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MATHEMATICAL NOTATIONS

— R, C: fields of real, complex numbers
- R(s): field of rational functions in the variable s with real coefficients

— Z2[s]: ring of polynomials in s with real coefficients
— Rpr(s): ring of proper rational functions
— T'. denotes a general field, or ring
— jrpxk. gej. matriCes with p X k dimensions and elements over F,  thus RpXk(s), 
f?,pxA:[.s],... denote the corresponding set of matrices with elements over R(s), i2[s],...
— R-p(s): ring of proper rational function which have no poles in a symmetric set 
of the complex plane if, which excludes at least one point of the real axis.
— V: denotes a finite dimensional vector space over some field T  (usual cases the 
real vector spaces (Abvector spaces), rational vector spaces (/?(s)-vector spaces).
— dimV: denotes the dimension of a vector space.
-  T n\ set of all n-dimensional vectors (n-tuples) of elements of T . Rn, Cn, Rn(s) , ...: 

n-dimensional vector spaces over T .
- If V is a subspace of Rn, (Rn(s)), the v G V denotes a vector of Rn(Rn(s)) that 

belongs to V. If dimV = d, and {uj, ..., >s a basis of V, then V = [uj,..., vj[ G Rnxd 
denotes a basis matrix of V.

-  If H G J-vxk1J~ a field, then Pt {H) denotes the rank of H over JF, J\fr{H] the 
right null space and Afi(H) the left null space of H .
— Z  denotes the set of integers, Z+ the positive integers and Zq the nonnegative 
integers (Z + U {0}).
— If n G Z +, then < n > =  {1,2, ...,ra} and if a property holds for i G< n >, that 
implies that it is true for all i =  1, 2, ...,n.
—H G jFpXp, \H\ denotes the determinant of H .

— State space description:

i i  = Ax  + Bu, A G Rnxn, B G Rnxl, C G RmXn, D G RmXl
S i A- ̂  ̂C ̂ D j . \

{ y = Cx + Du x G Rn,u G Rl,y_ G Rm 
Assumptions: p(B) =  l:p(C) = m
N: left annihilator of B , (NB  = 0,p(N) = n - l , N  G R (n-')x«)
B b left inverse of B {B^B = Ih p(B+) = /, B^ G Rlxn)
M: right annihilator of C, (CM = 0 ,p(M) = n -  m , M  G RnxC~™))
L G Rlxn: state feedback, Q G RnXm: output injection 
F G Rlxm: output feedback, K  G Rlxm\ squaring down
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T  G RnXn, |T| 7̂  0: state coordinate transformation 
R G Rlxl, |/2| /  0: input coordinate transformation 
P G RmXm\P\ 0: output coordinate transformation 
cr(A): spectrum of A (eigenvalues of A including multiplicities) 
A: eigenvalue of eigenvector of A for A eigenvalue
J(A): .Jordan canonical block of A.
A = UJ(A)V , Jordan decomposition of A. 
f.e.d.: finite elementary divisors, 
i.e.d.: infinite elementary divisors, 
c.m.i.: column minimal indices, 
r.m.i.: row minimal indices.
GR: Grassman Representative.

— Transfer function description

G(s) = C(sJ — A)~l B + D G RmXl(s): transfer function matrix 
r = Pr (s){G(s )}: normal rank of G(s) 
t(s) G /?[s], <9[f]: degree of t(s).
-  G(s) = Nr{s)Dr{s)-* = D ^ - ' N t i s )

Nr(s) G /2mX,[s], Dr(s) G Æixi[s]: Right Matrix Fraction Description (R.M.F.D.) 
Ni(s) G Rmxi[s], Di(s) G RmXm[,s]: Left Matrix Fraction Description (L.M.F.D.)
—T(s) G i?pxfe[s] : S (T ): Smith normal form of T(s)

S(T)

' M s ) 0

fr(s)
0 0

r = Pr (s){T(s )}

invariant polynomials of T(s)
—T(s) G Rpxk(s) : M ( T ): Smith-McMillan form of T(s)

M(T) =

£l ( s ) 0  ’
V'l (s)

t r (s)
V'r(s)

0 0

r = Pr (s){T(s )}

ei(s): invariant zero polynomials, t i (s)/e-2 (s)/ ■ ■ • /er (s)
invariant pole polynomials, ij>r(s)/Vv-i(-s)/  • • • /rp\(s), (/) divides 

2r(.s) =  IÎ =1e,(s): zero polynomial of T(s)



p(s) = pole polynomial of P(s)
$m {T): McMillan degree of T(s)
—/?."ixm[.s]: set of m x mi?[.s]-unimodular matrices 
—R™pxm(s): Set of m  x 77i/?pr(.s)-unimodular matrices, biproper 
(U(s) G # “ (*), then U~\s)  G R™xm(s)).
-  T(s) G R?*k[s] : T(s) = sdTd +  • • • +  sTi + T0, Tt G Rpxk,Td ±  0, d = da[T]: scalar 

degree of T(.s)
6 = dm[T\: matrix degree of T(s) (maximal degree amongst the maximal order mi-
nors of T(s))
— t(s) =  n(s)/d(s) G R(s)
Soo(t) = 8[d\ — c)[n]: valuation at infinity of t(s)
— T(s) G Rpxk(s), Moo(T): Smith-McMillan form at infinity of T(s)

M ^ T )

sqi 0

sqr
o

0

r =  pR(s){T(s)},q1 > q2 > ■ ■ ■ > qr

qi > 0: orders of infinite poles, qi < 0; |(/,|: orders of infinite zeros 
8m (T) = J2qt - (W- McMillan degree at infinity of T(s) 
v{T) =  8m {T) + 8m (T): extended McMillan degree of T(s).
-  G G Cmxl,G = YJ2U*: singular value decomposition (SVD) 

Y  G Cmxm, U G Clxl unitary matrices
= p-diag{(Ji,..., oy} G RmXl, r =  min(m, l),(T\> • ■ • > (Jr

p-diag: (pseudo-diagonal) i.e.

c  1
V-2

(T p

, or

<7\
v  2

0"

0

0 - -1
J2(G): set °f singular values of G
cr(G): maximal singular value, <r(G): minimal singular value 
Columns of Y, U: left, right singular vectors of G.

A G T pxk :

A =
A\ 0

0 At

,Ai G T p'xk' ,A  = b-diag{Ai,. . . ,\At} (block-diagonal) A =

diag{A1,...,A i} ,if A 'G P 'xp'
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ABSTRACT

The aim of the thesis is to examine a number of properties related to the set of 
invariants of linear dynamical systems under different types of transformations and 
for both state space and transfer function representations. The general objectives 
have been to classify the invariants according to their generic, non-generic nature, es-
tablish links between different types of invariants and system properties and explore 
the nature and formation of invariants on interconnected systems. More specifically, 
state space invariants have been classified according to genericity, non-genericity 
using generic properties of matrix pencils and generic values of controllability, ob-
servability indices have been worked out using the generic properties of piecewise 
Arithmetic Progression Sequence. Similar classification results have been obtained 
for transfer function models. Some new results on the importance of Plucker invari-
ants have been derived and new tests for controllability, observability were obtained 
in terms of the rank properties of appropriate controllability-, observability Plucker 
matrices. Finally, the relationship between the invariants of composite system struc-
ture and the invariants of the subsystems has been examined. In particular, it has 
been shown that under general assumptions on the system structure composition, 
the zeros of the composite system as well as controllability-, observability indices 
and decoupling zeros are simply the aggregate of the corresponding subsystem in-
variants. The effect of loss of input, output channels on the nature of the invariants 
of the composite system has also been examined.
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Chapter 1

INTRO DUCTIO N

System structure characterises the potential of a system for feedback control; how-
ever, the relationships between the values of system structure indicators and limits 
of achievable performance are not always very clear. The development of system 
structure is the byproduct of actions taken in the different stages of an engineering 
design; the mechanism of formation of system structure during the process synthesis 
and instrumentation stages of engineering design, are not however well understood. 
Establishing the links between achievable performance and structural properties, as 
well as structure formation through the stages of engineering design, are long term 
goals of certain new directions in control theory [Kar.,3] [Kar.,4],

The subject of control theory and design is well developed in the case of linear 
systems and when the system model (state space of transfer function) has a fixed 
structure (as far as inputs, outputs) and well defined parameters. Two of the main 
goals of control theory have been: (i) to determine the characterisation of the solv-
ability conditions of different control problems in terms of the values of appropriate 
system invariants, (ii) to establish the links between system structural character-
istics and the achievable limits of performance under compensation (relationships 
between performance indicators and system structure). Most of the work so far is 
in area (i) and has been within the frame of the structural approaches (algebraic, 
geometric, algebrogeometric etc.), whereas, the second area has been considered 
within the framework of frequency response as well as state space design methods. 
The importance of the results in those two areas is that they allow the classification 
of system models according to their potential for an easy or difficult nature of the 
control problem; the classification criteria which are used are defined by the type,
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values of the structural characteristics. The greater the difficulty of the control 
problem, the larger of the cost of the control action and this can be considerable; 
thus, the task of designing systems with good control characteristics is a very im-
portant problem. This, however, is not a traditional task for control theory, which 
always assumes a given fixed model. This non-standard task for control theory may 
be addressed only by the structural approaches which deal with the tools, as well as 
the criteria of this appropriate system synthesis. The origin of this new role of the 
control theory goes back to the work of [Ros.,1] [MacF. & Kar.,1] [Kar. & Kou.,1] 
and more recently to the work in [Kar., & Gia.,1] [Kar.,3] [Kar.,4], where a rather 
general formulation of the different structure assignment issues is given.

The need for exercising some control and possibly directing the process of build-
ing up system models has been recently addressed within the [ESPRIT II Project], 
EPIC, (see [Kar.,3]) where an attempt to integrate the various tools and issues of 
the defferent stages of the engineering design has been made. In fact, it has been 
recognised that the system model on which the control design is performed is not 
something given, or fixed, but the result of an evolutionary mechanism which unfolds 
as we go through the design stages on choosing subsystems, interconnecting them, 
define manipulated and controlled variables and finally deciding about the structure 
of the control scheme [Kar.,3] [Kar.,4]; the above system design steps, shape the 
final model characteristics. Understanding this structure evolution mechanism and 
try to direct it towards the generation of models with “good” control structural 
characteristics is a major task which is posed for the structural approaches. Taking 
into account that some of the early design stages are characterised by inaccurate and 
simplified models, it is essential that the structural approaches develop also along 
the direction of the uncertain parameters and possible variable dynamic complexity 
models. The two main tasks of the structural approaches are thus, (i) Development 
of all aspects which may allow the generation of system model synthesis procedures 
with the system structure as an important criterion, (ii) Expansion of their concepts 
and tools into the area of parameter uncertainty and possibly variable complexity 
models.

The various approaches of the theory of linear systems which deal with the 
structural system aspects are divided into two broad categories: The state space 
and the transfer function approaches. The state space approach is well developed 
and suited for the study of systems properties such as redundancy, minimality, 
controllability, observability etc. within the state space framework a variety of
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techniques has been developed for the solution of the design problems and feedback 
compensation. The structural characteristics (invariants and indicators) are well 
developed within this framework and the computational tools are those of standard 
numerical linear algebra.

Two main different roads have emerged within the transfer function description 
of a linear system: the algebraic approaches and the frequency response approaches. 
The first family of approaches treats the system as an operator between rational 
vector spaces and the basic tools are algebraic (polynomial matrix theory, integral 
matrices, theory of rings); the second, views the system as a map between spaces of 
periodic signals and thus its tools are those of complex analysis.

There has been a considerable interest in the structural properties of multivari-
able linear systems in the last thirty years. Several researchers have investigated 
structural properties and this has led to the introduction of different types of in-
variants under various transformation groups. The theory of a singular pencil of 
matrices has been instrumental for the state space aspect of the theory. [Kal.,2] 
[Ros.,1] etc. has shown how Kronecker’s theory of singular pencils plays a fun-
damental role in determining the invariants of the pair (A,B) under input-space, 
state-space and state feedback transformations. Pursuing this train of thought, 
[Tho.,1] applied Kronecker’s theory of singular pencils to multivariable systems in 
state-space form and obtained a canonical form under operations of strict equiva-
lence of pencils. This work was based on special operations and transformations of 
the system and involved apart from coordinate transformations, state feedback and 
output injection. Using the geometric approach, [Mor.,1] has provided a deeper un-
derstanding of the formal results of pencil theory by explaining the nature of these 
results in geometric terms. The matrix pencil approach was further developed by 
([Kar.,1] [Jaf. & Kar., 1] [Kar. & Mac.B.,1]) by establishing a unifying pencil and 
transformation group treatment of invariants and canonical forms and establishing 
the links with geometric theory by providing a complete characterisation of invariant 
spaces, in terms of matrix pencils and Kronecker invariants.

The concept of a zero of a multivariable system has been investigated dynam-
ically, algebraically as well as in relation to the geometric properties of a system. 
[Ros.,1] apparently was the first to define the zeros of a transfer function matrix as 
the set of zeros of the numerator polynomials in the Smith-McMillan form of the 
transfer function matrix of a system. An integrated dynamic, state space approach to 
the zero characterisation was given by [MacF. & Kar.,1], whereas a thorough study
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of the state space zero structure was given by [Kar. & Kou.,1] using the mechnism 
of matrix pencils. The extension of the theory to the case of infinite poles and ze-
ros has taken also a lot of attention by researchers such as [Kai, 1] [Pug. & Rat.,1] 
[Var. Lim. & Kar.,1] etc.

Recent works by [Won.,1] [Kim., 1] [Wil. & Hes.,1] have shown the importance 
of generic and non-generic properties of a system in control theory. [She. & Pear] 
have extended the results of Lin on structural controllability of single-input linear 
systems to multi-input linear systems. An interesting byproduct of this extension is 
in the application of generic analysis to the determination of the rank of a structured 
matrix. For unstructured generic systems some further extensions of this work are 
considered here such as that of computing the generic values of minimal indices; 
these invariants are important for solvability conditions of exact control synthesis 
problems and their determination is an issue, which is considered here.

[Wil. & Hes.,1] [Bro. Ik Byr., 1] have shown the importance of generic conditions 
in establishing the necessary conditions for generic pole placement. [Kar., & Gia.,1] 
[Kar., & Gia.,2] have established a new exterior algebra and algebraic geometry 
based framework, which on one hand introduces new system invariants in terms 
of the Grassmann vectors and Plucker matrices and on the other hand allows the 
derivation of an integrated framework for study of solvability, as well as computa-
tion of solutions of problems described as frequency assignment. One of the goals 
of this thesis is to study further the properties of invariants of the exterior algebra 
framework by investigating some of their generic properties, provide computational 
procedures for finding their generic values and establish certain links between con-
trollability indices, system properties and Grassmann type of invariants. Some of 
the most fundamental concepts characterising the coupling of internal mechanism 
to its environment are those of controllability and observability [Kal.,1]. Both con-
trollability, observability properties express the interaction of internal mechanism 
with the environment represented by the inputs, outputs. Thus controllability, ob-
servability properties are shaped at the instrumentation stage of the process design. 
Controllability, observability are concepts essential for state feedback design. Two 
more indicators, playing a key role in state space design are the controllability-, 
observability-Plucker matrices. The importance of such matrices has been demon-
strated in [Kar., Gia.,2] where the notions of controllability-, observability-Plucker 
matrices are introduced. In this thesis a new criterion for controllability and observ-
ability respectively is established in terms of the rank properties of the corresponding

15



Plucker matrices. Plucker matrices have been recently used in the investigation of 
frequency assignment problems in linear multivariable systems. The approach relies 
on the notion of the canonical polynomial Grassmann representative of a ratio-
nal vector space and on the associated Plucker matrix, which has been defined by 
[Kar., & Gia.,3] [Kar., & Gia.,2]. Within this framework, the frequency assignment 
problem is reduced to the study of a linear problem, defined on the Plucker matrix 
and to a standard problem of decomposability of multivectors.

One additional objectives of this thesis is to determine the controllability, ob-
servability and zeros of composite systems, which are formed by interconnection of 
several multivariable subsystems. It is shown that the controllability and observabil-
ity of composite systems are related to the controllability and observability of their 
subsystems and the effect of total loss of set of inputs, outputs, on these properties 
under sensor, actuator failure is examined.

The thesis is structured as follows: In Chapter 2, a comprehensive introduction 
to the fundamental algebraic tools, which are relevant in the study of structural 
properties of the system is given. The specific objective of this thesis is to provide a 
short review of descriptions, basic concepts and tools from polynomial and rational 
matrix theory, which will be used as background material for the following chap-
ters. Clearly, the aim here is to provide a set of definitions, which establishes some 
common terminology and it is supplemented with references, where the material is 
treated in an appropriate way.

In Chapter 3, we first discuss the effect of transformations of the fundamental 
system properties and the theory of invariants for state space models, as well as 
transfer function models and where possible indicate their desirable values.

Chapter 4 is mainly concerned with the study of the generic values of invariants. 
It is shown that the generic set of column minimal indices, IC(F,G),  and row min-
imal indices, / e(F, G), may be deduced from the properties of a generic piecewise 
Arithmetic Progression Sequence defined on the ordered pair (F, G) [Kar. h  Kal.l]. 
Furthermore, the generic values of the rest of transfer function and state space 
invariants is also worked out there.

In Chapter 5, rank properties of controllability, observability Plucker matrices 
are discussed and a necessary and sufficient condition for the Plucker matrix Pa of a 
least degree matrix A(s) to have full rank is examined, as well as the generic values 
of this rank. It is shown that system controllability, observability is equivalent to
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the full rank properties of the corresponding Plucker matrices.

In Chapter 6, we are concerned with the structural properties of the composite 
systems. Input-state, state-output restriction pencil is used in derivation of most 
of the results. The general case of input-state, state-output restricted pencil of 
composite and aggregate systems with full inputs and output is considered first and 
the results are then extended to the case where one or more inputs are lost. It is 
assumed that the transfer function of each subsystem remains unchanged after the 
connection and the system represented by its transfer function matrix is controllable 
and observable. It is shown that the controllability, observability and zero structure 
properties of composite system under full input, output structure are simply given as 
aggregates of corresponding properties of subsystems. Finally, it was shown that the 
controllability indices and input decoupling zeros (observability indices and output 
decoupling zeros) of the complete composite system under total loss of subsystem 
inputs (outputs) are given as the union of those defined by the subsystems.
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Chapter 2

BACKGROUND FROM  
LINEAR SYSTEM  AND  
MATHEMATICS

2.1 In trod u ction

Modern control theory and design uses concepts and tools from almost every single 
branch of mathematics. The aim of this section is to introduce some terminology 
and define the basic mathematical concepts and tools, which are essential for the 
presentation of the system concepts in the following sections. For rigorous definitions 
we refer to the references here, we try to emphasise the relevance to applications 
and the computational aspects of the concepts and tools. The following topics are 
considered as essential:

i) Basic definitions from abstract algebra.

ii) Basic tools from matrix theory.

iii) Basic concepts and tools from polynomial and rational matrix theory.

iv) Basic concepts from matrix pencil theory

It should be emphasised that this section serves as basic terminology and does 
not aspire to be an introduction to mathematics for control theory.
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2.2 B asic  defin ition s from  ab stract algebra

In the study of properties of systems a number of concepts from abstract algebra 
[Mach, & Bir.,1] are essential. We distinguish:

2.2 .1  E q u iva len ce  R e la t io n s , E q u iv a len ce  C la sses , Invari-

ants

On a given system representation different types of transformation may be applied 
which results in a family of system representations. The resulting family may be 
described as an equivalence class. The notion of equivalence class is central in 
parametrising families of systems and has important implications in the study of 
system structure, identification and control. The crucial mathematical concepts are 
defined below.

If A is a set, then a relation R  on A is a subset of A x A (Cartesian product, 
set of ordered pairs (x ,y ),x ,y  G A). A relation R is called an equivalence relation 
(ER), if it is “reflexive” ((x ,x ) G R,Vx G A), “symmetric” (xl 5x2) G R implies 
(x2,xi) G R, and “transitive” ( (x i,x2) G R and (x2,x 3) G R  implies (x i,x3) G R)- 
If R is an equivalence relation, x G A, then R(x) = {y : y G A and (x,y) G R} 
denotes the R-equivalence class of x (R-EC), i.e. all y G A which are equivalent to 
x in the sense defined by R. The set of all R-equivalences classes R(x),x G A is 
called the quotient set of A modulo R and it is denoted by A/R.  If R is an ER, 
then the family of all R-equivalence classes forms a partition of A, i.e. A may be 
expressed as the union of disjoined classes and represented in diagrammatic terms 
as:

A=V A, , A. 'R l 1''*
t

Figure 2.1 Partitioning of a set

Every i?(x,) = A{ R-EC may be represented by one element, say x(, and called
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the representative of Ai and the set of all representatives iq of the P(aq) R-EC 
is called a system of distinct representatives (R-SDR). If A, P  are two sets, R an 
ER, then function /  : A —*■ P is called an invariant of R when (x,y)  G R, implies

/(a ) = f{y)-

An invariant /  of R is called complete, when f (x)  =  f (y)  implies (x,y) G R. 
A complete invariant defines a one to one correspondence between the R-ECs R(x) 
and the image of / .  By specialising the complete invariant /  such that P C A, we 
define a canonical element C G R{x) which uniquely characterises R(s) and it is 
referred to as canonical form.

Example (2.2.1): Let A be the set of n x n real matrices A(A G RnXn). For Ai, A2 G 
A, we define an ER by

A: PA2 if = PA2Q, P, Q G RnXn,\P\,\Q\ ^ 0  (2.1)

and E(A)  = {PAQ , all P, Q G RnXn,\P\,\Q\ ^  0} is the E-EC. If p is the rank 
function defined on A(p : A —> {0,1,..., n}), then p(A) is a complete invariant of 
E(A)  and the set of matrices of A

0 ••• 0

0 ••• 0

1 0 ••• 0
0 0 0

0 0 ••• 0

h  0
0 0

' p (2.2)

where p  is the k x k identity matrix is the set of all possible canonical forms for 
the quotient set A/E.  The set in (2.2) defines an E-SDR, and the partitioning of 
A is Figure (2.1) contains n + 1 E-EC’s each one characterised by a given rank 

r G {0,1,..., n}.

2 .2 .2  G roups o f T ran sform ation s

For systems, representations, compensation transformations generate equivalence 
classes. The formal way of representing such transformations is in terms of groups. 
The equivalence class is then generated by the action of the group on the system. In 
simple terms, a group is a set A with an internal composition rule (binary operation) 
* which has the properties associativity, existence of a identity element, and existence 
of inverse for every element.
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Example (2.2.2): (canonical example): Consider the set

H = {h. = {P, Q ) : P e  RpXp, Q € Rkxk,\P\ = 0, \Q\ = 0} (2.3)

with a composition rule * defined by:

hi * h2 = (Pi,Qi) * (P2,Q2) = (Pi P2,Q2Qi ) (2-4)

The set PI with the * operation is a group with (/p, p )  identity and will be 
denoted, in short by H and referred to as the matrix transformation group. If A is 
the set of p x k real matrices, then for every A £ Rpxk, the action of H on A is 
defined by every

h e  H, hoA =  (P, Q)oA = PAQ (2.5)

These concepts will be used to define formally the different equivalence classes 
of systems obtained under special group of the PI-type.

2 .2 .3  R in g s in  C on tro l T h eo ry

Modern control theory is using representations based either on polynomials, proper 
rational functions, or proper and stable rational functions. The properties of such 
sets are similar and they are described in abstract terms by those of Euclidean 
rings. The essence of such mathematical structure is described by the properties of 
polynomials under addition and multiplication. The term Euclidean, refers to the 
existence of division in the sense of division of polynomials. A central concept in 
Euclidean rings is the notion of the degree function. For polynomials, this function 
is well known, whereas for the other important rings, it will be explained in the 
examples. Another key concept in any ring is that of the unit, that is those elements 
which have a multiplicative inverse. If every element of the ring (apart from zero) 
has an inverse, then the ring is called a field. Typical examples of fields are the 
real, complex numbers (R,C) and the rational functions (R(s)). A proper treatment 
of these important algebraic concepts may be found in [Mac.L.& Bir.,1] and with a 
control application flavour in [Vid, 1], [Vard., P Kar.,1].

Example (2.2.3): (Rational functions): The set of rational functions R(s)(t(s) = 
n(s)/d(s) £ R(s), n(s) , d(s) £ R[s]) is a field. For every t(s) = n(s)/d(s) £ R(s) the 
function defined by

Soo(t(s)) = <700 = d[d(s)] -  <9[n(s)] if t(s) /  0, b<x>(¿00) = 00 if t(s) = 0 (2.6)
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is known as valuation and if qoo > 0 we say that t(s) has a zero at s = oo of order
<7oo, if Qoo < 0, we say that f(.s) has a pole at s =  oo of order \qoo\ and if 9<x> = 0,
it is called biproper. The set of all proper rational functions Rpr(s) is characterised 
by the property that ¿^(t) > 0, all t(s) E Rpr(s) and it is a Euclidean ring with 
degree 7^ (t) expresses the total number of zeros at .s = 00 of t(s) € Rpr(s). The 
units of Rpr(s) are the biproper functions and the units of R.[s] are the constants. 
If t(s) = n(s)/d(s) E Rpr(s), then it has no poles at s — 00 and the finite poles
are given by the zeros of d(.s); t,(s) may have zeros at s — 00, and their number is
defined by 7oo(f), whereas the finite zeros are given by the zeros of n(s).

If t(s) = n(s)/d(s) 6 Rp(s)(P = id U {00}, id = C+ for instance) i.e. t(s) is 
proper and d(.s) has no zeros in id, then

7p(t) = 7oo + {total number of zeros in id of n(s)} (2.7)

is defined as the P-degree of t{s). Rp(s) is a Euclidean degree with 'yp(-) degree and 
its units are the biproper rational functions which have no poles and no zeros in id.

Two polynomials di(.s), t2(s) 6 R[s] are said to be c.oprime if they have no com-
mon zeros. Similarly, di(.s),t2(s) E Rp(s) are said to be coprime if they have no 
common zeros in P = idU {00} (They might have common zeros in idc (complement 
of id) however).

2.3 B asic  d efin itions and P ro p erties  o f  M atrices

In the following, we shall refer to C, R, R(s) fields by J27, whenever a definition, 
property is valid on either of them. We introduce here some basic definitions and 
properties.

2.3 .1  B a sic  d efin itio n s

If A E jFmxn, then p(A) = r < min(ra,n) denotes the rank of A over T  and the 
numbers nr(A) = n — r,ni(A) = m — r, denote the right-, left-nullity of A. If 
nr{A) = 0, the A is called right regular and if ni(A) = 0, it is called left regular. 
With A, we may associate the vector spaces

K CA =  c . sp {A } ,H rA =  r.sp{A}

=  ACM ) = { x : A x  = 0},A i ‘A = A/1(A) =  W  : y*A = 0f}
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where VfAllZrA are the column-, row- spaces of A and J\fA, jVa are the right-, left-null 
spaces of A. These spaces are vector spaces over T  and dimT?.  ̂ =  dim 7ZA = 
7-, dim j\fA — nr(A), d\mJ\flA = ni(A). For every A , there exist Q E jF?nX”1,/? E 
jFnX”, |Q|, |/?| ^  0, such that

QAR  = - A ------° r,n~T (2.10)l r O r yn —r

O i7 i—r,r O j n —r^n—r

where Q , R may be defined as products of elementary row, column transformations. 
For the special cases ?ir(A) = 0,rii(A) = 0, the above becomes

QA A
A t

A if nr(A) = 0

A R = A \  At,/V ] = [/„, ,0], if ) = 0

( 2 . 11)

(2,12)

and A],Al  are referred to as left-, right inverse (A]A /„, and
as left-, right-annihilators (the rows of Aj- define a basis for J\flA and the columns 
of Aa a basis for J\fA). Computing the above matrices may be achieved by singular 
value decomposition (SVD), if T  — R or C. A matrix A is called block diagonal 
and denoted by A =block diag{Aj} if

A \ 0

0 Ak

(2.13)

If A = (ap) E jFmXn, then A is called diagonal and write A = diag {ai, ...,afc}, 
if ciij = 0, all i ^  j  and an = ai for i = 1,2, k = min{m,rz}. A matrix is 
sparse, if it has relatively few nonzero entries. A matrix A is called structured, if 
it has a number of fixed zero elements, but the nonzero elements may take generic 
values and they are called the generic elements. The nonzero-zero structure of such 
matrices may be conveniently displayed by letting “x ” denote an arbitrary nonzero 
scalar as shown below

A =

0 X 0 X X

X 0 0 0 X

0 X 0 0 X

X 0 0 X 0
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2 .3 .2  Jord an  C an on ica l form  o f  a square co n sta n t m a tr ix

Let T  be either R , or C and A E jFnXn. The polynomial

= |A/ — A| =  (A -  Aa)Pl...(A -  Afc)Pfc,

with A,■ ^  Aj , i  = 1, 2, ...,& is known as the characteristic polynomial and its roots 
as the eigenvalues of A. The set of distinct values of the eigenvalues, <f>(A) =  
{ A E  k} will be referred to as the root range and the multiplicity pi of A,• in 
<f>(\) as its algebraic multiplicity. The number qt = nr( \ i l  — A) is defined as the 
geometric multiplicity of A,-. For every A; E (¡>(A),pi > qi and if pt = qi for all 
Ai E <fr{A), then A is called simple, or cyclic; otherwise, i.e. for at least a A,- E 
(¡)(A),pi > qi, then it is called nonsimple, noncyclic. Clearly, p\ + • • • + pk — n.

A 1 0 
0 A 1

0 0 
0 0

M  A) = E Ck)

|(/| zfi 0 such that

1 j Aj E (j>(A) (2.14)

■ + Vi,gi = Pi (2.15)

:k (2.16)

0 0 0 ••• A 1
0 0 0 ••• 0 A

The pair ((/, f/_1) are known as similarity transformations, J(A)  as the Jordan 
canonical form and «/*,(A) as an elementary Jordan block. J(A)  is unique up to per-
mutations of the diagonal blocks. The ordered set of dimensions of the Jordan blocks 
for A, E <j>(A), p(A,\i)  = {za\ i < • • • < Vi,q,} is defined as the A,-Segre’ characteristic 
of A or equivalently, the ordered set of degrees of elementary divisors at A of the 
corresponding matrix (A,/ — A).

2 .3 .3  E x ter io r  p ro d u ct o f  v ec to rs  and  co m p o u n d  m a tr ices  

[M ar. & M in ,l]

We shall denote by Qk,n the set of strictly increasing, lexicographically ordered se-
quences of k integers chosen from {1,2, ...,n}. Let A E JrmXn (where T  is R, (7, or

R(s)), 1 < r < min(m,n).  The r-th compound matrix of A is the
m

x
n
r
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matrix whose entries are the minors jd[a//3]|, that is the determinants of the sub-
matrices defined by the rows corresponding to a  G Qr,m and columns corresponding 
to (5 G Qr,n~ This matrix is denoted by Cr(A). For example, if A G .F3*3 and r =  2,
then

\ d 1’2 ■'*1,2 d 1’2n \,3 d 1’2 17*2,3

CM) = d 1’3a \,2 d 1’3 d 1’3/ i 2,3
d 2,3 L A l ,2 d 2’3711,3 d 2’3^ 2,3

If A G J~m X m G U denote the columns and Aj , j  G m the rows of A, then we
define [Mar,Min,1]:

i) If m  < n, (7m(2l) = A • • • Aa[„ is an 1 x
n
m

row vector and it is called the

exterior, or Grassman Product of the rows of A.

ii) If m > n, Cn(A) = a r A • • • A a n is an
m
n

-column vector and it is called the

exterior, or Grassman product of the columns of A.

B inet-C auchy Theorem :

Suppose A G G M p ^ J 7) and C — AB  G If 1 < r <
min(m, n,p) ,a  G Qr,m,P G Qr,n, then

det {<$} = Cg= •£det {A“j} • det (2.17)
wGQr,p

For the special case of A G Mnjm, B G Mm>Tl, then the determinant of the product is 
given in terms of the minors

|C| = det CS = = £
1 </ci

&1 ,A;2
<?n

(2.18)

or, the determinant of (7 is the sum of the products of all possible minors of the 
maximal (rn-th) order of /I into the corresponding minors of the same order of B.

2.4 P o lyn om ia l and R ation a l M atrices

Polynomial and rational matrices appear throughout linear systems theory and some 
of the basic definitions and notations are summarised here.



2.4 .1  B a sic  d e fin itio n s  and n o ta tio n

For a P(s) G RmXn(s) the rank over R(s), p(P(s)) = r < min(m,n) is referred 
to as normal rank, whereas the rank over C,pc(P(A)) = r\, for some A G C, is 
called the local rank at s = A. The tools for investigating rank properties are the 
Smith-McMillan forms. If r = min(m,n), then P(s) is said to be nondegenerate, 
otherwise, r < min(m, ra), it will be called degenerate.

If æ(s) = [xa(.s), ...,æm(s)]i G -Rm[s], then d[x(s)] = max{d[æ,-(s)], i G m} is 
defined as the degree of x(s). If P(s) = Pd,sd + ••• + sP\ + Pç, £ RmXn[s], P{ G 
RmX7l, Pd ^  0, then d = £?s[P(s)] is defined as the scalar degree of P(s).

