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Abstract

The problem of 'nuisance disconnects' in high integrity redundant systems is 
shown to be mathematically equivalent to the problem of the crossings of the 
boundary of a region by a vector stochastic process. A number of other 
engineering situations are similarly modelled by such multivariate crossing 
processes.

Let X(t) be a vector valued stationary Gaussian process, having continuous 
sample paths a.s., and let U be the number of exits, in the interval (0,1], from
a region T having a boundary 5T consisting of a finite number of regular 
elements. We prove the formula of Belyaev for the factorial moments of U 
under conditions on the process similar to those of Ylvisaker(1966). We further
show that these conditions are sufficient to guarantee E(U) < °° .

The validity of the formula of Belyaev does not imply the existence of the 
moments of all orders. We show that, for a two- dimensional Gaussian 
process, the variance of U is finite if

II 0 (t ) llt-1dt<oo

for some 8 > 0, where 9”(t) = R "(t) - R "(0) and R”(t) is the second derivative of 
the covariance matrix of the process.

It is well known that the duration of an exceedence above a high level, by a 
stationary Gaussian process, has an asymptotic Rayleigh distribution. In 
chapter 4, we show that, for the two dimensional processes of the present 
study, the Rayleigh distribution is but one of three asymptotic distributions 
possible for the duration of an exceedence above a large boundary.

In the final chapters we comment on the problem of'nuisance disconnects' in 
the light of the theoretical developments of the previous chapters. A discussion 
of the relation of our work to that of earlier authors and of possible avenues for 
future research is also included.
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1 INTRODUCTION

1.1 Nuisance D isconnects

My interest in boundary and level crossing problems was stimulated by the 

engineering problem of 'nuisance disconnects' which occurs in the high 

integrity control systems found in modem aircraft and in nuclear reactors. Many 

'fly-by-wire' aircraft are intrnsically unstable and depend on the control system 

for dynamic stability. It is therefore vital that the integrity of the control system 

is not compromised by the failure of "a single component.

To seek to maintain the integrity of a control system subject to one or more 

faults, parallel redundant lanes are introduced into the system. Triplex or 

quadruplex redundant systems are typical of flight control systems [ Gill, 1977; 

Ahem, et al.,1976 ] allowing up to two-failure survival. The introduction of 

redundant circuits of itself, only increases the chance of a component failure.

To improve the chances of survival of the control system, we must be able to 

detect faulty lanes and disconnect them, leaving the working lanes to operate 

with signals uncorrupted by the faulty lane or lanes. This function is performed 

by a ’voter-monitor 1 which compares the signals in the working lanes and 

decides according to some rule or criterion whether a lane is faulty and to be 

disconnected. The other function of the voter-monitor is to output a 

consolidated signal by combining or averaging the inputs from the lanes that are 

currently deemed to be working.

The disconnection of a lane will induce a sudden, though transitory, change in 

the consolidated output from the monitor. This so called transient, if large 

enough, could have a catastrophic effect on the system.
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The size of transients can be made small by using a criterion with narrow 

tolerances in the voter-monitor. However, if there is noise in the lane signals, as 

there always is in practice, then the probability, of a disconnection occuring 

without a fault in any of the lanes, will become unacceptably large. The event of 

a disconnection occuring without a fault in any of the lanes, is a so called 

'nuisance disconnect'.

1.2 Example

For definiteness, we assume a triplex system with a voter-monitor which 

outputs the arithmetic mean of the signals from the working lanes. Such a 

system is illustrated in figure 1.1, where three sensors independently measure a 

particular flight parameter and the outputs of the sensors are fed into a voter- 

monitor.

S-enSors

figure 1.1 Model of a redundant system with voter-monitor 

In practice, the output from each sensor might be fed into three monitors, 

providing three independently obtained consolidated outputs for input to 

computers or actuators.

Assuming all three lanes are deemed to be working, the monitor will disconnect 

a lane if the magnitudes of the disparities of that lane with the other two is 

greater than or equal to some tolerance level u. Thus if the signal levels in the
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three lanes are X j, X2 , X3, the disparities can be denoted by s  ̂ = X2 - X 3 , 

s2 = X3 ’ X j , and S3 = X j- X2 . Suppose, for example, that lane 3 is about 

to be disconnected, then min{ I s j l , IS2 I } = u and I S3 I < u . In other 

words, a lane is disconnected if the median of the magnitudes I s^l, IS2 U I S3 I

attains and subsequently exceeds the level u. What we have described here is, 

of course, only one of many possible decision criteria.

Since s  ̂ + S2 + S3 = 0  identically, we can represent the disparities by a point 

P in a two-dimensional space. In fact, we represent sj , S2 , S3 as the

orthogonal projections of the position vector x , of P in the disparity space, on 

three axes at 120 degrees to each other. In such a representation, our 

disconnection criterion corresponds to a region containing the origin and having 

the star-shaped boundary shown in figure 1.2 .

figure 1.2 The star-shaped boundary in disparity space 

The state of the monitor, or more precisely of the three lanes being monitored, 

is represented by a point £, in the two-dimensional disparity space which 

generates a stochastic process ^(t) over time. While the stochastic process <;(t) 

remains within the star-shaped region of figure 1.2 , the monitor assumes the 

lanes are all working and will not disconnect them. However, once the process 

^(t) crosses the star-shaped boundary, one of the three lanes is disconnected
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on the assumption that it has failed. Which lane is disconnected depends on 

which part of the boundary is crossed.

Once a lane has been disconnected, two things happen. The monitoring regime 

must change to provide a consolidated output from the remaining two lanes 

instead of the original three. This change in the consolidation regime introduces 

a transient in the system corresponding to the sudden change in output from the 

monitor.

By way of example, suppose the new output is taken to be the mean of the two

working lanes and suppose lane 1 is the disconnected lane. Just prior to the 

disconnection the monitor output was ( + X2 + X3 )/3 and just after the

disconnection, the output becomes ( X2 + X3 )/2 , giving rise to a transient

tl = ( X2 + X3 )/2 - ( X i + X2 + X3 )/3 = ( s2 - s3 )/6.

At disconnection, one of I s2 I and I s3 I will equal u and the other will be greater 

than u. Further, s2 and s3 will be of opposite signs, since S| + s2 + s3 = 0  

and I sj I < u. It follows that I s2 - s3 I = 2u + I sj I and hence that u/3 < I tj 1

< u/2 . In general, a disconnection will lead to a transient that will vary in 

magnitude between one third and one half u , depending on how far the 

crossing point is from the origin.

Transients, if large, can have a disastrous effect on a system. A regime which 

gives the smallest transients for a given tolerance level will yield transients of 

constant magnitude. Using means to consolidate the input signals, such a 

regime would cause us to disconnect a lane as soon as its signal exceeds the 

mean signal of all three lanes by more than the tolerance u. That is, we would 

disconnect lane 1, when

I X j - ( X j + x 2 + x 3 )/3 I =1 2Xj - x 2 - x 3 1/3 = u ,
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with I Xj - ( X j + X2 + X3 )/3 I < u , for j = 2, 3. The coresponding

boundary in disparity space, shown by the dashed hexagonal line in figure 1.2, 

would give transients of constant magnitude u/2.

1.3 Model Assum ptions

We suppose the signal in lane i consists of a stimulus Z ( t) corrupted by an 

additive noise process or measurement error W j(t), thus

for i = 1, 2, 3. Here W (t) = { W j, W 2, W3 } is a stationary vector process,

independent of Z ( t), which we will assume to be Gaussian whenever 

convenient. However, we do not assume the components W j(t) to be

independently nor identically distributed. For the most part, we assume the 

measurement process to be unbiased, ie E (W j(t)) = 0 , for i = 1, 2, 3 ,

although in chapter 5 we will consider the effect of a measurement bias in one 

of the lanes.

With these assumptions, the disparities are independent of the stimulus. The 

problem of 'nuisance disconnects' reduces to the study of the exits of a 

multivariate stationary stochastic process from a simply-connected region of

Xj(t ) = Z (t) + Wj(t ) (1.3.1)

We introduce coordinates into the disparity space by

Si = ( -2Xj + X2 + X3 )/V3 

= ( -2Wj + W2 + W3 )/V3 (1.3.2)

^2 - X2 + x 3

w 2 + w 3 (1.3.3)
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Thus if L(t ) =E [ W(0) W (t)1] = [ ljj ] is the covariance matrix of W(t ) ,  then 

the covariance matrix of ^(t ) is given by 

R(t ) = E[ £,(0) 4(t )T ]
T  1 A FT  12/V3 1/V3 1/V3

0 - 1 1
- 2/VT 1//3 1/V3

0 - 1 1

On carrying out the matrix multiplication, the elements of R(t) become:
R — — I i 2_ 1 — I —]
^11 “ 3 Ml +  3 l 22 ^  3 *33 '  3 *12 '  3 13 + 3 *23

R 12 “  " ^3 l22 + ^3  ^33 +  ^3 ( *12 '  ^13 ) (1.3.4)

R 22 ~  ^22 +  ^33 '  2  ^23

making full use of the symmetry of L.

1.4 A pplications

A widely discussed application of the crossings of a vector stochastic process 

occurs in civil and mechanical engineering ( Lindgren (1980a), Veneziano et.al. 

(1977)). In this application, X(t) is a vector representing a random load on 

some structure. The structure remains safe while X(t) lies inside a connected 

region S of the state space. The probability that the structure remains intact 

throughout the interval [0, T], P{ X(t) e S ; for all t e [0, T] }, is directly 

related to the distribution of time to the first exit from S, by the process X(t).

The types of region that have been used in practice, [ Lindgren (1980a) ], are

(a) S = { (x j, x2) e R2 : x j2 + x22 < r }

(b) S = { (x |, x2, X 3 )  e R-̂  : xj + max ( I x2 I, I X3  1) < r }

(c) S = { (xj, x2) e R2 : max ( I a xj + a' x2l, I b x^ + b' x2l ) < r }

The regions of examples (b) and (c) are similar in type to the region of our 

application to nuisance disconnects, which we give, as example (d), for 

comparison .
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(d) S ={(x1? x2) e R2 : med( I x2l, I " \/§ x i + 2 x2l, I 2 X2! ) -  u ) >

where med( a, b, c ) denotes the median of a, b, c .

Example (d) along with examples (b) and (c) yield polyhedral shaped regions. 

Note that in all cases, with the aid of the max and med functions, we have been 

able to express the S-regions in the form f(x) < u, or equivalently in the form 

f(x) < 0. Thus, formally at least, the problem of the crossings of a boundary by 

a vector stochastic process X is reduced to that of the level crossings of the 

univariate process Y = f(X ). For this and other reasons, we give a brief review 

of level crossings in the next section and follow it with a review of the much 

sparser literature on boundary crossings. In the last section, we outline the 

scope of the thesis and describe the contents of the succeeding chapters.

1.5 Level Crossings

The best reference to the early work on level crossings is the seminal book, 

Stationary and Related Stochastic Processes, by Cramer and Leadbetter (1967). 

Another useful source of references to the early literature is the review article 

by Blake and Lindsey (1973). In this section we review the three crossing 

problems directly relevent to the present thesis, the moments of the number of 

crossings in an interval, the existence of the variance of the number of crossings 

and the duration of exceedences above a high level.

Throughout this section we assume X (t) to be a real-valued stationary Gaussian 

process having zero mean and continuous sample paths with probability one, 

for t e [0,1]. The process is also assumed to have a covariance function r(t) 

and a spectral distribution function F(^.), in the real sense, such that
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o o

r(t) = E[X(s+t)X(s)] = |  c o s ta  d¥(K) . (1.5.1)
o

We define spectral moments of even order 2k, k = 0, 1, . . . , by

?i2k = j  ^ 2k dF(À) . (1.5.2)
o

It is well known ( Cramer and Leadbetter (1967)), that ^ 2^ is finite if and

only if r(t) has a finite derivative of order 2k at the origin. In this case r(2k)(t) is 

continuous and

\ l k  = (- l)k r(2k)(0) .

Let S be the set of continuous functions f(t) on [0,1] for which f(t) * 0 when 

t = k 2 'n , k = 0, . . . , 2n , n = 1, 2, . . . . For f(t) e S, we define N(f) to be

the number of zeros of fit) in [0,1] and T(f) to be the number of tangential 

zeros. A tangential zero occurs at t() if f(t0 ) = 0 and there is a neighbourhood 

of t0 on which f has a constant sign. A crossing zero occurs at t0 € [0,1] 

provided every neighbourhood of t0 contains points tj and t2 such that 

fit j )f(t7 ) < 0. Clearly, if a zero is not tangential it is a crossing, hence N(f)

= T(f) + C(f) , where C(f) is the number of crossing zeros in the interval [0,1].

In this taxonomy of zeros introduced by Ylvisaker (1965) and Cramer and 

Leadbetter (1967), crossing zeros has the subcategories up-crossings’ and 

'down-crossings'. An up-crossing of zero is said to occur at t0 if there exists 

8 > 0 such that, fit) < 0 for t0 - £ < t < t0 and fit) > 0  for t0 < t < t0 + e , a 

down-crossing is similarly defined. Isolated crossing zeros must be either up or
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down-crossings, thus if C < °° then C = U + D , where U, D denote the 

numbers of up and down-crossings in [0 ,1], respectively.

Since X(t) has a continuous distribution for t e [0,1], it follows that X(t) e  S

a.s. and that N, T, C etc. are defined for X(t) a.s. More generally, we define 

Nu , Tu , Cu , . .  . for the crossings and tangencies of a level u by X(t). In this

notation, the number of zeros, tangencies and zero crossings in [0 ,1] are 

denoted N q  , Tq  , Cq  , respectively.

Bulinskya (1961) and Ylvisaker (1965) have shown that T = 0 a.s. under a 

wide range of conditions. Thus N = C a.s. and hence , in particular, E(NU )

= E(CU ). The formula for the expected number of crossings of the level u in 

[ 0 , 1],

was first obtained by Rice (1945) under the assumption of a discrete spectrum. 

The formula (1.5.3) has been derived by a number of authors under 

successively weaker conditions [ see for example Ivanov (1960), Bulinskya 

(1961) ] .  The best result for stationary Gaussian processes was obtained by Ito

(1964) and Ylvisaker (1965) who showed that (1.5.3) held for processes with 

continuous sample paths if ^2 < 00 ar|d that E(CU ) = °° , if ^2 = 00 •

The earlier authors had assumed a sample function derivative for the process 

and used an integral method due to Kac (1943) to count the number of crossing 

zeros. Both Ito and Ylvisaker utilised a new counting method based on the use 

of indicator random variables.

Approximate X(t) by a polygonal process Xn(t) tied to X(t) at points t = tj = 

i 2"n , for i = 0, 1,. . . ,  2n and let Cn be the number of zero crossings by 

Xn(t) in the interval [0,1] . If Cn| is the indicator of the event

(1.5.3)
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X[(i-1) 2~n] X[ i 2 'n ] < 0, it can be shown that Cn = Lj Cpj is an 

increasing sequence and Cn —> C , as n —» °° , a.s.

Similarly we can write for up-crossings of zero Un = Z  Unj , where Unj is 

the indicator of the event X[(i-l)2~n] < 0 < X (i2 * n ) . As before, Un forms 

an increasing sequence a.s. However it is no longer true that Un T U , as 

n —> oo ; without qualification. Unlike the crossing situation, Unj = 1 does not

invariably imply an up-crossing in the interval ( (i -1) 2_n , i 2 'n ) .  This will 

only be true, with probability one, if the crossings are all isolated, ie if C < °° .

This method for counting up-crossings is used by Cramer and Leadbetter 

(1965) and Ylvisaker (1966) in deriving a formula for the factorial moments of

the number of up-crossings. Cramer and Leadbetter obtain the fornula for the 

factorial moment , of order k, of the number of up-crossings of a level,

under the assumption of a continuous sample path derivative and the existence 

of a joint density pt (x j , . . . , xĵ ; y j , . . . , y^) of the variables X(t^ ) , . . . ,

X(tj(), X '(tj ) , . . . ,  X'itj^) for distinct t j , . . . , t^ . In our terminology their 

formula becomes

Mk = E[U(U - l ) . . . ( U - k  + 1)]
i - i  o o  o o

= J ■ ■ J  d tr ■ -dtk |  ■ ■ • 1 yi • • ■ yk Pt(u ; y) dy 1- ■ -dyk , ( 1.5.4)
0 0 0 0

where pt(u ; y ) = pt(u, . . . , u ; y j , . . . , y^) . Ylvisaker (1966) has proved

that the condition of a continuous sample path derivative can be replaced by the 

existence of the second spectral moment X2  » ' n which case (1.5.4) will hold

whether is finite or n o t.

Both Cramer and Leadbetter (1965) and Ylvisaker (1966) appear to assume 

incorrectly that Un tends monotonely to U, as n without qualification.

14



Since the conditions of both authors guarantee E(C) < «=, it follows that C < °° 

a.s. and hence their assumptions are justified.

Just prior to the publication of Cramer and Leadbetter (1965), Leadbetter and 

Cryer (1965) had obtained a formula for the variance of the number of zeros of 

a stationary Gaussian process and had shown that the variance would be finite 

if, for some 8 > 0,

This sufficient condition was later shown to be necessary by Geman (1972). 

Belyaev (1966) and Miroshin (1973) have given sufficient conditions for the 

existence of the moments of the number of crossings of a level by a non- 

stationary Gaussian process. For stationary Gaussian processes, Cuzick (1975) 

has obtained necessary and sufficient conditions for the moments of the number 

of zero crossings to be finite. If a stationary Gaussian process has a covariance 

function

r(t ) = 1 - ^ t2 + ^ C It I3 + o(lt I3) , (1.5.6)Z o

for small t , its crossing moments of all orders are finite.

Marcus (1977) has given formulae for the generalised moments of the numbers 

of crossings by a real valued stochastic process with abssolutely continuous 

sample paths.The extremely general conditions given for the validity of the 

moment formulae are so close to the result that verifying the conditions would, 

in many cases, be as difficult as giving a direct proof of the formulae. Marcus 

has applied his conditions to a class of non-stationary Gaussian processes, 

which satisfy a bound on the joint densities proved by Cramer and Leadbetter 

(1967) for stationary Gaussian processes, to obtain sufficient conditions for the 

validity of moment formulae for non-stationary Gaussian processes.
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As we have already noted, in many applications the quantity of principal interest 

is the distribution of the time to the first crossing. Unfortunately the problem of 

finding the distribution of time to first crossing or the distributions of times 

between crossings has proved intractable, except in one or two isolated 

instances. In consequence interest has focused on asymptotic results for 

crossings of high levels.

It is well known that the crossings of a level by a stationary Gaussian process 

form a regular stationary point process, if X-2 < 00 [ Cramer and Leadbetter

(1967) p 201]. Volkonskii and Rozanov (1959, 1961) have proved, under a 

rather complicated mixing condition, that the up-crossings of a level u form an 

asymptotic Poisson process, as u —» °° . The mixing condition has been 

successively weakened and simplified by Cramer (1966) and Berman (1971). 

The latter showed that the result holds if the covariance function satisfies the 

condition r ( t ) log t —> 0, as t —» °° .

Another form of asymptotic result, more pertinent to the present discussion, 

relates to the distribution of the duration of an excursion above a high level. Let 

A denote the time from an up-crossing of a level u to the following dowm-

crossing. If the process X(t) is stationary and ergodic, then the mean duration

E(A) = 9 = -P {  X(0) > u } , where p. is the mean up-crossing rate. If F(t) is 
P

the distribution function of A /0 , Rice (1958) has shown that

lim F(t) = 1 - e-W 4)t2 (1.5.7)
u — >00

ie the duration, measured in units of its mean, has an asymptotic Rayleigh 

distribution, as u —> °° .

Kac and Slepian (1959) have pointed to the fact that F ( .) , in (1.5.7), is a 

conditional distribution and as such can depend critically on the way the
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conditioning is carried out. Using ergodic arguments, they have shown that the 

conditioning should be applied in what they call the 'horizontal window" sense.

Cramer and Leadbetter (1967) following the work of Volkonskii and Rozanov 

(1961) have given a rigorous proof of (1.5.7) assuming two conditions on the 

covariance function r ( t) :

X X
(i) r(t) = 1 - 2j t 2 + + o ( t^ ) , as t -» 0 . (1.5.8)

(ii) r(t) = 0 ( t ' a  ) , for some a  > 0, as t °° . (1.5.9)

Belyaev and Nosko (1969) have obtained (1.5.7) under a slightly weaker 

condition on r ( t ) ,  as t —» 0 , than (1.5.8). They have also anticipated our 

result in chapter 4, by showing that the durations of excursions, of a bivariate 

stationary Gaussian process above a large circular boundary, have the 

asymptotic distribution of (1.5.7).

1.6 V ector Processes

Let X (t) be a vector stochastic process taking values in RP and having 

continuous sample paths. In this section we consider the exits of a process X ( t) 

from a bounded, simply connected, region T c  RP . At an exit, we assume the 

process crosses the boundary dT and enters a region F c  RP , the 

complement of T u  e)T . In what follows, we will often refer to V as the 

admissible or safe region, since, in applications, exits from T correspond to 

failures of one kind or another.

It is natural to regard exits and entrances as crossings of the boundary dT and to 

talk of 'boundary crossings' by analogy with 'level crossings' in the univariate 

case. Unfortunately this terminology leads to some ambiguity. The term
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'boundary crossing' is often used in connection with sequential analysis, which 

is concerned with a univariate discrete parameter stochastic process exceeding a 

level which is a function of the parameter. In the present work 'boundary 

crossing' will always have the former connotation of exits from, or entrances 

to, a region by a multivariate continuous parameter stochastic process.

Belyaev (1968) gave, without proof, an integral formula for the factorial 

moments of the number of exits by a vector process under rather complicated 

conditions on the process. Contrary to Belyaev's assertion, his condition (1) on 

the process is not satisfied by stationary Gaussian processes having 

continuously differentiable sample paths, as we show in the appendix .

Suppose g(x) is a real function on RP such that T = { x e RP : g(x) < 0 } 

and hence d r  = { x e RP : g(x) = 0 ). As we have previously observed, 

the boundary crossings of d r  by the vector process X(t) are equivalent to the 

zero crossings of the univariate process Y = g[ X (t) ]. Assuming g ( . )  is 

continuously differentiable in the neighbourhood of d r  with the possible 

exception of a finite number of points of d r , Lindgren (1980b) applies the 

method of Marcus (1977) to extend a result of Belyaev (1968) concerning the 

expected number of exits across the boundary' d r  .

