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ABSTRACT

Buoyancy forces can exert significant influences on convective heat transfer for 

internal flows. This study considers some aspects of combined natural and forced 

convection for laminar flows in vertical ducts. Both computational and 

experimental approaches are employed.

A common framework is developed for the parabolic equations governing 

hydrodynamically and thermally developing duct flows exhibiting planar or 

axisymmetric two—dimensionality. A variable—property, quasi—incompressible 

fluid is assumed. Although primarily developed for the purpose of studying 

combined convection heat transfer in vertical ducts, the theoretical development is 

also applicable to the corresponding natural convection problem and to pure forced 

flows with or without heat transfer. The analysis caters for numerous possible 

combinations of duct geometry (circular, concentric annular and parallel plates), 

thermal boundary conditions (uniform wall temperature or uniform heat flux) and 

inlet flow profile (uniform, partially developed or fully-developed). A marching 

procedure for obtaining numerical solutions of the fully—implicit, finite—difference 

versions of the governing equations is described.

Local heat transfer results are reported from an accompanying experimental 

investigation of water flowing upward in a uniformly heated vertical tube almost 

160 diameters long. The data presented cover a range of inlet Reynolds number 

from 75 to 1180 and values of the buoyancy parameter Grq/Re from 71 to 2070 

(based on inlet bulk properties). The experimental local Nusselt numbers shown 

exhibit an increase with Grq/Re which is more marked at longer axial distances. In 

many tests, the variation of the local Nusselt number is characterised by a 

minimum value at some intermediate axial position followed by a rise in the 

downstream portion of the tube. Examples are included of transient records 

obtained of wall temperature fluctuations which have also been observed in 

previous studies using similar apparatus. The fluctuations, which are generally
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believed to indicate departure from steady laminar flow, increase in magnitude 

with both flow rate and heat flux, and appear to be responsible for a marked 

improvement in the local heat transfer.

Numerical predictions of local Nusselt number and wall temperature are compared 

with the experimental results for selected conditions. The predictions are restricted 

to regions where the flow remains unidirectional. The agreement seen is generally 

good, except in regions where either strong wall temperature fluctuations or 

upstream axial wall conduction is evident in the measured data, thus precluding a 

strict comparison with the numerical model which assumes steady laminar flow 

and uniform heating. The prediction of the Nusselt number minima is particularly 

pleasing.

The experimental data collected in this study are also compared with published 

correlations for estimating the convection regime and the Nusselt number.
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NOMENCLATURE

ao * * * an 

^ 1  ’ ' '

A

A

Ac

A< >

b

B

B

R ( >J - > m

Br

c

Cm

C*

Cm*

Cl, C2

Cl, C2

d

coefficients in nth—degree ip versus T polynomial 

coefficients in nth—degree ip versus (T — T0) polynomial 

dimensionless coefficients in nth—degree ip* versus 0 polynomial 

constant in equn.(7.2) 

square coefficient matrix 

flow cross-sectional area

coefficient in finite—difference equation, subscript denotes

transverse grid location where equation evaluated, superscript

number in brackets identifies the equation and associated variable

modified coefficient A^ ] accomodating boundary conditions

tube wall cross-sectional area for axial conduction

radial width of duct or problem domain, (r2 — r^

exponent in equn.(7.2)

column matrix of right-hand side constants

Biot number, h iw/k w

right-hand side constant in finite-difference equation, subscript

denotes transverse grid location where equation evaluated,

superscript number in brackets identifies the equation

modified constant Bi, 5 accomodating boundary conditions

Brinkmann number, /nim2/kA Tr

specific heat capacity, for fluid if no subscript used

mean specific heat capacity for range T0 to T, flTc dT/(T  — T0)

specific heat capacity ratio, c/c0

mean specific heat capacity ratio, cm/c0

constants in /z versus T power law, equn.(3.40)

dimensionless constants in /z* versus 6 power law, equn.(3.80),

Ci = ATr/(T 0 + ci), C2 = c2

tube diameter
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dh

e

E

F

F(Y)

Fo

g

G

Gr

h

i

I

!

k

k*

K

L
*

Lhy
*

Lth

m

M

n

Nu

P

duct hydraulic diameter, 4AC/P W, for a circular tube dh = d = 2b, 

for a concentric annulus dh = 2b, for parallel plates dh =  4b for 

symmetric problems and dh =  2b for asymmetric problems 

specific internal energy

dimensionless energy function, defined by equns.(3.117)—(3.120)

general dependent variable

function of Y, r* + (1 — r*)Y

modified Fourier number, (k/pc)w/u;£w2

acceleration due to gravity

dimensionless gravitational parameter, gb3/i^02

Grashof number based on wall—to—bulk temperature difference,

g/3p2dh3(Tw -  Tb)//x2

Grashof number based on heat flux, g/?p2dh4qw/k/i2

Grashof number based on wall—to—inlet temperature difference,

g/3p2dh3(Tw -  To)//*2

convective heat transfer coefficient, qw/(T w — Tb) 

general index

instantaneous electric current in heated test section 

rms electric current in heated test section 

thermal conductivity, for fluid if no subscript used 

thermal conductivity ratio, k /k0 

axial wall conduction parameter, kw£w/k b 

length of heated test section

dimensionless hydrodynamic entrance length, (Lhy/dh)/Re 

dimensionless thermal entrance length, (Lth/dh)/RePr 

finite—difference grid location in transverse direction 

number of transverse divisions in finite—difference grid 

finite-difference grid location in axial (marching) direction 

Nusselt number, hdh/k 

static pressure
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p

p

Pw

Pe

Pr

Qr

Qw

Qcorr

Qg

Qloss

Qmeas

r

ri

12

r*

rmax

R

R e

Rmax

Ra

Re

Reb

S

pressure contribution due to fluid motion, p +  pQgz

dimensionless pressure, (p — Po)/PoUm2

wetted perimeter of duct

Peclet number, RePr

Prandtl number of fluid, c/x/k

heat generation rate in tube wall per unit heat transfer area 

reference heat flux, [ | qwi| , | qW21 ]

wall—to-fluid heat flux, qwi for a duct wall at y = 0, qW2 for a 

duct wall at y =b

corrected rate of heat transfer to fluid, Qg — Qioss

rate of electrical power input to test section, IV

rate of heat loss from test section, estimated from equn.(5.3)

measured rate of energy rise of fluid, /90Vcbm(ATb)meas

radial coordinate

radius of inner transverse boundary at y = 0 

radius of outer transverse boundary at y = b 

radius ratio, r j / r2

radius at which maximum axial velocity occurs

heat flux ratio, qw/q r, rqi for a duct wall at y = 0, rq2 for a duct

wall at y = b

ratio of wall temperature differences, (TW1 — T0)/(T W2 — T0)

with TW2 > TW1, (TW2 -  T0)/(T W1 -  T0) with Twi ^  TW2

dimensionless radial coordinate, r/b

electrical resistance of heated test section

dimensionless radius at which maximum axial velocity occurs

Rayleigh number, g/?^2cdh4(dTb/dx)/16/xk

Reynolds number, pumdh//x

Reynolds number based on radial width b, pumb//x

buoyancy term multiplier, S = + 1 for upward flow, S = — 1 for

downward flow, S = 0 for pure forced convection
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t

T

T

1 amb

Tb

Tf

HO

ATb

ATr

u

Um

U

v

V

V

V

w

x

xa

x +

x*

X

AX

y

Y

time

temperature

time-averaged temperature

ambient air temperature

fluid bulk temperature

fluid film temperature, (Tb +  Tw)/2

Chebyshev polynomial of degree i in £, defined in Appendix B 

duct wall temperature, TW1 for a duct wall at y =  0, TW2 for a 

duct wall at y = b 

bulk temperature rise

reference temperature difference, [ |T W1 — T 0| , |T W2 — T0|]  for

UWT conditions, [  | qwib/k01, | qW2b/k01 ] for UHF conditions,

|qwb /k | for mixed UHF/UWT conditions

axial velocity

mean axial velocity

dimensionless axial velocity, u /um

transverse velocity

dimensionless transverse velocity, v /um 

volume flow rate

rms voltage applied to heated test section

dimensionless stream function, defined by equns.(3.108)—(3.110)

axial coordinate

adiabatic entry length, xai for a duct wall at y =  0, xa2 for a duct 

wall at y =  b

axial coordinate for hydrodynamic development region, (x/dh)/Re 

axial coordinate for thermal development region, (x/dh)/RePr 

dimensionless axial coordinate, x/b

finite—difference grid spacing in axial (marching) direction

transverse coordinate

dimensionless transverse coordinate, y/b
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AY finite-difference grid spacing in transverse direction

z vertically upward coordinate

Z column matrix of unknown dependent variable values

Greek symbols

a temperature coefficient of electrical resistivity

0 thermal expansion coefficient of fluid, (— llp)(dp/drI)

7<*) dimensionless function of x alone

<$W tube wall thickness

£ electrical resistivity of tube wall material

c ratio of absolute temperature to ice—point temperature

e dimensionless temperature, ( T  -  T 0) / A T r

e column matrix of unknown dimensionless temperature values

b dimensionless temperature in Appendix C, ( T  — T ) / ( T  — T b )

K flow index, « =  0 for two-dimensional flow, k =  1 for 

axisymmetric flow

P dynamic viscosity of fluid

P* dynamic viscosity ratio, p/po

V kinematic viscosity of fluid, pip

( normalised temperature, defined in Appendix B

7T 3.14159...

P density, for fluid if no subscript

P* density ratio, p /p0

a standard deviation, — j- S  (x j  — x ) 2j ^

T dimensionless time, ui

azimuthal coordinate

$ viscous dissipation function, defined by equn.(3.8)

i> any fluid property

Ip* any fluid property ratio, i p / i p 0

u angular frequency of alternating current
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Subscripts

b fluid bulk value or value evaluated at fluid bulk temperature; also

cl

used with Reynolds number based on radial width b 

centreline value

cr critical value

e duct exit value

fd fully-developed value

F pure forced convection

i refers to inner surface of tube wall

j test section wall thermocouple position number, j =  0, 1, • • • ,13

lm logarithmic mean

m mean values; also used for grid location in Y direction

max maximum value

meas measured value

min minimum value

n grid location in X direction

N pure natural convection

0 duct inlet value, also refers to outer surface of tube wall

P at constant pressure

V at constant volume

X local value

w refers to a property of duct wall material or value at wall

p pertains to fluid density

i> pertains to any fluid property

1 refers to inner transverse boundary at y = 0 (wall or centreline)

2 refers to outer transverse boundary at y = b (wall)

QD freestream value

- 2 0  -



Superscript

Special symbols 

O 

TE 

UHF 

UWT 

[ ]

denotes value of dependent variable at previous step or iteration

order of

truncation error of finite—difference approximation 

uniform heat flux thermal boundary condition 

uniform wall temperature thermal boundary condition 

largest of enclosed quantities
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CONTEXT AND PREVIOUS WORK
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CHAPTER 1

GENERAL INTRODUCTION

1.1 Classification of Convective Duct Flows

The convective mode known as combined natural and forced convection, or 

sometimes mixed convection, occurs in situations where buoyancy forces and an 

externally generated pressure force act simultaneously and both have a significant 

effect in determining the resulting flow field and hence the characteristics of the 

associated transport processes. Buoyancy forces are generated when density 

differences, caused by temperature, pressure or concentration differences, interact 

with a body force field, such as that due to gravity or rotation. Although combined 

natural and forced convection can occur in both external and internal flows, only 

duct flows are considered here and the superimposed natural convection effects are 

assumed to be thermally—induced under the action of a gravitational body force 

(i.e. so-called thermogravitational flows).

Combined convection duct flows may be either laminar, transitional or turbulent 

and can be further classified according to the duct cross-section shape, the kind of 

thermal boundary conditions imposed at the duct walls and the direction of flow in 

relation to the buoyancy force. For horizontal ducts the gravitational body force is 

perpendicular to the tube axis. In the case of a laminar flow in a horizontal 

circular tube this leads to the development of a parallel pair of contra-rotating 

vortices in the tube cross-section. Vertical duct flows can be divided into two 

essentially different types. Upward heated flows and downward cooled flows both 

give rise to buoyancy forces which act in the same direction as the forced flow and 

accordingly are termed buoyancy—aided (or assisted) flows. In contradistinction, 

upward cooled flows and downward heated flows are known as buoyancy—opposed 

flows.

- 2 3 -



1.2 Aims and Approaches

Both experimental and computational approaches were adopted in the study of 

laminar combined natural and forced convection heat transfer in vertical ducts 

reported on in this thesis.

Heat transfer measurements have been made for upflow of water in a uniformly 

heated vertical tube to provide data for verification of the numerical predictions. A 

wide range of Reynolds number and the buoyancy parameter Grq/Re were covered 

by the experiments which encompassed a variety of combined convection 

phenomena, including flow reversals and wall temperature fluctuations.

The aim of the computational approach, which builds on the work of several 

previous investigators, was to develop a unified method for the treatment of duct 

geometries exhibiting plane or axisymmetric two—dimensionality; namely circular 

tubes, concentric annuli and parallel plate ducts. The procedure developed is based 

on finite—difference approximations of the parabolised conservation equations for a 

quasi—incompressible, variable—property Newtonian fluid.

The new numerical procedure has been applied to make predictions for:

i) laminar flow, forced convection with constant properties;

ii) local Nusselt numbers and wall temperature variations for laminar 

combined convection conditions with variable properties to compare with 

the experimentally determined values;

Information is also presented about other numerical studies conducted by the 

author using another numerical procedure. These include a study of combined 

convection between vertical parallel plates and a thermosyphon loop study.

- 2 4 -



CHAPTER 2

SURVEY OF RELEVANT LITERATURE

2.1 Scope of Survey

The purpose of this chapter is to describe the contributions made by previous 

research to the literature on combined natural and forced laminar convection of 

Newtonian fluids in vertical ducts. Consideration is given to experimental 

investigations as well as theoretical studies; the latter including both analytical 

and numerical treatments. Only studies dealing with buoyancy—aided or 

buoyancy-opposed flow under steady-state thermal boundary conditions are 

included. Transient combined convection and combined convection with 

simultaneous mass transfer, thermal radiation or internal energy generation are 

excluded from consideration. Although the literature on the limiting case of pure 

natural convection in vertical ducts has facilitated the author’s understanding and 

has also been extensively drawn upon by combined convection researchers this 

topic is not addressed. The literature examined spans a period of approximately 50 

years up to the end of 1991 and the majority of papers are written in English.

Published reviews covering the subject area defined above were provided by Chato 

(1969), Petukhov et al (1982), Aung (1987) and Jackson et al (1989). In addition, 

a section of the Heat Exchanger Design Handbook contributed by Churchill (1983) 

is a useful source of relevant information. The material considered here is 

categorised in a manner similar to that utilised by Aung (1987), in that separate 

sections are devoted to studies of fully-developed flow, developing flow and 

instability and transition. Further subdivisions are made in each section to deal 

with the three main duct geometries considered by previous workers; namely 

circular tubes, concentric annuli and parallel plate ducts. Only passing mention is 

made of studies of combined convection in ducts with other cross-sections.
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In order to avoid frequent repetition it is noted here that, unless otherwise stated, 

certain simplifications can be assumed to have been made in the theoretical studies 

mentioned below. These include the assumption of steady laminar 

two-dimensional (plane or axisymmetric) conditions, the use of the boundary layer 

approximations, the treatment of all fluid properties as constant, other than the 

inclusion of a linear density variation in the buoyancy force term (Boussinesq 

approximation), and the neglect of viscous dissipation. The thermal boundary 

conditions imposed at duct walls, usually either uniform heat flux (UHF) or 

uniform wall temperature (UWT), and the hydrodynamic entrance conditions 

assumed are stated for each study. Finally, it should be noted that in the 

literature, results for combined convection have generally been expressed in terms 

of dimensionless parameters, including Reynolds number, Prandtl number and 

either a Grashof number or a Rayleigh number. Several different definitions of the 

last two nondimensional groups have been adopted by workers in this field, mainly 

as a result of the different thermal boundary conditions and duct geometries 

investigated. To avoid confusion in discussing previous work, Grashof number and 

Rayleigh number are only denoted by symbols when the definitions given in the 

Nomenclature apply directly, or differ by a constant factor only. Numerical values 

have been converted accordingly. Furthermore, as noted by Petukhov et al (1982), 

the Rayleigh number defined as Ra =  g/3p2cdh4(dTb/dx)/16/dc, is unambiguously 

interconnected with the parameter Grq/Re. For example, in the case of a circular 

tube heated at UHF, Ra = (Grq/Re)/4. Where Grashof number or Rayleigh 

number are referred to by name only in this chapter, the original works should be 

consulted for the exact definitions.

2.2 FuHv—Developed Combined Convection in Vertical Ducts

Several workers have made theoretical investigations of the characteristics of 

hydrodynamically and thermally fully-developed laminar combined convection in 

vertical ducts. These limiting conditions are assumed to be approached 

asymptotically at axial distances far downstream of the duct entrance. The basic
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assumptions of fully—developed flow and heat transfer and their implications are 

briefly examined below prior to reviewing the contributions in this area which 

cover both UHF and UWT boundary conditions. The simplified forms of the 

momentum and energy equations which apply to fully—developed conditions allow 

solutions to be obtained by exact analytical means. In published analyses for 

fully—developed combined convection it is commonly assumed that fluid properties 

are constant, except for density in the body force term of the momentum equation, 

which is treated as a linear function of temperature. Indeed, this assumption is a 

requirement for the establishment of strictly fully—developed conditions.

The fundamental postulate for a fully-developed flow is that the axial velocity 

profile is independent of axial distance. It follows from the continuity equation 

that the transverse velocity is zero everywhere and the flow streamlines are 

parallel to the duct walls. When du/dx and v are put to zero in the governing 

equations, the inertia terms are eliminated from the momentum equation and the 

convection terms of the energy equation reduce to u(<9T/dx). Using these 

simplified forms, it can be shown (e.g. Cheng et al, 1990) that the axial 

temperature gradient must be constant for any transverse position, including the 

ducts walls. This characteristic of thermally fully—developed flows implies that the 

normal temperature gradients at the walls, and hence the Nusselt numbers, also 

become constant under fully—developed conditions. It is noted that such invariance 

of the temperature profile is realised with fully—developed flows for both UHF 

boundary conditions, where ffT/dx is constant, and for UWT boundary conditions, 

where dT/dx = 0. Furthermore, it may also be demonstrated (e.g. Cheng et al, 

1990) that a constant axial pressure gradient exists in fully—developed combined 

convection for the UWT boundary condition. This remains true for a duct with 

two walls (e.g. parallel plates) if one wall is at UWT and the other is insulated or 

subject to UHF, although dP/dX is not constant for exclusively UHF boundary 

conditions. However, in the analysis of fully-developed combined convection for 

the latter condition, a constant pseudo—pressure gradient parameter is sometimes
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employed for convenience.

Tao (1960a) pointed out that the energy equation is independent of the velocity 

field for fully—developed combined convection in a vertical duct with UWT 

boundary conditions. However, situations where the axial wall temperature 

gradient is constant, as encountered with UHF heating or cooling, present a more 

complicated problem because the energy and momentum equations remain 

coupled. In most analyses for UHF conditions these equations are combined to give 

a 4th—order differential equation. This equation is then solved in terms of 

elementary functions for flows between parallel plates or Bessel and associated 

functions for circular and annular duct flows. Tao (1960a), however, preferred a 

complex function method. In this approach, the momentum and energy equations 

are combined to give a Helmholtz wave equation (a 2rid-order equation) expressed 

in terms of a complex function with real and imaginary parts related to the 

velocity and temperature fields respectively. Tao (1960a) claimed that this 

alternative method is more direct and powerful than solving the usual 4th—order 

differential equation.

Sections 2.2.1—2.2.3 below are concerned with the literature on fully—developed 

laminar combined convection in vertical ducts for the circular, concentric annular 

and parallel plate geometries respectively.

It is noted in passing that other duct cross-section shapes have been treated, 

including rectangular (Tao, 1960a), circular sector (Lu, 1960; Tao, 1960b), 

triangular and rhombic (Aggarwala and Iqbal, 1969; Iqbal et al 1969) and rod 

bundle subchannels (Iannello et al, 1988). Del Giudice et al (1978) and 

Efthimiadis and Todreas (1985) presented methods for handling ducts with 

arbitrary cross-sections. These works, which employed a variety of mathematical 

techniques, are not further discussed in this survey.
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2.2.1 Circular Tubes

Several analyses of fully-developed combined natural and forced laminar 

convection in a vertical circular tube with either UHF heating or cooling of the 

tube wall (equivalent to dTw/dx = constant for fully—developed conditions) were 

published in the period 1950 — 1960, including works by Ostroumov (1952), 

Hallman (1956), Hanratty et al (1958), Brown (1960), Morton (1960) and Tao 

(1960). The UWT boundary condition is not of special interest in the context of 

fully—developed combined convection because buoyancy effects subside as the fluid 

temperature approaches that of the wall and the axial velocity profile and local 

Nusselt number assume the same shape and value respectively as found for pure 

forced convection.

Hallman’s (1956) analysis for UHF cooling or heating also includes the effect of 

internal energy generation in the fluid. The velocity and temperature distribution 

solutions given for the zero heat source case are appropriate for buoyancy—aided 

flows only and are reported to be equivalent to those derived by Ostroumov 

(1952). The corresponding fully—developed Nusselt number versus Grq/Re 

predictions, which are well represented by Nufd = 0.95 (Grq/R e)0'28 for 

400 < Grq/Re < 40 000, were subsequently compared with experimental data for 

water flowing upward in a uniformly heated tube (Hallman, 1961). Good 

agreement was achieved when all fluid properties were evaluated at the local film 

temperature, thus establishing the concept of "locally fully-developed" heat 

transfer. Experimental Nusselt numbers for downward heated flow (Hallman, 

1961) were underestimated by the fully—developed analysis which took no account 

of either the wall temperature asymmetry or the unsteady flow observed in 

practice. Hanratty et al (1958), Brown (1960) and Morton (1960) used broadly 

similar methods to Hallman (1956) in their analytical treatments for UHF 

boundary conditions but presented solutions for buoyancy-opposed flow in 

addition to the buoyancy—aided case.
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Velocity and temperature profiles predicted in the above studies for the 

buoyancy—aided case exhibit certain noteworthy peculiarities associated with the 

reversed flows which occur at high Rayleigh number to compensate for the 

accelerated wall flow. Flow reversal first appears at the tube centreline but for a 

sufficiently strong buoyancy effect the position of the maximum reverse flow 

velocity moves radially outward. In fact the solutions admit the possibility of a 

central core of positive velocity with a surrounding annular reverse flow. This is 

clearly shown in the velocity profiles presented by Hallman (1956), Brown (1960) 

and Morton (1960). Furthermore, the predictions of Hallman (1956), Hanratty et 

al (1958) and Brown (1960) show that the temperature distributions are also 

non—monotonic under reversed flow conditions.

Tao (1960b) used a previously developed complex function method (Tao, 1960a) to 

derive the variations of Nusselt number and pressure drop with Rayleigh number 

for fully—developed buoyancy—aided flow in a vertical circular tube with a 

constant axial wall temperature gradient.

2.2.2 Concentric Annuli

Although it is theoretically possible to specify any combination of UHF and UWT 

boundary conditions for the two walls of an annular duct it would appear from a 

search of the literature that only the former kind have been considered in analyses 

made for fully—developed combined convection in vertical annuli.

Sherwin (1968) analysed the case where the inner surface is uniformly heated and 

the outer surface is thermally insulated. Both upward and downward flows were 

considered. For the aiding flow case it was found that the effect of increasing the 

buoyancy parameter Grq/Re is to increase the velocity near to the heated surface, 

resulting in an improvement in the fully—developed Nusselt number. Above a 

certain value of Grq/Re it was predicted that a compensatory reversed flow would 

occur near to the insulated wall. Conversely, for opposed flow, Sherwin (1968)
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predicted that Nusselt number decreases with increase in Grq/Re, due to the 

reduction in velocity adjacent to the heated wall, where a flow reversal occurs for a 

sufficiently strong buoyancy effect. The critical value of Grq/Re at the onset of 

flow reversal was found to be greater for aiding flow than opposed flow and 

decreased with the annulus radius ratio r* in both cases; this dependence being 

more marked in the latter case. The flow reversal criteria predicted theoretically 

by Sherwin (1968) were confirmed experimentally for downflow (Sherwin and 

Wallis, 1968) and upflow (Sherwin and Wallis, 1972) of water in an internally 

heated annulus (r* =  1/3) using flow visualization of injected dye streams. Except 

at the lowest Reynolds numbers, the experimental Nusselt numbers measured by 

Sherwin and Wallis (1968, 1972) fall higher than predicted by the fully—developed 

theory (Sherwin, 1968) and show a strong dependence of Nu on Re, suggesting that 

full development was not achieved. Furthermore, for downflow with heating, 

Sherwin and Wallis (1968) observed that the reversed flow regime eventually 

became unstable for high values of Grq/Re. The experimental Nusselt numbers 

determined under these unsteady conditions are generally much higher than the 

theoretical values and exhibit a contrary variation with Grq/Re.

Maitra and Subba Raju (1975) employed the same thermal boundary conditions as 

Sherwin (1968) in their analysis of buoyancy—aided flow which extended the 

available Nusselt number solutions to higher Rayleigh numbers and additional 

values of the annulus radius ratio r*. The same authors made local heat transfer 

measurements for water flowing upward in a concentric annulus (r* = 0.38) with 

uniform heating of the inner wall. Experimental Nusselt numbers for downstream 

positions, judged by Maitra and Subba Raju (1975) to exhibit fully—developed 

characteristics, are on average 45% higher than the theoretical values but show the 

same Ra^ dependence. These deviations were attributed to flow unsteadiness 

resulting from instability of the distorted velocity profile.
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Rokerya and Iqbal (1971) included the effect of viscous dissipation in their analysis 

for upward flows subject to constant heat input per unit length. Two cases were 

considered: (i) uniform heating at either the inner or the outer wall alone with the 

other wall adiabatic and (ii) both walls uniformly heated with equal temperatures. 

The non-linear system of governing equations was solved using a Runge—Kutta 

numerical integration method and results were presented for two values of the 

radius ratio, r* = 0.25 and 0.5. In all cases studied, an increase in viscous 

dissipation, characterised by the Eckert number—to—Reynolds number ratio, had 

little effect on the velocity and temperature profiles but resulted in a reduction in 

Nusselt number which became more pronounced at higher Rayleigh numbers.

Kim (1985) showed that the general solutions for upward flows in concentric 

annuli with arbitrarily specified UHF heating imposed at each wall can be 

expressed as a combination of certain fundamental solutions which are independent 

of the ratio of the wall heat fluxes. Values of fundamental constants tabulated by 

Kim (1985) allow Nusselt numbers and pressure drops to be computed for any heat 

flux ratio over a wide range of radius ratio and Grashof number—to—Reynolds 

number ratio.

Iannello et al (1988) applied their analysis for azimuthally symmetric, 

fully—developed combined convection in uniformly heated vertical ducts to the 

case of aiding flow in an internally heated annulus. Friction factors and Nusselt 

numbers calculated for radius ratios in the range r* =  0.1 to r* = 0.9 were 

presented for a limited range of the Grashof number—to—Reynolds number ratio.

2.2.3 Parallel Plate Ducts

Fully—developed combined natural and forced convective flows in vertical parallel 

plate ducts have been analysed by Ostrach (1954), Hanratty et al (1958), Tao 

(1960), Rao and Morris (1968), Aung and Worku (1986b), Cheng et al (1990) and 

Hamadah and Wirtz (1991).
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Ostrach (1954) analysed fully-developed combined natural and forced convection 

in fluids with and without heat sources in a channel with linearly varying wall 

temperatures. Hanratty et al (1958) presented analytical velocity and temperature 

profile solutions for buoyancy-opposed flow between parallel plates with UHF 

boundary conditions. The critical value of Grashof number—to—Reynolds number 

ratio for the velocity gradient to disappear at the wall agreed approximately with 

available experimental data. As an illustration of the complex function method, 

Tao (1960a) treated the case of fully—developed combined convection between 

equally heated plates having a constant axial wall temperature gradient. The 

analytical solutions presented, which are only valid for positive Rayleigh numbers, 

are written in terms of real functions of the Rayleigh number but no numerical 

results are given.

Rao and Morris (1968) obtained exact solutions for situations with one plate 

subject to a uniform heat flux and the other thermally insulated. Both buoyancy 

assisted and buoyancy-opposed flows were considered. Dimensionless velocity and 

temperature distributions were expressed in terms of the Rayleigh number and a 

pressure gradient parameter (interpreted as a Reynolds number). For 

buoyancy—assisted flows, the position of the maximum axial velocity was found to 

move closer to the heated or cooled wall as the Rayleigh number increased, leading 

eventually to flow reversal adjacent to the insulated wall for sufficiently high 

values of Ra. The associated friction factor—Reynolds number modulus f Re and 

the Nusselt number both increase steadily with Rayleigh number, the latter 

becoming proportional to Ra^ at large values of the Rayleigh number. For 

buoyancy—opposed flows Nu and f Re were both predicted to decrease with Ra. 

Rao and Morris (1968) conjectured that the usefulness of the steady laminar 

solutions would be limited either by transition to turbulent flow or the onset of 

oscillatory flow.
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Aung and Worku (1986b) considered the case of heated upward flow in a vertical 

parallel plate duct with the walls maintained at uniform, but not necessarily equal, 

temperatures. Under these conditions the fluid temperature varies linearly across 

the duct for asymmetric wall temperatures and is constant for the symmetric case. 

A general expression was derived for the axial velocity distribution in terms of the 

Grashof—to—Reynolds number ratio, expressing the buoyancy effect, and the ratio 

of the wall temperature differences, defined by rT =  (TW1 — T 0)/(T W2 — T 0) where 

TW2 > TW1 so that 0 < r < 1. Aung and Worku (1986b) showed that for 

asymmetric wall temperatures (i.e. rT < 1 ) velocities increase near the hotter wall 

and decrease near the cooler wall, the degree of profile skewness increasing 

progressively with increase in the buoyancy effect. The velocity profiles presented 

show that skewness is also promoted by a smaller value of rT_ A criterion was 

established for the onset of flow reversal adjacent to the cooler wall and it was 

deduced that since the duct centreline velocity assumes the value U = +  1.5 for all 

profiles, the transverse width occupied by any flow reversal region could not 

exceed the duct half—width. Furthermore, it was noted that for rT =  1 , the same 

unidirectional profile as found for pure isothermal forced convection is obtained, 

indicating that flow reversal is impossible in fully—developed flow for symmetric 

wall temperatures, irrespective of the strength of the buoyancy effect.

Cheng et al (1990) studied the characteristics of fully—developed 

buoyancy—assisted flows and presented velocity distributions, flow reversal criteria 

and Nusselt numbers for different combinations of UHF and UWT boundary 

conditions at the duct walls. The following combinations were considered: Case 1: 

UHF—UHF, Case 2: UHF-UWT and Case 3: UWT-UWT. Both symmetric and 

asymmetric situations were treated for Cases 1 and 3 and for Case 2 both finite 

and zero values of the UHF were considered. For Case 1 and the heat flux ratio 

rq < 0.053, it was found that with increase of Grq/Re flow reversal first appears 

adjacent to the cooler wall. As Grq/Re is further increased, the fluid velocity 

adjacent to the wall recovers to be positive and the area of reversed flow moves

- 34 -



towards the duct centreline. For rq > 0.053, reversed flow was only found to exist 

away from the walls. For Cases 2 and 3 reversed flow always occurs adjacent to the 

cooler wall. Cheng et al (1990) also found that the fully-developed Nusselt 

numbers depended on the thermal boundary conditions. For the special cases of 

equal wall temperatures and zero UHF—UWT, where the fluid temperature profile 

becomes uniform, the Nusselt numbers take the same values as in fully—developed 

forced convection. In all other cases, the effect of increasing the Grashof 

number—to—Reynolds number ratio is to increase the Nusselt number for the 

hotter wall and decrease the Nusselt number for the cooler wall. Apart from the 

addition of the Nusselt number information the results presented for Case 3 

basically reiterate those obtained by Aung and Worku (1986b).

Hamadah and Wirtz (1991) made a similar study to Cheng et al (1990) for 

downward heated (i.e. buoyancy-opposed) flows where, in contrast to 

buoyancy—aided situations, the tendency is for flow reversal to occur near to the 

hotter wall. The sets of boundary conditions considered included those described as 

Case 1 and Case 3 above. In addition, the situation of one wall subject to uniform 

heating and the other maintained at the fluid inlet temperature was treated. 

Hamadah and Wirtz (1991) showed that the value of the Grashof 

number—to—Reynolds number ratio for incipient flow reversal in an opposed flow 

with UWT—UWT boundary conditions is identical to that established for the 

corresponding aided flow (Aung and Worku, 1986b).

2.3 Developing Combined Convection in Vertical Ducts

The theoretical solutions for fully—developed combined convection in vertical 

ducts, discussed in Section 2.2 above, are based on essentially one—dimensional 

treatments for the invariant hydrodynamic and thermal conditions which are 

postulated to exist far downstream. Nearer the duct entrance or the start of 

heating a development region exists where velocity and temperature profiles 

exhibit continuous change in at least two—dimensions. The term "developing" is
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employed here to embrace two cases: (i) simultaneous hydrodynamic and thermal 

development, which in reality is always the case for combined convection, and

(ii) the hypothetical case of thermally developing and hydrodynamically developed 

flow. The first attempts to obtain solutions for developing combined convection 

considered case (ii) above in order to make the problem amenable to the available 

analytical methods. However, the advent of computational modelling techniques 

has reduced the need for simplifications, allowing realistic and accurate numerical 

solutions to be obtained for flow and heat transfer throughout the development 

region, taking into account property variations.

Numerical investigations of developing combined natural and forced laminar 

convection in vertical ducts have been carried out using finite-difference methods. 

These studies can be broadly divided into the following two types, according to the 

method of solution employed:

(i) marching solution methods, using either implicit or explicit 

finite-difference schemes, in which the solution is advanced 

step-by—step from the inlet to the exit of the duct.

(ii) whole-field solution methods, in which the solution is computed at all 

grid points on the domain simultaneously, usually by an iterative 

relaxation technique.

Marching methods are usually, but not always, based on governing equations 

which are parabolic with respect to the marching direction (e.g. the boundary layer 

equations). Boundary conditions are not required to be specified at the duct exit 

plane. In general, marching can only be continued for as far as the flow remains 

unidirectional. However, several investigators have found it possible to march with 

parabolic equations for some distance beyond a point of flow reversal without 

failure of the solution. Furthermore, special approximations have been developed 

to permit marching computation to continue through small regions of 

recirculation. However, in general, elliptic conservation equations must be solved 

for recirculating flows or for situations where axial diffusion effects must be taken
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into account. Whole—field solution methods are required for elliptic equations and 

boundary conditions must be specified on all sides of the domain considered.

Previous theoretical and experimental investigations into developing combined 

convection in circular tubes, concentric annuli and parallel plate ducts are 

considered in Sections 2.3.1, 2.3.2 and 2.3.3 respectively. For the theoretical 

studies discussed below, it should be assumed that unless some other duct entrance 

condition is mentioned the inlet velocity profile was considered to be uniform.

2.3.1 Circular Tubes

Approximate analytical methods were employed in the early attempts to quantify 

the effects of natural convection on laminar flows in vertical tubes.

Martinelli and Boelter (1942) obtained an approximate solution for aiding flow in 

a vertical tube maintained at UWT, neglecting inertia forces and convective heat 

transfer in the radial direction. The tube was considered to comprise an infinite 

number of short sections, each of which was treated by the method of Leveque, 

which in essence assumes that the velocity gradient at the wall controls the rate of 

heat transfer. An equation was derived giving the average Nusselt number, based 

on the arithmetic mean temperature difference (2TW — Tb0 — Tbe)/2, in terms of a 

Graetz number, defined as (7r/4)RePrd/L , the product GrTPrd/L and correction 

factors for the use of the arithmetic mean temperature difference and the axial 

variation of buoyant force. Eckert and Diaguila (1954) modified the equation 

derived by Martinelli and Boelter (1942) for the opposed flow case, noting that 

this simply leads to a change of sign for the constant multiplying GrTPrd/L .

Jackson et al (1958) assumed that average heat transfer coefficients for aided 

combined convection in a vertical tube heated at UWT could be found from a slug 

flow approximation, given by Nuim = 1.128 (RePrd/x)^ , if RePrd/x is calculated 

by summing contributions for the forced and natural convection effects. The
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natural convection contribution, derived from a pressure—buoyancy force balance 

over the entire heated length L, was found to be proportional to (GrTP r2d/L)0'4. 

This simple analysis led to an equation which correlated the average Nusselt 

numbers (for a heated length from tube inlet to position x) measured by Jackson 

et al (1958) for upward flow of air in a steam heated tube more satisfactorily than 

the equation due to Martinelli and Boelter (1942).

Pigford (1955) analysed the same problem as Martinelli and Boelter (1942), using 

a broadly similar method, but allowed for a linear variation of l//z with 

temperature in addition to density variation. Graphs were presented illustrating 

the effect of different values of the additional parameter p̂ /po, ranging from 0 to 

10, on the average Nusselt number for both pure forced convection and aiding 

combined convection. Rosen and Hanratty (1961) used the boundary layer integral 

method in their analysis for upward flow in a circular tube with the wall heated or 

cooled at UWT. A power series and an exponential series, respectively, were 

assumed for the velocity and temperature profiles and, following Pigford (1955), p 

and 1/p were treated as linear functions of temperature. The approximate analysis 

was found to satifactorily predict the position of flow reversals but, as conceded by 

Rosen and Hanratty (1961), it was rather poor in predicting heat transfer rates.

Bradley and Entwistle (1965) evaluated velocity and temperature profiles, Nusselt 

numbers and the friction factor times Reynolds number modulus for developed 

upward flow of air in a vertical tube cooled at UWT. Allowance was made for 

variations of all the fluid properties. The solutions were obtained by numerically 

integrating simplified forms of the momentum and energy equations which 

neglected the radial velocity component and also, in the first instance, axial 

conduction and momentum changes. When the latter two effects were included in 

the solution, axial momentum was found to be more significant than the 

conduction effect.
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The earliest published numerical treatment of developing laminar combined 

convection in a vertical tube appears to have been made by Lawrence and Chato 

(1966). Their marching procedure uses an implicit finite—difference scheme and is 

suitable for both upward and downward flows with either a UHF or a UWT 

boundary condition. Lawrence and Chato (1966) computed developing velocity and 

temperature profiles, and the axial pressure variation for upward flow of water in a 

uniformly heated tube. They found that the inclusion of nonlinear functions to 

describe the temperature dependence of viscosity and density was necessary to 

obtain a good correlation with their experimental measurements. No numerical or 

experimental results are shown for the effect of natural convection on Nusselt 

number.

