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Abstract

A model for the propagation of ultrasonic pulses in fluids using 
a conventional circular transducer is discussed, and it is shown that 
diffraction effects limit the range and lateral resolution of such 
pulse-echo systems. The variation in amplitude and shape of the echo 
responses which result, can make interpretation of the results 
difficult.

The diffraction effects are explained in terms of a model which 
sees a circular transducer as a piston source radiating a direct plane 
wave in the geometric region straight ahead of the source, together 
with diffracted toroidal waves from the edge of the source.

An impulse response method is used to make calculations of the 
echo waveforms reflected from point targets. The forms of the echo 
responses are used to demonstrate the effects of diffraction on the 
overall resolution of the transducer. The impulse response method is 
extended so that the echo response from any arbitrary geometry 
targets, including non-planar, can be modelled.

New high-resolution transducers are designed to overcome some of 
the limitations due to the diffraction effects, by radiating either 
solely plane waves, or solely edge waves, in a non-uniform manner 
across the transducer’s surface. The results show that such non- 
uniformly excited transducers have both improved resolution and 
simpler field structures than conventional transducers.
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1 INTRODUCTION

Ultrasonic pulse-echo techniques are widely used as a means of 

quality control of products as well as in-service inspection of 

machinery. In medicine, ultrasound is used to image bodily organs. 

These applications of non-destructive evaluation (NDE) require 

transducers of high quality to transmit and receive pulses of 

ultrasound.

The target resolution of the transducer being used must be high 

enough to discriminate between two targets which are close together. 

By "resolution", two types of resolution are actually meant: range 

resolution and lateral resolution, which refer to the transducer’s 

discrimination ability either along, or perpendicular to, the 

transducer’s axis, respectively. Conventional transducers suffer from 

both poor range resolution, and poor lateral resolution, as will be 

explained later. If the ultrasonic pulses are continuous waves (cw) 

then variations in amplitude occur throughout the field due to 

diffraction effects. Ultrasonic techniques now require shorter pulses 

to be emitted, in order to improve the range resolution. Whereas with 

cw, the diffraction effects could be explained using classic, steady- 

state cw theory, with short pulses this is no longer true. Impulse 

response methods have recently been developed, which provide a general 

theory for arbitrary motion of the transducer. This theory forms the 

basis of all the modelling work described in this thesis.

A prerequisite of good range resolution is for the transducer to 

be able to emit short pulses, ie. it must be a wideband device. An 

added advantage of using a wideband transducer is that it makes 

measuring frequency dependent effects such as attenuation easier. This

13



is because the frequency spectrum of the received signal can be 

instantly displayed on a spectrum analyser. Changing the conditions 

under test produces an instant change in the frequency spectrum. In 

most systems it is the transducer which limits the bandwidth.

New types of non-uniformly excited transducers have been 

developed which reduce the diffraction effects and so improve both the 

range resolution and lateral resolution.

This thesis describes my part of the work of an on-going research 

group. My work was to provide computer models of various transducer 

and target configurations based on the impulse response method, so 

that improved transducers could be designed. It fell to my colleagues, 

Dr. R. Brittain, to produce the new transducers, and Dr. S. McLaren, 

to compare their performance with my predicted results. The impulse 

response method is reviewed and it is shown how it is used to model 

the behaviour of conventional transducers interrogating point targets 

in fluids. The impulse response method is extended to cater for non- 

uniformly excited types of transducer, and also to allow for larger 

planar (flat-faced) targets. A simple extension to the model is 

introduced, to enable targets with non-planar (pointed) faces to be 

included in the modelling.

Chapter 2 starts by describing the theory of continuous and 

pulsed wave propagation in fluids for point targets in terms of plane 

and edge waves, and the impulse response method is introduced. The 

theory for finite-sized targets on the axis of a transducer is also 

described, and its extension for off-axis targets is presented. There 

then follows a section on the construction of the transducers 

described, in terms of radiating plane waves only or edge waves only,

14



and the non-uniform relationship between range and time which exists 

for edge-wave-only transducers. Chapter 2 finishes with two sections 

on the application of the fluid model to solids, and computational 

me t h o d s .

The results section, chapter 3, is essentially divided into three 

parts. The first part contains computed results from the modelling, 

assuming ideal conditions. The second part contains experimental 

results and computed results obtained for the purpose of comparison. 

The third part shows B-scan images of some test targets, included to 

show how transducers perform under more realistic testing situations.

Chapters 4 and 5 discuss the results and some conclusions are 

drawn, and then chapter 6 describes how this work could be extended in 

future.
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2 Theory

2.1 Continuous-wave propagation in fluids

There is a wide body of literature (for example Rayleigh, 1896, 

chapters 11 and 14, and Hunter, 1957, chapter 4) which deals with the 

theory of propagation of acoustic waves. The waves in question are 

mostly treated as being simple harmonic waves, or continuous waves 

extending to infinity.

The usual mathematical simplification is used, whereby 

irrotational vector quantities are expressed as the gradient of a 

single scalar potential, which is then differentiated to produce the 

vector components. Thus the vector particle velocity v is given in 

terms of a velocity potential 0:-

v = — V0 . (2.1.1)

The instantaneous pressure at a point in the field is then given by:-

30
P(r,t) = P —  . (2.1.2)

at

where p is the density of the medium. The velocity potential 0 is the 

solution of the wave equation:-

i a2 0
V2 0 — ------- . (2.1.3)

c2 a t2

Rayleigh (1896) showed that a solution of eqn. (2.1.3) for the case of 

a perfectly rigid piston source in an infinite baffle is:-

1 p ds
0 = ---  u (t ) —  ,

2tt J g r
(2.1.4)

where r is the point in the field, S is the source surface, c 

is the speed of sound in the medium, and u(t) = ~ r/ c  ̂ is the
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velocity of the source. This equation has become known as the Rayleigh 

integral.

Other assumptions that Rayleigh used to obtain eqn. (2.1.4) are 

that the fluid medium is homogeneous, there is no vortex motion, 

displacements are small, and that there is no net loss or gain of 

fluid in the given volume.

Physically, the Rayleigh integral represents Huygens' principle, 

which says that each point on the source acts as a tiny point source 

contributing a hemispherical wave. The field at an arbitrary point is 

given by the superposition of these waves.

As is the case for optical diffraction, the cw sound field is 

divided into two regions. The near-field region (Fresnel region) is 

characterised by interference effects which give rise to large 

amplitude changes. The far-field region (Fraunhofer region) is 

smoother and more uniform.

In general, eqn. (2.1.4) can only be integrated analytically for 

a few special cases. For instance, on the axis of a circular source 

excited by cw (figure (2.1.1a)), eqn. (2.1.4) can be solved (Hunter, 

1957 and Kinsler and Frey, 1962) to obtain the intensity, and hence 

pressure distribution, which is of the form:-

P = Pmax sin  ̂ ( t t / X )  (^(a2 + z2 ) - z) j , (2.1.5)

where a is the source radius, X is the wavelength of the sound and z 

is the axial distance from the source. This is shown plotted in 

figure (2.1.1b). A simple derivation using the existence of plane and 

edge waves will be shown later, in section 2.4.

Off-axis, in the far-field, it can be shown (Kinsler and Frey,

17



1962) that the pressure varies with angle from the centre of the

source in the form of a Bessel function:-

P max
J1 (x) 

x
(2 .1 .6 )

wherex = ka sin(0), k = 2-n/X , and 0 is the angle subtended at the 

transducer's centre.

As mentioned above, integral expressions for velocity potential 

(and hence pressure) such as eqn. (2.1.A) cannot be integrated 

analytically. By using suitable approximations such as assuming the 

source is much larger than the wavelength of the sound, and the 

position of the point of interest is further away than the size of the 

source, numerical solutions to these equations can be made. Because of 

the assumptions made, such solutions are only valid in the far-field 

of the source.

Zemanek (1971) has shown that it is possible to numerically 

integrate such equations without approximations, to obtain numerical 

values for the pressure, which are valid in both the near- and far- 

field.

18



ma
x

Axial range/a

Figure (2.1.1): a: Geometry of a circular source emitting cw.
b: Axial pressure distribution for same source (a= 1 0 X ).
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Plane- and edge-wave modelOL OL

Pursuing the optical analogy, the diffraction theory of Thomas 

Young (1802) explains diffraction fringes as being produced by the 

interaction of a diverging wave from the edge of the aperture (an edge 

wave) and the direct wave from the middle of the aperture.

Dehn (1960) shows how Schoch separated the Rayleigh integral into 

two parts. One of these has the form of a plane wave, while the other 

depends on the distance from the piston edge, and is called the 

disturbing, or edge wave.

Dehn discusses how radiation from a circular source can be 

represented by three 'rays’ passing through the field point. One 

proceeds perpendicularly from the piston face (the "plane wave" 

contribution), and one from each of the extreme edge points (the "edge 

wave" contribution). With cw excitation of the source, these rays

interfere with one another to produce the amplitude fluctuations

described by eqns . (2.1 .5) and (2.1.6). In the geometric region

straight ahead of the source, all three ray s interfere with one

another, producing a complicated field structure. Outside the 

geometric region, only the two edge rays can interfere with each 

other, forming side lobes. In the near field, the path difference 

between the rays can be several wavelengths, so there are rapid 

changes of amplitude with field point position. The fluctuations are 

less rapid in the far field because the path differences change more 

slowly with range than in the near field. Experimental confirmation of 

this has been shown by Weight and Restori (1986), using a stroboscopic 

schlieren system to visualise pulses propagating in water 

(Hayman. 1977).
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2 . 3 Pulsed wave propagation in fluids

With continuous wave propagation, we are concerned with the 

steady-state distribution of the field. With pulsed wave propagation 

other factors are also of interest such as short pulse length and 

pulse shape.

In order to obtain the full transient solution giving the time 

waveforms of pressure at any point in the field, it is necessary to 

solve Rayleigh’s integral, eqn. (2.1.4) in terms of an arbitrary 

motion of the source. As Rayleigh has treated the case for harmonic 

motion of the source, due to the Fourier theorem, Rayleigh's results 

can also be used for arbitrary motion of the source. This can be done 

in theory by harmonic synthesis from the steady-state continuous wave 

solution - if there is one.

Beaver (1971) has shown that it is possible to numerically 

integrate the Rayleigh integral, for arbitrary motion of the source. 

Such techniques have since led to the development of an impulse 

response method most prominently by Stepanishen (1971a, 1971b), which 

allows the Rayleigh integral to be solved for an impulsive source 

motion, and this result is then convolved with the actual motion of 

the source to obtain the pressure waveform. This is explained more 

fully in the next section.

Detailed numerical calculations of a source radiating a short 

pulse into a fluid will be shown in section 3.1.3.
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2,4 Impulse response method

Impulse response methods have been developed (Stepanishen, 1971b) 

whereby the pressure due to an impulsive motion of the source can be 

calculated. This has the advantage that the theory of linear (time 

invariant) systems may be used, the pressure due to an arbitrary 

transducer motion being obtained by convolution.

The Rayleigh integral of eqn. (2.1.4) can be written in the 

form:-

0 ( r , t )
°S 2-nr

ds , (2.4.1)

where r is the point in the field, S is the source surface, and 

un (r,t) is the (arbitrary) motion of the source, normal to the source 

surface.

The pressure is then given by:-

P(r.t) n
at 27rr

ds

If the source velocity is expressed as:-

(r , t ) = u(t - r / c ) , 

or as a convolution integral:-

(2.4.2)

(2.4.3)

oo

un ( r , t )  = J  u (t ) <5(t -  r / c  -  r )  dr ,
—  oo

(2.4.4)

where 6(t - r/c - r) represents a delta function, and r the dummy 

integration variable of the convolution, then eqn. (2.4.1) becomes:-

22



oo
<5(t - r/c - t )

0(r,t)
J
u (r)

l
— oo u s 2ttt

ds dr . (2.4.5)

As this is in the form of a convolution integral, it can be simplified

as : -

0(r,t) = u(t) * t) , (2.4.6)

where

0i (r ,t)
U S

<5(t - r/c)
---------- ds ,

2rrr
(2.4.7)

and the symbol denotes the convolution operation. Eqn. (2.4.7) 

represents the velocity potential impulse response due to an impulsive 

motion of the source. 0.(r,t) has been expressed simply by 

Stepanishen (1971b):-

0i (r,t) = cQ/ 2 tt . (2.4.8)

Q represents the angle of the equidistant circular arc which is 

projected from the field point on to the source surface, as shown in 

figure (2.4.1). This circular arc passes through all points on the 

source surface which are at an equal distance ct from the field point, 

il is therefore proportional to the length of the arc which actually 

lies on the source surface. Hence to calculate the velocity potential 

impulse response, 0^(r,t) at an arbitrary field point position and 

time, a simple geometric expression can be used. An analytic 

expression (in cylindrical co-ordinates) for ft was first given by 

Miles (1953), although Oberhettinger (1963) and Stepanishen (1971b) 

have also derived expressions in cartesian co-ordinates, and these are 

conveniently tabulated by Robinson et. al. (1974):-
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X

k

b- Z

Figure (2.4.1): Geometry of a circular source and a point target at an 
arbitrary position in the field.
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Figure (2.4.2) shows graphical solutions for the velocity 

potential, for a transducer undergoing an impulsive motion. On axis, 

figure (2.4.2a), the projection of the field point is at the centre of 

the transducer. At time t , (the time it takes for the wave from the 

centre of the transducer to reach the field point) the velocity 

potential impulse response jumps up to a maximum value. At successive 

time intervals, because the arcs are all complete circles, the 

velocity potential impulse response remains constant. At time t (the 

time from the edge of the transducer to the field point) the arcs 

suddenly become zero, because they are outside the transducer's 

geometric region. Thus the velocity potential impulse response also 

drops to zero.

When the field point is slightly off-axis of the transducer 

(figure (2.4.2b)), the velocity potential impulse response again jumps 

up to a maximum value at time t . However at time t (the nearer edge 

time) the circular arcs begin to go outside the transducer's geometric 

region, and so the velocity potential impulse response begins to fall. 

It falls quite suddenly at first, then slower and finally faster as it 

approaches time t (the farther edge time), after which it is zero.

Outside the transducer's geometric region (figure (2.4.2c)), 

there is no velocity potential impulse response until time t (the 

nearer edge time). The arcs are never complete circles, so the 

velocity potential impulse response only rises to a small maximum. It 

then falls as it approaches time t (the farther edge time) and is 

zero afterwards.

Note that the exact form of the velocity potential impulse 

response curve is given by eqn. (2.4.10).
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The pressure impulse response is obtained by differentiating

e q n . (2.4.7):-

P ----
a t

3 0 ^ (r, t )
(2.4.11)

From Robinson, eqn. (2.4.11) can be expressed directly:

(2.4.12)

To get the pressure waveform radiated by the transducer, the pressure 

impulse response is convolved with the transducer velocity:-

The form of the pressure wave is best described with the aid of 

figure (2.4.2). On axis (figure (2.4.2a)), the velocity potential 

impulse response has a "top hat" shape. When differentiated, the 

leading and trailing edges of the velocity potential impulse response 

produce positive and negative delta functions in the pressure impulse 

response. When this is convolved with the transducer source velocity 

(a single cycle of a sine wave for simplicity), both delta functions 

produce a replica pulse of the source velocity. The first pulse 

represents the wave travelling from the front face of the transducer - 

the plane wave. The second pulse (of opposite phase) represents the 

two waves travelling from each edge of the source and arriving 

together. The time difference between the two pulses is equal to the 

extra time the waves from the edge take to reach the field point.