A number of authors including Belyaev (1968), Belyaev and Nosko (1969) , 

Bolotin (1971), Hasofer (1974) and Veneziano et. al. (1977), have calculated 

the mean crossing rate for Gaussian processes for a variety of smooth and 

polyhedral boundaries. Formulae for asymptotic crossing rates of stationary 

vector Gaussian processes for large boundaries have been obtained by Breitung 

(1988).
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Sharpe (1978), Lindgren (1980a) and Aronowich and Adler (1985, 1986) have 

developed the level crossing theory of y}  processes.If X (t) is a stationary 

vector Gaussian process with independent components X j ( t ) ,. . . , X p (t)

having zero means and unit variances, then Y (t) = ( t ) + . . .  + X p^(t) is

said to be a y}  process. Clearly the up-crossings of level u by Y (t) are 

equivalent to the exits of X from a p-sphere of radius Vu . Using these two 

different approaches Sharpe (1978) and Lindgren (1980a) obtain the following 

expression for the expected number of up-crossings of the level u by a x 

process

E(U) = (u/2) <p -D/2 e - u /2 /  T(p / 2)
' 7t '

where ^  is the second spectral moment of the component Gaussian processes.

1.7 Scope of Thesis

In chapter 2 we give a proof of Belyaev's formula, for the factorial moments of 

the number of exits by a vector Gaussian process, under very general 

conditions. There is no proof in the literature. Belyaev (1968) originally gave 

the formula without proof and under very different conditions. The approach 

we adopt to the proof is to describe the boundary d r  of the admissible region 

explicitly and attempt to generalise the approach of Ylvisaker (1966) and 

Cramer and Leadbetter (1965).

In chapter 3 we explore the conditions for the existence of the variance of the 

number of exits and obtain sufficient conditions similar to those obtained by 

Leadbetter and Cryer (1965) in the univariate case.

Chapter 4 is devoted to the problem of the asymptotic distribution of the 

duration of an excursion outside a large boundary. Three types of asymptotic 

distribution are obtained, one of which is the Rayleigh distribution familiar from 

the level crossings of Gaussian processes.
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By way of example, in chapter 5 we apply some of the results of the earlier 

chapters to the problem of nuisance disconnects, described in sections 1.1 to 

1.3 . In particular, we compute the expected number of exits and the mean 

duration of an excursion for a number of different admissible regions and 

discuss their relevance to some questions concerning nuisance disconnections. 

This chapter also contains a summary of the results obtained in the earlier 

chapters, with some discussion of the place of the results in relation to the 

published work and of possible future developments.
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2 FACTORIAL MOMENTS

2 .1  Prelim inaries

Let X(t) = { X j ( t X p ( t )} , 0 < t <  1 , be a real vector-valued

stationary Gaussian process, having continuous sample paths with probability 

one. In general, we assume that X(t) has mean zero and a covariance matrix

R(t), having a continuous second derivative at the origin. The latter condition is 

equivalent to the existence of a finite second order spectral moment matrix ^2 >

and ensures the existence of a mean square derivative X '( t) ,  for t e  [0,1]

[ Cramer and Leadbetter (1967)].

In this chapter we study the crossings of the boundary d r  of a simply 

connected open subset V a  RP , by the process X (t) , 0 < t < 1 . The 

boundary d r  is assumed throughout to consist of a finite number of regular 

elements of finite extent. Within each regular element the coordinates of the

points are assumed to be continuously differentiable functions of p -1 

parameters a j, . . ., ap.j . Further we assume that d r  has no double points,

ie on crossing d r  from T we enter a subset F  which is the complement of 

T u  dT in RP . We start our study by giving a careful definition of the 

different types of crossing of d r  .

Let G be the class of continuous functions f(t) on [0,1] , taking values in RP , 

such that f(tnj ) € d r  , for all tnj = i 2' n , i = 0 , 1, .  . . , 2n ; n = 1, 2, . . .

For f(t) e G, we define the following types of crossing:

(i) The function f(t) is said to exit from T at tQ , if there exists £ > 0 , such 

that f(t) e  T for t0 - £ < t < t0 , and f(t) e F  for t0 < t < t0 + £ . 

Denote by U the number of exits by f in [0,1].
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(ii) The function f(t) is said to enter T at tQ, if there exists e > 0 , such that 

f(t) e  F  for tQ - e < t < tQ , and f(t) e T for t0 < t < tQ + e .

Denote by D the number of entrances by f in [0,1].

(iii) The function f(t) is said to have a crossing of dT at tQ, if, in each 

neighbourhood of tQ, there exists t^ and t2 such that f(tj ) e T and 

f(t2 ) e  F  . Denote by C the number of crossings in [0,1].

Since exits and entrances are clearly crossings, C > U+D . In fact if tQ is an 

isolated crossing of dT then it must be either an exit or an entrance, hence, if C 

is finite, we must have C = U+D.

Assuming X(t) has a continuous density for all t e  [0,1], as would be the case 

if R(0) is non-singular, it follows that X(t) € G a.s. Thus the above 

definitions and relations will apply to X(t) except on an exceptional set having 

probability zero.

Let Unj be the indicator of the event [X(tn e T; X(tnj ) e F  } and Dnj 

the indicator of the event [X(tn j_^) e F ; X(tnj ) € T }. Write Cnj =

Uni + Dnj , Un = X Unj and Cn = Z  Cnj , where the sum in each case is over

i = 1, 2, . . . , 2n for n = 1, 2, . . . . In the next lemma we show that, in 

certain circumstances, the random variables Un and Cn approximate U and

C, respectively, as n tends to infinity.

Lem m a 2.1 As n — , Cn t  C a.s. and, if C is finite with probability 

one, then Un T U a.s.

Proof. For X(t) e G , Unj = 1 implies Un+ ] 2i-i + Un+ i 2i =  ̂ > 

similarly Cnj = 1 implies Cn+j 2i- 1 + Cn+j 2i = 1 • Since, if X(tn j . j )  e 

T and X(tnj ) e F  , then, at the mid-point tn+ i 2i-1 > either X e T o r X e
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T' , and one of Un+j 2i-l ar,d Un+1 2i *s zer0 and the other unity. It 

follows that the sequences {Un } and {Cn } are non-decreasing a.s. Since, by 

continuity, X(t^) e T and X(t2) € F  implies X(t) has a crossing between tj 

and t2 , we must have Cn < C a.s.

Suppose C < °o , then the crossings can be separately contained in disjoint

intervals I . . . ,  1(2 . Hence there exists a positive integer nQ such that Cn = 
C , for n > nQ , and therefore lim Cn = C . Further, let I i , . . . , I j j  be the

n — >oo

subset of the C disjoint intervals which contain the exits among the C crossings.

For n large enough, the intervals [tn j_], tnj ] containing an exit will lie entirely

within the corresponding Ij , thus there exists nQ , such that Un = U , for n 
> nQ . Therefore lim Un = U and the second part of the lemma is proved.

n — >oo

Now suppose that lim Cn < 00 for some sample path in G. Since {Cn } is
n — »  oo

non-decreasing, Cn = m, for n > nQ , for some positive integers m, n0 .

Thus, for n > nQ , if X(tn i ) g  T and X(tnj ) g  T , then X ^ + k  j ) e T , 

for all tn_j_jj. j e [ tn i-1’ lni 1 ’ k = 1, 2, . . . , since Cn must remain

unchanged as n increases. Therefore, by continuity, X(t) e T u  dT for t e 

[ tn i-1, tni ] and there can be no crossings between tn and tnj .

Similarly, if X(tn j_ j ) g  T' and X(tnj ) g  F , for n > nQ , it will follow that 

X(t) g  T u  d r  , for t g  [ tn | , tnj ] , and the interval will contain no

crossings. These considerations show that there is just one crossing in each of
the intervals [ tn ; i , t„ ; j that contribute to Cn and hence that X(t) has at 

“o 1*1 uo o
most m = lim Cn crossings. The lemma now follows since, if C = °°, then

n — >oo

lim Cn = e» , for the opposite conclusion would lead to a contradiction.
n — >oo

It is worth noting that, had we defined Un and Cn to be the number of exits or 

crossings, respectively, of the straight line process tied to X(t) at t = tn^ ,
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i = 0, , 2n , the sequences {Un } and {Cn } would not have been

monotone.

The lemma we have just proved also holds for level crossings if C and U are 

interpreted as the numbers of crossings and up-crossings, respectively. In the

context of level crossings, Ylvisaker (1966) and Cramer and Leadbetter (1965) 

erroneously assume Un î  U a .s ., without the extra condition C < ° ° .

However, their main results remain valid, since E(C) < °° for the class of 

stationary Gaussian processes considered by them, and in consequence C < °° 

a.s.

Clearly the quantities Un and Cn are measurable on the sample space and 

hence random variables. The lemma gives conditions under which Cn —> C 

and Un—> U on a set of measure one. If the probability measure is complete, 

then C and U are measurable in case Cn —> C and Un—> U .

2.2 The Expected Number of Crossings

Following lemma 2.1, the monotone convergence theorem implies

as n

For 0 < t < 1 and n = 1, 2 ,. . . let i(t) be the integer between 1 and 2n such 

that (i - 1) / 2n < t < i / 2n and define <J>n( t ) by

E(Cn) = X p i Cni = U T E(C) , (2 .2 .1)
i=l

<Mt) = 2n P {Cn; = 1} , ( 2 .2 .2)

where i = i ( t ) . Thus (2.2.1) can be rewritten

E(Cn) -  J 4>n(t) dt T E(C) (2.2.3)
o

as n —> oo .
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Now

P{Cn i = l  } = P{Uni = l } + P{Dni = 1} (2.2.4)

and

P {u ni = 1 } = P{X(tn M ) € r ; X(tn i ) € r  }

= P{Xj - 2~n Yj e  r  ; Xj e  P  } , 

where we have written Xj = X(tnj ) and Yj = 2n ( Xj - Xj_ j ) .

For 0 < t < 1 , and i = i( t ) , let pnt ( x ; y ) denote the probability density 

function of Xj and Yj . Then we can write

P{Unj = 1} = J  J pnt( x ;y ) d x d y  , (2.2.5)
An(y)

where An(y) is the subset of x for which x - 2~n y e T  and x e P  .

If x e  An(y) , the line segment x - 0 2 'n y , 0 < 0 < 1 , must cross d r  

at least once. For the sake of uniqueness, suppose 0 = (3 corresponds to the

first crossing in going from x - 2~n y to x . Suppose this crossing occurs 

at the point x(a) = x(aj, . . . , a„_ j) of d r  , so that we have

x = x(a) + (32 n y (2.2.6)

and x - 0 2 'n y e T for [3 < 0 < 1 . Since the crossing at x(a) is from V 

to P ,  if a is a regular point of d r , we must have v^.y > 0 , where v is the 

unit outward drawn normal to d r  at x(a) .

Equation (2.2.6) , for fixed y, defines a one-one transformation from ( a j , . . . ,

^ - 1’ (3) to x which is differentiable if a corresponds to a regular point of d r  .

The Jacobian of the transformation is
d(x)

d(a,(3)
2~n vT.y Det

dx(a)

dai

dx(a)

dap.i
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since the first p -1 columns of the determinant span the tangent hyperplane of 

d r  at x(a). Substituting for x in terms of a,(3 in the integral of (2.2.5), we get

P{Uni = 1} = i d y l  1 pnt[x(a) + p 2 'n y ; y] 2"n vT.y dp dw , (2.2.7)
arBn

where Bn = (P : x(a) + P 2 'n y e F  and x(a) -  (0 -  P) 2 'n y e F  for all 

0, with P < 0 < 1 }. In deriving (2.2.7) we have used the well known result

dw = Det
dx(a) dx-(a)

, v daj ■ • • da.p-i
dai dap_i

for the surface element dw of d r  at x(a). By a similar arguement we would get

P{Dni = 1} = jd y  J J pnt[x(a) + p 2'n y ; y ] 2"n |v T.y| dp dw , (2 .2.8)
0T

where the definition of Bn differs from that in (2.2.7), in particular Bn is 

empty if v^.y > 0 . Substituting from (2.2.7) and (2.2.8) into (2.2.2) and 

using (2.2.4), we obtain

<t>n(t) = J J J Pm[x(a) + p 2'n y ; y ] |v T.y| dp dw dy  , (2.2.9)
d r  Bn

The definition of Bn in (2.2.9) depends on the sign of .y ; if v^.y > 0 ,

Bn is defined as in (2.2.7), if v^.y < 0 , then Bn is the subset of P 6 (0,1)

such that x(a) + P 2 'n y e T and x(a) - (0 - p) 2 'n y e  F  , for all 0, with 

P < 0 < 1 , and, if v^.y = 0 , we put Bn = 0  , since in this case the

integrand is zero. If x(a) is a regular point of dr, and v^.y * 0 , we can find 

an integer nQ > 0 such that the line segment from x - 2' n y to x + 2‘n y 

contains no point of dr other than x(a) . Hence Bn = (0,1) for all n > nQ .

26



The covariance matrix of Xj and Yj is

* i A BAn =
- b t  c  .

where the p x p  sub-matrices A, B, C are given by 

A = E( Xj Xj T ) = R(0)

B = E( Xj Yj T ) = 2n [ R(0) - R( 2 'n ) ] (2.2.10)

C = E( Yj Yj T ) = 22n [ 2R(0) - R(- 2’n ) - R( 2 'n ) ] .

It is well known [ Cramer (1940)] that the covariance matrix

R (t) = E [X(s + t ) XT(s) ] (2.2.11)

of the continuous stationary process X(t) has a spectral representation
o o  o o

R (t) = J cos Xt dF(?i) + Jsin k td G (X ) , (2 .2 .12)
o o

where the elements of F(X.) and G(X) are functions of bounded variation and 

AH = AF + i AG is a non-negative definite Hermitean matrix. In particular, 

the diagonal element Fr r (X) is a non-decreasing function of X, and

(AFrs)2 + (AGrs)2 < AFrrAFss , (2.2.13)

for r * s , r,s = 1, 2, . . . , p.

In order to consider the limiting behaviour in (2.2.9) we need the following 

lemma.

Lem ma 2.2 If the matrix of second order spectral moments
o o

X2 = J x 2 dF(X) (2.2.14)
o

exists and is finite, then R(t) is twice continuously differentiable and as h —> 0

R(t + h ) - R(t ) 
h -> R (t)

and
2R(t ) - R(t - h ) - R(t + h ) 

h2
^  - R (t )

uniformly in t .

27



Proof. Note AG is skew-symmetric and for r * s, by (2.2.13), it follows that 

I AGr s I < ^  ( AFr r + AF$ s ) , and hence
oo oo oo

| U 2 dGr s | < J ?i2 |dGrs | < l J l 2 (dFrr + dFs s )
0 0 1 0

oo

Thus by (2.2.14) it follows that J X2 dG exists.

From (2.2.12) we obtain

R(t + h ) - R ( t) _ j  cos A.(t + h) - cos Xt

+ J sin ^(t + h) - sin Xt

dF(X) +

dG ft). (2.2.15)

For X > 0 , we readily show that the two integrands of the right hand side of

(2.2.15) are bounded by 2 X  . Let i(?i) = Frr  ( X )  , then i(X) is a non-
1

oo

decreasing function of X  and J  X 2  d i ( X ) )  < ° ° ,  by (2.2.14),

oo

hence J X  d i ( X )  < O O . It follows from the above considerations that the right
0

- j  Xsin )it dF + J Xcos A.t dG = R '( t) ,
o o

hand member of (2.2.15) tends, element by element, to

(2.2.16)

as h —> 0, by dominated convergence. Further, the derivative is continuous in t,
OO

since each component integral is dominated by J X. di(A.) .

Again from (2.2.12) we find
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2
2 R (t) - R(t - h) - R(t + h)

h2

+
oo

|  sin M
sin

o oc sin
J  cos M 2
0 Xh

2
X h \ 2

X dF +

(2.2.17)

Ml  
2

r  dG .

Since each integral is dominated by J X? di(M) , the right hand member of

(2.2.16) tends to

J cos M X2 dF + 1 sin M X2 dG = - R "(t) ,
o o

(2.2.18)

element by element, as h —> 0, and the continuity of R ( t ) follows from the 

continuity of cos M and sin M by dominated convergence.

To demonstrate that the convergence of (2.2.15) to (2.2.16) is uniform in t , we 

consider the (r, s) element of [R(t + h ) - R (t) ] / h - R ( t ) . This element is
OO

dominated by the integral J 6X dl , which in view of the above is finite.
0

OO

Hence, given e > 0, we can choose XQ>0 such that J" 6X di < e/2 . Further,
^o

given T) > 0, we can find 8 > 0 such that I (sin x )/ x - 1 I < r| and 

I (cos x - 1 )/ x I < rj , if Ixl < 5 . Thus, for I M0 h I < 8 , we readily show

R(t + h ) - R ( t) 
h

X ldFrsl + V2r| J X ldGrsl + J 6X di
0 Xo

o o

<2x/2rJ )td i + £■ .
o 2

(2.2.19)

29



oo

Since |  X dí(X) is finite, we can choose rj so that the right hand member of 
0

(2.2.19) is less than or equal to £, for all t , and the uniform convergence is 

proved.

OO

Using the finiteness of J  X^ dí(X) we can similarly prove the uniformity of
0

the convergence of (2.2.17) to (2.2.18).

Under the conditions of lemma 2.2,

a a _ [ R(°) - R'(0) '
An A R’(0) - R"(0) J ’

as n —> °° . Thus, if A is non-singular, then, for some integer nQ > 0, An must 

be non-singular, for all n > nQ , and hence, as n —> °° , pnt (x ; y ) —» 

pt (x ; y ) ;  the joint density function of X (t) and its mean square derivative

X ’( t ) .

Before considering the limit, as n —» ° ° , in (2.2.9), we need a bound for the 

integrand. We start by deriving a bound for pnt (x ; y ) using a modification of

an argument due to Cramer and Leadbetter (1967). The density pnt (x ; y ) is 

multivariate normal with covariance matrix An and zero means and hence does 

not depend on t . Consequently we write pn(.) for pnt (.), and p(.) for pt (.) .

Lem ma 2.3 If the matrix of second order spectral moments is finite and A is 

non-singular, then there exists a positive constant K and a positive integer nQ

such that

Pn(x ; y ) < K exp j-J-yT C_1yj , 

for all x and n > nQ , where C = - R"(0).
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Proof. Now pn(x ; y ) can be written pn(x I y ) pn(y ) , where 

Pn(xly) = (2tc)' p/21 Ln| 1/2 exp j - (x - m)TLn (x - m )|

is the conditional probability density function of X given Y . The p x p  matrix 

Ln consists of the first p rows and columns of An~l and is non-negative

definite. Thus , for n large enough for An to be non-singular, we have

Pn(x ; y) < (2Tt)-P/2 |L n| 1/2 pn(y) = (27t)-p|An|"1/2e x p j - i - y T Cn1 yj

for all x, y .

By lemma 2.2, Cn —> C = - R"(0),- as n —» °° . Consider the ratio 

y^C p '! y / y^C  y. This is bounded below by the smallest eigenvalue of 

C Cn' l  . Since C Cn'^ I , the identity matrix of order p, as n —» the 

eigenvalue will tend to unity . Hence, for all n larger than some integer nQ > 

0, yTCn_1 y / yT C _1 y > 1 / 2 .

Therefore

pn(x ; y ) < (2k )‘P I An l' 1/2 exp { - ^  yTCn_1 y }

< (2jt)"P I An r 1/2 exp {- ^  yT C _1 y }

< K exp {- ^  yT C _1 y } , 

for n > nQ and all x, y.

Theorem 2.1 Let X (t) be a p-variate stationary Gaussian process having

continuous sample paths, with probability one, covariance matrix R (t) and 

finite second order spectral moment matrix ^  -

If the 2p x 2p matrix
R(0) - R'(0)

A -
. - R’(0)t  - R"(0) _

is non-singular, then for (J)n defined by (2.2.2),

(2 .2 .20)

and E(C) =

1

J <|)(t) dt 
0

<t>(t) = 1  1 p(x ; y) | vTy | dy dw 
a r

< oo
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Proof. By lemma 2.2, Ap -4 A and pn(x ; y ) —> p(x ; y) as n —> °° . By 

lemma 2.3, there exists nQ > 0 such that

pn(x ; y ) < K exp { - ^  yT C _1 y }

for n > nQ . Hence, from (2.2.9),

<]>n ( t ) < J I } pn(x + p2 'n y ; y) | vT.y | dp dy dw
ar o

< J J |y  | K exp {- ^ y TC '1y | dy dw < °o 
ar 4

since d r  has finite extent.

Since, as n -> °o , Bn -> (0,1) and pn (x(a) + p2‘n y ; y ) -> p (x (a ); y ) 

then, by dominated convergence, <})n ( t ) —> 0( t ) ,  where

Thus

0(t) = 1 Jp(x(a) ; y) |vT.y| dy dw .
ar

E(C) -  lim <>n(t ) dt = J <>(t) dt
n—>oo 0 0

is finite.

Under the conditions of theorem 2.1, it therefore follows that C < °° , with 

probability one.

2.3 Factorial Moments

It follows from lemma 2.1 that, if C < °° with probability one, for any positive 

integer k, Un (Un - 1) . . . (Un - k + 1) t  U (U - 1) . . . (U - k + 1) a.s., and

by monotone convergence, the kth factorial moment

Mk = E[U(U - 1) • • • (U - k + 1)] = lim E[U n(Un - 1) • • ■ (U„ - k + 1)] .
n  — >oo

As can readily be shown [ Cramer and Leadbetter (1965) ]

Un(Un - 1) • ■ • (Un - k + 1) = I '  Uni, Uni2 ■ ■ ■ Unik ,
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where the summation is over all sets of k distinct integers from 1 to 2n . On 

taking expectations, we have

E [Un(Un - 1) • ■ • (Un - k + 1)] = X’ P{UnilUni2- . - U nik= l }  . (2.3.1)

Define functions fn , n = 1, 2, . . . , on Q = (0,1]^ by

|2 nk p {Unil Uni2 " •  Unik = 1} if ii ••• ik distinct 
fn (t ) -  \ C

\ 0 if ii ■ • ■ ik are not distinct,

where t = ( t j , .  . . , t j , ) e Q and ir = i (tj.) . Not only does fn ( t ) = 0 if 

ir = is for r * s, but also if ir = is + 1 , for some r ^ s ,  since Unj Un = 0 

a.s., as follows from the definition of the indicator random variables Unj .

Combining (2.3.1) and (2.3.2), we can write

E [Un(Un - 1) • ■ ■ (Un - k + 1)] = } f n( t ) d p  (2.3.3)
Q

where p denotes Lesbegue measure on Q. Futhermore, by Fatou's lemma, we 

have
Mk = lim i  f„ ( t) dpi > J lim inf fn( t ) dp . (2.3.4)

n —>oo Q  Q

Thus, if fn( t ) converges pointwise to a limit function f ( t ), almost everywhere

on Q, then from (2.3.4) we will have
1 f ( t ) dp < Mk . (2.3.5)
Q

In order to show that a limit function f ( t ) does exist for certain stationary 

Gaussian processes we need the following variant on a theorem of Ylvisaker 

(1966).
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Theorem 2.2 If for each e > o , there exists an integrable function ge

(.) on the subset Ae = {t = ( t j , . .  . ,  t^ ) : 1 tj - tj I > e , i * j } of Q, such 

tha t , for all n , fn ( t ) < g£ (t ) , t e  Ae , and, if C < «> a.s., then there exists 

f ( t ) on Q such that fn —» f a.e. on Q and

E[U(U- I)-- - ( U - k  + 1)] = J f d p  ,
Q

whether finite or not.