If / J(,s) = [^(s), ...,pn(.s)] G Rmxn[s], m  > n and p(P(s)) =  r = n, then the set 
of indices Xp = : Si = 5[p.(s), i G n} is defined as the set of column degrees and
cp =  as the column complexity of P(s) (row degrees and row complexity are

defined in a similar manner). The I ] polynomial vector Cn(P(s)) =  p (s) A
\ 71 /

• • • A p (5 ) = p(.s)A is called the Grassman vector of P(s) and <9[p(.s)A] =  <?[P(5)] is 
referred to as the matrix degree, or simple degree of P(s). If p.(.s) = p. hs6, +  • • 0,
then we may write

P(s) = \PlthT-iPnih] diaS {•s5l, . . . , / n} + P(s) (2.19)

where the columns of P_(s) have degrees less than A,-. The matrix Ph = [plh i —iPn h] = 
[P(s)]h G RmXn is referred to as the high column coefficient matrix of P(s) and if 
p(Ph) = n then P(s) is called column reduced, (high row coefficient matrix, and 
row reducedness is defined similarly).

If U{s) G Kmxm, where K is either R, R[s], Rpr(s), or Rp(s), and |f/(s)| is a 
unit of AJ, then it will be called an (m, AC)-unimodular and will designate it as 
U(s) G C/(m,AC). Such matrices are products of elementary transformations over JC. 
If P(s),P'{s) G Rmxn{s) and

P\s )  = L(s)P(s)R(s)  (2.20)

where L(s) G U(mìIC)ì R(s) G t/(n,AC), then they are said to be /C-equivalent and 
this is denoted by P(s)E/cP,{s). If K. — R, then they are called strict equivalent. If 
P(s )Ek P'{s ) and L(s) = /,„, or R(s) = /„, then they are called right-, left-equivalent 
and this is denoted by P(s)EJcP,(s)i P(s)EllcF>l(s) respectively. E jc, E rK, are 
equivalence relations and the corresponding equivalence classes of P(s) are denoted 

by Eic(P),Ei:(P),Ejc(P) respectively.

26



2 .4 .2  S m ith , S m ith -M cM illa n  form s

For a matrix P (s) G RmXn(s) canonical forms may be defined under left, or right 
equivalence over K (where k'■ is either R[s], Rpr(s), or Rp(s)). Such forms are referred 
to as Hermite forms, if P(s) is defined over K and Hermite-McMillan form if P(s) 
is a general rational. Under £-equivalence we define respectively the Smith forms 
(if P(s) is from K') and Smith-McMillan forms (if P(s) is general rational). The 
Smith, Smith-McMillan forms are central in the study of structure of linear systems 
and they are described next.

(a) Smith form over R[s] [Gan,l]

Let P(s) G RmXn[s], p(P(s)) = r < min(m, n). There exist L(s) G U(m, R[s]), 
R(s) G U(n,R[s]) such that

I r: (2.2i)
j m  — 7’

Sp(s) = diag{f i (s) , . . . , f r(s)},fi(s) € R[s] (2.22)

Sp(s) is called the Smith form and the monic polynomials G r are the
invariant polynomials of P(s) and satisfy the division property /,-(s)//j+i(s)Vi = 
1,2, ...,r — l,(/;(s) divides /¿+1(s)). The set of /¿(.s) may be defined by the Smith 
algorithm. Thus, let dQ(s) = 1, d,(.s) be the monic greatest common divisor (GCD) 
of all i X i order minors, i — 0,1,2,..., 7’. Then d,(.s)/di+1 (s), i = 0,1,2,..., 7’ — 1 
(divisibility) property and

f i (s) = di(s)/di-i(s),i  =  1 ,2 ,...,r (2.23)

The above formula describes the Smith algorithm. The polynomial zp(s) = 
is called the zero polynomial of P(s). If zP(s) is factorised into irreducible 

factors over C as

L(s)P(s)R(s) = SP(s) =
Sp{s) 0

, 0 ,
r n—r

zp(s) = { s -  zi)Tl...(s -  zM)T%Zi G C,z, y  Zj (2.24)

then the set <f>p = {z;,i G fij is called the root range, z, a zero of P(s) and Tt 
the algebraic multiplicity of Z{. The zeros are the frequencies for which P(z{) loses 
rank below its normal rank r and the number tq = 7ir(P(zi)) + 7’ — 77 is defined 
as the geometric multiplicity of Z{. Generally, V{ < r,- and if equality holds, the 
zero is called Simple. The matrix P{s) is called simple, if all zeros are simple,
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otherwise, it is called nonsimple. By factorising each of the /¿(.s) into irreducible 
factors over C and collecting all terms corresponding to the zero Z{, we define the 
set of elementary divisor for Zi^DpjZt =  {(.s — Zi) ,̂k,k — 1, 2, u,-}, where V{ is the 
geometric multiplicity and Ŷ k=\ Qik — 7*.

The Smith form is defined for matrices over Ppr(s) and Rp(s) and with the 
appropriate modifications their form is similar.

(b) Smith-McMillan form over R[s] [ K ai, 1 ]

If P{s) G RmXn(s), p(P(s)) = r < min(m, n) and d(s) is the least common mul-
tiple (LCM) of the denominators of the elements of P(s), then P(s) =  d(s)~1N(s), 
where N(s)  G /?mXn[.s], If

L(s)N(s)R(s) = SN(s) (2.25)

is the Smith reduction of N(s), then the Smith-McMillan form of P(s) is defined by

Mp (s ) = - ^ r S N(s) G Rmxn(s) (2.26)
d{s)

where in Mp(s) all possible numerator-denominator cancellations are assumed to 
have been carried out. Thus,

L(s)P(s)R(s) = MP(s)
M p s) 0

. 0 ,
r n—r

}
} n i — r

Mp(s) = diag{e,-(s)/V>i(5),i G r}

(2.27)

(2.28) 

(2.29)

The sets of {ej(.s),f G r }, {^¿(s),f G r} are the elementary zero- pole-polynomials 
of P(s) and satisfy the divisibility properties

£i(s)/e2(s)/.../er(s),iJ>r(s)/ilfr- i ( s ) / . . . / ^1(s) (2.30)

The polynomials zp(s) = ri(=16t'(.s),pp(.s) = Uri=1ipi(s) are defined as the zero, 
pole polynomials of P(s) and d[pp(s)} = 8m  is defined as McMillan degree of P(s). 
The Smith-McMillan form over Rp(s) is of similar structure (with the appropriate 
changes) and it is described in [Vard,Kar,l], The Smith-McMillan form is the natural 
tool to describe the rank properties (local and normal rank) for all s GC;  however, 
does not provide information for the rank of P(s) at s = oo.
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(C) Smith-McMillan form at .s = oo [Vard,Lim.,Kar.,l]

The structure and rank properties of a rational matrix at s = oo is defined by 
the Smith-McMillan form at s =  oo. Thus, let P(s) G RmXn(s), p(P(s)) =  r. There 
exist L(s) G f/(m, Rpr(s)), R(s) G U(n, Rpr(s)) such that

L(s)P(s)R{s) M “ ( i )  =

Mp°° 0

" 0  , , 0  ,

r n—r
diag{.s91, ...,s9r},qi > ■ ■ ■ > qr

(2.31)

(2.32)

Mp>(s) is uniquely defined by P(s) and it is called the Smith-McMillan form at s = oo 
of P(s). If Hoo is the number of s with </,- > 0, then we say that P(s) has 
IIoo poles at infinity, each one of order qt > 0. If r/oo is the number of </,■’s with 
<h < 0, then we say that P(s) has ij<*> zeros at infinity, each one of order |ç,-|. The 
number 8Ĉ{P)  =  cli■> (h > 0? is defined as the McMillan degree at infinity of
P(s). If P(s) is proper, then it has no poles at infinity and Mj? = S'p(s) is the 
Smith form at ,s = oo describing the infinite zero structure of P(s). In this thesis, 
the term McMillan degree refers to the total number of finite poles and McMillan 
degree at oo refers to the total number of poles at infinity. We shall refer to the sum 
of those two numbers as the extended McMillan degree.

Mp>(s) may be defined from the standard Smith-McMillan form of P( l /w ) 
[Verg., 1] [Pug. & Rat.,2] at w =  0. Alternatively, the qSs may be computed by 
the valuation algorithm. Thus, if e,- =  least valuation among the valuations of all i
i x i minors of P(s),i  = 1,2, ...,r then

qi 1, 2, . . . , r, 6q 0 (2.33)

A matrix P(s) which is a column, or row block of some Rpr(.s)-unimodular matrix 
has no poles and no zeros at s = oo and it is called left-, or right-biproper.

M p ( s ) is one of the local canonical forms of P(s) that reveals its structure at 
a single point, here at s = oo. By considering the P{w) =  P( l /w ) rational matrix, 
then Mp>(.s),M~> defines by a mere substitution of s — w, the Mp(s), which is the 
local Smith-McMillan form at s = 0; Mp(s) reveals the structure of P(s) at s = 0, 
The final and initial asymptotes of the Bode plots of P(s) together with the valuation 
algorithm may be used to compute Mp’(s), Mp(s) from experimental data. In fact, 
for the case Mp ( s ), the final asymptotes of the Bode diagrams of the elements of the 
transfer functions define the valuations at oo of the corresponding elements, then
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the valuation algorithm described before together with some genericity arguments 
may be used to compute all possible order valuations of the given matrix; such a 
procedure has been described in [Var. Lim. Sz Kar.,1], An example illustrating this 
procedure is given below.

Example (2.4.1): Let

T(s)
1

(S+l)2 S + l

s+ 2  1 1
s2+ 0 .2 s + l  s^  (s+ 2 )2 .

then the least valuation ej among the valuations of all first order minors (i.e. ele-
ments) of T(s ) is:

=  min{2, —3, —1, 1,3 ,2} = —3

The least valuation e2 among all second order minors is:

e2 = min{—2, 0, - 1} =  —2 and Co = 0

therefore

<71 — 0̂ — — 0 — (—3) — 3

q2 — t\ — e2 = —3 — (—2) =  —1

and so T(s) has one pole at infinity of order 3 and one zero at infinity of order one.

Thus, the Bode magnitude diagrams corresponding to above example are shown

in the Figure and the valuation matrix V =  {^(Lj(-S))} is given by V 

From V  it follows that

2 - 3  -1  
1 3 2

f 1(7,) = - 3  and £¡(T) =  min {2 +  3, 1 - 3 ,  2 + 2, 1 -  1, 2 - 3 ,  3 -  1} = - 2

Figure 2.1: Bode magnitude array for Example (2.4.1)
30



For the case Mp(s) the analysis is dual to the previously described one. In fact 
now we are using the initial asymptotic slopes at zero.

If we are given the transfer function, we are using the valuation algorithm how-
ever, even from experimently derived frequency responses we can always computae 
the inital and final slopes from the corresponding Bode plot.

2 .4 .3  M a tr ix , D iv iso rs  and C o p r im en ess o f  P o ly n o m ia l M a-

tr ices

The solvability conditions of many control problems are reduced to a test of co-
primeness of polynomial, or rational matrices (from a specific ring of importance to 
control). The basic definitions and tests are given here for the case of polynomial 
matrices [Kai,l]. The corresponding extensions to the case of matrices over Rpr(s), 
or Rp(s) are along similar lines and may be found in [Vard.,Kar. 1,2].

Let P(s) G RmXn[s], p(P(.s)) = n. A matrix R(s) G RnXn [.s] such that

P(s) = P'(s)R(s), P\s )  G RmXn[s] (2.34)

is called a right matrix divisor (RMD) of P(s). If R(s) is any other RMD and

R(s) = W{s)R(s),  VF(.s) G RnXn[s] (2.35)

then R(s) is called right greatest matrix divisor (RGMD) of P(s). If p(P(s)) = m, 
the notions of left matrix divisors (LMD) and left greatest matrix divisor (LGMD) 
are defined similarly. A matrix P(s) G i?TOXn[s], p(P(s)) — n is called right irreducible, 
if all RMDs are /?(s)-unimodular. Nonunimodular RMDs contain a subset of the 
zeros of the original matrix. A matrix P(s) is least degree, if it has no zeros, i.e. 
pc{P(A)) = n,VA G C , or equivalently Sp(s) = [/n,0]L A left irreducible matrix is 
defined in a similar manner. A matrix P(s) G RmXn[.s], p(P(s)) = n (or m), is called 
a minimal basis, if it is right (left) irreducible and column (row) reduced. Minimal 
bases have no finite and no infinite zeros.

If Pr = {Pt(s) G Rk' xm[$],i G F} is a set of matrices, then the matrix

G Rkxm[s\,k = J 2 k t (2.36)
t=i

T’rW
PiW

a w .
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is called a matrix representative of Pr ; Pr is right regular, if p(Tp(s)) — m. If Pr 
is right regular, then a right common matrix divisor (RCMD) and a right greatest 
common matrix divisor (RGCMD) of Pr is defined as a RMD and a RGMD of 
Tp{s) respectively. The set Pr is called right coprime (RG), if it is right regular 
and Tp(s) is right irreducible. For a set of matrices with the same number of 
rows, a matrix representative, left regularity property, left common matrix divisors. 
(LCMD), left greatest common matrix divisor (LGCMD) and left coprimeness are 
defined in a similar manner. The above definitions for matrices over R[.s] have their 
counterparts for matrices over Rpr(s), Rp(s) with the appropriate changes, (see 
[Vard.,Kar. 1,2]).

2 .4 .4  M a tr ix  P en c ils  [G an ,l]

If F,G G RmXn, then the polynomial matrix L(s) = sF — G is called a matrix 
pencil. Polynomial matrices of this type play an important role in the study of state 
space models and matrix computations. Their theory is richer than that of general 
polynomial matrices and the basic concepts are summarised below.

The family of m  x n pencils is denoted by Cm>n(s). L\(s) = sF\ — G\ ,L2(s) = 
s F2 — G-2 G !) are said to be strict equivalent, if there exist R G f/(m, R), Q G

U(n,R)  such that L2(s) = RLi(s)Q.  If m  = n and \sF — G\ ^  0 then the pencil 
is called regular, otherwise it is called singular. If sF  — sG is the homogeneous 
pencil and /¿(.s,s), i G r, r = p(sF — G). are the homogeneous invariant polynomi-
als (defined by Smith algorithm), then elementary divisors (ed) of the type sq are 
referred to as infinite e.d. (oo-ed) and those of the type ($ — as)p as finite ed (f-ed). 
The link between the oo-e.d. (divisors of the type sg) and the orders of oo-zeros of 
sF — G, as these are defined by the Smith-McMillan form at oo, has been established 
in [Vard. & Kar.,4] and it is referred to as “plus one” property. In fact, for every 
oo-e.d. .s'7, q > 2, there is an oo-zero of order q— 1, whereas linear elementary divisor 
of the type s do not correspond to infinite zeros. If the pencil is singular, at least 
one of the following equations has a solution for polynomial vectors x(s),y(sY

(.sF -  G)x(s) = 0, y (s ) \ sF  -  G) = o' (2.37)

If {xj-(.s), i G p} , { y i  j  G ?} are minimal polynomial bases for Afr{sF — 
G},Afi{sF — G} respectively (in the sense defined in section (2.4.3)) and {ti,i  G 

^ denote the corresponding degrees, then the set of et- are known
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column minimal indices (c.m.i.) and the set of rjj as row minimal indices (r.m.i.) of 
the pencil. The set of f-ed, oo-ed, cmi, rmi, uniquely characterise the strict equiv-
alence class of sF  — G, Ek (F, G), and there exists a canonical form, the Kronecker 
canonical form defined by some appropriate pair (/?,, Q) by R(sF — G)Q = sFk — Gk, 
of the type

sFk Gfc bl.diag{Ogji,..., ,..., Tp(.s),..., sHq 1q, ..., sip t/p(cv),...} (2.38)

where 0 9ih is a zero block defined by the g zero rmi, h zero cmi, L((s), Lv(s) are 
blocks associated with nonzero e cmi, g rmi, sHq — Iq a block associated with the 
s9oo-ed and s lv — Jp(a) a block associated with the f-ed (,s — a)p. The structure of 
these blocks is defined below:

L((s) = s [7e, 0] — [0, Ic] e x (e + 1) block

(r/ +  1) x g blockLv(s) = s

s H q -  I q =  S

sip Jp(cii) sip

I n !o __
__

i
1

o
|

L h  \

0

V  i

0

0 0 0

a 1 0

0 a l

0 0  0

0 0  ■

— Iq q X q block

0 a

(2.39)

p x p block (2.40)

2 .4 .5  M a tr ix  fra ctio n  d escr ip tio n

Consider a linear time invariant multivariable system giving rise to a transfer func-
tion matrix G(s) £ Rmxl(s), rank^(s)G(s) = min{m,/}. It is then well known that 
G(.s) can always be factored (in a non-unique way) as

G W  =  Dp(s)N,(s)  = (2.41)

where N[(s), Nr(s) £ Rmxl[s], Di(s) £ RmXm[s], Dr(s) £ i?ix,[.s] with detjD;(s), 
detDr(s) /  0. The pair (Dr(s), Nr(s)) (Di(s),Ni(s)) is called a right (left) matrix 
fraction description (MFD) of the transfer function matrix G(s).



The above definitions, show that matrix fraction description provide a natural 
generalisation of the scalar rational function representation of single input-single 
output systems, though in the multivariable case we have to distinguish between 
right and left descriptions.

However, we have to note that there is a certain duality in these descriptions. 
Furthermore, we shall often omit the subscript r.

2 .4 .6  T h e  G rassm an  re p r ese n ta tiv e  o f  a v ec to r  sp a ce  and  

th e  P lu ck er C o -o rd in a te  [Kar.,5] [K ar.& G ia,3]

Let V be an m—dimensional subspace of an n-dimensional vector space U over a field 
F. The map h : V —> U defined by h(x) = x, x £ V is linear and there is a unique 
homomorphism h : AV —> AU associated with h. Note that A denotes the wedge or 
exterior product and Am denotes the m-th exterior power. [Mar.,1] See also Section 
(2.3.3). Since dimV = m, AmV is a one-dimensional space and it is mapped by h 
onto a one-dimensional subspace of AmU. Thus if V = {rq, i = 1,..., m} is a basis of 
V then AmV is spanned by the element ?q A ... A vm and h maps this element onto

h{!h A ... A vm) =  h(tq ) A ... A h(vm) =  rq A ... A vm (2.42)

in f\mU. The vectors tq, i = 1,2,..., m are linearly independent and so rq A ... A vm is 
a non-zero element of f\mU. In fact the injection map h : V —> U defined by h(x) = 
x ,x  € V induces an injection map Amh : AmV —> f\mU defined by Amh(x/\) = xA, 
xA G AmU. The vector {uj,..., v7n } spans a one-dimensional subspace of AmU which 
depends only on U. Now let U = {uv j  = 1, ...,n} be basis of U, then using matrix 
representation we have the following commutative diagram:

V __________________U_________  u

A = Hxu J
f m--------------------------------------------------

where A = Hy is the matrix representation of h with respect to V and U. In
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fact if
(2.43)Ms) = s  = °«»,.

i=i
then A = Hy is the matrix

®11 ®21 ' ' ' ®ml
« 1 2  « 2 2  ' ' ' « m 2

ain ^2 n &rnn

The column span of A is a subspace of F n and it is the representation of h(V) 
with respect to the basis V,U. The representation of A ... A vm with respect to 
the basis AmV,AmU is defined by the commutative diagram and thus

< = c H, Qv> a u q,q -  det £ F -  {0} (2.44)

The two vectors t = vï A ... A vm,t' = v[ A ... A Hm are related by

t' = [..., uwA,...] Cyj • • 5 *•*]

I--
-

i__

q = qt or cw = acw, w £ Qm.n

(2.45)

The above derivation indicates that co-ordinate transformations (change of bases) 
defines another co-ordinate transformation in the exterior product spaces which ex-
presses the Binet-Cauchy Theorem described in Section (2.3.3) and manifested by 
(2.45).

Example (2.4.2): Let V be a vector space defined by the columns of the matrix

( 1 —2 \
V = 3 -5

w " 9 /

( 1 ~ 2 ) ( 1 ^
In this case we have C-^V) = C2 3 -5 = 5

l  ? - 9  J U/

is another basis for V. In this case we have C^V7) =If V  =
(  3 2 \

8 5

V 16 9 /
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(  3 2 \
8 5

(  -1  \

V 16 9 y V -8

By Binet-Cauchy Theorem

C2(V') = C-2 {V)q where q =  det Q

' 3 2 N ( 1 —2 ^
(  1 0 \

8 5 = c2 3 -5 • det Q where Q = 1 1
V  ̂  ̂ /V 16 9 ) ^7 - 9 j

Definition (2.4.1): The scalars cw of equation (2.45) are called Plucker Co-ordinates 
of the subspace V relative to the bases V of V and U of U.

□

Equation (2.45) shows that any two sets of Plucker Co-ordinate of V, which 
correspond to two different bases of V, with respect to the fixed base U of U differ by 
a non-zero scalar factor. Hence the ratios of c'Js are the same as the corresponding 
ratios of c j s (cWl = qdWl,cW2 = qc'W2 and so cwJ c W2 = c'wJc'W2). Therefore the ratios 
are uniquely determined by V.

Sometimes, the ratios of the dwl rather than the cw themselves, are called the 
Plucker Coordinate of V.

Consider now the vector space Fa+1 of (a + l)-tuples x = (xo, x \ ,..., xCT), x,- E F. 
Let us call two such vectors x and y equivalent if they are both non-zero and if 
x = qy for some q E F — {0}. This equivalence relation splits the non-zero vectors 
in Fa+1 into equivalence classes, and clearly each equivalence class consists of all 
the non-zero elements in a one-dimensional subspace of Fa+1. Thus the equivalence 
classes are in one-to-one correspondence with the lines through the origin of F <T+1.

Definition (2.4.2): The set of all equivalence classes of non-zero vectors in Fa+l 
as defined above, is called the projective space of dimension a over F denoted by 
F a(F). Each equivalence class defines a point of this projective space. If Q is any 
point in Pa(yF) and if x = (xo,---,xa) is any vector of the equivalence class which 
defines Q , then the x,’s are called homogeneous co-ordinates of Q.

□
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n
If we set 1 = dim Am U — 1, then we can easily see that the

\ m /
Plucker co-ordinates of V, enumerated in lexicographic order, may be considered as 
the homogeneous co-ordinates of a point in P(r(F). However, every point in Pa(F) 
does not represent an m-dimensional subspace of U. Elements of AniV of the type 
qvj A ... A qvm where vx, ..., wTO are linearly independent vectors of V and q £ F — {0} 
are called simple or decomposable m-vectors. Decomposable multivectors uniquely 
define m-dimensional subspaces of U and it is shown below.

Proposition (2.4.1): Let U be an n-dimensional vector space over F and let yf\ = 
y A ... A ym,z_A — z x A ... A zm be two decomposable non-zero elements of AmU and 
let us denote by Vy — span {y , ...,? /}  and V, = span { z j,..., zm} the subspaces of 
U defined by yA and zA respectively. Necessary and sufficient condition for Vy = Vz 
is

V_A = y_i A ... A ym = qzx A ... A qzmA, q € F -  {0} (2.46)

□

Definition (2.4.3): Let U be a vector space over a field F with dim U = n. 
The Grassmannian G(m,n)  is defined as the set of m-dimensional subspaces V of 
U\ G(m,n)  actually admits the structure of an manifold which is known as the 
Grassmann manifold.

□

Definition (2.4.4): If V is any m-dimensional subspace of the n-dimensional vector 
space U, then any non-zero decomposable multivector v A ... A vm with y_t 6 V,i = 
1,2, ...,m is called a Grassman representative of V. We have already seen that all 
the Grassmann representatives differ only by non-zero scalar factors so that we shall 
denote any one of them simply by g(V).

□

What we have constructed so far is a well defined mapping g : G(m , U) Pa(F), 
by associating to every v £ G(m,n ) Plucker co-ordinates (,..,cw, ...),w £ Qm,n■ This 
mapping is known as the Plucker Embedding of G(m,n)  in the projective space 
Pa(F). The Plucker image of G(m,U) in Pa(F) is called the Grassmann variety in 
Pa(F).
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2.5 C onclusion

In this chapter, the basic tools from Mathematics and Systems which are essential 
for the development of the subsequent chapters have been examined. The proper 
cover of the relevant issues is given in the listed references.
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Chapter 3

REVIEW  OF INVARIANTS OF 
LINEAR SYSTEMS

3.1 In trod u ction

On a given system we may apply different types of transformations, some of them 
corresponding to a change of representation and some others having a compensa-
tion, or feedback interpretation. The theory of system invariants is important for 
control theory and design since they describe structural characteristics which remain 
unaffected under the transformation and thus indirectly are related to the limits of 
compensation. Here we try to summarise the basic invariants and where possible 
indicate their desirable values. This chapter is structured as follows: We first discuss 
the effect of transformations of the fundamental system properties. Then we discuss 
the theory of invariants for state space models and finally for transfer function mod-
els. The topic on system invariants and canonical forms is quite extensive. Here we 
attempt to summarise the basic aspects of the theory.
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3.2 S y stem  T ransform ations and F undam ental 

S y stem  P ro p erties  [W on.,1]

[Kar. &  M acB .,1] [Kar., & G ia.,1]

On a state space model S(A, B , C, D) we may apply co-ordinate and feedback trans-
formations. Thus, we consider the following cases:

a) System properties under co-ordinate transformations;

b) System properties under co-ordinate transformations and feedback.

Coordinate transformations are of the type x = Qx',y = Ty',u — Ru' where 
Q, T, R. are square nonsingular matrices. The effect of these transformations on 
system properties is summarised below.

Result (3.1): If Q,T,R, are state, output, input coordinate transformations, then

i) The characteristic polynomial = \XI — A\, the eigenvalues and associated
Segre characteristic, are invariant under all (Q,T,R)  transformations.

ii) The controllability, observability are invariant under all (Q,T, R) transforma-
tions.

iii) The transfer function matrix and Markov parameters are invariant under all Q
transformations.

□

Thus, controllability properties may be inferred from any model obtained from 
S(A, B , C, D) and Q transformations. The eigenvectors, however, are functions of Q 
and their description changes with the changing of Q. The eigenframe is important 
when we deal with a coordinate frame characterising physical states.

Under the feedback transformations L, A", F expressing state, output feedback 
and output injection respectively illustrated by the diagram (3.1) we have:

Result (3.2): If L, /i, F denote state-, output-feedback and output injection re-
spectively, then:

i) Controllability and stabilisability are invariant under all L,K .
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ii) Controllability is invariant under all F , iff the system has no zeros. For any
system, controllability is invariant under a generic F.

iii) If the system is stabilisable, then stabilisability is invariant under all F, iff the
system has no right half plane zeros. For any stabilisable system, stabilisability 
is invariant under a generic F.

iv) Observability and detectability are invariant under all F, K .

v) Observability is invariant under all L, iff the system has no zeros. For any
system, observability is invariant under a generic L.

vi) If the system is detectable, then detectability is invariant under all L, iff the
system has no right half plane zeros. For any detectable system, detectability 
is invariant under a generic L.

□

The presence of finite zeros implies that for certain families of output injection 
we loose controllability and for certain families of state feedback we loose observ-
ability [Sha. <k Kar.l]. The presence of right half plane zeros has corresponding 
implications to loss of stabilisability, detectability under certain families of output 
injections, output feedback correspondingly.

More general types of transformations, which preserve the transfer function and 
certain properties of PMDs are discussed in [Ros.,1] [Kai,l] [Pug. Hay. & Fre.,1]
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[Pug. Hay. & Wal.,1]. Since such topics are not relevant for our present topic, they 
will not be considered here.

The notion of coordinate transformations for state space models, has its equiva-
lent in the transfer function matrix context, which is that of unimodular matrices. 
According to what sort of fractional description we consider for G(.s), we have the 
K-unimodular matrices U(m, K)  where m  denotes the dimension of the square ma-
trix elements from K  (K is R[s], Rpr(s), or Rp(s) and if Q £ t/(m, K ), then |Q| is a 
unit of K). The role of coordinate transformations in the system representation is 
emphasised by the following result.

Result (3.3): Let G(s) £ R™xl(s). Then,

i) [Kal.,1] The minimal state space models Si,i = 1,2 have the same transfer func-
tion G(s), iff they are related by a state coordinate transformation,

ii) [Ros.,1] [Kai, 1] The left,right /F-coprime MFD pairs (Au, Bu), (B2i, A 2i), i = 1 ,2  
(K is R[s], Rpr(s) or Rp(s)) have the same transfer function G(.s), iff

[A12, B12] = L[An , Bn ],L £ U(m, K) (3.1)

R , R £ U(m , K) (3.2)' B'2'2

1<N

__
1

3.3 S ta te  space invariants

On state space models we may apply different types of representation, compensation 
transformations and thus a variety of invariants and canonical forms are defined. 
Summarising the most fundamental types of state space invariants, is the aim of 
this section. Central to the definition and computation of most of the invariants is 
the theory of Kronecker invariants (and associated canonical form) of matrix pencils 
[Gan.,1]. It is worth pointing out that the complexity of invariants and associated 
canonical form increases as the complexity of the transformations which are involved 
in the definition of the equivalence classes decreases. The presentation thus follows 
a path of increased complexity.

The most general types of transformations that may be applied on the 
S(A, B,C, D) system are those defined by Q ,T ,R  state, output, input coordinate
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transformations, state feedback L and output injection F. Based on Q,T, /?, L,F  
transformations, we may define the following ordered sets of transformations [Kar.,7]:

H k = {Hk : Hk = (Q, T, R; L, F)}

Wb  =  {H'b :H'b  = (Q ,R;L)} ,H ib  = {H‘b : H ib  = (

He = {Hc- .Hc = ( Q , T , R ^ , 0 ) = ( Q , T , R ) }

H'i = {Hl’ : H ’S = (Q,0,R) = (Q,R)}

«C =  {He : H°c = (Q,T, 0) =  (Q,T)}

H i  = {H-c :H-c (Q,0,0)=(Q)}

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

These transformation form groups (under a standard composition rule described 
in chapter 2); 7ik, 7-f#, will be referred to as the Kronec.ker, right-,left-Brunovsky 
groups and H e ■ Ft™, /H!q  , T~isc as general-, input-state-, state-output-, state-coordinate 
groups respectively. The action of these groups on the system may be expressed as 
action on pencils associated with the corresponding type of system which is consid-
ered. Thus,

i) Action of Hki'Hc on S(A, B , C, D) is defined by:

C/3 1 1 bo ' ¿ r 1 F ' ' s i  -  A - B ' Q 0 '

1bi 0 T - C  - D L R

ii) Action of JirB, H q  on S(A ,B)  is defined by:

s i -  A’, - B ’ I = Q -1 \ s i  - A ,  - B r q 0 ’

[ l R
(3.10)

iii) Action of HlB,Hç  on S(A, C) is defined by: s i  — A! — Q 1 (si — A ),

' s i  -  A' '

i i

__
1

s i  -  A '
-C 0 T -c

iii) Action of H sc on 5(A) is defined by: s i  — A' = Q 1(sl  — A).

We consider next the types of invariants and canonical forms that may be defined 
on state space models under the different groups. We distinguish those involving 
coordinate transformations only and then those also involving feedback.

(I) Invariants and canonical forms under coordinate transformations
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(a) State coordinate transformation on 5’(A) [Tur. & Ait.,1]

For the system S(A) : x = Ax, coordinate transformations are known also as 
similarity transformations. The structure of eigenvalues defines the invariants and 
canonical form [Gan.,1].

Result (3.4): If <t>(A) is the root range of A, and 5'(A,A) = {ui < ... < vq} is the 
Segre characteristic for every A £ (f>(A), then the set {<f>[A)-, S(A, A) all A € (j>{A)} is a 
complete invariant for similarity equivalence on S(A). The corresponding canonical 
form is the Jordan canonical form,

J (A )=  diag {...; J(A );...}, J(A) = diag {Jn (A);...; JVq(\)}  (3.12)

where JA(A) = AB  + Hk is a typical k x k A-Jordan block.

The invariants and canonical form may be computed algebraically by use of the 
Smith form of .si — A (computation of set of e.d.’s), or by alternative means based 
on sequences of numbers [Kar.,2], The maximum of the geometric multiplicities of 
eigenvalues,is denoted by p and referred to as the Segre index.

Remark (3.1): The similarity invariants define the nature of elementary motions 
of S(A) and characterise stability properties. For eigenvalues on the imaginary axis 
it is essential to compute the corresponding Segre characteristics, since this defines 
the difference between Lyapunov stability and instability. The Segre index fi (max 
of q for all eigenvalues) defines the minimum number of inputs, outputs which are 
needed for controllability, observability, when inputs and outputs are selected.

If u(A) is the maximal degree elementary divisor at A, then h — X]n(A) defines 
the degree of the minimal polynomial of A. Alternative canonical forms, such as 
those of the companion type may be found in [Gan.,1].