Marner and McMillan (1970) used a modified version of the numerical method 

introduced by Bodoia and Osterle (1962) to investigate vertical buoyancy—aided 

tube flows subject to UWT boundary conditions. A fully—developed inlet velocity 

profile was assumed. Arithmetic mean Nusselt numbers predicted for Pr = 1 and 

Pr = 1000 were compared with the analysis of Martinelli and Boelter (1942) which 

neglects inertia terms. As might be expected, the numerical results and the 

approximate theory agreed more closely for the higher Prandtl number, differences 

of up to 30% being observed for Pr = 1. The results obtained for Pr =  1000 also 

show that natural convection can increase the mean Nusselt number by as much as 

52%, compared to the Graetz solution. The typical Nux variation presented by 

Marner and McMillan (1970) exhibits an increase with axial distance near to the 

position of maximum velocity profile distortion. This unusual behaviour was 

explained by reference to the developing velocity profiles, which show an increase 

in the wall gradient up to the point of maximum distortion.

Collins (1972, 1975, 1978, 1980) used a marching solution procedure, based on a set 

of implicit finite-difference equations, for the computation of developing combined 

convection in vertical tubes. Upward or downward laminar flows with heating or
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cooling at UHF or UWT can be treated using his method which allows fluid 

property variations to be taken into account. A novel technique, introduced by 

Collins (1975), is the use of the integral energy equation as part of the analysis. 

This at once guarantees the energy balance and satisfies the wall thermal boundary 

condition. Rather unusually for a step—by—step solution method, Collins’ model is 

based on the full elliptic equations for steady laminar axisymmetric flow of a 

quasi—incompressible fluid. Ingham et al (1988) commented that although the 

equations used in Collins’ method contain terms representing axial diffusion, these 

effects cannot be adequately accounted for because no downstream information is 

fed into the marching solution. Notwithstanding this criticism, Collins (1972, 

1975,1978,1980) has applied his method successfully to obtain stable solutions 

comparing favourably with experimental data and other theoretical work for a 

wide range of fluid and thermal conditions. The papers by Collins et al (1977) and 

Szpiro et al (1978) describe comparisons between experimental data for oil and 

water, and numerical solutions obtained by Collins’ full treatment and a 

cylindrical coordinate version of the truncation technique of Allen and Finn 

(1970), outlined in Section 2.3.3. Both solution methods accommodated 

temperature—dependence of the fluid properties and the effects of property 

variations were assessed, both individually and in combination.

Collins’ (1975) computer program, originally developed for tube flows, was 

modified by the present author for numerical studies of combined convection in 

parallel plate ducts (Szpiro, Lewis and Collins, 1984) and thermosyphon loops 

(Lewis, Collins and Allen, 1990). Further details of these developments are given 

in Section 4.1.

Brauer et al (1988) also applied a marching numerical procedure to solve the 

parabolic energy and momentum equations for upward flow in a vertical tube 

heated or cooled at UWT. A Crank—Nicolson finite—difference scheme was 

employed. The inlet velocity profile was considered to be fully—developed so that
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the downstream development could be entirely attributed to the effects of natural 

convection. Axial variations of centreline axial velocity and bulk temperature are 

presented covering a wide range of Prandtl number from 0.1 to 10 000. The 

centreline velocity U y _  q versus x* results for aided flow show that an increase in 

Prandtl number accelerates the development of the central concavity in the axial 

velocity profile, although the values of x* and U y _  q (for a fixed value of the 

Grashof number—to—Reynolds number ratio) at maximum distortion appear to be 

unaffected. Heating of the bulk fluid is also improved by an increase in Pr and this 

is particularly evident around the point of maximum distortion. Brauer et al 

(1988) also presented flow reversal criteria for both aided and opposed flow and 

results in terms of local and mean Nusselt numbers and pressure drop.

The papers by Zeldin and Schmidt (1972), Shadday (1986), Morton et al (1989), 

Heggs et al (1990) and Kasz (1990) describe numerical investigations in which 

spatially elliptic equations, including terms for axial diffusion of both heat and 

momentum, were solved over the whole domain.

Zeldin and Schmidt (1972) employed both theoretical and experimental methods in 

their study of the effects of natural convection for upward heated flow of air. Their 

theoretical model assumed an infinitely long tube heated at UWT. Two different 

hydrodynamic conditions were considered at entrance to the heated tube: 

(i) uniform and irrotational and (ii) fully—developed. The elliptic governing 

equations were written in a dimensionless stream function—vorticity form and an 

axial coordinate transformation was applied so their finite—difference 

approximations could be solved on a finite computational domain. Comparison of 

the velocity profiles predicted for the two entry conditions at Re =  500, GrT =  240 

shows that a central concavity develops in both cases. However, in the case of the 

fully—developed entry flow the minimum centreline velocity is higher and is 

reached further downstream. The corresponding local Nusselt number variations 

from the numerical study are also presented. Zeldin and Schmidt (1972) also
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measured velocity and temperature profiles for upward flow of air at four axial 

locations in a heated vertical tube (L/d s 104) with an inlet designed to produce a 

uniform velocity profile. The predicted and measured velocity profiles show 

substantial agreement.

On the basis of the elliptic governing equations and whole—field relaxation 

technique employed by Zeldin and Schmidt (1972) they should, in principle, have 

been able to obtain numerical solutions for reversed flows. However, they reported 

that their iteration algorithm could not be forced to converge in these cases. 

Furthermore, although axial diffusion of heat and momentum was included in their 

analysis, the upstream boundary considered in the theoretical model was assumed 

to coincide with the start of heating (x =  0). Consequently, axial heat conduction 

was prevented from exerting an influence for x < 0. In the discussion attached to 

their paper, Marner stated that for the reason given above the Nusselt numbers 

predicted by Zeldin and Schmidt (1972) for small positive values of x* are 

probably high. In more recent studies using elliptic conservation equations, 

discussed below, the latter problem has been overcome by including an adiabatic 

or isothermal section upstream of the start of heating. In addition, converged 

solutions have now been obtained for situations involving streamwise flow 

reversals.

Shadday (1986) used an explicit scheme to solve the time-dependent, 

Navier—Stokes equations, written in vorticity-stream function form, for upward 

laminar flow in a heated vertical tube. A heat transfer section approximately 15 

diameters long with a UWT boundary condition was considered. The 

computational domain also included an isothermal entrance region and an 

adiabatic exit section. Fully—developed velocity profiles were specified at entry 

and exit. Streamline and isotherm maps are presented for Re = 200 and Pr =  6.5 

at two values of Grashof number. In both cases the streamline patterns show a 

central core of stagnant fluid with net axial fluid transport confined to a thin wall
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boundary layer. For the higher Grashof number, the predicted flow field was 

unsteady, with Tollmein—Schlichting waves clearly evident in the boundary layer. 

The time—dependent solutions for this case revealed that the vortices which were 

periodically shed from the boundary layer were eventually dissipated in the central 

core region. Shadday (1986) stated that the large-scale vortices predicted by his 

model were, in qualitative terms, strikingly similar to those observed 

experimentally by Scheele and Hanratty (1962). Local Nusselt number and friction 

factor distributions, evaluated from the time—averaged temperature and velocity 

fields, are also presented.

Morton et al (1989) conducted an experimental and numerical investigation into 

situations where buoyancy—induced recirculation occurs for laminar flow in a 

vertical tube, with finite axial sections maintained at uniform wall temperatures. 

Flow visualisation experiments were performed for upward flow of water in a 

perspex tube with adjacent heated and cooled sections. Two cases were 

investigated: (i) cooling followed by heating and (ii) heating followed by cooling. 

The flow patterns were made visible by adding aluminium powder to the water 

and photographed for comparison with numerically predicted streamline contour 

plots. As anticipated, for case (i), cooling resulted in a flow reversal near the tube 

wall. This disappeared further downstream, in the heated section, where a reversed 

flow occurred near the centre of the tube. For case (ii), heating followed by 

cooling, the order in which these same effects occurred was reversed. In the parallel 

numerical study Morton et al (1989) assumed steady axisymmetric laminar flow 

and used the stream function—vorticity form of the governing elliptic partial 

differential equations, including axial diffusion terms but ignoring viscous 

dissipation. In addition to the heat transfer sections, the model included a finite 

entry section with a UWT equal to that of the fully—developed entry flow. 

Furthermore, the downstream heat transfer section was extended to infinity, using 

the same axial coordinate transformation employed by Zeldin and Schmidt (1972), 

so that the assumed fully-developed isothermal exit conditions would be satisfied.
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The location, size and shape of the recirculation regions observed experimentally 

were quite accurately predicted by the numerical model.

Heggs et al (1990) studied the problem of developing combined convection in a 

vertical tube with conjugate wall conduction. The case of an upward heated flow 

was considered and the model studied comprised an entry section of finite length 

followed by a heated section extending to infinity in the axial coordinate. 

Fully—developed isothermal conditions were specified at both entry and exit. 

Thermal boundary conditions of UWT and zero heat flux were applied at the 

outside surface of the tube wall in the heated section and the entry section 

respectively. The numerical techniques employed by Morton et al (1989) were 

extended to allow the elliptic governing equations for the solid and fluid solution 

domains to be treated simultaneously. Numerical solutions were obtained for water 

(Pr = 7.0) at Re = 100 and values of kw/k in the range of 0.5 to 50, and values of 

dWo/d wi in the range 1.1 to 1.4. The Grashof number was fixed at a sufficiently 

large value so that flow reversals occurred for most cases investigated. The results 

show that significant upstream heating of the fluid occurs by axial wall conduction 

at high values of kw/k, accelerating the onset of flow reversal. In contrast, at low 

values of kw/k the wall acts more like an insulator, restricting heating of the fluid 

and thus resulting in less rapid development of the velocity profile. These effects 

become more pronounced as the ratio dWo/d wi increases.

An unpublished paper by Kasz (1990) gives details of a numerical study made for 

an upward heated flow subject to a UWT thermal boundary condition. The 

domain considered for the developing flow was semi—infinite, extending to infinity 

both upstream and downstream from the start of heating. An axial coordinate 

transformation was applied to map the governing elliptic equations, formulated in 

terms of stream function and vorticity, into a finite domain for the 

finite—difference solution. Unsteady terms were added to the vorticity and energy 

equations which were then solved using an alternating direction implicit (ADI)
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scheme. The stream function was solved for using the successive over—relaxation 

(SOR) technique. Kasz (1990) presents results for Pr =  10, Re =  1 and 

GrT = 1000. Under these conditions GrT/Re is well above the threshhold value for 

the onset of flow reversal and the results exhibit a recirculation at the entrance to 

the heated section, which even extends into the unheated entry section. The 

temperature field results show preheating of the fluid, reflecting the inclusion of 

axial heat conduction terms in the analysis.

Early experimental investigations into combined natural and forced convection in 

vertical tubes were conducted with apparatus of the double—pipe heat exchanger 

type. In this form of equipment, the test fluid flows through the central pipe and is 

heated (usually by steam) or cooled by a secondary heat transfer fluid supplied to 

the surrounding annulus at a heat capacity rate sufficient to produce a thermal 

boundary condition approximating to UWT. Martinelli et al (1942) compared their 

experimental heat transfer data for upward flow of oil and water in steam heated 

tubes (L/d from 126 to 602), and the data of Watzinger and Johnson (1939) for 

downflow of water in a cooled tube (L/d s 20), with the analytical equation of 

Martinelli and Boelter (1942). The equation correlated all the data to within 

± 20% when the GrTPrd/L  exponent was raised from the theoretically predicted 

value of 0.75 to 0.84. The experiments by Jackson et al (1958) and Zeldin and 

Schmidt (1972), already referred to above, were also designed to furnish 

information on combined convection under UWT conditions.

Data for laminar combined convection obtained from experiments performed using 

electrically heated vertical tubes, giving an approximately UHF thermal boundary 

condition at the wall, are reported by Hallman (1961), Kemeny and Somers (1962), 

Lawrence and Chato (1966), Petukhov et al (1969), Collins, Allen and Szpiro 

(1977) and Barozzi, Dumas and Collins (1984).
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Hallman (1961) made measurements for water flowing in a vertical uniformly 

heated test section (L/d s 115). Unheated starting lengths were employed for both 

upflow (xa/ d « 115) and downflow (xa/d  a 13) tests. Local Nusselt numbers 

measured near the start of heating verify constant—property analytical predictions 

for thermally developing and hydrodynamically developed pure forced flow under 

UHF conditions. Sample Nux versus x* distributions from two upflow tests, 

presented in Hallman’s report, show an increase of Nux with Grq/Re, at a fixed x*. 

This effect of buoyancy becomes more marked as x* increases. Moreover, instead of 

decreasing monotonically, in a manner characteristic of pure forced convection, the 

experimental Nux values for each test exhibit a minimum followed by an increase 

further downstream. Hallman (1961) found that the upflow data obtained for large 

x* under steady laminar conditions approached his fully—developed theory 

(Hallman, 1956) applied locally with all fluid properties evaluated at the local film

temperature. His upflow data also show an initial decrease in the length of the
* * 

thermal entrance region Lth as Grq/Re is increased, followed by a rise in Lth at

higher values of Grq/Re. The downflow tests were characterised by asymmetry in

wall temperature, which became more severe with increase in either x/d  or

Grq/Re, and at the highest heat fluxes by unsteadiness. Hallman (1961) speculated

that these wall temperature variations suggested a cell flow near the bottom of the

tube and, not surprisingly, the corresponding experimental Nusselt numbers were

underpredicted by his fully-developed analysis.

Kemeny and Somers (1962) obtained pressure drop and local heat transfer data for 

upward flows of water (Pr 8 3 — 6) and transformer oil (Pr 8 80 — 170) using four 

test sections with different diameters (L/d from 64 to 384) and sharp-edged 

entrances. The data cover Reynolds number ranges from 61 to 3000 for water and

3.4 to 630 for oil. The local Nusselt number, evaluated on the somewhat 

unconventional basis of local wall—to—inlet bulk temperature difference 

(TWx — Tb0), were plotted against Grq/Re with 1 /x* as a parameter on each curve.
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The experiments conducted by Lawrence and Chato (1966), alluded to above, 

included measurements of pressure drops, temperature profiles and tube centreline 

velocities for water flowing upward in a uniformly heated vertical tube 

(L/d a 203). The entrance to the heated test section was designed to give a 

uniform velocity profile. Experimental Nusselt numbers do not appear to have 

been evaluated.

Petukhov et al (1969) made local heat transfer measurements for heating of 

distilled water flowing vertically upwards. Two uniformly heated test sections were 

employed (L/d ft 99 and L/d a 80). An isothermal calming length equal to 96 

diameters was provided at inlet to the L/d « 99 heated section. The local Nusselt 

numbers were correlated within ± 8% by an equation which can be written as 

follows: [Nux/NuxF] = [1 + (Grq/Re)/B]0'27, where B is a function of x*, given by 

B(x*) =  5.4/x* + 312 x*0'25 for x* < 0.07 and B(x*) = 240 for x* > 0.07. In this 

equation all fluid properties are evaluated at the local bulk temperature. NuXj, is 

the local Nusselt number for constant—property, pure forced convection under 

UHF conditions at the same value of x* and with the same hydrodynamic inlet 

condition (i.e. either a fully-developed or a uniform velocity profile). The 

correlation obtained by Petukhov et al (1969) was stated to be valid for the 

following parameter ranges covered by the data: 103 < Grq/Re < 4 x 105, 

250 < Re < Recr, 4 < Pr < 6 and 3 x 10'4 < x* < x*r where Recr and x*r are the 

critical threshold values measured for instability of the buoyancy—aided flow.

To the present author’s knowledge, only a few comparisons between numerical 

solutions for developing combined convection in vertical circular tubes and 

experimentally determined local heat transfer data are contained in the literature. 

The papers by Collins, Allen and Szpiro (1977) and Barozzi, Dumas and Collins 

(1984) are notable exceptions. As previously mentioned, the study by Collins et al 

(1977) utilsed two different numerical methods; those due to Collins (1975) and 

Allen and Finn (1970), which both allowed fully for fluid property changes. Nusselt
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number predictions were made for comparison with experimental data from the 

authors’ own tests for upward flow of oil in a uniformly heated vertical tube 

(L/d « 51) preceded by an unheated section (xa/d  « 51). Further comparisons were 

made with published experimental data, including the measurements of Kemeny 

and Somers (1962) for oil and those of Scheele and Hanratty (1962) and Lawrence 

and Chato (1966) for water. Barozzi et al (1984) obtained local Nusselt number 

data for upflow of water in a uniformly heated vertical tube (L/d a 100) under 

strong combined convection conditions. The heat transfer data presented are for 

412 < Re < 938, 3.78 < Pr < 4.96 and 1487 < Grq/Re < 6120 where all properties 

are evaluated at the average bulk temperature Tbm. Sample comparisons were 

made between the experimental data and predictions obtained by Collins’ (1975) 

finite—difference procedure, including variations of both p and p. Close agreement 

was achieved except at small and large values of x*, where deviations were 

attributed to a sharp-edged entry effect and transition from laminar flow 

respectively.

Additional data for combined natural and forced convection heat transfer in 

vertical tubes was reported by W.G.Brown (1960) and C.K.Brown and Gauvin 

(1965a, 1965b), although the wall thermal boundary conditions appear to be less 

well defined for their experiments. The data obtained by Brown (1960) are for 

water and cover heating and cooling in upflow and cooling in downflow. Detailed 

temperature profiles are presented for each case. The two companion papers by 

Brown and Gauvin (1965a, 1965b) deal with heat transfer to air at low velocities 

for upward flow and downward flow respectively. They presented limited data for 

the laminar flow regime.

2.3.2 Concentric Annuli

All theoretical treatments of developing combined natural and forced convection in 

vertical annular ducts found in the literature utilise some type of marching 

finite-difference calculation procedure.
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Sherwin and Wallis (1970) studied the development of an initially fully—developed 

downward flow in a r* = 1/3 vertical concentric annulus with UHF heating at the 

inner surface and the outer surface maintained adiabatic. The implicit 

finite—difference scheme employed was found to remain stable well into the region 

of reversed flow where a large increase in magnitude of the positive radial 

velocities was calculated. The predicted axial locations for the onset of reversed 

flow under developing conditions are in good agreement with the observed 

behaviour for water reported by Sherwin and Wallis (1968), and for large axial 

distances the critical value of Grq/Re for flow reversal closely approaches the value 

given by fully—developed combined convection theory (Sherwin, 1968). In a later 

study, for heated upflow of water with the same initial and boundary conditions, 

and radius ratio, Sherwin and Wallis (1972) used the same computational method 

to detect the point where the calculated radial velocity profile became unstable as 

the gradient of the axial velocity profile on the unheated wall approached zero. 

They interpreted such an occurrence as indicating the onset of unstable flow and 

found the predicted positions to be in reasonable agreement with their 

experimental observations.

In a thesis, Ogunba (1972) presented a marching finite-difference procedure for 

the computation of developing combined laminar convection flows in vertical 

annuli. Variations of density, viscosity and thermal conductivity were allowed for 

throughout the governing equations. Although radial pressure variation was 

neglected, terms for viscous dissipation and axial diffusion (both momentum and 

heat) were retained. The inclusion of the latter elliptic influences may in fact have 

been the reason why the numerical solution failed for Re < 25, although Ogunba 

(1972) attributed this to the neglect of radial pressure variation. In contrast, 

Ogunba (1972) reported that he was able to obtain stable solutions in the case of 

an internally heated annulus (r* =  0.25) beyond the point where a flow reversal 

was predicted at the outer wall.
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A novel feature of Ogunba’s (1972) solution procedure is the piecewise treatment 

given to the global mass flow constraint equation. The same idea has been adopted 

and extended for the computational method presented in Chapter 3. The 

experimental work conducted by Ogunba (1972) is discussed later in this section.

El—Shaarawi and Sarhan (1980) used an implicit scheme in their study of annuli 

with one wall isothermal and the other adiabatic and also encountered unexpected 

numerical stability beyond the flow reversal point under certain conditions. The 

results presented are for Pr =  0.7, r* =  0.9 and 0.5, and cover both aided and 

opposed flows, including situations where a flow reversal occurs in the development 

region near to the insulated wall or the heat transfer surface respectively. For a 

fixed value of GrT/Re, it was found that the axial distance to flow reversal 

decreases as r* increases and, for a given radius ratio, it has the lowest value when 

the UWT boundary condition is prescribed at the (larger) outer surface. 

Computations covering the full development length, until a fully—developed 

isothermal velocity profile is established, indicate that the hydrodynamic 

development length increases with the parameter GrT/Re. For the boundary 

conditions considered by El—Shaarawi and Sarhan (1980), the local Nusselt 

number for fully—developed combined convection is the same value as found for 

GrT/Re = 0 (i.e. pure forced convection). However, in the development region the 

values of Nux for aided and opposed flows are respectively higher and lower than 

for GrT/Re = 0.

The numerical studies of developing combined convection in vertical annuli made 

by Malik and Pletcher (1980), Zenen et al (1985), Hashimoto et al (1986) and 

Aung et al (1991) take account of fluid property variations in addition to the 

essential density variation in the body force term. Malik and Pletcher (1980) 

presented an explicit finite—difference scheme for the computation of 

axisymmetric, variable—property laminar and turbulent convection in annular
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passages. Local Nusselt number predictions for laminar upflow with UHF heating 

at the inner surface only were compared with experimental data obtained by 

Maitra and Subba Raju (1975) for water in a concentric annulus (r* = 0.38) and 

Joshi and Bergles (1978) for ethylene glycol in a high aspect ratio rectangular duct 

(see Section 2.3.3). A fully—developed inlet velocity profile was assumed. For 

water, only density variation in the body force term was considered, whereas, all 

properties were varied for ethylene glycol. Malik and Pletcher (1980) also 

predicted the axial position for the onset of reversed flow near the unheated wall, 

commenting that for ethylene glycol this location appeared to be best correlated by 

the parameter Grq/R e2 which, unlike Grq/Re, remained fairly constant along the 

duct. Zenen et al (1985) utilised a modified version of the numerical method 

developed by Collins (1980) for combined convection in circular tubes, discussed in 

Section 2.3.1 above. Results were obtained for upward heated and downward 

cooled flows of 37% ethylene glycol—water solution, accommodating variable 

viscosity and natural convection effects. Axially varying wall temperature 

boundary conditions were considered at the outer surface with the inner surface 

insulated. For design purposes, Zenen et al (1985) correlated the predicted Nusselt 

numbers in terms of Graetz number, Grashof number and further dimensionless 

functions expressing the effects of entry, viscosity variation and variable wall 

temperature respectively. Hashimoto et al (1986) obtained numerical solutions for 

upward and downward flows in a vertical annulus of r* = 0.9. The inner wall was 

subject to UHF or UWT heating and the outer wall was treated as an adiabatic 

boundary. The fluid, helium gas with Pr = 0.671, was treated as incompressible 

and temperature dependence of the fluid properties, including density, was 

approximated by power law relations throughout the governing equations. 

Property variation was represented in terms of an additional problem parameter, 

either Tw/T 0 (for UWT heating) or qwdh/k0T0 (for UHF heating), and was found 

to exert a rather slight influence on heat transfer coefficient and friction factor. 

However, for a fixed value of the Grashof number—to—Reynolds number ratio, 

Hashimoto et al (1986) found that with increase in Tw/T 0 or qwdh/k0T0 flow
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reversal is delayed and eventually disappears altogether. Aung et al (1991) studied 

the effects of temperature—dependent fluid properties on forced and combined 

convection heat transfer for upward gas flow in a vertical concentric annulus of 

r* = 0.25. Uniform heat flux heating was prescribed at the inner wall and the outer 

wall was assumed to be heated at UHF or insulated. The fluid considered was air, 

which was treated as an ideal gas with Pr = 0.72. Accordingly, density was related 

to temperature and pressure through the equation of state and enthalpy was taken 

as a function of specific heat and temperature. Viscosity, thermal conductivity and 

specific heat were approximated by power law functions of temperature. For the 

UHF boundary conditions studied, it was found that for forced convection the 

overall effect of fluid property variations is to reduce both radial and axial 

temperature gradients. However, the consequent increase in local Nusselt number 

is less marked because of an increase in thermal conductivity. For combined 

convection with variable properties, Aung et al (1991) showed that buoyancy 

reduces wall temperatures, and enhances local Nusselt numbers, except near the 

entrance or far downstream where these effects were found to be negligible. Other 

results from this study are discussed in the paper by Moghadam et al (1990).

Details of the implicit finite—difference numerical method used by Aung et al 

(1991) and Moghadam et al (1990) are given by Moghadam and Aung (1990).

Heggs et al (1988) computed local Nusselt and bulk temperature distributions for 

upward flow, with the fluid (Pr = 0.72) entering at a temperature midway 

between the UWT conditions maintained at the inner and outer walls. The range 

of conditions investigated includes situations where asymmetry of the wall 

temperatures is sufficient to cause reversed flow adjacent to the colder wall. The 

computational method applied was adapted from that originally used by Ingham et 

al (1988a, 1988b) for combined convection flows in parallel plate ducts containing 

regions of reversed flow (discussed in Section 2.3.3 below). The cases of the inner 

wall hotter than the outer wall and vice versa were both considered.
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The numerical study performed by Rao and El—Genk (1990) to predict the onset of 

buoyancy—induced instability in vertical annuli with internal UHF heating 

included a comparison between solutions based on the boundary layer 

approximations and other sets of equations involving elliptic terms. Further 

discussion of this work is deferred to Section 2.4.2.

Although developing combined convection in vertical annuli has been subject to 

fairly extensive theoretical investigation a comparatively small amount of 

experimental information is available.

The experimental apparatus used for upflow and downflow tests with water by 

Sherwin and Wallis (1968, 1972) comprised a vertical annulus of r* =  1/3 and 

L/dh « 48, with UHF heating at the inner wall only. Unfortunately, although the 

heated surface was instrumented for local wall temperature measurements, the 

experimental Nusselt numbers presented are based on the difference between the 

mean bulk fluid temperature and the mean heated surface temperature. It does not 

seem surprising, therefore, that these experimental heat transfer results show a 

marked increase with Reynolds number, only approaching the theoretical 

predictions for fully—developed conditions (Sherwin, 1968) at the smallest value of 

Re used in the tests.

Rao and Barrow (1972) and Ogunba (1972) both obtained local heat transfer data 

for water in upflow in annular test sections with UHF heating at the inner wall. 

The experimental set-up used by Rao and Barrow (1972) had a radius ratio close 

to unity since it was intended to simulate a parallel plate system and consequently 

their results are discussed in Section 2.3.3. Ogunba (1972) used an annulus of 

r* = 0.25 and L/dh ~ 24. His experimental local Nusselt numbers exhibit a 

continuous decrease with axial distance for all Grashof numbers, indicating that 

fully—developed conditions were never attained in the relatively short test section. 

Furthermore, Ogunba (1972) found that his numerical scheme underpredicted the
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experimental Nux data, particularly at higher values of Grq. Ogunba (1972) also 

used the hydrogen bubble technique and photographic recording to determine the 

effect of buoyancy on the velocity distribution at five equally—spaced axial 

locations in the heated developing flow. The experimental and numerically 

predicted velocity profiles compare favourably. A description of this velocity 

measurement technique and some sample velocity profiles and Nusselt numbers are 

given by Ogunba and Barrow (1979).

Okuno and Sugita (1973) made heat transfer measurements for water flowing 

upward through a short vertical annular duct (r* =  0.295, L/dh * 16) preceded by 

an adiabatic entrance section (xa/dh »11). The inner surface was cooled by water 

flowing through the central pipe and the outer surface was heated by a surrounding 

warm water jacket. Flow length average heat transfer coefficients, based on the net 

heat transfer to the fluid and the difference between the wall temperatures, 

determined for positions in the downstream two—thirds of the test section, were 

correlated by a dimensionless equation giving the mean Nusselt number in terms of 

Re, Pr, x/dh, Mb//Avi, /W /M  and Grashof number (also based on the difference in 

the wall temperatures). The data cover a range of Re from 30 to 200 and Grashof 

numbers from 1.4 x 107 to 9.9 x 107, although the effect of natural convection was 

stated to be not too pronounced.

The local heat transfer measurements of Maitra and Subba Raju (1975), referred to 

earlier in this section and in Section 2.2.2, were obtained with water flowing 

upward in a vertical annulus (r* = 0.38, L/dh » 83) with UHF heating at the inner 

wall. Experimental data were obtained for Reynolds numbers from 200 to 1200. 

The typical local Nusselt numbers presented by Maitra and Subba Raju (1975) 

show a marked increase with Rayleigh number and indicate that fully-developed 

conditions are attained at much shorter axial distances for combined convection 

than for forced convection.
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El—Genk et al (1986) reported Nusselt numbers measured at a single axial location 

(x/dh « 29) for upflow of water in a vertical annulus (r* = 0.854, L/dh « 52) with 

UHF heating at the inner wall and an adiabatic outer wall. Their data for natural 

laminar and natural and forced laminar flows, also discussed in the paper by Zaki 

et al (1985), exhibit a variation with Rayleigh number in reasonable agreement 

with the fully-developed combined convection theory of Maitra and Subba Raju 

(1975), but also show a clear dependence of Nu on Re. In a later series of 

experiments, El—Genk and Rao (1989) used another internally heated annular test 

section (r* = 0.5, L/dh * 71) to collect local heat transfer data for water at seven 

axial locations for developing upflows and at four axial locations for developing 

downflows. The new data for r* =  0.5 and the data for r* = 0.854 obtained in the 

earlier study (Zaki et al, 1985; El—Genk et al, 1986) were used to develop a general 

correlating equation for the natural, combined and forced laminar convection 

regimes.

2.3.3 Parallel Plate Ducts

Early theoretical treatments of developing combined convection flows in vertical 

parallel plate ducts used approximate analytical methods. Savkar (1970) neglected 

the inertia terms in the momentum equation and linearised the convective terms of 

the energy equation as 720, where 7 depends on the axial coordinate only. Upward 

fully—developed flow was assumed at entry and situations with UHF heating 

imposed at both plates or at one plate with the other adiabatic were considered. 

The results exhibit some non-physical behaviour but are consistent with 

fully—developed solutions (e.g. Rao and Morris, 1968) and indicate that the axial 

distances required for thermal development and for a point of inflexion to form in 

the velocity profile reduce as Rayleigh number increases. Quintiere and Mueller 

(1973) used a slug—flow linearisation of the convective terms in the momentum 

and energy equations to obtain a tractable problem for upward flow with 

symmetric UWT heating. Results were presented relating the average Nusselt 

number and the applied pressure gradient to the flow rate and the Rayleigh
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number for Pr = 0.7. Sitharamarao and Barrow (1972) modelled the entry region 

between vertical plates at uniform wall temperature by considering the effects of 

natural convection on a flow parallel to a single vertical plate in an infinite 

medium. A varying free—stream velocity of the form u^ « u0xm was assumed, 

where m is a constant chosen to simulate the acceleration of the potential core in 

the duct. Similarity solutions were obtained for both aiding and opposed flows, 

with Pr = 0.72, 1.0 and 5.0, by taking the first-order approximation given by 

perturbing the solution of the pure forced convection problem. The solutions only 

apply for a marginal natural convection contribution. More recently, Yao (1983) 

analysed combined convection for upward flow in the entry region of a heated 

vertical duct by considering the effect of buoyancy as a perturbation on the 

developing flow in an unheated channel. This analysis is only valid near the duct 

entrance where the influence of natural convection is small. Axial length scales 

were identified for the various regions traversed by developing flows under 

symmetric UWT and symmetric UHF boundary conditions.

Allen and Finn (1970) devised an approximate numerical technique to calculate 

developing temperature and velocity profiles for high Prandtl number fluids 

flowing through uniformly heated ducts, making due allowance for the effects of 

property variations, including buoyancy forces. In this approach, which utilises 

only fully—developed forms of the momentum and energy equations, thermal 

boundary layer development is approximated by a series of truncated versions of 

the fully—developed temperature profile. The corresponding velocity profiles are 

subsequently computed by a finite-difference method and axial distances are found 

from the energy balance equation using the bulk temperature rise. Predictions 

made for transformer oil flowing upward in a short duct, heated from one side 

only, are in excellent agreement with the average wall temperature measurements 

of Allen and Finn (1970).
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Dalbert (1982) investigated the natural, combined and forced convection regimes 

of developing, laminar, upward and downward flows in a vertical duct with 

uniform heating at one or both walls. A fully—implicit finite—difference technique 

developed in earlier work (Dalbert et al, 1981) was used. The results presented are 

mainly for the symmetric heating case and give the dimensionless pressure drop 

over a wide range of Reynolds number and Grashof number. The Prandtl number 

is not stated. Szpiro, Lewis and Collins (1984)1 compared the approximate 

numerical method of Allen and Finn (1970), described above, with a modified 

version of the marching finite-difference procedure for tube flows developed by 

Collins’ (1980) (see Section 2.3.1). The modifications, which were required to allow 

computations for the parallel plates geometry, were made by the present author. 

Numerical solutions were obtained for two upward flows: ethylene glycol 

(Pr0 =  172.2) with symmetric UHF heating and transformer oil (Pr0 =  406.4) with 

UHF heating at one plate only. Temperature dependence was allowed for in all 

fluid properties. Good agreement was achieved for the developing velocity profiles 

but the approximate method gave consistently lower Nusselt numbers, which could 

be attributed to the truncated temperature profiles assumed. Habchi and Acharya 

(1986) used the Spalding—Patankar marching procedure for parabolic systems (see 

Patankar, 1988) to compute developing temperature and axial velocity profiles and 

local Nusselt number distributions for air flowing upward in a parallel plate duct. 

Symmetric UWT heating as well as the case of one plate heated at UWT and the 

other adiabatic were treated. The computations spanned the complete 

development region from extreme entry, through maximum velocity profile 

distortion up to fully—developed conditions. No flow reversals were predicted for 

the range of parameters considered.

The results of an important study of developing laminar combined convection for 

vertically upward flow in a parallel plate duct were described in two parts; dealing

*A copy of this paper is included in Appendix G.
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separately with UWT (Aung and Worku, 1986a) and UHF (Aung and Worku, 

1987) boundary conditions. The numerical results presented, which are for 

Pr =  0.72 and cover symmetric and asymmetric heating for both kinds of 

boundary conditions, were obtained by a marching finite—difference procedure 

developed for pure natural convection duct flows (Aung et al, 1972). The results 

obtained by Aung and Worku (1986a) for UWT boundary conditions show that 

buoyancy can strongly distort the axial velocity profile in the development region, 

with a central concavity forming as the less—dense fluid near the heated walls is 

accelerated. For equal wall temperatures, this concavity is gradually eliminated 

downstream as the velocity profile assumes the fully—developed parabolic form. 

Aung and Worku (1986a) found, however, that the corresponding hydrodynamic 

development length under combined convection conditions is longer than for pure 

forced convection and increases dramatically with an increase in the Grashof 

number—to—Reynolds number ratio. For asymmetric wall temperatures (rT < 1) 

the velocity profiles presented also exhibit skewness as the fluid is drawn toward 

the hotter wall. Aung and Worku (1986a) state that for rT < 1 profile distortion 

eventually reduces with increase in X, although the concavity never completely 

disappears. For cases where a flow reversal was predicted in the developing flow, 

the point of separation occurred at shorter axial distances as rT was reduced for a 

fixed value of the buoyancy effect parameter. For conditions where the marching 

procedure used by Aung and Worku (1986a) permitted stable solutions to be 

obtained up to large axial distances, including one particular situation where the 

fully—developed flow was mildly bidirectional, the predicted velocity profiles and 

axial pressure gradient are in excellent agreement with the fully—developed theory 

of Aung and Worku (1986b). In contrast to the predicted increase in the 

hydrodynamic development length, the heat transfer results show that an increase 

in buoyancy reduces the thermal entry length, as indicated by a more rapid rise in 

bulk temperature, but only mildly affects the average Nusselt numbers at both 

walls.
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In contrast to UWT boundary conditions, for which the fluid temperature profile 

develops to become either uniform or linearly varying between the walls, UHF 

conditions give rise to a continuous axial variation of fluid temperatures, albeit 

that 5T/3x eventually becomes constant. The numerical study made by Aung and 

Worku (1987) of developing combined convection for UHF conditions showed the 

influence of buoyancy on developing velocity profiles, axial pressure distribution 

and heat transfer to be less than for UWT conditions. Aung and Worku (1987) 

concluded that flow reversal is more prone to occur for UWT than UHF conditions 

and reported that no flow reversals were predicted for the latter case in the range 

of Grq/Re investigated, at any value of rq. This finding was supported by Cheng et 

al (1990) who noted that for the ranges of parameters studied by Aung and Worku 

(1987) no flow reversals occur in fully—developed combined convection.

Cebeci et al (1982) and Ingham et al (1988a) developed numerical methods for 

handling vertical duct flows containing a buoyancy—induced flow reversal. Both 

methods are based on parabolic equations. In order to allow forward—marching 

computation to proceed stably either the FLARE approximation (see Cebeci and 

Bradshaw, 1984; Anderson et al, 1984) is incorporated (Cebeci et, 1982), whereby 

streamwise convective terms are neglected for the reverse flow region, or a similar 

technique is used which insists that no negative streamwise velocities are used in 

the marching calculations (Ingham et al, 1988a). Cebeci et al (1982) and Ingham 

et al (1984a) considered the development of aiding and opposed flows under 

symmetric UWT boundary conditions for Pr =  0.72. For a sufficiently strong 

buoyancy effect these flows can be bidirectional in the developing region but, as 

shown by Aung and Worku (1986b) and also noted above, the fully—developed 

velocity profile for symmetric wall temperatures is unidirectional and parabolic. In 

other respects, different approaches were used in these two studies. Cebeci et al 

(1982) employed a modified Falkner—Skan transformation of the governing 

boundary layer equations near the duct entrance, changing to physical coordinates
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before the calculated shear layers merged. An inverse boundary layer 

finite—difference procedure employing the Box differencing scheme (see Cebeci and 

Bradshaw, 1984; Anderson et al, 1984) was used. The results presented by Cebeci 

et al (1982) only feature flow reversal situations for opposed flow. In these 

situations a more rapidly decreasing Nusselt number and a more rapidly increasing 

pressure drop were predicted downstream of the flow separation point which 

moved upstream with an increase in buoyancy. This study is also described in the 

book by Cebeci and Bradshaw (1984). Ingham et al (1988a) formulated the 

problem in terms of a dimensionless stream function, vorticity and temperature 

and expressed the governing parabolic equations in an implicit finite—difference 

scheme. For situations where the developing flow remains unidirectional, a 

straightforward marching solution procedure was used and Ingham et al (1988a) 

obtained results in good agreement with Aung and Worku (1986a). A modified 

technique was employed for situations where buoyancy—induced recirculation 

occurs over some portion of the duct length, near either the duct centreline (aided 

flow) or the duct walls (opposed flow). When flow reversal was encountered, 

Ingham et al (1988a) invoked the approximation mentioned above to maintain 

stability as the marching solution was advanced thoughout and a few extra steps 

beyond the reversed flow region. The approximate solution formed in this manner 

was refined by applying an iterative procedure over the recirculation region. This 

calculation involved marching backwards in the reverse flow region only and 

forwards in the forward flow region only until convergence was achieved. 

