a limited window of events.

In this system, new inter-onset intervals shift into the window and metrical durations shift

out, being quantized on the way through. With such a model, tempo tracking becomes an

absolute necessity since slow global tempo changes spanning a time lapse larger then the

window cannot be operated upon nor corrected for.

The architecture makes use of two main modules, the quantizer and a tempo curve fitter

(see Figure 11). They work in mutual corporation, communicating via a window of inter-

onset intervals. In phase 1, the quantizer tries to quantize the data in the window. The

result is passed together with the original data to the tempo curve fitter. This process tries

to explain the difference between the quantized and original data as a global tempo change

instead of random fluctuations, by fitting a third order tempo curve to the quantized and

original data. With the resulting tempo model the data window is reinterpreted and any

consistent global change in tempo is removed from the original data in phase 2. The

resulting sequence is now simpler for the quantizer module to operate upon. In phase 3 it is

given a chance to remove the remaining deviations. Finally, in phase 4, a quantized inter-

onset interval is shifted out of the window and a new interval is shifted in, after being

interpreted according to the expected tempo. Then the whole process is repeated.

As a result a rhythm can be quantized differently depending on the context established by

the preceding data. Which of course is the same as we would expect from human listeners.

For the implementation of the curve fitter special care was taken to use appropriate

numerical methods, as numerical inaccuracies build up because of the feedback architecture

used in the method, resulting in oscillations.

++++ Insert Figure 11. around here +++++

Polyphony

The system described so far is unable to deal with inter-onset times that should move

towards zero (as in chords or music with multiple voices). Although it may be possible to

use other means to 'clean' the data before quantizing it, such as rules for recognizing chord

chunks, the general connectionist approach used in the quantizer seems a much better

10/16/90 A d d e n d u m 7/8

alternative. This is because the context can be taken into account when deciding if for

example something is to be considered a chord with some spread or a regular run of notes or

an arpeggio that has its own metrical structure. By introducing note durations, the system

can distinguish between sequential and simultaneous inter-onset intervals (i.e. overlapping

intervals indicate polyphony). We are currently experimenting with multiple interlocking

networks that can handle polyphony. The preliminary results seem to be promising.

Main Characteristics of the System

In summary, the connectionist quantization system has three main characteristics: 1) It is

context sensitive, with precedence of local context, as we demonstrated with the example in

Figure 6 and the results of the clamping method. 2) The system has no explicit musical

knowledge. There is no pre-conceived knowledge of metrical or rhythmical structure used to

quantize the performance data other than the notion of "integer ratios". All information is

derived from the data itself. 3) The system exhibits graceful degradation. When the

quantizer breaks down in a complex situation it is often able to maintain musical integrity

and consistency at higher levels. The resulting error will only generate a local deformation

of the score. Furthermore, this deformation will always be a simplification of the rhythm,

not a very complex fragment as produced by some traditional systems (see Figure 1). On the

other hand, when more difficult rhythms are fed into the quantizer they imply a smaller

range of deviations that can be accurately captured by the system. Thus, they will be

quantized correctly when performed with a higher accuracy or consistency. Such behavior

could be another possible link to human cognitive performance.

10/16/90 Addendum 8/8

Table 1. Micro version of the connectionist quantizer in Common Lisp.

;; ; MICRO CONNECTIONIST QUANTIZER
;;; (C)1990, Desain & Honing
;;; in Common Lisp (uses loop macro)

;;; utilities

(define-modify-macro multf (factor) *)
(define-modify-macro divf (factor) /)
(define-modify-macro zerof () (lambda(x) 0))

(defun print-state (time intervals)
"Print elements of interval vector"
(loop initially (format t "~%~2D: " time)

for index below (length intervals)
do (format t "~2,1,5$ " (aref intervals index))))

(defmacro with-adjacent-intervals
(vector (a-begin a-end a-sum b-begin b-end b-sum) &body body)

"Setup environment for each interaction of (sum-)intervals"
(loop with length = (length ,vector)

for ,a-begin below (1- length)
do (loop for , a-end from ,a-begin below (1- length)

sum (aref ,vector , a-end) into ,a-sum
do (loop with ,b-begin = (1+ ,a-end)

for ,b-end from ,b-begin below length
sum (aref ,vector ,b-end) into ,b-sum
do ,@body))))

;;; interaction function

(defun delta (a b minimum peak decay)
"Return change for two time intervals"
(let* ((inverted? (<= a b))

(ratio (if inverted? (/ b a)(/ a b)))
(delta-ratio (interaction ratio peak decay))
(proportion (/ delta-ratio (+ 1 ratio delta-ratio))))

(* minimum (if inverted? (- proportion) proportion))))

(defun interaction (ratio peak decay)
"Return change of time interval ratio"
(* (- (round ratio) ratio)

(expt (abs (* 2 (- ratio (floor ratio) 0.5))) peak)
(expt (round ratio) decay)))

C <-JnX d ^

;;; quantization procedures

(defun quantize (intervals &key (iterations 20) (peak 5) (decay -1))
"Quantize data of inter-onset intervals"
(let* ((length (length intervals))

(changes (make-array length :initial-element 0.0))
(minimum (loop for index below length

minimize (aref intervals index))))
(loop for count to iterations

do (print-state count intervals)
(update intervals minimum changes peak decay))))

(defun update (intervals minimum changes peak decay)
"Update all intervals synchronously"
(with-adjacent-intervals intervals

(a-begin a-end a-sum b-begin b-end b-sum)
(let ((delta (delta a-sum b-sum minimum peak decay)))
(propagate changes a-begin a-end (/ delta a-sum))
(propagate changes b-begin b-end (- (/ delta b-sum)))))

(enforce changes intervals))

(defun propagate (changes begin end change)
"Derive changes of basic-intervals from sum-interval change"
(loop for index from begin to end

do (incf (aref changes index) change)))

(defun enforce (changes intervals)
"Effectuate changes to intervals"
(loop for index below (length intervals)

do (multf (aref intervals index)
(1+ (aref changes index)))

(zerof (aref changes index))))

;;; examples

»•(quantize (vector 1.1 2.0 2.9))
»•(quantize (vector 11.77 5.92 2.88 3.37 4.36 3.37 3.87 6.00 6.34

2.96 2.80 2.96 3.46 11.93))

F ig u re 9 left^

^ ^

Figure 9. Trajectories in state space of a rhythm of three notes adding up to
3/4. The peak parameter is set to 2 and 6 respectively.

(fig li re 9 right)

igure 10. M apping o f the param eter space to the num ber o f correct
]uantizations o f a set o f 50 rhythm s

»MB»

? 1

Single inter-onset interval

Window of inter-onset intervals

m sc Tempo model

Figure 11. Process model of the connectionist quantizer

b

A Connectionist and a Traditional AI Quantizer,
Symbolic versus Sub-Symbolic Models of Rhythm Perception

Peter Desain

Center for Knowledge Technology
Utrecht School of Arts
Lange Viestraat 2B
NL-3511 BK Utrecht

Music department
City University
Northampton Square
UK-London EC1V OHB

Will be published as: Desain, P. (forthcoming). A Connectionist and a Traditional AI
Quantizer, Symbolic versus Sub-symbolic Models of Rhythm Perception. In Proceedings of
the 1990 Music and the Cognitive Sciences Conference, edited by I. Cross. Contemporary
Music Review. London: Harwood Press.

Symbolic vs. Sub-symbolic Models 1

Abstract
The Symbolic AI paradigm and the Connectionist paradigm have produced some incompatible
models of the same domain of cognition. Two such models in the field of rhythm perception,
namely the Longuet-Higgins Musical Parser and the Desain & Honing connectionist quantizer,
were studied in order to find ways to compare and evaluate them. Different perspectives from
which to describe their behavior were developed, providing a conceptual as well as a visual
representation of the operation of the models. With these tools it proved possible to discuss their
similarities and differences and to narrow the gap between sub-symbolic and symbolic models.

Keywords
Rhythm Perception, Quantization, (Sub-)Symbolic Processing, Connectionism

Symbolic vs. Sub-symbolic Models 2

Introduction
The so called Good Old Fashioned Artificial Intelligence has established itself firmly in the
past decades as a research methodology. The methods and tools it uses are symbolic, highly
structured representations of domain knowledge and transformations of these representations by
means of formally stated rules. These rule based theories can function (and are vital) as abstract
formal descriptions of aspects of cognition, constraining any cognitive theory. However, some
authors go beyond that and claim that metal processes are symbolic operations performed on
mental representations of rules (see Fodor, 1975). Until the connectionist paradigm emerged there
was no real alternative to that view. But now, in this new paradigm, the departure from reliance
on the explicit mental representation of rules is central, and thus the conception of cognition is
fundamentally different (Barucha & Olney, 1989). This holds regardless of the fact that the
behavior of connectionist models could be formally described in rules. These distributed models
consist of a large number of simple elements, or cells, each of which has its own activation level.
These cells are interconnected in a network, the connections serving to excite or inhibit others.
Connectionism opened the possibility of defining models which have characteristics that are
hard to achieve in traditional A I, in particular robustness, flexibility and the possibility of
learning (Rumelhart & McClelland, 1986). The connectionist boom brought forth much interesting
work , also in the field of music (Todd & Loy, forthcoming). Although many researchers lost
their critical attitude, impressed by the good performance of some (prototypical) models, it
became soon clear that more study was needed to the limitations of these models. A connectionist
model that 'works’ well, constitutes in itself no scientific progress, when questions like the
sensitivity to parameter changes, the scalability to larger problems and the dependency of the
model on a specific input representation, cannot be answered. However, it is possible to describe
the behavior of a connectionist model from different abstract perspectives that provide more
insight in its limitations and its validity as a cognitive model than simulations or test runs alone.
These perspectives are also fruitful for the analysis of traditional AI models. In this article we
pursue this approach for a connectionist and a traditional AI model of rhythm perception as a
case study for the wider issue how the paradigms themselves relate.

The Quantization Problem
In performed music there are large deviations from the time intervals as they appear in the score
(Clarke, 1987). Quantization is the process by which the time intervals in the score are recovered
from the durations in a performed temporal sequence; to put it in another way, it is the process by
which performed time intervals are factorized into abstract integer durations representing the
notes in the score and local tempo factors. These tempo factors are aggregates of intended timing
deviations like rubato and unintended timing deviations like noise of the motor system. This
process of separating different discrete and continuous aspects of musical timing, however simple
at first sight, and indeed forming a rather basic musical skill, proved to be very hard to model
(Desain & Honing, forthcoming). As an example one could try to recover the intended rhythmic
interpretation of the following temporal sequence (in milliseconds):

476 : 237:115 :135 :174 :135 :155 :240 : 254 :118 :112 :118 :138 :476

This task, however hard by calculation, yields an obvious and simple answer when the data is
converted to an auditory stimulus: a sequence of drumbeats (the solution is given in note 1).

Known Methods
The simplest method of quantization, used by most commercially available music transcription
programs, is the round-off of any point in time to the nearest point on a fixed time grid, with a
resolution equal to, or an integral factor smaller than, the smallest duration to be expected. This
method is totally inappropriate: even when enhanced with facilities like user control over the
grid resolution, it yields results that makes no musical sense, even when the performer is forced to
play along with a metronome.

However, this method can serve as the basis of more reasonable models in which the time grid is
adapted if consistent deviations (notes being late or early) are detected. In this so called 'tempo-
tracking' the design of the control behavior becomes crucial: the extraction of an error signal
between time grid and note onsets, and the way in which this error influences the tempo of the

Symbolic vs. Sub-symbolic Models 3

grid. The most elaborate example is the 'real time foot tapper' (Dannenberg & Mont-Reynaud,
1987 and Boulanger, 1990), but a still a 30% error ratio is reported for this system.

A symbolic, rule based system for quantization was in place at the Stanford automatic
transcription project (Chowning,.Rush, Mont-Reynaud, Chafe, Schloss & Smith, 1984). It used
knowledge about preferable ratios between time intervals as a basis for an optimal quantized
description of the data. In such a knowledge based system it is relatively easy to use information
from other domains (e.g. dynamic, harmonic) to help the quantization process, but one has to keep
in mind that this increases the risk of style dependency and therefore brittleness. Because of its
design as an unordered collection of rules it is, like all rule based systems, impossible to
characterize its behavior in non-operational terms.

The musical parser (Longuet-Higgins, 1987) comprises another symbolic AI approach to
quantization, besides methods of tonal and articulation analysis that will be ignored here. It is
highly hierarchical in its music representation and has a reasonable good performance,
Furthermore it had the advantage of a published program being available. A Lisp version of this
program is published in Desain (1990).

The connectionist quantizer (Desain & Honing, 1989,1991; Desain, Honing & de Rijk, 1989) is a
distributed model of fairly simple processing elements. This model displays desirable properties
like robustness, graceful degradation and precedence of local context, but as a model it is hard to
understand why it works so well, and what its limitations are.

These last two methods will now be described in more detail.

The Longuet-Higgins Musical Parser, a Symbolic Model
Using just a little knowledge about meter, and exploiting that to the extreme, the Longuet-
Higgins Musical Parser builds a metrical tree from performance data, and thus implicitly
manages to quantize it. This method is supplied with an initial notion of a time interval called
the beat. This interval is subdivided recursively in 2 or 3 parts looking for onset times near the
start of each part, until the interval contains no more onsets. The 'best' subdivision is then
returned. At each recursive level the interval length is adjusted on the basis of the onsets found,
just as in simple tempo-tracking methods.

The output of the system consists of a list of trees, one for every analyzed beat. Each tree is of a
combined binary-ternary nature, which means that each node has 0 (in case it is a leaf of the
tree) or 2 or 3 sub-trees. During the construction of the tree there is a horizontal flow of
information through the layers of the tree, seeking to maintain the same kind of subdivision at a
certain level as long as possible. The description of the proposed subdivisions at each level of the
tree is called meter. During the construction of the tree a strict left to right order is maintained,
and new sub-trees are created on a generate-and-test basis. This means that a proposed (and
constructed) binary sub-tree may be rejected in favour of a tertiary one. The generate and test
procedure is non-standard in that it may, after checking and rejecting the first alternative, still
reject the second in which case as yet the first alternative is chosen.

There is one parameter (called tolerance) identified in the program. It is used in different places
as the allowed margin of deviation in deciding if notes start or stop at a certain times. In this way
the model does depend elegantly on global tempo by limiting the possibility of further
subdivisions when an absolute time span (the tolerance) is reached: onsets that happen within
the tolerance interval are considered synchronous.

The Desain & Honing Connectionist Quantizer, a Sub-Symbolic Model
A class of connectionist models, known as interactive activation and constraint satisfaction
networks generally behave so as to converge towards an equilibrium state given some initial
state.The connectionist quantization model is designed to converge from non-metrical
performance data to a metrical equilibrium. The network topology is fixed (hard-wired)
and so is the kind of interaction between cells: no learning takes place.

S y m b o lic v s. S u b -sy m b o lic M o d els 4

The net comprises cells for each time interval in a temporal sequence, be it basic (one inter-onset:
interval) or compound (spanning several notes). Two cells representing neighboring time intervals
may interact and push each other to their 'perfect' values implied by an integer ratio,
propagating the changes through the net. After a while the net stabilizes and a quantized
temporal sequence can be read out. The interaction between cells, the change of their ratio,
depends only on the ratio of their durations, via a so called interaction function. Since the ratio of
two time intervals is the only determinant of local behavior, the quantization result does not
depend on absolute global tempo, nor can it handle polyphony. The interaction function is a
section-wise polynomial with 2 parameters called peak and decay; the first reflects the size of
the 'capture' range around an integer ratio, the second represents the decreasing influence of
higher ratios. It has to be stressed that all aspects of the global behavior of the system are
determined completely by these parameters.

A model that takes a whole temporal sequence into consideration at once is not feasible when the
aim is to develop a cognitive model. Luckily, it proved quite simple to design a version of the
quantizer which operates upon a window of events. In such a model tempo tracking can handle
slow global tempo changes. For reasons of space this part of the connectionist quantizerwill not be
described here.

Differences
The models described can be characterized as complete antipoles in a number of aspects. They are
summarized roughly in the table in figure 1. The huge differences made comparing them quite
hard, but in the end the work was gratifying . Because the systems are prototypical for the two
main AI paradigms the results may well generalize to other cases.

**
******** Insert figure 1 around here ********
**

Different Perspectives
Different perspectives for describing these models will now be given, each at its own level of
abstraction. Some perspectives will generalize over sets of inputs or parameters, some will reduce
the amount of variability by keeping certain concepts fixed. I hope to show that this search for
different representations of the behavior of a computational cognitive model, conceptual as well
as visual, is fruitful, even for analyzing traditional symbolic AI programs.

The most direct and raw representation of a computational model is a trace of the computation
itself, an overview of how the internal state of the system changes in the course of a complete
calculation as a function of the computation-time or the number of computation steps taken. A
visualizations of such a trace for the connectionist model is shown in (Desain & Honing, 1989) and
for the Longuet-Higgins parser similar graphic representations can be devised.

A deficit of these representations is that they can only be given for one example input at a time,
and thus are extremely dependent on the choice of input - in a sense it is easy to 'lie' with these
examples by picking one that behaves well. But, on the other hand, these representations show in
full detail the ongoing processes and thus enable interpretations and hypothesis forming .

At the other end of the spectrum of possible perspectives is the statistical method, reducing all
the information to a number of correct responses. We can assume that, when a skilled performer
plays a rhythm, the performed temporal sequence should be quantized as the presented score.
Collecting a set of performances and counting the numbers quantized correctly by the model gives
us then an indication of its validity. The number of correct quantizations will in general be a
function of the possible parameter values given to the model. Visualization of this dependency is
useful in the study of the parameter-sensitivity of the models. Often connectionist models behave
badly in this respect. They might need specific parameter settings for different problems. Or they
might not 'scale-up': for larger problems the model only works for an increasingly smaller range of
parameter settings specific to the problem at hand. Parameters might also have no cognitive
relevance, and as such could not be used to control the global emerging behavior of the model, or

S y m b o lic vs. S u b -sy m b o lic M o d els 5

they might be highly dependent. A visualization of the parameter space can detect such
problems. Both models behave well in this respect, but because of space limitations we cannot
present the parameter spaces here.

Both perspectives have their drawbacks, one being too specific, the other one too general. If we
give up some detail on the speed and order of processing that was available in the computation
trace, and give up the free choice of musical material that was available in the parameter space
we can characterize the precise behavior of the system for a family of sequences: all possible
sequences of a fixed small length. This set can be considered to constitute a rhythm space: the
problem space of quantization.

Rhythm Space Perspective
Let us consider the 3 dimensional space of all possible temporal sequences of 3 inter-onset
intervals (four bangs on a drum). Every point in this space represents a unique temporal sequence.
One could envisage this space projected in a room, with one comer as the origin. The distance
along one wall represents the length of the first time interval, the distance along the second wall
represents the length of the second interval, and the height above the floor represents the third.
In this space certain points will be perfectly metronomical sequences, other points will represent
performed deviations from them. Let us call this space 'rhythm space’ although 'temporal
sequence space' would be more appropriate. A quantization process maps each point in this space
to another; it assigns to each sequence a solution of the quantization. Thus the problem space of a
quantization method is the whole rhythm space, the solution space is a set of points within this
rhythm space. A further characterization of the solution space (e.g., what constraints limit the
set of permisible quantizations - is, for instance, a complex temporal pattern such as 7 :11 : 2 to be
considered allowable?) cannot be given at the moment, which is part of the reason why
quantization is a difficult problem to define.

Trajectories in rhythm space
If the model has intermediate processing states that are temporal sequences themselves, as is the
case with the connectionist model, the computation trace becomes a trajectory through this
rhythm space. Otherwise a simple straight line can indicate the mapping from problem to
solution. Easy visualization requires mapping of this space to 2 dimensions which can be done by
assuming that the whole time-length of the temporal sequence is kept constant, the third
interval then follows from the first two and the first two durations can be taken as the only
independent variables: the x and y axes of a diagram. This normalization, which factors out
global tempo, reduces the general applicability of the method if the theory is itself dependent on
global tempo. The connectionist quantizer does not (but we admit that to model human rhythm
perception accurately, it should). The Longuet-Higgins model does depend on global tempo and
for this model the rhythm space can only be shown for one global tempo at a time.

If all three intervals are restricted between a minimum and a maximum time span, the allowed
portion of the 2 dimensional projection forms a parallelogram. In figure 2a and 2b the rhythm
space for the two models is shown, given an input sequence of three notes between a sixteenths and
a double dotted quarter note. The whole sequence has a total duration of three quarter notes. The
different solutions are indicated by small circles. Note that in the Longuet-Higgins model some
solutions contain inter-onset intervals of length zero. That is because this model interprets two
onsets that happen within the tolerance as synchronous.

**
********* Insert figure 2 around here ********
**

Regions in rhythm space
Because the behavior of the connectionist model is completely determined by a temporal
sequence, any point on a trajectory will be mapped to the end point of that trajectory. This means
that the connectionist model 'carves up' rhythm space into little compartments around each
solution. Each compartment or region contains all the sequences that will be quantized
equivalently. Now we can abstract from the trajectory from initial state to solution and only

S y m b o lic vs. S u b -sy m b o lic M o d els 6

characterize the compartments. These areas, the so called basins of attraction, can be shown as a
partitioning of the rhythm space, as is depicted in figure 3a.The Longuet-Higgins model does not
behave such that the solution itself will always lie within the region that will map to that
solution. But still the region of all points that map to the same solution (the equivalence classes
of the mapping) can be shown as in figure 3b. We can now check the differences between the
models. E.g. the region that maps to the rhythm of three quarter notes (marked A in the figures)
is much larger in the Longuet-Higgins model than it is in the connectionist model. Another
difference is the behavior around the region marked C in figure 3a, which corresponds to a 2:1:2
rhythm. This solution is not present in the Longuet-Higgins model, because it is based on a five-
fold division.

**
******** Insert figure 3 around here ********
**

Influence of context
A good way to understand the influence of context (previously presented musical material) is to
consider how these maps change under the influence of it. In figure 4 a a context of two dotted
quarter notes was presented before the notes shown in the rhythm space. This context heavily
biases the behavior of the connectionist model to quantize the following inter-onset intervals in
subdivisions thereof as is shown by the enlargement of the area marked B. The area marked C
completely disappears in the light of the contextual evidence for these subdivisions. Also in the
Longuet-Higgins model the quantization is influenced (or even guided) by context. It does so by
propagating the established meter to the processing of the remaining data. Using a duple meter
as context, a very similar distortion of the regions in rhythm space can be seen (figure 4 b).

**

******** Insert figure 4 around here ********
**

Influence of parameters
These maps can also be used to understand the influence of the parameters of the model by
interpreting their changes under the influence of different values. In figure 5a the so called peak
parameter of the connectionist quantizer is slightly increased. This yields a denser map of
smaller regions and adds new regions around 'difficult' rhythms. In the Longuet-Higgins model
we can achieve a similar change by decreasing the tolerance. Now the model will behave more
'precisely' and new solutions and small regions around them emerge.

**

****»**,. Insert figure 5 around here ********
**

Cognitive interpretation
We really need to compare these maps now to the corresponding maps for the human listener to be
able to judge the cognitive validity of the models. In principle it is possible to obtain this
empirical data in categorical perception experiments, presenting subjects with temporal sequences
from the space in a transcription task. But mapping out the whole space will be a paramount task,
even for such short sequences. Data about the borderlines betwen some regions can be found in
Schulze (1989) and Clarke (1987).

Expectancy Space Perspective
The previous representations were based on the abstraction of a whole temporal sequence that
served as input of the system. Since the full models work incrementally, a representation that
makes explicit how a previously established context influences future decisions would be useful.
We have to ignore here any influence of new incoming data back to the previously processed
results, which is a reduction for both models. In the full process model of the connectionist
quantizer we can 'clamp' the whole of the network state to the partial solution obtained and
study what would happen to a new incoming onset. This virtual new onset, acting as a measuring

S y m b o lic v s. S u b -sy m b o lic M o d els 7

probe, will be moved by the model to an earlier or a later time. If it is given a positive time shift
to a later time, the model clearly had not yet 'expected' an event. If we postulate a measure of
expectation of an event, it has to be larger at a later time for this 'early' event. Vice versa: a
negative movement, a shift to an earlier time, indicates a dropping expectancy: the event is late.
So we can integrate the movement to yield an expectancy measure. It forms a curve with peaks at
places where an event, were it happen there, would stay in place. We could also rephrase this
explanation in terms of potential and energy. The potential curve projected into the future by the
network is then the inverse of the expectancy. But in the context of cognitive models expectancy
seems a more appropriate concept. This process of calculating an expectancy can even be done in an
incremental way: the expectancy is calculated until a real new event happens, that event is
added to the context, and the process starts all over again. In figure 6 this curve is shown for a
rhythm in 2/4 and the peaks in between and at the note onsets clearly are positioned at important
metrical boundaries. Note that for the sake of clarity the input sequence is already idealized
here to a metronomical performance.

**
******** Insert figure 6 around here ********
**

To show that these curves capture indeed an abstract property of the input data we can look at
the last part of the curve in figure 6 (the last measure between time 16 and 20), and study that for
different 2/4 contexts as is done in figure 7. It shows how the different rhythms project a very
similar expectancy into the future. This even prompts the challenging thought that these curves
constitute a kind of rhythmic 'signature' that can be compared to produce a kind of distance
measure, a metric, of rhythms.

**

******** Insert figure 7 around here ********
**

One further corroboration of the usefulness of these curves is shown in figure 8. Here the
expectanciesof two rhythms are compared: one in 6/8 (a division in 2 and then in 3) and the other
with time signature 3/4 (a division in 3 and then in 2). The prominent peak in the curve of the
first one is located at halvf the measure length, lesser peaks appear at 1/6 and 2/6, and at 4/6
and 5/6. The curve of the second one has prominent peaks at 1/3 and 2/3 of the measure, and
somewhat less pronounced peaks at 1/6,1/2 and 5/6. These findings clearly correspond with the
musical notion of the importance of the different points in time given these meters.

**

*’w**’w* Insert figure 8 around here ********
**

For the Longuet-Higgins model it is a bit difficult to 'clamp' the internal state to a partial
solution because of possible backtracking. However, no backtracking can take place across beat
boundaries, and after each beat the model only propagates the established meter and the length
of a beat (the tempo) to the processing of the next beat, expecting them to apply there too. So
given a beat length and a meter, they will determine the points in time where notes will be found
and assigned to a metrical level. Together with the resolution of this decision (the tolerance), a
comparable kind of expectancy of future onset times can be postulated. Of course the expectancy
can only be given on an ordinal scale: onsets at higher metrical levels are expected 'more'. In
figure 9 such a measure is shown for a twofold two-division (2/4 meter) and at a beat length of one
bar, together with the expectancy curve of the connectionist model from figure 6. It is striking to
see how the peaks in both curves now coincide. I feel that this is the point where the two models
meet. Meter, a symbolic, structural concept at the very heart of the Longuet-Higgins parser,
emerges out of the global and abstracted behavior of the connectionist quantizer. Here we are on
the verge of the possibility of 'reading-out' symbolic representations from a sub-symbolic model.

**

S y m b o lic v s. S u b -sy m b o lic M o d els 8

******** ********Insert figure 9 around here
»»»*»»*»**»**»**»*»***»»»*»*»***■*******»»»*»»»******»»*»»»»********»*»*»»*****■****»*»*»*

Conclusion
It is possible to represent the behavior of two incompatible models of rhythm perception, the
symbolic Longuet-Higgins musical parser and the Desain & Honing connectionist quantizer in
different perspectives that make them comparable. These perspectives - the process state trace,
the parameter and rhythm space, and the expectancy perspective - highlight different aspects
of the models. Visualizations of these representations turned out to be crucial - even if the
dimensionality or the flexability had to be reduced.
These methods also showed the richness of the topic of quantization, a process that lies at the
heart of rhythm perception. It is central because it separates two fairly different kinds of timing
data: the discrete and the continuous, each of which forms the postulated input of different
theories of temporal perception. It is well known that the concept of meter is of great importance
in encoding, interpretation and memory in musical tasks (Palmer & Krumhansl, 1990) and it is not
surprising that this symbolic concept, even though not represented explicitly in the connectionist
model, is still present implicitly and can emerge from the net with the help of an appropriate
measuring method.

Acknowledgements
I would like to thank the colleagues who helped in this research: Eric Clarke for providing a
very stimulating research environment at City University. Christopher Longuet-Higgins for
encouragement and fruitful discussions about his parser. Steve McAdams for his support. Michel
Koenders who automated the categorical perception experiment and Jeroen Schuijt who
programmed a test suite for the quantizer, for their work and enthusiasm. Siebe de Vos and Peter
van Oosten for commenting on drafts of this text. And especially Henkjan Honing for answering
my midnight telephone calls.

References

Barucha J.J. & K. L. Olney (1989) Tonal Cognition, Artificial Intelligence and Neural Nets.
Contemporary Music Review. 4

Boulanger R. (1990) Conducting the MIDI Orchestra, part 1: Interviews with Max Mathews,
Barry Vercoe, and Roger Dannenberg. Computer Music journal 14(2)

Clarke, E.F. (1987) Levels of Structure in Musical Time. Contemporary Music Review. 2(1)

Clarke, E.F. (1987) Categorical Rhythm Perception: An Ecological Perspective. In A.
Gabrielsson (Ed.) Action and Perception in Rhythm and Music. Stockholm: Royal Swedish
Academy of Music, vol 55.

Chowning, J., L.Rush, B. Mont-Reynaud, C. Chafe, W. Andrew Schloss, and J. Smith, (1984.)
Intelligent systems for the Analysis of Digitized Acoustical Signals. CCRMA Report No.
STAN-M-15.

Dannenberg, R. B. and B. Mont-Reynaud (1987) An on-line Algorithm for Real Time
Accompaniment. Proceedings of the 1987 International Computer Music Conference. San
Francisco: Computer Music Association.

Desain, P. and H. Honing (1989) Quantization of Musical Time: A Connectionist Approach.
Computer Music Toumal 13(3). also to appear in (Todd & Loy, forthcoming).

Desain, P., H. Honing, and K. de Rijk (1989) A Connectionist Quantizer. Proceedings of the
1989 International Computer Music Conference. San Francisco: Computer Music Association.

S y m b o lic vs. S u b -sy m b o lic M o d els 9

Desain, P. and H. Honing (forthcoming) The Quantization Problem: Traditional and
Connectionist Approaches, in Musical Intelligence edited by M. Balaban, K. Ebcioglu and O.
Laske. Menlo Park: AAAI book.

Desain, P. (1990) Parsing the Parser, a Case Study in Programming Style. Computers in
Music Research. 2.

Fodor, J.A. (1975) The Language of Thought. New York: Crowell.

Palmer C. and C.L.Krumhansl (1990) Mental Representations for Musical Meter. Tournal of
Experimental Psychology: Human Perception and Performance.

Longuet-Higgins, H.C. (1987) Mental Processes. Cambridge, Mass.:MIT Press.

Rumelhart, D.E. and J.E. McClelland (Eds.) (1986) Parallel Distributed Processing.
Cambridge,: MIT Press.

Schulze, H. (1989) Categorical Perception of Rythmic Patterns. Psychological Research. 51.

Todd, P.M. &D. G. Loy (Eds.) (forthcoming) Music and Connectionism. Cambridge,
Mass.: MIT Press.

Notes

1 The solution is the rhythm:

S y m b o lic v s . S u b -sy m b o lic M o d els 10

Longuet-Higgins musical parser Desain & Honing connectionist quantizer

symbolic
central
search
hierarchical
knowledge based

numerical
distributed
optimization
heterarchical
knowledge free

Figure 1. A summary of the differences of the two models under study.

W

Figure 2a. Trajectories through rhythm space in the connectionist model.

J> J>. J)J J. J..

Figure 2b. Mapping in rhythm space in the traditional A I model.

F i g u r e 3 b . R e g i o n s i n r h y t h m s p a c e i n t h e t r a d i t i o n a l A I m o d e l

F i g u r e 4 a . I n f l u e n c e o f c o n t e x t (t w o d o t t e d q u a r t e r n o t e s) in t h e c o n n e c t i o n i s t m o d e l

J> J>. J JJ> J. J.

F i g u r e 4 b . I n f l u e n c e o f c o n t e x t (d u p l e m e t e r) in t h e t r a d i t i o n a l A I m o d e l .

F i g u r e 5 a . I n f l u e n c e o f t h e p e a k p a r a m e t e r in t h e c o n n e c t i o n i s t m o d e l .

F i g u r e 5 b . I n f l u e n c e o f t h e t o l e r a n c e p a r a m e t e r i n t h e t r a d i t i o n a l A I m o d e l .

ex
pe

ct
an

cy

0 4 8 12 16 20

J . J> J. J> J J. J
time

F i g u r e 6 . E x p e c t a n c y o f o n s e t s in t h e c o n n e c t i o n i s t m o d e l .

o

0 1 2 3 4

time

F i g u r e 7. E x p e c t a n c y o f o n s e t s in d i f f e r e n t 2 / 4 c o n t e x t s in t h e c o n n e c t i o n i s t m o d e l

ex
pe

ct
an

cy

time

Figure 8. Expectancy of onsets in 6/8 versus 3/4 rhythm in the connectionist model.

ex
pe

ct
an

cy

......................»..................... ?.....................*..................... i......................*.....................t......................:.....................
0 1 2 3 4

time

Figure 9. Expectancy of onsets in 2/4 context of the two models.

A (DE)COMPOSABLE THEORY OF RHYTHM PERCEPTION

Peter Desain

Center for Knowledge Technology-
Utrecht School of the Arts

Lange Viestraat 2B
NL-3511 BK Utrecht

Will appear in Music Perception.

1

Keywords

Rhythm perception, temporal patterns, expectancy, connectionism, quantization,

categorical perception.

Abstract

A definition is given of expectancy of events projected into the future by a complex temporal

sequence. The definition can be decomposed into basic expectancy components projected by

each time interval implicit in the sequence. A preliminary formulation of these basic curves

is proposed and the (de)composition method is stated in a formalized, mathematical way.

The resulting expectancy of complex temporal patterns can be used to model such diverse

topics as categorical rhythm perception, clock and meter inducement, rhythmicity, and the

similarity of temporal sequences. Besides expectancy projected into the future, the proposed

measure can be projected back into the past as well, generating reinforcement of past events

by new data. The consistency of the predictions of the theory with some findings in

categorical rhythm perception is shown.

Introduction

Many incompatible theories about temporal perception and memory exist, which explain a

number of phenomena well, but fail to predict others. A common theoretical basis for such

work would be desirable. Connectionism might be an attractive paradigm in the search for

such a basis, but most of its models lack compositionality. This means that the model as a

monolithic whole might perform well, but it is impossible the decompose its complex

behaviour into meaningful smaller parts. Chandrasekaran (1990) argues that the

composability is a condition for successful cognitive modelling, even in the connectionist

paradigm. In Desain (1990) the behavior of a sub-symbolic (connectionist) model of

temporal quantization was described such that it could be compared with an incompatible

symbolic model from the traditional AI paradigm. The paper concluded with an

abstraction of the behavior of the quantizer in the form of an 'expectancy of events' with a

temporal pattern as prior context. Expectancy turned out to be (de)composable which makes

it possible to base a theory of perception of complex stimuli on a simple model for the

perception of their constituting components. Because the expectancy concept seems to

explain the dependency of perception of rhythmic structure on global tempo, the influence

of context on categorical perception and other complex phenomena I propose to use it as a

common basis for theories about temporal perception and memory. It is noteworthy that

Povel (1984, 1985) has already remarked that high level cognitive judgements like

rhythmicity might be based on, or be a byproduct of, low level rhythm perception processes

that deal with quantization and tempo tracking.

"The experience of rhythmicity is supposed to result from the process that updates the

internal clock in the light of the incoming stream of events. It may be noted that this

process makes part of the normal process of listening to music in which the listener

constantly adjusts his internal clock (metrical fram e) to local temporal irregularities

and tempo variations" (Povel,1984)

In this paper I will focus on the explanation and formalization of the theory and the

composability of the definition of expectancy. The interpretation of the resulting curves,

their possible use, and their relations to other research aimed at a higher level of rhythm

perception, will be dealt with in Desain (in preparation). Although the theory looks

attractive enough, I have to warn the reader that this paper is an account of recent work

and it has yet to be empirically verified.

The Connectionist Quantizer

To illustrate how the theory develloped from a connectionist approach to the quantization

of temporal sequences Desain & Honing (1989) a brief overview of that system will be given

here. One by one the inter-onset intervals of a performed sequence are passed to a network of

cells. The network acts as a complex shift-register: new inter-onset intervals shift in, are

processed on the way through, and then shift out of the network as quantized durations

(rhythmic catagories). Besides cells for performed time intervals there are cells for

intervals spanning several basic intervals. Two cells interact if they represent neighboring

time intervals: one ending where the other starts. Their interaction is such that the ratio of

the two intervals is adjusted towards an integer, if the ratio is already close to this goal.

The change in length of each interval is proportionally propagated to all the basic

intervals that form part of it. This interaction proceeds untill a new inter-onset interval

enters the network. All data is then shifted one position and the interaction process

resumes.

Expectancy

To make the link from the updating of time intervals, as is done in the connectionist

quantizer, to expectancy, we can study what would happen to an imagined new incoming

event whose corresponding time interval has just been shifted into the network. Its change

is completely determined by the context of a temporal pattern that was presented before.

When all but the last new interval in the network are clamped to a fixed state so that we

can study the change of the new interval effectuated by the context while ignoring the

influence of the new interval on the already perceived, but not yet fully processed data.

The quantizer then can only effect a change in duration of this new basic interval. The

imagined new onset ending this interval, now acting as a kind of measuring probe, will be

moved to an earlier or a later time by the interactions. If the interval is increased, moving

the onset to a later point in time, the model clearly has not yet 'expected' an event. If we

postulate a measure of expectancy for this 'early' event, it will be larger at a later point in

time. Conversely, a decrease of that time interval, a movement of the new onset to an

earlier point in time, indicates a falling expectancy: the expectancy at an earlier time was

larger. Finally, if the context inflicts no change to the new onset, expectancy is constant at

that time. We can thus view the change of a imagined new onset time as the slope of an

expectancy measure of an onset at that time. The pattern of expectancy forms a curve with

extremes at places where an event, were it to happen there, would stay in place, because

the derivative of the curve at this point (which is the change) is zero. The local maxima

form the expected, 'perfect' places of onsets and the local minima form points of maximal

confusion, places of unexpected events. Take e.g. the pattern [3,1, 2, x]. If x is just below 1,

the quantizer network would effectuate a positive change. If x is equal to 1, the change

would be zero. If x is just above 1, the quantizer would adjust it downwards, a negative

change. Around 2 a similar situation occurs, but the changes are more pronounced because of

the strong 1:1 interaction between the last to intervals. Around 3, 6 and even 12 the pattern

is similar as well: positive below, zero on, and negative above that value. If we now

integrate the change over x, an expectancy curve results with local maxima at the values

1,2,3 etc. Figure 1 shows some expectancy curves that were measured with longer temporal

patterns represented as prior context in the network. They all have the same global

characteristic, 2/4 meter, and produce very similar curves. Note the prominent peaks at the

half-bar and bar boundary (at time 2 and 4, counting in eighth notes) and lesser peaks

dividing these intervals further.

Figure 1 about here: Expectancy of onsets after presentation of different 2/4 patterns.