(b) State, input coordinate transformations on S(A,B)

We examine here the basic invariants and canonical forms under state coordi-
nate transformations and then extend them to include state and input coordinate 
transformations. The canonical forms have implications for identification and state 
space design. The emphasis is put on invariants, whereas for a proper surveying 
of canonical forms we refer to references. Throughout this section we assume that 
,S'(A, B ) has n state, l inputs and p(B) = /.
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For the pair (A,B) we define the sequence of matrices

Qc,k = [B ,AB,. . . ,AkB],k = 0,1,2,... (3.13)

where QCt7l- 1 = Q c is the controllability matrix and p(Qc,k) < p(Qc,k+1)-

Definition (3.1): [Kai,l] The smallest integer p for which p(Qc,m) =  p(Qc^+v) 
is defined as the controllability index of S(A,B).  If we assume that the linearly 
independent columns of Qc in order from left to right have been found and rearrange 
these independent columns as

b1,Ab1, . . . , A ^ - % ]..-b1,Abh . . . ,A"- 'b l (3.14)

then set of indices {pi,i £ /} are called the controllability indices of S(A : B).

□

In order to state the next result on controllability indices, we have to introduce 
some tools from the matrix pencil characterisation of system properties [Kar. & Kou.,1] 
[Kar. & Mac.B.,1].

Definition (3.2): Let S{A1B,C)  be a linear system, A £ RnXn, B  £ RnXl,C  £ 
RmXn, rank (B ) = Z, rank (C ) = m , N  £ ft(n~l)Xn be a basis matrix for Mi(B), (left 
annihilator of B ) and M  £ RnX(n~m) be a basis matrix for Afr(C) ( right annihilator 
of C). We may define the following restricted pencils:

i) The input-state restriction pencil R(s) = sN  — NA  £ f?(n_,)Xn[s].

ii) The state-output restriction pencil P(s) = sM — MA  £ RnX(n- m) [5],

iii) The zero pencil Z(.s) = sN M  -  N A M  £ ^ - 0 X(»-H[5],

□

R em ark  (3.2): [Kar. & Kou.,1] [Kar. & Mac.B.,1] The pencils R(.s),P(s) com-
pletely characterise the controllability, observability and feedback invariant prop-
erties of S(A, B ,C ) : where as Z(s) defines completely the zero structure of the 
system. The characterisation of the above properties is in terms of the Kronecker 
invariants [Gan.,1] of the corresponding pencils.

□
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Some important properties of these indices are summarised by the following 
result [Kai, 1], [Che,l], [Kar. Sz MacJB.,1], Note pi > /, for all i =  1,...,/ and the 
zero value appears, only when p(B) < / (which is not considered here).

Result (3.5): [Kar., & Gia.,1] For the set Ic — {pi,i E 1} of controllability indices 
of S(A, B ) the following hold true:

i) The controllability index p = max{/ri,/r2, ...,/q}

ii) If n is the degree of the minimal polynomial of A , then

n/l  < p < min(h, n — / + 1) < n — / + 1 (3.15)

iii) p\ + p2 + ' '  ’ + pl < n and equality holds iff the system is controllable. Fur-
thermore, ^2i=i pi = nc is the dimension of the controllable space of the system and 
n — nc defines the total number of uncontrollable modes.

iv) The controllability indices are invariant under state, input coordinate transfor-
mations and state feedback.

v) The set Ic is the same with the set of column minimal indices of the pencil 
Pc(s) = [ s I - A , ~ B } .

vi) The set Ic = {pi,i E 1} defines the set of column minimal indices {pi] of the
pencil R(s) = sN  — NA  by the rule pi = pi — 1, i = 1,2,..., /.

vii) If G(s) — N(s)D(s)~1 is any 7?(s)-right coprime MFD with D(s) column reduced 
and S(A, B, C) is a minimal realisation of G(s) (assume G(s) strictly proper), then 
the column degrees of D(s) define the controllability indices of S(A,B).

□

Remark (3.3): The set of controllability indices and the set of f.e.d. of Pc(s) pencil 
are invariant under H q  group, but they are not complete. That is, more invariants 
are needed to define a complete set.

□

Defining a complete set of invariants for S(A ,B)  under 7isc , groups is re-
lated to the theory of canonical forms under coordinate transformations which is 
extensively treated in [Kai,l], The Popov canonical form [Pop.,1], is a unique form 
under similarity for S(A,B).  Such a canonical from contains all additional infor-
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rnation about the new invariants, which are now a set of real numbers. We may 
illustrate the structure of this canonical from in terms of an example. Thus consider 
a controllable system with n =  5, /¿i = 2, fi2 = 3, l = 2.

The Popov canonical form has the following general structure where x denote 
uniquely defined constants.

0 1 0 0 0 ' ' 0 0
X X 0 X X 1 X

0 0 0 1 0 Bc = 0 0
0 0 0 0 1 0 0
X 0 X X X 0 1

(3.16)

The subsystems defined by diagonal blocks are interc.oupled and this coupling is 
defined by the crate diagram [Kai, 1] and it is an invariant. This unique canonical 
form is a useful tool in system identification. If input coordinate transformations 
are also used, then the canonical form has an identical A matrix, A c, but the xs in 
Bc are eliminated. Different types of “pseudo canonical” forms (not unique) exist in 
the literature [Kai, 1], which once more demonstrate the minimal indices structure 
of the pair, but their nonzero elements are not all of them uniquely defined.

(c) State-output coordinate transformations on S(A,C)

Note that the definitions and results presented for (A, B ) pairs have their equiv-
alents for the case of (/l, C ) pairs by using “transposed duality” arguments, that 
is (j4i,C'i) is first seen as a state, input pair and by transposition and use of the 
changes:

Controllability to observability, right MFD to left MFD, input to output etc. 
all definitions and results may be stated for state, output pairs (A,C). The set 
of observability indices is denoted by IQ — {Oi,i 6 m}, where ra is the number 
of outputs and 6 denotes the observability index which now satisfies the following 
inequality.

n /m  < 6 < min(n, n — m  + 1) < n — m +  1 (3.17)

where n is the degree of the minimal polynomial.

(d) State-coordinate transformations of S(A, B,C)

For systems S(A, B, (7 ) ,  the theory of invariants and canonical forms is richer 
than that of ,9(̂ 4, B),S(A ,C)  systems, since both aspects of the above two subsys-
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terns are involved. The set of controllability, observability indices are invariants, as 
well as the sets of input, output decoupling zeros and finite, infinite zeros. Note 
that the additional invariants, which will be defined under the Kronec.ker group 7ik, 
are also invariant under Btsc , since 7isc is a subgroup of Tik. The canonical forms, 
which have been defined in the literature do not always demonstrate the structure 
of all of these invariants.

If Q is a transformation that brings (4, B) to Popov form (4 C, Bc) defined before, 
then the output Cc = CQ is uniquely defined and (4 C,F?C,(7C) is an input based 
canonical form [Kar., & Gia.,1], Similarly, if Q' is a transformation that brings 
(.4,(7) to the corresponding Popov form (4 0,(70), then B0 = Q~l B is uniquely 
defined and (4 0, B0,C0) is an output based canonical form [Kar., & Gia.,1]. The 
Popov canonical forms (Ac, Bc,Cc),(A0, B0,C0) are related to the realisation of 
transfer functions based on canonical right, left MFDs, that is those which are 
in a “echelon type form” [Kai, 1]. Alternative canonical forms, based on the idea 
of balancing the controllability and observability Grammians have been defined 
[Obe. McF,l]; such forms are more robust to model parameter uncertainties and 
play a key role in model reduction.

The canonical forms and invariants under coordinate transformations are im-
portant in system parametrisation, identification and model reduction. They are 
also useful as convenient form for studying state space design problems; however, 
some considerable numerical effort (and associated numerical difficulties) may be 
associated with their derivation. For the purposes of this project, the invariants and 
canonical forms that involve feedback seem to be more relevant, since they indicate 
what is the “best” that can be achieved under feedback.

(II) Invariants and canonical forms under coordinate transformations and feedback

The types of feedback used are state feedback and output injection; the case of 
output feedback is considered briefly at the end, since it is still an active area in con-
trol theory. The transformations 'HrB,H lB,Hk contain as subgroups the , H q , 'He’, 
thus, a number of coordinate transformations invariants are not preserved under the 
more general groups, which are considered now.

a) Coordinate transformations and state feedback on .9(4, B)

Under the action of 7irB group (input, state coordinate transformations and state 
feedback) on .9(4, B) systems, we obtain an equivalence class of systems £g(A ,B):
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referred to as the Brunovsky orbit of S(A,B).  If Zc = {/q,i £ /} is the set of 
controllability indices, or equivalently c.m.i. of Pc{s), $>m = {A : p[XI — A , —B] < 
n}, and V j d  = {(s — A,)T', A £ = 1 [Kal.,2] is the set of f.e.d. of
Pc(s) (defining the structure of input decoupling zeros) then we may summarise the 
properties of £b (A,B)  as follows [Bru.l], [Kal.,2], [Kar. & MacB.,1],

R esult (3.6): For the Brunovsky orbit £g(A,B),  the following hold true:

i) The sets Xc, T>id  are complete and independent invariants of £g(A,B)

ii) There is a uniquely defined canonical form, the generalised Brunovsky form,
S(A bi Bb ), which in pencil form is described by

P$(s) = [s I - A b , - B b]
s i  — Ac  0 —Bq  

0 s i  — A id  0

where A id  = diag {JT,(At), i — 1,2,..., k}, JTi(Xi) is the Jordan block associ-
ated with (s — A,)T' , Ac = diag {II3 : j  = p i , ..., /q}, Hj  is the j  X j  standard 
nilpotent matrix and Be = bl-diag{u;j, j  — •■•Pi}-, Wj = [0, ...0,1]J £ R:.

(3.18)

□

S(Ac ,Bc)  is the controllable subsystem and if S(A ,B)  is controllable, then 
s i  — A id  is not present in (3.18). Controllability indices and the structure and 
values of decoupling zeros are the only invariants under 7i rB.

R em ark  (3.4): Controllability indices are essential for identification and study of 
control theory problems such as: Assignment of Jordan forms by state feedback 
[Ros.,1], structure and parametrisation of controllability subspaces [Won.,1] etc. It 
seems, that the most relevant for our present task is the value of the controllability 
index p.

□

b) Coordinate transformations and output injection on S(A, C)

The results in the previous section have their duals for the Brunovsky orbit 
£b (A,C), obtained from S(A,C)  under H lB- The essence of the duality is that 
defined by transposition. The set of observability indices T0 and set of f.e.d. of
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P0(s),VoDi defining the structure of output decoupling zeros are complete invariants 
and the corresponding canonical form (As,Bg)  by transposition [Mor.,1], [Tho.,1].

c) Coordinate transformations, state feedback and output injection on S(A, B,C, D) 
Kronecker invariants and canonical form

For the S(A,  B,C,  D ) state space model with transfer function G(s),  (n: states, 
/: inputs, m; outputs) the action of the Kronecker group Hk on S  produces an 
equivalence class £k{A, B , C , D)  which will be referred to as the Kronecker orbit of 
S(A,  B , C,  D).  The natural tool to represent S ( A , B , C , D )  is the system matrix 
pencil P(s)((n + 771) x (n + /))

P(s)
s i - A  - B  

- C  - D
(3.19)

We assume p(F,(s)) — r, p(G(s)) = p (over R(s)) and p([C, D]) = m, p([B\ D*]) =
/.

The pencil P(s) is characterised by Kronecker invariants [Gan.,1], which are 
defined below:

Definition (3.3): For the system S(A, B,C, D), described by P(s), we define:

i) V z = {(.s — Z i ) T' , i  G fl} the set of f.e.d., which define the finite zero structure of
S ( A , -6,(7, 6); the number rij = XwLi Ti 1S called the finite zero order of the 
system.

ii) Voo -  {.s?I : 1 = q-i = ■ ■ ■ = qs < qs+1 < ••• < q«} the set of oo-ed, which
define the infinite zero structure of S(A, B,C, D); oo-ed of the s type are 
called linear infinite zero divisors (lizd) and those of the .s'7, q > 1, are called 
nonlinear infinite zero divisor (n-lizd). The number = Yhi=i(Çi — 1) is de-
fined as the infinite zero order of the system.

iii) I r = {ti : 0 < ei < ----- < ep},Xf = {rp : 0 < 7/1 < • • • < rp} are the sets of
c.m.i., r.m.i. respectively of P(s) and they are called the right-, left-indices 

of the system. The numbers nr =  Y7i=i^i^nl = I3i=i Vi are called the 
right-, left-order respectively of the system.

□
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Remark (3.5): The finite and infinite zero structure is characterised in physical 
terms by frequency transmission problems. The right, left indices are associated with 
the blocking of families of signals which are not necessarily of the simple exponential 
type [Kar. & Kou.,1],

□

The importance of the 'Dz,'D00, I r,Ii  sets defined on S(A, B,C, D) is described 
below [Mor.,1], [Tho.,1], [Kar. & MacB.,1].

Result (3.7): For the Kronecker orbit £k(A, B , (7, D) the following hold true:

i) The set {V z; ; Zr; X/} defined by S(A, B , C, D) is a complete and independent
invariant.

ii) There is a uniquely defined canonical form, the Kronecker canonical form
S(Ak, Bk, Ck, Dk), which in pencil form is described by

Pk =
.s/ — Ak 1 to (

-ck 1
-a;

Q1 \

s i - A t 0 0 0 - B t 0 0
0 s i  — Av 0 0 0 0 0
0 0 8T1cr, 0 0 -Boo 0
0 0 0 s i  -  Aj 0 0 0
0 - c n 0 0 0 0 0
0 0 -CJoo 0 0 0 0
0 0 0 0 0 0 - I s

(3.20)

where

At = diag {Aj : j  = e i,..., ep}, nr x nr,A v = diag {Aj : j  = 771,..., r/J, n; x nt 

dloo = diag {Aj : j  = /1 , = qi ~  M  — 6 + 1, •••,^},n00 x

A f = diag {JTi(zi) : * G x ra/

where JT,(zi) are Jordan blocks characterising (s — Zi)r’, Aj - Hj , is the j  x j  
standard nilpotent matrix and

Cv = bl.diag {uj : j  = rji,..., 77J ,  67, €

^  =  bl.diag {v] : j  = /,_«},

#oo = bl.diag

5 £ = bl.diag {up : j  -  e i,..., ep), Bc € 7tmrXp
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where v) = [1,0,..., 0], 1 x j  and Wj = [ 0 , 0 ,  l]4 is a j  x 1 vector.

iii) If r, p are the ranks of P(.s),G(s) respectively, then the following relationships
hold true amongst the numbers of the invariants

a) r = n + p, p = l — p, t = m — p,n = ny +  «oo + nr -f ni

b) cr = p and 6 = p(D)

c) There are zero c.m.i., zero r.m.i., iff [B\ Dl]\ [(7, D] are rank deficient re-
spectively.

iv) The transfer function matrix of S(Ak, Bk,Ck, Dk) is

Gk{s) = Ck(sl  -  A k)~'Bk + Dk = M M  0 ,lP
0<,(T 0i,p

M^,(s) = diag ....,,s1-9"}

(3.21)

(3.22)

where Gk(s) is the Smith form at s — oo of G(s) [Var. Lim. & Kar.,1].

□

The above summary of results demonstrates the structure of state space models 
under the most general types of transformations that may be applied on state space 
models. The results may be simplified for strictly proper systems in the obvious 
manner. The importance of the result is that it establishes the numbers and re-
lationships between different invariants which enter to the solvability condition of 
many control problems.

Remark (3.6): The number of divisors at infinity of P(s) is equal to the rank 
of G(s). There exists a number of linear divisors at infinity equal to the rank of 
D ; for strictly proper systems, all divisors at infinity are nonlinear, ie. qt > 2. 
The orders of infinite zeros are defined by /,■ = rp — 1, where g, are the degrees 
of nonlinear divisors at infinity. The f t define the generic asymptotic root locus 
pattern and terminal Nyquist phases. If p(D) = p(G(s)), then G(s) has no infinite 
zeros, or equivalently all </,■’s are equal to 1. For strictly proper, square systems with 
p — m = /, all orders of infinite zeros of G(s),fi , are equal to 1 iff p(CB) = rn = /, 
higher order of infinite zeros emerge p(CB) < 7n =  l.

□

Remark (3.7): The Kronecker form S(Ak, Bk, Ck, Dk) is maximally uncontrollable 
and unobservable and the dimension of the minimal system is defined by the in-
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finite zero order. State feedback and output injection are equivalent to post-,pre-
multiplication of transfer function by /?pr(s )-unimodu 1 ar matrices; the special ele-
ment of Tik that reduce S to its Kronecker form, is equivalent to a pair of Rpr(s)- 
unimodular matrices which reduce G'(.s) to its Smith form at s — oo of G(s).

□

Remark (3.8): For right regular systems (p = /) ,n r = 0 (no right indices) and for 
left regular systems (p = m),ni  = 0, (no left indices). For left-right regular systems 
(p =  m  =  /) (square nondegenerate systems), nr = m = 0 and

ni + n00 = n (3.23)

which shows that total number of finite and infinite zeros is equal to the dimension 
of the state space. For such systems, the total number of finite zeros satisfies the 
conditions:

i) D ^  0 : rif < n and nj = n iff p(D) = m = l

ii) D — 0 : rif < n — m = n — l and equality holds, iff p(CB) =  m = l.

□

For strictly proper square systems, the number n — m  =  n — l defines an upper 
bound on the total number of finite zeros. The right and left indices are related to the 
synthesis problems such as squaring down, model matching etc. Their relationships 
to transfer function invariants will be discussed later on.

Remark (3.9): The infinite zeros of P(s) and Z(s) (zero pencil) are the same, if 
r/', i G r  are the degrees of the divisors at s = oo, with q[ > 3 of P(s), then the 
degrees of restricted zero divisors of Z(s) are q[ — ‘2,i G f.

□

d) Invariants under constant output feedback

The problem of finding invariants and canonical forms under constant output 
feedback is a problem related to output feedback pole assignment and stabilisation. 
Concerning the problem of finding invariants and canonical forms under this feed-
back, there has been only very recently some progress [Yan.,l],[Fur. & Hel.,1]. The 
types of invariants, which are defined are in terms of Bezoutians and, at the moment,
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they are only in a rather abstract form which cannot be easily translated on state 
space parameters. This topic will not be examined here, since the results are not in 
a form that can be exploited for the present task.

3.4 Transfer fu n ction  invariants

With a transfer function matrix G(s) G Rmxl(s) we may always associate the K- 
coprime MFDs, G = A ^ lBi = B2A^ , where K, is R[s], Rpr(s) of Rp(s) and with 
them we associate the left-,right-MFD matrices [Kar., k  Gia.,1]

Ti = [A1,B 1]€  K'mx{m+l\ T r
B2
a 2

£  jç (m+I)x l (3.24)

on G,Ti,Tr we may apply different types of transformations which are based on the 
ring K which is used to describe fractionally a rational function. These transfor-
mations are defined by the /C-unimodular matrices and the basic tools are those 
defined by the Smith, Smith-McMillan forms, as well as those Hermite, Hermite 
McMillan forms. The results are summarised next and their significance for the 
structure of linear systems is also discussed. Throughout this section it is assumed 
that p(G) = r < min(m, l) and that JC is any Euclidian ring such that R(s) may 
be expressed as the field of the fractions of 1C. For control theory applications 1C is 
R,[s], Rpr(s), Rp(s) or R0(s) (the rational function which have no poles at s = 0).

a) Smith McMillan forms over K.

If L, R, are /C-unimodular matrices (L G U(m,lC), R G £/(/,£)), then the natural 
equivalence £k {G) is defined by pre-, post multiplication of G by L ,R  and LGR is 
the general element of the orbit (equivalence class) £/c(G), If G /CmXi, a canonical 
form and invariants is defined by the Smith-McMillan form over 1C [Kai, 1], [Ros.,1], 
[Vard. h  Kar.,1], [Var. Lim. k  Kar.,1],

R esult (3.8): The orbit £/c{G) is characterised by a canonical form Mq , the Smith- 
McMillan form over K'.. where

Mq  =

M }f  = diag {ej/V’t,* G r} (3.26)

0

r l—r

} r 
} m

(3.25)
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where {epi/’i} are AC-coprime element of AC, uniquely defined (modulo AC-units) and 
satisfy the divisibility properties

ei/f2/---/er, Vv/Vv-i/---M (3.27)

The €{, 0,-, ¿ G f  are the elementary AC-zero, pole-functions of G and together with 
r define a complete and independent set of invariants under ¿^-equivalence. □

For the various rings AC of interest we have:

Remark (3.10): The Smith-McMillan form over the different rings Ai, reveal the 
following information about the system:

i) For AC = R[s] indicates the zero, pole structure of G over C. The polynomials
ep'i/’i define the finite zeros, poles of G and <9(11 the finite McMillan
degree 6m of G. This canonical form does not reveal any information about 
the structure of G at s =  oo.

ii) For AC = R-p(s),V = il U {oo} indicates the zero, pole structure of G over V.
The proper and fl-stable functions e,-, ipi define the zeros, poles of G. This 
canonical form does not reveal anything about the structure of G in the region 
Qc (the complement of fl with respect to C).

iii) For AC = Rpr(s) indicates the zero, pole structure of G at infinity only, but
nothing about the structure of G over C. The e,-, i/>,- are the proper rational 
functions of the type (l/.s)9,</ > 0 indicating the orders of infinite zeros, poles 
of G.

iv) For AC = R0(s) indicates the zero, pole structure of G at s =  0 only but nothing
about the structure of G over C — {0}, or s =  oo. The e,-, ^  are polynomials 
of the type sp,p > 0 indicating zero, pole type of G at s = 0.

□

Smith-McMillan forms reveal the basic pole, zero structure over different subsets 
of G U {oo}; the standard rule for analysis is the form over R[s], whereas that over 
Rp(s) is essential for studies of stabilisation in the generalised fA-sense. The Smith- 
McMillan forms over Rpr(s), or R0(s) are local, since they reveal the structure at 
{oo}, or {0} respectively; The first is important for characterisation of properness



and infinity zero structure, whereas the second is essential for the study of steady- 
state tracking, disturbance rejection. Local Smith-McMillan forms may be defined 
by simple tests from the elements of G(s) [Var. Lim. & Kar.,1].

b) Smith form over K.

If G £ JCmxl, then the Smith-McMillan form is reduced to the /C-Smith form, 
which is defined as in (3.25-3.27) with the only difference that all the s are 1; 
that is G has no poles over AC, but only possibly zeros. Smith forms are essential 
tools for AC-coprimeness tests and thus they are involved in the characterisation of 
irreducible AC-MFDs, as well as solvability of matrix equations over AC.

c.) Rational vector spaces and transfer function matrix invariants

Under £/c type of equivalence the column, row spaces of a transfer function 
change. A richer set of invariants, which is directly related to pre-, post-compensation 
of transfer functions, is defined under left-, or right AC-unimodular equivalence. If 
G £ RmXl,L £ U(m,)C),R £ [/(/, AC) then G and G' = GR are AC-right equivalent 
and is denoted by G£rKG', and G and G" = LG are AC-left equivalent and is de-
noted by G£lKG"-, the corresponding equivalence classes, orbits are denoted by

¿Z(G),Sjc(G)-

Definition (3.4): Let G £ Rmxl(s), p(G) — r < min(m,l) and let G = A ^ B i  = 
AL2AJ1 be AC-coprime left, right MFDs (AC — R[s], Rp(s), Rpr(s)). With the given G 
and for T/,Tr defined as in (3.24) we define:

i) XCta = col.spR{s){G},Xr,a = row.spR(s){G} as the i?(s)-column, row-vector space
of G respectively and J\ir,G — Air{G},J\Ti,g  — A'){G} as the R(s)-right-, left-null 
space of G correspondingly.

ii) y l G = row.spR(s){Ti},y^G = col.spR(s){Tr} as the R(s)-composite left-, right-
space of G respectively, where Ti,Tr defined by (3.24).

iii) M f a — col.spfc{B2}, M.^g  — row.sptc{Bi] as the Af-column-, row- module of
G respectively and — row.sp/c{Ti}, Tr̂ a = col.sp^{Tr} as the A..-composite- 
left-, right-module of G correspondingly.

iv) M*x; is the set of all x £ Km vectors which are in XC)G and A4*^ is the set of
all y £ K l vectors such that yl £ Xr,G-

□
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For any rational transfer function matrix the following general invariants may 
be established [Kai, 1], [Vard. & Kar.,1], [Ros.,1] etc.

Result (3.9): For all rings AJ : R[s], Rp(s), Rpr(s) the following properties hold 
true:

i) ftc,G) AfitG are invariants of £]c(G) and Xrpj, A3,g  are invariants of £jc(G); these
properties also hold true for K. = R(s).

ii) For all Af-MFDs, not necessarily coprime, 34,G is invariant for the left MFDs and
J3,g  is invariant for the right MFDs.

iii) M f G is invariant of £l(G)  and M * is invariant of £L(G).

iv) Tft;, T^g  are complete invariants for all left, right AVcoprime MFDs respectively.

v) g  are maximal All-modules which have the following properties

a) If p(G) = /, G may be factorised as

G = BrZrD71, Br e K'mxl, Zr,Dr e Klxl (3.28)

where (BrZriDr) is /C-right coprime, Br is /C-right-irreducible and 
col.sp/c(Br) = M* 6<; furthermore, M*gG is invariant for any GQ, Q € 
U(l,R(s)).

b )  If p(G) =  m, G may be factorised as

G = D ; 1ZlB r \ B l € /cmx', Zi, Di e JCmXm (3.29)

where (Bi,ZiD[) is /C-left coprime, Bi is Af-left-irreducible and 
row.spic(Bi) = furthermore, M**q  is invariant for any PG,P  G
U(m, R(s)).

□

The above summary of results clearly indicates that the theory of transfer func-
tion invariants is related to the theory of invariants of rational vector spaces and 
All-modules contained in them [For.,1], [Kai,l], [Vard. & Kar.,2]. This theory is quite 
rich and becomes rather concrete, in terms of the theory of minimal bases [For.,1], 
[Vard. & Kar.,2], or equivalently by using tools from exterior algebra [I\ar., & Gia.,3] 
The types of invariants defined for each of the V-rings are essentially the same; only
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the interpretation depends on the nature of K'. Thus, we may consider throughout 
the rest of the section the standard case JC = Some useful interpretations of
the mathematical result (3.9) are given next.

Remark (3.11):

i) Pré-, post-compensation of G by a square full rank rational compensator leaves
invariant the rational vector spaces XTtc;, Xc,g  respectively; thus, XTya, XCiq  are 
not spaces characterising a single transfer function, but a family of transfer 
functions.

ii) The rational vector spaces T),gs Tr,&' characterise all left-, right-MFDs of G and
thus are common to all state space models that have a common transfer func-
tion; these spaces are “personal’' space of G. The modules TitG,Rr,G (defined 
for JC = 7?[.s]) characterise all left-, right-/?[s]-coprime MFDs and thus they 
are invariants of all minimal realisations of G.

iii) The modules M.^G, J 4 f a f°r X  =  RPr(s), RP(s) define invariants under post-
ure-multiplication respectively by proper, proper and stable square rational 
transfer functions.

□

For a rational vector space X , X  £ Rn(s), with dim A' = p, the theory of concrete 
invariants, based on the polynomial interpretation, has three alternative directions:

i) Minimal degree /f[.s]-bases

ii) R[s] -Hermite forms.

iii) Plucker matrices

and they are defined below for the general X  and then specialised to the rational 
vector spaces with a transfer function G.

Definition (3.5): Let M(s) £ Rnxp[s] be a polynomial basis matrix of X , i.e. 
p(X) = p, col.spR(s){X} = X,  and let X(s) = [..., x,-(s), ...],^-(.s) £ Rn[s], <9[aq(s)] = 
S{,i £ p.
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i) [For.,1] X(s) will be called an i?[s]-minimal basis (/2[.s]-MB) if it is right irre-
ducible (no finite zeros) and column reduced (full rank high column coeffi-
cient matrix). It is called an ordered- i f  G p. The set
Xx — {G, i G p : Si < ¿¿+1} is called the Forney dynamical indices (FDI) of 
X(s)  and Sp = Ya =1 the Forney dynamical order (FDO) of A"(s).

ii) [Kar., & Gia.,2]. The polynomial multivector g(X)  = (.s) A .. A x (s)

CP(X)  G R[s]%u
n

P
, is defined as an 7?[s]-Grassman representative

(/?,[.s]-GR) of X.  If X(s) is right irreducible, then g(X)  is called a canonical 
7f[.s]-GR. If g{X) is canonical and e)[g(X)] = 6, then it may be expressed as

s (X )  = Pse,(s),et(s) = [ 1, s'  }‘ , Ps € (3.30)

and P$ is called a Plucker matrix (PM) of X .

□

Result (3.10): [For.,1] For any rational vector space X  the following properties
hold true:

i) All /?[.s]-MBs of X  define the same 7?[.s]-module At*, which is a maximal Noethe-
rian module [Mar.,1],

ii) All ordered-fi[i]-MB have the same set l x  of FDIs and thus Xx and 6p are
invariants of X.

iii) There exist a uniquely defined 7?[s]-MB, the echelon type basis, the elements of
which uniquely characterise X .

iv) If X(s) G R(s)nXp is any rational basis of X,  then it may be factorised as

X(.s) = N(s)Z(s)D(s)~* 1 (3.31)

where N(s) is an /?[s]-MB, Z(s), D(s) are p x p polynomial matrices defining 
the finite zeros, poles respectively of X(s).

A dual statement of the result for row rational spaces is obvious. The above 
result may be expressed with respect to the Rpr(s), Rp(.s) rings [Vard. & Kar.,2]; 
the essential conceptual difference is that the minimal degree basis, then becomes 
a minimal McMillan degree basis. Minimal bases are essential tools in the study of
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“Minimal design problems” that is problems where a minimal McMillan degree com-
plexity solution are sought. Note that a general fi[s]-MB does not define a complete 
invariant of X; echelon type fi[iJ-MB define a complete, basis free invariant, but 
their construction is extremely elaborate (see [Kai, 1]). For most of the applications 
the set lx-, which characterises X  and thus denoted by Z,v, and 8p are the essential 
invariants. In the study of determinantal assignment problem (DAP) (Pole, zero 
assignment) alternative forms of complete invariants are most suitable, the Plucker 
matrices [Kar., h  Gia.,2].

For a transfer function matrix G, G € Rpr(s)mxl, with p(G) — min(m, /) we have 
the rational vector spaces XCfa, XTtG,^r,G^i,G which are “not personal spaces” of 
G, as well as the “personal spaces” T/,g  and y r,G- The Forney dynamic indices 
and Forney order of these subspaces will be denoted by 1(A), 8p(A), where A is the 
corresponding space. A number of properties of the above invariants are summarised 
below [Kai, 1 ] etc.

Result (3.11) : For the family of rational vector spaces associated with the transfer 
function matrix G,G 6 Rpr(s)mxl, p(G) = min(m,l), we have the following proper-
ties:

i) Z(T(,g ) defines the observability indices and Z(Tt-,g ) the controllability indices of
any realisation of G) Furthermore, 8p(yr<c;) = ¿f (T/,g ) = 8m (G), the McMillan 
degree of G.

ii) If m > /, then Afr,G = 0,8p(XCta) — 8p(AfitG), and Z(A'r,c) = {0,..., 0}, that is
the identity matrix //, is an f?[.s]-MB of Xr<G-

iii) If in < l, then A),g  = 0,8p(XTia) = 8p(Afr,G) and l ( X Cto) — {0,..., 0} that is
the identity matrix Ini, is an /?[s]-MB of Xĉ -

iv) If m = l,Afi,G = 0, Air,c = 0,1(XC<G) = {0,..., 0}, T(X t <g) = {0,. . . ,0}, that is
the identity matrix Im is an fi[.s]-MB of Xĉ ,  XT:a-

□

The nontrivial set J(A'Cig ), when m  > /, or X(XTta), when m < /, will be referred 
to as external dynamical indices (EDI) of G and are invariant under square full rank
post-, pre-compensation. These indices are important in the study of compensation, 
as well as squaring down of systems.
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An alternative, complete set of transfer function invariants (to that defined by 
the echelon type bases), which is useful in the study of DAP problem is defined by 
the following result [Kar., & Gia.,2].

Result (3.12): For and rational vector space X  with X \ , X 2 basis matrices the 
following properties hold true:

i) If g[Xi) ,g(X2) are any two i?[s]-GRs, of X,  then g{X\) = g(X2)t where t £ R(s).

ii) A canonical f?[s]-GR is coprirne (has no zeros) and uniquely characterises X
(modulo c £ R, c ^  0); furthermore, d[g(X)\ = Sp(X).

iii) A Plucker matrix is a complete invariant (modulo c £ R, c ^  0) of X .

□

A canonical-f?[.s]-GR, or equivalently a Plucker matrix is a complete invariant 
of X  and in this sense is equivalent to the echelon type minimal bases of X.  The 
relationship between the parameters in the echelon form and the coefficient in the 
Plucker matrix is not known yet and this is an open question. In fact, all least 
degree bases give rise to Plucker matrices differing only by a scalar [Kar., & Gia.,3]. 
For the basic subspaces associated with G, the corresponding Plucker matrices are 
defined below [Kar., & Gia.,2]:

i) If m > l, PC(G) is the
m
l

x ($F,c + 1) is the Plucker matrix of XCìq , where

Sf ,c  — Sf (Xc,g )] the Plucker matrix of X t >q  is Pr{G) = 1.

is the Plucker matrix of Xr^ ,  where
/

m
ii) If m  < /, Pr(G) is the {8f ,t  + 1) x

8f ,t = 8f (XTìG)- the Plucker matrix of A'c,c; is PC(G) = 1.

iii) If m  = /, Pr(G) = 1, PC(G) = 1 are the Plucker matrices of XTìg ,XCìg .

iv) P(T/), P(Tr) are the (n + 1) x
m + l 

m
in + / 

/
x (n + 1)

Plucker matrices of 34,<7, Tr,G respectively, where n =  8m (G).

