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Abstract

Recently, there has been an increase in demand for low cost, high throughput 
parallel processors on which to implement real-time DSP applications. Numerous 
solutions have been proposed, though often these are application dependent. This 
is true for SIMD and systolic architectures, which require a high degree of 
regularity in an application’s structure. A more general purpose solution is offered 
using MIMD architectures, which come in a variety of forms. Here we concentrate 
on loosely-coupled, homogeneous architectures, because they offer infinite expan-
dability and a low cost/processor ratio.

On the route to successful parallel implementation, there are three fundamental 
problems to be solved, these are parallelism detection, partitioning and schedul-
ing. An automatic approach to solving these problems is presented in the thesis. 
The approach is based on a compile-time implementation strategy which extracts 
parallelism, partitions and schedules during compile-time.

Applications are written in a single-assignment language called DFDL (Digital 
Filter Description Language); a language designed specifically for deterministic, 
sampled systems. By using a single-assignment language, programs are easily 
translated into a graphical form (task graph) which conserves and displays paral-
lelism. The task graph is used as an input to the partitioning and scheduling stages.

Prior to scheduling, the user is prompted for details of the target architecture. This 
includes the number and type of processors, input, output and inter-processor 
connections. These parameters are used to form a separate graph, called the 
processor graph. Execution profile information is added to the task graph, this 
enables analysis to be performed which aids scheduling.

The compile-time scheduling problem is expressed as an optimisation problem, 
which is shown to be NP-complete. The thesis presents an efficient approximation 
algorithm for the scheduling problem, which is based on a lateness heuristic. The 
resulting schedules are translated into parallel Occam for execution on an array 
of Transputers. The successes and failures of the implementation strategy are 
examined and commented upon. Performance results are given for several ex-
ample applications written in DFDL. These examples are implemented on a range 
of architectures and the effects of communication, scheduling and topology are 
discussed.
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Chapter 1. Introduction

Digital signal processing (DSP) is a branch of signal processing that uses digital 
systems to operate on signals. This form of processing has many attractions; data 
can be manipulated in time, a wide range of arithmetic operations and algorithmic 
complexity is possible and precision is arbitrarily high. One disadvantage, however, 
is that digital techniques are inherently slower than their analogue counterparts.

The wide scale use of electrical digital systems began in the mid 1940’s. Since that 
time, there have been significant developments. These developments have led to 
an upward trend in complexity, precision, throughput and miniaturisation. Major 
technological advances include the replacement of mechanical relays by ther-
mionic valves, the valves subsequent replacement by discrete transistors, and the 
introduction of high density integration techniques. These developments have 
meant that switching speeds have fallen drastically and processors that previously 
occupied a room and required vast amounts of power, will now fit in a pocket and 
run off a small cell.

Manufactures of integrated circuits, using current fabrication techniques, can 
produce integrated circuits that consist of millions of transistors. The trend for 
increased integration, as a way to reduce switching speeds, may continue for some 
time. However, there are physical limitations related to the molecular structure of 
semiconductor materials that place a ceiling on such miniaturisation. For the 
future, there are many directions for advancement, these are mainly motivated by 
a desire for increased performance; greater data throughput, more accuracy, 
smaller latency and/or increased complexity. A technological answer to the ques-
tion, "How do we increase performance?" is to continue to reduce switching 
speeds. This may be achieved by changing to a different semiconductor material, 
or by changing the computing medium altogether, e.g. acousto-optics.

An alternative direction, which neither precludes or necessarily requires tech-
nological advancement, is to develop new architectures and programming 
methods. This route aims to exploit the concurrency within processes, by simul-
taneously processing data independent operations. Allen (1985), in his 
comprehensive review of computer architectures for digital signal processing 
(DSP), discusses DSP evolution and highlights many current trends. Both he, and 
others (e.g. Gaudiot, 1987; Gajski and Pier, 1985), have identified three architec-
turally related routes to increase processing performance:

. The first route relies on the computer architect to exploit new and existing 
processing architectures, in order to increase the processing throughput.

. The second, calls for the design of new parallel algorithms, using languages 
which support the concept of parallelism, like CSP (Hoare, 1978) and 
Occam (May, 1987).
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. Finally, the third route focuses on the design of advanced compilers to 
extract parallelism automatically.

The underlying aim of these points is to achieve an increased processing through-
put by parallel processing. To achieve this aim, Backus (1978) suggests that 
processing architectures must consist of multiple processing resources and that we 
should move away from the conventional von Neumann model of computing. With 
this, and the previous points as motivation, the main objective of this dissertation 
is to develop an efficient implementation strategy, that maps an algorithm descrip-
tion onto a parallel architecture with the aim of maximising performance.

1.1 Processor architectures

Processor architectures are described according to Skillicorn’s taxonomy (Skil- 
licorn, 1988), a taxonomy that extends Flynn’s (1972), especially when describing 
parallel architectures. It is a two level hierarchy in which the upper level classifies 
architectures by the number of instruction processors, the number of processing 
elements and the interconnections between them. A lower level, though not 
discussed here, distinguishes variants even more precisely; this level is based on a 
state machine view of processors.

1.1.1 Von Neumann machine

The von Neumann abstract machine consists of a single instruction processor (IP), 
a single processing element (PE) and two memory hierarchies; instruction memory 
(IM) and data memory (DM). These functional units are arranged as shown in 
Figure 1.1.

Figure 1.1 Von Neumann architecture
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Other computational models are motivated by a desire for increased performance, 
above that accorded to the abstract von Neumann machine. Enhancements to the 
performance are made in one, or more, of three ways:

• Rearrange the machine’s state diagram to reduce the time taken for an 
instruction/execute cycle (token) to circulate and complete. This is 
achieved by executing independent operations simultaneously, either 
within the instruction processor, processing element, or both, e.g. inde-
pendent instruction and data busses produce a Harvard architecture. These 
changes are regarded as state changes and do not alter the architectural 
class of the machine.

• Have more than one token circulating, and hence, more than one active 
time step at any one time. This method of performance enhancement is 
called pipelining. Pipelined behaviour can be described without adding 
more functional units, because it is regarded as a state level change. Instead, 
pipelined units are distinguished from simple units by labelling.

. Replicate functional units to permit parallel activity. This form of enhan-
cement changes the architectural class of the machine and is often the most 
beneficial route to improving performance.

The final way to improve performance is discussed further by showing several of 
the commonest parallel architectures, beginning with the array machine.

1.1.2 Array machines

The simplest way for replication of functional units is found in the array processor. 
Typically, array processors consist of a single instruction processor, that broadcasts 
instructions to a number of processing elements, which have access to data 
memory. Instructions are included for data to be exchanged between processing 
elements, either directly, or indirectly.

Array processors use a 1 to N switch (abstract term for connectivity) to broadcast 
from the single instruction processor to the N processing elements. Two different 
sub-families are distinguished, based on the relative arrangement of data memory, 
processing elements and the necessary switching that facilitates interconnection 
between functional units. The first is shown in Figure 1.2. This kind of array 
processor has a processing element to data memory connection of N to N and a 
processing element to processing element connection of N by N; every processing 
element can communicate with every other processing element. This architecture 
is similar to that used in the DAP (Reddaway, 1973) and the Connection Machine 
(Hillis, 1985).

The second kind of array processor, Figure 1.3, has a processing element to data 
memory connection of N by N. In this case there is no direct connection between 
processing elements, hence, inter processor communication is achieved via shared 
memory. An example of this architecture is found in the Burrough’s Scientific 
Processor (Kuck and Stokes, 1982).
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Figure 1.2 Array architecture

Array machines, such as the DAP, Connection Machine and Burroughs Scientific 
Processor, are used to process general purpose, regularly structured computations. 
For example, matrix-matrix or vector-matrix operations, as found in finite element 
analysis and simulation operations.

\
IM

____ )
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An alternative form of array processor is the systolic array (Kung, 1982). A systolic 
array is designed from regular processing elements (to reduce the design and 
production costs), each connected to their nearest neighbour. This principle of 
locality (only nearest neighbour processing elements are connected) aims to 
reduce communication time between processors and so increase performance. 
Systolic arrays are often single instruction. Consequently, the instruction processor 
reduces to a memoryless synchronisation unit, i.e. global clock. The operation of 
the array is usually determined during the manufacturing process. Systolic arrays 
rely on suitable algorithms which reflect the high degree of modularity and locality 
of the architecture. Semi-systolic arrays (More, McCabe and Urquhart, 1987) relax 
the principle of locality in one or more dimensions, so that a greater number of 
different algorithms can be implemented. This is often at the expense of perfor-
mance, because of the introduction of global data distribution.

Figure 1.4 Systolic array architecture

Another single instruction array processor worthy of note is the wavefront array 
processor (Kung, 1984). Like the systolic array, a wavefront array conforms to the 
principle of locality in order to keep communication time to a minimum, and 
regularity in order to maintain low design/production costs. However, the 
wavefront array’s processing elements are data synchronous and do not, therefore, 
require global synchronisation. Its abstract functional architecture, Figure 1.5, 
reveals the absence of an instruction processor (or global clock). Like the systolic 
array, the operation of a wavefront array is usually determined during the manufac-
turing process.

Both systolic and wavefront arrays are, as a rule, dedicated to a single, regularly 
structured function and would typically form the processing core of a high speed 
processor. Examples of their uses are correlators and 2D convolvers.
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Figure 1.5 Wavefront array architecture

Array processors rely on the existence of regular parallelism; where many different 
data streams can be manipulated by the same operation simultaneously. Many 
problems do not fit this paradigm, especially when parallelism is irregularly 
organised. Consequently, it is natural to consider replicating the instruction 
processor as well as the processing element. This allows for the simultaneous 
execution of different instructions on different pieces of data.

1.13 Parallel von Neumann machines

One major class of architecture based on replicated instruction processors and 
replicated processing elements is the parallel von Neumann machine. This struc-
ture is aimed at providing parallel, general purpose computing. Essentially, two 
different architectures result from this approach; loosely coupled machines and 
tightly coupled machines.

Figure 1.6 Loosely coupled architecture
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Loosely coupled machines, Figure 1.6, comprise a set of processing elements, each 
with their own local memory, a set of instruction processors and an interconnection 
network. Inter processor communication takes place over the N by N interconnec-
tion network, usually by message passing. Typical examples of these machines are 
the CM , Intel Hypercube, Meiko MK40, TX16 (Gaudiot, Dubois, Lee and 
Tohme, 1986) and Supernode (Esprit project 1085), the three latter examples are 
all Transputer (INMOS, 1986) based.

Tightly coupled machines differ from loosely coupled machines by the way data 
memory and inter processor communication is organised. Communication be-
tween processing elements is achieved via an N by N switch, which connects the 
data memory to the processing elements. There is no direct interconnection 
between processing elements, therefore, inter-processor communication is made 
via shared memory. Examples of tightly coupled (or shared memory) machines are 
the BBN Butterfly, Denelcor HEP, IBM RP3 and NYU Ultracomputer. The 
functional architecture of the tightly coupled machine is shown in Figure 1.7.

Figure 1.7 Tightly coupled architecture

A number of these example multi-processors are reviewed in (Jesshope,1987).

The von Neumann model of computation is based on a thread of instructions 
executed sequentially, except where order is explicitly altered. When multiple 
threads of control are employed, as with a parallel von Neumann machine, 
programmers must not only consider the ordering of instructions in a single thread, 
but also the different possible orderings in interacting threads. This problem often 
makes programming awkward and has led designers of parallel machines to 
examine alternative models of computation.
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1.1.4 Non-von Neumann machines

Alternative, non von-Neumann models of computation are characterised by an 
absence, in the program description, of an explicit ordering of execution. The only 
ordering remaining, is that implied by data dependencies. This allows for many 
different evaluation orders to be considered for execution. Evaluation is made at 
compile time, or sectioned between compile time and run time, and aims to select 
the ordering (or schedule) which promises the greatest performance. Models of 
computation with this property are programmed in non-procedural programming 
languages.

1.1.5 Dataflow machines

The dataflow model of computation represents a parallel computation as a 
directed graph (data dependent structure), which removes the requirement for 
unnecessary sequencing. A task, represented as a node in the directed graph, is 
only ready for processing once all its preceding dependencies have been executed. 
Consequently, at any one time, there may be many tasks available for processing.

Most dataflow machines are based on a ring structure, consisting of an unmatched 
token store (where data values wait until a complete set of operands is present), 
memory containing the operators and a set of processing elements that execute 
the operators. Result values, from the processing elements, flow around the ring 
structure and are matched to tokens within the unmatched token store. The 
abstract data flow machine can take one of two architectural forms, namely static 
or dynamic.

Figure 1.8 Static dataflow architecture

In a static dataflow machine, each processing element has its own memory, and 
data values needed by other processing elements flow across the inter processing 
element switch. The diagram of the functional architecture, Figure 1.8, differs from 
a parallel von Neumann architecture, in that it has neither an instruction processor 
nor an instruction memory, because the directed graph plays the role of both 
instruction (in its structure) and data (in its content). The functional diagram is 
similar to that of a Wavefront Array, which is not surprising since both are data 
driven machines. An example of a static dataflow machine is the MIT Static 
Dataflow Machine (Dennis and Misunas, 1975).

1-8



In a dynamic dataflow machine, Figure 1.9, all data memory is equally accessible 
to all processing elements, as in tightly coupled machines. As with a static dataflow 
machine, a dynamic machine has neither an instruction processor nor an instruc-
tion memory, because the directed graph plays the role of both instruction and 
data. Examples are the MIT Dynamic Dataflow Machine (Arvind and Kathail, 
1981) and the Manchester Dynamic Dataflow Machine (Gurd and Watson, 1980). 
Additional information on dataflow machines and languages has been published 
in a special issue of Computer (IEEE, 1982).

1.1.6 Graph reduction machines

In reduction machines (Chambers, Duce and Jones, 1984), expressions are 
evaluated by successively reducing all component sub-expressions until only 
simple data values remain. Evaluation is achieved by expression substitution; for 
each expression that is not a simple data value, a set of rules define what is 
substituted when that expression occurs. The machine works by matching the 
current expression being processed with its corresponding rule. Once matched, 
the expression is substituted according to the rule. The process of expression 
substitution continues until all sub-expressions are processed and only simple data 
values remain. These represent the value of the expression. All independent 
sub-expressions can be matched and substituted concurrently, thus there is the 
potential for a high degree of parallelism.

The diagram of the functional architecture for a reduction machine, Figure 1.9, is 
functionally identical to that of the dynamic dataflow machine. Graph reduction 
machines are the focus of current research interest especially in the UK, examples 
of these are Alice (Darlington and Reeve, 1981) and Flagship (Watson, 1988).

Figure 1.9 Dynamic dataflow/Reduction architecture
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1.2 Interconnection Networks

All communicating parallel processing machines employ some form of intercon-
nection network, over which they synchronise or pass data. Such networks are 
worthy of note, since the interconnection network often limits the performance of 
a machine.

1.2.1 Bus interconnection

The least complex form of dynamic interconnection network is the shared bus, 
Figure 1.10, which allows one processor at a time to transmit to one or more devices 
on the bus. Contention problems arise whenever more than one processor at-
tempts to transmit simultaneously. Consequently, bus arbitration is necessary, this 
often results in considerable time being spent waiting for the bus to clear before 
a processing element can transmit.

Figure 1.10 Bus interconnection

1.2.2 Crossbar interconnection

At the other extreme, the crossbar switch, Figure 1.11, supports all possible distinct 
connections between devices. The complexity, however, of an N by N crossbar 
switch is O (N2). For machines comprising large numbers of processors, the 
complexity, and hence the cost of a crossbar switch may be prohibitive.

MO



Figure 1.11 Full conectivity

1.23  Omega interconnection

A compromise between using a shared bus or using a crossbar interconnection 
network is to either use multiple busses, or use multistage switches like the omega 
or delta networks. The omega network, shown in Figure 1.12, is made up from 2 
by 2 crossbar switches and has a complexity of 2Nlog2N for an N by N network.
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Figure 1.12 Omega network
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The penalties for using a multistage network (compared to crossbar interconnec-
tion), is an increased latency because of multi-stage switching, and is a possible 
delay due to routing conflicts. The performance of networks using each type of 
interconnection method has been studied extensively. Bhuyan, Yang and Agrawal 
(1989) present a comprehensive review on interconnection networks, including 
relative figures of merit for different network types.

1.2.4 Static interconnection

Static networks consist of point to point connections called links. These networks 
are often used where complete connectivity is not essential, as in the case for 
loosely coupled machines, systolic arrays and wavefront arrays. Networks are 
classified in terms of their degree and their diameter; the degree is the number of 
links per processing element, and the diameter is the maximum number of links a 
message has to travel between any source and destination along the shortest path. 
Networks that have a lower degree for each processing element give rise to a higher 
diameter, which means a greater delay in average communication time. Increasing 
the degree of a processing element reduces the diameter of the network, but 
increases its cost.

Example 3-D Hypercube has N = 16 processors, 
degree and diameter of 4. There are 4 distinct 

paths between any source and destination processor.

Figure 1.13 3-D Hypercube
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The majority of research on static networks has been carried out on networks that 
have a regular topology (Reed and Grunwald, 1989), these include linear net-
works, chordal and simple rings, 3-D torus, 3-D hypercube and tree networks. A 
linear network and a completely connected network are two examples that repre-
sent extremes in their degree and diameter. For example, an N processor linear 
network has a degree of 2 and diameter of N, where as an N processor completely 
connected network has a degree of N-l and a diameter of 1.

13 Programming languages

Just as there are different classes of processor architecture, there are also different 
classes of programming language. Often, there are strong relationships between 
classes of architecture and classes of language, so much so, that classes of language 
are sometimes referred to by a hardware analogy, e.g. multi-processor language. 
This close relationship is not surprising, since both the language and its related 
architecture class are generally conceived from the same computational model.

It is sometimes useful to distinguish between different types of parallelism. For 
example, "regular parallelism" and "irregular parallelism", and also "fine grain 
parallelism" and "coarse grain parallelism". Regular parallelism exists whenever 
the same task is performed many times over, usually on disjoint data. Whereas 
irregular parallelism exists whenever different tasks are performed and their data 
is independent. The size of concurrent sections of code (tasks or processes) relative 
to the smallest atomic operation defines the granularity of the parallelism. Fine 
grain suggests there are many small concurrent tasks, whereas coarse grain, 
suggests there are a few large concurrent tasks.

13.1 Array and vector programming

The notion that an existing sequential language can be used to program a parallel 
machine is appealing and indeed, the proliferation of Fortran programs have 
motivated many researchers towards investigating this subject. There have been 
two separate avenues of approach, the first is to detect and extract parallelism in 
the compiler, while the second relies on parallel extensions to existing sequential 
languages.

Parallel extraction at the compilation stage is perhaps the most attractive, because 
existing programs can be used without the cost of re-development (Padua and 
Wolfe, 1986). In practice, however, to gain any substantial benefit the user must 
restructure the program to remove ambiguities that the compiler cannot resolve. 
Languages like Fortran and Pascal are inherently difficult to "parallelise", because 
they exhibit side effects due to the explicit use of storage locations which impedes 
data flow analysis.
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variables and careful control over the scope of variables make this side effect 
preventable. A less obvious side effect arises from when an array or record is 
indexed by one or more variables, whose value is not known by the compiler, as is 
the case when the value is derived from an input. Concurrent execution of these 
array elements may cause unknown conflicts, hence array elements are executed 
sequentially in their original order, with the subsequent loss of potential concur-
rency. However, the worst problem is that of aliasing via the use of unbounded 
arrays or arithmetic operations on pointers. No amount of compile-time analysis 
can help unravel devious or undisciplined use of such language "features".

Despite these problems, parallelism may be extracted from repeated regular 
sections of code, i.e. DO loops. Although, this inevitably means the only paral-
lelism that is generally detectable, is that between regular sections of code (i.e. 
regular parallelism). For this reason, many paralellising compilers have been 
written for array processors, where processing is performed in a lock-step or 
overlapped fashion. For example, compilers have been written to run Fortran on 
the Cray-1 and on the Illiac IV (Millstein, 1973).

Existing sequential languages, like Fortran, have been extended so the parallelism 
of a specific machine can be exploited. Often these extensions directly reflect the 
architecture of the machine which, once modified, renders programs un-portable. 
However, the implementation problems, which are a major challenge are consid-
erably simplified. Once again though, the only parallelism that is readily exploited 
is regular parallelism, hence extensions to these languages are suited to array 
processors. Examples of extended Fortran languages are CFD (Stevens, 1975) for 
the Illiac IV, DAP Fortran for the ICL DAP and 3L Fortran for the INMOS 
Transputer. Likewise, several versions of "parallel" C have been written for the 
INMOS Transputer (INMOS, 1986).

1.3.2 Multi-processor programming

The techniques for programming distributed and multi-processor systems are 
similar to those used in operating systems for controlling concurrent access to 
shared resources. There are many specialised languages that have been written for 
concurrent programming and these differ considerably from one another, how-
ever, they all have the following three features in common (Andrews and 
Schneider, 1983);

(i) the ability to express concurrent execution,

(ii) process synchronisation and

(iii) inter-process communication.
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There are four basic mechanisms which have been used for achieving concurrent 
execution. First and simplest of these is the co-routine which has been included in 
languages such as Modula-2 (Writh, 1978). Secondly, the fork  and join notation 
which is used in the UNIX operating system and can be found in the Mesa language 
(Mitchell, Maybury and Sweet, 1979). Thirdly, the cobegin, or parbegin (Dijkstra, 
1968) which is employed in CSP (Hoare, 1978) and more recently in Occam (May, 
1983). Finally, explicit process declarations are found in Concurrent Pascal 
(Brinch-Hansen, 1975), Modula (Writh, 1977) and Pascal-M (Abramsky and 
Bornat, 1982).

Synchronisation and communication between processes can be achieved either by 
reading and writing to shared data or by sending and receiving messages. In general 
it is difficult to separate communication from synchronisation, since synchronisa-
tion requires a flow of information from one synchronising process to an other. 
Similarly, communication requires some ordering of events if processes are to 
communicate with each other sensibly.

When communication is based upon the use of shared data, then there are two 
types of synchronisation (Andrews and Schneider, 1983); mutual exclusion and 
condition synchronisation. Mutual exclusion allows an executing process to be 
treated as an indivisible sequence of operations, this prevents interference from 
other processes. The second form of synchronisation is condition synchronisation, 
which co-ordinates the execution of concurrent processes by controlling when a 
process waits and when it commences execution. Various methods of achieving 
synchronisation and communication using shared data have been applied, ex-
amples of these are semaphores (Dijkstra, 1968), conditional critical regions 
(Brinch-Hansen, 1972) and monitors (Hoare, 1974). The use of shared data is a 
centralised approach to controlling concurrency, and is therefore closely related 
to tightly coupled processor architectures.

An alternative method to shared data is message passing. Message passing requires 
that processes are named so messages are passed between identified processes. 
Inter-process communication takes place within some medium, which is called a 
channel in O ccam  and a mailbox in Pascal-M. Different communication 
mechanisms vary in the way communication interacts with the activity of a sending 
process. For example, in a "no-wait send" mechanism the process continues as soon 
as data is sent, this implies the receiving process has an unbounded buffer in which 
to hold a queue of messages. Whereas "synchronised send" waits until the message 
has been received before continuing. The latter method is employed in CSP, 
Pascal-M and Occam. Message passing is a de-centralised approach to controlling 
concurrency, and is therefore closely related to loosely coupled processor architec-
tures.
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13.3 Non-von Neumann programming

The previous two sections have discussed control flow languages, whose common 
characteristic is to execute the program in the order it is textually composed. 
Backus (1978) has argued that this style of programming language (influenced by 
the von Neumann model of computation) can make programming unnecessarily 
difficult. An alternative execution strategy is to execute operations as and when 
their input data becomes available, i.e. data driven. Hence, in data driven systems, 
the order in which programs are written becomes less important, since it does not 
determine the order of execution.

Dataflow languages are characterised by an absence of concurrent control con-
structs, as found in multi-processor languages. In place of these explicit constructs 
are rules that govern assignment; single-assignment or zero-assignment.

Single-assignment languages (SALs) have the appearance of conventional lan-
guages, in that they incorporate assignment statements and include typical control 
flow constructs such as conditional statements and loops. However, they have no 
concept of sequential execution and no direct control constructs like GOTO. In 
order to prevent ambiguities that might arise from re-assigning variables, the 
language only permits a variable to be assigned once throughout the program 
(Chamberlin, 1971). This limitation significantly alters the nature of the assign-
ment operator, changing it from a dynamic destructive operation to one that 
statically associates a name to a data value. Special provision is made for variables 
within iterative expressions, such as SISALs "old" operator. SALs tend to use data 
structures, such as arrays and streams, that are readily implemented in dataflow 
graphs. Examples of SALs are SISAL (McGraw, Skedzielewski, Allan, Grit, 
Oldehoeft, Glauert, Dobes and Hohensee, 1983) and VAL (Ackerman and Den-
nis, 1979). Most SALs are designed for generalised programming, however, 
languages have been written specifically for signal processing applications. SALs 
are a natural environment for representing signal processing algorithms because 
of the strong correspondence between signal flow and dataflow. Languages for 
signal processing include SIGNAL (Guernic, Benveniste, Bournai and Gautier, 
1986), SDF (Lee and Messerschmitt, 1987) and PSPL (Thaler, Loeffler and 
Moschytz, 1987).

Zero-assignment languages are usually known as functional languages, or applica-
tive languages and are based on the mathematics of lambda calculus, or recursion 
equations. The language has no concept of storage state or assignment (Backus, 
1978). Typically, a program consists of an un-ordered set of equations that char-
acterise functions and values; functions are characterised by the use of recursion, 
other functions and values, while values are characterised by functions of other 
values. In many ways functional languages are identical to single-assignment 
languages in that single-assignment and zero-assignment definitions result in non-
destructive association. Also, both language types are free from side effects and 
GOTOs. The functional language SASL (Turner, 1976) has been applied to 
dataflow machines (Richmond, 1982) with success, however, the efficiency of such 
implementations are in doubt. Much of the system and application software for 
the ALICE graph reduction machine is written in a functional language called
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HOPE (Burstall, MacQueen and Sandella, 1980). Other examples of functional 
languages are LISP (McCarthy, 1960), ML (Gordon, Milner and Wandsworth, 
1977) and FP (Backus, 1978).

1.4 Implementation strategies

Unlike sequential systems, parallel systems require the division of a program into 
separate parts and each part assigned to execute on a processor. The dividing 
operation is called partitioning, which is defined as an operation that creates a 
finite number of mutually disjoint tasks, whose union is the program. Assignment 
of tasks to processors is carried out in both a spatial and a temporal sense, since a 
parallel architecture’s capacity to process is a function of both the number of 
processors and time. This form of assignment is known as scheduling and generally, 
the number of tasks far exceeds the number of processors. Consequently, a 
processor is treated as a shared resource and it is the purpose of the scheduler to 
co-ordinate task-processor assignment to avoid conflict between tasks. Both par-
titioning and scheduling are regarded as implementation operations.

Design-time Compile-time Run-time

1 parallelism, partition, 
schedule

II parallelism, partition schedule

3 parallelism, partition schedule

4 parallelism partition, schedule

| | parallelism partition schedule

6 parallelism partition, schedule

7 parallelism, partition, 
schedule

8 parallelism, partition schedule

9 parallelism partition, schedule

10 parallelism, partition, 
schedule

Table 1.1 Implementation strategies
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The success of an implementation relies heavily on a program’s parallelism, how 
well it is partitioned and how well it is subsequently scheduled onto a parallel 
architecture. One important influence on parallelism, partitioning and scheduling, 
which subsequently affects implementation, is the stage at which such operations 
are completed. There are three well defined stages between program conception 
and execution, which are design-time, compile-time and run-time. The range of 
valid implementation strategies are illustrated by Table 1.1.

The different strategies have a great influence on the methods chosen for partition-
ing and scheduling and also on the type of programming language used. In the 
following section different programming language types are discussed and 
categorised according to their implementation strategy.

Parallel programming languages can be categorised according to their inclusion 
(or exclusion) of implementation constructs. Categorising languages in this way is 
useful since it reveals which implementation strategy a language is capable of 
taking part in.

One convenient way to categorise different parallel programming languages is by 
the absence, or presence of explicit constructs for parallelism, partitioning and 
scheduling. For example, parallelism becomes explicit when parallel constructs 
are defined which distinguish between areas of sequential and parallel execution 
(e.g., fork, join, cobegin, parbegin etc.). When parallelism is unspecified, it is 
necessary to extract parallelism via a program’s dependency graph, usually by 
automatic means. A programming language which explicitly defines parallelism 
may also partition explicitly. Explicit partitions group executable code into proces-
ses or tasks. Finally, a programming language which partitions explicitly may also 
schedule explicitly. Hence, the programmer determines which process executes 
on which processor. The following four categories divide programming languages 
according to their use of implementation constructs (Sarkar, 1989):

. (1) In the first category, parallelism, partitioning and scheduling are all
implicit and therefore unspecified. These language types are suited to 
implementation strategies 7 through to 10 of Table 1.1. A necessary step to 
implementation, which is not shared by the other categories, is that auto-
matic dependency analysis is needed to identify parallelism. This is a major 
obstacle for some types of language.

Conventional, sequential languages (e.g. Fortran, Pascal), have computa-
tions that are based on complex, sequential state transitions (Backus, 1978). 
Such languages require careful dependence analysis to reveal potential 
parallelism. This analysis is made difficult, as previously mentioned, be-
cause procedural languages exhibit multiple assignments, side-effects and 
aliasing. These difficulties may restrict the identification of parallelism and 
produce inefficient results. Nevertheless, there is a growing interest in 
implementing existing sequential programs on parallel processors, because 
of the large capital investment many companies have in existing sequential 
software.
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Single-assignment and functional languages (e.g. SISAL, VAL, HOPE, 
etc.) are free from side-effects, multiple assignment and aliasing, conse-
quently dependency analysis is relatively straight forward. This is a result 
of neither language type being tied to the von Neumann model of computa-
tion. Typically, there is scope for employing a high degree of parallelism 
within these language types. The absence of explicit parallelism, explicit 
partitioning and explicit scheduling, makes such languages portable. The 
attraction of portability being, that as multi-processor designs advance, 
programs may be implemented without undue modification.

. (2) This category contains those programming languages which exhibit
explicit parallelism, while partitioning and scheduling remain unspecified. 
These language types are suited to implementation strategies 4 through to 
6 of Table 1.1. The absence of a process, or task structure mean these 
languages avoid explicit partitioning. They include parallel programming 
constructs, such as doall, cobegin and coend and usually synchronise using 
semaphores or monitors (i.e. suited to tightly coupled architectures). Many 
of these parallel languages have been developed from existing sequential 
programming languages, for example, DAP Fortran and IBM Parallel 
Fortran (IBM, 1988).

. (3) Programming languages in the third category explicitly define paral-
lelism and partitioning, while scheduling remains unspecified. These 
language types are suited to implementation strategies 2 and 3 of Table 1.1. 
Partitioning and inter-process synchronisation is defined by the program-
mer, whose job it becomes to group statements into processes (or tasks). 
The programmer must ensure that the granularity of a parallel program is 
fine enough to exploit potential parallelism, while coarse enough to mini-
mise communication overhead. This strategy has the advantage of 
simplifying implementation, but has the potential disadvantage that im-
plementation is prone to poor partitioning by the programmer. Program 
portability is retained by automatic scheduling. Many of these languages 
have been developed solely for parallel processing, for example, CSP 
(Hoare, 1978) and Ada (Mundie and Fisher, 1986; Ledgard, 1981).

• (4) The final category is for languages which give total control to the
programmer, by allowing scheduling to become explicit. These language 
types are suited to implementation strategy 1 of Table 1.1. The remarks 
concerning partitioning in (3) apply equally to languages in this category, 
except that program portability is lost, which may necessitate manual 
re-scheduling of a program when moved from one machine to another. 
Languages in this category tend to based on message-passing synchronisa-
tion, for example, Occam and the C implementation on the Caltech Cosmic 
Cube (Su, Faucette and Seitz, 1985).
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Though several compilers have been designed to automatically extract parallelism 
from programs written in imperative languages (1), parallelism extraction is 
impeded by the difficulties associated with the von Neumann model of computa-
tional. Languages from category (2) result in implementations that tend to restrict 
parallel exploitation to regular repeated regions and so lack the general scope that 
is necessary for an efficient implementation. The current trend, is for a program-
mer to make many of the implementation decisions, as is the case in categories (3) 
and (4). Two of the most probable reasons for category (3) and (4) popularity, is 
the large capital investment in Ada by the DoD (Department of Defence, USA) 
and the recent introduction of affordable multi-processors, like the Transputer 
and Intel Hypercube.

In some cases there are advantages to partitioning and scheduling manually, 
however, this does tend to burden the programmer with organising how things are 
done, rather than getting right what is done. Consequently, programming effort 
tends to increase when using explicit parallel processing languages. However, the 
greatest drawback of categories (3) and (4) is the probability that potential 
parallelism will be lost because a programmer opts for a less than optimal im-
plementation.

This thesis focuses on an automated implementation, category (1), using a non-
procedural programming language. The motivation behind this is three-fold; (i) 
to abstract the programmer from machine oriented influences while program-
ming, (ii) to achieve program portability and (iii) to achieve a "good" 
implementation. The first two aims, abstraction and portability are language 
characteristics, while implementation efficiency relies mostly on the compiler or 
run-time system. The main obstacle to using non-procedural languages is the 
problem of parallel extraction, partitioning and scheduling, however, recent re-
search (Gaudiot, Dubois, Lee and Thome, 1986; Sarkar, 1989) has shown that 
compilers can be designed which implement non-procedural languages efficiently. 
In this thesis, implementation is applied to real-time DSP algorithms. Such algo-
rithms provide a special case, which allows an extremely efficient implementation 
strategy (Table 1.1, no.7) to be employed. Figure 1.14 shows an outline of this 
strategy for a Transputer based parallel architecture, using Occam as an inter-
mediate language.
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Figure 1.14 Compile-time implementation strategy
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1.5 Thesis outline

The thesis is divided into nine chapters and four appendices. This chapter has 
introduced the subject by discussing different processor architectures, intercon-
nection networks, programming languages and implementation strategies. The 
second chapter reviews the characteristics of real-time DSP algorithms and rep-
resents these algorithms in the form of a graph which preserves parallelism. 
Chapter 2 is considered a prerequisite to chapter 3, which discusses aspects of 
language design that are relevant to our application. Chapter 4 develops these 
ideas and describes the syntax of a single-assignment language called DFDL 
(Goddard, 1987; Goddard, 1989). Program structure and processor architecture 
are represented as two separate models, these are described in chapters 5 and 6 
respectively. The models are used as inputs to compile-time scheduling, partition-
ing and parallel extraction. The scheduling process is described by chapter 7 and 
this is shown to present several difficulties, which are associated with the com-
plexity of the problem. Experimental results are given in chapter 8 which illustrate 
the efficiency, or not as is the case, of this implementation strategy. The final 
chapter concludes on the research and offers some suggestions for further work. 
Figure 1.15 illustrates the relationship between the chapters and the implementa-
tion strategy.

Figure 1.15 Implementation strategy by chapter
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The four appendices are identified alphabetically. Appendix A describes some of 
the graph concepts and definitions used in the text, and Appendix B is an extended 
BNF description of DFDL. A compile-time user’s guide is presented in appendix 
C, which describes compiler operation. Finally, appendix D is a programmer’s 
guide, which describes some of the major parts of the compiler that are not covered 
in the main body of the thesis.
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Chapter 2. Discrete algorithms and their graphs

In the first part of this chapter the relevant characteristics of discrete algorithms, 
their composite tasks and the structural relationship between those tasks are 
examined.

The second part of the chapter presents the algorithm as a data flow graph and 
introduces some terminology associated with graphs. The graph is seen as a 
complete diagrammatic representation of a DSP algorithm, where both function 
and structure are conveyed. Additionally, the graph is viewed as an intermediate 
stage between the algorithm description (i.e. a program) and the multi-processor 
schedules. Moreover, the graph represents the algorithm without loss of structure 
or function.

2.1 The characteristics of discrete algorithms

2.1.1 Discreteness

A discrete algorithm is defined here as a prescribed set of well-defined instructions 
which act on one or more digital signals (i.e., signals quantised in time and 
amplitude). The word discrete describes the algorithm as being decomposable into 
a finite set of individual tasks.

2.1.2 Competence-performance trade-off

The competence of an algorithm is its ability to perform a given function, whereas 
the performance of an algorithm is a function of execution time. When designing 
a discrete algorithm for execution on a digital processor, we must be aware of the 
practical limitations of the hardware. These limitations manifest themselves as 
finite word length and non-instantaneous task execution times.

Finite word length number representation causes inaccuracy and constrains the 
range of numbers which can be used. Arithmetic operations on finite word length 
numbers produce round-up and truncation errors, which are propagated and may 
cause large accumulated inaccuracies. The limited range of data values, often 
necessitates schemes which correct for, or flag out-of-range values.

Non-instantaneous execution time is a practical reality of digital systems. The 
greater the execution time of the tasks in any given iteration, the lower the 
throughput and bandwidth, and possibly the greater the latency.
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Compromises may be made between the competence and performance of an 
algorithm. Throughput, for example, may be increased at the expense of accuracy 
by replacing all multiplication with shifting, to give only powers of 2 multiplication. 
On the other hand, accuracy may be increased by using double word length 
arithmetic, although this would be at the expense of throughput. These trade-offs 
between competence and performance heavily influence the design of a digital 
system and ideally, should be made in the context of the particular implementation.

2.13 Inputs and outputs

Hetch (1977) describes an algorithm as having zero or more inputs and one or 
more outputs. In the case where there are no inputs, the algorithm can only 
generate signals. The alternative case is where inputs are present, the algorithm 
can process as well as generate signals. These two models are illustrated in Figure 
2.1. For a single iteration of the algorithm, the outputs are a function of both the 
algorithm’s internal state (i.e. the value of internal data immediately prior to the 
commencement of the current iteration) and the current input values, where 
applicable.

GENERATI i __ output input __ PROCESS-
— GENERATE

output

Figure 2.1 Algorithm input-output

2.1.4 Memory

An algorithm is said to have memory if it can retain data from one iteration to the 
next. The outputs of an algorithm without memory, do not depend on the algo-
rithm’s internal state from previous iterations, or on the inputs from previous 
iterations. Alternatively, the outputs of an algorithm with memory, may depend 
on the algorithm’s internal state from a number of previous iterations, or on the 
inputs from a number of previous iterations; if that number is finite it is said to be 
of finite order (e.g. FIR filter), otherwise it is said to be of infinite order (e.g. HR 
filter). Outputs which depend on an infinite number of previous iterations imply 
the use of feedback within the algorithm.

Realisable, stable algorithms exclude non-causal or oscillatory behaviour. Hence, 
outputs do not depend on the algorithm’s internal state from future iterations, or 
on the inputs from future iterations. Also, outputs and internal values do not 
depend on themselves during the present iteration.
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2.1.5 Complexity

The time complexity of an algorithm is the aggregate amount of time, usually 
expressed as a function of the number of inputs u, to process the algorithm. The 
limiting behaviour of the time complexity is called the asymptotic time complexity. 
Definitions for space complexity and computational complexity are analogous.

To express worst-case complexity we use the "big-O " notation (i.e. order of 
magnitude). Rather than present complexity as an absolute function of the number 
of inputs, it is presented as a function of some order. For example, the order of 
complexity of an algorithm that processes u inputs and has a worst-case time 
complexity of cu (for some constant c) is expressed O  (u ).

2.1.6 Real-time, deterministic, synchronised systems

Young (1982) defines a real-time information processing system as one which has 
to respond to externally generated input stimuli within a finite and specifiable 
delay. In the case of sampled signals which arrive regularly, the delay is the time 
interval from one instance of the signal arriving at the input to the next. Ideally, 
this time interval is consistent throughout.

Interaction between an external input signal and an algorithm, as depicted by 
Figure 2.2, occurs when the algorithm reads the input. In order that no signals are 
lost, the interaction between input and algorithm must be synchronised.

• Observation 2.1: Synchronisation is maintained iff (if and only if) the 
maximum algorithm iteration interval is less than or equal to the minimum 
external input interval.

Similarly, there has to be synchronisation between the algorithm iteration interval 
and the external output interval (Figure 2.2). Hence from observation 2.1, we can 
say that there must be synchronisation between the input interval and the output 
interval.

• Observation 2.2: Synchronisation is maintained iff the maximum output 
interval is less than or equal to the minimum input interval.

EXT
INPUT

PROCESS- _  
CENERATE —

EXT
OUTPUT

Figure 2.2 Input-process-output synchronisation
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From observation 2.1, we can say an algorithm’s maximum execution time (for a 
single iteration) is bounded by the minimum input interval. To guarantee this 
bound is not exceeded, an algorithm’s worst-case execution time has to be specifi-
able prior to run- time, hence the algorithm has to be deterministic. This a priori 
condition precludes all algorithms whose worst-case execution time cannot be 
determined at compile-time, i.e., algorithms that have a time complexity which 
relies on data values, or on some random operation; these algorithms are regarded 
as non-deterministic and as such do not lend themselves to efficient static modell-
ing or analysis.

2.1.7 Granularity

Algorithms can be decomposed (or partitioned) into separate, distinct tasks, by 
dividing the algorithm into atomic operations, that have the capacity to manipulate 
data in some deterministic manner. Deciding how large, or how small the tasks 
should be in terms of their time complexity is not straightforward. Consider, for a 
moment, the implementation of different sized tasks on a multi-processor, whose 
inter- processor communication costs are finite:

Figure 2.3 Coarse grain structure

An algorithm that is divided into a few coarse grain tasks (i.e. each comprising 
many instructions) of low I/O bandwidth, when distributed across the processors 
will only need a few communications, since there are only a few tasks. This may 
result in a low overall communication cost. However, the opportunity to exploit 
any parallelism which exists within the large grain tasks is lost.

Alternatively, an algorithm that is divided into many fine grain tasks (i.e. compris-
ing few instructions) of low I/O bandwidth, when distributed across the processors 
will require many communications, since there are many tasks. This may result in 
a high overall communication cost. However, the opportunity to exploit any 
parallelism within the algorithm will be high.
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The partitioning dilemma is not easily resolved at this stage without the benefit of 
post-analysis information, which will indicate where useful parallelism exists and 
where it does not. One approach to partitioning, which is adopted here, is to 
initially opt for a medium/fine grain tasks structure. This approach does not 
obscure parallelism and does not preclude tasks from being "bundled" together to 
form composite, coarser grain tasks at a later stage, i.e. during scheduling.

2.1.8 Task primitives

Each task Ti represents a sequentially ordered list of one or more instructions, 
which has an in-degree (i.e. number of inputs) of zero or more operands and an 
out-degree (i.e. number of outputs) of one or more objects. The limit placed on 
the in-degree and out-degree of tasks is |Z  + | (highest positive integer). Generally 
though, tasks have a low in/out-degree. This is important since they represent fine 
grain, low bandwidth operations such as addition, subtraction, etc.