Proof. Let C = {t : ( ij - 1) 2 'n < tj < ij 2 n , j = 1,. . . , k } for some 

choice of i i j ,  . If i j ,  . . . , i^ are distinct integers then from

(2.3.2)

f n ( t )  = 2nk P {Unil Uni2 ■ • ■ Unik = 1} ,

and
J fn dja = P{Uni, Uni2 ■ • • Unik = 1} . (2.3.6)
c

It follows from the definition of Unj , that Unj = 1 implies Un+] 2\-\ +

U n+1 2i = 1 and Un+1 2 i-l Un+1 2i = 0 a-s- Therefore
k

P{Unil Uni2. . . U nik = l ) < P { n  (Un+I2ir i + Un+12ij) = l }
j= l

= p{ r  u n+1 ri... u n+1 rk = i }

= I*P{ Un+i r i . . . U n+j rk = 1 ) . (2.3.7)

where X* denotes summation over the 2^ terms obtained by setting rj =

2 ij - 1 or 2 ij , j = 1,. . . , k . The last equality follows from the fact that the 

2^ events {Un+j • Un+ j ^  -  11 are mutually exclusive.

Now
P{ L n+i n • ■ ■ Un+] rk = 1 1 = I fn+l dp 5

C r

where Cr = {t : ( rj - 1) 2 'n'^ < tj < rj 2 'n'^ , j = 1, .  . . , k }. Thus
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(2.3.8)

X* P{ Un+1 ri • ■ ■ Un+1 rk = 1 } = X* J fn+i d |i = J fn+] dp = J fn+1 dp
c, u*cr c

and from (2.3.6) and (2.3.7), we have

1 fn d|i < 1 fn+i d)i . 
c c

Note , if i j , . . . ,  ijj are not distinct then fn = 0 and (2.3.8) holds trivially.

Now let Hn = u *  C , where the union is taken over all subsets ( i j , . . . ,  i^ ) 

for which I ir - is I > 1 for all r * s . fn other words H n is the set of all t e  Q 

such tha t , for the given n, I i (tj.) - i (ts ) I > 1 , for all r * s . As Ylvisaker 

(1966) observes, the sequence {fn } forms a submartingale on Q . Similarly the 

sequence { fn+r I(Hn ) } , where I(Hn ) is the indicator function of Hn , is a

submartingale in r > 0 , for each fixed n . Since Hn <z >the sequence

{fn+r I(Hn ) } is dominated by the integrable function g^-n , hence, by the

martingale convergence theorem, there exists an integrable function f such that 

fn+r —» f a.e. on Hn , as r —» °° . As n —» °° , p (Q - Hn ) —> 0 , hence fn

—> f a.e. on Q and
1 fn dp = J fn dq < J fn+r dq -> J f dq < j f dq
Q Hn Hn Hn Q

using the submartingale property of {fn } and the fact that f is non-negative.

Thus we have proved that

E[U(U - 1) • • • (U - k + 1)] = lim J fn dp < J f dq , (2.3.9)
n —>oo Q Q

and the result follows from (2.3.5), since C < °° .

If we assume the matrix of second order spectral moments ^  is finite, X ( t ) 

can be shown to posess a mean square derivative X' ( t ).  For t e  Q with t¡ * 

tj , i  * j , the joint distribution of X(t j ) , . . . ,  X(t^ ), X '(t¡), . . . , X '^  ) is 

multivariate normal with zero means and covariance matrix Df . If Xf is non-
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singular, the joint distribution will have a probability density function which we 

denote by pt (x ; y) = pt ( x j , . . xk ; y ¡ ,  . . y k ).

For t e Hn , let Xnt be the covariance matrix of X¿ , . .  . , X: ; Yj , . .  .
1 Iv 1

Y¡^ , where we have written Xj = X( i 2 'n ) ,  Yj = 2n ( Xj - Xj ) and

ir = i (tj.) ,  for r = 1,. . . , k . If the joint density of the 2k variables exists, 

we denote it by pnt (x ; y) = pnt ( x j , . .  xk ; y l t . . ., yk ).

If t e Ae , for some e > 0 , by lemma 2 . 2 , 5 ^  —» Z j , as n —» °° ,' uniformly 

in t . It follows that if is non-singular on Ae , then there exists nQ > 0 

such that Z nt is non-singular on Ae , if n > nQ .

Theorem 2.3 Let X (t) , 0 < t < 1 , be a stationary Gaussian process

satisfying the conditions of theorem 2.1 . I f  in addition, for some integer k > 1 

and all £ > 0, is non-singular on A£ , then the factorial moment of U of

order k, is given by the following equality whether it is finite or n o t .

Mk = } ■ ■ •} dti- • -dtk J dw r • -dwkJ - ■ J p t (x, y ) l l  (v,Tyi)+d y r  • -dyk , 
o o  ar ar > = i

where, for i = 1, 2, . . . , k , Vj is the outward drawn normal and dwj the 

surface element of dV at X| .

Proof. From (2.3.2) and the subsequent comments, fn ( t ) = 0 unless t e Hn 

in which case

fn(t ) = 2nk P{Unil UnÍ2 • • • Unik = 1}

= 2nk J - - J dy i- - -dyk J ■■■/ pm(xi,- • -,xk; yi,- • -,yk) dxi ■ • • dxk (2.3.10)
AnCyk) An(yi)

where An (y) is the subset of x for which x - 2"n y e  T and x e T’ .

Following the arguments leading to (2.2.6) and (2.2.7) we may substitute ap 

Pj for Xj in the right hand side of (2.3.10) to obtain
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k ^ 11)
fn(t ) = J- • J d y i • • -dyk J ■ ■ ■ J I  • • ■ J Pnjx(a) + p2ny ; y] f [  (v^y,) dp dw

ar arBn Bn i=i

where we have written x(a) + P 2' n y for x(a^) + Pj 2~n y j, . . . , 

x (ak) + Pk 2' n yk and y for y l , . . . , yk .

Since, given e > 0 , Z j is non-singular on Ae , it follows from the remarks 

preceding the theorem that there exists nQ such that I nt is non-singular on Ae 

for n > nQ . Thus, for n large enough , pnt exists and formulae (2.3.10) and 

(2.3.11) are valid for t e Ae .

Writing

I t  =
At Bt " 

B tT Ct

where Ct is the covariance matrix of X' ( t ] ) , . .  . ,  X’(tk ) , we can employ 

the arguments of lemma 2.3 to obtain the bound

Pm(x ; y) = K exp { -d-yT C t_I y } , (2.3.12)

for t e A£ and n > nQ , for some n0 > 0 . The inequality (2.3.12) holds for 

all x = ( x j , . . . , xk ) and y = (y j , . . . , yk ) . In the second member of 

(2.3.12) the kp-dimensional vector y is defined by y ^  = [ y ^ , . . . , yk^] .

We now return to (2.3.11) and consider the limit of fn ( t ) ,  as n —» °° . For 

fixed y^, . . . ,  yk ; a j , . . . ,  ak ; P j , .  .  .  ,  pk we can show that 

pnt ( x(a) + p 2’n y ; y) pt ( x(a) ; y) 

as n —» oo . Also, if v^ .y - > 0 , then the corresponding Bn in the right hand 

of (2.3.11) will tend to the interval (0,1), whereas if Vj^.yj < 0 then Bn = 0  .
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By (2.3.12), the integrand in (2.3.11) is dominated by the integrable function 
I t  1K exp { - 4 y Ct y } lyjl . . . I I . Hence there exists a function f ( t ) such 

that fn ( t ) —» f ( t ) ,  t € Ae , and

f ( t ) = J - - J  dyi- - -dyk J - - - J píx(a); y] FI (ViTy)+ dwj • • -dwk (2.3.13)
ar ar  ¡

a.e. on Q .

For t e Ae , we have fn ( t ) < g£ ( t ) ,  for all n > nQ , where the bounding 

function is defined by

ge(t ) = /■•■/ dyi- • -dyk J ■■■ J Kexp{- j y TC t_1 y } f l  I y i I dwi ■ ■ -dwk .(2.3.14)
ar ar 4 ¡

As is non-singular on the closure of A£, so is Ct . It follows that g*£ (t ), 

the continuous extension of gE ( t ) ,  is bounded on the closure of A£ , since it 

is com pact, and hence ge ( t ) is integrable on A£ . The result now follows

from theorem 2.2 .

It only remains to prove that pnt ( x(a) + (3 2 'n y ; y) tends to pt ( x(a) ; y ) , 

as n —> °o , if y, a, p are held fixed . Since Z t is non-singular for t e A£ , 

it follows from lemma 2.2 that Z nt —> Zj , and hence pnt ( x ; y) tends to 

pt ( x ; y) as n —» °o . The required limit will be assured if we can show that 

the sequence {pnt ( x ; y) } is equicontinuous as functions of x = ( x j , . .

. , x^-), ie given e > 0 , we can find 5 > 0 such that I pnt ( x ; y) - pnt ( x'; y) I 

< e if I x - x' I < 8 , for all n .

The normal density pnt (.)  is given by

pnt (z) = (2n)~ kp | Z n4 |1/2exp{- Z zTZ n4 z) , 

for t g  Ag , for some £ > 0 . In what follows, we drop the reference to t in the

notation as it remains constant.
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. (2.3.15)

Consider

|pn (z) - pn (Z')| < (27r)'kP | l n1|1/2 ex p fi-z ’T 'X nV -i-zT 'X ^z}  - 1

Since X n  —» X non-singular , therefore there exists K > 0 such that 

I XjT 1 l l y ^  < K for some integer nQ > 0 . Now

z ’T X n  1 z ’ -  Z T X n 1 Z  =  ( z *  '  z )  T X n' 1 ( z ’ -  z )  +  2  Z T X n' ! ( z '  * z )  
since X n  is symmetric, and hence

I z ' T X n  ! z '  -  z T X n 1 z |  < | z '  -  ■ z |2 l l X n 1 H +  2 | z | . l z '  -  z l . l l X n 1 ! ! .  (2.3.16)

As X n " 1 —> X " 1 ,  as n - ^ < « , w e  can find L > 0 such that II X n _ 1  II ^  L, for 

all n larger than some nQ > 0 . The inequality (2.3.16) now gives

I z'TXn 1 Z' - ZTXn1 z| < ( 2) Z | L + I z' - Z I L) I z' - Z I 

and from (2.3.15), since I ex - 1 I < I x I for I x I < 1 and , we find

|p n(z) - p n(z')i < (2n)-Pk K ( ^ z |  + I z’ - z I ) L I z’ - z I . (2.3.17)

For fixed z, given e > 0 , by (2.3.17) we can find 8 > 0 , independent of n, 

such that I pn(z) - pn(z') I < e, if I z - z' I < 8 , which proves the

equicontinuity of {pnt (z) ) .
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3. SUFFICIENT CONDITIONS FOR THE VARIANCE OF U

3.1 Prelim inaries

The formula for the kth factorial moment of the number of exits, U, from a 

simply -connected region T has been obtained under general conditions which

do not guarantee the finiteness of the moment for k > 1 . In this chapter we 

obtain sufficient conditions for M2 to be finite, for a bivariate stationary

Gaussian process on the interval (0, T] .

Throughout this chapter, let X ( t ), 0 < t < T , be a real bivariate stationary 

Gaussian process with zero mean, having continuous sample paths with

probability one. We further assume that X( t ) has a non-degenerate distribution 

for 0 < t < T and a finite matrix ?i2 ° f  second order spectral moments. It

follows that the covariance matrix R( t ) has a continuous second derivative at 

the origin and, for small t ,

R(t )  = *.0 + Xl t - ^ 2 t 2 + 0 ( t)  , (3.1.1)

where the coefficients , X,2 are symmetric 2 x 2 matrices, while Aq is a 

skew-symmetric 2 x 2  matrix . The residual term 0 ( t ) satisfies 0 (0) = 0'(O) = 

0 and II 0 ' ( t ) II tends to zero, as t —» 0 . Here, as in the previous chapter, II 0 II 

denotes the Euclidean norm sup {n^ 0^0 n ) l /2 ; where the supremum is 

taken over all unit vectors n . As previously noted, the finiteness of A2 =

- R"(0) implies the existence of a mean square derivative X '(t). We assume that 

the covariance matrix

R(0) R'(0)
. - R'(0) - R"(0) .

of X ( t ) , X'(t ) is non-singular .

I f , at some point in time, X is contained in a simply-connected two- 

dimensional region T, then, at some subsequent time, the process may cross the
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boundary 3 r  and exit from T . In this chapter U denotes the number of exits of 

X from T in the interval (0, T] .

We further assume that the boundary 31" has no double points and consists of a

finite number of regular arcs of finite extent. A tangent x exists at all regular
dx

points of 3 r  , where it has a continuous derivative ^  with respect to arc length

s . At a vertex of 3r, where two regular arcs meet, x assumes limiting values 

x '  from below and x + from above . Finally, we assume 3r has no.cusps, ie 

if (|) is the angle measured from x '  to x + in an anticlockwise sense, we 

assume - 7t < (J> < 7t .

It follows from the work of the previous chapter, that E ( C) , and hence E(U), is 

finite if ^2 < 00 • Further, the second factorial moment of U is given by

M2(T) = E [ U ( U-  1)]

= J J dtidt2 J Í dsids2 l Ipt(xi,x2;yi,y2) (v1Tyi)+(v2Ty2)+dyidy2 , 
oo a r a r

(3.1.2)

where xj = x (Sj) , i = 1, 2 . In (3.1.2) we assume the covariance matrix of 

X(tj  ) , X(t2 ) ,  X'(t] ), X '(t2 ) , denoted by

A =

is non-singular, for

R(0) R(t) R'(0) R'(t)

R(t)T R(0) - R'(0 R'(0)

- R'(0) - R'(t) - R"(0) - R"(t)

R'(t)T - R'(0) - R"(t)T - R"(0)

t = t2 - ti * 0 .

(3.1.3)

Since the process is stationary, the density pt (.) = Pt jt2(d depends on t^ ,

t2 only through the difference t . Integrating over the tangential components of 

y^ , y2 and writing yj , y^ for the normal velocities y j , v2^ .y2 ,

respectively, (3.1.2) becomes
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(3 .1 .4)M 2 (T) = 2 J (T - 1) f(t) dt ,
o

where
f(t) = J 1 pt(xi,x2) ht(si,s2) dsids2 , (3.1.5)

a ra r

and
o o  o o

ht(si,s2) = i  Jpt (yi ,y2 lxi ,x2) yiy2 dyidy2 . (3.1.6)
o o

In (3.1.6) , pt ( y j , y2 I x j, \ 2  ) is the density of the normal velocities, given 

X(ti ) = x j, X(t2 ) = X2 . This conditional distribution is N( m, X ) , with

and

m
mi
m2

Vi 0
0 v2.

B 1 A" 'x f
- X 2 .

I  = o n
. 021

012 
O22 .

= V] 0
. 0 v2.

T( C - B t A 1B) Vi 0
. 0 v2.

(3.1.7)

(3.1.8)

where the 4 x 4 matrices A, B, C are defined by the partition

A = A B

_Bt  C -
(3.1.9)

Expression (3.1.5) is obtained from (3.1.4) by writing the joint density

pt ( x j, x2 ; yi > y2 ) > i'1 terms ° f the conditional density pt ( yj , y2 I *2 )

and the marginal density pt ( Xj, \ 2  ) of X(tj ) , X(t2 ) •

Theorem 3.1 Suppose the process and boundary dT are as described above, 
dx

If the curvature I I is bounded on the regular arcs of dT, then a sufficient 

condition for the finiteness of the second moment M2 = E [ U(U - 1) ] is

0 1

for some 8 > 0 .
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Proof. Write p =  <̂ 12 / ( ° i  l °22 » and substitute

zj = ( y j - m j) O] , Z2 = (y2 - m2 ) 022 " ^ 2 into the integral in

(3.1.6) to obtain
00 00

ht = J J <t>(zi,z2 ; p) (M-1 + Zi) (JI2 + z2) (On o 22)1/2 dz!dz2 , (3.1.10)
-M-2 -til

where Pj = g ^ '^ 2 ( i =  1,2 ) and

(1 - p2 )"1/2 I zj2 + z22 - 2pziZ2 
(J)(Zl,z2 ; p) = ----- --------- exp - - i------- ?----

27C I 2(1 - p2)

is the standardised bivariate normal density .

Differentiating (3.1.10) with respect to p and employing the well known result 
¿kb d~ (b
—  = 5—3— , ( Cramer and Leadbetter (1967), p. 26 ] , we obtain, on 
dp dz l dz2

integrating by pans with respect to zj and Z2
dht

= (o i i G22)1/2 ^ ( z i ,z 2 ; p) (3.1.11)

where d>(z^, Z2 ; p ) is the bivariate normal distribution function .

When p = 0 ,  ht = ( G ] ] G 2 2 ) ^ 2 p im j)  \|/(m2) with
00

y(p) = 1 {2k )a i 1 Q - \ z1 Qi + z)dz = pd>(p) + p(p) , (3.1.12)
-M-

where (j)(.) and 0 (.) are the density and distribution functions, respectively, of 

the standard normal distribution . It follows that we can write

P

ht = ( a i i 0 22)1/2 V (P i)¥(P2) + (0 n 0 22)1/2l  ^ ( P i ^  ; r) dr
0

and, on substituting for \j/(.) using (3.1.12), we obtain
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ht = mim2 <ï>(|li)<Î>((i2) + m!0221/2 <t>(M-i)<l>(M-2) + Cfn1/2m2 (|)((ii)0(|a2) +

+ (0 n 0 22)1/2 <KM-i )<KM-2) + J (̂M-bM-2 î r) dr
(3 .1 .13)

Since L is non-singular if tj * t2 , the matrices A and X are non-singular for 

t * 0 . Thus the density pt (xj,  X2) will be uniformly bounded for t > 8 , for 

any Ô > 0 . Furthermore, the right-hand side of (3.1.13) is a polynomial in m j 

and m2 with coefficients which are bounded for 6 < t < T . The non-singularity 

of A also implies that and m2 are bounded linear functions of x^ and X2 .

From these observations we deduce that

f(t) = 1 1 p t(x lsx2) ht(si,s2) dsjds2 
a r a r

is finite for Ô < t < T , and hence the integral in (3.1.4), for t in the range 5 to T, 

is finite. Clearly if M2 (T) is to be infinite, it must be from the behaviour of fit )

for small t .

3.2 The Behaviour of fit ) for 0 < t < 5

We consider the contribution to fit ) from three regions of the domain of 

intergration, BT ® 3T , in (3.1.5). For some £ > 0 , consider the division of the 

domain of intergration over s j ,S2 into the following three regions:

(a) S2 outside [ sj - £ , sj + £ ] and all s ̂  ;

(b) S2 € [ sj - £ , S| + £ ] and all sj such that [ Sj 7 £ , Sj + £ ] contains no 

vertex of B r ;

(c) S2 e [ sj - £ , sj + £ ] and all sj such that [ S] - £ , Sj + £ ] contains a 

vertex.

Let Ae (s) be the subject of B f outside the closed interval [ s - £ , s + £ ] .
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3.3 Region (a)

With our assumptions about the vertices of 5T, if e is small enough then 

lx ( s j ) -  x(s2) I ^  e / C  for some C >1. Writing the joint density in (3.1.5) in 

terms of the conditional density of X (t2) , given X(tj) = xj  , the contribution

to f ( t ) of the region is

fa(t)=  J I p(xi) pt(x2 l x ]) ht(si,s2) ds2dsi . (3.3.1)
ar a e(si)

Conditional on X(0)) = x j , we find [see appendix A] , X(tj) ~

N[ R(t ^ ( O ^ x j  , S ( t ) ] , where

S(t) = R(0) - R r i ^ R l O r ^ r i )  (3.3.2)

= K9 t 2 - ( 0 + 0T )

for small t, where K2 = X2 + ^l^-o ~ ^ 1  . Thus, for small t , we have

p t( x 2 I X ] ) =  ~ ------ f 2 e x p { - l ( x 2 - X ! ) T J - k 2_1(x 2 - X !)  } (3 .3 .3 )
2n  2 t2

Lem ma 3.1 If I x j - X2 I > £', for some e' > 0 , then, as t —> 0 , 

ht < | X l ~X2 | 2 [ 1 + o( l ) ]  . (3.3.4)

Proof After a deal of straightforward though tedious algebra [see appendix], 

we find, for small t ,

0' + 0 ,T
T

0 + 0 - 0" + 2 0 ' 0 + 0T

b t a _1b  =
t t2 t t2

- 0" + 2 0 ’ 0 + 0T 0 ’ + 0 ,T
T

0  + 0
t t2 t t2

+ o(t) (3.3.5)

and Bt A_1" x r
.x2.
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| l + ( - ^  +  -  I k 2_1 +  0 ( t ) J v  +  j | -  Q -  +  S -± -Q
t t2

k ^ ^ A o’ 1 +  0 ( t )  x i

(3 .3 .6 )

(1 + (' T "  + ^ T “ ) K2_1 + 0 (t)jv + {(- T -  + + O(t) jxj

where we have written v = ( X2 - xj ) / t .

Since I x j I is bounded on d r  , substituting (3.3.6) into (3.1.7) we find 
Ix ?  - Xi I

I mj I <------ --------  [ 1 +Q (1) ] , i = 1, 2 ,

as t —> 0, with 0 < t < 6 . Since, from (3.3.5) and (3.1.8), = o(l) as

t —> 0 , the result follows from (3.1.13).

Thus from (3.3.3) and (3.3.4), for 5 small enough and 0 < t < 5 ,

p,(x2 I X]) h, < K exp J - (X2 '  Xl)T K2 ' x i) j Xl'2 (3 .3 .7)
I 2t2 I t4

for positive constant K. Since I \ 2  - x j I > e /  C on region ( a ) , a simple 

maximisation gives

p,(X2 l x i ) h ,  < K exp f  r 2| r 4 ,
I 2̂ c I

where (i is the largest eigenvalue of k -> and K is a positive constant, not 

necessarily the same as in (3.3.7). Hence Pt ( x2 ' x i ) ht tends to zero, as 

t —» 0 , uniformly on region ( a ) . Since p(xj ) is bounded on 3T, and 5T has 

finite length , it follow s, for fixed e, that f& ( t ) in (3.3.1) tends to zero , as

t 0 .