Decomposition

Expectancy is defined as the integral of the change generated by the sum of all interactions

in the network. We can exchance integration and summation in this formulation and

redefine the expectancy, given a prior complex pattern, as the sum of all the expectancies

generated by each interval in that pattern. This effectively decomposes the theory for

processing complex rhythms into a set of simple components, one for each time interval

implicit in the pattern. Figure 2 is an attempt to depict this kind of decomposition. At the

bottom left the presented temporal pattern is shown. Above it all the intervals implicit in

this pattern are indicated (by heavy lines). To the right of each interval the pattern of

expectancy projected by that interval is shown (light lines). This basic expectancy is a

function of two parameters: the length of a time interval, and the time elapsed after the

end of that interval. It peaks when the second parameter is an integer divisor or an integer

multiple of the first. All the projected basic expectancies are summed and yield the curve at

the lower right: the global expectancy curve projected by the complex temporal pattern. It

has peaks at time points that can be considered as 'good continuations' of the pattern

presented.

Figure 2 about here: (De)composition of expectancy.

This concept of expectancy seems closely related to ideas of Jones, and could function as a

formalization of these.

It is such psychological trajectories that rhythmically guide our attentional

energies along ideal paths. Attention is cast from some reference event at one point in

time toward a target event scheduled for a later time. This approach demonstrates that

attention itself is a dynamic, many levelled affair based upon nested internal rhythms.

YJe continually cast ourselves forward by rhythmically anticipating future events that

may occur within small and larger time intervals. These paths form the patterns of

mental space and time and so can establish for us that sense of continuity and connection

that accompanies comprehension." Jones (1981).

A more precise formulation of this principle of decomposition, which consitutes the core of

the theory presented in this paper, will be given later. But first it is interesting to consider

what happens if the grain of analysis is made a bit more coarse by lumping together the

expectancy contributions of intervals that end at the same point in time. This gives a

decomposition based on events instead of intervals. In Figure 3 the contributions of each new

event are shown, incrementally building the total expectancy. The expectancy evolves

during the presentation of the pattern and not only extends from the end of the pattern into

the future, as was shown in figure 2. This kind of curve can show how a temporal pattern

fails to realize a high expectancy (a syncope), or comes up with an unexpected event. It also

enables one to see how a new event reinforces the already existing pattern of future

expectancy or introduces new elements in it.

Figure 3 about here: Expectancy contributions of events in a temporal pattern.

Now we will make a slight detour to the concept of memory. According to Mari Jones

expectancy and memory are closely related:

"[...] Paradoxically, a third implication of including time as a part of subjective

structure results in an alternative view of memory. This new view casts remembering as a

dynamic attentional process unfolding in negative time. That is, we can conceive of both

expectancy and remembering as activities tied to the time dimension. [....] Expectancy

and remembering then are opposite sides of the same coin." Jones (1981).

These rather puzzling remarks become clearer when one studies the influence that a new

incoming event might have on the prior context. The new event can support one or the other

of the previous interpretations and in retrospect contribute to a limited extent to the

salience of already perceived stimuli. To visualize this we can simply construct all the new

intervals created by a new incoming event and project their expectancy of events into the

past (see Figure 4). This gives the amount of reinforcement given to each event in the

pattern by the new incoming event. Temporal patterns that behave in a well-formed way,

with high support of events by later ones, might be remembered better. This model thus

predicts how a later event can facilitate or inhibit the memory of past ones, a rather

spectacular feature. An example of this phenomenon is the often encountered 'closure' of a

temporal pattern which concludes with an event in a highly expected place: an important

metrical position.

Figure 4 about here: Relation of expectancy and memory.

8

Concluding, we can state that the concept of expectancy as presented here has no time

direction in itself. It is determined completely by two time intervals, but whether each of

the time points marking the intervals was presented as stimulus in the past, or has yet to

happen in the future, is irrelevant to the theory. One can thus speak about expectancy of an

event at a future time generated by two time points in the past, the reinforcement of an

event in the past by two time points happening later, or even the expectancy of an event at

a certain time in between two time points. All these notions are equivalent at this level of

the theory, and yield the same numerical values if the distance between the first and

second time point is the same as the distance between the second and third time point in the

three cases. This does not imply that the theory is symmetric with respect to time:

swapping the distances between the first and second and between the second and third time

point might yield different values, because the perception of a time interval followed by a

multiple of its length might be different from the perception of that interval followed by a

division of it by the same factor.

Besides the ratio of the two time-intervals, the basic expectancy function is supposed to

depend on the absolute time duration of both of its parameters as well. This makes the

theory sensitive to the time scale used (the absolute tempo). In Figure 5 the same pattern as

in Figure 2 is used, but at half the tempo (note that for the sake of easy comparison the

horizontal axis is 're-normalized' such that the figures have the same size). It is clear that

what is often called 'the shift of level of attention through the levels of metrical

hierarchy, prompted by different tempi' can be found here in the shift in relative

importance of expectancy peaks.

Figure 5 about here: Expectancy at slow tempo.

We now get back to the details of the model. The shape of the basic expectancy curves is

the part of the model that still has to be 'plugged in' to yield the full theory. The theory is

'generic': given any method for calculating the basic expectancy of a time interval pair, it

defines the method to calculate expectancies for any complex temporal pattern. I will

discuss a first approximation of these basic expectancy curves and the possibilities of

deriving them empirically.

Preliminary theory of basic expectancy

Before its mathematical formulation I will first give a graphic representation of the

proposed basic expectancy. We can depict the basic expectancy of a time interval pair (A,B)

for fixed A as a curve (see figure 6).

Figure 6 about here: Basic expectancy of interval pair A,B.

One can see clear peaks in expectancy when B equals A, 2A, 3A... and when B equals A/2,

A/3 etc. The shape of the expectancy curve is determined by our capacity to perceive serial

duration ratios, with higher ratios being more difficult and less expected (Jones & Boltz,

1989). This may also be true for more complex ratios in terms of their prime divisors. These

curves, projecting expectancy into the future, were used for Figure 2. Another visualization

is given in Figure 7. It shows the expectancy of a subdivision of a unit time interval into the

interval pair A,l-A. One can see here that the time-reversed interval pairs are still

assigned the same expectancy in this preliminary theory (e.g. the pair 1/3, 2/3 and the

pair 2/3,1/3)

Figure 7 about here: Basic expectancy of interval pair A,(l-A)

Sternberg, Knoll and Zukofsky (1982) showed that perceptual judgement is dependent both

on the ratio of the intervals involved and on their absolute duration. Very long and very

short time intervals are difficult to perceive accurately. The maximum in sensitivity occurs

at about 600 ms, which is in the preferred tempo range (Fraisse, 1982). The total length of

the interval pair will be used as a second determinant of the expectancy to model this

dependency on the absolute time scale.

Because the sectionwise polynomials used in Desain & Honing (1989) are a bit difficult to

treat mathematically, basic expectancy is defined as a sum of several Gaussian curves, one

around each relevant ratio.

Eb(A,B) GAUSS(^-
D

„ „ A+B
, R 'Tpref

1 1
Re{-,.., 2,1,2, ..,n)

(1)

GAUSS (x,R,S) = C(R,S) e 'D(R'S) (2)

The parameters of the Gaussians are determined by the ratio and the absolute tempo (the

size of the sum interval in proportion to the preferred tempo). These last two values (R and

S) determine the height (via function C) and the width (via function D) of the expectancy'

curve peak at each integer ratio.

Measuring basic expectancy

To be able to proceed from a theory to a tested cognitive model we need a way to

operationalize and measure basic expectancy. Although the material under consideration is

very simple (just two successive temporal intervals), collecting empirical data on perceived

expectancy might still be quite difficult. Carolyn Drake (personal communication) has

proposed a measure of accuracy in an adjustment task as used in her work on accents (Drake,

Botte & Gérard, 1989). Goodness-of-fit judgements and memory confusion in discrimination

judgments as used by Palmer and Krumhansl (1990) should also be considered. A more

indirect measure might be derived from calculating the probabilities of time interval pairs

A,B in a body of musical pieces. This is not the same as the frequency counts approach used

by Palmer and Krumhansl (1990) as the latter makes use of a-priori knowledge of meter.

Complex expectancy

When the basic expectancy function Eb(A,B) is given, either by measurement or construction,

the expectancy generated by an interval in a complex temporal pattern can be derived. Let

X be a vector of basic time intervals Xj (l<i<N) and S(X,p,q) the time period spanned by

intervals p through q.

When X contains the interonset intervals of a temporal fragment presented from time 0, we

can define the interval expectancy Ei of a new onset at time T , generated by the interval

spanning inter-onset intervals p to q in X, by applying the basic expectancy function Eb to

the relevant time intervals.

q
S(X,p,q) = £ X i

i=P
withp<q<N (3)

(4)

The complex expectancy E(X,T) of an event at time T, generated by the temporal pattern X

presented from time 0, is then a sum of the interval expectancies Ej over all intervals

implicit in that pattern:

N N
E(X,T)= X I Ei(X,p,q,T) withT> S(X,1,N) (5)

p=lq=p

Figure 8 has the sam e structure as Figure 2, but it labels the relevant time intervals

according to the formalism given above.

F ig u re 8 ab o u t h ere: Tim e intervals used in calculating expectancy.

The event-based expectancy of Figure 3 and the concept of reinforcement of Figure 4 m ay be

formalized in an analogous w ay.

Because the basic expectancy Eb(A,B) will be small for large A or B there is a natural limit

to the size of the context that will contribute to the total expectancy E(X,T), and the vector

X can function autom atically as a short-term m em ory construct.

A nice consequence of the bidirectionality of the expectancy concept is that the sum of the

corroborations of each event in a pattern by a virtual new onset is the sam e as the

expectancy of that onset generated by the pattern.

R elated w ork

The m easure of expectancy presented here can be related to a number of different theories

and concepts. The Gestalt principle of Good Continuation, which is one of the underlying

assumptions in m uch research in grouping mechanism s (Deutsch, 1982), can be linked closely

to the expectancy construct. It is tem pting to interpret the relative height of the peaks in

the expectancy curve directly as a m easure of m etrical boundary strength. H ow ever, instead

of deriving a symbolic notion of m eter from these curves, it might be m ore productive to re-

think the concept of m eter as a continuous concept, an idealized expectancy curve, as

discussed in Desain (in preparation). This allows the construct to be applied directly to the

difficult areas of am biguous rhythm s, change of m eter and am ount of metricality. The

1 3

expectancy curves are also promising for the study of the perceived rhythmicity of

temporal patterns and their degree of syncopation (Povel, 1985). This is because it is easy to

formalize the violation of a maximum in expectancy by the absence of an event at that

time.

Given the numerous links with different aspects of the literature on rhythm perception, I

will restrict myself here to some remarks on the predictions of the model for categorical

rhythm perception.

Categorical rhythm perception

In general, categorization occurs when objects, on the basis of some continuously variable

attribute, are placed in a small number of groups (see Repp, 1984). Sloboda argues for the

existence of categorical perception in rhythm by noting how different the perception of

rhythm and the perception of expressive timing are:

"[...] Identification of intended rhythm is a commonplace accomplishment for listeners,

who are continually faced with the potentially confusing phenomenon of rubato and

gradual changes in speed. In contrast, accurate perception of deviations from

metricallity is difficult, and requires much specific training. It is almost impossible for

one performer to imitate another exactly. All this strongly suggests that listeners

achieve a categorization of the duration of the notes they hear into crotchets, quavers

etc. [...] one would not wish to claim that categorical perception makes finer temporal

discriminations impossible. We can hear rhythmic imprecision and rubato with

appropriate training, but fine differences in timing are more often experienced not as

such, but as differences in the quality (the 'life' or 'swing') of a performance. " (Sloboda

1985, p. 30)

1 4

Thus, in quantization the deviations from a strict m etrical perform ance are not throw n

aw ay, but timing is separated into structural and expressive com ponents and then handled

by different processes.

A discussion of the use of expectancy curves for a categorical perception model (a quantizer)

will be left aside here since it involves m any technical points about the architecture of

static vs. process m odels, the use of global tempo tracking etc. The m odels proposed in

Desain & H oning (1991, addendum) use hill-climbing in an expectancy landscape, but they

vary in the extent to which the different dim ensions Colder’ and 'new er' time intervals)

are allowed to vary. The following m aterial will discuss the expectancy curves them selves,

assum ing that if local m axim a and minima em erge they can be used som ehow to segm ent the

continuous time axis into discrete regions, one for each rhythmic category.

Although categorical perception is a well established phenom enon in speech research, its

existentence is m uch harder to dem onstrate in the rhythm dom ain. In a well known set of

experim ents, skilled musicians w ere asked to judge the length of tem poral intervals in

rather sim ple integer ratios (Sternberg , Knoll & Zukofsky, 1982). Surprisingly, they w ere

not able to do this accurately and boundaries between different categories turned out to be

rather vague. Schulze (1989) w as som ew hat more successful in showing the existence of a

categorical boundary in interpolations between patterns of three inter-onset intervals. In

Clarke (1987) subjects were given a context of five or six inter-onset intervals in different

metrical contexts, before the two experim entally m anipulated durations w ere presented.

He w as able to show clear identification and discrim ination curves, that also show ed the

predicted shift for the different context conditions. The general line in these findings thus

seem s to be that categorical perception is facilitated by context. This is in agreem ent with

the expectancy theory presented above: the expectancy curves become m ore pronounced if

m ore context is available. In Figure 6 one can see that in an impoverished context the

perception of simple patterns like [3,2] is not possible anyhow : there is no peak in

expectancy at B = 2 /3 A . A bit m ore context will allow correct perception of a 2 /3 ratio as is

shown in Figure 9, w here the expectancy of an onset after the context [2,3,3] is given. N ote

how the local m axim um at B = 2 em erges here. This general idea is consistent with the

findings of Povel (1981) concerning an imitation task.

F ig u re 9 a b o u t h e re : Facilitation of the perception of the ratio 2 /3 by context.

Conclusion and discussion

The presented theory of expectancy seem s a promising candidate for a com m on basis for

m any incompatible theories of rhythm perception and m em ory. Its decom posability into

simple com ponents that model perception of time interval pairs is attractive, not in the

least because empirical results for sim ple simuli can be 'plugged' into the theory to yield

predictions for m ore com plex tem poral patterns. The theory elegantly links expectancy

projected into the future and reinforcement of past events by new data. Predictions following

from the theory are consistent with som e findings in categorical rhythm perception.

Em pirical verification of the theory will be the next step that is needed to further the

research in this direction. Another field in which w ork needs to be done is the

formalization of the use of expectancy in the different cognitive processes mentioned above,

such as quantization, m eter and beat inducement, rhythm icity and sim ilarity of rhythm s.

It is clear that a full theory of rhythm perception cannot be based on time alone but has to

take other musical param eters into account as well. A possible approach could be the use of

a notion of salience to w eigh expectancy contributions of events.

It still is an open question whether an expectancy pattern is available as a whole for input

to other processes, or w hether expectancy is m erely a changing sense of present anticipation

and no access to future expectations is possible.

1 6

Acknowledgements

I would like to thank Piet Vos for organizing the Rhythm Perception and Production

W orkshop in Horssen and Ian Cross for his Music and Cognition Conference in Cambridge

w here m any of these ideas w ere born. The research done with Eric Clarke at City

University started m y interest in issues of expressive timing, it w as very stimulating to

w ork with him. Johan den Biggelaar of the U trecht School of the A rts did his best to

provide me with research facilities there. I also would like to thank Carolyn D rake, Mari

Jones, Jeroen Schuit, Marie-jose Tienhooven, Siebe de Vos and Caroline van der W al who

gave m any helpful com m ents on this paper. As alw ays, Henkjan Honing prevented me from

sidetracking the m ain issues. W ithout him , I w ould have had less than half the fun in

contriving these ideas.

*

References

Chandrasekaran, B. W hat Kind of Information Processing is Intelligence? A Perspective on

AI Paradigm s and a Proposal. In T. Partridge and Y.W ilks (Eds.), The foundations of

artificial intelligence, a sourcebook. C am bridge: C am bridge U niversity Press, 1990.

Clarke, E. C ategorical Rhythm Perception, an Ecological Perspective. In A. Gabrielsson

(Ed .), Action and Perception in Rhythm and Music. Royal Swedish A cadem y of M usic, 1987,

N o. 55:19-33.

Desain, P. & H oning, H. Q uantization of musical time: a connectionist approach. Computer

Music Journal, 1989 ,13(3) to be reprinted in P.M. Todd and D. G. Loy (Eds.), Music and

Connectionism, Cam bridge, M ass.: MIT Press, 1991.

Desain, P. A Connectionist and a Traditional AI Q uantizer, Symbolic versus Sub-symbolic

Models of Rhythm Perception. In I. Cross (Ed.), Proceedings of the 1990 M usic and the

Cognitive Sciences Conference, Contemporary Music Review. London: H arw ood Press.

Desain, P. M eter as a Continuous Concept. Report of the Center for Knowledge Technology.

U trecht, (in preparation) .

Deutsch D. G rouping M echanism s in Music In D.Deutsch (Ed.), The Psychology of Music.

Orlando: A cadem ic Press, 1982.

Drake, C . , Botte, M. C. & G erard, C. A perceptual Distortion in Simple Musical Rhythms.

Proceedings of the International Society for Psychophysics Fifth Annual Meeting, C assis,

F ran ce,1989.

Fraisse, P. Rhythm and Tem po In D.Deutsch (Ed.) The Psychology of Music. O rlando:

Academ ic Press, 1982.

H andel, S. Listening, An Introduction to the Perception of Auditory Events. C am bridge Ma:

MIT Press, 1989.

Jones, M.R. & Boltz, M. Dynamic Attending and Responses to Time. Psychological Review.

96(3), 1989, 459-491.

Jones, M.R. Only Time Can Tell: On the Topology of Mental Space and Time. Critical

Inquiry, 1981 .

Palm er C. & Krum hansl, C.L. M ental Representations for Musical M eter. Journal of

Experimental Psychology: Human Perception and Performance. 16(4) 1990, 728-741.

Povel D.J. Internal Representation of Simple Tem poral Patterns. Journal of Experimental

Psychology: Human Perception and Performance. 1981 , 7(1), 3-18.

Povel D.J. Time, Rhythm s and Tension: in search of the determ inants of rhythmicity.

Internal Report 84FU 11, University of Nijmegen, 1984 .

Povel D.J. Time, Rhythm s and Tension: In Search of the D eterm inants of Rhythmicity In:

M ichon J.A. & Jackson, J.L. (eds.) Time, Mind and Behavior. Berlin: Springer Verlag. 1985.

Repp, B.H. Categorical perception: Issues, m ethods and findings. In N . Lass (Ed.) Speech

and Language. Vol 10: A dvances in basic research and practice. O rlando Fla: A cadem ic

Press. 1984 .

Schulze, H. Categorical Perception of Rhythm ical Patterns. Psychological Research, 1989,

51.

Sloboda, J.A . The Musical Mind: The Cognitive Psychology of Music. O xford: Oxford

U niversity Press, 1985.

Sternberg, S. Knoll, R.L. and P. Zukofsky Timing by Skilled Musicians. In D.Deutsch (Ed.)

The Psychology of Music. O rlando: A cadem ic Press, 1982.

ex
pe

ct
an

cy
context

time (in eighth notes, after presentation of context)---- >

0

Figure 1. Expectancy of onsets after presentation of different 2/4 patterns.

implied intervals basic expectancies

past now future ti me—>

Figure 2. (De)composition of expectancy.

ex
pe

ct
an

cy
 —

>

0 2 4 6 8 10 12 14 16 18

ti me—>

Figure 3. Expectancy contributions of events in a temporal pattern.

reinforcement_ _ _ _ _ _ —_ _
/ X -

i i

J> J J J> J
temporal pattern

0 2 4 6
t ime ^

Figure 4. Relation of expectancy and memory.

implied intervals basic expectancies
I I ^ ___.— _______________________

y v

I--- V-

I-- V

past now future t im e —>

Figure 5. Expectancy at a slow tempo.

Ba
si

c
ex

pe
ct

an
cy

 E
b

(A
,B

)
—

>

Figure 6. Basic expectancy of interval pair A, B

" * - S

Figure 7. Basic expectancy of interval pair A,1-A

S (X , 4 ,4)
I-------1

t S (X , 3 ,4) <

S (X , 3 , 3)
l------------------1--------

S (X , 2,4)
I-- V

S (X , 2 ,3)
I I--------

S (X , 2 , 2)
I----------------1----------------------------

S (X , 1 ,4)
l--- ^

S (X , 1 ,3)
l--- 1--------

S (X , 1 ,2) |____________________

S (X , 1 ,1)____________________________

T - S (X , 1 ,4)

T - S (X , 1,4)

T - S (X , 1 ,3)

T - S (X , 1 ,4)

T - S (X , 1,3)

T - S (X , 1,2)

T - S (X ,1 ,4)

T - S (X , 1,3)

T - S (X , 1 ,2)

T - S (X , 1 ,1)

Xi X2 x3 x4
I--------1----------------- 1-----------------1--------1

o T

Figure 8. Time intervals used in calculating expectancy.

Ej (X, 4 ,4 , T)

Ej (X,3,4,T)

Ej (X, 3 ,3 , T)

E, (X, 2 ,4 , T)

E, (X, 2 ,3 , T)

Ej (X, 2 ,2 , T)

Ej (X, 1 ,4 , T)

Ej (X,1 ,3,T)

Ej (X, 1 ,2 ,1)

Ej (X ,1,1 ,T)

+ ------------------
E(X,T)

Ex
pe

ct
an

cy

E(
[2

,3,
3]

,B
)—

>

Figure 9. Facilitation of perception of the ratio 2/3 by context.

3

LISP a s a Se c o n d L a n g u a g e :
Fu n c t io n a l As pe c t s

LfU btl
P e t e r D e s a in

Mo ti v a t io n a s Prefa ce

LISP, w h ic h wa s designed as early as 1960 by McCarthy (McCarthy
1960) took a long time to be accepted by the computer music commu-

nity as a suitable language for expressing their problems and solutions
(Boynton et al. 1986, Kornfeld 1980), but has now become the preeminent
language for symbolic programming in research fields such as Computa-
tional Linguistics and Artificial Intelligence. Computer music, and in par-
ticular composition, is another field which can benefit from symbolic
computation. This poses the interesting question of why the advantages
LISP offers have been neglected for so long. Perhaps it is because the
mainstream of computer-music research has been sound generation, which
doesn’t involve many symbolic applications. In this field even present-day

LISP as a Second Language 193

technology is barely fast enough, so it is only natural to reject the extra layer
of a high-level language in favor of more efficient low-level ones.

However, nowadays there is a renewed interest in computer-music com-
position, interactive composition systems, user interfaces for programming
synthesizers and the use of AI techniques in computer music. Fundamental
music research also uses algorithmic models and in all of these fields
symbolic computation is pervasive and so the use of languages like FOR-
TRAN or C is absurd. For the people entering the field of LISP program-
ming from a background of these languages, the transition process will be
painful. This is not the result of the many parentheses in LISP, but because
it is difficult to come to grips with a whole new style of programming (thus
a new way of thinking) and to unlearn the old stereotypical solutions. The
change will often be made with a kind of “minimal effort” approach which
involves using the old programming style in the new language. And indeed
looking at the LISP programs emerging from the computer-music commu-
nity, the imperative style can often be seen between the lines of LISP code. It
is a pity to neglect the elegant ways of expressing algorithms in LISP, and
doing so will often result in a disappointing performance and
maintainability.

In this article I will try to make clear the functional aspects of LISP that
cannot be found in the “old” languages. I hope this will result in more
“ LISPish” LISP programs and will give computer-music composers better
techniques to express their personal constructs directly in the form of a
working program.

So me Re ma r k s as I n t r o d u c t io n

This text comprises many examples. They were constructed for the sake of
clarity, which means that they are not intended as a computer-music
composition system. They rather show programming techniques that can
be used in writing your own. The dialect chosen for the examples is
Common LISP, but any LISP dialect with lexical scoping will do. Common
LISP is likely to become a widely accepted standard although it yields less
elegant programs compared to the purer LISP dialects like Scheme. The
examples can be converted to Scheme by deleting the funcalls and function-
quotes and adapting the function definition syntax. Readers not familiar
with LISP may find the references to good introductory texts in the last
paragraph useful. This article starts with a very condensed introduction to
the basics of LISP in which the functions needed for the following sections
are introduced as examples. Then the functional use of LISP is treated.
More advanced topics such as continuations and coroutines will be treated in a
subsequent paper.

194 P erspectives o f N e w M u s ic

L is t s a s t h e Mai n Da t a St r u c t u r e

The primary data type of LISP is the list, which is notated as an open
parenthesis followed by zero or more elements and a closing parenthesis. To
give an example, the following list could be used as a representation for a
MIDI note of two time-units’ duration, middle C (key number 60) and full
amplitude (velocity 1.0).

(note 2 60 1)

Consider the choice of this primitive musical object here as an arbitrary
one: we need just one such object in our examples. Of course the particular
choice in a real program should be made on esthetic grounds—it expresses
your idea of the atomic musical object and its parameters.

There is one special list, the empty list, notated as () or nil. The
elements of a list can be symbols, called atoms (like note or 60), or they can
be lists. Thus a collection of notes can be represented as a list of lists.

((note 1 60 1) (note 2 61 .7) (note 1 55 1))

If we wish to express control over the timing structure in the representa-
tion, ordering a collection of notes, we could form sequential and parallel
structures. This way of specifying the time relations between objects is an
alternative to the use of absolute start times found in most composition
systems.

(sequential (note 1 60 1) (note 2 61 .7))

(sequential (parallel (note 1 60 1)

(note 2 63 1))
(note 4 55 .7))

For a discussion of these time relations see Desain and Honing 1988. A
piano-roll notation of the second musical object is given in Example 1. Note
that the words like note, sequential, and parallel do not have any
intrinsic meaning here, since they are not built-in LISP functions. They are
just used as arbitrary symbols, signalling our intention with the data in that
list. In Common LISP there are of course other data types available, such as
strings, arrays, hash tables, and so on, which sometimes are more appropri-
ate than lists. For the sake of clarity I will not use them here.

LISP as a Second Language 195

E X A M P L E 1 : P I A N O - R O L L N O T A T I O N O F T H E E X A M P L E S C O R E

Abst r a c t io n a n d Appl ic at io n as Dua l M e c h a n is ms

The very heart of any functional programming language consists of a pair of
dual constructs, the first of which is called application. It is the action of
“calling” a Junction on one or more arguments. In the example below the
function firs t is applied to a representation of a note (the argument). The
syntactical form of an application is the name of the function followed by its
arguments, together enclosed by parentheses (prefix notation).

(f irs t '(note 1601)) -»note

In the example the arrow (-►) points to the result of the evaluation of an
expression. A constant data list is preceded by a quote (') to distinguish it
from an application. In the example above it prevented the LISP interpreter
from recognizing (note 1 60 1) as an application of a function note to the
arguments 1, 60 and 1.

There are two selector functions that take lists apart: f irs t and rest.
(Their former names, car and edr, are considered obsolete.) There is one
constructor function for building lists, called cons.

(rest 1 (note 1 60 1))-» (1601)

(f irs t (rest 1 (note 1 60 1)))-* 1

(cons 'notr'(1601))-» (note 1601)—

196 P erspec tives o f N e w M u s ic

Other functions for the construction of lists are also supplied as LISP
primitives (e.g. append, which concatenates several lists, and list, which
builds a list out of several elements at once), but they could be written by
the programmer using only cons.

(append '(notel) '(601))-» (note 1601)

(lis t ' note 1 60 1) -* (note 1 60 1)

(cons ' note (cons 1 (cons 60 (cons 1 n i l)))) -*

(note 1 60 1)

The second central construct is called functional abstraction and transforms
an expression (a piece of program text) into a function. Our first function
definition will define (by means of defun) a constant function without
arguments called example that will just return, as a result, a simple constant
musical structure. We will use this function a lot in the following
paragraphs.

(defun example ()
1 (sequential (parallel (note 160 1)

(note 2 63 1))
(note 4 55 .7)))

(example)-♦
(sequential (parallel (note 1 60 1)

(note 2 63 1))
(note 4 55 .7))

Moving on, we will define functions that have one argument and select a
specific element out of a list.

(defun second-element (lis t)
(f irs t (rest l i s t)))

(defun third-element (lis t)

(f irs t (rest (rest lis t))))

LISP as a Second language 197

(defun fourth-element (lis t)
(f irs t (rest (rest (rest l is t)))))

(second-element '(e d e f gab))-* d
(third-element l (c d e fg a b))-> e

(fourth-element '(c d e f g a b)) - * f

Now wc can introduce some selector functions that take a note representa-
tion apart and a constructor function that builds one.

(defun duration-of-note (note)
(second-element note))

(defun pitch-of-note (note)
(third-element note))

(defun velocity-of-note (note)
(fourth-element note))

(defun make-note (duration pitch velocity)
(l is t 'note duration pitch velocity))

(duration-of-note ' (note 3 60 1)) -* 3
(pitch-of-note 1(note 3 60 1)) -» 60
(make-note 3 60 1) (note 23 60 1)

In the first example above a function called “duration” is defined which
has one parameter called note. Its body is the application of the function
second-element on this parameter. In the definition the parameter note is
said to be abstracted from the body. Only when duration-of-note is
applied to an actual argument does the body becomes “concrete” in the
sense that it “knows” what the parameter note stands for, so that its value
can be calculated. In the same way we could program a set of selector and
constructor functions as a data abstraction layer for sequential and parallel
structures.

(defun make-sequential (structure-1 structure-2)

(l is t 'sequential structure-1 structure-2))

198 P e rspe c tives o f N e w M u s ic

(defun make-parallel (structure-1 structure-2)

(l is t 'parallel structure-1 structure-2))

(defun structure-l-of (complex-structure)

(second-element complex-structure))

(defun structure-2-of (complex-structure)

(third-element complex-structure))

(defun structural-type-of (complex-structure)

(f irs t complex-structure))

(structural-type-of (example))-» sequential

(structure-2-of (example))-* (note 4 55 .7)

The use of complex data structures (sequential and parallel) of two compo-
nents does not make them less general in use because they can always be
nested:

(sequential (sequential (note 1 60 1)

(note 2 611))

(note 1 63 1))

However, Common LISP provides means of control for passing arguments
to functions and we could use the so called lambda-list keyword ¿¡rest to
signal LISP to collect all the arguments of the function in a list.

(defun make-sequential (&rest elements)

(cons ' sequential elements))

(defun make-parallel (&rest elements)

(cons 'parallel elements))

(make-sequential (make-note 1 60 1)

(make-note 162 1)

(make-note 163 1))-* ________

(sequential (note 1 60 1) (note 1 62 1) (note 1 63 1))

LISP as a Second Language 199

Also, optional parameters to a function, that will be assigned a default value
when missing in the function call, can be defined by means of the
¿¡optional lambda-list keyword.

(defun make-note (¿¡optional (duration 1) (pitch 60) (loudness 1))

(l is t 'note duration pitch loudness))

(make-note 2 6l) -* (note 2 611)

(make-note)-* (note 1601)

For the sake of clarity we will use only the make-sequential and make-
parallel functions which have two arguments and the make-note func-
tion which has three arguments. Using the data abstraction layer provided
by the selector and constructor functions for notes to implement transfor-
mations on notes produces very readable LISP code.

(defun transpose-pitch (pitch interval)
(+ pitch interval))

(defun mirror-pitch (pitch center)
(- center (- pitch center)))

(defun transpose-note (note interval)

(make-note (duration-of-note note)

(transpose-pitch (pitch-of-note note)
interval)

(velocity-of-note note)))

(defun mirror-note (note center)

(make-note (duration-of-note note)

(mirror-pitch (pitch-of-note note) center)
(velocity-of-note note)))

(defun transpose-note-semitone (note)
(transpose-note note 1))

(defun mirror-note-around-middle-c (note)

-Xmlrrorrnote note 60))_____________________________________

200 P erspec tives o f N e w M u s ic

(transpose-note-semitone ' (note 160 1)) -*
(note 1611)

(mirror-note-around-middle-c ' (note 1 57 1))-*
(note 163 1)

Note that we first defined some general note-transforming functions and
then used these in turn to define the dedicated ones required in the
following chapter. The utility functions for the pitch arithmetic isolate the
calculation of pitches from the note-transforming functions.

Application should be used as the only means to pass information to a
function. This ensures the behavior of functions is not dependent upon the
context of its call. This obviates the use ofglobal variables. They arc to be
used only in cases where they represent truly constant values.

Re c u r s io n a s Mai n Co n t r o l St r u c t u r e

From the beginning the use of recursion in LISP programs was pervasive.
Consider the transposition of a collection, i.e. a list, of notes. When the list
is empty the task is simple: the empty list has to be returned. Otherwise we
cons the transposition of the first note in the result of transposing the rest
of the list. The function required for transposing this smaller list is precisely
the function we are writing at this moment, so it only has to call itself. This
process of self-reference is called recursion.

(defun transpose-note-list-semitone (notes)
(when notes

(cons (transpose-note-semitone (firs t notes))

(transpose-note-list-semitone (rest notes)))))

(transpose-note-list-semitone

'((note 1601)(note 2 59 .7)(note 165 .7)))-*
((note 1611) (note 2 60 .7) (note 166 .7))

This simple form of recursion (called tail recursion) is recognized by any
reasonable compiler, and internally transformed into plain iteration, thus
overcoming the overhead usually associated with recursion, i.e. extra func-
tion calls and increased stack space. In LISP the empty list: () and the truth
value false are defined equivalent and called nil. Conversely, everything

LISP as a Second Language 201

that is not n il is considered as true: t. This is used here in two ways.
Firstly, the condition in the when clause will only be considered true when
the note list is not empty, when there are notes left. Secondly, the result of
the when clause when the condition is false will be n il, and this will
function as the empty starting list for corning in transposed notes.

While newly designed languages accepted recursion as a control struc-
ture, LISP was augmented with “down-to-earth” and well-known iterative
control structures, since it was recognized that in some cases these are
simpler for humans to use than recursion. For complex cases however, the
recursive form is often the more elegant and easier to read. For example, if
we wish to define a transposition on a complex musical structure (built
from parallel and sequential) we must first dispatch on the type of
structure (using a case construct) and then apply the transformation
recursively on the component structures, and finally reassemble the trans-
posed parts into their parallel or sequential order. The resultant program
would look very messy when written iteratively.

(defun transpose-semitone (structure)

(case (structural-type-of structure)

(note (transpose-note-semitone structure))

(sequential (make-sequential

(transpose-semitone (structure-l-of structure))

(transpose-semitone (structure-2-of structure))))

(parallel (make-parallel

(transpose-semitone (structure-l-of structure))

(transpose-semitone (structure-2-of structure))))))

(transpose-semitone (example))-*

(sequential (parallel (note 1611)

(note 2 64 1))

(note 4 56 .7)))

case will evaluate its first argument, then select a subsequent clause starting
with that value, followed by an evaluation of the second part of that clause.
In general it can be said that recursion is the natural control structure for
hierarchical data. And hierarchical structures are common in music.

202 P erspectives o f N e w M u s ic

Fu n c t io n s as F ir s t -Class Obje c t s

In any good programming language all possible objects are allowed to
appear in all possible constructs: they are all first-class citizens. However, in
many programming languages this rule is often violated. In LISP even
exotic objects such as functions can be passed as an argument to a function
(in an application construct) or yielded as a result from a function. At first
sight this may not seem unusual. PASCAL, for example, allows the name of
a procedure to be passed to another one using an ad hoc construction. And
in C, pointers to functions can be passed around. However, in LISP all
functions are uniformly considered as data objects in their own right, and
functions operating on them can be used. This provides an abstraction level
that is really a necessity but that is lacking in many other languages. For
composers of computer music it is quite natural to think in terms of
abstract transformations on objects like time-mappings, which are func-
tions themselves.

Fu n c t io n s a s Ar g u me n t s

Suppose we want to write a function mirror-around-middle-c which
would look similar to transpose-semitone defined above but only uses
mirror-note-around-middle-c instead of transpose-note-semitone as
the bottom level transformation. Instead of just writing a new function for
that purpose, it is better to abstract from the bottom transformation and
write a general transform function. This function is now given the note
transformation as an extra functional argument, which enables it to deal with
all kinds of note transformations. Wherever it needs the result of the
application of the note transformation function to a specific note, it calcu-
lates that with the LISP funcall construct.

LISP as a Second Language 203

(defun transform (structure transform-note)
(case (structural-type-of structure)

(note (funcall transform-note structure))
(sequential (make-sequential

(transform (structure-l-of structure)
transform-note)

(transform (structure-2-of structure)
transform-note)))

(parallel (make-parallel
(transform (structure-l-of structure)

transform-note)
(transform (structure-2-of structure)

transform-note)))))

(transform ' (sequential (note 1 60 1) (note 2 63 1))
#1transpose-note-semitone)->

(sequential (note 1 611) (note 2 64 1))

(transform ' (sequential (note 1 60 1) (note 2 63 1))
H'mirror-note-around-middle-c)-+

(sequential (note 1 60 1) (note 2 57 1))

Note the use of the #' construct (called the function quote), which is used to
signal to LISP that the following expression is to be considered as a function.

The possibilities of the chosen representation of musical objects and
transformations on it are illustrated by the following example. Here each
note is transformed into a sequence of two notes with half the original
duration. This transformation, called double-note, is built from two other
transformations. The first one, half-note, divides the duration of its
argument by two. The second, twice-note, makes a sequence of two
identical copies of its argument.

(defun twice-note (note)
(make-sequential note note))

204 P erspec tives o f N e w M u s ic

(defun half-note (note)
(make-note (/ (duration-of-note note) 2.0)

(pltch-of-note note)
(velocity-of-note note)))

(defun double-note (note)
(twice-note (half-note note)))

(transform (example) #'double-note)-*
(sequential

(parallel (sequential (note .5 601) (note .5 601))
(sequential (note 163 l)(note 163 1)))

(sequential (note 2 55 .7) (note 2 55 .7)))

The use of functions as arguments (so-called downward funargs) seems to
give so much extra power that we might begin to wonder what good the
passing of functions as results (so-called upward funargs) could give us.

Fu n c t io n s a s Re su l t s

If we wanted to apply an octave transposition to a structure we would have
to write a new function, transpose-note-octave, and use it as an argu-
ment for transform.

(defun transpose-note-octave (note)
(transpose-note note 12))

(transform (example) #1 transpose-note-octave) -*
(sequential (parallel (note 1 72 1)

(note 2 751))
(note A 67 .7)))

This means wc always have to define the possible transformations in
advance. This is not satisfactory and instead we could use anonymous
functions as an argument to the transform function. Anonymous functions
arc not as bad as they look . They are merely a consequence of the rule of
first class citizens. For example, it is perfectly normal for objects like
numbers, lists, and strings to have a notation for the constant values.
Functions should also have this property. The anonymous function of one
argument that will transpose a note by an octave is notated like this:

LISP as a Second Language 205

(lambda (note)

(transpose-note note 12))

This kind of function can be used as argument to the transpose function
(remember the function-quote).

(transform (example)
§' (lambda(note)

(transpose-note note 12))) -*

(sequential (parallel (note 172 1)

(note 2 75 1))

(note A 67 .7))

(transform (example)
#' (lambda(note)

(mirror-note note 72))) -*

(sequential (parallel (note 1 84 l)
(note 2 811)

(note A 89 .7)))

Still, this is a little tedious to do, and we define a function transpose-
note-transform that will calculate these transposition functions when
given the correct number of semitones.

(defun transpose-note-transform (interval)

§' (lambda (note) (transpose-note note interval)))

(defun mirror-note-transform (center)

#' (lambda (note) (mirror-note note center)))

(transform (example) (transpose-note-transform 2)) -♦

(sequential (parallel (note 162 1)
(note 2 65 1))

(note 4 57 .7)))

206 P erspectives o f N e w M u s ic

(transform (example) (mirror-note-transform 67)) -*
(sequential (parallel (note 174 1)

(note 2 711))
(note 4 79 .7)))

G e n e r a i.it y a s Aim

Functional programming makes it possible to construct very general pro-
grams that are customized for specific purposes. These are the tools that are
badly needed in software design. They deserve to be supplied in software
libraries, so that programmers can stop reinventing the wheel each time. As
a tool for composers these programs may aim to be as “empty” as possible,
only expressing general abstract knowledge about musical structure and
leaving open details about the specific material and relations used.

