

City, University of London Institutional Repository

Citation: Goddard, A.J. (1990). An automatic approach to implementing DSP algorithms

on parallel processors. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/28505/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

An Automatic Approach
To Implementing DSP Algorithms

On Parallel Processors

by

Alan John Goddard

A Thesis submitted for the degree of
Doctor of Philosophy

CITY UNIVERSITY
Centre for Information Engineering

April, 1990.

Contents

1.1 Processor architectures.. 1-2
1.1.1 Von Neumann m achine...1-2
1.1.2 Array machines .. 1-3
1.1.3 Parallel von Neumann machines ... 1-5
1.1.4 Non von Neumann machines ...1-6
1.1.5 Dataflow m achines.. 1-7
1.1.6 Graph reduction machines ...1-7

1.2 Interconnection Networks .. 1-8
1.2.1 Bus interconnection.. 1-8
1.2.2 Crossbar interconnection ...1-9
1.2.3 Omega interconnection...1-9
1.2.4 Static interconnection .. 1-10

1.3 Programming languages .. 1-12
1.3.1 Array and vector programming ... 1-12
1.3.2 Multiprocessor programming...1-13
1.3.3 Non-von Neumann programming ... 1-14

1.4 Implementation strategies .. 1-15
1.5 Thesis o u tlin e ..1-19

Chapter 2. Discrete algorithms and their graphs

2.1 The characteristics of discrete algorithms ... 2-1
2.1.1 Discreteness ..2-1
2.1.2 Competence-performance trade-o ff... 2-1
2.1.3 Inputs and outputs ..2-2
2.1.4 Memory ... 2-2
2.1.5 Complexity... 2-2
2.1.6 Real-time, deterministic, synchronising system s................................2-3
2.1.7 Granularity ... 2-4
2.1.8 Task primitives ..2-4

2.2 Data flow g raphs... 2-5
2.2.1 Nodes and arcs ..2-5
2.2.2 Paths and acyclic pa ths.. 2-6
2.2.3 Initiating and terminating D A G s...2-7
2.2.4 Dependence and independence ...2-8
2.2.5 Path costs and the critical p a th ...2-9
2.2.6 Earliest and latest start times and f lo a t... 2-10

2.3 Summary.. 2-11

Chapter 1. Introduction

II

Contents

3.1 Language grammar ..3-1
3.2 Single-assignment ..3-3
3.3 Program flow ..3-4
3.4 Past values... 3-5
3.5 Error handling ..3-5
3.6 Data ty p e s ... 3-5
3.7 Scope and use of variables .. 3-6
3.8 Program u n its .. 3-6
3.9 Sum m ary... 3-7

Chapter 4. DFDL definition and syntax

4.1 BNF notation ..4-1
4.1.1 Production..4-1
4.1.2 A lternative..4-1
4.1.3 Repetition ..4-2

4.2 Program facilities..4-2
4.2.1 Continuation..4-2
4.2.2 Comments ..4-2

4.3 Lexical ty p es ... 4-3
4.3.1 Alphabetic characters (le tte rs)...4-3
4.3.2 Numeric characters (digits)...4-3
4.3.3 Special characters.. 4-3
4.3.4 Delimiters ..4-3
4.3.5 Identifiers..4-3
4.3.6 Reserved words.. 4-4
4.3.7 Integer numbers ..4-4
4.3.8 Real numbers ..4-4
4.3.9 Real errors and overflow...4-5

4.4 Syntax ... 4-5
4.4.1 Operators and functions .. 4-5

4.4.1.1 Arithmetic operators ...4-5
4.4.1.2 Boolean operators.. 4-6
4.4.1.3 Relational operators...4-6
4.4.1.4 Functions ..4-7

4.4.2 P rogram ..4-8
4.4.3 External input and o u tp u t...4-9
4.4.4 N o d e s ... 4-10
4.4.5 C onstants..4-11
4.4.6 User-defined functions .. 4-12
4.4.7 Z-operator (Delay).. 4-13
4.4.8 Assignment ..4-14

Chapter 3. DFDL design aspects

iii

Contents

4.4.9 Expressions ..4-16
4.4.10 Repetitive and fixed subscripts...4-17
4.4.11 Conditional ..4-18

4.5 DFDL exam ples..4-19
4.5.1 FIR filter ..4-19
4.5.2 HR f ilte r ... 4-19
4.5.3 2-D convolution ..4-20
4.5.4 DFT ... 4-21
4.5.5 Lattice f ilte r ..4-22
4.5.6 Level-crossing d e tec to r.. 4-23
4.5.7 Matrix product ..4-23

4.6 Sum m ary... 4-24

Chapter 5. DFDL task model

5.1 Data structures..5-1
5.1.1 Executable node data structure ...5-1
5.1.2 Non-executable node data struc tu re ... 5-2
5.1.3 Executable node a ttribu tes.. 5-3
5.1.4 Attribute description.. 5-4

5.2 Node types... 5-5
5.3 Named graph structures .. 5-7

5.3.1 Input nodes ..5-7
5.3.2 Output nodes..5-10
5.3.3 Node nodes ..5-13
5.3.4 Constant n o d e s ..5-14

5.4 Primitive graph structures.. 5-15
5.4.1 Real n o d es ..5-15
5.4.2 Internal input/output and delay nodes ... 5-17
5.4.3 Arithmetic nodes ..5-20
5.4.4 Branch nodes..5-22
5.4.5 Function n o d e s ..5-23
5.4.6 Communication nodes.. 5-24
5.4.7 Relational n odes..5-25
5.4.8 Boolean nodes..5-26
5.4.9 Conditional nodes..5-27

5.5 Non-primitive graph structures.. 5-29
5.5.1 Power and anti-logarithm graph structures 5-29
5.5.2 Sum, product and mean graph structures... 5-30
5.5.3 Conditional graph structures ...5-32
5.5.4 Maximum and minimum graph structures 5-33
5.5.5 Median graph structu re .. 5-34

5.6 Sum m ary..................... 5-35

IV

Contents

6.1 The Transputer..6-1
6.2 Resources ... 6-2
6.3 Activity... 6-3
6.4 Data structures..6-3

6.4.1 Processor graph data structure...6-4
6.4.2 Activity schedules data structure ... 6-5

6.5 Processor graph ..6-6
6.5.1 Degree ... 6-6
6.5.2 Arc relationships..6-6
6.5.3 Connectivity..6-7
6.5.4 Connecting the nets in V ...6-8

6.6 Checking for net isolation.. 6-9
6.7 Sum m ary... 6-9

Chapter 7. Compile-time scheduling

7.1 Scheduling m odel..7-2
7.1.1 Task g ra p h ..7-2
7.1.2 Processor g raph..7-3
7.1.3 Sequence constraints within schedules... 7-4
7.1.4 Performance measures .. 7-8
7.1.5 Definition of the scheduling p rob lem ... 7-9

7.2 Scheduling complexity..7-9
7.2.1 Ordering on T is empty .. 7-10
7.2.2 Ordering on T is strictly sequential ... 7-10
7.2.3 Non-zero communication costs ...7-11
7.2.4 Exhaustive enumeration .. 7-13
7.2.5 P and NP problem s.. 7-14

7.3 Search strategies..7-15
7.3.1 Solution sp a ce ..7-15
7.3.2 Generating, expanding and exploring solution7-15
7.3.3 Informed and uninformed search... 7-15
7.3.4 Backtracking..7-16
7.3.5 Hill-climbing..7-17
7.3.6 Best-first..7-18
7.3.7 Hybrid search ..7-18

7.4 Scheduling algorithm..7-19
7.4.1 Heuristic m easures.. 7-20

7.4.1.1 Minimum length heuristic ...7-20
7.4.1.2 Minimum lateness heuristic... 7-22

7.4.2 Shortest path, a BF approach...7-24

Chapter 6. Parallel processor model

Contents

7.4.2.1 Dijkstra’s shortest path algorithm... 7-24
7.4.2.2 Modified Dijkstra’s shortest path algorithm7-25
7.4.2.3 Extension 1 ..7-26
7.4.2.4 Extension 2 ..7-26
7.4.2.5 Extension 3 ..7-26
7.4.2.6 Extension 4 ..7-26

7.4.3 Comparing task solution nodes, a BT approach7-27
7.4.4 Scheduling assignment, an HC approach ... 7-28
7.4.5 Complexity... 7-29

7.5 Sum m ary... 7-30

Chapter 8. Experimental results

8.1 Scheduling time ..8-2
8.2 Factors affecting perform ance.. 8-4

8.2.1 Integer e ffec t..8-4
8.2.2 Synchronisation e ffe c t.. 8-6
8.2.3 Latent scope e ffec t.. 8-6
8.2.4 Finite communication cost e ffect...8-8
8.2.5 Topology e ffec t..8-13

8.3 Exam ples... 8-15
8.3.1 Finite impulse response f ilte r ...8-16
8.3.2 Infinite impulse response filter...8-22
8.3.3 Wave digital f ilte r ..8-26
8.3.4 Fast Fourier transform.. 8-32
8.3.5 Multiple cycle finite impulse response filter8-37

Chapter 9. Conclusions

9.1 Implementation summary... 9-1
9.1.1 Algorithm characteristics .. 9-1
9.1.2 Algorithm representation...9-2
9.1.3 Language description.. 9-2
9.1.4 Task g ra p h ..9-3
9.1.5 Processor graph..9-3
9.1.6 Compile-time scheduling .. 9-4

9.2 Concluding rem arks..9-5
9.2.1 Performance bounds .. 9-5
9.2.2 Factors affecting performance ...9-5

9.2.2.1 Irrevocable scheduling...9-5
9.2.2.2 Integer e ffe c t.. 9-6
9.2.2.3 Synchronisation and latent scope effects....................................9-6
9.2.2.4 Communication cost and topology effects..................................9-6

9.2.3 Conclusions on performance ...9-7

vi

Contents

9.2.4 Conclusions on D F D L .. 9-7
9.3 Future work ... 9-8

9.3.1 Reducing scheduling tim e .. 9-8
9.3.2 Reducing scheduling memory...9-8
9.3.3 Improving the scheduler .. 9-8
9.3.4 DFDL program lin k e r.. 9-8
9.3.5 Inputs and outputs ..9-9
9.3.6 Language m o d e l..9-9
9.3.7 Deadlock avoidance..9-9
9.3.8 Processor graph definition .. 9-10

Appendix A. Graph concepts and definitions

Appendix B. EBNF description of DFDL

B.l EBNF description of DFDL lexical analyser ...B-l
B.2 EBNF description of DFDL syntax ..B-3

B.2.1 Program ...B-3
B.2.2 External and Internal declarations .. B-3
B.2.3 Input, output and node declaration.. B-3
B.2.4 Constant declaration... B-3
B.2.5 User defined function declaration.. B-4
B.2.6 Assignments ...B-4
B.2.7 Initialise assignment ... B-4
B.2.8 Constant expressions... B-4
B.2.9 Constant operands... B-4
B.2.10 Subscripts ...B-5
B.2.11 Real arithmetic operators..B-5
B.2.12 Functions...B-5
B.2.13 Repeat assignment... B-5
B.2.14 O bjects...B-5
B.2.15 Expressions...B-6
B.2.16 O perands...B-6
B.2.17 Conditionals...B-6
B.2.18 Boolean expressions ... B-6
B.2.19 Relational expressions ..B-6
B.2.20 Relational opera to rs... B-6
B.2.21 Boolean operators... B-6

Vll

Contents

Appendix C. User’s guide

C.l Installation...C-l
C.2 Getting Started ...C-l
C.3 Running the DFDL com piler..C-2
C.4 Exiting.. C-2
C.5 Making a DFDL source f ile ..C-2
C. 6 Compiler flow ..C-3

C.6.1 Processor type ... C-3
C.6.2 Clock frequency... C-3
C.6.3 Link speed ...C-3
C.6.4 Number of processors..C-3
C.6.5 Connect links ... C-5
C.6.6 View Connections ... C-5
C.6.7 Schedule ...C-5
C.6.8 Schedule display... C-6
C.6.9 Timing display ... C-8
C.6.10 Data analysis... C-10
C. 6.11 T ransla te ..C -ll

Appendix D. Programmer’s guide

D. l Reading the source file ..D-l
D. 1.1 File name ..D-l
D.1.2 File contents...D-l

D.2 Lexical analysis .. D-2
D.2.1 Protocol &Lex-&Syntax... D-2

D.3 Syntax analysis.. D-3
D.3.1 Initialise .. D-4

D.3.1.1 V ariables...D-4
D.3.1.2 Reserved word initialisation..D-4
D.3.1.3 Hash function ...D-5
D.3.1.4 Appending the symbol tab le ..D-5
D.3.1.5 Chaining ...D-5
D.3.1.6 Symbol table format ..D-6
D.3.1.7 Symbol table limits... D-7

D.3.2 Syntax analysis...D-7
D.4 Syntax analyser description... D-8

D.4.1 Declaration flow ...D-8
D.4.1.1 Input, node and output flow ..D-8
D.4.1.2 Data type flow... D-10
D.4.1.3 Subscript size f lo w ... D -ll
D.4.1.4 Constant flow ... D -ll
D.4.1.5 Real string flow ... D-13

viii

Contents

D.4.1.6 User defined function flow ..D-13
D.4.2 Assignment flow ...D-13

D.4.2.1 Initialise flow ...D-13
D.4.2.2 Repeat flow ...D-14

IX

List of tables

Table 1.1 Implementation strategies... 1-15

Chapter 4. DFDL definition and syntax

Table 4.1 Valid initialisation section assignment ...4-14
Table 4.2 Valid repetitive section assignment...4-14

Chapter 5. DFDL task model

Table 5.1 In/out-degree of task graph n o d e s .. 5-1
Table 5.2 Node form at..5-3
Table 5.3 Task primitives, in/out-degree and cost ...5-5
Table 5.4 Attributes for external input nodes ... 5-8
Table 5.5 Attributes for input conversion n odes... 5-9
Table 5.6 Attributes for external output n o d e s ... 5-11
Table 5.7 Attributes for output conversion nodes ... 5-12
Table 5.8 Attributes for node n o d e s ...5-13
Table 5.9 Attributes for constant n o d e s ...5-15
Table 5.10 Attributes for real n o d e s .. 5-16
Table 5.11 Attributes for internal output nodes ... 5-17
Table 5.12 Attributes for internal input nodes ... 5-17
Table 5.13 Attributes for delay nodes...5-18
Table 5.14 Attributes for arithmetic nodes ... 5-20
Table 5.15 Attributes for branch nodes ...5-21
Table 5.16 Attributes for function nodes ...5-22
Table 5.17 Attributes for relational nodes ... 5-24
Table 5.18 Attributes for boolean n odes...5-25
Table 5.19 Truth table for GATE n o d e ...5-26
Table 5.20 Truth table for PRI.OR node.. 5-26
Table 5.21 Attributes for GATE n o d e ...5-27
Table 5.22 Attributes for PRI.OR node ...5-27

Chapter 6. Parallel processor model

Table 6.1 Degree of node ty p es ..6-6
Table 6.2 Valid processor graph arcs .. 6-7

Chapter 7. Compile-time scheduling

Chapter 1. Introduction

Table 7.1 Polynomial and Non-polynomial complexity 7-13

List of tables

Table 8.1 Scheduling time scale fa c to r .. 8-3
Table 8.2 Topology factor, Q ... 8-14

Appendix D. Programmer’s guide

Table D .l Concurrent compiler operation .. D-3

Chapter 8. Experimental results

XI

List of figures

Figure 1.1 Von Neumann architecture..1-2
Figure 1.2 Array architecture.. 1-3
Figure 1.3 Array architecture.. 1-4
Figure 1.4 Systolic array architecture ..1-4
Figure 1.5 Wavefront array architecture.. 1-5
Figure 1.6 Loosely coupled architecture .. 1-5
Figure 1.7 Tightly coupled architecture ..1-6
Figure 1.8 Static dataflow architecture..1-7
Figure 1.9 Dynamic dataflow/Reduction architecture.....................................1-8
Figure 1.10 Bus interconnection .. 1-8
Figure 1.11 Full connectivity .. 1-9
Figure 1.12 Omega network ... 1-10
Figure 1.13 3-D H ypercube.. 1-11
Figure 1.14 Compile-time implementation... 1-18
Figure 1.15 Implementation strategy by chapter ...1-19

Chapter 2. Discrete algorithms and their graphs

Figure 2.1 Algorithm input-output .. 2-2
Figure 2.2 Input-process-output synchronisation... 2-3
Figure 2.3 Coarse grain structure ..2-4
Figure 2.4 Fine grain structure .. 2-4
Figure 2.5 Task input, output and execution c o s t ...2-5
Figure 2.6 Arc relationships ..2-6
Figure 2.7 Acyclic path ..2-7
Figure 2.8 Directed acyclic graph (DAG) .. 2-8
Figure 2.9 DAG, showing the critical path .. 2-9
Figure 2.10 DAG, showing EST(T), LST(T) and FL T (T)............................. 2-10

Chapter 3. DFDL design aspects

Figure 3.1 Program source and object ..3-1
Figure 3.2 DFDL program structure models .. 3-4

Chapter 5. DFDL task model

Figure 5.1 B and E data structure .. 5-2
Figure 5.2 External input stream (REAL32) ... 5-8
Figure 5.3 External input stream (non-REAL32) ... 5-9
Figure 5.4 External output stream (REAL32) ... 5-11
Figure 5.5 External output stream (non-REAL32) 5-12

Chapter 1. Introduction

xii

List of figures

Figure 5.6 Node nodes ..5-13
Figure 5.7 Constant nodes ..5-14
Figure 5.8 Real node ..5-16
Figure 5.9 Single delay ..5-17
Figure 5.10 Multiple delay .. 5-19
Figure 5.11 Monadic arithmetic node ...5-20
Figure 5.12 Dyadic arithmetic nodes ...5-20
Figure 5.13 Branch n o d e ..5-22
Figure 5.14 Function nodes .. 5-23
Figure 5.15 Communication n o d e s ...5-24
Figure 5.16 Relational n o d e s .. 5-25
Figure 5.17 Boolean nodes .. 5-26
Figure 5.18 Conditional nodes .. 5-27
Figure 5.19 Power graph structure ...5-29
Figure 5.20 Power graph structure .. 5-30
Figure 5.21 (a) SUM (b) PROD (c) MEAN graph structures5-31
Figure 5.22 Conditional graph structure ... 5-32
Figure 5.23 Maximum graph s truc tu re ...5-33
Figure 5.24 Minimum graph structure ...5-33
Figure 5.25 Median graph structure ...5-34

Chapter 6. Parallel processor model

Figure 6.1INMOS Transputer .. 6-1
Figure 6.2 Transputer interconnection n etw ork ... 6-2
Figure 6.3 Gantt chart ..6-3
Figure 6.4 Processor graph of Transputer network ..6-3
Figure 6.5 Processor graph data structure ... 6-4
Figure 6.6 Schedule data structure ...6-5
Figure 6.7 Partially connected processor graph ... 6-8

Chapter 7. Compile-time scheduling

Figure 7.1 Task graph, G .. 7-4
Figure 7.2 Processor graph, V .. 7-5
Figure 7.3 Scheduling methods .. 7-5
Figure 7.4 Task scheduling .. 7-7
Figure 7.5 Completely connected network ... 7-11
Figure 7.6 Linear connected network ...7-12
Figure 7.7 2-dimensional space of hybrid strategies7-18
Figure 7.8 Scheduling; minimum length heuristic ..7-20
Figure 7.9 Scheduling; minimum lateness heuristic ..7-22

xiii

List of figures

Figure 8.1 Scheduling time characteristics (linear).. 8-2
Figure 8.2 Scheduling time characteristics (lo g) ..8-3
Figure 8.3 Integer effect on speedup..8-4
Figure 8.4 Speedup degradation ..8-5
Figure 8.5 Cyclic processor activity ..8-7
Figure 8.6 Cyclic processor and comms activity (proc/comms ratio = 30.0) ___ 8-9
Figure 8.7 Cyclic processor and comms activity (proc/comms ratio = 15.0) ___ 8-9
Figure 8.8 Cyclic processor and comms activity (proc/comms ratio = 6 .0)___ 8-10
Figure 8.9 Cyclic processor and comms activity (proc/comms ratio = 3.0) ___ 8-10
Figure 8.10 Cyclic processor and comms activity (proc/comms ratio = 1.5) .. .8-11
Figure 8.11 Cyclic processor and comms activity (proc/comms ratio = 0.3) .. .8-11
Figure 8.12 Number of communications vs. proc/comms cost ratio8-12
Figure 8.13 Speedup vs. proc/comms cost ratio ...8-13
Figure 8.14 Topology effect on sp eed u p .. 8-14
Figure 8.15 Pre-schedule activity profile (fir8)... 8-16
Figure 8.16 Speedup vs. number of processors (fir8).....................................8-17
Figure 8.17 Post-schedule activity profile (fir8) ... 8-21
Figure 8.18 Pre-schedule activity profile (iir2)...8-22
Figure 8.19 Speedup vs. number of processors (iir2).....................................8-23
Figure 8.20 Post-schedule activity profile (iir2) ... 8-26
Figure 8.21 Pre- schedule activity profile (w df4)... 8-28
Figure 8.22 Speedup vs. number of processors (wdf4) 8-28
Figure 8.23 Post-schedule activity profile (wdf4)...8-31
Figure 8.24 Pre-schedule activity profile (fft8)... 8-33
Figure 8.25 Speedup vs. number of processors (fft8).....................................8-33
Figure 8.26 Post- schedule activity profile (fft8)...8-35
Figure 8.27 Pre-schedule activity profile (fir8x8)...8-37
Figure 8.28 Speedup vs. number of processors (fir8x8)............................... 8-37
Figure 8.29 Post-schedule activity profile (fir8x8)...8-39

Appendix C. User’s guide

Figure C.l Compiler flow diagram ..C-4
Figure C.2 Schedule display ... C-7
Figure C.3 Timing display... C-9

Appendix D. Programmer’s guide

Figure D .l Program flow ...D-8
Figure D.2 Declaration flow ... D-8
Figure D.3 Input flow ...D-9
Figure D.4 Node flow ...D-9

Chapter 8. Experimental results

xiv

List of figures

Figure D.5 Output flow ... D-10
Figure D.6 Data type flow ... D-10
Figure D.7 Subscript size f lo w ..D -ll
Figure D.8 Constant flow ... D-12
Figure D.9 Real string flow ... D-13
Figure D.10 Assignment flow ...D-13
Figure D. 11 Repeat flow ...D-14
Figure D. 12 Parse flow .. D-19
Figure D. 13 Continue flow ...D-20
Figure D.14 Parse left identifier f lo w ... D-21
Figure D. 15 Parse left real flow ... D-22
Figure D.16 Parse right identifier flow ..D-23
Figure D.17 Parse right real flow ... D-23
Figure D.18 Function f lo w ...D-24
Figure D.19 Monadic flow ...D-25
Figure D.20 Spatial subscript flow ... D-26
Figure D.21 Temporal subscript flo w ... D-26
Figure D.22 Parse subscript flow ... D-27
Figure D.23 Integer expression flow ... D-28

XV

Acknowledgements

I would like to thank the following people for their support and contributions
during my research:

My supervisor, Dr. Stuart Lawson, for the initial inspiration that started me on the
project, his helpful comments along the way and for keeping me on track; Prof.
Tony Davies, Dr. Dick Comley and Dr. Pat Samwell for their advice on all matters
and for making City University a friendly environment in which to work; and
Martik Babians, Mike Roberts, Salim Omarouayache, and others for their help,
friendship and comments throughout my time at City.

Last but not least, I would like to thank my fiancee, Wanda (S.P.), whose under-
standing during those moments of uncertainty kept me going and who can brighten
up the bleakest of days.

The author was supported by the SERC (Science and Education Research Coun-
cil) for 3 years.

xvi

Declaration

I grant powers of discretion to the University librarian to allow this thesis to be
copied in whole or in part without further reference to m e. This permission covers
single copies made for study purposes, subject to normal conditions of acknow-
ledgement.

XVII

Abstract

Recently, there has been an increase in demand for low cost, high throughput
parallel processors on which to implement real-time DSP applications. Numerous
solutions have been proposed, though often these are application dependent. This
is true for SIMD and systolic architectures, which require a high degree of
regularity in an application’s structure. A more general purpose solution is offered
using MIMD architectures, which come in a variety of forms. Here we concentrate
on loosely-coupled, homogeneous architectures, because they offer infinite expan-
dability and a low cost/processor ratio.

On the route to successful parallel implementation, there are three fundamental
problems to be solved, these are parallelism detection, partitioning and schedul-
ing. An automatic approach to solving these problems is presented in the thesis.
The approach is based on a compile-time implementation strategy which extracts
parallelism, partitions and schedules during compile-time.

Applications are written in a single-assignment language called DFDL (Digital
Filter Description Language); a language designed specifically for deterministic,
sampled systems. By using a single-assignment language, programs are easily
translated into a graphical form (task graph) which conserves and displays paral-
lelism. The task graph is used as an input to the partitioning and scheduling stages.

Prior to scheduling, the user is prompted for details of the target architecture. This
includes the number and type of processors, input, output and inter-processor
connections. These parameters are used to form a separate graph, called the
processor graph. Execution profile information is added to the task graph, this
enables analysis to be performed which aids scheduling.

The compile-time scheduling problem is expressed as an optimisation problem,
which is shown to be NP-complete. The thesis presents an efficient approximation
algorithm for the scheduling problem, which is based on a lateness heuristic. The
resulting schedules are translated into parallel Occam for execution on an array
of Transputers. The successes and failures of the implementation strategy are
examined and commented upon. Performance results are given for several ex-
ample applications written in DFDL. These examples are implemented on a range
of architectures and the effects of communication, scheduling and topology are
discussed.

xvm

Notation

0 (f (n))

Z +

Z

G

T

ITI

C

A

B

E

LST()

EST()

FLT()
*

w

Z

ei

cj

"Order o f fo r/(n): a quantity whose magnitude
is less than some constant tim es/(n),
for all large n

Set of positive integers

Set of negative integers

Acyclic task graph, (T, C, B, E, A)

Set of nodes representing processor tasks,
{Ti, T2,..., etc.}

Set cardinality

Set of nodes representing communication tasks,
{Ci, C2, ..., etc.}

Set of arcs, partial order on T and C

Beginning node of graph G

Ending node of graph G

Latest start time of a task

Earliest start time of a task

Float time of a task

Critical path length

Production

Delay operator

Cost (execution duration) of task Ti

Cost (communication duration) of task Cj

Ceiling function

Floor function

XIX

Notation

R Set relation

V Processor graph, (P, I, O, L)

P Set of processor nodes, {Pi, P2, etc.}

I Set of input port nodes, {Ii, 12,..., etc.}

O Set of output port nodes, {Oi, 02,..., etc.}

L Set of arcs connecting nodes in V

D () Degree of a node

N Set of nets, {Ni, N2, ..., etc.}

Nk A net: disjoint set of processor nodes,
input ports, output ports and connecting arcs

S Set of schedules, {Si, S2, ..., etc.}

Sk A schedule: disjoint set of sequentially ordered
tasks from T or C

Pj Processor node representing a processing resource

Oj Output node representing an output port

Ij Input node representing an input port

SUC() The set of successors to a task

IM SUC() The set of immediate successors to a task

PRED() The set of predecessors to a task

IM PRED() The set of immediate predecessors to a task

C O S T (T i , T k) Accumulated cost of traversing a path T i,..., Tk

MAX{ } Maximum value of all elements within { }

MIN{ } Minimum value of all elements within { }

xx

Notation

SUM{ }

PROD{ }

n

m

si(k)

m

li(k)

w(k)

R

w A

b

P

*

h

Yh

U

Ui

TC

Sum of values within { }

Product of values within { }

Number of processor executable tasks

Number of processors

Start of execution time for Ti in a schedule Sk

Finish of execution time for Ti in a schedule Sk

Lateness of execution for Ti in a schedule Sk

Schedule duration of schedule Sk

Set of processor executable tasks that are
available for scheduling

Overall schedule deadline for a scheduling
problem

Branching factor

Number of unique acyclic paths between a
processor and all other processors in a network

Scheduling problem

Scheduling problem when partial order A on T
is strictly sequential

Scheduling level, 0 < h < = n

tfiSolution node for the h level

Lower stopping criterion for a possible
solution node

Upper stopping criterion for a possible
solution node

Time complexity

XXI

Notation

BT Backtracking

HC Hill-climbing

BF Best-first

X Mean value of x

xy x to the power y

x! x factorial

logbx Logarithm, base b, of x

In x Natural logarithm of x

exp x Exponential of x; ex

Xmin Minimum value of x

Xmax Maximum value of x

Q Topology factor

> > Much greater than

< < Much less than

Inf. Infinity

f ry) An arc, from element x to element y

PE Processing element

IP Instruction processor

DM Data memory

IM Instruction memory

di(k) Shortest communication path from Ps to Pk
for taskTi

XXII

Chapter 1. Introduction

Digital signal processing (DSP) is a branch of signal processing that uses digital
systems to operate on signals. This form of processing has many attractions; data
can be manipulated in time, a wide range of arithmetic operations and algorithmic
complexity is possible and precision is arbitrarily high. One disadvantage, however,
is that digital techniques are inherently slower than their analogue counterparts.

The wide scale use of electrical digital systems began in the mid 1940’s. Since that
time, there have been significant developments. These developments have led to
an upward trend in complexity, precision, throughput and miniaturisation. Major
technological advances include the replacement of mechanical relays by ther-
mionic valves, the valves subsequent replacement by discrete transistors, and the
introduction of high density integration techniques. These developments have
meant that switching speeds have fallen drastically and processors that previously
occupied a room and required vast amounts of power, will now fit in a pocket and
run off a small cell.

Manufactures of integrated circuits, using current fabrication techniques, can
produce integrated circuits that consist of millions of transistors. The trend for
increased integration, as a way to reduce switching speeds, may continue for some
time. However, there are physical limitations related to the molecular structure of
semiconductor materials that place a ceiling on such miniaturisation. For the
future, there are many directions for advancement, these are mainly motivated by
a desire for increased performance; greater data throughput, more accuracy,
smaller latency and/or increased complexity. A technological answer to the ques-
tion, "How do we increase performance?" is to continue to reduce switching
speeds. This may be achieved by changing to a different semiconductor material,
or by changing the computing medium altogether, e.g. acousto-optics.

An alternative direction, which neither precludes or necessarily requires tech-
nological advancement, is to develop new architectures and programming
methods. This route aims to exploit the concurrency within processes, by simul-
taneously processing data independent operations. Allen (1985), in his
comprehensive review of computer architectures for digital signal processing
(DSP), discusses DSP evolution and highlights many current trends. Both he, and
others (e.g. Gaudiot, 1987; Gajski and Pier, 1985), have identified three architec-
turally related routes to increase processing performance:

. The first route relies on the computer architect to exploit new and existing
processing architectures, in order to increase the processing throughput.

. The second, calls for the design of new parallel algorithms, using languages
which support the concept of parallelism, like CSP (Hoare, 1978) and
Occam (May, 1987).

l- l

. Finally, the third route focuses on the design of advanced compilers to
extract parallelism automatically.

The underlying aim of these points is to achieve an increased processing through-
put by parallel processing. To achieve this aim, Backus (1978) suggests that
processing architectures must consist of multiple processing resources and that we
should move away from the conventional von Neumann model of computing. With
this, and the previous points as motivation, the main objective of this dissertation
is to develop an efficient implementation strategy, that maps an algorithm descrip-
tion onto a parallel architecture with the aim of maximising performance.

1.1 Processor architectures

Processor architectures are described according to Skillicorn’s taxonomy (Skil-
licorn, 1988), a taxonomy that extends Flynn’s (1972), especially when describing
parallel architectures. It is a two level hierarchy in which the upper level classifies
architectures by the number of instruction processors, the number of processing
elements and the interconnections between them. A lower level, though not
discussed here, distinguishes variants even more precisely; this level is based on a
state machine view of processors.

1.1.1 Von Neumann machine

The von Neumann abstract machine consists of a single instruction processor (IP),
a single processing element (PE) and two memory hierarchies; instruction memory
(IM) and data memory (DM). These functional units are arranged as shown in
Figure 1.1.

Figure 1.1 Von Neumann architecture

1-2

Other computational models are motivated by a desire for increased performance,
above that accorded to the abstract von Neumann machine. Enhancements to the
performance are made in one, or more, of three ways:

• Rearrange the machine’s state diagram to reduce the time taken for an
instruction/execute cycle (token) to circulate and complete. This is
achieved by executing independent operations simultaneously, either
within the instruction processor, processing element, or both, e.g. inde-
pendent instruction and data busses produce a Harvard architecture. These
changes are regarded as state changes and do not alter the architectural
class of the machine.

• Have more than one token circulating, and hence, more than one active
time step at any one time. This method of performance enhancement is
called pipelining. Pipelined behaviour can be described without adding
more functional units, because it is regarded as a state level change. Instead,
pipelined units are distinguished from simple units by labelling.

. Replicate functional units to permit parallel activity. This form of enhan-
cement changes the architectural class of the machine and is often the most
beneficial route to improving performance.

The final way to improve performance is discussed further by showing several of
the commonest parallel architectures, beginning with the array machine.

1.1.2 Array machines

The simplest way for replication of functional units is found in the array processor.
Typically, array processors consist of a single instruction processor, that broadcasts
instructions to a number of processing elements, which have access to data
memory. Instructions are included for data to be exchanged between processing
elements, either directly, or indirectly.

Array processors use a 1 to N switch (abstract term for connectivity) to broadcast
from the single instruction processor to the N processing elements. Two different
sub-families are distinguished, based on the relative arrangement of data memory,
processing elements and the necessary switching that facilitates interconnection
between functional units. The first is shown in Figure 1.2. This kind of array
processor has a processing element to data memory connection of N to N and a
processing element to processing element connection of N by N; every processing
element can communicate with every other processing element. This architecture
is similar to that used in the DAP (Reddaway, 1973) and the Connection Machine
(Hillis, 1985).

The second kind of array processor, Figure 1.3, has a processing element to data
memory connection of N by N. In this case there is no direct connection between
processing elements, hence, inter processor communication is achieved via shared
memory. An example of this architecture is found in the Burrough’s Scientific
Processor (Kuck and Stokes, 1982).

1-3

Figure 1.2 Array architecture

Array machines, such as the DAP, Connection Machine and Burroughs Scientific
Processor, are used to process general purpose, regularly structured computations.
For example, matrix-matrix or vector-matrix operations, as found in finite element
analysis and simulation operations.

\
IM

____)

I toN

1-4

An alternative form of array processor is the systolic array (Kung, 1982). A systolic
array is designed from regular processing elements (to reduce the design and
production costs), each connected to their nearest neighbour. This principle of
locality (only nearest neighbour processing elements are connected) aims to
reduce communication time between processors and so increase performance.
Systolic arrays are often single instruction. Consequently, the instruction processor
reduces to a memoryless synchronisation unit, i.e. global clock. The operation of
the array is usually determined during the manufacturing process. Systolic arrays
rely on suitable algorithms which reflect the high degree of modularity and locality
of the architecture. Semi-systolic arrays (More, McCabe and Urquhart, 1987) relax
the principle of locality in one or more dimensions, so that a greater number of
different algorithms can be implemented. This is often at the expense of perfor-
mance, because of the introduction of global data distribution.

Figure 1.4 Systolic array architecture

Another single instruction array processor worthy of note is the wavefront array
processor (Kung, 1984). Like the systolic array, a wavefront array conforms to the
principle of locality in order to keep communication time to a minimum, and
regularity in order to maintain low design/production costs. However, the
wavefront array’s processing elements are data synchronous and do not, therefore,
require global synchronisation. Its abstract functional architecture, Figure 1.5,
reveals the absence of an instruction processor (or global clock). Like the systolic
array, the operation of a wavefront array is usually determined during the manufac-
turing process.

Both systolic and wavefront arrays are, as a rule, dedicated to a single, regularly
structured function and would typically form the processing core of a high speed
processor. Examples of their uses are correlators and 2D convolvers.

1-5

Figure 1.5 Wavefront array architecture

Array processors rely on the existence of regular parallelism; where many different
data streams can be manipulated by the same operation simultaneously. Many
problems do not fit this paradigm, especially when parallelism is irregularly
organised. Consequently, it is natural to consider replicating the instruction
processor as well as the processing element. This allows for the simultaneous
execution of different instructions on different pieces of data.

1.13 Parallel von Neumann machines

One major class of architecture based on replicated instruction processors and
replicated processing elements is the parallel von Neumann machine. This struc-
ture is aimed at providing parallel, general purpose computing. Essentially, two
different architectures result from this approach; loosely coupled machines and
tightly coupled machines.

Figure 1.6 Loosely coupled architecture

1-6

Loosely coupled machines, Figure 1.6, comprise a set of processing elements, each
with their own local memory, a set of instruction processors and an interconnection
network. Inter processor communication takes place over the N by N interconnec-
tion network, usually by message passing. Typical examples of these machines are
the CM , Intel Hypercube, Meiko MK40, TX16 (Gaudiot, Dubois, Lee and
Tohme, 1986) and Supernode (Esprit project 1085), the three latter examples are
all Transputer (INMOS, 1986) based.

Tightly coupled machines differ from loosely coupled machines by the way data
memory and inter processor communication is organised. Communication be-
tween processing elements is achieved via an N by N switch, which connects the
data memory to the processing elements. There is no direct interconnection
between processing elements, therefore, inter-processor communication is made
via shared memory. Examples of tightly coupled (or shared memory) machines are
the BBN Butterfly, Denelcor HEP, IBM RP3 and NYU Ultracomputer. The
functional architecture of the tightly coupled machine is shown in Figure 1.7.

Figure 1.7 Tightly coupled architecture

A number of these example multi-processors are reviewed in (Jesshope,1987).

The von Neumann model of computation is based on a thread of instructions
executed sequentially, except where order is explicitly altered. When multiple
threads of control are employed, as with a parallel von Neumann machine,
programmers must not only consider the ordering of instructions in a single thread,
but also the different possible orderings in interacting threads. This problem often
makes programming awkward and has led designers of parallel machines to
examine alternative models of computation.

1-7

1.1.4 Non-von Neumann machines

Alternative, non von-Neumann models of computation are characterised by an
absence, in the program description, of an explicit ordering of execution. The only
ordering remaining, is that implied by data dependencies. This allows for many
different evaluation orders to be considered for execution. Evaluation is made at
compile time, or sectioned between compile time and run time, and aims to select
the ordering (or schedule) which promises the greatest performance. Models of
computation with this property are programmed in non-procedural programming
languages.

1.1.5 Dataflow machines

The dataflow model of computation represents a parallel computation as a
directed graph (data dependent structure), which removes the requirement for
unnecessary sequencing. A task, represented as a node in the directed graph, is
only ready for processing once all its preceding dependencies have been executed.
Consequently, at any one time, there may be many tasks available for processing.

Most dataflow machines are based on a ring structure, consisting of an unmatched
token store (where data values wait until a complete set of operands is present),
memory containing the operators and a set of processing elements that execute
the operators. Result values, from the processing elements, flow around the ring
structure and are matched to tokens within the unmatched token store. The
abstract data flow machine can take one of two architectural forms, namely static
or dynamic.

Figure 1.8 Static dataflow architecture

In a static dataflow machine, each processing element has its own memory, and
data values needed by other processing elements flow across the inter processing
element switch. The diagram of the functional architecture, Figure 1.8, differs from
a parallel von Neumann architecture, in that it has neither an instruction processor
nor an instruction memory, because the directed graph plays the role of both
instruction (in its structure) and data (in its content). The functional diagram is
similar to that of a Wavefront Array, which is not surprising since both are data
driven machines. An example of a static dataflow machine is the MIT Static
Dataflow Machine (Dennis and Misunas, 1975).

1-8

In a dynamic dataflow machine, Figure 1.9, all data memory is equally accessible
to all processing elements, as in tightly coupled machines. As with a static dataflow
machine, a dynamic machine has neither an instruction processor nor an instruc-
tion memory, because the directed graph plays the role of both instruction and
data. Examples are the MIT Dynamic Dataflow Machine (Arvind and Kathail,
1981) and the Manchester Dynamic Dataflow Machine (Gurd and Watson, 1980).
Additional information on dataflow machines and languages has been published
in a special issue of Computer (IEEE, 1982).

1.1.6 Graph reduction machines

In reduction machines (Chambers, Duce and Jones, 1984), expressions are
evaluated by successively reducing all component sub-expressions until only
simple data values remain. Evaluation is achieved by expression substitution; for
each expression that is not a simple data value, a set of rules define what is
substituted when that expression occurs. The machine works by matching the
current expression being processed with its corresponding rule. Once matched,
the expression is substituted according to the rule. The process of expression
substitution continues until all sub-expressions are processed and only simple data
values remain. These represent the value of the expression. All independent
sub-expressions can be matched and substituted concurrently, thus there is the
potential for a high degree of parallelism.

The diagram of the functional architecture for a reduction machine, Figure 1.9, is
functionally identical to that of the dynamic dataflow machine. Graph reduction
machines are the focus of current research interest especially in the UK, examples
of these are Alice (Darlington and Reeve, 1981) and Flagship (Watson, 1988).

Figure 1.9 Dynamic dataflow/Reduction architecture

1-9

1.2 Interconnection Networks

All communicating parallel processing machines employ some form of intercon-
nection network, over which they synchronise or pass data. Such networks are
worthy of note, since the interconnection network often limits the performance of
a machine.

1.2.1 Bus interconnection

The least complex form of dynamic interconnection network is the shared bus,
Figure 1.10, which allows one processor at a time to transmit to one or more devices
on the bus. Contention problems arise whenever more than one processor at-
tempts to transmit simultaneously. Consequently, bus arbitration is necessary, this
often results in considerable time being spent waiting for the bus to clear before
a processing element can transmit.

Figure 1.10 Bus interconnection

1.2.2 Crossbar interconnection

At the other extreme, the crossbar switch, Figure 1.11, supports all possible distinct
connections between devices. The complexity, however, of an N by N crossbar
switch is O (N2). For machines comprising large numbers of processors, the
complexity, and hence the cost of a crossbar switch may be prohibitive.

MO

Figure 1.11 Full conectivity

1.23 Omega interconnection

A compromise between using a shared bus or using a crossbar interconnection
network is to either use multiple busses, or use multistage switches like the omega
or delta networks. The omega network, shown in Figure 1.12, is made up from 2
by 2 crossbar switches and has a complexity of 2Nlog2N for an N by N network.

1
2

3

4

5

6

7

8

2 by 2
crossbar switch

1
2

3

4

5

6

7

8

Figure 1.12 Omega network

1-11

The penalties for using a multistage network (compared to crossbar interconnec-
tion), is an increased latency because of multi-stage switching, and is a possible
delay due to routing conflicts. The performance of networks using each type of
interconnection method has been studied extensively. Bhuyan, Yang and Agrawal
(1989) present a comprehensive review on interconnection networks, including
relative figures of merit for different network types.

1.2.4 Static interconnection

Static networks consist of point to point connections called links. These networks
are often used where complete connectivity is not essential, as in the case for
loosely coupled machines, systolic arrays and wavefront arrays. Networks are
classified in terms of their degree and their diameter; the degree is the number of
links per processing element, and the diameter is the maximum number of links a
message has to travel between any source and destination along the shortest path.
Networks that have a lower degree for each processing element give rise to a higher
diameter, which means a greater delay in average communication time. Increasing
the degree of a processing element reduces the diameter of the network, but
increases its cost.

Example 3-D Hypercube has N = 16 processors,
degree and diameter of 4. There are 4 distinct

paths between any source and destination processor.

Figure 1.13 3-D Hypercube

1-12

The majority of research on static networks has been carried out on networks that
have a regular topology (Reed and Grunwald, 1989), these include linear net-
works, chordal and simple rings, 3-D torus, 3-D hypercube and tree networks. A
linear network and a completely connected network are two examples that repre-
sent extremes in their degree and diameter. For example, an N processor linear
network has a degree of 2 and diameter of N, where as an N processor completely
connected network has a degree of N-l and a diameter of 1.

13 Programming languages

Just as there are different classes of processor architecture, there are also different
classes of programming language. Often, there are strong relationships between
classes of architecture and classes of language, so much so, that classes of language
are sometimes referred to by a hardware analogy, e.g. multi-processor language.
This close relationship is not surprising, since both the language and its related
architecture class are generally conceived from the same computational model.

It is sometimes useful to distinguish between different types of parallelism. For
example, "regular parallelism" and "irregular parallelism", and also "fine grain
parallelism" and "coarse grain parallelism". Regular parallelism exists whenever
the same task is performed many times over, usually on disjoint data. Whereas
irregular parallelism exists whenever different tasks are performed and their data
is independent. The size of concurrent sections of code (tasks or processes) relative
to the smallest atomic operation defines the granularity of the parallelism. Fine
grain suggests there are many small concurrent tasks, whereas coarse grain,
suggests there are a few large concurrent tasks.

13.1 Array and vector programming

The notion that an existing sequential language can be used to program a parallel
machine is appealing and indeed, the proliferation of Fortran programs have
motivated many researchers towards investigating this subject. There have been
two separate avenues of approach, the first is to detect and extract parallelism in
the compiler, while the second relies on parallel extensions to existing sequential
languages.

Parallel extraction at the compilation stage is perhaps the most attractive, because
existing programs can be used without the cost of re-development (Padua and
Wolfe, 1986). In practice, however, to gain any substantial benefit the user must
restructure the program to remove ambiguities that the compiler cannot resolve.
Languages like Fortran and Pascal are inherently difficult to "parallelise", because
they exhibit side effects due to the explicit use of storage locations which impedes
data flow analysis.

1-13

variables and careful control over the scope of variables make this side effect
preventable. A less obvious side effect arises from when an array or record is
indexed by one or more variables, whose value is not known by the compiler, as is
the case when the value is derived from an input. Concurrent execution of these
array elements may cause unknown conflicts, hence array elements are executed
sequentially in their original order, with the subsequent loss of potential concur-
rency. However, the worst problem is that of aliasing via the use of unbounded
arrays or arithmetic operations on pointers. No amount of compile-time analysis
can help unravel devious or undisciplined use of such language "features".

Despite these problems, parallelism may be extracted from repeated regular
sections of code, i.e. DO loops. Although, this inevitably means the only paral-
lelism that is generally detectable, is that between regular sections of code (i.e.
regular parallelism). For this reason, many paralellising compilers have been
written for array processors, where processing is performed in a lock-step or
overlapped fashion. For example, compilers have been written to run Fortran on
the Cray-1 and on the Illiac IV (Millstein, 1973).

Existing sequential languages, like Fortran, have been extended so the parallelism
of a specific machine can be exploited. Often these extensions directly reflect the
architecture of the machine which, once modified, renders programs un-portable.
However, the implementation problems, which are a major challenge are consid-
erably simplified. Once again though, the only parallelism that is readily exploited
is regular parallelism, hence extensions to these languages are suited to array
processors. Examples of extended Fortran languages are CFD (Stevens, 1975) for
the Illiac IV, DAP Fortran for the ICL DAP and 3L Fortran for the INMOS
Transputer. Likewise, several versions of "parallel" C have been written for the
INMOS Transputer (INMOS, 1986).

1.3.2 Multi-processor programming

The techniques for programming distributed and multi-processor systems are
similar to those used in operating systems for controlling concurrent access to
shared resources. There are many specialised languages that have been written for
concurrent programming and these differ considerably from one another, how-
ever, they all have the following three features in common (Andrews and
Schneider, 1983);

(i) the ability to express concurrent execution,

(ii) process synchronisation and

(iii) inter-process communication.

1-14

There are four basic mechanisms which have been used for achieving concurrent
execution. First and simplest of these is the co-routine which has been included in
languages such as Modula-2 (Writh, 1978). Secondly, the fork and join notation
which is used in the UNIX operating system and can be found in the Mesa language
(Mitchell, Maybury and Sweet, 1979). Thirdly, the cobegin, or parbegin (Dijkstra,
1968) which is employed in CSP (Hoare, 1978) and more recently in Occam (May,
1983). Finally, explicit process declarations are found in Concurrent Pascal
(Brinch-Hansen, 1975), Modula (Writh, 1977) and Pascal-M (Abramsky and
Bornat, 1982).