Off axis, but still within the straight-ahead geometric region of 

the transducer, figure (2.4.2b) the velocity potential impulse

P ( r , t ) = u ( t ) * P ̂ ( _r, t ) , (2.4.13)

= u(t) * p
3 0 ^ (r,t ) (2.4.14)
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response falls off in time. When differentiated to produce the 

pressure impulse response, the positive delta function is still 

present, but the negative delta function has been replaced by two 

smaller negative pulses. After convolution, they produce the plane 

wave as before, and also two distorted and inverted replicas of the 

source velocity. The latter pulses represent waves travelling from the 

nearest and furthest edges. Again, the path differences between the 

waves correspond to the time differences between the pulses.

Further off axis, now outside the transducer's geometric region, 

(figure (2.4.2c)) the situation is as above, except there is no plane 

wave, and the edge waves are more spread out in time.
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Figure (2.4.2): Graphical derivation of the velocity potential impulse
response 0£ for a circular source, and hence the pressure 
impulse response P^, which is convolved with the motion of 
the source u(t) to obtain the pressure waveform P. 
a: field point on-axis,
b: field point off-axis, but within the geometric region, 
c: field point off-axis, but outside the geometric region.



To show the generality of the impulse response method, it is 

possible to obtain an expression for the pressure along the axis of a 

circular source (eqn. (2.1.5)). Note that this equation is valid only 

for the cw case.

On-axis, figure (2.4.2a), the expression for the pressure 

impulse response can be written in terms of two delta functions; the 

first due to the plane-wave contribution, and the second due to the 

edge-wave contribution:-

P^ir.t) = pc(<5(t) - <5 (t - r)) . (2.4.15)

6(t - t ) represents the edge wave component which has a time 

difference r from the plane wave component <5(t). The time difference r 

is given by (</(a2 + z2 } - z)/c. In the frequency domain, 

eqn. (2.4.15) becomes:-

P^ir.w) = pc J (<5(t) - <5 (t - r) ) e dt , (2.4.16)

or for convenience, making P^(r.,<y) an odd function by shifting the 

time origin:-

Pi (r,<w) = pc J (<5{t + r / 2 ) - <5 (t - r / 2 )) dt (2.4.17)

- pc J <5 (t + t /2) e -*CJt dt - pc J <5 (t - t /2) e dt . (2.4.18)

30



Since

/  f(t) <5(t - r) dt = f(r) , (2.4.19)

eqn. (2.4.18) becomes:-

pi = Pc ej“T/2 _ pQ e-jur/2

jur/2 _ -jax/2.= pc (e 

= Pc 2j sin

Taking the modulus of the pressure:

CJT

2

| (x ,cj) | = 2pc sin f __ 1 ,L 2 J

(2.4.20)

(2.4.21)

(2.4.22)

(2.4.23)

and substituting for r:-

Ip f(£.w )I = 2pc sin —  (/(a2 + z2 )
2c

(2.4.24)

or, since « = 2ttc/X

lPi U . " ) |  = 2Pc sin [ (tt/X) (/{a2 + z2 ) - z) J . (2.4.25)

This is the same form as eqn. (2.1.5), showing that the plane and edge 

wave model gives the same result as for cw (section 2.1).
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2.5 Transmit-receive mode

Weight and Hayman (1978) showed that the impulse response method 

of section 2.4 can be extended to cover reflections from a point 

target, with the transducer in transrait-receive mode. .

Treating the target as if it were a tiny spherical source 

emitting a spherical wave, the velocity potential back at the 

transducer is given by:-

(r.t) = --- u'(t - r/c) . (2.5.1)
4nr

where u (t - r/c) is the velocity of the spherical wave, and q is the 

source strength.

The pressure impulse response back at the transducer is given by 

e q n . (2.4.7):—

• , 3 * ; (r.t)
( r . t )  = — i ----------  .

a t
(2.5.2)

The pressure wave at the transducer is given by eqn. (2.4.13):-

P (r,t) = u (t) * Pjir.t) . (2.5.3)

The output voltage from the transducer is proportional to the 

pressure:-

■(t) = K f p!(r.t)J s i ds ,
(2.5.4)

3*.; (r, t )
P ------- ds ,

a t
(2.5.5)

u (t - r/c) 

47Tr
ds . (2.5.6)

Eqn. (2.5.6) can be written in a form similar to eqn. (2.1.4):-
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e ( t )

S

U ( t  -  x_/c )
----------- ds ,

2nr
(2.5.7)

Kq
—  P
2

Ò

St

— u (t ) » ei (t) , (2.5.8)

Kq ,
where e ■ (t ) = —  P - (r ,t) .

1 2 1 ~

If we now assume that the target is an ideal reflector, with a 

reflection coefficient of -1, then the reflector can be treated as if

r

it were a point source, with velocity u (t) = - P(_r,t)/pc and

l
pressure impulse response P^(r,t) = P^(r,t).

The electrical output of the transducer becomes (from eqn. (2.5.8)):-

e ( t )
P(r.t) Kq

-1

pc

* —  P • ( r ,t)
pc L 2 1 —

-,
[ Kq

u ( t ) * Pi(r.t) *
2

P ± (r ,t)

(2.5.9)

(2.5.10)

-Kq r -,
--- u(t) * P-(r,t) * P.(r,t) . (2.5.11)
2pC L 1 1 ~ J

The double convolution in eqn . (2.5.11) means that transmit-

receive echo waveforms look very different from their pressure

counterparts. This is illustrated in figure (2 .5.1) which shows a

graphical derivation of the transmit-receive echo waveforms. This 

should be contrasted with the graphical derivation of the pressure 

waveforms, shown in figure (2.9.2). On axis, the pressure waveform 

consists of two pulses (figure (2.9.2a)), whereas the transmit-receive 

echo waveform consists of three pulses (figure (2.5.1a)). The reason
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that the transmit-receive echo waveforms are a different shape is as 

follows. The point target (on axis (figure (2.5.1a)) for simplicity) 

which reflects the incident pressure waveform, can be regarded as 

being the source of two spherical waves - one due to the incident 

pressure plane wave, and the other due to the (coincident) pressure 

edge waves, with a time delay between the plane and edge waves due to 

the increased path the edge waves must travel to reach the target.

The plane wave is reflected straight back to the transducer's 

centre first. After a short interval, the same wave reaches the 

transducer's edges. During this time, the average pressure on the 

transducer's surface is zero. This is because as the spherical wave 

expands, the point of contact between the wave and the transducer's 

surface has both positive and negative pressures which average out to 

zero. All that remains is a positive pressure at the instant the wave 

reaches the transducer's centre, and a negative pressure when the wave 

finally passes past the transducer's edges.

At the same instant the plane wave reaches the transducer's 

edges, the edge waves reach the transducer's centre. These reinforce 

to give the double amplitude central pulse.

Finally, as was the case for the reflected plane wave, there is 

zero pressure until the edge waves pass past the transducer’s edges, 

producing the third pulse in the transmit-receive echo waveform.

With the reflecting target moved off axis, (figure (2.5. lb— c ) ), 

the edge wave components no longer coincide, and the simple three- 

pulse structure becomes more complicated.
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Figure (2.5.1): Graphical derivation of the transmit-receive echo response e, 
is obtained from the self-convolution of the pressure impulse 
response (see figure (2.4.2)) with the motion of the source 
a: target on axis,
b: target off axis, but within the geometric region, 
c: target off axis, but outside the geometric region.
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Theoretical beam profiles may be obtained by evaluating either 

e q n . (2.4. 14) or eqn. (2.5.11) in a point-by-point fashion, at closely 

spaced intervals across the beam.

The beam profiles have been shown by Weight (1984b) to have 

different forms according to whether they are pressure mode 

(corresponding to eqn. (2.4.14)) or transmit-receive mode 

(corresponding to eqn. (2.5.11)). Two figures from the Weight (1984b) 

paper are reproduced here as figure (2.5.2). Both the pressure and 

transmit-receive beam profiles look similar in the far-field, 

consisting of a single peak centred on the axis of propagation. In 

the near-field however, the transmit-receive case has pronounced 

central maxima. This is due to the presence of the extra large pulse, 

as shown in figure (2.5.1a).
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Transducer diameter = 19 m m

Transducer velocity
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Distance off axis (mm) Distance off axis (mm)

Figure (2.5.2): Pressure {left) and transrait-receive (right) beam profiles 
for a 19mm conventional transducer radiating into water.



2.6 Resolution and its limitations

Resolution is defined in two ways: range resolution and lateral 

resolution. They both refer to a transducer's ability to distinguish 

between closely spaced targets, and they differ only in the direction 

being considered.

It has been shown in section 2.4 that the plane and edge waves 

can be resolved at positions near to the transducer. At further ranges 

they merge, as shown in figure (2.6.1), to become a single pulse of 

varying shape. Robinson et. al. (1974) have shown that in the far 

field the pressure waveform is of the form of the time differential of 

the plane wave pulse. This can be seen in figure (2.6.1), although 

smoothed sine functions are used here (with a smoother start and 

finish, unlike the pure sine function), to prevent problems with 

discontinuities occurring in the computations (see section 2.12). The 

plane wave pulse is the left-most pulse of the left hand waveform in 

the upper part of the figure. Similarly for the transmit-receive mode 

waveforms, the far field pulse is of the form of the second time 

differential of the plane wave pulse. The plane wave pulse is again 

the left-most pulse of the left hand waveform of the lower part of the 

figure.

As mentioned earlier in section 2.4, the total pulse length is 

much longer than the length of the single sinusoidal driving pulse. 

The reason that the total pulse length is large (especially in the 

near field), is the difference in path between rays from the centre of 

the transducer and rays from the edge. At further ranges this path 

difference becomes smaller, and so the total pulse length decreases.

As figure (2.6.1) shows, the pulse shape does become relatively
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constant in size and shape, in the far-field, thus giving a good range 

resolution. In the near-field however, because the pulse size and 

shape change rapidly with range, it is difficult to interpret such 

waveforms. The lateral resolution is not good however, as the beam 

profiles of figure (2.5.2) show. As they are as wide as the source, a 

target placed at any lateral position will produce waveforms of 

similar amplitude.

Targets which are very close to the transducer cannot be detected 

because of saturation effects in the electronic receiving equipment. 

This occurs because the driving pulse used to excite the transducer is

also fed to the receiving amplifier, and as it is a very large

amplitude, saturates the amplifier for a short time . This "dead t ime"

translates to a minimum range a target can be a t , so that the echoes

from the target are able to be detected . With our current equipment,

the minimum range is about 20mm.

Thus it can be seen that while short pulses of ultrasound should 

give good range resolution, this is only approached in the far-field. 

Echo responses from targets in the near-field must be interpreted with 

caution because of the multi-pulse structure of the echo waveforms. If 

results from targets at different ranges are compared, allowances must

be made for the change in shape which oc c u r s .

Since the pulse shape is the result of interaction between the

plane and edge waves (ideally there should be little variation in

amplitude throughout the field) , ani obvious way to prevent this

interaction is to remove one or other of them. This is the subject o f

the following section.
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Figure (2.6.1): Axial pressure waveforms (top) and transmit-receive echo
waveforms (bottom) for a 19mm diameter circular transducer.
Ranges are from 50mm (left) to 500mm (right) at intervals of 50mm.



Non-uniform excitation

For continuous waves, the important factor for good resolution is 

that the radiated pressure waveforms should be uniform throughout the 

field. This leads to uniform spectra, and beam profiles with no 

fluctuations due to diffraction effects. One way of achieving this is 

to make the motion of the source non-uniform across its surface. This 

is similar to the method of apodising used in optics and radar 

(Jacquinot and Roizen-Dossier, 1964). Martin and Breazeale (1971), 

and other authors have shown how it is possible to excite a transducer 

axisymmetrically, so that the variation in the electric field across a 

transducer diameter is approximately Gaussian. The resulting motion of 

the source has a similar variation.

Several authors (for example, Harris, 1981b, Stepanishen, 1981, 

Weight, 1982b and 1984a, Guycmar and Powers, 1986, and Hutchins 

et. al., 1986) have studied the situation of a transducer which has an 

arbitrary velocity distribution across the transducer surface. They 

are mainly concerned with distribution functions which are easy to 

handle and have a shape not unlike a Gaussian, to obtain uniform 

fields.

To obtain a more uniform field, it might be thought that removing 

the edge waves would be all that was required. This is not easy to do 

in practice, since edge waves are produced as the plane waves 

propagate. The edge waves can only be reduced. In the results section, 

it will be shown (figures (3.1.5.1.d ) and (3.1.6.Id)) that such a 

"plane-wave-only" transducer has several advantages over conventional 

transducers, including simpler pulse shapes and an improved lateral 

resolution.
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f the plane waves are reduced, resulting in an edge-wave-only

transducer, we find that such a transducer has a field which is 

concentrated along the axis of the transducer. This is a peculiarity 

of edge waves where their directivity compensates for the spreading 

nature of the edge waves (Weight, 1982a, and figure (3.1.4.1)) and so 

the axial pressure remains constant with range. This will be shown 

in section 3.1.4. It is very easy to model an ideal edge-wave-only 

transducer, by simply suppressing the initial impulse of the plane 

wave in the calculations. The results section will show 

(figures (3.1.5.1b— c) and (3.1.6.1b — c)) how these edge-wave-only 

transducers have order of magnitude improvements in lateral 

resolution, and much simpler echo waveforms than conventional 

transducers.

In order to calculate the pressure for these non-uniformly- 

excited transducers, the source may be regarded as a concentric 

collection of uniformly-excited sources, whose individual pressures 

are added together (Weight, 1982b and Hutchins e t . al., 1986). From 

eqn. (2.4.13), the pressure is given by:-

where u(y,t) is now a function of radial distance y. The total

pressure P (r,t) at a point in the field in the limit, is given by:- w —

where a is the transducer radius.

Theoretically, it is the velocity potential impulse response 

which is calculated in this way. The simplest example of this is for

P ( y ,t ) = u (y ,t ) » Pi (r , t) , (2.7.1)

(2.7.2)
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an annular transducer, of radius a, and annulus width W. The total

velocity potential impulse response is given by first calculating the 

velocity potential impulse response for a hypothetical source of 

radius a. From this is subtracted the velocity potential impulse 

response for a smaller hypothetical source of radius a-W as shown in 

figure (2.7.1a). This annular transducer is described simply to 

illustrate the method of building up a non-uniform velocity profile. 

An annular transducer does not produce edge waves alone because the 

width of the ring will still produce plane waves. A narrow ring, 

although producing a uniform toroidal wave, does not have the 

sensitivity, or constant sensitivity with range, that an edge-wave- 

only source would have (Weight, 1984a).