The outputs of a task Ti are denoted vki, { 0 < k <  = | Z + | }, and are defined in 
terms of the task’s transfer function and operands. The operands of Tk are ujk {0 
< = j < = | Z | }, and the input and output transfer functions are fji() and gki() 
respectively. Each output is given as vki = gki(fji(uji)).

Assigned to each task Ti is a set of execution times, [ekj]i. This matrix of costs 
represents the worst-case execution times of gki(fji(uji)). Worst-case execution 
times are adopted throughout to allow for fluctuations in execution time from one 
instance to the next.

Vki

Figure 2.5 Task input, output and execution cost

Tasks are selected so wherever possible the transfer functions between all inputs 
and all outputs have equal time complexities. Where this is not possible, the overall 
worst-case value is adopted. This simplification allows us to replace the matrix of 
execution times by a single execution cost ei which is assigned to the task Ti.
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2.2 Data flow graphs

2.2.1 Nodes and arcs

The graph G = (T, C, B, E, A) consists of a non-empty but finite set of processor 
executable nodes T and a finite set of communication nodes C. The set C is initially 
empty and remains empty until scheduling, consequently it will not be considered 
until that time. All nodes correspond directly to a task and visa-versa, hence the 
terms node and task are often interchanged. The cardinality of T, C and of A is 
denoted |T |, |C | and |A| respectively.

The set of arcs A joins pairs of distinct nodes. Each arc symbolises the flow of data 
from one task to another task. An arc (Ti, Tj) leaves the tail node Ti and enters the 
head node Tj. We say that Ti is an immediate predecessor of Tj, and Tj is an 
immediate successor of Ti. The set IMPRED(Ti) comprises all nodes that are 
immediate predecessors of Ti, and the set IMSUC(Ti) comprises all nodes that are 
immediate successors of Ti. The in-degree of node Ti is | IMPRED(Ti) | , and the 
out-degree of node Ti is | IMSUC(Ti) | .

Where there are two consecutive arcs (Ti, Tj) and (Tj, Tk), we can say Ti is an 
immediate predecessor of Tj, and Tj is an immediate predecessor of Tk, therefore 
Ti is a predecessor of Tk. By similar inductive analysis we can say that Tk is a 
successor of Ti. The set PRED(Ti) comprises all nodes that are predecessors of Ti, 
and the set SUC(Ti) comprises all nodes that are successors of Ti. The sets 
IMPRED(Ti) and IMSUC(Ti) are subsets of the sets PRED(Ti) and SUC(Ti) 
respectively.

The arcs belonging to A are governed by R, where R  denotes a relation on A. This 
relation R  is transitive, irreflexive and asymmetric (Figure 2.6). The definitions for 
these are as follows:

. (a) R is transitive iff for all nodes Ti, Tj, Tk in T, (Ti R  Tj) AND (Tj R Tk)
implies (Ti7?Tk);

• (b) R  is irreflexive iff for all nodes Ti, Tj in T, (Ti R Tj) AND (Ti is not equal 
to Tj);

• (c) R  is asymmetric iff for all nodes Ti, Tj in T, (Tii?Tj) implies 
NOT(Tj R Ti).
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(a) (b) (c)

Figure 2.6 Arc relationships

From the relation R on A, three observations are made:

• Observation 2.3: If R  is both transitive and irreflexive, then R is also 
asymmetric.

• Observation 2.4: If R  is transitive, irreflexive and asymmetric, for all Ti in 
T, then Ti can not belong to either of the sets PRED(Ti) or SUC(Ti).

• Observation 2.5: If R is transitive, irreflexive and asymmetric, for all Ti in 
T, then the intersection of PRED(Ti) and SUC(Ti) is the empty set.

2.2.2 Paths and acyclic paths

Hetch (1977) defines a path as a finite sequence of one or more arcs, i.e. 

((T i ,T 2), ..., (Tk-i, Tk)).

This can be written more simply (Figure 2.7) as:

(Ti, T2, ..., Tk).

I ( T i , ..., Tk)

Figure 2.7 Acyclic path
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A cycle is a path (T1, Tk) where Ti = Tk. A path that is free from cycles is called 
acyclic. Where the relationship on the set of arcs A is transitive, irreflexive and 
asymmetric then all paths are acyclic. This statement is supported by observations
2.4 and 2.5.

The graph is characterised as being directed and acyclic, this form of graph is given 
the acronym DAG (directed acyclic graph).

A node Tk is said to be reachable from a node Ti, iff there is a path from node Ti 
to node Tk, consequently the set SUC(Ti) contains all nodes that are reachable 
from Ti.

2.23 Initiating and terminating DAGs

As a convention all graphs are drawn with their arcs pointing downwards, so data 
flows from the top of the graph to the bottom as shown in Figure 2.8. For practical 
convenience two "dummy" nodes are added to the graph, one at the top and one 
at the bottom, their purpose is to initiate and terminate the graph respectively. 
Both exhibit zero execution cost.

The top dummy node is denoted B (i.e. begin). This node has the properties that 
PRED(B) is the empty set, therefore B has an in-degree of zero, and SUC(B) 
includes all nodes in T, hence all nodes in T are reachable from B.

The bottom dummy node is denoted E (i.e. end). This node has the properties that 
SUC(E) is the empty set, therefore E has an out-degree of zero, and PRED(B) 
includes all nodes in T, hence E is said to be reachable from all nodes in T.

2.2.4 Dependence and independence

The set of arcs A places a partial order on T. The reality of the partial ordering is 
that execution order of tasks (corresponding to their nodes) is restricted. The 
restriction on execution order is due to the data dependency which one task has 
on another. For example, in Figure 2.8, the predecessors of T5 are nodes T2, T3, 
and B, these nodes have to complete before node T5 can begin, whereas node E 
is the successor of T5 and cannot commence until T5 has finished.

Tasks that are independent of one another may be executed simultaneously. The 
test for independence of two different nodes Ti and Tj is that they must not be 
successors or predecessors of one another, i.e., node Tj is not in set PRED(Ti) nor 
is it in set SUC(Ti). For example, in Figure 2.8, T5 can be executed in parallel with 
T i or T4, since Ti and T4 are not in either of the sets PRED(Ts) and SUC(Ts).
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B

Figure 2.8 Directed acyclic graph (DAG)

2.2.5 Path costs and the critical path

The cost of traversing a path, in terms of execution time, is the accumulated 
execution time of each task on that path. For a path (T i,..., Ti, Tk) the cost of 
traversing that path is (ei + ... + ei + ... + ek), where ei is the worst-case execution 
time of the task corresponding to node Ti. The cost function is denoted COST(Ti) 
and is equal to ei, similarly COST(Ti,..., Ti,..., Tk) is equal to the cost of traversing 
the path (T i,..., T i,..., Tk).

The longest path, in terms of execution time, from node B to node E is called J:he 
critical path (Figure 2.9). The cost of traversing the critical path, denoted w , is 
defined as:

w* = MAX{COST(B,.., E)}, (2.1)

where the cost associated with nodes B and E is zero. Critical path length (time) 
is important, since it defines a lower bound on the overall execution time of the 
algorithm, ignoring resource limitation and communication overhead.

Minieka (1978) describes efficient methods for detecting the critical path in 
graphs, known as the critical path method (CPM). The uncertainty in task execu-
tion costs is discussed in Moder and Phillips (1970); where a weighted average cost 
is used,^combining optimistic, realistic and pessimistic costs at a ratio of 1/6 , 4/6th 
and 1/6 respectively. The justification, in our case, for only using pessimistic (i.e. 
worst-case) costs is given in section 2.1.6.
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Figure 2.9 DAG, showing the critical path

2.2.6 Earliest and latest start times and float

Once all the nodes Ti in T have been allocated their execution time ei, the earliest 
and latest start times can be evaluated. The earliest start time of a node Ti is 
denoted EST(Ti), and the latest start time is denoted LST(Ti). Evaluation of 
EST(Ti) and LST(Ti) is a necessary step in finding the critical path and is part of 
the critical path method (Minieka, 1978).

EST(Ti) is the earliest possible time node Ti can begin executing, assuming node 
B starts at time zero. EST(Ti) is defined as the cost of the longest path from node 
B to the immediate predecessor of node Ti, i.e.

EST(Ti) = MAX{COST(B,..., IMPRED(Ti))} (2.2)

A special case of EST(Ti) is where Ti = E. This is the cost of the critical path, 
which is defined:

EST(E) = MAX{COST(B,..., IMPRED(E))} = w* (2.3)

and equates to our previous definition (section 2.2.5) since the execution cost of 
node E is zero.
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LST(Ti) is the latest possible time node Ti can begin executing without extending 
the length of the critical path. LST(Ti) is defined as the critical path cost minus the 
cost of the shortest path from node Ti to node E, i.e.

LST(Ti) = w* - MIN{COST(Ti,E)} (2.4)

The difference between the earliest start time and the latest start time of a task is 
called the float. Float is the maximum time a task Ti can be delayed beyond 
EST(Ti) without extending the length of the critical path. The float of task Ti, 
FLT(Ti), is defined as:

FLT(Ti) = LST(Ti) - EST(Ti) (2.5)

The value of float is normally non-negative, since LST(Ti) > = EST(Ti).

Float is a minimum, in this case zero, for all tasks that lie on the critical path. Figure 
2.10 illustrates the single critical path, and shows the cost, earliest start time, latest 
start time and float for each task in the DAG. The DAG does not preclude the 
existence of more than one critical path. Indeed, there may be many such paths 
which branch or join within the DAG. However, for every DAG there exists at 
least one path that is critical, beginning at B and ending at E.

10;
0;
0;
0 .

50
10
10
0 .

5;
60;
70;
10.

Figure 2.10 DAG, showing EST(T), LST(T) and FLT(T)
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23  Summary

The first part of this chapter reviewed the characteristics of discrete algorithms 
and discussed discreteness, complexity, memory, structure and composition. The 
rules for maintaining synchronisation in real-time systems between algorithm and 
input device, and algorithm and output device have been established. Moreover, 
the synchronisation requirement has shown that for real-time systems, the algo-
rithm must be deterministic.

The algorithm has been expressed as a set of disjoint tasks whose complexity 
influences the granularity of the structure. The cost (or execution time) of different 
task types is chosen to be small (i.e. low complexity tasks), hence an algorithm 
consists of many medium/fine grain tasks. Choosing medium/fine grain tasks, 
rather than coarse grain tasks (i.e., process level tasks), enables a potentially high 
degree of parallelism to be represented.

The latter part of this chapter introduced the graph G = (T, C, B, E, A) (nodes 
and arcs) which has been shown to be transitive, irreflexive and asymmetric. These 
characteristics ensure the graph is both directed and acyclic (i.e. a DAG). The 
DAG is suited to representing deterministic algorithms and is completely 
equivalent to the algorithm in terms of function and structure, hence any paral-
lelism is preserved.

Once execution times have been assigned to tasks (or nodes), the CPM (critical 
path method) can be applied to G. CPM produces earliest and latest start times 
for all the tasks in T and gives the earliest overall cost for completion of the 
algorithm irrespective of the resource constraints. Results from the CPM are to 
be used for analysing the DAG, with a view to scheduling the tasks onto processors.
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Chapter 3. DFDL design aspects

In chapter 2 the characteristics of discrete algorithms and their directed acyclic 
graphs (DAG) were discussed. The discrete algorithm and DAG are regarded as 
a program’s source and object respectively (Figure 3.1). The constraints governing 
G are reflected back into the programming language such that the graph’s transi-
tive, asymmetric, irreflexive relation on data dependency becomes the language’s 
single-assignment rule.

Figure 3.1 Program source and object

The purpose of a language is to present a medium in which an algorithm can be 
described without loss of functional integrity or structure. However, the language 
should prevent invalid items, such as incorrect syntax, inadmissible structures and 
items out of context. In order to ensure program portability a language should be 
closely related to the problem domain and detached, as far as possible, from 
influences arising from the processor architecture. With these aims in mind, the 
design aspects of Digital Filter Description Language (DFDL) are presented.

3.1 Language grammar

The description of a language is the grammar of the language. Assuming a language 
is made up from sentences (which in turn comprise words, which in turn comprise 
letters) then a grammar shows how sentences can be built up using successive 
expansions of strings of symbols. There are two types of symbols; terminal and 
non-terminal. Here, terminal symbols and non-terminal symbols are distinguished 
from one another by expressing terminal symbols in a plain font and non-terminal 
symbols in an italic fo n t. BNF (Backus Naur Form) productions are used to state 
the rules of grammar.
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Chomsky concluded that there are four types of grammar; type 0 in which the form 
of productions is unlimited, while types 1, 2, and 3 are categorised by increasing 
restrictions on the form of productions available (Bornat, 1979). The two types of 
grammar that interest us are types 2 and 3.

• A type 2 (or context free) grammar contains only productions of the form:

A :: = alpha

where A is a single non-terminal symbol and alpha is a string of terminal 
and/or non-terminal symbols.

• A type 3 (or regular expression) grammar contains only productions of the 
form:

A::= a 
A :: = a B

in which A and B are single non-terminal symbols, a is a single terminal 
symbol and the second production is right recursive. An alternative defini-
tion exists for the second production, where A and C are single non-terminal 
symbols, a is a single terminal symbol and the second production is left 
recursive.

A :: = a 
A :: = C a

Type 3 grammar must either be left or right recursive, but not both.

In the case of type 2 and 3 grammars it is possible to define three important 
properties of a symbol which appears on the left hand side of a production ( ;; = + 
means a production in one or more steps):

. If A :: = + alpha A, then symbol A is right recursive.

• If A :: = + A beta, then symbol A is left recursive.

. If A ;; = + alpha A beta, then symbol A is self embedding.

The final case (self embedding) cannot occur in type 3 grammars and its presence 
is often used to distinguish between type 2 and 3 grammars. Similarly, left and right 
recursive symbols cannot exist together in type 3 grammars, but can in type 2.

Ambiguity arises in a grammar when it is possible to produce two or more distinct 
derivations for the same sentence. Ambiguity is a problem because of the con-
fusion it introduces about the interpretation of a sentence. Any grammar that 
contains a symbol that is both left and right recursive will be ambiguous.
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DFDL’s lexical grammar is entirely type 3 and right recursive. A language defined 
by type 3 grammar can be recognised by a finite state machine, in which there are 
states that correspond to non-terminal symbols and in which the state transitions 
are determined by the terminal symbols in the productions of the grammar. Hence, 
every decision the lexical analyser makes is based on the last terminal symbol read. 
Finite state machines are easy to implement and are highly efficient.

DFDL’s syntax grammar is type 2 and consequently somewhat more complex than 
its lexical grammar. All left recursive productions have been removed, leaving 
right recursive and self embedding productions. All the grammar is classified as 
one-track grammar, which is unambiguous. The one-track grammar is parsed by a 
top-down one-track parser which separates parenthesised expressions (i.e. self 
embedding) into individual regular expressions (i.e. right recursive) before pars-
ing. This allows regular expressions to be treated individually as type 3 grammar. 
There is no priority between operators in DFDL, hence, extensive use is made of 
parentheses in expressions.

Error detection and reporting is very effective when using a top-down one-track 
parser. At each stage all expected terminal and non-terminal symbols are known 
to the parser and when an unexpected symbol occurs an error of the form "expected 
..., found ..." can be given. One-track error detection compares favourably with 
some early compilers which suffered from backtracking (tend to pass the error 
before they detect it) and as a consequence could only produce error messages 
like "syntax error".

An extended BNF description of DFDL lexical grammar and syntax grammar is 
given in Appendix B and a detailed description of DFDL is given in chapter 4.

3.2 Single-assignment

Single-assignment languages (SALs) have the appearance of traditional impera-
tive languages, in that they incorporate the assignment statement and typical 
control flow statements such as conditional constructs and loops. However, SALs 
impose a rule that a variable is only assigned once in a program (Chamberlin, 
1971). This rule significantly alters the nature of the assignment operator, changing 
it from a dynamic destructive operation to a static operation that associates a name 
to a data value.
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Single-assignment has implications on how programming constructs are used. For 
example, repetitive statements in SISAL employ an "old" operator to distinguish 
between the new state of a variable and its old state while in a loop:

for initial
R : = X / 20.0 
P : =  0.0 
while X > R 

repeat
R : =  old R + 3.14 
P : =  old P + 1.0 

returns value of P 
end for

Single-assignment languages like Id (Arvind, Gostelow and Plouffe, 1978) and 
Lucid (Ashcroft and Wadge, 1977) are similar to SISAL, but use a "new" operator:

(initial R <  - X / 20.0; P < - 0 .0  
while X >  R do

new R < -  R + 3.14; 
new P <  - P +  1.0; 

return P)

Single-assignment also bars the type of conditional statement found in most 
imperative languages, where assignment is both multiple and conditional. SALs 
restrict conditional statements to single-assignment and unconditional choice. For 
example, the following SISAL expression selects the greater value P or R and 
makes it equal to S:

S : = if P > R then P else R

The static nature of single-assignment allows the normal ordering restrictions 
found in imperative languages (e.g. Fortran, Pascal, etc.) to be relaxed. Once data 
on the right hand side of the assignment statement is available, the expression can 
be executed. This property lends itself to data-driven execution which can be 
applied to dataflow architectures or data-driven multi-processor architectures.

Perhaps the most important property of SALs, is that they inherently preserve an 
algorithm’s structure (i.e. dependency relations between tasks), due to the non-
destructive nature of assignment. Structural preservation also protects any 
parallelism that resides within the algorithm from being destroyed. Hence, SALs 
have no need for explicit parallel constructs, since they inherently express paral-
lelism.
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33  Program flow

In chapter 2 a discrete algorithm is defined as a repetitive process, with zero or 
more external inputs and one or more external outputs. In order to satisfy this 
definition, DFDL conforms to a strict flow (Figure 3.2). Before entering the 
repetitive input-process/generate-output (or just generate-output) cycle, DFDL 
includes an optional initialise section, this is in keeping with algorithms which 
often require a known, pre-set initial state. Initialise is executed once only, if 
executed at all. Program termination occurs after either a specified number of 
iterations, an arithmetic error (section 3.5), or when stopped by the user. DFDL 
program flow is illustrated in Figure 3.2.

Figure 3.2 DFDL program structure models
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3.4 Past values

The majority of DSP algorithms not only use present values in their result, but also 
past values from previous iterations. The single-assignment rule causes difficulties 
in expressing assignment from historical values, so DFDL includes an operator 
that gives a programmer access to any past value from previous iterations. This 
operator is called Z, named after its discrete equivalent. Z is more extensive than 
SISAL’s "old" operator, because it can refer to past values from any previous 
iteration. This is achieved by post scripting Z with an integer value, e.g. Z[n]. Z is 
causal, so only past values are admissible and these values cannot be re-assigned 
since this would violate single-assignment. Generally, Z is intended to simplify 
working under single-assignment and facilitates an ordered mechanism for passing 
values from past iterations to the present iteration.

3.5 Error handling

Single-assignment languages tend to exhibit locality of effect, that is their 
operators do not have unnecessary far reaching data dependencies. Locality of 
effect requires that arithmetic errors are handled by error values rather than some 
global error flags or program interruption.

If an error occurs the system should react in a deterministic manner and not in an 
uncontrolled or unpredictable way. This is achieved by propagating error values 
along the flow of data; if an argument to an arithmetic operator is an error value, 
then the result is also an error value. Upon reaching the end of an iteration a 
propagated error value prevents output. In this way, the entire computation will 
come to a stop, yielding an error value as its result. If the processor keeps a record 
of every error generated and propagated, then the point where the error occurred 
may be traced.

The DFDL run-time system should detect and convey arithmetic errors such as 
overflow, underflow, divide by zero, negative square root, unstable result, inac-
curate result, remainder from infinity, remainder by zero and undefined result. 
This is possible when using an arithmetic data type that is floating point format 
ANSI/IEEE std.745-1985.

3.6 Data types

To provide the language with a degree of flexibility a range of different arithmetic 
data types are necessary, e.g. byte, integer, floating point. Those data types dif-
ferent from floating point ANSI/IEEE std.745-1985 are restricted to input and 
output, and are converted to floating point ANSI/IEEE std.754-1985 on entry and 
exit respectively. This strategy is necessary in DFDL because of the error handling 
system (section 3.5). Additionally, a wide dynamic range and time efficient 
processing make floating point format an attractive proposition for digital signal 
processing applications.
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Boolean variables, although present in DFDL are not explicit. Their use is 
restricted to the conditional statement where they are created and they cannot be 
transported to other statements. Other data types, such as strings of characters, 
are excluded from DFDL.

3.7 Scope and use of variables

In order to prevent side-effects and indeterminate program structures the scope 
and use of variables in DFDL is restricted. Scope is limited to the program unit in 
which the variable is declared. Consequently, all values passed between program 
units are passed by formal parameter only and the existence of global variables is 
disallowed. This locality rule does not extend to constant values, which have global 
scope. However, this does not mean that a variable may assume constant status 
and become global, since all variables in DFDL are assigned once every iteration 
and cannot therefore act as constant values.

DFDL bans the use of data values in indexing arrays or in determining the number 
of iterations of repetitive constructs. This limitation may appear to be severe, 
however, it is a necessary condition for determinacy and hence, ensures a DAG 
can be produced from a program. Consider, if the following were allowed:

input(R)
P : = 4.231 
while R > 19.24 

R :=  R /P  
P : = P + 3.8

R is assigned an external value at run-time and is therefore unknown at compile-
time. Consequently, the number of iterations required to satisfy the post-condition 
(R <  = 19.24) cannot be determined at compile-time. The program fragment 
could make one, none, or many tens of thousand of iterations before it terminated. 
A similar result would occur if the input operation were replaced by a random or 
unstable function, or anything which gave R an ill defined or unknown value at 
compile-time.

3.8 Program units

DFDL does not allow the use of procedures because of their susceptibility to 
side-effects, however, it does make heavy use of functions, which are always free 
from side-effects. DFDL uses functions as arguments, since they evaluate to a 
single result. The result of a function is not passed as a formal parameter, but is 
represented by the instantiation of the function. In order to maintain a determinis-
tic structure, functions cannot call themselves directly, or indirectly. Scope is 
restricted to the program unit that declares the function and all other functions in 
the program unit declared after the function.

3-7



Individual DFDL programs may be connected together, input to output, by the 
use of common formal parameters. Where necessary, this allows periods of 
iteration to differ within different programs. Common passed data synchronises 
the separate program units according to the declared protocol of the input or 
output. Program nesting is prohibited, since programs would then assume the role 
of procedures.

3.9 Summary

The type of lexical grammar and syntax grammar for DFDL has been established 
and its effects on parsing and error detection/reporting have been discussed.

At a higher level, we have seen the need to impose a single-assignment rule on the 
language because of the deterministic nature of the DAG. Single-assignment has 
been shown to have many effects, one of which is to preserve parallelism. Other 
effects have shown an influence on programming constructs such as conditionals, 
and repetitive constructs. As a result of single-assignment the Z operator has been 
incorporated, which is shown to solve the problem of moving data from past 
iterations.

Program flow has been modelled on the repetitive input-process-output (or 
generate-output) cycle of a discrete algorithm. This has made DFDL suitable for 
describing deterministic discrete processes (i.e. sampled systems) that have zero 
or more inputs and one or more outputs.

The restrictions on the type, scope and use of variables have been discussed and 
the ability for error handling described. Finally, the different types of program unit 
have been presented and the rules governing their use informally stated. A more 
formal description of DFDL is given in Appendix B and the design aspects outlined 
here are developed in the following chapter.
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Chapter 4. DFDL definition and syntax

In this chapter the operators, functions and program constructs of DFDL are 
described in detail. The language description is divided into three parts. The first 
part is a short section which describes the program facilities. The second illustrates 
the composition of lexical units, e.g. names, reserved words, numbers, operators. 
The third part describes DFDL’s syntax with the aid of extended BNF productions. 
An explanation of extended BNF is given at the beginning of the chapter. The final 
section of the chapter gives several examples of DFDL programs.

4.1 BNF notation

A variant of Backus-Naur form (BNF) notation, known as extended BNF (or 
EBNF) is employed to describe the syntactic and lexicographic relationships in 
DFDL. A grammar consists of a number of production rules, which define lexi-
cographic and syntactic categories in terms of other lexicographic and syntactic 
categories, and which define the terminal symbols belonging to DFDL. Terminal 
and non-terminal symbols are distinguished from one another by expressing all 
non-terminal symbols in italics. Terminal symbols can only appear on the right 
hand side of a production, unlike non-terminal symbols which may appear either 
side. Note, some lexical non-terminal symbols are treated as terminal symbols for 
syntax descriptions, e.g. real, ¡dent, integer, etc.

The examples below are used to illustrate the meaning of the EBNF operators;
I. {n},  [], and:; = .

4.1.1 Production

T h e = operator is read "is defined to be", hence the meaning of 

monadic.boolean.op :: = NOT 

is "monadic.boolean.op is defined to be NOT'.
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4.1.2 Alternative

The operator | is read as "OR", hence the meaning of 

datatype:: = BYTE | INT16 | INT32 | REAL32

is "datatype is defined to be BYTE or INT16 or INT32 or REAL32". This produc-
tion may also be written

datatype:: = BYTE 
datatype :: = INTI 6 
datatype:: = INT32 
datatype:: = REAL32

The operator [ ] also provides a way of expressing alternatives where there is 
commonalty between the different productions. The meaning of

sub.size :: = cot.size [ row.size ]

is "sub.size is defined to be col.size or col.size followed by row.size ". This 
production could be re-written

sub.size :: = col.size | col.size row.size

4.13 Repetition

The repetition operator { n symbol} means that the enclosed symbol may be 
produced n or more times, hence the meaning of

real.string:: = real { o , real }

is "real.string is defined to be real or real, real or real, real, real etc.".
The { n symbol} operator yields a recursive production, this is evident when 
re-written

real.string;; = real | real, real.string

4-2



4.2 Program facilities

4.2.1 Continuation

Expressions normally occupy a single line. Where it is necessary to break a line 
and spread an expression over several lines the continuation s y m b o l m u s t  be 
used. The continuation symbol is placed at the end of each broken line, immedi-
ately before or immediately after an operator. For example:

y : = (xi + X2) + ...
(X3 +  X4)

4.2.2 Comments

Comments are introduced by the percentage character"%". A comment may follow 
a statement, occupy an entire line or reside within a statement. The percentage 
character may be used to toggle comments on and off. All comments are toggled 
off when the end of line is reached, e.g.,

y : = x % y becomes x.

43 Lexical types

The DFDL character set comprises alphabetic, numeric and special characters.

43.1 Alphabetic characters (letters)

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

4.3.2 Numeric characters (digits)

0123456789

4 3 3  Special characters

% * ( ) -  + = : [ ] ; \ <  > . / space

Characters may be combined to produce different lexicographic types (e.g. iden-
tifiers, reserved words, integers, numbers), all of which are separated from one 
another by the space character.
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43.4 Delimiters

Delimiters are constructed from special characters and comprise characters which 
symbolise arithmetic operators, relational operators, brackets, etc. The valid set 
of delimiters are:

%l *1**1 (1)1-1 + |:= I = l[|] I;
l \ l < = l < l < > l > l > = M . . .  1/

43.5 Identifiers

Identifiers are strings of characters used to identify (or name) some element in the 
program. The types of element that are named by identifiers are certain operands, 
objects, repetition identifiers, user-defined functions and the program name.

Identifiers consist of a sequence of lower-case letters, digits and dots, of which the 
first character must be a lower-case letter.

¡dent;; = Ic.letter { o Ic.letter \ digit | . }

43.6 Reserved words

Reserved words consist of a sequence of upper-case letters used to identify DFDL 
functions and key words.

resen/ed.word:: = { 1 uc.letter }

The legal set of reserved words are:

ABS | ACOS | ALOG | AND | ASIN | ATAN | BEGIN | BYTE | COS 
| ELSE | ELSEIF | END | EVERY | EXP | EXPRESSION | FOR 
| FOREVER | FROM | FUNCTION | IF | INIT | INPUT | INT | IS 
| LN | LOG | MAX | MIN | MEAN | MED | MOD | NODE | NOT 
| OR | OUTPUT | PROD | PROG | REAL | REPEAT | RESULT 
| SGN | SIN | SORT | SUM | TABLE | TAN | THEN | VALUE | Z
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43.7 Integer numbers

Integers are used to specify the size of arrays and may be used to subscript single 
array elements and repetitive arrays. Integers consist of a sequence of one or more 
digits, which may be preceded by a sign.

integer ::=  [  + | - ]  { 1 digit}

Integers are held in a 32-bit 2’s complement form.

External data may be of integer type BYTE, INT16, INT32 as well as of type 
REAL32. The valid range of positive integers p i s , 0 <  = p <  = +(N/2)-1, while 
the valid range of negative integers n is, 0 > n > = -(N / 2), where N is 28 for 
BYTE integers, 216 for INT16 integers and 232 for INT32 integers.

43.8 Real numbers

Floating point numbers (real numbers) are used to represent all data values within 
DFDL programs. A real consists of a two sequences of digits, separated by a 
decimal point, which may be preceded by a sign and may be succeeded by an 
exponent.

rea l:: = [  monadic.op ]  { 1 digit } . {1 digit} [ exponent ] 
exponent:: = E monadic.op { 1  digit} 
monadic.op :: = + | -

A real is of type REAL32 which has a format according to ANSI/IEEE standard 
745-1985. REAL32 has 1 sign bit S, an 8-bit exponent e and a 23-bit fraction f. The 
value is positive if s = 0 and negative if s = 1, its magnitude is

2(e -127) * 1 f ¡f o < e < 255 
2 '126 * O.f if e = 0 and f < > 0 
0 if e = 0 and f = 0.

The range of a REAL32 value r, is approximately, -3.4 * 1038 < = r < = 
+ 3.4 * 10 , these values are referred to as -x.max and +x.max respectively.
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43 .9  Real errors and overflow

When an argument to an operation is outside the domain of that operation or the 
argument is not-a-number (NaN), the operation produces an exceptional result. 
This result maybe NaN, + Inf or -Inf. NaNs are used to designated different causes 
of an error, while Infs mean the result is too large to be represented as REAL32 
format. NaNs and Infs are propagated from one operation to the next, this 
facilitates error and overflow detection. Different error conditions are shown 
below, the 32-bit error codes are in hexadecimal format.

7FC00000 Divide zero by zero.
7FA00000 Divide infinity by infinity.
7F900000 Multiply zero by infinity.
7F880000 Addition of opposite signed infinities.
7F880000 Subtraction of same signed infinities.
7F840000 Negative square root.
7F804000 Remainder from infinity.
7F802000 Remainder by zero.
7F800010 Result not defined mathematically.
7F800008 Result unstable.
7F800004 Result inaccurate.

4.4 Syntax

The rules for defining legal sequences of lexically correct elements are given in 
this section. The lexical non-terminal symbols real, ¡dent and integer become 
terminal symbols in the syntax definition and are written in a non-italicised script, 
e.g. real, ident, integer. Reserved words and combinations of special characters 
also become terminal symbols, these are expressed in their lexical form.

4.4.1 Operators and functions

4.4.1.1 Arithmetic operators

DFDL operators are all of type REAL32. The arithmetic operators \  and
** yield the arithmetic sum, difference, product, quotient, remainder and power 
respectively. Remainder x \  y produces the result x - (y * n), where n is the result 
of x / y rounded to the nearest integer value. Power X ** Y is only defined for X 
> = 0, since values of X that are less than zero may produce complex (i.e. real + 
imaginary) results. All results are of type REAL32 which are rounded to the nearest 
floating point value.

4-6



Arithmetic operators are classified as either dyadic or monadic operators:

dyadic.op ;; = + \ - | * | / | ** | \  
monadic.op:: =  + \ -

4.4.1.2 Boolean operators

Within conditional expressions DFDL employs boolean and relational operators, 
these operators are not valid outside conditional expressions. The boolean 
operators NOT, AND, OR yield the boolean result b, true or false:

NOT false = true 
NOT true = false 
false AND b = false 
true AND b = b 
false OR b = b 
true OR b = true

where b is a boolean variable of value true or false.

4.4.13 Relational operators

The operators = ,<  > , > , > = , < , <  = are all dyadic relational operators which 
compare the value of two real numbers and yield a boolean result, true or false. 
The result of x = y is true if the value of x is exactly equal to the value of y. Other 
relational operators obey the rules:

(x < > y) = NOT(x = y)
(x > y) = (y < x)
(x > y) = NOT(x < = y)
(x < y) = NOT(x > = y)

where x and y are real values.

Production rules for boolean and relational operators

boolean.op :: = monadic.boolean.op \ dyadic.boolean.op
monadic.boolean.op:: = NOT
dyadic.boolean.op :: = AND | OR
relational.op:: = = \ < > \ < \ < = \ > \ > =
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4.4.1.4 Functions

DFDL functions (non user-defined) all act on real data (with the exception of 
REAL) and produce a single real result. Some functions have just one operand, 
while others have a multiple number of operands. Details concerning the range 
and accuracy of the arithmetic and trigonometrical functions can be found in the 
Occam standard library documentation (INMOS, 1987).

Each of the functions below are expressed y : = function (x), where x and y are the 
operand and object respectively.

y : = REALM, y becomes the real equivalent of integer x, 
domain [-231, + 231 - 1], 
y : = ABS(x), y becomes the modulus of x, 
domain [-Inf, -I- Inf].
y : = SGN(x), y becomes +1.0 if x > = 0 and -1.0 otherwise, 
domain [-Inf, +lnf].
y : = SQRT(x), y becomes the square root of x,
domain [0, x.max],
y : = LOG(x), y becomes logio(x),
domain [0, x.max].
y : = ALOG(x), y becomes 10x,
domain [-Inf, +38.53].
y : = LN(x), y becomes loge(x),
domain [0, x.max].
y : = EXP(x), y becomes ex,
domain [-Inf, 88.72].
y : = SIN(x), y becomes sin(x), where x is in radians, 
domain [-12868.0, +12868.0] 
y : = COS(x), y becomes cos(x), where x is in radians, 
domain [-12868.0, +12868.0] 
y : = TAN(x), y becomes tan(x), where x is in radians, 
domain [-6434.0, +6434.0]
y : = ASIN(x), y becomes sin"1(x), where y is in radians, 
domain [-1.0, +1.0]
y : = ACOS(x), y becomes cos_1(x), where y is in radians, 
domain [-1.0, +1.0]
y : = ATAN(x), y becomes tan_1(x), where y is in radians, 
domain [-lnf.0, + lnf.0]

where the value + x.max corresponds to the largest valid REAL32 value (ap-
proximately 3.4 * 1038) and -x.max = - ( + x.max).
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Each of the functions below are expressed y : = function(xo,.... x(k - 1)), where 
xo.....x(k - 1) and y are the operands and object respectively and k > = 2.

y : = SUM(xo......x(k - 1)), y becomes the sum of all
operands xo, .... X(k -1).
y : = PROD(xo, .... x(k - 1)), y becomes the product of all 
operands xo......X(k - 1).
y : = MEAN(xo, .... x(k - 1)), y becomes the mean of all 
operands xo, .... X(k -1).
y : = MED(xo, ..., X(k - 1)), y becomes the median of all 
operands xo, .... x(k - 1).
y : = MAX(xo, .... X(k - 1)), y becomes the maximum of all 
operands xo, .... X(k - 1).
y : = MIN(xo, .... x(k - 1)), y becomes the minimum of all 
operands xo......x(k - 1).

Production rules for functions

function:: = monadic.function \ multi.function \ conv.function 
monadic.function:: =  ABS | SGN | SORT | LOG | ALOG | LN | EXP 
| SIN | COS | TAN | ASIN | ACOS | ATAN 

multi.function:: =  SUM | PROD | MEAN | MED | MAX | MIN 
conv.function:: =  REAL

4.4.2 Program

A DFDL program is structured as shown below:

PROG prog.name ( {1 { o input.declaration } { 1 output.declaration } } )
{o { o node.declaration }
{ o constant.declaration }
{ o function.declaration } }

BEGIN
[ I NIT initialise.section ]
REPEAT ( FOREVER | FOR non.neg.integer) repeat.section 
END

The first line of a DFDL program begins with the key word PROG followed by the 
program’s name. This is succeeded by an optional external input declaration and 
a mandatory external output declaration, both of which may be repeated any 
number of times. Output declaration is followed by node, constant and function 
declarations, all of which may be declared zero or more times.
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The BEGIN and END keywords embrace the assignment part of the program, 
which begins with an optional initialisation section. This section allows the initial 
state of the program to be set and, if used, is executed only once. The main program 
(repeat section) comes after the REPEAT statement. The directive immediately 
following REPEAT can either be FOREVER or FOR n, where n is a non-negative 
integer. If n is set to zero, the program will terminate without executing the 
repetitive section. When the repeat directive is declared as FOREVER, the con-
tents of the loop are executed until the loop is stopped by external means, e.g., 
power down or reset.

Production rules for the program structure

program :: = PROG program.name ( ext.declaration ) 
internal.declaration BEGIN assignment.section END 

program.name:: = ¡dent
ext.declaration ;;=  {7 { 0 input.declaration } { 1 output.declaration } } 
internal.declaration :: = {0 { 0  node.declaration }
{ 0 constant.declaration } { 0 function.declaration } } 

assignment.section ;;=  [ I NIT initialise.section ]
REPEAT ( FOREVER | FOR non.neg.integer) repeat.section

4.43 External input and output

DFDL employs two types of external data interface, denoted input and output. 
These are used to interface to other DFDL programs and the outside world. Each 
DFDL program has zero or more inputs and one or more outputs.

Input and output are declared after the program declaration and begin with the 
key words INPUT and OUTPUT respectively. Attached to each input and output 
keyword is the data type of the external data. External data types are either 8-bit 
integer (BYTE), 16-bit integer (INT16), 32-bit integer (INT32) or 32-bit floating 
point (REAL32). When more than one data type is used, say for different inputs, 
then the key word INPUT has to be re-written:

INPUT(BYTE) u i,  u2) ..., Uk INPUT(REAL32) Uk +  1, u k + 2> .... Up 
OUTPUT(INT32) vi, v2.....V|

Within a DFDL program all data manipulation is performed in type REAL32. 
Hence, all non-REAL32 type data from external inputs and all non-REAL32 type 
data to external outputs has to be converted. At the boundaries of the program 
(i.e. input and output), DFDL implicitly inserts conversion operators which trans-
form non-REAL32 input data to REAL32 data, and transform REAL32 data to 
non-REAL32 output data. Data type declaration is only necessary for inputs and 
outputs, since all other data structures are of type REAL32 by default.

Input and output variables are declared as either scalars or arrays and their scope 
is restricted to the program unit where they are declared. Arrays are distinguished 
from scalars by the square braces [pos.integer ] which succeed the variable name 
and the non-singular subscript size.
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The size of an input or output array does not define the number of distinct inputs 
or outputs, but the number of elements streamed through the declared input or 
output per iteration. For example, the following single input streams 1024 sequen-
tially ordered bytes:

INPUT(BYTE) u[1024]

DFDL supports arrays of up to two spatial dimensions. The number of elements 
in a two dimensional array is the product of the two declared subscript sizes. For 
example, the following output array has 20 elements, (10 columns of 2 rows):

OUTPUT(REAL32) v[10][2]

Data is streamed to the output (above) in a "column before row" fashion, e.g.,
v[0][0], v[1][0], v[2][0].....v[9][0], v [0][1],.... v[8][1], v[9][1].

Production rules for input and output declarations

ext.declaration ::=  {1 { o input.declaration } { 1 output.declaration } } 
¡nput.declaration :: =  INPUT( data.type ) input [ sub.size ]  { o , input [ 
sub.size ]  }
output.declaration :: =  OUTPUT( data.type ) output [ sub.size ]  { o , output [ 
sub.size ]  }
data.type ::=  BYTE | INT16 | INT32 | REAL32 
input ::=  ¡dent 
output ::=  ident
sub.size :: = column.size [  row.size ]  
column.size ::=  [pos.integer] 
row.size ::=  [pos.integer]

4.4.4 Nodes

Nodes are used as intermediate variables between inputs and outputs. Each DFDL 
program has zero or more nodes.

Nodes are declared after the external declaration and begin with the key word 
NODE. All nodes are of data type REAL32, hence their data type is not explicitly 
declared:

NODE m, r\2.....ni<
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Node variables are declared as either scalars or arrays and their scope is restricted 
to the program unit where they are declared. Arrays are distinguished from scalars 
by the square braces [pos.integer] which follow the variable name and the 
non-singular subscript size. As in the case for inputs and outputs, nodes can have 
up to two spatial dimensions. For example, the following node is declared as a 50 
element vector;

NODE n[50]

whereas the example below shows a node array of 80 elements, (10 columns of 8 
rows):

NODE n [10] [8]

Production rules for node declaration

node.dedaration :: = NODE node [ sub.size ] { o , node [ sub.size ]  } 
node:: = ¡dent
sub.size ;; = column.size [ row.size ] 
column.size :: = [pos.integer] 
row.size ::=  [pos.integer]

4.4.5 Constants

Constant values are either named, in which case they are called constants, or used 
directly in expressions as reals. Each DFDL program has zero or more constants.

Constant declarations begin with the key word VALUE. All constants are of data 
type REAL32, hence their data type is not explicitly declared:

VALUE c IS real

Constants are declared as either scalars or arrays. Arrays of different values may 
be declared using a table of real values. For example, a 5 element constant array 
is declared as:

VALUE TABLE c[5] IS [3.45, 2.00, -34.0, -0.91, 34.9]

2-dimensional constant arrays are created in a similar fashion. The example below 
shows a constant array of 6 elements, (3 columns of 2 rows):

VALUE TABLE c[3][2] IS [0.3042, 12.346, 6.6511;
2.2220, 332.23, 3.8449]
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Constants may also be formed by the assignment of constant expressions, in place 
of a single real value, as shown previously. Constant expressions, consist of 
operators, functions and previously declared constants as well as real values:

VALUE c IS 1.3334
VALUE d IS (c * ASIN(-0.86475))

The repetition operator (section 4.4.10) enables arrays of different values to be 
constructed by the assignment of a constant expression. In DFDL this is a two stage 
process; first the size of the array is declared and placed equal to EXPRESSION;

VALUE pi IS 3.141592654 
VALUE c[10] IS EXPRESSION

then during the initialisation section each element of the un-defined constant is 
equated a value:

INIT
c[index FROM 0 FOR 10] IS COS((REAL([index FROM 0 FOR 10]) * p i) ... 
- (p i /  2.0)) + 1.0

The subscript identifier (name of subscript index) has a value which varies from 0 
to 9, this is converted from an integer to a real by the REAL function.