3.4 Region (b)

For fixed s  ̂ , substituting S2 = S] + t s we get
Si te

J Pt(x2 I x 1) h [ ds2 =
si - e -e/t

where pt ( v I x j ) is the conditional density of v = ( x 2 * x j ) / t  . For

T t ' 1 p,(v(st) I xi) h, ds , (3.4.1)
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S2 e [ s j - e , S j  + e ]  , x(s) posesses a continuous second derivative at 

s = S} and s = S2 . On expanding x(s2 ) about sj , we get, on rearrangement,

v(st) = s X\ + ^ -s2 t ^ ~  + o (s2 t) .
2 dsi

Multiplying through by the unit normal VjT we obtain , to first order in t ,

V!Tv(st) = = - s | l  ci , (3.4.2)
2 dsi 2

where Tj = T (sj) e tc ., and C| is the curvature of d r  at S| . Similarly , writing 

s l = s2 - s t  and expanding about S2 , we find to the same degree of

approximation

v2Tv(st) = = ^ c2 , (3.4.3)

where C2 is the curvature of d r  at S2 .

Substituting (3.3.6), (3.4.2) and (3.4.3) into (3.1.7) we find, since I x j I is 

bounded on d r  and I v(st) I < s ,

m, = v d £ r  + a + e _ k 21(v + ?vi X-o Xx i ) + aiO(t)

m2 = v2
T 1

6 ' , 6 + 9
(3.4.4)

K2_1(v + y^iXo'xi) + a20(t)-1

where aj , a-> are functions of s, sj, t bounded by a quadratic function of s, for 

all sj and t < 5 . In deriving (3.4.4), we have assumed cj , c-j bounded on 

d r. Substituting for m^, from (3.4.4) into (3.1.13) we obtain

,,T
ht = A (0n  0 22)1/2+ Bo j 1/ 2̂ -  + 9 + 9 1 b+Bo22/2V] ^  + 9 + 9 b+

+ C v 2 -r  6
,T

+

t

9 + 6
t 2

bv
(3.4.5)

9 ' , e + e b + rp

where A, B, C are bounded functions of s, s j, t for t < 8 , and b =

K2'*( v ( s t ) + /(} ) .  The residual r\ is a function of s, s j, t which is
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bounded by a quartic in s, uniformly in s j, and t < 8 , and T| —» 0 , as t 0

We now turn to approximating the conditional density pt ( v I xj ) which 

occurs in (3.4.1) .
dx

Lem ma 3.2 Let K, e be positive constants such that Ke < 1/2 and I ^  I < 

K on the regular arcs of 3T . Then, if 5 is small enough,

p t( v(st) I xi) < C exp ! -
16(0.

for 0 < t < 8 , I st I < £ and xj e 8T , where \i is the largest eigenvalue of 

k 2 and C is a positive constant.

Proof. It follows from (3.3.2) that, conditional on X(0) = x^,

t _1[ X ( t )  -X( 0 ) ]  ~ N [ t _1(R(t )TR(0)_1 - l ) Xl , f 2 S ( t ) ]

and from (3.1.1), for small t,

tA( R(t )T R(O) '1 - 1 )Xl = ( -  XAo1 - ^  W  t + e V r 1 )xj .

Hence, for small t, we can write

(3.4.6)

(3.4.7)

Pt(v 1 xj) = ^ | r 2S (t) |'1/2exp J - l -u T[ f 2S ]'1uJ ,

where

U = V + ( X ^ X q  + y  ^2^-0 t - 0  )lo i '■* )X1 •

Since the matrix A, defined by (3.1.9), is non-singular for t > 0,

r 2S(t) = K2 - r 2 (e + eT) + 0 (t )
is non-singular and tends to k 2 as t —» O.Thus, for 0 < t <8  and 8 > 0 small 

enough, we have

u I2
UT [ t " 2S ] 1 U >  i - U T K2_ 1 U >

2 2 2p

for all u. In view of the above inequality and ( 3.26 ), we find
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(3 .4 .8)
, , , ^  ™ , IU I2 ,Pt (v I Xi  ) > c exp j - j ,

for some positive constant C.

If sj and S2 = s i + st, with I st I < E, are two points of a regular arc of 3r, then 

by the mean value theorem

x(s2) - x(Si) - (S2 - Si) Xi i = î f e - )2 ( ê L J s i <s2- , 2 K '
where Tj is the tangent at S] , and S3 lies between sj and S2- Substituting for

v
s
V 1 1 1

S2 and dividing by I st I, we obtain I— - Tj I < 2 I st I K < ^ e K  < ^  ,

from which it follows that I v I > ^ I s I. Thus, from (3.4.7), I u I = I v + a  
3

> I v I - 1 a  I > ^ I s I - 1 a  I , where we have written

a = (  W + i W . - e V . - > ) x ,  = W x I + 0 ( , ) ,

and therefore
( 2-1 s 1-1 a  I ) for I s I > - 1 a  I 

,2 ^  / 4 3u r  > !
0 for I s I < — I a  I .

Since I x j I is bounded under the conditions of the lemma, I a  I is bounded for Ô

sufficiently small and hence we can find a positive constant a for which 

l u i 2 > ^  I s I 2 - a2 .

The lemma now follows on combining the above inequality with (3.4.8).

From (3.1.5) , (3.4.1) and lemma 3.2, the contribution of region (b) to f(t ), 

for 0 < t < 5, can be written

49



(3 .4 .9)

- j  y . - -fb(t) = J J r 1 pt(v(st) I XT) P(X!) ht ds dsi
Ae -E/t

<  j  ï  r 1 C e x p l
Ae-e/t i 16B |

5— ’ p(xO ht ds dsi

where A£ is the subset of s such that the closed interval [ s - e , s + e ] does not 

contain a vertex of 9 r  .

Now (3.4.5) gives

ht < A(0 h 0 22)1/2 + B o/ j2 Ibi
T Te’ , e + e

+ Bo 222 Ibi o ’ , e + eT + Cibi2 0 ’ , 0 + 0T
t t2 t t2

and

b l  <  Il K J 1!! [ I S I +  U iÀ o  XJ I ]  .

(3.4.10)

+ 11)11 ,

Since p( Xj ) and I Xj I are bounded on 3 r  , substituting (3.4.10) into the

second member of (3.4.9) , we find

fb(t) < A (ct] i o 22)1/2 t 4 + B (Oj1/2 + o 22/2)

o’ , e + eT
t

o' i e + e t-u

+ c
t"

(3.4.11)

f 1 + 77 ,

where A, B, C and rj are positive constants

Let w ( t ) = II 0" ( t ) II , which following (3.1.1) is continuous and o(l), as 

t —> 0 . It is an elementary matter to prove [see appendix A, section 3] that the

integrals î  H 0 '( t )  H .J — dt and.2
J H0(t)

o t- o t
dt are bounded by

3 n t
f ïStdt ,

which is finite under the conditions of the theorem . 

Since, for small t, using (3.1.8) and (3.3.5), we have
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o H = Vj
T T

9' + 6 ' 9 + e vi + o(t) ,

with a similar expression for 022 > it follows that

f ^ - d t  < 2Î 9' dt + 2j ^ -^ -d t + J o( l )dt9
0 t ' 0 t-

Hence f dt , and similarly f ^21 > are finite.

Applying the Cauchy - Schwartz inequality, we get

f (OnOM)i n d, j j g U d J a i d t }
0 t \ 0 t 0 t /

1/2

and hence the first member of the inequality is finite . Using arguments similar

to the preceding, we can show that Î 9 ' , 9 + 9
12 t 3

dt is bounded by

f 3-̂ — -̂ dt and hence finite . Bearing in mind that Oj j ^  , 0 9 and 
n t

9 ' 1 9 + 9 are bounded on [0, 8] , it follows from (3.4.11) and the

succeeding remarks that f fb(t) dt is finite
0

3.5 Region (c)

We may suppose, without loss of generality, s = 0 at the vertex xQ . The 

contribution of the region to f(t ) may be written

f c ( t ) = /  Î  p(xi) p(x2 I xi) h t ds2 dsj
- e si - e

(3.5.1)
= I- - + I-+ + I+- + I + + ,

where the four summands correspond to the partition of the range of integration

into four disjoint regions according to the signs of the two variables of 

integration s  ̂ and S9 . Thus I_+ is the integral over S2 e [ 0, Sj + e], for all
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Sje [ - e, 0] . The integrals I . . and I++ may be subsumed under region (b), 

so we concentrate on obtaining bounds for I_+ and I+ _ .

Now consider I .+ , where s^ < 0 and S9 > 0 . To first order in s

X1 = X0 + S1 X' 

x2 = xo + s2 x + 

and therefore

1 , X 
v = 7  ( x2 - X1 )

s2 + 
= T T .

S1 . 
- T  x

Thus we have

v^.v  = ( V ' )Tv = ^ ( V ■ )TX + = - — sin d) , (3.5.2)
t t

and

< < II < + )Tv = i f ( V + )T X ' = - — sin <b , 
t

(3.5.3)

where 0 is the angle between x '  and x + , as shown in figure 3.1 for an 

external vertex .

v

figure 3.1 The angle <J) at an external vertex of 3 r.

From (3.1.13) it simply follows that ht satisfies

h t < ( a n a 22)1/2 { V(M-i )V(M-2) + 1 > . (3.5.4)

with \|/((i) defined as in (3.1.12) . For small t , from (3.1.7) and (3.3.6), we 

have

m i = v xTv + o(l) , i = 1, 2 

and, on substituting from (3.5.2) and (3.5.3), we g e t , approximately,
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mi = - ^  sin (j) , m2 = - sin <J> .

Hence and m2 have opposite signs. For the sake of definiteness, we

suppose <J) > 0, as would be the case for an external vertex, in which case 

m j < 0 and m2 > 0 , for small t .

It follows immediately from (3.1.12) that

\|/((i) < (i + 0 (0) = Ji + (2t i) '1/2 if |i  > 0 I 

and Y((i) < 0(p) < (27t)-1/2 if j i < 0. f

Since p j < 0 and P2 > 0 > (3.5.4) and (3.5.6) give

ht < (011022)1/2 {[ p 2 + (2jt)"1/2 ] (2 t t )-1/2 + 1 ) 

= (2 n )'1/2 o 11/ 2m2 + { (27X) 1 + 1 } ( o n o 22)1/2

where we have employed the definition of (H following equation (3.1.10)

Introducing the conditional density pt (v I xj  ) = t -  pt (x7 I xj  ) into the 

integral
0 Si +£

I- + = J  J p(X]) p(x2 IX]) ht ds2 dsi
-e 0

and making the substitutions Sj = t wj , S2 = t W2 , we get
0 w, + e/t

I-+ = J J p (x i)  p t (v I Xi) ht dw2 dwj ,
-e/t 0

with v = W2 T + - wj t ‘ . Since p(xj) is bounded on d f  , (3.5.7) and

(3.5.8) give, for small t ,
p wi + e/t

L + < K J  J pt (v lx] )  (2Tt)-1/2a 111/2m2 + ( l + ^ ) ( a n 0 22)1/2
e/t 0 L ' 271

for some positive constant K and, since the integrand is positive,

dw2 dwi

(3 .5 .5 )

(3.5.6)

(3.5.7)

(3.5.8)

53



0 w. + e/i
I. + < K J J p t (v l x i )  - (2n)-1/2o 111/2wisin (})+ ( l + - L )  ( a n a 22)1/2-p/t n L ' ¿71' J-E/t 0

on substituting for m2 from (3.5.5).

(3.5.9)

dw2dw¡

As t —> 0 , pt (v I Xj ) tends to a non-singular bivariate normal density . Thus, 

for small t , pt (v I Xj ) is proportional to a non-singular density for w j, W2

and consequently the integrals in the second member of (3.5.9) are finite .

Hence, there exists 8 > 0 , such that, for 0 < t < 5 ,

I . + < A Oj1/ 2’ + B (on o 22)1/2 (3.5.10)

for positive constants A and B . Clearly a similar inequality holds for I+ .

Since Gj J 1//2 = o(l)  = a 22^ ^  > as t 0 , it follows from (3.5.10) and the

remarks that follow (3.5.1) that f fc(t) dt is finite .
0

Combining the results for the three regions, we have shown that, under the

conditions of theorem 3.1, f f(t) dt is finite and the theorem follows
0
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4. THE DURATION OF AN EXCURSION

4.1 Prelim inaries

In this chapter we consider the excursions of a Gaussian process outside a large 

two-dimensional star-shaped region. Let D = { ; L > 0 } be a family of

boundaries of similar two-dimensional star-shaped regions T^ , indexed by a 

parameter L proportional to the length of . A ray drawn from the origin 

meets each boundary in just one point .Thus, if x(s, L) is the point on with

arc-length s, we can write x(s, L) = Lx(s /L, l)and it follows that u = s /  L and 

L provide a coordinate system in the plane .

As in the previous chapters, we assume = 3T^ to consist of a finite 

number of regular arcs of finite length . A tangent x exists at all interior points

of the regular arcs,where it has a continuous derivative with respect to arc 

length s . At a vertex of Dj^, where two regular arcs meet, x assumes limiting

values x . from below and x + from above the vertex . Further we assume 

has no cusps .

Thoughout this chapter X ( t ) is a two-dimensional stationary Gaussian process 

with mean zero and covariance matrix R( t ) which satisfies:

(i) R(t )  = .̂0 + X1t - \ X 2 1 2 + 1 3 + ¿*>4  t4  + © > (4.1.1)

where 6 (0) = 0'(O) = 0"(O) = em(0) = 0 and 

0(iy) (0) = o(l), for small t ; and

(ii) II R ( t ) II = 0 ( f a ) ,  a  > 0 , (4.1.2)

for large t .

This last condition ensures that the spectrum of X ( t ) is everywhere continuous 

and hence the process is ergodic .
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As follows from chapter 2 , the existence of ^2 will ensure that the mean

number of exits, p, in a unit interval is finite . Further, by a lemma of R.L. 

Dobrushin, it follows that the sequence of crossings of form a regular

stationary stream of events [ Cramer and Leadbetter (1967), p. 201 ] . As an 

extension of the notation of chapter 1, we write U(tj,  b  ) for the number of

exits from T in the interval (tj, t2 ] and D(t j, t2 ) for the number of entrances

into T in the same interval. Since the stream of events is regular, we have in 

particular P{ U(0, t ) > 1 } = pt + o ( t ) ,  for small t .

Given an exit at t = 0, we consider the distribution of the time to re-entrance into 

r ^ ,  as L —» 00 . The probability of re-entrance before time t, conditional on an

exit at t = 0 , in the 'horizontal window' sense of Kac and Slepian (1959), is

F ! ( t ) = 1 - lim
£—>0

P{ U(- £ , 0 ) >  1 ; D ( 0 , t )  = 0 } 

P{ U ( - e , 0 ) >  1 }

= 1 - 1  lim — P{ U(- £, 0 ) > 1 ; D(0, t ) = 0 } 
P £—̂0 e

(4.1.3)

on using P{ U(- e, 0 ) > 1 } = pe + o (e ) . For an ergodic process, it can be 

shown [Cramer and Leadbetter (1967) ] that F j ( t ) is a proper distribution

function .

The mean duration 0 of an excursion is given by
00

6 = j  t dFpt ) = J -P{X e T' } , (4.1.4)
0 P

where F  is the set of points exterior to D .
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Using 0 as a scaling unit, we look for the limit of F^(0 t ), as L —» °° . The

following lemma provides a justification of our approach to finding the 

asymptotic distribution of the duration of an excursion .

Lemma 4.1 If the limit function

G(t  ) = lim ±  lim 1 E [ U(- e, 0 ) D( 0, 0 1 ) ]
L—)oo P £—>0 e

exists for T > 0 and is a distribution function, then lim Fi( 0x ) = G(t  )
L—>oo

Proof. The proof derives from the work of Volkonskii and Rozanov (1961).

From (4.1.3) we have, for tj < t2 ,

Fi ( t2 ) - F j d j )  = 1  lim 1  P{ U(- e, 0 ) > 1 ; D(0, tj ) = 0 ; D( q , t2 ) > 1 }
P £—)0 £

< 1  lim J-P{ U (-e, 0 )  > 1 ; D( t], t2 ) >  1 }
P £—̂0 £
< 1  lim — E [ U(- e, 0 ) D( ti, t2 ) ] . (4.1.5)

P £—̂0 6

Writing H ( t , L ) = F j ( 0 t ) to show the dependence on L explicity, since Fj(0) 

= 0 , we obtain from (4.1.5)

H(t, L) < — lim — E [ U(- e, 0 ) D(0, 0 t ) ] . 
p £— e

Hence ,
lim sup H ( t , L ) < G ( t ) .
L  — >oo

(4.1.6)

Now assume that lim inf H ( t , L ) = G ( t ) - 4 c , for some t > 0 and some 

c > 0. Hence we can find an unbounded sequence {an } such that

H ( t , an ) < G ( t ) - 2 c , (4.1.7)

for all n . Since, from (4.1.5), for any s > t ,
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lim sup [ H( s, L ) - H( t, L ) ] < G(s ) - G ( t ) , 
L —>oo

it follows that

H( s, an ) - H( t, an ) < G ( s ) - G ( t ) + c , 

for all sufficiently large n . Utilising (4.1.7) we find

H(s, an ) < G ( s ) - c < 1 - c (4.1.8)

for any s > t , since G(.) is a distribution function by assumption, only 

supposing n to be sufficiently large . However , H(s, an ) is a distribution

function with unit mean, hence H(s, an ) > 1 - 1 / s , for all s > 0 .

If s > 1 / c , this implies a contradiction of (4.1.8), and hence of the original 

assumption that lim inf H(t, L ) < G ( t ) .  Thus, we have proved that lim inf 

H(t, L ) > G ( t ) for all t , and the lemma follows from (4.1.6) .

Using arguments similar to those used in chapter 2 for the factorial moments, 

we obtain, for 0 < t ]  < ,

E [ U (-e , 0 ) D(T!, t 2 ) 1 = f dtiJ* q ( t 2 - t i  )d t2 , (4.1.9)
-£ Ti

where
q(t) = J i  i  Jpt (xi, x2, yi, y2 ) (ViTyi)+(v2Ty2)’ dyidy2dsids2 .

D D

In the integrand, the function pt ( Xj, X2> y j, y2 ) is the multivariate normal 

density of X(0), X ( t ) ,  X'(0), X ' ( t ) at X(0) = x j = x( s j ), X ( t ) = X2 = 

x( S2) ; Vj , V2 are unit outward drawn normals to at Sj and S2 ,

respectively, and (.)+ , (.)' denote positive and negative p a rts .
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We assume that the distribution of X(0), X ( t ) ,  X'(0), and X ' ( t ) is non-

singular, for t > 0 , and that pt (.) is a bounded continuous function of t . It

follows that q ( t ) is a continuous function for t > 0 .

Thus we have

lim — E [ U(- E, 0 ) D(Tlf t 2) ] = f  q ( t ) dt ,
£—»0 E

and (4.1.5) becomes

F i (x 2 ) - F i (t i ) < — J2q ( t ) dt , (4.1.10)
M- Ti

Since F j ( t ) is continuous at t = 0 [ Cramer and Leadbetter (1967), § 11.5 ]

and the integral in the second member of (4.1.10) is ultimately increasing as 

x j —> 0 , the inequality will hold when Tj = 0 . To make the dependence on L

explicit, we write

I VG ( t , L )  = 1  J q( t ) dt , (4.1.11)
II o

Before we turn to consideration of the limit of G(t , L ), as L tends to infinity, 

we first obtain asymptotic expressions for |i and 0 .

4.2 Asymptotic Expressions for (i and 0 .

As we show in chapter 2, for a stationary Gaussian process, (i = E [U(0, 1)] is 

given by
M- = I [On <p( Pn/an ) + pn <F( PnMn ) ] P[x(s)] ds , (4.2.1)

D

where a n^ = ^  + ^ l^ o ’ ^ l  ) v > Pn = and where

0(.) and d>(.) are the density and distribution functions, respectively, of the 

standard normal distribution . The other function in the integrand , p[x] =
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(2k ) 1| .̂0 r 1/2 e Q 2̂ , where Q = x ^  ^0"^x , is the marginal density of 

X(0) .

For the remainder of this chapter, we will suppose that Q has a unique 

minimum on at x = xQ , where without loss of generality we assume s = 0 .

Theorem 4.1 As L —» °° , (i satisfies the following lim its .

(i) If xQ is a regular point of ,

| i  c 0  ,  
p[x0] "" 1 k-2 + P

1/2

(ii)

(iii)

where k d2Q
ds2 -*0 p = v the suffix zero indicating the

quantities are to be evaluated at s = 0 . 

If x0 is a vertex of and X] * 0 ,

P
p[xo]

—> I p I .

If xQ is a vertex of and /\.j = 0 ,

L P 1 ( o j
p[x0] y[2K ' k + k -I  '

where k+ = A.0*^x0 , k‘= - j - T _ T  X0"^x0 are positive

constants and o + , a  . denote a n evaluated with v = v+ and v = v . ,  

respectively. The vectors v+ and v . are the limiting unit outward drawn 

normals corresponding to T+ and T . .

Proof. For any given 5 > 0 , there exists f > 0 such that [ Q(x ) - Q(x q) ] / L 2 

> f 2 for all x(s) e  such that I s I > L5 . To see this, write Ql (s ) =

Q[ x(s, L)] , then QL(s) = Q[ x(s, L)] = Q[ Lx(u, 1)] = L2 Q[ x(u, 1)] = 

Q i(u) , with u = s /L  , as follows from the similarity of the boundaries D^. 

Since Ql  has a unique minimum at s = 0 , therefore Q j has a unique minimum 

at u = 0 , and hence [ Ql (s ) - Ql ( 0 ) ] / L 2 = Qj(u) - Q j(0) > 0 , for 

I u I > 5 > 0 .
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Let us define f 2 = inf [ Qi(u) - Qi(0) ] > 0 , from which we obtain
I u I > 6

[ Q(x ) - Q(x q) ] / > f  ^ . Since o n is bounded and (3n = O (L ), as L —» °°,

the integrand of (4.2.1), for I s I > L 5 , is bounded by

KL p[x(s)] = KL p[x0] exp { -1  [ Q(x) - Q(x0) ] } < KL p[x0] e ' 2^ ^  ,

for some positive constant K , as L —> °° . Thus, since the perimeter of =

O(L),
J [On 0 ( Pn/On ) + Pn <*>( Pn/^n ) ] p[x(s)] ds

Isl > L5
< p[xo] K L e " 2f 2 l2 J ds

Isl > L8

< p[x0] K’L2 e ' 2f2 l2 ,

where K’ is a positive constant. Thus, from (4.2.1), we can write

M- = f  [On <|)( Pn/On ) + [3n 0 (  Pn/an ) ] p[x(s)] ds +
-L6 (4.2.2)

+ p[x0] 0 ( L2 e ' 2f2L2)

(i) At xQ , -jy  = 2XQ1 = 0  , hence (3n = 0 , since ^.jv = p x ,

where p is a parameter of the bivariate process related to the circulation of the 

velocity field .