For more complicated transducer types, the velocity profile is 

used to weight the individual velocity potential impulse responses 

(Weight, 1982b, and Hutchins et. al., 1986). They are then either 

added up to produce plane-wave-only type transducers 

(figure (2.7.1b)), or subtracted to produce edge-wave-only type 

transducers (figure (2.7.1c)).
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.7.1): Schematic diagram showing how source velocity profiles 
(bottom) are built up using plane wave contributions, 
a: An ideal annular source, where the contributions are 

subtracted from each other.
b: A plane-wave-only source, where the contributions are 

added together.
c: An edge-wave-only source, where the contributions are 

subtracted from each other.
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The velocity weighting function chosen for edge-wave-only

transducers, V , was of a Gaussian form:- 
ewo

(2.7.3)

where K = {•/ -ln(0.5))/W, and W represents the 'half-width' of the 

weighting function, which represents the distance from the edge of the 

transducer, where the Gaussian function has fallen to a value of 0.5.

For plane-wave-only transducers, the weighting function chosen, 

V , was similar, being an inverted version of eqn. (2.7.3) : —

The half-widths chosen for subsequent calculations were 

W = 0.75mm for edge-wave-only type transducers, and W = 4.0mm for 

plane-wave-only type transducers. These values were chosen after 

several runs on the computer to give the best compromise between 

simple pulse shapes and resolution for the transducer being modelled, 

which was a 19mm diameter type. For the edge-wave-only transducer, 

making the half-width smaller tended to reduce the effective range of 

the transducer, and making the half-width larger broadened the beam 

profiles and introduced side lobes in the near field. For the plane- 

wave-only transducer, making the half-width smaller produced maxima 

and minima in the beam profiles.

Plots of the functions used are shown in figure (2.7.2).

pwo

V (y) = l - e ~(yk)2 
pwo y

(2.7.4)
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Figure (2.7.2): Source velocity profiles for: 
a: a plane-wave-only source, 
b: an edge-wave-only source.
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2 . 8 Finite-size targets

Ueda and Ichikawa (1981) have shown how the impulse response

method can be used to model echo signals reflected by weakly

scattering, cylindrical, finite-sized targets on the axis of a

circular piston source. It has recently been shown (McLaren and

Weight, 1987) that their model is valid for strong scatterers. Ueda 

and Ichikawa's analysis is repeated here for completeness, but the 

symbols have been changed to be consistent with the present work, and 

some extra explanatory comments have been given.

The starting point is the inhomogeneous wave equation:-

1 92 P
r v  -c ot

2Ac a2 p i
= , _ V(Ap)-vp , (2.8.1) 

c3 at2 p

where P is the sound pressure, Ac and Ap are the fluctuations in 

sound velocity and density from their mean values c and p. It is 

assumed that the scattering volume V is embedded in a uniform medium 

of density p and sound velocity c. The incident wave is P^n (x,t) and 

the scattered wave is P s c (_r.t), (figure (2.8.1)).
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V

Figure (2.8.1): Schematic diagram for the finite-size target scattering 
m e d i u m .
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The scattered wave is represented as:-

Ps c (i' t)
Q(s,t - Ir - s | / c ) 

47i|r_ _ s|
dv (2.8.2)

where dv is a volume element of the volume V, r is the position vector 

of the volume V from the transducer, £  is the position vector of the 

volume element dv, and Q(r,t) is the scattering strength of the 

scatterer and is given by:-

Q(r.t)
2Ac f ^ i n ^ ’^  1 ■ 1 '

c 3 at2 . p .
V(Ap)•VP i n (r ,t ) (2.8.3)

The first term of eqn. (2.8.3) shows the contribution due to the 

velocity fluctuation Ac , and the second term shows the contribution 

due to the density fluctuation Ap .

The incident wave is represented as:-

P i n (̂ > u {t ) * p
B * ( r ,t )

at
(2.8.4)

where 0{_r,t ) is the velocity potential of the medium, given by:-

0(r.t)
2 t i

J  $(r,«) dw , (2.8.5)

and 90(£,t)/3t is the impulse response of the medium given by:-

B0 ( r , t ) 

at 2tt
J  jw> i(r,<^) dcj . (2 .8 .6 )

*(r,«) is the Fourier transform of 0(_r,t) and is given by:~
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<Kr,«)
1

ds , (2.8.7)
271

-j«|r - s|/c 

ll - s|

where ds is a surface element on the transducer's surface S. 

Transformed to the frequency domain, eqn. (2.8.4) can be expressed 

a s : -

1
Pjn (r,t) = —  f U(«) jw p ♦(r,u) e^wt du , m  - 2tt J (2.8.8)

where U(«) is the Fourier transform of u(t), the transducer velocity. 

By considering separately, velocity fluctuations and density 

fluctuations, Ueda and Ichikawa obtain two expressions for the 

frequency responses of the medium (see appendix):~

Fc («) =
(j< Ac 9a (r,cj)

dv , (2.8.9)

Fp <«) =

Eqns. (2.8.9) and (2.8.10) are difficult to compare directly, 

because of their different forms, so Ueda and Ichikawa resort to a 

discrete model of the scattering medium, to enable eqn. (2.8.10) to be 

cast into a form suitable for comparison with eqn. (2.8.9).

If the scatterer is regarded as a collection of m small cubes, 

each of which has a frequency response given by eqn. (2.8.10), then 

the total frequency response of the whole scatterer is the summation 

of eqn. (2.8.10) over all the m cubes:-

V(Ap)-Vi tr ,uj 9(r,<wj 

2 p
dv (2 .8 .1 0 )
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(2.8.16)Fp(«)

ID p

■ 2 , L

[V$(r.,«) •v$(£,w) + ♦(£,«) v 2 ^ ^ , ^ ) ]

2 p
dv ,

Since the wave is assumed to satisfy the wave equation for a 

m e d i u m , i .e . :

V2* ( r ,«)

or, since J(r,«) = e :,a,t ,

1 3a *(r,«)

7  3t2 ’

eqn. (2.8.17) becomes:-

^ ♦ ( r . « )  = (j<w/c)2$(r,o) .

Also, assuming the scatterer is homogeneous, eqn. (2.8.16) 

written as:

F„("> =

If eqns .

> Ap [V$(r ,«) *V$(;r,<w)

J v

(2.8.9) and (2.8.19)

+ i(r_,u) (jcj/c)2 $(r.,«)]

2 p

are now compared:

dv .

Fc M  =
Ac

c
£ (j«/c) i(t,«) j dv ,

Fp(-) =
Ap

£  V$(r ,«) •?$(£,«) + [(jcj/c) 4>(i,cv)]2 j

Ueda and Ichikawa conclude that eqns. (2.8.20) and 

equivalent, if the following relation holds:

dv ,

(2 .8 .

V$(r ,w) *vi>(r,«) = t(j«/c) $(r,<v)]2 .

Stacey (1989) has since shown that eqn. (2.8.22) amounts to

uniform

(2.8.17)

(2.8.18) 

can be

(2.8.19)

( 2 . 8 . 2 0 )

(2.8.21)

21) are

(2.8.22)

a plane-
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wave approximation. Ueda and Ichikawa also state that if the distance 

between the scatterer and the transducer is greater than the radius of 

the transducer, it is not necessary to distinguish between density 

changes Ap and velocity changes Ac. The response of the medium can 

be described using only changes of specific acoustic impedance A Z . 

Eqn. (2.8.14) is used (in the continuum):

F(«)
’ AZ $(_r,c*0 N-V$(_r,<j)

2Z
ds . (2.8.23)

Assuming cylindrical co-ordinates, eqn. (2.8.23) can be split up into 

a component from the front surface of the scatterer, and a component 

from the cylindrical side surface of the scatterer. Since the vector N 

is always perpendicular to the relevant surfaces, N*v$(r,o) simply 

becomes 3$(p,w>) /Dr .

Therefore, eqn. (2.8.23) becomes:-

F(«)

J AZ
—  $ (z  ,y,cj

0 2Z 0

p°° AZ
—  * ( z , T . «

z. 2Z

3$(zn ,y,w>)
---------- 2ny dy

9z

a # ( z ,T , « )
--------  2ttT dz ,

3y

(2.8.24)

where T is the radius of the target face. If the edge component is 

assumed to be negligible, then eqn. (2.8.24) becomes:-
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F(«) $(z0,y,<v)
3$(z ,y,«) 
---------  2 Try dy .

9z

In the time domain, this becomes a convolution:-

f (t)
AZ PT

2Z * o
*(z0 ,y,t) *

3 0 ( z o ,y,t)

9z
2 Try dy .

Thus the total 

ei t (r . t ) - 9f {t )/at

echo impulse 

is given by:-

response of the

e it ( r , t )
AZ >T 90(zo ,y,t)

2Z , 0

&^(zn .y»t)
* ---------  2Try dy .

9z

The expression 9 0 ( zQ ,y ,t )/9t is simply 9 0 . (r,t)/9t as 

eqn. (2.4.11). The expression 9 0 ( zQ , y ,t )/9z is obtained by

1 9 0 . ( r . t )
9z by c9t, and this gives -  — ±-----  .

c 9t

Thus eqn. (2.8.27) becomes:-

e i t (r,t ) = K
0 L

90^(r,t) 90£(x> t )

a t a t
2ny dy ,

where K is just a constant.

(2.8.25)

(2.8.26) 

target,

(2.8.27)

given in 

replacing

(2.8.28)
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2.9 Off-axis finite-size targets

McLaren and Weight (1987) have also shown how the Ueda and 

Ichikawa method can be extended very easily to cater for off-axis

targets.

If the geometry for the finite-sized target is drawn in a similar 

manner to that for a point target, (i.e. figure (2.4.1)), 

figure (2.9.1), (except that now the circular arcs emanate from a 

point on the target's face), we note that on axis, the 2ny term in 

eqn. (2.8.28) represents a complete arc (on the target's surface). 

I.e. we have £1 = 2rr. In general, for targets at arbitrary positions 

in the field, is given by:-

= cos

„2,2 „2 . 2 
c t - z o + y0
2 y 0 y( c 2 t2 -

(2.9.1)

which is the same as eqn. (2.4.9) but with a, the transducer radius, 

replaced by T, the target radius.
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Figure (2.9.1): Geometry of a circular source and a finite-sized target 
at an arbitrary position in the field.
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Thus e q n . (2.8.28) becomes for the case of any circular finite-sized, 

target anywhere in the field:-

e i C (r, t ) = K
iyo+^ ' 30-(r,t) 30^(r,t)

^ - T L
at

Q ty dy . (2.9.2)

Note that the integration is carried out from the nearest edge of the 

target to the furthest edge. If the target is in a position such that 

y < T, then the integration is started at zero, and not at y Q - T, 

which would be negative.

To obtain the transmit-receive echo signal, et (t), an expression 

of the form of eqn. (2.4.13) is used:-

e t (t ) = u (t ) * e ■t (r , t ) . (2.9.3)

To calculate the velocity potential, eqn. (2.9.2) is assumed to 

have a form like eqn. (2.5.11):-

eit (r,t) = Pi t (r,t) * P £t (r ,t ) . (2.9.4)

By moving to the frequency domain, the convolution becomes a 

multiplication:-

ei t (r.«) = Pi r (r,cj) Pj_t (r,«) . (2.9.5)

So that

pit(r,c) = y ei t (r,w) , (2.9.6)

or

oo

Pi t (r.w) ejwt do . (2.9.7)

oo

These last steps can easily be calculated on a computer by taking 

Fourier transforms, complex square-rooting, and taking the inverse

Pit (r.t) = i-
2 7T
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Fourier transform. To obtain the velocity potential impulse response,

eqn. (2.4.11) is used:-

30( r , t )
P (r,t) = P -- ---  . (2.9.8)

3t

Thus the velocity potential impulse response for finite-sized targets 

is given by:-

0 i t (r,t) ■J far
( 1 / p ) pi t (i ’t ) dt

'near

(2.9.9)

where tnear and tfar are the go and return times between the closest 

parts and the furthest parts, respectively, of the transducer and 

target.

When the target is within the transducer's geometric region, 

'near is 8 iven

'near = ■ (2-5 '101

and outside the transducer’s geometric region:-

tnear = (2/c) ^  (yQ - a - T)2 ) , (2.9.11)

and tfar is given by:-

tfar = (2/c) >/ ( z2 + (yQ + a + T)2 ) , (2.9.12)

where the symbols are as defined in figure (2.9.1).
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2.10 Transducers

Recent experimental work carried out at City University by 

Dr. R. Brittain has led to the development of practical versions of 

non-uniformly-excited transducers (Weight 1982a, and Brittain and 

Weight, 1987). These transducers and conventional uniformly-excited 

transducers have been used to obtain all the experimental results. 

Their construction is described briefly in the following sections.

2.10.1 Conventional uniformly-excited transducer

The conventional transducer was a commercially available 

Panametrics V3289, with a 9.5mm radius aperture. These are 

manufactured from heavily damped discs of lead metaniobate (PMN) with 

a 10MHz half wavelength thickness, equivalent to c/2f = 3300/2xl07 

= 0 . 16mm.

A s c hematic.diagram of the construction of such a transducer is 

shown in figure (2.10.1.1). The piezo-electric disc has electrodes on 

the front and rear surfaces. The front electrode is connected to the 

transducer case, and forms an earth screen. The rear electrode is 

connected to a conductive backing, and the excitation signal is 

applied to this. When excited with a short, high-voltage pulse, the 

transducer generates a short pulse of ultrasound which has a useful 

frequency content from 1 to 10 MHz.
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Connection to rear electrode

Figure (2.10.1.1): Schematic diagram of the construction of a
conventional uniformly-excited transducer.

(earth)
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2.10.2 Non-uniformly-excited transducers

The method currently used to produce non-uniformly-excited 

transducers in our laboratory is described more fully in Brittain and 

Weight (1987) and is only briefly described here. Physically, non- 

uniformly-excited transducers look the same as conventional uniformly 

excited transducers (section 2.10)). The difference is that specially 

poled piezo-electric elements are used to give the transducer its 

desired properties. The poling process is a method of changing the 

piezo-electric element's intrinsic piezo-electric characteristics as a 

function of distance from the centre of the element. This produces an 

axisymmetric variation of piezo-electric strength. The degree of 

poling is controlled by using a series of concentric electrode rings 

in conjunction with a suitable potential divider network to vary the 

strength of the electric field applied across a de-poled element 

during its re-pclarisation. Such a method allows various theoretical 

weighting functions, such as those shown in figure (2.7.2), to be 

applied to produce edge-wave-only and plane-wave-only transducers. 

Using a number of electrode rings, produces a coarse, step-wise 

approximation to the required weighting function. Field fringing 

(Weight, 1989a and Brittain and Weight, 1987) tends to smooth this out 

to give a closer approximation. The construction and performance of 

edge-wave-only and plane-wave-only transducers is described more fully 

in Brittain and Weight (1987 and 1990).
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2.10.3 Non-uniform relationship between range and time

With uniformly-excited transducers, waves are emitted from the 

face of the transducer, and so it is assumed there is a linear 

relationship between range and time, which for the transmit-receive 

case, figure (2.10.3.1a), is:-

z = ct/2 . (2.10.3.1)

However, at short ranges, there are three pulses (on axis),

figure (2.5.1a), the latter two pulses arising from edge waves, and so 

they do not follow the linear relationship of eqn. (2.10.3.1) like the 

first (plane) wave does. When the three pulses are displayed on a 

time-series display, such as an oscilloscope, this means that they are 

shown shifted in time. The range/time relationship for edge waves is 

given by simple application of Pythagoras' theorem:-

z = /((ct/2)2 - a2 ) , . (2.10.3.2)

This is important in the case of edge-wave-only transducers, 

figure (2.10.3.1b), since only edge waves are produced. If accurate 

measurements of range are required when using edge-wave-only

transducers, it is a simple matter to calculate the time-of-flight and 

use eqn. (2.10.3.2) to obtain the exact range.