Production rules for constant declaration

constant.declaration :: =  VALUE ( constant [  sub.size ]  IS 
constant.expression | undefined.constant [ sub.size ] IS EXPRESSION 
| TABLE constant [ sub.size ]  IS table) 

constant ;; = ident 
undefined.constant:: =  ident 
sub.size :: = column.size [ row.size ]  
column.size :: =  [pos.integer] 
row.size :: =  [pos.integer] 
table :: = real.string { o ; real.string } 
real.string:: = [ real { o , real} ]

4.4.6 User-defined functions

User-defined functions provide a degree of abstraction and can be used in a 
repeated fashion to reduce programming effort and program length. All operands 
to a function have to be passed as formal parameters or declared within the 
function. Those operands declared inside a function are only valid within the scope 
of that function. These limitations ensure that functions are free from side-effects. 
Functions have an in-degree of zero or more operands and an out-degree of one 
(i.e. a single result). Within the function declaration, a single object corresponding 
to the function output is mandatory, this single object is denoted RESULT.



DFDL is a static language, consequently functions cannot be called recursively, 
i.e., a function cannot call itself directly or indirectly. An ordering is imposed on 
function declarations to enforce the static restriction. This ordering only permits 
functions to be called from other functions, which have been previously declared. 
Within a function, formal parameters cannot be assigned values, otherwise the 
single assignment rule would be broken. In addition, operands cannot be sub-
scripted with the delay operator from within a function, therefore any function that 
requires old values for its operands must have them passed as formal parameters.

Production rules for user-function declaration

function.declaration :: = FUNCTION function.name 
( [  formal.parameters ]  ) function.body 
function.name:: = ident
formal.parameters ;; = formal [ sub.size ]  { o , formal [ sub.size ]  } 
formal ::=  ident
sub.size :: = col.slze [  row.size ]  
col.slze:: = [pos.integer] 
row.size:: = [pos.integer]
function.body:: = {o { o node.declaration } { o constant.declaration }
{ o function.declaration } } BEGIN { o assignment }
RESULT: = ( conditional.expression \ expression )

A function is called by instancing its name, followed by the passed parameters 
enclosed in parentheses. Passed parameters can either be singular, multiple or 
mixed. A comma is used to separate consecutive pairs of singular parameters, or 
to separate singular parameters from multiple parameters, or to separate consecu-
tive multiple parameters. The total number of passed parameters must correspond 
to that declared for the function.

Production rules for user-function instanitation

function.instance :: = function.name ( [  passed.parameters ]  ) 
function.name:: = ¡dent
passed.parameters :: = operand { o , operand}

A typical function declaration and instanciation is presented below, note that the 
declaration of a function must precede its instanciation.

FUNCTION weighted.average(f.1, f.2, f.3)
NODE n.1, n.2 
VALUE a. 1 IS (1.0/6.0)
VALUE a.2 IS (4.0 / 6.0)
BEGIN

n.1 :=  (f.1 + f.3) *a.1 
n.2 : = f.2 * a.2 

RESULT :=  n.1 + n.2

y : = weighted.average(x[i FROM 0 FOR 3 ])
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4.4.7 Z-operator (Delay)

DFDL incorporates a Z operator, which is equivalent to the discrete mathematical 
delay operator used in difference equations, where xZ[n] is equivalent to xZ’n. The 
value xZ[n] is the value of x, n steps in the past, where a step is equivalent to a 
single cycle of the repetitive section of the program, i.e., a single pass of the 
algorithm. The number of steps n is a non-negative integer. When n is equal to 
zero, xZ[n] is the same as x. The value of n cannot be less than zero.

The Z operator alleviates some of the difficulties associated with looping within a 
single assignment language, and is in effect a developed form of the "old" operator, 
as used in SISAL, where "old x" is equivalent to xZ[1], DFDL only allows inputs, 
outputs and nodes to be subscripted with Z[n], Subscripting constant values with 
Z[n] would be meaningless, since c = cZ[n] for all n.

All Z[n] subscripted terms are implicitly updated between the time they are last 
used in the current cycle and the time when they are first used in the next cycle. 
Consequently, all past values (i.e. subscripted Z[n], n > 0) cannot be re-assigned 
during the repetitive section of the program, otherwise the single assignment rule 
would be broken.

The production rules for delay are presented later, in section 4.4.9 and 4.4.10

4.4.8 Assignment

The assignment operator : = assigns a new value to an object, or more precisely, 
since DFDL is a single-assignment language, the assignment operator statically 
associates a value with a name (i.e. name of the object).

object: = value

In the initialisation section, past inputs, past nodes and past outputs (i.e. sub-
scripted with Z[n], n > 0) may be pre-assigned values to initialise the program. 
The initialisation section also allows un-valued constants to be given values.

4-15



The rules for assignment in the initialisation section are summarised below:

In the repetitive section of the program the rules of single assignment preclude 
multiple or non-assignment of objects, hence only un-assigned nodes and un-as- 
signed outputs can appear to the left of the assignment operator. Inputs cannot be 
assigned, since they are assigned implicitly.

Objects Operands

input Z[n] 
output Z[n] 
node  Z[n] 

undefined, constant

constant
real

( constant.expression )

Table 4.1 Valid initialisation section assignment

The rules for assignment in the repetitive section are summarised below.

DFDL places an additional rule on the assignment operation, which states that 
unassigned nodes and unassigned outputs cannot be used as operands until they 
are assigned. This rule places a partial ordering on assignment statements, but 
prevents the formation of oscillatory loops within the program.

Objects Operands

output
node

constant
real

( expression ) 
input [ Z [ n ] ]  

output [  Z[n] 7 
node [  Z[n] ]  

function.instance

Table 4.2 Valid repetitive section assignment
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Production rules for assignment

assignment.section :: =  [  INIT init.section ]
REPEAT ( FOREVER | FOR non.neg.integer) repeat.section 

init.section;; = {1  value.constant | init.assignment} 
value.constant:: = undefined.constant IS constant.expression 
undefined.constant:: =  ¡dent
init.assignment:: =  init.object : = constant.expression 
init.object:: = input { o spatial.sub } Z temporal.sub 
| output { o spatial.sub } Z temporal.sub 
j node { o spatial.sub } Z temporal.sub 

repeat.section :: =  { 1 assignment }
assignment:: = object : = ( expression \ conditional.expression ) 
object:: =  node { o spatial.sub } | output { o spatial.sub }

4.4.9 Expressions

An expression evaluates to a single real value. Expressions are constructed from 
operands, operators, functions and parentheses.

A regular expression consists of a single operator or function and the operands 
required for that operator or function. Equal priority is given to all operators and 
functions, hence parentheses have to be used to define priority between operators 
or functions in expressions that are not regular.

For example, consider the sum of four inputs, u.1, u.2, u.3, u.4, each weighted by 
the values 0.1,0.3, 0.4, 0.2 respectively. Some languages would allow;

y : = u.1 * 0.1 + u.2 * 0.3 + u.3 * 0.4 + u.4 * 0.2

whereas DFDL requires the use of parentheses:

y : = ((u.1 * 0.1) + (u.2 * 0.3)) + ((u.3 * 0.4) + (u.4 * 0.2))

DFDL distinguishes between two forms of expression, namely expressions which 
evaluate to a constant value and those whose value may change from one cycle to 
the next. The former is called a constant expression and is the only type of 
expression that may be used in the initialisation section. The latter type of expres-
sion (simply referred to as an expression) is used exclusively in the repetitive 
section.
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Production rules for constant expression and expression

constant.expression:: = constant.operand 
| monadic.function constant.operand 
| multifunction constant.operand { o , constant.operand} 
j conv.function spatial.sub \ monadic.op constant.operand 
j constant.operand dyadic.op constant.operand 

constant.operand:: = real | constant { o spatial.sub }
| (constant.expression)

expression :: =  operand \ monadic.function operand 
| multifunction operand { o , operand} \ conv.function spatial.sub 
| monadic.op operand \ operand dyadic.op operand 

operand:: = real | input { o spatial.sub } [ Z temporal.sub ]
| output { o spatial.sub } [  Z temporal.sub ]
| node { o spatial.sub } [ Z temporal.sub ]
| constant { o spatial.sub } \ function.instance 
| [expression)

monadic.function:: =  ABS | SGN | SORT | LOG | ALOG 
| LN | EXP | SIN | COS | TAN | ASIN | ACOS | ATAN 

multifunction:: = SUM | PROD | MEAN | MED | MAX | MIN 
conv.function:: = REAL 
monadic.op :: = + | - 
dyadic.op ::=  + I - I * I / I ** | \

4.4.10 Repetitive and fixed subscripts

Subscripts belonging to inputs, outputs, nodes and constants can either be fixed or 
varied over a defined range. The repetitive subscript attempts to simplify the 
program by allowing an operation to be performed on every element within the 
same array. For example the set of DFDL statements below uses fixed subscripts;

y[0] : = 2.0 * x[5] 
y[1] :=  2.0 *x[6] 
y [2] :=  2.0 * x[7]

these statements can be condensed into a single statement: 

y[var FROM 0 FOR 3] : = 2.0 * x[var FROM 5 FOR 3]

The repetition identifier, named "var" (any unused identifier will do), associates 
subscripts belonging to different variables. The repetition identifier can also be 
used as an argument to the expression, once it is converted from type INT32 to 
type REAL32, e.g.

y[var FROM 0 FOR 3] : = REAL([var FROM 10 FOR 3]) * ...
x[var FROM 5 FOR 3]
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The syntax of the repetition subscript is of the form [ repetition.¡dent FROM start 
FOR range [ EVERY step ] ] . The range must be equal for all repetitive subscripts 
which are in the same assignment statement and have the same repetition iden-
tifier. The step (step size), when not declared as in the previous examples, defaults 
to 1. Step size may be (i) positive, (ii) zero or (iii) negative:

(i) When the step size is positive then the subscript evaluates to an integer 
number which increases with r, 0 < = r < range:

subscript = start + (step * r)

(ii) When the step size is zero the subscript evaluates to a single integer value:

subscript = start

(iii) When the step size is negative the subscript evaluates to an integer number 
which decreases with r, 0 < = r < range:

subscript = start - ( | step | * r)

In all cases the value of the subscript must not exceed the bounds of the variable 
it is subscripting.

Production rules for fixed and repetitive subscripts

spatial.sub :: = fixed.sub \ repetitive.sub 
temporal.sub :: = fixed.sub \ repetitive.sub 
fixed.sub :: = [non.neg.integer.expression ]
repetition.sub :: = [repetition.ident FROM non.neg.integer.expression 
FOR pos.integer.expression [ EVERY integer.expression ]  ]

where non.neg.integer.expression -  integer.expression > = 0 
and pos.integer.expression = integer.expression > 0

integer.expression :: = integer.operand 
| monadic.integer.op integer.operand 
I integer.operand dyadic.integer.op integer.operand 

integer.operand:: =  integer | (integer.expression ) 
monadic.integer.op :: = + | - 
dyadic.integer.op ::=  + | - | * | MOD
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4.4.11 Conditional

Conditional expressions are included in DFDL to support non-linear operations 
like thresholding and median filtering. A conditional expression is made up from 
one or more boolean expressions b i ... £>k-i, which evaluate to true or false:

IF b i THEN xi ELSEIF b2 THEN x2 ... ELSE Xk

After each boolean expression bi there is a corresponding expression Xj. The 
conditional expression terminates with a single default expression Xk, preceded by 
the keyword ELSE. Boolean expressions and their corresponding expressions are 
separated by the key word THEN. The first boolean expression is preceded by the 
keyword IF, while subsequent boolean expressions are preceded by the keyword 
ELSEIF. Conditional expressions in DFDL always evaluate to a single real value, 
which is assigned to the single object on the left hand side of the assignment 
operator.

y : = IF b i THEN xi ELSEIF b2 THEN x2 ... ELSE Xk

Multiple assignment is prevented by assigning only one of the expressions Xj to the 
single object, where an expression Xi is assigned iff the boolean expression bi is 
true and all preceding boolean expressions are false. Hence, the preceding boolean 
expressions, within the same conditional expression, have priority over their 
successors. Priority is established by the rule:

bi =  bi AND NOT(bi-1 OR b\.2 OR ... OR bi)

In its simplest form a conditional expression consists of a single boolean expression 
br.

y : = IF b i THEN xi ELSEx2

If b i is true then xi is assigned to y, otherwise x2 is assigned to y. More complex 
conditional expressions can be written by including ELSEIF or by nesting condi-
tional expressions:

y : = IF b i THEN xi ELSEIF b2 THEN x2 ELSEIF ... ELSE Xk or 

y : = IF b i THEN (IF b2 THEN x2 ELSE xm) ELSE xk

Conditional expressions cause branching within the program which will inevitably 
lead to different time complexities for different branches. This uncertainty appears 
to contradict the rule of determinacy. However, we find that the time complexity 
of all branches within a conditional expression are determinate and they all 
converge, meeting at the assignment of the single object. Therefore, the worst-case 
time taken to evaluate a conditional expression is the most costly path through the 
conditional expression.
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Production rules for conditional expression

assignment :: = object : = ( expression \ conditional.expression ) 
conditional.expression :: = IF boolean.expression 
THEN ( expression \ (conditional.expression ) )
{ o ELSEIF boolean.expression
THEN ( expression | (conditional.expression ) ) }
ELSE ( expression | (conditional.expression ) ) 

boolean.expression :: =
relational.expression \ monadic.boolean.op relational.expression 
I relational.expression dyadic.boolean.op relational.expression 

relational.expression :: =
operand relational.op operand | (boolean.expression ) 

relational.op ;; = < | < = | = | > = | > | < > 
monadic.boolean.op :: = NOT 
dyadic.boolean.op :: = AND | OR

4.5 DFDL examples

Please note that the examples given here are for a fully implemented version of 
DFDL, also note that coefficient values are for illustration only.

4.5.1 FIR filter

%
% The example is a 5 stage, finite Impulse response filter. The filter has one 
% input named x and one output named y and calculates the product of the 
% constant array c and xZ[d], where the delay d, ranges from 0 to 4, in 
% integer steps of 1. Output y becomes the sum of the products.
%
PROG fir.fllter( INPUT(REAL32) x OUTPUT(REAL32) y )

NODE n[5]
VALUE TABLE c[5] IS [0.434, 0.782, 0.975, 0.782, 0.434]

BEGIN
INIT

xZ[coi FROM 1 FOR 4] :=  1.0 

REPEAT FOREVER
n[cd FROM 0 FOR 5] : =  xZ[col FROM 0 FOR 5] * c[col FROM 0 FOR 5] 
y : =  SUM(n[col FROM 0 FOR 5])

END
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4.5.2 HR filter

The example is a 2nd order infinite impulse response filter. The filter has 
% one input named x and one output named y and calculates the product 
% of two feedback and two feedforward paths.
%
PROG iir.filter( INPUT(INT32) x OUTPUT(INT32) y )

NODEn
VALUE TABLE c[4] IS [0.563, 0.782, -0.345, -0.714]

BEGIN
INIT

nZ[k FROM 1 FOR 2] : =  1.0 

REPEAT FOREVER
n : =  SUM(x, nZ[k FROM 1 FOR 2] * c[k FROM 2 FOR 2]) 
y : =  SUM(nZ[2], nZ[k FROM 0 FOR 2] * c[k FROM 0 FOR 2])

END
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4.53 2-D convolution

%
% The first program "frame" places a single column, single row 
% frame around the 2-D Image
%
PROG frame( INPUT(BYTE) picture [256] [256] OUTPUT (BYTE) framed [258] [258]) 

BEGIN
REPEAT FOREVER

framed[0] [row FROM 0 FOR 258] : =  0.0 
framed[257] [row FROM 0 FOR 258]: = 0.0 
framed [col FROM 1 FOR 256] [0] :=  0.0 
framed [col FROM 1 FOR 256] [257] :=  0.0 
framed [col FROM 1 FOR 256] [row FROM 1 FOR 256] : =  ... 

plcture[col FROM 0 FOR 256] [row FROM 0 FOR 256]
END

%
% This program performs a 2-D convolution using a 3 by 3 window. Frame 
% pre-processing prevents interference between adjacent Images and successive 
% lines.
%
PROG convolution( INPUT(BYTE) framed OUTPUT(BYTE) result)

NODE column.sum[3]
VALUE TABLE weight[3] [3] IS 

[-0.982, -0.707, -0.982;
-0.707, +6.756, -0.707;
-0.982, -0.707, -0.982]

BEGIN
INIT

framedZ[col FROM 1 FOR 515] :=  0.0 

REPEAT FOREVER
column.sum[0] : =  SUM(framedZ[col FROM 0 FOR 3] * weight[col FROM 0 FOR 3][0]) 
column.sum[1] : =  SUM(framedZ[col FROM 256 FOR 3] * weight[col FROM 0 FOR 3] [1 ]) 
column.sum[2] :=  SUM(framedZ[cd FROM 514 FOR 3] * weight[col FROM 0 FOR 3] [2]) 
result: =  SUM(column.sum[col FROM 0 FOR 3])

END
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4.5.4 DFT

%
% This example inputs a stream of 64 data samples and outputs two streams of 
% 64 real values. One output stream Is the magnitude spectrum, while the 
% other output stream is the phase spectrum. The program terminates after 80 
% streams have been inputted and outputted.
%
PROG dft( INPUT(INT32) data[64] OUTPUT(REAL32) magnitude[64], phase[64])

NODE smoothed.data[64], real[64], image[64]
VALUE pi IS 3.141592654 
VALUE pi.by.2 IS pi * 2.0 
VALUE window[64] IS EXPRESSION 
VALUE w.cos[64] [64] IS EXPRESSION 
VALUE w.sin[64] [64] IS EXPRESSION

BEGIN
INIT

window[col FROM 0 FOR 64] IS 0.5 + (COS(((REAL(col) /  64.0) - 0.5) * pi) / 2.0) 
w.cos[col FROM 0 FOR 64] [row FROM 0 FOR 64] IS (1.0 /  64.0) * ...

COS(((REAL(row) + 1.0) * (REAL(col) / 64.0)) * pi.by.2) 
w.sin[col FROM 0 FOR 64] [row FROM 0 FOR 64] IS (1.0 / 64.0) * ... 

SIN(((REAL(row) + 1.0) * (REAL(col) /  64.0)) * pi.by.2)

REPEAT FOR 80
smoothed.datafcol FROM 0 FOR 64] : =  data[col FROM 0 FOR 64] * ... 

wlndow[col FROM 0 FOR 64]
real [row FROM 0 FOR 64] : =  SUM (data[col FROM 0 FOR 64] * ...

w.cos [row FROM 0 FOR 64] [col FROM 0 FOR 64]) 
image[row FROM 0 FOR 64] : = SUM (datafcol FROM 0 FOR 6 4] * ...

w.sln[row FROM 0 FOR 64] [col FROM 0 FOR 64]) 
magnitude[col FROM 0 FOR 64] : = SQRT((reai[col FROM 0 FOR 64] * *  2) + ... 

(lmage[col FROM 0 FOR 64] * *  2))
phase[col FROM 0 FOR 64] : =  ATAN(lmage[col FROM 0 FOR 64 ] /... 

real[col FROM 0 FOR 64])
END
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4.5.5 Lattice filter

%
% This example is of a 7 stage lattice filter. The upper and lower data value 
% at each stage are calculated by the functions top.sectlon and bottom.section 
% respectively. The sequential nature of the upper data path is reflected by 
% the dependency successive top.sections have on their predecessors.
%
PROG lattice( INPUT(REAL32) signal OUTPUT(REAL32) upper, lower)

NODE top[5], bottom[5]
VALUE TABLE p[7] IS [0.4563, 0.4562, 0.8935, 0.2345, 0.9374, 0.3533, 0.7745] 
VALUE TABLE q[7] IS [0.3329, 0.7846, 0.7844, 0.9938, 0.6366, 0.3443, 0.2323]

FUNCTION top.section(in.top, In.bottom, c)
NODEn
BEGIN

n : = In. bottom * c 
RESULT : = n + In.top

FUNCTION bottom.section(in.top, in.bottom, c)
NODEn
BEGIN

n : = in.top * c 
RESULT : = n + in.bottom

BEGIN
REPEAT FOREVER

top[0] :=  top.section(slgnal, signalZ[1], p[0]) 
top[1] :=  top. section (top [0], bottom [0]Z[1], p[1]) 
top[2] :=  top.section(top[1], bottom[1]Z[1], p[2]) 
top[3] :=  top.section(top[2], bottom[2]Z[1], p[3]) 
top[4] :=  top.section(top[3], bottom[3]Z[1], p[4]) 
top[5] :=  top.section(top[4], bottom[4]Z[1], p[5]) 
upper :=  top.section(top[5], bottom[5]Z[1], p[6]) 
bottom[0] :=  bottom.section(slgnal, slgnalZ[1], q[0]) 
bottom[1] :=  bottom.section(top[0], bottom[0]Z[1], q[1]) 
bottom[2] :=  bottom.section(top[1], bottom[1]Z[1], q[2]) 
bottom[3] :=  bottom.sectlon(top[2], bottom[2]Z[1], q[3]) 
bottom[4] :=  bottom.sectlon(top[3], bottom[3]Z[1], q[4]) 
bottom[5] :=  bottom.section(top[4], bottom[4]Z[1], q[5]) 
lower :=  bottom.sectlon(top[5], bottom[5]Z[1], q[6])

END

4-25



4.5.6 Level-crossing detector

%
% This example transfers the input to the output whenever the absolute 
% value of the input crosses the value set by level, for all other conditions 
% the value of output is zero.
%
PROG level.crossing.detector( INPUT(REAL32) input, level OUTPUT(REAL32) output ) 

NODE value 

BEGIN
REPEAT FOREVER 

value : = ABS(in) 
output :=  IF (value > = level)

THEN (IF (valueZ[1] > = levelZ[1]) THEN 0.0 ELSE Input)
ELSE (IF (valueZ[1] > =  levelZ[1]) THEN input ELSE 0.0)

END

4.5.7 Matrix product

%
% This example performs a cross product of an [m] by [n] matrix with an [n] by [m] matrix, 
% producing an [n] by [n] matrix.
%
PROG matrix.product( INPUT(INT32) p[10][20], q[20][10]

OUTPUT(INT32) r[10][10] )

BEGIN
REPEAT FOREVER

r[i FROM 0 FOR 10] [j FROM 0 FOR 10] : =  ... 
SUM(p[i FROM 0 FOR 10][k FROM 0 FOR 20] * ... 
q[k FROM 0 FOR 20][] FROM 0 FOR 10])

END
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4.6 Summary

This chapter has described the language DFDL and in doing so has detailed types, 
operators, functions, program structure, external input/output, nodes, constants, 
user-defined functions, Z-operator, assignment, expressions, subscripts and con-
ditional constructs. These descriptions have been supplemented by some examples 
at the end of the chapter. A summary of DFDL syntax is given in Appendix B.

4-27



Chapter 5. DFDL task model

This chapter describes the translation of a discrete algorithm from a program to a 
graph and it describes the graph’s data structure. The graph of the discrete 
algorithm is a directed acyclic graph (DAG), which represents the discrete algo-
rithm without loss of function or structure.

The DAG is called the task graph, denoted G, which is given as G = (T, C, B, E, 
A). The set of nodes T, corresponds to the program’s task primitives that are 
executable on processors and the set of directed arcs A, expresses sequential 
dependency between the tasks. Branching in the graph represents parallelism, 
rather than alternative paths of computation.

The chapter begins by describing the data structure of task primitives and how 
these data structures are connected together to form G. Following this, the 
different types of nodes are detailed and finally, the transformations are described, 
these fall into three categories; (i) named graph structures, (ii) primitive graph 
structures and (iii) non-primitive graph structures. All the data structures are 
written in Occam.

5.1 Data structures

5.1.1 Executable node data structure

The in-degree and out-degree of nodes in T and C are shown in Table 5.1. With 
the exception of the initiating and termination nodes, (B and E respectively), all 
other nodes have an in/out-degree less than or equal to two. This low in/out degree 
tends to reflect the low I/O complexity of the tasks, which is regarded as a 
prerequisite for a medium/fine grain graph structure.

5-1



Type In-degree Out-degree Comments

B
0 multiple initiates

G

E
multiple 0 terminates

G

1 1 monadic input and 
output

Others
1 2 monadic input 

dyadic output

2 1 dyadic input 
monadic output

Table 5.1 In/out-degree of task graph nodes

G is created in the form of a doubly linked list, where each node contains links to 
both its immediate successors and its immediate predecessors. This makes it 
possible to traverse the graph in either direction, such that any node may be 
reached from any other node in G. The flexibility given by doubly linking must be 
offset against the overheads of storage and time to traverse linked nodes. However, 
the majority of nodes in G have a low I/O degree which makes G sparse, hence 
nodes are compact and therefore storage overheads are low. Generally a doubly 
linked list produces a memory efficient data structure, whose size is proportional 
to |T | + |C| .

5.1.2 Non-executable node data structure

At the top and bottom of the graph G are the nodes B and E respectively. Entries 
for these two nodes have a different format to other nodes in G, because of their 
variable in/out-degree. B and E data structures each take the form of a vector and 
pointer (Figure 5.1). The entries in B hold all the addresses of nodes in T and C 
that are at the top of G and the entries in E hold all node addresses in T and C that 
connect to the bottom of G. The pointer (Figure 5.1) keeps track of the last entry 
in the vector.

address address address empty empty

pointer

Figure 5.1 B and E data structure
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5.13 Executable node attributes

Nodes other than B and E employ blocks of 5 contiguous words (20 bytes) each. 
A node comprises several attributes which are all stored at specific locations within 
the node. Most of these attributes are common to all nodes, however, where this 
is not the case, alternative, mutually exclusive attributes occupy the same location 
in different node types. Locations belonging to attributes which become redundant 
may be used by successive attributes. The format of these nodes is shown in Table 
5.2. Note: the execution cost of a task type (node) is represented by the node’s 
name, i.e. its TYPE.

word wort1 word word word Attributes
4 3 2 1 0

| TYPE

COLOUR A/B

NUMBER

1
; v

TO.FIRST

EST
S i x ? : ? * ? ? : ?

LST

i
Ü FR.FIRST

III TO.SECOND

illmm FR.SECOND

jjjjjjîjjjjjjjjÎj DELAY.VAL

m
m

i REAL.VAL

LABEL

INDEX

TO.PROC

' LIST.PROC

1m FR.PROC

Table 5.2 Node format
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5.1.4 Attribute description

TYPE:
COLOUR A/B: 
NUMBER: 
TO.FIRST: 
TO.SECOND:

FR.FIRST:

FR.SECOND:

EST:

LST:
DELAY.VAL:
REAL. VAL:
LABEL:
INDEX:
TO.PROC:
FROM.PROC:
LIST.PROC:

Defines the type of node and therefore its execution cost. 
Control information.
Node number.
Address of first immediate successor.
Address of second immediate successor (dyadic output 
only).
Address of first immediate predecessor (not real or con-
stant nodes).
Address of second immediate predecessor (dyadic input 
only).
Earliest start time or scheduled start time (used during 
scheduling).
Latest start time.
Integer delay value (delay nodes only).
Real value (real or constant nodes only).
Symbol table address of identifier (named nodes only). 
Array index (named nodes only).
Processor connected to (used during scheduling). 
Processor connected from (used during scheduling). 
Resource type (used during scheduling).
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5.2 Node types

Table 5.3 summarises the different types of task primitives Ti and Cq that may be 
used in G. The relative task execution cost category gives the worst-case costs for 
Ti, denoted ei, for a T414-20 Transputer. Where different, T800-20 costs are shown 
in parentheses. Communication costs Cq for a task Cq are given for link speeds of 
20Mbit s '1, these are superscripted with an asterisk to distinguish them from 
processor costs. Transputers which operate at a different clock frequency, or 
communicate using a different link speed have their costs scaled accordingly. 
Arithmetic and trigonometrical operations are costed for 32 bit floating point 
operations. All costs are in units of microseconds.

Task primitive Type
attribute

In-
degree

Out-
degree

Relative execution 
/com m unication cost

EXT.IN l l 2 0.0

EXT.OUT 2 2 1 0.0

BYTE:REAL32 3 1 1 3.4 (0.65)

INT16:REAL32 4 1 1 3.8 (0.65)

INT32:REAL32 5 1 1 4.6 (0.60)

REAL32:BYTE 6 1 1 2.15 (0.90)

REAL32:INT16 7 1 1 2.15 (0.90)

REAL32:INT32 8 1 1 2.10 (0.85)

NODE 9 1 1 0.0

CONST 10 1 1 0.0

REAL 11 1 1 0.0

INT.IN 12 1 2 0.0

INT.OUT 13 2 1 0.0

COMM.IN 14 1 1 0.55

NEC 15 1 1 5.0 (0.7)

continued over...
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continuation...

Task prim itives Type In- Out- Relative execution
attributes degree degree /com m unication cost

ADD 16 2 1 15.0 (0.35)

SUB 17 2 l 15.0 (0.35)

MULT 18 2 1 12.0 (0.65)

DIV 19 2 l 14.0 (0.95)

REM 20 2 l 16.0 (1.7)

DELAY 21 1 l 0.5

BRANCH 22 1 2 0.0

SGN 23 1 1 0.35

ABS 24 1 1 0.25

SORT 25 1 1 24.0 (7.2)

LN 26 1 1 125.0 (28.0)

LOG 27 1 1 138.0 (31.4)

EXP 28 1 1 112.0 (36.7)

COMM.OUT 29 1 1 0.55

SIN 30 1 1 150.0 (33.8)

COS 31 1 1 160.0 (25.1)

TAN 32 1 1 143.0 (34.7)

ASIN 33 1 1 127.0 (26.0)

ACOS 34 1 1 117.0 (24.8)

ATAN 35 1 1 130.0 (25.2)

COMM.BYTE 36 1 1 0.55*

COMM.INT16 37 1 1 1.1*

COMM.INT32 38 1 1 2.2*

COMM.REAL32 39 1 1 2.2*

AND 40 2 1 0.10

OR 41 2 1 0.40

NOT 42 1 1 0.10

EQ 43 2 1 3.0 (0.45)

NEQ 44 2 1 3.0 (0.45)

LT 45 2 1 3.0 (0.50)

LT.EQ 46 2 1 3.0 (0.50)

GT 47 2 1 3.0 (0.50)

GT.EQ 48 2 1 3.0 (0.50)

GATE 49 2 1 0.65

PRI.OR 50 2 1 0.40

Table 5.3 Task primitives, in/out-degree and cost
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53  Named graph structures

Named graph structures are generated in response to input, output, node and 
constant declarations. These structures are produced prior to the repetitive section 
of a program and begin with the DFDL keywords INPUT, OUTPUT, NODE and 
VALUE, respectively. Named graph structures, comprising named nodes, form the 
skeleton of G, from which all successive nodes are connected, either directly or 
indirectly. Each different type of named node has its connections configured 
according to its type, position in an array and, in the case of inputs and outputs, its 
data type. To simplify the description, all named nodes are taken to be 2 dimen-
sional arrays, e.g., x[col.siz$ [row.size]. For example, a scalar has a col.size and 
row.size equal to 1.

All named nodes have a label attribute, which is a pointer into the symbol table, 
directed at the first character of the node’s identifier. These nodes also possess an 
index attribute, which identifies the node’s subscript (i.e. array subscript). This 
index is held as a single integer, which is equal to i + (j * col.size ); i is the column 
index and j the row index, 0 < = i < col.size , 0 < = j < row.size .

53.1 Input nodes

An external input graph structure is constructed in response to the declaration:

INPUT(data.type ) Input [ sub.size ]  { o , input [ sub.size ]  }

The simplest graph structure for an external input is for a data type of REAL32, 
since conversion from type non-REAL32 to REAL32 is unnecessary (all internal 
numeric operations are type REAL32 in the DFDL environment). Input arrays are 
configured as streams (Figure 5.2), such that any input ui cannot precede any other 
input ui-i, for all i, 0 < i < k. k is the total number of elements in an input stream, 
given as col.size * row.size. When a column, or row, size is not declared, a default 
value of size 1 is substituted.

An EXT.IN (external input) node has a monadic input and a dyadic output. The 
first element in any external input stream is uo, whose single input is connected 
from B, the initiating node (Figure 5.2). This arc defines precedence between B 
and uo, however, it does not imply the transfer of data. Precedence between 
successive EXT.IN nodes in the same stream is established by "daisychaining"; 
precedence is transferred through the node, from the single input out to the second 
output, to the succeeding EXT.IN node’s single input. The final node in an input 
stream uk-i terminates the stream and thereby leaves its second output uncon-
nected.
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Figure 5.2 External input stream (REAL32)

A summary of the relevant attributes given to an EXT.IN node during the con-
struction of G is shown Table 5.4.

External inputs which have a non-REAL32 data type, include conversion nodes in 
their graph structure. The type of conversion node depends on the data type of the 
external input. The three different types of input conversion node are 
BYTE:REA132, INT16:REAL32 and INT32:REAL32. A conversion node has its 
input connected from the first output of an EXT.IN and has its output connected 
into G. Non-REAL32 external inputs have a graph structure as shown by Figure 
5.3. For XXX, read BYTE, INT16 or INT32.

A summary of the relevant attributes assigned to input conversion nodes, 
BYTE:REAL32, INT16:REAL32 and INT32:REAL32, is shown in Table 5.5.
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Attributes
TYPE EXT.IN

TO.FIRST Data: if Ui is type non-REAL32, 
connects to convertion node

TO.SECOND
Sync: ui connects to Ui +1 for all i, 0 

< = i < k -1.

FR.FIRST Sync: ui connects from (i) B if i = 0, 
(ii) Ui-i for all i, 0 < i < k.

FR.SECOND

DELAY.VAL

REAL. VAL

LABEL Address of identifier 
in symbol table

INDEX
Node uj has index i, 
where 0 < = i < k.

Table 5.4

Xo ... X u  are type XXX and 
Yo ... Yk-i are type REAL32

Yk-i

Figure 5.3 External input stream (non-REAL32)
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Attributes
TYPE BYTE:REAL32, 

TNT1fi:REAT A2, TNT32:REAL32

TO.FIRST Data

TO.SECOND

FR.FIRST Data: connects from 
external input

FR.SECOND

DELAY.VAL

REAL.VAL

LABEL

INDEX

Table 5.5

5.3.2 Output nodes

An external output graph structure is constructed in response to the declaration:

OUTPUT(data.type ) output [ sub.size ] { o , output [ sub.size ] }

Outputs are similar to inputs, in that the simplest output case is for a data type of 
REAL32, since conversion to REAL32 is unnecessary. Output arrays are configured 
as streams, such that any output vi cannot precede any other output vi-i, for all i, 
0 < i < k. k is the total number of elements in an output array, given as col.size 
* row.size. When the column or row size is not declared, a default value of size 1 
is substituted.

An EXT.OUT (external output) node has a dyadic input and a monadic output. 
The last element in any external output stream is denoted vk-1, whose single output 
is connected to E, the terminating node (Figure 5.4). Precedence between succes-
sive EXT.OUT nodes in the same stream, beginning with vo, is established by 
"daisychaining"; precedence is transferred through the node, from the second input 
and out to the single output, to the succeeding EXT.OUT node’s second input. 
The first node in an output stream vo initiates the stream and as such, leaves its 
second input unconnected.
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A summary of the relevant attributes assigned to an EXT.OUT node during the 
construction of G is given by Table 5.6.

External outputs that have a non-REAL32 data type, include conversion nodes in 
their graph structure. The type of conversion node depends on the data type of the 
external output. The three different types of output conversion node are 
REAL32:BYTE, REAL32:INT16 and REAL32:INT32. A conversion node’s out-
put is connected to the first input of an EXT.OUT and its input is connected from 
G. Non-REAL32 external outputs have a graph structure as shown by Figure 5.5.

A summary of the relevant attributes assigned to output conversion nodes, 
REAL32:BYTE, REAL32:INT16 and REAL32:INT32, is given by Table 5.7.. For 
XXX, read BYTE, INT16 or INT32.

\
Xi

\

Vi

\
Xk.i

Xo ... Xk-i are type 
REAL32

Figure 5.4 External output stream (REAL32)
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Attributes
TYPE EXT.OUT

TO.FIRST Sync: vj connects to (i)E if i = k-1, 
(ii)vj-i, for all i, 0 < = i < k-1.

TO.SECOND

FR.FIRST Data: if vj is type non-REAL32, 
connects from convertion node

FR.SECOND
Sync: Vi connects from v,-i 

for all i, 0 < i < = k -1.

DELAY. VAL

REAL.VAL

LABEL Address of identifier 
in symbol table

INDEX
Node Vi has index i, 
where 0 < = i < k.

Table 5.6

Figure 5.5 External output stream (non-REAL32)
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Attributes
TYPE REAL32:BYTE, 

REAL32:TNT1fi, RF.AL32:TNT32

TO.FIRST Data; connects to external output

TO.SECOND

FR.FIRST Data

FR.SECOND

DELAY. VAL

REAL. VAL

LABEL

INDEX

Table 5.7

5 3 3  Node nodes

A node graph structure is constructed in response to the declaration:

NODE node [ sub.size ] { o , node [ sub.size ] }

Unlike input and output graph structures, node arrays are not configured as 
streams, but as independent elements (Figure 5.6). The number of elements in an 
array is k, where k is equal to col.size * row.size. The first element in an array is 
denoted no and the last is denoted nk-i. When a column size or row size is not 
declared, a default size of 1 is substituted.
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A NODE (node) node has a monadic input and a monadic output. Figure 5.6 
illustrates a node array, note that each element in the array is configured in an 
identical manner. Each node’s single input transfers data from G, through the 
node, to the single output back to G. Data is unaffected by passing through a node.

A summary of the relevant attributes assigned to a NODE node during the 
construction of G is given by Table 5.8.

Xo

no

j^NODE^ 

Xo

Xi

ni

I^NODE^j 

Xi

Figure 5.6 Node nodes

Attributes
TYPE NODE

TO.FIRST Data

TO.SECOND

FR.FIRST Data

FR.SECOND

DELAY.VAL

REAL.VAL

LABEL Address of identifier 
in symbol table

INDEX
Node ni has index i, 
where 0 < = i < k.

Table 5.8
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53.4 Constant nodes

A constant graph structure is constructed in response to the declaration:

VALUE constant [ sub.size ]  IS real or 
VALUE TABLE constant [  sub.size ]  IS table or 
VALUE constant [  sub.size ] IS EXPRESSION

Constant nodes are independently configured, such that any constant ci precedes 
or succeeds any other constant cj, for all i not equal to j, 0 < = i < k, 0 < = j < 
k. k is the total number of elements in a constant array, which is given as col.size 
* row.size. When the column or row size is not declared a default value of size 1 
is substituted.

A CONST (constant) node has a monadic input and a monadic output. The first 
element in a constant array is denoted co and the last element is denoted ck-i. For 
every constant node, the single input is connected from Bnote 1, the initiating node 
(Figure 5.7). This defines precedence between B and ci, for all i, 0 < = i < k. 
However, this arc does not imply a transfer of data. The single output of each 
constant node derives from its real value, which connects into G.

A summary of the relevant attributes assigned to a CONST node during the 
construction of G is shown by Table 5.9.

note 1: The use of attribute  
REAL.VAL precludes the use of

R o... Rk-i are 
all type 
REAL32
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Attributes
TYPE CONST

TO.FIRST Data

TO.SECOND

FR.FIRST Sync: Ci connects from Bnote 1 
for all i, 0 <  = i < k.

FR.SECOND

DELAY.VAL

REAL.VAL Real value

LABEL Address of identifier 
in symbol table

INDEX
Node Ci has index i, 
where 0 < = i < k.

Table 5.9

5.4 Primitive graph structures

Primitive graph structures comprise the primitive nodes which equate to single or 
part DFDL program operations. The majority of primitive nodes, with the excep-
tion of named nodes and conversion nodes, are created during the repetitive 
section of a program. Non of the nodes described in this section are labelled or 
indexed, since they are not declared as "named structures".

5.4.1 Real nodes

Real laterals in expressions are translated to REAL nodes. A REAL node is 
identical to a CONST node in all its attributes, except that REAL nodes are not 
labelled or indexed.

A REAL has a monadic input and monadic output. The input always connects from 
B n°te  ̂ t h e  initiating node, and the output connects to G. The attribute 
REAL.VAL holds the real value of the node. A summary of the relevant attributes 
given to REAL is given by Table 5.10 and Figure 5.8 illustrates the connections 
for a REAL node in G.
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note 2: The use of attribute REAL. VAL 
p rec lu d es  the use o f a ttribute  
FR.FIRST (see Table 5.2). Since all 
REAL nodes are connected from B, the 
connection is implied. B

R is type 
REAL32

Figure 5.8 Real node

Attributes
TYPE REAL

TO.FIRST Data

TO.SECOND

FR.FIRST Sync: connects from Bnote 2.

FR.SECOND

DELAY.VAL

REAL. VAL Real value

LABEL

INDEX

Table 5.10



5.4.2 Internal input/output and delay nodes

Internal input nodes and internal output nodes are used in pairs (one of each type) 
to signify the transfer of data from one cycle to the next (a cycle is the period 
corresponding to the sampling interval). An internal input node is denoted INT.IN, 
it has a monadic input and dyadic output (Figure 5.9). The single input always 
connects from B, the initiating node. The first output of an INT.IN node is used to 
deliver a data value, that is passed to the node during the previous cycle. The 
internal output node, INT.OUT, has a dyadic input and monadic output (Figure 
5.9). The single output always connects to E, the terminating node. The first input 
takes in a data value and passes it to the node’s paired INT.IN node, ready for the 
next cycle.

A synchronising arc connects from the second output of INT.IN to the second input 
of INT.OUT, this prevents the INT.OUT node from passing data before the 
INT.IN node has completed, it also references INT.IN to INT.OUT and vice-versa. 
Figure 5.9 illustrates the connections between B, INT.IN, INT.OUT and E.

Figure 5.9 Single delay

The relationship between a value X which enters INT.OUT and appears as value 
Y in the following cycle at the INT.IN node is:

Y : = X Z 1

The single internal input/output pair form a delay of 1. Multiple cycle delays could 
be constructed by reproducing this graph structure d times, where d is the required 
delay. However, this would be somewhat expensive in terms of numbers of nodes, 
especially where large delays are concerned. A more compact method is to include 
a multiple delay node with each pair of INT.IN, INT.OUT nodes, whenever the 
delay exceeds 1. The delay node, DELAY, holds the attribute DELAY.VAL, 
which is given a positive integer value (d -1), where d is the required delay.
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Attributes
TYPE INT.OUT

TO.FIRST Sync: connects to E

TO.SECOND

FR.FIRST Data

FR.SECOND Sync: connects from INT.IN

DELAY.VAL

REAL. VAL

LABEL

INDEX

Table 5.11

Attributes
TYPE INT.IN

TO.FIRST Data

TO.SECOND Sync: connects to INT.OUT

FR.FIRST Sync: connects from B.