The transformations we have so far designed are not yet that general.
They were structure preserving, and thus a transformation of a sequence
would always yield a sequence. Only at the note level could the structure
expand into a bigger one (e.g. when using double-note). Bearing this in
mind, we are going to develop a more general transformation device. Our
new transformation is like the old one, except that it takes two more
arguments to calculate what a sequential and what a parallel structure
transforms into.

(defun transform

(structure sequential-transform parallel-transform note-transform)
(case (structural-type-of structure)

(note (funcall note-transform structure))

(sequential (funcall sequential-transform
(transform (structure-l-of structure)

sequential-transform

parallel-transform
note-transform)

(transform (structure-2-of structure)

sequential-transform

parallel-transform

____________ _______________ _ Tiote -Vrans f muf;))

LISP as a Second Language 207

(parallel (funoai i parallel-transform
(transform (structure-l-of structure)

sequential-transform

parallel-transform

note-transform)

(transform (structure-2-of structure)
sequential-transform

parallel-transform

note-transform)))))

After this rather tedious definition we have available a very powerful
transformational device. Let me first give a rather stupid example of its use:
the no-transform transformation function which just rebuilds its argu-
ment.

(defun no-note-transform (note) note)

(defun no-transform (structure)

(transform structure
#'make-sequential

#'make-parallel
§ 'no-note-transform))

(no-transform (example))-*
(sequential (parallel (note 1 60 1)

(note 2 63 1))

(note 4 55 .7))

The results passed upward by no-note-transform, make-parallel, and
make-sequential are musical structures (see Example 2). Using the same-
idea but substituting the identity note transformation by another one,
gives us the second example. It supports all structure-preserving
transformations.

208 P erspec tives o f New Music

(defun our-old-transform (structure transform-note)
(transform structure

#1 make-sequential

#'make-parallel

transform-note))

Now some more useful transformations can be constructed. The results
passed upward will be numbers. The first transformation calculates the
duration of a complex musical structure by adding or maximizing the
duration of substructures. Similarly it is possible to calculate the duration of
the longest note, the number of notes in a piece, and the maximum
number of parallel voices of a complex structure. Note how easily the
transform function is adapted to these different purposes by “plugging in”
different functional arguments (see Example 2).

(defun duration-of (structure)

(transform structure #'+ #'max #'duration-of-note))

(defun longest-note-duration (structure)

(transform structure #'max #'max #'duration-of-note))

(defun count-one (note) 1)

(defun number-of-notes (structure)

(transform structure #'+ #'+ #'count-one))

(defun max-number-of-parallel-voices (structure)

(transform structure #'max #'+ #'count-one))

(duration-of (example))-* 6

(longest-note-duration (example))-* 2

(number-of-notes (example))-* 3

(max-number-of-parallel-voices (example))-* 2

To demonstrate again the generality of the transform, we will now write
a program to draw a piano-roll notation of a musical structure as shown in
Example 1. This program was inspired by a tree-drawing program of Joop
Ringclbcrg. To draw a note at the correct place we need to know the

LISP as a Second language
209

■ • q u a n t i «1

/ \
p a r a l i « ! (n o t « 4 55 . 7)

■ a k « - i « q u « n t U l

/ \
a k « - p a r a l 1 • 1 (n o t « 4 55 . 7)

a 7v

(n o t * 1 <0 1) (n o t « 2 «3 1)

(e x a m p l e)

(n o t . 1 «0 1) (n o t . 2 « 1)

(n o - t r . n » (o r m (. x x n . p l .)) - (. x . m p l .)

max

m a x

maxft

1 2
(d u r x t l o n - o f (e xam pl e)) • 6

1 2
(l o n g e s t - n o t e - d u r a t i o n (e x a m p le)) - 4

/ " \
+

I

 ̂ V
/ \

+
I ^

(n u m b e r - o f - n o t a * (e xam pl e)) - 3
(m a x - n u m b e r - o f - p a r a l l e l - v o i c e s

(e xam pl e)) - 2

E X A M P L E 2 : T R A N S F O R M A T I O N S O F T H F . E X A M P L E S T R U C T U R E

absolute start time of a musical object, information that the transform
function itself does not supply. When context information is missing, it is a
well-known trick in AI programming to calculate a function of the (not yet
known) context as temporary result. Indeed such a solution is possible
here. The draw-note function can return a function that will draw a
graphical representation of a note when given a start time. As the drawing is
done as a side effect, this function can then return the end time of the note as
context to use in further drawing. The draw-sequential function just
receives two such draw functions as arguments and constructs the draw
function that will pass its start time to the first and pass the end time
returned by the first to the second, returning its end time as the result. 1 he
function draw-parallel will pass its start time to both substructure draw
functions returning the maximum end time they return. Thus neither
numbers nor musical structures are passed upward as result of the transfor-
mation on substructures, but functions that can draw the substructure

210 P e rspe c tives o f N e w M u s ic

when given a start time. At the top level we will just have to apply the draw
function resulting from the call to transform to time 0. An alternative
draw-note function is given for a quick test of the code without imple-
menting the graphic procedure draw-horizontal-block.

(d e f u n d r a w (s t r u c t u r e)

(f u n c a l l (t r a n s f o r m s t r u c t u r e

' d r a w - s e q u e n t i a l

' d r a w - p a r a l l e l

' d r a w - n o t e)

0))
(d e f u n d r a w - n o t e (n o t e)

' (l a m b d a (t i m e)

(d r a w - h o r i z o n t a l - b l o c k

t i m e

(p i t c h - o f - n o t e n o t e)

(d u r a t i o n - o f - n o t e n o t e)

(v e l o c i t y - o f - n o t e n o t e))

(+ t i m e (d u r a t i o n - o f - n o t e n o t e

; a s s u m e d g r a p h i c a l p r i m i t i v e

; l e f t x - p o s i t i o n

; y - p o s i t i o n

; w i d t h

; g r e y s h a d e

; e n d t i m e

(d e f u n d r a w - n o t e (n o t e)

#' (l a m b d a (t i m e)

(p r i n t (l i s t ' t i m e t i m e

; a l t e r n a t i v e f o r t e s t i n g w i t h o u t

; g r a p h i c s

' p i t c h (p i t c h - o f - n o t e n o t e)

' d u r a t i o n (d u r a t i o n - o f - n o t e n o t e)

' v e l o c i t y (v e l o c i t y - o f - n o t e n o t e)))

(+ t i m e (d u r a t i o n - o f - n o t e n o t e))))

(d e f u n d r a w - s e q u e n t i a l (a b)

' (l a m b d a (t i m e)

(f u n c a l l b (f u n c a l l a t i m e))))

(d e f u n d r a w - p a r a l l e l (a b)

#' (l a m b d a (t i m e)

(m a x (f u n c a l l b t i m e)

(f u n c a l l a t i m e))))

(d r a w (e x a m p l e)) - * ' ' e x a m p l e 1 ' '

Having shown this general solution for dealing with context information,
it is dear that this will not be always the best solution. When information

LISP as a Second Language 211

like start time is used a lot, it may be simpler to adapt the transform
function itself so that it passes this information as well to the note transfor-
mation function:

(d e f u n t i m e - t r a n s f o r m

(s t r u c t u r e

s e q u e n t i a l - t r a n s f o r m p a r a l l e l - t r a n s f o r m n o t e - t r a n s f o r m

¡ ¡ ¡ o p t i o n a l (t i m e 0))

(c a s e (s t r u c t u r a l - t y p e - o f s t r u c t u r e)

(n o t e (f u n c a l l n o t e - t r a n s f o r m s t r u c t u r e t i m e))

(s e q u e n t i a l

(f u n c a l l s e q u e n t i a l - t r a n s f o r m

(t i m e - t r a n s f o r m (s t r u c t u r e - l - o f s t r u c t u r e)

s e q u e n t i a l - t r a n s f o r m

p a r a l l e l - t r a n s f o r m

n o t e - t r a n s f o r m

t i m e)

(t i m e - t r a n s f o r m (s t r u c t u r e - 2 - o f s t r u c t u r e)

s e q u e n t i a l - t r a n s f o r m

p a r a l l e l - t r a n s f o r m

n o t e - t r a n s f o r m

(+ t i m e

(d u r a t i o n - o f

(s t r u c t u r e - l - o f s t r u c t u r e))))))

(p a r a l l e l

(f u n c a l l p a r a l l e l - t r a n s f o r m

(t i m e - t r a n s f o r m (s t r u c t u r e - l - o f s t r u c t u r e)

s e q u e n t i a l - t r a n s f o r m

p a r a l l e l - t r a n s f o r m

n o t e - t r a n s f o r m

t i m e)

(t i m e - t r a n s f o r m (s t r u c t u r e - 2 - o f s t r u c t u r e)

s e q u e n t i a l - t r a n s f o r m

p a r a l l e l - t r a n s f o r m

n o t e - t r a n s f o r m

t i m e)))))

The time is made into an optional parameter to facilitate the omission of
the start time zero in the call of time-transform at the top level. We now
can build transformations, such as a fade-out (decrescendo), that are time
dependent._________________ ______ ________ _________________

2.12 P erspec tives o f N e w M u s ic

(d e f u n f a d e - o u t - t r a n s f o r m (b e g i n e n d)

' (l a m b d a (n o t e t i m e)

(i f (< b e g i n t i m e e n d)

(m a k e - n o t e (d u r a t i o n - o f - n o t e n o t e)

(p i t c h - o f - n o t e n o t e)

(* (v e l o c i t y - o f - n o t e n o t e)

(- 1 . 0 (/ (- t i m e b e g i n)

(- e n d b e g i n)))))

n o t e)))

(t i m e - t r a n s f o r m (m a k e - s e q u e n t i a l (e x a m p l e) (e x a m p l e))

' m a k e - s e q u e n t i a l

' m a k e - p a r a l l e l

(f a d e - o u t - t r a n s f o r m 0 1 0)) - >

(s e q u e n t i a l (s e q u e n t i a l (p a r a l l e l (n o t e 1 6 0 1) (n o t e 2 6 3 1))

(n o t e 4 5 5 . 5 6))

(s e q u e n t i a l (p a r a l l e l (n o t e 1 6 0 . 4) (n o t e 2 6 3 . 4))

(n o t e 4 5 5 . 1 4)))

Sometimes we wish to transform our musical objects to note lists where
each note has as an extra first parameter an absolute start time, e.g. to play
them using a system like John Rahn’s LISP Kernel (Rahn 1988, 1990). We
can do that now easily. All that is required is a function to transform a note
to a list of one note in the new format, and a function that will merge two
sorted parallel note lists. An alternative for this function using the Com-
mon LISP merge primitive is given as well.

(d e f u n a d d - a b s o l u t e - s t a r t - t i m e (n o t e t i m e)

(l i s t (l i s t ' n o t e

t i m e

(d u r a t i o n - o f - n o t e n o t e)

(p i t c h - o f - n o t e n o t e)

(v e l o c i t y - o f - n o t e n o t e))))

LISP as a Second Language 213

(d e f u n m e r g e - n o t e - l i s t s (l i s t - 1 l i s t - 2)

(c o n d ((n u l l l i s t - 1) l i s t - 2)

((n u l l l i s t - 2) l i s t - 1)

((< = (s e c o n d - e l e m e n t (f i r s t l i s t - 1))

(s e c o n d - e l e m e n t (f i r s t l i s t - 2)))

(c o n s (f i r s t l i s t - 1)

(m e r g e - n o t e - l i s t s (r e s t l i s t - 1) l i s t - 2)))

(t (c o n s (f i r s t l i s t - 2)

(m e r g e - n o t e - l i s t s l i s t - 1 (r e s t l i s t - 2))))))

(d e f u n m e r g e - n o t e - l i s t s (l i s t - 1 l i s t - 2) ; a l t e r n a t i v e

(m e r g e ' l i s t l i s t - 1 l i s t - 2 # ' < : k e y # ' s e c o n d - e l e m e n t))

(d e f u n m u s i c a l - o b j e c t - t o - n o t e - l i s t (o b j e c t)

(t i m e - t r a n s f o r m o b j e c t

H' a p p e n d

§ ' m e r g e - n o t e - l i s t s

' a d d - a b s o l u t e - s t a r t - t i m e))

(m u s i c a l - o b j e c t - t o - n o t e - l i s t (e x a m p l e)) - *

' ((n o t e 0 1 6 0 1) (n o t e 0 2 6 3 1) (n o t e 2 4 5 5 . 7))

Co m bi n a to r s a s Fu n c t io n Bu il d e r s

Since it turned out to be so useful to be able to talk about functions as
objects which arc passed to and from other functions, we arc now going to
examine the possibilities of a special kind of these “other” functions, called
combinators. A combinator is a higher order function that has only functions as
arguments and returns a function as a result. The first one we will show is
the combinator called twice. It can double the action of any function, and
therefore (twice #'rest) will be a function that removes the first two
elements from a list, (twice #'double-note) will yield a four-fold splitting
of notes, and (twice #'mirror-note-around-middle-c) will be an abso-
lutely useless transformation (the identical transformation).

(f u n c a l l (t w i c e K' r e s t) ' (1 2 3 4 5)) “ * (3 ^ 5)

\ X

214 P erspectives o f N e w M u s ic

(o u r - o l d - t r a n s f o r m (e x a m p l e) (t w i c e # ' t r a n s p o s e - n o t e - o c t a v e)) - *

(s e q u e n t i a l (p a r a l l e l (n o t e 1 8 4 1)

(n o t e 2 8 7 1))

(n o t e 4 7 9 . 7)))

Here is the definition of twice,

(d e f u n t w i c e (t r a n s f o r m)

' (l a m b d a (o b j e c t) (f u n c a l l t r a n s f o r m

(f u n c a l l t r a n s f o r m o b j e c t))))

The second combinator is the “function-composition” combinator. It can
combine the actions of two transformations into a new one. It is important
not to confuse Junction composition and musical composition,

(d e f u n c o m p o s e (t r a n s f o r m - 1 t r a n s f o r m - 2)

(l a m b d a (o b j e c t)

(f u n c a l l t r a n s f o r m - 1 (f u n c a l l t r a n s f o r m - 2 o b j e c t))))

(f u n c a l l (c o m p o s e # ' f i r s t # ' r e s t) ' (c d e f g a b)) - * d

To construct a transformation that is a doubling applied to the result of an
octave transposition we could use this combinator to build it.

(o u r - o l d - t r a n s f o r m

(e x a m p l e)

(c o m p o s e # ' d o u b l e - n o t e § ' t r a n s p o s e - n o t e - o c t a v e)) - *

(s e q u e n t i a l

(p a r a l l e l (s e q u e n t i a l (n o t e . 5 7 2 1) (n o t e . 5 7 2 1))

(s e q u e n t i a l (n o t e 1 7 5 l) (n o t e 1 7 5 1)))

(s e q u e n t i a l (n o t e 2 6 7 . 7) (n o t e 2 6 7 . 7)))

To show the usefulness of these constructions we will write a function
that calculates a complex melody from a simple one by adding a parallel
melody that is the doubling of the original one transposed one octave. This
■ ft A UimftwW.WU'il'l t'llft'l'l used 1 1 1 Javanese Gamelan music. The score of the
add-doubled transformation on the example object is shown in Example 3.

LISP as a Second Language 215

(d e f u n a d d - d o u b l e d (s t r u c t u r e)

(m a k e - p a r a l l e l

s t r u c t u r e

(o u r - o l d - t r a n s f o r m s t r u c t u r e

(c o m p o s e # ' d o u b l e - n o t e

' t r a n s p o s e - n o t e - o c t a v e))))

e x a mpl e 3: RESULT o f t h e ad d -d o u bl e d t r a n s f o r ma t io n

Note that we could have defined twice as a composition of a transform
with itself.

(d e f u n t w i c e (t r a n s f o r m)

(c o m p o s e t r a n s f o r m t r a n s f o r m))

Pa r a m e t e r s a s Su pe r f l u o u s

When defun defines a function, it creates an anonymous function using the
argument list and the body, and stores it in the function cell of the symbol
thwi* the m m e rf# function. This means tint the next two expressions.
are equivalent.

216
P erspec tives o f N e w M u s ic

(defun duration-of-note (note)
(second-element note))

^®etf ! assign to the function slot
(symbol-function 'duration-of-note); of the symbol
#'(lambda(note) ; duration-of-note

(second-element note))) ; this anonymous function

defun can be considered as a device that makes the definition of a function
easier to read, but it assumes the name of the function and the function
body itself to be constants. Let us first make a similar construct that gives a
little bit more power than defun, and then use it to define duration-of
again.

(defun define-function (name function)

(setf (symbol-function name) function))

(define-function 'duration-of-note
' (lambda(note)

__ (second-element note)))

(j J Now we can calculate a function body instead of using a constant
anonymous function. In the first example below the calculation merely
finds the function definition of a symbol, to create a synonymous function.
In the second it is really calculated by one of the transformations we defined
above.

(define-function 'premier (symbol-function 'first))

(premier ' (1 2 3)) —► 1

(define-function 'transpose-note-octave

(transpose-note-transform 12))

(transpose-note-octave ' (note 1 60 1)) -> (note 1721)

Note that in the definitions above, the formal parameters which
appeared in the argument list of the defun form are no longer needed. If we
have access to enough combinators like twice and compose, we can even do
completely without parameters.

LISP as a Second Language 217

(define-function 'double-note (compose H' twice-note #'half-note))

(define-function 'double-and-raise-note

(compose § ' double-note §' transpose-note-octave))

(define-function 'four-times (twice #'twice))

(define-function 'but-first-four (four-times #'rest))

(but-first-four '(ede f gab))-* (gab)

Note how twice is applied to itself to yield the four-times function.
Languages built on combinators using parameter-free programming arc-

very useful in domains centered around one type of object and many
transformations on this object (like the musical structures in our examples).
In these domains they facilitate the definition of higher levels of abstraction
whereby transformations arc considered objects in their own right, so that
they can be manipulated, combined, and modified. However, when deal-
ing with functions of many arguments we need a lot of combinators for
juggling with the order of arguments, leading to programs that are difficult
to read. For humans, an extra hook into our memory, by means of a
mnemonic parameter name, is often indispensable. In addition, more
heterogeneous domains consisting of different sorts of objects, all subjected
to transformations that arc conceptually more or less the same, can be
modelled better using another style of programming in LISP. In this style,
named object-oriented programming, it is straightforward to express, e.g.,
how both a melody and a synthesizer can have their own definition of
“transposition.”

So m e Wo r d s a s Co n c lu s io n

Exaggerating my standpoint, I will give a summary of a good style of
LISP programming.

1. No function is longer than five lines.

2. Programs are written functionally.

3. No global variables are used.
4. Names of functions and parameters are long and descriptive.

5. Flow of control is done with recursion.

218 P e rspe c tives o f N e w M u s ic

Such a clean and elegant style will result in programs that are easy to
construct and maintain. One advantage that languages like FORTRAN and
C still have when compared to LISP is their speed. Luckily good industrial
Common LISP compilers make the difference quite small.

Fr ie n d s as Gu in e a Pig s

I am very grateful that the following friends volunteered to read and
comment on the first draft of this paper: Paul Berg, Edwin Bos, Wim
Claassen, Jim Grant, Margriet Hoendcrdos, Koen Dc Smcdt, John Rahn,
Joop Ringclherg, Dick Rijkcn, Huub van Thienen and Tlieo Vosse, and
especially Henkjan Honing because of his stimulating attitude and good
ideas.

I would like to thank the colleagues and students of the Language
Technology group of the University of Nijmegen and the Centre for Art
and Media Technology in Utrecht and for the stimulating environment
they provided while I was working on this article.

LISP a s a Bo o k To pic

Since there are so many books on LISP it is difficult to select the one that
will be of most use. A quick rule of thumb that can be used is: if a book on
LISP starts by explaining SETQ (or SETF) it is unsuitable.

Abclson & Sussman 1985 is an almost perfect introduction to all the
wonders of LISP programming and programming in general. There are
extensive examples, but it is a pity they are all of the numerical and
engineering type. It uses the Scheme dialect. Anderson et al. 1987 is a
introductory textbook with lots of exercises. Friedman & Fclleisen 1986 is
a very funny (and good) programmed instruction course. If you want to
learn to write recursive list programs in LISP without a teacher and
without prerequisites, try this. Watch out for the differences between
editions. There is an MIT Press version as well. Henderson 1980 is a good
and clear introduction to functional programming, with many examples.
Steele 1984 is the defining report on Common LISP, not intended for
learning LISP but indispensable as a reference. If you have the opportunity,
take a look into the Symbolics manuals to gain a feeling for the size and
power of the programming environment of a LISP machine. Winston and
Horn 1981 is a general introduction to LISP.

LISP as a Second Language 219

G los sar y

a t o m . In LISP: any symbol, number or other non-list.

access e u n c t io n . A (unction which is part of a data abstraction layer (a
selector or constructor function).

a n o n y mo u s EUNCTiON. A function whose ‘ pure definition is given, not
assigning it a name at the same time.

a ppl ic a t io n . Obtaining a result by supplying a function with suitable
arguments.

COM in n a t o r . A function that has only functions as arguments and returns
a function as result.

c o n s . A LISP primitive that builds lists. Sometimes used as verb: to add an
element to the beginning of a list.

c o n s t a n t e u n c t io n . A function that always returns the same value.

c o n s t r u c t o r e u n c t io n . A function that, as part of the data-abstraction
layer, provides a way of building a data structure from its components.

c o n t in u a t io n . A way of specifying what a function should do with its
result.

c o r o u t in e s . Parts of the program that run in alternation, but remember
their own state of computation in between switches.

da t a a bs t r a c t io n . A way of restricting access and hiding detail of data
structures.

da t a t y pe . A class of similar data objects, together with their access
functions.

d ia l e c t . A programming language can be split up into dialects that only
differ (one hopes) in minor details. LISP dialects arc abundant and may
differ a lot from each other even in essential constructs.

e ir s t -c l a s s c it iz e n s . Rule by which any type of object is allowed in any
type of programming construct.

EUNcriON. A program or procedure that has no side effects.

e u n c t io n c o m po s it io n . The process of applying one function after
another.

EUNCTIONAI. ABSTRACTION ((JR PRCXIEDURAI. ABS1RAC1 ION). A way of

making a piece of code more general by turning-part of it into a-

220 Perspectives o f N e w M u s ic

parameter, creating a function that can be called with a variety of values
for this parameter.

f u n c t io n a l a r g u m e n t (f u n a r g). A function that is passed as argument
to another one (downward funarg) or returned as result from other one
(upward funarg).

f u n c t io n q u o t e . A construct to capture the correct intended meaning
(with respect to the current lexical environment) of an anonymous
function so it can be applied later in another environment; a lexical
closure. It is considered good programming style to use function quotes
as well when quoting just the name of a function.

g l o ba l v a r ia bl e s . Objects that can be referred to (inspected, changed)
from any part of the program.

h ig h e r -o r d e r f u n c t io n . A function that has functions as arguments.

impe r a t iv e s t y l e . A programming style in which assignment and itera-
tion are the main constructs.

it e r a t io n . Repeating a certain segment of the program.

la mbd a -l is t k ey w o r d . A keyword that may occur in the list of parameter
names in a function definition. It signals how this function expects
its parameters to be passed, whether they may be omitted in the call,
and so forth.

l e x ic a l s c o pin g . A rule that limits the “visibility” of a variable to a
textual chunk of the program. Much confusion can result from the
older—so-called dynamic scoping—rules.

o bj e c t -o r ie n t e d pr o g r a m m in g . A style of programming whereby each
data type is grouped with its own access function definitions, possibly
inheriting them from other types.

pa r a me t e r -f r e e pr o g r a m m in g . A style of programming whereby only
combinators are used to build complex functions from simple ones.

pr e f ix n o t a t io n . A way of notating function application by prefixing the
arguments with the function.

q u o t e . A construct to prevent the LISP interpreter from evaluating an
expression.

r e c u r s io n . A method by which a function is allowed to use its own
definition.

s e l e c t o r f u n c t io n . A function that as part of the data abstraction layer
provides access to a data structure by returning part of it.

LISP as a Second Language 221

s id e e f f e c t . Any actions of a program that may change the environment
and so change the behavior of other programs.

s t a c k . A list of function calls that arc initiated but have not yet returned a
value.

s t r u c t u r e pr e s e r v in g . A way of modifying data that keeps the internal
™ « i o n intact but may change attributes attached to the structure.

t a il r e c u r s io n . A type of recursion in which the recursive call is the
“last” thing the program docs.

Re f e r e n c e s

Abclson, Harold, and Gerald Jay Sussman. 1985. Structure and Interpreta-
tion of Computer Programs. Cambridge, MA: The MIT Press.

Anderson, J.R., A.T.Corbctt, and B.J.Reiser. 1987. Essential Lisp. Reading
MA: Addison-Weslcy.
Backus, John. 1978. “Can Programming Be Liberated frorn the von Neu-
mann Style? A Functional Style and its Algebra of Programs. Communaa-
tions of the A CAÍ 21: 613—41.
Boynton, L„ P.Lavoie, Y. Orlarey, C. Rueda, and D. Wessel. 1986
“ MIDI- I isp A Lisp-Based Music Programming Environment for the
Macintosh.” In Proceedings of the 1986 International Computer Musa Con-
ference, edited by Paul Berg. San Francisco: Computer Music Association.

Dcsain, Peter, and Henkjan Honing. 1988 “LOCO: A Ccjnpotóon
Microworld in Logo.” Computer Musa Journal 12, no. 3 (Fall). 3U 4/.

Friedman, D., and M. Felleisen. 1986. The Little LISPer. 2nd edition.
Chicago: Science Research Associates Inc.
Henderson, Peter. 1980. Functional Programming: Application and Imple-
mentation. Englewood Cliffs, NJ: Prentice-Hall.

Kornfeld, William A. 1980. “Machine Tongues VII: LISP.” Computer
Music Journal 4, no. 2 (Summer): 6-12.

222 P e rspe c tives o f N e w M u s ic Perspectives of New Music

Volume 28 Number 1 (Winter 1990)

McCarthy, John. 1960. Recursive Functions of Symbolic Expressions and
Their Computation by Machine.” Communications o f the ACM 3 no 4'
184-195.

Rahn, John. 1988. “Computer Music: A View from Seattle.” Computer
Music Journal 12, no. 3 (Fall): 15-29.

- - . 1990. “The LISP Kernel: A Portable Environment for Composi-
tion.” Computer Music Journal, forthcoming.

Steele, Guy Lewis Jr. 1984. Common Lisp: the Language. Burlington, MA:
Digital Press.

Symbolics 1986. Cambridge MA: Lisp Machine Manuals.

Winston, P, and B. Horn. 1981. Lisp. Reading, MA: Addison Wesley.

CONTENTS

6 From the Domaine Musical to IRCAM PIERRE BOULEZ
In conversation with

PIERRE-MICHEL MENGER

20 Dating Charles Ives's Music:
Facts and Fictions CAROL K. BARON

COMPUTER MUSIC FORUM

58 Sieves IANNIS XENAKIS

80 Statistics and
Compositional Balance CHARLES AMES

112 Speech Extrapolated DAVID EVAN)ONES

144 Observations in the A rt of Speech:

170

Paul Lansky's Six Fantasies DAVID LOBERG CODE

It's about Time: Some NeXT Perspectives
(Part Two) PAUL LANSKY

180 Processing Musical Abstraction:
Remarks on LISP, the NeXT, and the
Future of Musical Computing JOHN RAHN

192 LISP as a Second Language:
Functional Aspects PETER DESAIN

224 A Major Webern Révision and
Ils Implications for Analysis
Row Dérivation and Contour Association

ALLEN FORTE

256
in Berg's Der Wein DAVE HEADLAM

294 The Systematic Chromaticism of
Robert Moevs JAMES BOROS

324 A Conversation with Robert Moevs JAMES BOROS

COLLOQUY AND REVIEW

336 The 1989 International Computer Music Conference:
An Overview of the Concerts RICHARD KARPEN

344 Learning to Compose A Review CRAIG WESTON

(Ywfiv,

v n M , K X A H A W

Graphics
5 223 293 343 RORY BUTLER

352 Editorial Notes

-3S5----- Oyfespondence

359 Personae

361 Acknowledgments

;

■

Computers
In Music t^escarcl

Uolume I! Fall 1990

I

Parsing the Parser:
a case study

in programming style
by Peter Desaiiri

INTRODUCTION

Much of my effort during the last years was directed at explaining

neat programming styles and functional use of programming languages
(Dcsain 1990). My audience however tended to question the realism of
the beautiful three line programs I mostly used as examples. They

doubt whether they were not just of a didactical worth, real world

problems being to hard to handle without compromise in this way. To

contradict such insinuations I went looking for a really complex

problem, in the form of a published program which I could convert into

a good functional programming style. In research in expressive timing

in music I came across the excellent papers of Longuet-Higgins
(Longuet-Higgins 1976, 1979) describing a musical parser that, next to
tonal analysis, parsed performed music rhythmically. It produced a

metrical hierarchical structure, while tracking tempo changes and
rounding performance inaccuracies. The actual code of the program

written in POP-2 was attached to the article as an appendix, which made

1 Christopher Longuet-Higgins is to be thanked here. His work is
a continuous source of inspiration, and his encouragement was a great help
in this research. With help from Hcnkjan Honing the first attack of the
POP-2 code was made, and some of his good ideas were used in this article.
This research was partly supported by an ESRC grant under number
A413254004.

39

COMPUTERS IN MUSIC RESEARCH

the proposed endeavor possible.

Researchers should really be encouraged to publish the actual code

or parts thereof, like Longuet-Higgins did. Firsdy it provides a means

to verify or falsify the claimed results. Secondly it forces the author to

account for every detail in the system. Especially if the algorithm is

claimed to provide a cognitive model, it is important to study its

internals, the data and control structures used, so as to be able to state
the predictions it makes. Naturally, bulky programs arc not useful as

appendices to articles as usually nobody takes the trouble to look at

them. Of more use arc micro versions, from which unnecessary details

arc removed. Constructing such a micro version can be of benefit to the«
researcher too, being forced to decide what is essential and what arc mere

'bells and whistles'. More than once I witnessed remarkable progress in
research caused by the insight yielded while trimming a program to its
bare minimum. In (Shank and Ricsbcck, 1981) good examples can be

found of micro versions of some famous computer understanding

programs.
In the case of the Longuet-Higgins parser it seemed that the code

could indeed already be called a micro version, apart from the fact that

the tonal and the rhythmical analysis, which arc being dealt with
separately in the theory, were embodied in one program. However,

speaking to several colleagues that had tried to understand the code, I

discovered that the program did not at all function as a clarifying, and
helpful addendum to the article itself. All readers (including myself)

were put off by the difficulty of the program, even though the

underlying theory was described extremely well. This was not because it

was written in the (now obsolete) language POP-2, but because the

40

PARSING THE PARSER

program itself used many awkward programming constructs: side

effects, different binding regimes and scoping rules, non-local exits and

even a GOTO. The term spaghetti program seems to be a good

description of this piece of code (and indeed prof. Longuet-Higgins is

fond of Italian food), and one has to have an appetite for reverse

engineering to rediscover the workings of the program from the code.

But at least there was well described code available, which cannot be

said of all publications about AI programs. It is a symptom of the

general state of AI research that rational reconstruction is becoming an

significant AI methodology. Campbell (1990) defines this technique as
reproducing the essence of a programs behavior with another program

constructed from descriptions of the purportedly important aspects of

the original, trying to verify claims made about this program. It seems

a waste of effort as these programs should have been published and

described well in the first place, but it makes again clear that the

equation 'the program is the theory' that has had a long standing history

in AI, does not hold.
When finally Edward Lisle, Longuct-Higgins present collaborator,

remarked that I would never be able to port the code to LISP because
one needs to be an expert LISP programmer to do that, I had gathered

enough incentive to embark upon the task of rewriting the program in

an understandable style. In this paper I will describe the route I took in

porting the program, in the hope that similar methods will be useful for
the reader on other occasions. I will also show how the standard

repertoire of the LISP and AI programmer can be used to create elegant

and modular programs for complex problems. The resulting code is

rather easy to read for humans—which is the main, but often forgotten,

41

COMPUTERS IN MUSIC RESEARCH

aim of programming—and can be much more easily experimented with,

changed and tested.

But before I embark upon describing the program and the port, I
first have to make clear that looking at the model so closely only
boosted my admiration for the research itself. And although the flow of
data and control needed for the theory is rather sophisticated, the

questions involved are described very well in the two papers, and the

performance of the algorithm is remarkable. Furthermore the code was

written almost two decades ago when lots of the techniques I used, now

common practice, had not yet found their way into the literature. Prof.

Longuet-Higgins was so kind to encourage me on this task and clarify

several issues. Any criticism in this article, in which I cannot hope to

match his personal eloquent style and merciless polemics (sec
Longuct-Higgins, 1983), has to be seen in the light of these remarks.

UNDERSTANDING THE THEORY

The parsing and quantization process is known to be very hard.

Different methods can be found in (Desain & Honing 1989,1991) and a

comparison of the performance of Longuct-Higgins' symbolic method

and a connectionist model for the same task is given in (Desain, 1991).
But first and foremost the reader must be asked to read the original

papers, or the corresponding chapters of (Longuet-Higgins 1987), as I
can only give a brief outline of the theory here.

The rhythmical part of the parser uses a hybrid method of tempo

tracking plus the use of structural knowledge about meter. In this

method the tempo tracking is done with respect to a time interval that

42

PARSING THE PARSER

can span zero or more notes. At top level this time interval represents a

beat. It is subdivided recursively in 2 or 3 parts looking for onset times

near the start of each part, until the interval contains no more onsets.
The ‘best’ subdivision is returned, but the program is ‘reluctant’ to

change the number of subdivisions (the pulse) at each level. At each
recursive level the interval length is adjusted on the basis of the onsets
found, just as in simple tempo tracking methods. An articulation

analysis is then performed, dividing notes into tied parts and deciding

where a rest occurs. Next to the quantized results this program delivers a

hierarchical metrical analysis, whose top level is the beat and whose

bottom level arc made up of notes and rests. From the article we can

identify the input and output of the system, the data-types used, the

parameters, the procedural modules and their communication. What
follows is an outline of those issues, taking into account only the

relevant ones from a rhythmical perspective.
The input of the system consists of an ordered list of notes. Each

note has an onset time, an offset time and a pitch. The output of the
system consists of a list of trees, one for every analyzed beat. A beat is

just a period of time, slicing the data in consecutive intervals. Each tree

is of a combined binary-temairy nature, which means that each node has

zero (in case it is a leaf of the tree) or two or three sub-trees. The arity

of each internal node is called the pulse. During the construction of the

tree there is a horizontal flow of pulse information through the layers of
the tree, seeking to maintain the same pulse at a certain level as long as

possible. The list of proposed pulses for the tree at each level is called

meter. During the construction of the tree a strict left to right order is

maintained, and new sub-trees are created on a generate and test basis.

43

COMPUTERS IN MUSIC RESEARCH

This means that a proposed (and constructed) binary sub-tree may be

rejected in favour of a tertiary one. The generate and test procedure is

non-standard in that it may, after checking and rejecting the first

alternative, still reject the second in which case as yet the first

alternative is chosen. Notes, whose onsets happen in rapid succession

(like in a trill) are collected in a group and treated as if they started at

the onset of the first note in the group. Associated with each leaf of the

resulting tree is a possibly empty, annotated list of sounding notes.

There is one parameter identified in the program called tolerance which

is used in different places as the allowed margin of deviation in deciding

if notes start or stop at a certain times.

The main flow of control is dealt with in a mutual recursion of the

procedures tempo and rhythm. Tempo decides if there is another
subdivision needed, if not it calls singlet (bottom case of recursion). If

there is, it calls rhythm which tries one or more subdivisions and calls

tempo recursively on them. Rhythm then returns the best fitting

sub-tree. There is some pre-processing (sift, takein), some top level
initializauon, (startup) and the post-processing is mainly done in the

form of printing procedures (typeout, reveal and describe). The

call-graph (it is not a hierarchy because of the recursion) depicts it all

neatly (Figure 1).

44

PARSING THE PARSER

Figure 1: Call graph o f the parser routines.

s i f t
n o ta te

-> .take in

L »tap ou t
L-> rhythm{___

‘- » s in g le t
L»typeQut

L) re v e a l
‘-» .d escrib e

Planning the endeavor
Because the flow of data and control in the program is so

complicated, and because a complete rewrite from scratch could only use

the text of the articles as specification, which seemed not enough, I

planned the whole endeavor as follows. I would try first to reconstruct

the system as a LISP program direedy translating the POP-2 constructs

into LISP and staying as close as possible to the original code. During

that stage some of the example input data incorporated in the articles

could be used to test the program. It was planned to do only one change

at a time and to keep all intermediate files for easy recovery and

documentation. Every question about the working of the program was

added as comment to those files. During that stage I would try to resist

45

COMPUTERS IN MUSIC RESEARCH

improving the code making the translation as algorithmic as possible.

It was decided to concentrate on the rhythmic part, leaving the simpler

harmonic analysis for the future. When that program would work well a

test suite had to be built to check the output using all of the available

examples. Those two means, trying to translate the POP-2 code as
directly (and mechanically) as possible and checking the input/output of
this program, would hopefully insure a version (called LISP Program 1)

that was semantically equivalent to the original. However, "testing can

show the presence of bugs but not their absence" (Dijkstra in Bentley

1988, p. 60). I planned then to add some trace code to check the internal

workings of the program and clarify the list of questions that was
building up. The tracing code and the test suite all belong to the
necessary scaffolding that has to be erected when building or modifying

a program (Bentley 1988). Although these techniques arc common

practice for every experienced programmer it is a pity that they arc so
often neglected in student texts on programming, and that support

facilities for these temporary constructs are lacking from almost all

programming environments. In the next stage some non-essential
add-ons could be removed and then enormous changes would be

necessary to clean up the code. Only semantic invariant program

transformations were to be used, insuring that, however different its
appearance, the behavior of the program was not changed by the
surgery: it would still exhibit the same input-output behavior. After
each change that would be checked, using a test run of the program

suite. After resulting in a clean functional program (LISP Program 2) I

suspected that the internal flow of information and control would be so

much clarified that the remaining questions about the internal workings

46

PARSING THE PARSER

could be answered and the crucial theoretical concepts could be made

apparent from the code itself. Then at last one might be able to point at

possible improvements of the algorithm. With this plan in mind the

next stage was started.

LIT E R A L TRANSPORTATION

When starting this project I was not able to locate a POP-2

manual. Afraid that the whole project would turn out to be a piece of

computer science archeology I was glad to find that POP-11 (the

successor of POP-2) is still widely used and a manual (Barett e.a. 1985)

only left a few constructs found in the program unexplained. When I
eventually found the POP-2 manual it was quit instructive to see the

sloppy semantics (Burstall c.a. 1986 reference manual p. 14-15) of this
language, which was used for a lot of large programming projccts.and

has had a great influence in the Al-community in Britain for a long
time. Common LISP (Steele, 1984) was chosen as the LISP dialect

because of the wide availability of implementations of this standard,
although SCHEME (Abclson & Sussman, 1985) would yield even

more elegant code.
We will now take a dive into the details of the POP-2 and LISP

code, anyone interested in a more global view may skip this part and
start reading again at the section 'Lispizing the code' or even move
ahead to 'Theoretical issues'. The relevant parts of the POP-2 code arc
shown in appendix 1 .1 have inserted some comments (printed in italics)

and added the line numbering. Any line numbers in the text refer to this

appendix. Translations of POP-2 constructs in LISP arc shown in Table

1.