Synchronisation and communication between processes can be achieved either by
reading and writing to shared data or by sending and receiving messages. In general
it is difficult to separate communication from synchronisation, since synchronisa-
tion requires a flow of information from one synchronising process to an other.
Similarly, communication requires some ordering of events if processes are to
communicate with each other sensibly.

When communication is based upon the use of shared data, then there are two
types of synchronisation (Andrews and Schneider, 1983); mutual exclusion and
condition synchronisation. Mutual exclusion allows an executing process to be
treated as an indivisible sequence of operations, this prevents interference from
other processes. The second form of synchronisation is condition synchronisation,
which co-ordinates the execution of concurrent processes by controlling when a
process waits and when it commences execution. Various methods of achieving
synchronisation and communication using shared data have been applied, ex-
amples of these are semaphores (Dijkstra, 1968), conditional critical regions
(Brinch-Hansen, 1972) and monitors (Hoare, 1974). The use of shared data is a
centralised approach to controlling concurrency, and is therefore closely related
to tightly coupled processor architectures.

An alternative method to shared data is message passing. Message passing requires
that processes are named so messages are passed between identified processes.
Inter-process communication takes place within some medium, which is called a
channel in O ccam and a mailbox in Pascal-M. Different communication
mechanisms vary in the way communication interacts with the activity of a sending
process. For example, in a "no-wait send" mechanism the process continues as soon
as data is sent, this implies the receiving process has an unbounded buffer in which
to hold a queue of messages. Whereas "synchronised send" waits until the message
has been received before continuing. The latter method is employed in CSP,
Pascal-M and Occam. Message passing is a de-centralised approach to controlling
concurrency, and is therefore closely related to loosely coupled processor architec-
tures.

1-15

13.3 Non-von Neumann programming

The previous two sections have discussed control flow languages, whose common
characteristic is to execute the program in the order it is textually composed.
Backus (1978) has argued that this style of programming language (influenced by
the von Neumann model of computation) can make programming unnecessarily
difficult. An alternative execution strategy is to execute operations as and when
their input data becomes available, i.e. data driven. Hence, in data driven systems,
the order in which programs are written becomes less important, since it does not
determine the order of execution.

Dataflow languages are characterised by an absence of concurrent control con-
structs, as found in multi-processor languages. In place of these explicit constructs
are rules that govern assignment; single-assignment or zero-assignment.

Single-assignment languages (SALs) have the appearance of conventional lan-
guages, in that they incorporate assignment statements and include typical control
flow constructs such as conditional statements and loops. However, they have no
concept of sequential execution and no direct control constructs like GOTO. In
order to prevent ambiguities that might arise from re-assigning variables, the
language only permits a variable to be assigned once throughout the program
(Chamberlin, 1971). This limitation significantly alters the nature of the assign-
ment operator, changing it from a dynamic destructive operation to one that
statically associates a name to a data value. Special provision is made for variables
within iterative expressions, such as SISALs "old" operator. SALs tend to use data
structures, such as arrays and streams, that are readily implemented in dataflow
graphs. Examples of SALs are SISAL (McGraw, Skedzielewski, Allan, Grit,
Oldehoeft, Glauert, Dobes and Hohensee, 1983) and VAL (Ackerman and Den-
nis, 1979). Most SALs are designed for generalised programming, however,
languages have been written specifically for signal processing applications. SALs
are a natural environment for representing signal processing algorithms because
of the strong correspondence between signal flow and dataflow. Languages for
signal processing include SIGNAL (Guernic, Benveniste, Bournai and Gautier,
1986), SDF (Lee and Messerschmitt, 1987) and PSPL (Thaler, Loeffler and
Moschytz, 1987).

Zero-assignment languages are usually known as functional languages, or applica-
tive languages and are based on the mathematics of lambda calculus, or recursion
equations. The language has no concept of storage state or assignment (Backus,
1978). Typically, a program consists of an un-ordered set of equations that char-
acterise functions and values; functions are characterised by the use of recursion,
other functions and values, while values are characterised by functions of other
values. In many ways functional languages are identical to single-assignment
languages in that single-assignment and zero-assignment definitions result in non-
destructive association. Also, both language types are free from side effects and
GOTOs. The functional language SASL (Turner, 1976) has been applied to
dataflow machines (Richmond, 1982) with success, however, the efficiency of such
implementations are in doubt. Much of the system and application software for
the ALICE graph reduction machine is written in a functional language called

1-16

HOPE (Burstall, MacQueen and Sandella, 1980). Other examples of functional
languages are LISP (McCarthy, 1960), ML (Gordon, Milner and Wandsworth,
1977) and FP (Backus, 1978).

1.4 Implementation strategies

Unlike sequential systems, parallel systems require the division of a program into
separate parts and each part assigned to execute on a processor. The dividing
operation is called partitioning, which is defined as an operation that creates a
finite number of mutually disjoint tasks, whose union is the program. Assignment
of tasks to processors is carried out in both a spatial and a temporal sense, since a
parallel architecture’s capacity to process is a function of both the number of
processors and time. This form of assignment is known as scheduling and generally,
the number of tasks far exceeds the number of processors. Consequently, a
processor is treated as a shared resource and it is the purpose of the scheduler to
co-ordinate task-processor assignment to avoid conflict between tasks. Both par-
titioning and scheduling are regarded as implementation operations.

Design-time Compile-time Run-time

1 parallelism, partition,
schedule

II parallelism, partition schedule

3 parallelism, partition schedule

4 parallelism partition, schedule

| | parallelism partition schedule

6 parallelism partition, schedule

7 parallelism, partition,
schedule

8 parallelism, partition schedule

9 parallelism partition, schedule

10 parallelism, partition,
schedule

Table 1.1 Implementation strategies

1-17

The success of an implementation relies heavily on a program’s parallelism, how
well it is partitioned and how well it is subsequently scheduled onto a parallel
architecture. One important influence on parallelism, partitioning and scheduling,
which subsequently affects implementation, is the stage at which such operations
are completed. There are three well defined stages between program conception
and execution, which are design-time, compile-time and run-time. The range of
valid implementation strategies are illustrated by Table 1.1.

The different strategies have a great influence on the methods chosen for partition-
ing and scheduling and also on the type of programming language used. In the
following section different programming language types are discussed and
categorised according to their implementation strategy.

Parallel programming languages can be categorised according to their inclusion
(or exclusion) of implementation constructs. Categorising languages in this way is
useful since it reveals which implementation strategy a language is capable of
taking part in.

One convenient way to categorise different parallel programming languages is by
the absence, or presence of explicit constructs for parallelism, partitioning and
scheduling. For example, parallelism becomes explicit when parallel constructs
are defined which distinguish between areas of sequential and parallel execution
(e.g., fork, join, cobegin, parbegin etc.). When parallelism is unspecified, it is
necessary to extract parallelism via a program’s dependency graph, usually by
automatic means. A programming language which explicitly defines parallelism
may also partition explicitly. Explicit partitions group executable code into proces-
ses or tasks. Finally, a programming language which partitions explicitly may also
schedule explicitly. Hence, the programmer determines which process executes
on which processor. The following four categories divide programming languages
according to their use of implementation constructs (Sarkar, 1989):

. (1) In the first category, parallelism, partitioning and scheduling are all
implicit and therefore unspecified. These language types are suited to
implementation strategies 7 through to 10 of Table 1.1. A necessary step to
implementation, which is not shared by the other categories, is that auto-
matic dependency analysis is needed to identify parallelism. This is a major
obstacle for some types of language.

Conventional, sequential languages (e.g. Fortran, Pascal), have computa-
tions that are based on complex, sequential state transitions (Backus, 1978).
Such languages require careful dependence analysis to reveal potential
parallelism. This analysis is made difficult, as previously mentioned, be-
cause procedural languages exhibit multiple assignments, side-effects and
aliasing. These difficulties may restrict the identification of parallelism and
produce inefficient results. Nevertheless, there is a growing interest in
implementing existing sequential programs on parallel processors, because
of the large capital investment many companies have in existing sequential
software.

1-18

Single-assignment and functional languages (e.g. SISAL, VAL, HOPE,
etc.) are free from side-effects, multiple assignment and aliasing, conse-
quently dependency analysis is relatively straight forward. This is a result
of neither language type being tied to the von Neumann model of computa-
tion. Typically, there is scope for employing a high degree of parallelism
within these language types. The absence of explicit parallelism, explicit
partitioning and explicit scheduling, makes such languages portable. The
attraction of portability being, that as multi-processor designs advance,
programs may be implemented without undue modification.

. (2) This category contains those programming languages which exhibit
explicit parallelism, while partitioning and scheduling remain unspecified.
These language types are suited to implementation strategies 4 through to
6 of Table 1.1. The absence of a process, or task structure mean these
languages avoid explicit partitioning. They include parallel programming
constructs, such as doall, cobegin and coend and usually synchronise using
semaphores or monitors (i.e. suited to tightly coupled architectures). Many
of these parallel languages have been developed from existing sequential
programming languages, for example, DAP Fortran and IBM Parallel
Fortran (IBM, 1988).

. (3) Programming languages in the third category explicitly define paral-
lelism and partitioning, while scheduling remains unspecified. These
language types are suited to implementation strategies 2 and 3 of Table 1.1.
Partitioning and inter-process synchronisation is defined by the program-
mer, whose job it becomes to group statements into processes (or tasks).
The programmer must ensure that the granularity of a parallel program is
fine enough to exploit potential parallelism, while coarse enough to mini-
mise communication overhead. This strategy has the advantage of
simplifying implementation, but has the potential disadvantage that im-
plementation is prone to poor partitioning by the programmer. Program
portability is retained by automatic scheduling. Many of these languages
have been developed solely for parallel processing, for example, CSP
(Hoare, 1978) and Ada (Mundie and Fisher, 1986; Ledgard, 1981).

• (4) The final category is for languages which give total control to the
programmer, by allowing scheduling to become explicit. These language
types are suited to implementation strategy 1 of Table 1.1. The remarks
concerning partitioning in (3) apply equally to languages in this category,
except that program portability is lost, which may necessitate manual
re-scheduling of a program when moved from one machine to another.
Languages in this category tend to based on message-passing synchronisa-
tion, for example, Occam and the C implementation on the Caltech Cosmic
Cube (Su, Faucette and Seitz, 1985).

1-19

Though several compilers have been designed to automatically extract parallelism
from programs written in imperative languages (1), parallelism extraction is
impeded by the difficulties associated with the von Neumann model of computa-
tional. Languages from category (2) result in implementations that tend to restrict
parallel exploitation to regular repeated regions and so lack the general scope that
is necessary for an efficient implementation. The current trend, is for a program-
mer to make many of the implementation decisions, as is the case in categories (3)
and (4). Two of the most probable reasons for category (3) and (4) popularity, is
the large capital investment in Ada by the DoD (Department of Defence, USA)
and the recent introduction of affordable multi-processors, like the Transputer
and Intel Hypercube.

In some cases there are advantages to partitioning and scheduling manually,
however, this does tend to burden the programmer with organising how things are
done, rather than getting right what is done. Consequently, programming effort
tends to increase when using explicit parallel processing languages. However, the
greatest drawback of categories (3) and (4) is the probability that potential
parallelism will be lost because a programmer opts for a less than optimal im-
plementation.

This thesis focuses on an automated implementation, category (1), using a non-
procedural programming language. The motivation behind this is three-fold; (i)
to abstract the programmer from machine oriented influences while program-
ming, (ii) to achieve program portability and (iii) to achieve a "good"
implementation. The first two aims, abstraction and portability are language
characteristics, while implementation efficiency relies mostly on the compiler or
run-time system. The main obstacle to using non-procedural languages is the
problem of parallel extraction, partitioning and scheduling, however, recent re-
search (Gaudiot, Dubois, Lee and Thome, 1986; Sarkar, 1989) has shown that
compilers can be designed which implement non-procedural languages efficiently.
In this thesis, implementation is applied to real-time DSP algorithms. Such algo-
rithms provide a special case, which allows an extremely efficient implementation
strategy (Table 1.1, no.7) to be employed. Figure 1.14 shows an outline of this
strategy for a Transputer based parallel architecture, using Occam as an inter-
mediate language.

1-20

Figure 1.14 Compile-time implementation strategy

1-21

1.5 Thesis outline

The thesis is divided into nine chapters and four appendices. This chapter has
introduced the subject by discussing different processor architectures, intercon-
nection networks, programming languages and implementation strategies. The
second chapter reviews the characteristics of real-time DSP algorithms and rep-
resents these algorithms in the form of a graph which preserves parallelism.
Chapter 2 is considered a prerequisite to chapter 3, which discusses aspects of
language design that are relevant to our application. Chapter 4 develops these
ideas and describes the syntax of a single-assignment language called DFDL
(Goddard, 1987; Goddard, 1989). Program structure and processor architecture
are represented as two separate models, these are described in chapters 5 and 6
respectively. The models are used as inputs to compile-time scheduling, partition-
ing and parallel extraction. The scheduling process is described by chapter 7 and
this is shown to present several difficulties, which are associated with the com-
plexity of the problem. Experimental results are given in chapter 8 which illustrate
the efficiency, or not as is the case, of this implementation strategy. The final
chapter concludes on the research and offers some suggestions for further work.
Figure 1.15 illustrates the relationship between the chapters and the implementa-
tion strategy.

Figure 1.15 Implementation strategy by chapter

1-22

The four appendices are identified alphabetically. Appendix A describes some of
the graph concepts and definitions used in the text, and Appendix B is an extended
BNF description of DFDL. A compile-time user’s guide is presented in appendix
C, which describes compiler operation. Finally, appendix D is a programmer’s
guide, which describes some of the major parts of the compiler that are not covered
in the main body of the thesis.

1-23

Chapter 2. Discrete algorithms and their graphs

In the first part of this chapter the relevant characteristics of discrete algorithms,
their composite tasks and the structural relationship between those tasks are
examined.

The second part of the chapter presents the algorithm as a data flow graph and
introduces some terminology associated with graphs. The graph is seen as a
complete diagrammatic representation of a DSP algorithm, where both function
and structure are conveyed. Additionally, the graph is viewed as an intermediate
stage between the algorithm description (i.e. a program) and the multi-processor
schedules. Moreover, the graph represents the algorithm without loss of structure
or function.

2.1 The characteristics of discrete algorithms

2.1.1 Discreteness

A discrete algorithm is defined here as a prescribed set of well-defined instructions
which act on one or more digital signals (i.e., signals quantised in time and
amplitude). The word discrete describes the algorithm as being decomposable into
a finite set of individual tasks.

2.1.2 Competence-performance trade-off

The competence of an algorithm is its ability to perform a given function, whereas
the performance of an algorithm is a function of execution time. When designing
a discrete algorithm for execution on a digital processor, we must be aware of the
practical limitations of the hardware. These limitations manifest themselves as
finite word length and non-instantaneous task execution times.

Finite word length number representation causes inaccuracy and constrains the
range of numbers which can be used. Arithmetic operations on finite word length
numbers produce round-up and truncation errors, which are propagated and may
cause large accumulated inaccuracies. The limited range of data values, often
necessitates schemes which correct for, or flag out-of-range values.

Non-instantaneous execution time is a practical reality of digital systems. The
greater the execution time of the tasks in any given iteration, the lower the
throughput and bandwidth, and possibly the greater the latency.

2-1

Compromises may be made between the competence and performance of an
algorithm. Throughput, for example, may be increased at the expense of accuracy
by replacing all multiplication with shifting, to give only powers of 2 multiplication.
On the other hand, accuracy may be increased by using double word length
arithmetic, although this would be at the expense of throughput. These trade-offs
between competence and performance heavily influence the design of a digital
system and ideally, should be made in the context of the particular implementation.

2.13 Inputs and outputs

Hetch (1977) describes an algorithm as having zero or more inputs and one or
more outputs. In the case where there are no inputs, the algorithm can only
generate signals. The alternative case is where inputs are present, the algorithm
can process as well as generate signals. These two models are illustrated in Figure
2.1. For a single iteration of the algorithm, the outputs are a function of both the
algorithm’s internal state (i.e. the value of internal data immediately prior to the
commencement of the current iteration) and the current input values, where
applicable.

GENERATI i __ output input __ PROCESS-
— GENERATE

output

Figure 2.1 Algorithm input-output

2.1.4 Memory

An algorithm is said to have memory if it can retain data from one iteration to the
next. The outputs of an algorithm without memory, do not depend on the algo-
rithm’s internal state from previous iterations, or on the inputs from previous
iterations. Alternatively, the outputs of an algorithm with memory, may depend
on the algorithm’s internal state from a number of previous iterations, or on the
inputs from a number of previous iterations; if that number is finite it is said to be
of finite order (e.g. FIR filter), otherwise it is said to be of infinite order (e.g. HR
filter). Outputs which depend on an infinite number of previous iterations imply
the use of feedback within the algorithm.

Realisable, stable algorithms exclude non-causal or oscillatory behaviour. Hence,
outputs do not depend on the algorithm’s internal state from future iterations, or
on the inputs from future iterations. Also, outputs and internal values do not
depend on themselves during the present iteration.

2-2

2.1.5 Complexity

The time complexity of an algorithm is the aggregate amount of time, usually
expressed as a function of the number of inputs u, to process the algorithm. The
limiting behaviour of the time complexity is called the asymptotic time complexity.
Definitions for space complexity and computational complexity are analogous.

To express worst-case complexity we use the "big-O " notation (i.e. order of
magnitude). Rather than present complexity as an absolute function of the number
of inputs, it is presented as a function of some order. For example, the order of
complexity of an algorithm that processes u inputs and has a worst-case time
complexity of cu (for some constant c) is expressed O (u).

2.1.6 Real-time, deterministic, synchronised systems

Young (1982) defines a real-time information processing system as one which has
to respond to externally generated input stimuli within a finite and specifiable
delay. In the case of sampled signals which arrive regularly, the delay is the time
interval from one instance of the signal arriving at the input to the next. Ideally,
this time interval is consistent throughout.

Interaction between an external input signal and an algorithm, as depicted by
Figure 2.2, occurs when the algorithm reads the input. In order that no signals are
lost, the interaction between input and algorithm must be synchronised.

• Observation 2.1: Synchronisation is maintained iff (if and only if) the
maximum algorithm iteration interval is less than or equal to the minimum
external input interval.

Similarly, there has to be synchronisation between the algorithm iteration interval
and the external output interval (Figure 2.2). Hence from observation 2.1, we can
say that there must be synchronisation between the input interval and the output
interval.

• Observation 2.2: Synchronisation is maintained iff the maximum output
interval is less than or equal to the minimum input interval.

EXT
INPUT

PROCESS- _
CENERATE —

EXT
OUTPUT

Figure 2.2 Input-process-output synchronisation

2-3

From observation 2.1, we can say an algorithm’s maximum execution time (for a
single iteration) is bounded by the minimum input interval. To guarantee this
bound is not exceeded, an algorithm’s worst-case execution time has to be specifi-
able prior to run- time, hence the algorithm has to be deterministic. This a priori
condition precludes all algorithms whose worst-case execution time cannot be
determined at compile-time, i.e., algorithms that have a time complexity which
relies on data values, or on some random operation; these algorithms are regarded
as non-deterministic and as such do not lend themselves to efficient static modell-
ing or analysis.

2.1.7 Granularity

Algorithms can be decomposed (or partitioned) into separate, distinct tasks, by
dividing the algorithm into atomic operations, that have the capacity to manipulate
data in some deterministic manner. Deciding how large, or how small the tasks
should be in terms of their time complexity is not straightforward. Consider, for a
moment, the implementation of different sized tasks on a multi-processor, whose
inter- processor communication costs are finite:

Figure 2.3 Coarse grain structure

An algorithm that is divided into a few coarse grain tasks (i.e. each comprising
many instructions) of low I/O bandwidth, when distributed across the processors
will only need a few communications, since there are only a few tasks. This may
result in a low overall communication cost. However, the opportunity to exploit
any parallelism which exists within the large grain tasks is lost.

Alternatively, an algorithm that is divided into many fine grain tasks (i.e. compris-
ing few instructions) of low I/O bandwidth, when distributed across the processors
will require many communications, since there are many tasks. This may result in
a high overall communication cost. However, the opportunity to exploit any
parallelism within the algorithm will be high.

2-4

The partitioning dilemma is not easily resolved at this stage without the benefit of
post-analysis information, which will indicate where useful parallelism exists and
where it does not. One approach to partitioning, which is adopted here, is to
initially opt for a medium/fine grain tasks structure. This approach does not
obscure parallelism and does not preclude tasks from being "bundled" together to
form composite, coarser grain tasks at a later stage, i.e. during scheduling.

2.1.8 Task primitives

Each task Ti represents a sequentially ordered list of one or more instructions,
which has an in-degree (i.e. number of inputs) of zero or more operands and an
out-degree (i.e. number of outputs) of one or more objects. The limit placed on
the in-degree and out-degree of tasks is |Z + | (highest positive integer). Generally
though, tasks have a low in/out-degree. This is important since they represent fine
grain, low bandwidth operations such as addition, subtraction, etc.

The outputs of a task Ti are denoted vki, { 0 < k < = | Z + | }, and are defined in
terms of the task’s transfer function and operands. The operands of Tk are ujk {0
< = j < = | Z | }, and the input and output transfer functions are fji() and gki()
respectively. Each output is given as vki = gki(fji(uji)).

Assigned to each task Ti is a set of execution times, [ekj]i. This matrix of costs
represents the worst-case execution times of gki(fji(uji)). Worst-case execution
times are adopted throughout to allow for fluctuations in execution time from one
instance to the next.

Vki

Figure 2.5 Task input, output and execution cost

Tasks are selected so wherever possible the transfer functions between all inputs
and all outputs have equal time complexities. Where this is not possible, the overall
worst-case value is adopted. This simplification allows us to replace the matrix of
execution times by a single execution cost ei which is assigned to the task Ti.

2-5

2.2 Data flow graphs

2.2.1 Nodes and arcs

The graph G = (T, C, B, E, A) consists of a non-empty but finite set of processor
executable nodes T and a finite set of communication nodes C. The set C is initially
empty and remains empty until scheduling, consequently it will not be considered
until that time. All nodes correspond directly to a task and visa-versa, hence the
terms node and task are often interchanged. The cardinality of T, C and of A is
denoted |T |, |C | and |A| respectively.

The set of arcs A joins pairs of distinct nodes. Each arc symbolises the flow of data
from one task to another task. An arc (Ti, Tj) leaves the tail node Ti and enters the
head node Tj. We say that Ti is an immediate predecessor of Tj, and Tj is an
immediate successor of Ti. The set IMPRED(Ti) comprises all nodes that are
immediate predecessors of Ti, and the set IMSUC(Ti) comprises all nodes that are
immediate successors of Ti. The in-degree of node Ti is | IMPRED(Ti) | , and the
out-degree of node Ti is | IMSUC(Ti) | .

Where there are two consecutive arcs (Ti, Tj) and (Tj, Tk), we can say Ti is an
immediate predecessor of Tj, and Tj is an immediate predecessor of Tk, therefore
Ti is a predecessor of Tk. By similar inductive analysis we can say that Tk is a
successor of Ti. The set PRED(Ti) comprises all nodes that are predecessors of Ti,
and the set SUC(Ti) comprises all nodes that are successors of Ti. The sets
IMPRED(Ti) and IMSUC(Ti) are subsets of the sets PRED(Ti) and SUC(Ti)
respectively.

The arcs belonging to A are governed by R, where R denotes a relation on A. This
relation R is transitive, irreflexive and asymmetric (Figure 2.6). The definitions for
these are as follows:

. (a) R is transitive iff for all nodes Ti, Tj, Tk in T, (Ti R Tj) AND (Tj R Tk)
implies (Ti7?Tk);

• (b) R is irreflexive iff for all nodes Ti, Tj in T, (Ti R Tj) AND (Ti is not equal
to Tj);

• (c) R is asymmetric iff for all nodes Ti, Tj in T, (Tii?Tj) implies
NOT(Tj R Ti).

2-6

(a) (b) (c)

Figure 2.6 Arc relationships

From the relation R on A, three observations are made:

• Observation 2.3: If R is both transitive and irreflexive, then R is also
asymmetric.

• Observation 2.4: If R is transitive, irreflexive and asymmetric, for all Ti in
T, then Ti can not belong to either of the sets PRED(Ti) or SUC(Ti).

• Observation 2.5: If R is transitive, irreflexive and asymmetric, for all Ti in
T, then the intersection of PRED(Ti) and SUC(Ti) is the empty set.

2.2.2 Paths and acyclic paths

Hetch (1977) defines a path as a finite sequence of one or more arcs, i.e.

((T i ,T 2), ..., (Tk-i, Tk)).

This can be written more simply (Figure 2.7) as:

(Ti, T2, ..., Tk).

I (T i , ..., Tk)

Figure 2.7 Acyclic path

2-7

A cycle is a path (T1, Tk) where Ti = Tk. A path that is free from cycles is called
acyclic. Where the relationship on the set of arcs A is transitive, irreflexive and
asymmetric then all paths are acyclic. This statement is supported by observations
2.4 and 2.5.

The graph is characterised as being directed and acyclic, this form of graph is given
the acronym DAG (directed acyclic graph).

A node Tk is said to be reachable from a node Ti, iff there is a path from node Ti
to node Tk, consequently the set SUC(Ti) contains all nodes that are reachable
from Ti.

2.23 Initiating and terminating DAGs

As a convention all graphs are drawn with their arcs pointing downwards, so data
flows from the top of the graph to the bottom as shown in Figure 2.8. For practical
convenience two "dummy" nodes are added to the graph, one at the top and one
at the bottom, their purpose is to initiate and terminate the graph respectively.
Both exhibit zero execution cost.

The top dummy node is denoted B (i.e. begin). This node has the properties that
PRED(B) is the empty set, therefore B has an in-degree of zero, and SUC(B)
includes all nodes in T, hence all nodes in T are reachable from B.

The bottom dummy node is denoted E (i.e. end). This node has the properties that
SUC(E) is the empty set, therefore E has an out-degree of zero, and PRED(B)
includes all nodes in T, hence E is said to be reachable from all nodes in T.

2.2.4 Dependence and independence

The set of arcs A places a partial order on T. The reality of the partial ordering is
that execution order of tasks (corresponding to their nodes) is restricted. The
restriction on execution order is due to the data dependency which one task has
on another. For example, in Figure 2.8, the predecessors of T5 are nodes T2, T3,
and B, these nodes have to complete before node T5 can begin, whereas node E
is the successor of T5 and cannot commence until T5 has finished.

Tasks that are independent of one another may be executed simultaneously. The
test for independence of two different nodes Ti and Tj is that they must not be
successors or predecessors of one another, i.e., node Tj is not in set PRED(Ti) nor
is it in set SUC(Ti). For example, in Figure 2.8, T5 can be executed in parallel with
T i or T4, since Ti and T4 are not in either of the sets PRED(Ts) and SUC(Ts).

2-8

B

Figure 2.8 Directed acyclic graph (DAG)

2.2.5 Path costs and the critical path

The cost of traversing a path, in terms of execution time, is the accumulated
execution time of each task on that path. For a path (T i,..., Ti, Tk) the cost of
traversing that path is (ei + ... + ei + ... + ek), where ei is the worst-case execution
time of the task corresponding to node Ti. The cost function is denoted COST(Ti)
and is equal to ei, similarly COST(Ti,..., Ti,..., Tk) is equal to the cost of traversing
the path (T i,..., T i,..., Tk).

The longest path, in terms of execution time, from node B to node E is called J:he
critical path (Figure 2.9). The cost of traversing the critical path, denoted w , is
defined as:

w* = MAX{COST(B,.., E)}, (2.1)

where the cost associated with nodes B and E is zero. Critical path length (time)
is important, since it defines a lower bound on the overall execution time of the
algorithm, ignoring resource limitation and communication overhead.

Minieka (1978) describes efficient methods for detecting the critical path in
graphs, known as the critical path method (CPM). The uncertainty in task execu-
tion costs is discussed in Moder and Phillips (1970); where a weighted average cost
is used,^combining optimistic, realistic and pessimistic costs at a ratio of 1/6 , 4/6th
and 1/6 respectively. The justification, in our case, for only using pessimistic (i.e.
worst-case) costs is given in section 2.1.6.

2-9

0

Figure 2.9 DAG, showing the critical path

2.2.6 Earliest and latest start times and float

Once all the nodes Ti in T have been allocated their execution time ei, the earliest
and latest start times can be evaluated. The earliest start time of a node Ti is
denoted EST(Ti), and the latest start time is denoted LST(Ti). Evaluation of
EST(Ti) and LST(Ti) is a necessary step in finding the critical path and is part of
the critical path method (Minieka, 1978).

EST(Ti) is the earliest possible time node Ti can begin executing, assuming node
B starts at time zero. EST(Ti) is defined as the cost of the longest path from node
B to the immediate predecessor of node Ti, i.e.

EST(Ti) = MAX{COST(B,..., IMPRED(Ti))} (2.2)

A special case of EST(Ti) is where Ti = E. This is the cost of the critical path,
which is defined:

EST(E) = MAX{COST(B,..., IMPRED(E))} = w* (2.3)

and equates to our previous definition (section 2.2.5) since the execution cost of
node E is zero.

2-10

LST(Ti) is the latest possible time node Ti can begin executing without extending
the length of the critical path. LST(Ti) is defined as the critical path cost minus the
cost of the shortest path from node Ti to node E, i.e.

LST(Ti) = w* - MIN{COST(Ti,E)} (2.4)

The difference between the earliest start time and the latest start time of a task is
called the float. Float is the maximum time a task Ti can be delayed beyond
EST(Ti) without extending the length of the critical path. The float of task Ti,
FLT(Ti), is defined as:

FLT(Ti) = LST(Ti) - EST(Ti) (2.5)

The value of float is normally non-negative, since LST(Ti) > = EST(Ti).

Float is a minimum, in this case zero, for all tasks that lie on the critical path. Figure
2.10 illustrates the single critical path, and shows the cost, earliest start time, latest
start time and float for each task in the DAG. The DAG does not preclude the
existence of more than one critical path. Indeed, there may be many such paths
which branch or join within the DAG. However, for every DAG there exists at
least one path that is critical, beginning at B and ending at E.

10;
0;
0;
0 .

50
10
10
0 .

5;
60;
70;
10.

Figure 2.10 DAG, showing EST(T), LST(T) and FLT(T)

2-11

23 Summary

The first part of this chapter reviewed the characteristics of discrete algorithms
and discussed discreteness, complexity, memory, structure and composition. The
rules for maintaining synchronisation in real-time systems between algorithm and
input device, and algorithm and output device have been established. Moreover,
the synchronisation requirement has shown that for real-time systems, the algo-
rithm must be deterministic.

The algorithm has been expressed as a set of disjoint tasks whose complexity
influences the granularity of the structure. The cost (or execution time) of different
task types is chosen to be small (i.e. low complexity tasks), hence an algorithm
consists of many medium/fine grain tasks. Choosing medium/fine grain tasks,
rather than coarse grain tasks (i.e., process level tasks), enables a potentially high
degree of parallelism to be represented.

The latter part of this chapter introduced the graph G = (T, C, B, E, A) (nodes
and arcs) which has been shown to be transitive, irreflexive and asymmetric. These
characteristics ensure the graph is both directed and acyclic (i.e. a DAG). The
DAG is suited to representing deterministic algorithms and is completely
equivalent to the algorithm in terms of function and structure, hence any paral-
lelism is preserved.

Once execution times have been assigned to tasks (or nodes), the CPM (critical
path method) can be applied to G. CPM produces earliest and latest start times
for all the tasks in T and gives the earliest overall cost for completion of the
algorithm irrespective of the resource constraints. Results from the CPM are to
be used for analysing the DAG, with a view to scheduling the tasks onto processors.

2-12

Chapter 3. DFDL design aspects

In chapter 2 the characteristics of discrete algorithms and their directed acyclic
graphs (DAG) were discussed. The discrete algorithm and DAG are regarded as
a program’s source and object respectively (Figure 3.1). The constraints governing
G are reflected back into the programming language such that the graph’s transi-
tive, asymmetric, irreflexive relation on data dependency becomes the language’s
single-assignment rule.

Figure 3.1 Program source and object

The purpose of a language is to present a medium in which an algorithm can be
described without loss of functional integrity or structure. However, the language
should prevent invalid items, such as incorrect syntax, inadmissible structures and
items out of context. In order to ensure program portability a language should be
closely related to the problem domain and detached, as far as possible, from
influences arising from the processor architecture. With these aims in mind, the
design aspects of Digital Filter Description Language (DFDL) are presented.

3.1 Language grammar

The description of a language is the grammar of the language. Assuming a language
is made up from sentences (which in turn comprise words, which in turn comprise
letters) then a grammar shows how sentences can be built up using successive
expansions of strings of symbols. There are two types of symbols; terminal and
non-terminal. Here, terminal symbols and non-terminal symbols are distinguished
from one another by expressing terminal symbols in a plain font and non-terminal
symbols in an italic fo n t. BNF (Backus Naur Form) productions are used to state
the rules of grammar.

3-1

Chomsky concluded that there are four types of grammar; type 0 in which the form
of productions is unlimited, while types 1, 2, and 3 are categorised by increasing
restrictions on the form of productions available (Bornat, 1979). The two types of
grammar that interest us are types 2 and 3.

• A type 2 (or context free) grammar contains only productions of the form:

A :: = alpha

where A is a single non-terminal symbol and alpha is a string of terminal
and/or non-terminal symbols.

• A type 3 (or regular expression) grammar contains only productions of the
form:

A::= a
A :: = a B

in which A and B are single non-terminal symbols, a is a single terminal
symbol and the second production is right recursive. An alternative defini-
tion exists for the second production, where A and C are single non-terminal
symbols, a is a single terminal symbol and the second production is left
recursive.

A :: = a
A :: = C a

Type 3 grammar must either be left or right recursive, but not both.

In the case of type 2 and 3 grammars it is possible to define three important
properties of a symbol which appears on the left hand side of a production (;; = +
means a production in one or more steps):

. If A :: = + alpha A, then symbol A is right recursive.

• If A :: = + A beta, then symbol A is left recursive.

. If A ;; = + alpha A beta, then symbol A is self embedding.

The final case (self embedding) cannot occur in type 3 grammars and its presence
is often used to distinguish between type 2 and 3 grammars. Similarly, left and right
recursive symbols cannot exist together in type 3 grammars, but can in type 2.

Ambiguity arises in a grammar when it is possible to produce two or more distinct
derivations for the same sentence. Ambiguity is a problem because of the con-
fusion it introduces about the interpretation of a sentence. Any grammar that
contains a symbol that is both left and right recursive will be ambiguous.

3-2

DFDL’s lexical grammar is entirely type 3 and right recursive. A language defined
by type 3 grammar can be recognised by a finite state machine, in which there are
states that correspond to non-terminal symbols and in which the state transitions
are determined by the terminal symbols in the productions of the grammar. Hence,
every decision the lexical analyser makes is based on the last terminal symbol read.
Finite state machines are easy to implement and are highly efficient.

DFDL’s syntax grammar is type 2 and consequently somewhat more complex than
its lexical grammar. All left recursive productions have been removed, leaving
right recursive and self embedding productions. All the grammar is classified as
one-track grammar, which is unambiguous. The one-track grammar is parsed by a
top-down one-track parser which separates parenthesised expressions (i.e. self
embedding) into individual regular expressions (i.e. right recursive) before pars-
ing. This allows regular expressions to be treated individually as type 3 grammar.
There is no priority between operators in DFDL, hence, extensive use is made of
parentheses in expressions.

Error detection and reporting is very effective when using a top-down one-track
parser. At each stage all expected terminal and non-terminal symbols are known
to the parser and when an unexpected symbol occurs an error of the form "expected
..., found ..." can be given. One-track error detection compares favourably with
some early compilers which suffered from backtracking (tend to pass the error
before they detect it) and as a consequence could only produce error messages
like "syntax error".

An extended BNF description of DFDL lexical grammar and syntax grammar is
given in Appendix B and a detailed description of DFDL is given in chapter 4.

3.2 Single-assignment

Single-assignment languages (SALs) have the appearance of traditional impera-
tive languages, in that they incorporate the assignment statement and typical
control flow statements such as conditional constructs and loops. However, SALs
impose a rule that a variable is only assigned once in a program (Chamberlin,
1971). This rule significantly alters the nature of the assignment operator, changing
it from a dynamic destructive operation to a static operation that associates a name
to a data value.

3-3

Single-assignment has implications on how programming constructs are used. For
example, repetitive statements in SISAL employ an "old" operator to distinguish
between the new state of a variable and its old state while in a loop:

for initial
R : = X / 20.0
P : = 0.0
while X > R

repeat
R : = old R + 3.14
P : = old P + 1.0

returns value of P
end for

Single-assignment languages like Id (Arvind, Gostelow and Plouffe, 1978) and
Lucid (Ashcroft and Wadge, 1977) are similar to SISAL, but use a "new" operator:

(initial R < - X / 20.0; P < - 0 .0
while X > R do

new R < - R + 3.14;
new P < - P + 1.0;

return P)

Single-assignment also bars the type of conditional statement found in most
imperative languages, where assignment is both multiple and conditional. SALs
restrict conditional statements to single-assignment and unconditional choice. For
example, the following SISAL expression selects the greater value P or R and
makes it equal to S:

S : = if P > R then P else R

The static nature of single-assignment allows the normal ordering restrictions
found in imperative languages (e.g. Fortran, Pascal, etc.) to be relaxed. Once data
on the right hand side of the assignment statement is available, the expression can
be executed. This property lends itself to data-driven execution which can be
applied to dataflow architectures or data-driven multi-processor architectures.

Perhaps the most important property of SALs, is that they inherently preserve an
algorithm’s structure (i.e. dependency relations between tasks), due to the non-
destructive nature of assignment. Structural preservation also protects any
parallelism that resides within the algorithm from being destroyed. Hence, SALs
have no need for explicit parallel constructs, since they inherently express paral-
lelism.

3-4

33 Program flow

In chapter 2 a discrete algorithm is defined as a repetitive process, with zero or
more external inputs and one or more external outputs. In order to satisfy this
definition, DFDL conforms to a strict flow (Figure 3.2). Before entering the
repetitive input-process/generate-output (or just generate-output) cycle, DFDL
includes an optional initialise section, this is in keeping with algorithms which
often require a known, pre-set initial state. Initialise is executed once only, if
executed at all. Program termination occurs after either a specified number of
iterations, an arithmetic error (section 3.5), or when stopped by the user. DFDL
program flow is illustrated in Figure 3.2.

Figure 3.2 DFDL program structure models

3-5

3.4 Past values

The majority of DSP algorithms not only use present values in their result, but also
past values from previous iterations. The single-assignment rule causes difficulties
in expressing assignment from historical values, so DFDL includes an operator
that gives a programmer access to any past value from previous iterations. This
operator is called Z, named after its discrete equivalent. Z is more extensive than
SISAL’s "old" operator, because it can refer to past values from any previous
iteration. This is achieved by post scripting Z with an integer value, e.g. Z[n]. Z is
causal, so only past values are admissible and these values cannot be re-assigned
since this would violate single-assignment. Generally, Z is intended to simplify
working under single-assignment and facilitates an ordered mechanism for passing
values from past iterations to the present iteration.

3.5 Error handling

Single-assignment languages tend to exhibit locality of effect, that is their
operators do not have unnecessary far reaching data dependencies. Locality of
effect requires that arithmetic errors are handled by error values rather than some
global error flags or program interruption.

If an error occurs the system should react in a deterministic manner and not in an
uncontrolled or unpredictable way. This is achieved by propagating error values
along the flow of data; if an argument to an arithmetic operator is an error value,
then the result is also an error value. Upon reaching the end of an iteration a
propagated error value prevents output. In this way, the entire computation will
come to a stop, yielding an error value as its result. If the processor keeps a record
of every error generated and propagated, then the point where the error occurred
may be traced.

The DFDL run-time system should detect and convey arithmetic errors such as
overflow, underflow, divide by zero, negative square root, unstable result, inac-
curate result, remainder from infinity, remainder by zero and undefined result.
This is possible when using an arithmetic data type that is floating point format
ANSI/IEEE std.745-1985.

3.6 Data types

To provide the language with a degree of flexibility a range of different arithmetic
data types are necessary, e.g. byte, integer, floating point. Those data types dif-
ferent from floating point ANSI/IEEE std.745-1985 are restricted to input and
output, and are converted to floating point ANSI/IEEE std.754-1985 on entry and
exit respectively. This strategy is necessary in DFDL because of the error handling
system (section 3.5). Additionally, a wide dynamic range and time efficient
processing make floating point format an attractive proposition for digital signal
processing applications.

3-6

Boolean variables, although present in DFDL are not explicit. Their use is
restricted to the conditional statement where they are created and they cannot be
transported to other statements. Other data types, such as strings of characters,
are excluded from DFDL.

3.7 Scope and use of variables

In order to prevent side-effects and indeterminate program structures the scope
and use of variables in DFDL is restricted. Scope is limited to the program unit in
which the variable is declared. Consequently, all values passed between program
units are passed by formal parameter only and the existence of global variables is
disallowed. This locality rule does not extend to constant values, which have global
scope. However, this does not mean that a variable may assume constant status
and become global, since all variables in DFDL are assigned once every iteration
and cannot therefore act as constant values.

DFDL bans the use of data values in indexing arrays or in determining the number
of iterations of repetitive constructs. This limitation may appear to be severe,
however, it is a necessary condition for determinacy and hence, ensures a DAG
can be produced from a program. Consider, if the following were allowed:

input(R)
P : = 4.231
while R > 19.24

R := R /P
P : = P + 3.8

R is assigned an external value at run-time and is therefore unknown at compile-
time. Consequently, the number of iterations required to satisfy the post-condition
(R < = 19.24) cannot be determined at compile-time. The program fragment
could make one, none, or many tens of thousand of iterations before it terminated.
A similar result would occur if the input operation were replaced by a random or
unstable function, or anything which gave R an ill defined or unknown value at
compile-time.

3.8 Program units

DFDL does not allow the use of procedures because of their susceptibility to
side-effects, however, it does make heavy use of functions, which are always free
from side-effects. DFDL uses functions as arguments, since they evaluate to a
single result. The result of a function is not passed as a formal parameter, but is
represented by the instantiation of the function. In order to maintain a determinis-
tic structure, functions cannot call themselves directly, or indirectly. Scope is
restricted to the program unit that declares the function and all other functions in
the program unit declared after the function.

3-7

Individual DFDL programs may be connected together, input to output, by the
use of common formal parameters. Where necessary, this allows periods of
iteration to differ within different programs. Common passed data synchronises
the separate program units according to the declared protocol of the input or
output. Program nesting is prohibited, since programs would then assume the role
of procedures.

3.9 Summary

The type of lexical grammar and syntax grammar for DFDL has been established
and its effects on parsing and error detection/reporting have been discussed.

At a higher level, we have seen the need to impose a single-assignment rule on the
language because of the deterministic nature of the DAG. Single-assignment has
been shown to have many effects, one of which is to preserve parallelism. Other
effects have shown an influence on programming constructs such as conditionals,
and repetitive constructs. As a result of single-assignment the Z operator has been
incorporated, which is shown to solve the problem of moving data from past
iterations.

Program flow has been modelled on the repetitive input-process-output (or
generate-output) cycle of a discrete algorithm. This has made DFDL suitable for
describing deterministic discrete processes (i.e. sampled systems) that have zero
or more inputs and one or more outputs.

The restrictions on the type, scope and use of variables have been discussed and
the ability for error handling described. Finally, the different types of program unit
have been presented and the rules governing their use informally stated. A more
formal description of DFDL is given in Appendix B and the design aspects outlined
here are developed in the following chapter.

3-8

Chapter 4. DFDL definition and syntax

In this chapter the operators, functions and program constructs of DFDL are
described in detail. The language description is divided into three parts. The first
part is a short section which describes the program facilities. The second illustrates
the composition of lexical units, e.g. names, reserved words, numbers, operators.
The third part describes DFDL’s syntax with the aid of extended BNF productions.
An explanation of extended BNF is given at the beginning of the chapter. The final
section of the chapter gives several examples of DFDL programs.

4.1 BNF notation

A variant of Backus-Naur form (BNF) notation, known as extended BNF (or
EBNF) is employed to describe the syntactic and lexicographic relationships in
DFDL. A grammar consists of a number of production rules, which define lexi-
cographic and syntactic categories in terms of other lexicographic and syntactic
categories, and which define the terminal symbols belonging to DFDL. Terminal
and non-terminal symbols are distinguished from one another by expressing all
non-terminal symbols in italics. Terminal symbols can only appear on the right
hand side of a production, unlike non-terminal symbols which may appear either
side. Note, some lexical non-terminal symbols are treated as terminal symbols for
syntax descriptions, e.g. real, ¡dent, integer, etc.

The examples below are used to illustrate the meaning of the EBNF operators;
I. {n}, [], and:; = .

4.1.1 Production

T h e = operator is read "is defined to be", hence the meaning of

monadic.boolean.op :: = NOT

is "monadic.boolean.op is defined to be NOT'.

4-1

4.1.2 Alternative

The operator | is read as "OR", hence the meaning of

datatype:: = BYTE | INT16 | INT32 | REAL32

is "datatype is defined to be BYTE or INT16 or INT32 or REAL32". This produc-
tion may also be written

datatype:: = BYTE
datatype :: = INTI 6
datatype:: = INT32
datatype:: = REAL32

The operator [] also provides a way of expressing alternatives where there is
commonalty between the different productions. The meaning of

sub.size :: = cot.size [row.size]

is "sub.size is defined to be col.size or col.size followed by row.size ". This
production could be re-written

sub.size :: = col.size | col.size row.size

4.13 Repetition

The repetition operator { n symbol} means that the enclosed symbol may be
produced n or more times, hence the meaning of

real.string:: = real { o , real }

is "real.string is defined to be real or real, real or real, real, real etc.".
The { n symbol} operator yields a recursive production, this is evident when
re-written

real.string;; = real | real, real.string

4-2

4.2 Program facilities

4.2.1 Continuation

Expressions normally occupy a single line. Where it is necessary to break a line
and spread an expression over several lines the continuation s y m b o l m u s t be
used. The continuation symbol is placed at the end of each broken line, immedi-
ately before or immediately after an operator. For example:

y : = (xi + X2) + ...
(X3 + X4)

4.2.2 Comments

Comments are introduced by the percentage character"%". A comment may follow
a statement, occupy an entire line or reside within a statement. The percentage
character may be used to toggle comments on and off. All comments are toggled
off when the end of line is reached, e.g.,

y : = x % y becomes x.

43 Lexical types

The DFDL character set comprises alphabetic, numeric and special characters.

43.1 Alphabetic characters (letters)

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

4.3.2 Numeric characters (digits)

0123456789

4 3 3 Special characters

% * () - + = : [] ; \ < > . / space

Characters may be combined to produce different lexicographic types (e.g. iden-
tifiers, reserved words, integers, numbers), all of which are separated from one
another by the space character.

4-3

43.4 Delimiters

Delimiters are constructed from special characters and comprise characters which
symbolise arithmetic operators, relational operators, brackets, etc. The valid set
of delimiters are:

%l *1**1 (1)1-1 + |:= I = l[|] I;
l \ l < = l < l < > l > l > = M . . . 1/

43.5 Identifiers

Identifiers are strings of characters used to identify (or name) some element in the
program. The types of element that are named by identifiers are certain operands,
objects, repetition identifiers, user-defined functions and the program name.

Identifiers consist of a sequence of lower-case letters, digits and dots, of which the
first character must be a lower-case letter.