FR.SECOND

DELAY.VAL

REAL. VAL

LABEL

INDEX

Table 5.12
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Figure 5.10 shows the DELAY node added to the graph structure. The relationship 
between values X, W and Y is as follows:

W : = XZ'^'1*

Y : = WZ‘\  hence,

Y : = XZ'd

Figure 5.10 Multiple delay

Attributes
TYPE DELAY

TO.FIRST Data

TO.SECOND

FR.FIRST Data

FR.SECOND

DELAY.VAL Integer value

REAL.VAL

LABEL

INDEX

Table 5.13
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A summary of the relevant attributes for INT.IN and INT.OUT are given by Tables 
5.11 and 5.12. The attributes for a DELAY node are given by Table 5.13. When 
the attribute DELAY.VAL evaluates to zero (i.e., d = 1), the DELAY node is 
omitted, since a delay of 1 is achieved using INT.IN and INT.OUT nodes only.

5.4.3 Arithmetic nodes

The monadic arithmetic operator - and the dyadic arithmetic operators /,
\  are represented by a simple transformation to a single node per operator. The 
monadic operator transforms to node NEG, this has a monadic input and a 
monadic output. The dyadic operators transform to nodes ADD, SUB, MULT, 
DIV and REM respectively, where each node has a dyadic input and a monadic 
output.

X, Y are type 
REAL32

X

Y

Figure 5.11 Monadic arithmetic node

Figure 5.11 shows the NEG node. For a NEG node, the output Y is equal to -X.

The dyadic nodes are illustrated by Figure 5.12. The relationships between their 
input and output values are:

ADD: Y : = X + W 
SUB: Y : = X - W 
MULT: Y : = X * W 
DIV: Y : = X /W  
REM: Y : = X \  W

w x

^ A D D ^ j

W

W, X, Y are type 
REAL32

Figure 5.12 Dyadic arithmetic nodes
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A summary of the relevant attributes assigned to arithmetic nodes during the 
construction of G is given by Table 5.14.

Attributes
TYPE POS, NEG, ADD, SUB, 

MULT. DIV- REM

TO.FIRST Data

TO.SECOND

FR.FIRST Data

FR.SECOND Data: Dyadic nodes only.

DELAY.VAL

REAL.VAL

LABEL

INDEX

Table 5.14
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5.4.4 Branch node

The branch node is used within G to distribute values, it achieves this by splitting 
a path into two, where both paths convey the same value. BRANCH has a monadic 
input and a dyadic output (Figure 5.13). The relationship between the input and 
output values can be expressed as:

Y i : = X and Y2 : = X.

A summary of the relevant attributes assigned to BRANCH nodes during the 
construction of G is given by Table 5.15.

X  I

X, Yi, Y2 are all type 
REAL32 or all type 

BOOL

Yi

Figure 5.13 Branch node

Attributes
TYPE BRANCH

TO.FIRST Data / boolean

TO.SECOND Data / boolean

FR.FIRST Data / boolean

FR.SECOND

DELAY.VAL

REAL.VAL

LABEL

INDEX

Table 5.15
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5.4.5 Functions

The majority of DFDL’s monadic functions transform directly to single nodes. The 
name chosen for a particular node type is the same as its function name. The nodes 
are SGN, ABS, SORT, LOG, LN, EXP, SIN, COS, TAN, ASIN, ACOS and ATAN. 
All nodes have a monadic input and a monadic output (Figure 5.14).

Y

REAL32

Figure 5.14 Function nodes

Attributes
TYPE

SGN, ABS, SORT, LOG, LN, EXP, 
SIN, COS, TAN, ASIN, ACOS, ATAN

TO.FIRST Data

TO.SECOND

FR.FIRST Data

FR.SECOND

DELAY. VAL

REAL. VAL

LABEL

INDEX

Table 5.16
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The relationship between the input X and the output Y is:

Y : = function X

A summary of the relevant attributes for the functions SGN, ABS, SQRT, LOG, 
LN, EXP, SIN, COS, TAN, ASIN, ACOS and ATAN that are assigned during the 
construction of G are given in Table 5.16.

5.4.6 Communication nodes

Communication nodes represent communication effort, either between a proces-
sor and an external device or between different processors. Communication 
between adjoining processors is, in the case of DFDL, at word level (multiples of 
4 bytes), because DFDL has an internal data type of REAL32. Communication 
to/from external devices, however, may be of 1, 2 or 4 bytes in length, depending 
on the declared data type of the external input or external output, i.e., BYTE, INT16 
or INT32/REAL32. The cost attributed to a communications node includes the cost 
expended by the processor in setting up the communication and the cost expended 
by the link in transferring the data.

The four types of communication node are called COMM.BYTE, COMM.INT16, 
COMM.INT32 and COMM.REAL32. Each type has a monadic input and a 
monadic output (Figure 5.15).

X, Y are type XXX  
where node is of type

COMM.XXX

Figure 5.15 Communication nodes

There are no communication nodes in G during its initial construction, because 
communication cannot be established until the number of processors and the 
topology of the processor network are known. Consequently, communication 
nodes are added to set C, which is a member of G, during scheduling.
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5.4.7 Relational nodes

The relational operators = , <  > , > , > = , < , <  = are exclusive to conditional 
expressions in DFDL programs. These six operators transform directly to single 
nodes, denoted EQ, NEQ, GT, GT.EQ, LT and LT.EQ, these stand for "equal to", 
"not equal to", "greater than", "greater than or equal to", "less than" and "less than 
or equal to" respectively.

All relational nodes have a dyadic input and a monadic output (Figure 5.16). The 
inputs are of type REAL32, while the output is type BOOL. The boolean output 
value (true or false) is a result of the relational function operating on the two data 
values. Relational nodes can only connect from nodes of type REAL32 and can 
only connect to nodes of type BOOL. The nodes are illustrated by Figure 5.16 and 
their attributes are given in Table 5.17.

W, X are type REAL32 and B 
is type BOOL

Figure 5.16 Relational nodes

Attributes
TYPE EQ, NEQ, GT, 

GT.EQ, LT, LT.EQ

TO.FIRST Boolean

TO.SECOND

FR.FIRST Data

FR.SECOND Data

DELAY. VAL

REAL.VAL

LABEL

INDEX

Table 5.17

5-26



5.4.8 Boolean nodes

Like relational operators, the boolean operators AND, OR, NOT are confined 
exclusively to conditional expressions in DFDL programs. These operators trans-
form directly to single nodes and the nodes have identical names to their 
corresponding operators.

AND and OR nodes have a dyadic input while the NOT node has a monadic input, 
all boolean nodes have a monadic output (Figure 5.17). The inputs and outputs of 
all boolean nodes are of type BOOL.

Figure 5.17 Boolean nodes

Attributes
TYPE AND, OR, NOT

TO.FIRST Boolean

TO.SECOND

FR.FIRST Boolean

FR.SECOND Boolean: Dyadic boolean nodes only

DELAY.VAL

REAL.VAL

LABEL

INDEX

Table 5.18

A summary of the attributes assigned to boolean nodes during the construction of 
G is given in Table 5.18.
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5.4.9 Conditional nodes

At the heart of DFDL conditional expressions (see section 5.5.3) are two condi-
tional nodes, these are called GATE and PRI.OR. These nodes both have a dyadic 
input and a monadic output (Figure 5.18).

A GATE node has a single data input and a single data output, of which both are 
of type REAL32. Its second input is of type BOOL and is used to control the passage 
of data through the node. When this input (second input) is false the output of the 
node is an o/c (open circuit) value, otherwise, when the boolean input is true the 
output is equal to the node’s data input. The operation of a GATE node is 
described in Table 5.19.

Figure 5.18 Conditional nodes

G A T E

input input output
1 2

X false o/c

X true X

Table 5.19

PRI.OR

input input output
1 2

o/c o/c o/c

o/c X X

W o/c W

W X w

Table 5.20

A PRI.OR node’s inputs and output are all of type REAL32. The node will always 
output the value at its first input, except when the data at that input is an o/c value 
and the data at the second input is not an o/c value, whereupon it will output the 
value at its second input. The operation of this node is described in Table 5.20.

An o/c value is a value which cannot be interpreted as a valid REAL32 value and 
is used to indicated that the value is "disconnected". The attributes for the two types 
of node are given in Tables 5.21 and 5.22.
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Attributes
TYPE GATE

TO.FIRST Data

TO.SECOND

FR.FIRST Data

FR.SECOND Boolean

DELAY.VAL

REAL.VAL

LABEL

INDEX

Table 5.21

Attributes
TYPE PRI.OR

TO.FIRST Data

TO.SECOND

FR.FIRST Data

FR.SECOND Data

DELAY.VAL

REAL.VAL

LABEL

INDEX

Table 5.22
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5.5 Non-primitive graph structures

In DFDL the symbols **, ALOG, SUM, PROD, MEAN, IF...THEN...ELSE, MAX, 
MIN and MED transform to non-primitive graph structures. All these graph 
structures comprise primitive nodes which have been described in the previous 
section.

5.5.1 Power and anti-logarithm graph structures

Power graph structures are created in response to the operator **, where:

Y : = X ** P

The operands X and P are the argument and power respectively and Y is the result 
of X . DFDL restricts X to non-negative values, since negative arguments of 
non-integer value produce complex (i.e. real + imaginary) results which are not 
catered for in DFDL.

To give a reasonably constant execution cost, the graph structure for power is fixed 
for all valid arguments and powers. The graph structure consists of a LN, a MULT 
and an EXP node (Figure 5.19). The graph structure evaluates XP in three steps:

(i) evaluate In (i.e. loge) of X
(ii) multiply result of (i) by P
(iii) evaluate e raised to the power of result of (ii), i.e. e^p * ltlX̂

Figure 5.19 Power graph structure
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Anti-log graph structures are created in response to the function ALOG, where: 

Y :=  ALOG X

The expression ALOG X is equivalent to 10X.

The graph structure for ALOG is similar to that of power. It consists of a REAL 
(value equal to lnlO), a MULT and an EXP node (Figure 5.20). The graph 
structure evaluates 10x  in two steps:

(i) multiply X by InlO (2.30585093)
(ii) evaluate e raised to the power of result of (i), i.e. e l̂nl° * x ^

X, lnlO, Y are type 
REAL32

/

Figure 5.20 Anti-log graph structure

5.5.2 Sum, product and mean graph structures

The functions SUM, PROD and MEAN have k arguments (k > = 2) and a single 
result. Each of the functions consists of nodes arranged in a binary tree structure. 
Such a structure is maximally parallel and is characterised as having a longest path 
proportional to L, where L is defined as:

L = I log2 k I

Figure 5.21 illustrates the three graph structures; (a) SUM, (b) PROD and (c) 
MEAN. SUM consists solely of ADD nodes, PROD consists solely of MULT nodes 
and MEAN is a SUM graph, whose output is divided by k.
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(a) Y  : = SUM(Xo, X i , Xk-i)

Y

(b) Y  : = PROD(Xo, X i,...,X k-i)

Y

Figure 5.21 (a)SUM (b)PROD (c)MEAN graph structures
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5.53 Conditional graph structures

A DFDL conditional expression transforms to a conditional graph structure, which 
typically comprises conditional, boolean and relational nodes. For example, the 
conditional statement below transforms to the structure shown in Figure 5.22.

Y : = IF (P > Q) AND (R = S) THEN X ELSE W

A DFDL conditional expression is structured in the form of a tree, where the root 
node is the result and the leaves of the tree are expressions.. Expressions are 
combined using relational nodes, which in turn may be combined using boolean 
nodes. Conditional nodes evaluate all boolean conditions (true/false) and route 
the expression, that is pertaining to the first (in terms of hierarchy) true condition, 
to the root.

Figure 5.22 Conditional graph structure

This form of conditional evaluation is a data flow method and is unlike the 
conventional control flow method. It has the apparent disadvantage that all 
conditions are evaluated, irrespective of higher priority conditions. In comparison, 
a control flow scheme would evaluate each condition in turn, beginning with the 
highest priority, and would disregard any remaining conditions once a condition 
evaluated to true. The total amount of computational effort for both data flow and 
control flow is equal when all but the lowest priority condition are false, i.e. worst 
case complexity.

We find that the variable complexity of control flow has no advantage in a 
deterministic process, since the process must always be able to accommodate the 
worst case complexity. In fact, a control flow structure has a considerable disad-
vantage, because it is inherently sequential, whereas a data flow structure may 
contain parallelism.
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5.5.4 Maximum and minimum graph structures

The DFDL functions MAX and MIN produce a single result which is the maximum, 
or minimum respectively, of the arguments to the function. The number of 
arguments is two or more and their type is REAL32 . The basic building blocks, 
MAX and MIN, are illustrated by Figures 5.23 and 5.24 respectively. More than 
one building block may be combined in a tree structure wherever the number of 
arguments exceeds two.

Figure 5.23 Maximum graph structure

Figure 5.24 Minimum graph structure
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5.5.5 Median graph structure

The final DFDL function, MED has two or more arguments of type REAL32 and 
produces a single result. It is transformed into a graph structure which comprises 
a number of MAX and MIN basic building blocks (Section 5.5.4). Figure 5.25 
shows a median structure for the median of three arguments. Median is structured 
so that the median of even numbers of arguments is the lower median, such that 
MED(P, Q) is equal to MIN(P, Q).

Y  : =  MED(P, Q, R)

Figure 5.25 Median graph structure

5.6 Summary

In this chapter the data structures of those nodes comprising G have been shown. 
The low in/out-degree of nodes (except B and E) produces a sparsely connected 
DAG which can be realised using a doubly linked list, whose length is proportional 
to |T | + |C| .

The different types of nodes (task primitives) have been described in terms of their 
in/out-degree, their worst case execution cost and their function (i.e. task primitive 
name). These nodes are used to create a connected graph structure (the DAG), 
as directed by a DFDL program.
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The transformation from program to graph has been described for three different 
categories of graph structure. The first includes external input/output, node and 
constant graph structures. The nodes which comprise these structures are clas-
sified as named nodes, because they correspond to named elements in the program 
and form the skeleton of the DAG. The second category includes all graph 
structures that are primitive (simple nodes), which reflect simple or part transfor-
mations. Finally, more complex graph structures were shown, each using several 
primitive nodes.
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Chapter 6. Parallel processor model

This chapter presents an abstraction of the object machine’s functional architec-
ture, which is the parallel processor model used for scheduling parallel programs. 
A parallel processor is modelled as a static network of connected processing 
elements, where each processing element is identical and communication is 
achieved by message passing. The only processor element interactions considered 
by the model are data communication (includes synchronisation) and I/O. Other 
interactions, such as code distribution and memory-code allocation are ignored.

The Transputer microcomputer (INMOS, 1986) forms the basis of our object 
machine, however, the model is not restricted to this processor alone. Other types 
of processor that can form the basis of a loosely coupled static architecture are 
equally applicable.

The chapter begins by introducing the Transputer microcomputer and identifies 
the different resource types within the Transputer that are crucial to performance. 
It continues by describing how these resource types are represented by a data 
structure. The chapter concludes by defining the rules which govern the topology 
of the object processor’s architecture and describes an algorithm that is used to 
check for some types of topological error.

6.1 The Transputer

The Transputer is a single chip microcomputer (von Neumann architecture), 
which incorporates several bi-directional serial communication channels (known 
as links). Each link enables point to point communication between two 
Transputers, or a Transputer and an I/O device (INMOS link adapter). Figure 6.1 
shows a functional diagram for an INMOS Transputer.

Link # 2

Link # 4

Figure 6.1 INMOS Transputer

6-1



Figure 6.2 Transputer interconnection network

Static, multiple Transputer networks, such as the one shown in Figure 6.2, may be 
constructed using several Transputers. This form of parallel von Neumann ar-
chitecture has the advantage of being completely scalable. This means the size of 
the architecture can be tailored to suit the processing problem. Its main advantage, 
however, is its MIMD architecture, which is capable of performing simultaneous 
multiple instruction processing and simultaneous multiple communication. This 
class of architecture facilitates the parallel execution of irregular, as well as regular 
structured processing problems.

6.2 Resources

A resource is defined as an item that supplies a need. The needs of parallel 
processing are processing and communication and the types of resource are 
processing elements and links. Both these resource types constitute items that are 
crucial to the performance of a parallel processor.

A limitation in the quantity or performance of either type of resource will usually 
prevent a system from realising its full potential. Practically speaking, performance 
will always be limited by one resource type or the other. Ideally though, a good 
parallel processor implementation should aim to balance resources, so that their 
limitations converge together.
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Each Transputer consists of a processing resource, which will be called a process-
ing element. The four unconnected links have to be connected to other 
unconnected links, from other Transputers or I/O devices, before they constitute 
usable resources. Once made, a link connects two devices to facilitate the flow of 
data and is regarded as a single resource that is shared between those two devices. 
The link connections in a Transputer network illustrate the topology of that 
network.

63  Activity

Resource activity is usually visualised with the aid of a Gantt chart (Clark, 1952); 
a diagram that displays activity in a binary sense (0 or 1) as a function of execution 
time. For example, Figure 6.3 shows a Gantt chart for a signal that is transmitted 
to processing element P i (Figure 6.2) via link #1. The processing element is 
inactive until the signal arrives, whereupon it processes the signal and transmits 
the result to P3 via link #3. This two state view of activity is useful when considering 
resource use, i.e. a resource is either active (in use) or inactive (available for use).

Processor PI

Link #1

Link #2

Link #3

Link #4

Execution time

Figure 6.3 Gantt chart
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Figure 6.4 Processor graph of Transputer network

6.4 Data structures

The parallel processor model is divided into two parts and each part has its own 
data structure. The first part is called the processor graph, V = (P, I, O, L) (Figure 
6.4) and its purpose is to represent the topology of a Transputer network in terms 
of its resources. The second part is called the schedule list, S = {Si,.„, Sq}. It 
contains activity schedules, one for each resource given in the processor graph.

6.4.1 Processor graph data structure

The top row of the data structure (Figure 6.5) identifies the categories as belonging 
to specific processing elements. Each category in the upper half of the data 
structure defines "to/from what" links are connected. Entries in the data structure 
that define link connections are either (i) a processor/link identification, (ii) an 
input identification, (iii) an output identification, or (iv) empty.

Empty, indicates a link is unconnected. All other entries consist of two values. This 
allows each link in the network to be uniquely identified by using its originating 
processor identification and its link number. Inputs and outputs include I/O 
classifiers as well as unique identification labels that originate from the symbol 
table.

The lower half of the data structure consists of "top of schedule" and "bottom of 
schedule" pointers which reference the activity schedules to their resources. These 
pointers are initially set equal to zero, to indicate that activity schedules are empty. 
Individual pointers are amended as and when entries are made to their activity 
schedule.

The current data structure can accommodate up to 20 inputs, 20 outputs and 99 
processors. Figure 6.4 shows the processor graph of the example Transputer 
network (Figure 6.2), its data structure is illustrated (in a simplified form) by 
Figure 6.5.
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Processor id Pi P2 P3

Link #1
Input Input P2

X w Link #3

Link #2
P3 PI PI

Link #3 Link # 4 Link # 3

Link #3
P3 P3 PI

Link # 2 Link # 1 Link # 2

Link #4
P2 empty Output

Link # 2 y
top of schedule top of schedule top of schedule

Processor list
bottom of schedule bottom of schedule bottom of schedule

Link #1 list ptrs
top of schedule top of schedule top of schedule

bottom of schedule bottom of schedule bottom of schedule

Link #2  list ptrs
top of schedule top of schedule top of schedule

bottom of schedule bottom of schedule bottom of schedule

Link #3  list ptrs
top of schedule top of schedule top of schedule

bottom of schedule bottom of schedule bottom of schedule

Link #4  list ptrs
top of schedule top of schedule top of schedule

bottom of schedule bottom of schedule bottom of schedule

Figure 6.5 Processor graph data structure

6.4.2 Activity schedules data structure

The schedule data structure is accessed via the "top of schedule" or "bottom of 
schedule" pointers (section 6.4.1). These pointers mark the beginning and end of 
the activity schedule to which they belong. Activity schedules are empty prior to 
scheduling and are filled during the scheduling process (Chapter 7 - Compile-time 
scheduling). Each schedule is a list of operations (tasks), which will eventually be 
translated into an executable sequence. Entries to the activity schedules take the 
form of addresses which are the locations of nodes within the task graph, G. Each 
address represents a particular task, whose start time and completion time are 
found by examining the respective node in the task graph, G.

The data structure consists of doubly linked records. One or more of these records 
are used to form a single activity schedule. Each record holds up to 50 consecutive 
addresses to the task graph, plus link pointers to the preceding and succeeding 
records, where appropriate. Successive records need not be arranged in a con-
tiguous fashion, since they are linked.
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This form of data structure is chosen for reasons of flexibility and efficiency. It has 
the advantage of providing dynamic storage allocation which allows activity 
schedules to be extended on demand. Figure 6.6 illustrates how two separate 
schedules (denoted Si and S2) may be stored within the schedule data structure.

Top of Si From record #5

Record #1 Record #6

To record #2 Bottom of Si

From record #1 From record #4

Record # 2 Record # 7

To record #5 Bottom of S2

Top of S2 

Record #3

To record #4
Unused space

From record #3 

Record # 4  

To record #7 

From record #2

Record #5  

To record #6

Figure 6.6 Schedule data structure

6.5 Processor graph * (ii)

The processor graph V is defined as comprising four sets, V = (P, I, O, L), which 
are;

(i) a non-empty but finite set of nodes P (processors),

(ii) a finite set of nodes I (input ports),

(iii) a non-empty but finite set of nodes O (output ports) and

(iv) a set of arcs L (links).

The cardinality of the four sets is denoted | P | , 111, | O | and | L | . The elements 
belonging to the three sets of nodes, P, I, O, are denoted Pi, Ij, Ok respectively.
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6.5.1 Degree

The maximum number of arcs that can be connected to any node is called its 
degree, denoted D ( ). The degree of a node corresponds to the number of links 
that can be connected to the element represented by the node. Nodes belonging 
to P have a degree of four (i.e. four links), while those nodes belonging to I and O 
have a degree of one (i.e. one link). Table 6.1 summarises the degree for the 
different node types.

Node type Pi Ij Ok

Degree, D( ) 4 1 (out only) 1 (in only)

Table 6.1 Degree of node types

6.5.2 Arc relationships

Arcs are denoted by the two nodes that they join. Where the degree of a particular 
node is greater than one, the individual connection must also be identified in order 
that arcs are unique and ambiguity is avoided. For example, an arc connecting two 
nodes Pi and Pj would be denoted (Pia,Pjb), where the letters a and b are positive 
integers in the range 1,..., D(Pk).

^ \ S e c o n d
First Pi Ij Ok

Pp
(Ppa,Pib) ” (Pib,Ppa. 

i not equal to p (Ppa,Ok)

1 ! (Iq,Pib)

Or

Table 6.2 Valid processor graph arcs
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When an arc joins two elements in P, the immediate relationship is irreflexive and 
symmetric, hence (Pia,Pjb) implies (Pjb,Pia) provided i is not equal to j. Arcs 
containing elements from one of the two sets I or O, have to include an element 
from the set P, otherwise they are invalid (Table 6.1). The immediate relationship 
governing these arcs is irreflexive and asymmetric. Consequently, a valid arc (Pia,Oj) 
precludes the arc (O j,Pia).

In addition to the asymmetric nature of I/O arcs, a constraint on the direction of 
flow prevents the existence of arcs that represent flow in the wrong direction, e.g. 
inputting from an output port or outputting to an input port. Table 6.1 summarises 
the ordering for valid arcs in the processor graph, V.

6.53 Connectivity

The graph V is only valid for scheduling once it is connected. Connectivity is defined 
as when

• all nodes in P and O can be reached from all nodes in I, provided I is 
non-empty. Otherwise, if I is empty, all nodes in P and O can be reached 
from all nodes in P.

Once V is connected the set of arcs L is non-empty, since the sets P and O are 
defined as non-empty. The conditions for the minimum realisation of a connected 
processor graph are as follows:

ipi = i
| I | = 0  
|0 | = 1 
|L | =  1.

These minimum conditions for V comply with the minimum definition for the 
DFDL structure; i.e. zero or more inputs, one or more outputs and a processing 
system.

The maximum cardinality of set L for a connected processor graph is a function of 
the cardinality of sets I, O, P and the degree of their nodes, denoted D( ). The 
maximum cardinality of L is given by:

|L|ma* = 0.5 " ((D(I) * | I | )  + (D(O) * |0 |)  + (D(P) * |P |) )

The number of arcs belonging to L for a connected graph is finite, since I, O, P, 
D(I), D(O), D(P) are all defined as being finite. Hence, for a connected processor 
graph L is non-empty and finite.
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6.5.4 Connecting the nets in V

A net is a connected graph or sub-graph which consists of one or more nodes. 
Before any arc is made Lis empty and there are a total of |P | + |I | + | O | disjoint 
nets. During the connection process, arcs are formed and the number of nets is 
reduced. Connection of nodes continues until the graph is connected and there 
remains a single net comprising all elements in P, I, O.

When an arc is formed between two nets, or within a net, there is a possibility that 
nets may be isolated from one another. Isolation occurs whenever two or more 
nets can no longer join together, because one or more of the nets has an insufficient 
number of connections (unconnected links). Isolated nets stop V from being 
connected, consequently precautions have to be taken to prevent isolation.

Figure 6.7 Partially connected processor graph

Consider the example (Figure 6.7) of a partially connected processor graph, V. If 
a further arc were formed between Pi and P3, then the net consisting of P2 and 
input Iw would be isolated. Attempts to join P2 and Iw to the larger net (comprising 
Pi, P3, lx and Oy) would not succeed, because no arc could be made between the 
two nets. Consequently, the processor graph could not be connected. A method 
of preventing net isolation is presented in the following section.
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6.6 Checking for net isolation

To substantiate an arc and prevent the formation of isolated nets, there is a three 
stage check performed on the processor graph. The three stages are as follows:

. Step 1. All nodes belonging to sets P, I and O are grouped into | N | disjoint 
nets, N = { \ i ,  N2, etc.}. The members of N are defined as disjoint sets of 
nodes that form connected sub-graphs. In the example (Figure 6.7) there 
are two non-empty nets, Ni and N2. Before the arc (Pi4,P3i) is made, Ni 
= {lx, Pi, P3, Oy} and N2 = {Iw, P2}, after the arc is made the result is the 
same.

. Step 2. The number of unconnected links belonging to each net is counted. 
For a net Ni, the number of unconnected links belonging to Ni is U(Ni). In 
the example (Figure 6.7) U(Ni) = 2, U(N2) = 3 before the arc (Pl4,P3i) 
is made and U(Ni) = 0, U(N2) = 3 after the arc is made.

• Step 3. The final stage produces a boolean result whose value is TRUE if 
there are one or more isolated nets:

RESULT: = FALSE
FOR i = 1,..., | N |

RESULT: = RESULT OR (U(Ni) < = 0)
RESULT : = RESULT OR ((U(N) - ((2 * | N | ) - 2)) < 0)
RESULT :=  RESULT AND NOT(|N| = 1)

The example given in Figure 6.7 evaluates to FALSE before the arc (Pi4,P3i) is 
made and TRUE once the arc is connected. Hence, connecting the arc causes net 
isolation. The three stage algorithm used for checking the processor graph for 
isolated nets has a complexity o f O ( | P |  + | I |  + | O | ). This algorithm is applied 
to V throughout its construction.

6.7 Summary

In this chapter a parallel processing model representing a loosely coupled 
Transputer based architecture has been described. The two resources important 
to scheduling have been identified, namely processing and communications. The 
model has been shown to consist of two parts: (i) a processor graph V = (P, I, O, 
L) (based mainly on the two resource types) and (ii) | L | activity schedules S = 
{S i,..., Sq}. The processor graph gives a spatial representation of the machine (i.e. 
topology), while the activity schedules give a temporal representation (i.e. ac-
tivity). The data structures for both parts of the model have been presented and 
illustrated using examples.
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The latter part of this chapter has concentrated on the processor graph and the 
rules governing nodes and arcs that comprise the graph. Input and output has been 
included and the minimum system realisation has been defined which complies 
with that of DFDL. Finally, the problems accorded to building the graph have been 
discussed, this has been shown to create isolated nets unless precautions are taken. 
A solution to net isolation has been presented in the form of a three stage 
algorithm. The algorithm examines the graph whenever an arc is proposed, 
producing a boolean result which indicates whether or not net isolation would 
occur if the arc were established.
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Chapter 7. Compile-time scheduling

Automated scheduling is performed either at compile-time or at run-time. Both 
scheduling techniques are aimed at optimising the mapping between program and 
processor architecture, but vary in their approach and system requirement.

Run-time scheduling has the advantage of being able to respond to dynamic 
changes in the system, while maintaining a reasonable efficiency, however, it 
achieves this at the expense of an inevitable run-time overhead. Run-time over-
head and scheduling efficiency are related, such that sophisticated scheduling 
algorithms will tend to carry a greater overhead than simple ones. Hence, there is 
a tendency for run-time schemes to use simple schedulers in order to minimise 
overhead.

In order to achieve an efficient implementation when using compile-time schedul-
ing, the characteristics of inputs to the scheduler (i.e. program and processor 
architecture) must be known at compile-time, i.e. a deterministic system. Non- 
deterministic systems are generally unsuited to compile-time scheduling, because 
static methods cannot adapt to the scheduling requirements of a dynamic system. 
Where a system is deterministic, as it is in our case, compile time scheduling offers 
superior performance, because the scheduler incurs no run-time overhead. Thus, 
complex scheduling strategies, including features such as network communication, 
can be incorporated in a scheduling algorithm which optimises, or tends to 
optimise scheduling.

The scheduling problem presented in this thesis assumes a deterministic system: 
a fixed set of tasks T are to be scheduled on to a fixed set of processing elements 
P, in compliance with the partial ordering on T (represented by A) and the 
connectivity of P (represented by L). The problem is to find an efficient scheduling 
algorithm for sequencing the tasks to optimise, or tend to optimise some desired 
performance measure. The primary performance measures of concern are 
schedule length and the average time data spends in the system. Both these 
measures play an important role in determining the performance of a real-time 
system; schedule length, because it determines the throughput of the system and 
maximum time data spends in the system, because of its correspondence to latency.

A great amount of research has been carried out on classic scheduling problems 
and these have been shown to encompass several disciplines, e.g. operations 
research, management science, computing, etc. Several reviews on sequencing 
research (Elmaghraby, 1968; Day and Hottenstein, 1971) have been made and 
these cover a wide classification of problems, including dynamic scheduling. 
Conway, Maxwell and Miller (1967), and later Coffman (1976), both present a 
comprehensive study into deterministic scheduling. However, much of the re-
search has neglected the effects of non-zero communication cost, which probably 
reflects the low relative cost of communication in some systems and the complexity 
of accounting for it in others.
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More recently, consideration has been given to communication issues. Price and 
Pooch (1982), for example, present a scheduling method that aims to minimise 
inter-processor communication using a backwards shortest path algorithm, while 
others, have used "pairwise exchange" techniques (Lee and Aggarwal, 1987) and 
multiple priority heuristics (Polychronopoulos and Banerjee, 1987). Without 
doubt though, communication issues will play a greater role in implementation as 
processing speeds increase and loosely-coupled processor architectures 
predominate.

7.1 Scheduling model

The scheduling model includes our previous two models, the task graph G and the 
processor graph V, and is described with consideration to the tasks, resources, their 
constraints and performance measures. To begin, the task and resource models 
are briefly reviewed.

7.1.1 Task graph

The model of the program is represented as a directed acyclic graph, G = (T, C, 
B, E, A). T is a set of processor executable nodes, or tasks and T = {Ti, ..., Tn}, 
whose members all take a non-negative integer time to execute. For a task Ti this 
execution time is denoted ei. The set of communication tasks C = {C l,..., Cg} is 
empty prior to scheduling and added to during the scheduling process, whenever 
two connected tasks in T are assigned to different processing elements, or there is 
an external input or an external output. Each communications task Cc takes a 
positive integer time cc to complete. The two single nodes B and E are the initiating 
and terminating nodes respectively, hence B precedes all other nodes in G and E 
succeeds all other nodes in G. The execution time of these nodes is zero.

A is a partial order on T, C, B and E which determines the task structure, potential 
parallelism and precedence constraints on the tasks. The relation A has on T, C, B 
and E is irreflexive, asymmetric and transitive, which has the effect of making G a 
directed acyclic graph, which can only represent deterministic programs. 
Precedence between tasks is given by the arcs belonging to A and is denoted by a 
node pair. For example, the arc (Ti,Tj) signifies that task Tj cannot commence until 
Ti completes.

In addition to ei, the cost of executing Ti, there are several other parameters 
associated with each task. The CPM (critical path method) produces the 
parameters EST(Ti), LST(Ti) and FLT(Ti), which are the earliest time Ti can 
begin, the latest time Ti can begin without extending the length of the critical path 
and the float which is the difference between the latest and earliest times.

Set operators SUC(Ti), IMSUC(Ti), PRED(Ti) and IMPRED(Ti) operate on G to 
produce all tasks that are successors of Ti, all tasks that are immediate successors 
of Ti, all tasks that are predecessors of Ti and finally, all tasks that are immediate 
predecessors of Ti.
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7.1.2 Processor graph

The model of the object parallel processor is represented by a partially directed 
graph called the processor graph V = (P, I, O, L). V includes a non-empty, finite 
set of nodes P = { P i,..., Pm}, where each node Pj corresponds to a processing 
element. It also includes a finite set of nodes I = {II, ..., Iu} and a non-empty, 
finite set of nodes O = {O i,..., Ov}, elements from these sets represent input ports 
and output ports respectively.

The non-empty, finite set of arcs L defines how elements in P, I, and O are 
connected and hence, it describes the topology of the object architecture. The arcs 
correspond to physical communication links and are expressed as a parenthesised 
pair of nodes, these being the nodes that the link joins. The relation L has on the 
nodes that comprise inter-processor links, (Pia,Pjb) is irreflexive and symmetric 
(i.e. bi-directional flow), while the relation on the nodes that comprise I/O links, 
(Ii,Pjb) and (Pia,Oj) is irreflexive and asymmetric (i.e. uni-directional flow from 
left node to right node).

The input and output ports derive from the input and output declarations made in 
the program that is being compiled, whereas the number of processors and link 
connections are entered by the user at compile-time on request from the compiler. 
The scheduler does allow some or all of the inter-processor link definitions to be 
omitted, in which case the scheduler will place links automatically (where needed) 
using an auto-router.

The processing elements and communication links are the system’s resources and 
associated with each resource is an activity schedule (or just schedule). The set of 
schedules S = {S i,..., Sq} is finite and non-empty and has a cardinality equal to 
the sum of | P | and | L | . Each member of S is itself a set of tasks. These tasks either 
originate from T, where the schedule Sk = {Tu, ..., Tv} is for a processing element, 
or from C, where the schedule Sk = {Cu,..., Cv} is for a link. All schedule sets are 
empty prior to scheduling and are filled during the scheduling process. The 
ordering on the tasks within Sk is strictly sequential, hence tasks are executed in 
the order that they are listed in their schedule.
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7.13 Sequence constraints within schedules

There are three broad classes of scheduling; list scheduling, non pre-emptive 
scheduling and pre-emptive scheduling. The merits of each has to be considered 
before we choose the most suitable scheduling class for our problem, then we can 
consider some of the constraints placed on tasks during the scheduling process in 
order to maintain integrity.

List scheduling operates by a simple mechanism, whereby tasks are scheduled from 
a single pre-ordered sequential list of tasks. Whenever a processing element 
becomes inactive the next task in the pre-ordered list is scheduled to that resource. 
Provided the ordered list is constructed beforehand, list scheduling has the lowest 
degree of sophistication of all three scheduling classes which makes it particularly 
attractive when scheduling at run-time.

The second class considered here is non pre-emptive scheduling, which is a 
super-set of list scheduling. A non pre-emptive scheduling method considers not 
just one task, but all tasks that are available for scheduling (i.e. tasks that have had 
all their predecessors scheduled). Consequently, the complexity of this class of 
scheduling increases over that of list scheduling, however, the benefit of non 
pre-emptive scheduling is the potential for increased scheduling efficiency.

Finally, pre-emptive scheduling allows task execution to be interrupted and a task 
removed from the schedule, under the assumption that it will be re-scheduled at 
a later time. This contrasts with non pre-emptive methods which consider tasks to 
be atomic units whose execution cannot be suspended until the task has completed. 
In comparison to the previous two classes, pre-emptive scheduling has the poten-
tial to generate the most efficient schedules. One drawback with using pre-emption 
is the comparative cost of de-scheduling and re-scheduling, especially when tasks 
have short execution times. Pre-emptive scheduling is at its most efficient when 
task execution times are large (in comparison with overheads), as is the case for 
large grain structures.
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The task graph illustrated by Figure 7.1 is scheduled onto the simplified processor 
graph (Figure 7.2), which comprises two processing elements joined by a single 
link. The schedules are illustrated by Figure 7.3 for each class of scheduling: (a) 
list scheduling, (b) non pre-emptive scheduling and (c) pre-emptive scheduling.

Figure 7.1 Task graph, G

Data is passed via Li wherever tasks are scheduled on a different processing 
element than their predecessor was scheduled. Communication is represented by 
a task Cj, which has a finite communication cost, denoted cj. In this example cj 
equals 2.

Figure 7.2 Processor graph, V
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(a) List scheduling
List priority = Ti > T2 > T3 > T4 > T5

(b) Non pre-emptive scheduling
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(c) Pre-emptive scheduling
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Units of time (or execution cost)

Figure 7.3 Scheduling methods

The class of scheduling described in this thesis is of a non pre-emptive type. It is 
preferred to list scheduling because it produces schedules that are potentially more 
efficient and is preferred to pre-emptive scheduling because the latter would incur 
sizeable de-scheduling and re-scheduling overheads for the medium/fine grain 
structure of G.

Program integrity has to be maintained throughout the scheduling process other-
wise the object program will not fulfil the requirements of the source program. 
Loss of integrity would manifest itself as one or more of the following; variable 
misassignment, variable non-assignment, race conditions, oscillations or deadlock. 
Clearly, these errors are to be avoided, this maybe achieved by extending the scope 
of A to all the members of S.
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In practice integrity is maintained by adhering to two rules; the first governs the 
selection of tasks that are available for scheduling and the second governs the 
ordering of a task in a schedule, with respect to other previously scheduled tasks.

Tasks that are available for scheduling are included in the finite set R, which is the 
set of available tasks and is a sub-set of T. R only contains tasks that are inde-
pendent of one another and whose predecessors have been scheduled. More 
formally, a task Ti in R is defined as a task that has all its predecessors PRED(Ti) 
belonging to S and the intersection of its successors SUC(Ti) and S is empty. Also, 
the intersection of R and PRED(Ti) is empty as is the intersection of R and 
SUC(Ti). Therefore, there are no precedence relationships between tasks in R, 
hence all tasks have equal precedence.

Whenever a task Ti is scheduled it is moved from R to the appropriate schedule 
in S. Ti’s immediate successors will only be placed in R iff the rules for inde-
pendence hold for that successor task. As scheduling progresses unscheduled tasks 
are included in R, while newly scheduled tasks are removed from R and placed in 
S. Consequently all tasks in T belong to R at sometime during the scheduling 
process, starting with those tasks belonging to IMSUC(B) and finishing with those 
tasks in IMPRED(E).

The ordering of a task Ti in a schedule Sk with respect to existing tasks, is a matter 
for the scheduling algorithm. Tasks that are already resident in Sk are either 
members of PRED(Ti), or are independent of Ti and are therefore members of T 
that do not lie in either PRED(Ti) or SUC(Ti) and are not Ti. Obviously Ti cannot 
be inserted in the schedule at a place where the resource is active, however, it may 
inadvertently be inserted ahead of some of its predecessors, assuming there is 
surplus resource activity at that point.

A satisfactory method of preventing precedence violations (as defined by A) is to 
allocate each scheduled taskTi (in schedule Sk) a start and finish of execution time, 
denoted si(k) and fi(k) respectively. si(k) is calculated in much the same way as is 
EST(Ti) (section 2.2.6), except si(k) includes the overhead associated with finite 
communication cost and resource unavailability. fi(k) is simply si(k) + ei. The rule 
for placing a task Ti in schedule Sk states that Ti is placed in the schedule Sk at a 
point where:

(i) all scheduled tasks Tj that lie to the left of Ti (towards time zero) have
a start of execution time sj(k) that is no greater than si(k) and (ii)

(ii) the resource corresponding to Sk is inactive at the time si(k) for a period
greater or equal to the time taken to execute Ti, given as ei.
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If the two conditions of the rule cannot be met for an initial value of si(k), then 
si(k) is increased until both conditions are satisfied. Figure 7.4 shows an example 
of task placement in several stages.

(a) Initial value of si(k) greater 
than sj(k) but less than fj(k). Let 
sj(k) equal fj(k).

P k Tu Tv

si(k)

P k

(b) Value of si(k) less than Sq(k) but 
si(k) +  ei greater than Sq(k). Let Si(k) 
equal fq(k).

Tu T Tq Tv

si(k) = fj(k)

(c) Value of Si(k) less than sv(k) 
and si(k) + ei less than sv(k).
Schedule task.

P k

Si(k) = fq(k)

(d) Task Ti scheduled.

P k
Tu Ti Tv

Figure 7.4 Task scheduling

When task placement involves synchronised communication, either between ad-
joining processors, input and processor, or output and processor, then the 
preceeding scheduling method becomes slightly more complex. The added com-
plexity stems from the need to search each schedule that is participating in the 
communication in a simultaneous fashion. The schedule operation is similar to 
that described, but has the added condition that (i) and (ii) are satisfed for all 
participating schedules.
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The Gantt chart of Figure 7.4 is an informal and intuitive notion of the schedule. 
Somewhat more formally, a non pre-emptive schedule can be defined as a suitable 
mapping that in general assigns a sequence of contiguous execution intervals in 
[0, Z +] to each task such that:

(i) Exactly one resource is assigned to each interval.

(ii) The sum of the intervals assigned to a task is precisely the execution 
time of the task.

(iii) No two execution intervals of different tasks on the same resource can 
overlap.

(iv) Precedence constraints are observed.

(v) There is no interval in [0, MAX{w(k)}] during which no resource in S 
is active (i.e. all resources are not allowed to be idle when incomplete tasks 
exist).

This concludes the description of schedules and the rules that govern the tasks 
which reside within. Usually schedules will be presented in their diagrammatic 
form (Gantt chart) with time along the x-axis and resource along the y-axis.

7.1.4 Performance measures

There are several different schedule measures that can be made, however, the 
principal measures of schedule performance considered here are schedule length 
(or maximum finishing time) and lateness (time tasks are overdue).

For a schedule Sk the schedule length is given as w(k) and for the set of schedules 
S the maximum schedule length is denoted MAX{w(l), ..., w(q)}, or just 
MAX{w(k)}. The maximum schedule length is important, since it places a limit 
on the throughput of the system and it is our objective to design a scheduling 
algorithm which will maximise throughput.