Numerically predicted velocity profiles, Nusselt numbers, friction factors and bulk 

temperature distributions are presented. Ingham et al (1988b) carried out a similar 

study for asymmetric UWT boundary conditions using the same numerical 

technique. In this case the fully—developed flow can be bidirectional, and for such 

situations it was necessary to continue marching well into the fully—developed 

region before the iterative procedure was carried out.
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The three studies discussed next were based on spatially elliptic governing 

equations. Tjelflaat and Ytrehus (1981) studied a downward cooled flow between 

walls at different but uniform temperatures and with a discontinuity in the inlet 

fluid temperature profile at the duct centreline. This flow contained a region of 

reversed flow and was described by the Navier—Stokes equations in 

quasi—incompressible, constant property form. Asymptotic (steady-state) 

solutions were obtained by the artificial compressibility method (see Anderson et 

al, 1984) using an explicit, time—marching finite-difference scheme. Chow et al 

(1984) studied the simultaneous effects of natural convection and axial diffusion 

(heat and momentum) for low Peclet number upward flows in a short vertical duct 

subject to symmetric UWT thermal boundary conditions. The problem was 

formulated in terms of vorticity and stream function and solved using a 

finite—difference method over a region incorporating adiabatic entry and exit 

lengths. Buoyancy effects were shown to enhance axial conduction near the start of 

a cooled section, whereas the opposite was found for heating. Baek et al (1990) 

made numerical predictions for air flowing upward between vertical parallel plates 

of finite length; one heated at UWT and the other maintained at the inlet air 

temperature. The elliptic equations considered allowed situations with reversed 

flow at the cooler wall to be treated and were solved in finite-difference form using 

the TEACH code. Developing axial velocity profiles, including flow reversals, 

predicted on the basis of the laminar, two-dimensional model compare well with 

LDV measurements made by Baek et al (1990), apart from at high Grashof 

numbers when transition to turbulent flow was observed. The changes in the flow 

structure with increase in the Grashof number, observed by Baek et al (1990), are 

described in Section 2.4.3. Viscous dissipation was neglected in all three numerical 

studies described above.

Experimental data available for laminar buoyant flows in vertical ducts 

approximating to a parallel plates system are mainly for pure natural convection of 

air through open-ended ducts. Measurements for combined natural and forced
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convection are rare for this geometry.

Rao and Barrow (1972) made heat transfer measurements for upward flow of water 

in a vertical concentric annulus of L/dh ~ 231 and radius ratio nearly equal to 

unity (r* = 0.931) with UHF heating at the inner surface. Joshi and Bergles (1978) 

obtained data for the heating of ethylene glycol flowing upward in a high aspect 

ratio rectangular duct of L/dh ~ 39 at wall heat flux ratios of 0.0, 0.5 and 1.0. 

Local Nusselt numbers determined in these two experimental studies were found to 

be in good agreement with constant—property, pure forced convection predictions 

near the entrance. However, at greater axial distances the experimental values 

were severely underpredicted, this discrepancy being attributed to the aiding effect 

of buoyancy. The data of Rao and Barrow (1972), in particular, show that with 

increase in the Rayleigh number the Nux versus x* distribution, away from the 

entrance, falls progressively higher than the forced convection line, eventually 

developing a pronounced "tail—up" appearance. Their local Nux values for 

x* > 0.05 are, however, underestimated by the fully-developed combined 

convection analysis of Rao and Morris (1968).

Wirtz and McKinley (1985) investigated the effect of buoyancy for air in 

downward laminar flow through a one—side heated duct of length—to-spacing ratio 

equal to 20. Velocity profiles and temperature profiles were measured by laser 

velocimetry and thermocouple traverses respectively. Local wall temperatures and 

heat fluxes were determined using holographic interferometry. The measurements 

revealed that an increase in Grashof number, at a fixed value of the pressure 

gradient, reduced the flow rate in the duct and shifted the flow profile further 

away from the heated wall. A corresponding decrease in local Nusselt number was 

noted for low Grashof numbers. Further increase of the wall heat flux eventually 

resulted in a reversal of this trend, coinciding with a marked increase in measured 

turbulence intensities adjacent to the heated wall. The recent measurements for 

heating of air in upflow with asymmetric wall temperatures, made by Baek et al
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(1990), are referred to earlier in this section.

2.4 Instability and Transition for Combined Convection in Vertical Ducts

It is evident from perusal of the early literature on non—isothermal laminar flow in 

vertical ducts that it was known that heat transfer could result in instability of the 

flow, leading to transition at lower Reynolds numbers than normally associated 

with isothermal flow. For example, Martinelli et al (1942) in discussing data for 

water obtained at high wall temperature and showing points of unstable flow 

stated that "Under this condition • • • which probably induced turbulence in the 

fluid stream, the rates of heat transfer were much higher than predicted by viscous 

flow heat transfer theory". Also, in a comparison of theory with experimental data, 

Pigford (1955) commented that " • • • the strong natural convection currents near 

the wall ■ • • could have caused the appearance of incipient turbulence, even 

though the criterion of flow stability usually applied in isothermal flow indicates 

that laminar flow would exist".

Systematic attempts to understand buoyancy—induced flow instability for 

combined convection in vertical ducts and the conditions under which it occurs 

commenced in the 1950s and both experimental and theoretical investigations have 

subsequently been made. In the former approach, flow visualization experiments 

and measurements of heated wall and fluid temperature fluctuations have been 

employed. In parallel with these observations theoretical studies have been 

performed, using contemporary methods of analysis for steady, laminar combined 

convection, to provide predictions of velocity and temperature profiles near to 

transition as an aid in interpreting experimental results. More recently, linear 

stability analysis has been applied to gain insight into the dominant modes of 

disturbance for a number of problems of fully—developed combined convection in 

vertical ducts.
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Contributions to the literature on the stability of laminar combined convection in 

vertical ducts are described in Sections 2.4.1—2.4.3, dealing with circular tubes, 

concentric anuuli and parallel plate ducts respectively.

2.4.1 Circular Tubes

The effect of buoyancy on the stability of an upward laminar flow in a uniformly 

heated vertical tube has been studied experimentally by several workers. Scheele et 

al (1960) utilised an upstream dye injection technique to visualize transition. 

Observations could only be made at the heated test section outlet (L/d = 114.3) 

and transition was detected by noting when the dye filament first deviated from 

streamline flow and became slightly sinuous or burst into turbulence. Scheele and 

Hanratty (1962) tested various heated lengths up to L/d = 762 and defined 

transition as the condition for which fluid temperature fluctuations were first 

detectable (s 0.1° C) at the tube outlet. According to Scheele and Hanratty (1962), 

the transition data collected in these two studies indicate that the value of Grq/Re 

at transition asymptotically approaches a lower limit of 340 at low values of Re. In 

order for fluid temperature fluctuations to be detected at the tube outlet for higher 

flow rates, a higher value of Grq/Re was required and the data also exhibited an 

influence of L/d. By considering the experimentally determined values of Grq/Re 

needed for transition in relation to velocity profiles predicted by fully—developed 

theory (Hallman, 1956; Hanratty et al, 1958) Scheele et al (1962) concluded that 

flow instability is initiated when a concavity develops in the buoyancy—distorted 

axial velocity profile at the centreline. A laminar velocity profile possessing such a 

point of inflexion is known to be unstable (e.g. Schlichting, 1968) and to favour the 

growth of disturbances which eventually lead to transition.

Hallman (1961), Kemeny and Somers (1962), Lawrence and Chato (1966) and 

Petukhov (1969) reported fluid and/or wall temperature fluctuations for combined 

convection in vertical tubes with UHF heating, indicating departure from steady 

laminar conditions. For upflow of water, Hallman (1961) recorded temperature
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fluctuations on the upper portion of his heated test section indicating transition to 

a slow, apparently randomn, eddy flow. For a constant flow rate, the point where 

fluctuations were first noted moved nearer to the tube entrance as heat flux was 

increased. Hallman (1961) provided a correlation for the location of the transition 

point x*r, which can be written as GrPr =  2664 (x*,.)1' 83, where

Gr = g/3p2d3(Tw — Tb)//i2 and all fluid properties are to be evaluated at the local 

film temperature. Hallman’s (1961) wall temperature measurements for upflow 

show some circumferential variations towards the top of the heated section, 

indicating some asymmetry of the flow. As heat flux was increased this asymmetry 

was observed to worsen and, in addition, an unexplained dip in the wall—to—bulk 

temperature difference was seen near the tube exit. However, Hallman (1961) does 

not appear to have interpreted this dip as an improvement in heat transfer due to 

transition from laminar flow. He also obtained wall temperature data for heating 

of water in downflow, which in general exhibited a much greater degree of 

asymmetry than for upflow. The asymmetry was particularly noticeable towards 

the exit (bottom) of the test section for high heat fluxes and suggested the 

existence of a cell flow in this region. At the highest heat fluxes, the wall 

temperatures on the lower part of the test section varied in an approximately 

periodic fashion, with typical frequencies of about 12 mHz.

Kemeny and Somers (1962) used wall temperature variations and fluid 

temperature fluctuations to infer the occurrence of "non—laminar" conditions for 

upflow of oil and water with UHF heating. For water, such a transition was 

reported to occur only for Re greater than about 200, but for oil non—laminar 

conditions were observed even at Reynolds numbers below 10. Transition was 

found to be accompanied by either a drop in wall temperature, or a smaller rise 

than expected, in going from one wall thermocouple position to the next in the 

downstream direction. Fluid temperature fluctuations were measured by a probe 

inserted axially from the top of the tube. At the axial position where the largest 

fluctuations were found, the frequency was approximately 0.25 Hz, with
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amplitudes of between 0.9 K and 14.4 K measured near the tube centreline. Close 

to the tube wall the amplitudes of the fluctuations were found to be up to 21.6 K. 

Nusselt numbers for non—laminar conditions were found to be much larger than 

those for steady laminar flow (by as much as 30% for oil), although Kemeny and 

Somers (1962) were unable to obtain a consistently satisfactory heat transfer 

correlation for these results. In addition, observations were made of non—laminar 

flow in a separate transparent apparatus where instabilities were observed to lead 

to a rolling or wave—type flow that originated in the boundary layer and dissipated 

in the main stream.

Metais and Eckert (1964)2 provided a convection regime diagram for flow through 

vertical tubes intended to give guidance on when the combined effects of natural 

convection and forced convection have to be considered. The diagram is based on 

information taken from both theoretical and experimental sources (mainly the 

latter), including work by Watzinger and Johnson (1939), Martinelli and Boelter 

(1942), Brown (1960), Hallman (1961) and Kemeny and Somers (1962).

Lawrence and Chato (1966) used fluid temperature fluctuation measurements to 

indicate the transition point location for upflow of water in a vertical tube 

(L/d s 203) heated at UHF. For each heat flux used in their tests, flow rate was 

varied so that the transition point could be located at a number of different axial 

measurement positions. Although large and irregular fluctuations were reported for 

regions with "gross turbulence", only small periodic fluctuations, with frequencies 

of the order of 5 to 10 Hz were observed nearer to the transition point. Lawrence 

and Chato (1966) defined the point indicating the initiation of turbulence, said to 

be near the beginning of laminar instability, as the location where fluctuations of 

the order of 0.09 K were first detected. Their transition data show a strong

2Further information on the Metais and Eckert (1964) convection regime diagram 
is given in Section 7.2.1, where a comparison with experimental data collected in 
this research is presented.
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functional relationship between the buoyancy parameter Grq/Re and the 

nondimensional distance to transition x*r; with scatter being attributed to the 

different inlet temperatures used in the tests. Developing axial velocity profiles 

were calculated using the authors’ finite—difference model (see Section 2.3.1) for 

conditions correponding to specific tests. These confirmed that transition always 

occurred downstream of the position where a point of inflexion developed in the 

distorted velocity profile. Lawrence and Chato (1966) also attempted to devise a 

characteristic shape parameter, based on features of the predicted transition point 

velocity profiles, which could be related to inlet Reynolds number and used as a 

transition criterion. Using the present nomenclature, their tentative shape 

parameter is given by /¿w(Umax + Uci)/(1 - R max)- However, Collins (1975, 1978) 

concluded that it was difficult to justify the form of this dimensional parameter on 

analytical grounds and found that it did not correlate the results of Scheele et al 

(1960).

Petukhov et al (1969) performed experiments for upflow of water with UHF 

heating and used wall temperature fluctuations to detect the critical axial distance 

x*r at which instability of laminar combined convection occurs. Their correlation 

for x*r, which reflects the effect of different hydrodynamic inlet conditions, can be 

written as follows: x*r = 12.9 C(Grq/R e)'°‘8 where C =  1 in the presence of a 

calming section and C = 1 4- 10 exp(— 0.0025 Re) without a calming section.

Local Nusselt numbers for upflow of water in a uniformly heated tube, measured 

by Barozzi et al (1984), exhibited a steep increase for large x*, providing strong 

evidence of transition from laminar flow. The data were compared with numerical 

predictions, obtained using Collins’ (1975) finite—difference method for developing 

combined convection, showing good agreement up to the position of minimum 

Nux, but thereafter the experimental values were much higher. The predictions 

confirmed the development of a point of inflexion in the axial velocity profile 

upstream of the minimum Nux position. The feasibility of using a correlation
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between Grq/Re and x* at the minimum Nux position as a transition criterion was 

examined. Barozzi et al (1984) compared their experimental data and a large 

number of predicted cases with the transition data correlation presented by 

Lawrence and Chato (1966) on the basis of fluid temperature fluctuation 

measurements. It was found that the position of minimum Nux does correlate in a 

manner similar to that for the onset of measurable fluid temperature fluctuations.

A linear stability analysis by Yao (1987a), of fully—developed buoyancy—aided flow 

in a vertical tube heated at UHF, revealed flow instability boundaries indicating 

that the flow can become unstable for Grq/Re > 300 and Re > 80. Furthermore, it 

was found that, except in the range of Reynolds numbers Re s 100 — 300, the most 

unstable mode corresponds to two plane symmetric spiral flows. Yao (1987b) used 

the same method of analysis to study buoyancy—opposed flow for the same 

boundary condition. The numerical results indicate that for Re > 100, opposed 

flow is unstable for Grq/Re > 400. The type of disturbance associated with the 

dominant unstable mode predicted for this case is two counter-rotating spirals. 

However, Yao (1987b) considered that since opposing flow is subcritical this flow 

pattern is unlikely to be detected in practice.

2.4.2 Concentric Annuli

Both experimental and theoretical approaches have been employed to study the 

stability of laminar combined convection in vertical annuli. Not surprisingly, 

attention has mainly focussed on the internally heated annulus as this allows the 

flow to be observed without experimental complications.

Sherwin and Wallis (1968) used dye injection to indictate flow patterns for 

downflow of water in a concentric annulus (r* = 1/3) with UHF heating at the 

inner surface. Their experiments showed that increase of the buoyancy force 

opposing the main flow did lead to reversed flow adjacent to the heated wall, and a 

consequent fall in Nusselt number, but that this situation only remained stable

- 6 8 -



over a limited range of heat input. Further increase in heat flux, eventually 

resulted in flow instability associated with the development of radial velocity 

components across the annulus, though the flow did not appear to be asymmetric. 

A pattern of alternate unstable and stable flow sections was observed, with the 

instabilities growing in size and frequency as the heat flux was increased. A 

considerable improvement in heat transfer was measured beyond the onset of 

unstable flow; with Nu increasing with Grq/Re. In later experiments (Sherwin and 

Wallis, 1972) for heating of water in upflow using the same apparatus, onset of 

flow instability was observed as the velocity gradient approached zero at the outer 

unheated wall. An associated increase in the radial flow was seen in this case also 

and, in addition, some asymmetry was evident near the transition to the unstable 

region which was not found in the downflow experimemts. As Grq/Re was 

increased in the upflow experiments, the onset of flow instability occurred at 

progressively smaller values of x*. The observed locations agreed reasonably well 

with developing flow predictions made using the finite—difference model of Sherwin 

and Wallis (1970).

Ogunba and Barrow (1979) used the hydrogen bubble technique and photography 

in a visual study of combined convection for upflow of water (Re s 450) in the 

entry region of a concentric annulus (r* = 0.25) heated internally at UHF. They 

reported that the photographs showed the onset of turbulence near the outlet 

(x/d ~ 20) at larger heat inputs but no details of the critical value of Grq were 

given.

In a two-part study of buoyancy—induced instability of laminar flow in a vertical 

annulus flow visualization and heat transfer experiments (El—Genk and Rao, 1990) 

were complemented by a numerical study (Rao and El—Genk, 1990). Upflow and 

downflow tests were performed for water in a vertical annulus (r* =  0.5, 

L/dh « 71) with UHF heating of the inner wall only. Incipient flow instability was 

taken as the point where, for each test condition, oscillations of an injected dye
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filament began; the reported axial locations being determined from video images of 

the flow field. For downflow, bulk flow mixing was observed to occur almost 

immediately downstream of the location of incipient instability. The flow in this 

mixing region was referred to as turbulent by El—Genk and Rao (1990). For 

upflow, transition from stable laminar flow to a bulk mixing flow occurred more 

gradually, over a short region, characterised by a moderate rate of mixing and by 

the formation of vortices near the outer unheated wall. The onset of flow 

instability was also detected by recording the accompanying fluctuations of the 

heated wall and fluid temperatures, which were found to be less frequent and much 

less intense for upward flow than for downward flow.

In the companion numerical study, Rao and El—Genk (1990) compared three 

numerical schemes for predicting the axial location òf incipient instability, xcr, 

defined as the axial distance at which du/dr vanishes at either the outer wall (for 

upflow) or the inner wall (for downflow). The three schemes were based on 

different forms of the equations for steady, laminar, two-dimensional 

axisymmetric flow, namely: (i) elliptic equations, including both the axial and the 

radial momentum equations, with axial momentum (but not heat) diffusion 

represented; (ii) the same as (i) but omitting the axial momentum diffusion term; 

in essence a partially parabolic set of equations; and (iii) the boundary layer 

equations. Viscosity and density variations were considered. Solution was effected 

by a marching finite—difference procedure in the main flow direction for each 

scheme, except that additional sweeps were made with scheme (i) above to achieve 

a higher order of accuracy. The numerical predictions for Xcr obtained by schemes 

(i) and (ii) were almost identical, indicating that the effect of axial momentum 

diffusion on xcr is negligible. Furthermore, these predictions gave reasonable 

agreement with the authors’ (El—Genk and Rao, 1990) measurements, and also 

with the downflow data of Sherwin and Wallis (1968, 1970). In contrast, the 

solutions based on the boundary layer equations were found to underpredict xcr by 

up to 45% at higher values of Grq/Re, as a result of neglecting radial momentum
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transfer. This was confirmed by comparing the developing velocity profiles for the 

three schemes; with scheme (iii) showing a more rapid development and hence 

predicting an earlier onset of instability. Based on the experimental data and the 

results of a parametric numerical study, including the effects of Grq/Re, r*, inlet 

temperature and inlet velocity profile shape, Rao and El—Genk (1990) proposed 

equations for estimating the nondimensional axial distance to the onset of 

instability, x*r, in terms of Grq/Re and r*, for upward and downward flows in 

vertical annuli with internal UHF heating. The time—averaged wall—to—bulk 

temperature difference measurements made by El—Genk and Rao (1990) show a 

decrease at axial positions downstream of the onset of instability, indicating an 

improvement in heat transfer consistent with the mixing observed in this region. 

Nusselt number correlations for combined convection in vertical annuli under 

stable laminar flow and unstable flow conditions, based on experimental data for 

water obtained in the experiments of El—Genk and co-workers, are given by 

El—Genk and Rao (1989, 1990).

Yao and Rogers (1989) carried out a linear stability analysis for fully—developed 

combined convection in a vertical annulus with the walls kept at different 

temperatures. A very large aspect ratio was considered so that a two-dimensional 

channel was approximated. Results were obtained for an aspect ratio of 100 

(r* = 100/101 = 0.990) and Pr = 0.71. Although both axial and azimuthal 

disturbances were investigated, the marginal stability boundary was found to be 

sufficiently determined by the former, since the first few azimuthal modes became 

unstable at the same time. In the range of values of Re up to about 4000, where 

the flow is susceptible to so-called thermal instability in which the buoyancy 

forces play an important role, the critical ratio of Grashof number (based on the 

difference in wall temperatures and the hydraulic diameter) to the Reynolds 

number reduced from 720 at Re = 300 to 480 at Re = 4000. At higher Reynolds 

numbers other types of hydrodynamic instability (shear, interactive) are 

important. In a subsequent paper, Rogers and Yao (1990) determined the limit of
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stability for upward flow (Pr = 6.0) in an annulus (r* = 0.375) with UHF heating 

at the inner wall and the outer wall insulated. Linear stability theory showed the 

most unstable disturbance to be axisymmetric in this case. Thermal instability was 

predicted to occur at an almost constant value of Grq/Re equal to 1305 for 

Re > 200, but at lower Reynolds numbers this critical value was found to increase 

sharply due to the minimal inertia forces. Rogers and Yao (1990) pointed out that 

the critical value Grq/Re =  1305 is less than that predicted by steady 

fully—developed combined convection theory for a point of inflexion to form in the 

velocity profile, given as Grq/Re = 1408. The results from the linear stability 

analysis were used together with energy balances, representing the redistribution of 

the disturbance energy between the thermal and kinetic components, to determine 

the shape and amplitudes of the disturbances. It was shown that the disturbances 

consist of a set of counter-rotating cells, tilted slightly upward towards the 

insulated wall. Nusselt numbers, calculated from the distorted mean velocity and 

temperature profiles, demonstrated increases due to the disturbances in line with 

the large positive deviations from steady fully—developed combined convection 

theory exhibited by the experimental data of Maitra and Subba Raju (1975).

2.4.3 Parallel Plate Ducts

Only a few papers can be found giving information on flow stability and transition 

for combined natural and forced convection in vertical parallel plate ducts, despite 

the practical importance of this geometry. This can be understood from an 

experimental viewpoint, because of the practical difficulties of maintaining a 

two-dimensional base flow, especially when the flow is unstable. The experiments 

for air by Fukui et al (1982), Wirtz and McKinley (1985) and Baek et al (1990) are 

relevant.

Fukui et al (1982) used smoke to visualize upward flow at a section approximately 

42 hydraulic diameters downstream from the entrance in a vertical rectangular 

duct with an aspect ratio of nearly 17:1. Reynolds number was varied from 0 to
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200 and different Grashof numbers were fixed by maintaining asymmetric UWT 

conditions at the opposite spanwise walls. Above a critical Grashof number, which 

was found to increase as the square of Reynolds number, unstable flow was 

observed with moving transverse vortex rolls at regular axial spacing. These 

disturbances were aligned with their axes in the spanwise direction and travelled in 

the flow direction at 0.855 times the mean velocity in the duct. These observations 

were in good agreement with the predictions of an accompanying linear stability 

theory. Fukui et al (1982) also employed a quasi—linear approximation to 

determine the amplitudes of the disturbances affecting the primary flow field and 

the resulting augmentation of heat transfer and pressure gradient.

Bearing in mind the flow structure observed by Fukui et al (1982), it is of interest 

to note that, at about the same time, Yao (1983) hypothesised that the 

fully—developed flow field for buoyancy—aided convection in a vertical 

two-dimensional channel under symmetric UHF conditions may take the form of 

pairs of recirculating cells moving downstream in order to satisfy the mass 

continuity principle.

Wirtz and McKinley (1985) made LDV measurements for downward flow in a 

parallel plate duct (aspect ratio a 20:1) with UHF heating at one plate only. When 

the Grashof number was increased beyond a certain level (dependent on the 

Reynolds number) a sharp increase in streamwise turbulence intensity was 

detected adjacent to the heated plate, suggesting production of turbulence by 

destabilizing buoyancy forces. Nusselt numbers were correspondingly improved, 

reversing the decline seen at lower Grashof numbers, which was characteristic of 

laminar buoyancy-opposed convection. Smoke experiments made by Wirtz and 

McKinley (1985) showed that at higher Grashof numbers the flow adjacent to the 

heated plate first became unsteady and sinuous, and eventually three-dimensional 

with an upward reversed flow near the duct side walls and a downward flow at the 

plate centrespan.
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Baek et al (1990) used LDV measurements and flow visualization to examine the 

effect of buoyancy on the structure of an upward flow between parallel plates of 

finite length; one heated at UWT and the other maintained at the fluid inlet 

temperature (i.e. rT = 0). At low heating rates, the flow became skewed towards 

the heated wall but remained unidirectional throughout the duct. As heating was 

increased, stable laminar bidirectional flow was observed at the duct exit plane; 

with air entering the top of the duct along the colder wall. The reversed flow 

region penetrated further down the duct as the heating rate was further increased 

until, above a critical Grashof number, it was replaced by a three-dimensional 

recirculation bubble. The bubble divided the upstream laminar flow region from a 

developing unidirectional turbulent flow downstream and its appearance was taken 

to indicate the onset of transition. Baek et al (1990) established empirical 

relationships, in terms of GrT and Re, delineating the boundaries between the 

unidirectional laminar, bidirectional laminar and turbulent flow regimes.
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PART 2

ANALYSIS AND COMPUTATIONAL WORK
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CHAPTER 3

ANALYSIS OF LAMINAR COMBINED CONVECTION IN VERTICAL DUCTS

3.1 Introduction

In this chapter the theoretical model and governing equations underlying the 

present analysis of developing combined natural and forced laminar convection in 

vertical ducts are presented.

In the analysis the governing equations are written in a generalized axisymmetric 

form which is suitable for the treatment of flows between parallel plates and in 

circular tubes and concentric annuli. Following a discussion of various forms of the 

basic conservation equations, attention is focussed on the variable—property 

boundary layer forms used in this study. The finite difference approximations of 

the governing equations and the marching procedure used in their solution are then 

described.

3.2 Description of Theoretical Model

3.2.1 Initial Assumptions

The following theoretical analysis is applicable to steady, laminar, 

two-dimensional duct flows under developing hydrodynamic and thermal 

conditions. Both plane and non—swirling axisymmetric situations are considered. 

The duct walls are assumed to be parallel, smooth and impermeable. Any thermal 

boundary conditions imposed on these boundaries are considered to be either of the 

uniform temperature type or the uniform heat flux type. It is assumed that the 

fluid can be treated as a single chemical species and behaves as a continuum. Only 

Newtonian fluids are considered, so that a shear stress exhibits a linear dependence 

on the rate of strain, and no phase change is allowed. Internal thermal energy 

generation within the fluid, such as that due to electrical heating or nuclear 

reactions, is excluded and thermal radiation is negligible.
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As the combined effects of thermally—induced buoyancy and forced convection are 

being studied, variation of the fluid density with temperature is necessarily 

considered, but subject to the following two restrictions:

(i) Density variation is accounted for in the gravitational body force only.

Elsewhere in the equations a constant density p0 is used. This is 

essentially the well-known Boussinesq approximation, but instead of the 

usual linear dependence of the density on temperature, p is treated as a 

polynomial function of temperature in this work.

ii) The main duct flow is aligned in the same or opposite direction as the

gravitational acceleration vector. Thus the inclusion of density variation 

is restricted to vertically upward or vertically downward duct flows. To 

extend consideration of buoyancy effects to other duct orientations would 

generally require a three-dimensional approach. Consequently, 

horizontal and inclined duct flows are embraced by the present 

treatment only for the forced convection limit.

Furthermore, each thermophysical property of the fluid, including density in the 

restricted sense discussed above, is considered to be a function of the local fluid 

temperature alone. Fluid property variations due to pressure differences are 

considered negligible.

3.2.2 Duct Geometries and Coordinate System

Figure 3.1 depicts the cylindrical polar coordinate system (x,r,</>) and the 

associated notation used to unify the presentation of the analysis for the three 

common duct geometries studied here; namely, the circular tube, the concentric 

annulus and the parallel plate duct.
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In n er

B o u n d a r y

The x—coordinate axis is directed downstream in the main flow direction and can 

be at any angle to the gravitational acceleration vector for pure forced convection. 

However, as explained earlier, only vertical flows are considered for natural or 

combined convection conditions. The origin of the x—coordinate axis is usually 

taken at the duct entrance position, although for comparison a fully—developed 

velocity distribution may be specified at x = 0 as an alternative to a uniform flow 

entry. Heat transfer to or from a duct wall is assumed to commence at x = 0 

unless an adiabatic entry length is introduced to investigate the effect of a 

partially developed velocity profile on the subsequent thermal and hydrodynamic 

development.
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For axially symmetric situations, variations with respect to the azimuthal 

coordinate <f> are negligible and attention is confined to the remaining axial (x) and 

radial (r) coordinate directions. Obviously this provides a suitable framework for 

developing flow and heat transfer in circular tubes and concentric annuli. However, 

plane flow between parallel plates is also two-dimensional and can be treated as 

axisymmetrical, if it is regarded as a special case in which the distance to the 

symmetry axis is very much greater than the (radial) spacing of the plates. These 

common features: two—dimensionality and axial symmetry, are exploited in the 

unified treatment presented here.

Thus, for each geometry considered, flow and temperature solutions are sought for 

a defined two-dimensional region on the x—r plane between an inner boundary at 

r =  rj and an outer boundary at r = r2. The radial width b of this region and its 

distance from the symmetry axis are defined by

b =  r2 —r t (3.1)

and r* =  (3.2)r2

where r* is the radius ratio. Conventionally, r* is used as a geometric similarity 

parameter for concentric annuli, but its use is extended to cover all the geometries 

considered here. Shah and London (1978) pointed out that the parallel plates 

geometry and also the circular tube can be viewed as limiting cases of the 

concentric annulus. From equations (3.1) and (3.2) we obtain r* = 1 — b /r2, from 

which it follows that r* = 1 for parallel plates, since r2/b  is infinite. For the 

circular duct rj =  0 and therefore r* = 0 from equation (3.2). However, it should 

be noted that the circular tube centreline boundary conditions are not the same as 

those at r = 0 in a concentric annulus of r* =  0.

For the convenience of restricting attention to the region between the inner and
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outer boundaries, a new transverse coordinate y is defined (see Figure 3.1). 

Originating at the inner (r =  ri) boundary, the y—coordinate axis defines the 

positive transverse flow direction, which is taken outward in the same sense as r, 

so that

r = rj + y (3.3)

Moreover, as 6y = Sr this change of origin does not affect transverse derivatives.

Physically, the outer (y = b) boundary is always a duct wall, although the inner 

(y = 0) boundary may be either a duct wall or a duct centreline. The centreline 

inner boundary condition applies for a circular tube and can also be used for a 

parallel plate duct with symmetrical thermal boundary conditions, since only the 

duct semi—width need be considered. Note that for a circular tube the centreline 

coincides with the symmetry axis of the coordinate system. The duct wall inner 

boundary condition must be used for a concentric annulus or a parallel plate duct 

with asymmetric thermal boundary conditions.

The physical nature and radial position of the transverse boundaries for each duct 

geometry and sub-geometry considered are summarised in Table 3.1. The ratio of 

the duct hydraulic diameter dh to the transverse width b is also given. In all cases 

the hydraulic diameter is taken as 4Af/Pw, where Af is the flow cross-sectional 

area and P w is the wetted perimeter. Specific hydrodynamic and thermal boundary 

conditions for the inner and outer boundaries are discussed in Section 3.3.2.
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Table 3.1 Physical nature and radial position of transverse boundaries.

Duct geometry 
(radius ratio)

dh/b Inner boundary

(y =  o)

Outer boundary 
(y =  b)

Circular 2 centreline wall
tube (r* =  0) (r = 0) (r =  b)

Concentric 2 inner wall outer wall
annulus (0< r*<l) (r = n) (r =  r 2 =  ii +  b)

Parallel 
plates (r* = 1) 

symmetric 4 centreline wall
thermal bc’s (r =  ®) (r =  ®)

asymmetric 2 wall wall
thermal bc’s (r = oo) (* =  •)

3.3 Mathematical Formulation

3.3.1 Conservation Equations in Differential Form

For the previously stated assumptions the following partial differential equations 

expressing conservation of mass, momentum and energy are appropriate:

(i) Mass Continuity Equation

¿ ( r*u) + ^ (r« v ) = 0 (3.4)
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(ii) Axial Momentum Equation

f« (u25 + T̂ _  “  S«M T ) “  +  ¿ r ^ r [ rK̂ T) ^ ]

+  (3.5)

(iii) Transverse Momentum Equation

P o %  “  “  fy  F* Jy rK̂ T) ^ ]  ”  K̂ T )h

+ dn(T) dv d/i(T) <?u 
¿fee cly

(iv) Energy Equation

(3.6)

i>oc(T) u |£  + v |y ]  -  i ;  gy r«k (T )|y  + ¿ [ k ( T ) | | j  + ^ T )*  (3.7)

where the viscous dissipation function $ in equation (3.7) is given by

$ = 2 fcfel 2 , r ^ v i 2 KV 21 _i_ f ^ v  â a+  k J + r J +  k + ^ J (3.8)

In equations (3.4)-(3.8)) u and v denote the velocity components in the x and y 

directions respectively and « is a flow index which determines the correct forms for 

two-dimensional and axisymmetric flows. It takes the following values:

and

k =  0, (r* =  1) 

« =  1» (rK= r)

for two-dimensional flow 

for axisymmetric flow.

The factor S multiplying the buoyancy term of equation (3.5) distinguishes 

between upward (S = +1) and downward (S = —1) vertical flows. Putting S =  0 is
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suitable for pure forced convection at any duct inclination since it has the same 

effect as omitting density variation altogether. To emphasise that the density, 

dynamic viscosity, thermal conductivity and specific heat capacity are functions of 

the local temperature T, they are denoted by p(T), /¿(T), k(T) and c(T) 

respectively.

The pressure variable p appearing in the momentum equations (3.5) and (3.6) 

deserves some additional explanation since it is not simply the local static 

pressure p. The latter is considered to be split into two parts

P = P -  Pogz (3.9)

where g is the magnitude of the gravitational acceleration, z is the height measured 

above some arbitrary horizontal datum and — p0gz represents the change in 

hydrostatic pressure corresponding to an increase in elevation equal to z in a static 

fluid of constant density p0. The pressure p is the contribution due to the motion 

of the fluid. Upon differentiation with respect to z, equation (3.9) produces two 

terms: dp/dz and the hydrostatic pressure gradient — p0g. The x—direction and 

y-direction components of these two gradients are included in the respective 

momentum equations. For a strictly incompressible fluid, the hydrostatic gradient 

cancels with the body force per unit volume, whereas these two quantities combine 

to give the buoyancy force per unit volume when density variation is admitted in 

the body force term.

The set of partial differential equations (3.4)—(3.7) are coupled and contain 

nonlinear terms. The coupling arises from the assumed temperature dependence of 

density (included in the buoyancy generation term only) and viscosity. 

Consequently, the solutions of the velocity and temperature fields are 

interdependent and must be pursued simultaneously. Nonlinearities occur in the 

equations wherever functions of the dependent variables or their derivatives occur
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as products, as for example in the first-order convective acceleration terms in the 

momentum equations. The corresponding terms in the energy equation are 

similarly nonlinear since the velocity components depend on temperature because 

of the coupling. Further nonlinearities are introduced through the temperature 

dependent fluid properties which can also be regarded as dependent variables of 

the flow.

Equations (3.5)-{3.7) represent the fullest forms of the momentum and energy 

equations for the assumptions stated so far and have an elliptic mathematical 

character. Elliptic flows must be solved over a closed domain and require boundary 

conditions to be specified on all sides. The physical interpretation of this 

classification is that, in general, local effects may be transmitted in all directions, 

including the upstream direction, and thus may influence the conditions at any 

other point. Molecular diffusion processes and the pressure field both exhibit such 

elliptic behaviour. In the numerical treatment of these elliptic equations, it follows 

that solutions must be obtained for all points over the entire domain 

simultaneously. Elliptic solution procedures are therefore expensive in terms of 

computer time and a further implication is that storage must be provided 

simultaneously for each of the dependent variables (i.e. u, v, p and T) at every 

discrete point considered.

Fortunately, equations (3.5)—(3.7) can be simplified for the two-dimensional and 

axisymmetric duct flows studied here, allowing considerable computational 

advantages to be enjoyed. Attention is confined to unidirectional flows (i.e. no 

regions of reverse flow ), so that the axial velocity component u always remains 

positive, ensuring that convection can only convey information about local 

conditions in one direction. Elliptic influences in the equations are partially 

eliminated by assuming that the Reynolds numbers are sufficiently high for the 

terms representing axial diffusion of momentum and heat to be neglected in 

comparison to the corresponding convection and transverse diffusion terms. In
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addition, pressure variations are considered to be absent in the transverse 

direction, so that p becomes a function of the x-coordinate only. The latter 

assumption removes any remaining elliptic influence in the main flow direction.

The above assumptions will not be strictly observed in practice for a small region 

close to a duct entrance where transverse pressure gradients and axial momentum 

diffusion are known to be present. Based on solutions to the full elliptic equations, 

Shah and London (1978) offer some guidance on the extent of this region for 

laminar forced convection. According to Anderson et al (1984) it is negligibly small 

for Reynolds numbers greater than about 75. A similar region might be expected 

near to the start of wall heat transfer where axial diffusion of heat would occur. To 

completely resolve these effects the only option is to use a full elliptic treatment 

covering the upstream and downstream affected zones. However, for present 

purposes it is considered that the neglect of axial diffusion and transverse pressure 

gradient is a reasonable approximation for laminar duct flows throughout any 

region of hydrodynamically and/or thermally developing flow. Together, these 

simplifications transform the momentum and energy equations, so that they 

become parabolic with respect to the main flow direction. For the so-called 

parabolic flows governed by these equations, downstream events are prevented 

from propogating upstream. Consequently, local behaviour is determined only by 

upstream conditions and numerical solutions can be obtained by a "once through" 

marching procedure, starting from known conditions at the upstream boundary 

and proceeding in the main flow direction. It is implied that conditions are not 

required to be specified at the downstream boundary.

The use of a step-by—step marching process, permitted by the simplification of the 

elliptic equations to parabolic form, considerably reduces the time for 

computation. A saving in computer storage is also achieved, because solutions are 

computed for only one transverse section at a time using known values at the 

immediately—upstream section. Therefore, storage for the dependent variables
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need only be provided for the two sections currently involved.

The set of parabolic partial differential equations used in this work follow from 

equations (3.4)—(3.7) when the approximations discussed above are made. They 

are

+ ^ (r* v ) = 0 (3.10)

Po
'dn
u cE +  v| £ ] -----^  “  Sg(p(T) -  Po) +  j s  ^  rM T ) ^  (3.11)

(3.12)

PoC(T) ffl , dTl
' K  + v3yj (3.13)

The axial momentum equation (3.11) is obtained by dropping all viscous diffusion 

terms containing partial derivatives with respect to the axial coordinate. Equation 

(3.12) gives the degenerate form of the transverse momentum equation, which 

simply states that transverse pressure variations are neglected. In the energy 

equation (3.13), axial diffusion is omitted and only the largest of the viscous 

dissipation terms from equation (3.8) is included. The incompressible continuity 

equation (3.10) remains unchanged.