¡dent;; = Ic.letter { o Ic.letter \ digit | . }

43.6 Reserved words

Reserved words consist of a sequence of upper-case letters used to identify DFDL
functions and key words.

resen/ed.word:: = { 1 uc.letter }

The legal set of reserved words are:

ABS | ACOS | ALOG | AND | ASIN | ATAN | BEGIN | BYTE | COS
| ELSE | ELSEIF | END | EVERY | EXP | EXPRESSION | FOR
| FOREVER | FROM | FUNCTION | IF | INIT | INPUT | INT | IS
| LN | LOG | MAX | MIN | MEAN | MED | MOD | NODE | NOT
| OR | OUTPUT | PROD | PROG | REAL | REPEAT | RESULT
| SGN | SIN | SORT | SUM | TABLE | TAN | THEN | VALUE | Z

4-4

43.7 Integer numbers

Integers are used to specify the size of arrays and may be used to subscript single
array elements and repetitive arrays. Integers consist of a sequence of one or more
digits, which may be preceded by a sign.

integer ::= [+ | -] { 1 digit}

Integers are held in a 32-bit 2’s complement form.

External data may be of integer type BYTE, INT16, INT32 as well as of type
REAL32. The valid range of positive integers p i s , 0 < = p < = +(N/2)-1, while
the valid range of negative integers n is, 0 > n > = -(N / 2), where N is 28 for
BYTE integers, 216 for INT16 integers and 232 for INT32 integers.

43.8 Real numbers

Floating point numbers (real numbers) are used to represent all data values within
DFDL programs. A real consists of a two sequences of digits, separated by a
decimal point, which may be preceded by a sign and may be succeeded by an
exponent.

rea l:: = [monadic.op] { 1 digit } . {1 digit} [exponent]
exponent:: = E monadic.op { 1 digit}
monadic.op :: = + | -

A real is of type REAL32 which has a format according to ANSI/IEEE standard
745-1985. REAL32 has 1 sign bit S, an 8-bit exponent e and a 23-bit fraction f. The
value is positive if s = 0 and negative if s = 1, its magnitude is

2(e -127) * 1 f ¡f o < e < 255
2 '126 * O.f if e = 0 and f < > 0
0 if e = 0 and f = 0.

The range of a REAL32 value r, is approximately, -3.4 * 1038 < = r < =
+ 3.4 * 10 , these values are referred to as -x.max and +x.max respectively.

+5

43 .9 Real errors and overflow

When an argument to an operation is outside the domain of that operation or the
argument is not-a-number (NaN), the operation produces an exceptional result.
This result maybe NaN, + Inf or -Inf. NaNs are used to designated different causes
of an error, while Infs mean the result is too large to be represented as REAL32
format. NaNs and Infs are propagated from one operation to the next, this
facilitates error and overflow detection. Different error conditions are shown
below, the 32-bit error codes are in hexadecimal format.

7FC00000 Divide zero by zero.
7FA00000 Divide infinity by infinity.
7F900000 Multiply zero by infinity.
7F880000 Addition of opposite signed infinities.
7F880000 Subtraction of same signed infinities.
7F840000 Negative square root.
7F804000 Remainder from infinity.
7F802000 Remainder by zero.
7F800010 Result not defined mathematically.
7F800008 Result unstable.
7F800004 Result inaccurate.

4.4 Syntax

The rules for defining legal sequences of lexically correct elements are given in
this section. The lexical non-terminal symbols real, ¡dent and integer become
terminal symbols in the syntax definition and are written in a non-italicised script,
e.g. real, ident, integer. Reserved words and combinations of special characters
also become terminal symbols, these are expressed in their lexical form.

4.4.1 Operators and functions

4.4.1.1 Arithmetic operators

DFDL operators are all of type REAL32. The arithmetic operators \ and
** yield the arithmetic sum, difference, product, quotient, remainder and power
respectively. Remainder x \ y produces the result x - (y * n), where n is the result
of x / y rounded to the nearest integer value. Power X ** Y is only defined for X
> = 0, since values of X that are less than zero may produce complex (i.e. real +
imaginary) results. All results are of type REAL32 which are rounded to the nearest
floating point value.

4-6

Arithmetic operators are classified as either dyadic or monadic operators:

dyadic.op ;; = + \ - | * | / | ** | \
monadic.op:: = + \ -

4.4.1.2 Boolean operators

Within conditional expressions DFDL employs boolean and relational operators,
these operators are not valid outside conditional expressions. The boolean
operators NOT, AND, OR yield the boolean result b, true or false:

NOT false = true
NOT true = false
false AND b = false
true AND b = b
false OR b = b
true OR b = true

where b is a boolean variable of value true or false.

4.4.13 Relational operators

The operators = ,< > , > , > = , < , < = are all dyadic relational operators which
compare the value of two real numbers and yield a boolean result, true or false.
The result of x = y is true if the value of x is exactly equal to the value of y. Other
relational operators obey the rules:

(x < > y) = NOT(x = y)
(x > y) = (y < x)
(x > y) = NOT(x < = y)
(x < y) = NOT(x > = y)

where x and y are real values.

Production rules for boolean and relational operators

boolean.op :: = monadic.boolean.op \ dyadic.boolean.op
monadic.boolean.op:: = NOT
dyadic.boolean.op :: = AND | OR
relational.op:: = = \ < > \ < \ < = \ > \ > =

4-7

4.4.1.4 Functions

DFDL functions (non user-defined) all act on real data (with the exception of
REAL) and produce a single real result. Some functions have just one operand,
while others have a multiple number of operands. Details concerning the range
and accuracy of the arithmetic and trigonometrical functions can be found in the
Occam standard library documentation (INMOS, 1987).

Each of the functions below are expressed y : = function (x), where x and y are the
operand and object respectively.

y : = REALM, y becomes the real equivalent of integer x,
domain [-231, + 231 - 1],
y : = ABS(x), y becomes the modulus of x,
domain [-Inf, -I- Inf].
y : = SGN(x), y becomes +1.0 if x > = 0 and -1.0 otherwise,
domain [-Inf, +lnf].
y : = SQRT(x), y becomes the square root of x,
domain [0, x.max],
y : = LOG(x), y becomes logio(x),
domain [0, x.max].
y : = ALOG(x), y becomes 10x,
domain [-Inf, +38.53].
y : = LN(x), y becomes loge(x),
domain [0, x.max].
y : = EXP(x), y becomes ex,
domain [-Inf, 88.72].
y : = SIN(x), y becomes sin(x), where x is in radians,
domain [-12868.0, +12868.0]
y : = COS(x), y becomes cos(x), where x is in radians,
domain [-12868.0, +12868.0]
y : = TAN(x), y becomes tan(x), where x is in radians,
domain [-6434.0, +6434.0]
y : = ASIN(x), y becomes sin"1(x), where y is in radians,
domain [-1.0, +1.0]
y : = ACOS(x), y becomes cos_1(x), where y is in radians,
domain [-1.0, +1.0]
y : = ATAN(x), y becomes tan_1(x), where y is in radians,
domain [-lnf.0, + lnf.0]

where the value + x.max corresponds to the largest valid REAL32 value (ap-
proximately 3.4 * 1038) and -x.max = - (+ x.max).

+ 8

Each of the functions below are expressed y : = function(xo,.... x(k - 1)), where
xo.....x(k - 1) and y are the operands and object respectively and k > = 2.

y : = SUM(xo......x(k - 1)), y becomes the sum of all
operands xo, X(k -1).
y : = PROD(xo, x(k - 1)), y becomes the product of all
operands xo......X(k - 1).
y : = MEAN(xo, x(k - 1)), y becomes the mean of all
operands xo, X(k -1).
y : = MED(xo, ..., X(k - 1)), y becomes the median of all
operands xo, x(k - 1).
y : = MAX(xo, X(k - 1)), y becomes the maximum of all
operands xo, X(k - 1).
y : = MIN(xo, x(k - 1)), y becomes the minimum of all
operands xo......x(k - 1).

Production rules for functions

function:: = monadic.function \ multi.function \ conv.function
monadic.function:: = ABS | SGN | SORT | LOG | ALOG | LN | EXP
| SIN | COS | TAN | ASIN | ACOS | ATAN

multi.function:: = SUM | PROD | MEAN | MED | MAX | MIN
conv.function:: = REAL

4.4.2 Program

A DFDL program is structured as shown below:

PROG prog.name ({1 { o input.declaration } { 1 output.declaration } })
{o { o node.declaration }
{ o constant.declaration }
{ o function.declaration } }

BEGIN
[I NIT initialise.section]
REPEAT (FOREVER | FOR non.neg.integer) repeat.section
END

The first line of a DFDL program begins with the key word PROG followed by the
program’s name. This is succeeded by an optional external input declaration and
a mandatory external output declaration, both of which may be repeated any
number of times. Output declaration is followed by node, constant and function
declarations, all of which may be declared zero or more times.

4-9

The BEGIN and END keywords embrace the assignment part of the program,
which begins with an optional initialisation section. This section allows the initial
state of the program to be set and, if used, is executed only once. The main program
(repeat section) comes after the REPEAT statement. The directive immediately
following REPEAT can either be FOREVER or FOR n, where n is a non-negative
integer. If n is set to zero, the program will terminate without executing the
repetitive section. When the repeat directive is declared as FOREVER, the con-
tents of the loop are executed until the loop is stopped by external means, e.g.,
power down or reset.

Production rules for the program structure

program :: = PROG program.name (ext.declaration)
internal.declaration BEGIN assignment.section END

program.name:: = ¡dent
ext.declaration ;;= {7 { 0 input.declaration } { 1 output.declaration } }
internal.declaration :: = {0 { 0 node.declaration }
{ 0 constant.declaration } { 0 function.declaration } }

assignment.section ;;= [I NIT initialise.section]
REPEAT (FOREVER | FOR non.neg.integer) repeat.section

4.43 External input and output

DFDL employs two types of external data interface, denoted input and output.
These are used to interface to other DFDL programs and the outside world. Each
DFDL program has zero or more inputs and one or more outputs.

Input and output are declared after the program declaration and begin with the
key words INPUT and OUTPUT respectively. Attached to each input and output
keyword is the data type of the external data. External data types are either 8-bit
integer (BYTE), 16-bit integer (INT16), 32-bit integer (INT32) or 32-bit floating
point (REAL32). When more than one data type is used, say for different inputs,
then the key word INPUT has to be re-written:

INPUT(BYTE) u i, u2) ..., Uk INPUT(REAL32) Uk + 1, u k + 2> Up
OUTPUT(INT32) vi, v2.....V|

Within a DFDL program all data manipulation is performed in type REAL32.
Hence, all non-REAL32 type data from external inputs and all non-REAL32 type
data to external outputs has to be converted. At the boundaries of the program
(i.e. input and output), DFDL implicitly inserts conversion operators which trans-
form non-REAL32 input data to REAL32 data, and transform REAL32 data to
non-REAL32 output data. Data type declaration is only necessary for inputs and
outputs, since all other data structures are of type REAL32 by default.

Input and output variables are declared as either scalars or arrays and their scope
is restricted to the program unit where they are declared. Arrays are distinguished
from scalars by the square braces [pos.integer] which succeed the variable name
and the non-singular subscript size.

4-10

The size of an input or output array does not define the number of distinct inputs
or outputs, but the number of elements streamed through the declared input or
output per iteration. For example, the following single input streams 1024 sequen-
tially ordered bytes:

INPUT(BYTE) u[1024]

DFDL supports arrays of up to two spatial dimensions. The number of elements
in a two dimensional array is the product of the two declared subscript sizes. For
example, the following output array has 20 elements, (10 columns of 2 rows):

OUTPUT(REAL32) v[10][2]

Data is streamed to the output (above) in a "column before row" fashion, e.g.,
v[0][0], v[1][0], v[2][0].....v[9][0], v [0][1],.... v[8][1], v[9][1].

Production rules for input and output declarations

ext.declaration ::= {1 { o input.declaration } { 1 output.declaration } }
¡nput.declaration :: = INPUT(data.type) input [sub.size] { o , input [
sub.size] }
output.declaration :: = OUTPUT(data.type) output [sub.size] { o , output [
sub.size] }
data.type ::= BYTE | INT16 | INT32 | REAL32
input ::= ¡dent
output ::= ident
sub.size :: = column.size [row.size]
column.size ::= [pos.integer]
row.size ::= [pos.integer]

4.4.4 Nodes

Nodes are used as intermediate variables between inputs and outputs. Each DFDL
program has zero or more nodes.

Nodes are declared after the external declaration and begin with the key word
NODE. All nodes are of data type REAL32, hence their data type is not explicitly
declared:

NODE m, r\2.....ni<

4-11

Node variables are declared as either scalars or arrays and their scope is restricted
to the program unit where they are declared. Arrays are distinguished from scalars
by the square braces [pos.integer] which follow the variable name and the
non-singular subscript size. As in the case for inputs and outputs, nodes can have
up to two spatial dimensions. For example, the following node is declared as a 50
element vector;

NODE n[50]

whereas the example below shows a node array of 80 elements, (10 columns of 8
rows):

NODE n [10] [8]

Production rules for node declaration

node.dedaration :: = NODE node [sub.size] { o , node [sub.size] }
node:: = ¡dent
sub.size ;; = column.size [row.size]
column.size :: = [pos.integer]
row.size ::= [pos.integer]

4.4.5 Constants

Constant values are either named, in which case they are called constants, or used
directly in expressions as reals. Each DFDL program has zero or more constants.

Constant declarations begin with the key word VALUE. All constants are of data
type REAL32, hence their data type is not explicitly declared:

VALUE c IS real

Constants are declared as either scalars or arrays. Arrays of different values may
be declared using a table of real values. For example, a 5 element constant array
is declared as:

VALUE TABLE c[5] IS [3.45, 2.00, -34.0, -0.91, 34.9]

2-dimensional constant arrays are created in a similar fashion. The example below
shows a constant array of 6 elements, (3 columns of 2 rows):

VALUE TABLE c[3][2] IS [0.3042, 12.346, 6.6511;
2.2220, 332.23, 3.8449]

4-12

Constants may also be formed by the assignment of constant expressions, in place
of a single real value, as shown previously. Constant expressions, consist of
operators, functions and previously declared constants as well as real values:

VALUE c IS 1.3334
VALUE d IS (c * ASIN(-0.86475))

The repetition operator (section 4.4.10) enables arrays of different values to be
constructed by the assignment of a constant expression. In DFDL this is a two stage
process; first the size of the array is declared and placed equal to EXPRESSION;

VALUE pi IS 3.141592654
VALUE c[10] IS EXPRESSION

then during the initialisation section each element of the un-defined constant is
equated a value:

INIT
c[index FROM 0 FOR 10] IS COS((REAL([index FROM 0 FOR 10]) * p i) ...
- (p i / 2.0)) + 1.0

The subscript identifier (name of subscript index) has a value which varies from 0
to 9, this is converted from an integer to a real by the REAL function.

Production rules for constant declaration

constant.declaration :: = VALUE (constant [sub.size] IS
constant.expression | undefined.constant [sub.size] IS EXPRESSION
| TABLE constant [sub.size] IS table)

constant ;; = ident
undefined.constant:: = ident
sub.size :: = column.size [row.size]
column.size :: = [pos.integer]
row.size :: = [pos.integer]
table :: = real.string { o ; real.string }
real.string:: = [real { o , real}]

4.4.6 User-defined functions

User-defined functions provide a degree of abstraction and can be used in a
repeated fashion to reduce programming effort and program length. All operands
to a function have to be passed as formal parameters or declared within the
function. Those operands declared inside a function are only valid within the scope
of that function. These limitations ensure that functions are free from side-effects.
Functions have an in-degree of zero or more operands and an out-degree of one
(i.e. a single result). Within the function declaration, a single object corresponding
to the function output is mandatory, this single object is denoted RESULT.

DFDL is a static language, consequently functions cannot be called recursively,
i.e., a function cannot call itself directly or indirectly. An ordering is imposed on
function declarations to enforce the static restriction. This ordering only permits
functions to be called from other functions, which have been previously declared.
Within a function, formal parameters cannot be assigned values, otherwise the
single assignment rule would be broken. In addition, operands cannot be sub-
scripted with the delay operator from within a function, therefore any function that
requires old values for its operands must have them passed as formal parameters.

Production rules for user-function declaration

function.declaration :: = FUNCTION function.name
([formal.parameters]) function.body
function.name:: = ident
formal.parameters ;; = formal [sub.size] { o , formal [sub.size] }
formal ::= ident
sub.size :: = col.slze [row.size]
col.slze:: = [pos.integer]
row.size:: = [pos.integer]
function.body:: = {o { o node.declaration } { o constant.declaration }
{ o function.declaration } } BEGIN { o assignment }
RESULT: = (conditional.expression \ expression)

A function is called by instancing its name, followed by the passed parameters
enclosed in parentheses. Passed parameters can either be singular, multiple or
mixed. A comma is used to separate consecutive pairs of singular parameters, or
to separate singular parameters from multiple parameters, or to separate consecu-
tive multiple parameters. The total number of passed parameters must correspond
to that declared for the function.

Production rules for user-function instanitation

function.instance :: = function.name ([passed.parameters])
function.name:: = ¡dent
passed.parameters :: = operand { o , operand}

A typical function declaration and instanciation is presented below, note that the
declaration of a function must precede its instanciation.

FUNCTION weighted.average(f.1, f.2, f.3)
NODE n.1, n.2
VALUE a. 1 IS (1.0/6.0)
VALUE a.2 IS (4.0 / 6.0)
BEGIN

n.1 := (f.1 + f.3) *a.1
n.2 : = f.2 * a.2

RESULT := n.1 + n.2

y : = weighted.average(x[i FROM 0 FOR 3])

4-14

4.4.7 Z-operator (Delay)

DFDL incorporates a Z operator, which is equivalent to the discrete mathematical
delay operator used in difference equations, where xZ[n] is equivalent to xZ’n. The
value xZ[n] is the value of x, n steps in the past, where a step is equivalent to a
single cycle of the repetitive section of the program, i.e., a single pass of the
algorithm. The number of steps n is a non-negative integer. When n is equal to
zero, xZ[n] is the same as x. The value of n cannot be less than zero.

The Z operator alleviates some of the difficulties associated with looping within a
single assignment language, and is in effect a developed form of the "old" operator,
as used in SISAL, where "old x" is equivalent to xZ[1], DFDL only allows inputs,
outputs and nodes to be subscripted with Z[n], Subscripting constant values with
Z[n] would be meaningless, since c = cZ[n] for all n.

All Z[n] subscripted terms are implicitly updated between the time they are last
used in the current cycle and the time when they are first used in the next cycle.
Consequently, all past values (i.e. subscripted Z[n], n > 0) cannot be re-assigned
during the repetitive section of the program, otherwise the single assignment rule
would be broken.

The production rules for delay are presented later, in section 4.4.9 and 4.4.10

4.4.8 Assignment

The assignment operator : = assigns a new value to an object, or more precisely,
since DFDL is a single-assignment language, the assignment operator statically
associates a value with a name (i.e. name of the object).

object: = value

In the initialisation section, past inputs, past nodes and past outputs (i.e. sub-
scripted with Z[n], n > 0) may be pre-assigned values to initialise the program.
The initialisation section also allows un-valued constants to be given values.

4-15

The rules for assignment in the initialisation section are summarised below:

In the repetitive section of the program the rules of single assignment preclude
multiple or non-assignment of objects, hence only un-assigned nodes and un-as-
signed outputs can appear to the left of the assignment operator. Inputs cannot be
assigned, since they are assigned implicitly.

Objects Operands

input Z[n]
output Z[n]
node Z[n]

undefined, constant

constant
real

(constant.expression)

Table 4.1 Valid initialisation section assignment

The rules for assignment in the repetitive section are summarised below.

DFDL places an additional rule on the assignment operation, which states that
unassigned nodes and unassigned outputs cannot be used as operands until they
are assigned. This rule places a partial ordering on assignment statements, but
prevents the formation of oscillatory loops within the program.

Objects Operands

output
node

constant
real

(expression)
input [Z [n]]

output [Z[n] 7
node [Z[n]]

function.instance

Table 4.2 Valid repetitive section assignment

4-16

Production rules for assignment

assignment.section :: = [INIT init.section]
REPEAT (FOREVER | FOR non.neg.integer) repeat.section

init.section;; = {1 value.constant | init.assignment}
value.constant:: = undefined.constant IS constant.expression
undefined.constant:: = ¡dent
init.assignment:: = init.object : = constant.expression
init.object:: = input { o spatial.sub } Z temporal.sub
| output { o spatial.sub } Z temporal.sub
j node { o spatial.sub } Z temporal.sub

repeat.section :: = { 1 assignment }
assignment:: = object : = (expression \ conditional.expression)
object:: = node { o spatial.sub } | output { o spatial.sub }

4.4.9 Expressions

An expression evaluates to a single real value. Expressions are constructed from
operands, operators, functions and parentheses.

A regular expression consists of a single operator or function and the operands
required for that operator or function. Equal priority is given to all operators and
functions, hence parentheses have to be used to define priority between operators
or functions in expressions that are not regular.

For example, consider the sum of four inputs, u.1, u.2, u.3, u.4, each weighted by
the values 0.1,0.3, 0.4, 0.2 respectively. Some languages would allow;

y : = u.1 * 0.1 + u.2 * 0.3 + u.3 * 0.4 + u.4 * 0.2

whereas DFDL requires the use of parentheses:

y : = ((u.1 * 0.1) + (u.2 * 0.3)) + ((u.3 * 0.4) + (u.4 * 0.2))

DFDL distinguishes between two forms of expression, namely expressions which
evaluate to a constant value and those whose value may change from one cycle to
the next. The former is called a constant expression and is the only type of
expression that may be used in the initialisation section. The latter type of expres-
sion (simply referred to as an expression) is used exclusively in the repetitive
section.

4-17

Production rules for constant expression and expression

constant.expression:: = constant.operand
| monadic.function constant.operand
| multifunction constant.operand { o , constant.operand}
j conv.function spatial.sub \ monadic.op constant.operand
j constant.operand dyadic.op constant.operand

constant.operand:: = real | constant { o spatial.sub }
| (constant.expression)

expression :: = operand \ monadic.function operand
| multifunction operand { o , operand} \ conv.function spatial.sub
| monadic.op operand \ operand dyadic.op operand

operand:: = real | input { o spatial.sub } [Z temporal.sub]
| output { o spatial.sub } [Z temporal.sub]
| node { o spatial.sub } [Z temporal.sub]
| constant { o spatial.sub } \ function.instance
| [expression)

monadic.function:: = ABS | SGN | SORT | LOG | ALOG
| LN | EXP | SIN | COS | TAN | ASIN | ACOS | ATAN

multifunction:: = SUM | PROD | MEAN | MED | MAX | MIN
conv.function:: = REAL
monadic.op :: = + | -
dyadic.op ::= + I - I * I / I ** | \

4.4.10 Repetitive and fixed subscripts

Subscripts belonging to inputs, outputs, nodes and constants can either be fixed or
varied over a defined range. The repetitive subscript attempts to simplify the
program by allowing an operation to be performed on every element within the
same array. For example the set of DFDL statements below uses fixed subscripts;

y[0] : = 2.0 * x[5]
y[1] := 2.0 *x[6]
y [2] := 2.0 * x[7]

these statements can be condensed into a single statement:

y[var FROM 0 FOR 3] : = 2.0 * x[var FROM 5 FOR 3]

The repetition identifier, named "var" (any unused identifier will do), associates
subscripts belonging to different variables. The repetition identifier can also be
used as an argument to the expression, once it is converted from type INT32 to
type REAL32, e.g.

y[var FROM 0 FOR 3] : = REAL([var FROM 10 FOR 3]) * ...
x[var FROM 5 FOR 3]

4-18

The syntax of the repetition subscript is of the form [repetition.¡dent FROM start
FOR range [EVERY step]] . The range must be equal for all repetitive subscripts
which are in the same assignment statement and have the same repetition iden-
tifier. The step (step size), when not declared as in the previous examples, defaults
to 1. Step size may be (i) positive, (ii) zero or (iii) negative:

(i) When the step size is positive then the subscript evaluates to an integer
number which increases with r, 0 < = r < range:

subscript = start + (step * r)

(ii) When the step size is zero the subscript evaluates to a single integer value:

subscript = start

(iii) When the step size is negative the subscript evaluates to an integer number
which decreases with r, 0 < = r < range:

subscript = start - (| step | * r)

In all cases the value of the subscript must not exceed the bounds of the variable
it is subscripting.

Production rules for fixed and repetitive subscripts

spatial.sub :: = fixed.sub \ repetitive.sub
temporal.sub :: = fixed.sub \ repetitive.sub
fixed.sub :: = [non.neg.integer.expression]
repetition.sub :: = [repetition.ident FROM non.neg.integer.expression
FOR pos.integer.expression [EVERY integer.expression]]

where non.neg.integer.expression - integer.expression > = 0
and pos.integer.expression = integer.expression > 0

integer.expression :: = integer.operand
| monadic.integer.op integer.operand
I integer.operand dyadic.integer.op integer.operand

integer.operand:: = integer | (integer.expression)
monadic.integer.op :: = + | -
dyadic.integer.op ::= + | - | * | MOD

4-19

4.4.11 Conditional

Conditional expressions are included in DFDL to support non-linear operations
like thresholding and median filtering. A conditional expression is made up from
one or more boolean expressions b i ... £>k-i, which evaluate to true or false:

IF b i THEN xi ELSEIF b2 THEN x2 ... ELSE Xk

After each boolean expression bi there is a corresponding expression Xj. The
conditional expression terminates with a single default expression Xk, preceded by
the keyword ELSE. Boolean expressions and their corresponding expressions are
separated by the key word THEN. The first boolean expression is preceded by the
keyword IF, while subsequent boolean expressions are preceded by the keyword
ELSEIF. Conditional expressions in DFDL always evaluate to a single real value,
which is assigned to the single object on the left hand side of the assignment
operator.

y : = IF b i THEN xi ELSEIF b2 THEN x2 ... ELSE Xk

Multiple assignment is prevented by assigning only one of the expressions Xj to the
single object, where an expression Xi is assigned iff the boolean expression bi is
true and all preceding boolean expressions are false. Hence, the preceding boolean
expressions, within the same conditional expression, have priority over their
successors. Priority is established by the rule:

bi = bi AND NOT(bi-1 OR b\.2 OR ... OR bi)

In its simplest form a conditional expression consists of a single boolean expression
br.

y : = IF b i THEN xi ELSEx2

If b i is true then xi is assigned to y, otherwise x2 is assigned to y. More complex
conditional expressions can be written by including ELSEIF or by nesting condi-
tional expressions:

y : = IF b i THEN xi ELSEIF b2 THEN x2 ELSEIF ... ELSE Xk or

y : = IF b i THEN (IF b2 THEN x2 ELSE xm) ELSE xk

Conditional expressions cause branching within the program which will inevitably
lead to different time complexities for different branches. This uncertainty appears
to contradict the rule of determinacy. However, we find that the time complexity
of all branches within a conditional expression are determinate and they all
converge, meeting at the assignment of the single object. Therefore, the worst-case
time taken to evaluate a conditional expression is the most costly path through the
conditional expression.

4-20

Production rules for conditional expression

assignment :: = object : = (expression \ conditional.expression)
conditional.expression :: = IF boolean.expression
THEN (expression \ (conditional.expression))
{ o ELSEIF boolean.expression
THEN (expression | (conditional.expression)) }
ELSE (expression | (conditional.expression))

boolean.expression :: =
relational.expression \ monadic.boolean.op relational.expression
I relational.expression dyadic.boolean.op relational.expression

relational.expression :: =
operand relational.op operand | (boolean.expression)

relational.op ;; = < | < = | = | > = | > | < >
monadic.boolean.op :: = NOT
dyadic.boolean.op :: = AND | OR

4.5 DFDL examples

Please note that the examples given here are for a fully implemented version of
DFDL, also note that coefficient values are for illustration only.

4.5.1 FIR filter

%
% The example is a 5 stage, finite Impulse response filter. The filter has one
% input named x and one output named y and calculates the product of the
% constant array c and xZ[d], where the delay d, ranges from 0 to 4, in
% integer steps of 1. Output y becomes the sum of the products.
%
PROG fir.fllter(INPUT(REAL32) x OUTPUT(REAL32) y)

NODE n[5]
VALUE TABLE c[5] IS [0.434, 0.782, 0.975, 0.782, 0.434]

BEGIN
INIT

xZ[coi FROM 1 FOR 4] := 1.0

REPEAT FOREVER
n[cd FROM 0 FOR 5] : = xZ[col FROM 0 FOR 5] * c[col FROM 0 FOR 5]
y : = SUM(n[col FROM 0 FOR 5])

END

4-21

4.5.2 HR filter

The example is a 2nd order infinite impulse response filter. The filter has
% one input named x and one output named y and calculates the product
% of two feedback and two feedforward paths.
%
PROG iir.filter(INPUT(INT32) x OUTPUT(INT32) y)

NODEn
VALUE TABLE c[4] IS [0.563, 0.782, -0.345, -0.714]

BEGIN
INIT

nZ[k FROM 1 FOR 2] : = 1.0

REPEAT FOREVER
n : = SUM(x, nZ[k FROM 1 FOR 2] * c[k FROM 2 FOR 2])
y : = SUM(nZ[2], nZ[k FROM 0 FOR 2] * c[k FROM 0 FOR 2])

END

4-22

4.53 2-D convolution

%
% The first program "frame" places a single column, single row
% frame around the 2-D Image
%
PROG frame(INPUT(BYTE) picture [256] [256] OUTPUT (BYTE) framed [258] [258])

BEGIN
REPEAT FOREVER

framed[0] [row FROM 0 FOR 258] : = 0.0
framed[257] [row FROM 0 FOR 258]: = 0.0
framed [col FROM 1 FOR 256] [0] := 0.0
framed [col FROM 1 FOR 256] [257] := 0.0
framed [col FROM 1 FOR 256] [row FROM 1 FOR 256] : = ...

plcture[col FROM 0 FOR 256] [row FROM 0 FOR 256]
END

%
% This program performs a 2-D convolution using a 3 by 3 window. Frame
% pre-processing prevents interference between adjacent Images and successive
% lines.
%
PROG convolution(INPUT(BYTE) framed OUTPUT(BYTE) result)

NODE column.sum[3]
VALUE TABLE weight[3] [3] IS

[-0.982, -0.707, -0.982;
-0.707, +6.756, -0.707;
-0.982, -0.707, -0.982]

BEGIN
INIT

framedZ[col FROM 1 FOR 515] := 0.0

REPEAT FOREVER
column.sum[0] : = SUM(framedZ[col FROM 0 FOR 3] * weight[col FROM 0 FOR 3][0])
column.sum[1] : = SUM(framedZ[col FROM 256 FOR 3] * weight[col FROM 0 FOR 3] [1])
column.sum[2] := SUM(framedZ[cd FROM 514 FOR 3] * weight[col FROM 0 FOR 3] [2])
result: = SUM(column.sum[col FROM 0 FOR 3])

END

4-23

4.5.4 DFT

%
% This example inputs a stream of 64 data samples and outputs two streams of
% 64 real values. One output stream Is the magnitude spectrum, while the
% other output stream is the phase spectrum. The program terminates after 80
% streams have been inputted and outputted.
%
PROG dft(INPUT(INT32) data[64] OUTPUT(REAL32) magnitude[64], phase[64])

NODE smoothed.data[64], real[64], image[64]
VALUE pi IS 3.141592654
VALUE pi.by.2 IS pi * 2.0
VALUE window[64] IS EXPRESSION
VALUE w.cos[64] [64] IS EXPRESSION
VALUE w.sin[64] [64] IS EXPRESSION

BEGIN
INIT

window[col FROM 0 FOR 64] IS 0.5 + (COS(((REAL(col) / 64.0) - 0.5) * pi) / 2.0)
w.cos[col FROM 0 FOR 64] [row FROM 0 FOR 64] IS (1.0 / 64.0) * ...

COS(((REAL(row) + 1.0) * (REAL(col) / 64.0)) * pi.by.2)
w.sin[col FROM 0 FOR 64] [row FROM 0 FOR 64] IS (1.0 / 64.0) * ...

SIN(((REAL(row) + 1.0) * (REAL(col) / 64.0)) * pi.by.2)

REPEAT FOR 80
smoothed.datafcol FROM 0 FOR 64] : = data[col FROM 0 FOR 64] * ...

wlndow[col FROM 0 FOR 64]
real [row FROM 0 FOR 64] : = SUM (data[col FROM 0 FOR 64] * ...

w.cos [row FROM 0 FOR 64] [col FROM 0 FOR 64])
image[row FROM 0 FOR 64] : = SUM (datafcol FROM 0 FOR 6 4] * ...

w.sln[row FROM 0 FOR 64] [col FROM 0 FOR 64])
magnitude[col FROM 0 FOR 64] : = SQRT((reai[col FROM 0 FOR 64] * * 2) + ...

(lmage[col FROM 0 FOR 64] * * 2))
phase[col FROM 0 FOR 64] : = ATAN(lmage[col FROM 0 FOR 64] /...

real[col FROM 0 FOR 64])
END

4-24

4.5.5 Lattice filter

%
% This example is of a 7 stage lattice filter. The upper and lower data value
% at each stage are calculated by the functions top.sectlon and bottom.section
% respectively. The sequential nature of the upper data path is reflected by
% the dependency successive top.sections have on their predecessors.
%
PROG lattice(INPUT(REAL32) signal OUTPUT(REAL32) upper, lower)

NODE top[5], bottom[5]
VALUE TABLE p[7] IS [0.4563, 0.4562, 0.8935, 0.2345, 0.9374, 0.3533, 0.7745]
VALUE TABLE q[7] IS [0.3329, 0.7846, 0.7844, 0.9938, 0.6366, 0.3443, 0.2323]

FUNCTION top.section(in.top, In.bottom, c)
NODEn
BEGIN

n : = In. bottom * c
RESULT : = n + In.top

FUNCTION bottom.section(in.top, in.bottom, c)
NODEn
BEGIN

n : = in.top * c
RESULT : = n + in.bottom

BEGIN
REPEAT FOREVER

top[0] := top.section(slgnal, signalZ[1], p[0])
top[1] := top. section (top [0], bottom [0]Z[1], p[1])
top[2] := top.section(top[1], bottom[1]Z[1], p[2])
top[3] := top.section(top[2], bottom[2]Z[1], p[3])
top[4] := top.section(top[3], bottom[3]Z[1], p[4])
top[5] := top.section(top[4], bottom[4]Z[1], p[5])
upper := top.section(top[5], bottom[5]Z[1], p[6])
bottom[0] := bottom.section(slgnal, slgnalZ[1], q[0])
bottom[1] := bottom.section(top[0], bottom[0]Z[1], q[1])
bottom[2] := bottom.section(top[1], bottom[1]Z[1], q[2])
bottom[3] := bottom.sectlon(top[2], bottom[2]Z[1], q[3])
bottom[4] := bottom.sectlon(top[3], bottom[3]Z[1], q[4])
bottom[5] := bottom.section(top[4], bottom[4]Z[1], q[5])
lower := bottom.sectlon(top[5], bottom[5]Z[1], q[6])

END

4-25

4.5.6 Level-crossing detector

%
% This example transfers the input to the output whenever the absolute
% value of the input crosses the value set by level, for all other conditions
% the value of output is zero.
%
PROG level.crossing.detector(INPUT(REAL32) input, level OUTPUT(REAL32) output)

NODE value

BEGIN
REPEAT FOREVER

value : = ABS(in)
output := IF (value > = level)

THEN (IF (valueZ[1] > = levelZ[1]) THEN 0.0 ELSE Input)
ELSE (IF (valueZ[1] > = levelZ[1]) THEN input ELSE 0.0)

END

4.5.7 Matrix product

%
% This example performs a cross product of an [m] by [n] matrix with an [n] by [m] matrix,
% producing an [n] by [n] matrix.
%
PROG matrix.product(INPUT(INT32) p[10][20], q[20][10]

OUTPUT(INT32) r[10][10])

BEGIN
REPEAT FOREVER

r[i FROM 0 FOR 10] [j FROM 0 FOR 10] : = ...
SUM(p[i FROM 0 FOR 10][k FROM 0 FOR 20] * ...
q[k FROM 0 FOR 20][] FROM 0 FOR 10])

END

4-26

4.6 Summary

This chapter has described the language DFDL and in doing so has detailed types,
operators, functions, program structure, external input/output, nodes, constants,
user-defined functions, Z-operator, assignment, expressions, subscripts and con-
ditional constructs. These descriptions have been supplemented by some examples
at the end of the chapter. A summary of DFDL syntax is given in Appendix B.

4-27

Chapter 5. DFDL task model

This chapter describes the translation of a discrete algorithm from a program to a
graph and it describes the graph’s data structure. The graph of the discrete
algorithm is a directed acyclic graph (DAG), which represents the discrete algo-
rithm without loss of function or structure.

The DAG is called the task graph, denoted G, which is given as G = (T, C, B, E,
A). The set of nodes T, corresponds to the program’s task primitives that are
executable on processors and the set of directed arcs A, expresses sequential
dependency between the tasks. Branching in the graph represents parallelism,
rather than alternative paths of computation.

The chapter begins by describing the data structure of task primitives and how
these data structures are connected together to form G. Following this, the
different types of nodes are detailed and finally, the transformations are described,
these fall into three categories; (i) named graph structures, (ii) primitive graph
structures and (iii) non-primitive graph structures. All the data structures are
written in Occam.

5.1 Data structures

5.1.1 Executable node data structure

The in-degree and out-degree of nodes in T and C are shown in Table 5.1. With
the exception of the initiating and termination nodes, (B and E respectively), all
other nodes have an in/out-degree less than or equal to two. This low in/out degree
tends to reflect the low I/O complexity of the tasks, which is regarded as a
prerequisite for a medium/fine grain graph structure.

5-1

Type In-degree Out-degree Comments

B
0 multiple initiates

G

E
multiple 0 terminates

G

1 1 monadic input and
output

Others
1 2 monadic input

dyadic output

2 1 dyadic input
monadic output

Table 5.1 In/out-degree of task graph nodes

G is created in the form of a doubly linked list, where each node contains links to
both its immediate successors and its immediate predecessors. This makes it
possible to traverse the graph in either direction, such that any node may be
reached from any other node in G. The flexibility given by doubly linking must be
offset against the overheads of storage and time to traverse linked nodes. However,
the majority of nodes in G have a low I/O degree which makes G sparse, hence
nodes are compact and therefore storage overheads are low. Generally a doubly
linked list produces a memory efficient data structure, whose size is proportional
to |T | + |C| .

5.1.2 Non-executable node data structure

At the top and bottom of the graph G are the nodes B and E respectively. Entries
for these two nodes have a different format to other nodes in G, because of their
variable in/out-degree. B and E data structures each take the form of a vector and
pointer (Figure 5.1). The entries in B hold all the addresses of nodes in T and C
that are at the top of G and the entries in E hold all node addresses in T and C that
connect to the bottom of G. The pointer (Figure 5.1) keeps track of the last entry
in the vector.

address address address empty empty

pointer

Figure 5.1 B and E data structure

5-2

5.13 Executable node attributes

Nodes other than B and E employ blocks of 5 contiguous words (20 bytes) each.
A node comprises several attributes which are all stored at specific locations within
the node. Most of these attributes are common to all nodes, however, where this
is not the case, alternative, mutually exclusive attributes occupy the same location
in different node types. Locations belonging to attributes which become redundant
may be used by successive attributes. The format of these nodes is shown in Table
5.2. Note: the execution cost of a task type (node) is represented by the node’s
name, i.e. its TYPE.

word wort1 word word word Attributes
4 3 2 1 0

| TYPE

COLOUR A/B

NUMBER

1
; v

TO.FIRST

EST
S i x ? : ? * ? ? : ?

LST

i
Ü FR.FIRST

III TO.SECOND

illmm FR.SECOND

jjjjjjîjjjjjjjjÎj DELAY.VAL

m
m

i REAL.VAL

LABEL

INDEX

TO.PROC

' LIST.PROC

1m FR.PROC

Table 5.2 Node format

5-3

5.1.4 Attribute description

TYPE:
COLOUR A/B:
NUMBER:
TO.FIRST:
TO.SECOND:

FR.FIRST:

FR.SECOND:

EST:

LST:
DELAY.VAL:
REAL. VAL:
LABEL:
INDEX:
TO.PROC:
FROM.PROC:
LIST.PROC:

Defines the type of node and therefore its execution cost.
Control information.
Node number.
Address of first immediate successor.
Address of second immediate successor (dyadic output
only).
Address of first immediate predecessor (not real or con-
stant nodes).
Address of second immediate predecessor (dyadic input
only).
Earliest start time or scheduled start time (used during
scheduling).
Latest start time.
Integer delay value (delay nodes only).
Real value (real or constant nodes only).
Symbol table address of identifier (named nodes only).
Array index (named nodes only).
Processor connected to (used during scheduling).
Processor connected from (used during scheduling).
Resource type (used during scheduling).

5-4

5.2 Node types

Table 5.3 summarises the different types of task primitives Ti and Cq that may be
used in G. The relative task execution cost category gives the worst-case costs for
Ti, denoted ei, for a T414-20 Transputer. Where different, T800-20 costs are shown
in parentheses. Communication costs Cq for a task Cq are given for link speeds of
20Mbit s '1, these are superscripted with an asterisk to distinguish them from
processor costs. Transputers which operate at a different clock frequency, or
communicate using a different link speed have their costs scaled accordingly.
Arithmetic and trigonometrical operations are costed for 32 bit floating point
operations. All costs are in units of microseconds.

Task primitive Type
attribute

In-
degree

Out-
degree

Relative execution
/com m unication cost

EXT.IN l l 2 0.0

EXT.OUT 2 2 1 0.0

BYTE:REAL32 3 1 1 3.4 (0.65)

INT16:REAL32 4 1 1 3.8 (0.65)

INT32:REAL32 5 1 1 4.6 (0.60)

REAL32:BYTE 6 1 1 2.15 (0.90)

REAL32:INT16 7 1 1 2.15 (0.90)

REAL32:INT32 8 1 1 2.10 (0.85)

NODE 9 1 1 0.0

CONST 10 1 1 0.0

REAL 11 1 1 0.0

INT.IN 12 1 2 0.0

INT.OUT 13 2 1 0.0

COMM.IN 14 1 1 0.55

NEC 15 1 1 5.0 (0.7)

continued over...

5-5

continuation...

Task prim itives Type In- Out- Relative execution
attributes degree degree /com m unication cost

ADD 16 2 1 15.0 (0.35)

SUB 17 2 l 15.0 (0.35)

MULT 18 2 1 12.0 (0.65)

DIV 19 2 l 14.0 (0.95)

REM 20 2 l 16.0 (1.7)

DELAY 21 1 l 0.5

BRANCH 22 1 2 0.0

SGN 23 1 1 0.35

ABS 24 1 1 0.25

SORT 25 1 1 24.0 (7.2)

LN 26 1 1 125.0 (28.0)

LOG 27 1 1 138.0 (31.4)

EXP 28 1 1 112.0 (36.7)

COMM.OUT 29 1 1 0.55

SIN 30 1 1 150.0 (33.8)

COS 31 1 1 160.0 (25.1)

TAN 32 1 1 143.0 (34.7)

ASIN 33 1 1 127.0 (26.0)

ACOS 34 1 1 117.0 (24.8)

ATAN 35 1 1 130.0 (25.2)

COMM.BYTE 36 1 1 0.55*

COMM.INT16 37 1 1 1.1*

COMM.INT32 38 1 1 2.2*

COMM.REAL32 39 1 1 2.2*

AND 40 2 1 0.10

OR 41 2 1 0.40

NOT 42 1 1 0.10

EQ 43 2 1 3.0 (0.45)

NEQ 44 2 1 3.0 (0.45)

LT 45 2 1 3.0 (0.50)

LT.EQ 46 2 1 3.0 (0.50)

GT 47 2 1 3.0 (0.50)

GT.EQ 48 2 1 3.0 (0.50)

GATE 49 2 1 0.65

PRI.OR 50 2 1 0.40

Table 5.3 Task primitives, in/out-degree and cost

5-6

53 Named graph structures

Named graph structures are generated in response to input, output, node and
constant declarations. These structures are produced prior to the repetitive section
of a program and begin with the DFDL keywords INPUT, OUTPUT, NODE and
VALUE, respectively. Named graph structures, comprising named nodes, form the
skeleton of G, from which all successive nodes are connected, either directly or
indirectly. Each different type of named node has its connections configured
according to its type, position in an array and, in the case of inputs and outputs, its
data type. To simplify the description, all named nodes are taken to be 2 dimen-
sional arrays, e.g., x[col.siz$ [row.size]. For example, a scalar has a col.size and
row.size equal to 1.

All named nodes have a label attribute, which is a pointer into the symbol table,
directed at the first character of the node’s identifier. These nodes also possess an
index attribute, which identifies the node’s subscript (i.e. array subscript). This
index is held as a single integer, which is equal to i + (j * col.size); i is the column
index and j the row index, 0 < = i < col.size , 0 < = j < row.size .

53.1 Input nodes

An external input graph structure is constructed in response to the declaration:

INPUT(data.type) Input [sub.size] { o , input [sub.size] }

The simplest graph structure for an external input is for a data type of REAL32,
since conversion from type non-REAL32 to REAL32 is unnecessary (all internal
numeric operations are type REAL32 in the DFDL environment). Input arrays are
configured as streams (Figure 5.2), such that any input ui cannot precede any other
input ui-i, for all i, 0 < i < k. k is the total number of elements in an input stream,
given as col.size * row.size. When a column, or row, size is not declared, a default
value of size 1 is substituted.

An EXT.IN (external input) node has a monadic input and a dyadic output. The
first element in any external input stream is uo, whose single input is connected
from B, the initiating node (Figure 5.2). This arc defines precedence between B
and uo, however, it does not imply the transfer of data. Precedence between
successive EXT.IN nodes in the same stream is established by "daisychaining";
precedence is transferred through the node, from the single input out to the second
output, to the succeeding EXT.IN node’s single input. The final node in an input
stream uk-i terminates the stream and thereby leaves its second output uncon-
nected.

5-7

Figure 5.2 External input stream (REAL32)

A summary of the relevant attributes given to an EXT.IN node during the con-
struction of G is shown Table 5.4.

External inputs which have a non-REAL32 data type, include conversion nodes in
their graph structure. The type of conversion node depends on the data type of the
external input. The three different types of input conversion node are
BYTE:REA132, INT16:REAL32 and INT32:REAL32. A conversion node has its
input connected from the first output of an EXT.IN and has its output connected
into G. Non-REAL32 external inputs have a graph structure as shown by Figure
5.3. For XXX, read BYTE, INT16 or INT32.

A summary of the relevant attributes assigned to input conversion nodes,
BYTE:REAL32, INT16:REAL32 and INT32:REAL32, is shown in Table 5.5.

5-8

Attributes
TYPE EXT.IN

TO.FIRST Data: if Ui is type non-REAL32,
connects to convertion node

TO.SECOND
Sync: ui connects to Ui +1 for all i, 0

< = i < k -1.

FR.FIRST Sync: ui connects from (i) B if i = 0,
(ii) Ui-i for all i, 0 < i < k.

FR.SECOND

DELAY.VAL

REAL. VAL

LABEL Address of identifier
in symbol table

INDEX
Node uj has index i,
where 0 < = i < k.

Table 5.4

Xo ... X u are type XXX and
Yo ... Yk-i are type REAL32

Yk-i

Figure 5.3 External input stream (non-REAL32)

5-9

Attributes
TYPE BYTE:REAL32,

TNT1fi:REAT A2, TNT32:REAL32

TO.FIRST Data

TO.SECOND

FR.FIRST Data: connects from
external input

FR.SECOND

DELAY.VAL

REAL.VAL

LABEL

INDEX

Table 5.5

5.3.2 Output nodes

An external output graph structure is constructed in response to the declaration:

OUTPUT(data.type) output [sub.size] { o , output [sub.size] }

Outputs are similar to inputs, in that the simplest output case is for a data type of
REAL32, since conversion to REAL32 is unnecessary. Output arrays are configured
as streams, such that any output vi cannot precede any other output vi-i, for all i,
0 < i < k. k is the total number of elements in an output array, given as col.size
* row.size. When the column or row size is not declared, a default value of size 1
is substituted.