The lateness of a task Ti in Sk is defined as l,(k) = si(k) - LST(Ti), which is a task’s 
scheduled time minus its latest starting time of execution (as calculated from the 
CPM). For a schedule Sk the mean lateness is defined as l(k) which is equal to 1 / 
| Sk | SUM{li(k)}, for all Ti in Sk. For the set of schedules S, lateness is the 
maximum lateness taken over all schedules. Reducing task lateness at a local level 
(i.e. for each li(k)) has a desirable effect on both throughput and latency, which 
results in an overall reduction in mean lateness for a schedule. However, if we were 
to reduce the global, mean lateness arbitrarily, it does not necessarily follow that 
throughput and latency would be reduced. Hence, lateness has to be reduced at a 
local level, rather than just at a global level.
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Other measures of interest include the schedule usage u(k) which is the accumu-
lated time a resource has been active. This measure may be divided by MAX{ w(k)} 
to give the fractional schedule usage. The final measure discussed here is speed 
up, which can be defined in two ways. The first is a ratio of the sum of all processor 
executable tasks and the maximum schedule length, given as SUM{ei} / 
MAX{w(k)}, while the second is a fractional value that is the critical path length 
divided by the maximum schedule length, given as w / MAX{w(k)}.

7.1.5 Definition of the scheduling problem

As a precursor to discussing the complexity of scheduling the scheduling objective 
is stated thus:

. Instance: Finite set T of n tasks, each having an execution time ei = x, x is 
a member of Z + , partial order A on T. Finite set P of m processors 
connected by a finite set L of q communication links. Finite set C of g 
communications tasks, each having a communication cost cj = y, y is a 
member of Z +, and a deadline w ^ , w ~ is a member of Z + .

. Question: Is there an (m + q) resource schedule S for T and C that meets 
the overall deadline w ~ and obeys the precedence constraints in A?

This is called the scheduling problem and for convenience it is written | | .

Scheduling is performed with the aim of producing a maximum schedule length 
that will be less than or equal to the deadline, i.e. MAX{w(k)} < = w ^ . Ideally, 
the best possible deadline to achieve is the optimal deadline (in a minimal sense) 
given the constraints, since this gives the maximum throughput. Therefore, our 
aim can be restated thus: when a task is scheduled, it is scheduled with the aim of 
producing a maximum schedule length that will be equal to the optimal schedule 
length, i.e. MAX{w(k)} = w ~ , where w *  assumes the optimal deadline.

7.2 Scheduling complexity

Assume for the moment that all communication costs ec are zero, therefore, the 
time taken to send data from one processing element to another processing 
element in a connected network is zero. The implication of zero cost communica-
tion is that the topology of V becomes unimportant as far as scheduling is 
concerned, hence, the complexity of | | (the scheduling problem) is reduced. This 
simplified model of the scheduling problem serves to show how complexity issues 
affect the choice of our scheduling algorithm. This sub-problem of | | is denoted
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• Instance: Finite set T of n tasks, each having an execution time ei = x, x is 
a member of Z + , partial order A on T. Finite set P of m processors, and a 
deadline w ̂ , w ̂  is a member of Z + .

• Question: Is there an m processor schedule S for T that meets the overall 
deadline w ~ and obeys the precedence constraints in A ?

7.2.1 Ordering on T is empty

In order to investigate the properties of | | * we first consider the case where the 
partial order A  on T is empty (i.e. there are no precedence relationships between 
tasks in T). At the start of the scheduling process, all tasks in T are equal candidates 
for scheduling, because A is empty. These tasks are said to be "available for 
scheduling" and therefore belong to R immediately after B.

The scheduling process begins by placing all tasks that belong to IMSUC(B) in R 
and proceeds by searching R for the first task to be scheduled. Once found, the 
process removes this task from R and places it in the appropriate schedule. The 
process is repeated for all n tasks, removing tasks from R and placing them in S 
until all tasks in T are scheduled and only E (the terminating node) remains in R.

For all n levels of the scheduling process there are alternate avenues of choice 
between different processors-task assignments. Hence, a decision has to be taken 
at each level based on which one of the r (r is the cardinality of R) available tasks 
is to be scheduled on which one of the m processors.

The degree of choice at the ith level, i = {1,..., n}, is denoted bi, which equals the 
number of processors m, multiplied by the number of tasks belonging to R at the 
i* l level, i.e. m * ri. The value of r changes from level to level and is defined for A 
being empty as equal to (n - i + 1) for the ith level, hence bi is equal to m * (n -
i 4- 1).

The number of choices overall is the product of the number of choices at each of 
the n levels. This is called the maximum branching factor, denoted bm ax, which 
represents the total number of possible ways in which n independent tasks can be 
scheduled onto m processors.

bm ax =  
bm ax =  

bm ax —

| | * can now be stated as:

PROD{bi}, for i = {1,..., n} 
m11 * (n * (n -1) * (n - 2) *... * 1)
m11 * n! (7.1)
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7.2.2 Ordering on T is strictly sequential

We now consider the properties of | | * when the partial order A on T is strictly 
sequential (i.e. A = {(T1J 2), (T 2 ,T 3 ) ,(T n-i,Tn)}). At the start of the scheduling 
process, only one task Ti in T is a candidate for scheduling. This task is said to be 
"available for scheduling" and therefore belongs to R at the outset.

The scheduling process is performed as before, however, at each of the n levels of 
the scheduling process there is only ever one task available for scheduling. There-
fore, there are now fewer alternate avenues of choice.

The degree of choice at the ith level, for i = {1,..., n}, is denoted bi, which equals 
the number of processors m, multiplied by the number of tasks belonging to R at 
the 1 level, i.e. m * n. The value of r at different levels is constant throughout and 
is equal to 1, hence bi is equal to m * 1.

The number of choices overall is the product of the number of choices at each of 
the n levels. This is called the minimum branching factor, denoted bmin, and 
represents the total number of possible ways in which n sequentially ordered tasks 
can be scheduled onto m processors.

bmin =  PR O D {bi}, for i = {1,..., n}
bmin =  mn (7.2)

7.2.3 Non-zero communication costs

In both cases, when A is empty and when A is a sequential ordering on T, the 
branching factor for | | * is an exponential function of order n. The two cases 
represent extreme examples of the number of possible ways to schedule n tasks 
onto m processors. When A is a partial order on T, the branching factor lies 
somewhere between these two extremes.

Returning to | |, the re-introduction of positive integer communication costs 
between communicating processors can affect the branching factor significantly. 
When a task Ti is considered for scheduling onto a processor Pt and Pt is different 
from processor Ps, on which Ti’s immediate predecessor is scheduled, data has to 
be passed from Ps to Pt before Ti can be executed. Data may be routed in as many 
different ways through the interconnection network as there are unique acyclic 
paths between the two processors. Clearly, the number of unique acyclic paths 
depends on both the location of each processor within the network and the 
network’s topology. In addition to this, the number of different ways data is routed 
may rise significantly if the task has more than one predecessor.

Choice, arising from the alternative paths, is denoted p. From the discussion, it is 
evident that the value of p is difficult to generalise for a particular instance, 
however, a maximum value for p may be calculated providing the topology of the 
network is known.
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One extreme example of p is found in a completely connected network, which 
produces a maximum number of paths for m processors (Figure 7.5). The network 
has a degree of (m -1) and diameter of 1. The number of unique acyclic paths p is 
given as:

pmax = SUM{x! / (x - v)!}, for v = {0,..., x} and x = m - 2 (7.3)

Figure 7.5 Completely connected network

At the other extreme is a linearly connected network, which produces a minimal 
number of paths for m processors (Figure 7.6). The network has a degree of 2 and 
a diameter of (m -1). It only possesses a single path, hence:

Pmin = 1 (7.4)

Figure 7.6 Linear connected network

Both these results remain consistent for any two processors (m > 1) within the 
network, this is because these example networks are both symmetrical. Equations 
for the maximum and minimum branching factor are re-written below to include 
the results for pmax and pmin. Equation (7.3) is included in (7.1) to give the upper 
bound, bmax and equation (7.4) is included in (7.2) to give the lower bound, bmin.

bmax = PRODjbi}, for i = {1,..., n} 
bmax = (1 + (m - 1) * pmax)n * n!
bmax = (1 + (m -1) * SUM{x! / (x - v)!})n * n ! , (7.5)
for v = {0,..., x} and x = m - 2
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bmin = PROD{bi}, for i = { 1 , n}
bmin =  (1 +  (m  - 1) * pmin)
bmin =  m (7.6)

Note that the choice of path, p is available (m -1) times and not m times, because 
there are no choices of path when Ps = Pt.

7.2.4 Exhaustive enumeration

The previous three sections have discussed the effects of different partial orders 
A and non-zero communication cost on the number of different ways in which n 
tasks can be scheduled onto m processors. The two results, (7.5)_and (7.6), 
represent the upper and lower bounds of the number of solutions to | | in terms 
of n (the number of tasks in T) and m (the number of processing elements in P).

It has-been established that there are between bmin and bmax solutions to | | . If 
the g arbitrary solution to | | is enumerated, we will produce a set of schedules 
whose maximum length (in time) is MAX{w(k)}g. The complexity of enumerating 
this single solution is a polynomial function of n. The question we must ask in order 
to solve | | is, "Does MAX{w(k)}g of the gth solution to | | equal ?". If the 
answer to the question is yes then we have solved | | , otherwise another solution 
is tried. The search, enumeration and verification process is repeated until | | is 
solved.

Up to now, we have assumed that the optimal value for MAX{ w(k)}, given as w ^ , 
is known prior to scheduling. Unfortunately, w ^  cannot be found until | | is 
solved, hence, all solutions to | I have to be enumerated and verified against 
previous results in order to solve | | for w ^ . This method of solving | | is known 
as exhaustive enumeration, because all solutions are enumerated to find the result. 
The maximum schedule length for the optimal solution can be expressed as a 
MIN-MAX problem:

= MIN{MAX{w(k)}g }, for g = {1,..., b} (7.7)
where bmin < = b < = bmax,
and for k = {1,..., q} where q = | P | + | L | .
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From equation (7.7), we see that solving | | by exhaustive enumeration requires 
a minimisation over b solutions, which requires b enumerations and (b - 1) 
comparisons. The time complexity of | | is proportional to the amount of com-
putation (performed by a deterministic computer) and hence, is proportional to 
b, the number of solutions. Even for the lowest bound on b, denoted bmin, the 
complexity is an exponential function of order n. The implications of exponential 
time complexity are illustrated by Table 7.1 for different values of n. As a com-
parison, polynomial time complexity is included. The example assumes the time 
to enumerate a single solution is 1 mS, irrespective of its length.

©IIa n = 50 n = 100

n2 0.1s 2.5 s 10 s

nJ 1.0 s 125 s 16.7 m

2n 1.024 s 856, 850 yrs 9.6 1020 yrs

3n 59 s 5.46 1014 yrs 3.9 1038 yrs

Table 7.1 Polynomial and Non-polynomial complexity

The results in Table 7.1 show that the time taken to solve | | makes exhaustive 
enumeration impractical for all but the most trivial of problem. This phenomenon 
is known as combinatorial explosion (Cohen, 1976).

7.2.5 P and NP problems

Essentially, all problems are said to fall into one of two classes, either P or NP, 
where P is a sub-set of NP. It is generally accepted that if a problem lies in class P, 
there is an algorithm which exists that can solve the problem "quickly" and the 
algorithm is referred to as being "good".

Problems that lie outside P and are in the class NP (non-polynomial), can only be 
solved in polynomial time on a non-deterministic computer (Turing, 1936). One 
can conjecture that problems that are outside P do not have a "good" algorithm 
that can solve the problem "quickly". This reflects the viewpoint that exponential 
algorithms should not be considered as being "good" algorithms, and indeed this 
is usually the case.
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Most exponential algorithms are merely variations on exhaustive enumeration, 
whereas polynomial time algorithms generally are made possible only through the 
gain of deeper insight into the structure of the problem. Problems that require 
exponential algorithms to solve them (since they are so hard that no polynomial 
algorithm can solve them), are generally considered intractable.

The question that has to be answered is, "Does | | lie outside the class P, in NP 
(known as NP-complete) ?". Some previous results are given below:

(i) Unconstrained scheduling with zero communication cost (section 7.2.1): 
| | * remains NP-complete for m > = 2, but can be solved in pseudo-poly-
nomial time for any fixed number m. If all task execution times are equal, 
this problem is trivial to solve in polynomial time.

(ii) Precedence constrained scheduling with zero communication costs: 
| * can be solved in polynomial time if m = 2 and all task execution times

are equal (Coffman and Graham, 1972). This becomes NP-complete if task 
execution times of 1 and 2 are allowed (Ullman, 1975). Complexity remains 
open for all m > = 3 even when task execution times are equal. The 
NP-completeness of | | * may be proved by a transformation from the 
3-satisfiability problem (Ullman, 1975).

(iii) Precedence constrained scheduling with non-zero communication 
costs: | | is a more complex case of (ii), therefore remains NP-complete 
for all fixed numbers m > = 2 when task execution times are unequal.

Previous results suggest that | | is NP-complete, which implies that the problem 
is inherently intractable when solved on a deterministic computer. The following 
section discusses some heuristic algorithms which attempt to overcome intrac-
tability and solve | | in polynomial time.

73 Search strategies

Instead of using an algorithm that enumerates every possible solution, when trying 
to solve a problem with an exponential number of solutions, we examine algo-
rithms which restrict the scope of enumeration. This is achieved by pruning 
solutions, or partially enumerated solutions that do not show promise of solving 
the problem. These algorithms are in generally regarded as being more efficient 
than exhaustive enumeration, and some form the basis of even more complex 
algorithms which are described elsewhere (Pearl, 1984).
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73.1 Solution space

When collected together, all the solutions to a problem are said to occupy the 
problem’s solution space. Solution space can be classified as being polynomially, 
or exponentially related to the problem size. | | , for example, has a solution space 
that is exponentially related to n. All solutions, as we have seen, comprise n levels 
of task-processor-path assignments, where each assignment represents a decision. 
These points of decision are called solution nodes and all solution nodes belong to 
the solution graph, which is an arborescence.

Each series of n solution nodes begins at the root of the graph and terminates at 
one of the many leaf nodes. Each series represents a uniquely ordered solution to 
| | . However, many of these uniquely ordered solutions will result in identical 
schedules, because in some cases, changing the order in which two (or more) 
independent tasks are scheduled has the same outcome.

73.2 Generating, expanding and exploring solution nodes

The most elementary step of graph searching is node generation, that is producing 
a solution node from its predecessor. A new successor node is then said to have 
been generated and its predecessor is said to have been explored. A coarser step 
is called node expansion, which consists of generating all immediate successors of 
a given node. The node is then said to have been expanded.

7 3 3  Informed and uninformed search

Search strategies fall into one of two categories, informed and uninformed. The 
difference between the two categorisations originates from the mechanism that 
decides the order in which nodes are expanded. In uninformed search, node 
expansion order depends only on information gathered by the search and is 
unaffected by the character of the unexplored portion of the graph. Informed 
search, however, uses information about the problem domain and about the nature 
of the goal to help guide the search towards the more promising solutions.

Three different search strategies are now considered (Backtracking, Hill-climbing 
and Best-first). All these strategies are far more efficient that exhaustive enumera-
tion, because they prune the solution graph and only concentrate on what they 
believe to be promising solutions. Pruning the solution graph helps reduce the 
amount of enumeration needed to solve the problem.
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73.4 Backtracking

The first search strategy we discuss is called backtracking. This strategy is classified 
as uninformed, in the sense that the order in which the search proceeds does not 
depend on the nature of the solution that is sort. Being uninformed, backtracking 
is somewhat inefficient and is usually deemed to be impractical for solving large 
problems, however, it is worthy of description so we can compare and contrast 
informed, heuristically guided strategies.

Backtracking (BT) applies a last-in-first-out policy to node generation. When a 
node is first selected for exploration, only one of its successors is generated and 
this new node is submitted for exploration. If, however, the generated node meets 
some stopping criterion, the search program backtracks to the closest unexpanded 
predecessor, that is the predecessor still having un-generated successors.

BT is a version of depth-first search, in that it explores downwards in preference 
to exploring sideways, across the solution graph. It operates by maintaining a 
record of the minimum length solution encountered so far and continues to search 
until it becomes certain that no cheaper solution lies ahead. The stopping criterion 
employed by BT, for our problem, would be the length of the best solution 
encountered so far, or when the bottom of the solution graph is met. When this 
criterion is met part way through the graph, the solution sub-tree which lies ahead 
offers no further improvement over the current best solution. Consequently, the 
sub-tree is pruned and no further enumeration takes place within that sub-tree. 
Pruning un-promising solutions before they are fully enumerated offers significant 
reductions over exhaustive enumeration.

The run-time of BT depends heavily on where the optimal solution lies within the 
solution graph, because BT cannot adapt its order of search but mechanically 
searches in a pre-determined uninformed fashion; say depth-first from left to right. 
Should w ^  lie to the far left of the solution graph, for example, then pruning would 
be more severe than if w ̂  lay to the right of the graph. Another influence on the 
run-time of BT is the number of solutions whose lengths are close to that of w ̂  
and consequently, only fail to offer a promising solution once they are almost 
completely enumerated. Conceivably, either of these phenomenon would cause 
BT to enumerate a vast part of the solution graph, hence, BT has a worst-case 
complexity that is exponential in n and is therefore regarded as an inefficient 
algorithm.

One note of praise for BT is its memory efficiency, since it only requires n 
temporary storage elements to explore the graph.
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73.5 Hill-climbing

The second search strategy we discuss is called hill-climbing. This strategy is 
classified as informed, in the sense that the order of search depends on the nature 
of the solution that is sort.

Hill-climbing (HC), a strategy based on local optimisation, is the most popular 
search strategy among human problem solvers. It is called hill-climbing because 
like a climber who wishes to reach the top of the mountain quickly, HC chooses 
the path of steepest ascent form its current position.

In terms of our graph search model, HC amounts to repeatedly expanding a node, 
inspecting the newly generated successors and choosing and expanding only the 
best among the successors. No further reference to the predecessor, or its other 
successor nodes is retained. This strategy is irrevocable, because the process does 
not allow the search to shift its scope back to previously suspended alternatives, 
even though they may eventually offer the promise of a better solution.

HC has problems with graphs that are not commutative (Nilsson, 1980), because 
these graphs contain paths that lead to incomplete solutions. Hence, when HC is 
applied, there is the likelihood it will run up a dead end and will not be able to 
reverse and seek an alternative path. In our case the property of commutivity holds 
and irrevocable strategies can be applied without the risk of missing a solution. 
Expanding the wrong node will lead to a non-optimal solution, but will not prevent 
a solution from being sort.

HC is a useful strategy when we possess a highly informative heuristic which steers 
the search away from "false" locally optimal solutions and towards a more global 
solution. It advances quickly towards a solution at the expense of missing the 
optimal solution and has the advantage of requiring a minimum of temporary 
memory storage for operation.

The run-time of HC is independent of where the optimal solution lies within the 
solution graph, because the search is steered by the results attained from node 
expansion (informed). Run-time is also independent of the number of solutions 
whose lengths are close to that of w ~ , because HC only pursues a single locally 
optimal solution. Analysing HC, we find it has a time complexity TC that is related 
to the sum of the number of nodes generated at each of the n levels. This is given 
as follows:

TCmax = (1 + (m - l)pmax) * n(n + 1) / 2
TCmax = (1 + (m -1) * SUM{x! / (x - v)!}) * n(n + 1) / 2, (7.8)
for v = {0,..., x} and x = m - 2.

TC min = (1 + (m - l)pmin) * n
TCmin = m * n (7.9)
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Hence, HC has a worst-case time complexity that is a polynomial of n. Order of 
time complexity is written as below:

.

TCmax — O  (n2) (7.10)

73.6 Best-first

The final search strategy discussed here is known as best-first. This strategy, like 
hill climbing is classified as informed. Best first (BF) is also similar to HC in that 
the forward searching motion is always taken from the last decision through the 
most promising successor. However, what sets BF apart from other search 
strategies is the commitment to select the best from all nodes currently expanded, 
no matter where they are in the partially developed tree. The implication of this 
strategy is that the optimal solution will always be discovered after the fewest 
possible number of decisions.

BF works like many co-operating teams of mountaineers who approach the 
mountain from different paths, all seeking the highest peak on the mountain. 
Whenever a team meets a branching path it divides and only the team on the most 
promising path moves ahead while all others wait until their path becomes more 
favourable (if ever) than all others.

Unfortunately, the breadth-first spread of a BF strategy means it pays dearly in 
node storage, since it has to allow the search to resume at any previously suspended 
alternative. However, this spreading of alternate paths means that BF can solve 
graphs that are non-commutative.

The run-time of BF is independent of where the optimal solution lies within the 
solution graph because the search is informed, however, unlike HC, run-time is 
dependent of the number of solutions which show promise. Graphs could be 
contrived where all solutions showed reasonable promise so that BF enumerated 
a large portion of the solution graph. Hence, BF has a worst-case complexity that 
is exponential in n.
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7.3.7 Hybrid search

Pearl (1984) describes the three search strategies (BT, HC and BF) as three 
extreme points of a continuous spectrum of search strategies. Different search 
strategies can be visualised as lying on the plane whose axes are scope o f recovery 
and scope o f selection, such a diagram is illustrated in Figure 7.7. The area within 
the three extreme points represents hybrid search strategies which are com-
promises between scope of recovery and scope of selection. Note that only those 
strategies that lie on the right hand edge of our diagram are guaranteed to yield 
an optimal solution.

Figure 7.7 2-dimensional space of hybrid strategies

One example of a hybrid strategy employs a BT-BF combination to cut down on 
the storage requirement, however, this is at the expense of reducing the number 
of alternatives considered. These strategies although more memory efficient, 
remain exponentially bounded in their computational complexity.

One consequence of introducing irrevocable decisions are that optimallity can no 
longer be guaranteed. However, the benefits of reduced computational complexity 
and reduced memory requirements may outweigh the disadvantage of not being 
able to guarantee the result as optimal. Nilsson (1971) introduced a hybrid BF-HC 
strategy called staged search, which performs a BF search that halts when the 
memory allocation is used up. From the partial result, only a small number of the 
most promising paths are kept and remainder are discarded. The search then 
continues in a BF manner, beginning from the most promising paths. The routine 
is repeated until the memory is exhausted once again. Another BF-HC strategy, 
proposed by Pearl (1984), is similar to Nilsson’s staged search, but discards all but 
the most promising path and consequently has a much decreased run-time.
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The type of search strategy selected depends on both the problem characteristics 
and the characteristics of the executing system. In the following section | | is shown 
to comprise, not one, but two search problems; an inner shortest path search and 
an outer decision problem. A hybrid strategy is adopted which applies BT-BF and 
HC strategies to these problems respectively.

7.4 Scheduling algorithm

This section describes a scheduling algorithm which employs a hybrid search 
strategy that is a composite of the strategies previously discussed. The scheduling 
algorithm is divided into two major parts, known as the inner part and outer part. 
The inner part uses a BT-BF strategy to expand nodes and find the next locally 
optimum solution node (i.e. task-processor-path assignment). The inner part is 
repeated at each of the n levels of scheduling and is controlled by the outer part, 
which employs an HC strategy.

The algorithm is designed to find a solution to | [ in  polynomial time, however, 
this is not possible unless the condition of optimallity is relaxed. Hence, w ^  is 
redefined as a deadline that tends to the optimal, i.e. an optimal solution cannot 
be guaranteed. The polynomial time complexity and non-optimallity charac-
teristics are an effect of introducing irrevocable decisions by way of the HC 
strategy.

It has been suggested that efficiency and accuracy of a scheduling algorithm greatly 
depend on the heuristic that is used. To illustrate this point, we begin the descrip-
tion of the algorithm by showing two identical examples that employ different 
heuristic measures to guide informed search. The results of the two heuristic 
measures are compared against the optimal solution.

7.4.1 Heuristic measures

7.4.1.1 Minimum length heuristic

The first heuristic we discuss is known here as the minimum length heuristic. It 
approaches the decision problem by selecting the solution node that produces a 
minimal increase in the overall schedule length. More formally, this can be stated 
as below:

For the hth level of any partial solution to | | the maximum schedule length is given 
as:

wh = MAX{w(k)}h,

tliwhere subscript h indicates the solution has only been enumerated to the h level, 
1 < = h < n.
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Similarly, the maximum schedule length for the (h + l) th level is given as: 

wh + l = MAX{w(k)}h + l

The heuristic always chooses the solution node, denoted Yh + l, that results in the 
smallest difference between wh and wh + l for h = {0,..., (n -1)} and wo = 0.

Yh + l | MIN{wh + l - wh}, or

Yh + l | MIN{MAX{w(k)}h + l}, hence

Yh | MIN{MAX{w(k)} h}, h = {1,..., n} (7.11)

Using the minimum length heuristic to tend to optimise | | would appear to be a 
reasonable strategy, since it optimises locally the very measure which it aims to 
optimise globally. Some results are given for scheduling the example task graph 
(Figure 7.1) onto the processor graph (Figure 7.2) using the minimum length 
heuristic. These are illustrated by Figure 7.8. Task-processor-path assignment is 
given as Ti-Pj-Cq and where there is no inter-processor communication X  replaces 
Cq.

R = {T i,T2,T 3},MAX{w(k)}o = 0

R =  {Ti, T3, T4) Ts }, Y\ = T2-Pl-X, MAX{w(k)}i = 1
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R = {Ti, T4, Ts }, Y2 = T3-P2-X,MAX{tv(k) } 2 = 1

P l

L l

P 2

t 2 Ti

t 3

R = {T4, Ts }, y3 = T1 -P1 -X, MAX{w(k) } 3 = 4

R = {T5}, y4 = T4-P2-Ci , MAX{w(k) } 4 = 7

R = {E}, y5 = T5 -P1 -X, MAX{w(k) } 5 = 9

Figure 7.8 Scheduling; minimum length heuristic
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The heuristic fails to recognise the future consequences of choosing between 
different solution nodes, because it has no "look ahead" mechanism, and therefore 
bases its decisions on what it has already scheduled and the immediate choices that 
lie in front of it.

7.4.1.2 Minimum lateness heuristic

An improved heuristic (Goddard and Lawson, 1988b) derives some of its infor-
mation from the CPM results (section 2.3.6), namely the parameter LST(Ti), which 
is effectively a measure of what lies ahead on a particular data path. The heuristic 
uses LST(Ti) in-conjunction with the solution node parameter si(k) to give a 
lateness figure to each potential solution node.

The minimum lateness heuristic, as it is known here, aims to reduce the overall 
mean lateness of | | by minimising lateness locally. It was suggested in section 7.1.4 
that localised minimisation of lateness resulted in a global reduction in lateness, 
which produced good throughput and latency figures. Indeed, this appears to be 
so. The minimum lateness heuristic is derived as follows:

A potential solution node has a lateness measure li(k), which is derived from the 
latest start time of a task Ti and the task’s potential start time si(k), i.e.

li(k) = si(k) - LST(Ti) (7.12) .

If for each scheduling level h, we find the minimum value of si(k) for each task Ti 
in R and use this result in equation (7.12), then we can find the minimum lateness 
measure for each task Ti. In order to keep localised lateness to a minimum we 
adopt the strategy of always scheduling the solution node that has the maximum 
lateness measure. Hence, for the hth scheduling level, where h = {1,..., n}, the 
solution node Yh is given as:

Yh | MAX{li(k)}h,

where subscript h indicates the solution has only been enumerated to the hth level,
1 < = h < = n.

Yh | MAX{MIN{si(k)} - LST(Ti)}h (7.13)

An example of scheduling, using the minimum lateness heuristic, is shown below 
for the task graph (Figure 7.1) and processor graph (Figure 7.2).

7-25



P i

L i

P 2

R = {T i,T2,T 3},M AX{li(k)}o =  O

R = {Ti, Ta, T4, T5}, Yi = T2-Pl-X ,M AX{li(k)}i = 0

R = {Ti, T3, T4}, Y2 = T5-P1-X, MAX{l¡(k)}2 = 0

P l

L l

P 2

t 2 Ts

Ci

T4

R = {T i ,T 3},Y3 = T4-P2-C1, MAX{li(k)}3 = 1

P l

L l

P 2

t 2 Ts

Cl

T i t 4

R = {T3}, Ya =  T1-P2-X, MAX{l¡(k)}4 =  -3
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Pi t 2 t 5 t 3

Ll Cl

P2 T i T4

R = {E}, Ys = T3-P1-X, MAX{li(k)}5 = 1

Figure 7.9 Scheduling; minimum lateness heuristic

Scheduling the task graph onto the processor graph using the minimum lateness 
heuristic gives an improved result over scheduling using the previous heuristic. In 
fact, the result (Figure 7.9) is known to be optimal for this particular example. The 
minimum lateness heuristic guides the scheduling algorithm, which is described 
over the following three sections.

7.4.2 Shortest path, a BF approach

The shortest path algorithm operates on the processor graph, V. The algorithm is 
a BF strategy that is a modified form of Dijkstra’s shortest path algorithm (Dijkstra, 
1959), which is generally acknowledged to be one of the most efficient algorithms 
for solving this type of problem. The modified algorithm works at two levels; the 
first level aims to find the shortest path from a starting processing element Ps to 
any other processing element Px, while the second level scrutinises those schedules 
belonging to Px in order to find the earliest available start of execution time for 
task Ti on Px, denoted si(x). The unmodified shortest path algorithm is described 
below.

The main idea underlying Dijkstra’s shortest path algorithm is quite simple: 
Suppose we know the p processing elements that are closest (in terms of com-
munication time) to processing element Ps in V and also know the shortest path 
from Ps to each of these processing elements. Colour processing element Ps and 
these p processing elements. Then, the (p + l) st closest processing element to Ps 
is found as follows:

For each uncoloured processing element Py, construct p distinct paths from 
Ps to Py by joining the shortest path from Ps to Px with link (Px,Py) for all 
coloured processing elements Px. Select the shortest of these p paths and 
let it tentatively be the shortest path from Ps to Py.

Which uncoloured processing element is the (j + l) th closest processing 
element to Ps ? It is the uncoloured processing element with the shortest 
tentative path from Ps as calculated above. So, if the p closest processing 
elements are known then the (p + l) th closest processing element can be 
determined as above. Starting with p = 0 this process can be repeated until 
the shortest path from Ps to any other processing element is found.
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With this in mind, we can now formally state Dijkstra’s shortest path algorithm, 
then later the modified version will be introduced.

7.4.2.1 Dijkstra’s shortest path algorithm

• Step 1. Task Ti is available for scheduling and IMPRED(Ti) = Tk. Tk is 
already scheduled on Ps. Initially, all links and processing elements in V are 
uncoloured. Assign a number di(x) to each processing element Px to denote 
the shortest path (in terms of communication time) from Ps to Px that uses 
only coloured processing elements as intermediate points of communica-
tion. Initially, set di(s) = fk(s), the finishing time of Tk on Ps, and set di(x)
= Inf (infinity) for all x not equal to s. Let Py denote the last processing 
element to be coloured. Colour Ps and let Py = Ps.

• Step 2. For each uncoloured processing element Px redefine di(x) as 
follows:

di(x) = MIN{di(x), di(y) + ai(Psa,Pxb)} (7.14)

If di(x) = Inf for all Px, then stop because no path exists from Ps to any 
uncoloured processing element. Otherwise, colour the uncoloured 
processing element Px which has the smallest value of di(x). Also colour the 
link directed into this processing element from the coloured processing 
element that determined di(x) in the above minimisation. Let Py = Px.

• Step 3. If processing element Pt (target processor) has been coloured then 
stop because the shortest path from Ps to Pt has been discovered. This path 
consists of the unique path of coloured links from Ps to Pt. If processing 
element Pt has not been coloured yet, repeat step 2.

Note that whenever the algorithm colours a processing element (except Ps) the 
algorithm also colours a link directed into this processing element. Thus, each 
processing element has at most one coloured link directed into it, and the coloured 
links cannot contain a cycle since no link is coloured if both its endpoints have a 
coloured link incident to it. Therefore, we can conclude that the coloured links 
form an arborescence rooted at Ps. This arborescence is called a shortest path 
arborescence. The unique path from Ps to any other processing element Px 
contained in the shortest path arborescence is the shortest path from Ps to Px.

Note that the derivation of a "path length", denoted ai(Psa,Pxb), is the sum of the 
communication cost and resource waiting time for (Psa,Pxb), at that particular 
moment in time. Hence, path length is not only determined by the communication 
cost, but also by the activity of the schedule.
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1 A .2 .2  Modified Dijkstra’s shortest path algorithm

A modified version of Dijkstra’s algorithm includes two stopping criteria which 
prune the solution graph to prevent fruitless searching, these are a lower stopping 
criteria Li and an upper stopping criteria Ui. Ui is defined as the minimum starting 
time for Ti on Py, where Py represents all processing elements that lie on the 
shortest path arborescence. The lower stopping criterion Li is a bound derived 
from outside the shortest path algorithm (section 7.4.3) which causes abandon-
ment of the shortest path algorithm if violated. The algorithm works as follows:

• Step 1. Task Ti is available for scheduling and IMPRED(Ti) = Tk. Tk is 
already scheduled on Ps. Initially, all links and processing elements in V are 
uncoloured. Assign a number di(x) to each processing element Px to denote 
the shortest path (in terms of communication time) from Ps to Px that uses 
only coloured processing elements as intermediate points of communica-
tion. Initially, set di(s) = fk(s), the finishing time of Tk on Ps, and set di(x) 
= Inf (infinity) for all x not equal to s. Let Py denote the last processing 
element to be coloured. Colour Ps and let Py = Ps.

Starting from time di(y), search the schedule belonging to Py (increasing in 
time) until a start time is found where the schedule can accommodate task 
Ti of execution time ei (section 7.1.3). Assign this start time to si(y). If si(y) 
< = Li abandon attempts to schedule Ti, otherwise let Ui = si(y) and Pt
= Py-

• Step 2. For each uncoloured processing element Px redefine di(x) as 
follows:

di(x) = MIN{di(x), di(y) + ai(Pya,Pxb)}

If di(x) = Inf for all Px, then stop because no path exists from Ps to any 
uncoloured processing element. Otherwise, colour the uncoloured 
processing element Px which has the smallest value of di(x). Also colour the 
link directed into this processing element from the coloured processing 
element that determined di(x) in the above minimisation. Let Py = Px.

Starting from time di(y), search the schedule belonging to Py (increasing in 
time) until a start time is found where the schedule can accommodate task 
Ti of execution time ei. Assign this start time to si(y). If si(y) < = Li stop; 
abandon attempts to schedule Ti. Otherwise, if si(y) > Li and si(y) < Ui 
then let Ui = si(y) and Pt = Py. •

• Step 3. If di(y) > = Ui stop; all further paths exceed the minimum value of 
si(y), hence no earlier start time is possible and therefore the shortest path 
from Ps to Pt has been discovered. Otherwise, if all processing elements are 
coloured then stop; the shortest path from Ps to Pt has been discovered. 
Otherwise, repeat step 2.



The two stopping criteria, Li and U\, greatly reduce the amount of enumeration 
required to find the shortest path from Ps to Pt, such that si(t) is the minimum value 
of si(y). Below are several extensions to the BF algorithm, these are necessary for 
the different types of tasks that exist in G.

7.4.23 Extension 1

The above illustration of the shortest path algorithm is only suitable when Ti has 
a monadic input (i.e. | IMPRED(Ti) | = 1). When Ti has a dyadic input, two BF 
algorithms are executed concurrently. Each algorithm starts from the processing 
element that their member of IMPRED(Ti) is scheduled. The two algorithms stop 
once the minimum value of si(y) has been found for the same processor, such that 
si(y) = MAXjsi(y)1, si(y)2} (the superscripts 1 and 2 indicate the results are from 
the two concurrent algorithms).

Care has to be taken when paths from each of the two algorithms use the same 
link, otherwise link activity already allotted to one path may be used by a succeed-
ing path. The possibility of this contention only arises when data from two paths 
are moving in the same direction and not when they are in opposing directions, 
since in the latter case, only one path at most would remain once Pt is established.

7.4.2.4 Extension 2

Another difference between the BF algorithm and that which is implemented, 
occurs when tasks are pre-assigned to processing elements. This condition only 
arises for tasks that are of type external output or of type internal output. The only 
change that is made is that the algorithm seeks the shortest path to a known 
processing element, irrespective of si(t).

7.4.2.5 Extension 3

The final extension due to task differences arises for tasks that have the initiating 
node B as their immediate predecessor and are not of type external input, e.g. reals, 
constants, etc. These tasks can be scheduled on any of the m processing elements 
without incurring any communications overhead.

7.4.2.6 Extension 4

Perhaps the largest extension to the algorithm is auto-routing. When selected, 
auto-routing affects the shortest path algorithm by temporarily establishing paths 
via links that are not formed. Temporary links are formed by finding the shortest 
path from Ps to Pf, where Pf is a processor that has one or more "free links". 
Auto-routing temporarily connects this unconnected link to all other unconnected 
links (in turn) on other processing elements. The algorithm then continues as 
normal, using these temporary links as part of its shortest path arborescence. 
Auto-routing finishes by removing all temporary links so they do not interfere with 
successive executions of the algorithm.
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If the BF algorithm is successful (i.e. si(t) > Li), then the parameters si(t) and (Psa, 
Ptb) are saved and passed up to the BT algorithm described in the following 

section.

7.43  Comparing task solution nodes, a BT approach

The remainder of the inner BT-BF scheduling algorithm is a simple backtracking 
strategy which manages the BF inner core. For each task in R (the set of tasks 
available for scheduling), BT selects a task Ti, calculates Li, runs the inner core 
shortest path algorithm and acts on the result. The BT algorithm is repeated r times 
and terminates with a locally optimal task-processor-path assignment (i.e. a solu-
tion node). The algorithm is described below in detail:

• Step 1. Initially assign FLT  = -(Inf). Let the first task in R equal Ti.

. Step 2. Calculate lower stopping criterion for Ti, L i :

Li = LST(Ti) - FLT  (7.15)

Call SP algorithm (section 7.4.1). Passed parameters are:
In: Ti, Li, G, V. Out: si(t), (Ps,..., Pt).

. Step 3. If si(t) > Li then TASK = Ti, START = si(t), PATH = (Ps,..., Pt) 
and F LT = LST(Ti) - si(t). Otherwise, TASK, START, PATH  and FLT  
remain unaltered.

If Ti is the last task in R stop; TASK and PATH  contain the locally optimal 
task-processor-path assignment and START  contains the start of execution 
time of Ti. Otherwise, let Ti equal the next task in R and repeat step 2.

The BT algorithm is extremely memory efficient and as previously shown works 
in an uninformed way, inspecting all tasks belonging to R in a sequential fashion. 
The locally optimal task-processor-path assignment is passed up to the outer part 
of the scheduling algorithm which is described in section 7.4.4.

7.4.4 Scheduling assignment, an HC approach

The outer part of the scheduling algorithm operates according to a hill-climbing 
strategy. The heuristic, which this part depends, is based on the lateness of a task 
(section 7.4.1). HC is an irrevocable search strategy and consequently, moves 
towards a solution quickly using very little memory. The irrevocable characteristic 
of HC means it cannot return to previously suspended alternative solutions, but 
presses ahead steered by its heuristic information. HC calls the inner BT-BF part 
of the scheduling algorithm exactly n times and each time, BT-BF returns with a 
locally optimal solution node (optimal with respect to the heuristic) which is 
scheduled by HC.
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The operation of the outer part of the scheduling algorithm is illustrated below:

• Step 1. R is initially empty. Place all tasks belonging to IMSUC(B) in R.

. Step 2. Call BT-BF algorithm (section 7.4.3). Passed parameters are:
In: R, G, V. Out: TASK, START, PATH.

LetTi = TASK, si(t) = START and (Psa, ..., Ptb) = PATH.

• Step 3. Remove Ti from R. Examine all tasks belonging to IMSUC(Ti), if 
any member task Tk has no predecessors in R and all predecessors belong 
to S then place Tk in R.

Place Ti in schedule St (the schedule corresponding to the processing 
element Pt) starting at time si(t).

If Ps is the same processing element as Pt then skip to step 5.

• Step 4. Check that all links on the path (Psa, ..., Ptb) are established, if not 
then links have been temporarily made by auto-routing. Establish these 
links.

For all links on the path (Psa, ..., Ptb)
(i) schedule communication tasks in the schedule Sq which corresponds to 
the link
(ii) insert communication tasks in the task graph G, between IMPRED(Ti) 
and Ti.
This second point is achieved by appending the communication tasks to C 
(the set of communication tasks) and by altering A (the partial order on T 
and C) to include the communications task in G between IMPRED(Ti) and 
Ti.

• Step 5. If | R | = 1 and that one task is the terminating node E then stop; 
scheduling is complete. Otherwise, repeat step 2.

7.4.5 Complexity

The time complexity of the scheduling algorithm depends on the constraints placed 
on T and P, which are A and L respectively. For a worst-case situation, A would be 
empty and L would represent a completely connected inter-processor network. 
Hence, the upper bound to time-complexity is as follows:

For the BF part:

TCmax = 1 + (m - 1) * pmax
TCmax= 1 + (m -1) * SUM{x! / (x - v)!}, (7.16)
for v = {0,..., x} and x = (m - 2).
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FCmax = (1 + (m -1) * SUM{x! / (x - v)!}) * rh
FCrnax = a  + (m -1) * SUM{x! /  (x - v)!}) * (n + 1 - h), (7.17)
for the hth level of scheduling,
and for v = {0,..., x} and x = (m - 2).

For the HC part, including (7.17):

FCmax = (1 + ( m -1) * SUM{x!/ (x - v)!}) * (n + l - h ) * n ,  
for h = {1,..., n}, and for v = {0,..., x} where x = (m - 2)..
FCmax = (1 + (m -1) * SUM{x! / (x - v)!}) * ((n + 1) / 2) * n, 
for v = {0,..., x} and x = (m - 2).

FCmax = O (n2) (7.18)

Hence, the worst-case complexity is polynomial in n and of order 2. Complexity 
remains exponential of order m for completely connected networks, however, the 
low degree of most processing elements restricts strongly connected networks to 
low orders of m. Consequently, this exponential factor is not dominant. The lower 
bound for the algorithm’s time complexity can be derived in a similar fashion, it is 
given as:

For the BT part, including (7.16):

TCmin — m * n

TCmin = O (n) (7.19)

7.5 Summary

In this chapter the merits and limitations of deterministic, compile-time schedul-
ing have been discussed and a comparison has been drawn between it and 
non-deterministic, run-time scheduling. Three different classes of scheduling have 
been illustrated; list scheduling, non pre-emptive scheduling and pre-emptive 
scheduling, and it was found that the non pre-emptive class is best suited to 
deterministic, compile-time scheduling.

Two major performance measures, schedule length and lateness, have been intro-
duced and the relationship between these and throughput and latency has been 
discussed. The former measure is used in the definition of the scheduling problem, 
which is essentially a problem of schedule length minimisation.