For the case of a water coupled target being interrogated by an 

edge-wave-only transducer, (figure (2.10.3.1c)), it is a much more 

complicated situation, because refraction occurs at the liquid/solid 

interface. As there are no exact expressions for refraction at the 

liquid/solid boundary, this means that errors can occur when

calculating a target's range from its go-and-return time. I have

developed an iterative method to overcome this problem and determine 

the error which would occur in indicated target range that would arise
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if a linear time-base were used to display the target echoes. The 

algorithm works by using as a first guess the straight path from 

transducer edge to target, disregarding the refraction at the 

liquid/solid boundary. The algorithm then iterates to give a better 

approximation to the actual path, now taking into account the 

refraction at the liquid/solid boundary. The algorithm converges 

quickly to give a good approximation of the true path, and hence the 

time-of-flight to a target at a given depth can be calculated. 

Figure (2.10.3.2) shows the results of a typical situation, of an 

edge-wave-only transducer interrogating an 80mm deep aluminium block 

in water, using a 40mm coupling range. The solid line represents the 

actual error occurring for a given depth of target. There is assumed 

to be zero error at the front and rear faces of the target block, 

since on an oscilloscope the timebase and time delay can be adjusted 

to make this so. The figure shows that there is a single maximum error 

for this experimental set-up, of about 2.2mm at 20mm target depth. 

Experimental measurements taken using a non-uniformly excited edge- 

wave-only transducer are plotted on the graph, and confirm the 

theoretical curve.

The above error correction obviously depends on the length of the 

water coupling path to the solid target block, since rays from the 

transducer's edge are refracted more with a short coupling range, than 

with a long coupling range. This becomes an important consideration 

when interrogating targets embedded in solid blocks. However, as this 

thesis is concerned with targets in fluid media, this error correction 

is not required.
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A

Figure (2.10.3.1): Range and time relationships for:
a: Uniformly-excited transducer, 
b: Ideal edge-wave-only transducer, 
c: Water coupled target and ideal edge-wave-only 

transducer.
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Figure (2.10.3.2): Relationship between target depth and positional
error for a water coupled target block.
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2.11 Application to solids

In fluids we need only be concerned with the propagation of 

compressional (longitudinal) waves. In solids, shear (transverse) 

waves and Rayleigh (surface) waves can also be propagated. Remembering 

that mode conversion between the various types of waves can occur at 

the liquid/solid interface, the mathematical treatment of a source 

propagating into a solid is much more difficult (see for example, 

Graff, 1975).

The transducers described previously in section 2.10 can be used 

immersed in. water, or directly coupled to the surface of a solid, 

using a coupling jelly.

A new simple model for a source directly coupled to a solid 

surface based on the impulse response methods given previously, has 

been developed (Weight, 1982b and 1987). Hayman (1977) and Weight 

(1982b) consider that the shear waves which propagate in solids are 

mode converted edge waves. Briefly, the model calculates the velocity 

potential impulse response in two parts. One part is calculated at the 

compression wave velocity, and the other is calculated at the shear 

wave velocity. The individual velocity potential impulse responses 

then have to be weighted by empirically determined "mode conversion 

factors" (Weight, 1987). The shear wave velocity potential impulse 

response is then appended (after the appropriate time delay) to the 

compression wave velocity potential impulse response, to give the 

total velocity potential impulse response.

On axis, the pressure waveform consists of a compression plane 

wave, a compression edge wave, and a shear edge wave. Both edge waves 

split into two parts as the receiver moves off axis.
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Of the non-uniformly-excited transducers in section 2.10, the 

plane-wave-only type is likely to be most useful, since there are no 

edge waves to mode convert into shear waves, resulting in simpler 

waveforms. The edge-wave-only transducer could also be useful, since 

as the compression and shear edge waves travel at different 

velocities, they are well time separated (except for very close 

ranges) and the shear edge wave can be gated out.

This work in fluids could be adapted to allow for the case of 

solids by modifying the single subroutine which calculates the impulse 

response. However, this is left as future work.

With the exception of a single B-scan result (figure (3.5.2), 

included in order to compare transducer performance), no results are 

presented using targets within solid materials.
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2.12 Computational methods 

2.12.1 General details

The computations employed numerical integration, differentiation, 

and convolution, and so the increments used had to be chosen with care 

to ensure that numerical errors were small and that displayed 

waveforms were smooth.

The convolutions involve dealing with delta functions in the 

impulse responses, and at first sight would appear to be a problem, 

since they have an infinite amplitude and must be convolved with the 

transducer velocity function. A delta function has zero time duration 

and hence infinite bandwidth, but the transducer velocity function (a 

single cycle of a SMHz sine wave, say) has only a finite bandwidth. 

This is not a problem if the delta function is approximated by setting 

its amplitude to l/<5t (where <5t is the time increment), so that there 

is unit area beneath the delta function. <51 is then chosen so that the 

bandwidth of the delta function is wider than the bandwidth of the 

transducer velocity function. A suitable approach is to choose a 

maximum frequency, fm a x , beyond which there is little contribution to 

the frequency spectrum of the transducer velocity function, and use 

the Nyquist criterion:-

<51 =
1

(2.12.1.1)
2 fmax

to determine <5t . In the above example, fmax would be estimated as

about three times the centre frequency, i.e . 3 x 5 = 15MHz, so

<51 = 1/30 = 0. 033 m s . In practice, smaller time increments of 0.005m s

were used to ensure that the waveforms looked smooth when plotted.
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Such smooth waveforms, with fine time increments <5t, do of course mean

coarse frequency increments, <5f in the frequency domain. This occurs 

as a consequence of eqn. (2.12.1.1) where one increment is 

proportional to the reciprocal of the other. This means that spectra 

of convolved waveforms, if plotted directly, are not going to be 

smooth curves, but will be rather sharp and angular. There are two 

answers to this problem. One is to append large numbers of zeros to 

the waveforms before transforming to the frequency domain. This has 

the effect of reducing 6f because the bandwidth fmax is subdivided 

into many more points. The second method is to sample the convolved 

waveform (at the Nyquist rate) and throw several points away before 

transforming to the frequency domain. This has the effect of reducing 

<5f by making <5t bigger. Spectra are not shown in this thesis, but one 

of the above methods must be used when calculating them.

The convolutions were carried out directly in the time domain, 

based on the graphical method given by Bracewell (1978, chapter 3). 

Fast Fourier transform methods were not used, since tests showed that 

they did not significantly decrease the computer run-times. This was 

because although the maximum size of the arrays to be convolved was 

set in the programs to 2000 elements, in practice they were never this 

large (except at close range and far off-axis). It was also more 

convenient to use time domain convolution, as this allowed arbitrary 

length arrays to be used to store the waveforms. Fast Fourier 

transforms require the number of elements in the arrays to be 

exactly 2n .

Digitised waveforms which were to be used as inputs to the 

programs may have had a DC level superimposed. This DC shift occurs as
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a consequence of the equipment used to digitise the waveform. The 

required waveform has first to be displayed on an oscilloscope with an 

IEEE-488 interface bus. Using a personal computer connected to the 

interface bus, and some software written by the author, the computer 

can command the oscilloscope to send 1024 samples of the displayed 

waveform, over the interface bus back to the computer. Depending on 

the vertical position of the waveform with respect to the centre of 

the oscilloscope display, the sampled values of the waveform may be 

regarded as having a DC shift. This was reduced by calculating the 

definite integral of the waveform using the trapezium method, and then 

calculating the mean value. The mean value was then subtracted from 

the original waveform. If this were not done, then the waveform could 

have a step at the end which would cause a spurious pulse to appear 

after convolution.

As mentioned in section 2.6, the simple waveform used to show the 

pulse structure in the pressure and transmit-receive responses was not 

just an ordinary sine wave, but was a smoothed sine wave of the form:

sin {w't)
‘ N ' 

N+l
sin (2 .12.1.2)

where N is the number of cycles. In this work one cycle was used for 

simplicity, so eqn. (2.12.1.2) becomes:-

sin(t>t) - ^sin(2«t) . (2.12.1.3)

Such an expression gives a waveform which is very close to a single 

cycle of a sine wave, and ensures that the beginning and end of the 

wave reach zero smoothly, preventing discontinuities from appearing 

after convolution.

Up to this point, the targets that have been modelled were simple
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cylindrical rods with a flat front face. A modification of the finite- 

size target modelling of section 2.8 has been developed, to allow the 

model to consider a cylindrical target with a pointed front face, 

similar to a cone. A schematic diagram of such a target is shown in 

figure (2.12.1.1). The method works by treating the target as if it 

were a collection of flat-faced cylindrical targets of increasing 

diameter, at successive further ranges. This results in a step-like 

approximation to the pointed face of the target. The numerical 

increments used in the programs were chosen to give a reasonably large 

number of calculation steps describing the pointed face of the target. 

An increment of 0.01mm was used across the width of the target, and an 

increment of between 0.001mm and 0.005mm was used (depending on how 

pointed the front face was) along the axis of the target. Currently, 

only targets which are on-axis are considered, extension to off-axis 

targets being left to future work.

This method could be generalised to describe any 

axisymmetrically-shaped target, by simply describing the target in 

terms of a number of conventional flat-faced targets. However, this 

method does not take into account specular reflections from the 

surface of the target, nor refraction and internal reflections.

71



Figure (2.12.1.1): Schematic diagram of a finite-sized cone-shaped
target {top), and how it is modelled {bottom).
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2-12.2 Implementation of the equations on the computer

For point targets interrogated by uniformly excited transducers, 

the equations are implemented in a straightforward way. A single 

subroutine calculates the velocity potential impulse response 

according to eqn. (2.4.10). This is then differentiated with respect 

to time to give the pressure impulse response (eqn. (2.4.11)). For 

pressure waveforms, the pressure impulse response is simply convolved 

with the transducer velocity, eqn. (2.4.13). For transmit-receive 

waveforms, the pressure impulse response is first convolved with 

itself and then with the transducer velocity, eqn. (2.5.11).

For non-uniformly-excited transducers, a loop is used in the 

calculation of the velocity potential impulse response, to enable the 

building up of a total velocity potential impulse response as defined 

by the shape of a velocity profile (section 2.7). Each time around the 

loop a simple velocity potential impulse response is calculated for a 

progressively smaller uniform source and this is weighted by the 

amplitude of the velocity profile graph. Each velocity potential 

impulse response is then added to (for plane-wave-only transducers) or 

subtracted from (for edge-wave-only transducers) the total, as shown 

in figure (2.7.1). This total velocity potential impulse response is 

then used in the calculations above for the pressure and transmit- 

receive waveforms.

For finite-sized, targets the time differential of the velocity 

potential impulse response is convolved with itself within an 

integration laterally across the face of the target, eqn. (2.9.2). As 

the integration loop steps across the target face, the velocity 

potential impulse response is calculated at each point as if there
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were just a point target at that position on the target's face. Each 

time around the integration loop, the values calculated after the 

convolution are first weighted according to the amount of circular arc 

which crosses the target face at that position, and then added to a 

running total, which ultimately becomes the value of the integral.

For cone-shaped targets (on axis only), the method for finite- 

sited targets above was used in a slightly modified way. As the cone- 

shaped target is regarded as a collection of flat-faced finite-sited 

targets (section 2.12.1, and figure (2.12.1.1)), the velocity 

potential impulse response is calculated for each flat-faced finite-

sized target in turn. The collection of velocity potential impulse 

responses are then superposed to give a total velocity potential 

impulse response, which is used to obtain the subsequent waveform 

results.
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3 Results

Several computer programs have been written over the years to 

produce calculated results for the various members of our research

group. When different types of results are required, these programs 

get modified, or even rewritten, so that now, there are several 

programs, each designed to calculate a specific type of result, or 

display an existing result in a different way. It is part of the 

author's job to keep these programs running, modifying them as and 

when it becomes necessary. These programs can be divided into three 

main groups. The first two groups each consist of four programs set up 

to calculate general sets of results for impulse responses, waveforms, 

spectra and beam profiles. The first group calculates results for 

point targets, and the second group calculates results for finite-

sized targets.

Each individual program was capable of modelling any size and 

type of circular transducer (ideal and non-uniform), excited with any 

arbitrary waveform, any size of circular target at any arbitrary 

position in the field, and in pressure or transmit-receive mode. The 

transducer excitation waveform and weighting profile could either be 

calculated, or read in from a data file containing sampled values of a 

real waveform or profile.

The final group of programs is a miscellaneous collection, 

comprising programs for calculating more specialised results, or 

displaying results in a more specialised manner, and for drawing some 

of the other figures of this thesis.

The constants which are taken into account in the following 

results are transducer radius, target position and radius, speed of
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sound, and time. No other constants were used (density, specific 

acoustic impedance), since these were multiplying factors, and this 

thesis is mainly concerned with the relative shapes of waveforms 

rather than their absolute amplitudes.

The results presented in this chapter first compare theoretical 

results for different types of transducer interrogating ideal, point 

targets, and two sizes of ideal, flat-faced, finite-sized targets. 

Next, experimental results are presented for the same targets, and 

compared with the theoretical predictions. Experimental and calculated 

results are also presented for the pointed, cone-shaped targets. 

Finally, some B-scans are presented, using both a conventional, 

uniformly-excited transducer and a non-uniformly-excited edge-wave- 

only transducer, to show how much improvement in resolution the new 

type of transducer is capable of. The results will be described 

briefly as they appear, and their implications will be discussed in 

more detail in chapter 4.
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3.1 Computed results for point targets

This section presents computed results for the four types of 

transducer which have been discussed previously.

Velocity potential impulse responses are shown first, so that 

their structure can be described in terms of rays from the 

transducer's centre and edges, building up to a numeric visualisation 

of pressure waves radiated by the transducers. This provides evidence 

of the plane- and edge-wave structure of the radiated pressure field. 

From these results, a qualitative directivity pattern for edge waves 

alone, is derived. Finally, transmit-receive waveforms and beam 

profiles are shown, for the transducers interrogating ideal point 

targets.

Although some of the following results have been seen before in 

various publications, for example, conventional transducers 

(Stepanishen, 1971b, Beaver, 1974, Robinson e t . al., 1974, and Weight 

and Hayman, 1978), edge-wave-only transducers (Weight, 1982a, and 

Brittain and Weight, 1987, and 1990), and general axisymmetric sources 

(Harris, 1981b, Stepanishen, 1981, Weight, 1984a, Guyomar and Powers, 

1986, Harrison and Balcer-Kubiczek, 1986 and Hutchins e t . al., 1986), 

this section attempts to collect all these results together for 

completeness, presenting some in new ways, adding some new results, 

and finally showing how the non-uniformly-excited transducers 

developed in our laboratory outperform conventional transducers.
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3.1.1 Velocity potential impulse responses

Figure (3.1.1.1a) shows the velocity potential impulse response 

of a conventional uniformly-excited circular transducer. Note that 

this figure (and other subsequent, similar figures) conveys both time 

and space information in the same picture, in a pseudo-three- 

dimensional manner, such that vertical overlap between waveforms is 

kept to a minimum. However, some long waveforms have been truncated to 

prevent any horizontal overlap. The dots represent the position of the 

target and the waveforms starting at each dot are the velocity 

potential impulse responses as a function of time. The waveform is 

plotted starting at the time corresponding to the path length from the 

front face of the transducer to the target point. All the waveforms 

take this to be the time origin for convenience.