An EXT.OUT (external output) node has a dyadic input and a monadic output.
The last element in any external output stream is denoted vk-1, whose single output
is connected to E, the terminating node (Figure 5.4). Precedence between succes-
sive EXT.OUT nodes in the same stream, beginning with vo, is established by
"daisychaining"; precedence is transferred through the node, from the second input
and out to the single output, to the succeeding EXT.OUT node’s second input.
The first node in an output stream vo initiates the stream and as such, leaves its
second input unconnected.

5-10

A summary of the relevant attributes assigned to an EXT.OUT node during the
construction of G is given by Table 5.6.

External outputs that have a non-REAL32 data type, include conversion nodes in
their graph structure. The type of conversion node depends on the data type of the
external output. The three different types of output conversion node are
REAL32:BYTE, REAL32:INT16 and REAL32:INT32. A conversion node’s out-
put is connected to the first input of an EXT.OUT and its input is connected from
G. Non-REAL32 external outputs have a graph structure as shown by Figure 5.5.

A summary of the relevant attributes assigned to output conversion nodes,
REAL32:BYTE, REAL32:INT16 and REAL32:INT32, is given by Table 5.7.. For
XXX, read BYTE, INT16 or INT32.

\
Xi

\

Vi

\
Xk.i

Xo ... Xk-i are type
REAL32

Figure 5.4 External output stream (REAL32)

5-11

Attributes
TYPE EXT.OUT

TO.FIRST Sync: vj connects to (i)E if i = k-1,
(ii)vj-i, for all i, 0 < = i < k-1.

TO.SECOND

FR.FIRST Data: if vj is type non-REAL32,
connects from convertion node

FR.SECOND
Sync: Vi connects from v,-i

for all i, 0 < i < = k -1.

DELAY. VAL

REAL.VAL

LABEL Address of identifier
in symbol table

INDEX
Node Vi has index i,
where 0 < = i < k.

Table 5.6

Figure 5.5 External output stream (non-REAL32)

5-12

Attributes
TYPE REAL32:BYTE,

REAL32:TNT1fi, RF.AL32:TNT32

TO.FIRST Data; connects to external output

TO.SECOND

FR.FIRST Data

FR.SECOND

DELAY. VAL

REAL. VAL

LABEL

INDEX

Table 5.7

5 3 3 Node nodes

A node graph structure is constructed in response to the declaration:

NODE node [sub.size] { o , node [sub.size] }

Unlike input and output graph structures, node arrays are not configured as
streams, but as independent elements (Figure 5.6). The number of elements in an
array is k, where k is equal to col.size * row.size. The first element in an array is
denoted no and the last is denoted nk-i. When a column size or row size is not
declared, a default size of 1 is substituted.

5-13

A NODE (node) node has a monadic input and a monadic output. Figure 5.6
illustrates a node array, note that each element in the array is configured in an
identical manner. Each node’s single input transfers data from G, through the
node, to the single output back to G. Data is unaffected by passing through a node.

A summary of the relevant attributes assigned to a NODE node during the
construction of G is given by Table 5.8.

Xo

no

j^NODE^

Xo

Xi

ni

I^NODE^j

Xi

Figure 5.6 Node nodes

Attributes
TYPE NODE

TO.FIRST Data

TO.SECOND

FR.FIRST Data

FR.SECOND

DELAY.VAL

REAL.VAL

LABEL Address of identifier
in symbol table

INDEX
Node ni has index i,
where 0 < = i < k.

Table 5.8

5-14

53.4 Constant nodes

A constant graph structure is constructed in response to the declaration:

VALUE constant [sub.size] IS real or
VALUE TABLE constant [sub.size] IS table or
VALUE constant [sub.size] IS EXPRESSION

Constant nodes are independently configured, such that any constant ci precedes
or succeeds any other constant cj, for all i not equal to j, 0 < = i < k, 0 < = j <
k. k is the total number of elements in a constant array, which is given as col.size
* row.size. When the column or row size is not declared a default value of size 1
is substituted.

A CONST (constant) node has a monadic input and a monadic output. The first
element in a constant array is denoted co and the last element is denoted ck-i. For
every constant node, the single input is connected from Bnote 1, the initiating node
(Figure 5.7). This defines precedence between B and ci, for all i, 0 < = i < k.
However, this arc does not imply a transfer of data. The single output of each
constant node derives from its real value, which connects into G.

A summary of the relevant attributes assigned to a CONST node during the
construction of G is shown by Table 5.9.

note 1: The use of attribute
REAL.VAL precludes the use of

R o... Rk-i are
all type
REAL32

5-15

Attributes
TYPE CONST

TO.FIRST Data

TO.SECOND

FR.FIRST Sync: Ci connects from Bnote 1
for all i, 0 < = i < k.

FR.SECOND

DELAY.VAL

REAL.VAL Real value

LABEL Address of identifier
in symbol table

INDEX
Node Ci has index i,
where 0 < = i < k.

Table 5.9

5.4 Primitive graph structures

Primitive graph structures comprise the primitive nodes which equate to single or
part DFDL program operations. The majority of primitive nodes, with the excep-
tion of named nodes and conversion nodes, are created during the repetitive
section of a program. Non of the nodes described in this section are labelled or
indexed, since they are not declared as "named structures".

5.4.1 Real nodes

Real laterals in expressions are translated to REAL nodes. A REAL node is
identical to a CONST node in all its attributes, except that REAL nodes are not
labelled or indexed.

A REAL has a monadic input and monadic output. The input always connects from
B n°te ̂ t h e initiating node, and the output connects to G. The attribute
REAL.VAL holds the real value of the node. A summary of the relevant attributes
given to REAL is given by Table 5.10 and Figure 5.8 illustrates the connections
for a REAL node in G.

5-16

note 2: The use of attribute REAL. VAL
p rec lu d es the use o f a ttribute
FR.FIRST (see Table 5.2). Since all
REAL nodes are connected from B, the
connection is implied. B

R is type
REAL32

Figure 5.8 Real node

Attributes
TYPE REAL

TO.FIRST Data

TO.SECOND

FR.FIRST Sync: connects from Bnote 2.

FR.SECOND

DELAY.VAL

REAL. VAL Real value

LABEL

INDEX

Table 5.10

5.4.2 Internal input/output and delay nodes

Internal input nodes and internal output nodes are used in pairs (one of each type)
to signify the transfer of data from one cycle to the next (a cycle is the period
corresponding to the sampling interval). An internal input node is denoted INT.IN,
it has a monadic input and dyadic output (Figure 5.9). The single input always
connects from B, the initiating node. The first output of an INT.IN node is used to
deliver a data value, that is passed to the node during the previous cycle. The
internal output node, INT.OUT, has a dyadic input and monadic output (Figure
5.9). The single output always connects to E, the terminating node. The first input
takes in a data value and passes it to the node’s paired INT.IN node, ready for the
next cycle.

A synchronising arc connects from the second output of INT.IN to the second input
of INT.OUT, this prevents the INT.OUT node from passing data before the
INT.IN node has completed, it also references INT.IN to INT.OUT and vice-versa.
Figure 5.9 illustrates the connections between B, INT.IN, INT.OUT and E.

Figure 5.9 Single delay

The relationship between a value X which enters INT.OUT and appears as value
Y in the following cycle at the INT.IN node is:

Y : = X Z 1

The single internal input/output pair form a delay of 1. Multiple cycle delays could
be constructed by reproducing this graph structure d times, where d is the required
delay. However, this would be somewhat expensive in terms of numbers of nodes,
especially where large delays are concerned. A more compact method is to include
a multiple delay node with each pair of INT.IN, INT.OUT nodes, whenever the
delay exceeds 1. The delay node, DELAY, holds the attribute DELAY.VAL,
which is given a positive integer value (d -1), where d is the required delay.

5-18

Attributes
TYPE INT.OUT

TO.FIRST Sync: connects to E

TO.SECOND

FR.FIRST Data

FR.SECOND Sync: connects from INT.IN

DELAY.VAL

REAL. VAL

LABEL

INDEX

Table 5.11

Attributes
TYPE INT.IN

TO.FIRST Data

TO.SECOND Sync: connects to INT.OUT

FR.FIRST Sync: connects from B.

FR.SECOND

DELAY.VAL

REAL. VAL

LABEL

INDEX

Table 5.12

5-19

Figure 5.10 shows the DELAY node added to the graph structure. The relationship
between values X, W and Y is as follows:

W : = XZ'^'1*

Y : = WZ‘\ hence,

Y : = XZ'd

Figure 5.10 Multiple delay

Attributes
TYPE DELAY

TO.FIRST Data

TO.SECOND

FR.FIRST Data

FR.SECOND

DELAY.VAL Integer value

REAL.VAL

LABEL

INDEX

Table 5.13

5-20

A summary of the relevant attributes for INT.IN and INT.OUT are given by Tables
5.11 and 5.12. The attributes for a DELAY node are given by Table 5.13. When
the attribute DELAY.VAL evaluates to zero (i.e., d = 1), the DELAY node is
omitted, since a delay of 1 is achieved using INT.IN and INT.OUT nodes only.

5.4.3 Arithmetic nodes

The monadic arithmetic operator - and the dyadic arithmetic operators /,
\ are represented by a simple transformation to a single node per operator. The
monadic operator transforms to node NEG, this has a monadic input and a
monadic output. The dyadic operators transform to nodes ADD, SUB, MULT,
DIV and REM respectively, where each node has a dyadic input and a monadic
output.

X, Y are type
REAL32

X

Y

Figure 5.11 Monadic arithmetic node

Figure 5.11 shows the NEG node. For a NEG node, the output Y is equal to -X.

The dyadic nodes are illustrated by Figure 5.12. The relationships between their
input and output values are:

ADD: Y : = X + W
SUB: Y : = X - W
MULT: Y : = X * W
DIV: Y : = X /W
REM: Y : = X \ W

w x

^ A D D ^ j

W

W, X, Y are type
REAL32

Figure 5.12 Dyadic arithmetic nodes

5-21

A summary of the relevant attributes assigned to arithmetic nodes during the
construction of G is given by Table 5.14.

Attributes
TYPE POS, NEG, ADD, SUB,

MULT. DIV- REM

TO.FIRST Data

TO.SECOND

FR.FIRST Data

FR.SECOND Data: Dyadic nodes only.

DELAY.VAL

REAL.VAL

LABEL

INDEX

Table 5.14

5-22

5.4.4 Branch node

The branch node is used within G to distribute values, it achieves this by splitting
a path into two, where both paths convey the same value. BRANCH has a monadic
input and a dyadic output (Figure 5.13). The relationship between the input and
output values can be expressed as:

Y i : = X and Y2 : = X.

A summary of the relevant attributes assigned to BRANCH nodes during the
construction of G is given by Table 5.15.

X I

X, Yi, Y2 are all type
REAL32 or all type

BOOL

Yi

Figure 5.13 Branch node

Attributes
TYPE BRANCH

TO.FIRST Data / boolean

TO.SECOND Data / boolean

FR.FIRST Data / boolean

FR.SECOND

DELAY.VAL

REAL.VAL

LABEL

INDEX

Table 5.15

5-23

5.4.5 Functions

The majority of DFDL’s monadic functions transform directly to single nodes. The
name chosen for a particular node type is the same as its function name. The nodes
are SGN, ABS, SORT, LOG, LN, EXP, SIN, COS, TAN, ASIN, ACOS and ATAN.
All nodes have a monadic input and a monadic output (Figure 5.14).

Y

REAL32

Figure 5.14 Function nodes

Attributes
TYPE

SGN, ABS, SORT, LOG, LN, EXP,
SIN, COS, TAN, ASIN, ACOS, ATAN

TO.FIRST Data

TO.SECOND

FR.FIRST Data

FR.SECOND

DELAY. VAL

REAL. VAL

LABEL

INDEX

Table 5.16

5-24

The relationship between the input X and the output Y is:

Y : = function X

A summary of the relevant attributes for the functions SGN, ABS, SQRT, LOG,
LN, EXP, SIN, COS, TAN, ASIN, ACOS and ATAN that are assigned during the
construction of G are given in Table 5.16.

5.4.6 Communication nodes

Communication nodes represent communication effort, either between a proces-
sor and an external device or between different processors. Communication
between adjoining processors is, in the case of DFDL, at word level (multiples of
4 bytes), because DFDL has an internal data type of REAL32. Communication
to/from external devices, however, may be of 1, 2 or 4 bytes in length, depending
on the declared data type of the external input or external output, i.e., BYTE, INT16
or INT32/REAL32. The cost attributed to a communications node includes the cost
expended by the processor in setting up the communication and the cost expended
by the link in transferring the data.

The four types of communication node are called COMM.BYTE, COMM.INT16,
COMM.INT32 and COMM.REAL32. Each type has a monadic input and a
monadic output (Figure 5.15).

X, Y are type XXX
where node is of type

COMM.XXX

Figure 5.15 Communication nodes

There are no communication nodes in G during its initial construction, because
communication cannot be established until the number of processors and the
topology of the processor network are known. Consequently, communication
nodes are added to set C, which is a member of G, during scheduling.

5-25

5.4.7 Relational nodes

The relational operators = , < > , > , > = , < , < = are exclusive to conditional
expressions in DFDL programs. These six operators transform directly to single
nodes, denoted EQ, NEQ, GT, GT.EQ, LT and LT.EQ, these stand for "equal to",
"not equal to", "greater than", "greater than or equal to", "less than" and "less than
or equal to" respectively.

All relational nodes have a dyadic input and a monadic output (Figure 5.16). The
inputs are of type REAL32, while the output is type BOOL. The boolean output
value (true or false) is a result of the relational function operating on the two data
values. Relational nodes can only connect from nodes of type REAL32 and can
only connect to nodes of type BOOL. The nodes are illustrated by Figure 5.16 and
their attributes are given in Table 5.17.

W, X are type REAL32 and B
is type BOOL

Figure 5.16 Relational nodes

Attributes
TYPE EQ, NEQ, GT,

GT.EQ, LT, LT.EQ

TO.FIRST Boolean

TO.SECOND

FR.FIRST Data

FR.SECOND Data

DELAY. VAL

REAL.VAL

LABEL

INDEX

Table 5.17

5-26

5.4.8 Boolean nodes

Like relational operators, the boolean operators AND, OR, NOT are confined
exclusively to conditional expressions in DFDL programs. These operators trans-
form directly to single nodes and the nodes have identical names to their
corresponding operators.

AND and OR nodes have a dyadic input while the NOT node has a monadic input,
all boolean nodes have a monadic output (Figure 5.17). The inputs and outputs of
all boolean nodes are of type BOOL.

Figure 5.17 Boolean nodes

Attributes
TYPE AND, OR, NOT

TO.FIRST Boolean

TO.SECOND

FR.FIRST Boolean

FR.SECOND Boolean: Dyadic boolean nodes only

DELAY.VAL

REAL.VAL

LABEL

INDEX

Table 5.18

A summary of the attributes assigned to boolean nodes during the construction of
G is given in Table 5.18.

5-27

5.4.9 Conditional nodes

At the heart of DFDL conditional expressions (see section 5.5.3) are two condi-
tional nodes, these are called GATE and PRI.OR. These nodes both have a dyadic
input and a monadic output (Figure 5.18).

A GATE node has a single data input and a single data output, of which both are
of type REAL32. Its second input is of type BOOL and is used to control the passage
of data through the node. When this input (second input) is false the output of the
node is an o/c (open circuit) value, otherwise, when the boolean input is true the
output is equal to the node’s data input. The operation of a GATE node is
described in Table 5.19.

Figure 5.18 Conditional nodes

G A T E

input input output
1 2

X false o/c

X true X

Table 5.19

PRI.OR

input input output
1 2

o/c o/c o/c

o/c X X

W o/c W

W X w

Table 5.20

A PRI.OR node’s inputs and output are all of type REAL32. The node will always
output the value at its first input, except when the data at that input is an o/c value
and the data at the second input is not an o/c value, whereupon it will output the
value at its second input. The operation of this node is described in Table 5.20.

An o/c value is a value which cannot be interpreted as a valid REAL32 value and
is used to indicated that the value is "disconnected". The attributes for the two types
of node are given in Tables 5.21 and 5.22.

5-28

Attributes
TYPE GATE

TO.FIRST Data

TO.SECOND

FR.FIRST Data

FR.SECOND Boolean

DELAY.VAL

REAL.VAL

LABEL

INDEX

Table 5.21

Attributes
TYPE PRI.OR

TO.FIRST Data

TO.SECOND

FR.FIRST Data

FR.SECOND Data

DELAY.VAL

REAL.VAL

LABEL

INDEX

Table 5.22

5-29

5.5 Non-primitive graph structures

In DFDL the symbols **, ALOG, SUM, PROD, MEAN, IF...THEN...ELSE, MAX,
MIN and MED transform to non-primitive graph structures. All these graph
structures comprise primitive nodes which have been described in the previous
section.

5.5.1 Power and anti-logarithm graph structures

Power graph structures are created in response to the operator **, where:

Y : = X ** P

The operands X and P are the argument and power respectively and Y is the result
of X . DFDL restricts X to non-negative values, since negative arguments of
non-integer value produce complex (i.e. real + imaginary) results which are not
catered for in DFDL.

To give a reasonably constant execution cost, the graph structure for power is fixed
for all valid arguments and powers. The graph structure consists of a LN, a MULT
and an EXP node (Figure 5.19). The graph structure evaluates XP in three steps:

(i) evaluate In (i.e. loge) of X
(ii) multiply result of (i) by P
(iii) evaluate e raised to the power of result of (ii), i.e. e^p * ltlX̂

Figure 5.19 Power graph structure

5-30

Anti-log graph structures are created in response to the function ALOG, where:

Y := ALOG X

The expression ALOG X is equivalent to 10X.

The graph structure for ALOG is similar to that of power. It consists of a REAL
(value equal to lnlO), a MULT and an EXP node (Figure 5.20). The graph
structure evaluates 10x in two steps:

(i) multiply X by InlO (2.30585093)
(ii) evaluate e raised to the power of result of (i), i.e. e l̂nl° * x ^

X, lnlO, Y are type
REAL32

/

Figure 5.20 Anti-log graph structure

5.5.2 Sum, product and mean graph structures

The functions SUM, PROD and MEAN have k arguments (k > = 2) and a single
result. Each of the functions consists of nodes arranged in a binary tree structure.
Such a structure is maximally parallel and is characterised as having a longest path
proportional to L, where L is defined as:

L = I log2 k I

Figure 5.21 illustrates the three graph structures; (a) SUM, (b) PROD and (c)
MEAN. SUM consists solely of ADD nodes, PROD consists solely of MULT nodes
and MEAN is a SUM graph, whose output is divided by k.

5-31

(a) Y : = SUM(Xo, X i , Xk-i)

Y

(b) Y : = PROD(Xo, X i,...,X k-i)

Y

Figure 5.21 (a)SUM (b)PROD (c)MEAN graph structures

5-32

5.53 Conditional graph structures

A DFDL conditional expression transforms to a conditional graph structure, which
typically comprises conditional, boolean and relational nodes. For example, the
conditional statement below transforms to the structure shown in Figure 5.22.

Y : = IF (P > Q) AND (R = S) THEN X ELSE W

A DFDL conditional expression is structured in the form of a tree, where the root
node is the result and the leaves of the tree are expressions.. Expressions are
combined using relational nodes, which in turn may be combined using boolean
nodes. Conditional nodes evaluate all boolean conditions (true/false) and route
the expression, that is pertaining to the first (in terms of hierarchy) true condition,
to the root.

Figure 5.22 Conditional graph structure

This form of conditional evaluation is a data flow method and is unlike the
conventional control flow method. It has the apparent disadvantage that all
conditions are evaluated, irrespective of higher priority conditions. In comparison,
a control flow scheme would evaluate each condition in turn, beginning with the
highest priority, and would disregard any remaining conditions once a condition
evaluated to true. The total amount of computational effort for both data flow and
control flow is equal when all but the lowest priority condition are false, i.e. worst
case complexity.

We find that the variable complexity of control flow has no advantage in a
deterministic process, since the process must always be able to accommodate the
worst case complexity. In fact, a control flow structure has a considerable disad-
vantage, because it is inherently sequential, whereas a data flow structure may
contain parallelism.

5-33

5.5.4 Maximum and minimum graph structures

The DFDL functions MAX and MIN produce a single result which is the maximum,
or minimum respectively, of the arguments to the function. The number of
arguments is two or more and their type is REAL32 . The basic building blocks,
MAX and MIN, are illustrated by Figures 5.23 and 5.24 respectively. More than
one building block may be combined in a tree structure wherever the number of
arguments exceeds two.

Figure 5.23 Maximum graph structure

Figure 5.24 Minimum graph structure

5-34

5.5.5 Median graph structure

The final DFDL function, MED has two or more arguments of type REAL32 and
produces a single result. It is transformed into a graph structure which comprises
a number of MAX and MIN basic building blocks (Section 5.5.4). Figure 5.25
shows a median structure for the median of three arguments. Median is structured
so that the median of even numbers of arguments is the lower median, such that
MED(P, Q) is equal to MIN(P, Q).

Y : = MED(P, Q, R)

Figure 5.25 Median graph structure

5.6 Summary

In this chapter the data structures of those nodes comprising G have been shown.
The low in/out-degree of nodes (except B and E) produces a sparsely connected
DAG which can be realised using a doubly linked list, whose length is proportional
to |T | + |C| .

The different types of nodes (task primitives) have been described in terms of their
in/out-degree, their worst case execution cost and their function (i.e. task primitive
name). These nodes are used to create a connected graph structure (the DAG),
as directed by a DFDL program.

5-35

The transformation from program to graph has been described for three different
categories of graph structure. The first includes external input/output, node and
constant graph structures. The nodes which comprise these structures are clas-
sified as named nodes, because they correspond to named elements in the program
and form the skeleton of the DAG. The second category includes all graph
structures that are primitive (simple nodes), which reflect simple or part transfor-
mations. Finally, more complex graph structures were shown, each using several
primitive nodes.

5-36

Chapter 6. Parallel processor model

This chapter presents an abstraction of the object machine’s functional architec-
ture, which is the parallel processor model used for scheduling parallel programs.
A parallel processor is modelled as a static network of connected processing
elements, where each processing element is identical and communication is
achieved by message passing. The only processor element interactions considered
by the model are data communication (includes synchronisation) and I/O. Other
interactions, such as code distribution and memory-code allocation are ignored.

The Transputer microcomputer (INMOS, 1986) forms the basis of our object
machine, however, the model is not restricted to this processor alone. Other types
of processor that can form the basis of a loosely coupled static architecture are
equally applicable.

The chapter begins by introducing the Transputer microcomputer and identifies
the different resource types within the Transputer that are crucial to performance.
It continues by describing how these resource types are represented by a data
structure. The chapter concludes by defining the rules which govern the topology
of the object processor’s architecture and describes an algorithm that is used to
check for some types of topological error.

6.1 The Transputer

The Transputer is a single chip microcomputer (von Neumann architecture),
which incorporates several bi-directional serial communication channels (known
as links). Each link enables point to point communication between two
Transputers, or a Transputer and an I/O device (INMOS link adapter). Figure 6.1
shows a functional diagram for an INMOS Transputer.

Link # 2

Link # 4

Figure 6.1 INMOS Transputer

6-1

Figure 6.2 Transputer interconnection network

Static, multiple Transputer networks, such as the one shown in Figure 6.2, may be
constructed using several Transputers. This form of parallel von Neumann ar-
chitecture has the advantage of being completely scalable. This means the size of
the architecture can be tailored to suit the processing problem. Its main advantage,
however, is its MIMD architecture, which is capable of performing simultaneous
multiple instruction processing and simultaneous multiple communication. This
class of architecture facilitates the parallel execution of irregular, as well as regular
structured processing problems.

6.2 Resources

A resource is defined as an item that supplies a need. The needs of parallel
processing are processing and communication and the types of resource are
processing elements and links. Both these resource types constitute items that are
crucial to the performance of a parallel processor.

A limitation in the quantity or performance of either type of resource will usually
prevent a system from realising its full potential. Practically speaking, performance
will always be limited by one resource type or the other. Ideally though, a good
parallel processor implementation should aim to balance resources, so that their
limitations converge together.

6-2

Each Transputer consists of a processing resource, which will be called a process-
ing element. The four unconnected links have to be connected to other
unconnected links, from other Transputers or I/O devices, before they constitute
usable resources. Once made, a link connects two devices to facilitate the flow of
data and is regarded as a single resource that is shared between those two devices.
The link connections in a Transputer network illustrate the topology of that
network.

63 Activity

Resource activity is usually visualised with the aid of a Gantt chart (Clark, 1952);
a diagram that displays activity in a binary sense (0 or 1) as a function of execution
time. For example, Figure 6.3 shows a Gantt chart for a signal that is transmitted
to processing element P i (Figure 6.2) via link #1. The processing element is
inactive until the signal arrives, whereupon it processes the signal and transmits
the result to P3 via link #3. This two state view of activity is useful when considering
resource use, i.e. a resource is either active (in use) or inactive (available for use).

Processor PI

Link #1

Link #2

Link #3

Link #4

Execution time

Figure 6.3 Gantt chart

6-3

Figure 6.4 Processor graph of Transputer network

6.4 Data structures

The parallel processor model is divided into two parts and each part has its own
data structure. The first part is called the processor graph, V = (P, I, O, L) (Figure
6.4) and its purpose is to represent the topology of a Transputer network in terms
of its resources. The second part is called the schedule list, S = {Si,.„, Sq}. It
contains activity schedules, one for each resource given in the processor graph.

6.4.1 Processor graph data structure

The top row of the data structure (Figure 6.5) identifies the categories as belonging
to specific processing elements. Each category in the upper half of the data
structure defines "to/from what" links are connected. Entries in the data structure
that define link connections are either (i) a processor/link identification, (ii) an
input identification, (iii) an output identification, or (iv) empty.

Empty, indicates a link is unconnected. All other entries consist of two values. This
allows each link in the network to be uniquely identified by using its originating
processor identification and its link number. Inputs and outputs include I/O
classifiers as well as unique identification labels that originate from the symbol
table.

The lower half of the data structure consists of "top of schedule" and "bottom of
schedule" pointers which reference the activity schedules to their resources. These
pointers are initially set equal to zero, to indicate that activity schedules are empty.
Individual pointers are amended as and when entries are made to their activity
schedule.

The current data structure can accommodate up to 20 inputs, 20 outputs and 99
processors. Figure 6.4 shows the processor graph of the example Transputer
network (Figure 6.2), its data structure is illustrated (in a simplified form) by
Figure 6.5.

6-4

Processor id Pi P2 P3

Link #1
Input Input P2

X w Link #3

Link #2
P3 PI PI

Link #3 Link # 4 Link # 3

Link #3
P3 P3 PI

Link # 2 Link # 1 Link # 2

Link #4
P2 empty Output

Link # 2 y
top of schedule top of schedule top of schedule

Processor list
bottom of schedule bottom of schedule bottom of schedule

Link #1 list ptrs
top of schedule top of schedule top of schedule

bottom of schedule bottom of schedule bottom of schedule

Link #2 list ptrs
top of schedule top of schedule top of schedule

bottom of schedule bottom of schedule bottom of schedule

Link #3 list ptrs
top of schedule top of schedule top of schedule

bottom of schedule bottom of schedule bottom of schedule

Link #4 list ptrs
top of schedule top of schedule top of schedule

bottom of schedule bottom of schedule bottom of schedule

Figure 6.5 Processor graph data structure

6.4.2 Activity schedules data structure

The schedule data structure is accessed via the "top of schedule" or "bottom of
schedule" pointers (section 6.4.1). These pointers mark the beginning and end of
the activity schedule to which they belong. Activity schedules are empty prior to
scheduling and are filled during the scheduling process (Chapter 7 - Compile-time
scheduling). Each schedule is a list of operations (tasks), which will eventually be
translated into an executable sequence. Entries to the activity schedules take the
form of addresses which are the locations of nodes within the task graph, G. Each
address represents a particular task, whose start time and completion time are
found by examining the respective node in the task graph, G.

The data structure consists of doubly linked records. One or more of these records
are used to form a single activity schedule. Each record holds up to 50 consecutive
addresses to the task graph, plus link pointers to the preceding and succeeding
records, where appropriate. Successive records need not be arranged in a con-
tiguous fashion, since they are linked.

6-5

This form of data structure is chosen for reasons of flexibility and efficiency. It has
the advantage of providing dynamic storage allocation which allows activity
schedules to be extended on demand. Figure 6.6 illustrates how two separate
schedules (denoted Si and S2) may be stored within the schedule data structure.

Top of Si From record #5

Record #1 Record #6

To record #2 Bottom of Si

From record #1 From record #4

Record # 2 Record # 7

To record #5 Bottom of S2

Top of S2

Record #3

To record #4
Unused space

From record #3

Record # 4

To record #7

From record #2

Record #5

To record #6

Figure 6.6 Schedule data structure

6.5 Processor graph * (ii)

The processor graph V is defined as comprising four sets, V = (P, I, O, L), which
are;

(i) a non-empty but finite set of nodes P (processors),

(ii) a finite set of nodes I (input ports),

(iii) a non-empty but finite set of nodes O (output ports) and

(iv) a set of arcs L (links).

The cardinality of the four sets is denoted | P | , 111, | O | and | L | . The elements
belonging to the three sets of nodes, P, I, O, are denoted Pi, Ij, Ok respectively.

6 - 6

6.5.1 Degree

The maximum number of arcs that can be connected to any node is called its
degree, denoted D (). The degree of a node corresponds to the number of links
that can be connected to the element represented by the node. Nodes belonging
to P have a degree of four (i.e. four links), while those nodes belonging to I and O
have a degree of one (i.e. one link). Table 6.1 summarises the degree for the
different node types.

Node type Pi Ij Ok

Degree, D() 4 1 (out only) 1 (in only)

Table 6.1 Degree of node types

6.5.2 Arc relationships

Arcs are denoted by the two nodes that they join. Where the degree of a particular
node is greater than one, the individual connection must also be identified in order
that arcs are unique and ambiguity is avoided. For example, an arc connecting two
nodes Pi and Pj would be denoted (Pia,Pjb), where the letters a and b are positive
integers in the range 1,..., D(Pk).

^ \ S e c o n d
First Pi Ij Ok

Pp
(Ppa,Pib) ” (Pib,Ppa.

i not equal to p (Ppa,Ok)

1 ! (Iq,Pib)

Or

Table 6.2 Valid processor graph arcs

6-7

When an arc joins two elements in P, the immediate relationship is irreflexive and
symmetric, hence (Pia,Pjb) implies (Pjb,Pia) provided i is not equal to j. Arcs
containing elements from one of the two sets I or O, have to include an element
from the set P, otherwise they are invalid (Table 6.1). The immediate relationship
governing these arcs is irreflexive and asymmetric. Consequently, a valid arc (Pia,Oj)
precludes the arc (O j,Pia).

In addition to the asymmetric nature of I/O arcs, a constraint on the direction of
flow prevents the existence of arcs that represent flow in the wrong direction, e.g.
inputting from an output port or outputting to an input port. Table 6.1 summarises
the ordering for valid arcs in the processor graph, V.

6.53 Connectivity

The graph V is only valid for scheduling once it is connected. Connectivity is defined
as when

• all nodes in P and O can be reached from all nodes in I, provided I is
non-empty. Otherwise, if I is empty, all nodes in P and O can be reached
from all nodes in P.

Once V is connected the set of arcs L is non-empty, since the sets P and O are
defined as non-empty. The conditions for the minimum realisation of a connected
processor graph are as follows:

ipi = i
| I | = 0
|0 | = 1
|L | = 1.

These minimum conditions for V comply with the minimum definition for the
DFDL structure; i.e. zero or more inputs, one or more outputs and a processing
system.

The maximum cardinality of set L for a connected processor graph is a function of
the cardinality of sets I, O, P and the degree of their nodes, denoted D(). The
maximum cardinality of L is given by:

|L|ma* = 0.5 " ((D(I) * | I |) + (D(O) * |0 |) + (D(P) * |P |))

The number of arcs belonging to L for a connected graph is finite, since I, O, P,
D(I), D(O), D(P) are all defined as being finite. Hence, for a connected processor
graph L is non-empty and finite.

6-8

6.5.4 Connecting the nets in V

A net is a connected graph or sub-graph which consists of one or more nodes.
Before any arc is made Lis empty and there are a total of |P | + |I | + | O | disjoint
nets. During the connection process, arcs are formed and the number of nets is
reduced. Connection of nodes continues until the graph is connected and there
remains a single net comprising all elements in P, I, O.

When an arc is formed between two nets, or within a net, there is a possibility that
nets may be isolated from one another. Isolation occurs whenever two or more
nets can no longer join together, because one or more of the nets has an insufficient
number of connections (unconnected links). Isolated nets stop V from being
connected, consequently precautions have to be taken to prevent isolation.

Figure 6.7 Partially connected processor graph

Consider the example (Figure 6.7) of a partially connected processor graph, V. If
a further arc were formed between Pi and P3, then the net consisting of P2 and
input Iw would be isolated. Attempts to join P2 and Iw to the larger net (comprising
Pi, P3, lx and Oy) would not succeed, because no arc could be made between the
two nets. Consequently, the processor graph could not be connected. A method
of preventing net isolation is presented in the following section.

6-9

6.6 Checking for net isolation

To substantiate an arc and prevent the formation of isolated nets, there is a three
stage check performed on the processor graph. The three stages are as follows:

. Step 1. All nodes belonging to sets P, I and O are grouped into | N | disjoint
nets, N = { \ i , N2, etc.}. The members of N are defined as disjoint sets of
nodes that form connected sub-graphs. In the example (Figure 6.7) there
are two non-empty nets, Ni and N2. Before the arc (Pi4,P3i) is made, Ni
= {lx, Pi, P3, Oy} and N2 = {Iw, P2}, after the arc is made the result is the
same.

. Step 2. The number of unconnected links belonging to each net is counted.
For a net Ni, the number of unconnected links belonging to Ni is U(Ni). In
the example (Figure 6.7) U(Ni) = 2, U(N2) = 3 before the arc (Pl4,P3i)
is made and U(Ni) = 0, U(N2) = 3 after the arc is made.

• Step 3. The final stage produces a boolean result whose value is TRUE if
there are one or more isolated nets:

RESULT: = FALSE
FOR i = 1,..., | N |

RESULT: = RESULT OR (U(Ni) < = 0)
RESULT : = RESULT OR ((U(N) - ((2 * | N |) - 2)) < 0)
RESULT := RESULT AND NOT(|N| = 1)

The example given in Figure 6.7 evaluates to FALSE before the arc (Pi4,P3i) is
made and TRUE once the arc is connected. Hence, connecting the arc causes net
isolation. The three stage algorithm used for checking the processor graph for
isolated nets has a complexity o f O (| P | + | I | + | O |). This algorithm is applied
to V throughout its construction.

6.7 Summary

In this chapter a parallel processing model representing a loosely coupled
Transputer based architecture has been described. The two resources important
to scheduling have been identified, namely processing and communications. The
model has been shown to consist of two parts: (i) a processor graph V = (P, I, O,
L) (based mainly on the two resource types) and (ii) | L | activity schedules S =
{S i,..., Sq}. The processor graph gives a spatial representation of the machine (i.e.
topology), while the activity schedules give a temporal representation (i.e. ac-
tivity). The data structures for both parts of the model have been presented and
illustrated using examples.

6-10

The latter part of this chapter has concentrated on the processor graph and the
rules governing nodes and arcs that comprise the graph. Input and output has been
included and the minimum system realisation has been defined which complies
with that of DFDL. Finally, the problems accorded to building the graph have been
discussed, this has been shown to create isolated nets unless precautions are taken.
A solution to net isolation has been presented in the form of a three stage
algorithm. The algorithm examines the graph whenever an arc is proposed,
producing a boolean result which indicates whether or not net isolation would
occur if the arc were established.

6-11

Chapter 7. Compile-time scheduling

Automated scheduling is performed either at compile-time or at run-time. Both
scheduling techniques are aimed at optimising the mapping between program and
processor architecture, but vary in their approach and system requirement.

Run-time scheduling has the advantage of being able to respond to dynamic
changes in the system, while maintaining a reasonable efficiency, however, it
achieves this at the expense of an inevitable run-time overhead. Run-time over-
head and scheduling efficiency are related, such that sophisticated scheduling
algorithms will tend to carry a greater overhead than simple ones. Hence, there is
a tendency for run-time schemes to use simple schedulers in order to minimise
overhead.

In order to achieve an efficient implementation when using compile-time schedul-
ing, the characteristics of inputs to the scheduler (i.e. program and processor
architecture) must be known at compile-time, i.e. a deterministic system. Non-
deterministic systems are generally unsuited to compile-time scheduling, because
static methods cannot adapt to the scheduling requirements of a dynamic system.
Where a system is deterministic, as it is in our case, compile time scheduling offers
superior performance, because the scheduler incurs no run-time overhead. Thus,
complex scheduling strategies, including features such as network communication,
can be incorporated in a scheduling algorithm which optimises, or tends to
optimise scheduling.

The scheduling problem presented in this thesis assumes a deterministic system:
a fixed set of tasks T are to be scheduled on to a fixed set of processing elements
P, in compliance with the partial ordering on T (represented by A) and the
connectivity of P (represented by L). The problem is to find an efficient scheduling
algorithm for sequencing the tasks to optimise, or tend to optimise some desired
performance measure. The primary performance measures of concern are
schedule length and the average time data spends in the system. Both these
measures play an important role in determining the performance of a real-time
system; schedule length, because it determines the throughput of the system and
maximum time data spends in the system, because of its correspondence to latency.

A great amount of research has been carried out on classic scheduling problems
and these have been shown to encompass several disciplines, e.g. operations
research, management science, computing, etc. Several reviews on sequencing
research (Elmaghraby, 1968; Day and Hottenstein, 1971) have been made and
these cover a wide classification of problems, including dynamic scheduling.
Conway, Maxwell and Miller (1967), and later Coffman (1976), both present a
comprehensive study into deterministic scheduling. However, much of the re-
search has neglected the effects of non-zero communication cost, which probably
reflects the low relative cost of communication in some systems and the complexity
of accounting for it in others.

7-1

More recently, consideration has been given to communication issues. Price and
Pooch (1982), for example, present a scheduling method that aims to minimise
inter-processor communication using a backwards shortest path algorithm, while
others, have used "pairwise exchange" techniques (Lee and Aggarwal, 1987) and
multiple priority heuristics (Polychronopoulos and Banerjee, 1987). Without
doubt though, communication issues will play a greater role in implementation as
processing speeds increase and loosely-coupled processor architectures
predominate.

7.1 Scheduling model

The scheduling model includes our previous two models, the task graph G and the
processor graph V, and is described with consideration to the tasks, resources, their
constraints and performance measures. To begin, the task and resource models
are briefly reviewed.

7.1.1 Task graph

The model of the program is represented as a directed acyclic graph, G = (T, C,
B, E, A). T is a set of processor executable nodes, or tasks and T = {Ti, ..., Tn},
whose members all take a non-negative integer time to execute. For a task Ti this
execution time is denoted ei. The set of communication tasks C = {C l,..., Cg} is
empty prior to scheduling and added to during the scheduling process, whenever
two connected tasks in T are assigned to different processing elements, or there is
an external input or an external output. Each communications task Cc takes a
positive integer time cc to complete. The two single nodes B and E are the initiating
and terminating nodes respectively, hence B precedes all other nodes in G and E
succeeds all other nodes in G. The execution time of these nodes is zero.

A is a partial order on T, C, B and E which determines the task structure, potential
parallelism and precedence constraints on the tasks. The relation A has on T, C, B
and E is irreflexive, asymmetric and transitive, which has the effect of making G a
directed acyclic graph, which can only represent deterministic programs.
Precedence between tasks is given by the arcs belonging to A and is denoted by a
node pair. For example, the arc (Ti,Tj) signifies that task Tj cannot commence until
Ti completes.

In addition to ei, the cost of executing Ti, there are several other parameters
associated with each task. The CPM (critical path method) produces the
parameters EST(Ti), LST(Ti) and FLT(Ti), which are the earliest time Ti can
begin, the latest time Ti can begin without extending the length of the critical path
and the float which is the difference between the latest and earliest times.

Set operators SUC(Ti), IMSUC(Ti), PRED(Ti) and IMPRED(Ti) operate on G to
produce all tasks that are successors of Ti, all tasks that are immediate successors
of Ti, all tasks that are predecessors of Ti and finally, all tasks that are immediate
predecessors of Ti.

7-2

7.1.2 Processor graph

The model of the object parallel processor is represented by a partially directed
graph called the processor graph V = (P, I, O, L). V includes a non-empty, finite
set of nodes P = { P i,..., Pm}, where each node Pj corresponds to a processing
element. It also includes a finite set of nodes I = {II, ..., Iu} and a non-empty,
finite set of nodes O = {O i,..., Ov}, elements from these sets represent input ports
and output ports respectively.

The non-empty, finite set of arcs L defines how elements in P, I, and O are
connected and hence, it describes the topology of the object architecture. The arcs
correspond to physical communication links and are expressed as a parenthesised
pair of nodes, these being the nodes that the link joins. The relation L has on the
nodes that comprise inter-processor links, (Pia,Pjb) is irreflexive and symmetric
(i.e. bi-directional flow), while the relation on the nodes that comprise I/O links,
(Ii,Pjb) and (Pia,Oj) is irreflexive and asymmetric (i.e. uni-directional flow from
left node to right node).

The input and output ports derive from the input and output declarations made in
the program that is being compiled, whereas the number of processors and link
connections are entered by the user at compile-time on request from the compiler.
The scheduler does allow some or all of the inter-processor link definitions to be
omitted, in which case the scheduler will place links automatically (where needed)
using an auto-router.

The processing elements and communication links are the system’s resources and
associated with each resource is an activity schedule (or just schedule). The set of
schedules S = {S i,..., Sq} is finite and non-empty and has a cardinality equal to
the sum of | P | and | L | . Each member of S is itself a set of tasks. These tasks either
originate from T, where the schedule Sk = {Tu, ..., Tv} is for a processing element,
or from C, where the schedule Sk = {Cu,..., Cv} is for a link. All schedule sets are
empty prior to scheduling and are filled during the scheduling process. The
ordering on the tasks within Sk is strictly sequential, hence tasks are executed in
the order that they are listed in their schedule.

7-3

7.13 Sequence constraints within schedules

There are three broad classes of scheduling; list scheduling, non pre-emptive
scheduling and pre-emptive scheduling. The merits of each has to be considered
before we choose the most suitable scheduling class for our problem, then we can
consider some of the constraints placed on tasks during the scheduling process in
order to maintain integrity.

List scheduling operates by a simple mechanism, whereby tasks are scheduled from
a single pre-ordered sequential list of tasks. Whenever a processing element
becomes inactive the next task in the pre-ordered list is scheduled to that resource.
Provided the ordered list is constructed beforehand, list scheduling has the lowest
degree of sophistication of all three scheduling classes which makes it particularly
attractive when scheduling at run-time.

The second class considered here is non pre-emptive scheduling, which is a
super-set of list scheduling. A non pre-emptive scheduling method considers not
just one task, but all tasks that are available for scheduling (i.e. tasks that have had
all their predecessors scheduled). Consequently, the complexity of this class of
scheduling increases over that of list scheduling, however, the benefit of non
pre-emptive scheduling is the potential for increased scheduling efficiency.

Finally, pre-emptive scheduling allows task execution to be interrupted and a task
removed from the schedule, under the assumption that it will be re-scheduled at
a later time. This contrasts with non pre-emptive methods which consider tasks to
be atomic units whose execution cannot be suspended until the task has completed.
In comparison to the previous two classes, pre-emptive scheduling has the poten-
tial to generate the most efficient schedules. One drawback with using pre-emption
is the comparative cost of de-scheduling and re-scheduling, especially when tasks
have short execution times. Pre-emptive scheduling is at its most efficient when
task execution times are large (in comparison with overheads), as is the case for
large grain structures.

7-4

The task graph illustrated by Figure 7.1 is scheduled onto the simplified processor
graph (Figure 7.2), which comprises two processing elements joined by a single
link. The schedules are illustrated by Figure 7.3 for each class of scheduling: (a)
list scheduling, (b) non pre-emptive scheduling and (c) pre-emptive scheduling.

Figure 7.1 Task graph, G

Data is passed via Li wherever tasks are scheduled on a different processing
element than their predecessor was scheduled. Communication is represented by
a task Cj, which has a finite communication cost, denoted cj. In this example cj
equals 2.

Figure 7.2 Processor graph, V

7-5

PI

Ll

P2

Ti t 5

Cl

t 2 t 3 t 4

(a) List scheduling
List priority = Ti > T2 > T3 > T4 > T5

(b) Non pre-emptive scheduling

Pi Ti t 4

Ll Cl

P2 t 2 T5 t 3 t 5

(c) Pre-emptive scheduling

I____ I____ I____ I____ I____ I____ I____ I____ I____ I I
0 1 2 3 4 5 6 7 8 9 10

Units of time (or execution cost)

Figure 7.3 Scheduling methods

The class of scheduling described in this thesis is of a non pre-emptive type. It is
preferred to list scheduling because it produces schedules that are potentially more
efficient and is preferred to pre-emptive scheduling because the latter would incur
sizeable de-scheduling and re-scheduling overheads for the medium/fine grain
structure of G.

Program integrity has to be maintained throughout the scheduling process other-
wise the object program will not fulfil the requirements of the source program.
Loss of integrity would manifest itself as one or more of the following; variable
misassignment, variable non-assignment, race conditions, oscillations or deadlock.
Clearly, these errors are to be avoided, this maybe achieved by extending the scope
of A to all the members of S.

7-6

In practice integrity is maintained by adhering to two rules; the first governs the
selection of tasks that are available for scheduling and the second governs the
ordering of a task in a schedule, with respect to other previously scheduled tasks.

Tasks that are available for scheduling are included in the finite set R, which is the
set of available tasks and is a sub-set of T. R only contains tasks that are inde-
pendent of one another and whose predecessors have been scheduled. More
formally, a task Ti in R is defined as a task that has all its predecessors PRED(Ti)
belonging to S and the intersection of its successors SUC(Ti) and S is empty. Also,
the intersection of R and PRED(Ti) is empty as is the intersection of R and
SUC(Ti). Therefore, there are no precedence relationships between tasks in R,
hence all tasks have equal precedence.

Whenever a task Ti is scheduled it is moved from R to the appropriate schedule
in S. Ti’s immediate successors will only be placed in R iff the rules for inde-
pendence hold for that successor task. As scheduling progresses unscheduled tasks
are included in R, while newly scheduled tasks are removed from R and placed in
S. Consequently all tasks in T belong to R at sometime during the scheduling
process, starting with those tasks belonging to IMSUC(B) and finishing with those
tasks in IMPRED(E).

The ordering of a task Ti in a schedule Sk with respect to existing tasks, is a matter
for the scheduling algorithm. Tasks that are already resident in Sk are either
members of PRED(Ti), or are independent of Ti and are therefore members of T
that do not lie in either PRED(Ti) or SUC(Ti) and are not Ti. Obviously Ti cannot
be inserted in the schedule at a place where the resource is active, however, it may
inadvertently be inserted ahead of some of its predecessors, assuming there is
surplus resource activity at that point.

A satisfactory method of preventing precedence violations (as defined by A) is to
allocate each scheduled taskTi (in schedule Sk) a start and finish of execution time,
denoted si(k) and fi(k) respectively. si(k) is calculated in much the same way as is
EST(Ti) (section 2.2.6), except si(k) includes the overhead associated with finite
communication cost and resource unavailability. fi(k) is simply si(k) + ei. The rule
for placing a task Ti in schedule Sk states that Ti is placed in the schedule Sk at a
point where:

(i) all scheduled tasks Tj that lie to the left of Ti (towards time zero) have
a start of execution time sj(k) that is no greater than si(k) and (ii)

(ii) the resource corresponding to Sk is inactive at the time si(k) for a period
greater or equal to the time taken to execute Ti, given as ei.