The complexity of the scheduling problem was then investigated for different 
constraints on T and P, and the problem was found to have a number of solutions 
that is exponential of order n. To show the effect this has on inefficient algorithms 
that attempt to solve the problem, an exhaustive enumeration approach was 
illustrated. The problem was shown to be computationally intractable when using 
this type of algorithm. This result is reinforced by previous results which classify 
the problem as NP-complete.
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Three basic heuristic search strategies, backtracking, hill-climbing and best-first 
have been introduced. The characteristics of each search strategy have been 
discussed and it was considered necessary to introduce irrevocable scheduling 
decisions to ensure that time complexity became polynomial in n. However, this 
step has been shown to lose the guarantee of an optimal solution being found.

The final part of this chapter describes the design of the hybrid HC BT-BF 
scheduling algorithm. At the heart of the algorithm is the heuristic, which guides 
the search strategy and so determines the scheduling decisions. Two heuristics 
have been compared, a minimum length heuristic and a minimum lateness heuris-
tic, both originating from their relative performance measures. The minimum 
lateness heuristic has been shown to produce better results, because it uses 
information from the CPM algorithm which imparts "knowledge" of what lies 
ahead and so allows the algorithm to prioritise tasks accordingly. The chapter 
concludes with the derivation of the time complexity for the scheduling algorithm, 
which confirms it as polynomial in n, of order 2.
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Chapter 8. Experimental results

This chapter presents the experimental results from which the effectiveness of the 
implementation strategy can be assessed. The chapter is divided into three main 
sections:

The first section examines the relationship between scheduling time and the 
parameters n and m. These results are compared to the predictions made in 
chapter 7. The second section looks at factors which affect the performance, or 
quality of scheduling, e.g., processor use, speedup, etc. This section focuses on the 
reasons for performance degradation, from some ideal, pre-calculated figure. 
Finally, the last section presents several worked examples. These are in the form 
a DFDL source program, pre-schedule program profile, schedule results and 
Occam object program.

Please note that the coefficient values given in the examples are for illustration 
only.

8.1 Scheduling time

Scheduling time complexity was estimated (in section 7.4.5) to lie in the region 
O (n) to O (n2 '). This estimate excludes possible exponential growth due to m, 
since it is assumed that as m increases the degree of connectivity reduces and so n 
dominates the relationship. This section aims to show that this relation holds in 
practice.

As an example, the scheduling time for an n by n vector operation scheduled on 
an m processor network is illustrated. The example multiplies corresponding 
elements from each vector and outputs the product in a stream of n values. The 
program for the example is shown below and the results are illustrated in Figure 
8. 1.

PROG mult.vectors(OUTPUT(REAL32) y[n])
BEGIN

REPEAT FOREVER
y [i FROM 0 FOR n] : = a * b

END

In the example, factors that rely on topology are removed, by setting the link 
communication cost to zero.
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□ m

□ m

Scheduling time characteristics

number of tasks, n
1 + m =  10 o m = 20 a  m =  30 x m = 40 v m = 5 0

Figure 8.1

Scheduling time characteristics

number of tasks, log 10n
1 + m =  10 o m =  20 a  m =  30 x m = 40 v m = 50

Figure 8.2
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From Figure 8.1 we observe that scheduling time is far more sensitive to changes 
in n than it is to changes in m. For example, consider the point n = 100, m = 20, 
then doubling n increases scheduling time by 285% whereas doubling m only 
increases scheduling time by 69%. Sensitivity to changes in m will tend to rely on 
the size of m and the connectivity of the processor network.

On the assumption that the relation between n and scheduling time is a polynomial 
in n, then the plot of logio(n) against logio(scheduling time) should produce a 
straight line whose gradient is the composite index of that polynomial. Figure 8.2 
illustrates this relationship. All the plots in Figure 8.2 are close approximates to 
straight lines and the majority (m > = 10) have a gradient of 2. Using the equation 
for a straight line, y : = mx + c, the scaling factor alogio c can be found from Figure 
8.2 for each value of m for this particular algorithm. These are summarised below 
in Table 8.1. The equation which relates n to scheduling time is described by (8.1), 
this equation gives a reasonable approximation over the range 10 < = m < = 100.

scheduling time = f(m) * n seconds

scheduling time = 4xl0'5 * (10 + m) * n2 seconds (8.1)

m f(m)

10 0.0008

20 0.0012

30 0.0017

40 0.0021

50 0.0025

Table 8.1 Scheduling time scale factor
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8.2 Factors affecting performance

Examination of several different scheduling results reveal that optimal speedup 
for a given number of processors is seldom achieved. This section introduces and 
discusses several effects which lead to a degradation in performance. The first 
effect is called integer effect.

8.2.1 Integer effect

Integer effect becomes apparent whenever the number of independent tasks is not 
wholly divisible by the number of available processors, this produces schedules of 
dissimilar duration, which in turn creates less than optimal scheduling. The cause 
of this effect originates from the fact that tasks take a finite time to execute and 
cannot be shared between processors, since they are considered to be atomic. 
Integer effect is most noticeable when m approaches n, assuming m < n.

Consider the case where there are n independent tasks (i.e. A is empty) and each 
task has the same duration. Such a case is shown in the program below. These n 
tasks are scheduled onto m processors, where m < = n.

PROG mult.vectors(OUTPUT(REAL32) y[n]) 
BEGIN

REPEAT FOREVER
y[i FROM 0 FOR n] : = a * b

END

Integer effect on speedup

number of processors, m
□ n =  10 + n =  20 o n =  50 a  n =  100

Figure 8.3
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If all tasks were infinitely divisible then speedup would be

speedup = n / (n / m) = m (8.2)

For a set of independent tasks this is regarded as the ideal case. However, tasks 
are not divisible, hence

speedup = n / | n /m  | (8.3)

Figure 8.3 shows the results of scheduling n independent, equally sized tasks onto 
m processors. The results confirm the relation given in (8.3) and show that possible 
degradation due to integer effect worsens as m approaches n.

To what extent can integer effect degrade speedup? From (8.3),

(n /m )  + 1 > | n / m |  > = n / m

Substituting the above limits into (8.3) shows that speedup lies in the range 

(m * n) / (m + n) < speedup < = m

We have observed that integer effect worsens as m approaches n, thus let m = n

m / 2 < speedup < = m (8.4)

Speedup degradation

processor-task ratio, m/n 

Figure 8.4
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Equation (8.4) shows that integer effect can inflict a loss of up to 50% on speedup. 
This result is confirmed by Figure 8.4, which shows the percentage degradation 
across the entire range of the processor/task ratio (m / n). The plot is for n = 100 
and percentage degradation is calculated from equation (8.5).

percentage degradation = (1 - (n / (m * | n /  m |))) * 100% (8.5)

The possibility of integer effect will always be present, however degradation can 
be minimised by employing a low processor/task ratio i.e. m < < n.

8.2.2 Synchronisation effect

Synchronisation effect is the first of four distinct factors associated with com-
munication which tend to reduce performance.

Synchronisation effect stems from Occam’s unbuffered, synchronised model of 
communication which requires that communicating, parallel processes 
synchronise to commence data transfer. Consequently, a communication is not at 
liberty to occur freely, but has to wait until both sender and receiver have 
synchronised. In the current implementation of Occam on the Transputer, this 
cannot occur until both sender and receiver have met one of the following 
conditions: (i) have just completed processing a task, (ii) just about to process a 
task or (iii) inactive. Once synchronised, data transfer can proceed in parallel with 
processing.

The results of synchronisation effect are discussed in the following section.

8.23 Latent scope effect

When considering parallelism between processor and communication channels 
then Occam can express parallelism between one or more resources. For example

SEQ
A
B
PAR

C
ch1 ?X 
C h 2 ! Y

where ? is the Occam construct for a communication input and ! the Occam 
construct for a communication output.
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SEQ
A
B
PAR

C
ch1 ?X 
ch2 ? Y 
PAR 

D
ch3 ! Z

Occam can express separate, joint and hierarchical parallel activity, however, 
Occam cannot express parallel activity which partially overlaps. This language 
restriction leads to communication channels being held in scope for some time 
before and after they pass data. Consequently, channels appear to be busy when 
in fact they are inactive.

Synchronisation and latent scope effect are difficult to separate, since they both 
originate from Occam’s concurrent model of computation. To illustrate their joint 
effect, a sum of products example is employed, this is shown below. The example 
is of fixed size (n = 199) and is scheduled onto a binary hypercube processor 
network (m = 16).

Occam can also express nested parallel events

PROG maddl OOc(OUTPUT(REAL32) y) 
NODE k[100]
BEGIN

REPEAT FOREVER
k[i FROM 0 FOR 100] : = 1.0 * 1.0 
y : = SUM(k[j FROM 0 FOR 100])

Figure 8.5 illustrates the composite processor activity over a single cycle of the 
example scheduled algorithm. The schedule assumes that communication be-
tween processors is zero cost. Superimposed upon this profile is a second profile 
of an ideal schedule. This ideal schedule accounts for integer effect and sequential 
dependency between tasks, but disregards synchronisation and latent scope ef-
fects.
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Cyclic processor activity

cycle time (%)
□ processor activity v  ideal activity

Figure 8.5

Figure 8.5 shows that cycle time for the ideal and actual cases is 212uS and 279uS 
respectively. These times relate to speedups of 12.2 and 9.3. In this example, 
synchronisation and latent scope effects reduce speedup by about 24%. Generally 
though, it is difficult to quantify such effects prior to scheduling, since they are not 
generated until the scheduling process. Both effects are a product of the Occam 
language which are reflected back into the requirements of the scheduler. 
Removal  of these  effects would only be possible by replacing the 
Occam/Transputer concurrent model of computation for a true data-driven 
model.
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8.2.4 Finite communication cost effect

Finite communication cost tends to impede the spread of data from one processor 
to another. This effect increases as the processor/communication cost ratio 
decreases. Figures 8.6 through to 8.11 illustrate cyclic processor and cyclic inter-
processor activity. Each figure represents a different processor/communication 
cost ratio, ranging from 30:1 to 0.3:1. This ratio is defined by equation (8.6). The 
series of figures reveal that as the processor/communications cost ratio is 
decreased then processor use decreases and communications use increases. Also, 
a decrease in this ratio produces an increase in the length of the cycle time.

processor/communication cost ratio = e / c  (8.6)

where e is the mean task cost and c is the mean communication cost.

One noticeable feature of all these activity profiles is that changes in processor 
activity are highly correlated to changes in communication activity and that profile 
changes are inversely proportional. This correlated feature is attributed to 
synchronisation and latent scope effect which give rise to interference between 
processor and communication activity.

Cyclic processor and comms activity

cycle time (%)
□  processor activity + comms activity

Figure 8.6
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Cyclic processor and comms activity
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Cyclic processor and comms activity
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Cyclic processor and comms activity

cycle time (%)
□ processor activity + comms activity

Figure 8.11

Figures 8.6 through to 8.11 suggest that the number of communications increase 
as the processor/communications ratio decreases. However, Figure 8.12 shows 
that the opposite is generally true. We can conclude, therefore, that the increase 
in communications use is attributable to an increase in communications cost and 
not the number of communications.

Figure 8.13 summarises the relation between processor/communication cost ratio 
and speedup. This plot illustrates that for ratios above a 10:1 speedup degradation 
is almost entirely due to synchronisation and latent scope effect. Below this ratio, 
degradation attributable to finite communication cost becomes significant; in the 
range 10:1 to 5:1 there is a noticeable down turn in speedup and below a ratio of 
5:1 degradation becomes severe.

Both Figures 8.12 and 8.13 have a vertical scale that is normalised to the results 
for a processor/communications cost ratio of infinity.
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8.2.5 Topology effect

This section discusses the final effect of communication on performance, namely 
topology effect. Communication time between any two processors is affected by 
communication cost and can be affected by synchronisation and latent scope effect. 
The alternate number of independent communication channels into and out of a 
processor (degree) and the length of a communication path (diameter) between 
communicating processors, also have a bearing on performance.

For a specific topology the degree and diameter can be found, these figures are 
used in equation (8.7) to assign a merit factor, Q to a topology.

Q = (degree / diameter) * (m - 1)‘ \  m > 1 (8.7)

Table 8.2 presents several different topologies, their mean degree, mean diameter 
and Q factor.

m Topology Q speedupdegree diameter speedup(norm)

4 single ring 2.0 1.33 0.5 2.88 0.75

5 double ring 1.5 3.6 0.6 3.75 0.79

6 chordal ring 3.67 1.4 0.52 4.35 0.79

8 single linear 1.75 2.98 0.08 3.23 0.46
9 mesh 2.67 2.0 0.167 5.41 0.69

16 binary hypercube 3.875 2.13 0.12 8.65 0.71

Table 8.2 Topology factor

Figure 8.14 illustrates the relation between 1/Q and speedup. Speedup is nor-
malised by dividing the actual speedup by the ideal speedup for m processors. The 
ideal value is not affected by any of the communications effects. The results include 
synchronisation and latent scope effects, which may vary from case to case.
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Topology effect on speedup

Figure 8.14

8.3 Examples

This section presents four algorithms that are commonly used in digital signal 
processing. These are:

(i) fir8: 8 tap finite impulse response filter
(ii) iir2: 2na order infinite impulse response filter
(iii) wdf4: 4th order wave digital filter
(iv) fft8: 8 point complex fast Fourier transform

and one modified, multiple version of fir8 called fir8x8.

Each example is followed through from DFDL program description to Occam 
program translation. Results include pre-schedule program activity profiles, 
speedup figures for different numbers of processors and post-schedule activity 
profiles.
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Pre-schedule activity profiles are generated from the critical path results. Two 
profiles are produced for each DFDL program; the first from the earliest times 
that tasks can be executed and the second from the latest times that tasks can be 
executed. These un-scheduled views of program execution ignore timing losses 
due to integer and communication effects. Both profiles indicate where potential 
parallelism exists and how many processors may be utilised. The cycle time of the 
two profiles is identical and is known as the critical path length, or minimum cycle 
time. Information from these profiles can be useful when analysing algorithms and 
choosing a value for m, since they give insight into the upper speedup bound, the 
likely maximum number of useful processors and critical path density.

Speedup results are presented graphically, plotted against number of processors, 
m. Results are all based on a T4-20 Transputer operating at a link frequency of 
20MHz. Two bounds are included on the graph, a diagonal line "speedup = m" 
and a horizontal line "speedup = total task cost / minimum cycle time". For 
completeness the results for zero cost communication are also plotted.

Finally, post-schedule results are presented in the form of four superimposed 
activity profiles; processor, input, inter-processor communication and output 
activity. All are plotted against scheduled cycle time. These profiles show when 
resources are used, their use throughout the duration of the cycle and how different 
resources interact.

83.1 Finite impulse response filter

The DFDL program below, inputs a single value each cycle. This value, and the 
seven most recent inputs from previous cycles are multiplied by the coefficients. 
The eight products are summed and the result outputted. Input and output have 
a data type of INT32. This data type is different to arithmetic operations, which are 
of data type REAL32, and causes data type conversion to take place at the input 
and output.

PROG fir8(INPUT(INT32) in OUTPUT(INT32) out)

NODE value[8]
VALUE TABLE coeff[8] IS [ 0.121,0.146,-2.345,0.5,

0.5, -2.345, 0.146, 0.121]

BEGIN
REPEAT FOREVER

% Multiply delayed inputs by coefficients
value[i FROM 0 FOR 8] : = coeff[i FROM 0 FOR 8] * ...

in Z[i FROM 0 FOR 8]
% Sum products
o u t: = SUM (value[i FROM 0 FOR 8])

END
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The earliest and latest profiles of the program suggest that using in excess of 15 
processors would not aid performance. Lower, more practical estimates for m are 
suggested from the latest profile, which peaks at 8 processors, or from the quotient 
(total task cost / minimum cycle time) which is calculated to be 3.4.

Figure 8.16 illustrates the actual speedup when the program is scheduled onto an 
m processor network connected in a chordal ring topology. Speedup, for a link 
frequency of 20MHz, peaks at 2.18 when m equals 5. This gain represents 65% of 
the upper bound.

The scheduled results are translated into Occam for the case m equals 3. The 
Occam program is functionally identical to the DFDL program, however, it 
appears to be far more complex. This is in part due to communication between the 
three parallel procedures, but is also due to the fragmentation of spatial arrays by 
the DFDL compiler. Temporal arrays are generally left intact.
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The composite characters {{{,}}} and ... are visible in both DFDL and Occam 
programs, these are editor constructs from the TDS folding editor, and have no 
syntatic or semantic effect on the programs. The { { { construct indicates that a fold 
is open and marks the top of the open fold. A matching }}} construct marks the 
bottom of the open fold. The three full stops in succession ... show that a fold is 
closed and that text is hidden. Text that appears on the same line as {{{ or ... is a 
comment pertaining to the fold.

Note: The upper bound (Figure 8.16) defines the maximum speedup due to the 
algorithm’s parallelism. This value is independent of m and is derived from the 
CPM, i.e., upper speedup bound = total task cost / critical path cost.

O

Speedup vs. number of processors

20MHz a  Infinity
number of processors, m 

x  Upper bound v  Ideal bound

Figure 8.16
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PROC fir8(CHAN OF INT32 in, out)
{{{ CHANNELS
CHAN OF REAL32 ch.real32.01.1, ch.real32.01.2, ch.real32.01.3, 

ch.real32.02.3:
CHAN OF ANY ch.any.02.2:
>}>
{{{ PROCEDURES 

{{{ fir801
PROC fir801(CHAN OF INT32 ch.l,

CHAN OF REAL32 ch.2, ch.3, ch.4)

VAL coeff.O IS 0.0380601995(REAL32):
VAL coeff.6 IS 0.961939692(REAL32):
VAL coeff.5 IS 0.853553295(REAL32):
VAL coeff.7 IS 1.0(REAL32)s

INT32 in:
REAL32 value.0:
REAL32 value.6 :
REAL32 value.5:
REAL32 value.7:
REAL32 aAa.real32:
REAL32 aAb.real32:
INT INDEX.0:
[7]REAL32 DELAY.0:

SEQ
SEQ i = 0 FOR 7

DELAY.0[i] := 0.0(REAL32) 
INDEX.0 := 0

WHILE TRUE 
SEQ

Ch.2 ! DELAY.0[(INDEX.0 + 3) REM 7]
Ch.3 ! DELAY.0[(INDEX.0 + 0) REM 7]
Ch.4 ! DELAY.0[(INDEX.0 + 1) REM 7]
ch.l ? in
aAa.real32 := REAL32 ROUND in
aAb.real32 := coeff.O * 
value.0 := aAb.real32 
ch.2 I value.0 
aAb.real32 := coeff.6 * 
ch.3 ! DELAY.0[(INDEX.0 
value.6 := aAb.real32 
aAb.real32 := coeff.5 * 
value.5 := aAb.real32 
ch.2 I value.5 
aAb.real32 := coeff.7 * 
value.7 := aAb.real32 
aAb.real32 := value.6 + 
ch.2 I aAb.real32 
INDEX.0 := (INDEX.0 + 6 
DELAY.0[INDEX.0] := aAa

aAa.real32

DELAY.0[(INDEX.0 + 5) REM 7] 
+ 2) REM 7]

DELAY.0[(INDEX.0 + 4) REM 7]

DELAY.0[(INDEX.0 + 6) REM 7]

value.7

REM 7 
real32
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>}>
{{{ fir802
PROC fir802(CHAN OF REAL32 ch.l, ch.2,

CHAN OF ANY ch.3,
CHAN OF REAL32 ch.4)

VAL coeff.l IS 0.146446601(REAL32):
VAL coeff.2 IS 0.308658212(REAL32):
VAL coeff.3 IS 0.5(REAL32):

REAL32 value.1:
REAL32 value.2:
REAL32 value.3:
INT32 aAa.int32:
REAL32 aAa.real32:
REAL32 aAb.real32:

SEQ
WHILE TRUE 

SEQ 
PAR

ch.2 ? aAa.real32 
ch.l ? aAb.real32

aAa.real32 := coeff.l * aAa.real32 
value.1 := aAa.real32 
ch.3 1 value.1
aAa.real32 s= coeff.2 * aAb.real32 
value.2 := aAa.real32 
ch.2 ? aAa.real32
aAa.real32 := coeff.3 * aAa.real32 
value.3 := aAa.real32 
aAa.real32 := value.2 + value.3 
ch.4 ? aAb.real32
aAa.real32 := aAb.real32 + aAa.real32 
ch.4 ? aAb.real32
aAa.real32 := aAa.real32 + aAb.real32 
aAa.int32 := INT32 ROUND aAa.real32 
ch.3 ! aAa.int32
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}}}
{{{ fir8 03
PROC fir803(CHAN OF REAL32 ch.l,

CHAN OF ANY ch.2,
CHAN OF REAL32 ch.3,
CHAN OF INT32 ch.4)

VAL coeff.4 IS 0.691341698(REAL32):

REAL32 value.4:
INT32 aAa.int32 s 
REAL32 aAa.real32:
REAL32 aAb.real32:

SEQ
WHILE TRUE 

SEQ
ch.3 ? aAa.real32
aAa.real32 := coeff.4 * aAa.real32 
value.4 := aAa.real32 
ch.2 ? aAa.real32 
ch.3 ? aAb.real32
aAa.real32 := aAb.real32 + aAa.real32 
ch.3 ? aAb.real32
aAb.real32 := value.4 + aAb.real32 
ch.l 1 aAa.real32 
ch.3 ? aAa.real32
aAa.real32 := aAb.real32 + aAa.real32 
ch.l I aAa.real32 
ch.2 ? aAa.int32 
ch.4 I aAa.int32

}}}
>}}

PAR
fir801(in, ch.real32.01.1, ch.real32.01.2, ch.real32.01.3) 
fir802(ch.real32.01.3, ch.real32.01.2, ch.any.02.2, ch.real32.02.3) 
fir803(ch.real32.02.3, ch.any.02.2, ch.real32.01.1, out)
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cycle time (%)
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Figure 8.17

Figure 8.17 illustrates scheduled activity for m equals 3. The plot reveals that there 
is significant under use of the processors in the latter part of the cycle. Attempts 
to improve efficiency and make use of this slack are covered in section 8.3.5. 
Another observation is that output appears to occur immediately after data is 
inputted, it should be noted that this is the output from the previous cycle. The 
output for the current cycle is slightly to the right of the right hand edge of the 
graph, but since the x-axis represents cycle time, then the extreme ends of the graph 
are effectively joined as far as cycle activity is concerned.
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83.2 Infinite impulse response (bi-quad) filter

The DFDL program below, inputs and outputs a single value each cycle. This input 
is multiplied by a scaling factor to give an intermediate value. A second inter-
mediate value is produced by summing the scaled input and two delayed and scaled 
versions of this intermediate value; delayed by one and two cycles respectively. 
The output is derived in a similar fashion, but is the sum of the second intermediate 
value, and two delayed and scaled versions of this value, once again delayed by one 
and two cycles. Input and output have a data type of INTI6. This data type is 
different to arithmetic operations, which are of data type REAL32, and causes data 
type conversion to take place at the input and output.

PROG ¡¡r2(INPUT(INT16) in OUTPUT(INT16) out)
NODE valuel, value2 
VALUE scale IS 0.684561
VALUE TABLE coeff.a[2] IS [ 0.444566, 0.675343]
VALUE TABLE coeff.b[2] IS [-0.684389, -0.475112]
BEGIN

REPEAT FOR 100 
valuel : = scale * in
value2 : = ((coeff.b[0] *value2Z[1]) + ...

(value2Z[2] * coeff.b[1])) + valuel 
ou t:=  value2 + ((coeff.a[0] *value2Z[1]) + ...

(value2 Z[2] * coeff.a[1]))
END

Activity profile

minimum cycle time (%)
o earliest execution a  latest execution

Figure 8.18
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Speedup vs. number of processors

number of processors, m
o 20MHz a  Infinity x Upper bound v  Ideal bound

Figure 8.19

The earliest and latest profiles of the program suggest that using in excess of 5 
processors would not aid performance. A lower estimate for m is suggested from 
the quotient (total task cost / minimum cycle time) which is calculated to be 2.26.

Figure 8.19 illustrates the actual speedup when the program is scheduled onto an 
m processor network connected in a chordal ring topology. Speedup, for a link 
frequency of 20MHz, peaks at 2.08 when m equals 6. This gain represents 92% of 
the upper bound.

Scheduled results are translated into Occam for the case m equals 2. The Occam 
program comprises a channel declaration, two procedures and a parallel process 
that calls the two procedures. Each procedure consists of declared values, declared 
variables, initialisation and a repetitive main body. In common with the source 
DFDL program, the main body of both procedures is repeated 100 times. The 
second procedure iir202 shows clearly that the DFDL compiler takes advantage 
of parallelism between individual communication channels and processor.

Where possible, values and variables are given names that originate from the 
DFDL source program. When the source name originates from an array the index 
is appended to the name to distinguish between different elements from the same 
array. When it is not possible to use a name from the source program then one is 
generated automatically. Automatically generated names comprise a head and a 
tail. The head consists of three letters, ranging from aAa to zZz. The combination 
of upper and lower case letters prevents duplication of reserved words or names 
originating from the source program. The tail part of the name identifies the data 
type. Variables with automatically generated names are re-used once the data they 
contain becomes redundant.
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PROC iir2(CHAN OF INT16 in, out)
{{{ CHANNELS
CHAN OF REAL32 ch.real32.01.1, ch.real32.01.2, ch.real32.01.3s
}>>
{{{ PROCEDURES 

{{{ iir201
PROC Ür201(CHAN OF INT16 ch.l,

CHAN OF REAL32 ch.2, ch.3, ch.4)

VAL coeff.b.l IS -0.475111991(REAL32):
VAL scale IS 0.684561014(REAL32):

INT16 ins 
REAL32 value1:
REAL32 value2:
REAL32 aAa.real32:
INT INDEX.0:
[2]REAL32 DELAY.0:

SEQ
SEQ i = 0 FOR 2

DELAY.0[i] := 0.0(REAL32)
INDEX.0 := 0

SEQ i = 0 FOR 100 
SEQ

aAa.real32 := DELAY.0[(INDEX.0 + 1) REM 2] * coeff.b.l 
ch.2 I aAa.real32
Ch.3 I DELAY.0[(INDEX.0 + 1) REM 2] 
ch.4 I DELAY.0[(INDEX.0 + 0) REM 2] 
ch.l ? in
aAa.real32 := REAL32 ROUND (INT32 in)
aAa.real32 := scale * aAa.real32
valuel := aAa.real32
ch.4 ? aAa.real32
aAa.real32 := aAa.real32 + valuel
value2 := aAa.real32
ch.2 I value2
ch.3 1 value2
INDEX.0 ;= (INDEX.0 + 1) REM 2 
DELAY.0[INDEX.0] := value2

}}}
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ch.2 ch. 3
{{{ iir2 02
PROC iir202(CHAN OF REAL32 ch.l,

CHAN OF INTI6 ch.4)

VAL coeff.b.O IS -0.684388995(REAL32):
VAL coeff.a.l IS 0.675342977(REAL32)s 
VAL coeff.a.O IS 0.444566011(REAL32):

INTI6 aAa.intl6:
REAL32 aAa.real32:
REAL32 aAb.real32:
REAL32 aAc.real32:
REAL32 aAd.real32:
REAL32 DELAY.0:

SEQ
DELAY.0 := 0.0(REAL32)

SEQ i = 0 FOR 100 
SEQ

aAa.real32 s= coeff.b.O * DELAY.0 
PAR 

PAR
ch.3 ? aAb.real32 
ch.2 ? aAc.real32 

ch.l ? aAd.real32
aAa.real32 := aAa.real32 + aAb.real32 
ch.l 1 aAa.real32
aAa.real32 := aAc.real32 * coeff.a.l 
aAb.real32 := coeff.a.O * aAd.real32 
PAR

aAc.real32 := aAb.real32 + aAa.real32 
ch.3 ? aAd.real32 

PAR
aAa.real32 := aAd.real32 + aAc.real32 
ch.2 ? aAb.real32

aAa.inti6 := INT16 ROUND aAa.real32 
ch.4 l aAa.inti6 
DELAY.0 := aAb.real32

>}}
}}}

PAR
iir201(in, ch.real32.01.1, ch.real32.01.2, ch.real32.01.3) 
iir202(ch.real32.01.3, ch.real32.01.2, ch.real32.01.1, out)
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Figure 8.20

Figure 8.20 illustrates scheduled activity for 2 processors. One interesting obser-
vation is that a significant amount of processing is performed prior to input. This 
early processing is carried out in preference to input because the critical path 
passes through the feedback path, and the feedback path provides executable 
operands from the start of the cycle.

The 2 processor schedule results in a speedup of 1.55. This figure represents 76% 
of ideal speedup.
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8.3.3 Wave digital filter

The third example is of a wave digital filter. This filter has a lattice structure which 
comprises four structurally identical sections. Each section has two inputs and two 
outputs, these are connected to adjacent sections, except at the ends, where they 
are taken to the input and output of the algorithm. Each section is described by 
the two difference equations

Y i:=  Xi + (k * (Xi - X2Z’1))
Y2 : = X2Z '1 + (k * (Xi - X2Z '1))

where Yi and Y2 are outputs and Xi and X2 are inputs.

PROG wdf.4( INPUT(REAL32) in.x OUTPUT(REAL32) out.x 
INPUT(REAL32) in.z OUTPUT(REAL32) out.z)

{ { {  VALS
NODE node.w[4], node.z[4], node.x[4]
VALUE TABLE coeff[4] IS [0.668, 0.856, 0.386, 0.394]
}}}
BEGIN

REPEAT FOREVER 
{ { {  1st stage 
% 1 st stage 
node.x[0] : = in.x
node.w[0] :=  (node.z[1]Z[1] - node.x[0]) * coeff[0] 
node.z[0] :=  node.w[0] + node.z[1]Z[1] 
out.z: = node.z[0]
}}}
{ { {  2nd stage 
% 2nd stage
node.x[1] :=  node.wfO] + node.x[0] 
node.w[1] :=  (node.z[2]Z[1] - node.x[1]) * coeff[1] 
node.z[1] :=  node.w[1] + node.z[2]Z[1]
}}}
{ { {  3rd stage 
% 3rd stage
node.x[2] :=  node.w[1] + node.x[1] 
node.w[2] :=  (node.z[3]Z[1] - node.x[2]) * coeff[2] 
node.z[2] :=  node.w[2] + node.z[3]Z[1]
}}}
{ { {  4th stage 
% 4th stage
node.x[3] : = node.w[2] + node.x[2] 
node.w[3] : = (in.z - node.x[3]) * coeff[3] 
node.z[3] : = node.w[3] + in.z 
out.x :=  (node.w[3] + node.x[3])
}}}

END
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PROC wdf(CHAN OF REAL32 in.x, in.z, out.z, out.x)
... CHANNELS 
{{{ PROCEDURES 
{{{ Wdf01
PROC wdf01(CHAN OF REAL32 ch.l, ch.2, ch.3, ch.4)

__VALS
... VARS 
SEQ

... INIT 
WHILE TRUE 

SEQ
ch.3 t DELAY.1 
ch.4 l DELAY.3 
PAR

ch.l ? in.x 
ch.2 ? in.z 

node.x.O := in.x 
aAa.real32 := DELAY.2 - node.x.O 
ch.3 1 DELAY.0
aAa.real32 := aAa.real32 * coeff.O 
node.w.0 := aAa.real32 
aAa.real32 := node.w.O + node.x.O 
ch.3 1 node.w.O 
node.x.l := aAa.real32 
aAa.real32 := DELAY.4 - node.x.l 
aAa.real32 := aAa.real32 * coeff.l 
node.w.l := aAa.real32 
aAa.real32 := node.w.l + node.x.l 
ch.3 I node.w.l 
node.x.2 := aAa.real32 
aAa.real32 := DELAY.0 - node.x.2 
aAa.real32 := aAa.real32 * coeff.2 
node.w.2 := aAa.real32 
PAR 

PAR 
SEQ

aAa.real32 := node.w.2 + node.x.2 
ch.3 I node.w.2 

ch.4 ? aAb.real32 
ch.3 ? aAc.real32 

node.x.3 := aAa.real32 
aAa.real32 := in.z - node.x.3 
aAa.real32 := aAa.real32 * coeff.3 
node.w.3 := aAa.real32 
PAR 

PAR
aAa.real32 := node.w.3 + node.x.3 
ch.4 ? aAd.real32 

ch.3 ? aAe.real32 
aAf.real32 := node.w.3 + in.z 
ch.3 ! aAa.real32 
node.z.3 := aAf.real32 
DELAY.1 := aAb.real32 
DELAY.4 := aAe.real32 
DELAY.3 := aAd.real32 
DELAY.2 := aAc.real32 
DELAY.0 := node.z.3

}>}
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{{{ wdf02
PROC wdf02(CHAN OF REAL32 ch.l, ch.2, ch.3, ch.4) 

.•. VARS 
SEQ

WHILE TRUE 
SEQ 

PAR
ch.2 ? aAa.real32 
ch.l ? aAb.real32 

ch.2 ? aAc.real32 
ch.2 ? aAd.real32
aAa.real32 := aAd.real32 + aAa.real32 
node.z.O := aAa.real32 
ch.3 l node.z.O 
ch.2 ? aAa.real32
aAa.real32 s = aAa.real32 + aAb.real32
node.z.l s= aAa.real32
ch.2 ! node.z.l
ch.l ! node.z .1
ch.2 ? aAa.real32
aAa.real32 := aAa.real32 + aAc.real32
node.z.2 := aAa.real32
ch.2 1 node.z.2
ch.l 1 node.z.2
ch.2 ? aAa.real32
ch.4 l aAa.real32

}}}
}>>

PAR
wdf01(in.x, in.z, ch.real32.01.2, ch.real32.01.3) 
wdf02(ch.real32.01.3, ch.real32.01.2, out.z, out.x)

The latest program profile (Figure 8.21) suggests that using in excess of 8 proces-
sors would not aid performance. A lower estimate for m is suggested by the earliest 
profile, 5 processors, and the quotient (total task cost / minimum cycle time) which 
is calculated to be 1.44.

Figure 8.22 illustrates the actual speedup when the program is scheduled onto an 
m processor network connected in a chordal ring topology. Speedup, for a link 
frequency of 20MHz, peaks at 1.28 when m equals 5. This gain represents 89% of 
the upper bound. However, speedup is reasonably constant for m greater or equal 
to 2.

Scheduled results are translated into Occam for the case m equals 2. The Occam 
program comprises a channel declaration, two procedures and a parallel process 
that calls the two procedures. Each procedure consists of declared values, declared 
variables, initialisation and a repetitive main body. Only the main body is shown 
in detail. At the end of first procedure wdf01 the assignment of feedback variables 
is clearly visible, since the translator gives these variables the name DELAY.#
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Figure 8.23 illustrates scheduled activity for 2 processors. One interesting obser-
vation is that of the two outputs, one appears much earlier in the cycle than does 
the other. The reason for this is that operands for the earlier output are from 
previous cycles (i.e. feedback) and these undergo only a single stage of processing, 
whereas the later output relies on the input data rippling through each section. 
The algorithm, in its current form, exhibits little parallelism and speedup would 
tend to remain low regardless of the number of sections used. One common 
method to increase parallelism is to treat the Z ’1 delays as two Z’1/2 delays and 
reorganise the distribution of delays so the ripple effect is reduced, this has the 
effect of reducing the critical path length.
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83.4 Fast Fourier transform (decimation in time, radix 2)

The DFDL program for a complex fast Fourier transform is based around the 
complex butterfly algorithm. An example of the butterfly is illustrated in full below. 
The majority of the DFDL FFT program is concealed in folds, since each stage is 
structurally the same. When writing the FFT, no attempt was made to optimise the 
algorithm, e.g. removal of multiplication when coefficients are 1.0.

The program below illustrates that for every program cycle, two streams of 8 inputs 
are read into the algorithm and two streams of 8 values are outputted. The two 
input and two output streams consist of real and imaginary data. The real and 
imaginary input data is fed into an N/2 wide, log2(N) deep array of butterfly 
sections (N = 8). Each input enters the array at an address that corresponds to the 
bit reversal of its index. This data shuffle is common to all in place FFT algorithms.

Examining Figure 8.24, the latest program profile suggests that using in excess of 
24 processors would not aid performance. A lower estimate for m is suggested by 
the earliest profile, 16 processors, and the quotient (total task cost / minimum cycle 
time) which is calculated to be 10.71.

Figure 8.25 illustrates the actual speedup when the program is scheduled onto an 
m processor network connected in a chordal ring topology. Speedup, for a link 
frequency of 20MHz, peaks at 6.4 when m equals 13. This gain represents 60% of 
the upper bound. Speedup tends to level off above the region m equals 9.

PROG fft8(OUTPUT(REAL32) real.y[8]
INPUT(REAL32) real.x[8], imag.x[8]
OUTPUT (REAL32) imag.y[8])

... VALS 
BEGIN

REPEAT FOREVER 
... column 1 
{ { {  column 2
... butterfly in.a[0][0], in.a[1][0], out.a[0][1], out.a[1][1]
{ { {  butterfly in.b[0][0], in.b[1][0], out.b[0][1], out.b[1][1]
real.h[1][1] :=  (real.b[1 ][0] * real.cos[2]) - (imag.b[1][0] * imag.sin[2])
imag.h[1][1] :=  (imag.b[1][0] * real.cos[2]) + (real.b[1][0] * imag.sin[2
real.b[0][1] :=  real.b[0][0] + real.h[1][1]
imag.b[0][1] :=  imag.b[0][0] + imag.h[1][1]
real.b[1][1] :=  real.b[0][0] - real.h[1][1]
imag.b[1][1] :=  imag.b[0][0] - imag.h[1][1]
}}}
... butterfly in.a[2][0], in.a[3][0], out.a[2][1], out.a[3][1]
... butterfly in.b[2][0], in.b[3][0], out.b[2][1], out.b[3][1]
}}}
... column 3

END
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PROC fft8(CHAN OF REAL32 imag.x, real.x, real.y, imag.y)
. . .  CHANNELS 
{{{ PROCEDURES 
... fft801 
{{{ fft802
PROC fft802(CHAN OF REAL32 ch.l, ch.2, ch.3, ch.4)

. . . VALS 

. . .  VARS 
SEQ

WHILE TRUE 
SEQ

... Page - 1 

... Page - 2 

... Page - 3 
{{{ Page - 4 
ch.l ! real.a.2 . 1  
ch . 3 I real.b.2 . 0  
PAR

ch.l ? aAa.real32 
ch.3 ? aAb.real32 

ch.3 1 imag.h.2.0 
ch.4 ? aAe.real32
aAe.real32 := aAe.real32 * real.cos.2 
aAc.real32 := aAe.real32 + aAc.real32 
imag.h.1.1 := aAc.real32 
aAc.real32 : = real.b.2.0 - aAd.real32 
real.b.3.1 := aAc.real32 
aAc.real32 := real.b.3.1 * imag.sin.3 
aAd.real32 := real.b.3.1 * real.cos.3 
ch.3 1 imag.h.1.1 
ch.l 1 imag.h.1.1
aAa.real32 := real.x.0 - aAa.real32 
real.b.0.0 := aAa.real32 
ch.3 ! real.b.0.0 
ch.l 1 real.b.0.0 
>}}
... Page - 5 
. .. Page - 6 
... Page - 7

}}}
... fft8 03 
... fft8 04
}}}
PAR

fft801(ch.real32.01.0, imag.x, ch.real32.01.2, ch.real32.01.3) 
fft802(ch.real32.01.3, real.x, ch.real32.02.2, ch.real32.02.3) 
fft803(ch.real32.02.3, ch.real32.01.2, real.y, ch.real32.03.3) 
fft804(ch.real32.03.3, ch.real32.02.2, imag.y, ch.real32.01.0)
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The Occam translation and Figure 8.26 illustrate scheduled activity for 4 proces-
sors. The majority of the program is hidden inside folds, since it is in total some 12 
pages long. The results for m equals 4 is a speedup of 3.1 which represents 77.5% 
of ideal speedup. The activity schedule shows that the four processors have a 
reasonably high utility throughout the cycle time.
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83.5 Multiple cycle finite impulse response filter

In the example that follows, the 8 tap FIR filter described in section 8.3.1 is 
re-written such that the algorithm describes a multiple number of cycles. Func-
tionally, the two algorithms are similar, in that they produce the result

outk : = (co * inZ‘(k+0)) + (ci * inZ '(k + 1)) + ... + (c? * inZ‘(k+7))

Fir8x8 describes 8 complete cycles, which allows the scheduler to exploit paral-
lelism between successive cycles and the increased value n reduces integer effect

PROG fir8x8(INPUT(INT32) in[8] OUTPUT(INT32) out[8])
NODE value[8] [8]
VALUE TABLE coeff[8] IS [0.0380602, 0.1464466, 0.3086582, 0.5000000,

0.6913417, 0.8535533, 0.9619397, 1.0000000]
BEGIN

REPEAT FOREVER % Multiply delayed Inputs by coefficients 
value [0] [0] : = coeff[0] * in[0] % then sum the products 
value[i FROM 1 FOR 7] [0] : = coeff[i FROM 7 FOR 7 EVERY -1] * ... 

in[i FROM 1 FOR 7]Z[1]
valueO FROM 0 FOR 2][1] : = coeff[j FROM 1 FOR 2 EVERY -1] * ... 

in[j FROM 0 FOR 2]
value[j FROM 2 FOR 6][1] : = coeff[j FROM 7 FOR 6 EVERY -1] * ... 

in[j FROM 2 FOR 6]Z[1]
value[k FROM 0 FOR 3] [2] : = coeff[k FROM 2 FOR 3 EVERY -1] * .. 

in[k FROM 0 FOR 3]
value[k FROM 3 FOR 5][2] : = coeff[k FROM 7 FOR 5 EVERY -1] * .. 

in[k FROM 3 FOR 5]Z[1]
value[m FROM 0 FOR 4][3] : = coeff[m FROM 3 FOR 4 EVERY -1] * 

in[m FROM 0 FOR 4]
value[m FROM 4 FOR 4][3] : = coeff[m FROM 7 FOR 4 EVERY -1] * 

in[m FROM 4 FOR 4]Z[1]
value[n FROM 0 FOR 5][4] : = coeff[n FROM 4 FOR 5 EVERY -1] * .. 

in[n FROM 0 FOR 5]
value[n FROM 5 FOR 3] [4] : = coeff[n FROM 7 FOR 3 EVERY -1] * .. 

in[n FROM 5 FOR 3]Z[1]
value[p FROM 0 FOR 6][5] : = coeff[p FROM 5 FOR 6 EVERY -1] * .. 

in[p FROM 0 FOR 6]
value[p FROM 6 FOR 2][5] : = coefffp FROM 7 FOR 2 EVERY -1] * .. 

in[p FROM 6 FOR 2]Z[1]
value[q FROM 0 FOR 7][6] : = coeff[q FROM 6 FOR 7 EVERY -1] * ..

in[q FROM 0 FOR 7] 
value[7] [6] :=  coeff[7] * in[7]Z[1]
value[r FROM 0 FOR 8][7] : = coeff[r FROM 7 FOR 8 EVERY -1] * ...

in[r FROM 0 FOR 8] 
out[h FROM 0 FOR 8] :=  ...