As described in section 2.4, the on-axis responses are of the 

"top hat" form. The initial rise occurs at the time of arrival of the 

wave from the transducer's plane surface, and the trailing fall occurs 

at the time of arrival of the wave from the transducer's edges. At 

greater ranges from the transducer, the time difference between the 

first arrival of the wave from the plane and the wave from the edges 

decreases, so that the response remains the same shape, but becomes 

more compressed in time. As the target moves off axis, there are now 

two edge positions to take into account (one from the nearest part of 

the transducer's edge to the target, and also from the furthest part 

of the transducer's edge to the target) and so the response has a more 

complicated fall-off in time. This is because waves from each edge 

position take different times to reach the target point as they travel 

along different paths.
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Figure (3.1.1.1b) shows the velocity potential impulse response 

for an ideal edge-wave-only transducer of the same size as in 

figure (3.1.1.1a). The only difference between these two figures is 

that the initial rise of the waveform in the edge-wave-only case, has 

not been calculated. This only occurs in the geometric region straight 

ahead of the transducer; outside, both figures are identical. As will 

be seen later in section 3.1.5, this is equivalent to removing the 

plane wave contribution.

Figures (.3.1.1. lc — d) show the velocity potential impulse 

responses for a non-uniformly excited edge-wave-only transducer, and a 

non-uniformly excited piane-wave-only transducer, respectively. 

As a consequence of the modelling, where non-uniformly-excited 

transducers are regarded as the superposition of a collection of 

sources with an appropriate velocity weighting function (section 2.7), 

the velocity potential impulse response is reduced gradually from its 

maximum value, smoothly down to zero. It is this slope which causes 

the reduction in the amplitude of either the plane-wave component or 

the edge-wave component (depending on the transducer being modelled), 

since the smooth slope produces very little after the differentiation 

operation to give the pressure impulse response, compared to the sharp 

step which gives the major contribution.

For the edge-wave-only transducer, the step that causes the 

plane-wave component impulse after differentiation (figure (2.A . 2)) is 

reduced to zero (figure (3.1.1.1c)) and for the plane-wave-only 

transducer, the step that causes the edge-wave component impulse after 

differentiation is reduced to zero (figure (3.1.1.Id)). Thus where the 

ideal edge-wave-only transducer (figure (3.1.1.1b)) simply has the
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initial step suppressed, the non-uniformly-excited edge-wave-only

transducer (figure (3.1.1.1c)) has a gradual increase to 

v a l u e .

maximum
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Figure (3.1.1.1): Velocity potential impulse responses at points (•) in the field of: 
a: conventional ideal uniformly-excited transducer, 
b: ideal edge-wave-only transducer,
c: ideal non-uniformly excited-edge-wave-only transducer, 
d: ideal non-uniformly excited-plane-wave-only transducer.



3-1-2 Spatial velocity potential impulse responses

Figure (3.1.1.1) shows the velocity potential impulse responses 

displayed as time-series waveforms at a given point in space. An 

alternative way to display these results is to show the spatial form, 

at a given instant of time at all positions in the field, as is done 

by Robinson (1974). This has the effect of showing a "snapshot” of the 

velocity potential impulse response. Figure (3.1.2.1) shows the 

spatial form for a conventional uniformly-excited transducer, and 

figure (3.1.2.2) shows the spatial form for non-uniformly-excited 

transducers. These figures have been drawn in an isometric manner to 

enable the three-dimensional form to be displayed easily.

It can be seen that the axial range axis of figure (3.1.2.1) is a 

reversed form of the time axis of figure (3.1.1.1a), as time and 

distance always appear in the form c2 t2 - z2 in the defining 

equation, eqn. (2.4.9).

The large, angular, step-like part in the geometric region of the 

source will, after the differentiation and convolution operations of 

eqn. (2.4.14) and also figure (2.4.2), generate large pressure 

wavefronts. This is shown in the subsequent figure (3.1.3.1). Because 

the remainder of the velocity potential impulse response is smoother 

outside the geometric region, the pressure waves generated as a 

result, are of smaller amplitude. These wavefronts can both be seen in 

figure (3.1.3.1), where they show the plane- and edge-wave structure 

of the radiated pulse.

When non-uniformly-excited sources are considered, 

figure (3.1.2.2), two main changes are noticed. With the edge-wave- 

only transducer (figure (3.1.2.2a)), the structure of the velocity
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potential impulse response shows clearly its dependence on the two 

edges of the source, resulting in semi-circular arcs emanating from 

the edges. When the pressure waveforms are calculated 

(figure (3.1.3.2)), the semi-circular wavefronts become pressure waves 

centred on the so u r c e ’s edges.

With the plane-wave-only transducer (figure (3.1.2.2b)), the 

velocity potential impulse response is similar to that for the 

uniformly-excited transducer (figure (3.1.2.1)), except that it is 

smoother. There is still a large step in the geometric region, and it 

is this step which gives the plane wave part of the pressure waveform 

(figure (3.1.3 . 3) ) .

83



Figure (3.1.2.1): Spatial form of the velocity potential impulse response
for a conventional uniformly-excited transducer.
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Figure (3.1.2.2): Spatial form of the velocity potential impulse response
f o r :
a: a non-uniformly-excited edge-wave-only transducer, 
b: a non-uniformly-excited plane-wave-only transducer.
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3-1-3 Numerical visualisation of pressure waveforms

Pressure waveforms as a function of space can be calculated from 

the spatial form of the velocity potential impulse response, shown in 

figures (3.1.2.1-2), using the differentiation and convolution 

operations of eqn. (2.A . 14). These are displayed as a sequence of four 

pictures which show the pressure pulse at successive times, 

figures (3.1.3.1-3). The figures are drawn as a sequence of closely 

spaced pressure waveforms, with the amplitude of each waveform plotted 

sideways. This results in a (numerical) visualisation of the pressure 

pulse as it travels away from the transducer. Two techniques have been 

used to enhance the figures so that the structure of the pressure 

field is clearer: the programs have been modelled for a transducer 

emitting a half-cycle of a sine wave, and also the plane-wave part has 

been reduced relative to the edge-wave part.

Figure (3.1.3.1) shows a pressure pulse as it travels away from a 

conventional, uniformly-excited transducer. What is immediately 

obvious from this figure is the plane- and edge-wave structure of the 

pressure field. This structure has also been seen in photoelastic 

visualisations (see for example Weight and Hayman, 1978). The plane 

wave is seen as a horizontal wavefront straight ahead of the 

transducer in the geometric region, and the edge-waves are seen as two 

circular arcs emanating from the edges of the transducer.

For the non-uniformly-excited edge-wave-only transducer 

(figure (3.1.3.2)), it is shown that the plane-wave component has been 

entirely suppressed, leaving just the edge waves (compare with the 

conventional transducer, figure (3.1.3.1)).

Similarly for the non-uniformly-excited plane-wave-only
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transducer (figure (3.1.3.3)), the edge waves have been suppressed, 

leaving only the plane wave. Note that in section 2.7 it is stated 

that plane waves alone would still generate edge-waves as the plane 

wave propagates. This figure shows this - if it is examined carefully, 

small edge waves can just be seen.
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Figure (3.1.3.1): Numerical visualisation of a short pulse radiated
into a fluid by a conventional uniformly-excited 
transducer.
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Figure (3. 1.3.2): Numerical visualisation of a short pulse radiated
into a fluid by a non-uniformly-excited edge-wave-only 
transducer.
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Figure (3.1.3.3): Numerical visualisation of a short pulse radiated
into a fluid by a non-uniformly-excited plane-wave-only 
transducer.
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3.1.4 Directivity of edge waves

As was stated in section 2.7, edge waves have a peculiar 

directivity, such that for an ideal edge-wave-only transducer, there 

is a constant amplitude pulse on axis. This will be seen for the 

transmit-receive case in figure (3.1.5.1b). This may seem strange, as 

the edge wave is a spreading wave, but the directivity compensates by 

being stronger in the direction straight ahead of the edge 

(figure (3.1.4.1), to be explained below).

Taking as the starting point the program which generates the 

numeric visualisation figures (3.1.3.1-3), but for an ideal edge-wave- 

only transducer, the directivity pattern for the edge waves has been 

calculated. It has been calculated by recording the maximum amplitude 

of each constituent waveform and then plotting these out as a 

directivity pattern. It is shown schematically in figure (3.1.4.1). 

As mentioned above, the directivity lobes are strongest straight ahead 

of the transducer’s edge. They are also stronger towards the axis of 

the transducer than away from the axis. It is this eccentricity which 

compensates for the reduction in amplitude as the edge wave 

propagates. This result is an important result, in explaining the 

peculiar nature of edge waves. As was mentioned in section 2.7, their 

directivity exactly compensates for the reduction in amplitude of 

pressure and transmit-receive echo responses, producing a constant 

amplitude single pulse on axis. This will be shown in the next 

section, figure (3.1.5.1b).
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Figure (3.1.4.1): Calculated directivity pattern of an ideal edge-wave-only transducer



3.1.5 Transmit-receive waveforms

The transmit-receive waveforms are obtained after the 

differentiation and convolution operations given in sections 2.4

and 2.5 (eqns. (2.4.11) and (2.5.11)), and are shown in 

figure (3.1.5.1). This figure is drawn in the same way as 

figure (3.1.1.1), showing transmit-receive echo waveforms at various 

positions (marked by dots) in the field. Each waveform is plotted, 

starting from the time the plane wave takes to be received back at the 

transducer (or at the time the plane wave ought to be, in the case of 

edge-wave transducers).

The waveform used for the transducer velocity was a single cycle 

of a 5MHz sine wave (a smoothed sine wave - see section 2.12). This 

was chosen because it is short enough to allow the pulse structure of 

the waveforms to be seen clearly, but not so short as to be 

unrealistic. In practice, a transducer is not excited with a single 

cycle of a sine wave, but with a unidirectional pulse. This pulse 

tries to cause the transducer to 'ring' at its natural resonant 

frequency, but the damping material inside the transducer damps this 

resonance down so that approximately only one cycle remains.

For the uniformly-excited transducer, figure (3.1.5.1a), it can 

be seen how complicated the waveforms are. On axis, the three-pulse 

structure (section 2.5, figure (2.5.1)) telescopes together with 

increasing range. This is because further away from the source, the 

time separation between the axial plane wave and the edge waves, 

arriving from the centre of the source and from its rim respectively, 

is now less. The large central pulse on axis arises because of the 

overlap of the plane-wave pulse reflected from the target, and the
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edge waves emitted by the transducer. This pulse has an amplitude 

twice that of the others. Off axis, the waveforms become even more 

complicated due to the edge waves being smeared out into smaller 

pulses. The range resolution is very limited for this transducer, 

since the total pulse width is large; i.e. the three component pulses 

are much longer than the single driving pulse.

The ideal edge-wave-only transducer (figure (3.1.5.1b)) has 

waveforms concentrated along the axis of propagation. As was mentioned 

previously in section 3.1.1, the plane waves have been removed in this 

ideal case, leaving only the edge waves. This can be explained with 

reference to figures (2.A.2a) and (2.5.1a), which show how the 

pressure and transmit-receive waveforms for a target on the axis of a 

conventional uniformly-excited transducer are modelled. If the 

initial rise in the velocity potential impulse response jr

(figure (2.4.2a) ) is not calculated, then the pressure impulse 

response will not have the positive-going impulse, just the 

negative-going one. When this is convolved with itself

(figure (2.5.1a)) to obtain the transmit-receive echo impulse 

response, and convolved with the transducer velocity, only one pulse

remains in the echo waveform. Because there is now no plane wave to 

interfere with the edge waves, the waveforms are of constant amplitude 

on axis, and off axis, there is a small response straight ahead of the 

edge. This is due to the eccentric directivity of the edge waves being 

strongest straight ahead of the edge (Weight, 1982a), 

figure (3.1.4.1). This edge response is a quarter of the size of the 

axial response (12dB smaller) and so could lead to misinterpretation. 

Fortunately, this is not a problem with the physically-realisable non-



uniformly-excited edge-wave-only transducer (below). The overall 

pulse width has also been reduced, since there is now only one 

component pulse in the waveform. Thus the range resolution is now

vastly improved.

The ideal non-uniformly-excited edge-wave-only transducer 

(figure (3.1.5.1c)) also has the echo waveforms concentrated along the 

axis of propagation, as would be expected from the ideal edge-wave- 

only case, although they are not as constant with range or simple in 

shape, but are certainly short enough to give a good range resolution. 

Off axis, there is very little response, even straight ahead of the 

edge, which is about 20dB smaller than on axis.

The ideal non-uniformly-excited plane-wave-only transducer of 

figure (3.1.5.Id) has waveforms concentrated in a beam along the axis 

of propagation. At the larger ranges on axis, the amplitude is less 

constant than for the conventional transducer (figure (3.1.5.1a)), but 

overall the waveforms are simpler. At close ranges, the conventional 

transducer gives results which have the familiar three-pulse structure 

(figure (2.5.1)), but the plane-wave-only transducer has shorter 

waveforms of almost one pulse, resulting. The consequences of waveform 

shape and length on overall resolution will be discussed more fully in 

section h.l.
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Figure (3.1.5.1): Transmit-receive echo responses when interrogating a 
point target (•) in water, for:
a: conventional ideal uniformly-excited transducer, 
b: ideal edge-wave-only transducer,
c: ideal non-uniformly-excited edge-wave-only transducer, 
d: ideal non-uniformly-excited plane-wave-only transducer.



■3 • 1 • 6 Transmit-receive beam profiles

Beam profiles corresponding to the transmit-receive echo 

waveforms of figure (3.1.5.1) have been obtained, figure (3.1.6.1). 

They assume full-wave detection has been used, since the method of 

detection has been shown to have a marked effect on the shape of the 

beam profile (Weight, 1984b).

Similar figures have already been published showing beam profiles 

for conventional and edge-wave-only transducers (Weight, 1982b, 1984a, 

1984b) . Beam profiles for non-uniformly-excited plane-wave-only 

transducers have only been presented in an internal report (Weight and 

Gatcombe, 1986) and a thesis (McLaren, 1987) and have yet to be 

published (Brittain and Weight, 1990, and Gatcombe and Weight, 1990).

As is well known for the uniformly-excited case 

(figure (3.1.6.1a)) the beam profiles are very broad (of the same 

order as the width of the source) and of a complicated shape. The 

large, central peak on axis, occurs due to the large, double amplitude 

pulse as shown in the transmit-receive echo waveforms, 

figure (3.1.5.1a). This peak remains at a constant size while the 

plane- and edge-wave components of the waveform are separated, and 

when the components merge together the amplitude of the peak changes. 

Because the beam profiles are broad, the lateral resolution (defined 

in section 2.6) is poor. This is because a point target in any lateral 

position in front of the transducer will produce a large response 

wherever it is, and so making the detection of two close targets 

difficult, if not impossible.