7-7

If the two conditions of the rule cannot be met for an initial value of si(k), then
si(k) is increased until both conditions are satisfied. Figure 7.4 shows an example
of task placement in several stages.

(a) Initial value of si(k) greater
than sj(k) but less than fj(k). Let
sj(k) equal fj(k).

P k Tu Tv

si(k)

P k

(b) Value of si(k) less than Sq(k) but
si(k) + ei greater than Sq(k). Let Si(k)
equal fq(k).

Tu T Tq Tv

si(k) = fj(k)

(c) Value of Si(k) less than sv(k)
and si(k) + ei less than sv(k).
Schedule task.

P k

Si(k) = fq(k)

(d) Task Ti scheduled.

P k
Tu Ti Tv

Figure 7.4 Task scheduling

When task placement involves synchronised communication, either between ad-
joining processors, input and processor, or output and processor, then the
preceeding scheduling method becomes slightly more complex. The added com-
plexity stems from the need to search each schedule that is participating in the
communication in a simultaneous fashion. The schedule operation is similar to
that described, but has the added condition that (i) and (ii) are satisfed for all
participating schedules.

7-8

The Gantt chart of Figure 7.4 is an informal and intuitive notion of the schedule.
Somewhat more formally, a non pre-emptive schedule can be defined as a suitable
mapping that in general assigns a sequence of contiguous execution intervals in
[0, Z +] to each task such that:

(i) Exactly one resource is assigned to each interval.

(ii) The sum of the intervals assigned to a task is precisely the execution
time of the task.

(iii) No two execution intervals of different tasks on the same resource can
overlap.

(iv) Precedence constraints are observed.

(v) There is no interval in [0, MAX{w(k)}] during which no resource in S
is active (i.e. all resources are not allowed to be idle when incomplete tasks
exist).

This concludes the description of schedules and the rules that govern the tasks
which reside within. Usually schedules will be presented in their diagrammatic
form (Gantt chart) with time along the x-axis and resource along the y-axis.

7.1.4 Performance measures

There are several different schedule measures that can be made, however, the
principal measures of schedule performance considered here are schedule length
(or maximum finishing time) and lateness (time tasks are overdue).

For a schedule Sk the schedule length is given as w(k) and for the set of schedules
S the maximum schedule length is denoted MAX{w(l), ..., w(q)}, or just
MAX{w(k)}. The maximum schedule length is important, since it places a limit
on the throughput of the system and it is our objective to design a scheduling
algorithm which will maximise throughput.

The lateness of a task Ti in Sk is defined as l,(k) = si(k) - LST(Ti), which is a task’s
scheduled time minus its latest starting time of execution (as calculated from the
CPM). For a schedule Sk the mean lateness is defined as l(k) which is equal to 1 /
| Sk | SUM{li(k)}, for all Ti in Sk. For the set of schedules S, lateness is the
maximum lateness taken over all schedules. Reducing task lateness at a local level
(i.e. for each li(k)) has a desirable effect on both throughput and latency, which
results in an overall reduction in mean lateness for a schedule. However, if we were
to reduce the global, mean lateness arbitrarily, it does not necessarily follow that
throughput and latency would be reduced. Hence, lateness has to be reduced at a
local level, rather than just at a global level.

7-9

Other measures of interest include the schedule usage u(k) which is the accumu-
lated time a resource has been active. This measure may be divided by MAX{ w(k)}
to give the fractional schedule usage. The final measure discussed here is speed
up, which can be defined in two ways. The first is a ratio of the sum of all processor
executable tasks and the maximum schedule length, given as SUM{ei} /
MAX{w(k)}, while the second is a fractional value that is the critical path length
divided by the maximum schedule length, given as w / MAX{w(k)}.

7.1.5 Definition of the scheduling problem

As a precursor to discussing the complexity of scheduling the scheduling objective
is stated thus:

. Instance: Finite set T of n tasks, each having an execution time ei = x, x is
a member of Z + , partial order A on T. Finite set P of m processors
connected by a finite set L of q communication links. Finite set C of g
communications tasks, each having a communication cost cj = y, y is a
member of Z +, and a deadline w ^ , w ~ is a member of Z + .

. Question: Is there an (m + q) resource schedule S for T and C that meets
the overall deadline w ~ and obeys the precedence constraints in A?

This is called the scheduling problem and for convenience it is written | | .

Scheduling is performed with the aim of producing a maximum schedule length
that will be less than or equal to the deadline, i.e. MAX{w(k)} < = w ^ . Ideally,
the best possible deadline to achieve is the optimal deadline (in a minimal sense)
given the constraints, since this gives the maximum throughput. Therefore, our
aim can be restated thus: when a task is scheduled, it is scheduled with the aim of
producing a maximum schedule length that will be equal to the optimal schedule
length, i.e. MAX{w(k)} = w ~ , where w * assumes the optimal deadline.

7.2 Scheduling complexity

Assume for the moment that all communication costs ec are zero, therefore, the
time taken to send data from one processing element to another processing
element in a connected network is zero. The implication of zero cost communica-
tion is that the topology of V becomes unimportant as far as scheduling is
concerned, hence, the complexity of | | (the scheduling problem) is reduced. This
simplified model of the scheduling problem serves to show how complexity issues
affect the choice of our scheduling algorithm. This sub-problem of | | is denoted

7-10

• Instance: Finite set T of n tasks, each having an execution time ei = x, x is
a member of Z + , partial order A on T. Finite set P of m processors, and a
deadline w ̂ , w ̂ is a member of Z + .

• Question: Is there an m processor schedule S for T that meets the overall
deadline w ~ and obeys the precedence constraints in A ?

7.2.1 Ordering on T is empty

In order to investigate the properties of | | * we first consider the case where the
partial order A on T is empty (i.e. there are no precedence relationships between
tasks in T). At the start of the scheduling process, all tasks in T are equal candidates
for scheduling, because A is empty. These tasks are said to be "available for
scheduling" and therefore belong to R immediately after B.

The scheduling process begins by placing all tasks that belong to IMSUC(B) in R
and proceeds by searching R for the first task to be scheduled. Once found, the
process removes this task from R and places it in the appropriate schedule. The
process is repeated for all n tasks, removing tasks from R and placing them in S
until all tasks in T are scheduled and only E (the terminating node) remains in R.

For all n levels of the scheduling process there are alternate avenues of choice
between different processors-task assignments. Hence, a decision has to be taken
at each level based on which one of the r (r is the cardinality of R) available tasks
is to be scheduled on which one of the m processors.

The degree of choice at the ith level, i = {1,..., n}, is denoted bi, which equals the
number of processors m, multiplied by the number of tasks belonging to R at the
i* l level, i.e. m * ri. The value of r changes from level to level and is defined for A
being empty as equal to (n - i + 1) for the ith level, hence bi is equal to m * (n -
i 4- 1).

The number of choices overall is the product of the number of choices at each of
the n levels. This is called the maximum branching factor, denoted bm ax, which
represents the total number of possible ways in which n independent tasks can be
scheduled onto m processors.

bm ax =
bm ax =

bm ax —

| | * can now be stated as:

PROD{bi}, for i = {1,..., n}
m11 * (n * (n -1) * (n - 2) *... * 1)
m11 * n! (7.1)

7-11

7.2.2 Ordering on T is strictly sequential

We now consider the properties of | | * when the partial order A on T is strictly
sequential (i.e. A = {(T1J 2), (T 2 ,T 3) ,(T n-i,Tn)}). At the start of the scheduling
process, only one task Ti in T is a candidate for scheduling. This task is said to be
"available for scheduling" and therefore belongs to R at the outset.

The scheduling process is performed as before, however, at each of the n levels of
the scheduling process there is only ever one task available for scheduling. There-
fore, there are now fewer alternate avenues of choice.

The degree of choice at the ith level, for i = {1,..., n}, is denoted bi, which equals
the number of processors m, multiplied by the number of tasks belonging to R at
the 1 level, i.e. m * n. The value of r at different levels is constant throughout and
is equal to 1, hence bi is equal to m * 1.

The number of choices overall is the product of the number of choices at each of
the n levels. This is called the minimum branching factor, denoted bmin, and
represents the total number of possible ways in which n sequentially ordered tasks
can be scheduled onto m processors.

bmin = PR O D {bi}, for i = {1,..., n}
bmin = mn (7.2)

7.2.3 Non-zero communication costs

In both cases, when A is empty and when A is a sequential ordering on T, the
branching factor for | | * is an exponential function of order n. The two cases
represent extreme examples of the number of possible ways to schedule n tasks
onto m processors. When A is a partial order on T, the branching factor lies
somewhere between these two extremes.

Returning to | |, the re-introduction of positive integer communication costs
between communicating processors can affect the branching factor significantly.
When a task Ti is considered for scheduling onto a processor Pt and Pt is different
from processor Ps, on which Ti’s immediate predecessor is scheduled, data has to
be passed from Ps to Pt before Ti can be executed. Data may be routed in as many
different ways through the interconnection network as there are unique acyclic
paths between the two processors. Clearly, the number of unique acyclic paths
depends on both the location of each processor within the network and the
network’s topology. In addition to this, the number of different ways data is routed
may rise significantly if the task has more than one predecessor.

Choice, arising from the alternative paths, is denoted p. From the discussion, it is
evident that the value of p is difficult to generalise for a particular instance,
however, a maximum value for p may be calculated providing the topology of the
network is known.

7-12

One extreme example of p is found in a completely connected network, which
produces a maximum number of paths for m processors (Figure 7.5). The network
has a degree of (m -1) and diameter of 1. The number of unique acyclic paths p is
given as:

pmax = SUM{x! / (x - v)!}, for v = {0,..., x} and x = m - 2 (7.3)

Figure 7.5 Completely connected network

At the other extreme is a linearly connected network, which produces a minimal
number of paths for m processors (Figure 7.6). The network has a degree of 2 and
a diameter of (m -1). It only possesses a single path, hence:

Pmin = 1 (7.4)

Figure 7.6 Linear connected network

Both these results remain consistent for any two processors (m > 1) within the
network, this is because these example networks are both symmetrical. Equations
for the maximum and minimum branching factor are re-written below to include
the results for pmax and pmin. Equation (7.3) is included in (7.1) to give the upper
bound, bmax and equation (7.4) is included in (7.2) to give the lower bound, bmin.

bmax = PRODjbi}, for i = {1,..., n}
bmax = (1 + (m - 1) * pmax)n * n!
bmax = (1 + (m -1) * SUM{x! / (x - v)!})n * n ! , (7.5)
for v = {0,..., x} and x = m - 2

7-13

bmin = PROD{bi}, for i = { 1 , n}
bmin = (1 + (m - 1) * pmin)
bmin = m (7.6)

Note that the choice of path, p is available (m -1) times and not m times, because
there are no choices of path when Ps = Pt.

7.2.4 Exhaustive enumeration

The previous three sections have discussed the effects of different partial orders
A and non-zero communication cost on the number of different ways in which n
tasks can be scheduled onto m processors. The two results, (7.5)_and (7.6),
represent the upper and lower bounds of the number of solutions to | | in terms
of n (the number of tasks in T) and m (the number of processing elements in P).

It has-been established that there are between bmin and bmax solutions to | | . If
the g arbitrary solution to | | is enumerated, we will produce a set of schedules
whose maximum length (in time) is MAX{w(k)}g. The complexity of enumerating
this single solution is a polynomial function of n. The question we must ask in order
to solve | | is, "Does MAX{w(k)}g of the gth solution to | | equal ?". If the
answer to the question is yes then we have solved | | , otherwise another solution
is tried. The search, enumeration and verification process is repeated until | | is
solved.

Up to now, we have assumed that the optimal value for MAX{ w(k)}, given as w ^ ,
is known prior to scheduling. Unfortunately, w ^ cannot be found until | | is
solved, hence, all solutions to | I have to be enumerated and verified against
previous results in order to solve | | for w ^ . This method of solving | | is known
as exhaustive enumeration, because all solutions are enumerated to find the result.
The maximum schedule length for the optimal solution can be expressed as a
MIN-MAX problem:

= MIN{MAX{w(k)}g }, for g = {1,..., b} (7.7)
where bmin < = b < = bmax,
and for k = {1,..., q} where q = | P | + | L | .

7-14

From equation (7.7), we see that solving | | by exhaustive enumeration requires
a minimisation over b solutions, which requires b enumerations and (b - 1)
comparisons. The time complexity of | | is proportional to the amount of com-
putation (performed by a deterministic computer) and hence, is proportional to
b, the number of solutions. Even for the lowest bound on b, denoted bmin, the
complexity is an exponential function of order n. The implications of exponential
time complexity are illustrated by Table 7.1 for different values of n. As a com-
parison, polynomial time complexity is included. The example assumes the time
to enumerate a single solution is 1 mS, irrespective of its length.

©IIa n = 50 n = 100

n2 0.1s 2.5 s 10 s

nJ 1.0 s 125 s 16.7 m

2n 1.024 s 856, 850 yrs 9.6 1020 yrs

3n 59 s 5.46 1014 yrs 3.9 1038 yrs

Table 7.1 Polynomial and Non-polynomial complexity

The results in Table 7.1 show that the time taken to solve | | makes exhaustive
enumeration impractical for all but the most trivial of problem. This phenomenon
is known as combinatorial explosion (Cohen, 1976).

7.2.5 P and NP problems

Essentially, all problems are said to fall into one of two classes, either P or NP,
where P is a sub-set of NP. It is generally accepted that if a problem lies in class P,
there is an algorithm which exists that can solve the problem "quickly" and the
algorithm is referred to as being "good".

Problems that lie outside P and are in the class NP (non-polynomial), can only be
solved in polynomial time on a non-deterministic computer (Turing, 1936). One
can conjecture that problems that are outside P do not have a "good" algorithm
that can solve the problem "quickly". This reflects the viewpoint that exponential
algorithms should not be considered as being "good" algorithms, and indeed this
is usually the case.

7-15

Most exponential algorithms are merely variations on exhaustive enumeration,
whereas polynomial time algorithms generally are made possible only through the
gain of deeper insight into the structure of the problem. Problems that require
exponential algorithms to solve them (since they are so hard that no polynomial
algorithm can solve them), are generally considered intractable.

The question that has to be answered is, "Does | | lie outside the class P, in NP
(known as NP-complete) ?". Some previous results are given below:

(i) Unconstrained scheduling with zero communication cost (section 7.2.1):
| | * remains NP-complete for m > = 2, but can be solved in pseudo-poly-
nomial time for any fixed number m. If all task execution times are equal,
this problem is trivial to solve in polynomial time.

(ii) Precedence constrained scheduling with zero communication costs:
| * can be solved in polynomial time if m = 2 and all task execution times

are equal (Coffman and Graham, 1972). This becomes NP-complete if task
execution times of 1 and 2 are allowed (Ullman, 1975). Complexity remains
open for all m > = 3 even when task execution times are equal. The
NP-completeness of | | * may be proved by a transformation from the
3-satisfiability problem (Ullman, 1975).

(iii) Precedence constrained scheduling with non-zero communication
costs: | | is a more complex case of (ii), therefore remains NP-complete
for all fixed numbers m > = 2 when task execution times are unequal.

Previous results suggest that | | is NP-complete, which implies that the problem
is inherently intractable when solved on a deterministic computer. The following
section discusses some heuristic algorithms which attempt to overcome intrac-
tability and solve | | in polynomial time.

73 Search strategies

Instead of using an algorithm that enumerates every possible solution, when trying
to solve a problem with an exponential number of solutions, we examine algo-
rithms which restrict the scope of enumeration. This is achieved by pruning
solutions, or partially enumerated solutions that do not show promise of solving
the problem. These algorithms are in generally regarded as being more efficient
than exhaustive enumeration, and some form the basis of even more complex
algorithms which are described elsewhere (Pearl, 1984).

7-16

73.1 Solution space

When collected together, all the solutions to a problem are said to occupy the
problem’s solution space. Solution space can be classified as being polynomially,
or exponentially related to the problem size. | | , for example, has a solution space
that is exponentially related to n. All solutions, as we have seen, comprise n levels
of task-processor-path assignments, where each assignment represents a decision.
These points of decision are called solution nodes and all solution nodes belong to
the solution graph, which is an arborescence.

Each series of n solution nodes begins at the root of the graph and terminates at
one of the many leaf nodes. Each series represents a uniquely ordered solution to
| | . However, many of these uniquely ordered solutions will result in identical
schedules, because in some cases, changing the order in which two (or more)
independent tasks are scheduled has the same outcome.

73.2 Generating, expanding and exploring solution nodes

The most elementary step of graph searching is node generation, that is producing
a solution node from its predecessor. A new successor node is then said to have
been generated and its predecessor is said to have been explored. A coarser step
is called node expansion, which consists of generating all immediate successors of
a given node. The node is then said to have been expanded.

7 3 3 Informed and uninformed search

Search strategies fall into one of two categories, informed and uninformed. The
difference between the two categorisations originates from the mechanism that
decides the order in which nodes are expanded. In uninformed search, node
expansion order depends only on information gathered by the search and is
unaffected by the character of the unexplored portion of the graph. Informed
search, however, uses information about the problem domain and about the nature
of the goal to help guide the search towards the more promising solutions.

Three different search strategies are now considered (Backtracking, Hill-climbing
and Best-first). All these strategies are far more efficient that exhaustive enumera-
tion, because they prune the solution graph and only concentrate on what they
believe to be promising solutions. Pruning the solution graph helps reduce the
amount of enumeration needed to solve the problem.

7-17

73.4 Backtracking

The first search strategy we discuss is called backtracking. This strategy is classified
as uninformed, in the sense that the order in which the search proceeds does not
depend on the nature of the solution that is sort. Being uninformed, backtracking
is somewhat inefficient and is usually deemed to be impractical for solving large
problems, however, it is worthy of description so we can compare and contrast
informed, heuristically guided strategies.

Backtracking (BT) applies a last-in-first-out policy to node generation. When a
node is first selected for exploration, only one of its successors is generated and
this new node is submitted for exploration. If, however, the generated node meets
some stopping criterion, the search program backtracks to the closest unexpanded
predecessor, that is the predecessor still having un-generated successors.

BT is a version of depth-first search, in that it explores downwards in preference
to exploring sideways, across the solution graph. It operates by maintaining a
record of the minimum length solution encountered so far and continues to search
until it becomes certain that no cheaper solution lies ahead. The stopping criterion
employed by BT, for our problem, would be the length of the best solution
encountered so far, or when the bottom of the solution graph is met. When this
criterion is met part way through the graph, the solution sub-tree which lies ahead
offers no further improvement over the current best solution. Consequently, the
sub-tree is pruned and no further enumeration takes place within that sub-tree.
Pruning un-promising solutions before they are fully enumerated offers significant
reductions over exhaustive enumeration.

The run-time of BT depends heavily on where the optimal solution lies within the
solution graph, because BT cannot adapt its order of search but mechanically
searches in a pre-determined uninformed fashion; say depth-first from left to right.
Should w ^ lie to the far left of the solution graph, for example, then pruning would
be more severe than if w ̂ lay to the right of the graph. Another influence on the
run-time of BT is the number of solutions whose lengths are close to that of w ̂
and consequently, only fail to offer a promising solution once they are almost
completely enumerated. Conceivably, either of these phenomenon would cause
BT to enumerate a vast part of the solution graph, hence, BT has a worst-case
complexity that is exponential in n and is therefore regarded as an inefficient
algorithm.

One note of praise for BT is its memory efficiency, since it only requires n
temporary storage elements to explore the graph.

7-18

73.5 Hill-climbing

The second search strategy we discuss is called hill-climbing. This strategy is
classified as informed, in the sense that the order of search depends on the nature
of the solution that is sort.

Hill-climbing (HC), a strategy based on local optimisation, is the most popular
search strategy among human problem solvers. It is called hill-climbing because
like a climber who wishes to reach the top of the mountain quickly, HC chooses
the path of steepest ascent form its current position.

In terms of our graph search model, HC amounts to repeatedly expanding a node,
inspecting the newly generated successors and choosing and expanding only the
best among the successors. No further reference to the predecessor, or its other
successor nodes is retained. This strategy is irrevocable, because the process does
not allow the search to shift its scope back to previously suspended alternatives,
even though they may eventually offer the promise of a better solution.

HC has problems with graphs that are not commutative (Nilsson, 1980), because
these graphs contain paths that lead to incomplete solutions. Hence, when HC is
applied, there is the likelihood it will run up a dead end and will not be able to
reverse and seek an alternative path. In our case the property of commutivity holds
and irrevocable strategies can be applied without the risk of missing a solution.
Expanding the wrong node will lead to a non-optimal solution, but will not prevent
a solution from being sort.

HC is a useful strategy when we possess a highly informative heuristic which steers
the search away from "false" locally optimal solutions and towards a more global
solution. It advances quickly towards a solution at the expense of missing the
optimal solution and has the advantage of requiring a minimum of temporary
memory storage for operation.

The run-time of HC is independent of where the optimal solution lies within the
solution graph, because the search is steered by the results attained from node
expansion (informed). Run-time is also independent of the number of solutions
whose lengths are close to that of w ~ , because HC only pursues a single locally
optimal solution. Analysing HC, we find it has a time complexity TC that is related
to the sum of the number of nodes generated at each of the n levels. This is given
as follows:

TCmax = (1 + (m - l)pmax) * n(n + 1) / 2
TCmax = (1 + (m -1) * SUM{x! / (x - v)!}) * n(n + 1) / 2, (7.8)
for v = {0,..., x} and x = m - 2.

TC min = (1 + (m - l)pmin) * n
TCmin = m * n (7.9)

7-19

Hence, HC has a worst-case time complexity that is a polynomial of n. Order of
time complexity is written as below:

.

TCmax — O (n2) (7.10)

73.6 Best-first

The final search strategy discussed here is known as best-first. This strategy, like
hill climbing is classified as informed. Best first (BF) is also similar to HC in that
the forward searching motion is always taken from the last decision through the
most promising successor. However, what sets BF apart from other search
strategies is the commitment to select the best from all nodes currently expanded,
no matter where they are in the partially developed tree. The implication of this
strategy is that the optimal solution will always be discovered after the fewest
possible number of decisions.

BF works like many co-operating teams of mountaineers who approach the
mountain from different paths, all seeking the highest peak on the mountain.
Whenever a team meets a branching path it divides and only the team on the most
promising path moves ahead while all others wait until their path becomes more
favourable (if ever) than all others.

Unfortunately, the breadth-first spread of a BF strategy means it pays dearly in
node storage, since it has to allow the search to resume at any previously suspended
alternative. However, this spreading of alternate paths means that BF can solve
graphs that are non-commutative.

The run-time of BF is independent of where the optimal solution lies within the
solution graph because the search is informed, however, unlike HC, run-time is
dependent of the number of solutions which show promise. Graphs could be
contrived where all solutions showed reasonable promise so that BF enumerated
a large portion of the solution graph. Hence, BF has a worst-case complexity that
is exponential in n.

7-20

7.3.7 Hybrid search

Pearl (1984) describes the three search strategies (BT, HC and BF) as three
extreme points of a continuous spectrum of search strategies. Different search
strategies can be visualised as lying on the plane whose axes are scope o f recovery
and scope o f selection, such a diagram is illustrated in Figure 7.7. The area within
the three extreme points represents hybrid search strategies which are com-
promises between scope of recovery and scope of selection. Note that only those
strategies that lie on the right hand edge of our diagram are guaranteed to yield
an optimal solution.

Figure 7.7 2-dimensional space of hybrid strategies

One example of a hybrid strategy employs a BT-BF combination to cut down on
the storage requirement, however, this is at the expense of reducing the number
of alternatives considered. These strategies although more memory efficient,
remain exponentially bounded in their computational complexity.

One consequence of introducing irrevocable decisions are that optimallity can no
longer be guaranteed. However, the benefits of reduced computational complexity
and reduced memory requirements may outweigh the disadvantage of not being
able to guarantee the result as optimal. Nilsson (1971) introduced a hybrid BF-HC
strategy called staged search, which performs a BF search that halts when the
memory allocation is used up. From the partial result, only a small number of the
most promising paths are kept and remainder are discarded. The search then
continues in a BF manner, beginning from the most promising paths. The routine
is repeated until the memory is exhausted once again. Another BF-HC strategy,
proposed by Pearl (1984), is similar to Nilsson’s staged search, but discards all but
the most promising path and consequently has a much decreased run-time.

7-21

The type of search strategy selected depends on both the problem characteristics
and the characteristics of the executing system. In the following section | | is shown
to comprise, not one, but two search problems; an inner shortest path search and
an outer decision problem. A hybrid strategy is adopted which applies BT-BF and
HC strategies to these problems respectively.

7.4 Scheduling algorithm

This section describes a scheduling algorithm which employs a hybrid search
strategy that is a composite of the strategies previously discussed. The scheduling
algorithm is divided into two major parts, known as the inner part and outer part.
The inner part uses a BT-BF strategy to expand nodes and find the next locally
optimum solution node (i.e. task-processor-path assignment). The inner part is
repeated at each of the n levels of scheduling and is controlled by the outer part,
which employs an HC strategy.

The algorithm is designed to find a solution to | [in polynomial time, however,
this is not possible unless the condition of optimallity is relaxed. Hence, w ^ is
redefined as a deadline that tends to the optimal, i.e. an optimal solution cannot
be guaranteed. The polynomial time complexity and non-optimallity charac-
teristics are an effect of introducing irrevocable decisions by way of the HC
strategy.

It has been suggested that efficiency and accuracy of a scheduling algorithm greatly
depend on the heuristic that is used. To illustrate this point, we begin the descrip-
tion of the algorithm by showing two identical examples that employ different
heuristic measures to guide informed search. The results of the two heuristic
measures are compared against the optimal solution.

7.4.1 Heuristic measures

7.4.1.1 Minimum length heuristic

The first heuristic we discuss is known here as the minimum length heuristic. It
approaches the decision problem by selecting the solution node that produces a
minimal increase in the overall schedule length. More formally, this can be stated
as below:

For the hth level of any partial solution to | | the maximum schedule length is given
as:

wh = MAX{w(k)}h,

tliwhere subscript h indicates the solution has only been enumerated to the h level,
1 < = h < n.

7-22

Similarly, the maximum schedule length for the (h + l) th level is given as:

wh + l = MAX{w(k)}h + l

The heuristic always chooses the solution node, denoted Yh + l, that results in the
smallest difference between wh and wh + l for h = {0,..., (n -1)} and wo = 0.

Yh + l | MIN{wh + l - wh}, or

Yh + l | MIN{MAX{w(k)}h + l}, hence

Yh | MIN{MAX{w(k)} h}, h = {1,..., n} (7.11)

Using the minimum length heuristic to tend to optimise | | would appear to be a
reasonable strategy, since it optimises locally the very measure which it aims to
optimise globally. Some results are given for scheduling the example task graph
(Figure 7.1) onto the processor graph (Figure 7.2) using the minimum length
heuristic. These are illustrated by Figure 7.8. Task-processor-path assignment is
given as Ti-Pj-Cq and where there is no inter-processor communication X replaces
Cq.

R = {T i,T2,T 3},MAX{w(k)}o = 0

R = {Ti, T3, T4) Ts }, Y\ = T2-Pl-X, MAX{w(k)}i = 1

7-23

R = {Ti, T4, Ts }, Y2 = T3-P2-X,MAX{tv(k) } 2 = 1

P l

L l

P 2

t 2 Ti

t 3

R = {T4, Ts }, y3 = T1 -P1 -X, MAX{w(k) } 3 = 4

R = {T5}, y4 = T4-P2-Ci , MAX{w(k) } 4 = 7

R = {E}, y5 = T5 -P1 -X, MAX{w(k) } 5 = 9

Figure 7.8 Scheduling; minimum length heuristic

7-24

The heuristic fails to recognise the future consequences of choosing between
different solution nodes, because it has no "look ahead" mechanism, and therefore
bases its decisions on what it has already scheduled and the immediate choices that
lie in front of it.

7.4.1.2 Minimum lateness heuristic

An improved heuristic (Goddard and Lawson, 1988b) derives some of its infor-
mation from the CPM results (section 2.3.6), namely the parameter LST(Ti), which
is effectively a measure of what lies ahead on a particular data path. The heuristic
uses LST(Ti) in-conjunction with the solution node parameter si(k) to give a
lateness figure to each potential solution node.

The minimum lateness heuristic, as it is known here, aims to reduce the overall
mean lateness of | | by minimising lateness locally. It was suggested in section 7.1.4
that localised minimisation of lateness resulted in a global reduction in lateness,
which produced good throughput and latency figures. Indeed, this appears to be
so. The minimum lateness heuristic is derived as follows:

A potential solution node has a lateness measure li(k), which is derived from the
latest start time of a task Ti and the task’s potential start time si(k), i.e.

li(k) = si(k) - LST(Ti) (7.12) .

If for each scheduling level h, we find the minimum value of si(k) for each task Ti
in R and use this result in equation (7.12), then we can find the minimum lateness
measure for each task Ti. In order to keep localised lateness to a minimum we
adopt the strategy of always scheduling the solution node that has the maximum
lateness measure. Hence, for the hth scheduling level, where h = {1,..., n}, the
solution node Yh is given as:

Yh | MAX{li(k)}h,

where subscript h indicates the solution has only been enumerated to the hth level,
1 < = h < = n.

Yh | MAX{MIN{si(k)} - LST(Ti)}h (7.13)

An example of scheduling, using the minimum lateness heuristic, is shown below
for the task graph (Figure 7.1) and processor graph (Figure 7.2).

7-25

P i

L i

P 2

R = {T i,T2,T 3},M AX{li(k)}o = O

R = {Ti, Ta, T4, T5}, Yi = T2-Pl-X ,M AX{li(k)}i = 0

R = {Ti, T3, T4}, Y2 = T5-P1-X, MAX{l¡(k)}2 = 0

P l

L l

P 2

t 2 Ts

Ci

T4

R = {T i ,T 3},Y3 = T4-P2-C1, MAX{li(k)}3 = 1

P l

L l

P 2

t 2 Ts

Cl

T i t 4

R = {T3}, Ya = T1-P2-X, MAX{l¡(k)}4 = -3

7-26

Pi t 2 t 5 t 3

Ll Cl

P2 T i T4

R = {E}, Ys = T3-P1-X, MAX{li(k)}5 = 1

Figure 7.9 Scheduling; minimum lateness heuristic

Scheduling the task graph onto the processor graph using the minimum lateness
heuristic gives an improved result over scheduling using the previous heuristic. In
fact, the result (Figure 7.9) is known to be optimal for this particular example. The
minimum lateness heuristic guides the scheduling algorithm, which is described
over the following three sections.

7.4.2 Shortest path, a BF approach

The shortest path algorithm operates on the processor graph, V. The algorithm is
a BF strategy that is a modified form of Dijkstra’s shortest path algorithm (Dijkstra,
1959), which is generally acknowledged to be one of the most efficient algorithms
for solving this type of problem. The modified algorithm works at two levels; the
first level aims to find the shortest path from a starting processing element Ps to
any other processing element Px, while the second level scrutinises those schedules
belonging to Px in order to find the earliest available start of execution time for
task Ti on Px, denoted si(x). The unmodified shortest path algorithm is described
below.

The main idea underlying Dijkstra’s shortest path algorithm is quite simple:
Suppose we know the p processing elements that are closest (in terms of com-
munication time) to processing element Ps in V and also know the shortest path
from Ps to each of these processing elements. Colour processing element Ps and
these p processing elements. Then, the (p + l) st closest processing element to Ps
is found as follows:

For each uncoloured processing element Py, construct p distinct paths from
Ps to Py by joining the shortest path from Ps to Px with link (Px,Py) for all
coloured processing elements Px. Select the shortest of these p paths and
let it tentatively be the shortest path from Ps to Py.

Which uncoloured processing element is the (j + l) th closest processing
element to Ps ? It is the uncoloured processing element with the shortest
tentative path from Ps as calculated above. So, if the p closest processing
elements are known then the (p + l) th closest processing element can be
determined as above. Starting with p = 0 this process can be repeated until
the shortest path from Ps to any other processing element is found.

7-27

With this in mind, we can now formally state Dijkstra’s shortest path algorithm,
then later the modified version will be introduced.

7.4.2.1 Dijkstra’s shortest path algorithm

• Step 1. Task Ti is available for scheduling and IMPRED(Ti) = Tk. Tk is
already scheduled on Ps. Initially, all links and processing elements in V are
uncoloured. Assign a number di(x) to each processing element Px to denote
the shortest path (in terms of communication time) from Ps to Px that uses
only coloured processing elements as intermediate points of communica-
tion. Initially, set di(s) = fk(s), the finishing time of Tk on Ps, and set di(x)
= Inf (infinity) for all x not equal to s. Let Py denote the last processing
element to be coloured. Colour Ps and let Py = Ps.

• Step 2. For each uncoloured processing element Px redefine di(x) as
follows:

di(x) = MIN{di(x), di(y) + ai(Psa,Pxb)} (7.14)

If di(x) = Inf for all Px, then stop because no path exists from Ps to any
uncoloured processing element. Otherwise, colour the uncoloured
processing element Px which has the smallest value of di(x). Also colour the
link directed into this processing element from the coloured processing
element that determined di(x) in the above minimisation. Let Py = Px.

• Step 3. If processing element Pt (target processor) has been coloured then
stop because the shortest path from Ps to Pt has been discovered. This path
consists of the unique path of coloured links from Ps to Pt. If processing
element Pt has not been coloured yet, repeat step 2.

Note that whenever the algorithm colours a processing element (except Ps) the
algorithm also colours a link directed into this processing element. Thus, each
processing element has at most one coloured link directed into it, and the coloured
links cannot contain a cycle since no link is coloured if both its endpoints have a
coloured link incident to it. Therefore, we can conclude that the coloured links
form an arborescence rooted at Ps. This arborescence is called a shortest path
arborescence. The unique path from Ps to any other processing element Px
contained in the shortest path arborescence is the shortest path from Ps to Px.

Note that the derivation of a "path length", denoted ai(Psa,Pxb), is the sum of the
communication cost and resource waiting time for (Psa,Pxb), at that particular
moment in time. Hence, path length is not only determined by the communication
cost, but also by the activity of the schedule.

7-28

1 A .2 .2 Modified Dijkstra’s shortest path algorithm

A modified version of Dijkstra’s algorithm includes two stopping criteria which
prune the solution graph to prevent fruitless searching, these are a lower stopping
criteria Li and an upper stopping criteria Ui. Ui is defined as the minimum starting
time for Ti on Py, where Py represents all processing elements that lie on the
shortest path arborescence. The lower stopping criterion Li is a bound derived
from outside the shortest path algorithm (section 7.4.3) which causes abandon-
ment of the shortest path algorithm if violated. The algorithm works as follows:

• Step 1. Task Ti is available for scheduling and IMPRED(Ti) = Tk. Tk is
already scheduled on Ps. Initially, all links and processing elements in V are
uncoloured. Assign a number di(x) to each processing element Px to denote
the shortest path (in terms of communication time) from Ps to Px that uses
only coloured processing elements as intermediate points of communica-
tion. Initially, set di(s) = fk(s), the finishing time of Tk on Ps, and set di(x)
= Inf (infinity) for all x not equal to s. Let Py denote the last processing
element to be coloured. Colour Ps and let Py = Ps.

Starting from time di(y), search the schedule belonging to Py (increasing in
time) until a start time is found where the schedule can accommodate task
Ti of execution time ei (section 7.1.3). Assign this start time to si(y). If si(y)
< = Li abandon attempts to schedule Ti, otherwise let Ui = si(y) and Pt
= Py-

• Step 2. For each uncoloured processing element Px redefine di(x) as
follows:

di(x) = MIN{di(x), di(y) + ai(Pya,Pxb)}

If di(x) = Inf for all Px, then stop because no path exists from Ps to any
uncoloured processing element. Otherwise, colour the uncoloured
processing element Px which has the smallest value of di(x). Also colour the
link directed into this processing element from the coloured processing
element that determined di(x) in the above minimisation. Let Py = Px.

Starting from time di(y), search the schedule belonging to Py (increasing in
time) until a start time is found where the schedule can accommodate task
Ti of execution time ei. Assign this start time to si(y). If si(y) < = Li stop;
abandon attempts to schedule Ti. Otherwise, if si(y) > Li and si(y) < Ui
then let Ui = si(y) and Pt = Py. •

• Step 3. If di(y) > = Ui stop; all further paths exceed the minimum value of
si(y), hence no earlier start time is possible and therefore the shortest path
from Ps to Pt has been discovered. Otherwise, if all processing elements are
coloured then stop; the shortest path from Ps to Pt has been discovered.
Otherwise, repeat step 2.

The two stopping criteria, Li and U\, greatly reduce the amount of enumeration
required to find the shortest path from Ps to Pt, such that si(t) is the minimum value
of si(y). Below are several extensions to the BF algorithm, these are necessary for
the different types of tasks that exist in G.

7.4.23 Extension 1

The above illustration of the shortest path algorithm is only suitable when Ti has
a monadic input (i.e. | IMPRED(Ti) | = 1). When Ti has a dyadic input, two BF
algorithms are executed concurrently. Each algorithm starts from the processing
element that their member of IMPRED(Ti) is scheduled. The two algorithms stop
once the minimum value of si(y) has been found for the same processor, such that
si(y) = MAXjsi(y)1, si(y)2} (the superscripts 1 and 2 indicate the results are from
the two concurrent algorithms).

Care has to be taken when paths from each of the two algorithms use the same
link, otherwise link activity already allotted to one path may be used by a succeed-
ing path. The possibility of this contention only arises when data from two paths
are moving in the same direction and not when they are in opposing directions,
since in the latter case, only one path at most would remain once Pt is established.

7.4.2.4 Extension 2

Another difference between the BF algorithm and that which is implemented,
occurs when tasks are pre-assigned to processing elements. This condition only
arises for tasks that are of type external output or of type internal output. The only
change that is made is that the algorithm seeks the shortest path to a known
processing element, irrespective of si(t).

7.4.2.5 Extension 3

The final extension due to task differences arises for tasks that have the initiating
node B as their immediate predecessor and are not of type external input, e.g. reals,
constants, etc. These tasks can be scheduled on any of the m processing elements
without incurring any communications overhead.

7.4.2.6 Extension 4

Perhaps the largest extension to the algorithm is auto-routing. When selected,
auto-routing affects the shortest path algorithm by temporarily establishing paths
via links that are not formed. Temporary links are formed by finding the shortest
path from Ps to Pf, where Pf is a processor that has one or more "free links".
Auto-routing temporarily connects this unconnected link to all other unconnected
links (in turn) on other processing elements. The algorithm then continues as
normal, using these temporary links as part of its shortest path arborescence.
Auto-routing finishes by removing all temporary links so they do not interfere with
successive executions of the algorithm.

7-30

If the BF algorithm is successful (i.e. si(t) > Li), then the parameters si(t) and (Psa,
Ptb) are saved and passed up to the BT algorithm described in the following

section.

7.43 Comparing task solution nodes, a BT approach

The remainder of the inner BT-BF scheduling algorithm is a simple backtracking
strategy which manages the BF inner core. For each task in R (the set of tasks
available for scheduling), BT selects a task Ti, calculates Li, runs the inner core
shortest path algorithm and acts on the result. The BT algorithm is repeated r times
and terminates with a locally optimal task-processor-path assignment (i.e. a solu-
tion node). The algorithm is described below in detail:

• Step 1. Initially assign FLT = -(Inf). Let the first task in R equal Ti.

. Step 2. Calculate lower stopping criterion for Ti, L i :

Li = LST(Ti) - FLT (7.15)

Call SP algorithm (section 7.4.1). Passed parameters are:
In: Ti, Li, G, V. Out: si(t), (Ps,..., Pt).

. Step 3. If si(t) > Li then TASK = Ti, START = si(t), PATH = (Ps,..., Pt)
and F LT = LST(Ti) - si(t). Otherwise, TASK, START, PATH and FLT
remain unaltered.

If Ti is the last task in R stop; TASK and PATH contain the locally optimal
task-processor-path assignment and START contains the start of execution
time of Ti. Otherwise, let Ti equal the next task in R and repeat step 2.

The BT algorithm is extremely memory efficient and as previously shown works
in an uninformed way, inspecting all tasks belonging to R in a sequential fashion.
The locally optimal task-processor-path assignment is passed up to the outer part
of the scheduling algorithm which is described in section 7.4.4.

7.4.4 Scheduling assignment, an HC approach

The outer part of the scheduling algorithm operates according to a hill-climbing
strategy. The heuristic, which this part depends, is based on the lateness of a task
(section 7.4.1). HC is an irrevocable search strategy and consequently, moves
towards a solution quickly using very little memory. The irrevocable characteristic
of HC means it cannot return to previously suspended alternative solutions, but
presses ahead steered by its heuristic information. HC calls the inner BT-BF part
of the scheduling algorithm exactly n times and each time, BT-BF returns with a
locally optimal solution node (optimal with respect to the heuristic) which is
scheduled by HC.

7-31

The operation of the outer part of the scheduling algorithm is illustrated below:

• Step 1. R is initially empty. Place all tasks belonging to IMSUC(B) in R.

. Step 2. Call BT-BF algorithm (section 7.4.3). Passed parameters are:
In: R, G, V. Out: TASK, START, PATH.

LetTi = TASK, si(t) = START and (Psa, ..., Ptb) = PATH.

• Step 3. Remove Ti from R. Examine all tasks belonging to IMSUC(Ti), if
any member task Tk has no predecessors in R and all predecessors belong
to S then place Tk in R.

Place Ti in schedule St (the schedule corresponding to the processing
element Pt) starting at time si(t).

If Ps is the same processing element as Pt then skip to step 5.

• Step 4. Check that all links on the path (Psa, ..., Ptb) are established, if not
then links have been temporarily made by auto-routing. Establish these
links.

For all links on the path (Psa, ..., Ptb)
(i) schedule communication tasks in the schedule Sq which corresponds to
the link
(ii) insert communication tasks in the task graph G, between IMPRED(Ti)
and Ti.
This second point is achieved by appending the communication tasks to C
(the set of communication tasks) and by altering A (the partial order on T
and C) to include the communications task in G between IMPRED(Ti) and
Ti.

• Step 5. If | R | = 1 and that one task is the terminating node E then stop;
scheduling is complete. Otherwise, repeat step 2.

7.4.5 Complexity

The time complexity of the scheduling algorithm depends on the constraints placed
on T and P, which are A and L respectively. For a worst-case situation, A would be
empty and L would represent a completely connected inter-processor network.
Hence, the upper bound to time-complexity is as follows:

For the BF part:

TCmax = 1 + (m - 1) * pmax
TCmax= 1 + (m -1) * SUM{x! / (x - v)!}, (7.16)
for v = {0,..., x} and x = (m - 2).

7-32

FCmax = (1 + (m -1) * SUM{x! / (x - v)!}) * rh
FCrnax = a + (m -1) * SUM{x! / (x - v)!}) * (n + 1 - h), (7.17)
for the hth level of scheduling,
and for v = {0,..., x} and x = (m - 2).

For the HC part, including (7.17):

FCmax = (1 + (m -1) * SUM{x!/ (x - v)!}) * (n + l - h) * n ,
for h = {1,..., n}, and for v = {0,..., x} where x = (m - 2)..
FCmax = (1 + (m -1) * SUM{x! / (x - v)!}) * ((n + 1) / 2) * n,
for v = {0,..., x} and x = (m - 2).

FCmax = O (n2) (7.18)

Hence, the worst-case complexity is polynomial in n and of order 2. Complexity
remains exponential of order m for completely connected networks, however, the
low degree of most processing elements restricts strongly connected networks to
low orders of m. Consequently, this exponential factor is not dominant. The lower
bound for the algorithm’s time complexity can be derived in a similar fashion, it is
given as:

For the BT part, including (7.16):

TCmin — m * n

TCmin = O (n) (7.19)

7.5 Summary

In this chapter the merits and limitations of deterministic, compile-time schedul-
ing have been discussed and a comparison has been drawn between it and
non-deterministic, run-time scheduling. Three different classes of scheduling have
been illustrated; list scheduling, non pre-emptive scheduling and pre-emptive
scheduling, and it was found that the non pre-emptive class is best suited to
deterministic, compile-time scheduling.

Two major performance measures, schedule length and lateness, have been intro-
duced and the relationship between these and throughput and latency has been
discussed. The former measure is used in the definition of the scheduling problem,
which is essentially a problem of schedule length minimisation.

The complexity of the scheduling problem was then investigated for different
constraints on T and P, and the problem was found to have a number of solutions
that is exponential of order n. To show the effect this has on inefficient algorithms
that attempt to solve the problem, an exhaustive enumeration approach was
illustrated. The problem was shown to be computationally intractable when using
this type of algorithm. This result is reinforced by previous results which classify
the problem as NP-complete.

7-33

Three basic heuristic search strategies, backtracking, hill-climbing and best-first
have been introduced. The characteristics of each search strategy have been
discussed and it was considered necessary to introduce irrevocable scheduling
decisions to ensure that time complexity became polynomial in n. However, this
step has been shown to lose the guarantee of an optimal solution being found.

The final part of this chapter describes the design of the hybrid HC BT-BF
scheduling algorithm. At the heart of the algorithm is the heuristic, which guides
the search strategy and so determines the scheduling decisions. Two heuristics
have been compared, a minimum length heuristic and a minimum lateness heuris-
tic, both originating from their relative performance measures. The minimum
lateness heuristic has been shown to produce better results, because it uses
information from the CPM algorithm which imparts "knowledge" of what lies
ahead and so allows the algorithm to prioritise tasks accordingly. The chapter
concludes with the derivation of the time complexity for the scheduling algorithm,
which confirms it as polynomial in n, of order 2.

7-34

Chapter 8. Experimental results

This chapter presents the experimental results from which the effectiveness of the
implementation strategy can be assessed. The chapter is divided into three main
sections:

The first section examines the relationship between scheduling time and the
parameters n and m. These results are compared to the predictions made in
chapter 7. The second section looks at factors which affect the performance, or
quality of scheduling, e.g., processor use, speedup, etc. This section focuses on the
reasons for performance degradation, from some ideal, pre-calculated figure.
Finally, the last section presents several worked examples. These are in the form
a DFDL source program, pre-schedule program profile, schedule results and
Occam object program.

Please note that the coefficient values given in the examples are for illustration
only.

8.1 Scheduling time

Scheduling time complexity was estimated (in section 7.4.5) to lie in the region
O (n) to O (n2 '). This estimate excludes possible exponential growth due to m,
since it is assumed that as m increases the degree of connectivity reduces and so n
dominates the relationship. This section aims to show that this relation holds in
practice.

As an example, the scheduling time for an n by n vector operation scheduled on
an m processor network is illustrated. The example multiplies corresponding
elements from each vector and outputs the product in a stream of n values. The
program for the example is shown below and the results are illustrated in Figure
8. 1.

PROG mult.vectors(OUTPUT(REAL32) y[n])
BEGIN

REPEAT FOREVER
y [i FROM 0 FOR n] : = a * b

END

In the example, factors that rely on topology are removed, by setting the link
communication cost to zero.

8-1

□ m

□ m

Scheduling time characteristics

number of tasks, n
1 + m = 10 o m = 20 a m = 30 x m = 40 v m = 5 0

Figure 8.1

Scheduling time characteristics

number of tasks, log 10n
1 + m = 10 o m = 20 a m = 30 x m = 40 v m = 50

Figure 8.2

8 - 2

From Figure 8.1 we observe that scheduling time is far more sensitive to changes
in n than it is to changes in m. For example, consider the point n = 100, m = 20,
then doubling n increases scheduling time by 285% whereas doubling m only
increases scheduling time by 69%. Sensitivity to changes in m will tend to rely on
the size of m and the connectivity of the processor network.