It is noted that the parabolic flow equations (3.10)—(3.13) are identical to those 

obtained under the classical boundary layer approximations. Velocity and thermal 

boundary layers can be viewed as slender regions adjacent to a heat transfer 

surface in which large normal gradients of velocity and temperature occur. Outside 

of these layers it is imagined that uniform free stream conditions prevail. This 

traditional concept of a boundary layer is of limited applicability to duct flow heat 

transfer situations, except perhaps over a relatively short distance downstream of a 

duct entrance where the boundary layers have not yet grown to fill the entire duct
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cross-section. Nowadays it is common for the term boundary layer to be used 

more generally to refer to any situations for which the parabolic flow equations 

apply.

3.3.2 Boundary and Initial Conditions

As discussed in the previous section, numerical solutions to equations (3.10)—(3.13) 

can be computed by a step-by-step procedure in the main flow direction, starting 

from initial conditions supplied at the upstream boundary or the duct entrance. At 

each step the solutions must simultaneously satisfy specified conditions at the 

transverse boundaries. In general, the number of boundary conditions which must 

be specified for each dependent variable, with respect to a particular coordinate 

direction, is given by the order of the highest derivative. As equations 

(3.10)—(3.13) contain only first derivatives with respect to x, the specification of 

initial conditions at x = 0 is sufficient for the marching direction, and hence 

boundary conditions are not required at the duct outlet. In contrast, the axial 

momentum equation (3.11) and the energy equation (3.13) retain elliptic 

characteristics in the transverse direction, as evidenced by the second derivatives 

of u and T. Consequently, boundary conditions are needed at y = 0 and at y = b 

for both these variables. Strictly, only a single boundary condition is required for v 

in the transverse direction, since its highest derivative in the governing differential 

equations is dv/dy (in the mass continuity equation). Nevertheless, v = 0 is shown 

below for both transverse boundaries, because both conditions are employed in the 

numerical solution. For completeness, it is noted that a boundary condition is not 

required for pressure in the transverse direction since, as follows from equation 

(3.12), p only depends on the axial coordinate x.

Only conditions of the Dirichlet (i.e. dependent variable specified) and Neumann 

(i.e. normal gradient of dependent variable specified) types are involved here. In 

terms of the thermal boundary conditions at the duct walls, this effectively means
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that either the wall temperature Tw or the wall heat flux qw is prescribed. 

Although in principle any axial distribution Tw(x) or qw(x) could be specified, it is 

assumed that heat transfer to or from a duct wall occurs under either axially 

uniform wall temperature (UWT) or axially uniform wall heat flux (UHF) 

conditions. Adiabatic walls represent a special case of the UHF condition where 

qw, and hence (ffT/dy)w, are equal to zero. As all situations are assumed to be 

two-dimensional, it is implied that the wall thermal boundary conditions must 

also be peripherally uniform.

The boundary conditions at the two transverse boundaries and the initial 

conditions are elaborated separately below:

i) Boundary Conditions at y = 0

As shown in Table 3.1, the boundary at y =  0 can be formed by either a duct 

centreline or a duct wall. Different boundary conditions apply in each case.

For a duct centreline at y = 0, symmetry is expressed by the following conditions:

a ty  =  0 , x > 0 :  ^  =  0 , v =  0 , ^  =  0 (3-14)

For a duct wall at y = 0, the no—slip and no—blowing or suction conditions are 

expressed as follows:

a ty  = 0 , x > 0 :  u = 0 , v  =  0 (3.15)

Allowing for an optional adiabatic entry length xai, so that 

at y =  0 , 0 < x < xai : f y = 0  (3.16)

the two alternative thermal boundary conditions at the duct wall over the
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remaining length are

at y = 0 , x > xai : T = TW1 (UWT) (3.17)

or , <9T
k^T  “  ~  Qwi (UHF)1 (3.18)

It is noted that equation (3.18) is a nonlinear boundary condition since the fluid 

thermal conductivity k is a function of the local wall temperature.

ii) Boundary Conditions at y =  b

The outer boundary is formed by a duct wall in all cases (see Table 3.1), so the 

appropriate boundary conditions are similar to those stated above for a duct wall 

at the inner boundary. That is

at y =  b , x > 0 : oII>oII2 (3.19)

a ty  = b , 0 < x <  xa2 :

oII (3.20)

at y =  b , x > xa2 : t  = t W2 (UWT) (3.21)

or , <9T ,
~  +  9w2 (UHF) (3.22)

where k must also be evaluated at the local wall temperature.

Finally, it should be mentioned that the ranges specified above, for the wall 

boundary conditions, are deliberately written to avoid contradictions associated 

with the leading edge singularity and positions where the thermal boundary

^The usual thermodynamic sign convention is adopted here, so that qw is treated as 
positive when heat transfer is from the duct wall to the fluid.
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conditions undergo step changes. In general, the upstream condition is assumed to 

prevail at such points, thus reflecting the manner in which the boundary 

conditions are applied in the discretized numerical procedure.

x X

Figure 3.2 Initial and boundary conditions for centreline—wall and

wall—wall problems.

iii) Initial Conditions at x = 0

Initial distributions of both the axial velocity u and the transverse velocity v are 

supplied at x =  0. Two alternative kinds of axial velocity profile are considered at 

x =  0: uniform and fully—developed. From the mathematical viewpoint, an initial 

condition is not required for v, since no axial derivatives of v appear in the 

governing equations. In the numerical treatment, however, a starting distribution 

is supplied as part of the artifice used to deal with the nonlinear term v(du/dy). 

By definition, the transverse velocity is exactly zero for an assumed 

fully—developed profile at x = 0. In contrast, large values of v occur in the vicinity 

of the duct wall leading edges at a duct entry, due to the rapid deceleration of the
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fluid necessary to comply with the no-slip condition. Notwithstanding this 

difference in the initial distributions of v, numerical marching techniques 

frequently assume v = 0 along x = 0 for a uniform flow entry and this practice is 

also followed here. From the discussions of Hornbeck (1973) and Anderson et al 

(1984), it can be concluded that the errors caused by this assumption will be 

confined to a small region near the duct inlet if suitably small axial marching steps 

are used initially.

The uniform entry profile with zero transverse velocity approximates conditions 

for flow entering a duct via a well designed, smooth contraction. These conditions 

are stated as follows:

a tx  = 0 , 0 < y < b :  u = um, v =  0 (3.23)

where um is the mean axial velocity in the duct.

Alternatively, the axial velocity profile may be considered to take the form for 

fully-developed, constant—property forced convection at x =  0, as would result 

from a sufficiently long length of identical ducting upstream of this position. Fully 

developed velocity distributions for each of the duct geometries (and 

sub-geometries) considered can be derived in analytical form. This is achieved by 

solving the following reduced form of the axial momentum equation subject to the 

appropriate boundary conditions for u at y = 0 and y = b (see above):

1_ d Ledi* 
r* c?y[ oy (3.24)

The right-hand side of equation (3.24) is constant since the fluid viscosity and the 

axial pressure gradient are both constant. The resulting initial conditions are
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a t x  =  0 , 0 < y < b :

circular tube:

concentric annulus:

(3.25)

U = 2 Urr 1 + r*2 -  2(rmax/r2)2 j v = 0 (3.26)

where (r /r2) = (r* 4- (1 — r*)y/b). The radius rn,ax, where the maximum velocity 

occurs in a concentric annular duct, is given by (rnax/ r 2) = [(r*2 — l)/(2  In r*)]^.

parallel plates:

symmetric problems u = 1.5 um[ l -  | 2] , v = 0 (3.27)

asymmetric problems u = 6 u - [ i - ( l ] !] , v  =  0 (3.28)

Initial conditions are also provided for the fluid temperature and pressure. The 

temperature is assumed to be uniform along x = 0, and since the only pressure 

distribution consistent with equation (3.12) is also uniform, we have

a tx  =  0 , 0 < y < b :  T = T0 , p = p0 (3.29)

The various initial and boundary conditions discussed in this section are 

summarised in Figure 3.2.

3.3.3 Integral Mass and Energy Balances

In addition to the partial differential equations, given in Section 3.3.1, integral 

equations are utilised which express familiar mass and energy balance principles 

for duct flows with heat transfer under steady conditions. The integral equations 

place global constraints on the solution and may be derived by integrating the
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corresponding conservation equations in differential form over some convenient 

space.

i) Integral Mass Balance Equation

For a duct flow the axial pressure gradient cannot be specified a priori. The 

additional information provided by the integral mass balance equation allows the 

pressure to be computed as part of the solution.

Integration of equation (3.10) between y =  0 and y = b and insertion of the 

boundary condition v =  0 at both limits, from equations (3.14) or (3.15) and 

(3.19), gives

d
dx / .

b
r*u dy =  0 or

/ .

b
r*u dy =  constant (3.30)

where « =  0 for two-dimensional plane flow and k = 1 for axisymmetric flow. 

Equation (3.30) is a statement of the well-known continuity condition for steady 

flow in a duct. Since both transverse boundaries are streamline surfaces, it follows 

that the volume flow rate between these boundaries remains constant for an 

incompressible fluid. The corresponding mean axial velocity um is simply the 

right-hand side of equation (3.30) multiplied by a constant. For the general 

axisymmetric case

Um = (3.31)

The geometric relationships (3.1)—(3.3) can be used to rearrange equation (3.31) in 

the following form:

um = (T
2

+ r*)b J 0 [r* + ( l - r * ) g ] u d y (3.32)
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As may easily be confirmed by substituting the appropriate value of r*, equation 

(3.32) is applicable to all of the duct geometries considered, including circular 

tubes (r* =  0) and parallel plates (r* = 1).

ii) Integral Energy Balance Equation

The differential form of the energy equation (3.13) represents conservation of 

thermal energy on a local scale. At each step of a marching numerical solution, 

discretized versions of equation (3.13) are written for individual locations spanning 

the flow region. By incorporating specified boundary conditions where necessary, 

sufficient equations can be provided to solve for the temperature at each location 

(assuming that the required velocities are either known or can be determined by 

solving the momentum and continuity equations).

In his numerical study of forced and combined convection in axisymmetric ducts, 

Collins (1975) omitted the discretization equation for one location and instead 

made use of an integral form of the energy equation applying to the whole flow. 

The aim of this alternative approach, which is also provided as an option in the 

present work, is to enforce global energy conservation for the duct flow.

The derivation of the relevant equation from equation (3.13), for the general 

axisymmetric case, is explained below. The convective transport terms are first 

expressed in terms of the specific internal energy (denoted by e), using the 

incompressible fluid relation, de = c dT. Then, after multiplication by the radius r, 

the left-hand side is put into the so-called conservation form and the result is 

integrated over the transverse domain width b. Noting that v = 0 at both 

boundaries, the following equation is obtained:
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Equation (3.33) dearly shows that two mechanisms are responsible for changes to 

the internal energy transported by an incompressible fluid from section to section: 

heat transfer to or from the fluid across the transverse boundaries and conversion 

of mechanical to thermal energy by viscous dissipation.

The specific internal energy in equation (3.33) can be replaced, using 

(e —e0) =  cffl(T — T 0), where cm is the mean spedfic heat capadty over the range 

T0 to T. For the bulk temperature rise (Tb — T0), cm is given by

cmb —
£ h c dT

(Tb - T „ )
(3.34)

where the bulk temperature Tb is defined by

2 f ruCn,(T -  T0) dy 
Tb -  T0 = — ^ ------------------------

UmCn.b(r 22 ~  r ^
(3.35)

Using equations (3.1)—(3.3) and (3.35) the integral energy equation (3.33) can be 

expressed in the form

¿ [ c o j T b - T o  ) ] - p ^ r +
dT
'W. y=b

dT
*W.u

+
^ r r + i W - b [r * +  ( 1 - r * ^ ] H # ] ,d y  (3 '36)

On substitution of the appropriate value of r*, equation (3.36) reduces to the 

correct form for a circular tube (r* = 0) and a parallel plate duct (r* =  1).

For a duct centreline and a duct wall subjected to a uniform heat flux (UHF), the 

corresponding boundary values of (kdT/dy) in equation (3.36) are given explicitly 

by the thermal boundary conditions (3.14) and either (3.18) or (3.22) respectivdy.
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Although the use of equation (3.36) is comparatively straightforward for UHF 

thermal boundary conditions, two difficulties arise where a uniform wall 

temperature (UWT) is imposed. Firstly, the normal temperature gradient at the 

wall is initially unknown, and must be represented implicitly in the solution. 

Secondly, because the wall heat flux varies axially under the UWT thermal 

boundary condition, an average value of (k5T/5y)w is required when equation 

(3.36) is integrated over an axial step length Ax. Both these matters are further 

discussed when the finite—difference treatment of the integral energy equation is 

presented in Section 3.4.2.

3.3.4 Fluid Property Variations

To solve the governing equations in variable property form, supplementary 

relations are required giving the dependence of the thermophysical properties on 

temperature.

Lilley (1987) lists sixteen common functional representations of a property 

(denoted generally by ip) in terms of the temperature, including low degree 

polynomial functions. Here it is assumed that, in most circumstances, the property 

variation over the required temperature range can be adequately described by the 

nth-degree polynomial

ip — ao +  a iT  +  a2T2 +  • • • +  anT n (3.37)

which can also be written in the form

ip — ip0[l + a ^ T  — T 0) + a1j,2(T — T0)2 + • • ■ + a ^ T  — T0)n] (3.38)

where ip0 is evaluated at the inlet temperature T0. The derivation of 

equation (3.38) is given in Appendix A, where the relationships between the
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coefficients a^1 , a ^  • • • a ,^  and those in equation (3.37) are listed for 

polynomials up to the 5th—degree. Setting a ^  = 0 for i > 2 in equation (3.38) 

allows a linear property variation to be selected. For example, the linear density 

variation expressed by

P = Po[l +  apl(T — T0)] (3.39)

is simply the usual Boussinesq approximation, where the constant thermal 

expansion coefficient /? =  — apl.

An alternative equation for the dynamic viscosity, given by the power law

f* = lh
T + Ci'
To + Ci

- c 2
(3.40)

may be selected in the computer implementation instead of the polynomial form. 

Equation (3.40) reduces to the simpler form, /x = /Xo[T/T0]— C2, for Ci = 0 and 

using c2 = 0 delivers the constant property form. The constants Ci and c2 are 

independent of T0.

When their diffusion terms are fully expanded, the axial momentum equation 

(3.11) and the energy equation (3.13) contain the derivatives dfi/dy and dk/dy 

respectively. As both /x and k are assumed to be functions of the temperature 

alone, these spatial derivatives can be replaced by

t _  da ffT 
~  3T ~5y and <5k _  dk 3T 

~dy (IT 77y (3.41)

respectively. The polynomial and power law forms discussed above are both easily 

differentiable, thus allowing d/x/dT and dk/dT in equations (3.41) to be expressed 

in terms of the local temperature.
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The mathematical formulation is now basically complete. To summarise, it is 

noted that the variable—property boundary layer equations (3.10)—(3.13) and the 

integral mass balance equation (3.32) form a system of simultaneous equations for 

the four primitive variables: u, v, p and T. Empirical equations of polynomial or 

power law form, equations (3.38) and (3.40) respectively, relate the thermophysical 

properties of the quasi—incompressible fluid to the temperature. Optionally, the 

integral energy balance equation (3.36) may be used in concert with its differential 

form to ensure global conservation.

The theory presented in this chapter is appropriate for steady, laminar duct flow 

heat transfer situations exhibiting planar or axisymmetric two—dimensionality. 

The governing equations have been developed primarily for the purpose of 

studying combined convection heat transfer in vertical ducts with peripherally and 

axially uniform thermal boundary conditions. However, they are also applicable to 

the corresponding natural convection problem and to forced flows with or without 

heat transfer. In view of the numerous possible combinations of duct geometry 

(circular, concentric annular and parallel plates), thermal boundary conditions 

(uniform wall temperature or uniform heat flux) and inlet flow profile (uniform or 

fully-developed) catered for by the present analysis, it is clear that a wide range of 

related problems can be investigated.

3.3.5 Dimensionless Variables and Parameters

Before proceeding to describe the solution procedure, the governing equations and 

the boundary and initial conditions are recast in terms of dimensionless variables 

and parameters. The objectives of nondimensionalization are to reveal the 

dimensionless parameters on which the solutions depend and to simplify the 

equations as far as possible. Although a dimensionless formulation is not an 

essential requirement of the solution procedure, it is noted that solutions obtained 

in dimensionless form will be immediately applicable to all physically similar
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conditions. Nondimensional parameters give useful insights into the relative 

importance of the various competing physical processes represented in the 

governing equations and are also important in the design of experiments and 

subsequently in the presentation of results.

Many different nondimensionalizing procedures are possible. The nondimensional 

variables adopted here are easily related to their dimensional counterparts. 

Lengths and velocity components are made dimensionless in a straightforward 

manner by referring them to the domain width b in the y—direction and the mean 

axial velocity um respectively. That is

X = x
ÏÏ

(3.42)

The nondimensional radius is similarly defined and the following useful 

replacement is derived from equations (3.1)—(3.3) and (3.42):

R = + (1 -  r*)Y _
'o '- t '- S  u

(3.43)

where the function F(Y) is defined for compactness.

The transverse coordinate is normalised so that Y will vary between 0 (inner 

boundary) and 1 (outer boundary), whereas in a long slender duct the 

dimensionless axial distance increases from X =  0 at the duct entrance to X »  1 

far downsteam. From the global mass flow constraint we can anticipate that in the 

absence of streamwise flow reversals the dimensionless axial velocity U will take 

positive values of order of magnitude 1, except at duct walls where U =  0 (i.e. no 

slip). The dimensionless transverse velocity V may be positive or negative but will 

be zero at duct walls and throughout any region of fully—developed flow. Treating
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developing duct flows as boundary layers leads to the conclusion that transverse 

velocities will typically be much smaller than axial velocities, or V «  0(1). 

However, transverse velocities will be large locally in a small region near a duct 

entrance where rapid growth of the viscous layer occurs and where the boundary 

layer approximation is acknowledged to be poor (e.g. Anderson et al, 1984: p.382).

For a strictly incompressible fluid, thermodynamic expansion and compression 

processes are absent, so that pressure changes are as a result of dynamic processes 

only. This suggests p0Um2 (i.e. twice the dynamic pressure) as a suitable scale to 

nondimensionalize the pressure. This practice is also followed in the present 

quasi—incompressible treatment, albeit the buoyant force originates from a thermal 

expansion process. Moreover, because the pressure variable p only appears under a 

derivative in the axial momentum equation (3.11), its level is immaterial and a

constant value may be subtracted without any effect on the solution. Based on the

foregoing arguments the nondimensional pressure variable is defined as

P = P ~ P.o (3.44)
PoUm2 V ’

where p0 is the value of p at x = 0.

Conventionally, a dimensionless temperature variable is defined by referring the 

local fluid temperature rise (T — T0) to some convenient reference temperature 

difference ATr impressed on the flow. That is

0 = T -  T 0 
ATr (3.45)

For the cases of a uniform wall temperature (UWT) Tw and a uniform wall heat 

flux (UHF) qw the obvious definitions for ATr are (Tw -  T 0) and (qwb/k0) 

respectively. The aim of the present analysis is to allow any combination of
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heating or cooling and UWT or UHF conditions at a duct wall. Consequently, 

mixed thermal boundary conditions can be envisaged and ATr is defined by one of 

equations (3.46)-{3.48) below1.

For UWT conditions: ATr = [ |T wl- T 0|,|T „., —T0|] (3.46)

For UHF conditions: ATr = [ | qwib /k01, | qW2b /k01 ] (3.47)

where the compact notation [A,B] is defined to denote the larger of the quantities 

A and B.

For a parallel plate duct or concentric annular duct, where a UWT condition is 

imposed at one wall and a non—zero uniform heat flux qw is imposed at the other 

wall, ATr is arbitrarily defined as follows:

For mixed UWT/UHF conditions: ATr =  |qwb /k0| (3.48)

The physical properties are nondimensionalized by using the corresponding values 

at temperature T0. The resulting physical property ratios are all functions of 6 and 

are denoted by the following asterisked quantities:

r W  =  £  !>•{«) =

c*(0) =  f  K O ) ='■'O

£_
Po

k
(3.49)

JThe above 6 definitions do not cater for situations where the duct walls are either 
adiabatic or are maintained at the fluid inlet temperature T 0. However, in both 
circumstances an energy equation solution would only be required if viscous 
dissipation alone were of interest, when //0um2/k 0 could serve as a suitable reference 
value for ATr. Such matters are not pursued further in this thesis.
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In addition to the dimensionless variables defined above, the following 

dimensionless parameters may appear in the nondimensional form of the governing 

equations:

Br = MoUra2 = Brinkmann number (3.50)k0A 1 r

G = gb2
IV5 = gravitational parameter (3.51)

Grb = gb3/?ATr
Vo 2

= Grashof number (3.52)

Pr = O o
O 

^ o =  Prandtl number (3.53)

Reb = PoUmb
P’0 = Reynolds number (3.54)

In equations (3.50)—(3.54), all physical properties are evaluated at the fluid inlet 

temperature and Grb and Reb are based on the domain width b (rather than the 

duct hydraulic diameter dh). As both the Grashof and the Brinkmann numbers 

involve ATr, it is evident that the thermal boundary conditions determine whether 

these parameters are based on a wall temperature or a wall heat flux.

3.3.6 Governing Equations in Nondimensional Form

The following nondimensional forms of the governing equations are obtained when 

equations (3.42) — (3.45) are used to substitute for the dimensional variables:

i) Partial Differential Equations

The boundary layer equations are now written for the general axisymmetric case 

with the diffusion terms fully expanded and the spatial property derivatives 

replaced by equations (3.41). In nondimensional form they become

! c [f (y )u ] + o t [f <y )v ] = 0 P -« )
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v!S =v oY
dP
3X

SG
Re tr (P* ~  1)

. 1 L J d 2U (1 -  r*)5Ul , d
+ KëbR [ W *  + ^F(V ) W ]  +

u*d0 <9U 
0 W W (3.56)

oII
tops (3.57)

jjd0.y d0_  1 \,Jd*0 (1 -  r*)d01
U3X + wW  c*Re'bPr [k F(Y)

, dk*fd0]2l , ii *Br fc
+  J0 [Wi  J + c*RebPr [c

/U]2
r?\ (3.58)

Equations (3.55)-{3.58) can be used for all possible values of r*. The mass 

continuity equation (3.55) has been multiplied by (1 — r*) to avoid division by zero 

when r* = 1.

It is noted that when the dependence of density on the temperature is given by the 

linear (Boussinesq) equation (3.39), then the buoyancy term G(p* — 1)/Ret>2 in the 

axial momentum equation (3.56) can be written simply as — Grb#/Reb2.

ii) Boundary Conditions at Y = 0

The duct centreline conditions, equations (3.14), become

at Y =  0 , X > 0 : |Ç  =  0 )V  =  0 , | | = 0 (3.59)

The inner duct wall conditions, equations (3.15)—(3.18), become 

at Y = 0 , X > 0 : U = 0 , V =  0 (3.60)

at Y =  0 , 0 < X < Xai : | y  = 0 (3.61)
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at Y =  0 , X > Xai : (UWT) (3.62)

01 k‘f 7  = - ^ ‘ = - rn  (UHF) (3-63)

where rqi denotes the ratio of the wall heat flux to the absolute value of the 

reference heat flux qr, given by qr =  [ | qwi| , | qW21 ] •

iii) Boundary Conditions at Y =  1

The outer wall conditions, equations (3.19)—(3.22), become

Q — #W1

at Y = 1 , X > 0 : U = 0 , V = 0 (3.64)

at Y =  1 , 0 < X < Xa2 : d e - 0  w ~ 0 (3.65)

at Y =  1 , X > Xa2 : II ip to (UWT) (3.66)

or k; Tw.2 — 1 r
ïïY “  + qr ~  + rQ2 (UHF) (3.67)

iv) Initial Conditions at X =  0 

The uniform entry profile conditions, equations (3.23), become

a tX  =  0 , 0 < Y < l :

oII>II (3.68)

Equations (3.25)—(3.28), the fully—developed velocity profiles for the various duct 

geometries considered, become

a tX  =  0 , 0 < Y < l :

circular tube: U =  2 [1 — Y2] , V =  0 (3.69)
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concentric annulus:

fl -  F (Y ) +  2[(r*2 -  1) /('21n r*)]ln F(Y) 1
+ r* 2 -  2(r*2 - [)/(21nr*) J V =  0 (3.70)

parallel plates:

— symmetric problems U = 1.5 [1 — Y2] , V = 0 (3-71)

— asymmetric problems U = 6 [Y — Y2] , V =  0 (3.72)

The initial conditions for the temperature and the pressure, given by 

equations (3.29), become

a tX  = 0 , 0 < Y < l :  0 = 0 ,  P =  0 (3.73)

v) Integral Balance Equations

Introducing the definitions of U and Y, given by equations (3.42), into the integral 

mass balance equation (3.32), we obtain

t 1 |  r*) =  J q F(Y) U dY (3.74)

The integral energy balance equation (3.36) can also be expressed in 

nondimensional form as

“  RebP r(l + r*) k*80}W r= i~ r*[k*!Y]Y=o]

+  RebPr2( i r+ r*)J0 F(Y^*
'dlTI
W dY (3.75)

The dimensionless equivalents of equation (3.34) and equation (3.35) are, 

respectively:
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and 0b = (3.77)

(3.76)

vi) Property Relations

The physical property ratios, defined by equations (3.49), and the derivatives 

d(i*/dO and dk*/d9 appearing in equation (3.56) and equation (3.58) respectively, 

can be expressed in terms of the dimensionless temperature 6.

When a polynomial function gives the dependence on temperature of a property ip, 

the expression is given by the dimensionless form of equation (3.38). That is

— [1 + A,),!# +  A,^0 2 + • • • + A^n0 n] (3.78)

where A ^  =  a ^ /A T r1, from which we obtain

(3.79)

The corresponding results for the power law equation (3.40) are

M* = [ c ^ + i r C2 (3.80)

and ^ ’ = - c , c 2[ c , 0 + i r ( C2+1) (3.81)

where Ci = ATr/(T 0 + Ci) and C2 = C2.
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3.4 Numerical Methods

The governing equations presented in Section 3.3 are too formidably complex to 

contemplate an analytical solution, except under restrictive simplifying 

assumptions. In contrast, numerical methods allow the maximum generality to be 

retained in these equations. They also offer the flexibility to obtain tractable 

solutions of acceptable accuracy for a wide range of duct geometries, initial and 

boundary conditions and fluid property variations.

Since the partial differential equations governing flow and heat transfer for 

unidirectional duct flows are parabolic in nature, they can be integrated by a 

step—by—step marching procedure. Starting from given initial data at the upstream 

boundary, the equations are solved by marching in the downstream direction. The 

numerical technique employed here is a fully—implicit finite—difference method.
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I N N E R  

B O U N D A R Y  

(Y =  0)

M A R C H I N G
D I R E C T I O N O U T E R  

B O U N D A R Y  

(Y =  1)

3.4.1 Discretization of the Problem Domain

An essential step in the finite—difference method is the replacement of the 

continuous physical domain by a finite number of discrete grid points forming a 

finite-difference grid. Partial derivatives are approximated locally by differences 

between dependent variable values at adjacent grid points, thus reducing the 

governing equations to a system of algebraic equations.
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The finite-difference grid for the present problem is illustrated in Figure 3.3. The 

grid point locations in the axial (or marching) direction and the transverse 

direction are given by the general subscripts n and m respectively. It is assumed 

that n = 1 at X = 0 (the upstream boundary or initial data line) and m = 1 at 

Y = 0 (inner boundary). The number of transverse grid divisions is denoted by M, 

so that m = M + l a t Y = l  (outer boundary). A uniform grid spacing is used in 

the transverse direction. To allow certain cross—stream integrals (e.g. bulk 

temperature) to be evaluated using Simpson’s one—third rule, M is always taken to 

be even. The uniform transverse grid spacing AY and the dimensionless transverse 

coordinate value Ym at the grid point (n, m), are respectively

AY = ^  (3.82)

and Ym =  (m -  1)AY (3.83)

The marching step size for the finite—difference method is the axial grid spacing 

AX. Stability analyses, such as those presented by Bodoia (1959) and Hornbeck 

(1973), indicate that a fully—implicit finite—difference representation of the 

boundary layer equations will be unconditionally stable for all values of AX if the 

axial velocity U remains positive. Nevertheless, Hornbeck (1973) recommended 

that very small values of AX should be used near X = 0 to restrict the 

downstream spread of the effect of the mathematical singularity represented by the 

uniform flow profile initial condition. Anderson et al (1984) note that reduction of 

AX, at any location, helps to reduce the truncation errors associated with the 

finite—difference approximation of the derivatives and the linearization of 

coefficients. To economise on computation time, progressively larger values of AX 

are normally utilised as the solution is advanced downstream, because the 

dependent variables change less rapidly. If desired, the present scheme allows AX
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to be changed at every forward step. In practice, however, an even number of 

equal—sized intervals is employed between axial step size changes, to allow 

Simpson’s one—third rule to be used for the calculation of length—averaged 

quantities (e.g. mean friction factor) at every other step. The dimensionless axial 

coordinate value Xn at the grid point (n,m) can be found from

Xn

n - 1

(3.84)

where i denotes the axial step number.

Finally, it should be stated that to establish that the solutions obtained are 

independent of the grid spacings AX and AY, numerical experiments should be 

performed for progressively finer grids.

3.4.2 Finite—Difference Approximations

The fully—implicit method is so named because transverse derivatives in the 

governing equations are replaced by finite—difference approximations involving 

unknown values at the n + 1 level (see Figure 3.3). Furthermore, special measures 

must be taken to deal with the nonlinearities inherent in the governing equations. 

These are due to the convective terms in the partial differential equations and the 

variation of the fluid properties with temperature. The computational procedure 

described here includes iteration within each axial marching step to handle these 

difficulties. The resulting set of linear algebraic equations, written for all grid 

points at the n + 1 level, must be solved simultaneously to obtain the unknowns.
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In the following exposition of the fully—implicit scheme, axial (X—direction) and 

transverse (Y-direction) partial derivatives are replaced by the finite-difference 

approximations given below:

(3.85)

(3.86)

(3.87)

where F is used to represent any of the dependent variables U, V, P and 9. The 

approximations (3.85)—(3.87) can be developed from Taylor series expansions for 

Fn+i,m+i> Fn+i,m-i and Fn,m about the unknown level grid point (n + 1, m). 

Corresponding expressions are found for other expansion points.

The difference between a partial derivative and its finite—difference approximation 

is called the truncation error (TEpd) and is determined by the sum of the 

discarded terms originating from the infinite Taylor series. In the derivation of the 

backward-difference formula (3.85), terms involving AX and higher powers of AX 

are truncated, and therefore it is said to have a truncation error of order AX, 

written as 0(AX). It should be understood that 0(AX) indicates the behaviour of 

the truncation error as AX tends to zero. For consistency, the truncation error 

associated with approximation (3.85) should satisfy limAX_>0(TEp(i) =  0, which is 

clearly true. The central-difference approximations (3.86) and (3.87) both have 

truncation errors of 0[(AY)2], thus establishing their consistency with the 

corresponding partial derivatives.

The notions of truncation error and consistency are also applicable to the

finite-difference representation of an entire partial differential equation. If each
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derivative is approximated at the same grid point, the individual truncation errors 

can be added to give the truncation error of the complete equation, denoted by 

(TEpde)- For consistency, this should also vanish under grid refinement,

In the finite—difference formulation, it is often necessary to express the value of a 

dependent variable at a boundary when only the normal derivative is given 

explicitly by the boundary conditions or vice versa. Implicit replacements for the 

the missing quantities are provided by suitably rearranging the following 3—point, 

one-sided approximations:

where the X—coordinate subscripts have been omitted for clarity. The 

approximations (3.88) and (3.89) provide consistent representations of the first 

derivatives with a truncation error 0[(AY)2] and the boundary values with a 

truncation error of 0[(Y)3]. They are also used to recover local boundary values 

and normal gradients from the velocity and temperature solutions in order to 

calculate heat transfer and wall friction parameters3.

3For comparison, these quantities are also calculated using 4—point and 5—point,
one-sided derivative approximations, with 0[(AY)3] and 0[(AY)4] truncation 
errors respectively, in the computer implementation. At the Y = 0 boundary, for 
example, these alternative approximations are:

at Y = 0: (3.88)

at Y = 1: (3.89)
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The finite—difference representation of the governing partial differential and 

integral equations are considered separately below.

i) Mass Continuity Equation

In the solution procedure the differential continuity equation is not solved 

simultaneously with the momentum equations. Instead, equation (3.55) is 

integrated over one transverse grid spacing to develop the following auxiliary 

equation for Vn+i,m:

Vn*l>m F(Y)b -jVn+ljin-l (3.90)

The integral in equation (3.90) is evaluated by the trapezoidal rule with the 

integrand replaced at each end of the interval using the backward-difference 

approximation (3.85). This gives

(Vntl>m)i-2 — F(Y)m F(Y)m-iVn*i,m-l ~  52JX^F(Y)m(Unti,in — Un,m)

+ F(Y)m-i(Un *1,111-1 Un>m-1 )]] (3.91)

If equation (3.91) is derived using Taylor series expansions about some convenient 

point, such as the off-grid position (n + 1, m — ■j), it can be shown that its 

truncation error is 0[AX, (AY)2].

At each marching step, the transverse velocity components are calculated at each 

grid position on the n + 1 level after the axial velocities have been solved for. 

Equation (3.91) is applied recursively to calculate the Vn*i,m values in the 

sequential order Vn+i,2, Vn*i,3 ••• Vn*i,ni, moving outward from the inner 

boundary (see Figure 3.3), invoking the boundary condition Vn+i,i = 0 to start the 

process. Since Vn+i,M+i =  0, the transverse velocities can also be found in the
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reverse order, starting at the outer boundary and moving inward. The 

corresponding version of equation (3.91) is

The additional subscripts 1—2 and 2—1 indicate the direction of calculation for 

equation (3.91) and equation (3.92) respectively.

Separate numerical tests were performed during this research to compare values of 

Vnti,m calculated from equations (3.91) and (3.92) for the case of 

hydrodynamically developing flow in a circular tube. Very close agreement was 

found at all axial and transverse positions when the trapezoidal rule was used to 

evaluate the integral continuity equation. Initially, Simpson’s rule was employed, 

resulting in differences of magnitude (and sign in some cases) between the Vn+i,m 

values for the two directions of calculation. These were particularly severe for the 

first few marching steps, but this appeared to have little effect on the axial 

velocity profile development and the pressure drop. Recalling that the derivation 

of equation (3.91) was based on the trapezoidal rule, this experience emphasises 

the need to use the same approximation for its integral form, if reliable predictions 

of transverse velocities are to be obtained. Dalbert et al (1981) also observed that 

the trapezoidal rule is the only integral approximation compatible with equation

In their study of asymmetric free convection between vertical parallel plates Aung 

et al (1972) calculated Vn+i,m using equation (3.91) on one side of the duct 

centreline and equation (3.92) on the other side. The centreline value was obtained 

by fitting a third order polynomial through adjacent points on both sides. 

Miyatake and Fujii (1972) and Aihara (1973) used a combination of equation

(3.92)

(3.91).
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(3.91) and equation (3.92), involving the transverse coordinate Y as a local 

weighting factor. Their equation can be written as

Vn+l,m — (1 ~  Ym)(Vn + i,nl) 1.2 +  Ym(Vnti,ni)2-i (3.93)

Equation (3.93) satisfies the boundary conditions V = 0 at Y =  0 and 1 

irrespective of numerical errors and for this reason was adopted for this work.

ii) Axial Momentum Equation

Using the approximations (3.85)-(3.87) to replace the derivatives in equation 

(3.56) results in the following finite—difference equation which has a truncation 

error of 0[AX, (AY)2]:

U* +l>m Un+l,m Un,m i it ’* lUn + bm+l Un+bm-l Pn + hm Pniml

> X + Vn+l,m  ̂ j y y  -J L AX J

SG
Re b 2 (p*)n + bm — 1 + RebL0**)2*ljm Un+bm+l — 2U n ♦ hm +  Un + hm-l

p (1 -  T*) ("Un+bm+l — Un+l,m-l 
+ F(Y)„ [

'du* •
n̂+bm+l n̂+bm-1 Un+l,m+l Uji +1,111-1

dt) n +l>m 2AY 2AY (3.94)

At each marching step, equation (3.94) is used within an iterative procedure, 

involving all the governing equations, to obtain the values of Un+i,m and Pn4i,m- To 

make equation (3.94) algebraically linear the superscripted quantities (denoted by 

a bullet •) are approximated by their most recently calculated values. Initially, the 

corresponding values obtained at the previous step (n level) are utilised. 

Subsequently, these are updated to the values found in the previous iteration at 

the n + 1 level. As the superscripted quantities in general depend on the 

temperature, it is implied that a solution of the energy equation must be included
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in each iteration. For constant—property, forced convection situations the iterative 

procedure just described is not usually employed and the values of U*+i,m and 

V* 4i,m in the inertia terms are simply approximated by the corresponding values at 

level n. The resulting errors should not be serious if the axial step size AX is not 

too large.

For the matrix solution, equation (3.94) is written in the form

A < Un*!,-, + A<2) Untl,m + A< 3> P n+i,m + A< ' Untl,m+1 = (3.95)

where

A ( i) —  Vn_* 1 ,— ft A T2AY Reb(AY)2 l>m 1 ( l - r * ) A Y l  
1 2K(Y).

A ( 2) - ■fi-m —Un + 1 »ra i 1
AX + Reb(AY)2 2̂ (/Z*)n+l,m

A ( 2) - •fAm — 1
AX (3.96)

A ( 4) _  V n  ♦ 1 i m 1_____
Aœ “  5ÂY Reb(AY)2

/ |\  , (1 -  r*)AYl
(M )n«i,i 1 + 1 2F(Y)„

+ 1 <1$. n ♦!,..'Æ *l,-l-0n*l,«*l]]

d  ( 1) _ U n *i , mUn,m i P  n ) m SG
--------ÀX +  _ SX— R iT 5 ^(p*)n +l)in ~

All the quantities involved in the coefficients Am and the right-hand sides Bm are 

either known or can be approximated by previously calculated values. The integer
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superscripts in parentheses identify the variable each Am associates with and the 

equation respectively.

Equation (3.96) can be used in exactly the form presented for the interior grid 

points m =  3 t o m  =  M -  1. For the grid points m =  2 and m =  M, adjacent to 

the inner and outer boundaries respectively, some minor modifications are made to 

accommodate the relevant boundary conditions for U. For a duct centreline at the 

inner boundary, the velocity Un+i,i can be expressed in terms of Un+i,2 and Un+i,3 

by using the approximation (3.88) to write the symmetry boundary condition for 

U, given by equation (3.59), in finite—difference form. The modified coefficients 

(indicated by a tilde -) to be used in equation (3.95) for m =  2 are as follows:

=  0 , A ¿ li =  A i2i + £ A< H , A< Si =  A<H - 1 A< (3.97)

After the velocity solution has been obtained the reverse procedure is used to 

obtain Un*i,i- When the inner boundary is formed by a duct wall the no—slip 

condition Un+i,i = 0, given by equation (3.60), is enforced by setting Ai,H = 0. 