Plucker matrices associated with the basic matrix pencils may also be defined, 
as it has been shown in previous section. The matrices PC(G), Pi(G) are essential in
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the study of zero assignment problems by “squaring down”, whereas P(T[), P(Tr) 
are crucial in the study of the pole assignment by constant or dynamic output 
feedback. The Plucker matrices have special properties, which are not fully explored; 
for control system design, their significance lies in that their column, or row space 
defines the family of pole, zero polynomials coefficient vectors. Their significance 
will become clear in later chapters.

d) Hermite, Hermite-McMillan forms and invariants

With a transfer function matrix we associate rational vector spaces, as well as 
ATmodules. The notions of Mi-right-, left-equivalence defined before is intimately 
related to compensation theory under special types of compensator; thus, if K. = 
RPr(s), or Rp(s), then the corresponding equivalence classes are systems obtained 
under proper, proper and stable pre-, or post-compensation. The theory of right-, 
left-equivalence produces types of invariants based on the modules contained in a 
rational vector space. We distinguish the following cases:

i) Transfer functions (matrices) with elements from a given ring AT

ii) Transfer functions (matrices) with elements rational functions, i.e. fractions of
elements of /C.

The first case is related to the theory of Hermite forms, whereas the second to 
the case of Hermite-McMillan forms. In the following, by 1C we mean either of the 
cases R[s], Rpr(s), Rp(s).

i) Hermite forms: We consider matrices G £ lCmxl, assume p{G) = m(m  < /) and 
consider the case of ATleft equivalence, £{-. The case of Af-right equivalence as well 
as the case where p(G) < min(m, l) may be found in references [Mar.,1],

Result (3.13): For a matrix G with the above properties there exists L £ U(m, l) 
such that

0 • • 0 x • ■ x • • x • ■ X

11
«—~Cs
¡S3 0 • • 0 0 • • x • • X • • X

0 • • 0 0 • • 0 • • X • • X

(3.32)

where Hq K is called the AT Hermite row form of G and its elements associated with 
the pi rows i £ m  and 7j columns, j  £ / satisfy the conditions ($[•] denote the degree 
in K'.)P
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a) i G m, the pt row has a leading nonzero /C-monic element hini (leading entry)
such that 1 < n\ < ri2 < • • • < nm < n.

b) i £ m, then

1) if 1, hjiii O7 J ^

ii) if hini ±  1 ,d[hjni] < d[hini\ , j  < i such that hjrit /  0

c) Vyj row s.t. j  < ri\ , -yj is zero V7j s.t. nt < j  < n,+i with i G m — 1, then the
last m — i entries of 7j are zero.

□

The Hermite form HqK is unique (modulo diagonal scaling by units) and its 
elements define a complete set of invariants of £lK(G).

A  similar result may be stated for /C-right equivalence and the corresponding 
K-Hermite column form of G is denoted by Hq ^. The set of indices J  = {n8-, i G m} 
are defined as Hermite indices (row, or column) and they are also invariants. The 
elements of Hq fC, H lrf  uniquely define the column, row modules of G and thus may 
also be used to provide invariants equivalent to those of the echelon type basis, if 
G is right, left irreducible. For K. — Rpr(s) the corresponding Hermite forms are 
related to the “system interactor” [Wol.,1], which in turn defines the decouplability 
properties of the system.

ii) Hermite McMillan forms: For a general rational matrix G G R(s)mxl of full rank 
we may define canonical forms under Af-left, right-equivalence as follows: Let every 
element of G be expressed as coprime fraction of elements of K' and let d be the least 
common multiple of the denominators of the elements of G. Then we may write

G — ~.N, N  G K'mxl (3.33)
d

If Hxf' is the /C-row-Hermite form of N  we may write

H 1̂  = LN ,L  G U(m,)C) (3.34)

and thus
Hlff  = ~d Hlj f  =  LG (3.35)

is defined as the kb row-Hermite-McMillan form of G, where in Hq C all possible 
numerator-denominator cancellations are assumed to have been carried out.
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R esult (3.14): The /C-row-Hermite-McMillan form of (7, H ^  is a complete invari-
ant of £lK(G).

□

Note that the structure of H1q  Z is similar to that of /throw Hermiteform, i.e. “up-
per staircase”, but its elements are rational functions. The corresponding structure 
and result for the /¿-column-Hermite-McMillan form is similar. For K = Rpr(s), 
or Rp(s), the corresponding Hermite-McMillan forms are essential in defining the 
limits of pre-, post-compensation under proper, or proper and stable compensators. 
Questions such as “what is nature of simplest possible Nycjuist diagrams that may 
be obtained under proper or proper and stable compensators”, may be answered in 
terms of the invariants of such forms. However, the potential of such forms for con-
trol synthesis/design has not been fully explored. Some of the invariants of transfer 
functions under left, right /C-equivalence are summarised below. [Vard. & Kar.,2].

R esult (3.15): Let G G Rpr(s)mXl and assume that p{G) = l(m > /).

i) The set of Forney dynamical indices Z(A’Cig ) and Forney order 8p of AQc are
invariants of £Jc(G) for all K. : R[s], R.pr(s), Rp(s),

ii) The set of finite zeros and poles of G , together with their corresponding multi-
plicities are invariants of £rK(G) for K = R[s]] the infinite zeros, poles are not 
necessarily invariant under this equivalence.

iii) The set of infinite zeros and poles of (7, together with their corresponding mul-
tiplicities are invariants of £p(G) for /C = Rpr(s); the finite zeros, poles are 
not necessarily invariant under this equivalence.

iv) The set of zeros and poles of G, together with their corresponding multiplicities,
in V  =  U {oo} are invariants of £p(G) for K. = Rp(s); the poles and zeros of 
G in Qc (the complement of fl with respect to C ) are not necessarily invariant 
under this equivalence.

v) If 8p, Zooi zp are the McMillan degree, Forney order of AQg , total number of
infinite, finite zeros of (7, then

8m  = Zoo +  z f  +  8p (3.36)

□
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Parts i) to iv) of the above result may also be stated for a general G(s) (not 
necessarily proper) since they are based on the properties of Smith-McMillan form 
in the region P — fl U {00} [Vard. & Kar.,1],

The last relationship indicates that under all types of compensation which pre-
serve 6p, the difference between McMillan degree and total number of zeros remains 
constant. Since for square systems Sp = 0, (3.36) also indicates that for square 
systems, the McMillan degree is equal to the total number of zeros. The Forney 
order plays a crucial role under squaring down [Kar., &; Gia.,1], since it indicates 
the total number of newly created zeros under squaring down. A result similar to 
that stated for right equivalence, may be stated for left equivalence.

3.5 C onclusions

The aim of this chapter was to survey the fundamental linear system invariants which 
emerge as tools for control system design. The functional relationships between 
system model parameters and invariants are not always simple and explicit. This 
imposes severe difficulties in the effort to develop systematic procedures for assigning 
values for all invariants. The material in this chapter provides the background on 
which some of the following chapters will build upon.
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Chapter 4

GENERICITY, GENERIC  
VALUES OF STATE SPACE 
A N D  TR A N SFER  FUNCTIO N  
M ATRIX INVARIANTS

4.1 In trod u ction

The definition of the set of invariants of a singular pencils sF — G G F mXTl[.s] 
under strict equivalence (S.E.) relies on the algebraic notions of Smith form and 
minimal bases [For.,1]. A related topic, that is the study of properties of a whole 
family of models having fixed certain fundamental parameters (such as number of 
inputs, states, outputs, McMillan degree), but with the rest of the parameters taking 
generic values, is examined here. In this chapter we examine the generic values and 
properties of state space and transfer function matrix invariants.

For the generic singular pencil sF — G, the right characteristic sequence (r.c.s.) 
of (F, G) [Kar. & Kal.l], Cr(F,G) is completely defined by the generic set I C(F,G) 
and it satisfies the Arithmetic Progression Property (A.P.P.) for all indices apart 
from a finite number of them [Kar. Kal.l], which are referred to as singular points. 
It is due to this property that the characteristic sequence Cr(F,G) is referred to as 
a Piecewise Arithmetic Progression Sequence. In this chapter, it will be shown that 
the generic set of column minimal indices (c.m.i.), XC(F,G),  and the row minimal
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indices (r.m.i.), Tr{F1 G), may be deduced from the properties of a generic piecewise 
Arithmetic Progression Sequence defined on the ordered pair (P, G). The singular 
points of Cr(F, G) define the distinct values of generic (c.m.i.), whereas the gaps 
at the singular points define the multiplicity of the corresponding generic (c.m.i.). 
The number theoretic characterisation of 2C(F, G) , I r(F, G) also provides a compu-
tational procedure, which is independent from the minimal bases algebraic definition 
and it is based on rank test of Toeplitz matrices defined on (F,G). The results on 
generic properties of matrix pencils are then used to characterise the generic values of 
state space invariants. Finally the characterisation of generic values and properties 
of transfer function matrix invariants is considered.

4.2 B asic  d efin ition  on G en eric ity  [W on.,1]

Let A, B ,... be matrices with elements in R and suppose II(A, P , ...) is some property 
which may be asserted about them. In applications where A ,  B ,... represent data 
of a physical problem, it is often important to know various topological features 
of II. For instance, if II is true at a nominal parameter set P  =  ( A 0, B 0, ...) it 
may be desirable or natural that II be true at points P  in a neighbourhood of PQ, 

corresponding to small derivations of the parameters from their nominal values.

Most of the properties of interest to us will turn out to hold true for all sets of 
parameter values except possibly those which correspond to points P  which lie on 
some algebraic hypersurface in a suitable parameter space, and which are thus, in 
an intuitive sense, atypical. To make this idea precise, we borrow some terminology 
from algebraic geometry. Consider a point which lies on some algebraic hypersurface 
in a suitable parameter space P  = (Pi,..., TV) £ RN and consider polynomials 
</>(Ai,..., A„) with coefficients in R. A variety V  C RN is defined to be the locus of 
common zeros of a finite number of polynomials </fi,..., 4>k'-

V  = { P  : ( ¡ > i { P \ i P N ) = OR £ k}

V  is proper if V  V R N and non-trivial if V  /  /). A property II is mearly a function 
H : Rn  —> {0,1}, where II(P) = 1 (or 0) means II hold (or fails) at P. Let V  be a 
proper variety, we shall say that II is generic relative to V  provided II(P) = 0 only 
for points P  £ V;  and that il is generic provided such a V  exists. If II is generic, 
we sometimes write II = 1(g).
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If we assign to RN the usual Euclidean topology, then, a property Id is said to be 
well-posed at P if Id holds throughout some neighbourhood of P in RN. By extension 
a “Problem” which is parametrized by data in RN will be called well-posed at the 
data point P, if it is solvable for all data points P' is some neighbourhood of P. If 
V is any variety in RN, it is clear from the continuity of its defining polynomials, 
that V is a closed subset of RN. Thus, if Id is generic relative to V (so that V is 
proper), then Id is well-posed at every point in the complement, Vc. Let P0 £ V, 
with V nontrivial and proper. It is clear that every neighbourhood of P0 contains 
points P £ Vc; otherwise, each defining polynomial (j) of P vanishes identically 
in some neighbourhood of P0, hence vanishes on RN, and therefore, V = RN, in 
contradiction to the assumption that V is proper. Thus, if Id is generic relative to V 
and if Id fails at P0, Id can be made to hold if PQ is shifted by a suitable perturbation, 
which can be chosen arbitrarily small. We conclude that the set of points P where 
a generic property is well-posed, is both open and dense in RN\ furthermore, it can 
be shown that its complement has zero Lebesgue measure.

As a primitive illustration of these ideas, let C € RmXn,y £ RmxX and consider 
assertion: there exists x £ RnxX such that Cx  =  y. Say that P (C, y) has property 
Id (i.e. Id(P) = 1), if and only if our assertion is true. By listing the elements of C 
and y in some arbitrary order, regard P as a data point in RN, N = mn  + m. Now 
Id(P) = 1 if and only if y £ fm C  i-e-

rank[C, y] =  rank C (4-1)

It follows easily that Id is well-posed at P if and only if rank C — m, and Id is 
generic if and only if m < n. To verify these statements note first that (4.1) fails 
only if

rank C  =  d(lmC)< d(y) =  m (4-2)

If V is a vector space, then d(V) denotes the dimension of the vector space V.

B u t  (4.2) im p lie s  t h a t  a ll  m  x m  m i n o r s  of C v a n is h :  L e t  V C RN b e  t h e  v a r ie ty  

so d e t e r m in e d .  If m  <  n ,  V is c l e a r ly  p r o p e r ,  h e n c e  Id is g e n e r ic ,  a s  c l a im e d .  O n  

t h e  o t h e r  h a n d ,  if rn >  n  +  1, (4 .1 )  h o ld s  o n ly  if  all ( n  +  1) x  ( n  -f  1) m in o r s  o f  

[ C ,y] v a n is h .  T h e  v a r ie ty  W  so  d e f in e d  is p r o p e r ,  a n d  l d ( P )  =  0 fo r  P £  Wc, h e n c e  

Id c a n  n o t  b e  g en e r ic .  F in a l ly ,  if r a n k  C = m a t  P t h e n  ( e q u iv a l e n t ly )  a t  l e a s t  o n e  

m  x  m  m i n o r  of  C is n o n z e r o  a t  P,h e n c e  n o n z e ro  in a  n e ig h b o u r h o o d  o f  P, so  Id 

is w e l l -p o se d  a t  P. C o n v e rse ly ,  if r a n k  C < m  a t  P  t h e n  a  s u i t a b l e  y ,  w i th  \y — y\
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arbitrarily small, will make rank [C,y\ = rank C + 1 namely, if P := (C, y), then 
U(P) — 0, hence IT is not well-posed at P. The study of the generic invariants of 
pencils dominates most of this chapter, and this is given next.

4.3 G eneric Invariants o f P en cils  and S ta te  Space  

T heory

Pencils are characterised by finite elementary divisors, infinite elementary divisors, 
column minimal indices and row minimal indices [Gan.,1]. Regular pencils are char-
acterised by finite e.d. and infinite e.d. Given a regular pencil sF — G we may find 
its elementary divisors as we have shown in chapter 2. We shall now consider a 
singular pencil of matrices sF — G of dimension m  x n ,m < n where F and G are 
generic meaning that F and G have full rank.

Proposition (4.1): Let (F,G) € RmXn x Rmxn. Then generically

rank r (s){s F — G] = min(m,n) = m

Proof: We start by forming the m-th compound matrix of the pencil sF  — G. 
By setting the m-th compound matrix Cm(sF — G) — 0 this implies that all the 
maximal order minors which are polynomials in s with coefficients from R and they 
are identically zero. If V is any variety subset of the parameter space containing all 
the coefficients satisfying above equations then it is clear from the continuity of its 
defining polynomials that V  is a closed subset of parameter space. Now we have to 
prove that there is at least one point in the whole parameter space which does not 
belong to the solution space (set of points of the parameter space which satisfy the 
above equations). As we are looking at the generic case, there must exist a point in 
the whole parameter space which dose not belong to the solution space, otherwise, 
the pencil looses rank and is non-generic case. So the pencil has full rank, i.e. m.

To make the above proof more clear, consider

s —1 0 0

Co + 1 ii 0 s - 1 0 where m = 3, n =  4

0 0 0 5 +  1

showing that sF — G is a full rank pencil and V is a subset of a proper variety.
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□

Proposition (4.2): If s F — G G Rm'Kn [s] is generic, then:

(i ) If m < n, sF — G is characterised only by c.m.i.

(i ) If rn > n , sF — G is characterised only by r.m.i.

(i ) If m  = n, sF — G is characterised only by distinct finite elementary divisors.

Proof: If m  < n, then given that P r ( s ) { s F  — G} = ra, we have that

Afi(F, G) — {0} There is no r.m.i.

Afr(F,G) 7̂  {0} 4^ There exists c.m.i.

For the pencil sF — G to have i.e.d., F should loose rank; however F has generically 
full rank so there exist no i.e.d.

For the pencil sF  — G to have f.e.d, we have to find the maximal order minors 
which they turn out to be a set of generic polynomials and these polynomials are 
generically coprime i.e. they have no common divisors; so generically there exist no 
f.e.d. The proof for the other cases is similar.

□

A generic singular pencil sF — G with m  < n is characterised by a unique element 
sFk — Gk• This unique element is the Kronec.ker canonical form defined by the set 
of c.m.i. as:

sFk -  Gk = quasi-diag{Op : Ltp+i (s) , ..., Ltp(s)}

where Op is the block parameterised by the zero c.m.i, Tti(s) is the block correspond-
ing to the non-zero c.m.i.,

s -1 0 0 • • 0 0
0 s -1 0 ••• 0 0

M *) = 0 0 s -1 0 0

0 0 0 0 • • s -1 >
—
£ +  1

where e = e,-, i — p +  1,..., p.
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For all e > 0, the associated block Lt(s) has the form Lt(s) =  sLc — Fc, where 
L( = [It |0], Lt = [0|/t] G F £X(£+1) and t x = e2 = ■ ■ ■ = ep = 0 < ep+\ < ep+2 < • • • < 

and we have

m = E “=i+, = E L . t, (4.4)

» = P + E?=,+.fe + 1) = Ef=.(e.' + 1) (4-5)

So fi = (n — m).

4.4  G eneric values o f Invariants o f  S ingular P en -

cils

i) Toeplitz characterisation of c.m.i. (r.m.i.) [Kar. & Kal.l]

Let sF — G G Rmxn[s] be a singular pencil with p f i ^ { s F — G} = r < min(m,n), 
V(F,G)  be the set of elementary divisors (e.d.) (finite and infinite), TC(F,G)  be 
the set of column minimal indices (c.m.i.) of the pencil (sF — G) and I r (F,G)  

the set of row minimal indices (r.m.i) of the pencil (sF — G) [For.,1] [Gan.,1]. The 
strict equivalence (S.E.) notion defined on sF — G pencils will be denoted by £ 
and the strict equivalence class, or orbit, of sF — G by £(F, G). Two ordered pairs 
(F,G), (F' ,G')  6 RmXn x Rmxn will be called S.E., (F, G) £( F\  G'), if the corre-
sponding pencils are S.E., i.e. (sF — G)£{sF'  — G'). {T>(F, G),Xr (F, G),XC(F, (7)} 
define a complete set of invariants for £(F,G)  and the corresponding Kronecker 
canonical form will be denoted by S.

The singularity of sF — G implies linear dependence (over R(s)) amongst its 
columns and/or its rows; thus, there exist polynomial vectors s(s) G F ,1[ìì],|/(s ) G 
Rm[s] such that at least one of the following conditions are satisfied

(sF -  G)x(s) = 0, ^  x(a) G Mr{sF -  G) = Xr(F, G) (4.6)

y \ s ) ( s F - G )  = 0 \  &  y\ s ) & ^ { s F - G } = X l{F,G) (4.7)

Xr(F, G), X’i(F, G) are rational vector spaces (over R(s)) and the sets XC(F, G),Xr(F, G) 
are the Forney dynamical indices [For.,1] characterising the polynomial minimal 
bases of Xr(F,G), Xi(F,G) respectively. We shall consider the case where F,G are 
generic and with m < n there is only c.m.i. With the pair (F,G) G RmXn x RmXn 
we associate the following sequence of matrices:

Tr{F, G) = {Ffc(F, G) G F (fc+1)mxfcn, k = 1 ,2 ,..., }
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where

T! =
F

- G
,T2(F,G)

F 0 
—G F 
0 - G

1

F 0 •• • 0 0
- G F ■■• 0 0

Tk(F,G) = > k + 1 blocks

0 0 •• • - G F
0 0 •• • 0 - G

------------ ■ ■
k blocks

(4.8)

Tr(F, G) will be called the right Toeplitz sequence and Tk(F, G) the k-th right Toeplitz 
matrix of (F, G). The sequences

Pr(F, G) = {Afrk :Airk = K { T k(F,G)},k = G2,.. .} (4.9)

Cr(F, (?) =  |Ok : k = —1,0,1, where = 90 — 0 and 9 k = dimA/"rfc, k > l |

will be referred to as the right characteristic spaces sequence (r.c.s.s) and right 
characteristic sequence (r.c.s) of (F, G) respectively; the real space Afk will be called 
the k-th right characteristic space of (F,G). Cr(F,G) will be called neutral and 
shall be denoted by Cr(F,G) = {0}, if for all k,9k = 0.

ii) The Piecewise Arithmetic Progression Sequence

The sequence Cr(F,G) is completely defined by the set I C(F,G) and this is 
explained bwlow.

Lem m a (4.1): [Kar. Sz Kal.l] The Cr{F,G) sequence of a general pencil sF  — G 
is characterised for every k — 0, 1,2,... by the property

9k ^  (9k+1 +  9k—i ) / 2, 6 —1 — 9q — 0 (4.10)

In particular, we have that:

i) Strict inequality holds, if and only if k = e, where e is a c.m.i.

ii) Equality holds, if and only if k is not the value of c.m.i.

□
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The set of integers is partitioned by the set {0 < t\ < < • • • < eM}.
For all k in the range [ej + l,...,e J+i — 1] the Arithmetic Progression Property 
(A.P.P.) 4  = ( 4 +i + 9k~i)/2  holds true; this relationship, however, can not be 
extended in the range of values — 1] or \tj+\ + 1,...], since for k = and
k = ej+1,4, < (0tj-i  + 6Cj+i)/2 and 0tj+1 < (0ey+1_i + 4 ,+1+i)/2. Therefore, (7r(F, GY) 
satisfies the (A.P.P) in the range [ej + 1 , ey+i — 1], but violates the (A.P.P) at 
the boundary values tj,  tj + 1. Because of this property, Cr(F, G ) will be referred to 
as a Piecewise Arithmetic Progression Sequence (P.A.P.S). The integer k for which 
the (A.P.P) breaks down will be called the singular points of Cr(F,G).  A measure 
of deviation from the (A.P.P) is the number

4  = ( 4 +i -  0k) -  {0k -  4 - i ) = 4+i + 4 - i  -  2 4  (4.11)

which will be called the gap of Cr(F, G) at k. If k is singular, then 4  > 0, otherwise 

4  =  0.

iii) Generic Rank of Toeplitz Matrices and the Generic P.A.P.s

The above results hold true as long as the rank of Toeplitz matrices are known. 
In this section, we find first the generic rank of Toeplitz matrices; we consider the 
k-th right Toeplitz matrix

F 0 •• • 0 0 '

- G F  •• • 0 0

Tk{F,G) =

0 0 •• • - G F

> k +  1 blocks

0 0 •• ■ 0 - G

k blocks

P roposition  (4.3): The k-th right Toeplitz matrix Tk(F,G) is rank equivalent to

-seK-i
i__ i----o|

i---
-

lo —Ak~l B , ... , - A 2B , - A B , - B

for some appropriate pair of matrices (A,B)  where A 6 RmXn\  B £ RmX(” ”4; 
furthermore if F, G are generic, then so are A and B.

Proof: Since F, G are generic, there exists a coordinate framework such that we may 
write F = [7m,0] and G = [A, B\. To get the reduced form of Tk(F,G), we then
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start from the matrix

Im 0 0 0
- A - B Im 0 0
0 0 —A - B

0 Ira  0
- A  - B

which is the same as Tk(F, G) with the only difference that we have substituted for 
F and G. First, we try to eliminate the A's; the way to do this, for example the 
A in position (2,1), we multiply first row by A and add it to the second row block. 
Having eliminated the A in position (2,1), multiply second row by A and add it to 
the third row. By doing this, we can eliminate all the A’s, and we produce A B 's 
(starting from third row, position (3,2)) going down to Ak~1B. Now, we should 
eliminate all B’s, AB’s. The way to do this is again, for example, the B in position 
(2,2), first multiply third column by B and add it to the second column, or the AB 
in position (3,2)m multiply fifth column by AB and add it to the 2nd column and 
so on. By continuing with these eliminations, we finally get a matrix in the form

---
-1

lo __
i

i---
-

lo - Ak~l B , - A k~2B ,..., - A 2B , - A B , —B

□

Lem m a (4.2): For the pair (A, B ) above, the matrix [B, A B ,..., Am~lB\ has gener- 
ically rank m, if A, B  are generic matrices.

Proof: We start by forming the^-th compound matrix of the matrix [B, A B , ...,Am~1B]. 
By setting them-th compound matrix to zero implies that all the maximal order mi-
nors of the matrix [B, A B , ..., Am 1B] are identically zero. Let V be the variety in 
Rn  containing all the solutions which satisfy the resulting equations. Now we have 
to show that V is proper. In order to do this, we have to show that there is at least 
one point in the whole parameter space, which does not belong to the solution space 
(i.e. the space which solution to th equations above are simultaneously zero and is a 
subset of the parameter space). As we are dealing with generic case, there must exist 
a point in the whole parameter space which does not belong to the solution space, 
that is we have to show that there is a full rank matrix [B , A B , ...,Am~lB]; however, 
we can always construct a controllable system. So the matrix [B, A B , ..., Am~1B\ 
has rank m-
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□

From the above we have:

Proposition  (4.4): The generic rank of the k-th right Toeplitz matrix of (F,G) is 
km + m = (k + l)m.

□

iv) Generic Values of Minimal Indices

The values of minimal indices for unstructured generic systems are important 
elements in the solvability conditions of exact control synthesis problems and they 
are examined here using the previous results. We first note:

R em ark  (4.1): For a generic square pencil, the finite zeros are distinct and they 
appear in pairs of complex conjugate zeros. Furthermore, such pencils generically 
have no i.e.d.

□

For a generic m x n pencil with m  < n the only invariants are those defined 
by column minimal indices. The following result provides the characterisation of 
the generic values of c.m.i. of pencils and thus provide tools for characterising the 
generic values of the controllability, observability indices of linear systems.

Proposition  (4.5): Let sF  — G be an m  x n ,rn < n, generic pencil and let k be 
the integer

k = min I k  : k > --------1 (4-12)
l n — raj

then, the smallest minimal index is t\ =  k —1 and has multiplicity p\ = k(n — m) — m.

Proof: Let k be the smallest minimal index such that k > ^3^-, the sequence 
Cr(F, G) is defined by

0-1 = 0, 60 = 0, 6h =  0,..., 0]i _2 = 0, \ _ 1 = 0, \  = k(n -  rn) -  m,

^k+i = (k + l)(n -  rn) -  m, 6y.+2 — (k + 2)(n -  m) -  m ,... (4-13)

By computing the gap for k — 1 we have

d]<_1 = 6k + 0\r_2 — 26*̂ _1 = k(n — m) — m + 0 = k(n — rn) — m  /  0

from which and Lemma (4.1) the result follows.
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□

We may now state the following theorem:

T heorem  (4.1): Let F, G G RmXn,m  < n, and assume that (F,G) is generic (that 
is the matrices F, G are generic). For the pencil sF — G the following holds true:

i) sF — G has only c.m.i, that is, it has no finite, infinite-ed and no r.m.i.

ii) If k = min{& G Z+ : k > m /(n — m)}, then the set TC{F, G) of c.m.i. of sF — G
is defined by:

a) If k = then I C(F,G) = {(ei,/9a) : ej =  k — 1, p\ = n — m}; that is it
has one cmi ei with multiplicity p\.

b) If k ^  ^  then I C(F,G) = {(ea, pi), (e2, p2) : ci = k -  l,p i = k(n -  t o) -
m, e-2 = k, p2 = n — k(n — m)}.

Proof: From proposition (4.5) we have that

6i =  k — 1, pi = k(n — m) — m > 0 (4-14)

i) If k = — , then p-i = —̂ ( n  — m ) — m = n — rri and since there are n — m  indices
fi the search for more singular points of the sequence stops, this establishes 
part a.

ii) The pair (ei,pi) has already defined. For k — k the corresponding gap is given

by:

^k = ^k+i + ^k-i ~ ‘̂ k  = (k + l)(n — rn) — m  + 0 — 2k(n — m) + 2m 

= k(ra — m) + (n — m) — t o — 2k(n — t o) + 2t o =  n — k(n — t o) (4.15)

Since k 7̂  ^3—, clearly <5̂ 7̂  0. Furthermore, since 6t > 0 and Sj /  0, it follows 
that

€2 = k, P2 — n — k(n — rn) > 0

Note that since

Pi + P2 = k(n — rn) — rn + n — k(n — t o) = n — rn (4-16)

and p\ > 0 —> p2 < n — rn. Since p\ + p2 = n — rn, the search for more singular 
points stops, since all of them have been defined.
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Exam ple (4.4.1): If n = 50, m = 48, then = y  = 24 and k = 25. However, 
k = 25 = — = 25 and thus, there is only one value of minimal indices.— n—m 2 1 J

□

A similar result may be stated for pencils with m > n and this defines the generic 
values of r.m.i.s. From the above and its dual we have:

Corollary (4.1): For the generic system S(A, B , C ) with n states, / inputs, and m 
outputs the generic values of controllability indices Tc and observability indices X0 
are defined by:

a) If k is the smallest integer such that k > n / l , then

i) If k =  j  + 1, then l c = {(//i, p\) : — n / l , = /}

ii) If k /  j  + 1, then l c = {{pi,pi), (p-2 , P2 ) ■ / î = k -  1, p\ = kl -  n , p2 =
= n + l — kl}. where pi are distinct values of controllability indices 

and pi are the corresponding multiplicities.

b )  If k is the smallest integer such that k >  n / m , then

i) If k = ^  + 1, then T0 = {(0i, <Ti) : = n/m , crj = m}

ii) If k /  ^  +  1, then J 0 =  {(6>a , <ra) , (6>2, <̂ 2 ) : = k -  l,cri =  km -  n,62 =

k , <r2 = n + m — ¿m}. where are distinct values of observability indices 
and (j,- are the corresponding multiplicities.

□

This result establishes the generic values of the controllability and observability 
indices.

R em ark  (4.2): The generic value of the controllability, observability indices p.,6 
are defined by:

a) p is the smallest integer for which p > n/l.

b) 0 is the smallest integer for which 9 > n/m.

□

□
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The result on the generic values of c.m.i., r.m.i. may be used to find the generic 
values of c.m.i, r.m.i of the pencil

s i - A  - B '
- C  0

Corollary (4.2): If S(A,B,  C) is generic, then for the following three cases we 
have:

For rn < l, if k is the smallest integer such that k > then

i) If k = r— then TC{P) = {(e1?pi) : ?i = k — \,p\  — l — m},  that is, it has one
c.m.i. with multiplicity p\.

ii) If k ^  then J C(P) =  (?i, pi), (e2, p2) : ?i = k - l , p i  = k ( l - m ) - ( m + n ) ,  e2 =
k, p-2 = n + Z(1 — k) + k m }; that is we have the values ej, e2 with corresponding 
multiplicities p\,p2-

For m > Z, if A: is the smallest integer such that k > then

i) If k = then l r(P) = {(f?i,cfi) : rji = k — 1,ô i = m — /}, that is, it has one
r.m.i. rji with multiplicity ?!.

ii) If k ±  { ^ } ,  then Pr{P) = {{m, di), (i/2, ?2) : rjx = k -  1, ofi = fc(m - / ) - ( /  +
n),rj2 = k,a -2 = n + m(l — A) + fc/}; that is we have two values 771,772 with 
corresponding multiplicities ch, <t 2.

For m = /, it has only distinct f.e.d.

□

We illustrate the above result by means of the following example.

Exam ple (4.4.2): i) ii)

i) For rn < /, if n = 24, m = 48, / = 50, then = 36 and k = 37. However,
k = yAL = 37 and thus there is one value of minimal indices.

ii) For m > /, if n = 28, m = 50,/ = 24, then = 3 and k = 4. However,
k = = 2 and thus k 4- and we have two values of minimal indices.
-  771 —  1 -  ' 771 —  1
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4.5 G eneric P ro p erties  o f P rop er Transfer F unc-

tio n  M atrices

In the study of generic properties of transfer function matrices we examine the 
structural properties of them, as defined by the Smith-McMillan forms, over R[s] 

and at infinity and for a generic transfer function. Note that the infinite poles and 
zeros of a rational matrix may be defined as follows [Var. Lim. <C Kar.,1]:

Definition (4.1): Let G(s) £ Rmxl(s), P r ( s ) { G ( s ) } = r and let
M ^(s) =  diag {.s9', i £ r, > • ■ ■ > qr} be the essential part of the Smith McMillan
form at oo of G(s).

i) If Tqo is the number of qi s with qi > 0,f £ r, then we say that GY(s) has poles
at infinity, each one of order qi > 0,

ii) If Coo is the number of qi s with qi < 0, i £ r, then we say that G(s) has e^ zeros
at infinity, each one of order

iii) The number Sm (G) = J2j=i <7o where qt are the positive qi s is defined as the
McMillan degree at infinity of G'(.s).

□

R em ark  (4.3): Let G(s) £ Rmxl(s), pR(s){G(s)} = r. If too is the number of infinite 
zeros of G(s), then p{G(oo)} — r — e^.

□

If G(s) £ Ll ”‘ x , (.s ) , then G(s) has no poles at s = 00, but it may have zeros at 
,s = 00. Now we consider whether there exists any zeros if the elements of G(s) are 
generic.