SUM(value[i FROM 0 FOR 8][h FROM 0 FOR 8])
END
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PROC fir8x8(CHAN OF INT32 in, out) 
... CHANNELS 
{{{ PROCEDURES 
{{{ fir8x801
PROC fir801(CHAN OF ANY ch.l, 

CHAN OF INT32 ch.2, 
CHAN OF ANY ch.3,
CHAN OF REAL32 ch.4)

... VAL 

. . . VAR
SEQ

INIT
WHILE TRUE 

SEQ
... Page - 1 
... Page - 2 
... Page - 3 
... Page - 4 
... Page - 5 
... Page - 6 
{{{ Page - 7
aAe.real32 := aAf.real32 + aAe.real32 
ch.4 I DELAY.8
aAa.int32 := INT32 ROUND aAe.real32 
ch.l I aAa.int32
aAe.real32 := coeff.7 * DELAY.12 
ch.l I DELAY.1 
value.5.4 := aAe.real32 
aAe.real32 := value. 4.4 + value . 5.4
PAR

ch.3 I aAe.real32
ch.l ? aAf.real32 

ch.3 ! DELAY.8
aAe,real32 := coeff.6 * DELAY.8 
value.7.5 := aAe.real32 
aAe.real32 := coeff.7 * DELAY.1 
ch.l I value.6.6 
value.6.5 := aAe.real32 
aAe.real32 := value.6.5 + value.7.5 
ch.l ! aAe.real32 
DELAY.3 := aAf.real32
>>}
. .. Page - 8

>}}
... fir8x802 
... fir8x803 
... fir8x804 
... fir8x805
>>}
PAR

fir8x801(ch.any.01.0, in, ch.any.01.2, ch.real32.01.3) 
fir8x802(ch.real32.01.3, ch.real32.02.1, ch.any.02.2, ch.any.02.3) 
fir8x803(ch.any.02.3, ch.any.01.2, ch.real32.03.2, ch.any.03.3) 
fir8x804(ch.any.03.3, ch.any.02.2, out, ch.any.04.3) 
fir8x805(ch.any.04.3, ch.rea!32.03.2, ch.real32.02.1, ch.any.01.0)
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Figure 8.29

Figure 8.27 shows the impact on the algorithm’s activity profile when 8 cycles are 
combined together. For example, the peak number of processors has risen from 
15 processors (Figure 8.15) to 54 processors. This, along with the low increase in 
minimum cycle time, shows a significant increase in parallelism over the original 
algorithm.

The earliest and latest profiles (Figure 8.27) now tend to look similar. This 
indicates that there are many paths running through the algorithm that are critical, 
or lie close to the critical path, and suggests that the minimum cycle time will be 
difficult to attain.

Figure 8.28 compares the speedup for the single cycle algorithm (fir8) to the 
speedup for the multiple cycle algorithm (fir8x8). The multiple algorithm shows 
an increase in speedup from 2.2 to 5.8. Even when m is equal to 5, the speedup is 
3.8 for the multiple case as opposed to 2.2 for the single case. The results from 
Figure 8.29 confirm the improvements in efficiency, by revealing an increased 
degree of processor utility.
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One problem that may arise from using multiple cycle algorithms is that input and 
output events are not synchronised to regular time intervals, but operate on the 
principle of maintaining a sequential order. This may cause some difficulties and 
give rise to timing interference between I/O and scheduled algorithm. A solution 
to this problem would be to assign relative timings to all elements of input streams, 
which would specify the earliest and latest time that data could be inputted. Output 
timings would be a function of the input timings and the scheduled algorithm.
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Chapter 9. Conclusions

Parallel processing, unlike sequential processing, introduces many viable, alterna-
tive routes to implementation. In the introduction, three distinct operations along 
the route to implementation were identified, these being parallelism definition, 
program partitioning and program-resource scheduling. These three operations 
are ordered and take place during distinct intervals; design-time, compile-time or 
run-time. The specific interval when an operation is performed characterises an 
implementation and so determines the implementation strategy.

An exclusively "compile-time" implementation strategy has been adopted and 
described by this thesis. Amongst the reasons outlined in the introduction, the 
justification for adopting this strategy was to circumvent the inefficiencies caused 
by poor process-processor allocation (design-time implementations) and schedul-
ing overheads (run-time implementations).

This chapter summarises the implementation approach and concludes on its 
effectiveness. The final section suggests possible directions for future work.

9.1 Implementation summary

A brief summary of each step in the implementation strategy is now given. Most 
of the information contained in this section has been extracted from previous 
chapters.

9.1.1 Algorithm characteristics

The characteristics of discrete (cyclic) algorithms were reviewed in chapter 2, this 
illustrated the discreteness, complexity, memory, structure and composition of a 
discrete algorithm. The rules have been established for maintaining synchronisa-
tion between algorithm and input device, and algorithm and output device in a 
real-time system, which has shown that an algorithm must be deterministic if it is 
intended for a real-time system.

The algorithm has been expressed as comprising a set of disjoint tasks, whose 
complexity influences the granularity of the set. The cost (or execution time) of 
different task types was chosen to be small (i.e. low complexity tasks), hence an 
algorithm can be viewed as being composed of many medium-fine grain tasks. The 
alternative to this would have been a coarse grain structure, made up from a few 
complex tasks. A medium-fine grain structure was shown to have an advantage 
over coarse grain structures, in that a potentially high degree of parallelism can be 
represented. This approach does not preclude the advantage of low communica-
tion overhead offered by coarse grain structures from being utilised, since tasks 
can join together at some later time where it is advantageous to do so.
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9.1.2 Algorithm representation

It has been shown that a discrete algorithm can be represented by a graph, G = 
(T, C, B, E, A), which is transitive, irreflexive and asymmetric. These characteristics 
ensure the graph is both directed and acyclic (i.e. a directed acyclic graph, or 
DAG). A DAG describes a single cycle of a discrete, deterministic algorithm and 
is completely equivalent to the algorithm both in terms of function and structure, 
hence any parallelism is preserved.

A DAG has been shown to comprise nodes and arcs, these represent tasks and 
execution precedence respectively. Once costs have been assigned to those nodes 
representing tasks, the critical path method (CPM) can be applied to the graph G. 
CPM produces the earliest and latest start times for all tasks in T and gives the 
earliest overall cost of completion for an algorithm free from resource constraints. 
Results from the CPM are to be used for analysing the DAG, with a view to 
scheduling the tasks onto processors.

9.1.3 Language description

In order to facilitate algorithm description, in a form that is compatible to a DAG, 
a new programming language was developed. The design of the language, known 
as Digital Filter Description Language (DFDL) is based on the single-assignment 
rule, which conforms to the deterministic nature of a DAG. Single-assignment has 
been shown to have many effects, one of which is to preserve algorithmic structure 
and hence parallelism. Other effects have shown an influence on programming 
constructs, such as conditionals and repetitive constructs.

Program flow has been modelled on the repetitive input-process-output (or 
generate-output) cycle of a discrete algorithm. This has made DFDL suitable for 
describing deterministic, discrete processes (i.e. sampled systems) that have zero 
or more inputs and one or more outputs. More complex programs, which have 
different sample periods, can be described as separate parallel programs that are 
joined via their external input and output. The DFDL model of computation does 
not support nested programs.

External input and output have explicit data types (BYTE, INT16, INT32, 
REAL32.) and supports streams with up to two dimensions. A stream defines the 
number of inputs/outputs made over each program cycle. Internal variables (or 
more correctly, objects) are called nodes. Nodes have a fixed REAL32 data type. 
Type conversion is necessary wherever an input/output data type is non-REAL32, 
this is carried out implicitly. Constants are also type REAL32, and are declared as 
scalars, tables or expressions. DFDL’s internal floating point data type facilitates 
the passing of run-time error messages, which provide a useful method of error 
tracing.
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DFDL does not support procedures, but does include user-defined functions 
which provide a degree of abstraction. Within a function, all operands are passed 
as formal parameters or are declared within the function. Operands and objects 
declared within a function are only in scope within that function. Functions are 
used as operands and their result is a single value. A function can only be instanced 
after it has been declared, this prevents recursion, a feature which is not supported 
by DFDL.

A comprehensive range of arithmetic operators and standard functions are in-
cluded in DFDL’s syntax. Several special functions facilitate the addition, 
multiplication, mean, median, maximum and minimum of two or more operands. 
These functions are translated into maximally parallel structures.

DFDL restricts repetition to two cases. The first is a single program loop which 
constitutes the repetitive nature of the discrete algorithm, while the second 
facilitates operation upon multiple streams of data. The second form of repetition 
adheres to the single-assignment rule and is an efficient way to describe multiple 
operation on arrays.

The single-assignment rule requires that all declared objects and outputs are 
assigned once only. The conditional construct adheres to this rule by having a single 
object that is assigned from one of a number of expressions. Another result of 
single-assignment is the difficulty of assignment using operands from previous 
cycles. This difficulty was overcome by incorporating a Z operator into the lan-
guage, this is appended to an operand to signify that data is from past program 
iterations. The number of past iterations is defined by indexing Z. A summary of 
DFDL’s syntax is given in Appendix B.

9.1.4 Task graph

Chapter 5 described the data structures of those nodes comprising G. The low 
in/out-degree of these nodes (except B and E) is shown to produce a sparsely 
connected DAG, which can be realised using a doubly linked list whose length is 
proportional to |T | + |C |.

The different types of nodes (task primitives) have been described in terms of their 
in/out-degree, their worst case execution cost and their function (i.e. task primitive 
name). These nodes are used to create a connected graph structure (the DAG), 
as directed by a DFDL program.

Transformation from program to graph falls into three different categories of 
graph structure. The first includes external input/output, node and constant graph 
structures. The nodes which comprise these structures have been classified as 
named nodes, because they correspond to named elements in the program and 
form the skeleton of the DAG. The second category includes all graph structures 
that are primitive (simple nodes), which reflect simple or part transformations. 
Finally, more complex graph structures have been described, each using several 
primitive nodes.
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9.1.5 Processor graph

A parallel processing model representing a loosely coupled Transputer based 
architecture has been described in chapter 6. The two resources important to 
scheduling were identified, namely processing and communications. The model 
has been shown to consist of two parts: (i) a processor graph V = (P, I, O, L) (based 
mainly on the two resource types) and (ii) |L | + |P | activity schedules, S = {Si, 

Sq}. The processor graph gives a spatial representation of the machine (i.e. 
topology), while the activity schedules give a temporal representation (i.e. ac-
tivity). The data structures for both parts of the model have been presented and 
illustrated using examples.

The latter part of chapter 6 has concentrated on the processor graph and the rules 
governing nodes and arcs that comprise the graph. Input and output have been 
included and the minimum system realisation has been defined which complies 
with that of DFDL. Finally, the problems accorded to building the graph have been 
discussed, this has been shown to create isolated nets unless precautions are taken. 
A solution to net isolation has been presented in the form of a three stage 
algorithm. The algorithm examines the graph whenever an arc is proposed, 
producing a boolean result which indicates whether or not net isolation would 
occur if the arc were established.

9.1.6 Compile-time scheduling

The merits and limitations of deterministic, compile-time scheduling have been 
discussed in chapter 7. Three different classes of scheduling have been illustrated; 
list scheduling, non pre-emptive scheduling and pre-emptive scheduling, and it 
was found that the non pre-emptive class is best suited to deterministic, compile-
time scheduling.

Two major performance measures, schedule length and lateness, have been intro-
duced and the relationship between these and the relationship between 
throughput and latency was discussed. The former measure is used in the definition 
of the scheduling problem, which is essentially a problem of schedule length 
minimisation.

The complexity of the scheduling problem has been investigated for different 
constraints on T and P, and the problem was found to have a number of solutions 
that is exponential of order n. To show the effect this has on inefficient algorithms 
that attempt to solve the problem, an exhaustive enumeration approach was 
illustrated. The problem was shown to be computationally intractable when using 
this type of algorithm. This result is reinforced by previous results which classify 
the problem as NP-complete.
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Three basic heuristic search strategies, backtracking (BT), hill-climbing (HC) and 
best-first (BF) were introduced. The characteristics of each search strategy were 
discussed and it was considered necessary to introduce irrevocable scheduling 
decisions to ensure that time complexity became polynomial in n (the number of 
tasks). However, this step was shown to relinquish the guarantee of an optimal 
solution being found.

The final part of chapter 7 described the design of a hybrid HC BT-BF scheduling 
algorithm. At the heart of the algorithm is a heuristic, which guides the search 
strategy and so determines the scheduling decisions. Two heuristics have been 
compared, a minimum length heuristic and a minimum lateness heuristic. Each 
heuristic originates from its respective performance measure. The minimum 
lateness heuristic was shown to produce superior results. The reason for this being 
that the heuristic uses information from the CPM algorithm, which imparts 
"knowledge" of what lies ahead and so allows the algorithm to prioritise tasks 
accordingly. Chapter 7 concluded with a derivation for the scheduling algorithm’s 
time complexity, which confirms it as polynomial in n, of order 2. This theoretical 
result has been confirmed by practical measurements made during the experimen-
tal results.

9.2 Concluding remarks

We now comment on both the expected performance and actual performance, and 
conclude on the effectiveness of the implementation strategy and the language 
DFDL.

9.2.1 Performance bounds

The CPM algorithm generates a value for the critical path cost. This cost defines 
the minimum time in which one cycle of a program can be executed. It also defines 
the maximum throughput (1 / critical path cost) and maximum possible speedup 
(total task cost / critical path cost) using parallel processing. Since this cost is 
treated as our goal, it is important to examine its origins.

Critical path cost is defined as the longest path through the graph G, from node B 
to node E. The duration of the critical path cost is dependent on how tasks are 
arranged (algorithm structure) and the cost of the tasks. Clearly, the algorithm’s 
structure is dependent on the how the programmer describes the algorithm and 
the nature of the algorithm itself. Program language plays a large part in facilitating 
description, hence it is important to present a programmer with a language 
medium that allows him/her to concentrate on the application and not the im-
plementation. Hopefully this has been achieved by DFDL.
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Task complexity is determined by the particular partitioning strategy adopted. 
Chapter 2 described the partitioning strategy applied to DFDL programs when 
creating a task graph, G. Partitioning was shown to produce tasks with medium-fine 
grain complexities, which allows parallelism to be expressed between low cost 
tasks. To complement this, complex functions (SUM, PROD, etc.) are partitioned 
into maximally parallel structures.

Overall, the partitioning strategy aims to create a task graph that is maximally 
parallel and has minimal a cost critical path. The result of this approach is that 
potential speedup tends to be maximal. This would not be the case if, for example, 
a coarse grain partitioning strategy were to have been employed. It should be noted 
that when the value for maximum possible speedup is greater than the number of 
processors, m, for a particular scheduling problem, then the upper bound for 
speedup is m.

9.2.2 Factors affecting performance

Experimental results show that performance is often less than that defined by the 
performance bounds. Failure to attain the maximum potential speedup can be 
attributed to one, or more, of six effects, most of which have been described in 
chapter 8. The degree of speedup degradation due to some of these effects has 
been shown to be predictable.

9.2.2.1 Irrevocable scheduling

The first of these effects was discussed in chapter 7, and is due to the non-optimal 
nature of the scheduling algorithm. Non-optimality is caused by the need to take 
irrevocable scheduling decisions.

The noticeable effect of irrevocable scheduling is that the immediate predecessors 
to output tasks are often poorly scheduled. This only occurs when communication 
cost is non-zero. The reason for this poor scheduling is that an output task is 
pre-allocated a processor prior to scheduling and the scheduler places preceding 
tasks without consideration for this pre- allocation. The degree of degradation due 
to this effect is difficult to quantify, however, judging from the results it is probably 
small when compared to other effects. Suggestions for eliminating this source of 
inefficiency are given in section 9.3.3.

9.2.2.2 Integer effect

Integer effect occurs whenever n / m produces a remainder. The severity of this 
effect on speedup reduces as n becomes large in comparison to m. Integer effect 
has been shown to produce a maximum degradation in speedup of 50% when the 
value m approaches n, however, degradation will be small provided n > > m. 
When a schedule is severely affected by integer effect, one solution is to re-write 
the algorithm so it describes several cycles. This increases the value of n, while the 
number of processors can remain the same. An example of this technique was given 
in section 8.3.5, and was shown to improve speedup considerably.
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9.2.23 Synchronisation and latent scope effects

Synchronisation and latent scope effects are products of the Occam language, 
which are produced by the scheduler in order that schedules can be translated into 
Occam. The first of these effects is caused by Occam’s unbuffered, synchronised 
communication, which requires that both sender and receiver synchronise prior 
to passing data. This effect often introduces delay in communication.

Latent scope effect occurs when communication channels are held in scope while 
they are inactive. This is caused by Occam’s inability to express non-nested, 
overlapping parallelism. This effect tends to reduce the available communication 
bandwidth.

Both these effects are proportional to the number of communications made and 
have been shown (section 8.2) to degrade maximum potential speedup by between 
5% and 25%. Removal of these effects would only be possible if the 
Occam/Transputer model of computation were replaced by a true data-driven 
computational model.

9.2.2.4 Communication cost and topology effects

Communication cost effect can only occur when communication cost is non-zero 
and there exists an actual topology (i.e., m > 1). The degree of communication 
cost effect depends on the processor-communications cost ratio. An increase in 
the cost of communication relative to the cost of processing tends to impede the 
spread of data from one processor to another. This leads to a reluctance by the 
scheduler to exploit parallelism and so produces task coagulation. The effect is 
similar to using coarser grain tasks. Experimental results (section 8.2.4) have 
shown that there is a low speedup degradation (i.e., less than 5%) for ratios above 
10:1, while degradation becomes severe (i.e., greater than 15%) when the ratio 
falls below 5:1.

The topology of the communications network has a definite effect on performance, 
this has been shown in section 8.2.5. The degree of topological effect has been 
shown to rely on m, mean degree and mean diameter of the topology. For example, 
a device such as the Transputer T4-20/20, which has a maximum mean degree of 
four, produces a topological degradation of 50% when the product of m and mean 
diameter is 88 (taken from Figure 8.14). Since mean diameter tends to increase 
with m, then m is probably limited to about 25 in this example.
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9.23 Conclusions on performance

On average, the examples given in chapter 8, yield speedups of between 50% and 
80% of their maximum bound. About half this loss is attributable to non-zero 
communication cost and topological effects. Variation in speedup from one value 
of m to the next can on occasions be considerable. Such large swings are thought 
to be caused by the more non-linear effects, namely integer, synchronisation and 
latent scope effect.

The results highlight the importance of communication bandwidth, which if inade-
quate will restrict the number of processors that can be usefully employed and 
hence, limit the degree of parallelism that can be exploited. This point is particular-
ly relevant when using devices whose processing power vastly outweighs their 
ability to communicate (e.g., T8 Transputer). Perhaps, one can conclude that the 
current floating point Transputer is more suited to coarse grain parallelism, indeed 
this is the manufacturers intention (INMOS, 1986). For the future, it is hoped that 
manufacturers will realise the potential of fine grain parallelism and concentrate 
their efforts on increasing communication bandwidth. Suggestions include a move 
from serial to parallel communication and an increase in the number of links per 
device.

The Occam/Transputer model of computation has been shown to incur zero-cost 
communication penalties. To the best of the author’s knowledge, neither 
synchronisation nor latent scope effects have been previously reported. The 
elimination of these effects may necessitate a move away from the parallel von 
Neumann machine to a static dataflow machine. However, an alternative solution 
lies in a re-design of the Transputer’s architecture, which is typically von Neumann, 
and as such communicates across a single instruction/data bus.

9.2.4 Conclusions on DFDL

The use of DFDL has been illustrated by example, and descriptions have been 
given in chapters 3 and 4. Generally, a language’s suitability to describe an 
algorithm depends on the language’s facilities, its syntax, its computational model 
and the way a programmer interacts with the language. The deterministic nature 
of DFDL does deny a programmer much of the freedom he/she is used to, however, 
the author sees this as another step in the write direction, rather like the introduc-
tion of structured languages and the abolition of the GOTO statement.

The fact that DFDL is deterministic means that it is only possible to describe 
realisable systems. This feature has distinct advantages. For example, DFDL could 
be used as a high level interface to a VLSI automated process for the design of 
integrated circuits. Similarly, the deterministic nature also permits a simple inter-
face to alternative mediums, such as graphics. Conversely, deterministic graphical 
descriptions may be described in a textural form by DFDL.
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9 J  Future work

In common with most research work, there are outstanding problems, unanswered 
questions and unfinished work. This section discusses some of these items.

93.1 Reducing scheduling time

The current complexity of the scheduler is O (n ). Reduction below this com-
plexity is unlikely, unless the quality of scheduling is to be forfeit. However, when 
large task graphs are scheduled the scheduling time may be considered prohibitive. 
In such cases, provision should be made to divide the graph into several sub-graphs. 
The division between one sub-graph and another could be made through arcs that 
form simple cuts.

Another option, which is particularly relevant, is to employ parallel processing on 
the computationally intensive parts of the scheduling algorithm. This could be 
achieved reasonably easily, since the scheduler is a highly parallel algorithm.

93.2 Reducing scheduling memory

Currently, the scheduler loads all the data structures (e.g., task graph, processor 
graph and schedules) into RAM memory. This causes memory overflow when 
problems are large. An alternative approach would be to off-load areas of the task 
graph and schedules on to disk memory.

Other approaches could also be considered. One of these would be to interlace 
task graph construction, analysis, scheduling and translation. However, this would 
be difficult, since analysis (i.e., CPM) requires that the entire graph is available.

9 3 3  Improving the scheduler

Essentially, the scheduler works well and gives good results, however, there are 
areas that could be improved. One of these has been described in section 9.2.2., 
and concerns fixed location output tasks. One solution would be to allow output 
tasks to be scheduled on any processor. This solution is discounted, since an output 
relates to a physical link. An alternative solution would be to weight the scheduling 
heuristic so it accounted for the fixed output. Weighting would be confined to the 
portion of the task graph preceding the output task (i.e., lying close to and on a 
backwards arborescence from the output). The weighting applied to each task 
would decrease in proportion to its distance from the output task, and increase in 
proportion to the length of the shortest path between the task’s processor and the 
output task’s processor.
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9.3.4 DFDL program linker

Individual DFDL programs can be connected together via their external input/out- 
put, provided data types are compatible. When an input and output from different 
programs are connected, then the number of cycles one program performs relative 
to the other is determined by the relative number of inputs/outputs made per cycle. 
Where more than one channel exists between programs, directly or indirectly, then 
the cyclic ratio must be consistent otherwise programs will deadlock. All these 
checks could be performed by a linker.

Normally, the linker would assume that programs are to run on separate devices. 
Where this is not the case, then programs would have to be linked prior to 
scheduling.

Finally, the task graph analysis assumes that I/O is free from external timing 
constraints. Clearly, this will not be the case when two or more separate DFDL 
programs are linked, since there will be timing interaction via their joint I/O. This 
would necessitate either some prefixed timing specification, composite scheduling 
or a progressive scheduling scheme that extracted timing information from adjoin-
ing scheduled programs. The consequence of neglecting this problem may cause 
a loss in throughput from one or more programs when joined together.

9.3.5 Inputs and outputs

The current implementation does not allow multiple input declarations, or multi-
ple output declarations or mixed inputs and outputs to share the same physical 
link. This was done to simplify I/O. However, it is feasible that mixed I/O could be 
employed in practice.

9.3.6 Language model

The current implementation of DFDL does not include conditional statements, 
boolean operators, relational operators, user defined functions, the functions 
MED, MAX or MIN, user defined initialisation, boolean communication, or 
constant expressions. Although provision has been made for most of these items 
in the compiler, work is still required. Other items that could be included in the 
language are double length floating point arithmetic and possibly complex arith-
metic. It is preferred to keep DFDL’s internal data as some form of floating point, 
since this can convey run-time error information.

Other syntax additions may be needed for combining separate DFDL programs. 
Section 9.3.8 suggests some syntax additions to include a textural definition of the 
processor graph.
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93.1 Deadlock avoidance

Deadlock avoidance has not been built into the current version of the scheduler. 
Consequently, it is possible that the Occam produced by the DFDL compiler will 
fail to run. On the occasions when this occurred, it was when there were multiple 
channels joining two processors, and communication had been scheduled in 
opposite directions at about the same time. Further investigation is needed into 
this problem, however, it is thought that the problem may be overcome if the 
scheduler first examines adjacent communication channels before establishing a 
communication.

The extent of deadlock may not be restricted to conflicts between two processors, 
but may involve any number of connected processors. Any comprehensive dead-
lock avoidance scheme would have to take this into account.

93.8 Processor graph definition

Currently, the processor graph is constructed from information entered from the 
keyboard by the user during compile-time. The user interface allows pre-selected 
topologies to be created easily, however, it may take several minutes to create a 
topology that is not included on the menu. It is suggested that an alternative source 
of information be provided. That is, parameters for the processor graph could be 
expressed as a program, for example:

{ { { file, name
... DFDL -- fold containing program
{ { {  PROG
BEGIN

PROC IS T4
CLOCK FREQ IS 20MHz 
LINK FREQ IS 10MHz 
NUMBER IS 4

COST OF TASKS IS STANDARD 
AUTOCONNECT IS OFF

P1, L1 IS INPUT in
P1, L3 IS P2, L1
P1, L4 IS P4, L2
P2, L4 IS P3, L2
P2, L2 IS P4. L1
P3, L3 IS OUT out
P3, L1 IS P4. L3

END
}}}
}}}
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Appendix A. Graph concepts and definitions

Some concepts and definitions of graphs are presented to avoid ambiguity over 
the use of these terms. The following references have been used to compile this 
appendix: (Minieka, 1978; Hetch, 1977; Glaser, Pyle and Illingworth, 1986).

Agraph can be considered as consisting of points, or some other objects in a plane, 
connected together by a number of relationships. These relationships could be 
represented by lines, or arrows, connecting relevant points. Usually, points are 
called nodes (or vertices) and these are given labels, e.g., xi, X2, etc. The relationship 
that connects any two nodes characterises the graph and this relationship may be 
directed or undirected. It is usually convenient to represent directed relationships 
by a line with a single arrow head and undirected relationships by a line (or line 
with arrow head at either end).

Relationships between nodes are called arcs and are often written using the labels 
associated with the connecting nodes, e.g., (xi, X2). Where the relationship is 
directed, node xi is called the tail and X2 the head, and the order in which they are 
written is important. If there is more than one arc connecting two nodes and the 
direction is the same then these may be distinguished by subscripting arcs, e.g., (xi, 
X2)l, (xi, X2)2.

When a graph represents a problem that does not need directed relationships 
between nodes then the graph is called an undirected graph. The undirected arcs 
that make up this type of graph are called edges. The two types of graph, directed 
and undirected, are distinguished from one another by their notation; (X, E) is 
used to denote an undirected graph with node set X and edge set E, and (X, A) 
denotes the directed graph with node set X and arc set A.

Often, the term network is used, here it is merely a graph with one or more numbers 
associated with each arc, or node. A network is not necessarily a directed graph, 
but does refer to graphs that are connected.

An arc that has both the same tail and head node is called a loop. A node and an 
arc are said to be incident to one another if the node makes up the tail, or head or 
the arc. Two arcs are said to be incident to one another if they are both incident to 
the same node. Two nodes are said to be adjacent to one another if there is an arc 
joining them.

Consider the sequence xi, X2, X3,..., xn, xn + 1 of nodes. A chain is any sequence of 
arcs ai, a2, ..., an such that the end points of ai are xi and xi+i for i = 1, 2,..., n. 
Thus, either ai = (xi, xi + 1) or ai = (xi + 1, xi). Node xi is called the initial node of 
the chain and node xn + 1 is called the terminal node of the chain. The chain is said 
to extend from the initial node to the terminal node. The length of the chain equals 
the number of arcs in the chain.
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A  path is a chain for which ai = (xi, xi+i) for i = 1 , 2 , 3 , n. The length, initial 
node and terminal node can be defined similarly. A cycle is a chain whose initial 
and terminal node are the same. A circuit is a path whose initial and terminal nodes 
are the same. The length of a cycle or circuit is defined as the length of the 
corresponding chain. A chain, path, cycle or circuit is called simple if no node is 
incident to more than two of its arcs, i.e., if the chain, path, cycle or circuit properly 
contains no cycles.

A graph is called connected if there is a chain joining every pair of distinct nodes 
in the graph. A graph may be regarded as consisting of a set of connected graphs. 
Each of these connected graph is called a component or the original graph. A graph 
is called strongly connected if for any two nodes x and y in the graph, there is a path 
from x to y.

Let X’ be any subset of X, the node set of graph G = (X, A). The graph whose node 
set is X’ and whose arc set consists entirely of arcs in A with both end points in X’ 
is called the subgraph generated by X ’.

Let A’ be any subset of A, the arc set of graph G = (X, A). The graph whose arc 
set is A’ and whose node set consists entirely of nodes that are incident arcs in A’ 
is called the subgraph generated by A ’.

A set of arcs is called a tree if it satisfies two conditions:

(i) The arcs generate a connected subgraph

(ii) The arcs contain no cycles.

A forest is any set of arcs that contains no cycles. Thus, a forest contains one or 
more trees. A spanning tree of a graph is any tree formed from the arcs of the graph 
that includes every node in the graph. Clearly, no spanning tree can exist in a graph 
that contains more than one component, and every connected graph possesses a 
spanning tree. A tree with one arc contains two nodes, a tree with two arcs contains 
three nodes, etc. In general, a tree with n-1 arcs must contain n nodes. Hence, each 
spanning tree of a connected graph with n nodes consists of n-1 arcs.

A set of arcs whose removal from the graph increases the number of components 
in the graph is called a cut. A cut that contains no other cuts as a subset is called a 
simple cut.

An arborescence is defined as a tree in which no two arcs are directed into the same 
node. Note, several arcs in an arborescence can share a common tail node. An 
arborescence can be thought of as a directed tree that can be used as a grapevine. 
The root of an arborescence is the unique node included in the arborescence that 
has no arcs directed into it.
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Appendix B. EBNF description of DFDL

There are two extended Backus-Naur form descriptions in this appendix. The first 
describes the lexical part of DFDL, while the second part describes the syntax of 
DFDL. All lines preceded by an asterisk are not implemented in this version of 
DFDL; DFDL(mod.state 1/90).

B.l EBNF description of DFDL lexical analyser

non.alphanumeric.char;; = | ! | | | " | £ | $ | % | ~ | & | * | ( | ) | _ | +
! = | { | [ | } | ] | : | ; l @ r i ~ l # l . | . | > l < l ? | / | \ l  I -

digit ::=  1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 
Ic.letter ; ; = a | b | c | d | e | f | g | h | i | j | k | l | m  
| n | o | p | q | r | s | t | u | v | w | x | y | z  

uc.letter ; ; = A | B | C | D | E | F | G | H | I | J | K | L | M  
| N | 0 | P | Q | R | S | T | U | V | W | X | W | Z  

letter ;;=  uc.letter \ Ic.letter 
return:: =  *c
comment:: =  % { o (digit \ letter \ non.alphanumeric.char)} (return | % )
exponent:: =  E monadic.op { 1 digit}
real ::=  [monadic.op] { 1 digit} . {1 digit} [exponent]
integer:: = [ monadic.op ]  {1 digit}
monadic.op :: = + | -
¡dent:: = Ic.letter { o Ic.letter | digit \ . }
reserved.word:: = { 1 uc.letter}
delimiters:: = delim.assign \ delim.plus | delim.minus | delim.mult 
| delim.divide \ delim.power \ delim.rem \ delim.lt \ delim.not.equal 
| delim.gt \ delim.lt.eq | delim.gt.eq \ delim.equal \ delim.continued 
| delim.lh.bracket \ delim.rh.bracket \ delim.lh.square \ delim.rh.square 
| delim.comma | delim.semi.colon
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delim.assign :: = : = 
delim.plus :: = + 
delim.minus :: =  - 
delim.mult ::=  * 
delim.divide :: = / 
delim.power :: =  ** 
delim.rem :: = \  
delim.lt :: =  < 
delim.not.equal :: =  < > 
delim.gt::= > 
delim.lt.eq :: = < -  
delim.gt.eq :: = > = 
delim.equal :: = = 
delim.continued ::=  { 2 . } 
delim.Ih.bracket :: =  ( 
dellm.rh.bracket :: =  ) 
delim.Ih.square :: =  [ 
delim.rh.square :: = ] 
dellm.comma :: = , 
delim.semi.colon :: =  ;

reserved.word.types :: = delim.abs \ delim.acos \ delim.alog \ delim.and 
I delim.asin \ delim.atan \ dellm.begin \ delim.byte \ delim.cos 
I delim.end \ delim.el se \ delim.elseif \ delim.every \ delim.exp 
I delim.expression \ delim.for \ delim.forever | dellm.from 
I delim.funct | delim.init \ delim.int \ delim.if \ delim.is \ delim.log 
I delim.ln \ delim.mod \ delim.max \ delim.mean | delim.med 
I delim.min | delim.not \ delim.or \ delim.prod \ delim.program 
I delim.repeat \ delim.result \ delim.real \ delim.sin \ delim.sqrt 
I delim.sgn \ delim.sum | delim.tan \ delim.table \ delim.then 
I delim.value \ delim.z

delim.abs :: =  ABS 
delim.acos :: =  ACOS 
delim.alog :: =  ALOG 
delim.and ::= AND 
delim.asin :: = ASIN 
delim.atan :: =  ATAN 
delim.begin :: =  BEGIN 
delim.byte :: = BYTE 
delim.cos :: = COS 
delim.end :: = END 
delim.else :: = ELSE 
delim.elseif :: = ELSEIF 
delim.exp :: = EXP
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delim.expression :: =  EXPRESSION
delim.every:: =  EVERY
delim.for:: = FOR
delim.forever:: = FOREVER
delim.from ;; = FROM
delim.funct ::= FUNCTION
delim.init ::= I NIT
dellm.int::= I NT
delim.if:: =  IF
delim.is:: =  IS
delim.log:: = LOG
delim.ln:: = LN
delim.max:: = MAX
delim.mean ::=  MEAN
delim.med ::= MED
delim.min ::= MIN
delim.mod ::= MOD
delim.not ::= NOT
delim.or::= OR
delim.prod:: =  PROD
delim.program :: = PROG
delim.result:: =  RESULT
delim.repeat:: =  REPEAT
delim.real:: =  REAL
delim.sin:: =  SIN
delim.sqrt ::= SORT
delim.sgn:: = SGN
delim.sum ::= SUM
delim.tan:: =  TAN
delim.table :: =  TABLE
delim.then ;;= THEN
delim.value ::= VALUE
delim .z::= Z
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B.2 EBNF description of DFDL syntax

B.2.1 Program

program :: = PROG program.name 
(ext.declaration) int.declaration 
BEGIN assignment.section END 

program.name:: = ¡dent

B.2.2 External and Internal declarations

ext.declaration ::=  {1 { o input.declaration}
{ 1 output.declaration} } 

int.declaration :: = {o { o node.declaration}
{ o constant.declaration}
{ o function.declaration} }

B.23 Input, output and node declaration

input.declaration :: = INPUT(data.type) input [sub.size] {o, input 
[sub.size]}
output.declaration ::=  OUTPUT [data.type ) output [sub.size] { o, output 
[sub.size]}
node.declaration ::=  NODE node [sub.size] { o, node [sub.size]} 
input ::=  ident 
node:: =  ¡dent 
output ::=  ¡dent
data.type ::=  BYTE | INT16 | INT32 | REAL32 
sub.size :: = column.size [row.size] 
column.size :: = [pos.integer] 
row.size :: =  [pos.integer]

B.2.4 Constant declaration

constant.declaration ::=  VALUE (constant [sub.size] IS constant.expres- 
sion
| undefined.constant [sub.size] IS EXPRESSION
j TABLE constant [sub.size] IS table) 

constant ::=  ¡dent 
undefined.constant:: = ¡dent 
sub.size ;;=  column.size [row.size] 
column.size :: =  [pos.integer] 
row.size :: =  [pos.integer] 
table :: =  real.string { o ; real.string} 
real.string:: = [real { o , real} ]
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B.2.5 User defined function declaration

*function.declaration ::=  FUNCTION function.name {[formal.parameters] ) 
function.body 
* function, name :: = ¡dent
^formal.parameters ::=  formal [sub.size] { o , formal [sub.size]}
*formal ¡dent
*function.body ::=  {o { o node.declaration}
*{ o constant.declaration}
*{ o function.declaration} }
*BEGIN { o assignment}
*RESULT : = ( conditional.expression | expression )

B.2.6 Assignments

assignment.section ;;=  [ I NIT in it.section]
REPEAT ( FOREVER | FOR non.neg.integer) repeat.section

B.2.7 Initialise assignment

*initialise.section :: =  { 1 value.constant | init.assignment} 
*value.constant:: = undefined.constant IS constant.expression
* init.assignment:: = init.object : = constant.expression 
*init.object:: = input { o spatial.sub} Z temporal.sub 
*|  output {o  spatial.sub} Z temporal.sub
*| node {o  spatial.sub} Z temporal.sub

B.2.8 Constant expressions

*constant.expression:: = constant.operand
* | monadic.function constant.operand
* | multi.function constant.operand { o , constant.operand}
* | conv.function spatial.sub
* | monadic.op constant.operand
* | constant.operand dyadic.op constant.operand

B.2.9 Constant operands *

* constant.operand:: =  real 
*| constant { o spatial.sub}
*\ {constant.expression ) 
spatial.sub = fixed.sub \ repetition.sub
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B.2.10 Subscripts

spatial.sub :: = fixed.sub \ repetitive.sub 
temporal.sub :: =  fixed.sub \ repetitive.sub 
fixed.sub :: = [non.neg.integer.expression ] 
repetition.sub :: =  [repetition.ident 
FROM non.neg.integer.expression 
FOR pos.integer.expression 
[ EVERY integer.expression ]  ] 

repetition.ident:: =  ident

where non.neg.integer.expression > = 0 
and pos.integer.expression > 0

integer.expression :: = integer.operand 
| monadic.integer.op integer.operand 
j integer.operand dyadic.integer.op integer.operand 

integer.operand:: = integer 
* | ( integer.expression ) 
monadic.integer.op :: = + \ - 
dyadic.integer.op ::= +  ] - | * | MOD

B.2.11 Real arithmetic operators

monadic.op :: = + | - 
dyadic.op ::=  + \ - | * | / | \  | **

B.2.12 Functions

monadic.function ::=  ABS | ACOS | ASIN 
| ATAN | COS | EXP | LOG | LN | SGN 
I SIN | SORT | TAN | ALOG 

multifunction ::=  MEAN | SUM | PROD 
*MAX | MIN | MED 
conv.tunction ::=  REAL

B.2.13 Repeat assignment

repeat.section :: =  { 1 assignment}
assignment:: = object : = (expression \ conditional.expression)
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object ::=  node { o spatial.sub} \ output { o spatial.sub}

B.2.15 Expressions

B.2.14 Objects

expression:: = operand 
| monadic.function operand 
j multi.function operand { o , operand} 
j conv.function spatial.sub 
| monadic.op operand 
| operand dyadic.op operand

B.2.16 Operands

operand ::=  real
| input { o spatial.sub} [ Z temporal.sub]
| output { o spatial.sub} [ Z temporal.sub]
| node { o spatial.sub} [ Z temporal.sub]
I constant { o spatial.sub}

*| function.instance 
| (expression )

*function.instance :: = function.name ( [  passed.parameters ]  ) 
*function.name:: =  ¡dent 
* passed.parameters :: = operand { o , operand}

B.2.17 Conditionals

*conditional:: = IF boolean.expression 
*THEN (expression \ [conditional.expression ) )
*{ o ELSEIF boolean.expression TFIEN (expression | [conditional.expres-
sion ) ) }
*ELSE (expression \ [conditional.expression ) )

B.2.18 Boolean expressions

* boolean, expression :: =  relational.expression
* | monadic.boolean.op relational.expression
*| relational.expression dyadic.boolean.op relational.expression
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B.2.19 Relational expressions

*relational.expression :: = operand relational.op operand
* | {boolean.expression)

B.2.20 Relational operators

* relational, o p ;; = < | < = | = | > = | > | < >

B.2.21 Boolean operators

*monadic.boolean.op:: = NOT
* dyadic.boolean.op ::=  AND | OR
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Appendix C. User’s guide

C.1 Installation

The DFDL compiler and examples are contained on four low-density disks. The 
compiler is used inconjunction with the D700 TDS, this must be installed prior to 
running DFDL.

In order to install the DFDL compiler and examples you will need at least 2Mbytes 
of hard disk space. To install DFDL place disk #1 in drive A: and type

A: INSTALL

The batch file INSTALL.BAT creates the directory C:\DFDL and transfers the 
contents of disk #1 into that directory. A prompt will request the remaining disks 
#2, #3 etc. The compiled code is executable on the T4 Transputer. If DFDL is to 
be run on other types of Transputer then the code will have to be re-compiled. 
Consult the DFDL information fold for any pre-compilation settings.

C.2 Getting Started

The user should be familiar with TDS and its folding editor before running DFDL. 
Assuming this is so, DFDL is started by running TDS2.BAT in C:\DFDL. This will 
result in the four top folds:

...F UTILITY.TOP 

...F DFDL.TOP 

...F EXAMPLE.TOP 

...F USER.TOP

appearing on the screen. All folded structures are denoted by their leading dot dot 
dot notation. A description of the TDS fold structure is given in the TDS literature 
and a tutorial is provided for those users unfamiliar with the TDS folding editor.

The contents of the four top folds are:

.  UTILITY.TOP TDS/OCCAM utilities for compiling, configuring, file utilities, 
etc.

• DFDL.TOP DFDL compiler, DFDL library and DFDL information

• EXAMPLE.TOP examples of DFDL source programs 

.  USER.TOP user program area
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C3 Running the DFDL compiler

The DFDL compiler is used by getting the compiler’s executable code, this is 
covered in steps 1 to 3:

1 Enter the top fold ... DFDL.TOP
2 Place cursor on ... DFDL Compiler
3 Press [get code] (key [F5])
4 Move to source file and place cursor on fold line
5 Press [run code] (key [F6])

Step 5 executes the DFDL compiler, which takes as its input the source file selected 
in step 4.

C.4 Exiting

At almost every point in the compilation, the user can abandon the process by 
pressing [Alt][F2]. If necessary, TDS can be reset by pressing [Ctrl] [Break] or 
[Ctrl][Y], then [Space]. To exit TDS normally, move to the top fold structure using 
[PgUp], then press [Alt][F2].