Since the outer boundary is always a duct wall it follows that A ^ii = 0 in all 

cases.

iii) Transverse Momentum Equation

In the present formulation of the algebraic finite-difference equations, pressure is 

treated as an unknown quantity4, which is solved for with the help of the integral 

mass balance equation.

4An alternative approach employed with implicit schemes, exemplified by the 
Patankar—Spalding method (see Patankar (1988) for a recent description) is to use 
an estimate of the pressure gradient at each stage of the calculation. The resulting 
velocities will not in general satisfy the global mass flow constraint and the 
imbalance is used to adjust the pressure gradient for the next step or iteration. 
Anderson et al (1984) review several methods of this type.
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The degenerate form of the transverse momentum equation (3.57) is a reminder 

that pressure variations are neglected for the transverse direction under the 

boundary layer simplifications. Thus the pressure is regarded as a function of the 

X—coordinate only and at any cross-section it is characterized by a single value. 

However, in the computational method used here, the pressures at all interior grid 

points on the n +  1 level are included as separate unknowns. To ensure that 

5P/5Y =  0 is satisfied, these pressures are linked using the following exact 

difference representation for m = 2 to m = M:

Ani5'Pn + l>m + Pn+Um+1 = B^2̂ (3.98)

where AJ,5) = 1, AJS,6) = — 1 and BjS,2) = 0.

Although the use of equation (3.98) is open to the criticism that it introduces 

M — 2 redundant pressures, it nevertheless appears to work satisfactorily. Its main 

advantage is that it allows the finite—difference equations for the velocity—pressure 

solution to be assembled in band matrix form. When equation (3.98) is not used 

and a single unknown pressure is considered at each step, the system of equations 

obtained is sparse and unbanded. Although solution can be effected using 

conventional Gaussian elimination, this will not be computationally efficient for a 

large number of transverse grid points. For this reason, Bodoia (1959) and later 

Bodoia and Osterle (1962) used a special elimination method to take advantage of 

the sparseness. In contrast, the band matrix formulation allows solution by 

standard techniques and requires less storage and fewer arithmetic operations, 

despite the larger number of equations.

iv) Energy Equation

The treatment of the energy equation (3.58) is the same as for the corresponding 

terms in the axial momentum equation and the resulting truncation error is also

- 1 1 8 -



0[AX, (AY)2]. The finite—difference representation is written as

l>m $n+l)in 0mm _i_ y* 0n+l>m + l
AX t  V n +l>m 2AY

RebPr(c*)*+i,B
— 20n 4 i ,m +  ^n+hm-l

(1 -  r*) 
+ F(Y).

n̂+lim+1 — fln + l)tn-l
w }

fdkl •
$n+l>m+l — n̂+lim+1 ^n+ljm-ll

lira] n + l)in 2AY 2AY

+ Br u* •
Un+Um+1 Un+1,111-1

RebPr [ c * J n +l>m 2AY (3.99)

As before, equation (3.99) is linearized by using the latest estimates of the 

superscripted quantities (indicated by a bullet •). Since the velocity solution is 

obtained first during each iteration, estimates of Un+i,m and V nti,n, are already 

available when the temperature distribution is solved for at the n + 1 level. All the 

other superscripted quantities in equation (3.99) must initially be evaluated at the 

n level before being updated to the n + 1 level.

The unknown 0n+i,m values can be found by simultaneous solution of the set of 

M — 1 algebraic equations obtained by rearranging equation (3.99) for each interior 

grid point and incorporating suitable modifications for the thermal boundary 

conditions. This system can be written as

Am7) 0n+l,m-l +  A ^ 8) 0n +l,in +  A i ,9) #n +l>ni+l =  B i , 3) (3 .1 0 0 )

for m = 2 to m = M. The coefficients in equation (3.100) form a tridiagonal 

matrix and for m =  3 to m = M — 1 are given by
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7) _ _V *  + 1A( 7) -•̂ m — ♦ 1 ) m_______ £_______ .
K Y  K e bP r ( A Y ) 2 ( c * ) n +1, c (k*)S + l > m

, (1 -  r *)AY]
2 P ( Y )„

1 dk*’
•  p

4 . 3 0 . n+hm 0n+l»m-l ~  $n*l>m+l

A (8) _  Un t l ,m i 1
“  AX + RebPr(AY)2(c*) 5 .b. [ 2(k*)S + l > m

A ( 4) _  Vn + 1 i m 1 ,
m “  2 A Y  R e bP r ( A Y ) 2 ( c * ) n t l ,m

+

M n ♦ljm 1 +

(3.101) 

(1- r * )AY

i ’dk*" • r

4 .30. 11+1)111

S F (Y

$n+l>m-l — ^n tbmtl

The right-hand side of equation (3.99) is given by

R( 3) _  U*+l ) m ̂ niin“ Ax + Br
4RebPr(AY)2 [ € +l>m Un+bm+l — U n (3.102)

The coefficients (3.101) and the right-hand side (3.102) must be modified for 

m = 2 and m = M, according to the type of thermal boundary condition at the 

adjacent boundary. For a uniform wall temperature (UWT), either 0n+i>i =  #wi or 

#n+i,M+i =  #w2> as given by the boundary conditions (3.62) and (3.66) respectively. 

In either case, the term containing the given 0W value is moved to the right-hand 

side of equation (3.100) and the coefficients are modified accordingly, as follows:

UWT at Y =  0: A£li = 0 , B iii  = B i?i -  A i^ 0 wi (3.103)

UWT at Y = 1: A< ij, =  0 , B< & =  B<& -  A ^ 0 W2 (3.104)

Where a normal derivative type thermal boundary condition applies (i.e. for a 

uniform wall heat flux, an adiabatic wall or for thermal symmetry at a duct
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centreline), approximation (3.88) or (3.89), as appropriate, is used to substitute for 

0 at the boundary. For the uniform heat flux (UHF) conditions, given by equations 

(3.63) and (3.67), the modified coefficients are as follows:

UHF at Y =  1: ÂjUii = AjUii -  j  , Â&Üi = Auliti +  j  Ai,?i

(3.106)

The boundary values of the temperature dependent thermal conductivity ratio k* 

appearing in equations (3.105) and (3.106) are re—evaluated at each iteration after 

the provisional 0n+i,m solution has been obtained. The required boundary 

temperatures are calculated from approximations (3.88) and (3.89). Equations 

(3.105) and (3.106) can also be used for thermal symmetry and adiabatic boundary 

conditions when rqi and rq2 are set to zero.

v) Integral Mass Balance

As previously explained, the integral mass balance equation (3.74) should be 

evaluated using the trapezoidal rule for compatibility with the finite—difference 

treatment of the differential continuity equation considered in (i) above.

The quadrature is performed in a piecewise manner over each of the M equal grid 

spacings between Y =  0 and Y = 1, so that equation (3.74) is approximated by

m =M + 1
(1 + r*) _  AY V  
— L (3.107)

m = 2
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In a similar fashion to Ogunba (1972), a new variable W is now introduced, 

defined by

W n +l,m — W n +i,m-l +
AY
~ir [f (Y)„,lUn + l,m-l +  F ( Y ) mU n+i,m (3 .1 0 8 )

By comparing equations (3.107) and (3.108) it can be deduced that Wn+i,m is 

simply the trapezoidal approximation to the continuity integral, evaluated over 

the range Y = 0 to Ym. The appropriate boundary conditions are

at Y = 0: Wn.i,! = 0 (3.109)

at Y =  1: Wn+i,M+i = t1 % ^  (3.110)

Using the additional variable W, which Barrow et al (1974) referred to as a pseudo 

stream function, equation (3.107) is replaced by M linear algebraic equations in W 

and U. This set of equations, which is suited to a band matrix formulation, is 

formed by writing equation (3.108) as

A 4 10) Wn+l.m-i + +  A ^ 12) W n tl,m

+ A< 13> Un+1,n + A<141 Un+1,mtl =  Bi45 (3.111)

for m = 2 to m = M +l, where

A ì‘°> =  1 , A«1» =  F ( Y ) „ . ,^  , Ai>!> = -  1 

A t13’ =  F ( Y ) „ ^  , A i '4> = 0 , B i4' =  0

(3.112)

- 1 2 2 -



To accommodate the various boundary conditions on W and U, the modifications 

detailed below are necessary.

Duct wall at Y =  0: À k i v  =  o , Â u j >  =  o (3.113)

Duct centreline at Y =  0: Â U 81 = o , A i ! i >  = A i ‘J>

(3.114)

Â1Ü1 = 0 , ÀÜ}1 =

Outer boundary wall (Y =  1):

(3.115)

vi) Integral Energy Balance

Optionally, the integral (or global) energy balance equation (3.75) can be used to 

replace one of the set of finite—difference equations (3.100) representing the 

differential (or local) energy balance equations. Although in principle any one of 

these equations can be substituted for, the programming complexity is less if the 

finite-difference equation for a grid point immediately adjacent to one or other of 

the boundaries is eliminated. In this work, the grid point (n + 1, M) next to the 

outer boundary has normally been selected5.

5During the computer program development an odd numbered grid point 
(n + 1, J), where J = 2*INT(M/4) + 1, mid—way between the inner and outer 
boundaries, was also tried. The rationale for choosing a grid point position 
removed from either boundary was to minimise any possible error in the 
temperature solution near a heat transfer surface caused by not enforcing a 
differential (local) energy balance. The calculated temperature distribution 
exhibited a lack of smoothness around the point (n +  1, J) which has not been 
further investigated and the approach has been temporarily abandoned.
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To apply equation (3.75) it is first integrated over one axial step and equation 

(3.77) is used to substitute for 6\, at the n + 1 level. This gives

[ J Q F(Y)Uc„*0 d Y ] ^  =  i2 _ + _ E % m6d„)n

Br AX 
+ RebP r

where (cmg0b)n is known from the previous step. In equation (3.116), the overbars 

denote that the relevant quantities should strictly be averaged over the interval 

AX, but in the present treatment they are simply evaluated at the end of the 

interval (i.e. n + 1 level). This assumption will cause no error for a uniform wall 

heat flux, since (k*d6/dY)w is constant anyway and given by either equation (3.63) 

or equation (3.67) as appropriate. It should also be adequate for the viscous 

dissipation term, which in most cases is negligible. However, for a uniform duct 

wall temperature (k*50/c?Y)w is not axially uniform and some error might be 

expected if AX is made too large.

The discretized version of equation (3.116) is obtained by evaluating the integrals 

numerically. Here, the integral on the left-hand side is evaluated piecewise, using 

Simpson’s one—third rule over each two adjacent intervals. Proceeding in a manner 

similar to that used for the integral mass balance equation, a further new variable 

E is introduced. For the even numbered (i.e. m = 2, 4 • • • M) grid points

(3.117)
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and for the odd numbered (i.e. m =  3, 5 ••• M — 1) internal grid points

Em — Em-l (3.118)

To comply with equation (3.116), use is made of the following boundary 

conditions:

at Y = 0: 

at Y =  1:

F _  AX r*f, 50] 
En+1)1 ~  IT e iF F r  3Yj n+ljl (3.119)

En+l,M+l — E n+1)M — ^  \  (̂ cmS^b)n + k*d61 
W n+ljM+1

Br AX 
+ RebP r / , W  [ I ? ] 'dY

n+1
(3.120)

Using equations (3.119) and (3.120), equation (3.116) can be formed into a set of 

M — 1 algebraic equations, written generally as

Am1*' 0n+l>m-l +  Am1®' E n+i,m-l "b Am17' ^n+Um +  A m ^ 'E n  + bm

+ A< 19) 0n + b®+l =  Bj,5' (3.121)

where for the even numbered grid points

A<15) =  F(Y)m-lU^bmu(c,n*)n*bn,-l^ , A116' =  1 

A<17) = 4 F (Y )mu : +1,n,(cm*)ntl,m̂  , A<18> = - l  (3.122)

A<19) = F (Y )m)1u ! (i,»)i(c»*)!)1„ )1y  , B<5> = 0

- 1 2 5 -



and for the odd numbered grid points

AL15) = 0 , AL16) =  1 , AJh17) =  0 

A<18) = - l  , A<19) = 0  , B<5> = 0

(3.123)

The necessary modifications to the above Am and Bn, expressions for the grid points 

adjacent to the boundaries depend on the thermal boundary conditions and are 

given below. Use is made of the one-^ided, derivative approximations (3.88) and 

(3.89) to provide implicit replacements for either dO/dY or 6, whichever is not 

specified, at the boundaries.

For normal derivative type thermal boundary conditions (e.g. uniform heat flux)

UHF at Y =  0: Â< #  =  0 , A i #  = 0 , A i #  = A i #  + J  A i‘5

ÂÜ2> = A i ! 8> - j A ü S (3.124)

Bi5i =  r,qi
ir*  AX 2 AY
[KëbFT Î A- 8

UHF at Y =  1: ÂUfi> = 0 , =  0

Bitii — ^  \  ^(craÊ̂ b)n +  Reb^pr rq2 (3.125)

+ Br AX 
RebP r t

F(Y)/z* r a il
w dY n+1

Equations (3.124) and (3.125) can be simplified for thermal symmetry or an 

adiabatic wall by setting rqi or rq2 equal to zero, as appropriate. Furthermore, 

= 0 in all cases apart from the symmetric parallel plates problem.
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For uniform duct wall temperature conditions

UWT at Y = 0: ÂÜ5* = 0 , A£i5J = 0

Ata» =  Ata» +  A x

Â t i î ’ = A U j '  - r1 k h f e ' À V A X  

=

(3.126)

UWT at Y =  1: Â< ¡ft =  Aiifi» -  A Y ^

À ( 12) _  A ( l.Z) , 2 (k *  ) * + 1 )M ♦ 1 A X  
Am=“  “ Am=l4 +  R e b P r  A Y ---------

Aia» = o , Aia» = o (3.127)

B ( 5ii -  (L  + ü l / 'r  *(L) I 3(k*)n+i , M+1 AX * r5m=M -  2 HCmb^Jn + 2 RebPr AY ***

+ Br AX
RebP r 70 V y dV

W dY
n+1

The integral of the viscous dissipation appearing in B£=iii above must be evaluated 

numerically from the previously calculated velocity profile using, for example, the 

trapezoidal rule approximation

I F(Y) fi* a r
w dY n+1

AY
~ir

m =M + 1

X [ ( F < M $ T U 1 + ( F ‘ Y ^
m= 2

aj*i 2-
w n+l>m_

(3.128)
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where (5U*/5Y) is approximated using the central difference formula (3.86) at the 

interior points and the one-sided differences (3.88) and (3.89) at the boundaries.

3.4.3 Solution Procedure

In Section 3.4.2, each of the finite—difference versions of the governing equations 

used in the present scheme is put in a form suitable for direct solution using band 

matrix methods. This has been done to obviate the need for dealing with the 

unbanded, sparsely populated matrices that would otherwise occur. An immediate 

advantage of the band matrix formulation is that storage need only be allocated 

for the diagonal band containing the non—zero coefficients. The band matrices met 

in this work are generally unsymmetric and have different upper and lower 

bandwidths, except that a tridiagonal matrix is obtained when the differential 

energy equation is solved alone. The associated systems of equations are solved 

using a variant of Gaussian elimination with partial pivoting or the tridiagonal 

matrix algorithm for the single case mentioned above. It is well known 

(e.g. Jennings, 1977) that with these methods it is possible to accommodate any 

additional non—zero elements formed during elimination within the diagonal band 

storage. Moreover, since arithmetic operations are only performed on the band 

structure, solution is faster and less prone to round-off error than for a comparable 

unbanded, sparse system.

The basic unit of the marching solution procedure is one axial step. At the start of 

computation for each new step, the values of the dependent variables (including 

the physical property ratios) are available for all transverse grid points at the end 

of the previous step (i.e. n level). In the case of the first step, this information is 

provided by the initial conditions.

Because the finite—difference equations are linearized by approximating the 

coefficients, the solution is advanced to n + 1 level via a series of iterations in 

which the coefficients are progressively updated. A further consequence of this
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linearization technique is that, although the axial momentum equation and the 

energy equations are coupled through the temperature dependence of the fluid 

properties, the discretized equations need not be solved simultaneously at each 

iteration. This separation of the flow and temperature solutions is practised in this 

work and appears to have the following two advantages. Firstly, more accurate 

values of U*+1,m and V*+1,m become available earlier for the evaluation of the 

coefficients in the difference forms of the energy equations. Secondly, separate 

coding for the two solutions allows each segment to be called independently, so 

that the computer program can be used for problems where either temperature or 

flow solutions alone are required. Examples are, the calculation of developing 

temperature profiles for a constant—property, fully-developed flow and the 

calculation of flow profiles for zero heat transfer and negligible viscous dissipation. 

However, in general, each iteration comprises both a flow solution, to obtain 

improved predictions of the Un+i,m, Pn+i,m and Vn+i,ni values, and subsequently a 

solution for 0n At the end of each iteration, new estimates of the fluid property 

ratios at each grid point on the n + 1 level are found using the 6n*hm solution just 

obtained. The process is then repeated using updated coefficients. The end of the 

computation for each axial step is marked by the termination of these iterations. 

In the present computer implementation only one iteration is performed at each 

marching step for variable—property computations, the option of calculation 

without iteration being reserved for constant—property cases.

Further information on the sequence of the solution procedure is given below. 

Matrices are shown illustrating how the various coefficients can be assembled in 

band form. However, it should be realised that these are purely symbolic since 

storage is only provided for the diagonal band during computation. The subscript 

and superscript notations used here are the same as in Section 3.4.2 where the 

definitions of the coefficients Ara and the right-hand sides Bm are presented. In the 

following, a tilde (~) indicates that a coefficient or right-hand side constant may 

need modification to accommodate the relevant boundary conditions.
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i) Solution for Un+i>m and P n+i,ni

The solution for the axial velocities and the pressure at the n + 1 level is based on 

a system of 3M — 3 algebraic equations. These are the M — 1 equations (3.95) 

expressing local axial momentum conservation at the grid points m = 2 to m = M, 

the M — 2 equations (3.98) equalizing the pressures at these positions and the M 

equations (3.111) representing the piecewise treatment of the integral mass 

balance. The resulting system of linear equations can be written in matrix form as

A Z =  B (3.129)

where the coefficient matrix A in equation (3.129) has the following banded form:

A ^ 3) A^14)

Ai,2) A^3) A|,4)

Ai>5) A|,6)

A ( 10) A ( ID A ( 12) A ( 13) ¿»■m
A (1) A ( 2)-i»-m A ( 3) -tt-m A (4)

A (5)-¿»-m A (6)

Ai,10> A k n) A612> Aii13)

Aii1» A*,2»

A h W AiJP

Ai,3)

(3.130)

Note that the coefficient Ai,^» is only non—zero for the parallel plates geometry 

under symmetrical thermal boundary conditions, when the inner boundary is taken 

at the duct centreline. The column matrix B contains the constants that appear on
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the right-hand sides of the system of equations (3.129) and Z is a column matrix 

of the 3M — 3 unknown Un+i,m, Pn+i,m and Wn+i,m values. They are written as 

follows:

Wn+1)2

Un+1)2

Pn+1)3

0

B ili

0

z  = Wn + 1,111

Un+l»m

P  n+ljm

Wn*hM 

Un +1)M 

P  n+l)M

(3.131) B = 0

B (

o

o

B i l i  

B iiiu i

(3.132)

For a duct centreline at Y =  0, the duct centreline velocity Un+i, i is found after 

the system of equations (3.129) has been solved, by approximating the symmetry 

condition given in equations (3.59) using the derivative approximation (3.88). ii)

ii) Calculation of Vn+i,m

Following the solution of the axial velocities the transverse velocities at all internal 

grid points on the n + 1 level are found from equations (3.91)—(3.93) after setting 

V to zero at both boundaries.
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iii) Solution for On*i,m

When the solution of the unknown +i,m values is based solely on the differential 

energy equation, a tridiagonal system of M — 1 difference equations (3.100) is 

obtained. In matrix form, this system can be written as

A 0 = B  (3.133)

or

' À^8) Â!î9) +1)2 B^3)

Af}7) A(,8> A^9) +1)3 B(,3>

Atri A ( 8) a <9> n̂+l)in = B<3>

A i  ”, A M  A M $n+l>M-l BkW

À i ”  Ài»' $n + l)M Bii3)

(3.134)

If the option is taken of replacing the finite-difference version of the differential 

energy equation for the grid location m =  M with the system of M — 1 equations 

(3.121) representing the piecewise treatment of the integral energy equation, then 

A is no longer tridiagonal. The column matrices are also changed by the inclusion 

of the additional variable E and its boundary conditions. The new forms can be 

written in matrix form as

A Z =  B (3.135)

where the coefficient matrix A has the banded form shown below:
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A^8) A^9)

A^17) A^18) A^19)

A ( ri A(8) a  (9)•n-m -iA.m
A (15) A (16) A (17) A  (18) A  (19)•̂ m -iA-m -̂ m -*»-m -̂ -m

A<?\ A i8\ A<?\

Aii!> Aii?»

• • • • • •

A kl\ AA?\ A6?\

Akl.V A k W

Ahl5) Ahl6) Ahl7)

(3.136)

Z is column matrix of the unknown 0n+i>in and En+i,ni values and B is a column 

matrix of the right-hand side constants. They are written as

+1)2 SiSi

En+1,2 B 'H

$n+l>m B<3>

En+Um (3.137) B = B<5>

n̂ + Um+1 B<3\

En + hm+1 B<5+\

n̂ + l)M-l B iii- ,

En +1)M-1 BLltn-i

0n + l,M BiSii

(3.138)
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Following solution of either of the systems of equations (3.134) or (3.135), any 

unknown boundary temperatures at the n + 1 level are found using the derivative 

approximations (3.88) and (3.89).
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CHAPTER 4

COMPUTER PROGRAM AND NUMERICAL STUDIES

4.1 Evolution of Computer Program

One of the main tasks completed during this research was the development of a 

new computer program embodying the numerical procedures presented in 

Chapter 3. Before describing the new program some of the background leading to 

its development is explained.

Experience in the application of marching finite—difference methods to solve duct 

flow heat transfer problems was initially gained using the program developed by 

Collins (1975). In his algorithm the integral mass balance equation and the partial 

differential equations expressing conservation of mass, axial momentum and radial 

momentum are solved simultaneously (by Gaussian elimination) at each forward 

step to obtain the unknown values of the velocity components Un+i,m and Vn+i,m 

and the pressures Pn+1,m at each each grid point on the n + 1 level. This is followed 

by a solution for the unknown temperatures +i,m, based on both the differential 

and integral balance forms of the energy equation. Allowance for property 

variation is made by repeating the above procedure, using updated property 

values, before advancing the solution to the next axial position. Collins’ 

computational method uses the fullest axisymmetric coordinate forms of the 

conservation equations for a quasi—incompressible fluid, including both the axial 

and the radial momentum equations, thereby admitting the possibility of pressure 

variation in both coordinate directions. All axial diffusion terms are retained and 

approximated by backward difference formulae, thus requiring 3—level storage for 

U, V and 6. Strictly, a space—marching method is not well—posed for a solution of 

this set of equations, since they permit axial transmission of elliptic influences 

through the pressure field and diffusion processes. For non—recirculating duct 

flows, however, elliptic effects are confined to a small region near the entrance. 

Collins (1975) found that provided an initial marching step size AX greater than
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0.625 is used his forward marching procedure remained stable. It is noted that the 

technique of restricting the minimum axial step size is also employed in the 

marching solution of the (partially) parabolised Navier—Stokes equations used for 

the prediction of steady, supersonic flow fields (Anderson et al, 1984). These 

equations allow elliptic—type behaviour, associated with the pressure field, when 

subsonic regions exist in the flow. By using a minimum marching step size it is 

found possible to overstep the zone of influence of the upstream elliptic effect and 

thus maintain a stable marching solution.

Initially, some numerical investigations were conducted by the author using 

suitably modified versions of Collins’ (1975) program. The changes made are 

summarised below in the order of increasing extent of modification required to the 

program:

i) The circular tube program was modified by omitting the axial diffusion 

terms from the momentum and energy equations. However, because the 

equations allowed pressure to vary in both the axial and the transverse 

directions (i.e. elliptic behaviour), it was still found that computation 

only remained stable if the minimum value of the initial axial step was 

restricted. [No restriction of the marching step was necessary when 

computation was eventually based on the parabolic flow equations which 

neglect transverse pressure variation.]

ii) Coding was included for the calculation of the spatially averaged 

cross-sectional temperature of the fluid at each axial position. The 

modified version was used to make flow rate predictions for a closed loop 

thermosyphon comprising heated and cooled vertical tubes. This work is 

outlined in Section 4.3.3 below.
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iii) Modified versions were developed for symmetric and asymmetric parallel 

plate duct flows by changing from an axisymmetric cylindrical 

coordinate system to a two-dimensional rectangular coordinate system. 

For the asymmetric case, modifications to the inner boundary conditions 

were also required since a centreline was no longer appropriate. The 

modified programs were used to obtain solutions for combined convection 

of viscous liquids between uniformly heated parallel plates. This study is 

outlined in Section 4.3.2 below.

iv) The parallel plate programs were subsequently modified so that the 

coefficients of the finite—difference equations for the velocity—pressure 

solution were assembled in band matrix form. This change markedly 

improved computational efficiency, in terms of both storage and time, 

and the approach was later extended to the treatment of the energy 

equations.

Eventually, a completely new computer program was developed with a view to 

improving computational efficiency and flexibility. The new program implements 

the computational procedure described in Chapter 3 for the unified treatment of 

forced convection and combined convection (vertical ducts only) flows in circular, 

concentric annular and parallel plate ducts. Although use is restricted to laminar 

unidirectional flows (no flow reversals), the program is capable of handling both 

hydrodynamic and thermal development and either an upward or a downward 

vertical flow can be specified when density variation is admitted in the body force 

term. The program defaults to pure forced convection, applicable to any flow 

orientation, when a constant density is specified. A uniform or a fully—developed 

initial flow profile can be chosen and either a uniform heat flux (UHF) or a 

uniform wall temperature (UWT), with an optional adiabatic starting length, can 

be independently set along each duct wall. Further options allow the effects of
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viscous dissipation1 and temperature dependence for any fluid property to be 

included in a computation. For appropriate situations, computation of the flow 

field alone or the temperature field alone is allowed.

A few features of Collins’ (1975) program have survived, notably the option of 

using the integral energy balance equation in the temperature profile solution, but 

the new program is substantially different in the following ways:

i) Instead of using the full elliptic equations the solutions are now based on 

the parabolic flow equations which neglect axial diffusion and transverse 

pressure variation. The latter difference, in particular, removed the 

restriction of a minimum axial step size.

ii) As mentioned above, Collins (1975) solved for Un+i,m, Vn+i,m and Pn*i,m

by a simultaneous solution of both momentum equations and both the 

integral and differential mass continuity equations. The

velocity—pressure solution is now carried out in two steps:

1) First the axial momentum, transverse momentum and

integral mass balance equations, equations (3.94), (3.98) and 

(3.107) repectively, are solved simultaneously for the axial 

velocities Un*i,m and the pressures Pn+i,m- Equation (3.98) is 

simply used to enforce the equality of pressures in the 

transverse direction.

JFor completeness, viscous dissipation is retained throughout the analysis 
presented in Chapter 3 and is also incorporated as an option in the computer 
program given in Appendix F. Collins and Keynejad (1983) concluded that the 
effect of viscous dissipation on simultaneously developing laminar flow and heat 
transfer in a uniformly heated tube is negligible for Pr < 200. Viscous heating was 
in fact neglected in all the numerical studies for which results are reported in this 
thesis.
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2) Using the values of Un+i,m found in the previous step the

transverse velocities Vn+i,ni are explicity calculated from the 

differential continuity equation, given by equations 

(3.91)—(3.93).

iii) Use of band matrix methods, rather than Gaussian elimination, to solve 

the finite—difference equations.

A full listing of the new program is given in Appendix F.

4.2 Numerical Studies

4.2.1 Constant—Property. Forced Convection

To establish confidence in the accuracy of the new computer program numerical 

solutions have been obtained for a number of constant—property, forced convection 

problems. Details of the computations and the results obtained for the following 

two cases are given below:

i) hydrodynamic development in a circular tube;

ii) thermal development of a hydrodynamically fully—developed flow in a 

circular tube maintained at a uniform wall temperature (UWT) different 

from the fluid entry temperature (i.e. the well-known Graetz problem).

Comparisons are made with published solutions and analytically derived 

asymptotes for fully—developed conditions. Similar checks, not discussed here, have 

been conducted for parallel plate duct flows using the new program and its 

antecedents. As yet, the new program has not been systematically tested for flows 

in concentric annular ducts. However, the correct working of the program for 

circular tubes and ducts formed by two parallel plates is considered to demonstrate 

its capacity to handle situations exhibiting the same general features as a 

concentric annulus (i.e. axial symmetry and a duct wall at both the inner and
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outer transverse boundaries). Recalling that in this work annular ducts problems 

are treated within the same general framework as circular ducts and parallel plate 

ducts, and in fact utilize the same coding sequences during a computation, it is not 

anticipated that any unique problems will be encountered.

i) Hydrodynamic development in a circular tube

In the hydrodynamically developing flow of an incompressible fluid in a duct the 

axial velocity profile develops from an initially flat (uniform) entrance profile to 

achieve a fully—developed form, given by equations (3.25) and (3.69) for a circular 

tube, which is independent of axial distance. The approach to fully—developed 

conditions is asymptotic and it is conventional to define the dimensionless 

hydrodynamic entrance length Lhy [ =  (Lhy/d)/Re] based on the distance Lhy from 

the tube entrance required to achieve a maximum velocity equal to 99% of the 

fully developed value. Numerical results obtained for the development of the axial

Figure 4.1 Predicted axial velocity profile development in the entrance
region of a circular tube for constant—property, laminar flow.
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Figure 4.2 Predicted local and apparent Fanning friction factors for
hydrodynamically developing laminar flow in a circular tube, 
(constant properties)

velocity profile with the dimensionless axial distance x + [= (x/d)/Re] are shown in 

Figure 4.1 and the corresponding variations of the local and apparent Fanning 

friction factor moduli, fxRe [ = —4(5U/5R) J  and fappRc [ — — P /x+]

respectively, are shown in Figure 4.2. The computation utilised a finite—difference 

grid with 40 uniform radial divisions (i.e. M =  40, AY = AR = 0.025) and the 

following nonuniform axial grid requiring a total of 274 marching steps to reach 

x + =  0.0625: Ax+ =  6.25 x 10'6 for 0.0 < x + < 5.0 x 10'5, Ax+ = 2.50 x 10‘5 for

5.0 x 10-5 < x + < 2.5 x 10-4, Ax+ = 1.25 x 10‘4 for 2.5 x 10'4 < x+ < 2.5 x 10*3, 

Ax+ =  2.50 x 10'4 for 2.5 x 10'3 < x + < 6.25 x 10'2. The results shown in Figures

4.1 and 4.2 can be compared with the finite—difference solutions obtained by 

Hornbeck (1973) using the same axial grid spacings as listed above. In the radial 

direction, however, Hornbeck (1973) used only 16 nonuniform divisions with 

AR = 0 .1  in the range 0 < R < 0.8 and AR = 0.025 in the range 0.8 < R < 1.0. 

Differences between the axial velocity profile development shown in Figure 4.1 and
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the tabulated results of Hornbeck (1973) are less than 1% at x+ = 5 x 10"4 and 

diminish to around 0.1% at x+ = 5 x 10'2. The predicted value of Lhy is 0.0545, 

which is about 3.5% shorter than reported by Hornbeck (1973). Figure 4.2 

confirms that fxRe converges to the theoretical fully-developed asymptote. 

However, the fappRe predictions of this work are slightly higher than Hornbeck’s 

by 7.8% at x + =  5 x 10'4, 1.4% at x + = 5 x 10'3 and 0.03% at x + = 5 x 10'2.

iO Graetz Problem

Figure 4.3 shows the effect of the number of radial grid divisions M on the 

predicted local Nusselt number for the circular tube Graetz problem. The same 

nonuniform axial grid, involving a total of 2681 steps to reach x* =  0.1, was used 

for all values of M. The axial step size Ax* used in each range of the axial 

coordinate x* [ =  (x/d)/RePr] is bracketed in the following list: 0 (1 x 10' 7) 10*8, 

1 x 10-8 (2 x IQ'7) 1 x 10-5, i x io-5 (4 x IQ*7) 5 x 10-5, 5 x 10-5 (1 x 10-8) 1 x IQ"4,

Figure 4.3 Local Nusselt number predictions for thermally developing
laminar flow in a circular tube at uniform wall temperature 
(Graetz problem). Effect of radial grid spacing.
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1 x 10-4 (2 x 10-6) 5 x 10-4, 5 x 10-4 (4 x 10'«) 1 x 10-3, 1 x 10’* (1 x lO’S) 5 x 10-3, 

5 X 10-3 (2 X  10-5) 1 X 10-2, 1 x 10-2 (4 x 10-5) 5 X  10-2, 5 X 10'2 (1 X  10-4) 1 x 10-1. 

The numerical predictions are based solely on the solution of the tridiagonal 

system of equations (3.134) representing the energy equation. The results for 

M = 300 agree closely (error is 0.5% at x* =  10"5 reducing to 0.03% at x* = 0.1) 

with the analytical results tabulated by Shah and London (1978). For M =  20 and 

100 some rather large deviations are seen at low values of x*. Conley et al (1985) 

conducted a similar grid dependence study for the Graetz problem and obtained 

results which are in almost exact agreement with those shown in Figure 4.3.

4.2.2 Combined Convection

i) As noted is Section 4.1 a numerical study has been made of combined 

convection between vertical uniformly heated parallel plates. Predictions 

were obtained for the developing axial velocity profile and the local 

Nusselt number for symmetric heating of ethylene glycol and asymmetric 

heating of transformer oil. These results were compared with those 

obtained by a more approximate numerical method (Allen and Finn, 

1970). Appendix G contains the full text of a paper describing this study.

ii) Heat transfer predictions for the upward flow of water through a 

uniformly heated circular tube have been made for comparison with the 

experimental data collected in the present study. The computational 

details and results are presented in Chapter 7.

4.2.3 Thermosvphon Loop Study

A numerical investigation has been conducted to predict the steady—state 

circulation rate in a closed—loop thermosyphon comprising two vertical tubes, one 

uniformly heated and the other uniformly cooled, joined by upper and lower 

plenums. The working fluid was water (Pr = 4.3). A copy of the paper describing 

this work is included in Appendix G.
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PART 3

EXPERIMENTAL WORK
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CHAPTER 5

EXPERIMENTAL APPARATUS AND PROCEDURE

5.1 Rationale for Test Configuration

The apparatus described in this chapter was designed for the purpose of obtaining 

experimental data against which the numerical predictions could be compared. 

Although the computational method developed could be applied to several duct 

geometries and to uniform heat flux (UHF) as well as uniform wall temperature 

(UWT) boundary conditions it was necessary, in view of time and resource 

constraints, to limit the scope of the experimental investigation to one duct shape 

and one kind of thermal boundary condition.

The configuration selected for the laboratory tests was a vertical circular tube 

subject to uniform heat flux (UHF) heating. The following factors influenced this 

choice of duct geometry and thermal boundary condition:

i) design simplicity and ease of construction;

ii) less likelihood of departure from two-dimensional flow and heat transfer 

conditions than for other candidate duct geometries (annular duct or 

high aspect ratio rectangular duct);

iii) convenience of using direct electrical resistive heating of the test section 

wall to approximate a UHF boundary condition.

The tubular test apparatus developed could be operated over a wide range of heat 

flux and flow rate and was instrumented to allow local entrance region heat 

transfer measurements to be made. The experimental work described in this thesis 

refers only to tests made with upward flows of water. However it was envisaged 

that modification of the experimental apparatus to allow the use of other working 

fluids or operation with downward flow could easily be accomplished.
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The equipment and the techniques employed in the experimental programme are 

described in detail in the following sections of this chapter.

5.2 Description of Test Rig Construction

The test rig essentially consisted of a open circuit flow system, incorporating the 

vertical tubular test section, and an electrical power system for heating the test 

tube. These principal parts are described separately below. The instrumentation of 

the test rig is described in Section 5.3.

5.2.1 Flow System

The main features of the flow system are shown schematically in Figure 5.1.

All the tests were performed using ordinary tap water taken from the laboratory 

main. A filter unit (METALife model FL.3/4-40), fitted with a 40 micron 

stainless steel mesh filter cartridge, was installed to prevent suspended particulate 

matter from this supply entering the rig flow system. The filter unit could be 

back—flushed periodically to remove accumulated deposits from the cartridge.

The flow system was constructed so that, by opening or closing suitably positioned 

valves, filtered water could be made to flow to the test section either directly, 

utilizing the pressure in the supply main, or by gravity from an atmospheric 

header tank mounted above the test section. This tank provided a constant static 

head difference of 1.05 m to overcome the flow system losses. As there appeared to 

be no difference in the steadiness of the flows generated by these two alternative 

feed methods, it was eventually decided to use the mains pressure feed system for 

all tests, as higher flow rates could be achieved with this arrangement. In 

comparison to the pressure losses caused by flowmeters, control valves and flow 

mixing devices the test section pressure loss was minor. Consequently, the flow 

rate was virtually unaffected by the magnitude of the buoyant head generated by 

heating in the test section and, once set, remained very constant.
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Figure 5.1 Schematic of flow system and test section.
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A maximum volume flow rate of about 1 litre/minute could be obtained, 

corresponding to a test section Reynolds number of approximately 1800 at 20° C. 

The flow rate of water through the test section was adjusted by using hand valves 

situated upstream of the rotameters. Bleed valves were provided at positions in the 

feed piping where air bubbles might collect, although there proved to be only 

occasional need for these after the circuit was filled with water and the entrapped 

air vented.

After flow metering the water passed into an inlet reservoir immediately upstream 

of the tube entrance where the inlet bulk temperature was measured. This 

reservoir was intended to still inlet flow disturbances and utilized a borosilicate 

glass vessel, approximately 100 mm bore and 175 mm deep, with a side inlet 

connection and a base of roughly hemispherical shape. The inlet reservoir was 

completed by a top cover, made from 32 mm thick phenolic resin and paper 

laminated sheet (Tufnol — Heron brand), which was bolted to the glass vessel. A 

rounded tube entrance, with a leading edge radius of approximately 7 mm, was 

machined centrally in the lower face of this cover. Thus, water flowed smoothly 

upward from the inlet reservoir into the heated test section which was flanged to 

the upper face of the cover. The area contraction ratio from the inlet reservoir to 

the test section tube was about 70 to 1 and the flow development length between 

the end of the contraction and the start of the heated section was equal to 

approximately 2.5 tube diameters.