T heorem  (4.2): Let G(s) £ RmXl(s), pR(s){G(s)} = r ,m  /  /, if G(s) is generic, 
then Gr(.s) has no finite zeros.

Proof: Write G(s) in terms of Coprime Matrix Fraction Description (c-MFD), 
G(s) = N(s)D~l (s) where (N(s), D(s)) are coprime MFD’s. Consider now the 
r-th compound Cr(N(s)). The zero polynomial is defined as the greatest common 
divisor of the entries of Cr(N(s)). The elements of Cr(N(s)) are generic polynomials
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which means that they are coprime. Thus N(s)  has no finite zeros and so G(s) has 
also no zeros.

□

By showing that proper generic transfer function G(s) has no finite zeros, we 
can state the following theorem,

Theorem (4.3): Let G(s) — N(s)D~1(s) = N(.s)D~1(s) £ where m ^  /,
if G(s) is proper generic then G(s) has no infinite poles and no infinite zeros.

Proof: From remark (4.3), if G(.s) is proper generic then it has no poles at infinity. 
To prove that G(s) has no zeros at infinity, recall that the infinite zero structure of 
G(s) is given be the finite zero structure of G(l/w)  which generically from previous 
result has no zeros at w = 0. Thus G(s) has no zeros at s = oo.

□

We examine next the relationships between finite poles, zeros and infinite poles, 
zeros of a proper generic rational matrix G(s) £ R™xl(s), Pr (s){G(s )} = r, with a 
rational vector space RG = colspR(s\{G(s)} which clearly has dimension dimRCG = r. 
The set V  of all polynomial vectors which are contained in RCG is an R[s}-Module 
and its definition is considered next.

Definition (4.2): Let G(s) £ Rmxl(s) and pR(s){G(s)} = /, we may write

= " < ') ■ & )  (4A7) 

where d(.s) is the l.c.m of the denominators of G(s). Clearly Pr (s){N( s )} — l and 
thus N(s)  is a polynomial bases of RCG, thus, every rational vector space has a 
polynomial bases. Let N(s) = [ni(s),..., n/(s)] and define the set

i
M n  = col.spR[s]{N(s)} = {x(s) : x(s) = € R[s]} (4.18)

The set M n  under the standard operations of addition and scalar multiplication 
by elements of R[s], is a finitely generated module, that is, it is generated by a finite 
number of polynomial vectors. [Ros.,1] [For., 1] [Kai, 1].

Definition (4.3): Let N(s)  £ Rmxl[s], pR(s){N(s)} — 1 and let RCN = •spfi(s){Ar(-s)}, 
then,
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i) N (s) is called a least degree basis (l.d.b) of RCN, if it has no finite zeros.

ii) N(s) is called a minimal basis of RCN if it is a l.d.b and it is column reduced
[Kai,l], that is its high coefficient column matrix has full rank.

□

Definition (4.4): Let N(s) = [n ^ s),..., rtj(s)] G RmX,[.s], be any minimal basis 
matrix of the 1-dimensional R(s)-vector space X.  Let Si = 9s[«i(.s)] and assume the 
columns are ordered by ¿1 < ¿2 < ■ • • < Si. The set of indices Ix  = {<*k : S\ < 
¿2 < ■ ■ ■ < h;} is an invariant of X  and they are referred to as Forney dynamical 
indices; the minimal degree Sp = Xu_i <h, of the maximal module M*x — A4/v = 
colspji[s]{N($)} is called the Forney dynamical order of X.

□

R em ark  (4.4): [Vard. & Kar.,3] Let et- be the least valuation among alH x * minors 
of G(s),i  =  1,2, ...,r and (p, i G r the invariants of the Smith-McMillan form at 
infinity, and p00(G)) z ^ G )  be the number of poles and zeros at infinity with orders 
taken into account. Then for all j ,

G = (4-19)
¿=1

and for j  = r, we have

¿00(G) = er = - ± qi = Zoo(G) -  Poo(G) (4.20)
i= 1

where S ^ G )  is the valuation at infinity of G(s).

□

Theorem  (4.4): Let G(s) =  N(s)D 1 (s) G Rmxl(s) be any R-MFf), i.e. N(s ) G 
RnlXl[s], D(s) G and let Pr (s){G{s)} = h Then

8oo{G) = dm(D) -  dm(N) (4.21)

where Soo(G) is the valuation at infinity of G(s).

Furthermore, if N(s) ,D(s) is any R-CMFD pair, then dm(D) = Sm {G), the 
McMillan degree, and (4.21) implies

Soo(G) = Sm (G)  -  dm(N)  (4.22)
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Consider now a G(s) E Rmxl(s), p r (s){G(s )} — l. If Zf(G),pj(G) denote the 
total number of finite zeros, poles of G(s) respectively and z00(G),p00(G) = ¿>m (G) 
are the total number of infinite zeros, poles with multiplicities accounted for, we 
have the following relationship.

Corollary (4.3): Let G(s) E R̂ nxl(s), p r ŝ){G(s )} = l. Then

Sm {G) + S%f(G) = Zoo (G) + zf (G) + SF (4.23)

□

Condition (4.23) expresses the important property that for a general full rank, 
rational matrix, the total number of finite and infinite poles is equal to the total 
number of finite and infinite zeros, plus the Forney dynamical order SF of RcCr. For 
the case where G(s) is proper generic, which means that G(s) has no finite zeros 
and no infinite zeros, poles the relation (4.23) becomes:

Corollary (4.4): Let G(s) E RmXl(s) be a proper generic, p^(s){G(s)} = /. Then

8m {G) = 8F (4.24)

□

Condition (4.24) implies that the total number of finite poles is equal to the 
Forney dynamical order of Rca , for a generic system.

Corollary (4.5): Let G(s) E Rmxl(s), pR(s){G* i ii)(s)} = l with 8m  = n and G'(oo) =
D ,then

i) If m  = /, then all Forney dynamical indices and the Forney order are zero.
Furthermore, if D 7̂  0, then we have n distinct finite zeros and no infinite 
zeros, whereas if it is strictly proper (D = 0), then we have n — m  distinct 
finite zeros and m  first order infinite zeros.

ii) If m ^  /, we have no finite zeros; furthermore,

a) If D 7̂  0, we have no infinite zeros and the generic value of the Forney 
order 8F = n.

□
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b) If D = 0, we have min(m, l) first order infinite zeros and the generic value 
of the Forney order is 8p = n — min(m, /).

Proof: This result follows from the Kronecker canonical decomposition of system 
matrix pencil [Kar. Sz MacB.,1] [Kar. & Kou.,1].

□

4.6 C o n c lu s io n

In this chapter, it was seen that nonsquare generic m  x n pencils are characterised 
only by c.m.i if m < n, or r.m.i. if m > n and if they are square then they are 
characterised only by distinct f.e.d. The generic form of the right, left characteristic 
sequence has been worked out and this has led to the determination of the generic 
values of c.m.i., r.m.i. of singular pencils. These results were then used to determine 
the generic values of c.m.i., r.m.i. type invariants of state space models.

For transfer function models, the generic types of invariants have been defined 
and some relationships between Forney invariants and McMillan degree was defined.
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Chapter 5

COM PUTATION A N D  RANK  
PROPERTIES OF PLUCKER  
MATRICES

5.1 In trod u ction

Recent work [Kar., & Gia.,2] has demonstrated the importance of controllability, ob-
servability Plucker matrices in control theory and a new criterion for controllability, 
observability respectively was given in terms of the corresponding Plucker matri-
ces. The Plucker matrices P(A, B), P(A, C) characterise the pairs (A, B), (A, C) 
respectively; thus, it is expected that system controllability, observability should be 
connected with the properties of P(A, B), P(A,C)  respectively.

This chapter is mainly structured on the computation and rank properties of 
Plucker matrices. The structure of the Plucker matrix Pa of a least degree matrix 
A(S)  (i.e. has coprime rows) and computation of Pa from the original data in terms 
of the Grassman vector, of the structure matrix S(s), of A(.s) is also given here. 
Then, necessary and sufficient conditions for Pa to have full rank are examined, as 
well as the generic value of the rank of such matrices. The Plucker matrices are 
important invariants which characterise the solvability of pole, zero Determinental 
Assignment Problems [Kar., & Gia.,1] [Kar., Sz Gia.,2] [Gia. & Kar.,1], Thus, the 
computation of Plucker matrices and the investigation of their rank are integral 
parts of the solvability of DAP, as well as computation of its solutions.
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5.2 R ela tion sh ip s B etw een  C ontrollab ility , O b-

servab ility  and C orrespond ing  P lucker M a-

trices

Our aim here is to establish the rank properties of Plucker matrices associated with 
a given system. Let T(s) = [si — A, —B] — s[/„,0] — [A, B] be a matrix pencil of 
dimension n x (n + l). This pencil has / column minimal indices and finite elementary 
divisors for any (A, B). If (A, B ) controllable, then it has no f.e.d.

The Plucker matrix of T(s) plays a key role in the study of the pole assignment 
by state feedback problem and it is defined by [Kar., & Gia.,2]

Cn(T(s)) = Cn( [ s I - A , - B ) ]  = g(A, B)

= en(s)P(A,B) ,en(s) = [l,s, . . . ,sn] (5.1)

n + /
l x

where g(A, B) £ R n

( n + l  ) X

' is defined as Grassman vector of T(s) with degree 
n + l

n and P(A,B)  £ R  ̂ U  ̂ is the Plucker matrix of T(s). The problem 
considered here is to investigate the relationship between rank P(A, B) and system 
controllability matrix. In the following we will use the result:

Lem m a (5.1): (Sylvester-Frank) [Mar. & Min,l] Let A £ RnXn be an n X  n real 
matrix then

|CV(A)| = |A|

n — 1 
r — 1 (5.2)

□

Lem m a (5.2): (Brunovsky-Transformation) [Bru.l] Consider the set of all matrix 
pairs (A, B ) £ RnXn x RnXm and the following transformation group H rB, i.e.

X n  y  J ^ n  X m
n / r  .n B ■

RnXn x Rn
(A, B) =► (Q(A + B L ) Q ~ \ Q B R - 1)

(5.3)

with

Q 1 : Rn —> R" state coordinate transform
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R : Rm —> Rm input coordinate transform 

L : Rn —> R!" state feedback transform

Every Brunovsky transformation Rig is an element of a transformation group 
represented by a triple (Q, L, R) and its action on the pair (.A, B ) defines an orbit.

□

Brunovsky type of transformations corresponding to column space transforma-
tions on P(A, B) and thus leave the rank P(A, B) invariant. This is stated below:

P roposition  (5.1): Rank P{A:B ) is invariant under the Brunovsky group 7irB.

□

Proof: If

where

Q[sJ A, —B]
Q-1 0 

L R 
=u

[s/ -  A', — B') = T \ s )

Q~l is state coordinate transform 
L is state feedback transform 
R is input coordinate transform

then, by the Binet-Cauchy theorem [Mar. h  Min,l] we have

(5.4)

C„CH »)) = \Q\g(A,B)Cn(U (5.5)

thus
P(A',B')  = \Q\ -P(A,B)Cn(U) (5.6)

Since U 6 jfê(n+0x(n+0) |f/| ^  0, then Cn(U) is nonsingular (see Lemma (5.1)). 
Thus (5.6) expresses equivalence and does not affect the rank.

□

R em ark  (5.1): We may use any special form under 7irB and thus any system in 
the orbit to investigate the rank properties of P(A, B ).

□
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The above result suggests that in the study of the rank of P(A, B ) we may use 
any canonical form of T(s). In the following we investigate the relationship between 
controllability and rank of the corresponding Plucker matrix.

Lemma (5.2): If the controllable pair (A,b) is in the controllable canonical form
i.e.

A =

0 1 0 0 0 0

0 0 I 0 0 0

, b =
0 0 0  • • 0 1 0

- a  0 - a i -a-2 ■ ■ O'n—2 &n _ i 1

(5.7)

then the Grassman vector and the corresponding Plucker matrix have the form:

and thus

g{A, b) = [

P(A,b) =

- A l sn--1 71—2 7 •- 7 ~ , ( - l ) B- 2*, ( - I ) " -

a0 0 0 ••• 0 ( - l)n-r '

a, 0 0 ••• ( -1 )" -2 0

2 0 -1 0 0

®7l — 1 1 0 ••• 0 0
1 0 0 0 0

(5.8)

(5.9)

Proof: We can see that the first term in g(A,b) is the maximal degree minor which 
is always \sl — A |. We note that for all other minors apart from the first, the last 
column of [si — A, —b] has to be included and thus all such minors are elements of 
the exterior product of the submatrix of [si — A, —b] which is obtained by deleting 
the last row. Mind that these elements have to be appropriately arranged, according 
to the original lexicographic ordering. This submatrix is of order (n + 1) x (n + 1) 
and is of the form

.s —1 0 • • 0 0 0
0 3 -1  • • 0 0 0

0 0 0 • s -1 0

and thus from (5.1) and the spécial structure of the above matrix we hâve <7(̂ 4, B ) =
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en(s)P(A, B ) where

P(A,B)

a 0 0 0  •• 0 ( - 1 ) " - 1

« 1 0 0  •• • ( - l ) n - 2 0

'71 —  2 0 - 1  •• 0 0

'71—  1 1 0  •• 0 0

1 0 0  •• 0 0

clearly from the above structure we have that controllability implies that

rank(P(v4, B)) = n + 1

□

R em ark  (5.2): For a general pair (T, B ) with

9(A,B) = [ \ s I - A \ , M s) r - - , M s)] P =
n + l 

n
=> d[(j)i(s)\ < n , i  € p (5.10)

□

Thus in g(A, B), maximal order minors with the potential to have maximal rank 
are those which always contain the first column corresponding to \sl — A |; that is 
(n+1) elements (polynomials) of g(A, B ) which defines a (n+1) x (n+1) submatrix in 
P(A, B). This submatrix may be nonsingular if \sl — A\ is one of (n + l)-polynomials, 
otherwise it is always singular. From [si — A , —B] by selecting a column of B the 
submatrix [si — A, —b\ defines a subset of (n + l)-coordinates of g(A, B ) which has 
the potential to have a full rank Plucker matrix if (A,b) is controllable.

Theorem  (5.1): (̂ 4, B) is controllable, if and only if

rank(P(/l, B)) = n +  1

Proof: Controllability of [A, B) implies 3L (state-feedback) such that

[si -  A, —B]
In 0

L h
[si — A', —B], with (T', B) cyclic

If (/F, B) is cyclic, there exist a u £ Rl such that (/F, Bu) is controllable [Che, 1].
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We may now construct an input coordinate transformation R: R = [u, R'] with 
Bu = b\ i.e. (A', V) is controllable that is

[ s I - A ' , - B ] I n  0

0 [u, R'}
[si -  a 1, [b\ B]\

There always exist a state coordinate transformation which transforms (A1, b') 
into the controllable canonical form (A,b). So we have transformed a controllable 
pair (A,B) and thus T(s) into a form [si — Â; b: B ’]. Using Lemma (5.2) and Propo-
sition (5.1) that rank P(A,B)  is invariant under Brunovsky transformation, then 
the result is established, since [si — A, 6] is in the controllable canonical form. The 
opposite is proved by contradiction.

□

Corollay (5.1): For a general pair (A, B) we have that

rank(/3(A, B )) = r + 1 

where r is the dimension of the controllable subspace.

Proof: For the sake of simplicity, assume the case of distinct input decoupling zeros. 
Uncontrollability implies that there exist (Q,L,R)  that would bring [si — A 1 —B] 
directly into the extended Brunovsky canonical form [Kar. & Mac,B.,l] defined be-
low:

nc n i V

s i  -  Ac' - b k€
0 s i  -  Aj 0

} nt

} nf
= [si — Ab , —Bb \

where A( =diag {Afl,..., Atp) and Be = block diag {wri, }

0
0

A

0
0

B b  =
Bc
0

1 0 0 
0 1 ••• 0

, Af  =J, n = nc + rif, nt =  Ya =i ep As  =

0 0 ••• 1
0 0 ••• 0io >

0
wti =

0
1

---
-1

> 0

0 A f
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is a generalisation of the Brunovsky canonical form for controllable system, to sys-
tems that need not be completely controllable [Kar. & Mac,B.,l].

Let <f>(s) = |s i  — A j |; we have to show that <j)(s) is the greatest common divisor 
of g { A s i  Bb). To calculate g ( A B , Bb), we have to take every column of s i  — A f ,  

since otherwise, the corresponding minor is identically zero and the number of zero 
minors is equal to rif.  By doing so, we see that all the minors have \ s l  — A f  \ as a 
common factor which shows that \sI — A f  \ is a g.c.d. of g ( A Bl Bb )- By contradiction 
argument it then follows that |s i  — A j \  is a greatest common divisor (gcd). If s = A 
is a root of </>(.s), then

[1, A,..., \ n~']P(AB, Bb ) = 0 AT(P{Ab , Bb )) + {0} ^  

rank(P(Ag, Bb )) < n + 1

In fact, rank(P(AB-, Bb )) =  r + I where r is the dimension of the controllable 
subspace.

5.3 C om p u ta tion  o f P lucker M atrices o f  G eneral 

R ation a l V ector Spaces

The aim of the following sections is to discuss the systematic computation and then 
to investigate the rank properties of Plucker matrices of least degree polynomial 
matrices. An essential part in this study, is defining the structure of the Grassman 
vector which leads us to the computation of the Plucker matrix of the least degree 
matrix from the original data. A general procedure how to compute the Plucker 
matrix step by step is given.

Definition (5.1): Let A(.s) £ i?mXp[s], pn(s){^(s)} = PAn ^  P an^ let A = 
[ai($), ...,ap(.s)]. The Plucker matrix of A(s) is defined by

Cp(A (a)) = A ■■■Agv(s) = g(A(s))

=  PAes(s ),e g (s ) =  [ l , s , . . . , s sf (5.11)

is defined as the Plucker matrix of
A (s ) .
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□

The problems examined here are first the computation of Pa from the original 
data and then the investigation of its rank properties.

R em ark  (5.3): If A(.s) has zeros (finite), then for each one of them z,g(A(z)) = 
0 = Pa ^ s (z ) and thus A f r ( P a ) / {0}. We distinguish the following two cases:

771
i) < (8 + 1): in this case, P a §l s{ z ) — 0 may be satisfied with p ( P a ) either

\ P
m  \ I 77i

, or < ] and nothing can be inferred for the rank of Pa -
P \  P

771
ii) > (S + 1): in this case, Pa Gs (z ) = 0 implies that p (Pa ) < (^ + 1).

\ P

□

Note that <7(y4(s)) is an invariant of A’ =  col.sppt.^{A(s)} modulo R[s] [Kar., & Gia.,1], 
and thus we can consider the Plucker matrices which correspond to matrices A(s) 
having no zeros. Furthermore, since by unimodular equivalence we can make such 
bases, column reduced; such transformation simply multiply the Plucker matrix by 
a constant. In the following we shall assume that A(s) is a minimal basis matrix 
which is ordered according to ascending degrees i.e., if

A(s) = [...,^(s),...],d[g,-(s)] = Sj, then 0 < Si < • • • < 6P.

Under these assumptions we may write:

a,(.s) = Aies.(s), A{ € Rmx Ŝ'+1\ i  G p (5.12)

and thus

A(.s) — [Ai,..., Ap]
=t a

eij(s)

(5.13)

c«p(s )
=S(s)
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where TA G RmXq,q = YOl=\(G + 1) is the coefficient matrix of A(s) and S(s) is the 
structure matrix of v4(s) defined by the index X = {<*>; : 0 < hi < • • ■ < 8P}.

By combining equations (5.11) and (5.13) we have:

C,{A(*)) = Cp(Ta )Cp(S(s )) = PAes(s) (5.14)

Note that

Cp(S(s)) = g(S(s)) =  Ps es(s) = gs (s) (5.15)

(  q ]  x(«+i)
where 6 = £ -=i 6Z and Ps G R V P > . Thus

Pa = Cp(Ta )Ps  (5.16)

The problem here is to define the structure of g(S(s)) and thus of Ps- The 
above problem is central to our study, since the structure of Ps will define which 
part of Cp(Ta ) is essential for the structure of PA. This problem is also related to 
the computation of PA from the original data. Note that S(s) is defined explicitly 
as:

S(s) =

1
s

¿2

sSp

£&*>[*], 9 = S > ,-  +  1)
i=1

;s.i7)

Some of the basic properties of the g(S(s)) =  gs(s) Grassman vector are exam-
ined next. We first note that

i s ( s) e RV\S\ ^  = ( q I Missis)} = S =
P i=i
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and every entry in g Js )  is parametrised by a sequence w = (¿1, ¿2̂  ■ £ QP,q and
thus g s,(.s) may be denoted by

■¡W —  G  Q p , q

gw(s) are referred to as Plucker coordinates of S(s)

Central Issues: In the computation of S(s) we are concerned with the following 
issues:

• Define those w £ QPtq such that gw(s) =  0;

• Define the form of nonzero gw(s) and their corresponding location (in terms 
of w).

□

We introduce first some notation and definitions:

Definition (5.2) : Given the set of ordered integers 0 < ¿1 < • • • < i p, q = (<*>! +
1) the interval of integers [!,...,(?] is partitioned into intervals as shown below:

1 ,2 ,£ 1  + 1; + 2 , ii + 82 + 2 ; ii + ■ • • + ip-i + P, •••><? (5.18)

For each integer k £ {1,...,</} we associate two parameters, its index =  V(k) 
indicating the interval where it belongs to and its Stathm = a(k) indicating the 
relative order in the interval. Thus, if

+ 1) < < X (^ i + *)
i=1 3=1

k £ A,- and this may be denoted by V(k) =  A i f  k £ A,-, then its Stathm a{k) is 
defined by

a(k) = k - Y J{8i + \ ) - \  (5.19)
3=1

□

Using the above notation we may state the following result.
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Proposition  (5.4): Let S (s) be the structure matrix defined by the set of indices 
0 < <$1 < • • • < Sp. Then the Plucker coordinates gw(s),w = (A, i-2 , • ip) G QP,q of 
(7,5(.s) have the following properties:

i) gw(s) ^  0, if and only if for the sequence w — (¿i, i2, i v) G QP,q,i\ G A i , z2 G
A2 -, ■ • • -, %p G Ap.

ii) gw(s) =  0, if at least two indices in w are taken from the same interval.

iii) If i\ G A i,¿2 G A 2 i ••■■¡ip G Ap, then

9w{s) = s ^ w\cr(iu) = cr(î!) H------ b cr(ip) (5.20)

Proof: Note that if .S'fm] is any pxp  submatrix of S(s) where w = (¿1, ¿2, ¿ p) G QP,q, 
then the following properties are deduced by inspection of the structure of S(s),

1) Every row of .S'(.s) contains only one non-zero element of the type sP,(3 —
0,1,

2) If a column of S(s) contains more than one non-zero elements, then from obser-
vation (1), it follows that there is at least one zero column in S[w\ and thus
|.S’[w;]| =  0.

3) The condition that ,S'[u;] has a column with more than one nonzero elements is
equivalent to that at least two indices from w are taken from the same interval.

4) From (1), it follows that the presence of an identically zero column is equivalent 
to that there is another column in S\w] with at least two nonzero elements.

5) If every column in contains only one nonzero element then the submatrix 
,S'[rc] is diagonal and has the form

r ( n ) 0

S\w] = (5.21)

( i p )

For the following reasons:
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• Since i\ < ¿2 < • • • < ip and i\ G Aj (otherwise we have two indices from the 
same interval and thus an entirely zero column) the nonzero element in the 
first column is on the first row, i.e. in (1,1) position and by inspection, has a 
value .s'7!81).

• For the same reasons as before, ¿2 G A2, and since every row has only one 
nonzero element, it can not be on the first row. Since z2 defines the second 
row and all nonzero elements are on the second column, it follows that the 
second element associated with ¿2 is in the (2,2) position of .S'[m] and has 
obviously value .s'7!*2).

The results generalise and the structure of S[iy] as in (5.21) is clearly established. 
The above arguments establish the result.

□

The above result suggests a method for computing the family of sequences from 
Q P,q which have nonzero Pluc.ker coordinates, as well as the form of these elements. 
We define the following:

Definition (5.3): A sequence w = (¿1,¿2,...,ip) G Qp,q for which i 1 G A i ,*2 G 
A2,...,*p G Ap is called nonsingular; otherwise, i.e. if more than one indices are 
taken from the same interval, then w is called singular.

□

R em ark  (5.4): The set of singular and nonsingular sequences are complementary 
subsets of QP)q, i.e. by defining one we define the other as the complementary set 
with respect to QPtq.

□

R em ark  (5.5): The singular sequences define the zero Plucker coordinates, whereas 
the nonsingular ones are the nonzero elements.

□

The set of nonsingular sequences may be computed by constructing the following 
table:

Structured Table
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Ai —> 1, 2, ■ • •, ¿1 + 1
A'2 —> ¿ i+ 2 ,  ¿ i +3 ,  • ■ •, ¿i + ¿2 + 2

A p  — > ¿1  +  • • • +  S p - l  +  Pi ¿1  +  • • • +  ¿ p - l  +  P +  P +  I ?  • ■ • , ¿1  +  ¿2 +  • ■ ■ +  tip +  p

T T T

S° S 1 S sp

which indicates the index sets and the Stathm of each element in the set. S°, S 1, ..., S Sp 
are the columns of the structure matrix S(s) which indicates the set of nonsingular 
sequences where nonsingular sequences define the nonzero Plucker coordinates.

From the definition of the nonsingular sequences we have that: The set flPrg(Si,..., 6p) 
of nonsingular sequences of Qp̂g may be defined from the above table as paths pass-
ing once through the elements of each of the A,- index sets. To demonstrate the 
construction of .. . ,i9) we give the following example.

Example (5.1): Let ¿i = 1,<$2 = 2 then from (5.17) we get p = 2, q = 5

Ai: 1

A,

(1.3) -> 1
(1.4) -> s '
(1.5) -  .»2
(2.3) -> s'

(2.4) s2
(2.5) -

This shows that the set ^ ^ ( ¿ i , ^ )  of nonsingular sequences of Q2,5 may be 
defined from the table as path passing once through the elements of each of the 
Ai, A2 index set, which gives the result for nonzero Plucker coordinates.

3 4 5

T T T

s° S 1 S2
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and thus

0 0 0
1 0 0
0 1 0
0 0 1
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
t T T
s° S'1 ,92

Example (5.2): Let Sj = 
structured table

0 (1,2) -> 0
0 (1,3) - 1

0 (1,4) s

0 (1,5) - s 2

0 (2,3) - s

0 (2,4) - s 2

1 (2,5) s 3

0 (3,4) -» 0
0 (3,5) -> 0
0 (4,5) - 0

T
5'3

m 2

CMIIcnTII

= g(S (s ))

= 3, q = 8, constructing the

¿1 = 1 --» 1, 2

¿2 = 2 --  3, 4, 5

$3 = 2 --  6, 7, 8

T T T
S'0 S'1 s 2
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(1,3,6) 1 0 0 0 0 0
(1.3,7) 0 1 0 0 0 0
(1,3,8) 0 0 1 0 0 0
(1,4,6) 0 1 0 0 0 0
(1.4,7) 0 0 1 0 0 0
(1,4,8) 0 0 0 1 0 0
(1,5,6) 0 0 1 0 0 0
(1,5,7) 0 0 0 1 0 0
(1,5,8) 0 0 0 0 1 0
(2,3,6) 0 1 0 0 0 0
(2,3,7) 0 0 1 0 0 0
(2,3,8) 0 0 0 1 0 0
(2,4,6) 0 0 1 0 0 0
(2,4,7) 0 0 0 1 0 0
(2,4,8) 0 0 0 0 1 0
(2,5,6) 0 0 0 1 0 0
(2,5,7) 0 0 0 0 1 0
(2,5,8) 0 0 0 0 0 1

T T T T T T
s° .S’1 .S’2 .S'3 ,S'4 s 5

The above matrix Ps has been computed from the structured table. Note this 
is the essential part of Ps after deleting the zero rows.
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We continue with the rest of the structured table to show the computation of 
the nonzero elements of P5, which is a path passing once through the elements of 
each of Ai, A2, A3 index sets.

(1,3)
(1.3.6)
(1.3.7)
(1.3.8)

e53(5)

(1,4)
(1.4.6)
(1.4.7)
(1.4.8)

( ^ 3 (a )

(1,5)
(1.5.6)
(1.5.7)
(1.5.8)

sS2eS3(s)

(2,3)
(2.3.6)
(2.3.7)
(2.3.8)

s >5 Sie«3(5)

(2,4)
(2.4.6)
(2.4.7)
(2.4.8)

s
s3 sSl+1eS3(s)

4S

(2,5)
(2.5.6)
(2.5.7)
(2.5.8)

•s4 \ sSl+S2es3{s)

Example (5.3): = 1, ¿2 =  1, ¿3 = 2, 64 = 2 =>- p  = 4, q = 10
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Si 1 2

S'2 -■+ 3 4

S3 --> 5 6 7

S4 -■+ 8 9 10

To compute the nonzero elements of P$ we continue as follows:
(1,3,5,8)

(1,3)

(1,3,5)

(1,3,6)

(1,3,7)

(1.3.5.9)
(1.3.5.10)

(1.3.6.8)
(1.3.6.9)
(1.3.6.10)

(1.3.7.8)
(1.3.7.9)
(1.3.7.10)

654(5)

•se54(.s)

•si3ei4(.s)

(1,4)

(1,4,5)

(1,4,6)

(1,4,7)

(1.4.5.8) )
(1.4.5.9) ss*eSi(s)
(1.4.5.10) J
(1.4.6.8)
(1.4.6.9)
(1.4.6.10)

= ¿2 + 1e«4('s)

(1.4.7.8)
(1.4.7.9)
(1.4.7.10)

e«4(5)

(2,3,5) ^654(5)

¿1+1654(5)
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/ 1+52e j s )(2,4,5)
(2,4,5,8) ì 
(2,4,5, 9) 
(2,4,5,10) J
(2.4.6.8)
(2.4.6.9)
(2.4.6.10)

¿1 +¿>2 + 1a s .M

(2,4, 7,8)
(2.4.7.9)
(2.4.7.10)

» s Sl++S2+SaeSi(s)

The generation of the final subvector of g(s) corresponding to nonzero entries 
may be achieved by observing the generation of the various elements.

□

Note that the structured table may be seen as a table of Stathms as shown below:

{ A J -> 0 1

{A2} -* 0 1

{Aa} -»■ 0 1 2

{A 4 -»■ 0 1 2

Furthermore each nonsingular sequence w = (¿i,..., ip) € QPtq may be represented 
by a vector, where each coordinate denotes the Stathm of the corresponding integer 
in {A,}, i.e. to w we associate

°"(* i)
a

a(ip) _
and this is called the Stathm representation of to = (¿i,..., ¿p). The generation of 
sequences for example (5.3) is illustrated below:

w(i\ , i'll ip)

Example (5.3): We continue with the last example and through it we demonstrate 
the systematic computation of the coordinates of gs(s). The steps illustrated below 
are of general nature and may be used for any .S’(5) structure matrix.
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Step 1: Consider the composition of Ai, A2 intervals, i.e.

A, : 1 2
a 2 : 3 4

or
o-{Aa} : 0 1

T T <t {A2} : 0 1
S° .S’1

{Ai, A2} =  Composition of Ai, A2 is defined by 
{A1?A2} = {(1,3),(1,4),(2,3),(2,4)}

The Stathm representation of {A1? A2} is

I? A2} —

Note: There is an one to one mapping between {Aj, A2}, and ]T){Ai, A2}. 

Step 2: Consider the composition of Aj, A2, A3, this is defined as:

{Ai, A2, A3} = j u /3) : € {A i,A 2},*3 € A3j

i.e.