For 5 > 0 small enough, [ Q(x ) - Q(x0) ] /  s ^ is bounded away from zero 

and I (3n /  s I is bounded for - L5 < s < L5 . Thus

°n  <K Pn / °n  ) + Pn Pn '  °n  )

is dominated by a linear function of s, and
I  2

P[x(s)] < p[ X0 ] e ' 2 a s

for some positive constant a . It follows that the integrand in (4.2.2) is 

dominated by an integrable function of s .
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Further, as L —» °° , for fixed s , [ Q(x ) - Q(x q) ] /  s “ —> 4 ( ) = k“ ,
z dsz

d(3n
and Pn / s —> b = ( )0 , where the derivatives are evaluated at s = 0 . 

Dividing (4.2.2) throughout by p[ xQ] and letting L —» °° , we find
o o

y - r  -> J [ Go <|>(bs/Go) + bs <F(bs/ao) ] e - i k2s2ds ,
P M

where sQ is evaluated at s = 0 . The result (i) follows on evaluating the integral

(ii) In this case the derivative ^  does not exist at xQ . However, since Q 

is a minimum at xQ , we have ( ^  )0+ = 2x+^ X 0'^ x 0 > 0  and )D. = 

2t  .̂0'^ x 0 < 0 for the limiting values of the derivative . Thus k+ =

^ 0~1x o  and k ' = ?t0'^ x 0 are positive constants independent

of L .

We can choose 5 > 0 , so that [ Q(x ) - Q(x q) ] /  ( I s I L ) is bounded away 

from zero for I s I < L 5 . As L —> °° , for fixed s ,

Q(x) - Q(xp) I 2k + for s > 0
L I s I | 2k" for s < 0 .

Since, using the definition of ,
Q(x) - Q(x0) = Q t ( s /L )  - QKO)

Llsl s / L

allowing L to tend to infinity with s fixed, the last member will tend to 
dQj dQj

( )Q+ or - ( )0. according as s > 0 or s < 0 , respectively .

On division by p |x0], the integral in (4.2.2) can be written

I I  = J g(s) f(s) ds
-L5

(4.2.4)
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where

g(s) = a n <K [3n /  o n) + Pn d>( pn /  a n) ,

and

f(s) = = e x p ! - 2 [Q(X) * Q(Xo)]

On introducing a new variable of integration w = Ls in (4.2.4), we obtain

lL - t ¿ 8 ( r l f( f ) dw- <4-2-5>- L 8

Now consider

= - J -v (s )t X.i X.o 1x (s ,L ) = -v ( s )T X i X 0]x(u, 1) , 

where u = s / L . Hence Pn /  L is bounded as a function of s , uniformly in L .

'y
Writing s = w / L , u = w / Lz , in the above and, letting L tend to infinity with 

w fixed, we find

Pn
L

jp T.J X.o'xCO, 1) = p k + , if w > 0 

|p  T T 1) = p k ' , if w < 0

on using the relation A.jV = p t  .

(4.2.6)

If we assume p > 0 , then pn —> °° , as L —» °o , if w > 0 , and pn —> -  oo , if 

w < 0 . It follows that g( ^  p k+, if w > 0 , and g( ^ ) -^  0 , if

w < 0. Further,

Q[x(s)] - Q(x0) = L2[Ql(u) " Q l(° )] Iwl = Q-I(l1.) ~ Qi(°) |W|
L Isl lul

on writing u = w / L~ . Thus, letting L tend to infinity with w fixed, we obtain

Q[x(S)] - Q(xo) -  { Z Z w > 0 
w < 0 . (4.2.7)

Since the integrand of (4.2.5) is dominated by an integrable function of the 

form Ke' a , on letting L tend to infinity in (4.2.5), we obtain
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I l , —> / p k +e _k+wdw = p . 
o

If instead p < 0 , then (3n , as L °° , if w > 0 ,  and (3n —> °° , if

w < 0 . It follows that, as L —> ,

¿ 8 ( f )
1 0 ’ if w > 0 ,
I -pk- . if w < 0 ,

I L - . i - p k"e k v dw = - P  .

which proves part ( ii) .

(iii) This follows from arguments similar to those used in (ii), on observing 

th a t, when = 0 , (3n = 0 and

I (2k )-1/2 o + , if w > 0 ,
g —
"l L ' | (2k ) 1/2 o  . , if w < 0 ,

as L tends to infinity for fixed w . This completes the proof of theorem 4.1 .

By (4.1.4) , 9 = — P{ X e F  } . Hence we seek an asymptotic expression for 
M-

P{ X e  T  ) , for large L . We start by transforming the usual integral for 

P{ X e  F  } by the introduction of polar coordinates u = s / L , L in the 

plane.

Suppose, for the moment, that F  is the exterior of Dj^ , when L = LQ . Then
o o

P{X e F} = J p[x] dx = J J p[x(Lu, L)] lvTx(u, 1)1 L dLdu . 
r  Wo Lo

On writing Q = q and integrating over L, we get

P ( X e F )  -  j 1  p[x(L0u, L0)] lvTx(u, 1)1 du .
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Dropping the suffix zero and reintroducing s = L u as variable of integration, 

we obtain

P { X e  P} = J -L p[x(s)] vT.x ds , (4 .2 .8)
D V

where we have dropped the modulus bars from v^x , since v^x  > 0  for a 

star-shaped boundary .

Lemma 4.2 If Q has a unique minimum at xQ , where s = 0 , we find the

following limits as L tends to infinity .

(i) If xQ is a regular point of , then

L P{X e F )  ^  (27t)1/2 v0Tx(0, 1)
Pfxo] Qo k

(ii) If xQ is a vertex of , then

L2 P{X e F }  sin cj)
p[x0] ^  k+k~

where k, k+, k~ are defined in theorem 4.1, <j) is the angle between x+ and x_ 

measured in an anticlockwise sense, and qQ = x(0, 1)^  A.o‘^x(0, 1) .

Proof. Since qQ > 0 , the limits follow by arguments similar to those used in 

the proof of theorem 4.1 .

In case (i), the result follows from the limit

L vTx _ ________ vTx_________

Q L x (J - , x ( i ,  1)

as L tends to infinity, with s fixed .

VqTx (0, 1) 

x(0 , 1)T /‘i01x(0 , 1)
(4.2.9)

In case (ii) the same approach as used in theorem 4.1 yields
L2 P{X e F }

P M qo
v+Tx(0 , 1) v Tx(0, 1)

k+
+ (4.2.10)

Expressing xQ as a linear combination of x+ and t . , we obtain
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qo = — — [ v Tx(0, 1) k+ + v+Tx(0, 1) k' ] ,
sin 0

where as before 0 is the angle between x . and x+ measured in an

anticlockwise sense and hence negative at an internal vertex . Substitution of the 

expression for qQ into (4.2.10) gives the required resu lt.

(ii)

(iii)

As L tends to infinity, 0 satisfies the following limits 

If xQ is a regular point of , then 

(2t i)1/2

Theorem 4.2

0 )

l  e ->
a

where a  = Ao'^x(0, 1) and k  is the curvature of Dj at s = 0 .

If xQ is a vertex of and Aj * 0 , then

[V0 A2V0 - p2 k  a  ]
-1/2

l 2 e —»
- sin 0
k+k' Ipl

If xQ is a vertex of and A} = 0 ,  then 

(2t c)1/2 sin 0
L 0 ->

ko+  + k+o.

Proof. Since 0 = — P{ X e  F  
P

L 0 = L P { X e  f )  p[Xo] 
p[xol ' P

(2 t:)1/2 Vq x (0, 1)
qo

° 0l  
L k2

+ P
-1/2

(4.2.11)

by theorem 4.1 and lemma 4.2 . Since Q has a minimum at xQ , A0"^xQ is 

parallel to vc and we can write q0 = vo^x(0, 1) .vo^Ao'^x(0, 1) = 

vo^x(0, 1) a  . Further

k2 = i l i a )  =1  + ( d i ) 1V x
2 ' ds2 - ds

and x(s, L) = Lx(u, 1) , where u = s /  L, which, differentiating twice with 
dx 1

respect to s, gives ^  ^  x"(u, 1) ; the primes denoting differentation with

respect to u . Since u is the arclength on D | , we have x"(u, 1) = - k  v , where
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k  is the curvature of D j and v is the common normal to D j at x(u, 1), and to

at x(s, L), by similarity . Thus we can write

k2 = ( i 7 ^  - r  v ^ o 1* ) . (4.2.12)
' F 'o

Bearing in mind 0 = p x Q , we have

o02 = v j  A.2 v 0 - P 2 X0T ,

and, since j- XG = x(0, 1) , using (4.2.12), we have

o02 + p 2 k 2 = v 7 X2 v0 - P 2 k  a  , 

from which the result (i) follows. Results (ii) and (iii) follow immediately from 

theorem 4.1 and lemma 4.2 .

4.3 The Asymptotic Distributions of Excursions

From (4.1.9) and (4.1.11) we have

G(t , L) = - M  J p (xi , yi) Jl (F s i , yi) (v^yi)* dyi dsi , (4 .3.1)
i1 Dl

where

6fT f fJ l (F  Si, y i) = J J J pt (x2, y2 I x i, yi ) (v27y2)" dy2ds2 dt 
o

(4.3.2)

In the above p ( x j , y j )  is the density of X(0), X'(0) and

pt ( X2> y2 I x j , y i  ) the density of X ( t), X '( t), conditional on X(0) = x j,

X '(0 )  = y j  .

The covariance matrix of X(0), X'(0) is

v R(0) R '(0 ) ^0
2.0 = . - R '(0 ) - R " ( 0 ) . ^•2 -

(4.3.3)
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and the conditional distribution is normal with mean vector :

E [ X(t) 1 X!, y! J R(t) R’(t) ‘T

1

o >> -1
x f

E [ X ' ( t ) l x i , y i l . - R’(t) - R"(t) . _ - Xl À2 _ .yi.

and covariance matrix :

Xo * t '

- - -̂2 -

R(t)
R'(t)

R (t) 
- R"(t)

T

1

o ^1
-i r

. - -̂1

----1(N
R(t)
R’(t)

R'(0 
- R"(t)

(4.3.5)

We can use the results of appendix B, section (e), to rewrite (4.3.2) as
®fx r

J l (T sl5 y i) = J J pt (x(s2) I x b yi ) j(t, s2 ; sj, yO ds2 dt (4.3.6)
o

where

j(t, s2 ; si, yj) = J p t (y2 I x2, x i, yi ) (v2Ty2)~ dy2 . (4.3.7)

In the above integrals, pt (x I x j, yj ) is the conditional density of X(t) , given

X(0) = x 1? X'(0) = y] and pt (y2 I x2, x j ,  y j ) the density of X ' ( t ) ,

conditional on X(t) = x2, X(0) = x j, X'(0) = y j . Details of the latter

conditional distribution are derived in section (d) of appendix B .

Evaluating the integral in (4.3.7), we find

j(t, s2 ; si, yi) = - m <f>(- — ) + G(K- — ) , (4.3.8)
o a

where m = v2^m  = v2TE [ X’( t ) I Xj, V]J + v2^ b ^ a " ^ z  ,

with z = x2 - E [ X ( t ) I x j , yj ]  , and o  2 = v 2T ( c - bT a‘ Jb )v2 ,

where a, b, c are 2 x 2 matrices defined by equation (B. 14 ) of appendix B, in

terms of the covariance matrix of the conditional distribution of X (t), X’( t ), 

given X(0) = x j, X’(0) = y j . The functions O (.) and § (.) on the right hand

side of (4.3.8) are the standard normal distribution function and density 

function, respectively .
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The experience of the previous section suggests we will need the limit of 

Jl  (t , s i , y i ) ,  as L tends to infinity, either for fixed s j or for s ̂  = x /  L , with

x fixed . The following lemma gives sufficient conditions for the existence of 

such lim its.

Lemma 4.3 Let Ax = { (S2 , t ) :  0 < t < 0x , 0 < S2 < II DL II } be the 

domain of integration in (4.3.6), and define the set N£ = { (s2 , t ) : I z I <

0e }, for e > 0 , where z is as defined following (4.3.8).

If there exist positive real numbers 5, £, and LQ , with e  < ^  5 Z , such that 

t > 05 and V2^E  [ X '( t) I x j, y j] < - 5 on N£ , f o r L >  L0 , then 

JL ( x, S i , y i ) is bounded for L > L0 .

Further, if, for L > LQ , Ne c  Ax , then JL -9  1 as L tends to infinity , 

alternatively, if N£ c  (Ax )', the complement of Ax , then —> 0 , as L tends

to infinity.

Proof. The distribution of X(t) , given X(0) = x j , X'(0) = y j is normal with 

mean Ef X ( t ) I xj ,  yj] and covariance matrix a, as follows from section (d) of

appendix B. Since a is positive definite, if z is a two-dimensional vector, then 

z 1a"1z / I z I ^ > 1 / a  | , where ocj is the largest eigenvalue of a . Thus we

have

z ^ a '^ z  > l z | 2 / c t ]  > I z I ^ /  ( S p (a)) ,

where Sp(a) denotes the spur of matrix a . The result (B.15 ) of appendix B 

shows that the elements of a are 0 (t ^ ) ,  for small t , and hence Sp(a) =

0 (t ^ ) .  It follows that
| al -1/2 , „ ,

Pt(x2 I x i , yi ) = L I---- exp { -E 7Ta-iz } < Kt"4exp { -k £2 0 / t4 }
¿71 2

on ( N£ ) ',  for some positive constants K and k .
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We now partition the range of integration in (4.3.6) using N£ , and write = 

1} + ¡2, where Ij denotes the integral over Ax n  ( N£ ) '. Substituting from

the above into the integral of (4.3.6) and using (4.3.8), we find

I ! < J 1 Kt ‘ 4exp {- k e2 02 / 1 ‘4 } I j I ds2 dt ,
A t

(4.3.9)

From the definitions following (4.3.8), we have

I m  I <  l v 2T E [ X ' ( t ) l x 1, y 1] l  +  l v 2 T b1Y 1z l  .

By (4.3.4), the first term on the right hand side is bounded by a linear function 

of L, similarly I z I is bounded by a linear function of L, for large L . Since, 

from equation (B.19 ) of the appendix, b^ a'^ = 0 ( 0 ) ,  it follows that 11 m I 

is bounded by a linear function of L . Further a  ~ = o(t 3 ) = o(0 “ ) ,  for 

fixed x , by (B.20) and since 0 —> 0 , as L tends to infinity, we have

j(t, s2 ; si, yi)l  < lml  + - | r  < K ' L r 1
V27t

(4.3.10)

for L > LQ , where K' is a positive constant. Substituting from (4.3.10) into 

(4.3.9) and carrying out the integration over t , we obtain

_ 2
I t  < Kj L11 Dl  11 —-  exp { - k e 2 /  (02 x 4 )) ,

4ke2
for some positive constant Kj . Since II II = O(L) and 0 —» 0 , as a power 

of L, it follows from the above inequality that Ij tends to zero, as L tends to

infinity .

The vector C, = f  3 z is a function of s2 and t . The transformation (s2 , t ) 

—> C, has Jacobian

-  t -4 v 2t { E[ X'(t ) I X ! ,  yi ] + 2-z0 ( 0
3(S2, t)

which, under the conditions of the lemma, is non-zero throughout N£ . In fa c t,

0 ( 0
0(S2, t)

on N

t 4 > |v2TE [ X ' ( t ) l x 1, y 1 ]| + — z > 5 - 2 ^  > I S  , (4.3.11)
5 3

'e  •
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Introducing Ç as variable of integration in the integral of (4.3.6), we obtain

I 2 < J Jpt (x(s2) I x lt y i ) j ds2 dt
n e

= j  \|it( C ) j  v2T E [ X ' ( t ) l x 1>yi ] + 2_v 2t z  -]dC,
Izl <  0£ 1

(4 .3 .12)

where \|/t (Ç, ) = t ^ pt ( x ( s 2)  I x \ ,  y^) is the density function of N( 0 , f  4 a ).-4

Using (4.3.8) and the following definition of m, we have

j < I m I + -&= < |v jE [X ’(t)1 x i, yi ]| + |v 2 bTa _1z| + -£=  . (4.3.13)
V27t y2n

The 2 x 2  matrix b^a'^ is a function of t , determined solely by the stochastic 

process, which is 0 ( f  ̂  ) for small t , by (B .19). Thus we can find a positive 

constant K, independent of L, such that

11bTa 111 < K / t  ,

and therefore, by the conditions of the lemma,

|voTbTa 4 z| < ^ 6e < K -f (4.3.14)
t x

on Ne . Combining inequalities (4.3.11), (4.3.13) and (4.3.14), we find

J v j E [  X ' ( t  ) i x i , y i ] +  — v j z _1 < 3 + 3 K  e ô 2+ 3Ô’ 1—
V2tc

(4.3.15)

and therefore the first member is bounded on Ne , for fixed x , since o —> 0 

with 0, as L tends to infinity .

From its definition following (4.3.12), we have
I a | -1/2 , T

¥ t ( 0  = t 4 ^ i ---- e x p { - k  t V ' U  , (4.3.16)
2n 2

and, for small t , appendix B gives

a = 1  t 4 d + o (t4) (B.15)

where the 2 x 2 matrix d is given by (B .13). Thus, for given x and L > LQ , for

some L0 which may depend on x ,
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Vt(C)  ^ 4
n (4.3.17)■ |d | "1/2 exp { -|^ | / | |d | | }

It follow s, with the aid of (4.3.12) and (4.3.15), that I2 is bounded for L > LQ 

and the first part of the lemma is proved .

If Ne c  (Ax ) ',  then Ne n  Ax = 0  , therefore I2 = 0 and = Ij —> 0 , as 

L —> 00 .

On the other hand, if Ng c  Ax , (4.3.12) holds as an equality . Further

j |v 2TE[ X'(t ) I X], y i ] + 2t v j  £ I"1 -> 1 , 

as L tends to infinity with £ fixed, since , from (4.3.8) for m < 0 , 

j = I m I + o (a) ,

as a  —» 0, and

v j E [  X ' ( t ) I X!, yi ] + 2 t v J C  = m + o(0) ,

as 0 —> 0, by section (d) of appendix B. Further, from (B.19) we have, \j/t (C, )

—> \|/Q(^ ), the density function of N( 0, ^  d ) ,  as t —> 0 .

Under the conditions of the lemma, 05 < t < 0T on N£ , therefore {£ : I £ I <

-----~ } c  Np c  { C : I C I < -----ñ ) and hence NP —> R2, as L —> °° and
0T 2 e 05 2 e

0 —> 0. Since, by (4.3.17), \|/t is uniformly bounded by a function integrable on 

R2, thus I2 —> J Vo -  1, as L —> , and since I j —> 0 the lemma is

proved.

The expression (4.3.1) for G(x, L) may be rewritten

G(x, L) = j j  1 p(xi) gL(t, si) dsi , (4.3.18)

where

gL(U S i )  = J P(yi 1 X!) Jl (t , S ] ,  y 0  (v1Ty 1)+ dyi , (4.3.19)

Xj = x(sj, L ) and where p(xj) is the density function of X(0) and p(y¡ I x j ) 

the density of X’(0 ) , conditional on X(0) = \  \ . Thus, from section (e) of
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appendix B, p(x) is the density of N( 0, ) and p(y I x j) the density of

N( - -̂2 + ^ l^ o  ^ 1  ) •

Assuming the conditions of lemma 4.3 are met, will be bounded by some

constant K and hence, from (4.3.19),

gL(x, si) < K J p(yi I x i) (V!Ty i)+ dyi
from which it follows that g^ is bounded by a linear function of L, as L tends to

infinity. Utilising the arguments of the proof of theorem 4.1, we obtain
SL

pG(x, L) = J p(xi) gL dsj + p(x0) O ( L 2 e i f2L2) (4.3.20)
-  6 L

where 8 > 0 and f “ are as defined in theorem 4.1 . Thus to consider the limit 

of G(x, L ) , as L —» °° , we will need to ascertain the limit of g^ , as L —» °°

with x fixed .

Substituting y j = -X j A.0'^ x j  + r| into (4.3.19), we find

g l (x , s i) = Jp  (t i) J L(x, s i , yi) ( pn + v ^ p  )+ dp , (4.3.21)

where Pn is as defined in (4.2.1) with v = Vj , and where p(q ) is the density

function of N( 0 , ^2 + ^ l ^ o '^ l  ) • With the aid of lemma 3 , we now 

explore the limiting behaviour of G(x, L) and g^ for each of the three cases of

theorem 4.1 separately .

4.4 Case (i)
In this case 9 = 0(1 /  L ) , by theorem 4.2, and we look for solutions of the 

equations z = 0 in which t = 0(1 /L ), with S] = 0(1), and yj =

~^T^o"^x l + ^  > with rj = 0 (1) and V j^ y j  > 0 .

From (B. 10) of appendix B, the equation z = 0 becomes

x(s2) = Xi + t y i  - y  t 2 W x i + 0 (1 /L 2 ) , (4.4.1)
on substituting y] = -A.j X0 ' ^Xj + q in the coefficient of t ^ , and noting
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that ^22^1^o "1= ^2 ^ 1  °11 and ° l l = [^o + ^1^2 ^ l ]  1 (see 

appendix B). Writing S2 = Sj + s , assuming sj and S2 are points of the same 

regular arc of D^, we have the Taylor expansion

x(s2) = xi + s t i  - ^ s 2 f v i + o( l /L) ,  (4.4.2)

where k  is the curvature of Dj at s / L and Xj , Vj the unit tangent and normal, 

respectively, at Sj . Equating the right hand sides of (4.4.1) and (4.4.2) and 

resolving along Xj and Vj , we get

s = t XjTyi - d- t2x1T/t2 W x i + o(l/L) (4.4.3)

and
_ l s 2 jc = t v Tyi . I t 2 v 1T ?t2 Xo'x] + o( l / L)  . (4.4.4)

Eliminating s between (4.4.3) and (4.4.4), and solving the resulting equation 

for t , we find

^ ( x j ^ A o ^ x j )2 + o(l/L) , (4.4.5)

ignoring the trivial solution t = 0 .

Expressing xj andvj  as power series in sj, up to terms of order 1 /L , in 

V1T y 1 = - + VlT p , we find

ViTyi -  - Vq̂ / io ’xo - S]V0T?L1̂ o 1Xo - S i ^ x ^ ^ o ' x o  + v0Tp + 0(1) , 

where the suffix zero on x, x, v corresponds to ŝ  = 0 . Recalling that XjV = 

px and v ^ i V ^ o  = 0 , we obtain

v^yj = S] p k2 + v0Tri + o(l) , (4.4.6)

where = Xq^Xq '^Xq  - £  v0^ \ )  ~̂ xo is defined in theorem 1. It follows that 

v^Ty] is 0 (1 ), as L —> °° .