47

COMPUTERS IN MUSIC RESEARCH

Table 1: Translation o f relevant POP-2 constructs into LISP.

construct POP-2 syntax line LISP translation
assignment <cxpression> -> <variable>; 52 (sctf <variablcxcxprcssion>)
conditional if <condition>

then <statcmcntl>
else <statcmcnt2>

close;

53 (if <condition>
<statementl>
<statemcnt2>)

multiple
conditional

if <conditionl>
then <statementl>
elseif <condition2>
then <statement2>
else <statemcnt3>

close;

125 (cond (<conditionl> <statcmcntl>)
(<condition2> <statemcnt2>)

(t <statement3>))

iteration loopif <condition>
then <statemcnt>

close;

25 (loop
(when <condition>(retum))
<statemcnt>)

goto
<Iabcl>:

goto <label>

75,
99

(prog 0

<labcl>

(goto <labcl>)

function
application

<function>(<argumentl>,
•••»
<argumentn>);

or
<argument>.<function>;
or
<function>;

85

135

151

(<function> <argumcntl>

<argumcntn>)

(<function> <argumcnt>)

(<function>)

48

PARSING THE PARSER

function
definition

'unction <function> <parameter
:ist>
(unction <function> <paramcter
listo

-> <output local list>
vars <local list>;
<body>

end;

5l see Table 2

=> can be used instead of -> 2
constant list : . . .] 125 (. . .)
list selector hd 4 first or car
list selector tl 4 rest or edr
list
constructor

40 cons

list
constructor

42 (list . . .)

list mapping maplist 129 mapear
list iteration applist 128
list reversal rev 117 reverse
record type
declaration

recordclass class slotl . . .
slotn

1 (defstruct class slotl ... slotn)

function
composition

o 127

output pr 145 print
output new
line

nl 141 terpri

pushing the
stack

<expression>

popping the
stack

->
or
.<function> 145

49

COMPUTERS IN MUSIC RESEARCH

temporary use
□ f stack

if <condition>
then expression 1
else exprcssion2
elosc -> var;

112 (setf var (if <condition>
expression 1
cxprcssion2))

or
(if <condition>

(setf var expression 1)
(self var cxprcssion2))

<list>.dcstlist -><variablel> 101 (setf <variablcl> (first <list>)

-xvariablcn> <variablcn> (<nth> <list>))

<function call> -> <variablcl> 85 (multiplc-valuc-sctq(<variablel>

-xvariablcn> <variablcn>)
<function call>)

variable
declaration

vars<variablcl>...<variablcn>; 17 (defvar <variablcl>)

[dcfvar <variablcn>)
identity
function

identfn 10 identity

Points that may need further clarification are the following.

Statements in POP-2 are separated by semi-colons. In list processing

POP-2 only has syntactic differences from LISP. Function application

(a function call) has a prefix syntax with arguments in brackets or a

postfix syntax with a dot separating argument and function. In POP-2

values can be left on an implicit global stack by any expression which

yields a value. They can be popped off the stack and assigned directly to
a variable or used as the arguments of a function. Happily in the

program there were no values put on, and popped off the stack in a

dynamic way (determined by program flow of control). For an example

of typical short time static use of the stack in a conditional, a

PARSING THE PARSER

dcstructuring bind (assigning subsequent values from a list to several

variables) and the return of multiple results by a function see Table 1

and the corresponding lines of code. The return of multiple results is

done by the declaration of so called output locals in the function

definition. These act as local variables, but on returning from a function

call their values arc left on the stack. These are best removed from the
stack and assigned to variables immediately after the function call, as is

done indeed in the program. Only in the lines 65 to 68 the results of

singlet or tempo arc left on the stack slightly longer. The return of

multiple results by a function is in LISP supported by the values
construct. They can be caught by the caller using the

multiple-value-setq assignment. Multiple values are not a really

orthogonal designed construct in LISP, but they are saver then the

POP-2 solution, as multiple values cannot be put on or popped of the

stack at random times. Using this translation one has to be careful with

non local exits as in line 95 where POP-2 implicitly leaves the current

values of the output locals on the stack, where in LISP one has to

return them explicitly.
The handling of variables (the binding regime) in POP-2 is

completely clumsy and idiosyncratic. A function can have arguments,

output locals and local variables. In line 105 nlist is a formal

argument of the function tapout, sequence is its output local, and

there is a list of local variables start, beat etc. The strange thing is
that locals arc given a value upon entry of the function. As can be seen

in line 35 where stop and period arc referred to before ever having

received a value in the body of singlet. The values they are initialized

to are the values of the corresponding variables in the calling

51

COMPUTERS IN MUSIC RESEARCH

environment: the output locals of rhythm declared in line 51. This

ugly construct makes it impossible to study the behavior of a function

in isolation—one has to search always for the part of the program that

happens to call the function to decide upon the values of these variables

on entry. In (Barett c.a 1985, p 37,38) this is called a convenient

feature. Which only once again shows that one has to take care for the

words like "handy" or "convenient". They inevitably signal danger when

they occur in the description of the semantics of a programming

language. A related problem is the fact that assignment to a local

variable docs not change the value of the variable'with the same name

in the calling context, but an assignment to a free variable (a variable

that is not declared as argument or as output local or local), docs change

the value of the corresponding variable in the calling code. So only after
scanning the whole program one can decide that the assignment to

nlist in line 54 of rhythm is really an assignment to the the nlist

argument of tapout in line 105 just because rhythm happens to be

called in tapout. Such so called dynamic scoping makes the behavior
of a function depend upon the actual coding of the functions it uses and

by which it is used, complicating the semantics of the language, and of
any program written in it.

Things become worse when programmers do not understand these
constructs or use them in a sloppy way: why is there a tol local

variable in line 106, while there is also a global variable tol in line 30
and it is used as a truly global constant? Why is there a local stop in

line 51 when it is also declared as output local in the same line? Why is

there a global metre, even declared twice in line 30 and 17, when it is

clearly used in local backtracking in line 101 and 97? Indeed the whole

52

PARSING THE PARSER

program is a sloppy mess regarding scope and binding of variables. The

translation of these aspects was the most difficult part of the port and I
will try to outline how I tried to make all communication between parts

of the program explicit and lexical, which means that only references

and assignments arc made to variables that are local (and tcxtually
visible) to the piece of code under construction. All the semantics then

become static, which means that the meaning of a part of the program
can be described independently from the actual computational route

taken by calling and called routines, only depending upon the

program-text of those routines. Let us consider the example function

definition in Table 2 in which every possible use of variables is listed.

T a b le 2 : Translation o f a POP-2 function into LISP.

co n stru ct P O P -2 l IS P translation

(unction

definition

fu n ction fun a b -> c d

v a rs c f;

body with
g referred to but not assigned to
h referred to and assigned to
c,c referred to before assigned to
d f assigned to before referred to

end;

(defun fun (a b c e g h)

(le t (d 0
translation o f body

(v a lu e s c d h)))

function call f u n (i j) -> k -> l ; (m u ltip le-v alu e-setq (k 1 h)

(fun i j c e g h))

In the function body there arc formal arguments, output locals,

locals, and free variables They arc used (referred to and assigned to) in

different order. In the translation into LISP we have to add formal

arguments to the function for some output locals and free variables,

53

COMPUTERS IN MUSIC RESEARCH

because they will be assigned an initial value by POP-2 upon entry of

the function. Now we will do that initialization explicitly by adding

them to the argument list in the function call. The output locals will
have their values returned as the multiple results, which has to be done
explicitly in LISP. Since the assignment to a free variable in the body
will have effect in the calling context as well, we have to add this

variable to the multiple results as well and do the assignment explicitly

in the calling program. Note that not in each routine of the POP-2 code

all the ways of treating variables are used, yielding a simpler

translation. But as in general we now have added an assignment in the

calling context, the caller may again change its translation, initiating
more changes etc. Consequently the translation is not a very simple

task. But after this translation all flow of information is clear and we

can get rid of some the remaining global variables because the routines

will be explicitly passed their values as arguments when they need

them. Only metre and tol remain global and arc declared once at the

begin of the program text to retain for the moment the spirit of their
initialization (line 30).

For individual note a record datatype was used, which can be

declared in POP-2 with the recordclass construct (line 1) which

automatically defines accessor functions for each field of the record (in

our case onset, pitch and offset in lines 21, 22 and 35) and a

constructor function (in our ease consnote, line 10). I took the liberty

of defining lists of note structures directly (see the end of Appendix 3),

without reading an input file, and passing one such list as argument to

startup thereby removing the need for the takein procedure (line

150). Pitch names were inserted in the data, because it is then easy to

54

PARSING THE PARSER

check the output against the output shown in the articles, even though I

left out the tonal analysis. The examples given in the articles are a
simple musical cliché and two fragments of the cor anglais solo in the
Prelude to Act III of Wagner’s Tristan und Isolde. All data is given in
Appendix 2 retaining the original notation for pitches.

I could not resist the temptation to re-order the procedure

definitions top down (using the call graph) and to separate them in

several groups. Although this obscured the relation of the program with

its POP-2 parent it is so much easier to navigate through code that is

ordered well. The resulting program (LISP program 1) produced the

same results as shown in the original article and I can assure you that I

felt great relieve the moment I saw it parsing the input correctly. The

only difference with the output listed in the articles is the output of the

first 'count-down' beats, not shown in the original article. Later

Christopher Longuet-Higgins affirmed me that his program docs output

these as spurious rests at the beginning of its parse. Finally I have to
mention one typographical error in the original program: the comma in

line 21 should be a period.

“LISPIZING” THE CODE

Now the program could be trimmed to remove all aspects that were

not to be part of a real micro version. For example the function sift is

a trivial function to remove spurious key bounces that stem from the
recording equipment used. The article should mention such

pre-processing but it surely is no part of the parse algorithm itself, and

it has even less relevance for the cognitive model. Another feature that

should not be in the micro version is the grouping of a number of beats

55

COMPUTERS IN MUSIC RESEARCH

on one output line, faking an analysis above the beat level, while there

is just a clever trick used: the musical data is played preceded by a

measure of count down beats on the same low key, the number of

which is used to collect the beats in measures on the output after

analysis. This trick, explained in the article, could be well worth its
value in a practical implementation, but it is again far from central to

the theory and only distracts the reader of the program. The length of

the last count down beat is used as a initial estimate for the beat length.

This parameter of the program is thus concealed in the data, it will be

cumbersome to experiment with different slices of data, or different

initial estimates of the beat. But what is worse, a real issue that the
theory does not tackle: how do human listeners pick up the initial beat

of a piece of music, is hidden from view by inserting this information

in the musical data. It must be said that it may be a wise decision to
leave this difficult question aside in the theory, and the article is quite

explicit about that, but then again it should be as easy to understand

that fact from the program itself. Thus initial beat duration is changed
into a parameter of the top level function (and for compatibility with

the old data, it is optional and uses the old method if not specified).

As a general rule it is best not to do much processing in routines
that produce text, because in textual output all internal structure is lost

and other programs often cannot make use of the results in fiat text
format. In our ease the scaffolding, like the test suite and programs that
measure the sensitivity of the parser to parameter changes, is much

easier to write if they can inspect the whole result structure from the

parser. So any output side effects like printing results in a neat way

should be postponed. And, if they are included at all, they should be

56

PARSING THE PARSER

written as an almost trivial add-on. Because the built-in LISP pretty

printer (pprint) can do a nice textual layout of the result of the parser,

handling indentation etc, I decided that in this case the parser should

behave as a real function without side effects (note list in, structure out
and no printing going on), and I moved the post-processing inside the

parser itself.
As decided, all further transformations were done as semantic

invariant program transformations. Examples of such transformations

that retain the behavior of a piece of code but change its form, are the

substitution of a function call for its body (with appropriate

substitutions of variables), the collection of statements into a
(help)function, the 'unwinding' of loops, the movement of statements

in or out conditionals and function bodies, the removal of uneffcctive

assignments, the change of order of independent statements, and the

systematic change of variable names. To begin with the latter: some

abbreviations of variable names seem silly (syncop instead of

syncope, tollerance instead of tol, etc.), I changed these all to

there full names, but I did not consider changing them to names that

described their role better, nor did I change the name of any routines, so

as to maintain the relation with the original program.
Since m etre was already an argument to the main parsing

routines, stemming from the translation of function definitions, I could

remove it completely as global variable, and turn it into a parameter of
the top level notate function. And indeed, just like the initially

expected beat period, the expected meter is conceptually an argument of

the parser. The same was done for the tollerance parameter. This

clean-up of global variables made the whole startup routine

57

COMPUTERS IN MUSIC RESEARCH

superfluous.

Rewriting tapout as a recursive procedure, would made the output

local sequence as a temporary hold of the growing structure

unnecessary, and also would automatically built the structure in the

correct order such that a final reverse (line 117) becomes obsolete.
These simplifications come often for free when turning iteration into

recursion. Using the loop macro, as was done here has the same

benefits, and made the tapout function superfluous.

Some routines should really have been carved up into smaller

units, cither because they arc just to large to comprehend as a whole, or

because really a separate theoretical issue was being dealt with and
modularization would show more clearly on which information the

decisions taken were based. For example, in lines 34 to 45 an analysis
of the type of articulation is taking place intertwined with some

maintenance of data-structurcs (c.g., last: list of pending notes, and

group). A simple separation of concern as implemented in the extra

help function articulation-mark, makes it completely clear that the

decision on the type of articulation is taken not on the basis of the gaps

between notes, but on the basis of the gap between the end of a note
and the beginning of the next metrical unit (Longuct-Higgins, 1987 p.

127).

The collection of notes from note-list in a group in lines 53 to

64 in rhythm is another complicated piece of code which deserves to
be separated and cleaned up (the resulting function is called

co lle c t-g ro u p). Of course the goto construction (line 55) is

obscuring and completely unnecessary. If you are not convinced of this:

(Dijkstra, 1968) is the standard text to explain the horrors of goto's.

58

PARSING THE PARSER

Defining helping functions (onset-before and offset-before)

for deciding if the onset or offset of a note occurs before a certain point

in time with a margin of tollerance in a certain direction, a frequent

operation in the code, again makes the program more readable.
We can keep the data representation of a group a bit closer to the

problem at hand. For efficiency reasons a group of notes is represented
backwards in the original code. This obscures the calculation of the

articulation mark (the actual mark is calculated on the basis of the latest

note in a group, not on the basis of the first one as line 35 seems to

suggest. Furthermore, in a later stage and in an unrelated piece of

program text, this reverse coding has to be undone (line 40). In micro

programs one should not worry about tiny gains in processing speed

but either keep the data structures as close as possible to a 'natural'
representation of the problem at hand—or hide an encoding in a data

abstraction layer.
One further problem shows when looking closely at the code. In

lines 57 to 60 subsequent notes arc removed from the note-list and
put into the group. But in line 62 an actual undoing of the last of such

actions might happen. This has severe consequences for high level

descriptions of the parser as a process in which a stream of notes is fed

in and a parsed structure per beat comes out. Unreading a stream is a

rather awkward operation and might be psychologically unplausible.
However, given the current algorithm I couldn't do better then change a
'read' plus subsequent 'unread' into one 'peck' operation. Having a more

decent sense of a timed input stream, it might be possible to judge on

the basis of the offset of the previous note and the current time if no

note-onset had arrived yet and the group may be closed and processed.

59

COMPUTERS IN MUSIC RESEARCH

We have now arrived at the most difficult part of the code: tempo.

Firstly one can sec that although again is given a numerical value that

is incremented each time through the loop, the loop is done twice at
most. So again can be changed to a boolean. It is a common error in

programming to use under-restricted data types. But to get some grip on
the code it is better to unwind the loop, writing down its body twice

and get rid of the again variable and the non-local exit of line 95.

Looking through the processing of pulse and metre, which is done in

an incredibly ugly way in lines 76, 79, 94, 97, 99, and 101, and the

clumsy storing and retrieving of local state in lines 74 and 98, the

control structure slowly emerges. A trial is done with initial values, if
it succeeds, its results arc returned. If it docs not, its results are stored in
a variable called new and a second trial is initiated with initial values
reset to their old values, but with an alternative metre. If this one

succeeds, its results arc returned, otherwise the results of the first trial is

preferred because it used the expected meter. This gcneratc-and-tcst

process calls for a help function (named trial) which might be called

twice with partly the same arguments, to generate the alternatives,
elevating the need for resetting variables to their old values. Now old

can be removed. Making the control structure stand out clearly in this

way facilitates discussions about its nature and the cognitive
plausibility of such constructs. It also enables the design of custom

flow of control, which can be done in LISP by adding continuations to

the trial function—which are functional arguments that specify what

should be done with the result of it (Abclson & Sussman, 1985)—with

a new control structure programmed as a function with functional

arguments to specify the details, or with the general macro facilities.

60

PARSING THE PARSER

The latter actually specifics an extra layer, a new programming

language, in which the program is embedded. I choose here for the
second construct because it completely isolates the control issue but is
somewhat easier to write than macros. Note that the control structure

cannot be called proper backtracking because failure or success is decided
at the top level of each decision-subtree. It is implemented in the new

function generate-and-test, which is given a way to generate a result

(the function tria l), a way to evaluate this result (made by

make-test), a way to make alternative arguments for the generator

(called alternative), and some initial arguments for the generator to

use in the first trial. It will return either the result of the first or of the

second trial according to the rules given above.
Some details about the body of tempo still have to be clarified. In

line 99 there is a expression (5 - pulse) which completely obscures
the fact that pulse in the program can only be 2 or 3, and the effect of
this expression is the switch from one to the other. Conceptually 2 and
3 as possible values of pulse arc not related by their sum being 5 but
by being the two smallest primes. Cleverness like this should be

abolished from all micro programs (maybe even from all programs). By

modularizing this operation into a function alternative-metre that

calculates a changed meter (not just a changed pulse) a theoretical issue

is again highlighted: in changing meter at a certain level, one disposes

of all metrical structure below that level, which will again default to
divisions into two, a assertion that clearly has cognitive relevance and

can be tested as such. Modularizing the test for acceptability of a result

into one function (made by make-test) again makes part of the theory

stand out, showing that a different meter is tried if the metrical unit

61

COMPUTERS IN MUSIC RESEARCH

fails to end with a note (a syncope), or ends rather early or late

(Longuct-Higgins, 1987, p. 129). The method of tempo tracking used

in tempo stands out more clearly now. An extra parameter speed will
make one more hidden parameter explicit: the speed of tracking tempo

at beat level, taken as a constant 2 in line 113). The speed at lower
levels can be seen to be equal to 1/pulse.

Because in the program most assignments are now assured to have
only local effects within function bodies and arc done at most once, I
could gradually change them into local binding constructs which made

this even more clear. I changed m ultiple-value-setq's into

multiple-value-bind's, moved initial assignments to local variables
into the let headings where they were declared, and ended up with a

program which was side-effect free except for two multiplc-valuc-setq's

within a loop construct. This means that if spotting a variable referred

to in the program, I could be sure that it was given an initial value only

once and see immediately from the locally surrounding program text

how that was done, and anywhere within the scope of that construct this

variable would retain this value. Thus a computational variable would

look much more like a mathematical one, and the actual dynamic

aspects of computation-steps taken are now separated from- and

irrelevant for- these issues.

The value of stop, returned from rhythm can be 0 (line 87), in
which case it is used as a flag to indicate a detected syncope. It is in
general unwise to store conceptually different types of information in

one variable. So I made an extra result variable called syncope. Now

one can return also a useful stop result in case of syncope: the initially

estimated end of the unit Moving even the tempo-track calculation to a

t r \

PARSING THE PARSER

lower level made some more code simpler, to the expense of having to

pass the estimated end of the unit (aim) and the tempo-track speed

(speed) downward.
The next major surgery was the un-merging of structural analysis

(based on the onset of notes) and articulation analysis (based on their
offsets). Although they both use information about the tree being

constructed (like start, stop and period) that is only available

temporarily (during the local construction), I did feel that the

maintenance of the list of still sounding notes in the last variable

obscured the working of the structural analysis. And because it is well
know that merging different algorithms into one is one of the main
sources of bugs and confusion in programming, I decided to un-merge

the algorithms. This would have the added advantage of making them
available as separate modules. Tapout will now deliver tree structures

in which the leaves contain only note groups whose onset start there

but which arc annotated with the extra information needed by the

articulation analyzer. And because part of the articulation analysis was

already done at a later stage (during the printing in describe), moving

all of it to a separate module did not seem such a essential change.

There are of course cognitive arguments to consider the two processes

as intertwined, but then again one could consider the program as being
implemented on a lazy evaluator which would only do a round of

structural analysis only when the articulation analysis needed the result,
thus eliminating any psychologically unplausiblc long-term

intermediate storage. It is very difficult to describe the relation of a

program to a cognitive model, especially to describe where and how the

algorithm and the language semantics ovcr-rcstrict the model (describe

63

COMPUTERS IN MUSIC RESEARCH

the model in more detail then intended) and I strongly disagree with any
indication of ducking these issues as in: “the program is, of course, no

more than an embodiment of these ideas in computational form”

(Longuct-Higgins 1987, page 183). Although it has to be said that at

the time of the original paper the very idea that a program can be a

medium for expressing ideas about cognition was a novel one.

The last changes delivered the final code: LISP program 2 (see

Appendix 2 for the full code plus an example of its use). One of the

most heard (and silliest) arguments used against a clean programming

style is the supposed expense in calculation speed and memory usage.

This argument was again proven false by this program that performs
even faster than version 1 (using the three examples, without output

printing, running on a Mac Ilci in Allegro Common Lisp).

The test suite I used during the transformations described above was

quite small. It consisted of the three examples shown in the articles and

given in Appendix 3. Because I suspected that subtle bugs (e.g., in the

tempo tracking) might produce correct results on these examples but on
the basis of wrongly calculated internal values, I added cases in which

the tolerance was just so far off that the program came up with a wrong
answer. The test suite then used that value plus the wrong answer as a

reference to judge a correct working of the modified program. This way

I could catch any subtle errors in my port which would otherwise go

unnoticed because of the rounding mechanism. For one aspect of the
program representative examples were missing: collect-group only

once comes up with a group of two notes (in example tris: the notes at

1928 and 1932 centiseconds). The examples contain just not enough

trills, grace notes etc. to test its working thoroughly.

64

PARSING THE PARSER

Because the number of arguments to functions is large and the data

structures passed around may also be large, build-in trace facilities bury

one in pages of text. I designed a custom tracer that produced only the
relevant information. Because this is still a lot of information, a

graphical trace program would be desirable.

TH EO R ETIC A L ISSUES

Parameters

The different settings for the tolerance parameter used in parsing the

examples in the article (0.10 sec. for the cliche example and 0.13 sec.

for the others) raise the question how sensitive the model is for its
parameters. It is easy to do an experiment to check the range of

parameter values in which the parser works well for the examples. In

Figure 2 these ranges arc shown for the tolerance parameter, with the

initial beat estimate used as a second independent variable because it

may disturb correct parsing.
It is hard to base a conclusion on the basis of this limited set of

three musical examples, but the small size and the non-overlapping

nature of the regions identify a problem concerning robustness here. A
delicate parameter setting, to be done anew for each piece of data, may

be justifiable in the context of a technical tool, it is not so in the

context of a cognitive model. These maps show how the initial beat

estimate is more or less independent of these results. Thus the tempo
tracking taking place at the highest (beat) level is not the source of the

problems, but the processing at deeper levels of subdivision is.

65

in
iti

al

be
at

 —
)

COMPUTERS IN MUSIC RESEARCH

Figure 2: P a ra m eter ra n g es resulting in a co rrect p a rse.

1.50

1.45

1.40

1.35

1.30

1.25

1. 20 '

1.15

1.10

1.05

1.00
.06 .08 .10 .12 .14 .16 .18

tollerance

.20

The same conclusion can be drawn from the fact that allowed settings
for the speed parameter in the succesful regions are almost unrestricted

within its full range between zero and one (not shown). This may

indicate that for the data given, their is no heavy reliance on beat level

tempo tracking. For definitive evaluations more data has to be used,

r.e.

PARSING THE PARSER

systematically mapping out the parameter space of the algorithm
(parameter setting versus percentage parsed correctly). A line of further

research that may make the parser more robust is the adaptation of the

tollcrancc at deeper levels.

Tempo Tracking

The tempo tracking at the highest (beat) level is implemented in

lines 113. It simply averages the expected beat length and the measured

one if the latter is available. Around line 88 a complex process controls

the tempo tracking at deeper levels of subdivision. It incrementally adds

each deviation found in the subdivision to the total period, and

proportionally divides this period to estimate the position of the onset

ending the next sub-period. Onsets are allowed within the tollerance

around each estimate. For a three-division this effectively amounts to a

positive feedback from the timing of second to the third onset. For

example, if the onset ending the first subdivision is too early, the next

onset is expected early as well (by 2/3 of error of the first onset). This

process goes on, and assuming the second is early as well, the third is

expected to be even earlier. This would yield nonsensical behavior were

it not that after the completion of the parse of each subdivision the total
length is passed one level upwards and compared with the beat estimate
at that level, allowing for a deviation of tollerancc. So here it turns out
that after two short sub-divions the third should be long to pass this
test. Because in the parser the tempo tracking mechanism interacts with

the change of meter decisions it is quite hard to derive at the

mathematical characterization of the set of performed temporal patterns

that will be recognized by the parser as a triplet, but testing this

67

COMPUTERS IN MUSIC RESEARCH

empirically is quite simple.

Figure 3: Temporal patterns interpreted as triplets.

In Figure 3 a map of all possible subdivisions of a fixed beat
length into three notes is given with the region that is identified by the

parser as a triplet. The size of that region depends on the tollerance

(which was taken as one tenth of the beat period). The initial pulse at

that level was taken to be two. The idealized mctronomical triplet is

68

PARSING THE PARSER

located on the map at a point marked A. Given the performance of the

parser it is not surprising that the actual form of the region is biased

towards the pattern (short, short, long) found by Vos and Handel (1987)

in their study of systematic deviations from the norm in their group of

subjects who could play triplets well. This typical triplet pattern is
located at point B. The same reasoning may be used to relate the

behavior of the parser to empirical findings at higher metrical levels

where elongation towards the end of the unit seems to be the rule (Todd,

1985 and Clarke, 1987). This knowledge about common performance

practice implicitly incorporated in the model, which may explain its

success, was not identified in the original article.
The unconnected small regions that also signify patterns parsed as

triplets arc a by-product of the interaction of the tempo tracking and the
mechanism for meter chance. While the former allows for a large area of
triplet parsing extending to the right, the latter decides for a duple meter

in most parts of that area, but fails to do so for the two small islands.

A large tollerance will enlarge the islands, finally linking them up with
the main region. But in general it can be said that the equivalence
classes induced by the parser, the set of temporal patterns that will be

interpreted as performances of the same rhythm, do not form one

connected region. I could not find indications about the plausibility of

this result in the literature about human rhythm perception, but it will

greatly complicate empirical verification of the model.

Change of Meter

The decision when to change meter is taken, among others, on the

basis of an syncope occuring in the last subdivision. This sometimes

69

COMPUTERS IN MUSIC RESEARCH

seems too restricted, as syncopes in the other subdivisions might also

contribute evidence for a change of meter. A more sophisticated model

might adapt the reluctance to change the meter, to the metrical level in
consideration, making the higher levels which resemble time signature
less prone to changes than the lower levels. In the new program it is
easy to experiment with this and other variants but in general the
question seems very difficult to solve.

CONCLUSION

One can ponder what the truth is in the following quotation about
the procedures in the musical parser

Such procedures arc, unfortunately, much more difficult to specify
precisely in English than in a suitably designed programming
language: but this fact only underlines the value of casting
perceptual theories in computational for. (Longuct-Higgins 1987
p. 109)

But if a programming language allows the programmer to express such
difficult constructs in a program, will it then be possible to see the

ramifications of the theory? Or has theory degenerated into a black box

mechanism that can only be used, instead of understood. I tend to
attribute more value to the adagio:

If you can't write it down in English, you can't code it. (Peter
Halpcm in Bentley, 1988, p. 58)

70

PARSING THE PARSER

But because moulding a theory into an implementation greatly helps in

understanding and describing the theory in plain English, a

computational approach in which the process of developing theory and
implementing go hand in hand, is still most attractive to most AI

researchers. That the resulting program often contains vestigial remains
of earlier versions (Longuct-Higgins, personal communication) just

calls for one more round of cleaning up and rewriting, as I hope to have

shown in this article. The rewrite, at first sight a scholarly exercise,

soon became a major undertaking because of the tangled flow of control

and data in the program. But finally the program was made much more

open for experimentation, verification or falsification and possibly

extension. It is now easier to maintain and immerse in systematic

testing, the more so since the algorithm was implemented in POCO
(Honing 1990), an environment for research in expressive timing. In

the process of rewriting, semantic invariant program transformations

turned out to be very helpful as a methodology for reverse engineering

as was the availability of a test suite to automate some test runs after

each change.
I think that computational psychology can be a fruitful approach to

the study of music, complementing musicology, experimental

psychology and other disciplines. But to play this role well, researchers
must force themselves to state their algorithmic contributions in the
form of clean micro-programs and clarify which parts of the program arc

considered to model cognitive processes and which parts are

implementation detail or technical tricks.

71

COMPUTERS IN MUSIC RESEARCH

REFERENCES

Abclson, H., G J. Sussman. (1985). Structure and Interpretation o f
Computer Programs. Cambridge, MA: The MIT Press. .

Barctt R., A. Ramsay and A.Sloman. (1985). POP-11, A Practical
Language fo r Artificial Intelligence. Chichester: Ellis Horwood.

Burstall, R.M. and J.S. Colins and R.J. Poppclslonc. (1968). POP-2
papers. Edinburgh: University Press.

Bentley J. (1986). Programming Pearls. Reading, MA:
Addison-Wcslcy.

------------. (1988). More Programming Pearls. Confessions o f a
Coder. Reading, MA: Addison-Wcslcy.

Campbell, J.A. (1990). "Three novelties of AI: theories, programs and
rational reconstruction" In: The foundations o f artificial
intelligence. A source book, edited by D. Partridge and Y. Wilks.
Cambridge: Cambridge University Press.-

Clarke, E.F. (1987). "Levels of Structure in the Organisation of
Musical Time" in: Music and Psychology, a Mutual Regard. S.
McAdams(Ed.) Contemporary Music Review 2(1).

Dcsaign, P. (1990). "Lisp as a Second Language, Functional Use"
Perspectives o f New Music. 27(1).

------------. 1991 "A Conncctionist and a Traditional AI Quantizer,
Symbolic versus Sub-symbolic Models of Rhythm Perception" In
1. Cross (Ed.), Proceedings of the 1990 Music and the Cognitive
Sciences Conference. Contemporary Music Review. London:
Harwood Press.

72

PARSING THE PARSER

Dcsain, P. and H. Honing , (1991). "The Quantization Problem:
Traditional and Conncctionist Approaches. " in Balaban.M., K.
Ebcioglu & 0 . Laskc, cds Musical Intelligence. Menlo Park: The
AAAI Prcss.(forthcomming)

________. (1989). "Quantization of Musical Time: A Conncclionist
Approach." Computer Music Journal 13(4) reprinted in..Todd,
P.M. & D.G. Loy (Eds.) (1991) Music and Conncctionism,
Cambridge, Mass.: MIT Press, (forthcoming).

Dijkslra, E.W. (1968). "GOTO statement Considered Harmful" Comm.
ACM 11(3)

Honing, H. (1990). "POCO: An Environment for Analysing,
Modifying, and Generating Expression in Music" In Proceedings o f
the 1990 International Computer Music Conference. San
Francisco: Computer Music Association.

Longucl-Higgins, H.C. (1976). "The Perception of Melodics" Nature
263: 646-653 and in Longucl-Higgins, 1987.

________. (1979). "The Perception of Music" Proc. R. Soc. Lond. B
205: 307-322 and in Longucl-Higgins, 1987.

________. (1983). "All in theory, the analysis of music" Nature
304(7), p 93.

________. (1987). Mental Processes. Cambridge, Mass.:MIT Press.

Shank R.C. and C.K.Ricsbcck. (1981). Inside Computer
Understanding. Hillsdale, New Jersey: Lawrence Erlbaum.

Steele, G.LJr. (1984). Common Lisp: the Language. Burlington, MA:
Digital Press.

Todd, N.P. (1985). "A Model of Expressive Timing in Tonal Music.”
Music Perception 3(l):33-58.

73

COMPUTERS IN MUSIC RESEARCH

Vos, P. and S. Handel. (1987). "Playing triplets: Facts and Preferences"
in A. Gabrielson (Ed.) Action and perception in Rhythm and
Music. Royal Swedish Academy of Music. 55.

S

1
2
3
4
5
6
7
8
9

1 0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Appendix 1: relevant parts of original POP-2 code
recordclass note pitch onset offset ..extra f ie ld s declared here.
function sift notefile=>notefile;
maplist(notefile, lambda x;
if x.tl.tl.hd-x.tl.hd<5 then else x.close
end)->notefile;

end;

function takein notefile=>nlist;
maplist (notefile, lambda x;

consnote (applistfx, identfn), undef, undef, undef)
end)->nlist;

end;

functions res , int , modulate, hark, simplify, intervals , tuneup and vars
f la g ,k , l ,m ,n ,p la c e declared here

vars start beat position number group last metre nlist sequence;

function startup;
nil->sequence; nlist.hd.onset->start;
nlist.tl,hd.onset-start->beat;
nlist.hd.pitch->position;
nil->group; nil->last; 0->number;

loopif nlist.hd.pitch=position then
nlist,tl->nlist; number+l->number

close;
end;

vars tol metre; 13->tol; nil->metre;

function singlet->stop->fig;
vars period mark;
if group.null.not then

if group.hd.offset<stop-period/2 then "stc"
elseif group.hd.offset<stop-tol then "ten"
else "leg"
close->mark;

group.rev->last; nil->group; mark::last;
else

[%"tac",applist(last,lambda x;
if x .offset>start+tol then x
close end)%]

close->fig;
if nlist.null or nlist.hd.onset>stop+tol then 0
else nlist.hd.onset
close->stcp;

end;

function rhythm start period->stop->fig; vars stop;
start+pericd->stcp;
if nlist.null.not and nlist.hd.onset<start+tol
then nlist.hd::nii->group; nlist.tl->nlist;
else goto label
close;
loopif nlist.null.not and nlist.hd.onset<stop+tol

and nlist.hd.onset<group.hd.onset+tol
then nlist.hd::grcup->group; nlist.tl->nlist;
close;
if group.hd.onset>stop-tol
then group.hd::nlist->nlist; group.tl->group
close;

~~\ b

64 label;
65 if nlist.null or nlist.hd.onset>stop-tol
66 then .singlet
67 else .tempo
68 close->stop->fig;
69 end;
70
71 function tempo->stcp->figure;
72 vars new old again pulse time count fig syncop;
73
74 [%nlist,last,group%]->old; 0->again;
75 loop:
76 if metre.null then 2::nil->metre
77 close;
78
79 metre.hd->pulse; met re.tl->metre;
80 nil->figure; period->time;
81 0->count; start->stop;
82 loopif count<pulse
83 then
84 count+l->count;
85 rhythm(stop, time/pulse)->stop->fig;
86 fig::figure->figure;
87 if stcp=0 then start+count*time/pulse->stop; true
88 else stop-start+(pulse-count)*time/pulse->time; false
89 close->syncop;
90 close;
91 again+l->again;
92
93 if not (syncop or stop>start+period+tol or stop<start+period-tol)
94 then figure.rev->figure; pulse::metre->metre;
95 exit;
96 if again=l then
97 [%nlist,last,group,figure.rev,stop,pulse::met re%]->new;
98 old.destlist->group->last->nlist;
99 (5-pulse)::nil->metre; goto loop;

100 else
101 new.destlist->metre->stop->figure->group->last->nlist;
102 close;
103 end
104
105 function tapout nlist->sequence;
106 vars start beat tol group last stop figure;
107 loopif nlist.null.not
108 then
109 rhythm (start, beat)->stop->figure;
110 figure::sequence->sequence;
111
112 if stop=0 then start+beat
113 else (stop-start+beat)/2->beat; stop
114 close->start;
115 close;
116 nil->metre;
117 sequence.rev->sequence;
118 end;
119
120 vars m a x , m i n , s y m b o l s ,symbol declared and initialzed here

121 function name declared here

1 2 2
123 function describe fig; vars word;
124 fig.hd->wcrd; fig.tl->fig;
125 if fig.null then [rest]
126 elseif word="tac" then
127 "tied"::maplist(fig,indexosymbol)

- v n

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

elseif word="leg" then maplist(fig, name)
else [%applist(fig,name),word%)
close;

end;

function reveal figure;
if figure.hd.isword
then figure.describe
else maplist(figure,reveal)
close;

end;

function typeout seq; vars count;
0->count; l.nl;
applist(seq,lambda x;

if count = number then l->count; 2.nl
else count+l->count
close; x.reveal .pr

end); 2. nl;
end

function notate notefile;
note file . takeir.->nlist;
. startup;
nlist.tapout->sequence;
nlist.tuneup;
sequence.typeout;

end;

COMPUTERS IN MUSIC RESEARCH

APPENDIX - 2: The Parser

;; Longuet-Higgins Musical Parser,
;; Micro-version 2, in Common Lisp (uses loop macro), Peter
;; Desain, 1991.
********************** ****** ****** ****** ****** ****** ****** *
;top level

(defvar *tollerance*)

(defun notate (note-list Skey
(metre ' (2)) '
(tollerance 10)
(start (onset (first note-list)))
(beat (- (onset (second note-list))

(onset (first note-list))))
(speed 0.5))

(setf *tollerance* tollerance)
(loop while note-list

with figure
with group = nil
do (multiple-value-setq

(start figure group metre note-list beat)
(rhythm start beat group metre note-list

(+ start beat) speed))
collect figure into figures
finally (return (articulation figures))))

. * *** ****** ****** ****** **************************************
; main parsing routines

(defun rhythm (start period group metre note-list aim speed)
(let ((stop (+ start period)))

(multiple-value-bind (group note-list)
(collect-group group note-list start stop)

(if (or (null note-list)(not (onset-before
(first note-list) stop '-)))

(singlet start period group metre note-list aim speed)
(tempo start period group metre note-list aim speed)))))

80

PARSING THE PARSER

(defun singlet (start period group metre note-list aim speed)
(let* ((stop (+ start period))

(syncope (or (null note-list)
(not (onset-before (first note-list) stop '+))))

(end (if syncope aim (onset (first note-list)))))
(values end (list start stop period group) nil metre note-list

(+ period (* speed (- end aim))) syncope)))

(defun tempo (start period group metre note-list aim speed)
(apply #'values
(rest (generate-and-test ..