As figure (3.1.5.1b) shows, the ideal edge-wave-only transducer 

generates waveforms mainly on axis, and this shows in the beam

97



profiles of figure (3.1.6.1b), as a narrow, constant amplitude peak 

along the axis. This gives the transducer (were it physically 

possible) a very good lateral resolution. Two targets close together 

laterally (say 2-3mm apart) can now be resolved with this transducer, 

whereas with the conventional transducer, the two targets would have 

to be a transducer's diameter apart (19mm). The one drawback with this 

transducer is the small response straight ahead of the rim of the 

transducer. If the transducer were to be physically realisable, then 

this rim response could lead to misinterpretation of results, as 

explained previously in section (3.1.5). With a practical version of 

the transducer, this response straight ahead of the edge is greatly 

reduced (see below).

The non-uniformly-excited edge-wave-only transducer 

(figure (3.1.6.1c)) has similar properties to the ideal edge-wave-only 

transducer, viz. a narrow peak, centred on the transducer's axis. The 

amplitude of these central peaks are not constant with range however, 

resulting in a reduced operational range compared to the ideal edge- 

wave-only transducer. The small response straight ahead of the edge 

is now much reduced compared to the ideal edge-wave-only transducer.

The non-uniformly-excited plane-wave-only transducer, 

figure (3.1.6.Id) has beam profiles which are almost as broad as those 

of the conventional transducer (figure (3.1.6.1a)), giving only a 

slight improvement in lateral resolution over the conventional 

transducer. They are however, much smoother and more constant in shape 

with range. Compared to the edge-wave-only transducers 

(figures (3.1.6.1b — c)) , the broad beam profiles mean a poorer lateral 

resolution for the plane-wave-only transducer.
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The effect of the beam profile shape, along with the transro.it-

receive echo waveforms of section 3.1.5, on the transducers 

resolution, will be discussed further in section 4.1.

ultimate
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Figure (3.1.6.1): Transmit-receive beam profiles when interrogating a 
point target in water for:
a: conventional ideal uniformly-excited transducer, 
b: ideal edge-wave-only transducer.
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Transducer diameter 19.0 mm

Figure (3.1.6.1): (continued)
c: ideal non-uniformly-excited edge-wave-only transducer, 
d: ideal non-uniformly-excited plane-wave-only transducer.
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3•2 Computed results for finite-size targets

This section presents computed results for finite-size targets. 

The target sizes used were 0.8mm diameter, which is the smallest size 

it is practical to machine, and 4mm diameter. The same four 

transducers were modelled as for the point targets in section 3.1. 

Transmit-receive impulse responses and waveforms are shown, and from 

the waveforms it has been possible to generate some velocity potential 

impulse responses using the method described in section 2.9.

3.2.1 0.8mm diameter target

This target is of wavelength order across at the centre frequency 

(c = 1500m/s, f = 5MHz, X = c/f = 0.3mm), and so it behaves almost 

like a point target. Impulse responses are shown first in 

figure (3.2.1.1), and then the transmit-receive echo responses 

are shown in figure (3.2.1.2).

For the conventional, uniformly-excited transducer of 

figure (3.2.1.1a), the on-axis impulse responses show a good agreement 

to those of Ueda and Ichikawa (1981). When convolved with the 

transducer's velocity function to obtain the transmit-receive echo 

responses, figure (3.2.1.2a), there is still the three-pulse structure 

on axis. Compared with the point target case of figure (3.1.5.1a), the 

three pulses now have different relative amplitudes, since the now 

finite size of the target allows the plane wave component (the first 

pulse) to be reflected strongly. The edge wave components are smeared 

out across the ta r g e t ’s face, and so the latter two pulses are of 

reduced amplitude. It is interesting to note that the impulse 

response has an apparently large response straight ahead of the edge,
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while the transmit-receive waveform is small. This seemingly 

contradictory result is because the impulse response consists of two 

delta functions close together, each of opposite sign. Because the 

time separation between the two impulses is less than the length of 

the source driving function (a single cycle sine wave), after 

convolution the effect is to reduce the total amplitude of the 

w a veform.

For the case of the ideal edge-wave-only transducer, 

figures (3.2.1.1b) and (3.2.1.2b) show a large response on axis and a 

smaller response directly ahead of the edge, just as for the point 

target case (figure (3.1.5.1b)). The only difference is that for the 

point target case, the on axis waveforms have a constant amplitude, 

and for the finite-size target the amplitudes increase with range 

(over the range shown in the figure). This can be explained by 

considering ray paths from the edge of the transducer, to the centre 

and edge of the target. At far ranges, the paths are almost the same 

length, so the reflected pulses from the target are almost completely 

in phase, so the resultant echo signal is large. Closer to the 

transducer, the paths are very different lengths and so the reflected 

pulses tend to cancel each other, resulting in a smaller echo signal.

For the non-uniformly-excited transducers (figures (3.2.1.1c-d) 

and (3.2.1.2c-d)), the echo waveforms are almost exactly the same as 

the point target cases as in figures (3.1.5. lc-d).
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Figure (3.2.1.1): Transmit-receive impulse responses of a 0.8mm diameter
target (•) in water, for:
a: conventional ideal uniformly excited transducer, 
b: ideal edge-wave-only transducer,
c: ideal non-uniformly-excited edge-wave-only transducer, 
d: ideal non-uniformly-excited plane-wave-only transducer.
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Figure (3.2.1.2): Transmit-receive echo responses when interrogating a 0.8mm diameter
target (•) in water, for:
a: conventional ideal uniformly-excited transducer, 
b: ideal edge-wave-only transducer,
c: ideal non-uni form!y-excited edge-wave-only transducer, 
d: ideal non-uniformly-excited plane-wave-only transducer.



3.2.2 4mm diameter target

This target is about 13 wavelengths across. Impulse responses and 

transmit-receive echo waveforms are shown in figures (3.2.2.1) and 

Í3.2.2.2).

Again, the impulse responses on axis for the conventional 

uniformly-excited transducer (figure (3.2.2.1a)) agree with Ueda and 

Ichikawa (1981). The three-pulse structure of the point target case 

(figure (3.1.5.1a)) is now no longer visible, since the front face of 

the target reflects back so much of the plane wave, that it dwarfs the 

other components.

For the ideal edge-wave-only transducer (figures (3.2.2.1b) and 

(3.2.2.2b)), there is still a large response on axis, as for the 0.8mm 

target (figure (3.2.1.2b)). The response straight ahead of the edge is 

now much larger, and is comparable in size to the axial response. As 

can be deduced from the edge-wave directivity (figure (3.1.4.1)), the 

larger the target, the greater this edge response will become.

The non-uniforraly-excited transducers (figures (3.2.2.lc — d) and 

(3.2.2.2c—d ) ) have almost identical behaviour as for the smaller 

targets (figures (3.2.1. lc-d) and (3.2.1.2c—d )) in all respects.

106



107

T ransducer 
element

Transducer 
element

Figure (3.2.2.1): Transmit-receive impulse responses of a 4mm diameter
target (•) in water, for:
a: conventional ideal uniformly-excited transducer, 
b: ideal edge-wave-only transducer,
c: ideal non-uniformly-excited edge-wave-only transducer, 
d: ideal non-uniformly-excited plane-wave-only transducer.



Figure (3.2.2.2): Transmit-receive echo responses when interrogating a 4mm diameter 
target (•) in water, for:
a: conventional ideal uniformly-excited transducer, 
b: ideal edge-wave-only transducer,
c: ideal non-uniformly-excited edge-wave-only transducer, 
d: ideal non-uniformly-excited plane-wave-only transducer.



3.2.3 Velocity potential impulse responses

Velocity potential impulse responses have been obtained by 

working backwards from the transmit-receive waveforms shown in 

figures (3.2.1.2) and (3.2.2.2). The methods used to do this have 

already been described in section 2.9.

Currently only the conventional, uniformly-excited transducer and 

the non-uniformly-excited plane-wave-only transducer have been dealt 

with, using the same size targets as before, namely 0.8mm and 4mm 

diameter. Figures (3.2.3.1) and (3.2.3.2) show the velocity potential 

impulse responses for these cases. Comparing these figures with the 

point target cases (figures (3.1.1.1a) and (3.1.1.Id)), they are 

obviously very similar. The only difference is that as the target size 

increases, the trailing edges of the velocity potential impulse 

responses broaden. It is this broadening of the trailing edge which 

causes the reduction in the amplitude of the other component pulses in 

the transmit-receive echo waveforms of figures (3.2.1.2) and 

(3.2.2.2). This is because the differentiation of this trailing edge 

is responsible for generating the impulse which ultimately produces 

the edge-wave components of the waveforms (section 2.4). It follows 

that, as the trailing edge broadens, so its differential decreases, 

and so does the amplitude of the subsequent edge-wave components.

109



n
o

Transducer 
el pment.

Transducer 
elemenl

Velocity potenti al impulse re sponses for
0. 8mm diameter targe ts at poi nts ( • ) in t
fi eld o f :
a : conventional idea 1 unifo rm ly-excit ed

transducer,
b: ideal non-uni form ly-exc i te d plane- wave

only transduc e r .

Transducer 
elemeni

Transducer 
elemenl

Figure (3.2.3.2) : Vel ocity potenti al impulse resp onses
4mm diame ter tar get s at points (•) i
fie Id of:
a : conven tional ide al uniformly -exci

transd ucer ,
b: ideal non-uni formly-exc ited plane

only t ransduc e r .



3■3 Experimental results for point targets

This section shows experimental transmit-receive echo waveforms 

and beam profiles obtained using a 0.8mm diameter brass rod for a 

target, immersed in a large water tank. This particular target is used 

because it is a strong reflector and will give large, well-defined 

echo signals. The size was chosen because it is the smallest that can 

be made in our workshops, and as it is of wavelength order across, 

should behave like a point target.

The transducers used to obtain the experimental results were a 

conventional transducer, commercially available from Panametrics 

(type V3829), and non-uniformly-excited transducers made in our 

laboratory. At the time of writing, a prototype plane-wave-only 

transducer had only just been made, and so only one set of 

experimental results have been obtained with this new transducer.

For each set of experimental results in this section, the 

laboratory equipment settings were kept constant, so that direct 

comparisons could be made between the calculated and measured results 

in each figure.

As the aim of this section is to compare calculated results and 

experimental results, a suitable function had to be used in the 

programs for the transducer's motion. There are several ways to obtain 

this function, depending on the circumstances.

With conventional transducers, if it is possible to get a 

miniature probe or small target close enough to the transducer so that 

the component pulses are separated, then it is easy to obtain sample 

values from just the plane-wave component of the wavbform. Weight and 

Hayman (1978) have shown that the plane-wave component of the waveform
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For the non-uniformly-excited transducers, there are no pure 

plane-wave components, so a different method must be used. As was 

stated in section 2.6, the far-field on-axis responses are the 

differentials of the transducer velocity function for pressure 

waveforms, and the second differential for transmit-receive echo 

waveforms (figure (2.6.1)). To obtain the transducer velocity 

function, a far-field axial pressure waveform is sampled, and must be 

numerically integrated (integrated twice in transmit-receive mode) 

before it can be used in the programs.

is proportional to the source velocity.
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3.3.1 Conventional transducer

Transmit-receive echo responses have already been obtained for 

the conventional uniformly-excited transducer (Weight, 1982b), and for 

completeness, the relevant figure is reproduced here as 

figure {3.3.1. 1) .

The agreement between the calculated and measured results is 

generally very good. There are a few exceptions for the nearer ranges, 

where the amplitude of the edge-wave components differ slightly. There 

are two effects which cause this. The first is that the target does 

not behave like an ideal point target. The finite-size of the target 

means that when it is perfectly aligned to the transducer the target 

acts like a plane reflector. This means that the reflected plane wave 

is not spherical as was the case for a point target (section 2.5), but 

is more plane-like. This in turn means a greater contribution to the 

plane wave component upon reception back at the transducer, relative 

to the edge waves. Head waves are another factor affecting the 

relative amplitudes of the edge-wave components pulses at close 

ranges. These are caused by plate waves travelling radially across the 

surface of the transducer, generating the head waves (Hayman and 

Weight, 1979, and Harris e t . a l ., 1983), which can interfere with the 

edge waves. At further ranges, the calculated and measured waveforms 

are virtually identical. Moving 2mm off axis, the calculated and 

measured results agree well at all ranges, since the above effects 

only cause problems near the transducer, and close to the axis of 

propagation.
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Calculated Measured

(0.5/is/div)

Figure (3.3.1.1): Calculated {left) and measured {right) transmit-
receive echo responses when interrogating a 0.8mm 
diameter point-like target in water.
Each figure shows an on-axis result (top) and a 2mm 
off-axis result {bottom).
Ranges are: a: 20mm, b: 50mm, c: 100mm, d: 200mm.
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3.3.2 Edge-wave-only transducer

Moving to the non-uniforraly-excited edge-wave-only transducer, 

similar transmit-receive echo results were obtained. On-axis results 

are shown in figure (3.3.2.1), with 2mm off-axis results in 

figure (3 . 3.2 . 2) .

For the on-axis results, the measured and calculated results 

agree well, except at the closest range, figure (3.3.2.1a), where the 

agreement is poor. This is again thought to be caused by the 

interaction of head waves as mentioned in section 3.3.1 for the 

conventional transducer. This effect is more pronounced with the non- 

uniformly-excited edge-wave-only transducer than with the conventional 

transducer since there is now no plane-wave component to dominate the 

waveform.

Comparing off-axis results with on-axis results, just 2mm off- 

axis, the results are much reduced in amplitude, ranging from 17dB at 

the closest range of 30mm, to 14dB at the furthest range of 140mm.

This off-axis reduction is made even more apparent in the beam 

profiles, shown in figures (3.3.2.3-4), the calculated and measured 

cases showing an almost identical, sharp response centred on the axis. 

For the closest range shown in the figure, 30mm, it is just possible 

to see a small response straight ahead of the edge of the transducer, 

although as this is about 30dB smaller than the central peak, it can 

be safely neglected. For the further ranges in the figure, this edge 

response is too small to show. It is precisely this narrow beam width 

(as predicted in section 3.1.6) that gives this type of transducer a 

vastly superior lateral resolution as compared to conventional 

transducers. This will be discussed further in section 4.1.
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Figure (3.3.2.1): Measured {.left) and calculated {right) transmit-
receive echo responses when interrogating a 0.8mm 
diameter point-like target on axis, in water with 
an edge-wave-only transducer.
Ranges are: a: 30mm, b: 70mm, c: 140mm.
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Figure (3.3.2.2): Measured {.left) and calculated {right) transmit-
receive echo responses when interrogating a 0.8mm 
diameter point-like target 2mm off axis, in water 
with an edge-wave-only transducer.
Ranges are: a: 30mm, b: 70mm, c: 140mm.
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Figure (3.3.2.3): Calculated transmit-receive beam profiles when interrogating 
a point target in water, with a non-uniformly-excited 
edge-wave-only transducer.
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Figure (3.3.2.4): Measured transmit-receive beam profiles when interrogating 
a 0.8mm diameter point-like target in water, with an 
edge-wave-only transducer.



3.3.3 Plane-wave-only-transducer

Transmit-receive echo results have been obtained recently with 

one of our new non-uniformly-excited plane-wave-only transducers. 