C.5 Making a DFDL source file

DFDL source files are made using the TDS folding editor. Several examples are 
given in the top fold EXAMPLE.TOP. At the outer level a source program looks 
like:

...F filename

The filename can comprise letters and numbers, but must be free from full stops 
and non-alphanumeric characters. All source files are automatically given the 
extension .tsr by the TDS folding editor when first made. TDS (D700 implemen-
tation) only accepts the first six characters of a filename . Duplicate filenames are 
catered for by the TDS editor.
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Inside the outer fold of a DFDL source file (fold 0) is the source fold (fold 1):

{{{F  filename 
... DFDL
}}}

This fold is always identified by the name DFDL and is not filed. Within this fold 
resides the source program written in DFDL, this fold (fold 1) can contain other 
folds as stipulated by the TDS editor. Folds within fold 1 are ignored by the DFDL 
compiler, and hence, not displayed in DFDL error reports.

{ { {  DFDL 
... fold 
... fold 
... fold

... fold
}}}

Additional folds may be created by the DFDL compiler, these are located within 
the outer fold (fold 0), immediately after the DFDL fold:

{{{F  filename 
... DFDL 
... fold 
... fold

... fold
}}}

These folds contain syntax error reports and object code; occam source folds. The 
contents of all folds located after fold 1 (denoted DFDL) are ignored by the DFDL 
compiler. Error folds and object code folds should be removed by the user when 
not needed.

C.6 Flow

A flow diagram of the compiler options is given by Figure C.l, this is comple-
mented by descriptions of each section, these are given below:

C.6.1 Processor type

The user chooses the type of processor the object code is required to run on, this 
may be different from the compiling processor. Options are T4 (T414 transputer) 
or T8 (T800 transputer).
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Figure C.l Compiler flow diagram
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C.6.2 Clock frequency

The user chooses the clock frequency of the target processor, this affects the time 
(or cost) operations take to run on the object processor, which in turn, affects the 
analysis performed by the compiler. Options range from 1MHz to 99MHz in 1MHz 
steps.

C.6.3 Link speed

The user selects the link speed of the target processor, this affects the communica-
tion time between object processors, which in turn, affects the analysis performed 
by the compiler. Options range from IMbits/sec to 99Mbits/sec in IMbits/sec steps.

C.6.4 Number of processors

The number of object processors is chosen by the user, the number may be in the 
range 1 to 99 inclusive. A suggested number is provided by the compiler at this 
stage. This number is calculated as a by-product of critical path analysis and is the 
truncated integer result of:

(total task cost / critical path cost) + 0.5

This estimate neglects communication costs, which are only available once 
scheduling has been performed. This figure may deviate, somewhat, from the best 
number of processors for implementation and should, therefore, only be used as 
a guide. In addition to this estimate are two pre-schedule program profiles that 
can be displayed by pressing the [V] key. These display the results of the critical 
path algorithm as time vs. number of useable processors.
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C.6.5 Connect links

The user has to inform the compiler of all the object processor links that are 
dedicated to inputting and outputting data. Defining inter-processor link connec-
tions are optional, because the compiler incorporates an auto-router. Messages 
will alert the user to the following:

. When connecting links:
(i) Connection of a link isolates an unconnected processor(s) from future 
connection.
(ii) A link is already connected.
(iii) A link cannot be connected to itself.
(iv) A link cannot be connected to the same processor as it is connected.

. When requesting an input connection:
(i) The source program does not contain inputs.
(ii) All inputs have been connected.

. When requesting an output connection:
(i) All outputs have been connected.

. When exiting the connecting process:
(i) An input or output is not been connected.
(ii) Warning, there is more than one processor net.
(iii) There are isolated processors.

A multiple net condition is only a warning, since auto-routing will connect any 
processors required during the scheduling process.

C.6.6 View Connections

While there is a valid processor graph (or net), the user can look at the intercon-
nections between processors and input and output connections without 
re-entering the connection process.

C.6.7 Schedule * •

There are several options the user can take before the scheduling process begins:

. Auto-route toggles the auto-route option ON/OFF. Auto-route ON is 
mandatory if there are multiple processor nets. Conversely, auto-route 
OFF is mandatory when there are no valid unconnected links.

• Alarm toggles the alarm option ON/OFF. The alarm alerts the user that 
the scheduling process has completed. This may be advantageous when 
scheduling is expected to take a long time.
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. Display toggles the schedule display ON/OFF. The schedule display shows 
the user
(i) Number of tasks to be scheduled.
(ii) Number of tasks available.
(iii) Number of processor nets.
(iv) Number of tasks scheduled.

• Root allows the user to select the processor from which the scheduling 
process begins. This may affect the outcome of the scheduling process, 
especially when the topology of the processor net is irregular.

. Accept begins the scheduling process.

C.6.8 Schedule display •

The schedule display presents the user with view of the processor and link 
schedules. These are arranged across the screen in the form of a Gantt chart. The 
screen displays up to 3 sets of processor/link schedules at a time, each comprising 
a processor schedule and four link schedules.

The schedule display flow is shown by Figure C.2.

. [FI] Help menu.

• [F2] Timing display: see timing display flow.

• [F3] Change view: allows the user to select different processor schedules 
for display.

• [F4] Show the menu at the bottom of the screen.

. [F5] Decrease step size by one: the step is used by other functions.

• [F6] Increase step size by one: the step is used by other functions.

• [F7] Begin schedule: moves the screen to the beginning (time zero) of the
schedules.

• [F8] End schedule: moves the screen to the end of the longest schedule.

• [F9] Down schedule: moves the screen towards the beginning of the 
schedule by the step size.

• [FIO] Up schedule: moves the screen towards the end of the schedule by 
the step size.

. [ + ] Zoom in: decrease the scale of the schedule display by the step size.

. [-] Zoom out: increase the scale of the schedule display by the step size.
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. [PgUp] Scroll up: move the screen up, to display the processor schedule 
above that already at the top of the screen.

• [PgDn] Scroll down: move the screen down, to display the processor 
schedule below that already at the bottom of the screen.

. [Home] Top: move the screen to display the first processor schedule at the 
top of the screen.

• [End] Bottom: move screen to display the last processor schedule at the 
bottom of the screen.

• [Ins] Connect information ON: display link connection information. This 
is displayed on the right hand side of the screen and obscures part of the 
schedules.

• [Del] Connect information OFF: replace link connection information by 
link schedules.

• [Rtn] Initialise display

• [Alt][FI] Data analysis: see data analysis.

• [Esc] Exit display.

. [Alt][F2] Exit to TDS.

C.6.9 Timing display * •

The timing display can only be used when the displayed scale is 1:1. It allows the 
cursor to be moved around the screen so further information can be extracted from 
the display. When the cursor is placed on a schedule the task beneath the cursor 
is highlighted. The type of task and its starting and finishing times are displayed at 
the top of the screen. The timing display flow is shown by Figure C.3.

. [FI] Help menu.

• [F3] Change view: allows the user to select different processor schedules 
for display.

• [F4] Show the menu.

• [F5] Decrease step size by one: the step is used by other functions.

• [F6] Increase step size by one: the step is used by other functions.

. [F7] Begin schedule: moves the screen to the beginning (time zero) of the
schedule beneath the cursor.
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Figure C.3 Timing display

C-10



• [F8] End schedule: moves the screen to the end of the schedule beneath 
the cursor.

. [F9] Down schedule: move the screen towards the beginning of the
schedule by the step size.

• [F10] Up schedule: moves the screen towards the end of the schedule by 
the step size.

. [PgUp] Scroll up: moves the screen up, to display the processor schedule 
above that already at the top of the screen.

• [Pgdn] Scroll down: moves the screen down, to display the processor 
schedule below that already at the bottom of the screen.

. [Home] Top: moves the screen to display the first processor schedule at the 
top of the screen.

• [End] Bottom: moves the screen to display the last processor schedule at 
the bottom of the screen.

• [Ins] Connect information ON: display link connection information. This 
is displayed on the right hand side of the screen and obscures part of the 
schedules.

• [Del] Connect information OFF: replace link connection information by 
link schedules.

. [Rtn] Initialise display

• [Alt][Fl] Data analysis: see data analysis.

• [Esc] Exit timing display and return to the schedule display.

• [Alt][F2] Exit to TDS.

• [Tab left] Move cursor 10 places left

• [Tab right] Move cursor 10 places right.
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C.6.10 Data analysis

The data analysis selection provides the user with data from the schedules. The 
format of the data is given below:

• Total task cost: this is the sum of all tasks in the task graph and is equivalent 
to the cost (or time) expended by a single processor when executing all the 
tasks. This figure excludes communication costs.

• Critical path cost: the cost of the longest path through the task graph. This 
excludes communication costs.

• (Total task cost / critical path cost): gives the maximum limit of available 
processor speed up, ignoring communication costs.

. Number of processors selected.

. Maximum processor cycle: the cost (or time) of the longest processor 
schedule.

• Maximum link cycle: the cost (or time) of the longest communications link 
schedule.

. (Total task cost / maximum cycle): gives speed up. The maximum cycle is 
the greatest of the two cycle costs; maximum processor cycle and maximum 
communications link cycle.

. Maximum latency: the greatest time from when a signal enters an input to 
when it exits at an output.

• Maximum overlap: the maximum possible overlap cost between successive 
schedules.

During analysis, the latency results for up to 400 paths can be stored, these can be 
displayed using the [Left] and [Right] cursor keys.

For each processor, the processor and link cycle cost, utility, percentage cycle cost 
and percentage utility are displayed towards the bottom of the screen, one proces-
sor at a time. Other processor’s cycle cost, utility, etc. are available for display using 
the [Up] and [Dn] cursor keys.
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C.6.11 Translate

The translate option converts the schedules into object code (Occam). There are 
two translate options:

. the first is labelled TDS, this creates object code for execution within the 
TDS environment.

. the second option, T4 or T8, generates object code suitable for execution 
on multiple processors.

The translate option is not completely implemented in this version of DFDL, 
DFDL(mod.state 1/90), consult the DFDL information fold for details.

C.6.12 System utilities

The [?] key calls the system utilities option, these include: schedule inspection, 
graph inspection, compiler array use, timer and symbol table inspection.

C.6.13 Add user task costs

The [!] key calls the option to adjust the cost assigned to tasks.

C.6.14 Information fold

A summary of the pre-shedule and post-schedule profiles, predicted and actual 
results are written into a single fold at the end of the fold bundle within the outer 
source fold.
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Appendix D. Programmer’s guide

D.l Reading the source file

It is the purpose of the process &Read to open, read and close a DFDL source file. 
In doing so, &Read adds a communication protocol to the source file data which 
it has read, and sends it to &Lex in the form of an omni-directional data/control 
stream. Termination of an uncompleted data stream is not possible from outside 
&Read, because data/control only flows out of &Read. Termination occurs when 
the source file has been read completely, or there is an error associated with 
opening, reading or closing the source file.

&Read mainly consists of two TDS library routines. These are read.fold.stringO 
and keystream.from.fileO. Details of these two library routines can be found in the 
TDS Programming interface literature or under TDS in directory C:\TDSIOLIB.

D.1.1 File name

The library routine read.fold.stringO, reads the character string associated with 
the first folded structure (fold 1) found at the top of the outermost fold (fold 0). 
Fold 0 is that fold which lies beneath the screen cursor when the routine is 
executed. The character string attributed to fold 1 is checked to be equal to 
"DFDL", this indicates that the fold contains a source program. An erroneous string 
or a file read error will cause &Read to send the message:

read.error / ft.terminated

and then terminate, whereas a successful read of the DFDL label causes &Read 
to read the contents of fold 1.
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D.1.2 File contents

Provided the initial opening and reading of the file was successful, the transfer of 
its contents then commences. The library routine keystream.from.fileO reads the 
contents of fold 1 and writes them to &Lex, a process running in parallel with 
&Read. In the course of reading and writing, keystream.from.fileO removes all 
characters associated with the Occam fold structure, this allows the user to employ 
a folded source program structure without corrupting the program. At the end of 
each line, keystream.from.fileO inserts a return character, and at the end of the 
file it inserts a termination tag, ft.terminated. For example a typical data/control 
stream would look like:

F / i / r / s / t  / / l /  i /  n /  e / return 
S / e / c / o / n / d  / / l /  i /  n /  e / return

L / a / s / t  / / l /  i /  n /  e / return 
ft.terminated / errornum

An error value is appended to the termination tag, to indicate the outcome of 
closing the source file. Successful closure is represented by the value fi.ok, other-
wise a su itab le  e rro r value is appended according to the erro r; see

D.2 Lexical analysis

Under non-error conditions, &Lex reads the data/control stream from &Read. 
First the file name, followed by program character streams divided into lines by 
the return character, *c. The final string &Lex reads is the terminate tag, ft.ter-
minated, followed by a value indicating the state of file closure. Once the terminate 
string is read, &Lex terminates.

While &Lex reads the data/control streams from &Read, it conditions the input 
data and sends the results to &Syntax in a handshaken form. The input data is 
conditioned by lexical parsing, which identifies and tags numbers, identifiers, 
keywords and delimiters. Other inputs such as comments and spaces are removed 
at this stage. Numbers are accepted in the format of real or integer, and are 
converted from their character representation to a 32bit real or integer form 
depending on their type. An EBNF description of the lexical analyser can be found 
in Appendix B.
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D.2.1 Protocol &Lex-&Syntax

The protocol between &Lex and &Syntax, a parallel process to &Read and &Lex, 
takes the form of a bi-directional data/control stream. From &Lex to &Syntax the 
stream is a fixed 4 word string followed by a variable size string, length of zero or 
more. In reply, the stream from &Syntax to &Lex is a single word. The contents 
of the outgoing stream is determined by the lexical item being sent from &Lex to 
&Syntax and the status of the lexical analyser. There are 7 different cases, these 
are illustrated below:

1 Identifier: lex.ok / ident.tag / line.no / SIZE(str) / str[0] /... / str[SIZE(str) -1]
2 Keyword: lex.ok / keywrd.tag / line.no / SIZE(str) / str[0] /... / 
str[SIZE(str) -1]
3 Delimiter: lex.ok / delimiter / line.no / X
4 Integer: lex.ok / integer.tag / line.no / Integer
5 Real: lex.ok / real.tag / line.no / real
6 Error: lex.error / error.type / line.no / error.value
7 Terminate: lex.end / X / X / X

Cases 1 and 2 have variable length strings, because they have to send a character 
string of unknown size. All other cases are a fixed string of 4 words (32 bits each). 
The line number (line.no) is determined within the lexical analyser by counting 
the number of return characters which have been read from &Read.

The incoming stream from &Syntax to &Lex is a fixed length of one word. This 
word is an acknowledgement from &Syntax. The single word can be in one of two 
states:

1 Syntax OK: syntax.ok
2 Syntax error: NOT syntax.ok

If an error is detected, either from within &Lex, or from &Read or &Syntax (case 
2 above), the remaining data/control stream from &Read is read continuously until 
&Read terminates. The error string (case 6) is then sent to &Syntax, after which, 
&Lex terminates.

During non-error conditions, a data/control stream will be received from &Read, 
conditioned by lexical analysis and sent to &Syntax. Provided a syntax.ok acknow-
ledgement is received from &Syntax, &Lex will read another stream of inputs from 
&Read. This will continue, provided there are no errors, until the terminate string 
is received. Thereupon, the end string (case 7) is sent to &Syntax, after which, 
&Lex terminates.
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DJ Syntax analysis

The process &Syntax comprises 4 phases. Each phase has a different function and 
only the first two phases are strictly concerned with syntax analysis, these two 
phases run in parallel with &Read, &Lex and &Graph. The second phase is ended 
by the termination of &Read, which causes &Lex to terminate. Phase 3 terminates 
&Graph, and runs in parallel with the consecutive processes &Schedule and 
¿¿Translate. Phase 4 terminates ¿¿Translate and initiates, then terminates ¿¿Error 
where necessary. The screen and keyboard processes, ¿¿Screen and ¿¿Key respec-
tively, run in parallel with ¿¿Syntax throughout and are the last two processes to 
terminate. Table D .l illustrates the concurrent operation of the compiler.

Phase 1: Initialise 
Phase 2: Syntax analysis 
Phase 3: User 
Phase 4: End

phase 1 phase 2 phase 3 phase 4

&User

&Syntax

&Read

&Lex

&Graph

&Schedule

¿¿Translate

¿¿Screen

¿¿Key

¿¿Error

Table D .l Concurrent compiler operation

Briefly, phase 1 initialises the hash table and symbol table. Phase 2 performs the 
syntax analysis on the data received from ¿¿Lex and controls the construction of 
the DAG (directed acyclic graph) via ¿¿Graph. The DAG represents the DFDL 
source program. Phase 3 is a user interactive stage. From here, the processor graph 
construction is controlled via ¿¿Schedule and the scheduling of the DAG onto the 
processor graph is initiated. Phase 3 also controls other functions like schedule 
display (within ¿¿Schedule), processor graph display (within ¿¿Schedule) and 
translation (within ¿¿Translate). The final phase, phase 4, displays any source 
program error that has been detected during read/syntax/lexical analysis and 
terminates all concurrent processes. ¿¿Screen, ¿¿Key and ¿¿Error then terminate 
jointly.
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D3.1 Initialise

D3.1.1 Variables

&Syntax and &User are the two central modules (&User takes over from &Syn- 
tax), and directly or indirectly, have control over all other processes. For this 
reason, they maintain a record of the state of all directly connected modules 
(except &Screen and &Key). In the initialise phase these are all set to an active 
state:

state.of.lex: = lex.ok 
state.of.syntax: = syntax.ok 
state.of.graph : = graph.ok 
state.of.schedule : = schedule.ok 
state.of.translate : = translate.ok

These states are used to prevent communication to other modules once they have 
terminated, and so avoid deadlock. The syntax state is used to control the program 
flow for &Syntax, &User and &Error.

Other variables set at this stage are associated with the symbol table and the error 
routine.

D.3.1.2 Reserved word initialisation

The main purpose of initialise is to set the hash and symbol tables in a ready state 
for syntax analysis. This is done by pre-entering the keywords into the symbol table, 
via the hash table:

reserved.word:: = ABS | ACOS | ALOG | AND | ASIN | ATAN | BEGIN 
| BYTE | COS | END | ELSE | ELSEIF | EXP | EXPRESSION | EVERY 
| FOR | FOREVER | FROM | FUNCTION | INIT | INT | IF | INPUT 
| IS | LOG | LN | MAX | MEAN | MED | MIN | MOD | NODE 
| NOT | OR | OUTPUT | PROD | PROG | RESULT | REPEAT 
| REAL | SIN | SORT | SGN | SUM | TAN | TABLE | THEN 
| VALUE | Z

To begin, all locations in the hash table (SIZE = 200) are set to an empty value 
(empty = 0), and the start of the next free location in the symbol table is set to 1 
(set during initialise phase). An empty value, in a hash table location, signifies 
there has not been a character string entered via the hash table that maps onto that 
location. Hence, if all locations are empty, the hash table, and consequently the 
symbol table, are empty. The reserved words are then entered into the symbol 
table via the hash table using a hash function.
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D3.1.3 Hash function

The input to the hashing routine is a character string ([]str) of one or more 
characters. This is processed by the hash function to give a deterministic value of 
good distribution. The character string []str is read into []buf, []buf = (SIZE 
str)/str[0]/.../str[(SIZE str) - 1], the hash function produces a value which is the 
EX-OR of successive character products (except the first product which includes 
the string size). The hash function is shown below:

hash.value : = 0
SEQ i = 0 FOR (SIZE str)

hash.value : = hash.value EXOR (buf[i] * buf[i + 1])

The result hash.value, is then divided by (SIZE hash.table) and the remainder 
taken. The remainder lies between 0 and (SIZE hash.table) -1 . The remainder 
value is used as an address to the hash table.

address : = hash.value REM (SIZE hash.table)

The contents of the location hash.table [address] is either equal to zero (empty 
value), or lies within the range 1 to (SIZE symtab) -1. If equal to zero, the character 
string does not already exist in the symbol table. If non-zero, the character string 
may exist in the symbol table.

D.3.1.4 Appending the symbol table

Whenever a character string has been mapped onto an empty location in the hash 
table, the character string may be directly appended to the symbol table. New 
entries of this type are either new identifiers (new.¡dent ) or reserved word 
initialisations (new.reserved.wrd). The character string is entered into the sym-
bol table, preceded by its size. The first symbol table address of the entry is placed 
in the hash table at the location hash.table[address].

In the second case, where the hash table location is non-empty (symbol table 
address), the routine examines the symbol table contents at the location beginning 
symtab[hash.table[address]]. If the character string in the symbol table matches 
the accessing string, then the character string already exists in the symbol table. 
This represents a repeated identifier (¡dent ) or repeated reserved word 
(reserved, w rd ), and would be an erroneous case for the initialisation of reserved 
words.

A third situation occurs when the character strings do not match. This is called a 
collision; different character strings map onto the same hash table location. 
Collisions are overcome either by re-hashing or chaining. In this case we use 
chaining.
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D3.1.5 Chaining

Chaining caters for hash collisions, and unlike other methods prevents bunching 
in the hash table or the re-building of the symbol table. Different character strings 
which map onto the same hash table address are linked together in a chain (single 
linked list). At each symbol table entry, a word is reserved for the chain address. 
In effect, the chain location serves as an extension to the hash table. Chain locations 
are initially set to empty.

D.3.1.6 Symbol table format

The first four fields of a symbol table entry are identical for both reserved words 
and identifiers. Identifiers entries have an additional three fields to hold dimension 
and data structure information.

(a) Reserved words

Field 1: Size.field holds the size of the character string.
Field 2: Char.field is a variable size (size defined in Size.field)
Field 3: Chain.field, links entries with the same hash table address.
Field 4: Type.field holds the type of entry, reserved.word.types (400 - 499).

Reserved word symbol table format is illustrated below:

size.field | char.field | chain.field | type.field

As an example, the reserved word NOT would be entered Into the symbol 
table as shown below:

3 | N | O | T | empty | delim.not

(b) Identifiers

Identifier symbol table entries are:

Field 1: Size.field holds the size of the character string.
Field 2: Char.field is a variable size (size defined in Size.field). 
Field 3: Chain.field, links entries with the same hash table address. 
Field 4: Type.field holds the type of entry, ident.type. (500 - 599). 
Field 5: Col.field, holds column size.
Field 6: Row.field, holds row size.
Field 7: Graph.field, holds pointer to the data flow graph.
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The format of the ident.type entry is illustrated below:

size.field | char.field | chain.field | type.field | col.field | row.field | graph.field

ident.type:: = input.type \ node.type | output.type 
| const.type \ function.type \ subscript.type

The three additional fields, col.field, row.field and graph.field, are used to hold the 
spatial dimensions (column and row) and a pointer to the DAG. The pointer links 
the symbol table entry to the DAG, pointing to the vertex (or node) which has an 
index of zero. For example an input "read" (dimension [2][4]), whose vertex 
corresponding to element read[0][0] is at location 605 in the graph structure, would 
be entered into the symbol table as shown below:

4 | r | e | a | d | empty | input.type | 2 | 4 | 605

Where column, or column and row, dimensions are not specified, a default value 
of 1 is assigned.

D.3.1.7 Symbol table limits

The symbol table is of a finite size (2000). Should overflow occur it will result in 
the error message:

"Implementation limit; symtab[ ] is full"

D.3.2 Syntax analysis

Syntax analysis is achieved using a top-down, syntax analyser. The grammar of 
DFDL is free from left recursion and can be parsed without resorting to backtrack-
ing. Parenthesised expressions do cause problems however, as these lead to self 
embedding which is difficult to handle using top-down analysis. This is overcome 
by storing complete assignment statements, whereupon they are decomposed into 
simple expressions (operator, left operand, right operand) prior to parsing. This 
process allows us to remove all parentheses, where upon top-down analysis can be 
performed on each simple expression/assignment.

The syntax of DFDL does not employ any operator-precedence, and relies entirely 
on the use of parentheses to determine the order of execution in multiple operator 
expressions. Even identical operators in the same expression have to be ordered. 
This results in an unambiguous structure (precedence relationships) and allows 
the user to experiment with different structures for the same program.
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The complete syntax for DFDL is expressed in Appendix B. Certain operations 
and functions are not implemented by the current version of the syntax analyser, 
which implements a restricted form of DFDL referred to as DFDL(mod.state 
1/90). Differences between DFDL(mod.state 1/90) and the complete DFDL 
syntax are in the following areas:

1 User defined functions: not available
2 Value initialisation: not available but delay variables are set to 0.0.
3 Conditional assignment: not available
4 Integer expressions: simple expressions only
5 Functions: restricted set

D.4 Syntax analyser description

To supplement the BNF description of the syntax (Appendix B), flow diagrams 
are used the describe the DFDL(mod.state 1/90) implementation. A top-down 
approach is employed, using rectangular boxes to express terminal items, and 
round-edged rectangular boxes to express non-terminal items. Where necessary, 
diagrams are supplemented by control information.

The syntax program flow is divided into 2 main non-terminal blocks, declaration 
and assignment, these are illustrated by Figure D.l.

Figure D .l Program flow

D.4.1 Declaration flow

The declaration block is described first. This block is expanded as illustrated by 
Figure D.2. All the non-terminal blocks after PROG are optional except output. 
There must be at least one output in a source program.

Figure D.2 Declaration flow
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D.4.1.1 Input, node and output flow

Within the input, node and output blocks, the parsing action is similar. For each 
identifier, the product of column size and row size is checked for a maximum limit, 
which is defined as max.array.size (65536 elements). The minimum limit is 1. If 
max.array.size is exceeded, an error message is given:

"Implementation limit; array size too big"

The maximum array size is dictated by the size of the index storage in the graph 
(DAG) data structure. The zeroth index element (index = 0) of an array, has its 
attributes sent to &Graph. &Graph builds a vertex in the graph data structure 
which represents this element. The format of the attribute string is as follows:

mv.dec.type / datatype / label / Index

mv.dectype:: = mv.input.dec | mv.node.dec | mv.output.dec 
datatype BYTE | INT16 | INT32 | REAL32 
label:: = 1 | ... | (SIZE symtab) -1 
index ;;=  0 | ... | max.array.size

Note: When the identifier represents a node the data type is REAL32 only, because 
DFDL’s internal arithmetic is real throughout. Other data types (BYTE, INT16, 
INT32) are only allowed for external inputs and outputs. The label is the address 
in the symbol table where the identifier resides, this is used by &Graph as a back 
reference to the identifier.

Once the zeroth index element of an array is built, &Graph replies with the address 
in the data structure where the vertex is located. This address is stored in the 
symbol table at the location graph.field (section 3.1.6b). Subsequent elements 
(index > 0), if any, are built in a similar fashion, adjacent to their preceding vertex. 
When required, all vertices can be located via the zeroth index element.

Figures D.3 through to D.5 illustrate the input, node and output flows respectively. 
Note, the flow for node does not include a datatype block.

Figure D.3 Input flow
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Figure D.4 Node flow

Figure D.5 Output flow

D.4.1.2 Data type flow

The flow for datatype is given below. Data types INTI6, INT32 and REAL32 are 
formed by reading the reserved words I NT or REAL, followed by the integer 16 or 
32. Only the correct combinations of reserved word/integer are accepted.

BYTE

___  ____ * IN T16-------

( —  ‘ > 
-------* IN T 32-------

REAL3 i-

Figure D.6 Data type flow
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D.4.13 Subscript size flow

The flow for sub.size, the array subscript size, is given below. The column size 
precedes the row size. The terms column and row represent the two planar 
dimensions, where column is the first subscript and row the second subscript. 
Subscript sizes, and the product of the subscript sizes, have a valid range from 1 to 
max.array.size (equal to 65536).

Figure D.7 Subscript size flow

D.4.1.4 Constant flow

Constants are constructed in a similar fashion to inputs, nodes and outputs. 
Constant declaration can take any one of three forms:

The first of these forms is a table of real values. A table comprises ’row size’ of 
real strings, where each real string comprises ’column size’ of real values. The 
numbers of real strings, and real values within the strings, must correspond to their 
respective sub.size declaration.

The second form, is that of an expression. Values are assigned to the constant 
identifier during the initialise section, after which, they cannot be altered. An 
constant declaration of this form is labelled by assigning the keyword EXPRES-
SION to the identifier.

The final form allows a single real value to be assigned to an identifier. The 
identifier may be a scalar or an array. If the constant identifier is an array, every 
element in that array will be assigned the single real value.

In all three cases the subscript size is checked for a valid range. If the product of 
the column and row subscripts exceeds max.array.size (65536) the following 
message is given:

"Implementation limit; array size too big"
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The maximum array size is dictated by the size of the index storage in the graph 
data structure (see DFDL task model). The zeroth index element (index = 0) of 
an array, has its attributes sent to &Graph. &Graph builds a vertex in the graph 
data structure (data flow graph) representing this element. The format of the 
attribute string is as follows:

mv.dec.type I real I  label I  index

mv.dec.type :: =  mv.const.dec | mv.const.exp 
label ::=  1 | ... | (SIZE symtab) -1 
Index ::=  0 | ... | max.array.size

Note: Where the declaration type is mv.const.exp, the second element of the string, 
normally used to convey the real value, is empty.

Note: Constant identifier values have a data type of REAL32 only, because 
DFDL’s internal arithmetic is real throughout. Other data types (BYTE, INT16, 
INT32) are only allowed at inputs or outputs. The label is the address in the symbol 
table where the identifier resides, this is used by &Graph as a back reference to 
the identifier.

Once the zeroth index element of an array is built, &Graph replies with the address 
in the data structure where the vertex is located. This address is stored in the 
symbol table at the location graph.field (see Initialise(phase 1)). Subsequent 
elements (index > 0), if any, are built in a similar fashion, adjacent to their 
preceding vertex. When required, all vertices can be located via the zeroth index

Figure D.8 Constant flow
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element. A detailed description of the vertex and graph data structure is to be 
found in the chapter on the DFDL task graph.

D.4.1.5 Real string flow

Real values are enclosed by square brackets and separated by commas.

Figure D.9 Real string flow

D.4.1.6 User defined function flow

User functions are not implemented in DFDL(mod.state 1/90). Attempts to use 
user functions will be met with the message:

"Function not installed yet!"

D.4.2 Assignment flow

The second major block within program flow is called assignment flow. This block 
comprises the initialise block (optional) and the repeat block.

Figure D.10 Assignment flow
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D.4.2.1 Initialise flow

The initialise block specifies the source program code which, when called, is 
executed once only. The current implementation, DFDL(mod.state 1/90), does 
not include initialise. Attempts to use initialise will be met with the message:

"Initialise not installed yet!"

D.4.2.2 Repeat flow

The repeat block specifies the source program code which is repeated, and only 
stops when the program is terminated. The syntax of the repeat block has three 
main stages: parse, check and build. These are described individually.

Figure D .l l  Repeat flow
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D.5 Parse flow

D.5.1 Stack construction

Parse is one of the main syntax routines. It reads complete assignment statements 
from &Lex, checking the syntax as it does so. Assignment statements are sub-
divided into simple expressions (one/two operands and one operator) and each 
simple expression is placed on a different level of an expression stack. The levels 
are doubly linked to each other to allow the routine to travel up and down the 
stack.

The depth of the stack is currently 20 levels, this allows up to 19 pairs of parentheses 
to be used in an assignment statement. If this is exceeded, the following error 
message is given:

"Implementation limit; expression too deeply nested"

The lowest level (level 0) contains the assignment statement’s object and assign-
ment operator, while the 19 upper levels accommodate simple expressions. The 
width of each level is 30 words. Each level is divided into 4 main fields:

rsp.field | op.field | left.field | right.field

Each of these fields begins with their respective reference location; rsp.loc, op.loc, 
left.loc and right.loc. The widths of the fields are as shown below:

rsp.field -1  word 
op.field -1  word 
left.field -14 words 
right.field -14 words

D.5.1.1 RSP field

The rsp (return stack pointer) field contains a pointer which links a simple 
subordinate expression to its parent expression. The pointer is always directed 
down the stack, towards the lowest level. At the lowest level (level 0) the rsp field 
is empty. All active levels, except level 0, have an rsp field which contains a valid 
pointer. The valid range of the pointer is between 0 and (tos -1). Where tos (top 
of stack) indicates the highest level in use.
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D.5.1.2 Operator field

The op field contains an operator which belongs to the simple expression. The 
operator is either an assignment operator (treated as a dyadic operator), monadic 
operator, function, dyadic operator or no-op. The operator describes how, in the 
case of a dyadic operator, the left and right operands interact, and how, in the case 
of a monadic operator, function or no-op, the left operand is processed. The set 
of valid operators for DFDL(mod.state 1/90) is given below:

o p ;; = assignment \ monadic.op \ dyadic.op \ nop
assignment:: =  : =
monadic.op:: = -
dyadic.op ::=  + | - | * | / | \  | **
function:: =  ABS | ACOS | ASIN | ATAN | COS | EXP | LN | LOG 
| SGN | SIN | SORT | TAN | MEAN | SUM | PROD | ALOG

Note: nop is used as an operator in simple expressions, where the operand was 
preceded by the monadic operator + , or the simple expression stems from a 
single, parenthesised operand.

D.5.1.3 Left/Right operand Field

The left and right fields are almost identical, any differences will be commented 
on, as and when they occur. The fields are used to hold the operands belonging to 
a simple expression. The types of valid operand are:

1 real literal
2 input
3 node
4 output
5 constant
6 fsp (forward stack pointer)
7 empty (right field only)

Input, node, output and constant types are all treated the same in the Parse routine, 
and are classed as identifier types.

left.operand.type:: = real \ ¡dent | fsp
right.operand.type :: = real | ident | fsp | empty

D-17



D.5.1.4 Operand is a real literal

When the operand is a real literal only the first two sub-fields of the operand are 
used to hold information. These fields are shown below:

ab.type | ab.value | col.field | row.field | del.field

ab.type holds the tag which identifies the operand as a real literal, and ab.value 
holds its real value. The remaining fields are set to dont.care (shown as X), this 
allows real literals to be used in replicated expressions.

real.type | re a l | X | X | X

For example a real literal of 0.453 would be stored as:

real.type | 0.453 | X | X | X

D.5.1.5 Operand is an identifier

When the operand is an input, node, output or constant, it is represented by its 
identifier. This type of operand uses all five sub-fields. The sub-fields are shown 
below:

ab.type | ab.label | col.field | row.field | del.field

ab.type holds the tag which identifies the operand as an identifier, and ab.label 
holds the identifier’s label (symbol table reference). The three remaining sub-
fields contain the column, row and delay subscript attributes. Each attribute 
sub-field is 4 words long, and has the following format:

ab.¡dent | ab.start | ab.size | ab.step

ab.ident holds the label (symbol table reference) of the subscript identifier when 
the subscript is repetitive. For fixed subscripts this is set to dont.care. Location 
ab.start holds the beginning index of the subscript, ab.size holds the number of 
iterations, and ab.step holds the step size per iteration.

A default setting for the subscript fields (col.field, row.field, del.field) is made 
when no subscript is given, this is shown below:

X I 0 I 1 I 1

The default setting signifies a fixed subscript, beginning at index 0, for 1 iteration, 
and a step size of 1.
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When the subscript to an identifier is defined, the appropriate values are entered 
into the requisite locations. The examples below illustrate the correspondence 
between a DFDL description of an operand’s subscript (fixed and repetitive), and 
the operand’s subscript as held in the operand field. The label values are for 
example only.

(i) the operand ’in[2][10]’ is a single element of an array called "in", symbol table 
label = 255, which exists at column 2, row 10

ident | 255 | X | 2 | 1 | 1 | X | 10 | 1 | 1 | X | 0 | 1 | 1

(ii) the operand ’out’ represents a scalar called "out", symbol table label = 153

¡dent | 153 | X | 0 | 1 | 1 | X | 0 | 1 | 1 | X | 0 | 1 | 1

(iii) the operand ’old[k FROM 4 FOR 2]Z[j FROM 8 FOR 4 EVERY -2]’ is an 
iteration (2*4 times) of an array called "old", symbol table label = 236. The label 
for k = 425, and the label for j = 432.

¡dent | 236 | 425 | 4 | 2 | 1 | X | 0 | 1 | 1 | 432 | 8 | 4 | -2

D.5.1.6 Operand is a forward stack pointer

Both the left and right operands are used to hold a forward stack pointer. A fsp 
(forward stack pointer) is directed from a parent expression (simple expression) 
to a subordinate expression (simple expression). A fsp is always directed up the 
stack towards the tos (top of stack). All levels that are in use contain fsps, except 
leaf expressions; those which have no subordinate expressions. The valid range of 
a fsp is from 1 to tos. This type of operand only uses the first three words of the 
left/right operand field, as illustrated below:

ab.type | ab.sp | ab.addr | X ...

ab.type holds the tag which identifies the operand as an forward stack pointer, and 
ab.sp holds the fsp’s pointer. Location ab.addr is used as a temporary location for 
the operator’s graph data structure address. This is initially set to don’t care (shown 
as X). The remaining fields are also set to dont.care.

#.type | in te g e r  | X | X

For example an fsp pointing to level 7 is represented as:

#.type | 7 | X | X
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D.5.1.7 Operand is empty (right only)

An empty operand is denoted by an empty tag in the ab.type location. All other 
fields are don’t care (shown as X).

empty | X ...

D.5.2 Stack operation

The stacking of simple expressions is controlled by five different delimiters; (,), 
...,: = and eol. The final delimiter, eol (end of line), is created from detecting an 
increase in line number from &Lex.

The left hand parenthesis signifies the start of a new simple expression. Its 
occurrence causes the current operand location to be formatted as an fsp. The fsp’s 
pointer is set to the number of the next free level, which is the current top of stack 
(tos). The top of stack level (subordinate level), is back linked to the parent level, 
by entering the parental level in the subordinate’s rsp (return stack pointer) 
location. The tos is then incremented.

The assignment operator has the same effect as the left hand parenthesis, but only 
occurs when moving from level 0 to 1.

The right hand parenthesis signifies the end of a simple expression. Its occurrence 
causes a move down the stack, to the level pointed to by the current level’s rsp.

A record is kept of the difference between the number left hand parentheses and 
right hand parentheses. A counter (initially set to zero) is incremented for left hand 
parentheses, and decremented for right hand parentheses. An error message is 
given if the parentheses count goes negative or is non-zero at the end of the 
assignment statement.

"Expression has an excessive number of ’)’s"

"Expression has an excessive number o f’(’s"

The continuation delimiter (...) allows the assignment statement to be spread 
across more than one line, and prevents the eol delimiter from signifying the end 
of the assignment statement.
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Figure D.12 Parse flow
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D.53 Parse flow

The parse flow is described using several diagrams. These are supplemented by 
control flow information regarding the stack. The parse flow is illustrated by Figure 
D.12.

• 1. Left hand operand location empty, if not, then right hand operand location empty.
0 < stack pointer < stack depth.
Move up stack.
Increment parentheses count.

• 2. Left hand operand location not empty, operator location not empty.
1 <  stack pointer < = stack depth.
Move down stack.
Decrement parentheses count.

• 3. If operator location empty, then right hand operand location empty also.

• 4. Operator location empty.

• 5. End of assignment statement or END 
stack pointer =  0

• 6. Not end of assignment and not END.

• 7. Left hand operator is identifier, right hand operator location empty, 
stack pointer = 0
Move up stack.

D.5.3.1 Continue flow

The continue delimiter is valid between most syntactically complete items.

• 1. old line number : = line number

Figure D.13 Continue flow



D.5.3.2 Parse left identifier flow

Simple expressions which begin with an input, node, output or constant, all start 
with an identifier tag, followed by their identifier label (originating from the 
symbol table). The tag and label are placed in the left hand operand location. The 
expression is parsed as shown below in Figure D.14.

• 1. Left hand operand location not empty.
Right hand operand location empty.

• 2. Left hand operand location empty.

• 3. No dyadic operator, operator becomes a no-op.

• 4. Operator location is empty.

Figure D.14 Parse left identifier flow
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D.53 3  Parse left real flow

Simple expressions which begin with a real literal, start with a real tag, followed 
by a real value. Tag and value are placed in the left hand operand location. The 
expression is parsed as shown below.

• 1. Left hand operand location not empty.
Right hand operand location empty.

• 2. Left hand operand location empty.

• 3. No dyadic operator, operator becomes a no-op.

• 4. Operator location is empty.

Figure D.15 Parse left real flow



D.5.3.4 Parse right identifier flow

An operand which is an input, node, output or constant, and which occurs imme-
diately after a dyadic operator (or continue), has its identifier tag and identifier 
label placed in the right operand location. The remainder of the expression is 
parsed as shown below in Figure D.16.

• 1. Left hand operand location not empty.
Right hand operand location empty.

Figure D.16 Parse right identifier flow

D.53.5  Parse right real flow

An operand which is a real literal, and which occurs immediately after a dyadic 
operator (or continue), has its tag and value placed in the right hand operand 
location. The remainder of the expression is parsed as shown below in Figure D. 17.

• 1. Left hand operand location not empty.
Right hand operand location empty
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D.5.3.6 Functions and parse function flow

Figure D.18, below, combines the flow for functions and the operand/expression 
immediately following the function.

• 1. Left hand operand location is empty.
Right hand operand location is empty.
Operator location is empty.

• 2. Function not implemented by 
DFDL(mod. state 1/90).

Figure D.18 Function flow
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D.53.7 Monadic operator and monadic operator parse

Figure D.19, below, combines the flow for monadic operators and the operand/ex- 
pression immediately following the monadic operator.

• 1. Left hand operand location is empty.
Right hand operand location is empty.
Operator location is empty.

• 2. Operator becomes a no-op.

Figure D.19 Monadic flow
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D.5.3.8 Spatial subscript flow

A spatial subscript describes the column and row indices. Valid column/row 
indices are non-negative integer values less than the column/row dimension size.

Figure D.20 Spatial subscript flow

D.5.3.9 Temporal subscript flow

A temporal subscript begins with the keyword Z. It defines the unit delay applied 
to the preceding operand. Valid delays are non- negative integer values not greater 
than the maximum delay (currently 1000).

Figure D.21 Temporal subscript flow
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D.53.10 Parse subscript flow

Subscripts are either fixed or repetitive. Fixed types evaluate to a single non-nega-
tive integer value. Repetitive types evaluate to a series of non-negative integer 
values. The series starts FROM the start, goes on FOR the size, and advances 
EVERY step. Where the step is not declared, a default value (+1 )  is inserted.

• 1. Fixed subscript.

• 2. Repetitive subscript.

• 3. Non-negative integer.

• 4. Positive integer.

• 5. Default step is +1.

• 6. Non-zero integer.

Figure D.22 Parse subscript flow
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D.53.11 Integer expression flow

Integers in the DFDL(mod. state 1/90) implementation are evaluated by simple 
expression. The flow of the integer expression is illustrated by Figure D.23. All the 
arithmetic operators are integer operators.

Figure D.23 Integer expression flow
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