On the assumption that the relation between n and scheduling time is a polynomial
in n, then the plot of logio(n) against logio(scheduling time) should produce a
straight line whose gradient is the composite index of that polynomial. Figure 8.2
illustrates this relationship. All the plots in Figure 8.2 are close approximates to
straight lines and the majority (m > = 10) have a gradient of 2. Using the equation
for a straight line, y : = mx + c, the scaling factor alogio c can be found from Figure
8.2 for each value of m for this particular algorithm. These are summarised below
in Table 8.1. The equation which relates n to scheduling time is described by (8.1),
this equation gives a reasonable approximation over the range 10 < = m < = 100.

scheduling time = f(m) * n seconds

scheduling time = 4xl0'5 * (10 + m) * n2 seconds (8.1)

m f(m)

10 0.0008

20 0.0012

30 0.0017

40 0.0021

50 0.0025

Table 8.1 Scheduling time scale factor

8-3

8.2 Factors affecting performance

Examination of several different scheduling results reveal that optimal speedup
for a given number of processors is seldom achieved. This section introduces and
discusses several effects which lead to a degradation in performance. The first
effect is called integer effect.

8.2.1 Integer effect

Integer effect becomes apparent whenever the number of independent tasks is not
wholly divisible by the number of available processors, this produces schedules of
dissimilar duration, which in turn creates less than optimal scheduling. The cause
of this effect originates from the fact that tasks take a finite time to execute and
cannot be shared between processors, since they are considered to be atomic.
Integer effect is most noticeable when m approaches n, assuming m < n.

Consider the case where there are n independent tasks (i.e. A is empty) and each
task has the same duration. Such a case is shown in the program below. These n
tasks are scheduled onto m processors, where m < = n.

PROG mult.vectors(OUTPUT(REAL32) y[n])
BEGIN

REPEAT FOREVER
y[i FROM 0 FOR n] : = a * b

END

Integer effect on speedup

number of processors, m
□ n = 10 + n = 20 o n = 50 a n = 100

Figure 8.3

8-4

If all tasks were infinitely divisible then speedup would be

speedup = n / (n / m) = m (8.2)

For a set of independent tasks this is regarded as the ideal case. However, tasks
are not divisible, hence

speedup = n / | n /m | (8.3)

Figure 8.3 shows the results of scheduling n independent, equally sized tasks onto
m processors. The results confirm the relation given in (8.3) and show that possible
degradation due to integer effect worsens as m approaches n.

To what extent can integer effect degrade speedup? From (8.3),

(n /m) + 1 > | n / m | > = n / m

Substituting the above limits into (8.3) shows that speedup lies in the range

(m * n) / (m + n) < speedup < = m

We have observed that integer effect worsens as m approaches n, thus let m = n

m / 2 < speedup < = m (8.4)

Speedup degradation

processor-task ratio, m/n

Figure 8.4

8-5

Equation (8.4) shows that integer effect can inflict a loss of up to 50% on speedup.
This result is confirmed by Figure 8.4, which shows the percentage degradation
across the entire range of the processor/task ratio (m / n). The plot is for n = 100
and percentage degradation is calculated from equation (8.5).

percentage degradation = (1 - (n / (m * | n / m |))) * 100% (8.5)

The possibility of integer effect will always be present, however degradation can
be minimised by employing a low processor/task ratio i.e. m < < n.

8.2.2 Synchronisation effect

Synchronisation effect is the first of four distinct factors associated with com-
munication which tend to reduce performance.

Synchronisation effect stems from Occam’s unbuffered, synchronised model of
communication which requires that communicating, parallel processes
synchronise to commence data transfer. Consequently, a communication is not at
liberty to occur freely, but has to wait until both sender and receiver have
synchronised. In the current implementation of Occam on the Transputer, this
cannot occur until both sender and receiver have met one of the following
conditions: (i) have just completed processing a task, (ii) just about to process a
task or (iii) inactive. Once synchronised, data transfer can proceed in parallel with
processing.

The results of synchronisation effect are discussed in the following section.

8.23 Latent scope effect

When considering parallelism between processor and communication channels
then Occam can express parallelism between one or more resources. For example

SEQ
A
B
PAR

C
ch1 ?X
C h 2 ! Y

where ? is the Occam construct for a communication input and ! the Occam
construct for a communication output.

8-6

SEQ
A
B
PAR

C
ch1 ?X
ch2 ? Y
PAR

D
ch3 ! Z

Occam can express separate, joint and hierarchical parallel activity, however,
Occam cannot express parallel activity which partially overlaps. This language
restriction leads to communication channels being held in scope for some time
before and after they pass data. Consequently, channels appear to be busy when
in fact they are inactive.

Synchronisation and latent scope effect are difficult to separate, since they both
originate from Occam’s concurrent model of computation. To illustrate their joint
effect, a sum of products example is employed, this is shown below. The example
is of fixed size (n = 199) and is scheduled onto a binary hypercube processor
network (m = 16).

Occam can also express nested parallel events

PROG maddl OOc(OUTPUT(REAL32) y)
NODE k[100]
BEGIN

REPEAT FOREVER
k[i FROM 0 FOR 100] : = 1.0 * 1.0
y : = SUM(k[j FROM 0 FOR 100])

Figure 8.5 illustrates the composite processor activity over a single cycle of the
example scheduled algorithm. The schedule assumes that communication be-
tween processors is zero cost. Superimposed upon this profile is a second profile
of an ideal schedule. This ideal schedule accounts for integer effect and sequential
dependency between tasks, but disregards synchronisation and latent scope ef-
fects.

8-7

Cyclic processor activity

cycle time (%)
□ processor activity v ideal activity

Figure 8.5

Figure 8.5 shows that cycle time for the ideal and actual cases is 212uS and 279uS
respectively. These times relate to speedups of 12.2 and 9.3. In this example,
synchronisation and latent scope effects reduce speedup by about 24%. Generally
though, it is difficult to quantify such effects prior to scheduling, since they are not
generated until the scheduling process. Both effects are a product of the Occam
language which are reflected back into the requirements of the scheduler.
Removal of these effects would only be possible by replacing the
Occam/Transputer concurrent model of computation for a true data-driven
model.

8 - 8

8.2.4 Finite communication cost effect

Finite communication cost tends to impede the spread of data from one processor
to another. This effect increases as the processor/communication cost ratio
decreases. Figures 8.6 through to 8.11 illustrate cyclic processor and cyclic inter-
processor activity. Each figure represents a different processor/communication
cost ratio, ranging from 30:1 to 0.3:1. This ratio is defined by equation (8.6). The
series of figures reveal that as the processor/communications cost ratio is
decreased then processor use decreases and communications use increases. Also,
a decrease in this ratio produces an increase in the length of the cycle time.

processor/communication cost ratio = e / c (8.6)

where e is the mean task cost and c is the mean communication cost.

One noticeable feature of all these activity profiles is that changes in processor
activity are highly correlated to changes in communication activity and that profile
changes are inversely proportional. This correlated feature is attributed to
synchronisation and latent scope effect which give rise to interference between
processor and communication activity.

Cyclic processor and comms activity

cycle time (%)
□ processor activity + comms activity

Figure 8.6

8-9

a
c
t
i
v
i
t
y

(%
)

a
c
t
i
v
i
t
y

(%
)

Cyclic processor and comms activity

cycle time (%)
□ processor activity + comms activity

Figure 8.7

Cyclic processor and comms activity

cycle time (%)
□ processor activity + comms activity

Figure 8.8

8 - 1 0

a
c
t
i
v
i
t
y

(%
)

a
c
t
i
v
i
t
y

(%
)

Cyclic processor and comms activity

cycle time (%)
□ processor activity + comms activity

Figure 8.9

Cyclic processor and comms activity

cycle time (%)
□ processor activity + comms activity

Figure 8.10

8 - 1 1

Cyclic processor and comms activity

cycle time (%)
□ processor activity + comms activity

Figure 8.11

Figures 8.6 through to 8.11 suggest that the number of communications increase
as the processor/communications ratio decreases. However, Figure 8.12 shows
that the opposite is generally true. We can conclude, therefore, that the increase
in communications use is attributable to an increase in communications cost and
not the number of communications.

Figure 8.13 summarises the relation between processor/communication cost ratio
and speedup. This plot illustrates that for ratios above a 10:1 speedup degradation
is almost entirely due to synchronisation and latent scope effect. Below this ratio,
degradation attributable to finite communication cost becomes significant; in the
range 10:1 to 5:1 there is a noticeable down turn in speedup and below a ratio of
5:1 degradation becomes severe.

Both Figures 8.12 and 8.13 have a vertical scale that is normalised to the results
for a processor/communications cost ratio of infinity.

8 - 1 2

n
u
m
b
e
r

o
f

c
o
n
m
u
n
i
c
a
t
i
o
n
s

(
n
o
r
m
a
l
i
s
e
d
)

No of comms vs. proc/comms cost ratio

proc/comms cost ratio

Figure 8.12

Speed-up vs. proc/comms cost ratio

proc/comms cost ratio

Figure 8.13

8-13

8.2.5 Topology effect

This section discusses the final effect of communication on performance, namely
topology effect. Communication time between any two processors is affected by
communication cost and can be affected by synchronisation and latent scope effect.
The alternate number of independent communication channels into and out of a
processor (degree) and the length of a communication path (diameter) between
communicating processors, also have a bearing on performance.

For a specific topology the degree and diameter can be found, these figures are
used in equation (8.7) to assign a merit factor, Q to a topology.

Q = (degree / diameter) * (m - 1)‘ \ m > 1 (8.7)

Table 8.2 presents several different topologies, their mean degree, mean diameter
and Q factor.

m Topology Q speedupdegree diameter speedup(norm)

4 single ring 2.0 1.33 0.5 2.88 0.75

5 double ring 1.5 3.6 0.6 3.75 0.79

6 chordal ring 3.67 1.4 0.52 4.35 0.79

8 single linear 1.75 2.98 0.08 3.23 0.46
9 mesh 2.67 2.0 0.167 5.41 0.69

16 binary hypercube 3.875 2.13 0.12 8.65 0.71

Table 8.2 Topology factor

Figure 8.14 illustrates the relation between 1/Q and speedup. Speedup is nor-
malised by dividing the actual speedup by the ideal speedup for m processors. The
ideal value is not affected by any of the communications effects. The results include
synchronisation and latent scope effects, which may vary from case to case.

8-14

Topology effect on speedup

Figure 8.14

8.3 Examples

This section presents four algorithms that are commonly used in digital signal
processing. These are:

(i) fir8: 8 tap finite impulse response filter
(ii) iir2: 2na order infinite impulse response filter
(iii) wdf4: 4th order wave digital filter
(iv) fft8: 8 point complex fast Fourier transform

and one modified, multiple version of fir8 called fir8x8.

Each example is followed through from DFDL program description to Occam
program translation. Results include pre-schedule program activity profiles,
speedup figures for different numbers of processors and post-schedule activity
profiles.

8-15

Pre-schedule activity profiles are generated from the critical path results. Two
profiles are produced for each DFDL program; the first from the earliest times
that tasks can be executed and the second from the latest times that tasks can be
executed. These un-scheduled views of program execution ignore timing losses
due to integer and communication effects. Both profiles indicate where potential
parallelism exists and how many processors may be utilised. The cycle time of the
two profiles is identical and is known as the critical path length, or minimum cycle
time. Information from these profiles can be useful when analysing algorithms and
choosing a value for m, since they give insight into the upper speedup bound, the
likely maximum number of useful processors and critical path density.

Speedup results are presented graphically, plotted against number of processors,
m. Results are all based on a T4-20 Transputer operating at a link frequency of
20MHz. Two bounds are included on the graph, a diagonal line "speedup = m"
and a horizontal line "speedup = total task cost / minimum cycle time". For
completeness the results for zero cost communication are also plotted.

Finally, post-schedule results are presented in the form of four superimposed
activity profiles; processor, input, inter-processor communication and output
activity. All are plotted against scheduled cycle time. These profiles show when
resources are used, their use throughout the duration of the cycle and how different
resources interact.

83.1 Finite impulse response filter

The DFDL program below, inputs a single value each cycle. This value, and the
seven most recent inputs from previous cycles are multiplied by the coefficients.
The eight products are summed and the result outputted. Input and output have
a data type of INT32. This data type is different to arithmetic operations, which are
of data type REAL32, and causes data type conversion to take place at the input
and output.

PROG fir8(INPUT(INT32) in OUTPUT(INT32) out)

NODE value[8]
VALUE TABLE coeff[8] IS [0.121,0.146,-2.345,0.5,

0.5, -2.345, 0.146, 0.121]

BEGIN
REPEAT FOREVER

% Multiply delayed inputs by coefficients
value[i FROM 0 FOR 8] : = coeff[i FROM 0 FOR 8] * ...

in Z[i FROM 0 FOR 8]
% Sum products
o u t: = SUM (value[i FROM 0 FOR 8])

END

8-16

Activity profile
15
14

13
12

11
10

9

8

7
6
5
4
3
2

1
0

1 T4-20

Total task cost = 231 u5

Mir imum c\ cle time = 68uii

------rWWSA. AAA A A A

-i 0 9

—

___AAAAAA. r\

n ntrrm rr
WWWW'

TTTTTTTrT

m n r r a n m

THTTHTT 111111 »»

0 10 20 30 40 50 60 70 80 90

o earliest execution
minimum cycle time (%)

a latest execution

Figure 8.15

The earliest and latest profiles of the program suggest that using in excess of 15
processors would not aid performance. Lower, more practical estimates for m are
suggested from the latest profile, which peaks at 8 processors, or from the quotient
(total task cost / minimum cycle time) which is calculated to be 3.4.

Figure 8.16 illustrates the actual speedup when the program is scheduled onto an
m processor network connected in a chordal ring topology. Speedup, for a link
frequency of 20MHz, peaks at 2.18 when m equals 5. This gain represents 65% of
the upper bound.

The scheduled results are translated into Occam for the case m equals 3. The
Occam program is functionally identical to the DFDL program, however, it
appears to be far more complex. This is in part due to communication between the
three parallel procedures, but is also due to the fragmentation of spatial arrays by
the DFDL compiler. Temporal arrays are generally left intact.

8-17

The composite characters {{{,}}} and ... are visible in both DFDL and Occam
programs, these are editor constructs from the TDS folding editor, and have no
syntatic or semantic effect on the programs. The { { { construct indicates that a fold
is open and marks the top of the open fold. A matching }}} construct marks the
bottom of the open fold. The three full stops in succession ... show that a fold is
closed and that text is hidden. Text that appears on the same line as {{{ or ... is a
comment pertaining to the fold.

Note: The upper bound (Figure 8.16) defines the maximum speedup due to the
algorithm’s parallelism. This value is independent of m and is derived from the
CPM, i.e., upper speedup bound = total task cost / critical path cost.

O

Speedup vs. number of processors

20MHz a Infinity
number of processors, m

x Upper bound v Ideal bound

Figure 8.16

8-18

PROC fir8(CHAN OF INT32 in, out)
{{{ CHANNELS
CHAN OF REAL32 ch.real32.01.1, ch.real32.01.2, ch.real32.01.3,

ch.real32.02.3:
CHAN OF ANY ch.any.02.2:
>}>
{{{ PROCEDURES

{{{ fir801
PROC fir801(CHAN OF INT32 ch.l,

CHAN OF REAL32 ch.2, ch.3, ch.4)

VAL coeff.O IS 0.0380601995(REAL32):
VAL coeff.6 IS 0.961939692(REAL32):
VAL coeff.5 IS 0.853553295(REAL32):
VAL coeff.7 IS 1.0(REAL32)s

INT32 in:
REAL32 value.0:
REAL32 value.6 :
REAL32 value.5:
REAL32 value.7:
REAL32 aAa.real32:
REAL32 aAb.real32:
INT INDEX.0:
[7]REAL32 DELAY.0:

SEQ
SEQ i = 0 FOR 7

DELAY.0[i] := 0.0(REAL32)
INDEX.0 := 0

WHILE TRUE
SEQ

Ch.2 ! DELAY.0[(INDEX.0 + 3) REM 7]
Ch.3 ! DELAY.0[(INDEX.0 + 0) REM 7]
Ch.4 ! DELAY.0[(INDEX.0 + 1) REM 7]
ch.l ? in
aAa.real32 := REAL32 ROUND in
aAb.real32 := coeff.O *
value.0 := aAb.real32
ch.2 I value.0
aAb.real32 := coeff.6 *
ch.3 ! DELAY.0[(INDEX.0
value.6 := aAb.real32
aAb.real32 := coeff.5 *
value.5 := aAb.real32
ch.2 I value.5
aAb.real32 := coeff.7 *
value.7 := aAb.real32
aAb.real32 := value.6 +
ch.2 I aAb.real32
INDEX.0 := (INDEX.0 + 6
DELAY.0[INDEX.0] := aAa

aAa.real32

DELAY.0[(INDEX.0 + 5) REM 7]
+ 2) REM 7]

DELAY.0[(INDEX.0 + 4) REM 7]

DELAY.0[(INDEX.0 + 6) REM 7]

value.7

REM 7
real32

8-19

>}>
{{{ fir802
PROC fir802(CHAN OF REAL32 ch.l, ch.2,

CHAN OF ANY ch.3,
CHAN OF REAL32 ch.4)

VAL coeff.l IS 0.146446601(REAL32):
VAL coeff.2 IS 0.308658212(REAL32):
VAL coeff.3 IS 0.5(REAL32):

REAL32 value.1:
REAL32 value.2:
REAL32 value.3:
INT32 aAa.int32:
REAL32 aAa.real32:
REAL32 aAb.real32:

SEQ
WHILE TRUE

SEQ
PAR

ch.2 ? aAa.real32
ch.l ? aAb.real32

aAa.real32 := coeff.l * aAa.real32
value.1 := aAa.real32
ch.3 1 value.1
aAa.real32 s= coeff.2 * aAb.real32
value.2 := aAa.real32
ch.2 ? aAa.real32
aAa.real32 := coeff.3 * aAa.real32
value.3 := aAa.real32
aAa.real32 := value.2 + value.3
ch.4 ? aAb.real32
aAa.real32 := aAb.real32 + aAa.real32
ch.4 ? aAb.real32
aAa.real32 := aAa.real32 + aAb.real32
aAa.int32 := INT32 ROUND aAa.real32
ch.3 ! aAa.int32

8-20

}}}
{{{ fir8 03
PROC fir803(CHAN OF REAL32 ch.l,

CHAN OF ANY ch.2,
CHAN OF REAL32 ch.3,
CHAN OF INT32 ch.4)

VAL coeff.4 IS 0.691341698(REAL32):

REAL32 value.4:
INT32 aAa.int32 s
REAL32 aAa.real32:
REAL32 aAb.real32:

SEQ
WHILE TRUE

SEQ
ch.3 ? aAa.real32
aAa.real32 := coeff.4 * aAa.real32
value.4 := aAa.real32
ch.2 ? aAa.real32
ch.3 ? aAb.real32
aAa.real32 := aAb.real32 + aAa.real32
ch.3 ? aAb.real32
aAb.real32 := value.4 + aAb.real32
ch.l 1 aAa.real32
ch.3 ? aAa.real32
aAa.real32 := aAb.real32 + aAa.real32
ch.l I aAa.real32
ch.2 ? aAa.int32
ch.4 I aAa.int32

}}}
>}}

PAR
fir801(in, ch.real32.01.1, ch.real32.01.2, ch.real32.01.3)
fir802(ch.real32.01.3, ch.real32.01.2, ch.any.02.2, ch.real32.02.3)
fir803(ch.real32.02.3, ch.any.02.2, ch.real32.01.1, out)

8-21

Activity profile

cycle time (%)
□ processors + input o communications a output

Figure 8.17

Figure 8.17 illustrates scheduled activity for m equals 3. The plot reveals that there
is significant under use of the processors in the latter part of the cycle. Attempts
to improve efficiency and make use of this slack are covered in section 8.3.5.
Another observation is that output appears to occur immediately after data is
inputted, it should be noted that this is the output from the previous cycle. The
output for the current cycle is slightly to the right of the right hand edge of the
graph, but since the x-axis represents cycle time, then the extreme ends of the graph
are effectively joined as far as cycle activity is concerned.

8-22

83.2 Infinite impulse response (bi-quad) filter

The DFDL program below, inputs and outputs a single value each cycle. This input
is multiplied by a scaling factor to give an intermediate value. A second inter-
mediate value is produced by summing the scaled input and two delayed and scaled
versions of this intermediate value; delayed by one and two cycles respectively.
The output is derived in a similar fashion, but is the sum of the second intermediate
value, and two delayed and scaled versions of this value, once again delayed by one
and two cycles. Input and output have a data type of INTI6. This data type is
different to arithmetic operations, which are of data type REAL32, and causes data
type conversion to take place at the input and output.

PROG ¡¡r2(INPUT(INT16) in OUTPUT(INT16) out)
NODE valuel, value2
VALUE scale IS 0.684561
VALUE TABLE coeff.a[2] IS [0.444566, 0.675343]
VALUE TABLE coeff.b[2] IS [-0.684389, -0.475112]
BEGIN

REPEAT FOR 100
valuel : = scale * in
value2 : = ((coeff.b[0] *value2Z[1]) + ...

(value2Z[2] * coeff.b[1])) + valuel
ou t:= value2 + ((coeff.a[0] *value2Z[1]) + ...

(value2 Z[2] * coeff.a[1]))
END

Activity profile

minimum cycle time (%)
o earliest execution a latest execution

Figure 8.18

8-23

Speedup vs. number of processors

number of processors, m
o 20MHz a Infinity x Upper bound v Ideal bound

Figure 8.19

The earliest and latest profiles of the program suggest that using in excess of 5
processors would not aid performance. A lower estimate for m is suggested from
the quotient (total task cost / minimum cycle time) which is calculated to be 2.26.

Figure 8.19 illustrates the actual speedup when the program is scheduled onto an
m processor network connected in a chordal ring topology. Speedup, for a link
frequency of 20MHz, peaks at 2.08 when m equals 6. This gain represents 92% of
the upper bound.

Scheduled results are translated into Occam for the case m equals 2. The Occam
program comprises a channel declaration, two procedures and a parallel process
that calls the two procedures. Each procedure consists of declared values, declared
variables, initialisation and a repetitive main body. In common with the source
DFDL program, the main body of both procedures is repeated 100 times. The
second procedure iir202 shows clearly that the DFDL compiler takes advantage
of parallelism between individual communication channels and processor.

Where possible, values and variables are given names that originate from the
DFDL source program. When the source name originates from an array the index
is appended to the name to distinguish between different elements from the same
array. When it is not possible to use a name from the source program then one is
generated automatically. Automatically generated names comprise a head and a
tail. The head consists of three letters, ranging from aAa to zZz. The combination
of upper and lower case letters prevents duplication of reserved words or names
originating from the source program. The tail part of the name identifies the data
type. Variables with automatically generated names are re-used once the data they
contain becomes redundant.

8-24

PROC iir2(CHAN OF INT16 in, out)
{{{ CHANNELS
CHAN OF REAL32 ch.real32.01.1, ch.real32.01.2, ch.real32.01.3s
}>>
{{{ PROCEDURES

{{{ iir201
PROC Ür201(CHAN OF INT16 ch.l,

CHAN OF REAL32 ch.2, ch.3, ch.4)

VAL coeff.b.l IS -0.475111991(REAL32):
VAL scale IS 0.684561014(REAL32):

INT16 ins
REAL32 value1:
REAL32 value2:
REAL32 aAa.real32:
INT INDEX.0:
[2]REAL32 DELAY.0:

SEQ
SEQ i = 0 FOR 2

DELAY.0[i] := 0.0(REAL32)
INDEX.0 := 0

SEQ i = 0 FOR 100
SEQ

aAa.real32 := DELAY.0[(INDEX.0 + 1) REM 2] * coeff.b.l
ch.2 I aAa.real32
Ch.3 I DELAY.0[(INDEX.0 + 1) REM 2]
ch.4 I DELAY.0[(INDEX.0 + 0) REM 2]
ch.l ? in
aAa.real32 := REAL32 ROUND (INT32 in)
aAa.real32 := scale * aAa.real32
valuel := aAa.real32
ch.4 ? aAa.real32
aAa.real32 := aAa.real32 + valuel
value2 := aAa.real32
ch.2 I value2
ch.3 1 value2
INDEX.0 ;= (INDEX.0 + 1) REM 2
DELAY.0[INDEX.0] := value2

}}}

8-25

ch.2 ch. 3
{{{ iir2 02
PROC iir202(CHAN OF REAL32 ch.l,

CHAN OF INTI6 ch.4)

VAL coeff.b.O IS -0.684388995(REAL32):
VAL coeff.a.l IS 0.675342977(REAL32)s
VAL coeff.a.O IS 0.444566011(REAL32):

INTI6 aAa.intl6:
REAL32 aAa.real32:
REAL32 aAb.real32:
REAL32 aAc.real32:
REAL32 aAd.real32:
REAL32 DELAY.0:

SEQ
DELAY.0 := 0.0(REAL32)

SEQ i = 0 FOR 100
SEQ

aAa.real32 s= coeff.b.O * DELAY.0
PAR

PAR
ch.3 ? aAb.real32
ch.2 ? aAc.real32

ch.l ? aAd.real32
aAa.real32 := aAa.real32 + aAb.real32
ch.l 1 aAa.real32
aAa.real32 := aAc.real32 * coeff.a.l
aAb.real32 := coeff.a.O * aAd.real32
PAR

aAc.real32 := aAb.real32 + aAa.real32
ch.3 ? aAd.real32

PAR
aAa.real32 := aAd.real32 + aAc.real32
ch.2 ? aAb.real32

aAa.inti6 := INT16 ROUND aAa.real32
ch.4 l aAa.inti6
DELAY.0 := aAb.real32

>}}
}}}

PAR
iir201(in, ch.real32.01.1, ch.real32.01.2, ch.real32.01.3)
iir202(ch.real32.01.3, ch.real32.01.2, ch.real32.01.1, out)

8-26

&■«
4J

’5!

90

80

70

60

50

40

30

20

10

0 ^
10

Activity profile
(m = 2)

processors

20 30

h input

40 50 60 70

cycle time (%)
o communications

80

f

•
T4-2C Link fi eq. of 0MHz

:i Tc taltask cost = 136u 5

Cycle cost = 87.8u

c!

] 1

- > ij fi
i

/

.
< -

i d
90

output

Figure 8.20

Figure 8.20 illustrates scheduled activity for 2 processors. One interesting obser-
vation is that a significant amount of processing is performed prior to input. This
early processing is carried out in preference to input because the critical path
passes through the feedback path, and the feedback path provides executable
operands from the start of the cycle.

The 2 processor schedule results in a speedup of 1.55. This figure represents 76%
of ideal speedup.

8-27

8.3.3 Wave digital filter

The third example is of a wave digital filter. This filter has a lattice structure which
comprises four structurally identical sections. Each section has two inputs and two
outputs, these are connected to adjacent sections, except at the ends, where they
are taken to the input and output of the algorithm. Each section is described by
the two difference equations

Y i:= Xi + (k * (Xi - X2Z’1))
Y2 : = X2Z '1 + (k * (Xi - X2Z '1))

where Yi and Y2 are outputs and Xi and X2 are inputs.

PROG wdf.4(INPUT(REAL32) in.x OUTPUT(REAL32) out.x
INPUT(REAL32) in.z OUTPUT(REAL32) out.z)

{ { { VALS
NODE node.w[4], node.z[4], node.x[4]
VALUE TABLE coeff[4] IS [0.668, 0.856, 0.386, 0.394]
}}}
BEGIN

REPEAT FOREVER
{ { { 1st stage
% 1 st stage
node.x[0] : = in.x
node.w[0] := (node.z[1]Z[1] - node.x[0]) * coeff[0]
node.z[0] := node.w[0] + node.z[1]Z[1]
out.z: = node.z[0]
}}}
{ { { 2nd stage
% 2nd stage
node.x[1] := node.wfO] + node.x[0]
node.w[1] := (node.z[2]Z[1] - node.x[1]) * coeff[1]
node.z[1] := node.w[1] + node.z[2]Z[1]
}}}
{ { { 3rd stage
% 3rd stage
node.x[2] := node.w[1] + node.x[1]
node.w[2] := (node.z[3]Z[1] - node.x[2]) * coeff[2]
node.z[2] := node.w[2] + node.z[3]Z[1]
}}}
{ { { 4th stage
% 4th stage
node.x[3] : = node.w[2] + node.x[2]
node.w[3] : = (in.z - node.x[3]) * coeff[3]
node.z[3] : = node.w[3] + in.z
out.x := (node.w[3] + node.x[3])
}}}

END

8-28

n
u
m
b
e
r

o
f

p
r
o
c
e
s
s
o
r
s
,

Activity profile

minimum cycle time (%)
o earliest execution a latest execution

Figure 8.21

O

Q-5

20MHz

Speedup vs. number of processors

number of processors, m
a Infinity x upper bound v Ideal bound

Figure 8.22

8-29

PROC wdf(CHAN OF REAL32 in.x, in.z, out.z, out.x)
... CHANNELS
{{{ PROCEDURES
{{{ Wdf01
PROC wdf01(CHAN OF REAL32 ch.l, ch.2, ch.3, ch.4)

__VALS
... VARS
SEQ

... INIT
WHILE TRUE

SEQ
ch.3 t DELAY.1
ch.4 l DELAY.3
PAR

ch.l ? in.x
ch.2 ? in.z

node.x.O := in.x
aAa.real32 := DELAY.2 - node.x.O
ch.3 1 DELAY.0
aAa.real32 := aAa.real32 * coeff.O
node.w.0 := aAa.real32
aAa.real32 := node.w.O + node.x.O
ch.3 1 node.w.O
node.x.l := aAa.real32
aAa.real32 := DELAY.4 - node.x.l
aAa.real32 := aAa.real32 * coeff.l
node.w.l := aAa.real32
aAa.real32 := node.w.l + node.x.l
ch.3 I node.w.l
node.x.2 := aAa.real32
aAa.real32 := DELAY.0 - node.x.2
aAa.real32 := aAa.real32 * coeff.2
node.w.2 := aAa.real32
PAR

PAR
SEQ

aAa.real32 := node.w.2 + node.x.2
ch.3 I node.w.2

ch.4 ? aAb.real32
ch.3 ? aAc.real32

node.x.3 := aAa.real32
aAa.real32 := in.z - node.x.3
aAa.real32 := aAa.real32 * coeff.3
node.w.3 := aAa.real32
PAR

PAR
aAa.real32 := node.w.3 + node.x.3
ch.4 ? aAd.real32

ch.3 ? aAe.real32
aAf.real32 := node.w.3 + in.z
ch.3 ! aAa.real32
node.z.3 := aAf.real32
DELAY.1 := aAb.real32
DELAY.4 := aAe.real32
DELAY.3 := aAd.real32
DELAY.2 := aAc.real32
DELAY.0 := node.z.3

}>}

8-30

{{{ wdf02
PROC wdf02(CHAN OF REAL32 ch.l, ch.2, ch.3, ch.4)

.•. VARS
SEQ

WHILE TRUE
SEQ

PAR
ch.2 ? aAa.real32
ch.l ? aAb.real32

ch.2 ? aAc.real32
ch.2 ? aAd.real32
aAa.real32 := aAd.real32 + aAa.real32
node.z.O := aAa.real32
ch.3 l node.z.O
ch.2 ? aAa.real32
aAa.real32 s = aAa.real32 + aAb.real32
node.z.l s= aAa.real32
ch.2 ! node.z.l
ch.l ! node.z .1
ch.2 ? aAa.real32
aAa.real32 := aAa.real32 + aAc.real32
node.z.2 := aAa.real32
ch.2 1 node.z.2
ch.l 1 node.z.2
ch.2 ? aAa.real32
ch.4 l aAa.real32

}}}
}>>

PAR
wdf01(in.x, in.z, ch.real32.01.2, ch.real32.01.3)
wdf02(ch.real32.01.3, ch.real32.01.2, out.z, out.x)

The latest program profile (Figure 8.21) suggests that using in excess of 8 proces-
sors would not aid performance. A lower estimate for m is suggested by the earliest
profile, 5 processors, and the quotient (total task cost / minimum cycle time) which
is calculated to be 1.44.

Figure 8.22 illustrates the actual speedup when the program is scheduled onto an
m processor network connected in a chordal ring topology. Speedup, for a link
frequency of 20MHz, peaks at 1.28 when m equals 5. This gain represents 89% of
the upper bound. However, speedup is reasonably constant for m greater or equal
to 2.

Scheduled results are translated into Occam for the case m equals 2. The Occam
program comprises a channel declaration, two procedures and a parallel process
that calls the two procedures. Each procedure consists of declared values, declared
variables, initialisation and a repetitive main body. Only the main body is shown
in detail. At the end of first procedure wdf01 the assignment of feedback variables
is clearly visible, since the translator gives these variables the name DELAY.#

8-31

6̂
+-*
t

100

90

80

70

60

50

¡9 40

30

20

10

0

□ processors

10

Activity profile
(m = 2)

20

•
ip ink i req. of MMH:

T)t;Jtas Icost = 249u5

U (i cjcle i me = 189.2uS

1\l < 1 1 tr
-

:___ i a -

L l 1 L 1
30

input

40 50 60 70 80

cycle time (%)
o communication

90

output

Figure 8.23

Figure 8.23 illustrates scheduled activity for 2 processors. One interesting obser-
vation is that of the two outputs, one appears much earlier in the cycle than does
the other. The reason for this is that operands for the earlier output are from
previous cycles (i.e. feedback) and these undergo only a single stage of processing,
whereas the later output relies on the input data rippling through each section.
The algorithm, in its current form, exhibits little parallelism and speedup would
tend to remain low regardless of the number of sections used. One common
method to increase parallelism is to treat the Z ’1 delays as two Z’1/2 delays and
reorganise the distribution of delays so the ripple effect is reduced, this has the
effect of reducing the critical path length.

8-32

83.4 Fast Fourier transform (decimation in time, radix 2)

The DFDL program for a complex fast Fourier transform is based around the
complex butterfly algorithm. An example of the butterfly is illustrated in full below.
The majority of the DFDL FFT program is concealed in folds, since each stage is
structurally the same. When writing the FFT, no attempt was made to optimise the
algorithm, e.g. removal of multiplication when coefficients are 1.0.

The program below illustrates that for every program cycle, two streams of 8 inputs
are read into the algorithm and two streams of 8 values are outputted. The two
input and two output streams consist of real and imaginary data. The real and
imaginary input data is fed into an N/2 wide, log2(N) deep array of butterfly
sections (N = 8). Each input enters the array at an address that corresponds to the
bit reversal of its index. This data shuffle is common to all in place FFT algorithms.

Examining Figure 8.24, the latest program profile suggests that using in excess of
24 processors would not aid performance. A lower estimate for m is suggested by
the earliest profile, 16 processors, and the quotient (total task cost / minimum cycle
time) which is calculated to be 10.71.

Figure 8.25 illustrates the actual speedup when the program is scheduled onto an
m processor network connected in a chordal ring topology. Speedup, for a link
frequency of 20MHz, peaks at 6.4 when m equals 13. This gain represents 60% of
the upper bound. Speedup tends to level off above the region m equals 9.

PROG fft8(OUTPUT(REAL32) real.y[8]
INPUT(REAL32) real.x[8], imag.x[8]
OUTPUT (REAL32) imag.y[8])

... VALS
BEGIN

REPEAT FOREVER
... column 1
{ { { column 2
... butterfly in.a[0][0], in.a[1][0], out.a[0][1], out.a[1][1]
{ { { butterfly in.b[0][0], in.b[1][0], out.b[0][1], out.b[1][1]
real.h[1][1] := (real.b[1][0] * real.cos[2]) - (imag.b[1][0] * imag.sin[2])
imag.h[1][1] := (imag.b[1][0] * real.cos[2]) + (real.b[1][0] * imag.sin[2
real.b[0][1] := real.b[0][0] + real.h[1][1]
imag.b[0][1] := imag.b[0][0] + imag.h[1][1]
real.b[1][1] := real.b[0][0] - real.h[1][1]
imag.b[1][1] := imag.b[0][0] - imag.h[1][1]
}}}
... butterfly in.a[2][0], in.a[3][0], out.a[2][1], out.a[3][1]
... butterfly in.b[2][0], in.b[3][0], out.b[2][1], out.b[3][1]
}}}
... column 3

END

8-33

n
u
m
b
e
r

o
f

p
r
o
c
e
s
s
o
r
s

Activity profile

s

minimum cycle time (%)
o earliest execution a latest execution

Figure 8.24

s'
g.

o 20MHz

Speedup vs. number of processors

number of processors, m
a Infinity x Upper bound v Ideal bound

Figure 8.25

8-34

PROC fft8(CHAN OF REAL32 imag.x, real.x, real.y, imag.y)
. . . CHANNELS
{{{ PROCEDURES
... fft801
{{{ fft802
PROC fft802(CHAN OF REAL32 ch.l, ch.2, ch.3, ch.4)

. . . VALS

. . . VARS
SEQ

WHILE TRUE
SEQ

... Page - 1

... Page - 2

... Page - 3
{{{ Page - 4
ch.l ! real.a.2 . 1
ch . 3 I real.b.2 . 0
PAR

ch.l ? aAa.real32
ch.3 ? aAb.real32

ch.3 1 imag.h.2.0
ch.4 ? aAe.real32
aAe.real32 := aAe.real32 * real.cos.2
aAc.real32 := aAe.real32 + aAc.real32
imag.h.1.1 := aAc.real32
aAc.real32 : = real.b.2.0 - aAd.real32
real.b.3.1 := aAc.real32
aAc.real32 := real.b.3.1 * imag.sin.3
aAd.real32 := real.b.3.1 * real.cos.3
ch.3 1 imag.h.1.1
ch.l 1 imag.h.1.1
aAa.real32 := real.x.0 - aAa.real32
real.b.0.0 := aAa.real32
ch.3 ! real.b.0.0
ch.l 1 real.b.0.0
>}}
... Page - 5
. .. Page - 6
... Page - 7

}}}
... fft8 03
... fft8 04
}}}
PAR

fft801(ch.real32.01.0, imag.x, ch.real32.01.2, ch.real32.01.3)
fft802(ch.real32.01.3, real.x, ch.real32.02.2, ch.real32.02.3)
fft803(ch.real32.02.3, ch.real32.01.2, real.y, ch.real32.03.3)
fft804(ch.real32.03.3, ch.real32.02.2, imag.y, ch.real32.01.0)

8-35

Activity profile

cycle time (%)
□ processors +■ input o communications a output

Figure 8.26

The Occam translation and Figure 8.26 illustrate scheduled activity for 4 proces-
sors. The majority of the program is hidden inside folds, since it is in total some 12
pages long. The results for m equals 4 is a speedup of 3.1 which represents 77.5%
of ideal speedup. The activity schedule shows that the four processors have a
reasonably high utility throughout the cycle time.

8-36

83.5 Multiple cycle finite impulse response filter

In the example that follows, the 8 tap FIR filter described in section 8.3.1 is
re-written such that the algorithm describes a multiple number of cycles. Func-
tionally, the two algorithms are similar, in that they produce the result

outk : = (co * inZ‘(k+0)) + (ci * inZ '(k + 1)) + ... + (c? * inZ‘(k+7))

Fir8x8 describes 8 complete cycles, which allows the scheduler to exploit paral-
lelism between successive cycles and the increased value n reduces integer effect

PROG fir8x8(INPUT(INT32) in[8] OUTPUT(INT32) out[8])
NODE value[8] [8]
VALUE TABLE coeff[8] IS [0.0380602, 0.1464466, 0.3086582, 0.5000000,

0.6913417, 0.8535533, 0.9619397, 1.0000000]
BEGIN

REPEAT FOREVER % Multiply delayed Inputs by coefficients
value [0] [0] : = coeff[0] * in[0] % then sum the products
value[i FROM 1 FOR 7] [0] : = coeff[i FROM 7 FOR 7 EVERY -1] * ...

in[i FROM 1 FOR 7]Z[1]
valueO FROM 0 FOR 2][1] : = coeff[j FROM 1 FOR 2 EVERY -1] * ...

in[j FROM 0 FOR 2]
value[j FROM 2 FOR 6][1] : = coeff[j FROM 7 FOR 6 EVERY -1] * ...

in[j FROM 2 FOR 6]Z[1]
value[k FROM 0 FOR 3] [2] : = coeff[k FROM 2 FOR 3 EVERY -1] * ..

in[k FROM 0 FOR 3]
value[k FROM 3 FOR 5][2] : = coeff[k FROM 7 FOR 5 EVERY -1] * ..

in[k FROM 3 FOR 5]Z[1]
value[m FROM 0 FOR 4][3] : = coeff[m FROM 3 FOR 4 EVERY -1] *

in[m FROM 0 FOR 4]
value[m FROM 4 FOR 4][3] : = coeff[m FROM 7 FOR 4 EVERY -1] *

in[m FROM 4 FOR 4]Z[1]
value[n FROM 0 FOR 5][4] : = coeff[n FROM 4 FOR 5 EVERY -1] * ..

in[n FROM 0 FOR 5]
value[n FROM 5 FOR 3] [4] : = coeff[n FROM 7 FOR 3 EVERY -1] * ..

in[n FROM 5 FOR 3]Z[1]
value[p FROM 0 FOR 6][5] : = coeff[p FROM 5 FOR 6 EVERY -1] * ..

in[p FROM 0 FOR 6]
value[p FROM 6 FOR 2][5] : = coefffp FROM 7 FOR 2 EVERY -1] * ..

in[p FROM 6 FOR 2]Z[1]
value[q FROM 0 FOR 7][6] : = coeff[q FROM 6 FOR 7 EVERY -1] * ..

in[q FROM 0 FOR 7]
value[7] [6] := coeff[7] * in[7]Z[1]
value[r FROM 0 FOR 8][7] : = coeff[r FROM 7 FOR 8 EVERY -1] * ...

in[r FROM 0 FOR 8]
out[h FROM 0 FOR 8] := ...

SUM(value[i FROM 0 FOR 8][h FROM 0 FOR 8])
END

8-37

s
p
e
e
d
u
p

n
u
m
b
e
r

o
f

p
r
o
c
e
s
s
o
r
s

Activity profile

minimum cycle time (%)
o earliest execution a latest execution

Figure 8.27

Speedup vs number of processors

number of processors, m
□ fir8@ 20M H z a fir8x8@ 20M H z v Ideal bound

Figure 8.28

8-38

PROC fir8x8(CHAN OF INT32 in, out)
... CHANNELS
{{{ PROCEDURES
{{{ fir8x801
PROC fir801(CHAN OF ANY ch.l,

CHAN OF INT32 ch.2,
CHAN OF ANY ch.3,
CHAN OF REAL32 ch.4)

... VAL

. . . VAR
SEQ

INIT
WHILE TRUE

SEQ
... Page - 1
... Page - 2
... Page - 3
... Page - 4
... Page - 5
... Page - 6
{{{ Page - 7
aAe.real32 := aAf.real32 + aAe.real32
ch.4 I DELAY.8
aAa.int32 := INT32 ROUND aAe.real32
ch.l I aAa.int32
aAe.real32 := coeff.7 * DELAY.12
ch.l I DELAY.1
value.5.4 := aAe.real32
aAe.real32 := value. 4.4 + value . 5.4
PAR

ch.3 I aAe.real32
ch.l ? aAf.real32

ch.3 ! DELAY.8
aAe,real32 := coeff.6 * DELAY.8
value.7.5 := aAe.real32
aAe.real32 := coeff.7 * DELAY.1
ch.l I value.6.6
value.6.5 := aAe.real32
aAe.real32 := value.6.5 + value.7.5
ch.l ! aAe.real32
DELAY.3 := aAf.real32
>>}
. .. Page - 8

>}}
... fir8x802
... fir8x803
... fir8x804
... fir8x805
>>}
PAR

fir8x801(ch.any.01.0, in, ch.any.01.2, ch.real32.01.3)
fir8x802(ch.real32.01.3, ch.real32.02.1, ch.any.02.2, ch.any.02.3)
fir8x803(ch.any.02.3, ch.any.01.2, ch.real32.03.2, ch.any.03.3)
fir8x804(ch.any.03.3, ch.any.02.2, out, ch.any.04.3)
fir8x805(ch.any.04.3, ch.rea!32.03.2, ch.real32.02.1, ch.any.01.0)

8-39

Activity profile

processors input
cycle time (%)

o communications output

Figure 8.29

Figure 8.27 shows the impact on the algorithm’s activity profile when 8 cycles are
combined together. For example, the peak number of processors has risen from
15 processors (Figure 8.15) to 54 processors. This, along with the low increase in
minimum cycle time, shows a significant increase in parallelism over the original
algorithm.

The earliest and latest profiles (Figure 8.27) now tend to look similar. This
indicates that there are many paths running through the algorithm that are critical,
or lie close to the critical path, and suggests that the minimum cycle time will be
difficult to attain.

Figure 8.28 compares the speedup for the single cycle algorithm (fir8) to the
speedup for the multiple cycle algorithm (fir8x8). The multiple algorithm shows
an increase in speedup from 2.2 to 5.8. Even when m is equal to 5, the speedup is
3.8 for the multiple case as opposed to 2.2 for the single case. The results from
Figure 8.29 confirm the improvements in efficiency, by revealing an increased
degree of processor utility.

8-40

One problem that may arise from using multiple cycle algorithms is that input and
output events are not synchronised to regular time intervals, but operate on the
principle of maintaining a sequential order. This may cause some difficulties and
give rise to timing interference between I/O and scheduled algorithm. A solution
to this problem would be to assign relative timings to all elements of input streams,
which would specify the earliest and latest time that data could be inputted. Output
timings would be a function of the input timings and the scheduled algorithm.

8-41

Chapter 9. Conclusions

Parallel processing, unlike sequential processing, introduces many viable, alterna-
tive routes to implementation. In the introduction, three distinct operations along
the route to implementation were identified, these being parallelism definition,
program partitioning and program-resource scheduling. These three operations
are ordered and take place during distinct intervals; design-time, compile-time or
run-time. The specific interval when an operation is performed characterises an
implementation and so determines the implementation strategy.

An exclusively "compile-time" implementation strategy has been adopted and
described by this thesis. Amongst the reasons outlined in the introduction, the
justification for adopting this strategy was to circumvent the inefficiencies caused
by poor process-processor allocation (design-time implementations) and schedul-
ing overheads (run-time implementations).

This chapter summarises the implementation approach and concludes on its
effectiveness. The final section suggests possible directions for future work.

9.1 Implementation summary

A brief summary of each step in the implementation strategy is now given. Most
of the information contained in this section has been extracted from previous
chapters.

9.1.1 Algorithm characteristics

The characteristics of discrete (cyclic) algorithms were reviewed in chapter 2, this
illustrated the discreteness, complexity, memory, structure and composition of a
discrete algorithm. The rules have been established for maintaining synchronisa-
tion between algorithm and input device, and algorithm and output device in a
real-time system, which has shown that an algorithm must be deterministic if it is
intended for a real-time system.

The algorithm has been expressed as comprising a set of disjoint tasks, whose
complexity influences the granularity of the set. The cost (or execution time) of
different task types was chosen to be small (i.e. low complexity tasks), hence an
algorithm can be viewed as being composed of many medium-fine grain tasks. The
alternative to this would have been a coarse grain structure, made up from a few
complex tasks. A medium-fine grain structure was shown to have an advantage
over coarse grain structures, in that a potentially high degree of parallelism can be
represented. This approach does not preclude the advantage of low communica-
tion overhead offered by coarse grain structures from being utilised, since tasks
can join together at some later time where it is advantageous to do so.

9-1

9.1.2 Algorithm representation

It has been shown that a discrete algorithm can be represented by a graph, G =
(T, C, B, E, A), which is transitive, irreflexive and asymmetric. These characteristics
ensure the graph is both directed and acyclic (i.e. a directed acyclic graph, or
DAG). A DAG describes a single cycle of a discrete, deterministic algorithm and
is completely equivalent to the algorithm both in terms of function and structure,
hence any parallelism is preserved.

A DAG has been shown to comprise nodes and arcs, these represent tasks and
execution precedence respectively. Once costs have been assigned to those nodes
representing tasks, the critical path method (CPM) can be applied to the graph G.
CPM produces the earliest and latest start times for all tasks in T and gives the
earliest overall cost of completion for an algorithm free from resource constraints.
Results from the CPM are to be used for analysing the DAG, with a view to
scheduling the tasks onto processors.