#'trial
(make-test (+ start period))
J1 alternative
metre start period group note-list aim speed))))

(defun make-test (aim)
I '(lambda (syncope stop Srest ignore)

(and (not syncope)
(< (abs (- stop aim)) *tollerance*))))

(defun alternative (metre srest arguments)
(cons (alternative-metre metre) arguments))

; control structure for change of metre

(defun generate-and-test (generate test alternative Srest states)
(let ((resultl (apply generate states)))

(if (apply test resultl)
resultl
(let ((result2 (apply generate

(apply alternative states))))
(if (apply test result2)
result2
resultl)))))

81

COMPUTERS IN MUSIC RESEARCH

. * * * * * * » * f * * * * * * * * * *
$

; subdivide a period

(defun trial (metre start period group note-list aim speed)

(loop
with pulse = (pop metre)
with sub-start = start
with sub-period = (/ period (float pulse))

with syncope
for count from 1 to pulse do
(multiple-value-setq
(sub-start fig group metre note-list sub-period syncope)
(rhythm sub-start sub-period group

(extent-metre metre) note-list
(+ start (* count sub-period)) (/ (float pulse))))

collect fig into figure
finally (return (list syncope sub-start figure group

(cons pulse metre) note-list
(+ period (* speed (- sub-start aim)))))))

. ★ A********************************** ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Hr***************
; metre calculus

(defun alternative-metre (metre)
(case (first metre)

(2 ’ (3))

(3 ’ (2))))

(defun extent-metre (metre)
(or metre '(2)))

.**

; collect group of synchronous notes

(defun collect-group (group note-list start stop)
(if (and note-list (onset-before (first note-list) start ’+))

(collect-new-group (list (first note-list))
(rest note-list) stop)

(values group note-list)))

PARSING THE PARSER

(defun collect-new-group (group note-list stop)
(if (and

(collect-group-test (first note-list) (first group) stop)
(or (collect-group-test (second note-list)

(first note-list) stop)
(onset-before (first note-list) stop '-)))

(collect-new-group (cons (first note-list) group)
(rest note-list) stop)

(values (reverse group) note-list)))

(defun collect-group-test (notel note2 stop)
(and notel

(onset-before notel stop '+)
(onset-before notel (onset note2) ’+)))

.**
; articulation analysis

(defun articulation (1 soptional last)
(cond ((null 1) (values nil last))

((listp (first 1))
(multiple-value-bind (resultl lastl)

(articulation (first 1) last)
(multiple-value-bind (result2 last2)

(articulation (rest 1) lastl)
(values (cons resultl result2) last2))))

(t (apply I'articulate-figure last 1))))

(defun articulate-figure (last start stop period group)
(let* ((new-last (or group (remove-if #1(lambda(note)

(offset-before note start '+))
last)))

(pitches (mapcar (('pitch new-last)))
(values (figure-describe group stop period pitches)

new-last)))

(defun figure-describe (group stop period pitches)
(if (null group)

(if pitches (cons 'tied pitches) '(rest))
(append pitches (articulation-mark (first (last group))

stop period))))

COMPUTERS IN MUSIC RESEARCH

(defun articulation-mark (note stop period)
(cond ((offset-before note (- stop (/ period 2.0)))

' (stc))
((offset-before note stop '-)

' (ten))
(t nil)))

(defun snoc (1 x) (nconc 1 (list x)))

. ** *************** ***** ****** ****** ****** ****** ****** ****** *** ' '
; help functions

(defun onset-before (note time soptional (margin 0))
(< (onset note) (+ time (case margin

(+ *tollerance*)
(- (- »tollerance*))
(otherwise 0)))))

(defun offset-before (note time soptional (margin 0))
(< (offset note) (+ time (case margin

(+ »tollerance*)
(- (- »tollerance*))
(otherwise 0)))))

. ** ******** ****** ****** ****** ****** ****** ****** ****** *
; data abstraction for notes

(defstruct (note (¡constructor note (pitch onset offset))
(:conc-name nil))

pitch onset offset)

★ **★ ★ *★ *<

84

PARSING THE PARSER

; example of the use of the program

«I
defining a note list
(defvar »cliche* (list (note • start 154 227)

(note ' c 285 294)
(note 'g 322 327)
(note 'g 336 341)
(note ' as; 349 383)
(note ■g 384 407)
(note ■b 445 453)
(note 1 c 484 527)))

calling the program:
(notate »cliche* ¡tollerance 10)

will produce the following results:
((START TEN)
(((C STC)

((G STC)
(G STC)))

((AS) (G TEN)))
(((REST) (B STC))
(C TEN)))

COMPUTERS IN MUSIC RESEARCH

APPENDIX - 3: Test Data

The TRIS example: a fragment of the cor anglais solo in the
Prelude to Act III of Wagner's Tristan und Isolde.

Note Onset Offset
START 24 114
START 148 238
C 274 399
G 400 554
BB 551 587
AB 586 671
EB 669 711

AB 707 794
D 795 831
G 829 860
C 863 895
F 895 989
G 987 1021
F 1020 1145
EB 1140 1242
D 1268 1282
C 1289 1298

86

PARSING THE PARSER

BB 1308 1320
F 1332 1452
D 1450 1495
BB 1508 1517
A 1528 1536
AB 1546 1556
EB 1570 1696
C 1692 1734
AB 1752 1762
G 1774 1782
FS 1792 1808
D 1815 1930
F 1928 1934
EB 1932 2062
D 2059 2188
DB 2183 2446
C 2491 2628

87

COMPUTERS IN MUSIC RESEARCH

The STAN example: a fragment of the cor anglais solo in the
Prelude to Act HI of Wagner's Tristan und Isolde.

3

Note Onset Offset
START 148 190
G 280 287
F 302 309
EB 322 329
BB 347 466
G 474 518
EB 538 548
D 559 566
CS 578 586
A 605 648
FS 646 657
D 669 678
CS 687 696
C 707 714
AB 729 760
F 769 777
DB 791 801
C 811 820
B 830 839
G 856 987

PARSING T H E PARSER

EB 986 1027
C 1049 1054
B 1068 1075
BB 1087 1096
F 1111 1153
D 1152 1157
BB 1174 1183
A 1194 1202
AB 1211 1220
EB 1232 1270
C 1272 1279
AB 1295 1304
G 1316 1325
FS 1336 1348
D 1360 1619

89

COMPUTERS IN MUSIC RESEARCH

The CLICHE Example.

H>— R — I/l * ___3 1 L 7 r r I\M7----------w ----- w
• J • • • ...1 B

Note Onset Offset
START 154 227
C 285 294
G 322 327
G 336 341
AS 349 383
G 384 407
B 445 453
C 484 527Thc

90

Autocorrelation and the Study of Musical Expression

Peter Desain and Sicbe dc Vos

Music Department
City University
Northampton Square

Centre for Knowledge Technology
Utrecht School of the Arts

Lange Viestraat 2B
NL-3511 BK UtrechtGB-London EC1VOHB

ABSTRACT: In performances musical structure is conveyed as variations of timing
and other parameters. A method was designed to analyse these variations using
autocorrelation. Peaks in the autocorrelation function are interpreted as periods of
repeated components in the musical structure. Care has to be taken in using the
standard autocorrelation function in this domain. Partial autocorrelation was used to
remove the multiples of a fundamental period.

Introduction
In musical performances the performer uses variations of timing, dynamics and articulation. An
often posed hypothesis is that these expressive variations are closely linked to—and intentionally
convey properties of—the musical structure, i.e., the performers interpretation of it [Clarke 1987].
In a research project on expressive timing we designed a set of tools, called POCO, to analyse,
modify and generate musical expression [Honing 1990]. One of the tools analyses expressive data
using autocorrelation in order to find regularities which, according to the hypothesis above,
correspond to musical structure. In this article we focus on expressive timing, but other expressive
parameters can be dealt with using the same method.
Any deviation from a strict metronomical performance is regarded as expressive timing. We
assume that it mainly stems from a multiplicative combination of tempo factors at several
structural levels and the exact metrical note durations in a the score. By dividing the duradons
observed in the performance (the inter-onset intervals) by the durations in the score a measure of
local tempo is obtained. This function from time (onset-time in the score) to relative duration, the
expressive timing signal, the logarithm of which can depends linearly on the components.
As an example we will use Bach's C major prelude (WTCI), which was the subject of many other
studies [Cook 1987, Lehrdahl and Jackendoff 1983, Povel 1977], All notes in this piece are of
equal duration. The main structural units are half-bar, bar (16 notes) and 2 bars, at higher levels the
metrical grouping is not trivial. Performers generally exhibit an amazing consistency in expressive
timing over performances. The expressive timing of one of the performances is shown in Figure 1.
Todd's approach in analysing this kind of timing data is to look at the local maxima [Todd 1985].
They indicate a slowing down and Todd’s analysis relates the relative height of these peaks directly
to the structural boundary strength. Although it is not so difficult to spot obvious phrase-final
lengthening, it is unlikely that a robust classification of peaks into structural levels can be made.
Therefore we looked for more global methods to detect structure.

CO
X3

o

o>

c
o

. 5 .
0 10 1 s 20 30

time (in bars)

Figure 1. Expressive timing of the Bach Prelude

ICMC GLASGOW 1990 PROCEEDINGS

357

l

Regularity in musical structure will be reflected as periodicity in the expressive timing signal. We
use autocorrelation as a statistical method to find periodicity, the periods found are interpreted as
the lengths of structural components. We will assume here that musical structure is more or less
homogeneous, at least for some time span and at some level.

A u t o c o r r e l a t i o n
If a signal is periodic with a period P, it will resemble itself after an interval P. A well-known
statistical measure of resemblance is correlation. By calculating correlations between a signal and
the same signal delayed by different lags we obtain a series of values, the autocorrelation curve.
When the signal contains a periodic component with period P, a peak in the autocorrelation curve
occurs at- this value. Considering our domain we have to be careful in the use of the standard
autocorrelation [Bowermann 1979, Priestley 1981]. The function must depend on time to be able
to show changes in periodic structure. We realise this by placing a window on the samples. Then
the autocorrelation at t is the autocorrelation in the window that ends in t, or X(i-W+l) ... X(t),
where W is the window size and X the signal. The window size should depend on the lag,
otherwise a change in the level of a component with a small period will go unnoticed since there
are still many 'old' periods contained in the window. We choose a window proportional to the lag,
in the examples we used a factor p=A. A second reason to use relatively small windows is that the
signal cannot be assumed to be stationary, which means that its statistical properties like mean and
variance change over time. But using small time intervals the error introduced may be neglected.
This leads to the following definitions of mean and autocovariance:

, W-l

* w,. = 777£*('-0.
w »=0

W-r-l

Rw/f) - i77 ^
1=0

The factor 1/W‘instead of 1 fW-r corrects the values for greater lags which are calculated with only a
fraction of the samples, as in the commonly used biased autocovariance estimator [Priestley 1981].
Tne autocorrelation is defined in terms of the autocovariance as:

. , , Rw.fj)
9w/f) R w M

and the time dependent autocorrelation function with proportional window size is given by:
P('/) = Pp rjr)

Figure 2 shows the autocorrelation of the signal in Figure 1. Note the prominent peaks at the lags
corresponding to the length of metrical units. We found these peaks only in data of expert
performers, showing their ability to produce consistent timing patterns. Note also that the
autocorrelation definition used is not very meaningful in the smaller lags, because it depends there
on a very small number of measurements.

Figure 2. Autocorrelation of the data of Figure 1 (beginning of bar 31, p=4).

35S

ICMC GLASGOW 1990 PROCEEDINGS

Partial autocorrelation
A problem occurs in interpreting the autocorrelation curve. When a signal repeats itself after period
P, it will also be the same after period 2P, 3P, etc. To detect if there is additional regularity at
these levels over and above the regularity originating from their 'fundamental', P, we use partial
autocorrelation. Partial correlation determines the correlation between two variables, cancelling out
the influence of other variables on both of them. In the case of autocorrelation it removes the effect
of smaller periodicities on the autocorrelation for a certain lag. The partial autocorrelation at lag r,
p(r/), is defined as [Bowerman 1979]:

P(U) = P(D
Jfc-i

P(k) - % pmj)p(.k-D
p (kjc) =-------- -------------------- if A> 1,

1 - Zp(fc-W)pO)
7=1

P(kJ) = p(k -lj) - p(kjc)p(k-ljc-j).
This formula depends on a statistically sound autocorrelation function. We cannot use the modified
autocorrelation directly, but it is possible to retain the dependence on time and lag when we •
recalculate the autocorrelation function for each lag of the partial autocorrelation:

P 0,r.r) = p(r,r) where p(k) = ppr/k) .
The advantage of partial autocorrelation is seen in Figure 3: e.g. the peak at the 3.5 bar lag in
figure 2, which arose only because it is a multiple of the half bar length vanishes in the partial
autocorrelation.

Figure 3. Partial autocorrelation of the data of figure 1 (beginning of bar 31, p = 4).

Making use of the time dependency of the analysis we can show the relative stability of metrical
units of 2 bars or smaller, throughout the piece (Figure 4). In this picture the data is truncated to
zero for correlations smaller then 0.05. Note the conflicting evidence of a 3 bar and a 4 bar unit
arising because of the inhomogeneity of the piece at higher levels.

Conclusion
Although we have not yet studied many performances of the Bach Prelude, nor other pieces,
autocorrelation seems a promising method to study expressive timing and detecting metrical
structure from expression. The method can also be used to detect structural changes in a
performance and to investigate how absolute tempo determines the focus of attention of the
performer to particular structural levels, changing the relative heights of the peaks in the partial
autocorrelation. Although we only showed an example with notes of equal duration, other kinds of
music can be treated with an interpolation scheme.

ICMC GLASGOW 1990 PROCEEDINGS

However, the method has severe intrinsic limitations. It is based on the assumption that the
expressive components at each structural level are more or less stable and periodic and it assumes
independent combination of the components, an assumption that clearly limits the applicability of
this method. Furthermore, no phase information is retained, statistical reliability is questionable
for small windows and we can use the method only for generating hypothesis about the structure of
the piece, not for testing them statistically.

Figure 4. Partial autocorrelation of the data of figure 1 through time (p = 4).

In further research we will work on different measures of expressive timing. We want to use the
result of autocorrelation (and another kinds of analysis) to separate the independent structural
components of the expressive timing signal. This will open up the possibility of 'micro surgery’
on expressive timing, in which modifications can be made at each structural level. Another
application of the analysis method described is forecasting, in which the expressive timing curve
can be extrapolated from a known segment. This might result in more robust methods of score
following, tempo tracking and quantization. As this research tries to unravel the internal structure
of the expressive timing signal, we hope to gain more insight in the musical and cognitive reality
of tempo curves and their representation.

A c k n o w l e d g e m e n t s
We would like to thank Eric Clarke, Henkjan Honing, Steve McAdams, Klaus de Rijk, and Luc
van Vugt for their help and we are especially grateful to Chris Mould for his performances.

R e f e r e n c e s
Bowerman B,L. and R.T. O'Connell. 1979 'Time Scries and Forecasting, an Applied Approach"
Boston, MA: PWS .
Clarke, E.F. 1987 "Levels of Structure in the Organisation of Musical Time" in: Music and
Psychology, a Mutual Regard. S. McAdams(Ed.) Contemporary Music Review 2(1).
Cook, N. 1987 "Structure and Performance Timing in Bachs C major Prelude (WTC 1): an empirical
Study" Music Analysis 6(3).
Honing, H. 1990 “POCO, An Environment for Analysing, Modifying and Generating Expression in
Music." ICMC “90, San Fransisco: CMA.
Lehrdahl, F. and R. Jackendoff. 1983 "A Generative Theory of Tonal Music" Cambridge, Mass: MIT
Press.
Povcl, D. 1977 'Temporal Structure of Performed Music: Some Preliminary Observations" Acta
Psychologica, Vol 41.
Priestley, M.B. 1981 "Spectral Analysis and Time Series" London: Academic Press.
Todd, N.P. 1985 "A Model of Expressive Timing in Tonal Music" Music Perception 3(1).

ICMC GLASGOW 1990 PROCEEDINGS

360

T e m p o c u r v e s c o n s i d e r e d h a r m f u l

Peter Desain & Henkjan Honing

MARCH 1991
E d i t e d m a y 1991

Will be published as: Desain, P. & H. Honing. (1991). Tempo curves considered harmful.
In "Music and Time", edited by J.D. Kramer. Contemporary Music Review. London:
Harwood Press.

© copyright 1991, Peter Desain & Henkjan Honing

Center for Knowledge Technology
Lange Viestraat 2b
3511 BK Utrecht
The Netherlands

C o n t e n t s

Abstract.. 3
Keywords... 3
In which we decided to have a good time, invited an expert, and had our first
disappointment..4

Tempo, Metre and Beat..6
Tempo, Timing and Structure.. 9

Wherein we looked at multiple performances, learned from a conductor and tried
different hierarchies but had no success...9

Timing and Tempo, Patterns and Curves... 11
Generative models...15

In which we investigated discrete patterns and continuous curves, tried
interpolation and failed again..15

Subjective Time, Duration and Tempo Magnitudes....................................... 16
Objective Time, Duration and Tempo Measurements...............................20

Epilogue..20
Acknowledgements.. 22
References..22

\

A b s t r a c t

In the literature of musicology, computer music research and the psychology of music,

timing or tempo measurements are mostly presented in the form of continuous curves. The

notion of these tempo curves is dangerous, despite its widespread use, because it lulls its

users into the false impression that a continuous concept of temporal flow has an

independent existence, a musical or psychological reality, and that time can be

perceived independent of events carrying it. But if one bases a transformation or

manipulation of timing on the implied characteristics of such a notion, one is doomed to

fa il.

KEYWORDS

representation of time, tempo curves, expressive timing

2 .

T e m p o c u r v e s c o n s i d e r e d h a r m f u l

Peter Desain & Henkjan Honing

In which we decided to have a good time, invited an expert, and had our
first disappointment.

Not so long ago we decided to spend a Christmas holiday studying music and its

performance. One of us is an amateur mathematician (M) and the other one likes to

delve into old psychology textbooks (P), and because we enjoy impressing each other

with new facts and insights, we often find ourselves in vehement discussions. Therefore

we thought we might have a pleasant and peaceful time by putting our beloved hobby

horses aside and embark upon a subject about which neither of us knew much: the timing

aspects of music. We became interested in this field because we had noticed, while

playing with the computer, our favourite toy, that adding just a bit of random timing

noise to a program that played a score in an otherwise metronomically perfect way,

made the music much more pleasant to listen to. It seemed as if we could make more

sense of it. But we suspected that there was more to timing and expressive performance

than adding bits of noise, so we invited a mutual friend who is a retired professional

pianist to spend Christmas in our small but well equipped laboratory. Our friend has a

great love for the piano and its music, but is completely ignorant of the advances of

modern technology. To demonstrate to him our latest sequencer program we asked him to

play the theme from the six variations composed by Ludwig van Beethoven on the duet

Nel cor piu non mi sento, the score of which we had lying around (see Figure 1).

Tempo curves considered harmful 4

Even though he was somewhat disturbed by the touch and harpsichord-like sound of

the electronic piano, he was quite fascinated with the possibility of recording and

playing back on the same instrument. Enthusiastically we told him that this system

was more than just a modern version of the pianola: 'You can examine and change every

detail you want; for instance, inspect the timing , accurately to the millisecond, add and

remove notes, make notes longer or shorter, or louder or softer, and so on and so forth.'

Our friend became quite excited and asked : 'Could your machine play my performance

in a minor key?' We were a bit put off by the simplicity of his demand, but patiently

demonstrated the key-change feature. After hearing his performance with the key

changed to G minor our friend was not impressed. 'O dear, I’m afraid this sounds much

too hasty. For example, the "dramatic" e-flat in bar 3 needs more time. Let me play it in

minor for you.' When we looked at the timing data of his new performance it indeed

showed a different pattern. Upon noticing our disappointed faces our friend remarked

'this was not a minor change; it really turns it into another piece. We did not expect

your device to know about that, did we?' We kept silent. 'But your machine can

undoubtedly play the same piece at a faster tempo.' That set us in motion again. We

changed the setting of the tempo knob to a tempo one-and-a-half times as high and

pushed the play button. The face of our friend again did not show the expression we had

hoped for. 'I’m awfully sorry, but this is not right! It sounds like a gramophone record

played at the wrong speed, but without changing the pitches.' Suspiciously, we wanted

some proof for his crude statement and asked him to play it the way he thought it

ought to be performed. His version at the higher tempo was indeed different. We had

to admit that it sounded more natural than our artificially speeded-up version. What

made it sound so much better? We tried to unravel this mystery by examining the timing

of the onsets and the offsets of the notes, since these were the variables that could be

altered with our electronic keyboard, just like a real harpsichord.

Tempo curves considered harmful 5

Temporal pattern is a series of time intervals, without any interpretation or structure.

Rhythm is a temporal pattern with durational and accentual relationships and

possibly structural interpretations (Dowling & Harwood, 1986).

Beat refers to a perceived pulse marking off equal durational units (Dowling &

Harwood, 1986, p. 185). They set the most basic level of metrical organisation. The

interval between beats is sometimes called a "time-span" (Lerdahl & Jackendoff, 1983),

or, less abstract, beat duration, beat period or metrical unit (Longuet-Higgins & Lisle,

1989).

Metre involves a ratio relationship between at least two time levels (Yeston, 1976). One

is a referent time level, the beat period, and the other is a higher order period based on

a fixed number of beat periods, the measure. It imposes an accent structure on beats,

because beats initiating higher level boundaries are considered more important.

Tempo refers to the rate at which beats occur (often expressed as beats per minute), and

is therefore closely linked to the metrical structure.

Density is used to refer to the average presentation rate taken across events of different

duration (i.e. events per second) when a piece has events of different durations and the

beat is hard to determine unambiguously, if at all (Dowling & Harwood, 1986).

It is important to note that rhythm, tempo, metre and density can be conceived

independently: it is possible to maintain the same tempo while changing density; for

example, a musical fragment can have a lot of embellishments (i.e. have a high

density) and still be perceived as having a slow tempo. Furthermore, rhythm can exist

without a regular metre and any type of rhythmical grouping can occur in any type of

metrical structure (Cooper & Meyer, 1960).

Tactus is the tempo expressed at the level at which the units (beats) pass at a moderate

rate (Lerdahl & Jackendoff, 1983). This rate is around the "preferred" or "spontaneous"

tempo of about 100 beats per minute (Fraisse ,1982).

Tem po, M etre and Beat

Our sequencer, a very recent version, had a separate tempo track. In this track, the

tempo can be changed from fragment to fragment, even from note to note. With this

feature we could put the original score on one track and the timing of the performance,

expressed as tempo changes per note, on the tempo track, although it took quite a bit of

calculating and editing by hand. After a while we had completely recreated the

original performance, but now as a score plus a separate track of expressive timing

Tempo curves considered harmful 6

information. This tempo track looked like the graph in Figure 2a (for clarity we show

only the timing of the melody). We could now compare the timing of this performance

with the one played at tempo 90 (see Figure 2b). Their form was quite different even by

visual inspection, although our ears were, of course, the only valid judges.

Figure 2. Tempo deviations in the performance of the theme at tempo 60 (a) and at tempo 90 (b).

What had happened? The sequencer had speeded everything up by the same amount

(which we all agreed sounded awkward), while in the performance the expressive

timing appears not to scale up everywhere by the same factor. Our friend adapted his

rubato according to the tempo, which he explained to us as: 'My timing is very much

linked to the musical structure and what I want to communicate of it in an artistic

manner to the listener. If I play the piece at another tempo, other structural levels

become more important; for instance, at a lower tempo the tactus will shift to a lower

level, the subdivisions of the beat will get more "in focus", so to say, and my phrasing

will have much more detail.' After some scratching with pen on paper, M found a quite

elegant way of representing these changes using simple mathematics. We took the time

interval between the onsets of every two succeeding notes and calculated the ratios of

these time intervals in the two tempi. If the expressive timing pattern would scale-up

linearly, we would find the ratios for all the notes to be around the ratio between the

two tempi, and most ratios were indeed around 1.5. There was some variance around

that factor, though, and we thought that could be explained by the more elaborate

short-span phrasing at the lower tempo. But, even more noticeable was the fact that for

some notes the ratio was close to 1. We found that these notes were notated as grace

notes in the score. They did not change at all when performed at an another tempo. We

also found that not all grace notes behaved like this. For example, the two grace notes

that cover an interval of a sixth, in bar 7 and 19, were timed like any other note: they

were actually played in a metrical way. Our pianist got really excited about our

observations. He pointed at grace notes in the score that were notated in the same way,

Tempo curves considered harmful 7

but that needed a different interpretation, and he started to lecture about the different

kinds of ornaments, so popular in the eighteenth century, the difference between

acciaccatura and appoggiatura , 'ornaments that "crush in" or "lean on" notes', about

their possible harmonic or melodic function changing their performance, and so on and so

forth. When he noticed that we were getting bored with his lengthy historical

observations, he woke us up again with a new, sharp attack on our beautiful sequencer

program: 'It might be forgivable that your program cannot play the onsets of ornaments

correctly, but it also murders the articulation of most notes, especially the staccato ones.

And have you heard what the program did to my detailed colouring of the timbre of

chords?' Well, in fact, we had not, but we could well understand that the timbral aspect

brought about by the chord spread (playing some notes in a chord a tiny bit earlier or

later than others) was not kept intact when all timing information is just scaled by a

certain factor. And we did not even dare to play the performance again at a lower

tempo, afraid that each chord would turn into an arpeggio.

So our sequencer was not so wonderful after all. It could not be used to change

something, not even such a minor thing as the key in which the piece was played.

Again our pianist explained that a change of key was not a minor thing. The minimal

variation that he could think of was the repetition of bars 5-8 at the end of the theme.

'The only difference between them is the fact that the second segment is a repetition of

the first, and I even expressed that minimal aspect by timing. This problem is

exacerbated if the difference between two sections is the overall tempo. Then detailed

knowledge about structural levels, articulation, timing of ornamentations and chords, is

indispensable.' We had to agree. How dumb of us, after all, to assume that a tempo knob

on a commercial sequencer package could be used to adjust the tempo.

Tempo curves considered harmful 8

In principle, timing can be linked to any musical structural concept. The most concrete of

those are the following.

Although the most obvious metrical units are bar and beat, this strictly hierarchical

structure may extend above and below these levels. Special expressive marking of the

first beat in the bar, either by timing, dynamics or articulation, is a common

phenomenon (Sloboda, 1983).

Phrases may not be ordered in a strict hierarchy, and may cut across metrical structure.

Phrase final lengthening is the most well-known way in which they are treated (Todd,

1989)

A large proportion of the timing variance can be attributed to rhythmical groups

(Drake & Palmer, 1990). Some standard rhythmical patterns, like triplets, seem to

have a preferred timing profile (Vos & Handel, 1987).

Small timing asynchronies within a chord (called chord spread) are perceived as an

overall timbral effect - the actual timing pattern is hard to perceive.

Ornaments, like grace notes and trills, can be divided in acciaccatura, so called timeless

ornaments, and appoggiatura, ornaments that take time and can have a relatively

important harmonic or melodic function. The former normally falls outside the metrical

framework, the latter tends to get performed in a metrical way.

The independent timing of individual voices is sometimes hard to perceive because

their components are immediately organised by the perceptual system in different

streams (Bregman, 1990). This is not the case with (almost) simultaneous onsets that

result in clear timbral differences. This can be heard in ensemble playing where often

the leading voice takes a small lead of around 10 ms. (Rasch, 1979).

Any associative relation, e.g. between a musical fragment and its repetition, can be

given intentional expression by using the same or different timing patterns.

Tem po, Tim ing and Structure

Wherein we looked at multiple performances, learned from a conductor
and tried different hierarchies but had no success.

But we were convinced we could make our friend happy, and proposed to program some

additions to the sequencer ourselves. We showed him a video tape about research done

at MIT by Barry Vercoe and his collaborators on computer accompaniment of a real

musician. In this project the computer is given a score and several performances of the

piece. With that information it can be "trained" to follow and accompany the musician.

Tempo curves considered harmful 9

Not that we were trying to do that, but we could use the idea to annotate each note in

the score with its deviation in the performance, in our case in different tempi. Our

friend friendly agreed to perform the Beethoven theme at four different tempi that

were musically acceptable to him. We saw again that some notes exhibited a large

change when tempo is changed, while others were less influenced by the tempo. But we

could now use statistical methods to derive the right timing information for each tempo

from this data. Our friend, who started to develop a little bit of suspicion, asked: 'Will

that solve playing at different tempi then?' We were not quite sure. We definitely had

more information now, but the representation of the music was still flat; no structural

information was provided. It seemed we could not avoid incorporating some

organisation above the note level into our program. Our friend agreed with a smile that

was almost saying: 'are you stupid or am I?' We got a bit nervous. But after some

discussion he agreed to concentrate on the timing of simple structural units like beats

and bars only, leaving the note by note details aside for the moment.

Then we remembered Max Mathews working at CCRMA, Stanford University, who

does important work in conductor systems (sort of the opposite of what Vercoe is doing).

He made a system where one can conduct a sequencer on the beat level, which was just

what we needed. The idea of a conductor shook our friend up; that sounded a much

better approach than all those statistics we tried to explain to him before. We gave our

friend an electronic baton, connected to our sequencer, and asked him to conduct the

piece. In the score in the sequencer the beats were marked. The program followed the

conductor by aligning each conducted beat with the corresponding mark in the score, and

it tracked the tempo indicated by the conductor in doing so. At the high tempo, beating

the baton very quickly, it seemed all right, but at the moderate tempo it was impossible

to steer the timing deviations within the beat. 'It sounds too jumpy,' our friend

complained. Since the beat level of the system of Mathews is arbitrary (he calls it

'generalised'), we annotated the score with marks at a lower metrical level, which

alleviated the problem a bit. But, as our friend was still complaining about the

controlability, we eventually ended up by marking each note in the score. This gave

complete control at last, though our poor pianist, out of breath by the acrobatics needed

to draw each note out of the sequencer by means of a single baton, made a cynical remark

about the wonderful invention, which we may have heard of, called a keyboard. We

became a bit vapid and proposed to help our conductor by connecting three MIDI batons

to the computer, the first two used by us to time the bars and the beats, and the third to

be used by our friend to fill in the details, using batons inter-connected with a complex

mechanism of wires, to keep the timing at all levels consistent. We fantasized for some

Tempo curves considered harmful 10

time about a whole orchestra of conductors, leading one pianist before them. It was

clearly time for a tea break.

Timing and Tempo, Patterns and Curves

In studying timing deviations a first distinction should be made between non-intended

motor noise and intended expressive timing or rubato. The first category deviates in the

range of 10 to 100 ms; the latter can deviate up to 50% of the notated metrical duration

in the score.

Expressive timing is continuously variable and reproducible (Shaffer, Clarke & Todd,

1985) and clearly related to structure (Clarke, 1988; Palmer, 1989).

It is important to note that there is interaction between timing and the other expressive

parameters (like articulation, dynamics, intonation and timbre). For example, a note

might be accented by playing it louder, a fraction earlier than expected or by

lengthening its sounding duration. Which method of accentuation is used is difficult to

perceive, even when the accentuation itself is obvious.

To refer to expressive timing, in computer music the term micro tempo is often used,

comparable to the term local tempo used in the psychology of music (the tempo changes

from event to event, expressed as a ratio of a performance time interval and a score time

interval). For clarity, the term timing would be more appropriate here. It specifies the

timing deviation on a note-to-note basis and is often referred to as the expressive timing

profile (Clarke, 1985; Shaffer, 1981; Sloboda, 1983), timing pattern or rubato pattern

(Palmer, 1989).

In these patterns, points are often connected, either stepwise with straight line

segments or with a smooth interpolation, yielding a timing curve. Only the first

representation maintains a proper relation with the time map in which points are

connected with line segments. These continuous time maps are used by Jaffe (1985) and

most people of the computer music community. Time maps can be superimposed, using one

for each voice.

Time maps can also be constructed for uniformly spaced units in the score like bars or

beats. The corresponding duration patterns form a true tempo pattern. The points in

these patterns can be connected by line segments, yielding so called tempo curves. Some

authors insist on stepwise tempo changes, like Mathews (Boulanger, 1990), in which

they are linked to one level of the metrical structure.

Tempo curves considered harmful 11

Over tea our friend told us about a series of programs on BBC radio, presented by the

English conductor Denis Vaughan, on the composer's pulse he used in conducting. The

pulse is a hierarchical, composer specific way of timing the beats. This pulse was an

idea proposed and actually programmed by someone working in Australia. We went to

our library and looked for some references that might tell us more on this composer's

pulse. We ran into a collection of articles by Manfred Clynes who had invented the

notion. This pulse, coincidentally, had precisely the characteristics we were looking

for: hierarchical tempo patterns linked to the metrical structure. It basically entailed a

system of automated hierarchical batons, and reduced the complexity further by

postulating a fixed pattern for each baton. We took a final sip of our tea and hurried

back to the lab and added Clynes' Beethoven 6/8 pulse as tempo changes in the tempo

track to our sequencer. It divided the time for each bar into two unequal time intervals

for the first and second half-bar and divided each half-bar into 3 unequal parts, one for

each beat. With some adjustments here and there, we had our program running in no

time. We called in our musical friend from the library to provide some professional

judgements. He was definitely not unhappy with the result. 'This sounds much better

than the things I've heard before/ he said.

Figure 3. Score of the first variation of Nel cor più non mi sento.

Tempo curves considered harmful 12

'Let's do the first variation, and see how our system performs it/ our friend said, far

more optimistic now. He was talking about "our" system. This was a good sign. 'This

variation is written in an ornamental style,' our friend explained, while we loaded the

score of the first variation (Figure 3) into our system and created the tempo track

containing the Beethoven pulse for this material. The metrical and harmonic structure

is the same for both theme and the first variation. The only difference is that there are

more "ornamental" notes added,' he said in a patronizing tone. When everything was

set we played him the result. 'Well, this is disappointing,' was his short and decisive

answer. After seconds of uncomfortable silence he added, 'it lacks the general phrasing

and detailed subtlety I think is essential to make it an acceptable performance. The

rhythmical materials of the theme and the first variation are different. The sixteenth

notes of the variation ask for a different kind of timing than the mainly short-long,

short-long, short-long rhythm of the theme. This pulse plays only with the metrical

structure, but musical structure has far more to offer than that.' So the composer's pulse

could not just be mapped onto any rhythmic material. Furthermore, it only linked

timing to the meter, and, as our friend made clear, phrasing and other musical structure

was ignored.

That rang a bell. We remembered one of the articles by Neil Todd on a model of

rubato, linked to phrase structure. His proposal is very similar to Clynes; it explains

timing in terms of a hierarchical structure, but now phrase structure is the basic

ingredient. The beat is again the lowest level; below that no timing is modelled. The

abundance of mathematical notation in Todd's articles did not put off our amateur

mathematician. Quite the contrary. 'This, on first sight, will give us a solid basis to

work with. What he states here is that, if you remove all the constants from the

formula, it is actually quite simple,' M said. Todd proposes to attach a parabola to

each level of the hierarchical phrase structure, and sum their values to calculate the

beat length.' He simplified a formula, found an error on the way and finally the model

became easy to implement. We were quite conscious of the fact that we were the first

really to hear Todd's model (he himself had never listened to it). It did not sound very

pleasing because this model was expressed in terms of the phrase structure only (based

on the idea of systematically lengthening the end of a phrase in a hierarchical way),

and because it lacked all expressive timing below the level of beats.

Longing to show our collaborator that the computer could, in principle, also calculate

detailed note-by-note timing, we looked for a model that would provide these.

Happily we found masses of rules for those subtle nuances in the articles of Johan

Sundberg and his colleagues. These rules formulated simple actions, like inserting a

Tempo curves considered harmful 13

small pause in between two notes or shortening a note. The actions had to be performed

if the notes matched a certain pattern, such as constituting a pitch leap or forming part

of a run of notes of equal duration. In fact there were so many rule sets proposed in his

articles that we got a bit lost in the details, but it has to be said that some rule-

cocktails really seemed to work for our piece. Especially if their influence was adjusted

to effect a subtle change only, the music gained some liveliness. But because these rules

are based on the surface structure of the music only we could predict the judgement of our

musical expert by now. And indeed he did not even bother to comment on the artificially

produced performances. Instead he kindly reminded us that we might give up looking

for a system that enabled us to generate a "musically acceptable" performance, given a

score (that is what Clynes, Todd and Sundberg are aiming at), for the simple reason

that we already had an "acceptable" performance, namely his own. It was true, the

initial aim of our endeavour was to find ways of manipulating the timing in a musically

and perceptually plausible way, given a score and a performance. Because the simple

representations we had used proved unsuccessful, we had been sidetracked by studying

even simpler representations that could at most model a small aspect of our friend's

performances. We decided to close the session, look for more details in the literature,

and give it another try the next day.

Tempo curves considered harmful 14

Generative models

Clynes (1983; 1987) proposes composer specific and metre specific, discrete tempo

patterns. This so called composer's pulse is assumed to communicate the individual

composer's personality. E.g. in the Beethoven 6/8 pulse the subsequent half-bars span 49

and 51% of the bar duration and each half bar is divided again in 35, 29 and 36%.

Clynes is opposed to analysis of performance data: the pulses stem from his intuition.

Repp (1990) has undertaken a careful evaluation of this model.

Todd (1985; 1989) proposes an additive model in which beat duration is calculated as a

summation of parabola shaped curves, one for each level of hierarchical phrase

structure. He complemented the model with an analysis method that calculates phrase

structure from beat durations.

Sundberg et al. (1983; 1989) proposes a rule system to generate expression from a score

based on surface structure. His research was done in an analysis-by-synthesis paradigm

and captures expert intuition in the form of a large set of these rules. An example of a

rule is "faster uphill": A duration of a note is shortened if it is preceded by a lower

pitched note and followed by a higher pitched one. Van Oosten (1990) has undertaken a

critical evaluation of this system.

In which we investigated discrete patterns and continuous curves, tried
interpolation and failed again.

We found all kinds of references in the literature and read a lot that evening. It was

amazing to find how much work actually was done on a problem that we had thought

was not a problem at all. We became a little bit more conscious of the whole thing. It

looked as if P's hobby horse, psychology, had to be given a chance. He explained that

the perception of time had been modelled postulating a certain (often exponential)

relation between objective time and experienced time. But this research had all been

done with impoverished stimulus material, often consisting of just one time interval

marked-off with two clicks. 'Other research,' P added, 'found that duration judgment

depends on the way the interval is filled with more or fewer events, so unfortunately

these simple laws cannot be directly applied to more complex material like real music.'

Even P was disappointed with the results of his beautiful science. 'But psychology has

something to offer to us here', he spoke in a defensive tone. 'Take a look at all the

articles that present timing or tempo measurements in the form of continuous curves

instead of just a scattergram of measurements. These curves more or less imply an

independent existence, apart from the rhythmic material where they were measured

Tempo curves considered harmful 15

from. But psychological research has shown that one cannot perceive timing without

events carrying it.' He found this convincingly argued in an article by the psychologist

James J. Gibson called "Events are perceivable but time is not". 'Can you imagine

perceiving a rubato without any notes carrying it?' P asked. 'And vise versa: "filling

up" time by adding an event between two measured points is problematic, isn’t it?'

There seemed to be no possible argument.

Subjective Time, Duration and Tempo Magnitudes

Most psychophysical scales for time intervals are described by Stevens' Law, that

relates the physical magnitude of a stimulus to its perceived magnitude as perceptual-

time = a-constant.physical-time ̂ cons ân ̂The b value differs from one dimension to

the other. For time duration b is commonly found to be 1.1, slightly over estimation of

the interval. However, for intervals shorter than 500 ms it is found that b is around 0.5,

the square root of its physical duration (Michon, 1975).

Humans seem to have a relatively poor ability for time discrimination of intervals

presented without context. The just notable differences (JND) are in the range of 5-10%

(Woodrow, 1951) with an optimum near 600 ms intervals. However, in the context of a

steady beat, the JND’s are around 3% with the same optimum interval (Povel, 1981).

Much research was done on the existence of a spontaneous tempo, preferred rate or

natural pace (Fraisse, 1982). This tempo should occur as a preferred rate of spontaneous

tapping, and material presented at that rate should be easy to perceive and remember.

There is weak, but converging evidence for the existence of such a rate, again with

intervals around 600 ms. There is no consistent evidence for physiological correlates like

heart rate.

There has been quite some research done on the influence of different dimensions on time

perception, mainly in the fifties. Evidence was found that, in general, the higher

pitched the sound the longer the percept (Cohen et al., 1954), and the same holds for

louder sounds (Hirsch et al, 1956). Evenly divided intervals seem longer than irregular

divided ones (Ornstein 1969).