These results are compared with some theoretical waveforms in 

figure (3 . 3 . 3 . 1).

Overall, the results of figure (3.3.3.1) show much simpler 

waveforms than for the conventional transducer of figure (3.3.1.1). 

The plane wave-only transducer produces a consistently short pulse 

echo waveform when interrogating a small target, whereas the 

conventional transducer produces a three-pulse echo waveform for a 

small target at close range (figure (3.3.1.1a)), but a single, short 

pulse at the furthest range (figure (3.3.1.Id)). This shows that two 

targets closely spaced in range would generate two short pulses when 

interrogated with the plane-wave-only transducer. If a conventional 

transducer was used, the resulting multi-pulse structure would be very 

difficult, if not impossible to interpret.

At the closest range of 25mm (figure (3.3.3.1a)), there is 

evidence of some small pulses following the main pulse. There are two 

main causes of the generation of these extra pulses. The first is that 

the transducer is manufactured using a series of concentric ring 

electrodes to form the required velocity weighting function, as 

described in section 2.10.2. Currently, only a small number of 

electrode rings are used, resulting in a coarse approximation to the 

velocity weighting function which was used in the modelling. The 

second cause is the existence of head waves caused by the non-ideal 

motion of the transducer's piezo-electric element. This was observed 

for the other transducers, in sections 3.3.1-2.
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Figure (3.3.3.1): Measured (left) and calculated (right) transmit-
receive echo responses when interrogating a 0.8mm 
diameter poin.t-like target on axis, in water, with 
a plane-wave-only transducer.
Ranges are: a: 25mm, b: 50mm, c: 100mm.
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3 ■ A Experimental results for finite-size targets

As the aim of ultrasonic NOT is to be able to determine target 

characteristics from echo responses, one of the first steps is to be 

able to predict the responses theoretically. This section presents 

experimental and calculated transmit-receive echo responses from 

larger targets (where "larger" means bigger than the 0.8mm diameter 

target used to obtain the "point" results of the previous section) 

interrogated with the conventional transducer. The targets were 

machined from brass as before, in 2mm, 4mm and 10mm diameters. Each 

width of target was also machined with a cone-shaped front face, as 

described in section 2.12. The front face angles (with respect to the 

target's axis) were 90° (i.e. a flat face as before), 85°, 75°, 60° 

and 45°. Thus 15 different targets were made.

A set of experimental results have already been obtained using 

the 4mm diameter flat-faced target at various ranges (McLaren and 

Weight, 1987), and is included here to confirm calculated results. A 

second set of experimental results have subsequently been taken for 

the non-planar targets described above, to compare with the calculated 

waveforms obtained using the new modelling method described in 

section 2.12.1. These targets are a more difficult case to model 

theoretically than the flat-faced targets, since this is related to 

the case of a flat-faced target which is not normally aligned to the 

transducer.
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3.4.1 Flat targets

Figure (3.4.1.1) shows measured and calculated transmit-receive 

waveforms for the 4mm diameter flat-faced target, being interrogated 

by a conventional transducer.

As the theory predicted (figure (3.2.2.2a)), close to the 

transducer there is a large plane wave response, followed by two much 

smaller pulses. As was stated in section 3.3.1, the extra large plane 

wave response is due to the face of the target causing a large 

specular reflection of the incident plane wave component. As the 

constituent pulses of the waveform close up with increasing range 

(figures (3.4.1.1b—d ) ), the resulting waveform again shows the double 

differentiation effect as described in section 2.6. The head wave 

effect mentioned in sections 3.3.1 2, does not appear to have any 

effect in these results. As these head waves only cause problems close 

to the transducer's axis, their influence taken over the area of a 

finite-sized target is small.
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Figure (3.4.1.1): Measured [left) and calculated (right) transmit-
receive echo responses from a 4mm diameter flat-faced 
target in water, with a conventional transducer. 
Ranges are: a: 30mm, b: 70ram, c: 120mm, d: 180mm.
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3.4.2 Cone-shaped targets

Figures (3.4.2.1-6) show measured and calculated transmit-receive 

echo waveforms obtained by interrogating various cone-shaped targets, 

at two different ranges, using a conventional transducer. The targets 

were 2mm, 4mm and 10mm in diameter, and their front face angles were 

90° (a flat front face), 85°, 75°, 60° and 45°. The targets were 

positioned on axis, at ranges of 35mm (in the near field) and 120mm 

(in the far field). Each figure shows a set of results for a given 

diameter target, at a given range, for all the front face angles.

The first figure shows results for the 2mm diameter targets at 

35mm range, figure (3.4.2.1). For the 90° target (the completely flat 

face), the results are as predicted before, with three distinct 

pulses. As the target face angle decreases (i.e. the target becomes 

more p ointed), there is a reduction in the amplitude of the 

waveforms. (Note that the decibel settings on each figure represent 

the amount of gain required to make each waveform big enough to be 

seen clearly.) For the 85° target, there is a slight (2dB) reduction 

in amplitude, although the overall shape of the waveform is virtually 

unchanged. For the more pointed targets there is further attenuation. 

This is due to the plane wave component becoming relatively smaller, 

as the more pointed targets serve to reflect more of the transmitted 

plane wave away, which results in less returning to the transducer. 

The comparison between the measured and calculated waveforms is good 

when comparing the shapes of the waveforms. In terms of amplitudes, 

the comparison is not as good for the more pointed 60° and 45° 

targets.

At the further range of 120mm, figure (3.4.2.2), similar effects
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are seen. Again, as the targets become more pointed, the match between 

the measured and calculated waveforms becomes poorer.

As the target size increases (figures (3.4.2.3) and (3.4.2.5)), 

the usual three-pulse structure, which occurs for the smaller targets, 

disappears leaving a single pulse for the 10mm diameter target 

(figure (3.4.2.5)). This has been explained previously, in 

section 3.3.1 as being due to the target acting as a plane reflector, 

reflecting a larger proportion of the incident plane wave back to the 

transducer. As the targets become more pointed, this plane wave pulse 

very quickly disappears leaving small pulses due to the remaining 

edge-wave components. The far-field results of figures (3.4.2.4) and 

(3.4.2.6) show similar effects to the above.

The reason for the calculated and measured results not matching 

in terms of amplitude, is due to deficiencies in the modelling, which 

neglects such things as mode conversion, and multiple scattering and 

reflections inside the tip of the target. Also, the target's 

dimensions are subject to uncertainties. Experimentally, the 

appropriate gain setting was determined by looking at the far-field 

result and adjusting the gain so that the overall amplitude (measured 

in divisions on the oscilloscope screen) approximately matched the 

calculated result. The same gain setting was used to obtain the near 

field result. This means that relative amplitudes of near- and far- 

field experimental results can be easily compared. Any discrepancies 

with the calculated results must therefore be due to the modelling.

These results emphasise the importance of correct alignment when 

making experimental measurements. The pointed targets (here 

representing misaligned flat-faced targets) show just how much the
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amplitude and shape can vary, even using the simple model of 

section 2.12. This will be discussed further in section 4.2.
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Figure (3.4.2. 1): Measured {left:) and calculated [right] transmit-
receive echo responses from cone-shaped 2mm diameter 
targets, on axis at 35mm range. Front face angles 
are 90° (flat), 85°, 75°. Decibel settings represent 
relative gain.
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Figure (3.4.2.1): {continued)
Front face angles are 60°, 45°.
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Figure (3.4.2.2): As figure (3.4.2.1), except targets are at 120mm range.
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Figure (3.4.2.2): (continued)

131



Figure (3.4.2.3): Measured (left) and calculated (.right) transmit-
receive echo responses from cone-shaped 4mm diameter 
targets, on axis at 35mm range. Front face angles 
are 90° (flat), 85°, 75°. Decibel settings represent 
relative gain.
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Figure (3.4.2.3): (continued)
Front face angles are 60°, 45°.
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Figure (3.A . 2.4): As figure (3.4.2.3), except targets are at 120mm range.
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Figure (3.4.2.5): Measured {left) and calculated {right) transmit-
receive echo responses from cone-shaped 10mm diameter 
targets, on axis at 35mm range. Front face angles 
are 90° (flat), 85°, 75°. Decibel settings represent 
relative gain.
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Figure (3.4.2.5): (continued)
Front face angles are 60°, 45°.
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Figure (3.4.2.6): As figure (3.4.2.5), except targets are at 120mm range.
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Figure (3.A . 2.6): (continued)
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3.5 B-scan imaging results

This section shows B-scan results obtained by using the 

conventional, uniformly-excited transducer, and comparing them with 

results obtained with a non-uniformly-excited edge-wave-only 

transducer. Two specially-made test targets were used to obtain the 

results, which, as they are B-scans, appear as a longitudinal section 

through the targets. Although these results have been seen before 

(Brittain and Weight, 1987 and McLaren, 1987), they are included as 

practical examples of just how well a non-uniformly-excited edge-wave- 

only transducer performs when compared to a conventional uniformly- 

excited transducer.

The first target to be imaged was an array of 0.2mm diameter 

nylon threads, in water, forming a dot-matrix pattern of letters. It 

was imaged using a conventional uniformly-excited transducer 

(figure (3.5.1a)) and a non-uniformly-excited edge-wave-only 

transducer (figure (3.5.1b)).

When imaged with the conventional transducer, figure (3.5.1a), 

the shortcomings of this device are immediately obvious. The image of 

each thread is not a small dot, but spread out laterally, and gets 

worse with range. This spreading out also means that for threads close 

together horizontally, the images merge together, showing the poor 

lateral resolution of this transducer. The top word can just about be 

read, but the lower word is almost impossible to read.

When using the edge-wave-only transducer, (figure (3.5.1b)), 

these problems are overcome, and each thread is now clearly visible as 

a single dot image. The lateral resolution is obviously vastly 

improved. As this target is wholly in water, the images give
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completely accurate positional information, as there is no refraction 

effect (section 2.10.3) to take into account.
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Figure (3.5.1): B-scans of a test 
threads in water, 
a: B-scan using a 

transducer, 
b: B-scan using a

target of 0.2mm diameter nylon 

conventional uniformly-excited

non-uniformly-excited edge-wave 
only transducer.
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The second target was an aluminium block with some

perpendicularly drilled, 2mm diameter holes. This is shown 

schematically in figure (3.5.2a).

when imaged with the conventional transducer, figure (3.5.2b), 

the holes are imaged as lines as before. Internal reflections also 

cause spurious images to appear, and holes lying below the main 

diagonal line of holes, are not well imaged. The range resolution is 

good, however, since the transducer is capable of imaging the deepest 

hole in the target block. It should be pointed out that in this 

figure, echoes from the top and bottom surfaces of the target are 

displayed as horizontal lines at the top and bottom of each image.

With the edge-wave-only transducer, figure (3.5.2c), the 

improvement is obvious, and it can now image the holes lying below 

other holes. It should be noted that there is an inherent inaccuracy 

present in the actual position of the imaged holes, due to the 

refraction of ultrasound at the top surface of the block, as described 

in section 2.10.3. This may need to be taken into account in more 

accurate work. Here, this error is only of millimetre order, with a 

coupling range of about 30mm. Such errors in position can be safely 

neglected here, because with the specified coupling range, only the 

nearest holes have any error, and this tends to be masked by the size 

of the image on the display.
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a £ 10mm

c

Figure (3.5.2): B-scans of a metal block with holes drilled in. 
a: Schematic diagram of block,
b: B-scan using a conventional uniformly-excited 

transducer,
c: B-scan using a non-uniformly-excited edge-wave- 

only transducer.
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A Discussion

This chapter discusses the results which were presented in the 

previous chapter, with particular reference to how the overall 

resolution of an ultrasonic pulse-echo system is influenced by the 

type of transducer being used.

Also discussed, are the effects of the target's size and front 

face shape on the received echo response, and the implications for

characterisation techniques.

4. i Resolution

This was defined in section 2.6 as the ability of a transducer to 

resolve two targets closely spaced laterally ("lateral resolution") or 

longitudinally ("range resolution").

As was shown in sections 3.1.5-6, the range resolution is limited 

by the effective pulse length, as shown in figure (3.1.5.1), and the 

lateral resolution is limited by the width of the beam, as shown in 

figure (3 .1.6.1).

With the conventional uniformly-excited transducer, 

figure (3.1.5.1a), close to the transducer, on axis, the echo response 

from the target comprises three distinct pulses. This could lead to 

misinterpretation, making one think that there were three equally- 

spaced targets. Overall, the total pulse length is greater than the 

direct transmit-receive time between the transducer and target, which 

means that echoes from two closely spaced targets would be 

interspersed, leading to further confusion about what targets are 

actually present. At further ranges, where the total pulse length 

decreases to a more or less constant value, it is easier to interpret

145



results .

Moving off axis, each edge wave component splits into two smaller

pulses of reduced amplitude, leaving the plane wave component

unchanged. In such cases, a target in any lateral posit ion will

produce echG responses of similar maximum amplitudes. This is shown 

clearly in the beam profiles of figure (3.1.6.1a), and demonstrated in 

the B-scans of figures (3.5.1a) and (3.5.2b), which show images of 

small targets as lines rather than as dots.

With the three other kinds of transducer, figure (3.1.5.lb-d), 

the problem of the multi-pulse echo structure is greatly reduced, 

since the total pulse length is now of the same order as the driving 

pulse width, and so the simpler echo responses make interpretation 

easier.

The ideal edge-wave-only transducer figures (3.1.5.1b) and 

(3.1.6.1b), would seem to be an excellent device if only it were 

physically realisable, with a simple response on axis, giving a good 

range resolution, and a sharp, narrow beam width, giving a good 

lateral resolution. Further off axis, straight ahead of the 

transducer's rim, there is, however, a small response which could lead 

to misinterpretations of echo results. Fortunately, the non-uniformly- 

excited edge-wave-only transducer, figures (3.1.6.1c) and (3.3.2.3), 

does not have this "rim response" (except very close to the 

transducer), even when interrogating a real point-like target, 

figure (3.3.2.4). The structure of the echo waveforms is much simpler 

when compared with the conventional transducer, each waveform being 

fairly short in duration, figure (3.1.5.1c). As in the ideal edge- 

wave-only transducer, the echo waveforms are concentrated along the
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transducer's axis, figure (3.1.6.1c). The short pulse structure and 

narrow beam width result in a transducer with good range and lateral 

resolution. The excellence of this transducer shows in the B-scans of 

figures (3.5.1b) and (3.5.2c), where the images are properly resolved.

The non-uniformly-excited plane-wave-only transducer also has 

simple and short waveforms, figure (3.1.5.Id), giving a good range 

resolution, but beam profiles are broad, figure (3.1.6.Id), giving a 

poorer lateral resolution than the non-uniformiy excited edge-wave- 

only transducer. It would, however, appear to be better than the 

conventional transducer of figure (3.1.6.1a), since the latter has 

much broader beam profiles.
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4.2 Target size and front face shape

For the conventional, uniformly-excited transducer, as the target 

size increases, the amplitude of the plane wave component increases, 

swamping all the other components. This can be seen in the sequence of 

figures (3.1.5.1a), (3.2.1.2a) and (3.2.2.2a), for the theoretical 

cases of a point target, and 2mm and 4mm diameter targets, 

respectively. This effect occurs because as the target size increases, 

it behaves more like a large flat reflector, and so allows more of the 

transmitted plane wave to be reflected back as a locally plane wave, 

as described in section 3.3.1. This is also seen in the experimental 

results of figures (3.3.1.1) and (3.4.1.1).