9.1.3 Language description

In order to facilitate algorithm description, in a form that is compatible to a DAG,
a new programming language was developed. The design of the language, known
as Digital Filter Description Language (DFDL) is based on the single-assignment
rule, which conforms to the deterministic nature of a DAG. Single-assignment has
been shown to have many effects, one of which is to preserve algorithmic structure
and hence parallelism. Other effects have shown an influence on programming
constructs, such as conditionals and repetitive constructs.

Program flow has been modelled on the repetitive input-process-output (or
generate-output) cycle of a discrete algorithm. This has made DFDL suitable for
describing deterministic, discrete processes (i.e. sampled systems) that have zero
or more inputs and one or more outputs. More complex programs, which have
different sample periods, can be described as separate parallel programs that are
joined via their external input and output. The DFDL model of computation does
not support nested programs.

External input and output have explicit data types (BYTE, INT16, INT32,
REAL32.) and supports streams with up to two dimensions. A stream defines the
number of inputs/outputs made over each program cycle. Internal variables (or
more correctly, objects) are called nodes. Nodes have a fixed REAL32 data type.
Type conversion is necessary wherever an input/output data type is non-REAL32,
this is carried out implicitly. Constants are also type REAL32, and are declared as
scalars, tables or expressions. DFDL’s internal floating point data type facilitates
the passing of run-time error messages, which provide a useful method of error
tracing.

9-2

DFDL does not support procedures, but does include user-defined functions
which provide a degree of abstraction. Within a function, all operands are passed
as formal parameters or are declared within the function. Operands and objects
declared within a function are only in scope within that function. Functions are
used as operands and their result is a single value. A function can only be instanced
after it has been declared, this prevents recursion, a feature which is not supported
by DFDL.

A comprehensive range of arithmetic operators and standard functions are in-
cluded in DFDL’s syntax. Several special functions facilitate the addition,
multiplication, mean, median, maximum and minimum of two or more operands.
These functions are translated into maximally parallel structures.

DFDL restricts repetition to two cases. The first is a single program loop which
constitutes the repetitive nature of the discrete algorithm, while the second
facilitates operation upon multiple streams of data. The second form of repetition
adheres to the single-assignment rule and is an efficient way to describe multiple
operation on arrays.

The single-assignment rule requires that all declared objects and outputs are
assigned once only. The conditional construct adheres to this rule by having a single
object that is assigned from one of a number of expressions. Another result of
single-assignment is the difficulty of assignment using operands from previous
cycles. This difficulty was overcome by incorporating a Z operator into the lan-
guage, this is appended to an operand to signify that data is from past program
iterations. The number of past iterations is defined by indexing Z. A summary of
DFDL’s syntax is given in Appendix B.

9.1.4 Task graph

Chapter 5 described the data structures of those nodes comprising G. The low
in/out-degree of these nodes (except B and E) is shown to produce a sparsely
connected DAG, which can be realised using a doubly linked list whose length is
proportional to |T | + |C |.

The different types of nodes (task primitives) have been described in terms of their
in/out-degree, their worst case execution cost and their function (i.e. task primitive
name). These nodes are used to create a connected graph structure (the DAG),
as directed by a DFDL program.

Transformation from program to graph falls into three different categories of
graph structure. The first includes external input/output, node and constant graph
structures. The nodes which comprise these structures have been classified as
named nodes, because they correspond to named elements in the program and
form the skeleton of the DAG. The second category includes all graph structures
that are primitive (simple nodes), which reflect simple or part transformations.
Finally, more complex graph structures have been described, each using several
primitive nodes.

9-3

9.1.5 Processor graph

A parallel processing model representing a loosely coupled Transputer based
architecture has been described in chapter 6. The two resources important to
scheduling were identified, namely processing and communications. The model
has been shown to consist of two parts: (i) a processor graph V = (P, I, O, L) (based
mainly on the two resource types) and (ii) |L | + |P | activity schedules, S = {Si,

Sq}. The processor graph gives a spatial representation of the machine (i.e.
topology), while the activity schedules give a temporal representation (i.e. ac-
tivity). The data structures for both parts of the model have been presented and
illustrated using examples.

The latter part of chapter 6 has concentrated on the processor graph and the rules
governing nodes and arcs that comprise the graph. Input and output have been
included and the minimum system realisation has been defined which complies
with that of DFDL. Finally, the problems accorded to building the graph have been
discussed, this has been shown to create isolated nets unless precautions are taken.
A solution to net isolation has been presented in the form of a three stage
algorithm. The algorithm examines the graph whenever an arc is proposed,
producing a boolean result which indicates whether or not net isolation would
occur if the arc were established.

9.1.6 Compile-time scheduling

The merits and limitations of deterministic, compile-time scheduling have been
discussed in chapter 7. Three different classes of scheduling have been illustrated;
list scheduling, non pre-emptive scheduling and pre-emptive scheduling, and it
was found that the non pre-emptive class is best suited to deterministic, compile-
time scheduling.

Two major performance measures, schedule length and lateness, have been intro-
duced and the relationship between these and the relationship between
throughput and latency was discussed. The former measure is used in the definition
of the scheduling problem, which is essentially a problem of schedule length
minimisation.

The complexity of the scheduling problem has been investigated for different
constraints on T and P, and the problem was found to have a number of solutions
that is exponential of order n. To show the effect this has on inefficient algorithms
that attempt to solve the problem, an exhaustive enumeration approach was
illustrated. The problem was shown to be computationally intractable when using
this type of algorithm. This result is reinforced by previous results which classify
the problem as NP-complete.

9-4

Three basic heuristic search strategies, backtracking (BT), hill-climbing (HC) and
best-first (BF) were introduced. The characteristics of each search strategy were
discussed and it was considered necessary to introduce irrevocable scheduling
decisions to ensure that time complexity became polynomial in n (the number of
tasks). However, this step was shown to relinquish the guarantee of an optimal
solution being found.

The final part of chapter 7 described the design of a hybrid HC BT-BF scheduling
algorithm. At the heart of the algorithm is a heuristic, which guides the search
strategy and so determines the scheduling decisions. Two heuristics have been
compared, a minimum length heuristic and a minimum lateness heuristic. Each
heuristic originates from its respective performance measure. The minimum
lateness heuristic was shown to produce superior results. The reason for this being
that the heuristic uses information from the CPM algorithm, which imparts
"knowledge" of what lies ahead and so allows the algorithm to prioritise tasks
accordingly. Chapter 7 concluded with a derivation for the scheduling algorithm’s
time complexity, which confirms it as polynomial in n, of order 2. This theoretical
result has been confirmed by practical measurements made during the experimen-
tal results.

9.2 Concluding remarks

We now comment on both the expected performance and actual performance, and
conclude on the effectiveness of the implementation strategy and the language
DFDL.

9.2.1 Performance bounds

The CPM algorithm generates a value for the critical path cost. This cost defines
the minimum time in which one cycle of a program can be executed. It also defines
the maximum throughput (1 / critical path cost) and maximum possible speedup
(total task cost / critical path cost) using parallel processing. Since this cost is
treated as our goal, it is important to examine its origins.

Critical path cost is defined as the longest path through the graph G, from node B
to node E. The duration of the critical path cost is dependent on how tasks are
arranged (algorithm structure) and the cost of the tasks. Clearly, the algorithm’s
structure is dependent on the how the programmer describes the algorithm and
the nature of the algorithm itself. Program language plays a large part in facilitating
description, hence it is important to present a programmer with a language
medium that allows him/her to concentrate on the application and not the im-
plementation. Hopefully this has been achieved by DFDL.

9-5

Task complexity is determined by the particular partitioning strategy adopted.
Chapter 2 described the partitioning strategy applied to DFDL programs when
creating a task graph, G. Partitioning was shown to produce tasks with medium-fine
grain complexities, which allows parallelism to be expressed between low cost
tasks. To complement this, complex functions (SUM, PROD, etc.) are partitioned
into maximally parallel structures.

Overall, the partitioning strategy aims to create a task graph that is maximally
parallel and has minimal a cost critical path. The result of this approach is that
potential speedup tends to be maximal. This would not be the case if, for example,
a coarse grain partitioning strategy were to have been employed. It should be noted
that when the value for maximum possible speedup is greater than the number of
processors, m, for a particular scheduling problem, then the upper bound for
speedup is m.

9.2.2 Factors affecting performance

Experimental results show that performance is often less than that defined by the
performance bounds. Failure to attain the maximum potential speedup can be
attributed to one, or more, of six effects, most of which have been described in
chapter 8. The degree of speedup degradation due to some of these effects has
been shown to be predictable.

9.2.2.1 Irrevocable scheduling

The first of these effects was discussed in chapter 7, and is due to the non-optimal
nature of the scheduling algorithm. Non-optimality is caused by the need to take
irrevocable scheduling decisions.

The noticeable effect of irrevocable scheduling is that the immediate predecessors
to output tasks are often poorly scheduled. This only occurs when communication
cost is non-zero. The reason for this poor scheduling is that an output task is
pre-allocated a processor prior to scheduling and the scheduler places preceding
tasks without consideration for this pre- allocation. The degree of degradation due
to this effect is difficult to quantify, however, judging from the results it is probably
small when compared to other effects. Suggestions for eliminating this source of
inefficiency are given in section 9.3.3.

9.2.2.2 Integer effect

Integer effect occurs whenever n / m produces a remainder. The severity of this
effect on speedup reduces as n becomes large in comparison to m. Integer effect
has been shown to produce a maximum degradation in speedup of 50% when the
value m approaches n, however, degradation will be small provided n > > m.
When a schedule is severely affected by integer effect, one solution is to re-write
the algorithm so it describes several cycles. This increases the value of n, while the
number of processors can remain the same. An example of this technique was given
in section 8.3.5, and was shown to improve speedup considerably.

9-6

9.2.23 Synchronisation and latent scope effects

Synchronisation and latent scope effects are products of the Occam language,
which are produced by the scheduler in order that schedules can be translated into
Occam. The first of these effects is caused by Occam’s unbuffered, synchronised
communication, which requires that both sender and receiver synchronise prior
to passing data. This effect often introduces delay in communication.

Latent scope effect occurs when communication channels are held in scope while
they are inactive. This is caused by Occam’s inability to express non-nested,
overlapping parallelism. This effect tends to reduce the available communication
bandwidth.

Both these effects are proportional to the number of communications made and
have been shown (section 8.2) to degrade maximum potential speedup by between
5% and 25%. Removal of these effects would only be possible if the
Occam/Transputer model of computation were replaced by a true data-driven
computational model.

9.2.2.4 Communication cost and topology effects

Communication cost effect can only occur when communication cost is non-zero
and there exists an actual topology (i.e., m > 1). The degree of communication
cost effect depends on the processor-communications cost ratio. An increase in
the cost of communication relative to the cost of processing tends to impede the
spread of data from one processor to another. This leads to a reluctance by the
scheduler to exploit parallelism and so produces task coagulation. The effect is
similar to using coarser grain tasks. Experimental results (section 8.2.4) have
shown that there is a low speedup degradation (i.e., less than 5%) for ratios above
10:1, while degradation becomes severe (i.e., greater than 15%) when the ratio
falls below 5:1.

The topology of the communications network has a definite effect on performance,
this has been shown in section 8.2.5. The degree of topological effect has been
shown to rely on m, mean degree and mean diameter of the topology. For example,
a device such as the Transputer T4-20/20, which has a maximum mean degree of
four, produces a topological degradation of 50% when the product of m and mean
diameter is 88 (taken from Figure 8.14). Since mean diameter tends to increase
with m, then m is probably limited to about 25 in this example.

9-7

9.23 Conclusions on performance

On average, the examples given in chapter 8, yield speedups of between 50% and
80% of their maximum bound. About half this loss is attributable to non-zero
communication cost and topological effects. Variation in speedup from one value
of m to the next can on occasions be considerable. Such large swings are thought
to be caused by the more non-linear effects, namely integer, synchronisation and
latent scope effect.

The results highlight the importance of communication bandwidth, which if inade-
quate will restrict the number of processors that can be usefully employed and
hence, limit the degree of parallelism that can be exploited. This point is particular-
ly relevant when using devices whose processing power vastly outweighs their
ability to communicate (e.g., T8 Transputer). Perhaps, one can conclude that the
current floating point Transputer is more suited to coarse grain parallelism, indeed
this is the manufacturers intention (INMOS, 1986). For the future, it is hoped that
manufacturers will realise the potential of fine grain parallelism and concentrate
their efforts on increasing communication bandwidth. Suggestions include a move
from serial to parallel communication and an increase in the number of links per
device.

The Occam/Transputer model of computation has been shown to incur zero-cost
communication penalties. To the best of the author’s knowledge, neither
synchronisation nor latent scope effects have been previously reported. The
elimination of these effects may necessitate a move away from the parallel von
Neumann machine to a static dataflow machine. However, an alternative solution
lies in a re-design of the Transputer’s architecture, which is typically von Neumann,
and as such communicates across a single instruction/data bus.

9.2.4 Conclusions on DFDL

The use of DFDL has been illustrated by example, and descriptions have been
given in chapters 3 and 4. Generally, a language’s suitability to describe an
algorithm depends on the language’s facilities, its syntax, its computational model
and the way a programmer interacts with the language. The deterministic nature
of DFDL does deny a programmer much of the freedom he/she is used to, however,
the author sees this as another step in the write direction, rather like the introduc-
tion of structured languages and the abolition of the GOTO statement.

The fact that DFDL is deterministic means that it is only possible to describe
realisable systems. This feature has distinct advantages. For example, DFDL could
be used as a high level interface to a VLSI automated process for the design of
integrated circuits. Similarly, the deterministic nature also permits a simple inter-
face to alternative mediums, such as graphics. Conversely, deterministic graphical
descriptions may be described in a textural form by DFDL.

9-8

9 J Future work

In common with most research work, there are outstanding problems, unanswered
questions and unfinished work. This section discusses some of these items.

93.1 Reducing scheduling time

The current complexity of the scheduler is O (n). Reduction below this com-
plexity is unlikely, unless the quality of scheduling is to be forfeit. However, when
large task graphs are scheduled the scheduling time may be considered prohibitive.
In such cases, provision should be made to divide the graph into several sub-graphs.
The division between one sub-graph and another could be made through arcs that
form simple cuts.

Another option, which is particularly relevant, is to employ parallel processing on
the computationally intensive parts of the scheduling algorithm. This could be
achieved reasonably easily, since the scheduler is a highly parallel algorithm.

93.2 Reducing scheduling memory

Currently, the scheduler loads all the data structures (e.g., task graph, processor
graph and schedules) into RAM memory. This causes memory overflow when
problems are large. An alternative approach would be to off-load areas of the task
graph and schedules on to disk memory.

Other approaches could also be considered. One of these would be to interlace
task graph construction, analysis, scheduling and translation. However, this would
be difficult, since analysis (i.e., CPM) requires that the entire graph is available.

9 3 3 Improving the scheduler

Essentially, the scheduler works well and gives good results, however, there are
areas that could be improved. One of these has been described in section 9.2.2.,
and concerns fixed location output tasks. One solution would be to allow output
tasks to be scheduled on any processor. This solution is discounted, since an output
relates to a physical link. An alternative solution would be to weight the scheduling
heuristic so it accounted for the fixed output. Weighting would be confined to the
portion of the task graph preceding the output task (i.e., lying close to and on a
backwards arborescence from the output). The weighting applied to each task
would decrease in proportion to its distance from the output task, and increase in
proportion to the length of the shortest path between the task’s processor and the
output task’s processor.

9-9

9.3.4 DFDL program linker

Individual DFDL programs can be connected together via their external input/out-
put, provided data types are compatible. When an input and output from different
programs are connected, then the number of cycles one program performs relative
to the other is determined by the relative number of inputs/outputs made per cycle.
Where more than one channel exists between programs, directly or indirectly, then
the cyclic ratio must be consistent otherwise programs will deadlock. All these
checks could be performed by a linker.

Normally, the linker would assume that programs are to run on separate devices.
Where this is not the case, then programs would have to be linked prior to
scheduling.

Finally, the task graph analysis assumes that I/O is free from external timing
constraints. Clearly, this will not be the case when two or more separate DFDL
programs are linked, since there will be timing interaction via their joint I/O. This
would necessitate either some prefixed timing specification, composite scheduling
or a progressive scheduling scheme that extracted timing information from adjoin-
ing scheduled programs. The consequence of neglecting this problem may cause
a loss in throughput from one or more programs when joined together.

9.3.5 Inputs and outputs

The current implementation does not allow multiple input declarations, or multi-
ple output declarations or mixed inputs and outputs to share the same physical
link. This was done to simplify I/O. However, it is feasible that mixed I/O could be
employed in practice.

9.3.6 Language model

The current implementation of DFDL does not include conditional statements,
boolean operators, relational operators, user defined functions, the functions
MED, MAX or MIN, user defined initialisation, boolean communication, or
constant expressions. Although provision has been made for most of these items
in the compiler, work is still required. Other items that could be included in the
language are double length floating point arithmetic and possibly complex arith-
metic. It is preferred to keep DFDL’s internal data as some form of floating point,
since this can convey run-time error information.

Other syntax additions may be needed for combining separate DFDL programs.
Section 9.3.8 suggests some syntax additions to include a textural definition of the
processor graph.

9-10

93.1 Deadlock avoidance

Deadlock avoidance has not been built into the current version of the scheduler.
Consequently, it is possible that the Occam produced by the DFDL compiler will
fail to run. On the occasions when this occurred, it was when there were multiple
channels joining two processors, and communication had been scheduled in
opposite directions at about the same time. Further investigation is needed into
this problem, however, it is thought that the problem may be overcome if the
scheduler first examines adjacent communication channels before establishing a
communication.

The extent of deadlock may not be restricted to conflicts between two processors,
but may involve any number of connected processors. Any comprehensive dead-
lock avoidance scheme would have to take this into account.

93.8 Processor graph definition

Currently, the processor graph is constructed from information entered from the
keyboard by the user during compile-time. The user interface allows pre-selected
topologies to be created easily, however, it may take several minutes to create a
topology that is not included on the menu. It is suggested that an alternative source
of information be provided. That is, parameters for the processor graph could be
expressed as a program, for example:

{ { { file, name
... DFDL -- fold containing program
{ { { PROG
BEGIN

PROC IS T4
CLOCK FREQ IS 20MHz
LINK FREQ IS 10MHz
NUMBER IS 4

COST OF TASKS IS STANDARD
AUTOCONNECT IS OFF

P1, L1 IS INPUT in
P1, L3 IS P2, L1
P1, L4 IS P4, L2
P2, L4 IS P3, L2
P2, L2 IS P4. L1
P3, L3 IS OUT out
P3, L1 IS P4. L3

END
}}}
}}}

9-11

Appendix A. Graph concepts and definitions

Some concepts and definitions of graphs are presented to avoid ambiguity over
the use of these terms. The following references have been used to compile this
appendix: (Minieka, 1978; Hetch, 1977; Glaser, Pyle and Illingworth, 1986).

Agraph can be considered as consisting of points, or some other objects in a plane,
connected together by a number of relationships. These relationships could be
represented by lines, or arrows, connecting relevant points. Usually, points are
called nodes (or vertices) and these are given labels, e.g., xi, X2, etc. The relationship
that connects any two nodes characterises the graph and this relationship may be
directed or undirected. It is usually convenient to represent directed relationships
by a line with a single arrow head and undirected relationships by a line (or line
with arrow head at either end).

Relationships between nodes are called arcs and are often written using the labels
associated with the connecting nodes, e.g., (xi, X2). Where the relationship is
directed, node xi is called the tail and X2 the head, and the order in which they are
written is important. If there is more than one arc connecting two nodes and the
direction is the same then these may be distinguished by subscripting arcs, e.g., (xi,
X2)l, (xi, X2)2.

When a graph represents a problem that does not need directed relationships
between nodes then the graph is called an undirected graph. The undirected arcs
that make up this type of graph are called edges. The two types of graph, directed
and undirected, are distinguished from one another by their notation; (X, E) is
used to denote an undirected graph with node set X and edge set E, and (X, A)
denotes the directed graph with node set X and arc set A.

Often, the term network is used, here it is merely a graph with one or more numbers
associated with each arc, or node. A network is not necessarily a directed graph,
but does refer to graphs that are connected.

An arc that has both the same tail and head node is called a loop. A node and an
arc are said to be incident to one another if the node makes up the tail, or head or
the arc. Two arcs are said to be incident to one another if they are both incident to
the same node. Two nodes are said to be adjacent to one another if there is an arc
joining them.

Consider the sequence xi, X2, X3,..., xn, xn + 1 of nodes. A chain is any sequence of
arcs ai, a2, ..., an such that the end points of ai are xi and xi+i for i = 1, 2,..., n.
Thus, either ai = (xi, xi + 1) or ai = (xi + 1, xi). Node xi is called the initial node of
the chain and node xn + 1 is called the terminal node of the chain. The chain is said
to extend from the initial node to the terminal node. The length of the chain equals
the number of arcs in the chain.

A-l

A path is a chain for which ai = (xi, xi+i) for i = 1 , 2 , 3 , n. The length, initial
node and terminal node can be defined similarly. A cycle is a chain whose initial
and terminal node are the same. A circuit is a path whose initial and terminal nodes
are the same. The length of a cycle or circuit is defined as the length of the
corresponding chain. A chain, path, cycle or circuit is called simple if no node is
incident to more than two of its arcs, i.e., if the chain, path, cycle or circuit properly
contains no cycles.

A graph is called connected if there is a chain joining every pair of distinct nodes
in the graph. A graph may be regarded as consisting of a set of connected graphs.
Each of these connected graph is called a component or the original graph. A graph
is called strongly connected if for any two nodes x and y in the graph, there is a path
from x to y.

Let X’ be any subset of X, the node set of graph G = (X, A). The graph whose node
set is X’ and whose arc set consists entirely of arcs in A with both end points in X’
is called the subgraph generated by X ’.

Let A’ be any subset of A, the arc set of graph G = (X, A). The graph whose arc
set is A’ and whose node set consists entirely of nodes that are incident arcs in A’
is called the subgraph generated by A ’.

A set of arcs is called a tree if it satisfies two conditions:

(i) The arcs generate a connected subgraph

(ii) The arcs contain no cycles.

A forest is any set of arcs that contains no cycles. Thus, a forest contains one or
more trees. A spanning tree of a graph is any tree formed from the arcs of the graph
that includes every node in the graph. Clearly, no spanning tree can exist in a graph
that contains more than one component, and every connected graph possesses a
spanning tree. A tree with one arc contains two nodes, a tree with two arcs contains
three nodes, etc. In general, a tree with n-1 arcs must contain n nodes. Hence, each
spanning tree of a connected graph with n nodes consists of n-1 arcs.

A set of arcs whose removal from the graph increases the number of components
in the graph is called a cut. A cut that contains no other cuts as a subset is called a
simple cut.

An arborescence is defined as a tree in which no two arcs are directed into the same
node. Note, several arcs in an arborescence can share a common tail node. An
arborescence can be thought of as a directed tree that can be used as a grapevine.
The root of an arborescence is the unique node included in the arborescence that
has no arcs directed into it.

A-2

Appendix B. EBNF description of DFDL

There are two extended Backus-Naur form descriptions in this appendix. The first
describes the lexical part of DFDL, while the second part describes the syntax of
DFDL. All lines preceded by an asterisk are not implemented in this version of
DFDL; DFDL(mod.state 1/90).

B.l EBNF description of DFDL lexical analyser

non.alphanumeric.char;; = | ! | | | " | £ | $ | % | ~ | & | * | (|) | _ | +
! = | { | [| } |] | : | ; l @ r i ~ l # l . | . | > l < l ? | / | \ l I -

digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0
Ic.letter ; ; = a | b | c | d | e | f | g | h | i | j | k | l | m
| n | o | p | q | r | s | t | u | v | w | x | y | z

uc.letter ; ; = A | B | C | D | E | F | G | H | I | J | K | L | M
| N | 0 | P | Q | R | S | T | U | V | W | X | W | Z

letter ;;= uc.letter \ Ic.letter
return:: = *c
comment:: = % { o (digit \ letter \ non.alphanumeric.char)} (return | %)
exponent:: = E monadic.op { 1 digit}
real ::= [monadic.op] { 1 digit} . {1 digit} [exponent]
integer:: = [monadic.op] {1 digit}
monadic.op :: = + | -
¡dent:: = Ic.letter { o Ic.letter | digit \ . }
reserved.word:: = { 1 uc.letter}
delimiters:: = delim.assign \ delim.plus | delim.minus | delim.mult
| delim.divide \ delim.power \ delim.rem \ delim.lt \ delim.not.equal
| delim.gt \ delim.lt.eq | delim.gt.eq \ delim.equal \ delim.continued
| delim.lh.bracket \ delim.rh.bracket \ delim.lh.square \ delim.rh.square
| delim.comma | delim.semi.colon

B-l

delim.assign :: = : =
delim.plus :: = +
delim.minus :: = -
delim.mult ::= *
delim.divide :: = /
delim.power :: = **
delim.rem :: = \
delim.lt :: = <
delim.not.equal :: = < >
delim.gt::= >
delim.lt.eq :: = < -
delim.gt.eq :: = > =
delim.equal :: = =
delim.continued ::= { 2 . }
delim.Ih.bracket :: = (
dellm.rh.bracket :: =)
delim.Ih.square :: = [
delim.rh.square :: =]
dellm.comma :: = ,
delim.semi.colon :: = ;

reserved.word.types :: = delim.abs \ delim.acos \ delim.alog \ delim.and
I delim.asin \ delim.atan \ dellm.begin \ delim.byte \ delim.cos
I delim.end \ delim.el se \ delim.elseif \ delim.every \ delim.exp
I delim.expression \ delim.for \ delim.forever | dellm.from
I delim.funct | delim.init \ delim.int \ delim.if \ delim.is \ delim.log
I delim.ln \ delim.mod \ delim.max \ delim.mean | delim.med
I delim.min | delim.not \ delim.or \ delim.prod \ delim.program
I delim.repeat \ delim.result \ delim.real \ delim.sin \ delim.sqrt
I delim.sgn \ delim.sum | delim.tan \ delim.table \ delim.then
I delim.value \ delim.z

delim.abs :: = ABS
delim.acos :: = ACOS
delim.alog :: = ALOG
delim.and ::= AND
delim.asin :: = ASIN
delim.atan :: = ATAN
delim.begin :: = BEGIN
delim.byte :: = BYTE
delim.cos :: = COS
delim.end :: = END
delim.else :: = ELSE
delim.elseif :: = ELSEIF
delim.exp :: = EXP

B-2

delim.expression :: = EXPRESSION
delim.every:: = EVERY
delim.for:: = FOR
delim.forever:: = FOREVER
delim.from ;; = FROM
delim.funct ::= FUNCTION
delim.init ::= I NIT
dellm.int::= I NT
delim.if:: = IF
delim.is:: = IS
delim.log:: = LOG
delim.ln:: = LN
delim.max:: = MAX
delim.mean ::= MEAN
delim.med ::= MED
delim.min ::= MIN
delim.mod ::= MOD
delim.not ::= NOT
delim.or::= OR
delim.prod:: = PROD
delim.program :: = PROG
delim.result:: = RESULT
delim.repeat:: = REPEAT
delim.real:: = REAL
delim.sin:: = SIN
delim.sqrt ::= SORT
delim.sgn:: = SGN
delim.sum ::= SUM
delim.tan:: = TAN
delim.table :: = TABLE
delim.then ;;= THEN
delim.value ::= VALUE
delim .z::= Z

B-3

B.2 EBNF description of DFDL syntax

B.2.1 Program

program :: = PROG program.name
(ext.declaration) int.declaration
BEGIN assignment.section END

program.name:: = ¡dent

B.2.2 External and Internal declarations

ext.declaration ::= {1 { o input.declaration}
{ 1 output.declaration} }

int.declaration :: = {o { o node.declaration}
{ o constant.declaration}
{ o function.declaration} }

B.23 Input, output and node declaration

input.declaration :: = INPUT(data.type) input [sub.size] {o, input
[sub.size]}
output.declaration ::= OUTPUT [data.type) output [sub.size] { o, output
[sub.size]}
node.declaration ::= NODE node [sub.size] { o, node [sub.size]}
input ::= ident
node:: = ¡dent
output ::= ¡dent
data.type ::= BYTE | INT16 | INT32 | REAL32
sub.size :: = column.size [row.size]
column.size :: = [pos.integer]
row.size :: = [pos.integer]

B.2.4 Constant declaration

constant.declaration ::= VALUE (constant [sub.size] IS constant.expres-
sion
| undefined.constant [sub.size] IS EXPRESSION
j TABLE constant [sub.size] IS table)

constant ::= ¡dent
undefined.constant:: = ¡dent
sub.size ;;= column.size [row.size]
column.size :: = [pos.integer]
row.size :: = [pos.integer]
table :: = real.string { o ; real.string}
real.string:: = [real { o , real}]

B-4

B.2.5 User defined function declaration

*function.declaration ::= FUNCTION function.name {[formal.parameters])
function.body
* function, name :: = ¡dent
^formal.parameters ::= formal [sub.size] { o , formal [sub.size]}
*formal ¡dent
*function.body ::= {o { o node.declaration}
*{ o constant.declaration}
*{ o function.declaration} }
*BEGIN { o assignment}
*RESULT : = (conditional.expression | expression)

B.2.6 Assignments

assignment.section ;;= [I NIT in it.section]
REPEAT (FOREVER | FOR non.neg.integer) repeat.section

B.2.7 Initialise assignment

*initialise.section :: = { 1 value.constant | init.assignment}
*value.constant:: = undefined.constant IS constant.expression
* init.assignment:: = init.object : = constant.expression
*init.object:: = input { o spatial.sub} Z temporal.sub
*| output {o spatial.sub} Z temporal.sub
*| node {o spatial.sub} Z temporal.sub

B.2.8 Constant expressions

*constant.expression:: = constant.operand
* | monadic.function constant.operand
* | multi.function constant.operand { o , constant.operand}
* | conv.function spatial.sub
* | monadic.op constant.operand
* | constant.operand dyadic.op constant.operand

B.2.9 Constant operands *

* constant.operand:: = real
*| constant { o spatial.sub}
*\ {constant.expression)
spatial.sub = fixed.sub \ repetition.sub

B-5

B.2.10 Subscripts

spatial.sub :: = fixed.sub \ repetitive.sub
temporal.sub :: = fixed.sub \ repetitive.sub
fixed.sub :: = [non.neg.integer.expression]
repetition.sub :: = [repetition.ident
FROM non.neg.integer.expression
FOR pos.integer.expression
[EVERY integer.expression]]

repetition.ident:: = ident

where non.neg.integer.expression > = 0
and pos.integer.expression > 0

integer.expression :: = integer.operand
| monadic.integer.op integer.operand
j integer.operand dyadic.integer.op integer.operand

integer.operand:: = integer
* | (integer.expression)
monadic.integer.op :: = + \ -
dyadic.integer.op ::= +] - | * | MOD

B.2.11 Real arithmetic operators

monadic.op :: = + | -
dyadic.op ::= + \ - | * | / | \ | **

B.2.12 Functions

monadic.function ::= ABS | ACOS | ASIN
| ATAN | COS | EXP | LOG | LN | SGN
I SIN | SORT | TAN | ALOG

multifunction ::= MEAN | SUM | PROD
*MAX | MIN | MED
conv.tunction ::= REAL

B.2.13 Repeat assignment

repeat.section :: = { 1 assignment}
assignment:: = object : = (expression \ conditional.expression)

B-6

object ::= node { o spatial.sub} \ output { o spatial.sub}

B.2.15 Expressions

B.2.14 Objects

expression:: = operand
| monadic.function operand
j multi.function operand { o , operand}
j conv.function spatial.sub
| monadic.op operand
| operand dyadic.op operand

B.2.16 Operands

operand ::= real
| input { o spatial.sub} [Z temporal.sub]
| output { o spatial.sub} [Z temporal.sub]
| node { o spatial.sub} [Z temporal.sub]
I constant { o spatial.sub}

*| function.instance
| (expression)

*function.instance :: = function.name ([passed.parameters])
*function.name:: = ¡dent
* passed.parameters :: = operand { o , operand}

B.2.17 Conditionals

*conditional:: = IF boolean.expression
*THEN (expression \ [conditional.expression))
*{ o ELSEIF boolean.expression TFIEN (expression | [conditional.expres-
sion)) }
*ELSE (expression \ [conditional.expression))

B.2.18 Boolean expressions

* boolean, expression :: = relational.expression
* | monadic.boolean.op relational.expression
*| relational.expression dyadic.boolean.op relational.expression

B-7

B.2.19 Relational expressions

*relational.expression :: = operand relational.op operand
* | {boolean.expression)

B.2.20 Relational operators

* relational, o p ;; = < | < = | = | > = | > | < >

B.2.21 Boolean operators

*monadic.boolean.op:: = NOT
* dyadic.boolean.op ::= AND | OR

B-8

Appendix C. User’s guide

C.1 Installation

The DFDL compiler and examples are contained on four low-density disks. The
compiler is used inconjunction with the D700 TDS, this must be installed prior to
running DFDL.

In order to install the DFDL compiler and examples you will need at least 2Mbytes
of hard disk space. To install DFDL place disk #1 in drive A: and type

A: INSTALL

The batch file INSTALL.BAT creates the directory C:\DFDL and transfers the
contents of disk #1 into that directory. A prompt will request the remaining disks
#2, #3 etc. The compiled code is executable on the T4 Transputer. If DFDL is to
be run on other types of Transputer then the code will have to be re-compiled.
Consult the DFDL information fold for any pre-compilation settings.

C.2 Getting Started

The user should be familiar with TDS and its folding editor before running DFDL.
Assuming this is so, DFDL is started by running TDS2.BAT in C:\DFDL. This will
result in the four top folds:

...F UTILITY.TOP

...F DFDL.TOP

...F EXAMPLE.TOP

...F USER.TOP

appearing on the screen. All folded structures are denoted by their leading dot dot
dot notation. A description of the TDS fold structure is given in the TDS literature
and a tutorial is provided for those users unfamiliar with the TDS folding editor.

The contents of the four top folds are:

. UTILITY.TOP TDS/OCCAM utilities for compiling, configuring, file utilities,
etc.

• DFDL.TOP DFDL compiler, DFDL library and DFDL information

• EXAMPLE.TOP examples of DFDL source programs

. USER.TOP user program area

C-l

C3 Running the DFDL compiler

The DFDL compiler is used by getting the compiler’s executable code, this is
covered in steps 1 to 3:

1 Enter the top fold ... DFDL.TOP
2 Place cursor on ... DFDL Compiler
3 Press [get code] (key [F5])
4 Move to source file and place cursor on fold line
5 Press [run code] (key [F6])

Step 5 executes the DFDL compiler, which takes as its input the source file selected
in step 4.

C.4 Exiting

At almost every point in the compilation, the user can abandon the process by
pressing [Alt][F2]. If necessary, TDS can be reset by pressing [Ctrl] [Break] or
[Ctrl][Y], then [Space]. To exit TDS normally, move to the top fold structure using
[PgUp], then press [Alt][F2].

C.5 Making a DFDL source file

DFDL source files are made using the TDS folding editor. Several examples are
given in the top fold EXAMPLE.TOP. At the outer level a source program looks
like:

...F filename

The filename can comprise letters and numbers, but must be free from full stops
and non-alphanumeric characters. All source files are automatically given the
extension .tsr by the TDS folding editor when first made. TDS (D700 implemen-
tation) only accepts the first six characters of a filename . Duplicate filenames are
catered for by the TDS editor.

C-2

Inside the outer fold of a DFDL source file (fold 0) is the source fold (fold 1):

{{{F filename
... DFDL
}}}

This fold is always identified by the name DFDL and is not filed. Within this fold
resides the source program written in DFDL, this fold (fold 1) can contain other
folds as stipulated by the TDS editor. Folds within fold 1 are ignored by the DFDL
compiler, and hence, not displayed in DFDL error reports.

{ { { DFDL
... fold
... fold
... fold

... fold
}}}

Additional folds may be created by the DFDL compiler, these are located within
the outer fold (fold 0), immediately after the DFDL fold:

{{{F filename
... DFDL
... fold
... fold

... fold
}}}

These folds contain syntax error reports and object code; occam source folds. The
contents of all folds located after fold 1 (denoted DFDL) are ignored by the DFDL
compiler. Error folds and object code folds should be removed by the user when
not needed.

C.6 Flow

A flow diagram of the compiler options is given by Figure C.l, this is comple-
mented by descriptions of each section, these are given below:

C.6.1 Processor type

The user chooses the type of processor the object code is required to run on, this
may be different from the compiling processor. Options are T4 (T414 transputer)
or T8 (T800 transputer).

C-3

Figure C.l Compiler flow diagram

C-4

C.6.2 Clock frequency

The user chooses the clock frequency of the target processor, this affects the time
(or cost) operations take to run on the object processor, which in turn, affects the
analysis performed by the compiler. Options range from 1MHz to 99MHz in 1MHz
steps.

C.6.3 Link speed

The user selects the link speed of the target processor, this affects the communica-
tion time between object processors, which in turn, affects the analysis performed
by the compiler. Options range from IMbits/sec to 99Mbits/sec in IMbits/sec steps.

C.6.4 Number of processors

The number of object processors is chosen by the user, the number may be in the
range 1 to 99 inclusive. A suggested number is provided by the compiler at this
stage. This number is calculated as a by-product of critical path analysis and is the
truncated integer result of:

(total task cost / critical path cost) + 0.5

This estimate neglects communication costs, which are only available once
scheduling has been performed. This figure may deviate, somewhat, from the best
number of processors for implementation and should, therefore, only be used as
a guide. In addition to this estimate are two pre-schedule program profiles that
can be displayed by pressing the [V] key. These display the results of the critical
path algorithm as time vs. number of useable processors.

C-5

C.6.5 Connect links

The user has to inform the compiler of all the object processor links that are
dedicated to inputting and outputting data. Defining inter-processor link connec-
tions are optional, because the compiler incorporates an auto-router. Messages
will alert the user to the following:

. When connecting links:
(i) Connection of a link isolates an unconnected processor(s) from future
connection.
(ii) A link is already connected.
(iii) A link cannot be connected to itself.
(iv) A link cannot be connected to the same processor as it is connected.

. When requesting an input connection:
(i) The source program does not contain inputs.
(ii) All inputs have been connected.

. When requesting an output connection:
(i) All outputs have been connected.

. When exiting the connecting process:
(i) An input or output is not been connected.
(ii) Warning, there is more than one processor net.
(iii) There are isolated processors.

A multiple net condition is only a warning, since auto-routing will connect any
processors required during the scheduling process.

C.6.6 View Connections

While there is a valid processor graph (or net), the user can look at the intercon-
nections between processors and input and output connections without
re-entering the connection process.

C.6.7 Schedule * •

There are several options the user can take before the scheduling process begins:

. Auto-route toggles the auto-route option ON/OFF. Auto-route ON is
mandatory if there are multiple processor nets. Conversely, auto-route
OFF is mandatory when there are no valid unconnected links.

• Alarm toggles the alarm option ON/OFF. The alarm alerts the user that
the scheduling process has completed. This may be advantageous when
scheduling is expected to take a long time.

C-6

. Display toggles the schedule display ON/OFF. The schedule display shows
the user
(i) Number of tasks to be scheduled.
(ii) Number of tasks available.
(iii) Number of processor nets.
(iv) Number of tasks scheduled.

• Root allows the user to select the processor from which the scheduling
process begins. This may affect the outcome of the scheduling process,
especially when the topology of the processor net is irregular.

. Accept begins the scheduling process.

C.6.8 Schedule display •

The schedule display presents the user with view of the processor and link
schedules. These are arranged across the screen in the form of a Gantt chart. The
screen displays up to 3 sets of processor/link schedules at a time, each comprising
a processor schedule and four link schedules.

The schedule display flow is shown by Figure C.2.

. [FI] Help menu.

• [F2] Timing display: see timing display flow.

• [F3] Change view: allows the user to select different processor schedules
for display.

• [F4] Show the menu at the bottom of the screen.

. [F5] Decrease step size by one: the step is used by other functions.

• [F6] Increase step size by one: the step is used by other functions.

• [F7] Begin schedule: moves the screen to the beginning (time zero) of the
schedules.

• [F8] End schedule: moves the screen to the end of the longest schedule.

• [F9] Down schedule: moves the screen towards the beginning of the
schedule by the step size.

• [FIO] Up schedule: moves the screen towards the end of the schedule by
the step size.

. [+] Zoom in: decrease the scale of the schedule display by the step size.

. [-] Zoom out: increase the scale of the schedule display by the step size.

C-7

C-8

. [PgUp] Scroll up: move the screen up, to display the processor schedule
above that already at the top of the screen.

• [PgDn] Scroll down: move the screen down, to display the processor
schedule below that already at the bottom of the screen.

. [Home] Top: move the screen to display the first processor schedule at the
top of the screen.

• [End] Bottom: move screen to display the last processor schedule at the
bottom of the screen.

• [Ins] Connect information ON: display link connection information. This
is displayed on the right hand side of the screen and obscures part of the
schedules.

• [Del] Connect information OFF: replace link connection information by
link schedules.

• [Rtn] Initialise display

• [Alt][FI] Data analysis: see data analysis.

• [Esc] Exit display.

. [Alt][F2] Exit to TDS.

C.6.9 Timing display * •

The timing display can only be used when the displayed scale is 1:1. It allows the
cursor to be moved around the screen so further information can be extracted from
the display. When the cursor is placed on a schedule the task beneath the cursor
is highlighted. The type of task and its starting and finishing times are displayed at
the top of the screen. The timing display flow is shown by Figure C.3.

. [FI] Help menu.

• [F3] Change view: allows the user to select different processor schedules
for display.

• [F4] Show the menu.

• [F5] Decrease step size by one: the step is used by other functions.

• [F6] Increase step size by one: the step is used by other functions.

. [F7] Begin schedule: moves the screen to the beginning (time zero) of the
schedule beneath the cursor.

C-9

Figure C.3 Timing display

C-10

• [F8] End schedule: moves the screen to the end of the schedule beneath
the cursor.

. [F9] Down schedule: move the screen towards the beginning of the
schedule by the step size.

• [F10] Up schedule: moves the screen towards the end of the schedule by
the step size.

. [PgUp] Scroll up: moves the screen up, to display the processor schedule
above that already at the top of the screen.

• [Pgdn] Scroll down: moves the screen down, to display the processor
schedule below that already at the bottom of the screen.

. [Home] Top: moves the screen to display the first processor schedule at the
top of the screen.

• [End] Bottom: moves the screen to display the last processor schedule at
the bottom of the screen.

• [Ins] Connect information ON: display link connection information. This
is displayed on the right hand side of the screen and obscures part of the
schedules.

• [Del] Connect information OFF: replace link connection information by
link schedules.

. [Rtn] Initialise display

• [Alt][Fl] Data analysis: see data analysis.

• [Esc] Exit timing display and return to the schedule display.

• [Alt][F2] Exit to TDS.

• [Tab left] Move cursor 10 places left

• [Tab right] Move cursor 10 places right.

C -ii

C.6.10 Data analysis

The data analysis selection provides the user with data from the schedules. The
format of the data is given below:

• Total task cost: this is the sum of all tasks in the task graph and is equivalent
to the cost (or time) expended by a single processor when executing all the
tasks. This figure excludes communication costs.

• Critical path cost: the cost of the longest path through the task graph. This
excludes communication costs.

• (Total task cost / critical path cost): gives the maximum limit of available
processor speed up, ignoring communication costs.

. Number of processors selected.

. Maximum processor cycle: the cost (or time) of the longest processor
schedule.

• Maximum link cycle: the cost (or time) of the longest communications link
schedule.

. (Total task cost / maximum cycle): gives speed up. The maximum cycle is
the greatest of the two cycle costs; maximum processor cycle and maximum
communications link cycle.

. Maximum latency: the greatest time from when a signal enters an input to
when it exits at an output.

• Maximum overlap: the maximum possible overlap cost between successive
schedules.

During analysis, the latency results for up to 400 paths can be stored, these can be
displayed using the [Left] and [Right] cursor keys.

For each processor, the processor and link cycle cost, utility, percentage cycle cost
and percentage utility are displayed towards the bottom of the screen, one proces-
sor at a time. Other processor’s cycle cost, utility, etc. are available for display using
the [Up] and [Dn] cursor keys.

C-12

C.6.11 Translate

The translate option converts the schedules into object code (Occam). There are
two translate options:

. the first is labelled TDS, this creates object code for execution within the
TDS environment.

. the second option, T4 or T8, generates object code suitable for execution
on multiple processors.

The translate option is not completely implemented in this version of DFDL,
DFDL(mod.state 1/90), consult the DFDL information fold for details.

C.6.12 System utilities

The [?] key calls the system utilities option, these include: schedule inspection,
graph inspection, compiler array use, timer and symbol table inspection.

C.6.13 Add user task costs

The [!] key calls the option to adjust the cost assigned to tasks.

C.6.14 Information fold

A summary of the pre-shedule and post-schedule profiles, predicted and actual
results are written into a single fold at the end of the fold bundle within the outer
source fold.

C-13

Appendix D. Programmer’s guide

D.l Reading the source file

It is the purpose of the process &Read to open, read and close a DFDL source file.
In doing so, &Read adds a communication protocol to the source file data which
it has read, and sends it to &Lex in the form of an omni-directional data/control
stream. Termination of an uncompleted data stream is not possible from outside
&Read, because data/control only flows out of &Read. Termination occurs when
the source file has been read completely, or there is an error associated with
opening, reading or closing the source file.

&Read mainly consists of two TDS library routines. These are read.fold.stringO
and keystream.from.fileO. Details of these two library routines can be found in the
TDS Programming interface literature or under TDS in directory C:\TDSIOLIB.

D.1.1 File name

The library routine read.fold.stringO, reads the character string associated with
the first folded structure (fold 1) found at the top of the outermost fold (fold 0).
Fold 0 is that fold which lies beneath the screen cursor when the routine is
executed. The character string attributed to fold 1 is checked to be equal to
"DFDL", this indicates that the fold contains a source program. An erroneous string
or a file read error will cause &Read to send the message:

read.error / ft.terminated

and then terminate, whereas a successful read of the DFDL label causes &Read
to read the contents of fold 1.

D-l

D.1.2 File contents

Provided the initial opening and reading of the file was successful, the transfer of
its contents then commences. The library routine keystream.from.fileO reads the
contents of fold 1 and writes them to &Lex, a process running in parallel with
&Read. In the course of reading and writing, keystream.from.fileO removes all
characters associated with the Occam fold structure, this allows the user to employ
a folded source program structure without corrupting the program. At the end of
each line, keystream.from.fileO inserts a return character, and at the end of the
file it inserts a termination tag, ft.terminated. For example a typical data/control
stream would look like:

F / i / r / s / t / / l / i / n / e / return
S / e / c / o / n / d / / l / i / n / e / return

L / a / s / t / / l / i / n / e / return
ft.terminated / errornum

An error value is appended to the termination tag, to indicate the outcome of
closing the source file. Successful closure is represented by the value fi.ok, other-
wise a su itab le e rro r value is appended according to the erro r; see

D.2 Lexical analysis

Under non-error conditions, &Lex reads the data/control stream from &Read.
First the file name, followed by program character streams divided into lines by
the return character, *c. The final string &Lex reads is the terminate tag, ft.ter-
minated, followed by a value indicating the state of file closure. Once the terminate
string is read, &Lex terminates.

While &Lex reads the data/control streams from &Read, it conditions the input
data and sends the results to &Syntax in a handshaken form. The input data is
conditioned by lexical parsing, which identifies and tags numbers, identifiers,
keywords and delimiters. Other inputs such as comments and spaces are removed
at this stage. Numbers are accepted in the format of real or integer, and are
converted from their character representation to a 32bit real or integer form
depending on their type. An EBNF description of the lexical analyser can be found
in Appendix B.