Time intervals shorter then 120 ms, preceded by a physically shorter neighbour time

interval, are underestimated to such a remarkable degree that one can speak of an

auditory illusion (Nakajima et al., 1989).

We decided to do the acid test using a feature of the sequencer program. In this

program it was possible to copy tempo tracks from one piece to the other. We applied

Tempo curves considered harmful 16

the tempo track of the original performance of the theme (see Figure 2) to the score of

the first variation. The result was poor; even we could hear that. The timing made

sudden jumps, like a beginner sight-reading and hesitating at unexpected points because

of a difficult note. The expressive timing pattern found in the theme did not "fit" the

variation. Our friend's performance of the variation was much smoother and had

gestures on a larger scale, as far as we were able to judge (Figure 4). Also, the other way

around, taking the timing data from the variation and applying it to the score of the

theme had the same awkward effect. It seemed impossible to just add or remove notes

using these stepwise tempo curves. We felt stupid again for having assumed that the

independence of tempo tracks in the sequencer made musical sense. But it made us look in

the literature for alternatives.

1 5 10 5 20

• ♦

v . i
1 1 A ¿ i .

•
1

• V 1 1 % i
. ♦

1 « 1 « ♦ i « ■
_ u _

♦ - y —
1 1 1 V i

f - t -

{ - i L , • », ■, /

— ♦
V " V ‘ V " *•

, „ V V - •* V
‘(.

*> 1 1 1 1 1«
• 1

• 1 i > « » • 1 1 11 « 11

S 1 i 1 > 1 V .

1 1 • 1 •

1

1

60

Figure 4. Tempo deviations in the performance of the variation at tempo 60.

The answer was not far away. In the field of computer music research continuous

rubato curves were used almost by default. We decided to take the path of the

continuous timing functions, hoping it would get rid of this awkward "jumpiness". Thus

M's hobby horse was brought out again. 'Functions are far easier to handle. One can

calculate, given the right kind of function, a good timing curve for every piece,' M

argued convincingly. This combined approach of formality (in the mathematical sense)

and pragmatics reminded us of a method developed by David Jaffe of CCRMA to model

the timing of different parts of a computer orchestra. Jaffe wanted the different

instruments to have their own timing, but they had to synchronise at specific points as

well. By using a time map, instead of tempo changes, coordination and synchronization

Tempo curves considered harmful 17

became possible. 'What he actually does is to specify the timing for each event by

means of a function from score time to performance time/ M explained, 'a blatantly

simple idea indeed: to integrate velocity or one-over-tempo, as Jaffe calls it, to get

time. This of course restrains the possible functions one can use to make up such a time

map; they have to increase monotonously and one must be able to calculate a first

derivative.' This was again a method, among many others, in which different authors

presented their ideas of tempo curves (see Figure 5). We tried to bring some order to the

ways the different representations were used.

Figure 5. A typical so called "Tempo Curve" with duration factors for each note as a function of

metrical time.

Soon M gave up, stating that it was a hopeless mess; no two authors used the same

dependent and independent variables and measurement scales. And while in the end all

the information needed could be extracted from most presentations, it was a difficult job,

the more so because of the confusion in terminology. We decided to return to the

practical application of the time map. We adapted the sequencer's tempo track to

contain a time map (composed of line segments) instead of the discrete tempo changes

we had used before. We then applied this continuous curve to the variation and had our

pianist judge it. He thought it was much better than the direct application of the

discrete curve of the theme to the variation. The interpolation (with line segments) did

improve the smoothness of the timing, but he still complained about the sudden tempo

jumps at the junctions of the curve. M remarked that one could restrict the allowed

tempo map functions further or smooth the existing function, for instance, with splines.

This brought us to an article describing work done at IRCAM by David Wessel and

others, which indeed proposes the use of splines. We took an algorithm we had lying

Tempo curves considered harmful 18

around that did splines and added it to our tempo track algorithm. And there it was:

with some twiddling of the parameters we could interpolate the timing pattern of the

theme for its use on the variation. We almost thought that with this interpolation we

had proven Gibson wrong. There was a smooth sense of timing in between events, and if

one is smart enough one can tap it and hook new events onto it in a reasonable way. But

our musical friend did not agree 'Reasonable?' he reacted angry, 'it sounds reasonable,

yes, but your numerical calculations have nothing to do with the way I played it,

whatsoever. The musical structure, my dear friends, remember the musical structure.

How often do I have to repeat this. Timing is related to structure!' We suggested to him

a cup of tea, in the hope that this would calm him down.

Tempo curves considered harmful 19

Objective Time, Duration and Tempo Measurements

When an event happens (an onset of a note) one can measure the real time elapsed since

the beginning of the piece (called performance time) and also the point in the score

where this onset was notated (called score time). The latter can be measured either in

seconds (taking the tempo marking in the score serious, or normalising the total score

length to the performance), in metrical units like beats or quarter notes (called metrical

time), or as an event count (called event time). The last loses so much information that

the timing pattern cannot be reconstructed without reference to the score.

Performance time can be shown as a function of score time (called a time map), or vice

versa. In these representations it is easy to spot (a)synchronies between voices because

they depict points in absolute time.

Calculating differences between subsequent performance times in a time map makes the

step from time to duration. Because in such a representation it is difficult to compare

notes of different nominal duration, a proportional measure is better. It makes the step

from duration to relative duration by dividing two corresponding durations. In case a

performance duration is divided by a score duration, this forms a series of duration

factors (often misleadingly called tempo). This measure is mostly notated in a graph

with the independent axis labelled with metrical or event time. In the case of the

inverse calculation, the ratios form the velocity, the local speed of reading the score.

In both cases the measured points are often filled in with line segments - implying the

existence of a tempo measurement in between events. This is misleading - the more so

because integration does not yield the original time map again.

Gabrielsson (1974) uses note duration expressed in proportion to the length of the bar.

This allows for comparison with exact note values in different meters. The method

might be generalizable to study timing at different levels of structure.

Tempo is sometimes presented on a logarithmic scale; this is a first step towards the use

of subjective magnitudes.

An interesting hypothesis was given by Brown (1979). He argues that a musician makes

use of a collection of discrete tempi: a collection of discrete physically possible tempi,

where the choice is defined by musical and performing factors.

EPILOGUE

What this partly fictitious story (the characters are fictitious, but the examples and

arguments are real!) shows is that we have to be aware of the Tempo Curve. Of course

Tempo curves considered harmful 20

one should be encouraged to measure tempo curves and use them for the study of

expressive timing. But it is a dangerous notion, despite its widespread use and

comfortable description, because it lulls its users into the false impression that it has a

musical and psychological reality. There is no abstract tempo curve in the music nor is

there a mental tempo curve in the head of a performer or listener. And any

transformation or manipulation based on the implied characteristics of such a notion is

doomed to fail.

That does not mean that generic models that represent timing in terms of some sort of

structure, even when they describe just a fraction of the many aspects of expressive

timing, do not constitute a valuable contribution to the field. They only have to be seen

in a proper perspective in which their limitations are understood as well. It also does

not mean that certain features in computer music software and commercial sequencers

should be forbidden. Their mere existence at least makes the realisation of their

limited worth evident.

It should be noted here that the views expressed in this article comply more or less

with the British school of expressive timing research (E.F. Clarke, H.C. Longuet-

Higgins, L. Shaffer, J. Sloboda and N. Todd), in which the link between structure and

timing is paramount. There are alternative views developing at the moment, denying

such a strong link (Kendall & Carterette, 1991). We hope this controversy will

eventually lead to more understanding of this wonderfully complex aspect of music

performance.

In reality the experiments were done using POCO, an environment for analysing,

manipulating and generating musical expression (Honing, 1990), which took a bit longer

to build than one Christmas.

The holiday was almost over now and we felt that we had not found out many useful

things. Our musical friend announced that he would go back to his own piano. He

thanked us for the interesting sessions, from which he had learned a lot. But

underneath these friendly remarks we could hear the cynicism. He advised us in a

fatherly way to get rid of our research papers and start reading biographies of famous

composers, in which the true facts about music and its performance could be found. This

made the feeling of disappointment even more pronounced. But in a last irrational

attack of bravery, we decided not to give in yet and we invited him to come back next

Christmas, and to bring his biographies if he wished.

To be continued...

Tempo curves considered harmful 21

A c k n o w l e d g e m e n t s

Thanks to Boy Honing and Mariken Zandvliet for their performances of Beethoven.

Thanks to Bruno Repp for information on Clynes' model and to Shaun Stevens for his

help with the English language. We would like to thank also all the researchers

mentioned, for their contribution to the field of timing in music. We are very grateful to

Eric Clarke who made it possible for us to work for two years on research in expressive

timing which allowed us to gain an insight into timing through our numerous

discussions, and the British ESRC for their financial support throughout these two

years (grant A413254004).

R e f e r e n c e s

Boulanger, R. (1990) Conducting the MIDI Orchestra, Part 1: Interviews with Max

Mathews, Barry Vercoe and Roger Dannenberg. Computer Music Toumal 14(2).

Bregman, A. (1990) Auditory Scene Analysis: the Perceptual Organisation of Sound.

Cambridge, Mass: Bradford Books.

Brown, P. (1979) An enquiry into the origins and nature of tempo behaviour. Psychology

of Music 7(1).

Clarke, E.F. (1985) Some Aspects of Rhythm and Expression in Performances of Erik

Satie's "Gnossienne No.5". Music Perception. 2(3).

Clarke, E.F. (1987) Levels of structure in the organisation of musical time. In "Music and

psychology: a mutual regard", edited by S. McAdams. Contemporary Music Review.

2 (1).

Clarke, E.F. (1988) Generative principles in music performance. In Generative processes

in music. The psychology of performance, improvisation and composition, edited by J.

A. Sloboda. Oxford: Science Publications.

Clynes, M. (1983) Expressive Microstructure in Music, liked to Living Qualities. In:

Studies of Music Performance, edited by J.Sundberg . Stockholm: Royal Swedish

Academy of Music, No. 39.

Clynes, M. (1987) What can a musician learn about music performance from newly

discovered microstructure principles (PM and PAS)? In Action and Perception in

Rhythm and Music, edited by A. Gabrielsson. Royal Swedish Academy of Music, No.

55.

Cohen, J., C.E.M. Hansell, & J.D. Sylvester. (1954) Interdependence of temporal and

auditory judgements. Nature. 174 .

Tempo curves considered harmful 22

Cooper, G. & Meyer, L. B. (I960) The rhythmic structure of music. Chicago: University

of Chicago Press.

Dowling, W. J. & D. L. Harwood (1986) Music Cognition. London: Academic Press.

Drake, C. and C. Palmer (1990) Accent Structures in Music Performance, manuscript.

Fraisse, P. (1982) Rhythm and Tempo. In The Psychology of Music, edited by D.

Deutsch. New York: Academic Press.

Gabrielsson, A. (1974) Performance of rhythm patterns. Scandinavian Tournal of

Psychology. 15.

Gibson, J. J. (1975) Events are perceivable but time is not. In The Study of Time. 2, edited

by J.T. Fraser & N. Lawrence. Berlin: Springer Verlag.

Hirsch, I.J., R.C. Bilger & B.H. Deathrage (1956) The effect of auditory and visual

background on apparent duration. American Tournal of Psychology. 69.

Honing, H. (1990) POCO, An Environment for Analysing, Modifying and Generating

Expression in Music. In Proceedings of the 1990 International Computer Music

Association. San Francisco: CMA.

Jaffe, D. (1985) Ensemble timing in Computer Music. Computer Music journal. 9(4).

Kendall, R.A. and E.C. Carterette (1990) The Communication of Musical Expression.

Music Perception. 8(2).

Lerdahl, F. & R. Jackendoff (1983) A Generative Theory of Tonal Music. Cambridge,

Mass.: MIT Press.

Longuet-Higgins, H.C. & E. Lisle. (1989) Modelling musical cognition. In "Music, Mind

and Structure", edited by E. Clarke and S. Emmerson. Contemporary Music Review

3(1).

Michon, J.A. (1975) Time experience and memory processes. The Study of Time. 2, edited

by J.T. Fraser & N. Lawrence. Berlin: Springer Verlag.

Nakajima, Y., T. Sasaki, R.G.H. van der Wilk, & G. ten Hoopen. (1989) A new illusion

in time perception. Proceedings of the First International Conference on Music

Perception and Cognition. Kyoto. Japan: The Japanese Society of Music Perception

and Cognition.

Oosten , P. van (1990) A Critical Sudy of Sundbergs' Rules for Expression in the

Performance of Melodies. Proceedings of the Music and the Cognitive Sciences

Conference. Cambridge.

Omstein, R.E. (1969) On the Experience of time. London: Pinguin.

Palmer, C. (1989) Mapping Musical thought to musical performance. Tournal of

Experimental Psychology. 15(12).

Tempo curves considered harmful 23

Povel D.J. (1981) Internal Representation of Simple Temporal Patterns. Tournal of

Experimental Psychology: Human Perception and Production. 7(1).

Rasch, R. A. (1979) Synchronization in Performed Ensemble Music. Acustica 43(2).

Repp, B. (1990) Further Perceptual Evaluations of Pulse Microstructure in Computer

Performances of Classical Piano Music. Music Perception, 8(1).

Shaffer, L.H. (1981) Performances of Chopin, Bach and Bartók: Studies in motor

programming. Cognitive Psychology. 35A.

Shaffer, L.H., E.F. Clarke, & N.P. Todd (1985) Metre and rhythm in piano playing.

Cognition. 20.

Sloboda. J. (1983) The communication of musical metre in piano performance. Quarterly

Journal of Experimental Psychology. 35.

Sundberg, J., A. Askenfelt & L. Fryden (1983) Musical Performance: A synthesis-by -rule

Approach. Computer Music Tournal. 7(1)

Sundberg, J., A. Friberg & L. Fryden (1989) Rules for Automated Performance of Ensemble

Music. Contemporary Music Review. 3.

Todd, N. (1989) A Computational Model of Rubato. In "Music, Mind and Structure",

edited by E. Clarke and S. Emmerson. Contemporary Music Review 3(1).

Todd, N.P. (1985) A model of expressive timing in tonal music. Music Perception, 3.

Vos. P. & Handel, S., (1987) Playing Triplets: Facts and Preferences. In: Action and

Perception in Rhythm and Music. Edited by A. Gabrielsson Royal Swedish Academy

of Music. No. 55.

Woodrow, H. (1951) Time Perception. In Handbook of Experimental Psychology, edited

by S.S. Stevens. New York: Wiley.

Yeston, M (1976). The stratification of musical rhythm . New Haven CT: Yale

University Press.

Tempo curves considered harmful 24

Peter Desain & Henkjan Honing

JU LY 1991

T o w a r d s a c a l c u l u s

FOR EXPRESSIVE T IM IN G IN M U SIC

Submitted to Psychology of Music

© copyright 1991, Peter Desain & Henkjan Honing

Center for Knowledge Technology
Lange Viestraat 2b
3511 BK Utrecht
The Netherlands

CONTENTS
Introduction.. 1
Overview of the calculus...3

Characteristics... 3
Represen ta tion.. 5
Implementation..6

Musical objects..8
Basic musical objects..8
Structured musical objects..9

Multilateral structures...9
Collateral structures (ornamented objects).. 10

S, a multilateral successive structure..11
P, a multilateral simultaneous structure...12
APPOG, a collateral successive structure..13
ACCIA, a collateral simultaneous structure.. 14

Example of the representation of a musical object...15
Representing expression..16

Expressive tempo... 16
Expressive asynchrony.. 16
Expressive articulation... 17

Definition of articulation..17
Estimate onsets...18
Articulation invariance.. 18

Expression maps... 18
Onset timing..18
Articulation expression... 20

Operations on expression maps.. 21
Scale maps.. 21

Scaling expressive tempo...21
Scaling the expressive tempo of an S section... 22
Scaling the expressive tempo of an APPOG section...................................... 24

Scaling expressive asynchrony..25
Scaling the expressive asynchrony of a P section..26
Scaling the expressive asynchrony of an ACCIA section............................. 28

Scaling expressive articulation...29
Scaling the expressive articulation of a multilateral section..................... 30
Scaling the expressive articulation of a collateral section..........................32

Keeping articulation consistent in the scaling of expressive timing................ 33
Stretch maps...35
Interpolate maps... 35
Transfer maps... 35

Transformations... 35
Scale timing.. 37

Keeping articulation consistent...41
Scale intervoice expression... 41

Conclusion...43
Acknowledgements..43
References...43
Microworld expression calculus..45

T o w a r d s a c a l c u l u s

FOR EXPRESSIVE T IM IN G IN M U S IC

Peter Desain & Henkjan Honing

Center for Knowledge Technology
Utrecht School of the Arts

Lange Viestraat 2B
NL-3511 BK Utrecht

This paper presents a calculus that enables expressive timing to be transformed on the basis

of the structural aspects of the music. Expression within a unit is defined as the deviations of

its parts with respect to the norm set by the unit itself. The behaviour of musical material

under expressive transformations is determined uniquely by its structural description and the

type of expression. Although the calculus separates different kinds of behaviour, it entails no

musical knowledge of the transformations themselves and it also does not model music

cognition. The algorithmic simplicity of the calculus combined with its elaborate knowledge

representation mirrors the common hypothesis that the complex expressive timing profiles

found in musical performances can be explained as the product of a small collection of

simple rules linked to a relatively complex structure. The calculus (and the program

implementing it) will hopefully prove to be a solid basis for formalised theories of music

cognition.

INTRODUCTION

In Desain and Honing (in press, a) we argued that a simplistic notion of a tempo curve of a

musical performance is a dangerous and harmful theoretical construct. Although the use

of a tempo curve to describe time measurements is perfectly sound, the notion itself is

often presented as a cognitive or musical concept. And tempo curves do not have any right

to exist in those domains. In the above article, this was concluded from the fact that

when it is used as a basis of transformations, inevitably the results make no musical

sense. The cause of this failure can often be attributed to the lack of structural

information in the tempo curve. For example, in changing the overall tempo of a

performance, by manipulating the tempo curve alone, all time intervals of equal length

between two notes are scaled in the same way. But some notes may constitute a particular

kind of ornamentation, whose duration should be more or less unaffected by tempo. As a

result the timing of the piece becomes unmusical. And there are many more examples of

transformations that cannot be done on isolated tempo curves. Because the article had an

essentially negative tone - identifying the problems and their causes - we felt compelled

to follow it up with a study of possible solutions.

Calculus 1

This paper is an attempt to identify ways in which structural knowledge can be used to

enable expression transformations on musical performances that do make musical sense.

In past research we considered expression merely as deviations of attributes of performed

notes from their value notated in a score. This definition, however useful in the initial

study of expressive timing, soon lost its attractiveness. In general, listeners can

appreciate expression in music performance without knowing the score. And a full

reconstruction of the score in the form of a mental representation is often impossible. Take

for instance the notion of loudness of notes. Should a listener be required to fully

reconstruct the dynamic markings in the score before it is possible to appreciate the

deviations from this norm as expressive information added by the performer? Such a

nonsensical conjecture indeed follows from a rigid definition of expression as deviations

from the score. But it is possible to find ways of defining expression on the basis of

performance information only. The more so since it became possible to model the

quantization of performed note durations into discrete categories (Desain & Honing,

1991), and therefore even the extraction of performed tempo is possible directly from the

performance itself.

In this paper we will base expression on the notion of structural units in a working

definition: expression within a unit is defined as the deviations of its parts with respect

to the norm set by the unit itself. An example might make this more clear. Lets take, for

instance, a metrical hierarchy of bars and beats; the expressive tempo within a bar can be

defined as the pattern of deviations from the global bar tempo generated by the tempo of

each beat. Or, take the loudness of the individual notes of a chord; the dynamic

expression within a chord can be defined as the set of deviations from the mean chord

loudness by the individual notes. Using this intrinsic definition, expression can be

extracted from the performance data itself, taking more global measurements as reference

for local ones, assuming that the structural units themselves are known. Thus the

structural description of the piece becomes central, both to establish the units which will

act as a reference, and to determine its subunits that will act as atomic parts whose

internal detail will be ignored. A generalization of this concept can also deal with

expression arising from the interplay of two or more voices.

It will be clear by now that any other connotations of the concept of musical expression,

its link to human affect and extra-musical indexicality, however interesting, will be

ignored here completely.

Before the details of the calculus are presented it might be fitting to give some

explanation for undertaking for this work. First of all, we think that the research of

expression in music is in need of measurement instruments that can cope with the enormous

complexity of performance data and that are much more sophisticated than tempo

curves. Some of the proposed transformations can be used as an "auditory microscope" by

Calculus 2

exaggerating expression at certain structural levels, like amplifying the timing lead, the

melody often has over the accompaniment. Some of the tools presented can be used as
"expression scalpels" for trimming away certain kinds of expression that might obscure

other phenomena, like removing the tempo deviations within each beat, but holding the

timing patterns of the beats themselves invariant. Other tools can "transplant" musical

expression from one piece of music to the other, say from a theme to its variation. The

availability of this 'machinery' will deepen our understanding of the intricacies of music

performance expression.

A further motivation is the practical applicability of this work in systems for computer

music. Especially the music editors and sequencer programs that are commercially

available nowadays which are in need of better ways to treat musical information in

musical ways. Expressive timing should not be considered a nasty feature of performed

music, as it is in nowadays multi-track recording techniques where tempo, timing and

synchronization are treated as technical problems. Instead expressive timing has to be

regarded as an integral quality of performed music whereby the performer communicates

structural aspects of the music to the listener (Clarke, 1988). We hope that our work can

inspire new music software based on this view.

OVERVIEW OF THE CALCULUS

Characteristics

The calculus has the following important characteristics:

The calculus is described here only for different brands of expressive timing. Dynamics

could be formalised along the same lines, but for clarity we restrict ourselves to the

domain of expressive timing. Other attributes that carry expression, like intonation,

vibrato and timbre may require a different treatment.

The types of expression have to be computable to be within reach of this calculus. One

must be able to calculate the expression at every level of the structural hierarchy, given

the expression of their components (e.g. the timing of a chord must be computable when

the timing of the embedded notes is given). One also must be able to state ways to

effectively set the expression of the components once the expression of the whole is given

(i.e. propagate a shift in timing down the hierarchy, to the basic objects carrying the

expression). Types of expression that do not have this characteristic - or are not yet

formalised as such- cannot be described.

Both performance and "score" timine of individual notes are clearly defined. Notes

require attributes that can be measured more or less directly from the performance data

like the note onset time and the offset time. At least the onset time must be clearly

Calculus 3

specified, which makes the calculus less appropriate for expressive performances by

instruments for which onset times are not so clear cut. Secondly, the metrical note

duration (the timing of the note as notated in the score) must also be available as a note

attribute - either via quantization or by matching a performance to a known score. These

processes are considered preprocessing here. Although the reference to score duration,

score onset and score offset times is less appropriate in the context of our definition of

expression - we will use this terminology, for lack of better terms.

The "score" timing of rests is clearly defined. Perhaps surprisingly, the rest plays a key

role in some transformations. So we assume that it either can be inferred from the

performance timing (Longuet-Higgins, 1976 shows a way of doing so), or it is recovered

via the matching of a performance and a known score.

All proposed transformations are structure preserving. This means that the calculus is

restricted to true expressive transformations: the score timing of the notes is known and

fixed, and transformations will leave this and the structural description invariant.

The behaviour of musical material under expressive transformations is determined

uniquely by its structural description and the type of expression.

The transformations are defined on a hierarchical structural description uniquely linking

all material. Ambiguous structural descriptions (e.g. two or more possible structural

descriptions) or incomplete descriptions cannot be dealt with. The obvious need for

knowledge representations containing multiple structural descriptions (metrical, phrase,

and rhythmical grouping structures, different analysis etc.) is not denied. We just require

that such representations be preprocessed to select only one complete structural

description. This is not a real restriction since transformations based on different kinds of

structural knowledge of the same piece can always be done in sequence. Re-inserting the

trimmed structural descriptions into a transformed piece is trivial because the

transformations preserve the structure.

Naturally, the higher-level structural description of the piece must be consistent with

the performance timing. For example, a structural description of the piece in which two

notes are given a certain sequential time order (one after the other) - can only fit a

performance in which at least the onset of the corresponding notes obey the same order.

The precise rules will be given when the structural descriptions are introduced.

The transformations are defined to apply to a certain level of the hierarchical structural

description, ignoring details from lower levels and keeping higher levels invariant.

Means to select such a level are assumed. In sophisticated realisations of the calculus

Calculus 4

this may entail a match language ("the first bar of the piano solo that begins with a C")

or a graphical representation. In this paper we will simply assume that each musical

object has a name as attribute and defines a structural level as the set of objects with a

certain name.

Although the calculus separates different kinds of behaviour, it entails no musical

knowledee of the transformations themselves. Accordingly, the proposed knowledge

representation does support for example, arbitrary descriptions of the metrical structure

of a piece, but has no knowledge of "the best structural analysis". To give a second

example: the proposed knowledge representation does support ways to modify timing

(a)synchrony between voices, but it has no knowledge about correct or effective ways of

using this in musical performance.

The calculus also does not model cognition. It does not state how, for example, voice-

leading helps auditory streaming, how phrase final lengthening beyond a limited range

disables rhythm perception, or how structure is communicated by the expressive timing

profiles. However, this work constitutes a solid basis for formalised theories about these

issues, providing a powerful representation in which they can be expressed.

Representation

Several concepts are used in the calculus:

Musical objects arc either of a basic nature or form a structural description of a collection

of musical objects. Basic musical objects consist of notes and rests. Notes are the only

musical objects that carry the expressive information. Structural descriptions form

collections of musical objects. They may describe hierarchical time intervals like

metrical-, phrase- or rhythmical grouping, they can group the notes of chords and

ornaments together, or form large horizontal slices through the piece, describing the

separate voices etc. Mere collections (sets) of objects are too meager a basis for most

transformations, therefore, structural descriptions specify the intended relations in time

between these objects as well (Honing, 1991). Most transformations can be defined if two

orthogonal characteristics of the structural description are given: the temporal nature

and the ornamenting quality. The first describes whether a sequence or a parallelism (a

so called successive or simultaneous construct) is represented. The second describes

whether the musical object is considered an ornament attached to another object or not.

Ornaments are shielded from certain modifications and refer to another object for certain

attributes. These two binary characteristics result in four concrete types of structural

description that will be described in detail later.

Calculus 5

Expressive m agnitudes are values of expressive measurement on a certain scale. The

scales themselves are of course crucial in modeling effective transformations, in cognitive

and musical senses. For example, a tempo scale on which a transformation to make

something twice as fast actually yields a double perceived tempo is quite useful. But for

the sake of simplicity we abstract from the perceptual processes and the instruments that

generate the sound, and will just assume simple physical measurements of time and other

expressive attributes.

Expression maps describe the expressive patterns of structured musical objects at a certain

structural level. They consist of a section for each musical object at that level. A section

lists the expressive values for all components of that object. They come in different brands

- consistent with the type of musical structure where they w ere extracted from.

Expression maps can be extracted from and applied to musical objects, with possibly a

modification of the map in between.

Expression types are sets of procedures to extract a particular type of expression map from

a musical object, to impose it on a musical object, and to modify the map. They capture the

difference between expressive tempo, asynchrony, and articulation. They m ay become

fairly sophisticated, like a brand of expressive tempo that knows how to keep the

articulation of an individual note invariant when the timing of the note onsets is

changed.

M odifications are defined as operations on expression maps. They m ay scale, interpolate,

or do any other operation on the map. They are often designed such that certain

characteristics are kept invariant, e.g. the total duration of a section while changing the

timing of the parts.

T ran sfo rm atio n s are defined as operations on musical objects. They are often direct

generalizations of the expression map modifications - first extracting the map, applying

the modification and imposing the modified map. They also handle the selection of the

level of structural description on which to apply the transformation. Furthermore, they

m ay have means to maintain consistency among the affected level and other musical

m aterial, e.g. making an accom panim ent obediently follow the transform ation in

expressive tempo applied to the melody.

Implementation

Part of the work described in this paper was done in the design of the POCO system

(Honing, 1990) for which a scaling operation of expressive timing linked to structural

descriptions was implemented. But, in evaluating this rather complex piece of software,

better abstractions arose. Especially the design of a set of data structures for music that

Calculus 6

capture the differences in behaviour under transformation proved beneficial. Which

again illustrated the adage:

" G e t y o u r d a t a s t r u c t u r e s c o r r e c t f i r s t , a n d t h e r e s t o f t h e p r o g r a m w i l l w r i t e

i t s e l f ." (David Jones, quoted in Bentley, 1988)

Because the constructs interact heavily, and because it should be easy to add unforeseen

new constructs (like a new type of expression), musical objects, expression m aps and

expression types are implemented as classes in an object-oriented language. In that w ay it

is easy to express modifications and transformations as polymorphic operations that will

behave according to the type (the class) of their arguments. The slicing-up of knowledge

in classes means answering questions like: which part of the extraction procedure of an

expressive tempo map of a sequential musical object is specific for expressive tempo only

and should be stated within the expression type; which part only depends on the

sequential nature of the musical structure, and should be part of the class for sequential

musical objects; and which part describes the creation of an expression map and belongs to

that class?

Although a good Object-Oriented Language (we used CLOS, a Lisp-based system)

provides one with the program m ing-constructs needed to express these concepts, the

actual process of factoring knowledge into these polym orphic procedures is still a

difficult one, especially because during the design of the best structure of the classes -

allowing for the most elegant factoring of the procedures - cannot be completely foreseen.

This forced us to go through several re-design rounds before the concepts stabilized in

their present form.

The following CLOS (Keene, 1989; Steele, 1990) constructs w ere used heavily in the

implementation: multiple inheritance (forming class dependencies that are more complex

than simple hierarchies), multi-m ethods (functions that are polym orphic in more

arguments), mix-in type of inheritance (grouping of partial behaviour in an abstract class

that must be mixed in with other classes to supply that behaviour to their instances),

method combination (providing ways of combining partial descriptions of behaviour of

one method for more classes). Together they make it possible to extend the system by

adding program code only, instead of rewriting it.

The calculus will be incorporated in POCO. The other tools available in POCO, like

score-performance matchers, multiple structural descriptions, storage and retrieval from

standard MIDI-files, playback and editors for music text formats etc., will support a

comfortable use of the calculus with real performance data. An implementation in the

form of the microworld is given in the appendix and aimes at conciseness and elegance.

Luckily, this goal only occasionally conflicts with computational efficiency.

The following five paragraphs will describe the calculus in more detail. The reader

interested in the more general aspects of the calculus is advised to continue reading below

T ran sforma tion s.

Calculus 7

MUSICAL OBJECTS

Musical objects come in different brands. Some types are specific enough to describe an

object completely (the instandatable or concrete classes). Other types are used as a

descriptive grouping of likewise behaviour (the abstract classes). The types of musical

objects and their interrelations are shown in figure 1.

>- 1S-A

F i g u r e 1 . C l a s s e s o f m u s i c a l o b j e c t s a n d t h e i r i n t e r r e l a t i o n s .

Basic musical objects

Basic musical objects are notes and rests (In the program we use the word PAUSE to avoid

the name dash with the Common Lisp primitive R EST). In examples we will use notes

with clearly observable onset and offset times (called PERF-ONSET and PERF-OFFSET)

measured in ms. from the beginning of the performance. Both notes and rests have as a

property a time position in the score (called SCORE-ONSET and SCORE-OFFSET)

measured in any kind of (beat)-count (a rational number). These score times are calculated

automatically from the supplied score durations of notes and rests via the structural

descriptions. This facilitates easy creation of large scores.

Rests are essential and cannot just be ignored, as is done in some low-level representations

(e.g. the Midi-file standard). They are central e.g. in dealing with articulation - a short

Calculus 8

note followed by a rest behaves differently under transformation than a longer note

played in a staccato way.

Structured musical objects

Multilateral structures

In research on music perception and cognition a distinction is often m ade between

successive temporal processes that deal with events occurring one after another, and

simultaneous temporal processes that handle events occurring around the same time (e.g.

Bregman, 1990; Serafine, 1988). For the first type of events of the expressive means can be

rubato - the change of tempo over the sequence. In the second one the expressive means can

be chord-spread and asynchrony between voices, both m ore timbral aspects. These

processes work differently in perception. Since we want to imply differences in behaviour

mainly by differences in structural description a way should be found in which both these

constructs can be represented.

We propose to use for this purpose the simple time structures S and P that functioned well

in (Desain & Honing, 1988; Desain, 1990; Desain & Honing, in press, b). If a collection of

musical objects is formed such that they occur one after another they are described as a

successive structured object named S (for Sequential). If a collection of musical objects occur

at the same time they can be collected in a simultaneous structured object called P (for

Parallel). These structures serve as a general way to represent a collection together with

the temporal relation between the components, as stated in the score. We call the objects

multilateral because their components are considered to be of equal importance, and are to

be treated as such in expressive transformations.

The score times of a structured object and its parts are constrained by consistency rules.

They are described separately in frames 1 and 2. These constraints are enforced by

specifying only notes and rests with a score duration. The constraints propagate these

automatically when a structural description is created and set all score onset and offset

times.

In calculating expression, the previous and subsequent context of musical objects is

sometimes needed. For instance, consider articulation: possibly defined as the overlap

between the sounding parts of a note and the next one, i.e. the time difference between the

offset of the note itself and the onset of the "next" note. Besides "next material" a link to

"previous material" is foreseen to be needed as well, e.g. in the calculation of local accent

patterns. To formalize and generalize this notion of "previous" and "next" material a

definition of the left and right context of a musical object is given. This notion also

reflects the fact that some expressive values cannot be calculated because some contexts

are not available or carry no expression e.g. the tempo of the last note in a piece, or the

performance onset of a voice that starts with a rest. Expressive transformations must thus

expect to com e across missing values in an expression map. The notion of context is

Calculus 9

explicitly represented in the program as attributes of the objects themselves. This is

possible because the structural description is invariant and so are the contexts. Another

possibility would be to represent them implicitly, recovering them by search via a bi-

directional part-of link between musical objects. Alternatively, they could be represented

tacitly, i.e. supplying them by a general control structure that walks through structured

musical objects.

Collateral structures (ornamented objects)

Some musical objects contain components that should maintain a dependency relation to

one another. If such a collateral pair is transformed, the transformation should be carried

out on the main component only, the submissive one obediently following the main

com ponent's transformation, but not being transformed itself. An ornamented musical

object like a graced note (a note preceded by a grace note), is a good example of a

collateral object. For example, in the scaling of the expressive tempo of a melody which

contains a graced note, the data on which the expressive transformation is carried out (in

this case the performance onset) stems from the main object. The grace note is ignored.

When in the actual transformation the graced note pair is stretched or compressed and

moved to an other point in time, only the main note will undergo that operation. The

ornament will just follow its shift in time.

A second use of this concept is made when the relation of an ornament to its main object,

within such a collateral couple, is considered to be expressive, and a potential source of

expressive transformations. In this case, the main object stays invariant, and only the

ornam ent undergoes transformation. Take for example the asynchrony between the

performance onset of a grace note and the note it is attached to. This time interval can be

modified by appropriate means, resulting in local changes of the timing of the grace note

- but keeping the timing of the main note invariant.

Collateral (ornamented) objects can again have two kinds of temporal nature: successive

or simultaneous. The first one is called APPOG (for appoggiatura). It describes a "time-

taking" ornament where the ornament is considered to finish when its main object starts

(all in terms of score times). The second is called ACCIA (for acciaccatura). It can

represent a so called "time-less" ornament that is supposed to start at the same time as

the object it is attached to. Note that both parts of a collateral pair are musical objects

themselves and can have internal structure. The concepts of APPOG and ACCIA

ornamented objects are an elaboration of the PRE and POST objects that were introduced

in (Desain & Honing, 1988). Consistency rules for score times and context are described in

frames 3 and 4.

1 0Calculus

S, a multilateral successive structure

Son Soff

► context
score times

F i g u r e o f S o b j e c t

Consider an S structure of n components Cj with 0 < i < n-1 .

Assume that component Cj has score onset time Sonj, score offset time Soffj and that the

whole structure has score onset time Son and score offset time Soff. Then the following

must hold:

Son = Song

Soff = Soffn.]

Soffj = Sonj+ j, for 0 < i < n-2

Assume that component Cj has performance onset time Ponj and that the whole structure

has performance onset time Pon. Then the following must hold:

Pon = Pong

Ponj < Ponj+ -j/ for 0 < i < n-2

Assume that component C j has left context Lj and right context Rj and that the whole

structure has left context L and right context R. Then the following holds:

L = Lo

R = ^n-1
Rj = C j+], for 0 < i < n-2

Lj = C j.], for 1 < i < n-1

F r a m e 1 . D e s c r i p t i o n o f a S s t r u c t u r e .

1 1Calculus

Son Soff

P, a multilateral simultaneous structure

-----►- context
-------> score times

F i g u r e o f P o b j e c t

Consider a P structure of n components Q with 0 < i < n-1 .

Assume that component Q has score onset time Sonj and score offset time Soffj and that

the whole structure has score onset time Son and score offset time Soff. Then the

following must hold:

Sonj = Son, for 0 < i < n-1

Soffj = Soff, for 0 < i < n-1

Assume that component C j has performance onset time Pon; and that the whole structure

has performance onset time Pon. Then the following holds:

Pon = M IN q < j < n_] Ponj

Assume that component C j has left context Lj and right context Rj and that the whole

structure has left context L and right context R. Then the following holds:

L = Lj, for 0 < i < n-1

R = Rj, for 0 < i < n-1

Frame 2. Description of a P structure.

1 2Calculus

APPOG, a collateral successive structure

Son Soff

Figure of APPOG object

Consider a APPOG structure of a ornament component CQ and a main component Cm .

Assum e that component CG has score onset time SonQ/ score offset time SoffQ, that

component Cm has score onset time Sonm and score offset time Soffm and that the whole

structure has score onset time Son and score offset time Soff. Then the following must

hold:

Sonm = Son

Soffm = Soff

SoffQ = Sonm

Assum e that com ponent CD has performance onset time Pon0 , com ponent Cm has

performance onset time Ponm and that the whole structure has performance onset time

Pon. Then the following holds:

Pon = Ponm

PonQ < Ponm

Assume that component C G has left context L() and right context R0 , component Cm has

left context Lm and right context Rm and that the whole structure has left context L and

right context R. Then the following holds:

R = Rm

Ro =
L0 = undefined

Frame 3. Description of an APPOG structure.

1 3Calculus

ACCIA, a collateral simultaneous structure

Son Soff

-----► context
----- • no context
-------score times

F i g u r e o f A C C I A o b j e c t

Consider a ACCIA structure of a ornament component CQ and a main component Cj^.

Assume that component C0 has score onset time SonD, score offset time SoffQ, that

component Cm has score onset time Sonm and score offset time Soffm and that the whole

structure has score onset time Son and score offset time Soff. Then the following must

hold:

SonQ = Sonm = Son

Soffm = Soff

Assume that com ponent CG has performance onset time PonQ/ component Cm has

performance onset time Ponm and that the whole structure has performance onset time

Pon. Then the following holds:

Pon = Ponm

Assume that component CQ has left context L0 and right context RQ/ component Cm has

left context Lj^ and right context Rm and that the whole structure has left context L and

right context R. Then the following holds:

L = = Lo
R = Rm

R0 = undefined

Frame 4. Description of an ACCIA structure.

Calculus

EXAMPLE OF THE REPRESENTATION OF A MUSICAL OBJECT

In figure 2 a fragment of a score is shown that will serve as a basis for the examples at the

end of this article. It is the score of the last bars of the theme of six variations over the

duet Nel cor più non mi sento, by Ludwig van Beethoven (with some adaptations), which

is the same material used to study tempo curves in (Desain & Honing, in press, a). It

contains examples of several kinds of musical structure: chords, voices, sequences, bars and

beats, phrases and two types of ornaments. Figure 3 shows a graphical notation

indicating two structural descriptions: a metrical hierarchy and a separation into voices.