Let t = t^ , s = s^ denote the non-trivial solution of z = 0 . It is easily seen that 

the denominator of the right hand side of (4.4.5) is O(L) and hence, in view of
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(4.4.6), = 0(1/L), as L —> «> and, from (4.4.3), we find = 0(1). Since 0

= 0 (1 /L ) , u l  = 0 = 0(1) and tends to a limit , as L —» «  .

1 (  S1 \From (5.4.5), since j- = x ^ ^ - , 1  j  , and Vj —» vQ etc., we obtain

L t L —> 2 v 0Ty! [a  v0TX2 v0 - K p2 a 2 ] -1 , (4.4.7)

as L —» oo, on writing a  = vo^Xo'^x(0, 1) and observing that ^0’ *x0 is

parallel to vQ . Employing theorem 4.2 for the limit of L0, we obtain

u~ = ( ^ ) 1/2 v oTy i[  v 0T ?i2v0 - k  p 2 a  ] "1/2 . (4.4.8)

Writing t = t^  + 8t , s = s^ + 8s and expanding z about (t^, s^ ), where z = 0 

we get

z = x 8s - w 5t ,

approximately, where w = E[ X' ( t ) I xj ,  yj]  . Solving the vector equation for 

8s, 8t we g e t , for small z,

8t = - yTz , 8s = t T z - -1-1 w vT z , (4.4.9)
vT w vT w

where x, v, w are to be evaluated at t = t^  , S2 = S] + s^ •

Not only are we interested in V2^w at z = 0 , but more generally for ( t , S2 ) e 

N£ . Substituting yj = - + r] in the coefficient of t in (B.l 1) and

observing t = 0(1 /  L), we obtain

w = E [X' ( t ) I x !, yi  ] = y] - t X2Xo'1xi + 0 ( 1 / L )  . (4.4.10)
K

Writing V2 = Vj + s j- t j  + o(l / L ) , t = t^ + 8t , s = s^ + 5 s , with the

aid of (4.4.10), (4.4.3) and (4.4.5), we find

v 2t w  = -VjTyi - 8t - ^  x1TA.j?io1x 1 8s + o (l) . (4.4.11)

In particular, v -^w  = - V j ^ y j  + o(l) at z = 0 and, since V j^y j > 0 ,

V2^w  < 0 for large L .
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On N£ , (4.4.9) gives

8t I <

and

I 8s I < 0e +

0 £ 2 0 £
1 VTW 1 Tvi yi

XTW 0£ < 2)p a |L
VTW Tvi yi

(4.4.12)

(4.4.13)

since x^w is dominated by Xxyj = - p a L  + 0(1) and ! v 1 w I >rTv _ _

(V1 xyi )  / 2 , for large L . Thus, since V j^y j = 0 (1) and 0 = 0(1 /L ), from

(4.4.11) it follows that, for large L,

| v 2t w  + ViTyi | < Ke (4.4.14)

for some positive constant K .

Since VjTyj > 0 , from (4.4.6) we may assume sj p + v()^ri > 0 . If we 

choose 8 such that 0 < 8 <  s j p k ^  + , then, by (4.4.14), we can find

LQ > 0 and £ such that v^w  < - 8 on N£ , for all L > LQ . For a given 8, this

statement remains true if £ is replaced by a smaller positive value .

Suppose that u ^  < x and 0 < 8 < u ^  , then , since u^ tends to u ^  , as L

tends to infinity, we may choose LQ and £ > 0 such that u^ + 2e  /  (v jTy j )

< x and u^ - 2e  /  (Vj^y j ) > 8 , for L > LQ . Thus on N£ ,

t = tL + 8t = 0UL + 8 t < 0 U L  + < 0 x ,
v /y i

by (4.4.12), similarly we find t > 08 . Since we may choose 8 <

Sj p k“ + v0^T) and 8 < u ^  and ensure £ < ^  5 “ without contradiction,

the conditions of lemma 4.3 are met if u ^  < x , with N£ a  Ax , for L > LQ .

Suppose now that u ^  > x , we may choose LQ and E > 0 such that 

u l  - 2e  / (vjTyj  ) > x , and hence t > x 0 on N£ , for L > LQ . Again the 

conditions of lemma 4.3 can be met, but with Ne c  (Ax ) ',  for L > L0 . From 

lemma 4.3 , it now follows that J l (x , s ,̂ V]) is bounded and
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as L —> oo .

J L(t , s i, y i  ) ->
1 , if u00<x

0 , if uoo>x

From (4.4.6) v ^ y j  —» s ^ p k 2 + v0Tr| and by dominated convergence, as 

L —» o° , (4.3.21) gives

gL('t.si) -> lp ( r i ) ( s 1p k 2 + vJYi )+ dr) , (4.4.15)

where the integration is over the region

u~ = ( J ) 1/21 V(7?12V0 - K p2 a  ] _I/2( Si p k2 + v0Tri ) < x

ie. over v ^ r ]  < - s j p k ^  + t / c ,  where we have written 

c = ( “ ) 1/2 [ voT?l2 v0 - k  p2 a  ] ’1/2 .
7t

Integrating out the tangential component of rj in (4.4.15), we get

- si p k2 + t /c

gL -» I p(T|o) (Si p k 2 + Tio)drio
- Si p k2

t | c

o °o
y - s ip

do
k2|

y dy

(4.4.16)

on writing y = S j p k 2 + r |0 , r |0 = vQ’r| , where (J) (.) is the standard

normal density function and o Q2 = vQ̂  ( A. 2 + ) vQ .

The arguments leading to theorem 4.1 applied to (4.3.20), now give

|4G(x , L)
p[xo ]

; k2 S,2
t | c

1 J y - sip
0 °o

0
k2|

do
y dy dsi

as L tends to infinity. On changing the order of integration in the limit and 

integrating over sj , we obtain
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on evaluating the integral. Observing that oQ~ + p2 k2 = v0T?t2 vQ +

- K p 2 a  and e m p lo y in g  theorem  4.1 ( i ) , we  f in a lly  ob ta in  
G (x ) = l im  G(t , L) = 1 - e ■711:2/4 . (4.4.17)

L —>oo

Since the limit G(x ) exists and is a distribution function, it follows, from 

lemma 4.1, that the duration of an excursion has an asymptotic distribution, as 

L —» °° , for which G(x ) is the distribution function .

4.5 Case (ii)

Since the mean excursion time 9 = 0(1 / L2) we look for solutions of z(t, S2 ) 

= 0 with t = 0(1 / L 2) , sj = 0(1 / L )  and VjTyj > 0 . As in the

corresponding case of theorem 4.1 , we suppose initially that p > 0 .

For s = 0(1 /  L ) , we can write
r x = | x0 + s x + + o(l/L) , for s > 0 
V J | x0 + s x .  + o(l/L) , for s < 0 ,  1

where xQ = x(0, L) is the position of the vertex at which Q(x) has a 

minimum on . There are four cases to consider, depending on the signs of 

s  ̂ and S2, but initially we suppose sj > 0 and S2 < 0 . Employing (4.5.1), the

equation z = 0 becomes

X() +  S2 X.  =  x 0 + S! x +  +  t y i  +  o ( l / L )  , (4.5.2)

which, on resolving along v . and v + , gives
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t
Si sin <J)

+ o(l/L 2 ) (4.5.3)
v Tyi

and
T

s 2 = + o(l/L) , (4.5.4)
sin (])

where we have used v _Jx + -  - sin (J) and v +^x . = sin <]). Since Q only 

can have a minimum at an internal vertex of , where sin <]) < 0 , we must 

have v _^yj < 0 for (4.5.3) to give a positive value for t and v > 0 for

(4.5.4) to give S2 < 0 , for large L . Further, assuming y j to be O (L ), we see

t = 0 (  1 / L2 ) and s = 0 (  1 / L ) .

We now write sj = x / L and yj = - ^x l + Tj , and letting L tend to

infinity with x and rj fixed, (4.2.6) gives

¿ V f r ,  -  S i iM -> pk+ , if x > 0 . 
- pk" , if x < 0 .

Further, from (4.5.3),
t, x sin (J)

ui = — = ----------------------
L L . , -l( - V T?ti?io X! + V TT |)L 0

+  0 ( 1 )

and letting L tend to infinity and using theorem 4.2, we get

u l  -> = -jy -k + x

(4.5.5)

(4.5.6)

By (4.4.10) we have V2^w  = V22 y] + 0 ( 1 / L ) , a n d

¿ v 2Tyi = - ^ -v2T)t1Xo1x 1 + 0 (1/L) -» - pk- , 

since S2 < 0 . Thus for p > 0 , V2^w  < - 8 , for any 8 > 0, and L > LQ , for

some Lo •

Since t = ut  0 + 8t , with I 8t I < — ~ —  = 0 (e  / L2 ) ,  on NP , we can
V _ y i

find real numbers £ > 0 and 8 > 0 such that 08 < t on N£ , for L > LQ . The 

above observations, together with lemma 4.3, show that, for x > 0 and S2 = s^ 

< 0 , Jl  is bounded for L > LQ and
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J L( x , f  , y i ) _> I 1 if k +x <x 
L 0 if k+x > x  ,

(4.5.7)

as L —» , by (4.5.6) assuming p > 0 .

Assume now that Sj > 0 and S2 > 0 . Following the analysis of case ( i ) ,

(4.4.5) gives

t L  = 2 v 1'yi V iT A . 2 ^ o ' 1x i  -  ^ - ( x ^ l ^ ^ l  )

- 1
+ 0(1/L)

which on substituting y j = + rj gives
2 p k +

t L  - »

vJX 2 X0\ ( 0 ,  1) - k P2 { v J ^ x i O ,  1) )2

as L —> oo . Thus t^  / 0 —» , for p > 0 , and therefore t p > T 0  for L > LQ

and any given x > 0 . Hence by lemma 4.3 , Jl  will be bounded for L > LQ , 

and S2 < 0 to yield the conclusion that —> 0 , as L tends to infinity .

Finally we consider the solutions of z = 0 with sj < 0 and S2 > 0 . The

methods used in the earlier mixed situation give in the present case,
Si sin (j)

t = -
v+Tyi

+ o(l/L2 ) (4.5.8)

and

s2 = - + o(1/L)
sin <j)

(4.5.9)

Substituting yj = + r| and s j = x / L ,  x < 0 , in (4.5.8) and

employing theorem 4.2, we obtain

u l  =_ t L _ - x sin (J)

(-vJXi^o^X! + v+Tri )L0  

Pi

+ 0 ( 1)

(4.5.10)
k- x

as L —> «>. Thus, for p > 0 , u ^  < 0  when x < 0 , and t^  < 0 for L > LQ , 

for some sufficiently large LQ .
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As in the corresponding case of theorem 4.1 , we substitute S] = x / L into the 

integral in (4.3.20) to obtain , on division by p[xQ] ,

where f(s) = exp { - ^  [ Q(x) - Q(x q)] } and gL(s) = gL(x, s) is given by

(4.3.21). Thus, from (4.3.21) , we have

g l (T ^ ) = J p(T|) J l (L ^  . y i ) | - n- +LVl 71 [ dr| , (4.5.12)

where the integrand is dominated by p(r]) multiplied by a linear function of I r\ I 

and hence is integrable .

Letting L —> °° in (4.5.12) with x > 0 , we obtain
pk+ Jp(rj) dp x < x / k +

0 x > t  / k+

using (4.2.6) and (4.5.7) with p > 0 . On the other hand, letting L tend to

infinity in (4.5.12) with x < 0 , we obtain

g l (L ^  ) -> 0 x < 0 ,

since —> 0 for all x < 0 , if p > 0 .

—»

The integrand of (4.5.11) is dominated by an integrable function of the form 

Ke"a'x' , therefore, letting L tend to infinity in (4.5.11), we obtain

I l  —> /  p k+ e ■ k*x dx = p ( 1 - e *T ) .

On refering back to (4.3.20), we have proved that 
(iG(t, L)

Pfxo]
-> p ( l ) •

from which, using theorem 4.1, we obtain

G( t ) = lim G( t ,L)  = 1 - e T , x > 0 .  (4.5.13)
L —>oo

Here again G(x ) is a distribution function .
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A similar analysis with p < 0 yields,

I 0
0 < x

f g L ( ^ f )  - p k" - x / k ' < x < 0
\ 0 x < - x /  k ‘

and hence
HG(t ,L ) f t .
— — —  —> J - p k e k

p[x0]
x dx = - p ( l - e ' T) .

■T/k'

Theorem 4.1 now gives
G(x ) = lim G(x, L) = 1 - e ■T , x > 0

L, —>oo

and we see that, for p * 0, the duration of an exceedence has an asymptotic 

distribution with distribution function given by (4.5.13), on applying lemma

4.1 .

4.6 Case (iii)

In this case 8 = 0(1 / L ) , hence we look for solutions of the equation z = 0 , 

with t = 0(1 / L) and Sj = 0(1 / L ) . Substituting from (4.4.1) and (4.5.1), for

si > 0 and S2 < 0 , we obtain the equation

s 2t . =  s i T+ +  t y i  - ^ - t 2 ) i2^ o 1xo + o ( l / L )  , (4 .6 .1 )

w here  x Q is the ve rtex  o f  D ]^  at w h ich  Q  is a m in im u m  .

Resolving (4.6.1) along v . and v + , we get

0 = - Si sin cj) + t v Tyi - 12 v T A ^t/xo  + o(l/L) , (4.6.2)

s2 sin <j) = + t v j y i  - l t 2 vjA,2^o1xo + o(l/L) , (4.6.3)

Since xQ is a minimum for Q, the vector 3_0"^x0 lies between v . and v + , 

in consequence at least one of v .  ^ 2^o"^xo and v + ^ 2^o*^xo must be

positive . For the present discussion , we assume both are positive and write 

c' = ^ 9  v _^X-2A.0 '^ x 0 , c +  =  ^ 0 v +"^2^o~^xo which , by theorem 4.2,

tend to finite limits as L —> «>.
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(4.6.4)

Equation (4.6.4) can be rewritten
Si sin (j) i t -i “1 .

y- = ---- -----  + ~ t v .  A.2A.o x 0 + o(l)  ,

where we have introduced y " = v _^yj and y + = v +^ y j  . Since Sj > 0

and sin <J) < 0 , the right hand side of (4.6.4) is an increasing function of t , for 

t > 0 . As t runs from zero to 0x , y '  goes from - °° to sj sin <J) / (0x ) + c ' x .

Thus, on writing S| = 0x , the condition t < 0x becomes

x sin <i)
y- < ------21 + x c- .

x
The condition S2 < 0 , in view of (4.6.3), becomes

+ °< »  •0 c

(4.6.5)

(4.6.6)

for large L .

Combining (4.6.4), (4.6.5) and (4.6.6), we find the following conditions on 

y j for equation (4.6.1) to have a solution with S2 < 0 and t < 0x , in the limit

as L tends to infinity . 

Either > x and y  <
x sin (J)

+ x c

or < x and y  <c + J
x sin (¡>

(4.6.7)

c + + y + cj

We now look for solutions of z = 0 with sj > 0 and S2 > 0 . Substituting from

(4.4.1) and (4.5.1), we obtain the equation

s2 x+ = S] x+ + ty i  - i - t 2 ^ o ' 1xo + o(l/L) , (4.6.8)

From (4.6.8) we get, on writing Sj = 0 x ,

t = y + 0(1/L) , 
v J ^ 2̂ -0 X0

(4.6.9)

and
s2 sin (b y y + /y + l 2------------ = - x sin 0 + l ------ c y — > 0 ,

q  c+ ' c + / (4.6.10)

since S2 > 0 .

In the limit, assuming y+ > 0 , the inequality of (4.6.10) gives
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y- > 4.6.11)
x sin 6-------_LC + + v + -C

y + y c + ’

and, in view of (4.6.9), the condition t < 9x becomes

T • (4.6.12)

Combining (4.6.7), (4.6.11) and (4.6.12), the equation z = 0 will have a 

solution, for s ^ > 0  .with t < 0x , if y+ /  c+ < x , or, if y+ / c + >x  and

y '  < (x sin <J>) /  x + x c ' , for large L .

If, for a given x > 0 , y^ lies in the .interior of the shaded region of figure 4.1, 

there will be a solution of z = 0 with t = t^  and t^  < 0x , for L > LQ , for 

some LQ . If, on the other hand, y^ lies outside the shaded region and y+ > 0 , 

then t^  > 0x , for L > LQ .

r

figure 4.1 Region giving a solution of z = 0.
0 £

By (4.4.9) and (4.4.12), t = tr + 8t on NP with I 5t I < —̂ — . Since as we
Iv1 vvl

shall show vTw < 0 at z = 0 , we can choose 5 and £ > 0 such that 0 8 < t 

< 9 x on N£, for L > LQ , if y j lies inside the shaded region of figure 4.1 .
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Alternatively we can choose e > 0 such that t > 0x on N£ , for L > LQ , if y j 

lies outside the shaded region of figure 4.1 .

We now turn to the value of v^w  at z = 0 . Since S2 = 0(1 /  L ) , if S2 < 0 ,

we have from (4.4.10)

vTw = y - - t L v TA-2A-o^o + 0(1/L) , 

assuming s  ̂ = 0(1 /  L ) . Substituting the unique positive root of equation 

(4.6.4) for tL , we obtain

vTw = - { ( y )2 - 2 si sin <]) v t A.2>.o 1xo  } '2 + o (l) ,

and therefore

vTw < - ( - 4 x sin (J) c ' } 1/2 ,

for large L . In the case where S2 > 0 ,

vTw = v+Ty] - t LvJX,2^(j1 x0 + 0(1/L) , 

which on substituting for t^ from (4.6.9) gives

vTw = - y + + o(l) ,

and again v^w  will be negative for large L, if y+ > 0 .

Substituting sj = 0x into (4.3.20) and (4.3.21) and noting that (3n = 0 , we 

obtain
L8/0

p.G(x, L) = J p(X])gL(T, 0 x ) 0 d x  + p[x0] O ( L 2 e 4 f2L‘ )
- L5/e 

and

gL(x, 0x) = Jp(yi )  JL(x, 0x, y 1) ( v 1Ty 1) + dy1 , (4.6.13)

where we have replaced "H by yj . Dividing the first equation by 0 p[xQ] , we 

obtain

— — f(x) gL(x, 0x) dx + 0 ( L 3 e -2f2L2)  (4.6.14)
0p[xo] - L5/e

where

f(x) = exp { - ^ [ Q l (0x ) - Q l (0)J } . (4.6.15)
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The previous condiderations of this section together with lemma 4.3 , ensure 

that JL(t, Ox, y i)  —» 1 on the shaded region of figure 4.1 and Jl (t , Ox , y j)

—> 0 on the unshaded region, where y+ > 0 , if L tends to infinity with t  > 0 , 

x > 0 and yj fixed . Letting L tend to infinity in (4.6.13) with x > 0 , then

gives

gL(x, Ox) -> J p(yO (v+TyO + dyi ,

where the domain of integration is the shaded region of figure 4.1 . Introducing 

y+, y ' as variables of integration we can write the limit

gL(x, Ox) /  I p(yi )y + dydy  + J J
1 sin 0 I

- + T C'

0 i c *
p(yi) y

dy -dy1 
I sin (J)

where c+, c* assume their limiting values .

Since p(yj) is the density function of N( 0 , ^  )> it *s a simple matter to show 

that
0 0  o o

1 I p(yi) y + dy dy =
o - oo I sin <J> I '^Tt

where o + = f v +^  v+ ] ^  > whence, for x > 0 , the limit becomes 

o +
o o  o o

gL(x, Ox) -»
i2n  t

J+ I p(yi) y + d y -dy..
c+ xsin Ò I Sin (}) I

(4.6.16)

The corresponding result for x < 0 can be shown to be

gL(x, Ox) J i
T c x sin 0

p(yi) y
+ T C +

V2jt"

where o_ = [ X2 v . ] ^  5 as l  tends to infinity .

dy + dy 

I sin (J) I
(4.6.17)

Writing Ox = L Ox / L , since L0 tends to a positive l imit , as L tends to 

infinity, the theory leading to (4.2.7) will give

Ql (9x ) - Ql (0) -> ’ H i  (4.6.18)

as L —> 00 with x fixed, where we have written
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lim
L  — >oo

a±  = k± lim L0
L  — >oo

(27t)1/2 sin (J) 
ko+  + k+o.

By theorems 4.1 and 4.2, we have
0p[*o] 2n k+ k' sin (J>

M- ( k o+ + k+a. )2

as L tends to infinity . Further, by (4.6.18), as L °° ,

f(x) —» e •a" 1x1

and the integrand in (4.6.14) is dominated by a function of the form K e 'a'x' , 

a > 0 . Thus allowing L to tend to infinity in (4.6.14), we find

G(x, L) ------ - - sin ^ | J e-«+x g+(x) dx + f e ax g.(x) dx |
( k-a+ + k+a. )2 l o I

where g+, g. denote the limit functions of (4.6.16) and (4.6.17). After some

minor simplifications involving replacing x by - Ixl sin <j) as variable of 

integration, the limit can be written
2n 11 + (x) + I - (x) ]G(t ) = lim G(t , L) = 1 -

L -400 k+ k- q± ,
L k+ k-

where
o o  o o

I+(x) = J e - a+x| J p ( y i ) y + dy dy dx ,
o rc+ t c "-— I sin (J) 1x  c+ x c* - —  

x
o o  o o

I-(x) = J e - « x J j p(yi)y
TC' TC + - — T

dy + dy 

I sin (J) I
dx .

(4.6.19)

(4.6.20)

In the simplification the definitions of the a's have been slightly revised . For 

convenience we give the definitions of the various constants involved in 

(4.6.19) and (4.6.20) below .
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k± = ± t J  ^ 0]x (0, 1)

a 1 = (2t t )1/2 k1 [ k' a+ + k+ o. ] _1

^  = (f) 1'2 • 2 ( 1 - p ) ° - “ "

a  = ( ^ )1/2 ’ 2 ( 1 " p) ° + a

p = V T X2 v+ /  ( G+ G_ ) .

\

/

(4.6.21)

By assumption c+, c‘ are positive constants, hence from (4.6.20) I+ (x ) and 

I. (x ) tend to zero, as x —> <» , and G(x ) of (4.6.19) is a distribution function. 

It therefore follows from lemma 4.1, that G(x ) is the asymptotic distribution 

function of the length of an excursion, measured in units of the mean 0 .

The combined results of this chapter serve to prove the following theorem .