A second Tufnol flange, almost identical to that described above, connected the 

top of the heated tube to the test section outlet pipe, which was mounted 

co—axially with the test section and vented to atmosphere at its upper end. The 

measurement of exit bulk temperature was made in this pipe and to ensure 

temperature uniformity, the flow leaving the heated tube was first made to 

negotiate flow mixing elements inserted in the flow. Water discharged from the rig 

by spilling over a small weir plate fitted in a side branch of the outlet pipe and
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passed to drain through a 2 litre graduated glass vessel. A shut-off valve fitted at 

the outlet from this vessel allowed water to be collected during flowmeter 

calibrations.

Only stainless steel, non-ferrous metals, rubber and plastic materials were 

employed in the construction of the flow circuit. The connecting pipework was 

mostly assembled from either 15 mm (nominal o.d.) copper pipe, joined with 

compression or soldered fittings, or plastic tubing of a similar size. Short sections 

of larger or smaller diameter were used in a few places.

5.2.2 Test Section

The central component of the experimental set-up was the electrically heated test 

section which consisted of a 1.92 m length of seamless stainless steel (type 316) 

tube of circular cross-section. The internal diameter and wall thickness of this 

tube were 11.9 mm and 0.30 mm repectively.

At each end of the test tube a rectangular copper flange, 60 mm x 40 mm and 

10 mm thick, was silver soldered to the outer surface to carry the heating current. 

This left a heated tube length of 1.9 m (or almost 160 tube diameters) between the 

flanges. Copper strips, approximately 35 mm long and 25 mm x 1.5 mm cross 

section, were soldered to the outer edge of the copper flanges to provide convenient 

terminals to which the power cables and the test section voltage tappings could be 

connected. Details of the electrical circuit used for the test section power supply 

are given in Section 5.2.3.

As mentioned in Section 5.2.1, the lower and upper ends of the test section were 

connected to the inlet reservoir and the outlet pipe respectively via Tufnol flanges. 

The flange material, phenolic—paper laminate sheet, provided electrical isolation of 

the test section and also helped to reduce heat conduction losses because of its low 

thermal conductivity. The lower flange also incorporated the tube entry, making
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accurate alignment with the test section essential in order to prevent disturbance 

of the entering flow. This was ensured by a circular spigot, 38 mm diameter and 

4 mm long machined on the outer face of each copper flange which located in a 

complementary recess in the mating Tufnol flange. The copper test section flanges 

were fastened to the Tufnol flanges by set screws. A rubber O—ring was fitted in a 

groove in the face of each copper flange to prevent leakage.

Prior to assembly in the test rig the test section tube was cleaned and polished 

internally. The attachment of thermocouples for the measurement of surface 

temperatures on the test section is described in Section 5.3.5.

5.2.3 Electrical Power Supply

As stated earlier, the object of the experiments was to obtain local heat transfer 

data for a uniform heat flux (UHF) distribution at the inner surface of the heated 

tube wall. In the experimental set-up the tube wall was heated by the power 

dissipation of an alternating current passing through the tube. This direct 

electrical resistance heating technique, also known as Joule or ohmic heating, 

produced a wall heat flux which was virtually constant and approximated the UHF 

thermal boundary condition.

A circuit diagram of the test section power supply is shown in Figure 5.2. The 

low—voltage, high—current supply demanded by the test section was derived from a 

240 V, 50 Hz single—phase supply by stepping down the voltage in two stages. A 

3 kVA, two—winding, core—type transformer gave a voltage transformation ratio of 

nearly 12:1. The voltage applied to the primary winding was adjustable by a 25 A 

autotransformer (Berco Regavolt, type 121AE) to allow the heating power to the 

test section to be varied. The test section formed a purely resistive load which was 

connected to the transformer secondary winding by heavy copper cables bolted to 

the copper terminal strips at each end of the test section.
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Heavy Copper 
Power Cables

Figure 5.2 Test section electrical power supply system.

The electrical resistance of the test section, measured between the terminals at 

room temperature, was 0.133 ohm. A maximum current of 150 A could be drawn 

from the transformer, although during the experiments the test section current did 

not exceed 122 A. The corresponding maximum rate of heat generation due to the 

I 2Re effect was around 2 kW; equivalent to a wall heat flux of about 28 kW /m 2. 

The measurements required for determining the test section power input are 

described in Section 5.3.3.
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5.2.4 Thermal Insulation

After assembly of the rig and testing for leaks, the test section was thermally 

insulated to minimise, as far as practical, heat losses to the ambient air. Residual 

losses were allowed for by applying a correction based on empirical data from heat 

loss tests, as described in Section 5.4.1.

Insulation of the heated tube was provided mainly by two layers of preformed glass 

fibre sections fitted over the whole length. To exclude air gaps between the tube 

surface and the glass fibre insulation, the tube was first wrapped with a few layers 

of asbestos paper tape. The inner glass fibre layer was of approximately 25 mm 

thickness, covered with an aluminium foil and paper laminate. The outer glass 

fibre layer was of approximately 50 mm thickness and was clad by a thin 

aluminium sheet jacket secured by toggle clips and self—tapping screws. This 

jacket gave a low emissivity finish and served to prevent mechanical damage and 

the ingress of moisture to the insulation system. The connections between the test 

section terminals and the power cables were buried within the glass fibre 

insulation.

The test section outlet pipe assembly was also encased by glass fibre insulation and 

an aluminium jacket. However, no insulation was applied to the the test section 

inlet reservoir, since it was expected that the inlet bulk temperature in this 

thick—walled glass vessel would be within a few degrees of the surrounding air 

temperature and hence remain rather uniform.

5.2.5 Structural Support

The test section and the components of the flow system, described in Sections 5.2.2 

and 5.2.1 respectively, were mounted on a rectangular frame, approximately 2.8 m 

high and 0.25 m x 0.3 m cross-section, fabricated from 40 mm square hollow steel 

sections. A smaller frame, approximately 0.65 m high, was sited on top of the main 

frame to support the atmospheric header tank. The base of the main frame
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incorporated four adjustable feet, used for levelling the frame, each sitting on a 

pad of cork material (s 12 mm thick) to reduce the transmission of floor vibrations 

to the test rig.

The test section assembly; comprising the heated test section, the inlet reservoir 

and the outlet pipe, was supported from the main frame at the lower and upper 

ends of the test section. It was calculated that the thermal expansion of the 1.9 m 

long stainless steel heated tube would be about 1.5 mm for an average tube wall 

temperature rise of 50 K. To accommodate such expansion the test section was 

held under light axial tension provided by coil springs at the upper support.

After erection in the support frame, and before thermal insulation was fitted, the 

vertically of the test section was checked using a plumb line and the necessary 

adjustments made by levelling the frame.

5.3 Measurement Systems and Calibration Procedures

For each set of test conditions, evaluation of the independent test variables 

(i.e. Reynolds number and wall heat flux) and the dependent quantities (e.g. local 

Nusselt numbers) involved the measurement of several different quantities. The 

primary quantities measured were water flow rate, inlet and exit bulk 

temperatures, wall temperatures at various axial locations along the heated tube 

and test section heating current and voltage drop.

It was decided at an early stage of the experiment planning to use an electronic 

data acquisition system to integrate the measurement and recording of all the 

necessary quantities and render the data in a form suitable for further processing 

by computer. The data acquisition system and the measurement devices installed 

in the test rig to sense the required physical quantities are described in detail in 

the following sections. The instrumentation calibration procedures used are also 

explained below.
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5.3.1 Data Acquisition System

In outline, the data acquisition system comprised a programmable multi—channel 

data logger (Solartron, 3530A Orion) interfaced to an IBM—XT compatible 

microcomputer.

The various flow, temperature and electrical power measurements totalled 20 

analogue voltage signals, including both AC and DC voltages. These voltages were 

connected to separate channels of the data logger for periodic scanning and 

conversion to digital form. In the main test series the data logger was programmed 

to scan and measure all of the inputs every 15 s. A channel measurement rate of 

40 channels per second was selected, allowing each input to be averaged over a 

20 ms integration time. This rate afforded the best possible resolution for the 

analogue—to—digital conversion process and ensured virtual elimination of mains 

frequency (50 Hz) interference. Statistical processing routines, available on-board 

the data logger, calculated the mean value, x =  i  S x i, and standard deviation,

a = n - r r ? ( x l - *)! , of measurements accumulated for each channel over the 

previous 5 minutes (20 scans). In a few tests all input channels were scanned every 

second for a period of 4 minutes to investigate fluctuations of the input signals.

Software linearization, provided by the microprocessor in the data logger, gave 

automatic conversion to degrees Celsius for all temperature sensors. Calibration 

and scaling equations were stored in the logger to allow the magnitudes of certain 

measured quantities to be calculated in the appropriate engineering units from the 

sensor output voltages.

An RS—232—C serial cable link transmitted the converted data to the 

microcomputer from the data logger after each scan of the input channels. The 

data transfer protocols were set up using communications software installed on the 

microcomputer. The same software also displayed the received data on the monitor 

screen and, when requested, controlled the logging of the same information to a
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specified file (TESTn.LOG) on the hard disk of the computer. The monitor display 

was refreshed as soon as a new set of measured data was received (usually at 

15 second intervals), thus providing informative and frequent visual checks on the 

state of operation of the test rig. A sample set of data is shown in Figure 5.3. A 

permanent record of logged results could also be obtained from a small paper tape 

printer incorporated in the data logger.

LOG TO PC+PRINTER RUN 1 6 :2 1 :0 9 1 8 -0 4
VERTICAL TUBE TESTS T 1 1 6 :2 5 :4 9 .8
LOVER CLAMP TEMP C 062 0 0 1 5 .6 5 dgC TUBE VALL TEMP C 064 0 0 2 0 .1 8 dgC
TUBE WALL TEMP C 065 0 0 2 0 .7 7 dgC TUBE VALL TEMP C 066 0 0 2 4 .2 5 dgC
TUBE VALL TEMP C 067 0 0 2 7 .5 6 dgC TUBE VALL TEMP C 068 0 0 3 1 .0 0 dgC
TUBE VALL TEMP C 069 0 0 3 5 .1 5 dgC TUBE VALL TEMP C 070 0 0 3 9 .8 5 dgC
TUBE VALL TEMP C 071 0 0 4 3 .9 3 dgC TUBE VALL TEMP C 072 0 0 4 8 .9 2 dgC
TUBE VALL TEMP C 073 0 0 5 3 .9 7 dgC TUBE VALL TEMP C 074 0 0 5 9 .1 0 dgC
TUBE VALL TEMP C 075 0 0 5 8 .6 2 dgC UPPER CLAMP TEMP C 076 0 0 5 3 .3 0 dgC
TEST SECTION AMPS C 082 0 0 8 1 .5 0 AMP TEST SECTION V0LTSC 084 0 1 1 .1 9 8 Vac
VOLUME FLOVRATE C 086 0 .7 6 3 3 3 L/M INLET BULK TEMP C 093 0 0 1 3 .0 5 dgC
OUTLET BULK TEMP C 095 0 0 2 9 .2 6 dgC AMBIENT TEMP C 097 0 0 2 1 .6 5 dgC

Figure 5.3 Sample measurement data set for one data logger scan.

The data acquisition system provided a reliable and rapid means of data capture, 

with consequent savings in the time and labour required for testing compared to a 

manual system of recording observations. Information could be obtained about the 

temporal variation of the measured quantities by sampling at rates which could 

not have been achieved manually. Furthermore, the risk of errors associated with 

manual data recording and re-entry to a computer were eliminated.

A spreadsheet program was specially developed to import, parse and process the 

experimental data log files obtained by the data acquisition system. The 

spreadsheet could rapidly perform all the necessary data reduction calculations, 

thus allowing results to be viewed during the progress of a test.

As the data logger was central to all the measurements its state of calibration was 

an obvious concern at the outset. However, since common circuitry (e.g. same
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analogue—to—digital converter) was used it is noted that this issue possibly merited 

less concern than if each quantity had been measured using a completely 

independent system. Nevertheless, the calibration of DC voltage conversion was 

checked over the ranges 0 — 10 mV and 0 — 10 V using a DC voltage source (Time 

Electronics, model 2003N) to generate known inputs of both polarities. Excellent 

agreement was achieved; the maximum discrepancies for the two ranges being 7 /¿V 

and 1.2 mV respectively. Such systematic checking was not undertaken with AC 

voltage inputs, but impromptu comparisons with other laboratory meters 

confirmed that the data logger could be used with confidence.

5.3.2 Flow Rate Measurement

The water flow rate passing through the test section was measured using a Pelton 

wheel type flowmeter (LitreMeter, size LM.05) installed upstream of the test 

section inlet reservoir (see Figure 5.1). This flowmeter featured a six—lobe turbine 

rotor, formed in nylon with a stainless steel shaft, supported on tungsten carbide 

ball bearings running in sapphire bearing cups. Each lobe contained a ferrite core 

and the speed of rotation of the turbine was detected by a sensing coil as the 

ferrites passed by. The resulting stream of output pulses was fed to a signal 

conditioning unit (LitreMeter, LM.EI 30) for conversion to a DC voltage analogue 

signal (0 — 20 V) suitable for input to the data logger.

To ensure the best possible measurement accuracy, the voltage output from the 

flowmeter signal conditioning unit was calibrated against the measured flow rate 

with the flowmeter in situ. The volume flow rate was determined from the time 

taken to collect 1 litre of water in a previously calibrated graduated glass vessel 

situated at the test rig outlet. Calibration runs were carried out at 17 flow rates in 

the range 0.022 — 1.03 litre/minute, which was within the manufacturer’s 

recommended range (0.02 — 1.3 litre/minute) and encompassed the range of flow 

rates covered in the tests (0.045 — 0.82 litre/minute). Two collections were made 

at each flow rate and the results averaged. Voltage outputs recorded by the data
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acquisition system at regular intervals throughout each calibration run (typically 

15 — 60 readings) were also averaged. The calibration data obtained in this manner 

indicated an almost linear relationship between the volume flow rate and the 

voltage. A best straight line fitted to the data by least squares regression was 

programmed into the data logger to perform the subsequent conversions from 

voltage to volume flow rate.

In addition to the Pelton wheel flowmeter, two rotameters (G.A.Platon, 

GapMeters sizes A6 and B6) were installed to give a convenient visual indication 

of the flow rate when setting-up test conditions. These auxiliary flowmeters were 

fitted in parallel and covered a range up to approximately 0.8 litre/minute. They 

were also calibrated by the collection method described above.

During the main test series the same technique was used to make occasional checks 

on the state of the Pelton wheel flowmeter calibration at randomly selected flow 

rates. In 9 (out of 12) of these checks the measured flow rate was within ± 1.2% of 

that predicted by the original calibration equation. The maximum discrepancy 

found was + 3.2%.

Transient records taken of the flowmeter output signal exhibited apparently 

random fluctuations at all flow rates, regardless of whether heating was applied to 

the test section. The magnitude of the fluctuations was typically ± 1.5% of the 

mean value used in the data reduction calculations. Efforts made to discover if 

these fluctuations resulted from actual flow rate variations or some effect 

introduced by the flowmeter or signal conditioning unit were inconclusive. No flow 

rate fluctuations could be detected by observing the rotameters.

5.3.3 Evaluation of Test Section Electrical Power

The average rate of heat generation due to the power dissipation of the alternating 

current passing through the purely resistive test section was calculated from the
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product IV, where I and V are the rms values of the current and the impressed 

voltage respectively. Figure 5.2 shows the arrangement of the instrumentation used 

to determine the electrical power input to the test section.

The applied rms voltage between the power cable connection points on the test 

section terminals was measured directly using the data logger. Voltages ranging 

between 3.5 V and 17.2 V were recorded during the main test series. It was 

confirmed, by calculation, that the contribution to the measured voltage drop due 

to the resistance of the terminals was negligible. The test section voltage drop was 

also monitored by a true rms digital multimeter (Thurlby, model 1504) connected 

between the same tapping points. The voltages displayed on this auxiliary 

instrument were within ± 1 % of the corresponding data logger measurements in 

nearly 90% of the tests and the maximum difference observed was — 1.8%.

The rms value of heating current drawn by the test section was measured with the 

aid of a Class B current transformer arranged with one of the test section power 

cables forming a single primary inserted turn. A calibrated 0 — 5 A moving iron 

ammeter and a 0.1 ohm precision resistance were connected in series in the 

secondary circuit of the current transformer. For data acquisition purposes the 

required current was inferred from the voltage measured across the 0.1 ohm 

resistance. The appropriate scaling factor was programmed into the data logger so 

that the result of the test section current measurement was presented in amperes. 

The ammeter was mainly used for setting-up test conditions and gave a visual 

indication equal to the test section current divided by the turns ratio (40:1) of the 

current transformer. Where the resolution of the ammeter scale permitted a 

sufficiently accurate reading, the indicated test section current (after applying any 

calibration correction) was within ± 1 % of the value recorded by the data 

acquisition system.
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5.3.4 Fluid Bulk Temperature Measurements

The bulk (or mixed—mean) temperatures of the water entering and leaving the test 

section and the room air temperature close to the test rig were measured using 

identical commercially available platinum resistance thermometer probes. Each 

probe incorporated a 15 mm long, 100 ohm (at 0°C) wire—wound platinum 

resistance element with a quoted tolerance of 1/10 of the Class B sensor 

(BS 1904:1984 or DIN 43760:1980) value: equivalent to 0.03° C at 0°C. The overall 

length and diameter of the stainless steel probe sheath were 150 mm and 3/16" 

(«4.75 mm) repectively.

Measurements were made using the data logger by the four—wire connection 

method; in which the voltage developed across the platinum resistance element is 

measured when a known current is passed through it. A constant 100 /zA current 

was supplied from the transducer energization module in the data logger for this 

purpose. Conversion to temperature units was performed automatically by the 

microprocessor in the data logger.

A proper calibration of the resistance thermometers could not be undertaken 

because no traceable temperature standard was available. Instead, the outputs of 

these sensors were compared when the probes were fastened together and immersed 

in melting ice, saturated steam at atmospheric pressure and, for intermediate 

temperatures, a thermostatically controlled bath of ethanediol. Differences in the 

indicated temperatures were less than 0.1 K in the majority of cases. On the basis 

of these checks and the manufacturer’s quoted tolerance for the detector elements 

the resistance thermometers were considered sufficiently accurate to be used as a 

standard in producing a calibration for the thermocouple cable used in wall 

temperature measurements (see Section 5.3.5).

The water inlet bulk temperature was measured in the test section inlet reservoir 

with the platinum resistance thermometer probe installed vertically through a
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compression gland fitted in an opening at the base of the reservoir. The probe was 

mounted co—axially with the test section with the sensing tip about 120 mm below 

the rounded tube entrance, giving an immersed probe length equivalent to 

approximately 25 sheath diameters. As the inlet reservoir temperature was 

essentially uniform and close to the ambient temperature, measurement errors due 

to probe positioning and heat conduction loss were considered to be negligible.

Although not used for the evaluation of experimental Nusselt numbers, the water 

exit bulk temperature was measured to indicate the level of overall energy balance 

achieved in each test. A platinum resistance thermometer probe was mounted 

vertically downward along the centreline of the test section outlet pipe to a depth 

of immersion of about 23 sheath diameters with its sensing tip approximately 

50 mm downstream of the heated tube outlet. Preliminary rig tests exhibited 

measured exit bulk temperatures lower than expected from the test section power 

inputs. These apparent energy balance errors (up to 44% in one case) could be 

attributed to the non-uniform temperature profile of the water leaving the heated 

tube, with the warmest water flowing near the tube wall by—passing the sensing 

tip of the resistance thermometer. The situation was rectified by inserting simply 

fashioned devices into the emerging flow to cause mixing. A piece of stainless steel 

expanded mesh (s 12% open area) was fitted normal to the flow and immediately 

downstream of the tube exit. This was followed by two short sections of 

convoluted copper strip, 15 mm and 12 mm long respectively. The 12 mm copper 

section was in the shape of an eight—pointed star and push—fitted over the sensing 

tip of the platinum resistance thermometer to form a set of high—conductivity 

radial fins.

The high blockage and thermal conduction caused by these mixing elements 

tended to produce radial temperature uniformity in the test section outlet pipe, 

thus enabling the resistance thermometer to respond to the proper mixed—mean 

exit temperature. A fuller discussion is deferred to Section 6.3, but it is noted here
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that the overall energy balance error was reduced to tolerable levels in the tests 

performed subsequent to the installation of the mixing elements.

The third platinum resistance thermometer was mounted at mid—height on the 

test rig support frame and about 50 mm from the outside of the test section 

insulation jacket. The air temperature measured at this position was used in the 

estimation of the test section heat losses as discussed in Section 5.4.1.

5.3.5 Surface Temperature Measurements

A total of 14 Type K (nickel—chromium /  nickel—aluminium) thermocouples were 

attached to the test section for the measurement of surface temperatures. All the 

thermocouples were manufactured from the same bobbin of glass fibre insulated 

thermocouple cable, which comprised a pair of 40 swg (« 0.12 mm diameter) wires. 

The exposed measuring junctions were formed using a capacitance discharge 

thermocouple welding unit (Spembley Technical Products).

The measuring junctions of 12 thermocouples were spot—welded to the outer 

surface of the stainless steel tube using the capacitance discharge welder. As the 

axial temperature gradient on the tube wall was expected to be steep at the 

upstream end of the heated section, thermocouples were spaced at less than one 

tube diameter in this region. Axial spacing was gradually increased in the 

downstream direction up to a maximum of about 34 tube diameters. Alternate 

junctions were attached to diametrically opposite sides of the tube in an attempt 

to detect possible circumferential temperature variations. The axial locations of all 

the thermocouples used for tube wall temperature measurement are given in 

Table 5.1.

After spot—welding, the thermocouples were secured to the tube using 

self-adhesive patches and epoxy resin adhesive. The thermocouple wires leading 

from the junctions were wrapped around the tube circumference for a short
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Table 5.1 Axial locations of wall temperature measurement thermocouples.

thermocouple
position
number

axial distance from 
start of heated section 

mm

equivalent 
length—to-diameter 

ratio

1 3.7 0.31
2 10.1 0.85
3 29.1 2.45
4 67.2 5.65
5 118 9.92
6 194 16.3
7 397 33.4
8 601 50.5
9 804 67.6

10 1210 101.7
11 1617 135.9
12 1896 159.3

distance, following a roughly isothermal path, to minimise measurement errors due 

to heat conduction along the wires. Care was taken to ensure that exposed 

thermocouples wires were not touching each other or the tube surface, apart from 

at the measuring junction.

The two remaining thermocouples were used to monitor the temperatures of the 

copper flanges at each end of the test section. They were attached to the flanges 

approximately 20 mm from the outer surface of the tube.

The output voltages from thermocouples were measured and converted to 

temperature units by the data logger. Each thermocouple was routed to the logger 

via a connection box mounted on the test rig support frame, where a separate ice
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point reference junction1 was joined into the circuit. Type K thermocouple 

materials were used throughout, including the terminal block connectors in the 

junction box. All the reference junctions were held near the bottom of a stoppered 

test tube which was partly filled with silicone fluid. The test tube was immersed to 

a depth of approximately 140 mm in a mixture of melting ice and water contained 

in a wide—necked (s 90 mm diameter) vacuum flask fitted with a thick cork lid. 

Preliminary checks, using mercury—in-glass thermometers verified that the 

temperature of the reference junctions closely approached 0° C.

Because the measuring junctions of the thermocouples were in direct contact with 

the alternating current heated tube, two precautionary measures were taken to 

combat potential signal interference from this source. Partial rejection of common 

mode noise was achieved by providing links between the LO side of each 

thermocouple input signal and the floating internal guard section of the data 

logger. In addition, an integration period of 20 ms was selected for the 

analogue—to—digital conversion process, thereby virtually eliminating 50 Hz 

interference by averaging over one full cycle.

A sample thermocouple, made from Type K cable taken from the same bobbin, 

was calibrated against the resistance thermometer used for the ambient air 

temperature measurements (see Section 5.3.4). Both sensors were connected to the 

data logger and an ice point reference junction was provided for the thermocouple 

as described above. Comparisons were carried out at the ice and steam points and 

also at ten intermediate temperatures in a stirred constant temperature bath of 

ethanediol. The difference between the temperatures indicated by the resistance

initially, reference junction compensation was based on the temperature sensed by 
thermistors at the data logger input terminals. Extensive checks established that 
this method introduced unacceptably high errors (« 1 to 2° C) in the indicated 
temperatures and so it was abandoned in favour of using a separate external 
reference junction in each thermocouple circuit.
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thermometer and the thermocouple varied between 4- 0.13 K (in ice) and + 0.56 K 

(in steam). A 5th—degree polynomial was fitted to the calibration data 

representing this temperature difference as a function of the thermocouple reading. 

The polynomial was included in the experimental data reduction spreadsheet for 

calculating the corrections to be applied to the thermocouple measurements.

Evaluation of local heat transfer coefficients and Nusselt numbers strictly required 

the inside surface temperature of the tube wall, TWi, rather than the measured 

outside surface temperature, TWo. The temperature difference across the heated 

tube wall can be estimated from the following expression:

A T  __ T  T1 _  Q w d  i  d 0 2
A l w _  l Wo -  l wi -  ^ - [ ( d 02 - d i 2)-In idol

[arj
r
2 (5.1)

where qw is the heat flux at the inside surface of the tube and kw is the thermal 

conductivity of the tube material. Equation (5.1) assumes steady radial heat 

conduction only (i.e. no axial or circumferential temperature gradients), perfect 

thermal insulation at the outer surface, uniform kw and uniform volumetric heat 

generation throughout the tube wall. In the experiments heat fluxes of between 

1.64 kW /m 2 and 28 kW /m 2 were supplied. The corresponding range of values for 

ATW across the stainless steel (kw s 16 W /m K) wall was about 0.015 — 0.25 K. As 

the wall temperature differences were always less than 1 % of the difference 

between the average wall temperature and the arithmetic mean bulk temperature 

they were ignored in the data reduction calculations.

5.4 Factors Affecting the Experimental Thermal Boundary Condition

Direct resistance heating, as employed in the experimental tubular test section, 

attempts to simulate a thermal boundary condition of uniform heat flux (UHF) at 

the wall-fluid interface. Ideally, heat generation within the tube wall is envisaged 

to be peripherally and axially uniform, with heat transfer to the fluid inside the
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tube taking place by radial conduction, without loss or axial redistribution.

The characteristic wall temperature distribution for axisymmetric convection 

through a heated tube subjected to a UHF boundary condition is peripherally 

uniform, but varies in the flow direction due to the rising fluid bulk temperature 

and the nonuniform distribution of heat transfer coefficient associated with 

thermal and hydrodynamic development. Paradoxically, axial wall temperature 

variation gives rise to effects which prohibit the achievement of a strictly uniform 

surface heat flux in practice. In reality, the heat generated in each element of 

length of a conductive tube wall of finite thickness is, at steady state, balanced by 

heat transfer to the fluid inside the tube, heat losses to the surroundings and net 

axial heat conduction along the tube wall. The purpose of the following sections is 

to provide either quantitative or qualitative information on the effects of test 

section heat losses, temperature dependence of the tube wall resistivity and axial 

wall conduction on the magnitude and uniformity of the wall—fluid heat flux. The 

empirical heat loss data given here were used directly in the data reduction 

calculations, whereas the other factors are discussed to provide some background 

for the interpretation of the experimental results.

The possibility of temporal variation of the tube wall temperature due to the use 

of alternating current heating is considered in Section 5.4.4.

5.4.1 Test Section Heat Loss

In order to determine the surface heat flux into the fluid from the electrical power 

input measurements, some estimate of the test section heat loss was required. This 

information was provided by heat loss tests in which the electrical power inputs 

were measured for a range of test section temperature rises with no flow passing 

through the test section. In preparation for these tests, the rig was drained and a 

length (a 2 m) of softwood dowelling, sanded to give a sliding fit in the tube bore, 

was inserted to eliminate air convection inside the heated tube. All electrical and
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pipe connections, thermal insulation and instrumentation were replaced for the 

heat loss tests.

A total of seven heat loss tests were performed, covering a range of tube wall 

temperatures up to approximately 93° C. When steady conditions were attained 

(usually 1 to 2 hours), the data acquisition system recorded the measurements 

required to determine the heat loss and the average temperature rise of the test 

section. The quantities measured were the test section heating current and voltage 

drop, the ambient air temperature, Tamb, measured by a platinum resistance 

thermometer mounted near to the test section and the surface temperatures 

indicated by thermocouples attached at various axial locations along the heated 

test section. In the absence of convective cooling inside the heated tube electrical 

power input was minimal, allowing the heating current to be checked directly 

using a calibrated 0 — 10 A ammeter connected in series with the test section. An 

independent check on the voltage drop was given by a digital multimeter 

connected across the test section terminals. The power input determined from 

these auxiliary measurements was always within 1.4% of that indicated by the 

data acquisition system measurements.

Figure 5.4 shows a typical distribution of surface temperature measured along the 

test section in the heat loss tests, taken from the test with the highest power 

dissipation. The temperature is reasonably uniform, apart from at the ends of the 

test section, where strong conduction pathways to the power connection flanges are 

evident. However, for the purposes of heat loss estimation, it was considered 

sufficiently accurate to represent the test section temperature by an average value, 

TWm, given by the simple rectangular integral approximation

1 2
T„„ =  3 *i-‘> (5.2)

1 = 1
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Figure 5.4 Typical axial temperature distribution along test section in 
heat loss tests. (Qioss = 12.84 W).

In equation (5.2), L is the heated length of the test section, j denotes the 

thermocouple position number and xj-i and xJ+i are the axial distances from the 

upstream end of the heated test section given in Table 5.1. Results for the rate of 

heat loss from the test section, Qioss, (taken equal to the power input) for all the 

heat loss tests are plotted against the average test section temperature rise, 

(T .m — Tamb), in Figure 5.5. Linear regression was used to derive the following 

straight line equation representing the heat loss test results:

Qioss = 0.436 + 0.192 (TWm -  Tamb) W (5.3)

where the temperature difference is in kelvin. The small error in Qioss caused by 

not constraining equation (5.3) to pass through the origin is extremely small 

compared to the power input, which ranged from 120 W to over 2 kW in the main 

test series. The reciprocal value of the slope in equation (5.3) can be interpreted as
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an effective thermal resistance for heat losses; equal to 1/0.192 =  5.2 K/W. This 

value is approximately half that estimated for pure radial heat loss from the 

heated tube, based on the thickness and thermal conductivity of the glass fibre 

insulation alone. The difference is believed to reflect the additional loss caused by 

axial heat conduction to the attachments at each end of the test section. Although 

it combines both radial heat loss and axial end losses, it is emphasised that 

equation (5.3) is based on data from heat loss tests where the ratio of axial to 

radial losses and the wall temperature distributions were not truly representative 

of normal operating conditions. For example, with convective cooling inside the 

tube, the wall temperature increased continuously in the flow direction, giving a 

greater driving force for radial heat loss at the top of the test section than at the 

bottom. However, in the absence of other information allowing the separate 

characterization of radial and axial heat losses on a local basis, equation (5.3) was 

used to estimate the total test section heat loss for each experiment.

Figure 5.5 Variation of test section heat loss with average temperature
rise in heat loss tests.
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This loss was applied as an overall correction in calculating the average surface 

heat flux, qw, from the expression

Qw —
I V -

7rdL (5.4)

where *dL is the inside surface area of the heated test length and Ï and V are the 

rms values of the heating current and the voltage drop for the test section 

respectively. As the correction was less than 1.5% of the electrical power input in 

over 90% of the tests, the error caused by spatial averaging of heat losses was not 

considered to be serious. The heat loss correction assumed a greater importance 

(« 3%) for the lowest flow rate tests (Re « 100), since the power input required to 

produce a given test section temperature rise was less than at higher flow rates.

5.4.2 Temperature Dependence of Tube Wall Resistivity

Spatial uniformity of internal energy generation in the test section wall was of 

primary importance to the practical realization of a uniform heat flux boundary 

condition. The effect of the resistance temperature coefficient for the tube wall 

material on the local heat generation rate is considered below for the experimental 

conditions of this work. Nonuniformity of heat generation due to local variations of 

either wall thickness or material composition was considered negligible for the 

precision drawn stainless steel tube used in the experiments.

For ohmic heating, the local rate of energy generation per unit inside surface area 

is given by

_ _  Ï 2 dRe(x)
ïïx (5.5)

where I is the rms electric current and dRe(x) is the electrical resistance of an 

elemental length of tube dx.
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Assuming the electrical resistivity of the tube wall material to vary linearly with 

temperature and neglecting the radial temperature variation in the wall

dRe(x) — 60[l + a(TWx — T0)]
•‘ •■W

(5.6)

where e0 is the value of the resistivity at temperature T0, a is the temperature 

coefficient of the resistivity and Aw is the cross-sectional area of the tube wall. 

Substitution of equation (5.6) in equation (5.5) produces a relation between qWx 

and TWx which can be integrated to obtain the corresponding equation giving the 

length—averaged rate of energy generation per unit surface area qgm in terms of the 

average wall temperature TWm.

The degree of nonuniformity in the rate of energy generation can be expressed as 

the ratio of the difference between the local and average values of qg to the average 

value, given by

heat generation rate is greater when there is a large variation in the tube wall 

temperature. Such conditions can occur at either high flow rate or at low flow rate. 

In general, since the temperature coefficient a  is positive, qgx takes its minimum 

value at the heated test section inlet where the wall temperature is lowest. 

Downstream of the start of heating qgx increases, steeply at first, and eventually 

exceeds the average value qgm at axial positions where Twx > TWm. Furthermore, 

the nonuniformity depends not only on the difference between the extreme 

temperatures and the average temperature but also on the shape of the wall 

temperature distribution. This is illustrated by the two cases discussed below 

which were both characterised by a large variation of wall temperature.

(5.7)

Equation (5.7) confirms the expected result that the percentage variation of the
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In one extreme case (Test 13A) the test section wall temperature increased from 

28.4'C at the thermocouple position nearest to the start of heating (x/d = 0.31), 

reaching a maximum of approximately 8 5 'C around x/d  = 100, before falling and 

then rising again towards the end of the tube (see Figure 6.6(c)). The average wall 

temperature was 73° C. Using a = 0.001 K '1 for stainless steel, it can estimated 

from equation (5.7) that the local rate of energy generation in the tube wall varied 

from approximately 4% below (at x/d  =  0.31) to 1% above (at the position of the 

maximum temperature) the average value. In contrast, the wall temperature 

variation was reasonably linear in Test 15A (see Figure 6.3(b)) where minimum 

and maximum values of 21.9° C (at x/d = 0.31) and 92.7 °C (at x /d  =  159.3) were 

measured. The average wall temperature for the heated test section was 58.3° C in 

this case and equation (5.7) indicates that qgx varied within ± 3.5% of its average 

value.

5.4.3 Axial Wall Heat Conduction

Even if internal heat generation within the wall of an electrically heated tubular 

test section is substantially uniform, the heat flux at the wall—fluid interface can 

still suffer significant nonuniformity, particularly over a short length at the start of 

the thermal entry section. The mechanism responsible for this redistribution of 

energy is axial heat conduction along the tube wall.

In mathematical terms, axial wall conduction is directly proportional to dTw/dx, 

whereas, the departure from uniformity of the thermal boundary condition depends 

on the rate at which the axial flux varies with distance along the tube and is 

therefore governed by d2Tw/dx2. Consequently, the strongest influence of axial 

wall conduction is encountered at positions near to the start of the thermal 

entrance region where the axial wall temperature gradient changes most rapidly. 

In this region the wall—fluid heat transfer is less than the electrical heat input due 

to net upstream conduction along the tube wall. The surface heat flux increases 

rapidly with downstream distance and approaches the expected uniform value as
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the effect of axial wall conduction diminishes. For thermally developed conditions 

a strictly UHF boundary condition is achieved since a constant axial wall 

temperature gradient prevails.

In order to clarify the influence of axial wall conduction on the surface heat flux 

distribution, and also to reveal important parameters, the energy balance equation 

for the heat generating wall is derived below. In the following development, the 

tube wall is assumed to be sufficiently thin for radial temperature variation across 

the thickness, denoted by <$w, to be neglected. Internal heat generation within the 

tube wall is treated as a uniform heat source term, equal to qg per unit inside 

surface area. The outside surface of the tube is considered to be perfectly insulated 

and the wall is cooled by convection at the inside surface.

Adopting the same axisymmetrical coordinate system used elsewhere in this work, 

with x taken axially and y radially, yields the following energy balance equation 

for conduction in the tube wall:

kw<5wd2Tw 
d x 2 + qg -  0 (5.8)

where k is thermal conductivity, b is tube radius and the subscript w refers to the 

tube wall. When the dimensionless variables X =  x/b, Y =  y/b and 

6 =  (T — T0)/(qgb/k) are introduced, equation (5.8) becomes

K d2 #w d0'
W Y = 1 +  1 =  0 (5.9)

In equation (5.9), the first term represents axial wall conduction and 

K = (kw£w/kb) . A reduction in the value of the parameter K, by the use of a thin 

tube wall or a wall material of low thermal conductivity, helps to reduce the wall 

conduction effect, thus yielding a more uniform surface heat flux. The latter option 

is, however, clearly contradictory for an electrically conducting metal wall. The
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second and third terms in equation (5.9) represent the unknown local heat flux at 

the wall—fluid interface and internal heat generation respectively. Equation (5.9) 

emphasizes the coupling between wall heat conduction and convective heat 

transfer in the fluid. Although no attempt is made here to solve this conjugate 

conduction—convection problem, it is noted that equation (5.9) and the energy 

equation for the fluid region must be solved together, subject to the condition that 

0W = #y - i  f°r X. For the simultaneously developing conditions met in 

combined convection situations the complete problem formulation requires the 

parameters Pe, Pr and Grq/Re to be specified in addition to the axial wall 

conduction parameter K.

The effect of axial wall conduction on thermally developing forced convection with 

a parabolic velocity profile in a uniformly heated circular tube was investigated 

numerically by Faghri and Sparrow (1980) and Cotton and Jackson (1985); the 

first of these two contributions also considering the simultaneous effect of axial 

conduction in the fluid. The tube wall temperature distribution was taken to be 

one-dimensional, as described by equation (5.9), and the tube wall was treated as 

effectively infinite so that heat could be propogated upstream of the start of direct 

heating by axial conduction, thereby causing preheating of the fluid. These studies 

show that axial wall conduction can cause significant departures from UHF 

conditions for a short length immediately downstream of the start of direct 

heating. In broad terms, the solutions presented for this region are characterized 

by a reduction in the convective heat flux and the local Nusselt number and an 

increase in the fluid bulk and wall temperatures. Although their numerical results 

are not directly applicable, the findings of Faghri and Sparrow (1980) and Cotton 

and Jackson (1985) are nevertheless considered to have important implications for 

this work.

As mentioned in Section 5.2.2, a copper flange almost one tube diameter thick was 

attached to each end of the tubular test section to act as an electrical power
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connection. During the experiments it was evident that the upstream flange 

assumed a temperature higher than the water bulk temperature measured in the 

inlet reservoir and it is presumed that this warming was the result of axial heat 

conduction from the resistively heated tube. No corrections were made to the local 

bulk temperatures and wall—fluid heat fluxes to account for this wall conduction 

effect when calculating the experimental Nusselt numbers and this must be borne 

in mind when examining the results.