The way these structures are specified in Lisp is given in the appendix.

Ludwig van Beethoven.

S bars

P bar P bar P bar P bar
S top voice S lop voice S lo p voice.
P A U S E ¡M O TE A P P O C

N O TE
A C C IA

N O TE N O TE N O TE
N O TE [n o t e I

j | n o t e

1---------------1

[n o t e I

S bottom voice P chord P chord

P A U S E N O TE N O TE N O TE N O TE N O TE

N O TE N O TE

H O TE N O TE

P Iragmenl

S melody

j
P A U S E j NOTE

A P P O G
NOTE

A C C IA
NOTE NOTE NO TE

NOTE (NÖTE x I

jÌN O T E [n o t e j

S accompaniment

P A U S E NOTE NOTE NOTE
P chord P Chord

NOTE NOTE

NOTE NOTE

NOTE NOTE

Figure 3. a) Structural description of the metrical hierarchy of the score in figure 2, and b) Structural

description of the voices in that piece.

1 5Calculus

REPRESENTING EXPRESSION

There are three kinds of expressive timing: expressive tempo, expressive asynchrony and

expressive articulation. The first two are based on performance onset times only, the

third is based on performance onset and offset times (see figure 4).

() mixin class

abstract class

(Z D instantiate class

> IS-A
V' mixin

F i g u r e 4 . E x p r e s s i o n t y p e h i e r a r c h y .

One could imagine sophisticated algorithms that calculate the onset of a note and of

parallel structures on the basis of their perceptual onset (P-center; see Vos & Rasch,

1981). But for clarity we use a very simple definition of onset times, which was already

given in the frames 1 to 4. In that way, all musical objects have performance onset times

and so can be used as units on which tempo and asynchrony measures are built.

Expressive tempo

The notion of tempo is relevant only for successive structures. It is defined as the ratio of

score duration and performance duration. This velocity-like notion the inverse of the

notion of a tempo factor, as is used in the psychology of music literature.

Expressive asynchrony

The notion of asynchrony is relevant only for simultaneous structures. It is defined as the

difference of performance onsets. It is thus independent of score dmes.

1 6Calculus

Expressive articulation

Expressive articulation uses the performance offsets of individual notes. It simply

assumes that they are given. A definition of performance offset of structured musical

objects is not needed. Articulation is also independent of score times.

Articulation can be defined in several ways - but it is hard to find a way that will suffice

in all circumstances. In the legato range the absolute overlap time of the sounding part of
a note and the next one seems a good candidate for an articulation scale. In the staccato

range the absolute sounding duration of the note seems the most prominent perceived

aspect. In the intermediate range the relative sounding proportion is a good measure. For

the moment we cannot do better than to supply these three concepts of articulation

expression (overlap-, duration- and proportion-articulation) - leaving it for the user to

choose the most appropriate one (see frame 5). For a multilateral structure the expressive

articulation value is taken to be the average articulation of its parts. For a collateral

structure the expressive articulation value is defined to be the articulation of its main

part.

Definition of articulation

Consider a note with performance onset Pon, performance onset Poff and performance
onset of its right context Ponr. There arc three alternative definitions of articulation A

given:

overlap articulation A = Poff - Ponr

duration articulation A = Poff - Pon
Poff-Pon

proportion articulation A = ____ _________
Ponr - Pon

If a multilateral structure with articulation A has components Q for 0 < i < n-1, and Q

has articulation A j then:

A = MEANn , . , ,A ;0 < l < n-1 1

If a collateral structure has articulation A, and its main component Cm has articulation

Am then:

Fram e 5. D efinition of articulation expression .

1 7Calculus

Estimate onsets

Because sometimes the performance onset of missing objects (like the virtual note after

the end of the piece) or the performance onset of a rest are needed, we devised a set of

procedures that estimates these missing values on the basis of performance onsets that

can be found in the context, using a linear interpolation or extrapolation method. The set

of procedures forms a mix-in class that can be combined with any expressive timing type

enabling that kind of expressive timing to deal - in all operations - with missing values.

Estimation is derived from the same structural level as the transformation itself. For

example, a transformation on a beat structure in need of a missing expressive value at the

end of the piece (cf. the onset the final barline in a score) will be estimated on basis of the

two previous beats -not on the basis of any internal detail. In the case of extreme tempo

variations, as occur in a final retard, the estimation feature cannot work well. In this case

it is better not to use it.

Articulation invariance

When moving the onsets of notes around (e.g. in modifying the performance onsets) it is

quite annoying that the articulation of the individual notes also changes - an effect that

is very easy to perceive and which may well overshadow subtle modifications of onset

timing. Therefore a set of procedures can be mixed-in with expressive tempo and

asynchrony. They are given a chance to calculate the articulation of individual notes

before onsets are changed and to reinstall it afterwards. This will insure that
articulation is kept invariant under transformations of onset timing (see figure 12).

EXPRESSION MAPS

An abstraction of the expression of an object is useful for many operations because it can

hide the irrelevant details of the structure and provides a means to transfer expression

from one object to another. Therefore expression maps were introduced. They describe

expression of musical objects at one level of a structural description. All objects at the

level described must have the same structural type. Maps contain a list of sections, one for

each of those musical objects. A section lists the expressive values of the components of

that musical object. Of course maps may be partial - consisting of several sections with

gaps in between, or even have missing values within a section.

Onset timing

The application of a (modified) map of performance onsets on an object works as follows.

First, all objects at the indicated level are found, paired with their corresponding

sections. Then each section is applied to its object. This means that the components of

that object arc provided one by one with a new onset from that section.

1 8Calculus

This setting of onsets is handled differently according on the structural type of the

component. If this component is a note, the onset is set directly. For S components the

whole structure is stretched between that onset and and the next onset (the onset of the

succeeding component). A P component is set to the provided onset, but keeps its internal

asynchrony invariant and truncates at the next onset. In the case of a ACCIA component,

the main structure is set to the onset, with the ornament following the displacement of

the main structure. Finally, for a APPOG component, the main structure is stretched

between that onset and the next onset, with the ornament also simply following the

displacement of the main object.

Now we have indicated how an expressive timing is applied to components of structured

objects - it remains to be shown how such a change propagates when these components

again are embedded structured objects themselves. This fairly complex process depends on

the type of the embedded structured object and mirrors the decisions given above: S

components are stretched, P components are shifted and truncated, and ornaments follow

the shift of their main components.

1 9Calculus

Figure 5. Propagation of change of onset within an S structure for different component types. This figure
shows the propagation process for an S structure containing different types of structural components. We
assume the components are moved around by an arbitrary transformation, parametrized by a factor. In
this figure it is shown how this change is propagated to the internal structure of different kinds of
components. The first component is an S structure and the onsets of its internal parts (lines marked with
white circles) are stretched along proportionally. The second sub-structure is an APPOG structure and one
can see that the onset of its ornament (line marked with upward pointing white triangles) shifts along
with the main object. The third sub-structure is an ACCIA structure and the onset of its ornament behaves
likewise. Note that the onset of the ornament is allowed to shift freely (line marked with downward
pointing white triangles), even the order of notes is allowed to change here . The fourth sub-structure is a
P structure and the onset of its components (lines marked with squares) are shifted and truncated at the
end (the right context note; line marked with x's).

Articulation expression

In comparison, to set the articulation expression to a structured object is much simpler.

When a section of an articulation map is applied to a multilateral or collateral structure

the articulation of its components are set to their respective values from the section.

The propagation of a (modified) articulation value to a component works as follows. If

that component is a note, a new offset is calculated from the articulation value and set

directly, taking care to maintain reasonable offset times (e.g. not shifting before its

onset). If that component is a multilateral structure, its articulation is calculated (the

Calculus 20

mean articulation of its components) and the difference with the required articulation is

propagated as an increment to all components. If it is a collateral structure, its

articulation is calculated (the articulation of its main component) and the difference

with the required articulation is propagated as an increment to both main and ornament

components.

OPERATIONS ON EXPRESSION MAPS

Operations on expression maps work section by section. In each section the expression of a

structured musical object is represented. The operations delivers a new section to be

applied to that object. Care was taken to maintain structural consistency in all

operations even in case of extreme parameter values. Of course expression transformations

are intended as subtle changes and truncation or extreme normalization should in practice

never occur.

Scale maps

Scaling expressive tempo

Scaling tempo is done in an exponential way. Inverse tempi are considered to be related

by a scale factor -1; twice as slow is considered to be the mirror image of half as slow.

This exponential scaling of expressive tempo mirrors the exponential nature of notated

note durations.

Calculus 21

Scaling the expressive tempo of an S section

The scaling of the expressive tempo of a multilateral successive structure works as
follows. Assume the structure has n components named Q with 0 < i < n-1 . Assume

component C j has score onset time Son; and performance onset time Ponp Assume the

right context of the structure (and thus the right context of component C n . |) is object C n .

It has score onset Sonn and performance onset time Ponn. A section of the expressive

tempo map of the structure contains all Sonj and Ponj including Sonn and Ponn. The scale

operation on such a section delivers a new section with performance onsets Ponj‘

according to the following rules:

Define the score inter-onset interval ASonj and the performance inter-onset interval

APonj and the local tempo Tj for 0 < i < n-I (a better term would be velocity) as:

ASonj = Sonj+] - Sonj

APonj = Ponj+] - Pon;

ASonj

- APonj

This ratio is scaled by an exponential factor f.

Then new raw performance durations APonj" are calculated:

ASon;
APonj" = ,

These are re-normalised such that the total performance duration is kept invariant.

Ponn-PonQ
APon;' = APon;" * —-----------1 1 n-1

APonj"

i=0

Starting at the same point, the new performance times are given as:

i-1
Ponj' = Pong + y^APonj'

j=0

Fram e 6. Scaling the expressive tempo an S section.

Calculus 22

Figure 6 . Scaling the expressive tempo of an S section. This process is shown for a specific set of
performance onsets Ponj .In this figure the horizontal axis is the performance time P. On the vertical axis
the scale factor f is given. Thus at the horizontal line at scale factor 1 the performance times Pon;' are
shown as markers on the line; they are identical to the original performance times Ponp This operation
(with scale factor 1) is the identity transformation with respect to the performance timing. At the
horizontal line at scale factor 0 the performance times Pon;' are identical to the score times Sonj (modulo
normalization to the total performance duration). This operation (with scale factor 0) effectively
removes the expressive timing of the performance. At factor .5 a diminished expressive timing profile
will result, and at factor 2 an exaggerated rubato can be obtained. At negative values of the scale factor
the expressive profile is inverted: a slower tempo becomes faster and vice versa. At extreme values of the
scale factor the note that is played at the slowest tempo in the performance will gain almost the whole
performance time interval spanned by the structure, pushing other notes to zero duration.
When the performance onset Ponn is not available, the scale transformation uses Ponn i instead, and
scales the tempo of the section with regard to the onset of the last component in the section - instead of
the onset of the right context. This tempo scaling method works well for S constructs with many
components and small tempo deviations.

Calculus 23

The scaling of the expressive tempo of a collateral successive structure works as follows.
Assume this structure has a main component with score onset time Sonm and performance

onset time Ponm and a preceding ornament component with score onset time SonQ, and

performance onset time PonQ. Assume the right context of the structure (and thus the

right context of component Cm) is object Cr. It has score onset Sonr and performance onset

time Ponr. An APPOG time map section contains this score and performance data. The

scale operation on such a map delivers a new map with performance onsets according to

the following rules:

Define the main and ornament score inter-onset interval ASonm, ASonQ and the main and

ornament performance inter-onset interval APonm, APonQ as:

ASonm = Sonr - Sonm

ASon0 = Sonm - SonQ

APonm = Ponr - Ponm

APon0 = Ponm - Ponn

The ornament tempo T0 and the main tempo Tm are calculated as:

ASon0
~ APon0

ASonm
APonm

T0/m is tempo of the ornament relative to the main tempo. This factor is scaled by an

exponential parameter f, and a new ornament tempo T0‘ is calculated:

T
t °ô/m - t 1 m
To = Tm * T0/ n-/

This gives a new performance duration AP()', which yields the new performance times
Ponm' and Pon0':

ASon0
APon0' = - .

1 o

P°nm = Ponm
PonQ' = Ponm - APon0'

Frame 7. Scaling the expressive tempo of an APPOG section.

Scaling the expressive tempo of an APPOG section

Calculus 24

Figure 7. Scaling expressive timing of an APPOG section. This process is shown for a specific set of
performance onsets. Note that only the performance timing of the ornament is affected. At scale factor 1
the timing of the ornament is identical to the original timing. At scale factor 0 the ornament is performed
at the same tempo as the main object (in this particular example the score duration of the ornament is
half that of the main component). This operation (with scale factor 0) effectively removes the
expressive way in which the ornament is performed, relative to the main component. At factor .5 a
diminished expressive timing effect will result, and at factor 2 an exaggerated effect will be obtained. At
negative values of the scale factor the expressive timing is inverted: a performance of the ornament at a
lower tempo than the main component becomes one at a faster tempo and vice versa.

Scaling expressive asynchrony

Asynchrony occurs when two or more simultaneous musical objects - prescribed to happen

at the same score time - have unequal performance onsets. The differences can be scaled

linearly but care has to be taken not to disrupt the timing of higher levels.

Calculus 25

The scaling of the expressive asynchrony of a multilateral simultaneous structure works
as follows. Assume the structure has n components named Cj with 0 < i < n-1. Component

C j has performance onset time Ponj. Assume the right context of the structure (and thus

the right context of all components) has performance onset Ponn. A parallel time map of
the structure contains all Ponj including Ponn. The scale operation on such a map delivers

a new Ponj' according to the following rules:

Let the global performance onset Pon and the performance onset asynchronies APonj be

defined as:

Pon = MIN0 < i < n_] Pon,

APonj = Ponj - Pon for 0 < i < n-1

The asynchronies arc scaled by an multiplication factor f:

APonj' = APonj * f

New performance onsets Ponj' are calculated, shifting such that the global performance

onset is kept invariant (min (Ponj') = min (Ponj) = Pon). The result is truncated such that
the onsets never move beyond Ponn. Of these two safeguards the first applying in case f

is negative, the second applying in case f is large compared to the ratio of the

asynchronies and performance duration of the whole structure. Together they ensure

consistency with higher-level structural descriptions by keeping the components within

the bounds of the structure.

Ponj' = MIN (Ponn, Pon + APonj' + MIN (APonj'))

Frame S. Scaling the expressive asynchrony of a P section

Scaling the expressive asynchrony of a P section

Calculus 2 6

Figure 8 . Scaling expressive timing of a P section. This figure shows this process for a specific set of
performance times Pj (say a chord performed with some spread). At scale factor 1 the performance onsets
Pon;' are identical to their original Pon,. At scale factor 0 all Ponj’ occur synchronously at the minimum of
their originals (i.e. removed chord spread). At factor .5 a diminished chord spread will result, and at
factor 2 an exaggerated chord spread can be obtained. At negative values of this factor the spread is
inverted: first notes becoming last and vice versa. At extreme values of the scale factor the notes are
restrained from moving out of the chord structure into the next musical object by truncation. Note that the
whole operation is independent of score times.

Calculus 27

The scaling of the expressive asynchrony of a collateral simultaneous structure works as
follows. Assume the structure has a main component with performance onset time Ponm

and an ornament component with performance onset time PonQ. A time-map of the

structure contains PonQ and Ponj^. The scale operation on such a map delivers new

performance onsets according to the following rules:

Let the performance onset asynchrony APon be defined as:

APon = PonQ - Ponm

The asynchrony is scaled by a multiplication factor f, and a new performance onset PonQ'

is calculated:

APon' = APon * f
Pon0' = Ponm + APon'

Ponm' = Ponm

Frame 9. Scaling the expressive asynchrony of an ACCIA section.

Scaling the expressive asynchrony of an ACCIA section

Calculus 28

4------*------ !------*------ j------‘------h
t 4-
I—o
X Q

........... \J

\ :

............../

a 'J
Si03 o

8 2 '
\ ...

k-...........

...........)

............

\

.............

J»

;............

\

- 1 -

- 2

o

.

............),f#.........

............>

i

•i' ' •

........... .>

<............

t

• Pon 4

k’.... ‘W.... i"

*
o

a Pon
m

X Pon
r

........•"/ft............

0 .5 1 1 5 2 2.5 3
performance-time —>

Figure 9. Scaling expressive timing of a ACC1A section. It shows this process for a specific set of
performance times (a note preceded by an acciaccatura). At scale factor 1 all performance onsets are
identical to their original. At scale factor 0 the ornament occurs synchronously with the main note
(removed asynchrony). At negative values of this factor the order of onset of ornament and main note is
inverted. Note that the ornament is allowed to shift freely - even outside the bounds of the whole
ACCLA structure.

Scaling expressive articulation

The articulation of a note is interpreted (scaled) relative to the articulation of the

structure that it forms part of. For multilateral structures this is the average

articulation. If thus the first note in a bar is played with more overlap than the other

notes, a removal of the overlap articulation expression (a zero scale factor) will set the

overlap of all notes to the mean overlap of the notes in the structure. And exaggerating

the articulation expression (a scale factor larger than 1) will move the individual

overlaps away from the mean - but maintaining the average overlap of all the notes in

the bar. Of course all articulation types maintain reasonable performance offsets in the

case of extreme values (i.e. note offsets will not shift before their onsets).

Calculus 29

Assume a multilateral structure has n components C; with 0 < i < n-1. Component Q has

articulation A; (see frame 5 for the calculation of Aj). A section of the expression map of

the structure contains all Aj. The articulation A of the structure itself is defined as:

A = MEANq < j < n-i Aj

Let the expression deviations be

AAj = Aj- A for 0 < i < n-1

The deviations arc simply scaled by a multiplication factor f

AAj' =f * AAj

The scale transformation delivers new articulations Aj' by adding the new deviations to

the reference articulation A such that the articulation of the whole structure is kept
invariant (mean Aj' = A).

Aj = A + AAj

Keeping the expressive values in a reasonable range can only be done while applying

them to the individual notes.

Frame 10. Scaling the expressive articulation of a multilateral section

Scaling the expressive articulation of a multilateral section

Calculus 30

2.5 3 3.5 4
perform ance-tim e —»

overlap
articulation

duration
articulation

proportion
articulation

0 .5 1 1.5 2
-•------1------------1----- ------ 1----- ------ r-

2.5 3 3.5 4
• A

0
pcrform ancc-lim e —»

▲ A
1

■ A
2

X Ar

Figure 10. Scaling of an S section with three different kinds of articulation. It shows the scaling of three
types of articulation for a multilateral structure, in this instance an S structure with a specific set of
performance onset and offset times. Here, at scale factor 1 articulations Aj ' are identical to the original
performance. At scale factor 0 all Aj' are scaled to the mean articulation A. At a scale factor above 1 the
deviation of each Aj ' with respect to A is exaggerated, with negative values constituting an inverse
deviation: legato notes become more staccato and vice versa. Note that the mean articulation A is always
kept invariant.

Calculus 31

Assume that a collateral structure has ornament and main components C0 and Cm.

Component CQ has articulation A0 and component Cm has articulation Am (see frame 5

for the calculation of A0 and Am). A section of the expression map of the structure

contains these values. The articulation A of the structure itself is defined as:

A = Am

Let the expression deviation be

AA = A0 - A

The deviation is scaled by a multiplication factor f

AA' = f * AA

The scale transformation delivers a new articulation for the ornament by adding the

new deviation to the reference articulation A.

A q — A + AA

Am = ^m

Keeping the expressive values in a reasonable range can only be done while applying

them to the individual notes.

Scaling the expressive articulation of a collateral section

Frame 17. Scaling the expressive articulation of a collateral section.

Calculus 32

■4—-4—1— . ! ■ ! ■ l-.-i I . I . I. 1___. 1 . 1 , __ I . I-

A
o

Arr
A

........

•t—
*

—•*>

>
..1 —1

>

>

. i

....>

>

>

performance-time

Figure 11. Scaling of an APPOG section with three different kinds of articulation. It shows three types of
articulation scaling for an ornament (here an APPOG structure). At scale factor 1 the articulation AQ' is
identical to the original articulation of the ornament. At scale factor 0 A0 is identical to the articulation
of the main component Am At a scale factor above 1 the deviation of A0 with respect to the main
component Am is exaggerated, negative values constituting an inverse articulation: legato ornament
articulation become more staccato and vice versa.

Keeping articulation consistent in the scaling of expressive timing

In the scaling of timing of onsets we ignored the influence it should have on its offsets. To

obtain some sort of articulation consistency we can use the three types of articulation (as

described above) when scaling expressive tempo and expressive asynchrony. In figure 12,

we use expressive tempo scaling for an S section as an example in illustrating the

different types of articulation consistency.

Calculus 33

sc
al

e
fa

ct
or

 —
>

sc
al

e
fa

ct
or

 —
»

sc
al

e
fa

ct
or

 —
» 4-

keep overlap
articulation

3.5 4

0
k Pon

1
■ Pon ̂
X Ponn

Figure 12. Scaling of an S section that keeps a particular type of articulation consistent. Shown for

the same set of performance onsets as used in figure 6.

Calculus 34

Stretch maps

Sometimes it is useful to be able to keep a consistency in performance timing between

voices when modifying one of them. Naming the modified material as the foreground and

describing the rest as the background, the consistency requires that a series of

performance onsets, at a selected background level, that happen between two

performance onsets in the foreground are "stretched along" with the changes in the

foreground. This feature is implemented by first extracting a timing map from the

background, and "stretching" this map between the old and modified foreground map

before it is reapplied to the background. The fore- and background must be parallel (must

happen during the same score time interval) and have to be S structures. Maintaining the

consistency between other kinds of structure remains a problem.

Interpolate maps

A more sophisticated notion of expression entails the difference in expression between

two structured objects. The best known example is voice leading in ensemble playing

(Rasch, 1979) whereby the leading instrument often takes a small but consistent timing

lead (around 10 ms). Inter- or extrapolation between two extracted timing maps yields

the possibility to scale this kind of expression.

Transfer maps

Sometimes it is useful to apply an expression map extracted from one object, to another

object, possibly with a different structure, e.g. boldly applying the expressive timing of

the melody to the accompaniment. This is supported via an operation on timing maps

that uses the structure of one map but imposes expressive values of the other.

TRANSFORMATIONS

Transformations of musical structures are generalizations of the operations on expression

maps. They handle the selection of a level of structural description, extract a map, do the

operation and re-impose the map. However, they often become quite sophisticated

because they also take care of maintaining consistency with a background (material that

is not affected directly). The application of the modified map has its own complexity,

whereby changes are propagated to lower levels depending on the types of musical

structure encountered. Finally, in the setting of new performance onsets of the notes, also

the offsets may change in order to keep the articulation invariant. Out of the wealth of

possibilities we choose some examples to be illustrated further by means of figures. In the

figures the performance onsets and/or offsets of the individual notes at different

parameter settings are given. The structure of the musical objects transformed are shown
underneath.

Calculus 35

In the following examples the same performance of a Beethoven theme is used (the

fragment as shown in figure 2), allowing for comparison of the different transformations

and to see the effect of applying the same transformation to different levels or types of

structure. Note that for all the transformations the indentity transformation is shown at

scale factor 1.

Calculus 36

Scale timing

Figure 13. Scaling the expressive tempo of bars in the Beethoven fragment. Underneath the figure a
structural description of the fragment is shown in bars. Imagine what would happen if we asked a
performer to emphasize his/her timing of the bars? One possibility would be to play the onsets of the
bars, that were played slightly early, even earlier, and ones that were played late, later still. This
particular transformation can be read from figure 12 as the lines with the black markers, indicating the
component in the bar that carries the expressive timing. Both the performance onset of the first and the
last bar of the enclosing bars' structure are not changed; the transformation is done at the level named
"bars", with its timing kept invariant. The lines with white markers show the embedded material that
follows the change of the performance onset of each bar. Note that the timing of the ornamented notes
does not change (they keep the same distance with respect to the note they cling to), as does the spread of
the chords.

Calculus 37

Figure 14. Scaling the expressive asynchrony of each bar in the Beethoven fragment. It shows the
expressive transformation we might expect to happen when a performer is asked to exaggerate the
asynchrony between the top-voice and bottom-voice at the onset of each bar. The figure shows the scaling
of the asynchrony of the bottom voice onsets (the black squares), without changing the timing of the bars
(lines marked with black circles and triangles). The embedded notes of the bottom voice (lines with
white squares) just shift along with the expressive timing of their embedding structure. Here again, the
ornament timing and the chord spread stay invariant.

Calculus 38

Figure 15. Scaling the expressive asynchrony of each chord in the Beethoven fragment. It shows another
expressive transformation that exaggerates the chord spread, turning them almost into arpeggio's at
high scale factors. At scale factor 0 the chord spread is completely removed. The timing of the rest of the
fragment stays unaltered.

Calculus 39

Figure 16. Scaling the expressive tempo of the melody in the Beethoven fragment, a) without and b) with
"stretching" the accompaniment. It shows that the timing of each note of the melody becomes
exaggerated with a higher scale factor. Here the accompaniment (lines marked with white squares) is
not affected at all. Figure 16b, on the other hand, shows a musically more reasonable transformation: the
accompaniment follows the movements of the transformed melody, e.g. slowing down when the tempo of
the melody slows down. Here the accompaniment is kept consistent with respect to the original
performance (compare with the onsets at scale factor 1). Note that note order can change between melody
and accompaniment, because of the structural description in two parallel voices.

Calculus 40

Keeping articulation consistent

In the above examples we showed the scaling of onset times and neglected what

happened to the offset times. But, as we showed before, this cannot just be ignored in

m usically relevant transform ations. We can select one of the described types of

articulation to keep consistent, but we do not show this here (see figure 12 for a simple

exam ple).

Scale intervoice expression

When the expression between voices is scaled, two parameters are used. The first one

selects a reference level of expression (0 designates the expression of the first, 1

designates the expression of the second, 0.5 is the mean of the two etc.). The second

param eter determines in how far the voices are removed from that reference level (0

means com pletely on reference level, 1 means as in original perform ance, 2 means

exaggerated with respect to the reference etc.).

Calculus 41

Figure 17. Scaling the intervoice timing between the melody and the accompaniment in the Beethoven
fragment, a) with the melody as reference, and b) with the mean of the melody and the accompaniment
as reference. In figure 17a intervoice timing (one type of intervoice scaling) is scaled with the melody
voice as the reference. It shows the scaling of the asynchrony between the accompaniment and the
melody, as found in the performance (see the horizontal line where the scale factor is 1). Notes that are
not synchronous (i.e. don't have the same score time) interpolate their change with respect to their
surrounding performance onsets that are considered parallel (have the same score time). Note that the
timing of the melody does not change because it is used as reference.
In figure 17b the mean of the melody and accompaniment timing is used as reference, resulting in
displacements (with respect to this invisible reference) of both voices.
In both figures, the first event in the melody voice is unaffected since there is no measurable timing in the
accompaniment (only a rest).

Calculus 42

CONCLUSION

In this paper we have presented a proposal for a calculus that enables expressive timing

to be transformed on the basis of structural aspects. The program implementing the

calculus, will hopefully prove to be a solid basis for formalised theories of music

cognition. A micro version of this program is included in the appendix, open to further

inquiry and immediate test. The proposed representation constructs allow for easy

maintenance and extension. An object-oriented programming style proved a good choice

for this kind of modelling. The algorithmic parts became reasonably simple, but the

program can still be considered as quite complex, especially its elaborate knowledge

representation. This algorithm ic sim plicity combined with structural com plexity

m irrors, in this respect, the widespread hypothesis that the complex expressive timing

profiles found in musical performances are more readily explained as the product of a

small collection of simple rules linked to a relatively complex structure, than as the

result of a large collection of interacting rules, with hardly any structure.

This research again confirmed that music is a very rewarding field for experimentation

with knowledge representation concepts.

ACKNOWLEDGEMENTS

We are very grateful to Eric Clarke who made it possible for us to work for two years on

research in expressive timing at City University in London, and the British ESRC for

their financial support (grant A413254004) during this period.

REFERENCES

Bentley J. (1988) More Programming Pearls, Confessions of a Coder. Reading, MA: Addison-

W esley.

Bregman, A. S. (1990) Auditory Scene Analysis: The Perceptual O rganization of Sound.

Cambridge, Mass.: Bradford books, MIT Press.

Clarke, E. F. (1988) Generative principles in music performance. In J. A. Sloboda (Ed.)

G enerative processes in music. The psychology of perform ance, im provisation and

composition. Oxford: Science Publications.

Desain, P. & H. Honing (1988) LOCO: A Composition Microworld in Logo. Com puter Music

journal 12(3): 30-42.

Desain, P. & H. Honing (1991) Quantization of Musical Time: A Connectionist Approach. In P.

M. Todd & G. J. Lov (Eds.) Music and Connectionism. Cambridge, Mass.: MIT Press.

Desain, P. & H. Honing (in press, a) Tempo curves considered harmful. To appear in

Contemporary Music Review.

Calculus 43

Desain, P. & H. Honing (in press, b) Time functions function best as functions of multiple times.

To appear in Computer Music lournal.

Desain, P. (1990) Lisp as a second language. Perspectives of New Music 28(1).

Honing, H. (1990) POCO: An Environm ent for Analysing, Modifying, and Generating

Expression in Music. In Proceedings of the 1990 International Computer Music Conference.

San Francisco: Computer Music Association.

Honing, H. (1991) Issues in the Representation of Time and Structure in Music. In Proceedings of

the 1990 Music and the Cognitive Sciences Conference, edited by I. Cross and I. Deliege.

Contemporary Music Review. London: Harwood Press, (forthcoming).

Keene, S. E. (1989) Object-Oriented Programming in Common Lisp: A Programm er's Guide to

CLOS. Reading, MA: Addison-Wcsley.

Longuet-Higgins, H. C. (1976) The Perception of Melodies. Nature 263: 646-653.

Rasch, R. A. (1979) Synchronisation in performed ensemble music. Acoustica 43,121-131.

Serafine, M.L. (1988) Music as Cognition: The Development of Thought in Sound. New York:

Columbia University Press.

Steele, G. L. (1990) Common Lisp, the Language. Second edition. Bedford, MA: Digital Press.

Vos, J. & R. A. Rasch (1981) The perceptual onset of musical tones. Perception & Psychophysics

29(4): 323-335.

Calculus 44

A p p e n d i x

MICROWORLD EXPRESSION CALCULUS

•★★★★★★★★★a**
;* A CALCULUS FOR MUSIC PERFORMANCE EXPRESSION *
;* (c) 1991, Peter Desain S Henkjan Honing *
. * *

; * in CLOS (Common Lisp), uses loop macro *
.★ ***★ ★ ★ ★ ★ ★ ★ **★ ★ *★ ★ ★ ****★ *********★ *★ ★ *★ **★ ★ ★ **★ ★ ★ ***★ ****★ *★ *★ ****★ ***★ ★ ************★ ★ **

-**★*★******★*★★**★★*******★*******★****★*★*****★*★***********★**************************
.★★**★******************************★****★**★**★***
; MUSICAL OBJECTS
. *
• i t *
; abstract classes of musical objects

(defclass musical-object ()
((name : reader name ¡initarg ¡name ¡initform 'no-name :type symbol)
(score-onset :reader score-onset :type rational :initform 0)
(left ¡reader left ¡initform nil)
(right ¡reader right ¡initform nil))

(¡documentation "Musical Object"))

(defclass structured (musical-object)
((score-offset ¡reader score-offset ¡type rational))
(¡documentation "Structured Musical Object"))

(defclass multilateral (structured)
((components ¡reader components ¡initarg ¡components))
(¡documentation "Multilateral Musical Object"))

(defclass collateral (structured)
((main ¡reader main ¡initarg ¡main)
(ornament ¡reader ornament ¡initarg ¡ornament))
(¡documentation "Ornamented Musical Object"))

(defclass successive (structured)
0
(¡documentation "Successive Musical Object"))

(defclass simultaneous (structured)
0
(¡documentation "Simultaneous Musical Object"))

(defclass basic (musical-object)
((score-offset ¡reader score-offset ¡type rational ¡initarg ¡score-dur))
(¡documentation "Basic Musical Object"))

.**
; instantiatable classes of musical objects

(defclass
(defclass
(defclass
(defclass

S (multilateral successive) () (¡documentation "Sequential"))
P (multilateral simultaneous) () (¡documentation "Parallel"))
ACCIA (collateral simultaneous) () (¡documentation "Acciaccature"))
APPOG (collateral successive) () (¡documentation "Appoggiature"))

(defclass NOTE (basic)
((dynamic ¡accessor dynamic ¡type float ¡initarg ¡dynamic)
(perf-onset ¡accessor perf-onset ¡type float ¡initarg ¡perf-onset ¡initform nil)
(perf-offset ¡accessor perf-offset ¡type float ¡initarg ¡perf-offset ¡initform nil))

(¡documentation "Note"))

(defclass PAUSE (basic) () (¡documentation "Rest”))

Calculus 45

(defun S (name Srest components)
(make-instance 'S :name name ¡components components))

(defun P (name Srest components)
(make-instance 'P ¡name name ¡components components))

(defun ACCIA (name ornament main)
(make-instance 'ACCIA ¡name name ¡ornament ornament ¡main main))

(defun APPOG (name ornament main)
(make-instance 'APPOG ¡name name ¡ornament ornament ¡main main))

(defun NOTE (Skey name perf-onset perf-offset score-dur (dynamic 1))
(make-instance 'NOTE ¡name name

¡perf-onset perf-onset
¡perf-offset perf-offset
¡score-dur score-dur
¡dynamic dynamic))

(defun PAUSE (Skey name score-dur)
(make-instance 'PAUSE ¡name name ¡score-dur score-dur))

.**
; extra access functions for musical objects

(defmethod components ((object basic)) nil)
(defmethod components ((object collateral))
(list (ornament object)(main object)))

(defmethod all-notes ((object musical-object))
(loop for component in (components object) append (all-notes component)))

(defmethod all-notes ((object note)) (list object))

(defun has-name? (Srest names)
#'(lambda (object srest ignore)(member (name object) names)))

(defmethod find-parts ((object musical-object) pred)
(if (funcall pred object)

(list object)
(loop for component in (components object)

append (find-parts component pred))))

- * x *

; initialization of score times and context of musical objects

(defmethod initialize-instance ¡after ((object musical-object) srest ignore)
(object-check object)
(initialize-score-times object)
(initialize-context object))

(defmethod object-check ((object musical-object)) nil)

• * * * * * * * * x * x * x * x

; initialization of score-onset and offset of musical objects

.**

; creators for musical objects

(defmethod initialize-score-times ((object basic)))

(defmethod initialize-score-times ((object P))
(setf (slot-value object 'score-offset)

(slot-value (first (components object)) 'score-offset)))

Calculus 46

(defmethod initialize-score-times ((object S))
(loop with onset = 0

for component in (components object)
do (shift-score component onset)
(setf onset (slot-value component 'score-offset))
finally (setf (slot-value object 'score-offset) onset)))

(defmethod initialize-score-times ((object collateral))
(setf (slot-value object 'score-offset)

(slot-value (main object) 'score-offset)))

(defmethod initialize-score-times :after ((object APPOG))
(shift-score (ornament object)

(- (slot-value (ornament object) ’score-offset))))

(defmethod shift-score ((object musical-object) shift)
(incf (slot-value object 'score-onset) shift)
(incf (slot-value object 'score-offset) shift)
(loop for component in (components object) do (shift-score component shift)))

; initialization of context of musical objects

(defmethod initialize-context ((object musical-object)))

(defmethod initialize-context ((object S))
(loop for component in (components object)

for next-component in (rest (components object))
do (set-contexts component next-component)))

(defmethod initialize-context ((object APPOG))
(set-context (ornament object) (main object) 'right))

(defmethod set-contexts ((left musical-object) (right musical-object))
(set-context left right 'right)
(set-context right left 'left))

(defmethod set-context ((object musical-object) (context musical-object) dir)
(setf (slot-value object dir) context))

(defmethod set-context :after ((object P) (context musical-object) dir)
(loop for component in (components object)

do (set-context component context dir)))

(defmethod set-context :after ((object S) (context musical-object) dir)
(if (eql dir 'left)

(set-context (first (components object)) context dir)
(set-context (last-element (components object)) context dir)))

(defmethod set-context :after ((object collateral) (context musical-object) dir)
(set-context (main object) context dir))

(defmethod set-context :after ((object ACCIA) (context musical-object) dir)
(when (eql dir 'left)

(set-context (ornament object) context dir)))

Calculus 47

.****★*★★★★★*★★★****★***★*★*★*****★★***★★**★****★***********★★****★*******★**★***★★*★★**★

.********★************************★******************★***********************************
; abstract classes of maps

(defclass map ()
((sections : accessor sections zinitarg : sections))
(:documentation "Expression Map"))

(defclass multilateral-map (map)())
(defclass collateral-map (map)())
(defclass simultaneous-map (map)())
(defclass successive-map (map)())

.**
; instantiable classes of maps

(defclass P-map (multilateral-map simultaneous-map)())
(defclass S-map (multilateral-map successive-map)())
(defclass ACCIA-map (collateral-map simultaneous-map)())
(defclass APPOG-raap (collateral-map successive-map)!))