D-2

D.2.1 Protocol &Lex-&Syntax

The protocol between &Lex and &Syntax, a parallel process to &Read and &Lex,
takes the form of a bi-directional data/control stream. From &Lex to &Syntax the
stream is a fixed 4 word string followed by a variable size string, length of zero or
more. In reply, the stream from &Syntax to &Lex is a single word. The contents
of the outgoing stream is determined by the lexical item being sent from &Lex to
&Syntax and the status of the lexical analyser. There are 7 different cases, these
are illustrated below:

1 Identifier: lex.ok / ident.tag / line.no / SIZE(str) / str[0] /... / str[SIZE(str) -1]
2 Keyword: lex.ok / keywrd.tag / line.no / SIZE(str) / str[0] /... /
str[SIZE(str) -1]
3 Delimiter: lex.ok / delimiter / line.no / X
4 Integer: lex.ok / integer.tag / line.no / Integer
5 Real: lex.ok / real.tag / line.no / real
6 Error: lex.error / error.type / line.no / error.value
7 Terminate: lex.end / X / X / X

Cases 1 and 2 have variable length strings, because they have to send a character
string of unknown size. All other cases are a fixed string of 4 words (32 bits each).
The line number (line.no) is determined within the lexical analyser by counting
the number of return characters which have been read from &Read.

The incoming stream from &Syntax to &Lex is a fixed length of one word. This
word is an acknowledgement from &Syntax. The single word can be in one of two
states:

1 Syntax OK: syntax.ok
2 Syntax error: NOT syntax.ok

If an error is detected, either from within &Lex, or from &Read or &Syntax (case
2 above), the remaining data/control stream from &Read is read continuously until
&Read terminates. The error string (case 6) is then sent to &Syntax, after which,
&Lex terminates.

During non-error conditions, a data/control stream will be received from &Read,
conditioned by lexical analysis and sent to &Syntax. Provided a syntax.ok acknow-
ledgement is received from &Syntax, &Lex will read another stream of inputs from
&Read. This will continue, provided there are no errors, until the terminate string
is received. Thereupon, the end string (case 7) is sent to &Syntax, after which,
&Lex terminates.

D-3

DJ Syntax analysis

The process &Syntax comprises 4 phases. Each phase has a different function and
only the first two phases are strictly concerned with syntax analysis, these two
phases run in parallel with &Read, &Lex and &Graph. The second phase is ended
by the termination of &Read, which causes &Lex to terminate. Phase 3 terminates
&Graph, and runs in parallel with the consecutive processes &Schedule and
¿¿Translate. Phase 4 terminates ¿¿Translate and initiates, then terminates ¿¿Error
where necessary. The screen and keyboard processes, ¿¿Screen and ¿¿Key respec-
tively, run in parallel with ¿¿Syntax throughout and are the last two processes to
terminate. Table D .l illustrates the concurrent operation of the compiler.

Phase 1: Initialise
Phase 2: Syntax analysis
Phase 3: User
Phase 4: End

phase 1 phase 2 phase 3 phase 4

&User

&Syntax

&Read

&Lex

&Graph

&Schedule

¿¿Translate

¿¿Screen

¿¿Key

¿¿Error

Table D .l Concurrent compiler operation

Briefly, phase 1 initialises the hash table and symbol table. Phase 2 performs the
syntax analysis on the data received from ¿¿Lex and controls the construction of
the DAG (directed acyclic graph) via ¿¿Graph. The DAG represents the DFDL
source program. Phase 3 is a user interactive stage. From here, the processor graph
construction is controlled via ¿¿Schedule and the scheduling of the DAG onto the
processor graph is initiated. Phase 3 also controls other functions like schedule
display (within ¿¿Schedule), processor graph display (within ¿¿Schedule) and
translation (within ¿¿Translate). The final phase, phase 4, displays any source
program error that has been detected during read/syntax/lexical analysis and
terminates all concurrent processes. ¿¿Screen, ¿¿Key and ¿¿Error then terminate
jointly.

D-4

D3.1 Initialise

D3.1.1 Variables

&Syntax and &User are the two central modules (&User takes over from &Syn-
tax), and directly or indirectly, have control over all other processes. For this
reason, they maintain a record of the state of all directly connected modules
(except &Screen and &Key). In the initialise phase these are all set to an active
state:

state.of.lex: = lex.ok
state.of.syntax: = syntax.ok
state.of.graph : = graph.ok
state.of.schedule : = schedule.ok
state.of.translate : = translate.ok

These states are used to prevent communication to other modules once they have
terminated, and so avoid deadlock. The syntax state is used to control the program
flow for &Syntax, &User and &Error.

Other variables set at this stage are associated with the symbol table and the error
routine.

D.3.1.2 Reserved word initialisation

The main purpose of initialise is to set the hash and symbol tables in a ready state
for syntax analysis. This is done by pre-entering the keywords into the symbol table,
via the hash table:

reserved.word:: = ABS | ACOS | ALOG | AND | ASIN | ATAN | BEGIN
| BYTE | COS | END | ELSE | ELSEIF | EXP | EXPRESSION | EVERY
| FOR | FOREVER | FROM | FUNCTION | INIT | INT | IF | INPUT
| IS | LOG | LN | MAX | MEAN | MED | MIN | MOD | NODE
| NOT | OR | OUTPUT | PROD | PROG | RESULT | REPEAT
| REAL | SIN | SORT | SGN | SUM | TAN | TABLE | THEN
| VALUE | Z

To begin, all locations in the hash table (SIZE = 200) are set to an empty value
(empty = 0), and the start of the next free location in the symbol table is set to 1
(set during initialise phase). An empty value, in a hash table location, signifies
there has not been a character string entered via the hash table that maps onto that
location. Hence, if all locations are empty, the hash table, and consequently the
symbol table, are empty. The reserved words are then entered into the symbol
table via the hash table using a hash function.

D-5

D3.1.3 Hash function

The input to the hashing routine is a character string ([]str) of one or more
characters. This is processed by the hash function to give a deterministic value of
good distribution. The character string []str is read into []buf, []buf = (SIZE
str)/str[0]/.../str[(SIZE str) - 1], the hash function produces a value which is the
EX-OR of successive character products (except the first product which includes
the string size). The hash function is shown below:

hash.value : = 0
SEQ i = 0 FOR (SIZE str)

hash.value : = hash.value EXOR (buf[i] * buf[i + 1])

The result hash.value, is then divided by (SIZE hash.table) and the remainder
taken. The remainder lies between 0 and (SIZE hash.table) -1 . The remainder
value is used as an address to the hash table.

address : = hash.value REM (SIZE hash.table)

The contents of the location hash.table [address] is either equal to zero (empty
value), or lies within the range 1 to (SIZE symtab) -1. If equal to zero, the character
string does not already exist in the symbol table. If non-zero, the character string
may exist in the symbol table.

D.3.1.4 Appending the symbol table

Whenever a character string has been mapped onto an empty location in the hash
table, the character string may be directly appended to the symbol table. New
entries of this type are either new identifiers (new.¡dent) or reserved word
initialisations (new.reserved.wrd). The character string is entered into the sym-
bol table, preceded by its size. The first symbol table address of the entry is placed
in the hash table at the location hash.table[address].

In the second case, where the hash table location is non-empty (symbol table
address), the routine examines the symbol table contents at the location beginning
symtab[hash.table[address]]. If the character string in the symbol table matches
the accessing string, then the character string already exists in the symbol table.
This represents a repeated identifier (¡dent) or repeated reserved word
(reserved, w rd), and would be an erroneous case for the initialisation of reserved
words.

A third situation occurs when the character strings do not match. This is called a
collision; different character strings map onto the same hash table location.
Collisions are overcome either by re-hashing or chaining. In this case we use
chaining.

D-6

D3.1.5 Chaining

Chaining caters for hash collisions, and unlike other methods prevents bunching
in the hash table or the re-building of the symbol table. Different character strings
which map onto the same hash table address are linked together in a chain (single
linked list). At each symbol table entry, a word is reserved for the chain address.
In effect, the chain location serves as an extension to the hash table. Chain locations
are initially set to empty.

D.3.1.6 Symbol table format

The first four fields of a symbol table entry are identical for both reserved words
and identifiers. Identifiers entries have an additional three fields to hold dimension
and data structure information.

(a) Reserved words

Field 1: Size.field holds the size of the character string.
Field 2: Char.field is a variable size (size defined in Size.field)
Field 3: Chain.field, links entries with the same hash table address.
Field 4: Type.field holds the type of entry, reserved.word.types (400 - 499).

Reserved word symbol table format is illustrated below:

size.field | char.field | chain.field | type.field

As an example, the reserved word NOT would be entered Into the symbol
table as shown below:

3 | N | O | T | empty | delim.not

(b) Identifiers

Identifier symbol table entries are:

Field 1: Size.field holds the size of the character string.
Field 2: Char.field is a variable size (size defined in Size.field).
Field 3: Chain.field, links entries with the same hash table address.
Field 4: Type.field holds the type of entry, ident.type. (500 - 599).
Field 5: Col.field, holds column size.
Field 6: Row.field, holds row size.
Field 7: Graph.field, holds pointer to the data flow graph.

D-7

The format of the ident.type entry is illustrated below:

size.field | char.field | chain.field | type.field | col.field | row.field | graph.field

ident.type:: = input.type \ node.type | output.type
| const.type \ function.type \ subscript.type

The three additional fields, col.field, row.field and graph.field, are used to hold the
spatial dimensions (column and row) and a pointer to the DAG. The pointer links
the symbol table entry to the DAG, pointing to the vertex (or node) which has an
index of zero. For example an input "read" (dimension [2][4]), whose vertex
corresponding to element read[0][0] is at location 605 in the graph structure, would
be entered into the symbol table as shown below:

4 | r | e | a | d | empty | input.type | 2 | 4 | 605

Where column, or column and row, dimensions are not specified, a default value
of 1 is assigned.

D.3.1.7 Symbol table limits

The symbol table is of a finite size (2000). Should overflow occur it will result in
the error message:

"Implementation limit; symtab[] is full"

D.3.2 Syntax analysis

Syntax analysis is achieved using a top-down, syntax analyser. The grammar of
DFDL is free from left recursion and can be parsed without resorting to backtrack-
ing. Parenthesised expressions do cause problems however, as these lead to self
embedding which is difficult to handle using top-down analysis. This is overcome
by storing complete assignment statements, whereupon they are decomposed into
simple expressions (operator, left operand, right operand) prior to parsing. This
process allows us to remove all parentheses, where upon top-down analysis can be
performed on each simple expression/assignment.

The syntax of DFDL does not employ any operator-precedence, and relies entirely
on the use of parentheses to determine the order of execution in multiple operator
expressions. Even identical operators in the same expression have to be ordered.
This results in an unambiguous structure (precedence relationships) and allows
the user to experiment with different structures for the same program.

D-8

The complete syntax for DFDL is expressed in Appendix B. Certain operations
and functions are not implemented by the current version of the syntax analyser,
which implements a restricted form of DFDL referred to as DFDL(mod.state
1/90). Differences between DFDL(mod.state 1/90) and the complete DFDL
syntax are in the following areas:

1 User defined functions: not available
2 Value initialisation: not available but delay variables are set to 0.0.
3 Conditional assignment: not available
4 Integer expressions: simple expressions only
5 Functions: restricted set

D.4 Syntax analyser description

To supplement the BNF description of the syntax (Appendix B), flow diagrams
are used the describe the DFDL(mod.state 1/90) implementation. A top-down
approach is employed, using rectangular boxes to express terminal items, and
round-edged rectangular boxes to express non-terminal items. Where necessary,
diagrams are supplemented by control information.

The syntax program flow is divided into 2 main non-terminal blocks, declaration
and assignment, these are illustrated by Figure D.l.

Figure D .l Program flow

D.4.1 Declaration flow

The declaration block is described first. This block is expanded as illustrated by
Figure D.2. All the non-terminal blocks after PROG are optional except output.
There must be at least one output in a source program.

Figure D.2 Declaration flow

D-9

D.4.1.1 Input, node and output flow

Within the input, node and output blocks, the parsing action is similar. For each
identifier, the product of column size and row size is checked for a maximum limit,
which is defined as max.array.size (65536 elements). The minimum limit is 1. If
max.array.size is exceeded, an error message is given:

"Implementation limit; array size too big"

The maximum array size is dictated by the size of the index storage in the graph
(DAG) data structure. The zeroth index element (index = 0) of an array, has its
attributes sent to &Graph. &Graph builds a vertex in the graph data structure
which represents this element. The format of the attribute string is as follows:

mv.dec.type / datatype / label / Index

mv.dectype:: = mv.input.dec | mv.node.dec | mv.output.dec
datatype BYTE | INT16 | INT32 | REAL32
label:: = 1 | ... | (SIZE symtab) -1
index ;;= 0 | ... | max.array.size

Note: When the identifier represents a node the data type is REAL32 only, because
DFDL’s internal arithmetic is real throughout. Other data types (BYTE, INT16,
INT32) are only allowed for external inputs and outputs. The label is the address
in the symbol table where the identifier resides, this is used by &Graph as a back
reference to the identifier.

Once the zeroth index element of an array is built, &Graph replies with the address
in the data structure where the vertex is located. This address is stored in the
symbol table at the location graph.field (section 3.1.6b). Subsequent elements
(index > 0), if any, are built in a similar fashion, adjacent to their preceding vertex.
When required, all vertices can be located via the zeroth index element.

Figures D.3 through to D.5 illustrate the input, node and output flows respectively.
Note, the flow for node does not include a datatype block.

Figure D.3 Input flow

D-10

Figure D.4 Node flow

Figure D.5 Output flow

D.4.1.2 Data type flow

The flow for datatype is given below. Data types INTI6, INT32 and REAL32 are
formed by reading the reserved words I NT or REAL, followed by the integer 16 or
32. Only the correct combinations of reserved word/integer are accepted.

BYTE

___ ____ * IN T16-------

(— ‘ >
-------* IN T 32-------

REAL3 i-

Figure D.6 Data type flow

D -ll

D.4.13 Subscript size flow

The flow for sub.size, the array subscript size, is given below. The column size
precedes the row size. The terms column and row represent the two planar
dimensions, where column is the first subscript and row the second subscript.
Subscript sizes, and the product of the subscript sizes, have a valid range from 1 to
max.array.size (equal to 65536).

Figure D.7 Subscript size flow

D.4.1.4 Constant flow

Constants are constructed in a similar fashion to inputs, nodes and outputs.
Constant declaration can take any one of three forms:

The first of these forms is a table of real values. A table comprises ’row size’ of
real strings, where each real string comprises ’column size’ of real values. The
numbers of real strings, and real values within the strings, must correspond to their
respective sub.size declaration.

The second form, is that of an expression. Values are assigned to the constant
identifier during the initialise section, after which, they cannot be altered. An
constant declaration of this form is labelled by assigning the keyword EXPRES-
SION to the identifier.

The final form allows a single real value to be assigned to an identifier. The
identifier may be a scalar or an array. If the constant identifier is an array, every
element in that array will be assigned the single real value.

In all three cases the subscript size is checked for a valid range. If the product of
the column and row subscripts exceeds max.array.size (65536) the following
message is given:

"Implementation limit; array size too big"

D-12

The maximum array size is dictated by the size of the index storage in the graph
data structure (see DFDL task model). The zeroth index element (index = 0) of
an array, has its attributes sent to &Graph. &Graph builds a vertex in the graph
data structure (data flow graph) representing this element. The format of the
attribute string is as follows:

mv.dec.type I real I label I index

mv.dec.type :: = mv.const.dec | mv.const.exp
label ::= 1 | ... | (SIZE symtab) -1
Index ::= 0 | ... | max.array.size

Note: Where the declaration type is mv.const.exp, the second element of the string,
normally used to convey the real value, is empty.

Note: Constant identifier values have a data type of REAL32 only, because
DFDL’s internal arithmetic is real throughout. Other data types (BYTE, INT16,
INT32) are only allowed at inputs or outputs. The label is the address in the symbol
table where the identifier resides, this is used by &Graph as a back reference to
the identifier.

Once the zeroth index element of an array is built, &Graph replies with the address
in the data structure where the vertex is located. This address is stored in the
symbol table at the location graph.field (see Initialise(phase 1)). Subsequent
elements (index > 0), if any, are built in a similar fashion, adjacent to their
preceding vertex. When required, all vertices can be located via the zeroth index

Figure D.8 Constant flow

D-13

element. A detailed description of the vertex and graph data structure is to be
found in the chapter on the DFDL task graph.

D.4.1.5 Real string flow

Real values are enclosed by square brackets and separated by commas.

Figure D.9 Real string flow

D.4.1.6 User defined function flow

User functions are not implemented in DFDL(mod.state 1/90). Attempts to use
user functions will be met with the message:

"Function not installed yet!"

D.4.2 Assignment flow

The second major block within program flow is called assignment flow. This block
comprises the initialise block (optional) and the repeat block.

Figure D.10 Assignment flow

D-14

D.4.2.1 Initialise flow

The initialise block specifies the source program code which, when called, is
executed once only. The current implementation, DFDL(mod.state 1/90), does
not include initialise. Attempts to use initialise will be met with the message:

"Initialise not installed yet!"

D.4.2.2 Repeat flow

The repeat block specifies the source program code which is repeated, and only
stops when the program is terminated. The syntax of the repeat block has three
main stages: parse, check and build. These are described individually.

Figure D .l l Repeat flow

D-15

D.5 Parse flow

D.5.1 Stack construction

Parse is one of the main syntax routines. It reads complete assignment statements
from &Lex, checking the syntax as it does so. Assignment statements are sub-
divided into simple expressions (one/two operands and one operator) and each
simple expression is placed on a different level of an expression stack. The levels
are doubly linked to each other to allow the routine to travel up and down the
stack.

The depth of the stack is currently 20 levels, this allows up to 19 pairs of parentheses
to be used in an assignment statement. If this is exceeded, the following error
message is given:

"Implementation limit; expression too deeply nested"

The lowest level (level 0) contains the assignment statement’s object and assign-
ment operator, while the 19 upper levels accommodate simple expressions. The
width of each level is 30 words. Each level is divided into 4 main fields:

rsp.field | op.field | left.field | right.field

Each of these fields begins with their respective reference location; rsp.loc, op.loc,
left.loc and right.loc. The widths of the fields are as shown below:

rsp.field -1 word
op.field -1 word
left.field -14 words
right.field -14 words

D.5.1.1 RSP field

The rsp (return stack pointer) field contains a pointer which links a simple
subordinate expression to its parent expression. The pointer is always directed
down the stack, towards the lowest level. At the lowest level (level 0) the rsp field
is empty. All active levels, except level 0, have an rsp field which contains a valid
pointer. The valid range of the pointer is between 0 and (tos -1). Where tos (top
of stack) indicates the highest level in use.

D-16

D.5.1.2 Operator field

The op field contains an operator which belongs to the simple expression. The
operator is either an assignment operator (treated as a dyadic operator), monadic
operator, function, dyadic operator or no-op. The operator describes how, in the
case of a dyadic operator, the left and right operands interact, and how, in the case
of a monadic operator, function or no-op, the left operand is processed. The set
of valid operators for DFDL(mod.state 1/90) is given below:

o p ;; = assignment \ monadic.op \ dyadic.op \ nop
assignment:: = : =
monadic.op:: = -
dyadic.op ::= + | - | * | / | \ | **
function:: = ABS | ACOS | ASIN | ATAN | COS | EXP | LN | LOG
| SGN | SIN | SORT | TAN | MEAN | SUM | PROD | ALOG

Note: nop is used as an operator in simple expressions, where the operand was
preceded by the monadic operator + , or the simple expression stems from a
single, parenthesised operand.

D.5.1.3 Left/Right operand Field

The left and right fields are almost identical, any differences will be commented
on, as and when they occur. The fields are used to hold the operands belonging to
a simple expression. The types of valid operand are:

1 real literal
2 input
3 node
4 output
5 constant
6 fsp (forward stack pointer)
7 empty (right field only)

Input, node, output and constant types are all treated the same in the Parse routine,
and are classed as identifier types.

left.operand.type:: = real \ ¡dent | fsp
right.operand.type :: = real | ident | fsp | empty

D-17

D.5.1.4 Operand is a real literal

When the operand is a real literal only the first two sub-fields of the operand are
used to hold information. These fields are shown below:

ab.type | ab.value | col.field | row.field | del.field

ab.type holds the tag which identifies the operand as a real literal, and ab.value
holds its real value. The remaining fields are set to dont.care (shown as X), this
allows real literals to be used in replicated expressions.

real.type | re a l | X | X | X

For example a real literal of 0.453 would be stored as:

real.type | 0.453 | X | X | X

D.5.1.5 Operand is an identifier

When the operand is an input, node, output or constant, it is represented by its
identifier. This type of operand uses all five sub-fields. The sub-fields are shown
below:

ab.type | ab.label | col.field | row.field | del.field

ab.type holds the tag which identifies the operand as an identifier, and ab.label
holds the identifier’s label (symbol table reference). The three remaining sub-
fields contain the column, row and delay subscript attributes. Each attribute
sub-field is 4 words long, and has the following format:

ab.¡dent | ab.start | ab.size | ab.step

ab.ident holds the label (symbol table reference) of the subscript identifier when
the subscript is repetitive. For fixed subscripts this is set to dont.care. Location
ab.start holds the beginning index of the subscript, ab.size holds the number of
iterations, and ab.step holds the step size per iteration.

A default setting for the subscript fields (col.field, row.field, del.field) is made
when no subscript is given, this is shown below:

X I 0 I 1 I 1

The default setting signifies a fixed subscript, beginning at index 0, for 1 iteration,
and a step size of 1.

D-18

When the subscript to an identifier is defined, the appropriate values are entered
into the requisite locations. The examples below illustrate the correspondence
between a DFDL description of an operand’s subscript (fixed and repetitive), and
the operand’s subscript as held in the operand field. The label values are for
example only.

(i) the operand ’in[2][10]’ is a single element of an array called "in", symbol table
label = 255, which exists at column 2, row 10

ident | 255 | X | 2 | 1 | 1 | X | 10 | 1 | 1 | X | 0 | 1 | 1

(ii) the operand ’out’ represents a scalar called "out", symbol table label = 153

¡dent | 153 | X | 0 | 1 | 1 | X | 0 | 1 | 1 | X | 0 | 1 | 1

(iii) the operand ’old[k FROM 4 FOR 2]Z[j FROM 8 FOR 4 EVERY -2]’ is an
iteration (2*4 times) of an array called "old", symbol table label = 236. The label
for k = 425, and the label for j = 432.

¡dent | 236 | 425 | 4 | 2 | 1 | X | 0 | 1 | 1 | 432 | 8 | 4 | -2

D.5.1.6 Operand is a forward stack pointer

Both the left and right operands are used to hold a forward stack pointer. A fsp
(forward stack pointer) is directed from a parent expression (simple expression)
to a subordinate expression (simple expression). A fsp is always directed up the
stack towards the tos (top of stack). All levels that are in use contain fsps, except
leaf expressions; those which have no subordinate expressions. The valid range of
a fsp is from 1 to tos. This type of operand only uses the first three words of the
left/right operand field, as illustrated below:

ab.type | ab.sp | ab.addr | X ...

ab.type holds the tag which identifies the operand as an forward stack pointer, and
ab.sp holds the fsp’s pointer. Location ab.addr is used as a temporary location for
the operator’s graph data structure address. This is initially set to don’t care (shown
as X). The remaining fields are also set to dont.care.

#.type | in te g e r | X | X

For example an fsp pointing to level 7 is represented as:

#.type | 7 | X | X

D-19

D.5.1.7 Operand is empty (right only)

An empty operand is denoted by an empty tag in the ab.type location. All other
fields are don’t care (shown as X).

empty | X ...

D.5.2 Stack operation

The stacking of simple expressions is controlled by five different delimiters; (,),
...,: = and eol. The final delimiter, eol (end of line), is created from detecting an
increase in line number from &Lex.

The left hand parenthesis signifies the start of a new simple expression. Its
occurrence causes the current operand location to be formatted as an fsp. The fsp’s
pointer is set to the number of the next free level, which is the current top of stack
(tos). The top of stack level (subordinate level), is back linked to the parent level,
by entering the parental level in the subordinate’s rsp (return stack pointer)
location. The tos is then incremented.

The assignment operator has the same effect as the left hand parenthesis, but only
occurs when moving from level 0 to 1.

The right hand parenthesis signifies the end of a simple expression. Its occurrence
causes a move down the stack, to the level pointed to by the current level’s rsp.

A record is kept of the difference between the number left hand parentheses and
right hand parentheses. A counter (initially set to zero) is incremented for left hand
parentheses, and decremented for right hand parentheses. An error message is
given if the parentheses count goes negative or is non-zero at the end of the
assignment statement.

"Expression has an excessive number of ’)’s"

"Expression has an excessive number o f’(’s"

The continuation delimiter (...) allows the assignment statement to be spread
across more than one line, and prevents the eol delimiter from signifying the end
of the assignment statement.

D-20

Figure D.12 Parse flow

D-21

D.53 Parse flow

The parse flow is described using several diagrams. These are supplemented by
control flow information regarding the stack. The parse flow is illustrated by Figure
D.12.

• 1. Left hand operand location empty, if not, then right hand operand location empty.
0 < stack pointer < stack depth.
Move up stack.
Increment parentheses count.

• 2. Left hand operand location not empty, operator location not empty.
1 < stack pointer < = stack depth.
Move down stack.
Decrement parentheses count.

• 3. If operator location empty, then right hand operand location empty also.

• 4. Operator location empty.

• 5. End of assignment statement or END
stack pointer = 0

• 6. Not end of assignment and not END.

• 7. Left hand operator is identifier, right hand operator location empty,
stack pointer = 0
Move up stack.

D.5.3.1 Continue flow

The continue delimiter is valid between most syntactically complete items.

• 1. old line number : = line number

Figure D.13 Continue flow

D.5.3.2 Parse left identifier flow

Simple expressions which begin with an input, node, output or constant, all start
with an identifier tag, followed by their identifier label (originating from the
symbol table). The tag and label are placed in the left hand operand location. The
expression is parsed as shown below in Figure D.14.

• 1. Left hand operand location not empty.
Right hand operand location empty.

• 2. Left hand operand location empty.

• 3. No dyadic operator, operator becomes a no-op.

• 4. Operator location is empty.

Figure D.14 Parse left identifier flow

D-23

D.53 3 Parse left real flow

Simple expressions which begin with a real literal, start with a real tag, followed
by a real value. Tag and value are placed in the left hand operand location. The
expression is parsed as shown below.

• 1. Left hand operand location not empty.
Right hand operand location empty.

• 2. Left hand operand location empty.

• 3. No dyadic operator, operator becomes a no-op.

• 4. Operator location is empty.

Figure D.15 Parse left real flow

D.5.3.4 Parse right identifier flow

An operand which is an input, node, output or constant, and which occurs imme-
diately after a dyadic operator (or continue), has its identifier tag and identifier
label placed in the right operand location. The remainder of the expression is
parsed as shown below in Figure D.16.

• 1. Left hand operand location not empty.
Right hand operand location empty.

Figure D.16 Parse right identifier flow

D.53.5 Parse right real flow

An operand which is a real literal, and which occurs immediately after a dyadic
operator (or continue), has its tag and value placed in the right hand operand
location. The remainder of the expression is parsed as shown below in Figure D. 17.

• 1. Left hand operand location not empty.
Right hand operand location empty

D-25

D.5.3.6 Functions and parse function flow

Figure D.18, below, combines the flow for functions and the operand/expression
immediately following the function.

• 1. Left hand operand location is empty.
Right hand operand location is empty.
Operator location is empty.

• 2. Function not implemented by
DFDL(mod. state 1/90).

Figure D.18 Function flow

D-26

D.53.7 Monadic operator and monadic operator parse

Figure D.19, below, combines the flow for monadic operators and the operand/ex-
pression immediately following the monadic operator.

• 1. Left hand operand location is empty.
Right hand operand location is empty.
Operator location is empty.

• 2. Operator becomes a no-op.

Figure D.19 Monadic flow

D-27

D.5.3.8 Spatial subscript flow

A spatial subscript describes the column and row indices. Valid column/row
indices are non-negative integer values less than the column/row dimension size.

Figure D.20 Spatial subscript flow

D.5.3.9 Temporal subscript flow

A temporal subscript begins with the keyword Z. It defines the unit delay applied
to the preceding operand. Valid delays are non- negative integer values not greater
than the maximum delay (currently 1000).

Figure D.21 Temporal subscript flow

D-28

D.53.10 Parse subscript flow

Subscripts are either fixed or repetitive. Fixed types evaluate to a single non-nega-
tive integer value. Repetitive types evaluate to a series of non-negative integer
values. The series starts FROM the start, goes on FOR the size, and advances
EVERY step. Where the step is not declared, a default value (+1) is inserted.

• 1. Fixed subscript.

• 2. Repetitive subscript.

• 3. Non-negative integer.

• 4. Positive integer.

• 5. Default step is +1.

• 6. Non-zero integer.

Figure D.22 Parse subscript flow

D-29

D.53.11 Integer expression flow

Integers in the DFDL(mod. state 1/90) implementation are evaluated by simple
expression. The flow of the integer expression is illustrated by Figure D.23. All the
arithmetic operators are integer operators.

Figure D.23 Integer expression flow

D-30

References

Abramsky S. and Bornat R. (1982).
In: Pascal-M: A language for distributed systems, QMC CSL 326, Queen
Mary Collage Computer Systems Laboratory.

Ackerman W.B. (1982).
Dataflow languages. In: IEEE Computer, voi. 15, no.2, pp. 15-25.

Ackerman W.B. and Dennis J.B. (1979).
In: VAL-A value- oriented algorithmic language: preliminary reference
manual, MIT Laboratory for Computer Science Technical Report, TR-218,
MIT, Cambridge, Mass.

Adam T.L., Chandy K.M. and Dickson J.R. (1974).
A comparison of list schedules for parallel processing systems. In: Com-
mun. ACM, vol.17, no.12, pp.685-690.

Aho A.V., Hopcroft J.E. and Ullman J.D. (1974).
In: The design and analysis of computer algorithms. (Reading, Mass:
Addison-Wesley).

A lleni. (1985).
Computer architectures for digital signal processing. In: Proc. IEEE,
vol.73, no.5, pp. 852-873.

Andrews G.R. and Schneider F. (1983).
Concepts and notation for concurrent programming. In: ACM Computing
Surveys, voi. 15, no.l, pp3-44.

Annaratone M., Arnould E., Kung H.T. and Menzilcioglu O. (1986).
Using Warp as a supercomputer in signal processing. In: IEEE Proc.
International Conference on Acoustics, Speech and Signal Processing
ICASSP-86, pp.2895-2898.

Annaratone M., Arnould E., Gross T., Kung H.T., Lam M., Menzilcioglu
O. and Webb J.A. (1987).
The Warp computer: architecture, implementation and performance. In:
IEEE Trans. Comput., vol.36, no.12, pp.1523-1537.

Arvind, Gostelow K.P. and Plouffe W. (1978).
In: An asynchronous programming language and computing machine.
Technical Report TRI 14a, Department of Information and Computer
Science, University of California at Irvine.

References

Arvind and Kathail V. (1981).
A multiple processor dataflow machine that supports generalised proce-
dures. In: Proc. 8th Annual Symposium on Computer Architecture.

Ashcroft E.A. and Wadge W.W. (1977).
LUCID, A non-procedural language with iteration. In: Commun. ACM,
vol.20, no.7, pp. 519-526.

Barnes G.H. (1968).
The ILLIACIV computer. In: IEEE Trans. Comput., voi. 17, no.8, p.746.

Backus J. (1978).
Can programming be liberated from the Von Neumann style? A functional
style and its algebra of programs. In: Commun. ACM, vol.21, no.8, pp.613-
641.

Bertsekas D.P. and Tsitsiklis J.N. (1989).
In: Parallel and distributed computation. (New Jersey: Prentice-Hall).

Bhuyan L.N., Yang Q. and Agrawal D.P. (1989).
Performance of multi-processor interconnection networks. In: IEEE Com-
puter, vol.22, no.2, pp.25-37.

Bokhari S.H. (1988).
Partitioning problems in parallel, pipelined and distributed computing. In:
IEEE Trans. Comput., vol.37, no.l, pp.48-57.

Bornât R. (1979).
In: Understanding and writing compilers: A do-it-yourself guide.
(Basingstoke: Macmillan).

Brinch-Hansen P. (1972).
Structured multiprogramming. In: Commun. ACM, voi. 15, no.7, pp.574-
578.

Brinch-Hansen P. (1975).
The programming language Concurrent Pascal. In: IEEE Trans. Software
Eng., v o ll, no.2, pp. 199-207.

Burstall R.M., MacQueen D.B. and Sandella D.T. (1980).
HOPE: An experimental applicative language. In: Internal report CSR-62-
80, Department of Computer Science, University of Edinburgh.

References

Chamberlin D.D. (1971).
Parallel implementation of a single assignment language. Ph.D. thesis:
Stanford University, Computer Science Dept.

Chambers F.B., Duce D.A. and Jones G.P. (1984).
In: Distributed Computing. (London: Academic Press).

Clark W. (1952).
In: The Gantt chart. 3rd edition (London: Pitman).

Coffman E.G. (1976).
In: Computer and job-shop scheduling theory. (New York: John Wiley &
sons).

Coffman E.G. and Graham R.L. (1972).
Optimal scheduling for two-processor systems. In: Acta Informata., vol.l,
pp.200-213.

Cohen D.A. (1976).
Basic techniques of combinatorial theory. (New York: John Wiley & Sons).

Conway R.W., Maxwell W.L. and Miller L.W. (1967).
Theory of scheduling. (Reading, Mass: Addison-Wesley).

Cook S. (1971).
The complexity of theorem proving. In: Proc. 3rd Annual ACM Symposium
on Theory of Computing, 1971, pp.151-158.

Cvetanovic Z. (1987).
The effects of problem partitioning, allocation and granularity on the
performance of multi-processor systems. In: IEEE Trans. Comput., vol.36,
no.4, pp.421-432.

Darlington J. and Reeve M. (1981).
Alice: A multi-processor reduction machine for the parallel evaluation of
applicative languages. In: Proc. ACM Conference for Functional Program-
ming Languages and Computer Architecture, pp.65-75.

Day J.E. and Hottenstein M.P. (1971).
Review of sequencing research. In: Naval Research Logistics Quarterly,
vol.18, p p .ll- 39.

Dennis J.B. (1980).
Data-flow supercomputers. In: IEEE Computer, voi. 13, no. 11, pp.48-56.

References

Dennis J.B. and Misunas D.P. (1975).
A preliminary architecture for a basic dataflow processor. In: Proc. 2nd
IEEE Symposium on Computer Architecture, p.126.

Dijkstra E.W. (1959).
A note on two problems in connection with graphs. In: Numer. Math., vol. 1,
pp.269-271.

Dijkstra E.W. (1968).
Co-operating sequential processes. In: Programming languages. Genuys F.
(ed.), (New York: Academic Press).

Elmaghraby S.E. (1968).
The machine sequencing problem - review and extensions. In: Naval Re-
search Logistics Quarterly, vol. 15, no.2, pp.205-232.

Fernandez E.B. and Bussell B. (1973).
Bounds on the number of processors and time for multi-processor optimal
schedules. In: IEEE Trans. Comput., vol.22, no.8, pp.745-751.

Flynn M.J. (1972).
Some computer organisations and their effectiveness. In: IEEE Trans.
Computers, vol.21, no.9, pp.948-960.

Gajski D.D. and Peir J. (1985).
Essential issues in multi-processor systems. In: IEEE Computer, vol. 18,
no.6, pp.9-27.

Garey M.R. and Johnson D.S. (1979).
In: Computers and intractability: A guide to the theory of NP-complete-
ness. (San Fransisco: W.H.Freeman).

Gaudiot J.L. (1987).
Data-driven multi-computers in digital signal processing. In: Proceedings
of the IEEE, vol.75, no.9, pp. 1220-1234.

Gaudiot J.L., Dubois M., Lee L.T. and Tohme N. (1986).
The TX16: A highly programmable multi-processor architecture. In: IEEE
Micro, vol.6, no. 10, pp. 18-31.

Glaser E.L., Pyle I.C. and Illingworth V. (1986).
In: Dictionary of computing (second edition). (New York: Oxford Univer-
sity Press).

References

Goddard A J. (1987).
In: DFDL; definition, specification and examples. CIE internal report
AJG/DFDL/1, City University, London, August 1987.

Goddard A.J. (1989).
In: DFDL language definition. CIE internal report AJG/DFDL/2, City
University, London, February 1989.

Goddard A.J. and Lawson S.S. (1988a).
Mapping signal processing algorithms onto a multi-processor network. In:
Signal Processing IV: Theory and Applications, pp. 1229-1232, (Amster-
dam: North-Holland).

Goddard A.J. and Lawson S.S. (1988b).
An automated approach to mapping DSP algorithms onto Transputer
arrays. In: IEE Symposium on Digital Signal Processing for VLSI, Savoy
Place, London. (Digest No: 1988/137).

Gordon M.J., Milner A.J. and Wandsworth C.P. (1979).
Edinburgh LCF. In: Lecture notes in Computer Science (Springer-Verlag).

Goyal D.K. (1976).
Scheduling processor bound systems. In: Report no. CS-76-036, Computer
Science Dept., Washington State Univ., Pullman, WA.

Graham R.L. (1972).
Bounds on multi-processing anomalies and related packing algorithms. In:
Spring Joint Computer Conference, 1972, pp.205-217.

Guernic P., Benveniste A., Bournai P. and Gautier T. (1986).
SIGNAL - A dataflow oriented language for signal processing. In: IEEE
Trans. Acoustics, Speech and Signal Processing, vol.34, no.2, pp.362-374.

Gurd J. and Watson I. (1980).
Data driven system for high speed parallel computing. In: Computer design
vol.9, no.6, p.91 and no.7, p.97.

Harary F. (1969).
In: Graph theory. (Reading, Mass: Addison-Wesley).

Hartimo I., Kronlof K., Simula O. and Skytta J. (1986).
DFSP: A data flow signal processor. In: IEEE Trans. Comput., vol.35, no.l,
pp.23-33.

References

Hetch M.S. (1977).
In: Flow analysis of computer programs. (New York: North Holland).

Hillis W.D. (1985).
In: The Connection Machine. (Cambridge, Mass: MIT Press).

Hoare C.A.R. (1974).
Monitors: An operating system structuring concept. In: Commun. ACM,
voi. 17, no. 10, pp.549-557.

Hoare C.A.R. (1978).
Communicating sequential processes. In: Commun. ACM, vol.21, no.8,
pp.666-677.

Hockney R.W. (1983).
Characterisation of parallel computers. In: Parallel and large- scale com-
puters: performance, architecture, applications, ed. M.Ruschitzka.
(Oxford: North- Holland) pp.201-206.

Hockney R.W. and Jesshope C.R. (1981).
In: Parallel computers: architecture, programming and algorithms. (Bris-
tol, England: Adam Hilgar).

Hu T.C. (1961).
Parallel sequencing and assembly line problems. In: Operations Research,
vol.9, no.6, pp.841-848.

Hwang K. and Briggs F.A. (1984).
In: Computer architecture and parallel processing. (New York: McGraw-
Hill).

Hyvarinen O., Hartimo I. and Simula O. (1987).
Methods to improve the computing efficiency of an arbitrary digital signal
processing flow graph with implementation constraints. In: Proc. IEEE
International Symposium on Circuits and Systems ISCAS-87, Philadelphia,
pp.915-918.

IBM (1988).
In: Parallel Fortran language and library reference. International Business
Machines, Pub. No. SC23-0431-0.

IEEE (1981).
Interconnection networks. In: IEEE Computer, voi. 14, no. 12.

References

IEEE (1982).
Special issue on dataflow systems. In: IEEE Computer, voi. 15, no.2.

IEEE (1987).
Interconnection networks. In: IEEE Computer, vol.20, no.6.

INMOS (1986).
In: Transputer reference manual. (Bristol: INMOS Ltd.).

Jesshope C. (1987).
In: Major advances in parallel processing. (Aldershot: Gower Technical
Press).

Karp R.M. and Miller R.E. (1966).
Properties of a model for parallel computations: determinacy, termination,
queuing. In: SIAM Journal of Applied Mathematics, voi. 14, no.6, pp.1390-
1411.

Karp R.M. and Miller R.E. (1969).
Parallel program Schemata. In: Journal of Computer and System Sciences,
vol.3, pp.147-195.

Karp R.M. (1986).
Combinatorics, complexity and randomness. In: Commun. ACM, vol.29,
no.2, pp.98-111.

Knuth D.E. (1972).
In: The art of computer programming: vol.3, sorting and searching. (Read-
ing, Mass: Addison-Wesley).

Kronolf K., Hartimo I. and Simila O. (1983).
The compatibility of computing algorithms to parallel processing architec-
tures. In: Proc. IEEE International Symposium on Circuits and Systems
ISCAS-83, Newport Beach, California, pp.48-51.

Kruatrachue B. and Lewis T. (1988).
Grain size determination for parallel processing. In: IEEE Software, no.l,
pp.23-32.

Kuck D.J. and Stokes R.A. (1982).
The Burrough’s Scientific Processor. In: IEEE Trans. Computers, vol.31,
no.5, pp.363-376.

Kung H.T. (1982).
Why Systolic architectures? In: IEEE Computer, vol.15, pp. 37-46.

References

Kung S.Y. (1984).
On supercomputing with systolic/wavefront array processors. In: Proc.
IEEE, vol.72, no.7, pp. 867-884.

Kung S.Y., Arun K.S., Gal-Ezer R.J. and Bhaskar Rao D.V. (1982).
Wavefront array processor: Language, architecture and applications. In:
IEEE Trans. Comput., vol.31, no .ll, pp.1054-1066.

Ledgard H. (1981).
In: ADA - An introduction and Ada reference manual. (Springer-Verlag).

Lee S.Y. and Aggarwal J.K. (1987).
A mapping strategy for parallel processing. In: IEEE Trans, on Comput.,
vol.36, no.4, pp.433-441.

Lee E.A. and Messerschmitt D.G. (1987).
Synchronous data flow. In: Proc. IEEE, vol.75, no.9, pp.1235-1245.

Lenstra J.K. and Rinnooy Kan A.H.G. (1978).
Complexity of scheduling under precedence constraints. In: Operations
Research, vol.26, pp.22-35.

Loeffler C , Lightenberg A. and Moschytz (1988).
Algorithm-architecture mapping for custom DSP chips. In: Proc. IEEE
International Symposium on Circuits and Systems ISCAS-88, Helsinki,
Finland.

Mason S.J. (1953).
Feedback theory-Some properties of signal flow graphs. In: Proc. IRE,
vol.41, pp. 920-926.

May D. (1983).
Occam. In: SIGPLAN notices, vol.18, no.4, pp.69-79.

May D. (1987).
In: Occam2 language definition. (Bristol: INMOS Ltd.).

McCarthy J. (1960).
Recursive functions of symbolic expressions and their computation by
machine. In: Commun. ACM, vol.3, no.4, pp.185-195.

McEntire P.L., O’Reily J.G. and Larson R.E. (1984).
In: Distributed computing: concepts and implementations. (New York:
IEEE press).

References

McGraw J., Skedzielewski S., Allan S., Grit D., Oldehoeft R., Glauert
J.R.W., Dobes I. and Hohensee P. (1983).
In: SISAL-Streams and iterations in a single-assignment language. Lan-
guage reference manual version 1.0., Lawrence Livermore National
Laboratory.

McNaughton R. (1959).
Scheduling with deadlines and loss functions. In: Management Science,
vol.6, no.l, pp.1-12.

Mead C. and Conway L. (1980).
In: Introduction to VLSI systems. (Reading, Mass: Addison-Wesley).

Millstein R. (1973).
Control structures in Illiac IV Fortran. In: Commun. ACM, voi. 16, pp.622-
627.

Minieka E. (1978).
In: Optimisation algorithms for networks and graphs. (New York: Marcel
Dekker).

Mitchell J.G., Maybury W. and Sweet R. (1979).
In: Mesa language manual, version 5.0. CSL-79-3, Palo Alto Research
Centre, Xerox.

Moder J.J. and Phillips C.R. (1964).
In: Project management with CPM and PERT. (New York: Reinhold).

More W., McCabe A. and Urquhart R. (1987).
In: Systolic Arrays. (Bristol: Adam Hilgar).

Mundie D.A. and Fisher D.A. (1986).
Parallel processing in Ada. In: IEEE Computer, voi. 19, no.8, pp.20-25.

Nilsson N. (1971).
In: Problem solving methods in artificial intelligence. (New York: Mc’
Graw-Hill).

Nilsson N. (1980).
In: Principles of artificial intelligence. (Palo Alto, Calif: Tioga).

Padua D.A. and Wolfe M.J. (1986).
Advanced compiler optimisations for supercomputers. In: Commun.
ACM, vol.29, no.12, pp.1184-1201.

References

Papadimitriou C.H. and Yannakakis M. (1978).
Scheduling interval-ordered tasks. In: Report no. TR-11-78, Centre for
Research in Computer Technology, Harvard Univ., Cambridge, Mass.

Pearl J. (1984).
In: Heuristics: Intelligent search strategies for computer problem solving.
(Reading, Mass: Addison-Wesley).

Polychronopoulos C.D. and Banerjee U. (1987).
Processor allocation for horizontal and vertical parallelism and related
speedup bounds. In: IEEE Trans. Comput., vol.36, no.4, pp.410-420.

Price C.C. and Pooch U.W. (1982).
Search techniques for a non-linear multi-processor scheduling problem. In:
Naval Research Logistics Quarterly, vol.29, no.2, pp.213-233.

Reddaway S.F. (1973).
DAP-A distributed array processor. In: Proc. 1st ACM Symposium on
Computer Architecture.

Reed D.A and Grunwald D.C. (1987).
The performance of multi-computer interconnection networks. In: IEEE
Computer, vol.20, no.6, pp.63-73.

Richmond G. (1982).
A dataflow implementation of SASL. In: M.Sc. Thesis, Department of
Computer Science, University of Manchester.

Sarkar V. (1989).
In: Partitioning and scheduling parallel programs for execution on multi-
processors. (London: Pitman).

Skillicorn D.B. (1988).
A taxonomy for computer architectures. In: IEEE Computer, vol.21, no.l 1,
pp.46-57.

Steinmetz R., Gemballa R., Lenzer J. and Roth H. (1983).
Realisation of digital filter algorithms by the use of a high speed parallel
processing architecture. In: Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 1188-1191.

Stevens K. (1975).
CFD-A Fortran like language for the ILLIAC IV. In: SIGPLAN notices,
vol.10, pp.72-80.

References

Su W., Faucette R. and Seitz C. (1985).
In: C program m er’s guide to the Cosmic Cube. Technical report
5203:TR:85, Computer Science Department, California Institute of Tech-
nology.

Thaler M., Loeffler C. and Moschytz (1987).
Programming, analysis and synthesis of parallel signal processors. In: Proc.
IEEE International Symposium on Circuits and Systems ISCAS-87,
Philadelphia, pp.358-361.

Turing A. (1936).
O n compu tab l e number s , wi th an app l i ca t ion to the
Entscheidungsproblem. In: Proc. London Math. Soc., Ser 2, no.42, pp.230-
265, and no.43, pp.544-546.

Turner D.A. (1976).
In: SASL language manual. Computer Laboratory, University of Kent.

Ullman J.D. (1975).
NP-complete scheduling problems. In: Journal of Computer System
Science, vol.10, pp.384-393.

Watson I. (1988).
Flagship: A parallel architecture for declarative programming. In:
Proceedings of the 15th Annual International Symposium on Computer
Architecture, May 1988, pp.124-130.

Writh N. (1977).
Modula: A language for modular multiprogramming. In: Software Practice
& Experience, vol.7, no.l, p.3.

Writh N. (1978).
In: Modula-2. Nr.36, Institut fur Informatik, ETH.

Young S.J. (1982).
In: Real time languages: Design and development. (Ellis Horwood).

Zakharov V. (1984).
Parallelism and array processing. In: IEEE Trans. Comput., vol.33, no.l,
pp.45-78.