(1,3)
I

(1,4)
I

(5,6,7)

(1,4,5) (1,4,6) (1,4,7)

(2,3)
I

(5,6,7)

(2,4)
I

(5,6,7)

(2,4,5) (2,4,6) (2,4,7)

and

{A i, A2, A3} {(1,3,5), (1,3,6), (1,3,7), (1,4,5), (1,4,6), (1,4,7), (2,3,5), 

,(2,3,6), (2,3,7), (2,4,5), (2,4,6), (2,4,7)}
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The Stathm set representation may be defined in a similar manner by:
' o \  / o '

0

I
(0,1,2)

1

I
(0,1,2)

1 
0

I
(0,1,2)

1 
1

I

(0,1,2)

Note that from the above diagram we can construct the final vector as follows:

(  X\  ^

| =  Yli=i xi is the Stathm of the corresponding element, then

V *k /
the final vector representation of the reduced Grassman vector may be defined as 
follows:

If a.X\ ,...,27fc

Let

$X\ ,X2,. x , = s

f Xi ,072

III7a.& ■&„(«) G R (Sp+l)[s]
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Thus we have for this specific example:

f 0 ,0,0 e2(s)
/o,o,i - > 5e2(.s)
fo,0,2 g2 Ç2(s)
f 0 ,1,0 -> -se2(.s)
fo,i,1 -> s2 e2(.s)
fo,i ,2 —> 53'e2(s)
/i,o,o ~  ̂ 5e2(s)

/i,o,i —» s 2Ç2(.s)
f  1,0,2 —> S3 &2i(S )

fi,i,o —> -s2 e2(-s)
/i,i,i ► -s3e2(5)
fi ,i ,2 -»• -s4e2(s)

The above examples indicate how we can generalise the computational procedure. 
This is described below:

General Procedure

The Stathm table may be used for the definition of the nonsingular sequences 
and the form of the reduced Grassman representative. For the computations we 
follow the steps:

Step 1. From the indices define the Stathm table:

STATHM TABLE

{A4 - -  0 , 1, - ,  4
{A4 -U 0 , 1, - ,  s2

{Ap_4 - -  0 , 1 , '  1 f tp —1

{A4 --  0 , 1 ,  ■■ ■,  4

Step 2: Define the composition set {Ai, A2, ..., Ap_ 4  using the recursive relations:

{A t } =  {w;(i) : wqi) =  (¿(1) — 1)4(1) € 6 \ +  1}

= {(0), (1 ),..., (<5i)} ordered lexicographically

{Ai, A2} = {u>t-(i),-(2) : Wi(i)i(2) = (w,-(l) : ¿(2) -  l ) , V u 7 i ( 1 ) G {Aa}, ¿(2) G 82 + 1}

ordered lexicographically
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{ A} ? A2, • • • i Â,- } — {̂ G(1)...î(A;—l)i(fc) • tVi(l)...i(k—\)i(k)

(^4(1 )...«(&—1)i *(&) 1 ); Vîl>i(i)) i) G {<̂1 -, • • ■ 5 Afc_i}

and i(k) G ¿fi- + 1}

Step 3: Having defined the composition {Ai, A2, ..., Ap_;i} which is the lexicograph-
ically ordered set, then for every rci(i);...i(p_i) G {A i , A p_i} we define the corre-
sponding part of the reduced GR (Grassman Representative) as:

If u>î(i ),...,»(p- i ) = {^i , xp-i}  then

f  — s i s j ‘ ) (5.22)

Step 4: The reduced GR may then be expressed as the vector

J  £ l  , X2 }•• • i&p— 1 T l) ^ { A | , A2, • • •, Ap_! ) (o.23)

Thus the element corresponding to the w = (x i,x2, x p_i, xp) sequence of Stathm
is

gw ( s )
X l + X 2 +  . . . + X p - l + Xp-i+xp jn tqie (xi, x2, x p_i, xp) position (5.24)

□

Proposition  (5.5): if w = (xi, x2, ..., xp_i, xp) G {A i,...,A p} is a Stathm repre-

s s )  = ^ > + -+ ^  (5.25)

sentation, then

The proof of the above is a straightforward consequence of the previous analysis.

□

R em ark  (5.6): The Grassman vector q (s) is an -dimensional vector, where
V p /

q = (G + 1). The reduced Grassman vector defined by the nonsingular se-
quences, grs (s) is a r-dimensional vector, where

r = n?=1 (* + i)< £ L ,(G  + i)
p

The value of r  follows from the definition of the nonsingular sequences.
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□

Example (5.4): Note

i) ¿1 = 1, ¿2 = 2 —» p = 2, q = 5

j  = 10, r  = 2 x 3 — 6 

total dimension reduced dimension

ii) <$i = 1, S2 = 2, S3 = 2 —► p = 3, q = 8

r = 2 x 3 x 3 = 18

reduced dimension

iii) = 1, <*>2 = 1, ¿3 = 2, 84 = 2 —> p = 4, q = 10

r  =  2 x 2 x 3 x 2  = 24 

reduced dimension

R em ark  (5.7): It is obvious from the examples that there is a considerable re-
duction in the computation effort by using a procedure based on the nonsingular 
sequences.

total dimension

□

We may now return to some of the original questions which have been asked. 
Thus the rank question of Ps Plucker matrix is considered first.

P roposition  (5.6): For any set {̂ ¿, i G p} the Plucker matrix P’s of ,S'(.s) has always 
full rank.

Proof: From the construction of gr̂ (s) it is obvious that there exist a subvector of 
grs (s) having the form e5(s) = [1, .s,..., .s'5]4, S = Ya =1 <*4- To the vector e5(s), there 
corresponds a minimal order minor of Ps which is I$+1 and this proves the full rank 
property of P$.

□
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An example indicating the form of the Plucker matrix associated with S(s) is 
given below.

Example (5.5): Let ¿1 = 1,#2 = 1,^3 = 2. The Plucker matrix associated with g 5(s) 
is defined below:

(0, 0 , 0) -  

(0, 0, 1) -  
(0, 0, 2) - ,  
(0, 1, 0) -> 
(0, 1, 1) - ,  
(0, 1, 2) - ,  

(0, 2, 0) - ,  
(0, 2, 1) - ,  
(0, 2, 2) - ,  
(1, 0, 0) - ,  
(1, 0, 1) - ,  
(1, 0, 2) - ,  
(1, 1, 0) - ,  

(1, 1, 1) -  

(1, 1, 2) - ,  
(1, 2, 0) - ,  
(1, 2, 1) - ,  
(1, 2, 2) - ,

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

5°
s 1 
s2
s1
s 2 
s3 
s 2
s3
Cj4

s 1
s2
s3
s2
s3
s4
s3
s4
s5

The set {Ai, A2, ..., Ap} defines immediately the structure of the reduced Ps, P$ 

Grouping according to Powers:

s° (0,0,0)
s1 (0,0,1), (0,1,0), (1,0,0)
s2 (0,0,2), (0,1,1), (0,2,0), (1,0,1), (1,1,0)
s3 (0,1,2), (0,2,1), (1,0,2), (1,1,1), (1,2,0)
s4 (0,2,2), (1,1,2), (1,2,1)
s5 (1,2,2)

Summary
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The Plucker matrix F\4 is expressed by (5.16) as:

PA = Cv (Ta )Ps (5.26)

where

Note:

TA = [Al , . . . ,Av] e R m* \  ? = £ ( *  + 1)
î=i

Ps G Ä

<7
P

x(5+l)

¿=1

i) We denote by A = {<$1, <$p} and {A} the nonsingular sequences;

ii) Ps has a number of zero rows, each one of them parametrised by a singular 
sequence w E Qp,q- The submatrix of Ps obtained by deleting the zero rows without 
changing the relative position of the rows characterised by the nonsingular sequences. 
It is defined as the A-Reduc.ed Plucker Structure Matrix and it is denoted by Pg'. 
Clearly, Prs E firx(5+1), where r  = ll(’=i(^  + 1).

iii) The submatrix of CP(TA) obtained by deleting all columns associated with the 
nonsingular sequences, but retaining their relative ordering, is called the A-reduced 
compound and denoted by Cp (TA). Clearly

PA = C f (T A)P* (5.27)

iv) The nonsingular sequences {A} = {A i,...,A p} are defined by the composition 
of the Stathm structure diagram

{A:} -■* 0, 1, •• -,

{a 2} --> 0, 1, •• •• ë2

{Ap) --> 0, 1, •• ........ St

and each sequence w =  (aq, X2 , ..., xp), X{ E [0, ¿'¿j uniquely defines the gw(s) Plucker 
coordinate as 'rXp and thus the corresponding row in Pg .

v) All sequences with a given Stathm contribute in the definition of the correspond-
ing column in PA. In fact,

ilk = — (*1,..., xp) : w E {A} and cr(w) = X\ + • • • + xp = k} (5.28)
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and

(5.29)

(5.30)

si A
^  A {Ta

Pa

[' " ' 1 t-Wl ' ' ']

( M l ’ -

then from the structure of P^ it follows that

E k =  E ±w
u>efik

(5.31)

□

T heorem  (5.2): Let fIk =  {w}  be the subset of the nonsingular sequences of Qv,q 

with a given Stathm k, k = 0 , 1 , 6 = Xq=i ¿¿. Furthermore, let tw be the columns 
of Cp(Ta ) corresponding to the u  £ ilk sequences. The k-th column of the Pa 
Plucker matrix is defined by

Pk = E  =  0,1,2,..., 6 (5.32)
w£Qk

□

The proof follows from the above analysis. It is clear, that in defining Pa , it 
is essential to have an efficient procedure algorithm for computing the ilk set. An 
important issue in these computations is the following problem:

Problem: Given the Stathm structured table,

STATHM STRUCTURED TABLE

{A:} -+ 0, 1, •• •, G — T
{Aa} -■* 0, 1, • , 3-2 — U 2̂

{AP} —> 0, 1, • ......................... s.
define the set of all paths (aq, x2, ..., xp) (p-tuples), where aq £ [0, 1, . such that

aq + aq xp = k,k  fixed (5.33)

□

109



This is a problem of partitioning the k-integer into integers taken from the A,- 
intervals. This problem is referred to as a k-path problem in the {A i,..., Ap} table, 
and can be solved as follows:

Solution of the k-path problem

Let {¿i, S2, ..., Sp, 0 < hi < • • • < hp} = A be a set of integers, and k some fixed 
integer, k < S = Ya =i $i- The set of sequences

flk =  {w = (aq, x2, ..., xp) : w G {A} and a(w) = aq + • • • + xp = k}

may be constructed by a step by step procedure as described below. We first define:

Definition (5.4): If k is an integer from [0, 1, then any ordered p-tuple 
{aq, x2, . ..,xp},Xi G [0,1,..., <5] such that aq + • • ■ + xp — k is called an 
oriented p-partition of k. If ordering in the partition {aq, x2, ..., xp} is not of im-
portance, then it is like referring to the family of all permutations of {xx, x 2 , x p} 
and any such representative is denoted by < aq, x2, ..., xp > and referred to as an 
apolar p-partition of k.

□

Example (5.4): The construction of fh- will be illustrated by an example where 
hi = 1, ¿2 = 2, S3 = 2. We follow the steps:

Step 1: Given k, define all apolar p-partitions of k. i.e. if k =  4, then the set of 
3-partition is

< 4,0,0 > ,<  3,1,0 > ,<  2,2,0 > ,<  2,1,1 > 

and its construction is summarised by the table:

4 0 0 
3 1 0 
2 2 0 

2 1 1

Step 2: From the set of apolar p-partitions define the subset with the property that 
if < X\,x 2 ,--.,xp > is the apolar partition, then X{ < max{h,-,z G p}, i.e. for our 
example with max{h,} = 2 the subset with the above property is:

< 2,2,0 >, < 2,1,1 >

This subset is called the A-apolar partition set of k.
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Step 3: From the set define the permutation of each apolar partition, i.e.

(  2 )
(  2 \ ( o \

<  2 , 2 , 0 >  -» 2 1 0 1 2

V 0 J U

I  2 \
(  1 1

f  1 \

<  2 , 1,1 >  -*■ 1 2 7 1

l  1 ) l  1 ) U )

Note that since the integers in any < Xi,X2 , ...,xp > may repeat themselves, the 
set of p-oriented partitions is less than p!. in number for any p-apolar partition.

The set defined above will be referred to as the A-oriented partition set of k.

Step 4: From the A-oriented partition set of k define as the subset with the 
property that if

{ x \ , X 2, •••, x p} =
X-2

\  X P )

, then Xi e [0,1,

i.e. for our example with ¿fi = \ ,82 = 2, <$3 = 2

ih  =

where as the rest i.e. (2,0,2) fail the criteria since

x-i = 2, < <$i = 1

[ o ]
f  1 1 (  1 1

2 9 2 •) 1

\ 2 ) l  1 ) V 2 )

Example (5.6): Let <*>i = 1, <F2 = 2,<*>3 = 2.

1) k = 0 : ilo = {(0,0,0)} obviously

2) k = 1 :< 1,0,0 > the only apolar partition

f  1 ^ ( 0 ) ( o \
A-oriented set : 0 5 1 1 0

1 °  ) U I l 1 )
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all acceptable and thus

n , = {(i,o,o), (0,1,0), (o,o,i)}

3) k = 2 :< 2, 0, 0 >, < 1,1,0 > the only apolar partitions

( 2  )
( ° )

( o ) f  1 V
[  1 1

( o \

A-oriented set : 0 1 2 •) 0 l 5 0 1

l o  j l o ) \ 2 ) V o  j l  1 ) l 1 /

all acceptable except
/  2 \  

0

V o y

and thus

i)2 = {(0,2,0),(0,0,2),(1,1,0),(1,0,1),(0,1,1)}

partitions acceptable

A-oriented set :

A to o V
 

A V
 

A 2 , 1,0  > , <  1, 1,1 >  the onl y

( 2 ) ( 2 ) f  o ) [ o ] { 1 1 ( \  \
( 1 ^

1 5 0 1 2 5 2 0 1

\ o / l  1 i l 2 > l  1 ) V o  J l 2 J V 1 /
/ 2 \ 

1

V o /

( 2 \
0

V 1 /

are not acceptable (see step 2) and thus

0 3 =  { ( 1, 1, 1) , ( 1, 0, 2) , ( 1, 2 , 0) , ( 0, 2, 1) , ( 0 , 1, 2) }

k — 4 : f)4 = {(0, 2, 2), (1,2,1), (1,1,2), } defined before.

k = 5 :< 5, 0, 0 >, < 4,1,0 >, < 3, 2, 0 >, < 3, 1,1 >, < 2,2,1 > are not acceptable 
except < 2,2,1 > since max{i,} = 2 so < 2,2,1 > the only apolar partition.

( 2 ) ( 1 V ( 2 \
A-oriented set : 2 1 2 1 1

{ 1 ) l 2 J V 2 /

the only acceptable one is
(  1 \

2

V 2 /

0 5 = {(1,2,2)}
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5.4 R ank P ro p erties  o f  P lucker M atrices

The results so far, indicate how we can relate the Plucker matrix to the original data 
defined on the polynomial matrix. These results provide the means for discussing the 
rank properties of Plucker matrices which is considered next: For the + .s) (E RmXn [5] 
we may write:

where

Pa  = C%(Ta )■ P i  = (5.34)

m

p A  e R r x ( S + 1)?
P ( P £ )  =  (S +  l )  <  T

G A = C f (T A) € R

n?=1(ft + iM = £ *
t=l

Note that r  = 8 + 1 only when ¿1 = 8-2 — ■ ■ ■ — 8V — 0; otherwise r  > 8 + 1. We 
shall denote by

V i  = col.sp{ P i }, A f i = M { P i }  (5.35)

A Î i = K { G A}, K  = row.sp{ G A) (5.36)

with this notation, we may state the following results:

P roposition  (5.7): If v4(s) is a minimal basis such that TA € RmXm, i.e. m — 
Z(8i + 1), then if p (Ta ) = m, we also have that p{PA) = 5 +1 .

Proof: Pa — Cp(TA)Ps and p{TA) = m, implies CP(TA) has full rank. Thus p(PA) = 
p(Ps ) = 8+  1.

□

Consider now the rank properties of PA■ By inspection of dimensions as below:

r 5+1 5+1

T

the following result is derived:



Proposition  (5.8): If
m

P
< (6 + 1) then

(5.37)

or equivalently J\fi(PA) 7̂  {0}, implies that

N i{Ga } 7̂  {0} p {Ga ) < (5.38)

and/or

^  { 0} (5.39)

Proof: Note that
m

p(PA) < I J 44 3 x ^  0 : x PA = 0
P

or
x * G a P £  =  0

If we define y* = x *Ga , then loss of rank is equivalent to either of the following 
conditions:

1. y* = 0 44 P G a = 0.

2. yt yf 0 and yl Pg — 0

For each of the above we have:

m
1. x lGa = 0: This implies that Mi{Ga } ^  {0}. However, since ( | <

P

( ¿ + l ) < T , A f l{GA} ^ { 0 } , i t t p ( G A)<
m

P

2. yl yf 0,ytP$ = 0: Since y E n-A =  row-sp{6r^}, this condition implies that 
RA H {0} this leads to the result.

Either of the above conditions implies J\fi(PA) ^  {0}, or equivalently p(PA) < 
m

P
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□

Proposition  (5.9): If
m

P
> (8 +  1), then p(PA) < (8 + 1) if and only if

K  n Pi + {0 }

A necessary condition for to be 7̂  {0} in the case where (8 + 1) < r  < 

is that p (Ga ) < t .

Proof: We write the above as

p {Pa ) < (6 + 1) 7̂  0 : P_a % = 0 or Ga Ps % = Q-

if y =  P i  x , then since P ^  has full column rank, it follows that y 7̂  0 and

m

P

GAy = 0 ,y = P$x (5.40)

The above condition implies that

y e K { G A} , y e P i  (5.41)

or that
K  n P i  {0} (5.42)

A necessary condition for (5.42) to be satisfied is that ^ { G a } = AfA /  {0}, we 
distinguish the following cases:

a) [8 + 1) < r  <
m

P

m
b) (8 + 1) < ( 1 < r.

P

For each of the above cases we have:

(
771 \I

In this case Afr{GA} 7̂  {0} implies p(GA) < t  i.e. GA looses rank (necessary 
condition).
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(
771 \j < T.

In this case, AÎt {Ga } is always /  {0} and condition (5.42) is necessary and 
sufficient.

□

The above analysis allows the reduction of study of rank of Pa  to properties of 
G a , Ps matrices and associated spaces.

Proposition (5.10): For the Plucker matrix Pa the following properties hold true:

m
i) If ( ) < (6 + 1), then

P

771
p(GA) =  I I and n Af£ = {0}

P
(5.43)

are both necessary and sufficient conditions for p ( P a )
771

P

771
ii) (<*> + 1) < r  < [ ] then

P

p (Ga ) = T

is necessary and sufficient condition for p ( P a ) = Æ + 1 .

(5.44)

iii) If (è + 1) <
771

P
< r, then

AT £ n Vs = {0}

is necessary and sufficient condition for p ( P a ) =  S +  1 .

(5.45)

This result follows from the analysis preceding the statement of Propositions 
(5.8) and (5.9).

Now we consider the generic rank properties of a Plucker matrix. For a matrix 
j4(.s ), such that

A(s) G /?mxp[.s],/0fi(s){4(s)} = p and let A(s) = [a^s), ...,ap(s)]
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its Plucker matrix is defined by

C7p(/l(.s)) = PAes(s),es(s) =  [1, s , ..., s5]*

m
x(<5+i )

\ 7) J
where PA £ i? ' ' is defined as the Plucker matrix of A(s). The problem
here is to investigate the condition such that PA has generically full rank.

From equation (5.31) we know pk = ktWi if tw are the columns of CP(TA) 
corresponding to the w £ ilk sequences, then the k-th column of the PA Plucker 
matrix is defined by

Pk = E  tu,,k = 0,1, ...,S (5.46)
wecik

Corollary (5.1): The Plucker matrix PA has generically full rank.

Proof: According to the dimensions, we start by forming either m

P
|  -th or (5+1)-

th compound matrix of PA. By setting the chosen compound matrix to zero implying 
that all the maximal order minors of the matrix PA are identically zero. Let V be 
the variety in Jx containing all the solutions which satisfy the resulting equations. 
Now we have to show that V is proper. In order to do this, we say there is at least 
one point in the whole parameter space which does not belong to the solution space 
(i.e. the space which solution to the equations above are simultaneously zero and is 
a subset of the parameter space). As we are dealing with generic case, there must 
exist a point in the whole parameter space which does not belong to the solution 
space. That is we have to show that there is a full rank matrix PA; however, we can 
always construct a matrix. So the matrix PA has generically full rank.

□

5.5 C o n c lu s io n

In this chapter, it has been proved that the controllability Plucker matrix P(A,B)  
has rank equal to ( n + 1) if and only if (A, B ) is controllable and equal to (r+  1) for a 
general pair (A, B) where r  is the dimension of the controllable subspace. A system-
atic procedure for the computation of Plucker matrices of least degree polynomial 
matrices has been introduced and their rank properties have been investigated. The
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results have allowed the derivation of a result showing that the Plucker matrices 
associated with least degree polynomial matrices have generically full rank.

The results here provide a link of the controllability, observability properties to 
the rank of appropriate Plucker matrices, establish a computatiorfal procedure for 
determining the Plucker matrices and establish some interesting rank properties of 
them.
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Chapter 6

STRUCTURAL PROPERTIES  
OF GENERAL
INTERCO NNECTED SYSTEMS

6.1 In trod u ction

The theory of structural properties of composite system has attracted a lot of atten-
tion in recent years [Ros.,1] [Ros. k  Pug., 1] [Gil., 1] [Cal. k  Des.,1] [Pug. k  Kaf., 1] 
[Kai, 1] etc.. In [Gil., 1], the controllability and observability of composite systems are 
related to the controllability and observability of their subsystems. [Ros. k  Pug., 1] 
have shown that the closed-loop system will always be strictly proper (whenever it 
is defined) for the case of proper 6Y(.s) and have investigated the decoupling zeros 
of a composite system which are known [Ros.,1] to be invariant under strict system 
equivalence applied to the composite system matrix. More recently [Pug. k  Rat.,1] 
and [Pug.,1] have provided necessary and sufficent conditions for closed-loop proper-
ness in the case of a general open-loop G(s) and a simple sufficient condition for 
composite system properness has been derived in [Pug. k  Kaf., 1],

In forming composite systems by interconnecting a family of subsystems, the two 
important ingredients are the subsystem models and the nature of the interconnec-
tion topology (the interconnection graph). An ideal interconnection scheme is that 
characterised by the completeness assumption [Kar.,8], [Cal. k  Des.,1]; this assump-
tion allows the characterisation of a number of important system properties, such as
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controllability, observability etc. as the aggregates of the corresponding properties of 
subsystems [Kar.,8]. The main objective of this chapter is to provide a formulation 
and appropriate tools for the study of the effect of diversion from the completeness 
assumption, as well as characterise the effects of these diversions on the formation 
of properties such as controllability, observability, zero structure formation. The 
diversion from completeness is studied by assuming first that, the composite system 
under study is the result of failures, or structural changes on a complete composite 
system, where these changes are due to loss of inputs, outputs either total, or partial 
at the subsystem level. The study of controllability, observability and zero structure 
properties under such failure conditions aim at establishing the values and nature of 
the associated Kronecker invariants with these properties (minimal indices, elemen-
tary divisors) rather than simply testing for such properties. An essential part of 
the investigation is to locate the part of the interconnection graph, which becomes 
essential under the above failure conditions.

The main idea behind the work here is to try to relate the structural aspects of the 
composite system in terms of the structural aspects of the subsystems and the nature 
of the interconnections. The present approach relies on the use of the restricted 
pencils [Kar. & MacB.,1] [Kar. & Kou.,1] for the composite system; this analysis 
leads to the computation of the restricted pencils of the composite systems which 
are expressed in a simple way in terms of the restriction pencils of the subsystems. 
Some basic assumptions in dealing with composite system are that the transfer 
function of each subsystem provides a representation for the subsystem, that is each 
subsystem is both controllable and observable.

The problem we shall examine here are related to the effect of reducing the 
number of actuating variables Uj- (inputs) and/or measurement variables y. (outputs) 
at subsystem level, on the resulting Kronecker invariant structure of the centralised 
(simple) and complete composite system. It will be shown that, controllability, 
observability, zero structure properties of complete composite systems are simply 
given as aggregates (direct sum) of corresponding properties of subsystems.

It will also be shown that, the problems of input-, output- and input-output 
reduction on the Kronecker structure of a centralised system are equivalent to ma-
trix pencil augmentation problems by row-, column- and row and column pencils 
[Kar. & Vaf.,1], Such problems deal with issues of Kronecker structure evolution 
assignment under the operations of matrix pencil augmentation. We shall investi-
gate the effect of the partial, or total loss of inputs, or outputs on the basic system
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properties, such as controllability, observability, zeros as well as on the composite 
system structure. It is assumed that the original composite satisfies the complete-
ness assumption and thus our interest here is to qualify the effect of deviation from 
completeness by loss of inputs, or outputs on the resulting composite system, which 
will be demonstrated that for every deviation from comleteness, the study of con-
trollability, observability may be reduced to subproblems in a structural sense and 
controllability indices, observability indices, input decoupling zeros and output de-
coupling zeros of the complete composite system are given as aggregates of those 
defined by the subsystems. We summarise first some results on the role of pencils 
in the characterisation of the system properties.

6.2 M atrix  p en cils  and stru ctu ra l p rop erties

In this section some of the basic definitions and properties of matrix pencils arising 
in linear system theory which we shall use later on in this chapter to describe the 
structural properties of composite systems are summarised.

6.2 .1  In p u t-s ta te  p en c il

The pencil [ s i  — A , — B]  is known as input-state, or controllability pencil [Ros.,1] 
[MacF. & Kar.,1] and the invariants of [ s i  — A,  — B]  are very closely associated with 
the controllability properties of the system. A system is uncontrollable iff there exist 
finite elementary divisors in [si — A, — B].  This implies the existence of a non-zero 
constant vector v4 and a frequency .s0 such that

v l [s0I  -  A , - B ]  =  0 (6 .1 )

Let N  be a maximal rank left annihilator of B  (a basis matrix for Afi(B)) and 
B^ be a left inverse of B , i.e.

N B  = 0, B ]B = h (6.2)

we may now write v* = 

(6.1) becomes

N

" N

where
N
Bî

is a full rank matrix and thus

fit [s0I - A , - B ]  = 0
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v\(s0N  -  NA)  + J2B \ s 0I -  A) = 0 

£2 = 0

<£>
v\(s0N -  NA) = 0 (6.3)

The last equation implies that there exist finite elementary divisors of the pencil 
sN  — NA  iff the system S(A, B) is uncontrollable. The pencil sN  — NA  is known as 
the restricted input-state pencil [Kar.,1] [Kar.,7], It can be proved [Kar. Sz MacB.,1] 
that a controllable system yields an input-state pencil characterised only by a set of 
column minimal indices {et- +  1 = (E /}, where 07,. denotes the controllability
indices of the pair (A, B) and e,- are the c.m.i. of the restricted input-state pencil 
sN  — NA.  For uncontrollable systems the canonical form of sN — NA  contains 
additional blocks to those corresponding to the column minimal indices; these new 
blocks correspond to finite elementary divisors, which in turn define the input de-
coupling zeros of the system [Ros.,1]. The pencils [$/ — A , — f?]and sN  — NA  have 
the same f.e.d., but their c.m.i. are related by the “plus one” property described 
above.

It was shown that if T  is the coordinate transformation bringing the pair (A, B ) 
in the Luenberger controllable companion form [Kar.,1], then a mere multiplication 
of sN  — NA  on the right by T -1 brings the pencil in the Kronecker canonical form. 
The transformation T -1 belongs to the class of strict equivalent transformations 
[Gan.,1] and, as such, does not affect the Kronecker invariants. Another important 
set of transformations on the pair (A, B), is the set of state/output feedback trans-
formations; the input-state pencil that corresponds to a closed loop pair (A — BL, B ) 
is sN  — N(A  — BL) = sN  — AM, since N B  = 0, and thus we are led to the following 
theorem:

T heorem  (6.1): [Kar.,1] The input-state pencil sN  — N A  corresponding to the 
pair (A, B) and its Kronecker canonical form are invariant under state feedback.

□
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6 .2 .2  S ta te  o u tp u t p en c il

In the previous section we found another pencil with reduced dimensions than 
[si — A, —B] which characterised the equivalence class of the systems S(A, B) under 
feedback. In this section we shall repeat the analysis for the S(A, C ) pair using the 
concepts of observability or rather unobservability, instead of those of controllability. 
Note that a system is unobservable iff there exists finite elementary divisors of the 
pencil [si — A t, —Ct]t [Ros.,1] which is referred to as the state-output pencil. This 
implies the existence of a non-zero vector u and a frequency ,s0 E C such that

s0I -  A
- G

u — 0 (6-4)

Let M  be a maximal rank right annihilator of C (i.e. a basis matrix for Afr(C)) 
and CA be a right inverse of (7, i.e.

CM = 0, CC] = In

we may always write

u = [M\C]] 

then the system (6.4) may be expressed as

[m \cA]

M i

u-2

So In. A
-C

u 1
Un

or
’ s0M  -  AM s0C' -  AC' ' Mi

0 Im . —2 .
= 0

which leads to u2 = 0 and thus

(6.5)

(6.6)

(s0Af -  AM = 0 (6.7)

Condition (6.7) implies that there exist finite elementary divisors of the pencil 
sM  — AM  iff the system S{A,C)  is unobservable. The pencil sM  — AM  is known 
as the restricted state-output pencil [Kar. h  Mac.B.,1] [Kar.,7],

It can be proved [Kar. & MacB.,1] that observable systems yield an state-output 
pencil characterised only by a set of row minimal indices {??,■ + 1 = pm_t+1, i E m}, 
where pk denotes the (observability indices of the pair ( A , C )  and rp are the r.m.i.

123



of sM  — A M . For unobservable systems the canonical form of sM  — AM  contains 
additional blocks to those corresponding to the row minimal indices; these new 
blocks correspond to finite elementary divisors, which in turn define the output 
decoupling zeros of the system. Once more the state-output and restricted state- 
output pencils have the same f.e.d. and their r.m.i. are characterised by the “plus 
one” property described above. It was shown [Kar. & Mac.B.,1] that if F is the 
coordinate transformation bringing the pair (A,C)  to the Luenberger observable 
form then a mere multiplication of sM  — AM  on the right by F -1 brings the pencil 
to its Kronecker canonical form. The transformation F _1 belongs to the class of 
strict equivalence transformations and, as such, preserves the Kronecker canonical 
form.

6.3 Zero p en cil

The concept of a zero is strongly connected with the physical problem of a system 
S(A, B , C , D) whose output response remains identically zero even though the sys-
tem input and states are themselves non-zero. This situation may be represented 
diagrammatically as

xr

ureztl(t)
S(A ,B ,C ,D ) y(t) = o

xreztl(t)

The condition for the solution of this problem are expressed in the following 
theorem:

Theorem  (6.2): [Mac.F. & Kar.,1] For a proper system S(A, B , C, D) for which 
the number of inputs l is less than or equal to the number of outputs m  a necessary 
and sufficient condition for an input

u{t) = urexp(zt)l(t)
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to yield a rectilinear motion in the state space of the form

x [ t )  =  x r e x p ( z t ) l ( t )

and to be such that
y { t ) - 0 for t  > 0

is that

PU = 0 ,P(z) =
z l  - A

- C
- B
- D

(6.8)

□

From (6.8) we have that the solutions in 2 give the values of the complex variable 
s for which P(s) loses column rank. This is only possible for values of 5 which 
coincide with the finite elementary divisors of P(s). The frequencies z define the 
set of finite invariant zeros. The vector solutions xr,ur that correspond to the finite 
invariant zeros are called the state and input zero directions [MacF. & Kar.,1],

The finite zeros and zero directions are related to the finite elementary divisors 
on the system matrix pencil P(s). In the study of the properties of zeros and 
zero directions a simpler form than P(s) has also been used [Kar. & Kou.,1], A 
new pencil is derived of reduced dimensions, which simplifies the study of the zero 
behaviour, since it is restricted only to the properties of state; this pencil is known 
as the zero pencil and may be defined from the conditions characterising the output 
zeroing problem for a strictly proper system as shown next. We should first note 
that condition (6.8) for strictly proper systems implies:

(.z l  — A)xr — Bur

0Cxr

(6.9)

(6.10)

The last equation implies that x r 6 k e r C , so that

x T =  M v t (6.11;

where M  is a basis matrix representation of ker(7 and vr is an appropriate constant 
vector. Substitution of equation (6.11) into (6.8) and premultiplication by the full

N
rank transformation

B +
a left inverse of B gives

, where N  is a full rank left annihila,tor of B  and /T is

(zNM  -  NAM)y_r = 0 

ur = B \ z l  — A)x t

( 6 . 12)

(6.13)
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since equations (6.11), (6.12) and (6.13) are equivalent to (6.8). These conditions 
lead to the definition of frequencies z and vectors ur and xr, which are the zeros and 
the zero directions of the system. The matrix pencil s N M  — N A M  is known as the 
zero pencil [Kar. & Kou.,l].and its structure characterises the zero structure of the 
system, which is also the structure that remains invariant under the general set of 
state space transformations. These transformations are those of the Kronecker group 
which involves state feedback, output injection, and state, input, output coordinate 
transformations [Mor.,1]. Under these transformations the system S(A,  B,C,  D) 

may be reduced to a canonical form, Sk{Ak, Bk,Ck, Dk) known as the Kronecker 
canonical form [Mor.,1] [Tho.,1] [Kar. & MacB.,1], The relationship between the 
Kronecker canonical form Sk(Ak, Bk,Ck, Dk) and the Kronecker form of the zero 
pencil is established by the following result [Kar. & Mac.B.,1]:

T heorem  (6.3): Let S(A,  B, C ) be a strictly proper linear system with the follow-
ing set of invariants, defined by the system matrix pencil P(s).

i) (.s — Si)Ti,i  — 1,...,?' finite elementary divisors

ii) sq' , i = 1 , . . . ,  f i ,  0 < <7i < • • • < infinite elementary divisors

iii) 0 < Ci < f2 < • ■ • < ep column minimal indices

iv) 0 < r)i < r)2 < ■ ■ ■ < r/t row minimal indices.

Then,

(a) If i?, C have full rank and G(s) has full normal rank, then ei > 0, > 0 and

<1\ > 2.

(b) Let Sk(Ak, Bk, Ck) be the Kronecker canonical form [Kar. Sz MacB.,1] of the
system 5(T, B , C ). The zero pencil Zk(s) computed on the system Sk(Ak, Bk, Ck) 

is in Kronecker canonical form with blocks corresponding to the infinite ele-
mentary divisors and the row minimal indices rearranged. The invariants of 
Zk(s) are related to the invariants of S(A,  B , C )  in the following manner:

1) The finite elementary divisors of Zk(s) are equal to the finite elementary divisors
of S(A,  B, C).