Theorem 4.3. Under the conditions on the stationary Gaussian process 

X ( t ) and the family of boundaries , L > 0 , described in the introduction to

chapter 4 , there exists a limiting distribution function G ( t ) = lim F^(0t ) ,  for 

the duration of an excursion outside , scaled by the mean duration 0 

= J t dFj ( t ) .

If p[x] , the density of X(0), has a unique maximum on Dj^ at xQ , the limiting 

distribution function is given below depending on the status of xQ and on ,

the first derivative of the covariance matrix of X at the origin .

(i) If xQ is a regular point of , then

G(x) = 1 - e -7” 2 *' 4 .

(ii) If xQ is a vertex of and * 0 , then

G(x) -  1 - e - T .
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(iii) If xQ is a vertex of and = 0 , then

G(x) -  1 - 2n [ 1 + (X) + 1 - (t) ]
k+ k’

where the functions I+ , I. and associated constants are defined by 

(4.6.20) and (4.6.21) .
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5 APPLICATIONS AND CONCLUSIONS

5.1 Introduction

In preceeding chapters, we have explored a number of aspects of the crossings 

of boundaries by vector Gaussian processes. In chapters 3 and 4 we restricted 

the treatment to 2-dimensions in order to simplify the notation. The working 

assumptions we have made in previous chapters will be discussed later in this 

chapter, along with our conclusions on the scope of our results in relation to the 

current literature. However, before vt'e address these matters, we will illustrate 

the power of our results by applying some of them to the problem of nuisance 

disconnects, described in chapter 1.

This is not the place for a full discussion of so technical a subject. Certainly a 

full discussion of the relative performance of different monitoring regimes is 

beyond the scope of the present study, since 'nuisance disconnects’ form only 

one aspect of the monitor's performance. The performance of monitors subject 

to actual failures is completely outside the context of this report, since we 

assume throughout this thesis that the processes are stationary and 

correspondingly that the system remains working normally.However, as well 

as comparing different monitoring regimes in relation to the numbers of 

nuisance disconnects and the magnitudes of the transients, we can consider the 

effects, on the expected number of nuisance disconnects, of constant 

differences in the response of the sensors, for example the effect of bias or of 

an increase in measurement variance for one or more sensors.

5.2 Applications to Nuisance Disconnects

5.2.1 Computation of |i and 9 for polygonal boundaries

Let x j = x(s j ) and \ 2  = x(s2) , ( sj < S2 ) , be the vertices of a side of a 

polygonal boundary. The contribution of the side to (i = E(U) = Mj is given by
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A|i = /  J p (x(s), y ) (nTy)+ dy ds ,
Si

where n is the unit outward drawn normal to the boundary at x(s), on using 

theorem 2.3 and observing that p (x, y) is independent of t , for k = 1. Writing 

p (x, y) = p (y I x) p ( x ) , where p(x) is the marginal density of X(0) and 

p (y I x) is the conditional density of X'(0), given X(0) = x (see appendix B, 

section e), and integrating over y, we obtain

p[x(s)] ds ,Ap = f  { Gn <t> (jM  + pn 0) (2" 
s i ( \onl \anl

where (3n = E( n TX'(0) I X( 0 ) ) = - nT R'(0) R(0)-!x ,

and c n2 = V( n TX'(0) I X( 0 ) ) = n T( - R"(0) + R'(0) RCOJ^R’CO)) n .

Writing x = p n + s t , where t = ( \ 2  * x j ) /  ( s j - S2 ) is the constant unit

tangent of the side and p is the perpendicular distance of the side from the 

origin, R(0) = , R'(0) = 0 , - R"(0) = ^  and substituting (3n = 0 , o n2 =

n * we obtain

A  p 1 lnr X2 n
1/2

o lx
2 k lnTXo n y T ,  -1 1/2

[(tTlo  t) J
exp ( - p 2 / ( 2nT?ion) }

*2

Xl

(5.2.1)

on integrating over s.

From equation (4.2.8), the probability that the process lies outside the 

acceptance region T, is given by
P{ X(t) e T ' } = |  -Lp[ x(s) ] | nTx| ds (5.2.2)

ar ^
where Q = x ^ q '^ x  , and p[x] = (2k ) ' * I I ' ^ 2 e ' Q 2̂ . Thus we can 

calculate 0, the mean duration of an excursion outside T, from 0 =

-  p { x a ) e r - ) .
F
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The Fortran programme EXIT.FOR calculates |! and 0 for polygonal 

boundaries 3T using (5.2.1) and (5.2.2). For a polygon with specified vertices, 

the programme calculates the contributions of each side of 3T to p. and 

P{ X ( t ) e F  ) and sums these contributions over the sides of the polygon.

The integration in (5.2.2) is evaluated numerically using Simpson’s rule, with a 

given number, M, of steps for each side. The standard normal distribution 

function <b(.) in (5.2.1) is obtained from the NAG subroutine S15ABF. The 

programme contains facilities which allow us to increase or decrease the size of 

the boundary and to translate and rotate the boundary in the plane.

5.2.2 Comparison of monitoring regimes

In this section we compare the two monitoring regimes, introduced in chapter 1, 

in terms of the rate of nuisance disconnects and the level of transients. As we 

shall see, above a certain limit, the more we relax the tolerances the fewer the 

nuisance disconnects but only at the expense of larger transients, on average. 

Thus, in practice, one consraint on our increasing the tolerances in the monitor 

and thereby reducing the incidence of nuisance disconnects, is the ability of the 

system to withstand transients above a certain size.

As well as the 12-sided star and hexagonal acceptance regions which 

characterise the two monitoring regimes of chapter 1, we include the circular 

region of the y}  process as a further comparator. We assume here that the noise 

processes in the three sensors are identical and independent. Thus , from 

(1.3.4), we may write R(0) = I, R'(0) = 0, and R"(0) = - co  ̂ I , where I is the 

two-dimensional identity matrix . To aid comparison, we have chosen the basic 

acceptance regions of each type, so that , in the notation of chapter 4, L = 1

corresponds to the boundary whose minimum distance from the origin is unity. 

It follows that L is the minimum distance of Dj^ from the origin, which has been

used by Hasofer and Lind (1974) as an index of the reliability of the
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corresponding system. The following diagrams show graphs of E(U) against L, 

for the three types of regime, for co = 3.

e £u )

figure 5.1 Graph of E(U) v L for the 12-sided star

E (U)

figure 5.2 Graph of E(U) v L for the Hexagon
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E(U)

figure 5.3 Graph of E(U) v L for the Circle

The graph in figure 5.3 was obtained using the formula of Sharpe (1978), 

quoted in section 1.6 of this report, with u = L , Xy -  co -  and p = 2 ,

which yields
E(U) = - 9 L L e - L 2/2 . (5.2.3)

V27X

What is most noticeable about the three graphs of E(U) against L is their similar 

general shape, in spite of the very different boundaries of the three regions. In 

each case E(U) increases with L, for small values of L, up to some maximum 

and subsequently steadily decreases as L increases beyond the maximum . The 

reasons for the general shape of these graphs are not difficult to see. When the 

region V is small, P{X(t ) e  F) = 0 (L “) and the process spends most of the 

time outside T. The process has a small probability of hitting T and spends little 

time in T before it exits the region. Thus, in this range, an increase in L, leading 

to an increase in the size of T, will improve the chances of the process hitting V 

and therefore cause p. to increase. On the other hand, when T is large, the 

process spends a large proportion of the time inside T and has difficulty in 

reaching the boundary . Thus, for large L, a decrease in L will improve the 

chances of the process leaving T and will cause an increase in ¡1 .
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In practical applications we may want (i to be 10'-* or smaller, implying a large 

acceptance region and L in the asymptotic region . Below we give asymptotic 

formulae for \x = E(U), for large L, when R(0) = I and R"(0) = - o)2 j 

12-sided star

\i ~ L-1 e -L2/ 2 . (5.2.4)
TVilll

Hexagon

\i ~ 2 _ a e -L2/ 2 . (5.2.5)n

Circle
M- ~ ^  L e-L 2/2 . (5.2.6)

Formulae (5.2.4) and (5.2.5) follow by the application of theorem 1, chapter 4, 

on multiplying by 6 to take account of the 6 minima in each case [Breitung,

1988]. The formula (5.2.6) for the circle is the exact formula of Sharpe. In this 

case there are no isolated minima of Q on D^, since Q is constant on the

boundary, and theorem 1 of chapter 4 does not apply. We discuss the question 

of multiple minima and the relation of our work to the work of Breitung (1988) 

in section 5.3 .

For a given value of L, the transients from the 12-sided star shaped region are 

distributed in the range from L /  (2^3) to V3 L /  4, whereas the transients from 

the hexagonal region are a constant L / (2V3). If we compare the average rate 

of nuisance disconnects (exits) from these two regions using the asymptotic 

expressions (5.2.4) and (5.2.5), we see that the ratio of the expected number of 

nuisance disconnects, for the 12-sided star to that for the hexagon, decreases 

like L~l, for large L. Alternatively, if we compare E(U) for the 12-sided star at 

L with E(U) for the hexagon at k L, for fixed k > 1, then the ratio of the
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expected rate of nuisance disconnects increases exponentially with L. In other 

words, the hexagonal region will generate far fewer nuisance disconnects for a 

transient level only a little above the minimum for the 12-sided star.

Another way of considering the trade-off between numbers of nuisance 

disconnects and levels of transients is to compare E(U) for regions giving the 

same mean size of transients. In the following table, we compute the mean 

transient for the 12-sided star and give the corresponding E(U), for a range of 

values of L. We also compute the value of L, such that the constant transient of 

the hexagonal region should equal the mean transient of the 12-sided star 

shaped region, and quote the corresponding E(U) for the hexagonal region.

Table 5.1 Comparison of rates of nuisance disconnects for 

boundaries with the same mean transient

12-sided star Hexagon

L E(U) Mean Transient L E(U)

1.0 0.9519042 0.34939 1.2103 0.7096878

2.0 0.2011057 0.65096 2.2550 0.1818855

3.0 0.0130972 0.92932 3.2193 0.0150767

4.0 0.0003231 1.20852 4.1864 0.0004411

5.0 0.0000030 1.48993 5.1613 0.0000047

6.0 0.0000000 1.77288 6.1414 0.0000000

For large L, it turns out that the mean transient for the 12-sided star is given by 

(L + L ' l ) /  (2^3) + 0(L"3). Hence an hexagonal region with size parameter 

L + L~1 will have the same mean transient, asymptotically, as the 12-sided star
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of size L. Substituting for L into (5.2.5), we find the following asymptotic 

expression for (i

H ~ e-i e L2/2 (5.2.7)
7t

Thus the asymptotic effect of equating the mean transients is to reduce |i by a 

factor e 'l .  In other words, for L large enough, the 12-sided star will have a 

smaller rate of nuisance disconnects than the hexagonal region with equal mean 

transient. Thus, although the 12-sided star will, on average, give fewer 

nuisance disconnects, if L is large enough, the hexagonal region will ensure the 

magnitude of any transients is constant, thereby eliminating the possibility of a 

catastrophically large transient.

5.2.3 Effect of bias in one sensor

In this section we suppose that one of the sensors of section 1.3 suffers a bias 

w and write, without loss of generality, E(W j) = w, E(W2) = E(Wg) = 0. By

(1.3.2) and (1.3.3), it follows that the mean of the two-dimensional process 
2

X (t) becomes ( -  ^  w, 0), leaving the covariance structure of the process

unchanged. The effect of such a shift in the mean of the process can, of course,

be modelled using the zero mean process by applying an equal but opposite 
2

shift b = w to the boundary.

Figures 5.4 and 5.5 show the effect of such a bias on the rate of nuisance 

disconnects for the 12-sided star and hexagonal boundaries, for small values of 

L and a range of values of the bias b.
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E(U)

L  -  3
t-  -  2.

t- *  1
b i a s

figure 5.4 Graph of E(U) v bias for the 12-sided star.

E (U)

L -  5

L  ~  2 -  

U = L

figure 5.5 Graph of E(U) v bias for the Hexagon

As we observe from the graphs of figures 5.4 and 5.5, E(U) has a stationary 

point at b = 0 for the two regions and for all values of L, as was to be expected 

on the grounds of symmetry. The stationary point is a local maximum when L = 

1 , but is a minimum when L = 2, 3. We also notice the development of a 

maximum at or near the point b = L, for the larger values of L. It is of interest to 

note, that Veneziano et. al. (1977) give a formula for the rate of exits from a 

circular region whose centre is displaced from the origin . Using this formula, 

we find that b = 0 is a maximum for E(U) if the radius L < V2 , and is a 

minimum if L > V2.
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Clearly for small regions, any gain in the number of exits through one part of 

the boundary, due to the increasing proximity of the origin, is more than 

compensated for by the loss of exits over the increasingly large part of the 

boundary which is receding from the origin . On the other hand, when the 

region is large and E(U) is small at b = 0, the number of exits will increase, as 

the origin approaches a side or vertex of the boundary. Moreover, if the origin 

approaches a side of a large polygonal boundary, we might expect that the rate 

of exits would behave like the rate of up-crossings for a univariate Gaussian 

process, namely
Lt =  M .  e - i ( L - b ) 2
^  2k

for large L and b = L.

Certainly this expectation is bom out for the hexagonal region. The situation 

regarding the 12-sided star shaped region is slightly different, in that, as we 

continue to displace the boundary, the origin approaches, or is approached by, 

an internal vertex. Estimating the asymptotic behaviour of E(U) is more difficult 

in this case. However, as we see from figure 5.4, the maximum, for large L, 

occurs after the origin has passed the vertex, ie when b > L.

For our present application, interest is likely to centre on the effect of bias when 

L is large. From what we have observed, a small bias will not increase the rate 

of nuisance disconnects drastically. However, it is the relative rather than the 

absolute increase in E(U) that is relevant and E(U) will itself be small in any 

application. The development of an asymptotic formula, giving E(U) for small 

values of b and large L, would be of considerable utility.
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5.2.4 Increased measurement variance

We now suppose that the variance of sensor 1 is, for whatever reason, twice as 

large as that of the other two sensors whose measurement variances remain 

equal and unchanged. Thus we may assume that the covariance matrix of the

noise process W , at the origin, is given by L(0) = diag ( 1, 0.5, 0.5 ) and in 

consequence of equations (1.3.4) we obtain R(0) = diag ( | ,  1) . Although it

does not follow that the second derivative of the covariance matrix at the origin,

R”(0), of necessity remains proportional to R(0), if we assume that the spectral 

distribution of W j remains unaltered'when the variance is increased, then the

diagonal elements of R"(0) are modified in direct proportion to those of R(0), 

and we put R"(0) = diag (15, 9). In the two following figures, we compare the 

rates of nuisance disconnects for the process with increased measurement 

variance and the basic process, over a range of values of L, for the 12-sided star 

and the hexagon.

------------------ I r\C f€.<XS-e.d w qr/Q rice

figure 5.6 The effect of increased measurement variance on E (U ); 12-sided star
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E (U)
--------- —  l a c  r-^as e d  v a s ia n .ce .

In both figures we see that the effect of the increase in measurement variance is 

to displace the maxima of the graphs to the right, leading to an increase in the 

rate of nuisance disconnects for large L. This effect can be further explored 

using the asymptotic results of theorem 1, chapter 4. Below we give

asymptotic expressions for the ratios of the rate of nuisance disconnects for the 

process with increased variance, |i j ,  and that for the base process, |1q , for our

two polygonal regions.

Hexagon M-i -  ^2 id /5
HO “  3

12-sided star Ü L  =  2 Ì ! £  p  l 2 / 5 

Ho '  6

For L = 3, these formulae show th a t, for both regions, the ratio H-i /  H-o *s

roughly equal to 3, as we can verify from the graphs of figures 5.6 and 5.7. 

This disparity in the rate of nuisance disconnects clearly increases with L, thus 

for L = 5 the ratio is of the order of 10“ . Furthermore, the assumptions we 

made concerning R"(0) do not crucially affect the conclusions, since a different
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choice of R"(0) would only cause |i] to be multiplied by a constant factor; the 

exponential factor in the ratios is solely determined by R(0).

5.3 C onclusions

If we are to construct a theory of the crossings of boundaries by Gaussian 

vector stochastic processes, we must either construct a direct theory of vector 

Gaussian processes or alternatively construct a theory of non-Gaussian 

univariate processes and their level crossings. In chapter 2 we have given a 

proof of Belyaev's formula for the factorial moments of the number of exits 

from a region, by a vector Gaussian process, under very general conditions on 

the process and the boundary of the region. There is no direct proof in the 

literature. Belyaev (1968) gave his celebrated formula without proof, under 

very different conditions to ours. The alternative approach has been adopted by 

Marcus (1977), who has given formulae for the moments of the number of 

crossings of levels by a non-Gaussian process, under extremely general 

sufficient conditions. Lindgren (1980b) has used the results of Marcus (1977) 

to give a formal proof of the formula for the expected number of ex its .

The merit of our approach is its applicability to all vector stationary Gaussian 

processes for which the matrix of second order spectral moments exists. Also 

that it makes explicit any assumptions about the boundary Or. Our approach is 

also easily generalisable to non-stationary Gaussian processes and to limited 

classes of non-Gaussian processes . Although we assume throughout our 

processes are Gaussian, by different choices of boundary we can obtain results 

for the crossings of a wide range of univariate processes. For example, 

considering the exits of an isotropic Gaussian process (Veneziano et. al.
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(1977)) from a circular region of radius u, is equivalent to considering the up- 

crossings of the level u-  by the y}  process Y = X^X . More generally, if we 

consider the exits from an n-dimensional region T -  { x e Rn ; g(x) < 0 ) by 

a stationary Gaussian process X (t), this is equivalent to studying the up- 

crossings of zero by the non-Gaussian process Y = g [X (t)] .

Our sufficient condition on the covariance R(.), for the existence of the variance 

of the number of exits, is a natural generalisation of the sufficient condition

(1.5.5) of Leadbetter and Cryer (1965). The restricdon to two-dimensional 

regions in chapter 3 is mainly for ease of presentation, the results are easily 

generalisable to p-dimensions. It is worth noting, that since our sufficent 

condition does not depend on the shape of the boundary, the condition applies 

to the crossing variance of the y}  - process and to other processes which can be 

represented as a function of a multivariate Gaussian process.

Belyaev (1966) and Cuzick (1975) have given sufficient and necessary 

conditions for a stationary Gaussian process to posess finite crossing moments 

of all orders. In retrospect the result of Leadbetter and Cryer (1965) can be 

characterised as the application of Belyaev's general sufficient condition to the 

second order moments. The sufficient condition on the covariance function

(1.5.6) , for a real stationary Gaussian process to have finite crossing moments 

of all orders [Cusick (1975)], is more restrictive than the sufficient condition 

given by Leadbetter and Cryer (1965) for finite crossing variance. As Geman 

(1972) has shown Leadbetter and Cryer's sufficient condition to be necessary, 

we might reasonably entertain the hope that our sufficient condition will also 

prove to be necessary.

It is well known that the duration of an excursion, by a stationary Gaussian 

process above a high level, has an asymptotic Rayleigh distribution . We have
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shown, in chapter 4, that the duration of an excursion above a large two- 

dimensional boundary can exhibit a wider range of asymptotic behaviour . 

Although the Rayleigh distribution will always occur if all the points of the 

boundary are regular, should the boundary contain vertices, where two regular 

elements meet, it is possible for two other types of asymptotic distribution to 

o ccu r.

The two other types of asymptotic distribution occur when p[x] has a unique 

maximum at a vertex, xQ , of • The nature of the distribution depends on

whether the skew-symmetric matrix = 0 or n o t. If * 0 , the asymptotic 

distribution is exponential with unit mean, whereas if = 0, the asymptotic

distribution is determined by the limiting distribution function of (4.6.19) and 

the complicated integrals of (4.6.20). The latter distribution also can be shown 

to have a unit mean, as expected, since we have used the mean 0 to scale the 

duration.

In obtaining these asymptotic distributions, we have derived asymptotic 

expressions for fi = E(U), P{X (t) e F )  and 9, for the three cases depending 

on whether the maximum xQ is a regular point or a vertex and whether Xj = 0

or * 0. Table 5.2 below compares the values of (I obtained from the 

asymptotic formulae (5.2.4) and (5.2.5), with co = 3, and the corresponding 

exact values obtained from the Fortran program EXIT.FOR .
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table 5.2 Comparison of exact and asymptotic values for (i

12-sided Star Hexagon

L Asymptotic Exact Asymptotic Exact

2.0 0.3093454 0.2011057 0.3877070 0.2914731

2.5 0.0803438 0.0580430 0.1258700 0.1071262

3.0 0.0169284 0.0130972 0.0318249 0.0291750

3.5 0.0028572 0.0023216 0.0062667 0.0059953

4.0 0.0003834 0.0003231 0.0009610 0.0009409

4.5 0.0000407 0.0000353 0.0001148 0.0001137

5.0 3.41xl0‘6 3.02xl0 ' 6 1.07xl0‘5 1.06x10 '5

5.5 2 .2 4 x l0 '7 2.02x l0"7 7.73xl0 ' 7 7 .7 2 x l0 '7

Unlike the situation of chapter 3, the working assumptions of chapter 4 , two- 

dimensional regions and unique maximum of p[x] on , are important to the

development of the results. It is not immediately clear how the relaxation of 

these assumptions would affect the results of chapter 4. Even cursory 

consideration suffices to provide hints of the likely growth in the variety of 

pathological behaviour with increasing dimension. Equally the admission of 

multiple maxima of p[x] could in principle lead to complicated mixtures of 

limiting distributions. Elucidation of these matters must await further research.

Breitung (1988) has obtained asymptotic crossing rates for stationary Gaussian 

vector processes using an implicit definition of the safe region S = { x e  Rn ; 

g(x) > 0 } in terms of a real function g(.) on Rn . It is assumed that min 1x1 = 

1, on the boundary G = { x e Rn ; g(x) = 0 } , and that this minimum 

distance from the origin is attained at only a finite number of points.
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A sequence of surfaces similar to G is introduced by G((3) = {x ; g(P'^x ) = 0}, 

so that (3 > 1 is the Hasofer-Lind index of reliability, and Breitung derives an 

asymptotic formula for the expected number of crossings, C((3), of G((3) by a 

stationary Gaussian process X (t), standardised so that R(0) = I .

The formula given in corollary 4.3 of Breitung (1988) for the expected number 

of crossings of G((3) is identical to our result of theorem 1 (i), chapter 4, 

assuming as we do only a single minimum for Q. Of course, Breitung's result 

only applies in the regular case, since his differentiability conditions on g(.) 

preclude the existence of vertices on the boundary surfaces.