•A************************* ***************** ***************** ***************** ***********
; creator for maps

(defun make-map (sections)
(let ((ordered-sections (sort sections #'< :key #'score-onset)))

(cond ((null ordered-sections) nil)
((and (same-section-type? ordered-sections)

(not-overlapping? ordered-sections))
(make-instance (section-to-map (first ordered-sections))

: sections ordered-sections))
(t (error "attempt to merge incompatible sections into expression map")))))

.**
; sections of maps
.**
; abstract classes of sections of maps

(defclass section ()
((all-score-times : accessor all-score-times :initarg : all-score-times)
(all-expressions raccessor all-expressions rinitarg rail-expressions))
(:documentation "Expression Section"))

(defclass multilateral-section (section)())
(defclass collateral-section (section)())
(defclass successive-section (section)())
(defclass simultaneous-section (section)())

.*******★*****************★**
; instantiable classes of sections of maps

(defclass S-section (successive-section multilateral-section) ())
(defclass P-section (simultaneous-section multilateral-section)())
(defclass ACCIA-section (simultaneous-section collateral-section)())
(defclass APPOG-section (successive-section collateral-section)())

.★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ a***
; compatibility relation between musical objects, expression maps and sections thereof

(defmethod object-to-section ((object musical-object))
(third (find (class-name (class-of object)) (object-network) :key #'first)))

(defmethod section-to-map ((section section))
(second (find (class-name (class-of section)) (object-network) :key #'third)))

•**
.**

; MAPS

Calculus 48

(defun object-network ()
1 ((S S-map S-section)

(P P-map P-section)
(ACCIA ACCIA-map ACCIA-section)
(APPOG APPOG-map APPOG-section)))

• ★ *★ ★ ★ ★ ★ ★ ★ ★ ****★ *★ ★ ★ *★ ★ ★ ★ *★ **★ **★ ★ ★ ★ ★ ★ ★ ★ *★ ★ **★ *★ ★ **★ *★ ★ ***★ ★ ★ ★ *★ ★ **★ ★ ★ *****'*★ ★ ★ ★ •***★ *★ ★ **
; creators for sections of maps

(defun make-section (section-class all-score-times all-expressions)
(make-instance section-class

:all-score-times all-score-times
:all-expressions all-expressions))

(defmethod make-new-section ((section section) expressions)
(make-section (class-of section)

(snoc (score-times section) (score-offset section))
(snoc expressions (next-expression section))))

(defmethod make-new-section-from-pairs ((section section) pairs)
(make-section (class-of section)

(snoc (mapcar #'first pairs) (score-offset section))
(snoc (mapcar #'second pairs) (next-expression section))))

. ********** ★ ******* ★ ***
; extra accessors for sections of maps

(defmethod score-onset ((section section))
(first (all-score-times section)))

(defmethod score-offset ((section section))
(last-element (all-score-times section)))

(defmethod expressions ((section section))
(butlast (all-expressions section)))

(defmethod next-expression ((section section))
(last-element (all-expressions section)))

(defmethod score-times ((section section))
(butlast (all-score-times section)))

(defmethod score-onset ((section collateral-section))
(score-main section))

(defmethod main-expression ((section collateral-section))
(second (all-expressions section)))

(defmethod ornament-expression ((section collateral-section))
(first (all-expressions section)))

(defmethod score-main ((section collateral-section))
(second (all-score-times section)))

(defmethod score-ornament ((section collateral-section))
(first (all-score-times section)))

(defun same-section-type? (sections)
(every #'(lambda (section) (class-of section)) sections))

(defun not-overlapping? (sections)
(loop for section in sections

for next-section in (rest sections)
never (> (score-offset section) (score-onset next-section))))

Calculus 49

(defmethod lookup-section-containing ((map map) score-time)
(loop for section in (sections map)

when (<= (score-onset section) score-time (score-offset section))
do (return section)))

.**-****************X*
; lookup expression value (via score time) in expression map

(defmethod lookup-defined-expression ((map map) score-time)
(lookup-defined-expression (lookup-section-containing map score-time) score-time))

(defmethod lookup-defined-expression (section score-time)
(and section

(loop for expression in (all-expressions section)
for map-score-time in (all-score-times section)
when (= map-score-time score-time)
do (return expression))))

(defmethod lookup-expression ((map successive-map) score-time)
(lookup-expression (lookup-section-containing map score-time) score-time))

•**
; find section (containing score time) in expression map

(defmethod lookup-expression (section score)
(and section

(loop for expression in (all-expressions section)
for expression-next in (rest (all-expressions
for score-time in (all-score-times section)
for score-time-next in (rest (all-score-times
while (> score score-time-next)
finally (return (interpolate score-time score

expression expres

section))

section))

score-time-next
sion-next)))))

.***
; lookup score time in a monotone rising expression map

(defmethod in-section-inverse? ((section section) expression)
(and expression (<= (first (expressions section))

expression
(or (next-expression section)

(last-element (expressions section))))))

(defmethod lookup-inverse ((map S-map) expression)
(loop for section in (sections map) thereis (lookup-inverse section expression)))

(defmethod lookup-inverse ((section section) expression)
(and (in-section-inverse? section expression)

(loop for expression-next in (rest (expressions section))
for score-time in (score-times section)
for score-time-next in (rest (score-times section))
while (> expression expression-next)
finally (return (list score-time score-time-next)))))

; mapping through expression maps

(defmethod map-map (fun (map map))
(make-map (loop for section in (sections map) collect (funcall fun section))))

.**
; mapping through filtered expression maps

(defmethod with-filtered-null-expression (fun (map map))
(unfilter-null-expression (funcall fun (filter-null-expression map))

(filter-null-expression-out map)))

(defmethod filter-null-expression ((map map))
(map-map #1 filter-null-expression map))

Calculus 50

(defmethod filter-null-expression ((section section))
(make-new-section-from-pairs section
(loop for expression in (expressions section)

for score-time in (score-times section)
when expression
collect (list score-time expression))))

(defmethod filter-null-expression-out
(mapcar #'filter-null-expression-out

(map map))
(sections map)))

(defmethod filter-null-expression-out (
(loop for expression in (expressions

for score-time in (score-times
for index from 0
unless expression
collect (list index score-time)

(section
section)
section)

))

section))

(defmethod unfilter-null-expression ((map map)
(make-map (mapcar #'unfilter-null-expression

rejections)
(sections map) rejections)))

(defmethod unfilter-null-expression ((section section) removed)
(if removed

(make-new-section-from-pairs section
(loop with expressions = (expressions section)

with score-times = (score-times section)
for index from 0
while (or score-times removed)
when (and removed (= index (caar removed)))
collect (list (second (pop removed)) nil)
else collect (list (pop score-times)

(pop expressions))))
section))

Calculus 51

rt***
**

EXPRESSION
★★it***************************
**

(defclass expression () ())

•★ I***********
; nil and rests carry no expression, nil expressions and sections are not set

(defraethod get-expression ((object null)(expression expression)) nil)
(defmethod get-next-expression ((object null)(expression expression)) nil)

(defmethod get-expression
(defmethod set-expression

((object PAUSE)(expression expression)) nil)
((object PAUSE)(expression expression) value) nil)

(defmethod set-expression ((object musical-object) expression value-or-section) nil)
(defmethod get-next-expression ((object musical-object)(expression expression))

(get-expression (right object) expression))

-***★**********
; get expression of notes

(defmethod get-notes-expression ((object musical-object) (expression expression))
(loop for note in (all-notes object)

collect (fetch-expression note expression)))

(defmethod set-notes-expression ((object musical-object) (expression expression) values)
(loop for note in (all-notes object)

for value in values
do (set-expression note expression value)))

.**
; propagate expression (interpolated, truncating-shift and shift)

(defmethod propagate-interpolated ((object S)
old-begin new-begin old-end new-end expression)

(loop for component in (components object)
do (propagate-interpolated component

old-begin new-begin old-end new-end expression)))

(defmethod propagate-interpolated ((object P)
old-begin new-begin old-end new-end expression)

(loop for component in (components object)
do (propagate-truncating-shift component

(save— new-begin old-begin) new-end expression)))

(defmethod propagate-interpolated ((object collateral)
old-begin new-begin old-end new-end expression)

(let* ((ref (fetch-expression (main object) expression))
(shift (save— (interpolate old-begin ref old-end new-begin new-end) ref)))

(propagate-interpolated (main object) old-begin new-begin old-end new-end expression)
(propagate-shift (ornament object) shift expression)))

(defmethod propagate-interpolated ((object NOTE)
old-begin new-begin old-end new-end expression)

(set-expression
object expression
(interpolate old-begin (fetch-expression object expression)

old-end new-begin new-end)))

(defmethod propagate-interpolated ((object PAUSE)
old-begin new-begin old-end new-end expression))

Calculus 52

. *
; propagate-truncating-shift

(defmethod propagate-truncating-shift : around

(when shift (call-next-method)))

((object musical-object)
shift end expression)

(defmethod propagate-truncating-shift ((object multilateral) shift end expression)
(loop for component in (components object)

do (propagate-truncating-shift component shift end expression)))

(defmethod propagate-truncating-shift ((object collateral) shift end expression)
(propagate-shift (ornament object) shift expression)
(propagate-truncating-shift (main object) shift end expression))

(defmethod propagate-truncating-shift ((object NOTE) shift end expression)
(set-expression object

expression
(save-min (save-+ (fetch-expression object expression) shift) end)))

(defmethod propagate-truncating-shift ((object PAUSE) shift end expression))

• * x *

; propagate-shift

(defmethod propagate-shift :around ((object musical-object) shift expression)
(when shift (call-next-method)))

(defmethod propagate-shift ((object structured) shift expression)
(loop for component in (components object)

do (propagate-shift component shift expression)))

(defmethod propagate-shift ((object basic) shift expression)
(set-expression object

expression
(save-+ (fetch-expression object expression) shift)))

* x X * * * * x *

onset timing
* x x x x * * * x x * x *

(defclass expressive-timing (expression) ())
(defclass onset-timing (expressive-timing) ())
(defclass basic-asynchrony (onset-timing) ())
(defclass basic-tempo (onset-timing) ())

(defclass estimate-onset-timing (onset-timing estimate-mixin) ())

. * H t x x x * * * x x * x x *

; get expressive timing

(defmethod get-expression ((object NOTE) (expression onset-timing))
(perf-onset object))

(defmethod get-expression ((object S) (expression onset-timing))
(get-expression (first (components object)) expression))

(defmethod get-expression ((object P) (expression onset-timing))
(loop for component in (components object)

when (get-expression component expression)
minimize it))

(defmethod get-expression ((object collateral) (expression onset-timing))
(get-expression (main object) expression))

Calculus 53

(defmethod set-expression ((object NOTE) (expression onset-timing) value)
(setf (perf-onset object) value))

(defmethod set-expression ((object S) (expression onset-timing) (section S-section))
(loop for new-expression in (expressions section)

for next-new-expression in (snoc (rest (expressions section))
(next-expression section))

for component in (components object)
do (propagate-interpolated component

(fetch-expression component expression)
new-expression
(fetch-expression (right component) expression)
next-new-expression
expression)))

(defmethod set-expression ((object P) (expression onset-timing) (section P-section))
(loop for new-expression in (expressions section)

for component in (components object)
do (propagate-truncating-shift component

(save— new-expression
(fetch-expression component expression))

(get-next-expression object expression)
expression)))

(defmethod set-expression ((object ACCIA)
(expression onset-timing)
(section ACCIA-section))

(propagate-shift (ornament object)
(save— (ornament-expression section)

(fetch-expression (ornament object) expression))
expression))

.**

; set expressive timing

(defmethod set-expression

(propagate-interpolated

((object APPOG)
(expression onset-timing)
(section APPOG-section))
(ornament object)
(fetch-expression (ornament object) expression)
(ornament-expression section)
(fetch-expression (right (ornament object)) expression)
(main-expression section)
expression))

.**
; scale expressive-timing

(defmethod scale-expression ((section P-section)
(expression basic-asynchrony)
factor)

(if (expressions section)
(make-new-section
section
(scale-P-expression-points (expressions section) factor))

section))

(defmethod scale-expression

(cond ((and (expressions
(seale-S-section-]
((rest (expressions
(scale-S-section->

(t section)))

((section S-section)
(expression basic-tempo)
factor)

section) (next-expression section))
section factor))
section))
section factor))

Calculus 54

(defmethod scale-S-section-] ((section section) factor)
(make-new-section section (scale-S-expression-points

(snoc (score-times section)(score-offset section))
(snoc (expressions section) (next-expression section))
factor)))

(defmethod scale-S-section-> ((section section)
(make-new-section section

(scale-S-expression-points

factor)

(score-times
(expressions
factor)))

section)
section)

(defmethod scale-expression ((section ACCIA-section)
(expression basic-asynchrony) factor)

(make-new-section section
(scale-ACCIA-points (main-expression section)

(ornament-expression section)
factor)))

(defmethod scale-expression ((section APPOG-section) (expression basic-tempo) factor)
(make-new-section section

(scale-APPOG-points (ornament-expression section)
(main-expression section)
(next-expression section)
(score-ornament section)
(score-main section)
(score-offset section)
factor)))

. ** **

(defun scale-P-expression-points (perf-onsets factor)
(let* ((perf-begin (apply jf'min perf-onsets))

(perf-iois (mapcar #'(lambda (onset) (- onset perf-begin)) perf-onsets))
(raw-new-perf-iois (mapcar #' (lambda (perf) (scale-expression-lin perf factor))

perf-iois))
(shift (- (apply #'min raw-new-perf-iois)))
(new-perf-onsets (mapcar #'(lambda (ioi) (+ ioi shift perf-begin))

raw-new-perf-iois)))
new-perf-onsets))

(defun scale-S-expression-points (score-times perf-times factor)
(let* ((perf-iois (mapcar (rest perf-times) perf-times))

(score-iois (mapcar #'- (rest score-times) score-times))
(perf-begin (first perf-times))
(perf-end (last-element perf-times))
(raw-new-perf-iois (mapcar #'(lambda (score perf)

(scale-velocity score perf factor))
score-iois
perf-iois))

(new-perf-iois (normalise raw-new-perf-iois (- perf-end perf-begin)))
(new-perf-times (integrate new-perf-iois perf-begin)))

new-perf-tiraes))

(defun scale-ACCIA-points (main-expression ornament-expression factor)
(let* ((expression-interval (- main-expression ornament-expression))

(new-expression-ornament (- main-expression
(scale-expression-lin expression-interval factor))))

(list new-expression-ornament main-expression)))

Calculus 55

(defun scale-APPOG-points (ornament-expression main-expression next-expression
score-ornament score-main score-end

factor)
(let* ((score-ornament-ioi (- score-main score-ornament))

(expression-ornament-ioi (- main-expression ornament-expression))
(score-main-ioi (- score-end score-main))
(expression-main-ioi (- next-expression main-expression))
(ornament-tempo (/ score-ornament-ioi expression-ornament-ioi))
(main-tempo (/ score-main-ioi expression-main-ioi))
(relative-tempo (/ ornament-tempo main-tempo))
(new-ornament-tempo (* main-tempo (expt relative-tempo factor)))
(new-expression-ornament-ioi (/ score-ornament-ioi new-ornament-tempo))
(new-expression-ornament (- main-expression new-expression-ornament-ioi)))

(list new-expression-ornament main-expression next-expression)))

.**
; expression scale methods

(defun scale-velocity (score perf factor)
"Exponential scaling"
(/ score (expt (/ score perf) factor)

))

(defun scale-expression-lin (perf factor)
"Linear scaling"
(* perf factor))

.***★*★**
; stretch expressive-timing

(defmethod stretch-expression ((section S-section)
(old S-map)
(new S-map)
(expression onset-timing))

(make-new-section
section
(loop for perf-time in (expressions section)

as (score-begin score-end) = (lookup-inverse
collect (if (and score-begin score-end)

(interpolate (lookup-expression old
perf-time
(lookup-expression old
(lookup-expression new
(lookup-expression new

old perf-time)

score-begin)

score-end)
score-begin)
score-end))

perf-time))))

Calculus 56

.★ **★ ********★ **★ ★ **★ **★ ★ *★ *★ ★ **★ ★ **★ ★ *★ ★ *★ ★ *★ ★ ★ ★ ★ *★ ★ ★ *★ ***★ **★ ★ ★ *★ ★ ★ *★ ★ ★ ★ ★ ★ ★ ★ *★ **★ ★ ***★ ★
; mixin to estimate expression in case of absence, by linear inter- or extrapolation
•**

(defclass estimate-mixin () ())

(defmethod fetch-expression ¡around ((object musical-object) (expression estimate-mixin))
(or (get-expression object expression)

(estimate-expression object expression)))

(defmethod fetch-expression ((object null) (expression expression)) nil)

(defmethod fetch-expression ((object musical-object) (expression expression))
(get-expression object expression))

(defmethod get-next-expression ¡around ((object musical-object)
(expression estimate-mixin))

(cond ((call-next-method))
((right object)
(estimate-expression (right object) expression))

(t
(estimate-next-expression object expression))))

(defmethod fetch-onset ¡around ((object musical-object) (expression estimate-mixin))
(fetch-expression object (find-expression 'estimate-onset-timing)))

(defmethod estimate-expression ((object musical-object) (expression expression))
(estimate-context (context-with-expression object expression #'left)

object
(context-with-expression object expression #'right)
expression
t))

(defmethod estimate-next-expression ((object musical-object) (expression expression))
(let* ((left (context-with-expression object expression #'left))

(lefter (and left
(left left)
(context-with-expression (left left) expression #'left))))

(when (and left lefter)
(interpolate (score-onset lefter)

(score-offset object)
(score-onset left)
(get-expression lefter expression)
(get-expression left expression)))))

(defmethod estimate-context (left object right (expression expression) first-try)
(cond ((and left right)

(interpolate (score-onset left)
(score-onset object)
(score-onset right)
(get-expression left expression)
(get-expression right expression)))

((and left (left left) first-try)
(estimate-context (context-with-expression (left left) expression #'left)

object
left
expression nil))

((and right (right right) first-try)
(estimate-context right

object
(context-with-expression (right right) expression #'right)
expression nil))

(t nil)))

(defmethod context-with-expression ((object musical-object)
(expression expression) direction)

(cond ((get-expression object expression)
object)
((funcall direction object)
(context-with-expression (funcall direction object) expression direction))

(t nil)))

Calculus 57

keeping articulation invariant: mixin for expressive timing expression
**

**

(defclass
(defclass
(defclass
(defclass

keep-articulation-mixin () ())
keep-overlap-articulation-mixin
keep-duration-articulation-mixin
keep-proportion-articulation-mixin

(keep-articulation-mixin)())
(keep-articulation-mixin)())
(keep-articulation-mixin)())

(defmethod articulation ((expression keep-overlap-articulation-mixin))
(find-expression 'basic-overlap-articulation))

(defmethod articulation ((expression keep-duration-articulation-mixin))
(find-expression 'basic-duration-articulation))

(defmethod articulation ((expression keep-proportion-articulation-mixin))
(find-expression 'basic-proportion-articulation))

(defmethod set-map :around ((object musical-object)
map
(expression keep-articulation-mixin)
ground)

(when map
(let* ((parts (find-parts object ground))

(articulation-collections
(loop for part in parts

collect (get-notes-expression part (articulation expression)))))
(call-next-method)
(loop for part in parts

for collection in articulation-collections
do (set-notes-expression part (articulation expression) collection))))

object)

-**>r-»r***********************x**********************
; resource for expression instances

(defvar xexpression-instances*)
(setf *expression-instances* nil)
(defvar Xuse-expression-resource*)
(setf *use-expression-resource* t)

(defun find-expression (class)
(or (and *use-expression-resource*

(cdr (assoc class *expression-instances*)))
(make-expression-instance class)))

(defun make-expression-instance (class)
(let ((instance (make-instance class)))
(when *use-expression-resource*

(push (cons class instance) *expression-instances*))
instance))

* * * * * * * x x * x » r *

averaging expression
* * * * * * x x x * x x * x

(defclass averaging-expression-mixin () ())

•* * * * * * * x # * x * x x x *

; get averaging expression

(defmethod get-expression ((object multilateral) (expression averaging-expression-mixin))
(loop for component in (components object)

when (get-expression component expression)
sum it into total
finally (return (/ total (length (components object))))))

(defmethod get-expression ((object collateral) (expression averaging-expression-mixin))
(get-expression (main object) expression))

Calculus 58

(defmethod set-expression ((object multilateral)
(expression averaging-expression-mixin)
(section multilateral-section))

(loop for component in (components object)
for new-expression in (expressions section)
do (propagate-shift component

(save— new-expression
(fetch-expression component expression))

expression)))

(defmethod set-expression ((object collateral)
(expression averaging-expression-mixin)
(section collateral-section))

(propagate-shift (ornament object)
(save— (ornament-expression section)

(fetch-expression (ornament object) expression))
expression))

. ★ ★ * * ★ ★ * ★ * ★ ★ * * * * ★ * * ★ ★ * * ★ * * ★ ★ ★ ★ * ★ ★ ★ * * ★ * * ★ ★ * * * * ★ * * * ★ ★ * * * * ★ * ★ * * * * * * * ★ ★ * * * ★ ★ * * * * * • * * * * * ★ ★ * * * * *

; set averaging expression

•*** ********■******■*★ **★ *****•*★ *•**
; scale averaging expression

(defmethod scale-expression ((section multilateral-section)
(expression averaging-expression-mixin)
factor)

(let* ((mean-expression (mean (expressions section)))
(expression-deviations (mapcar #'(lambda(expression)

(- expression mean-expression))
(expressions section)))

(new-expressions
(mapcar #'(lambda (expression-deviation)

(+ mean-expression
(scale-expression-lin expression-deviation factor)))

expression-deviations)))
(make-new-section section new-expressions)))

(defmethod scale-expression ((section collateral-section)
(expression averaging-expression-mixin)
factor)

(let* ((expression-deviation (- (ornament-expression section)
(main-expression section)))

(new-ornament-expression
(+ (main-expression section)

(scale-expression-lin expression-deviation factor))))
(make-new-section section

(list new-ornament-expression
(main-expression section)))))

-**
; stretch averaging expression

(defmethod stretch-expression ((section S-section)
(old S-map)
(new S-map)
(expression averaging-expression-mixin))

(make-new-section
section
(loop for expression in (expressions section)

for score-time in (score-times section)
as old-expression = (lookup-expression old score-time)
as new-expression = (lookup-expression new score-time)
as stretched-expression = (if (and old-expression new-expression expression)

(+ expression (- new-expression old-expression))
expression)

collect stretched-expression)))

Calculus 59

ARTICULATION
*★ *★ ★ ***★ *★ *******★ ***★ ★ **★ ★ *★ ★ ★ ★ ★ **★ ***★ ★ ★ ★ *★ *★ ★ **★ *★ ★ *****★ **★ ***★ *★ ***★ *★ **★ ★ *★ ★ ★ *★ ★ ★

**

(defclass
(defclass
(defclass
(defclass
(defclass

of fset-t lining
articulation
basic-overlap-articulation
basic-duration-articulation
basic-proportion-articulation

(expressive-timing)())
(offset-timing averaging-expression-mixin)())
(articulation) ())
(articulation) ())
(articulation) ())

(defmethod get-expression ((object NOTE) (expression offset-timing))
(perf-offset object))

(defmethod fetch-onset ((object musical-object) (expression articulation))
(get-expression object (find-expression 'onset-timing)))

.**
; get articulation

(defmethod get-expression ((object NOTE) (expression basic-overlap-articulation))
(when (right object)
(save— (perf-offset object)

(fetch-onset (right object) expression))))

(defmethod get-expression ((object NOTE) (expression basic-duration-articulation))
(- (perf-offset object)

(fetch-onset object expression)))

(defmethod get-expression ((object NOTE) (expression basic-proportion-articulation))
(when (and (fetch-onset object expression)

(right object)
(fetch-onset (right object) expression))

(/ (- (perf-offset object)
(fetch-onset object expression))

(- (fetch-onset (right object) expression)
(fetch-onset object expression)))))

; set articulation

(defmethod set-expression ((object NOTE) (expression basic-overlap-articulation) value)
(when (and (right object) (fetch-onset (right object) expression))
(setf (perf-offset object)

(max (fetch-onset object expression)
(+ (fetch-onset (right object) expression)

value)))))

(defmethod set-expression ((object NOTE) (expression basic-duration-articulation) value)
(setf (perf-offset object)

(+ (fetch-onset object expression)
(max 0 value))))

(defmethod set-expression ((object NOTE)
(expression basic-proportion-articulation) value)

(when (and (right object)(perf-onset (right object)))
(setf (perf-offset object)

(+ (fetch-onset object expression)
(* (- (fetch-onset (right object) expression)

(fetch-onset object expression))
(max 0 value))))))

Calculus 60

; empty expression (to recover only score times)
•★ ★ *★ ★ ★ *★ *★ *★ ★ ★ ★ ★ ★ ★ *★ ★ ★ ★ ★ **★ ★ ★ ★ ★ ★ *★ ★ ★ *★ ★ ★ ★ *★ ★ ★ ****★ *******★ *★ **■*★ ★ ★ ★ *★ *★ ★ ★ ★ ★ ★ ★ **★ ★ *★ *★ ★ **

(defclass empty-expression (expression) ())

(defmethod get-expression ((object musical-object) (expression empty-expression)) nil)

. ★ i t *

; mixing instantiable classes of expression
• ★ i t * * * * * * * * *

(defmacro class-mixer (Srest class-cocktail-pairs)
(list* 'progl t

(loop for tuples on class-cocktail-pairs by #'cdddr
as name = (first tuples)
as doc = (second tuples)
as cocktail = (third tuples)
collect ‘(defclass ,name ,cocktail ()

(:documentation ,doc)))))

Calculus 61

(class-mixer
tempo " "
(basic-tempo)

asynchrony " "
(basic-asynchrony)

estimate-tempo " "
(basic-tempo estimate-mixin)

estimate-asynchrony " "
(basic-asynchrony estimate-mixin)

keep-overlap-articulation-tempo " "
(basic-tempo keep-overlap-articulation-mixin)

keep-duration-articulation-tempo " "
(basic-tempo keep-duration-articulation-mixin)

keep-proportion-articulation-tempo " "
(basic-tempo keep-proportion-articulation-mixin)

keep-overlap-articulation-estimate-tempo " "
(basic-tempo keep-overlap-articulation-mixin estimate-mixin)

keep-duration-articulation-estimate-tempo " "
(basic-tempo keep-duration-articulation-mixin estimate-mixin)

keep-proportion-articulation-estimate-tempo " "
(basic-tempo keep-proportion-articulation-mixin estimate-mixin)

keep-overlap-articulation-asynchrony " "
(basic-asynchrony keep-overlap-articulation-mixin)

keep-duration-articulation-asynchrony " "
(basic-asynchrony keep-duration-articulation-mixin)

keep-proportion-articulation-asynchrony " "
(basic-asynchrony keep-proportion-articulation-mixin)

keep-overlap-articulation-estimate-asynchrony " "
(basic-asynchrony keep-overlap-articulation-mixin estimate-mixin)

keep-duration-articulation-estimate-asynchrony " "
(basic-asynchrony keep-duration-articulation-mixin estimate-mixin)

keep-proportion-articulation-estimate-asynchrony " "
(basic-asynchrony keep-proportion-articulation-mixin estimate-mixin)

overlap-articulation " "
(basic-overlap-articulation)

duration-articulation " "
(basic-duration-articulation)

proportion-articulation " "
(basic-proportion-articulation)

estimate-overlap-articulation " "
(basic-overlap-articulation estimate-mixin)

estimate-duration-articulation " "
(basic-duration-articulation estimate-mixin)

estimate-proportion-articulation " "
(basic-proportion-articulation estimate-mixin)]

Calculus 62

. ★ H r * * * * * * * * * * * * * * * * * * *

; EXTRACTING AND IMPOSING EXPRESSION MAPS OF MUSICAL OBJECTS USING EXPRESSION
. ★ * ★ * ★ * * * * ★ ★ ★ ★ ★ ★ ★ ★ * ★ * * ★ * ★ * ★ ★ * ★ * * * * ★ * ★ * * ★ ★ ★ ★ ★ ★ * * ★ * * * ★ * * * * * * * * ★ ★ * * * * * ★ ★ ★ * * * * * ★ ★ * * ★ * * ★ * ★ * ★ * *

• ★ H r

; extracting a expression map

(defmethod get-map ((object musical-object) expression ground)
(make-map (loop for part in (find-parts object ground)

collect (get-section part expression))))

(defmethod get-section ((object musical-object) expression)
(make-section (object-to-section object)

(snoc (mapcar #'score-onset (components object))
(score-offset object))

(snoc (mapcar #’(lambda (component)
(fetch-expression component expression))

(components object))
(get-next-expression object expression))))

.***
; impose a expression map

(defmethod set-map ((object musical-objeer) map expression ground)
(loop for part in (find-parts object ground)

for section in (sections map)
do (set-expression part expression section))

object)

Calculus 63

.**
-**
; OPERATIONS ON EXPRESSION MAPS
.**
-**^***

; scale expression map

(defmethod scale-map ((map map) expression factor)
(with-filtered-null-expression #'(lambda (filtered-map)

(scale-filtered-map filtered-map expression factor))
map))

(defmethod scale-filtered-map ((map map) expression factor)
(map-map #'(lambda (section)

(scale-expression section
expression
(get-parameter factor (score-onset section))))

map))

.**
; interpolate S-expression maps

(defmethod interpolate-maps ((mapl S-map) (map2 S-map) factor)
(map-map #'(lambda (section) (interpolate-section section

(filter-null-expression map2)
factor))

mapl))

(defmethod interpolate-section ((section S-section) (map S-map) factor)
(make-new-section
section
(loop for score-time in (score-times section)

for expression in (expressions section)
collect (in-between expression

(lookup-expression map score-time)
(get-parameter factor score-time)))))

(defmethod monotonise-map ((map S-map))
(map-map #'monotonise-section map))

(defmethod monotonise-section ((section S-section))
(make-new-section
section
(loop for expression in (expressions section)

when expression
maximize expression into state
and collect state
else collect nil)))

.**»*****
; get S-expression maps at sync points

(defmethod get-sync-map ((mapl S-map) (map2 S-map))
(map-map #' (lambda (section) (get-sync-section section map2)) mapl))

(defmethod. get-sync-section ((section S-section) (map S-map))
(make-new-section-from-pairs section
(loop for score-time in (all-score-times section)

for expression in (all-expressions section)
as new-expression = (and expression

(lookup-defined-expression map score-time))
when new-expression collect (list score-time expression))))

Calculus 64

•★ it*
; stretch expression map

(defmethod stretch-map ((map successive-map)
(old successive-map)
(new successive-map)
expression)

(let ((filtered-map (filter-null-expression map))
(filtered-old (filter-null-expression old))
(filtered-new (filter-null-expression new))
(removed (filter-null-expression-out map)))

(unfilter-null-expression
(map-map
#'(lambda (section)

(stretch-expression section filtered-old filtered-new expression))
filtered-map)

removed)))

★ ★ ★ **★ ★ *★ *★ ★ ★ *★ **•*★ ★ **★ **★ ★ ★ **★ **★ *★ ★ ★ ★ *★ ★ *****★ ★ ★ ****★ ****★ *****★ ★ *★ ★ ***********★
★ ***★ ★ ★ ***★ **★ *★ ***★ *★ *★ *★ *★ *****★ ***★ *****★ *★ ■ ***★ *************★ **********★ ******★ ******

TIME-CHANGING PARAMETERS

*★ **★ *★ ****★ *****★ ★ **********★ ★ *★ ********★ ■*★ *★ ★ **********★ ****■*★ ***★ *■★ ***•*****★ **■*■***■*★ *

(defun get-parameter (factor score-time)
(if (numberp factor)
factor
(funcall factor score-time)))

(defun make-ramp (xl x2 yl y2) ; as s-section ??
#*(lambda (x) (interpolate xl x x2 yl y2)))

Calculus 65

.★ it***********************

. *****★ ★ *★ ★ ★ **★ ★ ★ ★ ★ ★ **★ ★ ★ ★ ★ ***★ ******★ *★ **★ ★ *★ *★ ★ ★ ****★ *★ **★ **★ ★ ★ ★ ***★ ***★ *★ ★ *****★ **★ *★ *
; TRANSFORMATIONS ON MUSICAL OBJECTS
. ★ i t * * * * *

; transfer expression transformation

(defmethod transfer ((object musical-object) expression foreground background)
(let* ((foreground-map (get-map object expression foreground))

(background-map (get-map object (find-expression 1 empty-expression) background))
(new-background-map (interpolate-maps background-map foreground-map 1)))

(set-map object new-background-map expression background))
object)

•**
; scale expression transformation

(defmethod scale ((object musical-object) expression foreground background factor)
(let* ((old-foreground-map (get-map object expression foreground))

(new-foreground-map (when old-foreground-map
(scale-map old-foreground-map expression factor)))

(when background
(get-map object expression background)))

(when old-background-map
(stretch-map old-background-map

old-foreground-map
new-foreground-map
expression))))

(old-background-map

(new-background-map

(when new-foreground-map
(set-map object new-foreground-map expression foreground))

(when new-background-map
(set-map object new-background-map expression background)))

object)

- ★ « ★ »irKrxTrTr***

; scale intervoice expression transformation

(defmethod scale-intervoice ((object musical-object) expression
voicel voice2 factor ref)

(let* ((mapl (get-map object expression voicel))
(map2 (get-map object expression vcice2)))

(when (and mapl map2)
(let* ((original-sync-mapl (get-sync-map mapl map2))

(original-sync-map2 (get-sync-map map2 mapl))
(new-sync-mapl (monotonise-map (interpolate-maps

original-sync-mapl
original-sync-map2
(* ref (- 1 factor)))))

(new-sync-map2 (monotoni se-m.ap (interpolate-maps
original-sync-map2
original-sync-mapl
(* (- 1 ref) (- 1 factor)))))

(new-mapl

(new-map2

(set-map object
(set-map object

object))

(stretch-map
mapl original-sync-m.apl new-sync-mapl
(stretch-map
map2 original-sync-map2 new-sync-map2
new-mapl expression voicel)
new-map2 expression voice2)))

expression))

expression)))

Calculus 66

**
t***

LISP UTILITIES
**
**

(defun last-element (list)
(first (last list)))

(defun snoc (list item)
(append list (list item)))

(defun mean (numbers)
(/ (apply #'+ numbers) (length numbers)))

(defun save-min (Srest list)
(let ((new-list (remove nil list)))

(and new-list (apply (t'min new-list))))

(defun save-max (Srest list)
(let ((new-list (remove nil list)))
(and new-list (apply I'max new-list))))

(defun save— (Srest list)
(and (notany #'null list)

(apply #'- list)))

(defun save-+ (Srest list)
(apply #'+ (remove nil list)))

(defun enforce-limits (minimum x maximum)
(max minimum (min x maximum)))

(defun integrate (list start)
(if (null list)
(list start)
(cons start

(integrate (rest list) (+ (first list) start)))))

(defun normalise (list dur)
(let ((factor (/ dur (apply #'+ list))))

(mapcar #'(lambda(item)(* factor item)) list)))

(defun interpolate (xl x x2 yl y2)
(cond ((eql yl y2) yD

<(eql xl x2) nil)
<(null x) nil)
((and xl (= x xl)) yl)
t(and x2 (= x x2)) y2)
<(and xl x2)
(in-between yl y2 (/

<t nil)))

(defun in-between (yl y2 a)
(cond ((= a 0) yl)

((= a 1) y2)
((and yl y2)
(+ yl (* a (- y2 yl)))

(t nil)))

x xl) (- x2 xl))))

Calculus 67

.**★★****★★★*★*★★★*★★****★*********★*****★**★★***★*★*★*****★★**★★*★★*******★****★★***★*★★

.*★★**★★★★★*★★★★*★★★★*★★★★★***★★★★★★★★★★**★***★*★*★★**★★★★★*★*★★★**★***★★*****★**********
; EXAMPLES
.★ *★ *****★ ★ *★ **★ ★ *★ ★ ★ ★ ★ ★ *★ *★ *★ ★ **★ ****★ ***★ ★ ****★ ★ *★ *★ ***★ ★ ★ ***★ *★ ★ *★ ★ ★ *★ *★ ******★ ★ ★ ★ *★ **
. ★ **★ *****★ **★ ★ ***★ ★ ★ *★ *★ ★ **★ **★ *★ ★ *★ ***********★ ★ *★ ★ **★ ****★ ★ ***************************
#1

(defun metre-example ()
(S 'bars

(P 'bar
(S 'melody

(PAUSE :name 'pause : score-dur 1/4)
(NOTE :name 64 : score-dur 1/8

:perf-onset .30 :perf-offset 0.5 îdynamic .7))
(S 'accompaniment

(PAUSE :name 'pause :score-dur 3/8)))
(P 'bar

(S 'melody
(APPOG 'appoggiatura

(NOTE :name 64 : score-dur 1/8
:perf-onset .550 :perf-offset .680 îdynamic .75)

(NOTE :name 55 : score-dur 1/4
:perf-onset .675 :perf-offset 1.133 îdynamic .7))

(NOTE :name 55 : score-dur 1/8
:perf-onset 1.125 rperf-offset 1.475 îdynamic .7))

(S 'accompagniment
(NOTE îname 38 îscore-dur 1/8

îperf-onset .725 îperf-offset .90 îdynamic .6)
(NOTE îname 43 îscore-dur 1/8

îperf-onset .95 îperf-offset 1.2 îdynamic .6)
(NOTE îname 47 îscore-dur 1/8

îperf-onset 1.150 îperf-offset 1.475 îdynamic .7)))
(P 'bar

(S 'melody
(ACCIA 'acciaccatura

(NOTE îname 59 îscore-dur 1/16
îperf-onset 1.600 îperf-offset 1.7 îdynamic .65)

(NOTE îname 57 îscore-dur 1/8
îperf-onset 1.625 îperf-offset 1.880 îdynamic .7))

(NOTE marne 55 îscore-dur 1/8
îperf-onset 1.880 îperf-offset 2.256 îdynamic .6)

(NOTE marne 57 : score-dur 1/8
îperf-onset 2.256 îperf-offset 2.647 îdynamic .65))

(S 'accompagniment
(P 'chord

(NOTE :nane 38 : score-dur 3/8
:perf-onset 1.725 :perf-offset 2.500 î dynamic .7)

(NOTE :nase 42 : score-dur 3/8
:perf-onset 1.775 :perf-offset 2.500 îdynamic . 65)

(NOTE : nace 4 8 : score-dur 3/8
:perf-onset 1.800 :perf-offset 2.500 îdynamic -7))))

(P 'bar
(S 'melody

(NOTE marne 55 îscore-dur 3/8
îperf-onset 2.425 îperf-offset 4 îdynamic .7))

(S 'accompagniment
(P 'chord

(NOTE :nair.e 43 : score-dur 3/8
:perf-onset 2.500 :perf-offset 4 : dynamic .6)

(NOTE :name 47 : score-dur 3/8
:perf-onset 2.550 :perf-offset 4 : dynamic .7)

(NOTE :name 50 :score-dur 3/8
:perf-onset 2.580 :perf-offset 4..5 îdynamic .65))))))

Calculus 68

(defun background-example {)
(P 'fragment

(S 'melody
(PAUSE :name 'pause :score-dur 1/4)
(NOTE :name 64 :score-dur 1/8

:perf-onset 0.3 :perf-offset 0.5 rdynamic .7)
(APPOG 'appoggiatura

(NOTE : name 64 :score-dur 1/8
:perf-onset .550 :perf-offset .680 rdynamic .75)

(NOTE rname 55 :score-dur 1/4
rperf-onset .675 rperf-offset 1.133 rdynamic .7))

(NOTE rname 55 rscore-dur 1/8
rperf-onset 1.125 rperf-offset 1.475 rdynamic .7)

(ACCIA 'acciaccatura
(NOTE rname 59 rscore-dur 1/16

rperf-onset 1.600 rperf-offset 1.700 rdynamic .65)
(NOTE rname 57 rscore-dur 1/8

rperf-onset 1.625 rperf-offset 1.880 rdynamic .7))
(NOTE rname 55 rscore-dur 1/8

rperf-onset 1.880 rperf-offset 2.256 rdynamic .6)
(NOTE rname 57 rscore-dur 1/8

rperf-onset 2.256 rperf-offset 2.647 rdynamic .65)
(NOTE rname 55 rscore-dur 3/8

rperf-onset 2.425 rperf-offset 4 rdynamic .7))
(S 'accompagniment

(PAUSE rname 'pause rscore-dur 3/8)
(NOTE rname 38 rscore-dur 1/8

rperf-onset .725 rperf-offset .90 rdynamic .6)
(NOTE rname 43 rscore-dur 1/8

rperf-onset .950 rperf-offset 1.2 rdynamic .6)
(NOTE rname 47 rscore-dur 1/8

rperf-onset 1.150 rperf-offset 1.475 rdynamic .7)
(P 'chord

(P

(NOTE rname 38 rscore-dur 3/8
rperf-onset 1.725 rperf-offset

(NOTE rname 42 rscore-dur 3/8
rperf-onset 1.775 rperf-offset

(NOTE rname 48 rscore-dur 3/8
rperf-onset 1.800 rperf-offset

'chord
(NOTE rname 43 rscore-dur 3/8

rperf-onset 2.500 rperf-offset
(NOTE rname 47 rscore-dur 3/8

rperf-onset 2.550 rperf-offset
(NOTE rname 50 rscore-dur 3/8

rperf-onset 2.580 rperf-offset

2.500 rdynamic .7)

2.500 rdynamic .65)

2.500 rdynamic .7))

4 rdynamic .6)

4 rdynamic .7)

4.5 rdynamic .65)))))

;data at factor 2 in figure 13
(scale (metre-example)

(find-expression 'tempo) (has-name? 'bars) nil
2)

;data at factor 2 in figure 14
(scale (metre-example)

(find-expression 'asynchrony) (has-name? 'bar) nil
2)

/data at factor 2 in figure 16a
(scale (background-example)

(find-expression 'tempo) (has-name? 'melody) nil
2)

/data at factor 2 in figure 16b
(scale (background-example)

(find-expression 'tempo) (has-name? 'melody) (has-name? 'accompaniment)
2)

Calculus 69