2) The infinite elementary divisors of Z k ( s ) ,  sq' are defined by <y, =  ^  — 2, i = 1,..., /j,
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3) The column and row minimal indices of Zk(s) are defined by

7i =  ti -  1, i = 1,2, ...,p 

Vj = rij - l , j  =

□

The result of this section are used in the following section to establish links 
between the structural properties of composite systems and those of the subsystems.

6.4 C om p osite  System : T h e E quivalent F eed-

back C onfiguration

A process is always synthesised by connecting subprocesses (subsystems) and the 
two fundamental ingredients of the composite system model are:

(i) The topology (graph) of system interconnections T .

(ii) The family T  of subsystem models.

The aim here is to investigate the links between the structural aspects of the 
composite system, the structural aspects of the subsystems and the interconnection 
graph T . This problem is of immense importance, especially in the early stages 
of designing systems by interconnecting subprocesses, since it has important im-
plications on the synthesis of composite structures with desirable control structure 
characteristics [Ros. &; Pug., 1].

It is assumed that each subsystem is represented by a proper rational transfer 
function matrix Gk(s) Ç RQkXpk(s), that is the subsystems Si are both controllable 
and observable or more generally stabilisable and detectable [Won.,1], Furthermore, 
in forming composite structures we assume that there are no loading effects, that is 
each subsystem transfer function remains unchanged after the connections [Che.,2]. 
Note that the assumption that the subsyterns are completely characterised by their 
transfer functions, does not imply that the composite systems are completely char-
acterised by their trasfer functions. In forming the composite sytem structure we 
make the following assumptions [Cal. & Des.,1]:
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In terconnection  A ssum ptions: For each subsystem Y,k(Gk E RqpkXpk(s)),k =
1,2, [i we have the interconnection structure shown in Figure (6.1): to each subsystem 
^2k with output yk and input ek we associate a summing node with the following 
characteristics:

(i) Its outputs is the subsystem inputs ek i.e. ek = [e\ , e(JL

(ii) Its inputs at the subsystem level are:

(a) an exogenous input uk (always assignable, or disturbance signal);

(b) other inputs, which are feedback of the form Fkjy . , j  = 1 , 2 , where 
Fkj £ RPkXqk denotes a proper dynamic matrix from y . to the k-th 
summing node (very frequently Fkj may be real and some of them may 
be zero).

\uk

/ '  Fkpyp

_̂_________FkjVj

Fk\lJ\

Figure 6.1

An interconnected system satisfying the above assumptions will be called a 
complete composite system and shall be denoted by The implications * v
of the above assumptions are that the subsystems = 1,2,...,// are intercon-
nected according to the equations

v
= Uk + FkjVplk = Gk(s)ek (6.14)

3= 1

where ek,u k,y k denote the Laplace transforms of the corresponding vector signals. 
If rii denotes the McMillan degree of G't(.s), then by aggregation we may define the 
global quantities

<7 = '%2<lk,P='52pk, (6.15)
k=1 k=l

n = nk
k=l
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U =  [ni . . . . . ü j ' e i f  (6.16)

y  =  [ ¿ - , ÿ  e 
e = [ ^ . . . . ¿ p G / P  

£ = [ z î , - , i f  e fi"
^  = [ftiUjeü e 7FX*, G = block-diag{Gfc(5), k G A} G F*x%s)

where xk denotes the state vecotr of the Sk(Ak, Bk,Ck, Dk) minimal realisation of 
Gk(s). Using the aggregate expressions we may express (6.14) as

e = u + Fy, y = 6'(.s)e (6-17)

which describes the feedback system shown in Figure (6.1).

The above representation of composite systems (as a feedback configuration) has 
important implications for the present work:

(i) It provides a systematic method for representing composite systems (with im-
plications on the transition from process configurations to process transfer 
functions).

(ii) It allows the formulation of the process synthesis problem (interconnection of
subprocesses) as a feedback design problem.

The matrix F  is a representation of the topology F  of the interconnections and 
will be called the interconnection matrix of the aggregate system is denoted by 
Sa and it is representd by the aggregate transfer function G(s) with the composite 
system X)c we define the following two transfer functions

Heu(s) : u —> e, Heu(s) = ( /  -  FG(s))~1 G Rpxp{s) (6.18)

Hyu(s) : u -  y, Hyu(s) = G{s)(I -  F G (s )y 1 G RqXp{s) (6.19)

where
Heu(s) = I -  FHyU(s) (6.20)

The composite sytem will be called well-formed, if all transfer functions are well 
defined and will be called well-posed, if all closed-loop transfer functions are well 
defined and proper.

Remark (6.1): [Vid, 1] The system J2C is well formed, iff |/  — FG(s)| 7̂  Oand it is
well-posed, iff \I — FG'(oo)| 7̂  0.
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□

Figure 6.2: Interconnected System '■ The Feedback System 
Obtained after Aggregation

We consider proper systems St(Ai, Bt, Ci, Dt) with transfer function matrices 
Gl(s) = Ci(sl — Ai)~x Bi + Di,i = 1,2,.... An interconnected system consisting of a 
number of subsystems S\ will be denoted by J2C. The basic interconnection schemes 
for two systems are shown below.

J2 1: Cascade or Tandem Connection

X12: Parallel Connection
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J2 3: Feedback Connection 
Figure 6.3

The composite systems described above are defined by the composite state space 
descriptions, and whether the composite transfer functions describe these systems 
depends on the relationships between poles and zeros of the subsystems [Che,l], 
[Kai,l] etc. Note that the above connections are well posed under the following 
conditions:

a) Tandem connection: Always

b) Parallel connection: If G'i(s) 7̂  —G2(s)

c) Feedback connection: If |7 + G'i (oo )G'2(o o )| =  \I + D\D21 7̂  0

For two systems Si, S2 which are completely characterised by their proper trans-
fer function matrices G1(s), G2(s), any composite well posed connection of S\ and 
S2 is completely characterised by its composite transfer matrix (S ^s), if and only 
if [Che,l]

Sm(Gi2{s)) = 6m{Gi(s)) +  Sm(G2(s)) (6.21)

For the different types of connections described in above, the above condition 
for the representation of the composite system by its composite transfer function 
matrix may become more explicit as conditions for coprimeness of the polynomial 
matrices defined by the 7?[s]-irreducible MFDs of Gi(s) and G2(s) (see [Che,l], 
[Kai,l] etc.) For the simple case of single-input, single-output (SISO) systems Si 
which are completely characterised by their proper rational functions gi(s), i =  1,2 
we have the following:

a) The tandem connection of Si and S2 is completely characterised by gi2(s) = 
g2(s)gi (.s) if and only if there is no pole-zero cancellation between gi(s) and

02(3).
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b) The parallel connection of 5'i and S2 completely characterised by <7]2(.s) = <7i(.s) +
S'2 (5), if and only if g\(s) and g2{s) do not have any pole in common.

c) The feedback connection of S\ and S2 is completely characterised by gi2(s) =
(1 + if and only if there is no pole of g2(s) cancelled by any
zero of g\ (.s).

The problem of representation of composite systems by the composite trans-
fer function is always related to controllability and observability of the compos-
ite system. The feedback configuration of Fig. (6.3) does not always have these 
two properties. Controllability and observability of a system, always depends on 
the selection of the inputs and outputs. An enlarged feedback configuration, de-
noted in Fig. (6.4), has always the property of controllability and observabil-
ity for the composite input vector [rj,^]*, and output vector [y\-,y^\l and will 
be called the complete feedback configuration. Such configuration will be used 
again in the discussion of the general control design problem and it is well-posed if 
|7 + 6h(00)6*2(00)| ^  0. For such a configuration we may define

(6 .“ i(5) 
«2 00

= H 0 ii 00
F2C0

, where H(s) = h  G2(s )
—Gi (s ) h

Fig. 6.4: 2 i2 : Complete feedback configuration

and H(s) exists under the well posedness assumption and it is known as error 
transfer function (other transfer functions may also be defined). If Ylvi denotes the 
composite state space equations and assume that Gi(s) are complete representations 
of Si, then H(s) completely describes the Yl\ 2  composite system [Che,l], [Vid, 1].

The feedback configuration above is a natural representation of general inter-
connected systems [Cal. & Des.,1], Thus assume that the interconnected system
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is obtained by coupling p subsystems, Sk, each one of them described completely 
by their proper transfer functions Gk(s), i.e. Gk{s) G Rpr(s)clkXpk. For example, 
consider the interconnection shown in Figure (6.5). (In the following, we work in 
the 5-domain (Laplace transforms) and thus we omit (s)).

Fig. 6.5

For the example of Figure (6.5), we have

0 0 m\ 0 0 - I
0 G-2 0, m2 F = I 0 - I
0 0 CO 1__

__
_

rn3 0 I 0
h ¡2 h ni\ m-2 m 3

6.5 G eneral S ta te  Space D escr ip tio n  o f C om p lete  

C om p osite  S ystem

The composite system may be represented as a feedback structure as shown in Figure 
(6.2). Under the assumption of well-posedness all transfer functions Hyu, Heu are 
proper. The state space form description of the composite system is considered next. 
Note that for the sake of simplicity, we consider only strictly proper systems. If the 
systemlequations are defined by

S(A, B, C)
x = Ax + Be, A G RnXn,B  G Rnxl 
y = Cx, C G RmXn

(6.23)

or a composite system ^2c(Sa(Àì B, (7); F), where Sa{À, B, C) — {Si(Ai, Bi,Ci),i G /1} 

is the aggregate system and F is the interconnection matrix expressing the graph 
structure of the composite system. It is also assumed that X)c's a complete com-
posite system [Kar.,8] and thus it is describe by the feedback configuration
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where

with

Sa(A,B,C)
x = Ax  + Be 
y = Cx

(6.24)

A = block-diag{Aj, i E £}, A,- € i?n,Xn' 

B — block-diag{Bt-,i E E Rn,x1,

C = block-diag{Ci,* €£},<?,• G /T iXni

describing the aggregate system with vectors

Ifi £i Fi
e2 —2 it2

e = ----------
1

3.v\
______

i

,y =

yL —m J

=

. ^  .

,U =

_ _

where the interconnection is expressed by

e = u + Fy (6.26)

where F = expresses the structure of the interconnecting graph. From the
above (6.24) and (6.26)) we have:

e = u + Fy = u + FCx

and x = Ax + Be = 2Ïæ + F(u + FCx) = (A + BFC)x  + Bu we may summarise as 
follows:
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Proposition  (6.1): The composite system state equations of the complete system 
are given by

Sc(Ac,B c,Cc)
x = Acx + Bce
y =  Ccx

(6.27)

where
AC = À + BFC (6.28)

Cc = C , Bc = B and A, B  and C are the state space parameters describing the 
aggregate model.

□

The composite system is called complete [Kar.,8] (see interconnection assump-
tion) when for each subsystem the number of independent variables in is equal to 
the number of interconnection variables in e,-. We assume as before that the compon-
ent subsystems S',-(A,-, Bi, C,) are both controllable and observable (or stabilisable 
and detectable) for all i — 1,2,...,//.

The problem we consider next is the investigation of the controllability properties 
of the composite system with full inputs at the subsystem level.

6.5 .1  In p u t-s ta te  R e s tr ic t io n  P e n c il o f  C o m p o site  and A g -

g reg a te  S y ste m s w ith  Full In p u ts

Consider the complete composite system described by equation (6.27)and let N  be 
a left annihilator of i?, where

N  =

Ah
No

N„.

(6.29)

and Ni are left annihilators for Bt. The input state Restriction Pencil is sN  — N A c 
and may be expressed as shown below. We first note that the pencil

sN-i -  N1A l 0

sN  -  NÄ =
s N-2 — N2A 2

(6.30)

0 sNß -  NßAß
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is the input-state Restriction pencil of the aggregate system without the intercon-
nection. Given that N B = 0, then the restriction pencil of the composite system 
is:

sN  -  N A C = sN  -  N(A  + B F C ) = sN  -  NA  

sN i — N-iAi 0
s N 2 -  N2A 2

0 sNf, -  N^Afj,

the above leads to the following result.

Theorem  (6.4): If Si(Ai, B{), i = 1,..., fi are controllable and the composite system 
is well formed, then the composite system with full inputs (as those present in the 
subsystems) is also controllable.

Proof: Since the input-state restriction pencil of the composite system is the direct 
sum of the input-state restriction pencils of the subsystems, controllability proper-
ties are expressed as the aggregates of the corresponding properties defined on the 
subsystems.

(6.31)

□

Corollary (6.1): Uncontrollability of a subsystem results in uncontrollability of 
the composite system. Furthermore, the dimension of the controllable space of the 
composite system is the sum of the dimensions of the controllable subspaces of 
subsystems.

□

We consider next the observability properties of the composite system with full 
outputs at the subsystem level.
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6 .5 .2  S ta te -O u tp u t R e str ic t io n  P e n c il o f  C o m p o site  and  

A g g reg a te  S y ste m s w ith  Full O u tp u ts

Consider the complete composite system described by equation (6.27) and let M  be 
a right annihilator of C, where

M  =

Mi
Mo

M„

(6.32)

where M,- are right annihilators for Ct. The state-output restriction pencil is sM  — 
ACM and may be expressed as shown below. We first not that the pencil

sM\ — A. "i M\ 0

sM -  ÄM  =
sM'2 — A 2 Af 2

(6.33)

0 sMß -  AßMß

is the state-output restriction pencil of the aggregate system without the intercon-
nection. Given that CM — 0, then the restriction pencil of the composite system 
is:

sM  -  ACM = sM  -  (A + BFC)M = sM -  AM =

s M i - A i M i  0
s M'2 — A 2 M2

(6.34)

0 sM^ -  A^M^

The above leads to the following result.

Theorem  (6.5): If 5'¿(v4¿, Ci), i = 1 are observable and the composite system 
is well formed, then the composite system with full outputs (as those present in the 
subsystems) is also observable.

Proof: Since the state-output restriction pencil of the composite system is the 
direct sum of the state-output restriction pencils of the subsystems, observability 
properties are expressed as the aggregates of the corresponding properties defined 
on the subsystems.
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□

Corollary (6.2): IJnobservability of a subsystem results in a unobservable com-
posite system. Furthermore, the dimension of the observable space of the composite 
system is the sum of the dimensions of the observable subspaces of subsystems.

□

We consider next the zero properties of the composite system with full inputs 
and outputs at the subsystem level.

6 .5 .3  T h e  Zero P e n c il o f  C o m p o site  and A g g reg a te  S y s-

te m s  w ith  Full In p u ts and O u tp u ts

Consider the composite system described by equation (6.27) and let N , M  be left 
and right annihilators of B , C respectively, where N, M  are as in (6.29) and (6.32).

The zero pencil is sN M  — N A CM and may be expressed as shown below. We 
first note that the pencil

sN M  -  N A M  =
- M M ' M!

0 0
sNj — Ni A{ IW,-

0 0
sNß -  NßAß _

__
i

sN1Mi -  NiAiMi

sNiMi -  NiAtM (6.35)

0
sNßMß -  NßA ßMß

Theorem  (6.6): The zero pencil of the composite system is the direct sum of the 
zero pencils of the subsystems, and thus the zero properties are expressed as the 
aggregate of the corresponding properties defined on the subsystems.

□
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The study of the zero pencil expressed in the form of equation (6.35) affords all 
the necessary insight for the analysis of the zero structure of the composite system.

Now we investigate the loss of inputs, outputs and the effect on the Kronecker 
structure of the resulting linear systems.

6.6 Loss o f  In p u ts ,  O u tp u ts  a n d  th e  E ffec t o n  th e  

K ro n e c k e r  S t r u c tu r e  o f  th e  R e s u lt in g  L in e a r  

S y s te m s

The problems which we will examine here are related to the effect of reducing the 
number of actuating variables u.i and/or measurement variables y at subsystem 
level, on the resulting Kronecker invariant structure of the system; this problem 
arises either to failure conditions in actuators, sensors, or due to that not all possible 
actuation variables, sensor variables are used. These problems may be referred to as 
input-, output-projection problems and they will be examined for both the case of 
simple system described by (6.23) and for the case of the composite sytem described 
by (6.27), (6.28). The problems discussd above may be formally defined as:

Definition (6.1) : Given the system S(A, B , C ) as in (6.23) we define:

i) If R £ Rlxp, p(R) = P < l, then S'(A ', B', C') is called R-input reduced system if

A' =  A, B' =  BR, C' = C (6.36)

ii) If P  £ RqXm, p(P) = q < m, then S'(A', B',C') is called P-output reduced
system if

A' = A , B ' =  B , C' = PC  (6.37)

iii) If R G RlXp,p(R.) = p < l, P £ RqXm,p(P) = q < m  then S('A', B' , C") is called
(R,P)-input output reduced system, if

A' = A, B '=  BR, C  = PC  (6.38)

□

The above definition for a simple system »5(21, B, C ) may be extended to the case 
of complete composite systems SC{AC, Bc, Gc) as follows:
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D e f i n i t i o n  ( 6 .2 ) :  G iv e n  th e  c o m p le te  c o m p o s i te  s y s te m  SC(AC, Bc, Cc) a s  in  (6 .2 7 ) , 

(6 .2 8 ) w e d e fin e :

i )  If Ri G Rl,xp‘, p(Ri) =  Pi < h, t h e n  S'(A', B ', C') is c a lle d  /7 ,- in p u t  r e d u c e d  s y s te m  

if

A' =  Ac, B' =  Bc - b lo c k - d i a g { / / ,; ...;  P , ; ...;  /;„}, C' = Cc (6 .3 9 )

a n d  w ill b e  c a lle d  to t a l ly  i - th  in p u t  r e d u c e d  s y s te m  if

B i

A" =  Ac, C" — Cc, B" =

Bi.  i 0
0 I n,- (6 .4 0 )

i i )  If Pi €  R qiXmi, p(P{) =  <7,- <  m ,-, t h e n  S'(A1, B ', C )  is c a lle d  P ,- o u tp u t  r e d u c e d  s y s te m  

if

A! =  Ac, B' = Bc, C  = b lo c k - d ia g { / ra i ; . . . ; P i ; . . . ; / raJ C ,c (6 -4 1 )

a n d  w ill b e  c a lle d  to t a l ly  i - th  o u t p u t  r e d u c e d  s y s te m , if

Ci

A" = Ae, B" = Bc, C" =
C i . 0

0 C,+1
1

(6 .4 2 )

 ̂ J

i i i )  If  Ri  €  R liXp' , p { R i ) =  p , <  /„P, G R qiXmi,p{Pi)  = qi < m i  t h e n  S \ A ' ,B ' ,C ' )
is c a lle d  (Ri ,  P , ) - in p u t  o u t p u t  r e d u c e d  s y s te m , if  i t  is P , - i n p u t  r e d u c e d  a n d  Pi- 

output r e d u c e d . F in a lly ,  S'(A', B ', C') w ill b e  c a lle d  to ta l ly  ( i , j ) - r e d u c e d  s y s t e m , 

if i t  is to ta l ly  i - th  i n p u t  r e d u c e d  a n d  to ta l ly  j - t h  o u t p u t  re d u c e d .

□

T h e  in p u t ,  o u tp u t  r e d u c t io n  o f  S(A, B ,C)  o r  SC(AC, Bc,Cc) e x p re s s  e i t h e r  f a i l -

u re  c o n d i t io n s ,  o r  s e le c t io n  o f  s u b s e ts  o f  p o t e n t i a l  in p u ts ,  o u tp u t s  a n d  r e p r e s e n t
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deviation from the completeness. In the following we shall examine the following 
problems.

i) Effect of input, output reduction on the Kronecker structure of a centralised
system S(A, B , C).

ii) Effect of input, output reduction on the resulting system properties and Kro-
necker structure of a complete composite system.

The latter problem aims at qualifying the deviation from completeness in com-
posite system structures.

6.7  In p u t, O u tp u t R ed u ctio n  P rob lem s for a C en-

tra lised  S y stem

We consider the system described by (6.23)

S (A ,B ,C
x = Ax + Be,A  e Rnxn, B G Rnxl 
y = Cx, C G RmXn

(6.43)

and let R G R.lxp,p(R.) = p < l ,P  G RqXm,p(P) = q < m  be input-,output- 
reduction matrices. Input-output reduction by (if, P) implies that we define new 
inputs, outputs by

e = R u , u e R p, z  = P y , z e R q (6-44)

and the (R, P)-reduced system is ¿'(A, B R , PC). We consider next the structure of 
the basic pencil associated with the S(A, BR., PC) system. We first note

R e m a r k  (6 .2 ): Let B t G Rlxn, N  G R(n~l)Xn be a pair of left inverse and left 
annihilât or of B and let R1 and Rl be a corresponding pair of annihilator and 
inverse for R. A pair of a left inverse and left annihilator of B' = BR. is defined by 
(N1, B^') where

N N
N' ' 0

= RLB f and R±B i BR. =
B v L

. R]Bi
V

(6.45)

□
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R em ark (6.3): Let C  G RnXm, M G RnXC~m) be a pair of right inverse and right 
annihilator of C and let and F>A~ be a corresponding pair of inverse and annihilator 
inverse for P. A pair of a right inverse and left annihilator of C  = PC  is defined 
by (M \  CY) where

M' Cv M; CAPL C'tP t and PC M-CPP1 CPP] 0 Iq
(6.46)

□

As a result of the above two remarks we have the following result regarding the 
restriction pencils of the reduced systems:

Proposition  (6.2): For the (R, P )-reduced system S(A, B R, PC) the input-state, 
state-output and zero pencils respectively are given by:

sN'  

s M'

sN  -  NA sN  -  NA
sR±Bi -  R^B^A RL( s B ' - B ' A )

(6.47)

AM' = [sM -  A M ; sC^P1- -  ACjP1} = [sM -  A M ; (.sCf -  AC't )P x]

sN'M' -  N'AM' =
sN M  -  N A M  (sN — N A )C J[P L 

RL(sB] -  B^A)M RL(sB^ — B^A)C^P1
(6.48)

The above result readily follows from the definition of the pencils and remarks 
(6.2) and (6.3). Expressions from (6.47) to (6.48) demonstrate that the problems 
of input-, output- and input-output reduction are equivalent to matrix pencils aug-
mentation problems by row-, column and row and column pencils. Such problems 
deal with issues of Kronecker structure evolution assignment under the operations 
of matrix pencil augmentation and they have also emerged within the framework of 
studying the cover problem of the geometric theory [Kar. Vaf.,1]. The study of 
the matrix pencil augmentation problems is considered in detail in [Kar. & Vaf.,1].

6.8 In p u t, O u tp u t R ed u ctio n  P rob lem s for a C om -

p o site  S ystem

The aim of the present study is to investigate the effect of the partial, or total 
loss of inputs, or outputs on the basic system properties, such as controllability, 
observability, zeros, on composite system structures. It is assumed that the original
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composite system satisfies the completeness assumption and thus our interest here 
is to qualify the effect of deviations from completeness on the resulting composite 
system. Some basic results on the complete composite system are considered first 
and then we examine the effects of deviating from completeness for the composite 
system.

6.8 .1  B a sic  P r o p e r tie s  o f  C o m p le te  C o m p o site  S y ste m s

If S{(Ai, Bi,Ci) denotes the i-th subsystem of the /^-connected composite system 
X2c(*Sa; F) we may define the pencils

Ri(s) = sNi -  NiAi (6.49)

P M = sM{ -  Ai Mi (6.50)

Z M = s N M  -  Ni Ai Mi (6.51)

where Ri(s), Pi(s), Zi(s) denote the input-state-, state-output restriction and zero 
pencils respectively. The completeness assumption, implies the following result es-
tablishing the relationship between the aggregate and complete composite system 
respectively.

Theorem  (6.7): Let Sa(Â, B,C)  be the aggregate and SC(AC, Bc,Cc) the corre-
sponding complete composite system J2c(Fa] F), where F is the interconnection 
graph matrix. For the system pencils of the composite and aggregate systems we 
have the following relationships:

Ra(s) -  Rc(s) =  block-diag {...] Ri(s);i € ft) (6.52)

Pa(s) = Pc(s) = block-diag {...; P,-(s); * G fi) (6.53)

Za(s) = Zc(s) = block-diag {...; Z,-(s); i G ft} (6.54)

Proof:

From the definition, the f?c, Cc matrices are the same with those of the aggregate 
system B , C and thus the corresponding annihilators are

Nc = N  = block-diag {...; ...} (6.55)

Mc =  M  =  block-diag {...; M ,;...}

and thus

Rc(s) = sNc -  NCAC = sN  -  N(À + B F C ) = (6.56)
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= sN  — NA  = Ra{c) = block-diag {...; ); ¿£/ i}

Since by definition TV/? = 0.

Similarly, we have

Pc(s) = sMc -  ACMC = sM ~ { A  + BFC)M  =

— sM  — AM  = Pa(c) — block-diag F\(s)] i £ ¡1} (6.57)

Since by definition CM  = 0. The last part follows from (6.55) and (6.56) i.e.

Zc(s) = Rc(s)Mc = Ra(s)M = s N M  -  N A M  

block-diag {...; Zi(s);i £ f,l} (6.58)

□

From the above result we have a number of important corollaries, which follow 
directly from the block diagonal form of the pencil Rc(s), Pc(.s), Zc(s).

Corollary (6.3): The controllability, observability and zero properties of the com-
plete composite system Sc which are defined by the Kronecker structure of the 
Rc(s), Pc(s), Zc{s) pencils, are aggregates of the corresponding subsystem properties 
and independent from the interconnection structure F . In particular:

i) If TC(S'), Vid(S) denote the sets of controllability indices and input-decoupling ed
of a system S, then for the complete composite system we have:

U S C) = U t= M Si)  (6-59)

V id{Sc) = U ?=1V id(Si) (6.60)

ii) If l 0(S ) ,V0d(S) denote the sets of observability indices and output decoupling
ed of a system S, then for the complete composite system we have:

T0{SC) = U U M S i )  (6-61)

V od(Sc) = u U i V M i )  (6.62)

iii) If X^(S):T i(S ) ,V zi {S) ,Vz00(S) are the sets of right, left output nulling indices,
finite zero ed, infinite zero ed of a system S, then for the complete composite 
system we have:

m )  = U?=1i;(S 0 .2 ? (& ) = U?=,!?(.?,) (6.63)

©j(.sy = U?=1PJ(5,.), = (6.64)

144



P r o o f :

It is known [Kar. k. Mac.B.,1] that the pencils R(s),P(s) and Z(s) define re-
spectively the sets of controllability indices/input decoupling ed, observability in- 
dic.es/output decoupling ed and right, left output nulling indices, finite zero ed, 
infinite zero ed. From the block diagonal structure of the pencils Rc(s),Pc(s) and 
Zc(s) established by Theorem (6.7), the result follows that the corresponding sets 
are expressed as unions of the invariants defined on the subsystem level.

□

The above results demonstrate that the completeness assumption is very strong 
and in fact it makes the specific structure of the interconnection graph rather re-
dundant. The effect of the interconnection graph will become clear under the loss of 
input, output conditions, expressing deviation from the completeness assumption, 
which are considered next.

6 .8 .2  In p u t-red u ctio n  at S u b sy ste m  L evel

We consider the case of an /2,-input reduced system and then of a totally i-th input 
reduced system. In those two cases the coresponding B matrices are

B' =

Bx

Bi Ri
0

B„

,B "  =

0

Bi-1
0

Bi+i

B„
(6.65)

using the results of Section (6.7) we have that the corresponding left annihilators
are

N ' =

Ah

Ni
R fB \

N„

(6 .66)
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N,

N "  =

Ni. 0

0
N,P J

(6 .67)

Using the above two expressions we may investigate the controllability properties 
of the resulting input reduced system by computing the restriction pencils for the 
two cases.

/2,-Input Reduction

The restriction pencil for the /2,-input reduction is

/2(/2,; s) = sN'  -  N'A -  N 'BFC  (6.68)

From (6.66) and the form of A we have

where

fli(s)

sN' -  N'A =
Rt(s)

Q(Ri,s)

o

M s )  \

Q(Rn s) = sR,l Bl  — R,f- BjAi

Given that
0

N'B  =
0

R i

0

0

0

(6.69)

(6.70)

(6.71)

146



I t follow s th a t

0 0

_ 0 0 0 
N 'B F C  =

-R tF tlC\ -Rj-FaCi -R iF ^ C , 

0 0

(6 .72)

Thus we are led to the following result:

P roposition  (6.3): If ]T)c(5a; F) is a complete composite system, then the input 
restriction pencil of the /¿¡-input reduced system is

Ri(s) 0

R { M s )  = 0
- R tF a C i

M s )
Q(Ru s ) ~  Rj-FnCJt - R ^ F  C1Li 1 m

R M )

(6.73)

The above result is an extension of Proposition (6.2) stated for centralised sys-
tems to the case of composite systems and indicates that /¿¿-input reduction corre-
sponds to a row pencil augmentation. In particular, if we partition the interconnec-
tion! matrix F according to the natural partitioning implied by the partitioning of 
the e, y vectors in (6.25) i.e.

Fn Fv2 • • Fu • ■ Fi» n

.. 
..

F-2 ■ • Fa ■ ■ Fin XU

Ffi2 • ■ Ffj,i ■ ■ F1 mm J I K

(6.74)

and by denoting

FnC! •• Fu Ci ■ • F^Cn

L — FC  = Fa Ca •• FaCi • • FinCn (6.75

. FtaCi F C ■ • ^ mmC'm .
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(6 .76)

we may state:

---
---

---
1

ir L \ 2 • ' L r '

■ 
4

 
• '

CN
• 

*
4 

• '

La Lin = Li

L ß 2 • Lfxi ■

--------13.

_____
1

R em ark (6.4): For every /7,-input reduction problem, only the i-th row block of 
the state interconnection matrix L = FC  affects the controllability properties of the 
corresponding composite system. In fact, the corresponding input-state restriction 
pencil may be expressed as

' Ri{s)
0

R(Ri,s) =
0 Rt(s)

R M

—

0

0 Q(Ri,s) 0 . Ri L i .

(6.77)

□

It is worth pointing out that the system graph enter now as a perturbation on 
the block diagonal structure and this perturbation is expressed by /?,• L,- on the 
added pencil row block. The effect of the Rj- Li partitioned structure on aggregate 
controllability properties will be examined later on.

We consider now the boundary case where we have a total loss of system inputs 
at the i-th subsystem. In this case, N" is given by (6.67) and the corresponding 
input-state restriction pencil is

Ri){s) = sN" -  N"A -  N'/BFC  (6.78)

Note that

f i .w

s N "  -  = >/ — A,■ (6 .79)
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a n d  th a t

N'i'BFC = N"BL

’ 0 0 0 " 0

0 Bi 0 L = Bi L{\ Bi La Bi Li^

0 0 0 0

(6.80)

(6.81)

where L is partitioned as before. From the above two conditions we are led to the 
following result.

P roposition  (6.4): If J2c{Fa'i F) is a complete composite system, then the input- 
state restriction pencil of the i-th totally input-reduced system is

' Ri(s)

0

M s ) 0

0

M s )
0 sB] -  B\A i 0 . u .

(6.82)

or

M » )  =

M >)

BiLn s i  1 : fi/ L ! ! f i. f ■ )/(

M s )

(6.83)

Proof:

By (6.79) and (6.81) condition (6.83) follows immediately. If B],N{ is a pair of 
a left inverse of Bi and a left annihilator, then by multiplication by

Ni
BÌ

0 , | 0 | # O
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of the R{)(-s) pencil, we obtain an equivalent pencil P(p(s) which is also an input-state 
restriction pencil (corresponding to a different left annihilator). By rearrangements 
of the blocks we obtain expression (6.82) .

□

Once more, total loss of inputs at the subsystem level corresponds to augmenta-
tion of the corresponding pencil by a row block and subsequent perturbation away 
from the block diagonal structure'by the term the i-th block of the state inter-
connection matrix.

6 .8 .3  O u tp u t-re d u c tio n  at S u b sy stem  L evel

We consider the case of an P,-output reduced system and then of a totally i-th 
output reduced system. In those two cases the corresponding C matrices are

C’ =

' Cx
Ci

0
0

0

PiCi , C" =

0

t'i- l

0 Ci+x

-
cv J cL ^  J

(6.84)

Using the result of Section (6.7) we have that the corresponding right annihilators 
are

" Mi

M l = Mi C P itp4l l

Mi

(6.85)

Mi-i
M "  =

Mi+i

(6 .86)

M
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Using the above two expressions we may investigate the observability properties 
of the resulting output-reduced system by computing the state-output restriction 
pencils for the two cases.

/ ’ -output reduction

The state-output restriction pencil for the /¿-output reduction is

P(Pi] s ) = sM'  -  ÀM' -  B F C M 1 (6.87)

from (6.84) and the form of A we have

sM'  -  ÄM' =

Pi(s)

Pi(s) E ( P , s )

P,(s)

(6.88)

where

E(P„s) = sClPt -  A id (6.89)

Given that

It follows that

CM'  = 0 P/

B F C M ' =

0 - B xFxiP t  0

-BiFiiP/

0 - B ßF ^ P t  0

Thus we are led to the following result:

(6.90)

(6.91)

Proposition (6.5): If ^2c(Sa] F) is a complete composite system, then the state



o u tp u t  re s t r ic tio n  p e n c il o f th e  /^ --o u tp u t red u c e d  sy s te m  is

P(Pus)

Pi(s) 0 - B 1FuPi1 0

0 Pi(s) E(Piis ) - B iFiiP± 0

0 0 - B . F ^ P t  P,(.s)

(6.92)

The above result is an extension of Proposition (6.2) stated for centralised sys-
tems to the case of composite systems and indicates that P,-output reduction corre-
sponds to a column pencil augmentation. In particular, if we partition the intercon-
nection! matrix F according to the natural partitioning implied by the partitioning 
of the e,y vectors in (6.25) i.e.