As Lindgren (1980a ) and others have made clear, many safe regions which 

occur in practical problems do have vertices in their boundaries. Whether due to 

vertices, symmetry or accident, we have found many situations where Q has 

assumed more than one minimum on the boundary of T. The analysis of 

Breitung (1988) serves to show that the asymptotic behaviour of p  is the sum of 

contributions from each of the minima. We have made use of this observation in 

deriving asymptotic formulae for the 12-sided star and the hexagon which, for 

reasons of symmetry, have 6 minima each.

As we have seen already, in the case of a circular boundary, Q is constant on 

the boundary if the process is isotropic, and neither the theory of Breitung nor 

the theory of chapter 4 can provide asymptotic expressions for p. However, it 

is easy to show that if Q is a minimum on an interval of then

I t  2p = 0 (  L e ' 2 ) , for large L.

5.4 Future Developments

1. Generalise the results of chapter 2 to non-stationary Gaussian processes and 

to stationary non-Gaussian processes. An intriguing question for Gaussian
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processes, is whether E(C) = °° necessarily implies that C = °° , with 

probability one?

2. Extend the work on the variance of the number of exits to p-dimensional 

regions and explore the necessity of our 2-dimensional sufficient condition .

3. The work on asymptotic distributions of excursions needs extending, both to 

relax some of the working assumptions and to generalise the results to higher 

dimensional regions. With the move’to multivariate processes, another form of 

asymptotic result becomes possible, not encountered with univariate Gaussian 

processes. As we have seen, as L —> 0 , E(U) becomes small and the 

excursions of the process inside T shorten in duration . Thus as well as 

asymptotic distributions for excursions outside large boundaries, we have now 

the possibility of asymptotic distributions for excursions inside small 

boundaries . The corresponding asymptotic distributions for the %- - process 

have been discussed by Aronowich & Adler (1986).
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Appendix A

1. Distribution of X(t ), conditional on X(0) = x j .

The joint distribution of X(0) and X (t) is normal with zero means and 

covariance matrix

A =
R(0) R(t )

. R (t)T R(0) .

It can be shown that X(t ) - R(t )^R(0)'^X(0) has covariance

R(0) - R(t )^R(0)'^R(t ) and is uncorrelated with X (0 ). By the normality of the

distributions, it follows that the conditional distrbution of X (t), given 

X(0) = x j , is

N[ R(t )t R(0)_1x 1 , R(0) - R(t )TR(0)_1R (t) ] .

Since, for small t ,

R(t) = Xq + h  t - i - ^ t 2 + 0(t) (1.1)

a little algebra gives

S(t) = R(0) - R(t)TR(0)_1R(t) = K2 t 2 - 0 - 0T + 0 ( t 3) , (1.2)

where k 2 = + ^ i ^ o '^ l  .

Using the matrix identity

(A  + B ) ' 1 = A ' 1 - (A  + B ) _1B A ' 1 (1.3)

we find

S' 1 = k 2-] + S' 1 ( 0 + 0T + 0 ( t3 ) ) \  k 2- !
t 2 t 2

= 4 r  k 2-] (1 + o (D ) .
t L

Thus for small t , we have

Pt (x2 l xi) = ^ ------ t ' 2 exp j - l ( x 2 - x \)T \  k 2_1 (x 2 - x i )  J( 1 + o ( l )  ) , (1.4)
2k  I 2 t 2 )

since R(t )^R(0 )‘ ^Xj = x j  + 0 (t ) .
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It follows from the above that, conditional on X(0) = xj , the distribution of 

[ X ( t) - X(0) ] / 1 is

N  ( -  ^ ^-2̂ -0 t +  0 X.Q t ) X j k 2 - 9 + 9 (1.5)

2. Conditional Distribution o f v ^ XYt] ) and v V^XY+ri. given X (t| ) = X|.

JCit2i^ X 2  •

The joint distribution of X (t^ ), X(t2) , X '( t j ) , X'(t2) is normal with zero 

means and covariance matrix A, given by

R(0) R(t) 

R(t)T R(0)

- R'(0) - R'(t) 

R'(t)T - R'(0)

R'(0) R'(t)

- R'(t)T R'(0)

- R"(0) - R"(t)

- R"(t)T - R"(0)

A B

_Bt  C .

where t = t2 - tj , and the partition defines the 4 x 4 matrices A, B, C .

(2.1)

Applying the general argument of section (a), we can show that the distribution 

of X '(tj), X’(t2) , conditional on X (tj) = x j, X(t2) = x2 is

N b t a - x i
L x 2 J

b t a !b

Thus the mean of V ]^ X’( t |)  is Vj ^ B ^ A '^ x j  , the mean of v2^-X'(t2) is 

v 2^ B ^ A '^ x 2 while the variance of v ^ X '( t j )  is Vj^-( C - B ^ A'^B ) 

etc. Hence, conditional on X (tj) = x j, X(t2) =x2 , v ^ -X '( t j )  and 

v2^-X'(t2) are normally distributed with mean vector m and covariance matrix

X, where

m mi
m2

Vj 0
0 v2

BTA-1 x f
-X2 .

(3.2)
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and
On O12

. O21 O22 .
Vi 0
0 V2.

( C - Bt A ’B ) V] 0 
. o V2

(3.3)

Starting from the expansion (A. 1.1) for R(t ), we obtain expansions for m and 

X, valid for small t .

Writing the matrix A in the form

A = I 0 R(0) 0 I R iO jA Rd)'

.R d^R iO )-1 I - _ 0 s 0 I

we get

A ' 1 =
’ I - R(0)4 R(t ) " " R(O) 1 0 I 0
_ 0 I 0 S-1 . - R(t)TR(0)_1 I

W  + ^o_1R(t )S_1R(t )TX0l 

- S^RCt )T^o_1

A.<j R(t)S-! 

S ' 1
(2.4)

A ll A 12
- A21 A22

where Aÿ are 2 x 2 sub-matrices of the above partition of A-1

Expanding in powers of t , using (A. 1.1), we get

S = ? i o - R ( t ) V R ( t )  -  K2 t 2 + i K3 t 3 ........ ( 0  + 0T)

= t 2 ( K2 - 02 )

where K3 = ^ 2 \ )  ~ ^1  - ar*d 02 = °U ) > f°r small t . Applying

the identity (A. 1.3), we find 

S "1 = r 2 k 2' ! + k 2_1 ^ + ^ k 2_1 + 0 (t ) + O i-~ --
t 2

[e + eT 2
1 t2

(2.5)

which immediately provides an expansion of A2? .
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Let U = XQ - R(t )>\.0'^R(t = t 2 ( k 2 - <J)j ) , where (¡)j= o (l) for

small t , thus as above we find

i r 1 = t K2 ! + K2! 0 ± 0 -  K21 + 0 ( t  ) +  O [0 + 0T
2

1 t 2
(2.6)

Now it follows directly from the above definitions that

m 0- 1R (t)=  R ( t ) V l s

and hence X0'^R (t)S '^  = U '^R(t )A,0‘1 

from which we simply obtain

U ' 1 -  V 1 + V lR (t )S-1R (t)TV 1 = A n  . (2.7)

Further A j 2 = A2 j ^  = - X,0'^R(t )S'^ and on expanding R (t) and S'^ in

powers of t , we find

At 2 = t ”2 Kf1 + k 2! k 2-i + Q(t ) + o
t \ 2

0 + 0 1

From (A.2.1)

Bt  =
- \ \ - X\

+ 0 X2 t - 0 '

- - - ^1 - .-? t2 t + 0 ,T 0

and therefore

(2.8)

b t a -]
- ?ii(A]i + A?i ) - ^ i (A i 2 + A22)

- )ti(A ji + A2i ) - ^ i (A ]2 + A22)

t - 6 ')A21 0.2 t - 0’)A22

(- ^2 t + 0' )A n  (- X,2 t + 0 'T)A i 2

(2.9)
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Expansion of C - B^A~ ̂  B for small t . 

Post multiplying (A.2.9) by B, we find

Bt A_1B = - X i(A n + A21 + A12 + A22 )^i- -̂1 (A n + A21 + A12 + A22 )^i 

^i(An + A21 + A12 + A22 )A.i- X,i (A j i + A21 + A12 + A22 )A.i
+

+ - A,i(Ai2 + A22 )(^2 t - 0'  ) - ^i(A]i + A21 )(- X 2 t + 0' )

- A-i(Ai2 + A22 )(^2 t - 0 ’ ) - Xi(An + A21 )(- ~k2 t + 0' )

(?12 t - 0 ')(A21 + A22 )̂ 1 (X.2 t - 0 ')(A21 + A22 )A.1
(- X-2 t + 0 ' )(An + Aj2 ) h  (- A-2 t + 0 ’T)(Ai 1 + A12 )Xi

( 2 . 10)

(X2 t - 0')A22(?12 t - 0 ,T) (k2 t - 0')A2i (- \ 2 t + 0 ’)

(- a.2 t - 0 ,T)A i 2(?12 t - 0,T) (- X2 t + 0'T)A „(- \ 2 t + 0')

From (A.2.4), we have

All + A21 + A12 + A22 = A.0 - Xo Xi K^^i A.o1 +
T

- X01̂ iK2' l 9 + e K f^ i^ o '1 + 0 ( 0
t 2

using the expression (A.2.5) for S'^ . Thus the common submatrices making 

up the first term of (A.2.10) are

- 2ci(A 11 + A21 + A 12 + A22 )^i = - A,i?io .̂1 + ^-i?io A_i K21)i i A.o A,i +
T

+ X{Kq 9 9— K2 Â. 1 A-o -̂i + 0 ( t )
t 2

(2 . 11)

(2 . 12)

Using (A.2.4) and substituting from (A.2.5) and (A.2.6) for S' 1 and U~* , we 

obtain for the second term of (A.2.10), neglecting terms of order 0 ( t ),

^  ' -1 . ~ - i0  + 0 ‘ v ^ h .  0 ,TX1X0 A,i ( k 2 +  k 2 — - — k 2 ) IX.2 -
t L ' t

-1,
? i A o ^ i (  K 21 +  K21 ö +  0 K21 ) I-  X 2 +  —

t 2 ' t
-10 + 0 ..-1 0 '

XAo^lt K21 + K21 9 + 9 KJ1 ) \X2 - - ^AoVl( K2_1 + K2_1 9 + 9 K2_1 ) - X 2 + ~
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Similarly for the third term of (A.2.10) we find

(?i2 - ( k 2* + k 2! ® + ® k 2! ) ?i i Xq , ditto

1̂ 2 - ( Ki1 + K2] K2_1 ) 1^0% , ditto
+ 0(t)

Using the expansions (A.2.5), (A.2.6) and (A.2.8), the fourth and last term of 

(A.2.10) becomes

. r )  ( k2> + k2> * ± f .  > (x2 - a2) {x2 - ai) ( K2> + Ki> a ^  k2> > (*, - a:

- £ )  ( k2> + k2> Ki') (x2- ¿L) (x2. s2) ( k2- + &±aL > (x, • a

Collecting terms we finally obtain

x2 + a+sl . si+ef x2 + a + s l . 26:
Bt Aa B = f t t t

x2 + a i£ l-2 e 2  À2 + e + eT . a ^ e ,T

f t t ' t

+ Q ( t) .  (2.13)

Now (A. 1.1) and (A.2.1) together with (A.2.13) give

6 + 6 _i_ 26 ' _ q "

C - Bt A 1B =

T T6 + 6 + 6 ' + 6 '
t 2 t

T T
6 + 6 + 2 6 _  .

f t
T T6 + 6 + 6 ' + 6_

+ 0 (t ) . (2.14)

Expansion, for small t . of BTA 1 *i
X2

It follows by (A. 1.5), that [ X (t) - X(0) ] / t has finite mean and variance as t 

tends to zero . Hence we may assume x^ -* 2 ~  0 ( t )> and consequently write

(2.15)b t a ! x r
= b t a _1 1 O' Xl

x2. . 1 1 . . x2 - Xi .

From (A.2.9), we now find
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Bt A": 1 0
. 1 1 .

+- Xl(An + A21 + A12 + A22 ) - ^l( Aj2 + A22 )
- A.i(An + A21 + A12 + A22 ) - X,i( A12 + A22 )

(^2 t ■ 9')( A21 + A22 ) ( X2 t - 9’) A22

(k-2 t - 0' )( A n  + A12 ) (- X2 t + 0' ) A22

On combining (A.2.15) and (A.2.16) and employing (A.2.5), (A.2.6) and 

(A.2.11), we find, neglecting terms of order t ,

a K ^ ^ i^ o 1* 1 + a Kj1

(2.16)

Bt A' x f
X2 aT Kf^iX.o"1, 1 + aT k 2_1

*i

( X 2  -  X i )  

t

where we have written a = (0 + 0^) t - 0 ' t

(2.17)

Expansion of T. and m . for small t .

From (A.2.2) and (A.2.17), we obtain directly
mi = VjTa k 21A,i ?io 1x i  + ViT(l + a k 2'!) (X2 - x i ) / 1

m2 = vJaT k^À-i A-o 'x i + v 2 (l + aT k 2_1) ( x 2 - Xi) / t-i t  v-E
(2.18)

for small t .

From (A.2.3) and (A.2.14), we obtain

1  =
v. 0 + 0T ! 0 ' + 0 |T L

2 tt
,TV,T| - 9 + 6 1 +  2 6 3  , e ..T

2 ! ,2 t

VT 0 + 0 , 2 0 '+ **-  - 0" 2 t v2

Vi v2 0 + 0T + 0 ^ t.,0 :T 1V2 
t 2 t I

(2.19)

for small t .

The expansions (A.2.18), (A.2.19), in common with all the expansions in this 

section, neglect terms of the first degree in t along with powers and products of 

0 / 1 ^ , 0 ' / 1 ,0 "  , and t . In expansions of the mean such as (A.2.18) we have 

assumed that X2 - Xj = 0 (t ) .
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If the expansion of R (t) given in (1.1) is valid beyond the term in t ^ , then 0 

= 0 (t ^ ), therefore 0 / 1 ^ , 0 ' / 1 , 0 " are all 0 ( t ) and their powers and 

products will be 0 ( t x ) .  In chapter 3 we are mainly concerned with the 

situation where 0 is larger than 0 ( t ^ ), for small t . Thus 0 /  t ^ , 0' /  t , 0" 

will tend to zero more slowly than 0 ( t ), as may some of their products and 

pow ers. In general the use of 0 ( t ) for the error term in, this section is meant to 

include terms such as (0 / t ^ , (0 ' /  t )^, (00 ') /  t etc.

3. To prove that

Proof, (i)

f and f i M
0 f 0 t

dt are bounded by
3 n t

w(t) dt < oo

Thus

Since 0'(O) = 0 , 0'(t) = j  0"(x) dx , therefore
o

0'(t) II = I 0"(T) d l < | 0"(x) II dx = j  w(x) dx 
o o

f  11 0 '(t )  II , ^  f  i \ ,  , JJ ----------dt < J — J w(x) dx dt
o t- o t 2 o

- il 1 1 w(x) dx
o \ T S I

on changing the order of integration and integrating over t . Thus we have

J iie x o ji  d , s  f M _ i j w ( X)dT < f ì l l i .
o o t T 8

as we wished to show .

o *
dx ,

(ii)

Since 0(0) = 0'(O) = 0 , 0(t) = J (t - x) 0"(x) dx and hence= 1

0(0 H = (t - x) 0"(x) dx < J (t - x) Il 0"(x) Il dx = I (t - x) w(x) dx

Thus, on changing the order of integration and integrating over t , we obtain
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f l M Í  dt < Í-LÍ ( t -T)w(T)dTdt
O t- O t 3 O

_L . 25 - t  ! W(X) dx dt < f dx <
2x 25' 2x

as was to be proved.
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Appendix B

(a) The conditional distribution of X ( t), X '( t). given X(0) = Xj , X'(0) = v 2 .

The joint distribution of X(0), X '(0 ), X (t), X '( t) is multivariate normal with 

zero means and covariance matrix

R(0) R'(0 ) R(t)T - R'(t )T
- R'(0) - R"(0) R'(t )T - R"(t )T

R(t) R'(t ) R(0 ) R'(0)
- R'(t ) - R"(t ) - R'(0) - R"(0)

I o  BT 

B I o

From the general argument of appendix A, the conditional distribution of X (t), 

X’( t ), given X(0) = xj, X'(0) = yj is

N ( Bt S (-t *1
yi

, So - b t Z 0>b  ) ( B . l )

(b) Inverse of y,Q 

Write Z 0" ̂  =

Tsymmetric, j and 022  arc symmetnc and <3\2 = a 2\ •

°11 a 12 

_a 21 ° 2 2 .
, where Ojj are 2 x 2 matrices. Since X0 is

Since we must nave
A-o " CTn <*12 1 0

. - X t •̂2 - - <*21 <*22 . . 0 1 .

we obtain, equating component sub-matrices,

^0 <*11 + X] O21 = I (i)

- Xi On + X2 <*21 = 0 (ii)

^0 <*12 + ^1 <*22 = 0 (iii)

- Àj 0\2 + X.2 <*22 — I (iv)

Eliminating 09 ] between (i) and (ii), we obtain
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( ^0 + ^-1^2 -̂1 ) Oil = I

Equations (ii) and (iii) give

O21 -  ^2 ^1 On

and
-l.

Oi2 = -^0^-1 O22

Also, since O21 = > we get

or

On ^ 1̂ 2* = 022

022 = A-2 ?ii On

X1
(c) Expansion of J i^ X o 'n  ^ 1 and 7 ,0 - B^ y ,0 *B. for small t 

We assume that, for small t , R (t) has the expansion

R (t) = Xo + ?ii t - Jj- X2 t2 + ^3 t3 + Jp X4 t4 + 0 ( t ) ,

where 0(0) = 0'(O) = 0"(O) = 0'"(O) = 0 and <|)iv( t ) = o ( l ) . Thus

B = R (t) R '( t) 
R '( t) - R "(t) -  Xo + S i t ^ X 2 t2 + 0  ,

where

I i  =
Xi - X2 

_ X2 - X3 .
I2  = - ^2 ^3

- X3 - X,4

and

0  =
^  ^3 t3 + ¿j- ^4 t4 + 0 , 

- Jj- l 4 t3 - 0 ' ,

3! t3 + f

- V

Bearing in mind XG and Z 2 are symmetric matrices of order four, while

is a skew-symmetric matrix of order four, we have

BTLn
_xr
.y ij I - S 1S 0 t + j  X2X0112 + © T o 1 x r

.yiJ ’

where I is the identity matrix of order four.

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)
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Equations (ii) and (iv) preceeding (B.2), give

X iZ »1 = °
- I (B.9)

A2 O11- A3 021 , \ 2 G12 - A3 G22
and, using (B.3) and (B.4) to express 0 2 ] and a j 2 in terms of Oj j and 0 2 2  >

the expansions of the conditional means, for small t , can be written 
E [X (t)  l x i , y i ]  = xi + tyi  +

+ 2 t2 [(' ^2 + ^3 ^2 1̂ ) O11X1 + (A3 + A.2 Aq 'Aj ) °22yi ] + (B .10)

+ X! 0 (t3) + yi 0 (t3)

E [X'(t ) I x i, y! ] = yi + X] 0 ( t2) + y 1 0 ( t2) +

+ 1 [(- X2 + A3 A2 A] ) Onxi + (A3 + A2 Aq Ai ) G22yi
(B .l 1)

Expansion of Z Q - B^ E Q ^B

Expanding the second term in powers of t , we get

B ^ B  = Zo + ( I 2 - I i l o ' l i )  t2 + \  ( L iL d 'h  - I i l o 1̂ )  t3 +

+ \ZaZ i'Z j t4 + jl - 2 , I o ‘ t + I 2 I 6 112 10  + (B .12)

+ 0 T {i + Zc'Z , t + 1  Zo'Zj t2 j + 0 t Eo'0  .

Since

l o i
-i I 0T 0 = I 0 

0 I
it follows that Z ^ I q  and Z G ^Z j are of the forms

I l i o 1 =
0 - I
*  * I o 1! !  =

0 * 
I *

and hence

I i l o ' l i  =
- A2 A3

- A3 *

where the asterisks denote undetermined sub-matrices. Thus

I 2 - I i l o ' l i  = 

and, as a little algebra shows,

0 0 
0 -d
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d =  X 4 - ( ^2  O n  X.2 +  A.2 <5\2 -̂3 - -̂3 <*21 ^-2 - ^-3 <^22 ^3 ) • (B.13)

Similarly, we can show

\  (  I 2I o ' X l  -  I l Z o - ' l 2  ) 0 * 1

and, as t tends to infinity,

T0 +0 1

S iS o 1© ■ © S o 'S i

Further

■pT ^ 4  t  4  +  <J) +  <t> ,
- f  + 4>'T

^  ^4 t 3 + <t>' + <t>' , 0 ( t2 )

0 ( t2 ) , o ( t2 )

■ T

- r - r

0 ( t4 ) ,  o (t3 ) 

. o ( t3 ) ,  o (t2 )

for small t .

Substituting the above results into (B.12) and retaining terms up to the fourth 

degree in t, we find

So ■ B^So^B -  (S iS o 1® * © S ^ S i )  t - (S 2 - S i S o ^ i )  t 2 + 

- y  (S 2S o ]S l - S iS q ^ 2) 1 3 + 4 S 2S q !S 2 t 4 - (0  + 0  ) + o(t 4)

or So - B t S o ! B  =
a b

-bT c .

where the 2 x 2 sub-matrices a, b, c are given by

(B. 14)

a = S  t 4 d + o (t4 ) (B.15)

b = 1  t 3 d + o (t3 ) -  bT (B.16)

c = t 2 d + o (t2 ) (B.17)

and the sub-matrix d is defined in (B.13) .
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(d) The conditional distribution of X '( t). given X ( t ) = X2 . X(0) = X| . X'iO) =

From the results of sections (a) and (c) it follows that the distribution of X (t), 

given X(0) = Xj , X'(0) = , is N( E[ X ( t ) I xj ,  yj ]  , a ) .  The general

considerations of appendix A applied here, show that the distribution of X’( t ) ,  

conditional on X ( t ) = \ 2 , X(0) = Xj , X'(0) = y j , is N( m , c - b^a "^b ) ,

where the mean m is given by

m = E [ X ' ( t ) I xi ,  yi  ] + b V ^ x i  - E [  X ( t ) I x i . y i  ] )  . (B.18)

The results of the last section show that , as t —> 0 ,

b V 1 = OCt1) , (B.19)

and

c - b V 1 b = o(t2 ) . (B.20)

(e) The conditional distribution of X'(0). given X(0) = X| .

The joint distribution of X(0), X'(0) is N( 0 , X0 ) , where E 0 =

is the covariance matrix, as follows from section (a).

- M  ^2

Again, from the general considerations of appendix A, the marginal distribution 

of X(0) is N( 0 , ) and the conditional distribution of X'(0), given X(0) =

x j , is

N ( -  A,! Ao1 x i  , A2 + A i Ao1 A i ) . (B .21)
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