5.4.4 Wall Temperature Oscillations Due to AC Heating

Alternating current, rather than direct current, was chosen for resistance heating 

of the test section, partly for the convenience of using the mains supply to generate 

the required heavy heating current. A further factor influencing this choice was the 

capability of the measurement system to reject mains frequency AC interference 

which would otherwise have caused errors in the temperatures indicated by the 

thermocouples attached to the test section.

The volumetric heat generation rate of a sinusoidally varying electric current 

varies between zero and twice its average value, at two times the supply frequency. 

It is of interest to know if significant temporal variation of the test section 

temperatures resulted from thermal energy storage in the tube wall over each half 

cycle, even if not reported by the data acquisition system because of time 

averaging.

For a given conductor (i.e. fixed dimensions and material properties) the 

magnitude of the temperature oscillations depends on the convective heat transfer 

coefficient at the cooled surface. A lumped-system analysis of the wall 

temperature oscillations experienced by a thin wall heated by alternating current, 

insulated on one surface and convectively cooled at the other is presented in 

Appendic C. This simple analysis indicates that the amplitude of tube wall 

temperature oscillations was negligible (normally much smaller than 0.25% of the
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wall—to—bulk temperature difference) under all experimental conditions in this

work. This conclusion is confirmed by the results of the distributed analysis made

by Jeglic et al (1980) for the same problem.

5.5 Test Procedure and Precautions

The procedure listed below was followed throughout the main test series:

i) A flow of mains water was established through the test rig flow circuit, 

with no heating applied to the test section, and the bleed valves were 

operated to release any entrapped air.

ii) The vacuum flask housing the thermocouple reference junctions was 

filled with a fresh mixture of melting ice and water and left to 

equilibrate. During this period the outputs of the tube wall 

thermocouples were monitored to check that they approached the inlet 

bulk temperature of the water measured by the resistance thermometer 

in the test section inlet reservoir. This provided a check on the 

consistency of the temperature measurements.

iii) The desired test flow rate was set using the graduations on the 

rotameters as a guide. Occasionally at this stage, a check was made on 

the Pelton wheel flowmeter calibration using the collection method 

described in Section 5.3.2.

iv) To commence a test, electrical power to the test section was switched on 

and increased to the desired level. To prevent boiling the maximum 

power used at each flow rate was limited so that the wall temperatures 

near the exit from the heated test section did not exceed 95° C.
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During a test, all the measured quantities were scanned automatically by 

the data logger every 15 seconds and the readings were directed to the 

microcomputer to refresh the display on the monitor screen. At any 

stage, a set of readings could be stored in a disk file which could be 

imported into a spreadsheet program for a full data reduction; including 

calculation of the energy balance error.

A period of not less than 1 $ hours (usually over 2 hours) was allowed to 

elapse before a final set of readings was taken. It should be emphasised 

that, irrespective of the time allowed for steady conditions to be 

achieved, tube wall and exit bulk temperatures continued to exhibit 

fluctuations (about a mean value) in many tests. For this reason, the 

practice was adopted of logging 20 readings for each measured quantity 

at 15 s intervals over a 5 minute period from which an average value was 

found.

During testing, the ice point reference was frequently checked and 

melted ice was replenished to ensure that the reference temperature was 

maintained.

In an attempt to randomise extraneous variable influences, both the flow 

rate and the test section power input were normally changed for each 

test, except in the sequences Tests 26A — 30A and Tests 31A — 34A 

where the flow rate was kept approximately constant in each case (see 

Table E.l).



CHAPTER 6

EXPERIMENTAL RESULTS

6.1 Range of Tests

This chapter documents the experimental results obtained in a series of tests 

performed to measure the axial variation of local Nusselt number for water flowing 

vertically upward through a uniformly heated circular tube, almost 160 diameters 

long, at low values of the Reynolds number. The experimental apparatus, which is 

fully described in Chapter 5, was operated over a range of flow rates and wall heat 

fluxes, creating aiding combined forced and natural convection conditions inside 

the tube with simultaneously developing hydrodynamic and thermal fields.

The primary intention of the experimental programme was to obtain 

representative test data to allow comparison with the numerical predictions, rather 

than to develop empirical correlations. Consequently, the amount of data collected 

is somewhat limited. The main test series comprised 35 individual tests, covering 

seven nominal flow rates and normally four or five heat flux levels at each flow 

rate. For the lowest flow rate (« 0.045 litre/minute), however, a wall—to—bulk 

temperature difference of approximately 6 K was sufficient to raise the the wall 

temperature to over 90° C near the tube exit. To prevent boiling of the water and 

also to maintain reasonable accuracy in the determination of the local temperature 

driving force, testing was restricted to only two values of heat flux at this 

minimum flow rate. Tests 6A —35A1 provide the main heat transfer results 

reported in Section 6.4 below. The results for the first five tests in the series have 

been omitted because the measurement data recording technique used was not 

fully established at the time these tests were made. Moreover, the same test 

conditions were repeated later in the series.

!The test number indicates the chronological order of testing and the appended A 
is a reminder that the results for these tests are based on averages of 20 readings 
taken for each measured quantity at 15 s intervals over a 5 minute period.
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The ranges of the operating conditions investigated in Tests 6A — 35A are shown 

below:

Volume flow rate:
Wall heat flux:
Inlet bulk temperature:

V =  0.045 — 0.78 litre/minute 
qw = 1.64 -2 8 .7  kW /m 2 

Tbo = 11.9-17.6° C

The values of V, qw and Tbo for each test are given in Appendix E, Table E.l.

The range of inlet bulk temperature given above simply reflects the test—to—test 

differences in the temperature of the mains water supply connected to the 

open—circuit flow system, since no provision was made for independently setting 

Tbo. Consequently, although remaining virtually constant for each test, the 

Prandtl number (denoted by Pr) of the water entering the test section was not 

exactly the same for all tests. More significantly, the change of Prandtl number 

corresponding to the bulk temperature rise along the heated tube was, in the 

majority of tests, greater than ( by a factor of over 4 times in extreme cases) the 

range of inlet Prandtl number encountered in the tests.

The temperature sensitivity of the dimensionless parameter values, due mainly to 

the viscosity change for water, is further emphasised in Table 6.1, where the ranges 

of Reynolds number, Prandtl number, the heat flux based Grashof number, defined 

as Grq =  g/?p2d4qw//z2k, and the buoyancy parameter Grq/Re are tabulated. 

Table 6.1 lists three values for both the minimum and the maximum limits of each 

parameter, corresponding to the use of the following different reference 

temperatures for the evaluation of fluid properties:

i) Tb0 " inlet bulk temperature;

ii) Tbm - arithm etic m ean of the in let and exit bulk tem peratures;

iii) T fm " arithm etic m ean of T bm and the average tube  

tem perature T Wm.
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Table 6.1 Ranges of Reynolds number, Prandtl number, heat flux based 
Grashof number and buoyancy parameter Grq/Re for 
Tests 6A -  35A.

Dimensionless
Parameter

Property
Reference

Temperature

Minimum 
Value 

(Test No.)

Maximum 
Value 

(Test No.)

T b 0 75 (15A) 1181 (20A)
Re T bm 119 (10A) 1784 (13A)

T fm 124 (10A) 2606 (3A)

T b 0 7.42 (24A) 8.77 (16A)
Pr T bm 3.42 (15A) 8.22 (16A)

T fm 3.03 (32A) 7.34 (16A)

T b 0 6.72 x 104 (19A) 1.16 x 10« (30A)
Grq T bm 1.07 x 105(16A) 7.97 x IO« (25A)

T fm 1.49 x 105 (2 1A) 1.77 x IO7 (30A)

T b 0 70.8 (16A) 2.07 x 103 (15A)
Grq/Re T bm 92.1 (16A) 1.02 x 104 (15A)

Tfm 134 (16A) 1 .1 1  x 104 (15A)

Table 6.1 also lists the corresponding test number against each extreme value to 

illustrate that, in some cases, this is not independent of the reference temperature 

adopted. The information given in Table 6.1 is extracted from Tables E.2 — E.4 in 

Appendix E, which summarise the values of various dimensionless parameters for 

Tests 6A — 35A, with fluid properties evaluated at Tb0, Tbm and Tfm respectively.

As shown in Table 6.1, the tests covered a wide range of the nominally laminar 

flow regime. Notwithstanding the magnitude of the Reynolds number, strong 

fluctuations of the tube wall and exit bulk temperatures were noticed in some tests 

conducted during the main test series (Tests 6A — 35A). Additional tests 

(Tests 36 — 43) were carried out to obtain transient records of the fluctuating
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quantities at various operating conditions and examples of these measurements are 

shown in Section 6.5.

6.2 Experimental Data Reduction

For each test, the raw measurement data values captured by the data acquisition 

system were saved in a data file (TESTn.LOG). This log file was of a similar 

format to that shown in Figure 5.3, but also contained information on the mean 

value and standard deviation for each of the 20 measured quantities, calculated 

(by the data logger) from readings accumulated over a specified number of scans.

The experimental data reduction calculations were reasonably straightforward and 

were based on the average values referred to above. A special spreadsheet program 

was developed to import and interpret the data files and perform all the necessary 

computations. The data reduction procedure, including all the formulae used, is 

illustrated by a specimen calculation in Appendix D, where a sample spreadsheet 

output is also shown. Equations (B.l), (B.3) and (B.5)—(B.7) of Appendix B were 

used to evaluate the fluid properties p, k, c, p and ft respectively.

It is emphasised that the wall heat flux used to calculate the local Nusselt number 

Nux was based on the electrical energy input to the test section (corrected for heat 

losses) and not on the measured energy rise of the water. Futhermore, the 

wall—fluid thermal boundary condition was assumed to conform to a uniform heat 

flux (UHF) and taken equal to the corrected energy input averaged over the inside 

surface area of the heated tube. Accordingly, no attempt was made to correct for 

the effects of axial wall conduction or for nonuniform heat generation in the tube 

wall due to temperature dependence of the tube material resistivity.

6.3 Energy Balance Results

An apparent energy balance error can be defined as the difference between the 

energy rise of the fluid, indicated by the measured bulk temperature rise
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(A T b)m eas, and the energy input to the test section (corrected for heat losses). In 

percentage terms, this error is given by

% energy balance error = 100 [Qmeas -  Qcorr]/Qcorr (6.1 )

where Qmeas =  PoVcbm(ATb)meas- The corrected rate of energy input, denoted by 

Qcorr, was found from Qcorr = IV — Qioss, where the product IV gives the test 

section electrical power input and Qioss is the rate of heat loss estimated from the 

empirically determined equation (5.3).

Values of the percentage energy balance error for Tests 6A -  35A, calculated from 

equation (6.1), varied between + 3.2% and — 12.5% and are shown in Appendix E, 

Table E .l. Infact, the error was within ± 4% for almost two—thirds of the tests. A 

plot of Qmeas versus Qcorr for all the tests is shown in Figure 6.1 .

Figure 6.1 Comparison of measured fluid energy rise with corrected
energy input for Tests 6A — 35A.
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The level of agreement achieved in the energy balance (see Figure 6.1) is 

considered to be satisfactory, particularly in view of the earlier problem 

experienced with the measurement of exit bulk temperature discussed in 

Section 5.3.4. Closer examination of Table E.l reveals that, at all flow rates other 

than the two lowest, the energy balance error tended to become increasingly 

negative as the heat flux was decreased. The equivalent trend is also seen in 

Figure 6.2, where the percentage energy balance error is plotted against the bulk 

temperature rise based on the corrected rate of energy input. The reason for this 

behaviour, suggesting a systematic error that assumes greater importance as ATb 

decreases, is unknown.

Figure 6.2 Energy balance error versus corrected bulk temperature rise
for Tests 6A — 35A.

As shown in Figure 6.2, rather unrealistic positive energy balance errors were 

found for the tests at the lowest two flow rates and no particular pattern can be 

discerned with regard to the effect of heat flux in these cases. This is, at least
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partly, attributable to the straight line calibration law used for the turbine 

flowmeter, which is known to have overestimated the flow rate, and hence Qmeas, 

for small values of V.

Finally, it is stressed that the measured exit bulk temperature was only employed 

in the calculation of the energy balance error, as discussed above, and was not used 

to determine local Nusselt numbers.

6.4 Heat Transfer Results

Experimental results of two types are presented in graphical form in this section:

i) Measured tube wall temperature profiles. Selected plots of the local tube 

wall temperatures versus dimensionless axial distance x/d  are shown in 

Section 6.4.1.

ii) Local Nusselt number variations with dimensionless axial distance x*. 

The local experimental Nux results for Tests 6A — 35A are summarised 

in Section 6.4.2.

Both the dimensionless axial distances, x/d and x* [= (x/d)/RePr], referred to 

above are based on the distance x measured from the start of the heated section. In 

each of the graphs presented in this section the values of the Reynolds number Re 

and the heat flux based Grashof number Grq are given with the fluid properties 

evaluated at the inlet bulk temperature.

6.4.1 Local Tube Wall Temperature

Sequences of graphs are shown below to illustrate the influence of heat flux on the 

wall temperature profile for approximately constant flow rates. Only four different 

flow rates are considered, the intention being to cover the range of parameters 

rather than to be exhaustive. Figures 6.3(a) and (b) and Figures 6.6(a)—(c) relate 

to the lowest and the highest flow rate tests respectively and Figures 6.4(a)—(c)
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and Figures 6.5(a)—(c) present the same type of information for two intermediate 

flow rates. For each flow rate, graphs are presented for the minimum and 

maximum heat flux values and in the case of Figures 6.4 — 6.6 one intermediate 

heat flux. All these graphs are plotted to the same scale to aid comparison and also 

show the linear variation of fluid bulk temperature appropriate to the assumed 

UHF boundary condition in each case. In addition, the measured bulk 

temperatures at inlet and exit are plotted for comparison with the corrected bulk 

temperature rise, giving a further illustration of the magnitude of the energy 

balance error. Apart from the application of thermocouple calibration corrections 

the local wall temperatures plotted in Figures 6.3 — 6.6 are basically the measured 

data values and, although time—averaged, they have not been subjected to any 

spatial smoothing.

From inspection of Figures 6.3 — 6.6 the following observations are noted:

i) The measured wall temperatures do not appear to approach the fluid 

bulk temperature at x = 0, as ideally expected for a UHF boundary 

condition. This is believed to be due to the influence of axial heat 

conduction from the heated tube to the upstream power connection 

flange. As mentioned in Section 5.4.3, the temperatures measured on this 

flange (not plotted on Figures 6.3 — 6.6), also exceeded the measured 

inlet bulk temperature, indicating that preheating of the fluid occurred 

upstream of the x = 0 position.

ii) With the exception of the departure noted in i) above, the measured wall 

temperatures in the low heat flux tests are seen to vary with axial 

distance in a manner resembling that expected for forced convection 

under uniform heat flux conditions. Initially, the wall temperature rises 

steeply and eventually a wall temperature gradient is established that is 

roughly parallel to the linear bulk temperature rise. The figures clearly
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show, as expected, that the axial distance necessary for this development 

increases with the Reynolds number.

iii) At higher heat fluxes, the wall—to—bulk temperature differences undergo 

a pronounced decrease in the downstream portion of the tube, indicating 

an improvement in heat transfer. This is evident from the local Nusselt 

number variations which are presented in the next section. On reflection, 

it is considered that closer spacing of the thermocouples in this region 

would have been helpful in resolving the shape of the wall temperature 

profiles for these tests.

Finally it is noted that the measured wall temperature profiles shown in

Figures 6.5(a)—(c) are compared with numerical predictions in Section 7.1.2.
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Figure 6.3 Effect of heat flux on wall and bulk temperatures,
(Re = 75 -  81): (a) Grq = 7.96 x 10«, (b) Grq = 1.55 x 10».
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6.4.2 Local Nusselt Number

Figures 6.7 — 6.13 show how the local Nusselt number Nux varied with the 

dimensionless coordinate x* in Tests 6A — 35A. Each figure summarises the effect 

of increasing the Grashof number for one of the seven different flow rates covered 

by the test series. The inlet Reynolds number is therefore approximately the same 

for the graphs on each figure. In Figures 6.7 — 6.13 all fluid properties are 

evaluated at Tb0, the inlet bulk temperature, although, as demonstrated by 

Barozzi et al (1982), the choice of reference temperature does not strongly affect 

the position of the plotted points for water.

For a constant flow rate, the experimental Nux values for the different Grashof 

numbers decline along approximately the same line at low x*, in a manner similar 

to that for pure forced convection. As the dimensionless axial distance x* increases 

the data show a strong influence of Grashof number; Nux increasing with Grq at a 

fixed x*. For sufficiently large values of Grq, the decline in Nux with x* is arrested 

and followed by a "tail—up" behaviour.

Numerical predictions of Nux made for some of the test conditions are compared 

with the experimental results in Section 7.1.1.
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Figure 6.11 Variation of local Nusselt number with x* for five values of
Grashof number, (Re = 609 — 687).

Figure 6.12 Variation of local Nusselt number with x* for five values of
Grashof number, (Re = 955 — 976).
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Figure 6.13 Variation of local Nusselt number with x* for five values of
Grashof number, (Re =  1098 — 1181).

6.5 Wall and Fluid Temperature Fluctuations

To obtain additional information about the fluctuating temperatures observed 

during the main test series, a further 8 tests (Tests 36 — 43) were performed. In 

these tests, all inputs to the data acquisition system were scanned and the 

measurements recorded every 1 s for a period of 4 minutes. Although the data 

logger was capable of much faster scanning rates, the scanning interval of 1 s was 

chosen to allow sufficient integration time for the best possible measurement 

accuracy to be achieved. The 4 minute scanning period was dictated by the 

maximum number of readings per channel which could be stored and averaged by 

the data logger.

Three different flow rates (V = 0.055, 0.44 and 0.82 litre/minute) were used in 

Tests 36 — 43, covering approximately the same overall range as the main test 

series. At the maximum and minimum flow rates, measurements were made at one
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"low" value of the heat flux and one "high" value. For the intermediate flow rate, 

four heat flux levels were employed. Only the results for Test 36, from the middle 

of the flow rate—heat flux range, are included here. To avoid overlapping traces, 

Figure 6.14 shows a separate plot of the local wall temperature variations with 

time for each of the 12 thermocouple positions along the test section. The 

corresponding fluctuations of the exit bulk temperature for Test 36 are shown in 

Figure 6.15. Figures 6.14 and 6.15 were constructed by simply linking the 241 

values recorded for each temperature during the scanning period to produce a 

quasi—continuous record. In each case, the position at which the abscissa crosses 

the ordinate is used to indicate the mean value and the standard deviation is 

shown on the plot. In Figure 6.14, successive plots should be staggered by 25 ms 

(undetectable on the scale plotted) to account for the time difference between the 

individual measurements at 40 channels per second.

The sample wall temperature records shown in Figure 6.14 exhibit fluctuations 

characteristic of those seen over a range of conditions. However, the magnitude of 

the fluctuations observed in Tests 36 — 43 varied considerably, generally increasing 

with both heat flux and flow rate.

Although shorter wavelength fluctuations of small magnitude also appear to be 

present, the wall temperature records for the lower half of the heated tube in Test 

36, shown in Figure 6.14, are dominated by occasional large excursions below the 

average value. Over this length of the tube the fluctuations initially increase with 

axial distance and then decay to their original level. Furthermore, a strong 

correlation can be seen between the temperature records obtained for the 

thermocouples positioned at x/d = 0.85, 5.65, 16.3 and possibly 50.5 also. A 

correlation is also evident between the records for x/d = 2.45, 9.92 and 33.4. 

Recalling that alternate thermocouples were attached to diametrically opposite 

sides of the tube, these correlations are taken to provide strong evidence of 

asymmetric flow in the tube.
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Figure 6.14 Local wall temperature fluctuations for Test 36, Re = 824
and Grq = 1.06 x 108 (inlet bulk properties).
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Figure 6.15 Exit bulk temperature fluctuations for Test 36, Re = 824 and
Grq =  1.06 x 108 (inlet bulk properties).

For the upper half of the tube, rapid and irregular wall temperature fluctuations of 

larger amplitude, exemplified in Figure 6.14, were observed in many tests.

The wall temperature fluctuation measurements made are considered to be of only 

a preliminary nature. Nevertheless, they demonstrate the feasibility of the 

technique employed, which could be exploited in subsequent work.

- 1 9 8 -



PART 4

INTERPRETATION
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CHAPTER 7

DISCUSSION OF RESULTS

7.1 Comparison of Numerical Predictions with Experimental Results

Numerical solutions for thermally and hydrodynamically developing upflow of 

water through a uniformly heated circular tube have been obtained for selected 

conditions corresponding to specific tests conducted in the experimental 

programme. Predicted axial variations of local Nusselt number and tube wall 

temperature are compared with experimentally determined values in Sections 7.1.1 

and 7.1.2 respectively.

All the computations were performed using the computer program listed in 

Appendix F, which embodies the marching finite—difference procedure described in 

Chapter 3. Because of its particular appropriateness to the assumed UHF thermal 

boundary condition, the integral energy balance equation (3.36 or 3.75) was 

invoked for the solution of the temperature profile at each axial step. This ensured 

rigid adherence to the correct bulk temperature variation along the tube. Viscous 

dissipation was neglected in all cases. The option to include in the solution the 

effect of fluid property variation with temperature was chosen for all properties. 

Polynomial equations describing the property variations of liquid water, given in 

Appendix B, were used.

The same finite-difference grid was used for all computer runs corresponding to 

experimental conditions. A uniform grid spacing with 80 divisions was used in the 

transverse (radial) direction. In the axial direction a nonuniform grid spacing was 

used to locate more grid points in the region from the tube entrance to beyond the 

start of heating. As mentioned in Section 5.2.1, the axial position of the 

commencement of thermal development was not coincident with that for 

hydrodynamic development in the experimental set-up. A short adiabatic starting 

length, equal to 2.5 tube diameters, was allowed in each computation for partial
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development of the initially uniform entrance flow upstream of the heated section. 

Notwithstanding this addition to the total marching length, the dimensionless 

axial distances x/d  and x* [= (x/d)/RePr] used here are based on the distance 

measured in the marching direction from the start of the heated section.

An initial axial marching step size AX [= x/b] of 0.1 was used; equivalent to 1/20 

of the tube diameter. This was increased to 0.125 after 5 steps. Thereafter, AX 

was doubled at axial positions 5.0, 20.0 and 52.5 tube diameters from the start of 

marching. Thus, the largest axial step was equal to half the tube diameter and 551 

steps in total were required to reach the end of the heated tube.

7.1.1 Local Nusselt Number Comparisons

Predicted and experimental data for the variation of local Nusselt number with the 

dimensionless axial distance x* are compared in Figures 7.1 — 7.4. The 

experimental Nux versus x* data shown in this series of figures were selected to 

span the ranges of Re and Grq covered in the experimental programme and 

constitute only about one—third of the available test data (see Figures 6.7 — 6.13). 

Tests for approximately equal inlet Reynolds numbers are grouped on each figure. 

To improve clarity, the comparisons presented for each Reynolds number are 

limited to the minimum and maximum values, and also one intermediate value in 

Figures 7.2 — 7.4, of the Grashof number range covered in the experiments. The 

fluid properties used to evaluate Nux, x* and the parameters Re and Grq displayed 

in Figures 7.1 — 7.4 were taken at the inlet bulk temperature of the water.

In some computations, for conditions corresponding to specific tests, it was 

predicted that flow reversal would occur along the tube centreline at some axial 

position within the heated tube. As might be expected, the predicted axial position 

of flow reversal moved nearer to the start of heating when the Grashof number was 

increased for the same Reynolds number. For conditions corresponding to the two 

lowest Reynolds number tests (Re = 75 and 81), shown in Figure 7.1, flow reversal
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Figure 7.1 Comparison of predicted and experimental Nusselt numbers
for two values of Grashof number, (Re = 75 — 81).

Figure 7.2 Comparison of predicted and experimental Nusselt numbers 
at three values of Grashof number, (Re = 296 — 321).
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was predicted in both cases: at x/d  = 73.5 for Grq = 7.96 x 104 (Test 10A) and at 

x /d  =  11.5 for Grq =  1.55 x 105 (Test 15A). The corresponding values of the 

buoyancy parameter Grq/Re for these two tests were 980 and 2069 respectively. 

For the conditions considered in Figures 7.2 and 7.3 flow reversals were only found 

for the two highest Grashof numbers in each case. No flow reversals were predicted 

within the heated tube for the conditions considered in Figure 7.4. The axial 

positions of the predicted flow reversals for the cases illustrated in Figures 7.1 —

7.3 are summarised in Table 7.1, where the results are arranged in order of 

increasing values of Grq/Re. All the dimensionless groups in Table 7.1 are 

evaluated at the inlet bulk temperature Tb0, although the same order is preserved 

when either Tbm or Tfm is used.

Table 7.1 Predicted axial distances to flow 
corresponding to specific experiments.

reversal for conditions

Test No. Re Grq Grq/Re (x/d)fi°w
reversal

7A 296 1.72 x 10® 581 157.0
6A 609 3.78 x 105 620 134.5
10A 81.2 7.96 x 104 980 73.5
12A 309 3.36 x 105 1090 54.0
25A 687 1.03 x 106 1500 69.0
15A 74.9 1.55 x 105 2070 11.5

In common with previous workers (Sherwin and Wallis, 1970; Ogunba, (1972); 

Collins, 1978; El—Shaarawi and Sarhan, 1980; Aung and Worku, 1986a), it was 

found that marching computations of combined convection duct flows could be 

continued for some distance beyond the onset of flow reversal before becoming 

unstable. However, the Nux versus x* predictions shown in Figures 7.1 — 7.4 are 

truncated at the axial position where negative values of the axial velocity first 

appeared.
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Figure 7.3 Comparison of predicted and experimental Nusselt numbers
at three values of Grashof number, (Re = 609 — 687).

Figure 7.4 Comparison of predicted and experimental Nusselt numbers
at three values of Grashof number, (Re =  1098 — 1143).
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Considering the comparisons shown in Figures 7.1 — 7.4 collectively, the numerical 

solutions show pleasing agreement with respect to both the magnitudes and the 

trends found experimentally. In each figure, for only a slight variation in the 

Reynolds number, the predicted local Nusselt numbers at any axial location 

demonstrate a consistent increase for a progressively increasing buoyancy effect. 

All the predicted curves exhibit an initial decrease in Nux with x*, although the 

decline is less rapid than for pure forced convection with constant properties. This 

departure is as expected for solutions including the effects of the viscosity and 

density variations of water with temperature. In all cases other than Test 16A 

(Figure 7.4) and Test 18A (Figure 7.3), the predicted Nux versus x* variation falls 

to a minimum and then rises until either the end of the heated tube or a flow 

reversal is encountered. The axial positions of the predicted Nux minima are in 

reasonable agreement with the experimental results and move closer to the start of 

heating as Grq increases for a constant Reynolds number.

The marked overprediction of the experimental Nux results at the two 

measurement positions located within one tube diameter of the start of heating 

(x/d =  0.31 and x/d  =  0.85) deserves comment. Similar differences noted by 

Shumway and McEligot (1971) for laminar gas flow in a resistively heated tube 

were attributed to upstream heating caused by axial wall conduction and 

radiation. Barozzi et al (1982, 1984) also found that numerically predicted Nusselt 

numbers exceeded their experimental data near to the start of a simultaneously 

developing flow of water in a vertical tube subjected to a uniform heat flux 

distribution. They hypothesised that the lower values of Nux found in practice 

were caused by a vena contracta formed immediately downstream of the 

sharp-edged tube entry used in their experiment. This seems a less plausible 

explanation for the present experimental set-up, where a rounded tube entry 

followed by a parallel section 2.5 tube diameters long preceeded the start of 

heating. Although the presence of a separated flow region cannot be entirely 

discounted without further evidence, the influence of axial conduction seems to be
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a more likely reason for the deviations seen in this work for x /d  < 1 .0. A brief 

introduction to the topic of finite axial wall conduction is given in Section 5.4.3.

Axial conduction causes upstream heating of the tube wall, which preheats the 

fluid above the inlet bulk temperature in the region for x < 0. This preheating is of 

course achieved at the expense of maintaining a uniform heat flux immediately 

downstream of the x =  0 position. As clearly shown by the numerical studies of 

Faghri and Sparrow (1980) and Cotton and Jackson (1985), the effective upstream 

shift in the origin of thermal development due to axial conduction results in a 

significant initial decrease in the local Nusselt number in the directly heated 

section. This is consistent with the deviations seen in Figures 7.1 — 7.4, thus 

tending to confirm the preferred explanation given here.

The above discussion highlights the difficulty of achieving a strict UHF thermal 

boundary condition experimentally, pointing to differences between the conditions 

assumed in making the predictions and those obtaining in the physical experiment. 

As already noted in Section 6.2, no corrections were made for axial wall conduction 

in the experimental local Nusselt numbers, which are based on an averaged wall 

heat flux and assume a linear rise in fluid bulk temperature between x =  0 and 

x = L. Should any adjustments have been made to the experimental results to 

correct the local bulk temperatures and heat fluxes for the effects of axial 

conduction then corresponding modification of the theoretical model would have 

been necessary in order to make a valid comparison. The effects of axial wall 

conduction are further discussed in Section 7.1.2.

It is probable that the accuracy of the experimental Nux results evaluated for the 

furthest downstream position (thermocouple position 12 ), located approximately 

1/3 of a tube diameter from the end of the heated section, is also impaired by axial 

conduction because of heat loss through the adjacent power connection flange.
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Where the predictions extend sufficiently far downstream of the minimum Nux 

position to allow comparison with the experimental data, a divergence is noted at 

higher Grashof numbers, with the latter achieving significantly larger values near 

to the end of the heated tube. This is most clearly illustrated by Tests 6A, 7A and 

13A. Barozzi et al (1984) noticed a similar "tail—up" behaviour with very high 

experimental Nux, relating this to transition from laminar flow brought about by 

instability of the buoyancy—distorted axial velocity profile. In an earlier study 

Kemeny and Somers (1962) reported increases in local heat transfer coefficients for 

combined convection flows of water and transformer oil (up to 30% in the latter 

case) under conditions referred to as nonlaminar, evidenced by wall temperature 

variations and fluid temperature fluctuations. These nonlaminar conditions were 

reported for Reynolds numbers in excess of 200 in the case of water and down to 

below 10 for the oil. The large wall temperature fluctuations and the sharply 

increased local Nusselt numbers found towards the end of the test section in this 

work are qualitatively consistent with the findings of the previous researchers 

mentioned above. A fuller discussion of the wall temperature fluctuations is 

presented in Section 7.1.2.

For the low Reynolds number (Re = 75 and 81) test results shown in Figure 7.1, 

the experimental numbers follow a markedly different pattern downstream of the 

minimum Nux position; showing a limited increase to a second turning point then 

decreasing over the remainder of the heated length. It should be noted that this 

description disregards the higher experimental Nux values displayed for the 

measurement position closest to the end of the heated tube (x/d =159.3), which 

are considered suspect for the reasons given earlier.

7.1.2 Wall Temperature Comparisons

For a given uniform heat flux boundary condition, determination of the resulting 

wall temperature distribution is of interest from an engineering viewpoint.
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A sample comparison of predicted and measured wall temperatures is provided in 

Figures 7.5(a)—(c) covering three values of the Grashof number for an 

approximately constant inlet Reynolds number (Re = 609 — 687). Flow reversals 

were predicted for the intermediate and highest values of the Grashof number and 

the marching solutions presented are truncated accordingly: at x/d  = 134.5 for Grq 

= 3.78 x 106 and at x/d = 69 for Grq =  1.03 x 10® (inlet bulk properties).

The level of agreement between predicted and experimental wall temperature 

profiles in Figures 7.5(a)—(c) appears satisfactory, especially in view of the 

uncertainties attaching to the measured values; notably due to under-sampling of 

the fluctuating thermocouple signals. However, it should be borne in mind that, 

regardless of the method of presentation (i.e. linear or logarithmic), the ratio of the 

predicted and experimental wall—to-bulk temperature differences is exactly equal 

to the inverse ratio of the corresponding Nusselt numbers. For example, the 

overprediction of local Nusselt numbers at x/d = 0.31 and x/d = 0.85, seen in 

Figures 7.1 — 7.4, results directly from an underprediction of the wall temperatures 

at these axial positions. Such differences are present in Figures 7.5(a)—(c) but 

cannot be easily detected because of the horizontal scale. In the predicted 

variations the tube wall temperature falls steeply to the inlet bulk temperature at 

x =  0. In contrast, scrutiny of the temperatures recorded for the lower power 

connection flange indicates that the tube wall temperature at x = 0 was invariably 

higher (by 0.5 — 5.7° C depending on the heat flux) than the measured inlet bulk 

temperature of the water. This is taken as direct confirmation of axial conduction 

from the heated tube as suggested in Section 7.1.1. Since the power connection 

flange was of copper and 10 mm thick it is safe to assume that it achieved an 

approximately uniform temperature. This would have caused preheating of the 

water for almost one diameter upstream of the start of the directly heated section, 

giving a bulk temperature at x = 0 somewhat higher than the measured inlet 

temperature Tb0. In the experimental data reduction, no account was taken of this 

temperature rise or of the reduced heat flux in the region immediately downstream
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of the start of heating arising from axial wall conduction. However, it is pointed 

out that these two effects contributed errors of opposite sign in the evaluation of 

local Nusselt number. In future work, it is intended to make modifications to the 

computer program to permit variable wall temperature boundary conditions to be 

specified. Measured wall temperatures could then be used as input data, thereby 

ensuring that the conditions assumed in the predictions are consistent with the 

experiments. For full comparability, however, correction of the local bulk 

temperature and heat flux values will be necessary in determining the 

experimental Nux values.

In Figures 7.5(b) and (c) the difference between the measured wall temperature 

and the fluid bulk temperature (i.e the local temperature driving force) undergoes 

a marked reduction in the downstream half of the test section, reflected by the 

higher downstream Nux values seen in Figure 7.3. From a perusal of Figures 7.5(b) 

and (c), and other experimental wall temperature data presented in Figures 6.4 — 

6.6, it can be deduced that for the Reynolds numbers where a reduction in the 

wall—to-bulk temperature difference is apparent, this effect becomes more 

dramatic with increase of Grq. Moreover, the reduction appears to coincide with a 

portion of the tube where strong wall temperature fluctuations, exemplified in 

Figure 6.14, were evident in some tests. The magnitude of the temperature 

fluctuations and the length of the affected zone both showed a general tendency to 

increase with Grq. When the fluctuations were sufficiently large the exit bulk 

temperature also varied, as shown in Figure 6.15. It is surmised that associated 

fluid fluctuations were responsible for enhancing the heat transfer and hence the 

wall cooling. Where the predictions extend into the downstream region affected by 

strong temperature fluctuations they tend to overestimate the measured wall 

temperatures. This should not be surprising, however, as the predictive model 

assumes steady laminar flow and therefore cannot represent the flow and 

temperature fluctuations.
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Wall temperature fluctuations were also reported by Hallman (1961) who 

employed a thin—walled resistively heated tube similar to that used in this work. It 

was suggested that these temperature fluctuations were caused by transition Horn 

laminar flow. Hallman (1961) also reported an unexplained dip in his measured 

wall temperature profiles around x/d  = 95 for heating of water under upflow 

conditions at Peclet numbers of 1500 or greater. Barozzi et al (1984) explained the 

high downstream Nux values found in their experiments in terms of transition, but 

made no mention of wall temperature fluctuations. A relatively thick—walled 

copper pipe wrapped by a resistance heating wire was used in this latter study, 

however, and it seems probable that fluid fluctuations occurred, but were not 

apparent because potential wall temperature fluctuations were damped by the heat 

capacity of the tube wall.

Recalling that the experimental values shown in the figures are each based on an 

average of 20 readings taken at 15 s intervals, we can obtain a rough idea of the 

magnitude of the downstream wall temperature fluctuations from the sample 

standard deviations calculated during the data acquisition process. For Tests 6A 

and 25A, considered in Figures 7.5(b) and (c) respectively, large fluctuations were 

noted for x/d > 100. The maximum standard deviations found for these tests were 

3.09° C (at x/d = 135.8) and 4.32° C (at x/d = 101.7) respectively. For the lower 

Grashof number test at this same flow rate, Test 18A shown in Figure 7.5(a), 

much smaller wall temperature fluctuations (a < 0.11° C) were obtained at these 

downstream axial positions. This is qualitatively consistent with the smaller 

degree of axial velocity profile distortion predicted in this case.

The peak value of the fluctuations would of course be larger than the sample 

standard deviation. Confirmation of this point can be obtained by referring to the 

transient records given for Re = 824 and Grq =  1.06 x 10® in Figure 6.14. The 

values of a shown in Figure 6.14 are presumably very accurate measures of the 

fluctuations since they are based on samples of 241 readings (compared to the 20
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readings used in the main test series). A further point to consider in judging the 

importance of the wall temperature fluctuations is their magnitude relative to the 

local wall—to—bulk temperature difference.

Mention should be made that some wall temperature fluctuation could be detected 

at most axial positions along the heated tube wall and under virtually all test 

conditions, even at the lowest Reynolds numbers. This attests to the sensitivity of 

the measurement technique. The inlet Reynolds number in Tests 10A and 15A was 

approximately 80 which would be expected to lead to a strictly parallel laminar 

flow under isothermal conditions. However, a strong influence of buoyancy was 

experienced in both these tests and the corresponding numerical solutions indicate 

that flow reversal was expected to occur within the lower half of the tube length 

(see Figure 7.1). The development of a point of inflexion in the inverting axial 

velocity profile is known to destabilize the flow, favouring the growth of 

fluctuations which lead eventually to transition from laminar flow.

An interesting phenomenon, not mentioned by previous workers, was observed 

with respect to the wall temperature fluctuations measured on the lower part of 

the heated tube. With the exception of the tests at the lowest Reynolds numbers, 

moderate wall temperature fluctuations, which increased in magnitude with both 

Grq and Re, were noted at axial positions on the lower one-third of the heated test 

section. Further downstream the magnitude of fluctuations decreased before 

increasing sharply in the latter half of the tube as described previously. The reason 

for this apparent decay of fluctuations, clearly demonstrated in Figure 6.14, is not 

known. One possible explanation is that these fluctuations were caused by some 

inlet disturbance effect.
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7.2 Comparison of Experimental Data with Published Correlations

In this section experimental data collected in this study are compared with 

existing correlations for predicting the flow regime and the Nusselt number. In 

view of the limited data available there is no intention to suggest new correlations.

7.2.1 Metáis and Eckert (1964) Convection Regime Diagram

Nearly 30 years ago, Metáis and Eckert (1964) contributed a short paper 

summarising their work to establish tentative limits classifying the various regimes 

of laminar and turbulent convection encountered with internal flows. This 

information, which has subsequently been reprinted in numerous heat transfer 

textbooks, was presented in the form of convection regime maps for vertical and 

horizontal tubes. A portion of the original diagram for vertical tubes, which was 

based mainly on experimental data, is redrawn in Figure 7.6.