F =

An Al2 • • Fu ■ • A , l h

At 2 • ■ Fü • F1 tp, XU

A,! A,2 • ■ A,,- •

------1a. I h

(6.93)

and by denoting

A = BF =

Ai An ■ BiFu ■•• a ,P i ,

= Ai An •• ■ BiFa ■ A, A ,

i to ■ A, P ,t- • ■ A;i AMm

’ An Ar2 •• An • • AT, '

= AjI AT 2 •• AT, • • AT,

A ,, A ,2 •• A* •• • A „

AT

AT

AT

we may state:

R em ark  (6.5): For every Pi-output reduction problem, only the i-th column block 
of the state interconnection matrix K  = B F  affects the observability properties 
of the corresponding composite system. In fact, the corresponding state-output



r e s tr ic tio n  p e n c il m a y  b e  e x p re sse d  as

‘ A  (a ) 0

R(Pi,*) = Pi(*) E(Pi,s) — 0 K .P t
0

P>(*) 0 _

(6.94)

□

It is worth pointing out that the system graph enter now as a perturbation on the 
block diagonal structure and this perturbation is expressed by Kt PtL on the added 
pencil column block. The effect of the KiPA partitioned structure on aggregate 
observability properties will be examined later on.

We consider now the boundary case where we have a total loss of system outputs 
at the i-th subsystem. In this case, M" is given by (6.86) and the corresponding 
state-output restriction pencil is

Pi){s) = sMV -  AM" -  BFCM "  (6.95)

Note that

Pi{s)

sM"  -  AM" = s i  -  Ai

and that

L o pß(s)

BFCM " = K CM"

’ 0 0 0 ' KnCi

0 c ■^ l 0 = 0 KuCi 0

0 0 0 _

--------1

(6.96)

where K  is partitioned as before. From the above two conditions we are led to the 
following result.
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Proposition  (6.6): If Y^c($a', F) is a complete composite system, then the state- 
output restriction pencil of the i-th totally output-reduced system is

P M

or

' P M 0 ' 0
-

0 0 0

PM sCj -  AiC} — 0 Ki
0 0 0

P M 0 0 _

P M

P M

o

- K u Ci

s i  — A{ — KuCi

- K ^ C i

0

P M

(6.97)

(6.98)

Proof:

By (6.96) and (6.97) condition (6.98) follows immediately. If is a pair of
a right inverse of C\ and a right annihilator, then by multiplication by

0
Mi c! r , | r | / o

of the Pi)(s) pencil, we obtain an equivalent pencil PI (s) which is also an state- 
output restriction pencil (corresponding to a different right annihilator). By rear-
rangements of the blocks we obtain expression (6.97).

□

Once more, total loss of outputs at the subsystem level corresponds to augmen-
tation of the corresponding pencil by a column block and subsequent perturbation 
away from the block diagonal structure by the term A',-, the i-th block of the state 
interconnection matrix.
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6 .8 .4  In p u t-O u tp u t R ed u c tio n  at S u b sy stem  L evel

We consider the case of an Fj)-input-output reduced system and then of a totally 
(*, j)-input-output reduced system. In those two cases the corresponding B and C 
matrices are as in (6.65) and (6.84). Using the result of Section (6.7) together with 
the corresponding left annihilators as in (6.71) (6.67) and right annihilators
(M ', M") as in (6.85), (6.86), we may investigate the zero properties of the resulting 
input-output reduced system by computing the zero pencil for the two cases.

(Ri, Fj)-input-output Reduction:

The zero pencil for the (/?.,-, ,P,)-input-output reduction is

Z(R t, Pj',s) = [R{Rl]S)]M' or

= N'[P{Pi]S)]

sNiMi — Ni Ai Mi (sNi -  NiAi)Cl P f
_ R i { s B \ - B \ A i)Mi R i { s B \ ~ B ] A l) d P f  

Zi(s) Ri(s)C}Pf  
Q(Ri,s)Mi Q(Ri,s)CjPf

(6.99)

where Q(Ri,s )  has been defined by equation (6.70). Expression (6.99) demonstrates 
that the problem of input-output reduction is equavalent to matrix pencils aug-
mentation problem by row and column pencils. Such problem deal with issues of 
Kronecker structure evolution assignment under the operations on matrix pencil 
augmentation.

We consider now the boundary case where we have a total loss of system inputs 
and outputs at the i-th subsystem. In this case, the zero pencil of (i,j)-th totally 
input-output reduced system is

Zi,j)(s) =

Zi(s)

s i  -  A:

ZÂ*)

( 6 . 100)

Once more, total loss of inputs and outputs at the subsystem level corresponds 
to augmentation of the corresponding pencil by a row and column block.



Using the expressions (6.99) and (6.100), we can state the following general result 
for the zero pencil of the complete composite system.

Theorem  (6.8): Let ^2c(Sa] F) be any complete composite system and Si( Al. Bi, Ci) 
denote the i-th subsystem and let Ri(s) = sN, — NiAi, Pi{s) — .sAf,- — AjA/,-, Z,-(s) = 
sNiMi — NiAiMi, Qi(s) =  s i  - Ai, i =  1 , s,...,/i be the pencils associated with the 
i-th subsystem. Assuming that total loss of inputs, and/or outputs may take at 
the subsystem level, then for the resulting composite system SC(AC, Bc, Cc) the zero 
pencil ZC(S) may be expressed as

Zc(s) = block-diag {Afi(s);...; X i(s ) ; ...; AT^s)} (6.101)

where Xi(s)  block is associated with the i-th subsystem and it is of the following 
type:

i) If all inputs and outputs of the i-th subsystem are present, then Xi(s) = Z8(s).

ii) If all inputs are lost at the i-th subsystem, then X,-(s) = Pi(s).

iii) If all outputs are lost at the i-th subsystem, then Xi{s) = Ri(-s).

iv) If all inputs and all outputs are lost at the i-th subsystem, then Ab(.s) = Qz(s).

□

The cases considered here can provide some useful tools for investigating the 
controllability, observability and zero properties of a complete composite system 
under loss of inputs and/or outputs may take at the subsystem level, which are 
considered next.
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6.9 C ontrollab ility , O bservability , C o n n ectiv ity  

under T otal Loss o f  S u b sy stem  In p u t, O ut-

p u ts

It has been shown that under total loss of subsystem inputs at the i-th subsystem, 
the resulting input restriction pencil may be expressed as

R,)(s)

Rii*)

s i  -A-i

0

Hi La Bi Lin

ä ,.M

( 6 . 102)

and similarly the state-output restriction pencil for total loss of outputs at the i-th 
subsystem may be expressed as

W  =

Pi(s) -K u C i

Ai

0
- K ^ C i  P,(s)

where the K  matrix (output injection) is defined from (6.74) by

I<n K v2 ■ • I<u ■ • i u ,

K  = BF  = Ki1 A (2 • Ku ■ ■ Kin

Ami A>2 • ■ K,n •

(6.103)

A i , ..., K{, . • • j I\f

(6.104)

There is clearly a transposed duality between the R^(s), Pi)(s) pencils [Kar., &; Hay.,1] 
(i.e. column minimal indices become row minimal indices and vice-versa, whereas 
the elementary divisors become the same) and thus we may restrict ourselves to the 
study of Ri)(s). All definitions and procedures given for controllability (ft’p(.s)) may 
then be interpreted for observability.

We note that both f?,)(.s), Pp(.s) are structured matrices, that is they have zero



blocks in fixed locations, whereas the i-th block of rows

0
B / L i ! B1 L  ;; B; /. i: j

0
(6.105)

acts as a perturbation on the block-diag{ ifi(s);. 
block of columns

- K u Ci

0 -KuCi  0

s i  — Ai \ a n d  the i-th

(6.106)

- / t r -
acts as a perturbation on the block-diag{/i(.s);...; s /  — A , - ; P M(s)}. It is worth 
pointing out that the Fij interconnection gain blocks are not always non zero and 
a number of them may be identically zero due to the nature of the interconnection 
graph.

For the given interconnection matrix F we may give the following definition.

Definition (6.3): For the interconnection matrix F defined in partitioned form as 
in (6.74) we define as:

(i) The i-th row characteristic, of F as the set of indices Cr(i) = {j\ < j i  < • • • <
j„, v < //} for which

Fih = Fih = --- = Fijv = 0 (6.107)

(ii) The i-th column characteristic of F as the set of indices Cc(i) = {k\ < k2 <
■ ■ • < ka, a < //} for which

Fkxi = Fk2i = • • ■ = F kai = 0 (6.108)

□

We shall denote by C'r(i) = {j[ < j'2 < ■ ■ ■ < < //},£'(/) = {k[ < k'2 <
••• < k'a,,cr' < //} the complementary sets of indices of Cr(i),Cc(i) respectively in 
{1,2,...,//}. The significance of the above definition is demonstrated by the following 
result:

T heorem  (6.9): C onsider the complete composite sytem SC(AC1 Bc,Cc) defined as 
in (6.27), (6.28) and let F be the interconnection matrix which is naturally parti-
tioned as in (6.74). If SC(AC, B^, Cc), SC(AC, Bc, C$) are the subsystems obtained
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by total loss of inputs at i-th subsystem, total loss of outputs at i-th subsystem 
respectively, then the following properties hold true:

(i) If Cr(ï),C'r{i) are the i-th row characteristics and its complement respectively, 
then the state input restriction pencil of SC(AC, B lJ , C c) may be expressed as:

ft>(ft

where

/?:(,) = —BiL.lh

Rn (s)

* j »
R[(s)

3 /  — A7 — BjLj ' Dj L-in'

R j : ( s )

(6.109)

( 6 . 110)

(ii) If Cc(i),C'(i) are the i-th column characteristics and its complement respectively, 
then the state-output restriction pencil of SC(AC, Bc: C 1) )  may be expressed as:

P M  =

f t , w

f t .W
ft'M

where

p;(.,) =

ft;(») ■ Rk[ i fft

s i  -  Ai -  KaCi

( 6 . 111)

rr ' f t : , (ft J

(6.112)

Proof:

The result is proved for Part (i) and Part (ii) follows along similar lines. From 
(6.102) we note that for all indices in Cr(i) = {j\ < j% < ••• < v < î} the 
column blocks corresponding to those indices have zeros above and below the RJl (.s)
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blocks as well as to the right and left of them; thus, by successive column and row 
permutations and starting from the Rj(s) block we can transform Ri)(s) in (6.102) 
to

K  (*) (6.113)

Note that for the rest of the indices in CT(i) the property that to the left and 
right of Rjl , as well as above and below to have zeros is preserved in R'^(s), and 
thus by repeating successively the above first step we get part (i) of the result. Part 
(ii) follows along similar lines.

□

The submatrices f?((.s), P-(s) cannot be blocked diagonalised anymore; to the 
R'i{s), Pi(s) pencils there corresponds subsystems B[, C') and Si(At, B%, Ct)
respectively. These subsystems may be readily constructed and referred to as 
i-th input irreducible, i-th output irreducible subsystems respectively. From the 
above result we have:

Corollary (6.4): For a system SC(AC, B l) ,  Cc) obtained from the complete system 
under total loss of i-th subsystem inputs, the controllability properties are given as 
aggregates of those defined by the subsystems Sk-(Ak-, B h C k  ) where k/ = jh,
CT(i) = {j i < • • • < Ju} is the i-th row characteristic and of the i-th input irreducible 
subsystem 5-(A;, £-,(?■).

□

Note that by controllability properties we refer to those associated with control-
lability indices and input-decoupling zeros. A similar result may be stated for total 
loss of outputs at i-th subsystem as shown below.

Corollary (6.5): For a system SC(AC, F?c, C lJ) obtained from the complete system 
under total loss of i-th subsystem outputs, the observability properties are given 
as aggregates of those defined by the subsystems Sk-(Ak~, Bk-. ,Ck-) where h~ — 

&i,..., &V) Cc(i) = {k\ < ••• < ka} is the i-th column characteristic and of the i-th 
output irreducible subsystem ,9t(At, Bi, C{)-

□

Note that by observability properties we refer to those associated with observ-
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ability indices and output-decoupling zeros.

R em ark  (6,6): If Cr(i) = {0}(Cc(f) = {0}), then in the decomposition (6.109) 
(6.111) the diagonal part is non-existent and the system may be referred to as 
strongly connected as far as i-th input (i-th output). If Cr(i) = { 1 , then only 
the diagonal part in (6.109) is present and the system is referred to as weakly connected 
as far as i-th input.

The above analysis demonstrates that for every deviation from completeness (by 
loss of inputs, or outputs), the study of controllability, observability may be reduced 
to subproblems in a structural sense. For each of the input-, output-irreducible 
subsystems a proper investigation has to be carried out using the various known 
controllability, observability tests.

We illustrate the above statements by means of the following examples. 

Exam ple (6.1): COMPOSITE STRUCTURE (I)

The following figure shows the block diagram of a composite system with two 
subsystems.

The system equations derived from the above figure are:

ê i = Mi -  y. l i _ Mi 0 - / h
e2 =  M2 +  y 1 . —2 . . 4C . I 0 L y 2 Ì

=F

(6.114)
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right anniliilators of B and C such that

N B  — 0 where N =
Ni 0
o n 2

,CM  — 0 where M  =
Mi 0
0 m 2

(6.119)

To study the controllability properties of the system with full input, full output, 
the input-state restriction pencil is derived as follows:

R(s) = block-diag{/?i(s);/?2(.s)} ( 6 . 120)

For an insight into the observability properties, the state output restriction pencil 
is given be:

P{s) = bloc.k-diag{P1(.s); P2(-s)} (6.121)

To investigate the zero properties of the system, from either of the above pencils 
the zero pencil can be derived:

Z(s) = block-diag{Zi(s); Z2(s)} (6.122)

we are therefore led to the following proposition.

Proposition (6.7): The controllability, observability, zero structure properties of 
the composite system under full input, output structure are simply given as aggre-
gates (direct sum) of corresponding properties of two subsystems.

□

We consider next the case where the total loss of subsystem input structure has 
occurred. Assume that u2 = 0 without loss of generality. This leads to the following 
reduced composite system description:

or

Let

M l A i - B i C 2 ' M i " B i 0 M l= +
¿ 2  . .  B 2C ì a 2 0 B 2 0

Ai -B iC 2 '
X  +

" Bi '
Mi ,y =

' Ci 0
. B2Cì a 2 0 0 c 2 _

0 /

(6.123)

(6.124)

(6 .125)
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To study the controllability properties of the system when there is a loss of input, 
the input state restriction pencil is derived as follows:

sN ” - N ”A =
’ s i  -  A t. B t C2

- B2Ct s i  — A2
Ah 0
0 I

sN\ — N\A\ 0 
— B 2C t s i  ~  A 2

(6.126)

This is a strongly connected system and is of the form of expression (6.110). 
By Corollary (6.4), the controllability properties are given as those defined by the

2nd-input irreducible system S \A ',B 2), where A' =
A1 0

B‘2 C't a 2
,B'2 =

B ! 
0

□

To investigate the zero properties of the system when there is a loss of input, we 
derive the zero pencil as follows:

s N 2 M  -  N'{AM  = block-diag {Z 1 ( s ); P2(.s)} 

which verifies the general result previously derived.

(6.127)

Last, let us assume that the first output is measured only. This leads to the total 
loss of subsystem output, and the reduced composite system description is given by:

Let

X  =
A t

_ B2Ct

~ B t C2 '
a 2

x +
B t  O'

o b 2

{ y =  [Ci,0]x

u
(6.128)

M" =
Mi 0
0 I

(6.129)

To investigate the observability properties, when there is a loss of output, we 
may define the state-output restriction pencil as follows:

sM" — AM2 =
s i  — A i B\C2
— B2C\ s i  — A2

s M i  — A i  M i  B aC 2 

0 s i  -  A2

l 1----o

l o I

(6 .130)
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This is a strongly connected system and is of the form of expression (6.112). 
By Corollary (6.5), the observability properties are given as those defined by the

A\ — 13\C‘2
2nd-output irreducible system S'(A1, B '2) where A! =

0 Ao
,C2 = [<?!, 0]

□

To obtain the zero properties of the system when there is a loss of output, we 
defined the zero pencil as follows:

s N M 2 -  N A M " = block-diag {Zx{s)- R2(s)} (6.131)

The above verifies the previously worked out result.

Exam ple (6.2): COMPOSITE STRUCTURE (II)

The following figure shows the block diagram of a composite system with three 
subsystems.

The system equations as derived from the above figure are:

hi =  Mi - I s Cl Mi " 0 0 - I  ' h
e2 =  M2 +  h ~  I s => e2 = m 2 + I 0 - I —2

. Ms =  Ms +  y 2 . C3  . . —3 . 0 I 0 . I s  .

(6.132)
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This leads to the aggregate system equations

Ài Ai 0 0

À-2 = 0 a 2 0

Às . 0 0 A

= A

h 0

o

1 2
0 c 2 0

y 3 . i o 0 £ 1__
=c

Ti Bi 0

—2 + 0 b 2

x 3 0 0

= B

Ti
x2

F i

e 2

. —3 _

(6 .133)

Thus, the composite state matrix equations are:

A + B F C  =
A\ 0 0 ' B, 0 0 ’ 0 0 - I  ' ' C'a 0 0
0 a 2 0 + 0 b 2 0 I 0 - I 0 c 2 0
0 0 As 0 0 B 3 . 0 I 0 0 0 Cs _

or

À + B F C
Ai 0 - B i C-

B2Ci a 2 — B2 C{

0 Bs C2 As

(6 .134)

Therefore the composite system description can be written as:

Ài /Il o - B i C s Ti

rOOCQi________ Mi
À2 = B2 C i A 2 ~ B 2 Cs x 2 + 0 b 2 0 M2
¿ 3  . 1 o to CO CO 1____

__
_

.  — 3  . 0 0 Bs u3

Aci

o o HI

h 0 C2 0 x 2

—
i<0 1 o o 1__ . As .

^ ^ ^
=cc

(6 .135)

Consider next the restriction pencil of the composite system. In this example, 
three different cases are considered. First, the full input, full output case is given. 
We first note that given the system, we associate the input-state restriction pencil, 
state-output restriction pencil, zero pencil as shown below for each subsystem:
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' Si ( /li , Bu Ci) : -* R,(s) = sl\\ -  N ï A i , F\ (s) = sM, -  A lM1,
Za(s) = s Ni Mi -  Ni Ai Mi

S2(A2,B 2,C 2): -  R2(s) = sN2 - N 2A2,P 2(s) = sM2 - A 2M2,
Z2(s) — s N2M2 — N2A 2M2

3 ( 4̂3 , -S3 , C'a) : —» S 3 ( .s) =  .SÌV3  — N 3 A 3 , P3{s) =  .sA/ 3  — A 3 M 3 , 

Z 3 ( .S) =  S N 3 M 3 — N 3 A 3 M 3

Consider the composite system described by the above figure and let N  and M  be 
left and right annihilators of B  and C respectively such that

' Ni 0 0 ' Mi 0 0
N B  = 0 where N  = 0 n 2 0 , C M  = 0 where M — 0 m 2 0

0 0 n 3 0 0 M3

To study the controllability properties of the system with full input, full output, 
the input-state restriction pencil is derived as follows:

R{s) = block-diag {Ri(s); R2(s); R3(s)} (6.136)

To investigate the observability properties of the system, the state-output re-
striction pencil is given by:

P(s) = block-diag {Pi(s)-, P2{s); P3{s)} (6.137)

To obtain the zero properties of the system, with full input, full output, the zero 
pencil is defined by:

Z(s) = block-diag {Zi(s); Z2(s); Z3(s)} (6.138)

The above verifies the previously given general results. Consider next the case 
where total loss of subsystem input structure has occurred. Assume that ux = 0 
(without loss of generality). This leads to the following reduced composite system 
description:

¿ 1 A i  0  -B 1 C 3  ' Xi ' Bi  0 0 " 0

¿ 2
= B 2 C i A  2 —B2C3 x 2 + 0  b 2 0 u2

à 3 0 B 3C 2 A3 X3 1 0 0 to CO 1__
_ U3

(6 .139)
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or

x =
Ai 0 -B 1C 3

B2Ci a 2 - b 2c 3
0 B3C2 A 3

1
0 0

 
__

1

-

X + B2 0
u 2

u 3
0 b 3

(6.140)

Let
I 0 0

N"i = 0 n 2 0 (6.141)
0 0 n 3

To investigate the controllability properties when there is a total loss of subsys-
tem input, we may define the input-state restriction pencil as follows:

s N " i - N \ A  =
I  0 0

0 N2 0 
0 0 TVs

s i  -  A1

s i  — A\ 0 —B\C3
b 2c\  s i  — a 2 - b 2c 3

0 B3C2 s i  — A3 

0 - B i C3
0 s N2 — N2A2 0 
0 0 s N 3 — N3A3

(6.142)

This is a weakly connected system so by using Theorem (6.9), by successive row 
and column operations we can transform (6.142) to two subsystems, i.e.

sN2 -  N2A 2 0 0
0 s N 3 — N3A3 0
0 - B i C3 s i  -  Al

where the block
s N 3 — n 3a 3 0 

- B i C3 s i  -  A 1

is a strongly connected system and is of the form as expression (6.110). By Corollary 
(6.4), the controllability properties are given as aggrtegate of those defined by the

subsystems S2(A2,B 2) and S'(A1, B[) where A' =
A3 0 

B\ C3 Ai
,B[ =

B3
0

□

To investigate the zero properties of the system, when there is a loss of input, 
we derive the zero pencil as follows:

sN"iM i -  N"iAM i = block-diag {Pa(s); Z2(.s); Z3(s)} (6.143)
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which once more verifies the previously stated general result.

Last, let us assume that the first and second outputs are measured (again without 
loss of generality). This leads to the,total loss of subsystem output, and the reduced 
composite system description is given by:

A 0 - b xc 3 ‘ ' B1 0 0
X = B2 C\ a 2 - B 2c 3 X + 0 b 2 0

0 b 3c 2 A3 0 0 b 3

y =
' C\ 0 

0 c2

1 
1

0
 

0 X

Mx 0 0
0 m 2 0
0 0 I

(6.144)

(6.145)

To investigate the observability properties, when there is a loss of output, we 
may define the state-output restriction pencil as follows:

sM ”-  A M ”
s i  — A\ 0 B\ C3

1----
00§

B2C\ s i  — A 2 B2C3

0CNO

0 —B3C2 s i  — A3 0 0 1

sM 1 - A 1 M1 0 B i C3

0 sM 2 — A 2 M2 B2C3

0 0 s i  — A3
(6.146)

Using Theorem (6.9), by successive row and column operations we can transform 
(6.130) to

sMi — A\M\ B1C3 0
0 s i  -  A3 0
0 B2C3 s M 2 -  A 2M2 _

which is a stronly connected system and is of the form of expression (6.112). By 
Corollary (6.5), the observability properties are given as those defined by the 3rd-

A\ - b 1c 3 0
output irreducible system S '(A ', C3), where A! = 0 a 3 0

0 - b 2c 3 A 2

0 c 2 0
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□

To obtain the zero properties of the system when there is a loss of output, we 
define the zero pencil as

sN M ” -  N A M ” = block-diag { ^ (s); Z2(s); R3(s)} (6.147)

The above verifies the previously derived result.

Let us now consider the following example which extends the composite system 
by a further subsystem.

Exam ple (6.3): COMPOSITE STRUCTURE (III)

The following figure shows the block diagram of a composite system with four 
subsystems.

The system equations as derived from the above figure are:

l i  =  M r  -  V4 L i « 1 ’ 0  0  0 - I  '

1-------------
T-H 

CN

1_________e 2  =  u 2 +  y 4 -  y 3 e 2 U.2
+

/  0  - / 0

e 3  =  u 3 +  y 2 e 3 u 3 0 / 0 0 I s

. e 4  =  u 4  +  y 3 .  —4  . u A

1

o o 0 - — 4  -

(6.148)
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This leads to the following aggregate system equation:

¿1
¿2
¿3
X4

Ai
0
0
0

0 0
A'2 0
o a 3

0
0
0

0 0 a 4

Fi
X.2 +

x4
^-----

= A

h c \ 0 0 0

l l 0 C'2 0 0 — 2

0 0 C 3 0 —3

y .r -
0 0 0

------1
r T

. —4

B i 0 0
o b 2 o
0 0 b 3

0 00

= B

0
0
0

b 4

Fl
£2
e3

. ^4 .

(6.149)

= c

Thus, the composite state matrix equation is:

A + BFC =

or

A\ 0 0 0
0 A‘2 0 0
0 0 A3 0
0 0 0 A.

+

Bi 0
0 B2
0
0

0 
0

0 B3
0 0

A + BFC  =

0 0 0 0 - I c

0 I 0 - / 0 {
0 0 I 0 0 (

B4 0 0 I 0 (

A i 0 0 - B i C4 '
B 2C i A2 B 2C s 0

0 Bs C-2 As 0
0 0 B 4C s A 4

0 0 0
C2 0 0
0 C3 0
0 0 C4

(6.150)
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Therefore, the composite system description can be written as:

¿1 A\ 0 0 - B &  ' Ai ' Bi 0 0 0
¿2 b 2 c \ A 2 b 2 c 3 0 x 2 0 b 2 0 0= +
As 0 b 3 c 2 A 3 0 As 0 0 B3 0
¿ 4

s
0 0 B4 C. A 4 . Aa 0 0 0 Ba

=AC Be
ÌU rs 0 0 0 £1

h 0 c2 0 0 x 2

Is 0 0 C.3 0 x 3---1 0 0 0 c 4 . x 4

A i

a 2

« 3

. — 4

—Cc
(6.151)

Consider next the restriction pencils of the composite system. In this example, 
two input-output cases are considered. We first note that given the system we as-
sociate input-state restriction pencil, state-output restriction pencil and zero pencil 
as shown below:

Si(Ai,Bi,Ci)  : -> Rt{s) =  sNi -  NtAt, Pt(s) = sMt -  AiMz, .
, i = 1,2,3,4

Zi(s) =  sNiMi -  NiAiMi

The total loss of subsystem input structure is occurred now. Assume that U\ = 0, 
without loss of generality. This leads to the following reduced composite system 
description.

Ài Ai 0 0 - B xC a ' Ai '  Bi 0 0 0 0

A2 B2Ci a 2 b 2 c 3 0 a 2 0 b 2 0 0 u2
+

As 0 b 3 c 2 A3 0 As, 0 0 Bs 0 u3

0 0 B aC 3 A4 A a 0 0 0 B a  . u41L4
(6.152)

or

A i 0 0 - B i Ca " 0 0 0 0
B2Ci a 2 B2Cs 0 b 2 0 0 u2

A  +
0 b 3c 2 a 3 0 0 Bs 0 Ms

0 0 BaCs A4 0 0 Ba . . Ma _
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It is clear that a left annihilator is defined by

I 0 0 0
0 n 2 0 0
0 0 n 3 0
0 0 0 n 4

(6.154)

To investigate the controllability properties of the system, when there is a loss 
of input, we may define the input-state restriction pencil as follows:

' / 0 0 0

o1cr,
l__ 0 - b xc 4 ■

II1> 0 n 2 0 0 B2C\ s i  — A2 b 2c 3 0
0 0 n 3 0 o b 3c 2 s i — A3 0
0 0 0 n a 0 0 b ac 3 s i  — y4_4

' s i  -  A\ 0 0 - b xc 4
0 s N-2 -  N2A2 0 0
0 0 sN3 -  N3A3 0
0 0 0 s N4 -  N4A4

(6.155)

This is a weakly connected system so by using Theorem (6.9), by successive row 
and column operations we can transform (6.155) to two subsystems, i.e.,

' s N 2 -  N2A2 0 0 0
0 s N %  — 7V3 /I3 0 0
0 0 s i  -  Ax - BAc4
0 0 0 6./V4 — Â4v4.4

where the block
" s i -  Ai ~ B xCa 

0 s Na — NaAa

is a strongly connected system and is of the form of expression (6.110). By Corollary 
(6.4), the controllability properties are given as aggregate of those defined by the

’ A x BxCa "
subsystems S2(A2, B2), S3(A3, B3) and S'(A', B[), where A! =

0 a 4
,B[ =

0
b a

□
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Consider next when there is a total loss of subsystem input and output. Assume 
that Uj = 0 and first output is not measured. To investigate the zero properties of 
the system, from matrix (6.142), the zero pencil can be derived:

sN"M " -  N"AM " = block-diag {Qi(s); Z2(s)] Z3(s); Z4(s)}

where Qi(5) = s i  — A\.

(6.156)

□

This once more verifies the previously stated general result.

The above three examples demonstrate that when there is partial loss of inputs, 
or outputs then the interconnection structure plays a crucial role in defining the 
controllability, observability properties of the resulted system. For each of the input- 
, output-irreducible subsystems a proper investigation has to be carried out using 
the various known controllability, observability tests.

6.10 C onclusion

!
The input-state (state-output) restriction pencil was used for studying the effect of 
the structure F on controllability (observability) and zero structure of the complete 
composite system, when total loss of subsystem input (output) occurs as well as 
location of the formed input (output) decoupling zeros. It was shown that, control-
lability, observability and zero structure properties of complete composite system 
under full input, output structure are simply given as aggregates of correspond-
ing properites of the subsystems. It was also shown that, the problems of input-, 
output- and input-output reduction on the Kronec.ker structure of a centralised sys-
tem are equivalent to matrix pencil augmentation problems by row-, column- and 
row-column pencils. It was proved that for every deviation from completeness by 
loss of inputs, or outputs on the resulting composite system, the study of control-
lability, observability may be reduced to a number of subproblems in a structural 
sense where the system properties are given as aggregates of those defined by the 
subsytems. For each of the subsytems a proper investigation has to be carried out 
using various known controllability, observability tests.
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Chapter 7

CONCLUSION

In the study of properties of linear systems, as well as the analysis and design of 
control systems, a variety of approaches has been developed so far. The classification 
of the different approaches is based on the model that the approach uses, as well as 
the tools which are developed.

The state space and transfer function descriptions are only two extremes of a 
whole spectrum of possible descriptions of finite dimensional linear systems. The 
notion of invariants plays a key role in the characterisation of solvability conditions 
of different control problems for both the state space and the transfer function 
based approaches which are considered here. The general aim of the thesis has 
been to explore further the properties and role of invariants by establishing links 
between them and system properties, characterisation of their generic values and 
finally looking at the role of them in composite systems.

The study of properties of a whole family of models having fixed certain fun-
damental parameters (such as number of inputs, outputs, McMillan degree), but 
with the rest of parameters taking generic values has been examined here. This 
topic has been treated both in the state space setup using matrix pencils, as well 
as with transfer function models. There is still a number of difficulties to deal with 
unstructured models such as Forney indices, etc., in fact, there is a need for further 
work on the level of development of concepts and theoretical tools. An important 
obstacle in the development of some of these concepts and tools has been the lack 
of numerically efficient tools for algebraic computations, as well as the extension of 
some of the algebraic notions and approaches to uncertain model cases. Extension 
of this characterisation to structured (in terms of a given graph) generic system is
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an important area which needs further consideration.

The importance of Plucker matrices has been shown in [Kar., & Gia.,2], where 
tests for controllability, observability in terms of the corresponding Plucker matrices 
have been given. A new different proof for controllability, observability of the system 
was given here in terms of the rank of the appropriate controllability-, observabil-
ity Plucker matrices. It has been shown that system controllability, observability is 
equivalent to the full rank properties of the corresponding Plucker matrices. Further 
work is needed in linking the Plucker matrices related to transfer function descrip-
tions with the system properties and values of other types of invariants.

The relationship of the structural properties of interconnected systems with those 
at the subsystem level have been examined and in particular those related to con-
trollability, observability and zeros. The controllability, observability properties of a 
centralised system as well as composite system under partial, or total loss of subsys-
tem inputs, outputs have been investigated and it has been shown that controllabil-
ity, observability properties are invariant under composition if the subsystems are 
controllable or observable respectively. It was also shown that, for every deviation 
from completeness by loss of inputs, or outputs, the study of system properties may 
be reduced to a number of subproblems in a structural sense, where the aggregates 
of those subproblems define the overall system properties.

There is a need to expand the scope by addressing issues of the control theory 
beyond the present fixed model assumptions. There are a number of issues that 
have been touched here but need further consideration such as: i) Tackling issues 
related to system representations and transformations in a unifying manner, ii) 
Development of matrix pencil approach for state space analysis and synthesis, ii) 
Development of results characterising system properties in terms of types and val-
ues of system invariants, using any structural approaches. Further developments 
are needed, however, if the algebraic-geometric methods are to be transformed to 
a synthesis tool. Important issues here are: i) to determine the characterisation 
of the solvability conditions of different control problems in terms of the values of 
appropriate system invariants, ii) to establish links between system structural char-
acteristics and achievable limits of performance under compensation (relationships 
between performance indicators and system structure).
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