For the ideal edge wave-only transducer, figures (3.1.5.1b), 

(3.2.1.2b) and (3.2.2.2b), as the target size increases, the response 

straight ahead of the transducer’s edge becomes larger, relative to 

the axial response. For a point target, edge waves travel in a path 

from the edge of the transducer to the target and are reflected back 

to the edge of the transducer. As the target size increases, there is 

a new path to consider - from the transducer edge to the target edge 

and back to the transducer edge. As this new path is shorter than the 

path involving the centre of the target, the echo pulse due to the 

shorter path occurs first. As the target size approaches, and then 

exceeds, the size of the source, this "edge-to-edge" response becomes 

quite large, since the directivity (figure (3.1.4.1)) is maximum 

straight ahead of the edge. The reason that there is a large response 

straight ahead of the transducer's edge, when interrogating a large, 

axial target, but no response when a small target is positioned 

straight ahead of the transducer's edge, is that the large target
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behaves as if it were a circular collection of point targets whose 

individual (small) responses build up to a large response.

For the non-uniformiy-excited edge-wave-only transducer, 

figures (3.1.5.1c), (3.2.1.2c) and (3.2.2.2c), these effects are much 

smaller, as the experimental results in figures (3.3.2.1-2) confirm. 

For larger targets of the same order as the source, McLaren (1987) has 

shown experimental results confirming the existence of the extra 

pulses mentioned above. With changing target size, the overall 

response of the transducer stays very much the same.

This can also be said for the non-uniformly-excited plane wave- 

only transducer, figures (3.1.5.Id), (3.2.1.2d) and (3.2.2.2d). The 

waveforms keep the same shape and relative amplitude with changing 

target size.

One of the most common methods of estimating the size of a target 

was proposed by Krautkramer (1959). This consists of a collection of 

curves relating echo response amplitudes and target range, to the size 

of a target. The DGS diagrams (distance-gain-size) are derived 

assuming a perfectly flat and circular reflecting target in a fluid 

medium, at right angles to the field radiated by the transducer. The 

target is assumed to be in the far-field, since the derivations assume 

steady-state behaviour (ie. cw.). Krautkramer has also shown that for 

pulses consisting of a few cycles, there are deviations from the 

theoretically predicted cw. cases. For short wideband pulses the 

deviations become even greater. Despite their limitations, DGS 

diagrams can be used successfully in many cases. It has been shown by 

McLaren and Weight (1987) that the finite-sized target model described 

in sections 2.8-9 can be used to derive theoretical DGS diagrams for
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arbitrary pulse shapes.

As the size of the target greatly affects the amount of plane- 

wave component which is received back at the transducer, there are 

implications for the shape of the velocity potential impulse response. 

As was mentioned in section 2.4, the sharp steps are responsible for 

the mathematical generation of the plane- and edge-wave components. 

Thus, as the plane-wave component becomes larger with increasing 

target size (and the edge-wave component becomes smaller), so the 

trailing step of the velocity potential impulse response spreads out, 

becoming less sharp. This is shown for the conventional transducer in 

figures (3.1.1.1a), (3.2.3.1a) and (3.2.3.2a). For the non-uniformly- 

excited plane-wave-only transducer, as little or no edge waves are 

generated anyway, this means that the trailing edge of the velocity 

potential impulse response is always spread out, and there is little 

change with target size, figures (3.1.1.Id), (3.2.3.1b) and 

(3.2.3.2b). If a way could be found to get an expression for the 

velocity potential impulse response directly (as is done for point 

targets, see eqn. (2.4.10)), this would have an obvious advantage of 

requiring less computing time to calculate the echo impulse response. 

This is because for the finite-size target case, the echo impulse 

response consists of a convolution within an integral (eqn. (2.9.2)). 

This however, is left for future work.

The correct alignment of the target with respect to the 

transducer becomes important as the target size increases. If the 

target is misaligned, the front face of the target reflects the plane 

wave away, so that less is received back at the transducer. This 

effect can be seen in the near-field results (so that the constituent
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pulses are well separated) for the cone-shaped targets, in 

figures (3.4.2.1), (3.4.2.3) and (3.4.2.5). With the smallest target, 

figure (3.4.2.1), the usual three-pulse structure is evident for the 

less pointed targets, but as the targets become more pointed, the 

first pulse, which is due to the plane wave, becomes smaller in 

comparison to the other component pulses. For the most pointed target, 

the plane-wave component has virtually disappeared. With the larger 

targets, figures (3.4.2.3) and (3.4.2.5), the initially much bigger 

plane-wave component drops much more rapidly with increasing 

pointedness of the target. This can be seen by looking at the gain 

settings recorded by the experimental results, and noting that, much 

more gain needs to be applied as the target size increases.
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4.3 Non-uniform relationship between range and time

The non-uniform relationship between range and time which exists 

for edge-wave type transducers, discussed in section 2.10.3, really 

only applies when refraction occurs between liquid and solid 

interfaces, where the targets are embedded in a solid medium. The only 

such result presented here is the B-scan of the metal block with the 

perpendicularly drilled holes, figure (3.5.2). As figure (2.10.3.2) 

shows, there is one particular depth within the target block at which 

the error in position is a maximum, assuming zero error at the front 

and rear faces of the block. In the example shown in the latter 

figure, at a depth of 20mm in the target block, the expected 

positional error is about 2mm. In the experimental result of the 

former figure, these errors have to be taken into account during the 

interpretation. To overcome this error would mean having an 

oscilloscope with a non-linear timebase, which would seem to be 

impractical. However, modern microcomputer controlled instrumentation 

would probably be able to carry out the necessary correction 

automatically. A simpler alternative would be to calculate a series of 

"correction curves" for the target configuration being studied.
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5 Conclusions

This thesis has shown how the radiated sound field emitted by a 

circular ultrasonic transducer in a fluid, can be described in terms 

of a plane wave radiating within the geometric region straight ahead 

of the source, and a spreading edge wave radiating from the periphery 

of the source. Interaction between these two different types of wave 

cause variations in amplitude to occur in the transmit-receive echo 

responses, depending on the position of the target being interrogated.

Computer modelling has shown that non-uniformly-excited 

transducers have advantages over conventional, uniformly-excited 

transducers. The non-uniform excitation is described by a weighting 

profile which either varies smoothly from maximum at the centre of the

source to zero at the edge, or maximum at the edge to zero in the

centre. The former type tends to reduce the edge- wave components,

ieaving the plane-wave component, hence the name 'piane-wave-only

transducer'. The latter type reduces the plane-wave component, leaving 

the edge-wave component, hence the name ’edge-wave-only transducer’.

Edge-wave-only transducers have been shown to emit an ultrasound 

beam which is concentrated in a narrow region along the axis of the 

transducer. This results in a vast improvement in lateral resolution 

when compared to the conventional transducer. The echo responses are 

much shorter than with the conventional transducer, resulting in a 

great improvement in range resolution. The advantages of this 

transducer are clearly demonstrated by comparing B-scan images taken 

with this transducer and a conventional transducer. All the targets 

are clearly resolved with the edge-wave-only transducer, but the 

conventional transducer has great difficulty resolving closely spaced
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targets.

For the case of an edge-wave - only transducer interrogating a 

soiid block with embedded targets, immersed in a fluid, it was 

explained how refraction occurring at the fluid/solid interface causes 

the echo pulses from the targets to be shifted in time. This time 

shift and hence error in perceived position, has been modelled using 

an iterative method. Such errors have been shown to be small.

The plane-wave-only transducer has also been shown to have useful 

properties. The short pulse length gives an excellent range 

resolution, like the edge-wave-only transducer, and has a much more 

constant shape throughout the field. Compared to a conventional 

uniformly excited transducer where the echo response varies greatly 

with target position, this is an important advantage.

The impulse response method is well suited to computer modelling, 

since after calculating the echo impulse response, the actual echo 

waveform received by the transducer can be calculated by convolution 

with the transducer’s motion. This allows the echo response to be 

calculated for any arbitrary motion of the transducer. The core of all 

the modelling programs calculate impulse responses for uniformly 

excited transducers interrogating point targets at any position in the 

radiated field.

A way of adapting the model to allow non-uniformly-excited 

transducers to be included was presented. This treats the source as if 

it were a collection of coincident sources of decreasing diameter, the 

echo response of each weighted according to the desired weighting 

profile, and superposed to give the total echo response.

Incorporating the method of Ueda and Ichikawa (1981) (and
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extending their method to off-axis targets) then gives the model the 

ability to handle circular targets of any finite size.

Thus, the overall modelling scheme described in this thesis is 

capable of calculating an echo response for any axisymmetric, non- 

uniformly-excited transducer, interrogating a flat, circular target 

placed at any position in the field, such that the faces of the 

transducer ana target are parallel.

Circular targets are used in the modelling so as to take 

advantage of the inherent circular symmetry. However, the model can 

deal with non-circular targets, as McLaren (1987) has shown, with 

results for square and triangular targets.

Using the echo response for the finite-size target case, it has 

been possible to derive equivalent velocity potential impulse 

responses. It is hoped that further analysis of the velocity potential 

impulse responses will lead to simple expressions being obtained for 

them, as is done for point targets. This will considerably reduce the 

computer run-times required.

Detailed calculations have been made, along with experimental 

verification, of the properties of the different kinds of transducer, 

and their performance when interrogating different size targets in 

water. The results presented here show a very good agreement between 

calculated and experimentally measured results, proving the validity 

of the model.

An attempt has been made to model targets which are not flat, but 

pointed, as the first stage in the problem of target misalignment. 

Although the pointed target model is inaccurate for the most pointed 

targets, due to the assumptions made, the less pointed targets show
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good matches between theory and experiment. For the smallest target 

there is only a 2dB reduction in amplitude between the flat (90°) 

target and the 85° target, and the waveform's shape is virtually 

unchanged. As the target diameter increases, so becoming a bigger 

reflector, this amplitude reduction also increases, and the waveform’s 

shape changes drastically. This indicates that for small targets, the 

flatness of the face of the target doesn't seem to matter, whereas for 

larger targets, a few degrees of unevenness dramatically alters both 

the shape and size of the echo response.

In summary, this thesis has described a general model for 

circular ultrasonic transducers interrogating circular targets in 

fluids. Non'uniformly-excited edge wave-only and plane-wave-only 

transducers have been modelled, and these results have compared well 

with results obtained from real transducers made in our laboratory. 

Both types of transducer give better resolution than conventional, 

uniformly excited transducers.
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6 Future work

The main area requiring further research concerns modifications 

to the modelling. Currently the model can only cope with flat targets, 

or pointed targets to a limited degree, which are perfectly aligned; 

ie. the axes of the transducer and target are parallel. It would be 

desirable to improve the model for pointed targets, and extend it to 

allow for more general non-flat targets.

It would be advantageous to develop formulations for the 

velocity potential impulse response for the case of finite-size 

targets. This would considerably reduce the computer run-times 

involved in calculating the echo impulse responses.

Finally, the next major step would be t 0 incorporate all the

results discussed in this thesis into the case of targets in solid

materials, which is made more complicated by the presence of shear

waves, and mode conversion.
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Appendix

Calculation of frequency responses for finite-sized targets

In section 2.8 it is necessary to obtain expressions for the 

frequency response of the total scattering medium, in terms of changes 

of velocity and changes of density, separately. First assume that 

there are velocity fluctuations only, i.e. Ap is zero. The scattering 

strength Q(r_,t) from eqn. (2.8.3) becomes:-

Q(r.t) =
2Ac

. .
9 P i n (^ t} 

at2
( A . 1 )

The incident wave is given by eqn. (2.8.4):-

30(r,t)
P • ( r , t ) = u ( t ) * p
in at

(A.2)

or, since

0 ( r , t ) = e JCJt (A.3)

so

a 0 ( r , t )

a t
= j" 0(r,t) , (A.4)

Pi n (r,t) = p * j" 0(r,t) . (A.5)

If this is written as an inverse Fourier transform:-

P i n (r.t) = P —
in 2tt

U( cj) jcj $(£,w) e-*wt dw (A.6)
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Differentiating twice with respect to time:-

(r ,t)

oo

£_
Ì

u ( o )  j o  $ ( r , o) ei«l
2n ,

-o o
L

(A.7)

£_ 
2rr «

u(w) j$(.r,o) (jo)2 e-'CJt do . ( A . 8)

Thus the scattering strength, eqn. (A.l), becomes:-

Q(l.t) =
2 Ac P

c3 2 rr ,
U(o) jo $(£,o) (jo)2 e-'£Jt do ( A . 9)

The scattered wave is given by eqn. (2.8.2): —

' Q ( s ,t - Ir - s|/c)
ps c d . t )  =

Att j _r - s I
dv , (A. 10)

2Ac P

c3 . 2n ,
U(o) jo $(s,o) (jo)2 do

dv . (A

4tt| r_ - s|

.11)
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oo

P Ac (j<*>)3 p U(w) $(£,<y) e e I-
■ -.... .. — ---------------------------------  dcj dv .Jv ( 2 tt)2  c 3 | r - s I

l
— OO

(A.12)

The echo signal is proportional to the integral of the scattered wave 

across the transducer surface:-

ec(t) a Js Psc(̂ 't] ds -
(A.13)

and since

♦ (r,«) =
2 tt ,

■ j“ lt - 11 - s|/c] 

ll - s|
ds , (A.14)

eqn. (A . 13) becomes:■

ec(t) «
1 Ac (jo)3 p U(o) $(s,o) e^6't $(ir, 

2 n  c 3

do dv . (A.15)

Eqn. (A.15) can be made an equality by inserting a constant T(o) , 

which takes into account the behaviour of the transducer on 

reception: -

160



ec(t) =
* Ac (j«)3 p U(u) T(w) $(s,u) $(r,cj)

2TT C'
dw dv . (A.16)

The echo signal can be expressed as an inverse Fourier transform:-

ec(t)
1

2tt

* Ac (jcj)3 P U(cj) T(<v) $(r,cj)
dv e ^  dc ,

(A.17)

or as a convolution:-

ec (t) = p u (t)
3fc (t)

a t
(A.18)

I
where u (t) is the inverse Fourier transform of U(«)T(w), fc(t) is the 

velocity potential impulse response, and 3f (t)/3t is the pressure 

impulse response.

Comparing eqns. (A.17) and (A.18)

Sfc(t)

at

oo

1 Ac (jw)3 #( s ,cj) $(_r,w)

— oo

do (A.19)
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f c ( t > .  I  e i « dt
2 tt

1 » Ac (jo)3 $(s,o) $(.T,o)
dv do , (A.20)

1

2tt

Ac (jo)2 $(£,o) #(_r,o)
dv e ^  do ,

U
— oo

(A.21)

Thus, the frequency response, for velocity fluctuations only, is:-

Fc (o) =
1 Ac (jo)2 $(£,o) $(_r,o)

dv . (A.22)

The above procedure is used to obtain the frequency response for 

density fluctuations only, i.e. where Ac is zero:-

y«> =' -*(r,o) 7 (Ap)-V*(s,o)

2 p
dv . (A.23)
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