G r P rd /L

Figure 7.6 Comparison of experimental data with Metais and Eckert
(1964) convection regime diagram for vertical tubes.
(mean film properties)
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The combined convection regime is defined such that the heat transfer deviates by 

10% or more from that for pure forced convection or pure natural convection. The 

coordinates used in Figure 7.6, Re versus GrPrd/L, were claimed by Metais and 

Eckert (1964) to give the best correlation of the available information which 

embraced both assisting and opposing combined convection situations and UHF as 

well as UWT boundary conditions. To the present author’s knowledge the limits 

shown on the Metais and Eckert (1964) diagram have not been reviewed in the 

light of more more recently obtained data. Barozzi et al (1984) found the diagram 

to be unreliable in estimating the effect of natural convection on laminar forced 

convection for water flowing upward in a uniformly heated vertical tube.

The points plotted on Figure 7.6 show the experimental data set (Tests 6A — 35A) 

obtained in the present work. The Grashof number used in the product plotted on 

the abscissa is defined as Gr =  g/?p2d3(TWm — Tbm)//x2, where T Wm is the average 

tube wall temperature (approximated by trapezoidal integration of the measured 

values) and Tbm is the arithmetic mean of the inlet and exit bulk temperatures. It 

should be noted that the positions of the plotted points are very sensitive to the 

choice of reference temperature used for the fluid properties. No guidance is given 

in the primary reference, although Aung (1987) states that the mean film 

temperature should be used. In Figure 7.6 all fluid properties have been evaluated 

at the average film temperature Tfm, defined as the arithmetic mean of TWm and 

Tbj,1. The limits of applicability of Figure 7.6, given as 10"2 < Prd/L < 1, are 

comfortably satisfied by the present data.

By closely examining Figure 7.6 it can be seen that the experimental data points 

lie along one of seven roughly parallel curves of small positive slope. These curves

!The use of a lower reference temperature causes a reduction in both Re and 
GrPrd/L for a viscous liquid. When the inlet bulk temperature was tried with the 
data for water collected in the present study the majority of the points lay in the 
laminar forced convection regime of the Metais and Eckert diagram (1964).

- 2 1 4 -



correspond to the seven different flow rates (approximately constant inlet 

Reynolds numbers) covered by the main test series. In order to assess the 

reliability of Figure 7.6 for estimating the convection regime, the experimental 

data and the corresponding numerical predictions have been briefly examined to 

reveal any evidence which might be used to verify the positions of the regime 

boundaries established by Metais and Eckert (1964).

The two lowest points plotted on Figure 7.6 are for the low Reynolds number tests 

(Tests 10A and 15A) and fall within the range of parameters for which laminar 

combined convection is expected to occur. This is in agreement with the evidence 

provided by the numerical predictions and the experimental data which indicate a 

strong influence of buoyancy for both tests. Infact, as shown in Table 6.1, the 

value of the buoyancy parameter Grq/Re for Test 15A was the highest for all tests. 

Furthermore, as shown in Figure 7.1, both tests exhibited a minimum Nux with 

flow reversal being subsequently predicted. Finally, the small wall temperature 

fluctuations observed in Tests 10A and 15A substantially confirm an absence of 

transition as predicted in Figure 7.6.

The predicted convection regime for the higher Reynolds number test conditions 

depends on the value of GrPrd/L. For the five highest flow rates, one and 

sometimes two of the points with the lowest values of GrPrd/L lie in the forced 

convection regime in Figure 7.6. Examination of the corresponding experimental 

Nux versus x* variations, shown in full in Figures 6.7 — 6.13, suggests that such 

conditions occur where no clear minimum value of Nux is exhibited. For tests 

where the Nusselt number falls to a well defined minimum and then recovers at 

higher x*, indicating a stronger buoyancy effect and hence a larger value of 

GrPrd/L, the predicted convection regime is always combined convection. As 

GrPrd/L increases for a constant flow rate, transition is predicted to occur. 

Remarkably, the points falling within the transition region in Figure 7.6, 

correspond well with the tests for which a sharp increase in the magnitude of the
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Despite the paucity of the data and the cursory nature of the methods employed in 

the above partial validation it is concluded that the Metais and Eckert (1964) 

diagram remains a useful tool for preliminary estimation of the likely convection 

regime. Specifically, the positions of the boundaries between forced and combined 

laminar convection and at the onset of transition are found to be in reasonable 

agreement with observed behaviour.

7.2.2 Churchill f!983) Nusselt Number Correlation

Churchill (1983) recommended the following correlating equation for predicting 

fully—developed Nusselt numbers, denoted simply by Nu below, for laminar 

assisting convection in a uniformly heated vertical tube:

Nu6 = Nu® + Nu® (7.1)
rl r

In equation (7.1), Nuv and Nu_ are the contributions for pure natural convection 

and pure forced convection respectively. Churchill (1983) proposed that NuR 

should be found using

wall temperature fluctuations was observed along the upper half of the tube.

N“» (7.2)

with A =  1.2 and B = 0.25. At the forced convection limit the following familiar 

constant property result was taken for NuF:

Nn =  4.364
F

(7.3)

Equation (7.1) and its components, equations (7.2) and (7.3), are shown in 

Figure 7.7.
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Figure 7.7 Comparison of experimental Nusselt numbers with Churchill
(1983) correlation, (local film properties)

Equation (7.1) gives predictions in good agreement with the experimental data 

obtained for upflow of water by Hallman (1961). Hallman’s (1956) analysis of 

combined laminar convection in a uniformly heated vertical tube, made for 

fully-developed conditions and constant properties, gives a line of slightly greater 

slope than equation (7.1). For 400 < Grq/Re < 40000, Hallman (1961) gave an 

approximation for his earlier analysis, also plotted in Figure 7.7, which is of the 

same form as equation (7.2), but with A =  0.95 and B =  0.28. [Slightly different 

values were given in the earlier analytical paper.] Hallman (1961) found that 

beyond the thermal entrance region his experimental Nusselt numbers approached 

the fully—developed analytical predictions (Hallman, 1956) if all properties were 

evaluated at the local film temperature. This agreement was interpreted as 

establishing the validity of a "locally fully—developed" concept. Data obtained 

under conditions where fluctuations were observed were not considered. Hallman 

(1961) presented some typical experimental Nux versus x* results (his Runs U14
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and U24) in his report which indicate that "locally fully—developed" conditions 

were achieved downstream of the minimum Nux position. His experimental data 

also show an initial decrease in the length of the thermal entrance region Lth as 

Grq/Re increased, followed by a rise in Lth at higher values of Grq/Re.

Experimental data from the present study are compared with equation (7.1) in 

Figure 7.7. Each data point in Figure 7.7 corresponds to a different test condition 

and all tests (Tests 6A -  35A) are represented. The coordinates for each point are 

taken as the values of Nux and Grq/Re at the measurement position where the 

lowest experimental Nux was evaluated, irrespective of whether the variation of 

Nux with x* exhibited a well-defined minimum followed by a rise downstream. In 

other words, the values of Nux and Grq/Re for any data point correspond either to 

an intermediate measurement position along the tube where a minimum Nux was 

found or, in the case of a test where Nux decreased throughout, the values at a 

measurement position near the exit. Consequently, the x/d values corresponding to 

the data shown in Figure 7.7 range from 5.65 to 159.3. It must be admitted that 

the method of data selection just described was used in the absence of proof that 

fully—developed conditions existed at the points chosen. Initially, experimental 

data from this study were compared to equation (7.1) using values of Nu and 

Grq/Re taken at the same axial position (x/d = 134.5) for all tests. This resulted 

in a large scatter, mainly due to the inclusion of the high Nux values found at 

positions where strong wall temperature fluctuations were evident.

The data points in Figure 7.7 all lie above the line of equation (7.1) with 

deviations ranging from + 2.5% to + 42%. Exactly half the data set are within 

10% of this line. For Grq/Re > 400, the experimentally determined Nusselt 

numbers fall within a band 2.5% to 20% above the values predicted by equation 

(7.1) but follow broadly the same trend. For Grq/Re < 400 the comparison 

deteriorates markedly with the data deviating from equation (7.1) by between 

16.8% and 42%. The six data points lying in the latter range are for the tests with

-2 1 8  -



the lowest heat flux (or the two lowest heat fluxes in the case of Re a 1100) at the 

five highest flow rates. Under these conditions the influence of buoyancy was 

relatively weak, the thermal and hydrodynamic development becoming more 

characteristic of forced convection with increase in Reynolds number. This can be 

confirmed by scrutinising the relevant experimental Nux versus x* variations in 

Figures 6.9 — 6.13 which show that Nux declines throughout (assuming that the 

final point at x/d  =  159.3 is considered suspect and ignored). These figures also 

show that the value of x* at the end of the heated section was less than 0.04, in all 

cases except for Figure 6.9. This is less than the length required for thermal 

development of a constant—property, fully—developed flow in a uniformly heated 

tube, given as Lth =  0.043 by Shah and London (1978). Bearing in mind that a 

longer development length is needed under simultaneously developing conditions, 

as used in the experiments, and that any reduction due to heating would be small 

at low Grashof number, it would appear that the heated test section was too short 

for a "locally fully—developed" condition to be reached in these tests. This would 

account for the very large discrepancies seen in Figure 7.7 for Grq/Re < 400.

Following Hallman (1961), all fluid properties used to evaluate Nu and Grq/Re in 

Figure 7.7 were taken at the local film temperature Tfx. In fact, the choice of 

reference temperature has only a marginal effect on Nu for water, because the 

thermal conductivity variation is only slight (see Figure B.2). On the other hand, 

Grq/Re depends on 1/fi and thus the use of a lower reference temperature 

(e.g. Tbx) would cause the deviations between the experimental data and equation 

(7.1) to increase.
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CHAPTER 8

CONCLUSIONS

8.1 Analysis and Computational Work

The theoretical aspects of this work were aimed at devising a unified predictive 

method for thermally and hydrodynamically developing combined natural and 

forced laminar convection in vertical ducts of circular, concentric annular and 

parallel plate cross-section. This has been successfully achieved. The 

computational scheme is based on a fully—implicit finite—difference representation 

of the parabolic flow equations written in generalised axisymmetric form. 

Numerical solution is effected by a marching procedure in the main flow direction, 

thus prohibiting consideration of situations with flow reversal.

The numerical procedure developed has been embodied in a flexible computer 

program which is capable of handling both buoyancy—aided and

buoyancy—opposed flows. Either a uniform wall temperature or a uniform heat flux 

boundary condition can be specified at any duct wall and any inlet flow condition 

can be catered for, ranging from a uniform to a fully—developed flow. The effects of 

fluid property variations with temperature and viscous dissipation can be taken 

into account if required.

Two ideas proposed by Ogunba (1972) are utilised in the solution of the 

velocity—pressure problem in which pressure is treated as an unknown dependent 

variable. Firstly, a piecewise treatment is employed for the mass continuity 

integral and, secondly, the requirement of a zero transverse pressure gradient is 

made explicit by equating pressures at all grid points on the same transverse grid 

line. In this work, the first of these techniques has been extended to the treatment 

of the integral energy equation which is optionally used in the solution of the 

temperature problem and, as suggested by Collins (1975), enforces global energy 

conservation. The above techniques permit the systems of algebraic equations
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arising from the finite—difference treatment of the governing equations to be 

assembled in band matrix form. By this means, an advantage in computational 

economy, both in terms of storage and execution time, is achieved over comparable 

methods developed earlier which use conventional Gaussian elimination to solve 

sparsely—populated square matrix systems.

The accuracy of the predictive method has been demonstrated for the following 

two constant—property, pure forced convection problems: (i) hydrodynamic 

development in a circular tube and (ii) thermal development under uniform wall 

temperature conditions in a circular tube (Graetz problem).

In addition, heat transfer predictions have been made for laminar, buoyancy—aided 

combined convection of water in upward flow through a vertical circular tube with 

a uniform heat flux imposed at the wall. These predictions take account of 

thermophysical property variations with temperature and compare favourably with 

the experimental data collected in this research.

8.2 Experimental Work

The original objective of the experimental study was to provide data on laminar 

combined convection for validation of the computational method. A test rig, 

incorporating a uniformly heated vertical tube, has been constructed and 

instrumentation is provided for heat transfer measurements. A limited amount of 

experimental data has been obtained for heating of water in upflow.

For a fixed Reynolds number, the data indicate progressively higher local Nusselt 

numbers with increase in the heat flux based Grashof number. Such improvement 

in heat transfer is more evident at larger axial distances due to the cumulative 

effect of buoyancy. For a sufficiently strong buoyancy effect the Nux versus x* 

distribution exhibits a minimum. The axial position of this Nux minimum moves 

closer to the start of heating as Grashof number is increased for a
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constant Reynolds number.

Comparison between experimentally determined local Nusselt numbers and 

numerical predictions generally demonstrates convincing agreement, although 

assumptions involved in the latter necessarily restrict comparison to the 

unidirectional flow region (i.e. no flow reversals). Such deviations as do occur are 

consistent with axial wall conduction effects near the tube entrance and further 

downstream with transition from laminar flow resulting from instability of the 

buoyancy—distorted axial velocity profile.

Transitional flow is detected by wall temperature fluctuations and results in a 

local improvement in Nusselt number. A technique has been established for 

recording local wall temperature fluctuations and some preliminary measurements 

have been made. The transient data, of which only samples are presented, contain 

evidence of asymmetry in the heated flow. It is concluded that the data are worthy 

of more detailed examination; possibly using time series analysis techniques, in 

order to reveal the possible occurrence of periodic structures. This approach could 

be complemented by predictive studies involving the use of computer codes for 

time—dependent, three-dimensional flows with heat transfer.

The experimental data have been compared with the Metals and Eckert (1964) 

flow regime map for combined convection in vertical tubes and the Nusselt number 

correlation proposed by Churchill (1983). Although the comparisons were made 

using the limited data available from the experimental study, they indicate that 

these correlations remain valid for obtaining initial estimates.

8.3 Proposals for Future Work

It is intended to continue with both computational and experimental aspects of 

this research. Some areas under consideration for future investigation are given 

below:
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i) Predictive work using existing program

The new computer program developed is very versatile, although its potential has, 

so far, only been exploited for circular tube flows. The studies reported in this 

thesis are for forced convection with constant fluid properties and aiding combined 

convection with variable fluid properties under UHF conditions. Further numerical 

studies could consider:

— forced, combined and natural convection in concentric annuli or between 

parallel plates;

— combined convection situations with opposing natural and forced 

convection contributions;

— mixed (UHF/UWT) thermal boundary conditions;

— effect on heat transfer of partial hydrodynamic development upstream of 

the start of heating or cooling.

iil Further development of computer program

It is considered that the following changes, which could be made relatively easily, 

would enhance accuracy and flexibility respectively:

— to incorporate the necessary changes which would permit the use of a 

variable finite—difference grid spacing in the transverse coordinate 

direction;

— to incorporate options for specifying thermal boundary conditions where 

either the wall temperature or the wall—fluid heat flux varies with axial 

distance;

-2 2 3  -



iii) Modification of experimental apparatus

In view of the experimental results already obtained the following modifications 

are considered desirable before further measurements are made:

— attachment of additional thermocouples in order to improve the 

resolution of the axial and circumferential wall temperature variations;

— reduction in the size of the upstream power connection flange to 

minimise, as far as possible, the axial heat conduction effect;

— modifications to the flow circuit to permit recirculation of the fluid and 

to allow experiments to be conducted for both downward as well as 

upward flow.

iv) Further experimental studies

At present the experimental data base for combined convection in a uniformly 

heated vertical tube is somewhat limited. Further tests covering a wider range of 

parameters would be extremely helpful in establishing better design correlations. 

Additional data for high Prandtl number fluids with strongly temperature 

dependent properties would also provide a better test for the predictive model.

The appearance of wall temperature fluctuations is associated with the transition 

from laminar flow caused by the growth of instabilities in the buoyancy distorted 

axial velocity profile. As seen in the present work, the onset of strong wall 

temperature fluctuations has a marked effect in increasing the heat transfer for an 

upward heated flow and also limits the usefulness of predictions based on the 

assumption of steady laminar flow. Additional experimental work in conjunction 

with predictive studies, is required to define the transition boundaries, with regard 

to flow rate, heat flux and axial position. The transient recording technique 

described in this thesis shows promise in this respect.
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POLYNOMIAL REPRESENTATION OF TEMPERATURE-DEPENDENT 

FLUID PROPERTIES

It is convenient to represent fluid property variations over a temperature range of 

interest by analytical functions that are simple to evaluate. One such form often 

fitted to experimental or tabular property data is the nth—degree polynomial 

equation

APPENDIX A

where ip is used to denote any temperature—dependent fluid property and T is the 

temperature measured on some practical scale of (e.g. °C), so that ip = a,0 at 

T =  0°C. The polynomials (B.2), (B.4), (B.5) and (B.6) given in Appendix B, 

describing the property variations of liquid water at atmospheric pressure, are 

examples of equation (A.l).

In the analysis presented in Chapter 3, fluid property ratios ip* [=ip/ip0] relate the 

local values of the properties to their corresponding values at temperature T0, the 

duct inlet temperature. The essential mathematical details connecting the 

polynomial equation (A.l) with a nondimensional form representing ip* as a 

function of the dimensionless temperature 6 are given below.

Since all of its derivatives higher than the nth-order are equal to zero, equation 

(A.l) can be represented exactly by the following Taylor series:

ip —  ao +  a iT  +  a 2T 2 +  • • • +  a nT n (A.l)

+  ••• +

(A.2)

Both T and T0 must be in the interval over which equation (A.l) applies.
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After substituting the derivatives obtained from equation (A.l), equation (A.2) 

can be arranged as a series having ascending powers of (T — T 0), up to the term of 

degree n. That is

* = *>[1 + a*t(T -  To) + a^2(T -  T0)2 + • • • +  a*n(T -  T0)»J (A.3)

where the coefficients a ^ , a^2 • • • a^n are related to those in equation (A.l). For 

a 5th-degree polynomial the following expressions are obtained:

For lower degree polynomials the redundant terms in equations (A.4) become zero.

In terms of the dimensionless temperature, defined by 0 —  (T — T0)/A T r, equation 

(A.3) becomes

where A1j)i = a ^ /A T r1 with a ^  given by the expressions (A.4) above.

Two useful quantities, closely related to i/j*, are the derivative dip*/d0 and the 

integrated mean value over the dimensionless temperature range from 0 to 0. In 

the analysis, d^*/d0 is used for representing the rates at which the viscosity and 

thermal conductivity change with 0 and is utilised in connection with the 

specific heat capacity; for the ratio of the mean value (over the temperature range 

from T0 to T) to the value at T0.

a^j =  ^  (&i + 2a2T0 + 3asT02 + 4a4T03 + 5a5T04)

3 2̂ =  ^  (&2 3a3T0 + 6a4T02 + lOasTo3)

a^>3 =  W  ^ a4^ 0 l^asTo2)

ait>4 =  ^  (a4 +  3a5T0)

^ 5  =  J-Q (as)

(A.4)

(A.5)
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The general expressions for dip*/dO and follow directly from equation (A.5) and 

are given by

df* =  Ai|>l +  2Ai|>20 + • • • + nAi|)n̂  11-1 (A-6)

and

r ̂
\ Jo = 1 + 5 + J  Ait>2  ̂2 + • ' • +  n + 1 \rxe “ (A-7)
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APPENDIX B

EQUATIONS FOR THE PROPERTIES OF LIQUID WATER

B .l Scope

This appendix describes the methods used to evaluate the properties of water 

required for the reduction of experimental data and in the numerical predictions. 

The properties concerned are dynamic viscosity p, thermal conductivity k, specific 

heat capacity c, density p and thermal expansion coefficient 0. For computer 

implementation, it is convenient to represent data giving the variation of each 

property with temperature in equation form, as this obviates the need for 

interpolation associated with the use of tabular data.

The authoritative and comprehensive information on the properties of water given 

in the data items issued by ESDU (Engineering Sciences Data Unit) forms the 

basis of the equations presented here. Unless otherwise stated, the data for liquid 

water extracted from this source apply strictly for a pressure of either 1 bar (k, c 

and p) or 1 atmosphere (p only). However, since the properties of liquid water vary 

only slightly with pressure, negligible error can be attributed to using the 

equations for the pressures encountered in the experiments, which are estimated to 

have been in the approximate range 1 to 1.2 bar.

Equation (B.l) for p and equation (B.3) for k are taken from the ESDU (1968b) 

and ESDU (1967) data items respectively. They were used directly in a 

spreadsheet program developed for experimental data reduction but were judged to 

be too time consuming for the marching numerical predictions where repetitive 

property evaluations were required. Instead, these computations were based on 

simpler polynomials, equations (B.2) and (B.4), obtained using a curve fitting 

program (Techni—Curve, Scientific Software Systems).
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Polynomial regression was also used to obtain equations (B.5) and (B.6), for cp 

and p respectively, based on the data tabulated by ESDU (1968a, 1968c). Equation 

(B.7), which predicts values of /? for water in excellent agreement with published 

data, was derived directly from the density equation (B.6).

Details of all the equations and the uncertainties associated with the data upon 

which they are based are given below. It should be emphasised that each equation 

provides an empirical representation of a property over a limited range of 

temperature and therefore must not be used for extrapolation beyond the stated 

limits. Furthermore, it is not claimed that the derived polynomial equations 

presented here are necessarily the most accurate or the most appropriate forms 

possible. Nevertheless, they are considered to be adequate for their intended 

purposes, since they are relatively inexpensive to evaluate and predict values 

which are in excellent agreement with the data sources. The dimensionless form of 

the polynomial functional relationship is considered in Appendix A.

B.2 Dynamic Viscosity

According to ESDU (1968b), the following equation, due to Gibson and Bruges 

(1969), correlates measured values of p, for water at 1 atmosphere pressure and 

0° C < T < 100° C with an uncertainty of ± 1% (based on the spread of the 

experimental data):

8
p =  ^TaiXi(f) kg/m s (B.l)

i = 0

where the temperature T (in °C) is represented in the normalised variable £, 

defined by £ =  [2(T + 273.15)/273.15 -  2.36609921]/0.36609921, and Ti(£) is a 

Chebyshev polynomial of degree i in £. The polynomials are defined by T0(£) = 1, 

Ti(£) = £ and for i > 2 the recurrence formula Xi(£) =  2 £Xi_i(£) — Xi-2(£) is used.
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The coefficients to be used in equation (B.l) are

7.65449735 x 10*4 a5 = -8.05966931 x 10'8
-6.62858516 x 10’* a6 = 2.58990320 x 10-0

2.40802347 x 10'* a7 = -  8.32983433 x 10-7
-  7.97360135 x 10'5 a8 = 2.75179488 x 10*7

2.54196282 x 10'5

Values of n calculated from equation (B.l), using a spreadsheet, agreed with the 

data tabulated by ESDU (1968b) to 3 or 4 significant digits. A data set calculated 

by this means at 10° C intervals in the range 0°C to 100° C was used to obtain a 

polynomial fit representing fi.

Figure B .l Dynamic viscosity of water at 1 atmosphere, 0° C — 100° C.
Polynomial equation (B.2) fitted to values calculated from 
equation (B.l).
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Polynomial regression gave the following 5th—degree equation:

H = a0 + aiT + a2T 2 +  a3T 3 + a4T 4 +  a5T 5 * kg/m s (B.2)

where T is in 0 C and the coefficient values are

a 0 =  1.784145 x 10-3 a3 =  -  1.827073 x 10'8

ai =  -  5.923697 x 10‘5 a4 = 1.376148 x lO*«5
a2 =  1.313016 x 10-8 a5 =  -  4.200253 x IO-13

The maximum difference between the values calculated using equation (B.l) and 

the 5th-degree polynomial equation (B.2) is less than 0.8%. Figure B .l compares 

the calculated data and the polynomial curve fit obtained.

B.3 Thermal Conductivity

ESDU (1967) recommended the following International Skeleton Tables formula 

(see supplement to NEL Steam Tables, 1964) for the thermal conductivity of liquid 

water from the saturation pressure ps to 500 bar in the temperature range 

0° C < T < (0.15p + 210)° C, where p is in bar:

4 3 3

k =  ^ a i C  + i p - p J ^ b i C + t p - p s )2] ^ 1 W / m K  (B.3)
i =0 i = 0 i =0

(T + 273.15)/273.15 with T in °C and the coefficients areIn equation (B.3), ( =

a o =  — 0.92247 
ai = 2.8395
a2 = — 1.8007 
a3 =  0.52577
a4 = — 0.07344

b0 = -9.4730 x 10-9 
b j=  25.186 x 10-9 
b2 = -  20.012x10-9 
b3 = 5.1536 x 10-9

c0 =  1.6563 x 10-18
d  =  -  3.8929 x 10-1« 
c2 =  2.9323 x 10-18
c3 =  -  0.71693 x 10-18
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According to ESDU (1967), a tolerance of ± 2% should be applied to values 

calculated from equation (B.3) to reflect the spread of the experimental results on 

which it is based. Equation (B.3) was found to be satisfactory for spreadsheet 

calculations. Values of k calculated for 1 bar pressure deviated by less than 0.2% 

from the corresponding values calculated and tabulated by ESDU (1967). The 

following equation, given in the NEL Steam Tables (1964), was used to determine 

the saturation pressure ps: logi0(p8) = A +  Blog10(z) + Cz + D/z, where 

z =  T +  273.16, A = 28.59051, B = -  8.2, C = 2.4804 x 10'3 and D =  3142.31.

For use in the numerical predictions, a much simpler 2nd—degree polynomial 

equation has been fitted to a set of values for k calculated from equation (B.3).

Figure B.2 Thermal conductivity of water at 1 bar, 0° C — 99.6° C.
Polynomial equation (B.4) fitted to values calculated from 
equation (B.3).
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The values were found at 10° C intervals in the range 0°C to 90° C and at the 

saturation temperature (i.e. 99.6° C). A pressure of 1 bar was assumed. The 

equation derived using this data set is

k — ao +  ajT + a2T 3 W /m K (B.4)

where the temperature T is in ° C and the coefficient values are ao =  0.5690103, 

ai = 1.857021 x 10'3 and a2 =  — 7.434436 x 10"6. The differences between the 

values of k calculated using equation (B.3) and the corresponding estimates given 

by equation (B.4) are all within ± 0.06%. The polynomial fit and the calculated 

values upon which it is based are compared in Figure B.2.

B.4 Specific Heat Capacity

Values of cp for 1 bar pressure are tabulated (to 4 significant figures) at 10° C 

intervals from 0°C to 90° C by ESDU (1968a). Based on the spread of the original 

experimental results, it is stated that an uncertainty of ± 0.2% should be allowed 

for in these values. Since cp s cv for liquid water, and in accordance with the 

present quasi—incompressible treatment, the specific heat capacity is here simply 

denoted by c.

The following equation has been fitted to the ESDU (1968a) data set by 

polynomial regression:

c — ao + aiT + a2T 3 +  a3T 3 + a4T* + asT3 J/kg K (B.5)

where T is in ° C and the coefficient values are

a0 = 4217.938
ai = -3.638315 
a2 = 0.1270167

a3 = -2.154948 x lO-3 

a4 = 1.84914 x 10’3

a5 =  -6.038683 x lO'3
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Figure B.3 Specific heat capacity of water at 1 bar, 0° C -  90° C.
Polynomial equation (B.5) fitted to data tabulated by 
ESDU (1968a).

Values calculated from equation (B.5), as a check on the fit obtained, are identical 

with the ESDU (1968a) tabulation if the same number of significant figures are 

retained. A further comparison of the given data values and the derived 

polynomial equation is made in Figure B.3.

B.5 Density

Values for the density of water at 1 bar pressure and temperatures in the range 

0°C to 90° C are given to 6 significant figures by ESDU (1968c). The data are 

tabulated at 1°C intervals from 0°C to 10° C, 2°C intervals from 10° C to 20° C, 

5°C intervals from 20° C to 50° C and 10° C intervals from 50° C to 90° C. The 

stated uncertainty is ± 0.0005%.
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A 5th—degree polynomial fit obtained for these 26 data points is given by

p = a0 + a ^  + a2T 2 + a3T 2 + a4T* +  a5T5 kg/m 2 (B.6)

where T is in 0 C and the coefficient values are

a0 =  999.8429 a3 =  7.463283 x 10-5
a i=  6.522775 x 10-2 a4 =  -  5.311156 x lO'?
a2 =  -8.642677 x 10-3 a5 =  1.702156 x 10-0

As shown in Figure B.4, equation (B.6) provides an extremely close fit to the 

ESDU (1968c) tabulation and even predicts the density extremum exhibited by 

water at 4°C. The maximum deviation is about 0.001%.

Figure B.4 Density of water at 1 bar, 0° C — 90° C.
Polynomial equation (B.6) fitted to data tabulated by 
ESDU (1968c).
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B .6 Thermal Expansion Coefficient

Using the definition of P, the following equation can be derived from the density 

equation (B.6):

_  a t + 2 a 2 T +  3 a , T 2  +  4 a 4 T3 +  5 a sT<
a o +  a iT +  a 2 T 2 +  a 3 rr 3 +  a 4 T 4 +  a 5 T 5 ' ' '

where P is in K_1. The coefficients ai, a2 • • • a5 and the range of applicability for 

equation (B.7) are the same as for equation (B.6).

As an independent check, equation (B.7) has been compared with the data for P 

(at 1 atmosphere) tabulated by Bayley et al (1972). Figure B.5 illustrates the

TEMPERATURE /  °C

Figure B.5 Thermal expansion coefficient of water. Comparison of
equation (B.7) for 1 bar, 0°C -  90° C with data tabulated by 
Bayley et al (1972) for 1 atmosphere.
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comparison. Apart from 0°C, where the tabulated value is only given to 1 

significant figure, the differences are within ± 0.8%. This level of agreement 

provides further evidence of the reliability of the density equation (B.6) upon 

which equation (B.7) is based.
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APPENDIX C

LUMPED-SYSTEM ANALYSIS OF WALL TEMPERATURE OSCILLATIONS 

DUE TO ALTERNATING CURRENT HEATING

C.l Object and Assumptions

In the experimental apparatus used in this work, alternating current (AC) power 

was employed to generate ohmic heating in the test section wall. The purpose of 

this appendix is to set down the details of a lumped-system analysis made by the 

author to estimate the magnitude of the wall temperature oscillations resulting 

from the AC heating.

A lumped—system analysis is considered appropriate because the Biot number 

Bi [= h iw/k w] was less than 0.1 under all experimental conditions. This approach 

is equivalent to considering the temperature of the tube wall to be spatially 

uniform and hence a function of time only. Furthermore, as the wall thickness was 

only about 5% of the tube radius, tube wall curvature is ignored. Accordingly, the 

object of the analysis is to determine the transient temperature response of a flat 

slab, insulated on one side and convectively cooled at the other, when heat is 

generated internally by a sinusoidally varying electric current. In particular, the 

maximum amplitude of the temperature oscillations is of interest.

Figure C .l Nomenclature for lumped-system analysis of the transient
response of a flat wall heated by alternating current.
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The situation considered is depicted in Figure C.l, where ¿w, pw, cw and kw denote 

the thickness, density, specific heat capacity and thermal conductivity of the wall 

respectively. Energy generation in the wall is considered to be spatially uniform 

but the rate of generation varies with time because of the sinusoidally alternating 

current. The instantaneous rate of generation per unit surface area, denoted by qg, 

depends on the square of the current and it can easily be shown that

where u is the AC angular frequency, t is time and qw is the time—averaged surface 

heat flux which can be written as

wall temperature and Tb is the fluid bulk temperature. Both h and Tb are assumed 

to remain constant.

An energy balance for a small element of length dx equates the sum of the rate of 

increase in internal energy and the rate of convective cooling to the rate of energy 

generation within the element. That is

qg =  2qw sin2art (C.l)

qw — h(T Tb) (C.2)

In equation (C.2), h is the surface heat transfer coefficient, T is the time—averaged

(C.3)

Following division by pwcw<$w dx and substitution for qg, using equations (C.l) and 

(C.2), equation (C.3) becomes
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For convenience the following definitions are introduced:

0 = (T — T ) / ( f  — Tb) T =  u i

(C.S)

where the constant parameter Fo is a modified Fourier number based on the 

reciprocal of the angular frequency. These substitutions give the following 

dimensionless form of equation (C.4):

Equation (C.6) governs the wall temperature variation, with 0 expressing the 

variation about the average value as a fraction of the average wall—to—bulk 

temperature difference. An initial condition must be specified to complete the 

formulation. As we are concerned only with the steady periodic behaviour 

established after the initial transient, the condition 0 =  0 at r  =  0 is used here.

To solve equation (C.6) it is first multiplied through by the integrating factor 

eBlFor tQ majce t jje ieft—hand side the exact differential of eBlFor0. Integrating 

both sides with respect to r  then yields

The right-hand side of equation (C.7) can be handled by replacing 2 sin2r  by 

(1 — co s2 r) and integrating by parts twice. This leads to the following equation 

describing the steady periodic wall temperature oscillations:

^  + BiFo 0 =  BiFo(2 sin2r  -  1) (C.6)

(C.7)

- 2 5 9 -



It follows directly from equation (C.8) that the maximum amplitude of the 

oscillations is given by

lo I _  v (2BiFo p  +  (BiFo)* _  BiFo ^
1 BniaxI “  4 +  (B iF o ) * “  /~4 + (BiFo)2

It can be seen from equation (C.9) that the above lumped—system analysis 

determines | 8max| to be function of the product BiFo only. This is in contrast to 

the one—dimensional distributed analysis made by Jeglic et al (1980) for the same 

problem, where |Bmax| is given as a function of the two parameters Bi and Fo_1 

separately. Jeglic et al (1980) presented their results in the form of graphs which 

unfortunately cannot be read accurately for values of | 0aiax| close to either 0 or 1 . 

At intermediate values of | 8max|, however, the predictions of the above 

lumped—system analysis appear to be in excellent agreement with their results for 

Bi < 0.1.

Values of |flmax |, calculated from equation (C.9), are given in Table C.l below for 

a range of BiFo.

Table C .l Maximum amplitude of temperature oscillations (as a fraction
of the wall—to—bulk temperature difference) for various values 
of the dimensionless product BiFo.

BiFo |Bmax|

0.001 5.0 X  10-4
0.01 5.0 x 10-3
0.1 0.0499
1.0 0.4472
10 0.9806
100 0.9998
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C.3 Application to Experimental Conditions

In order to use equation (C.9) for determining the magnitude of the largest wall 

temperature oscillations under the experimental conditions of this work, the 

maximum value of BiFo must be estimated. For this purpose it is considered 

adequate to take the following approximate values for the stainless steel tubular 

test section:

¿w =  0.3 mm 

Pv =  8000 kg/m 3 

cw =  500 J/kg K 

kw =  16 W /m K

For alternating current at a mains frequency of 50 Hz, the angular frequency cj is 

equal to lOOx rad/s. A roughly six—fold variation in local heat transfer coefficient 

(a 300 — 1800 W /m 2 K) was encountered in the main test series, with the higher 

values occuring at the start of heating.

Using the above data the maximum value of BiFo and hence the largest possible 

value of 10 max | can be estimated as follows:

________________ 16
8000 x 500 x 1OO7T x (0.3 x 10'3)2 = 0.14

d ; _  h i w _  1800 X 0.3 X  10”3 _ n rtOÂ
Bimax “  --------------------- 13-----------------  ° - 034

BiFomax =  0.14 x 0.034 = 4.8 x 10'3

| 8max| max — 2.4 X 10'3

It is concluded that the wall temperatures oscillations caused by alternating 

current heating were indeed negligible under all experimental conditions.
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APPENDIX D

EXPERIMENTAL DATA REDUCTION METHOD

D.l Specimen Calculation

A specimen calculation is presented below to illustrate the main procedures used 

for the reduction of the experimental data. For each test, the measurement data 

set comprised 20 items. In the following calculations the data from Test 35A are 

used as an example. The number of digits shown in the result of each calculation 

should not be taken as an indication of the associated accuracy.

After making the thermocouple calibration corrections to the test section surface 

temperature measurements the following data were obtained for Tests 35A:

Volume flow rate: V =  0.7679 litre/minute

Test section voltage, V

Test section current, !
Inlet bulk temperature, Tb0
Exit bulk temperature, Tbe
Ambient temperature, Tamb

Test section surface temperatures: 
Lower terminal temperature, 

Tube wall temperature, 
Tube wall temperature, 
Tube wall temperature, 
Tube wall temperature, 
Tube wall temperature, 
Tube wall temperature, 
Tube wall temperature, 
Tube wall temperature, 
Tube wall temperature, 
Tube wall temperature, 
Tube wall temperature, 
Tube wall temperature, 

Upper terminal temperature,

=  11.19 V

= 81.44 A 
=  13.06°C 
=  29.32°C 
=  21.63° C

Two = 15.95° C; x 0 = 0 mm
TW1 = 20.69° C; Xl = 3.7 mm
TW2 =  20.99° C; x2 = 10.1 mm
TW3 = 24.89° C; X 3 = 29.1 mm
TW4 = 27.09° C; X 4 = 67.2 mm
TW5 = 31.28° C; X 5 = 118 mm
TWfi =  33.16° C; X 6 = 194 mm
TW7 =  40.42° C; X 7 = 397 mm
Twg = 45.74° C; Xg = 601 mm
TW9 =  47.56° C; Xg = 804 mm

TW10 =  54.29° C; XlO = 1210 mm
TW11 =  59.55° C; X U  = 1617 mm
TW12 =  59.02° C; Xl2 = 1896 mm
TW13 =  53.59° C; Xl3 = 1900 mm
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This is approximated by trapezoidal integration as follows:

0  Average wall temperature. T«,m

Twm -  SL (T wq +  T wl) A x j  +  ( T W1 +  T W2) A x 2 +  ■ • • +  (TW12 +  Twl3)Axi3j

where L is the heated tube length (= 1900 mm) and Axj =  (xj — xj-i).  

Substituting the values tabulated above gives TWm = 48.39° C.

ii) Rate of energy generation in tube wall. Qg

The rate of heat generation in found from the electrical power dissipation, given by

Qg = fV =  81.44 x 11.19 = 911.3 W

where I and V are the rms values of the test section current and voltage drop 

respectively.

iii) Rate of heat loss from test section. Qw«

The heat loss is estimated from the empirically determined heat loss equation, 

equation (5.3)

Qioss = 0.436 +  0.192(TWm -  Tamb) = 0.436 + 0.192(48.39 -  21.63) = 5.57 W

iv) Corrected rate of energy input to fluid. Q^n-

The energy input to the fluid is taken equal to the test section electrical power 

input less the heat loss. That is

Qcorr =  Q g -  Qioss = 911.3 -  5.57 =  905.7 W
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v) Average heat flux at wall—fluid interface, a„

The heat flux is based on the corrected energy input to the fluid and is averaged 

over the inside surface area of the heated tube. It is found from

i"  =  - % n r  =  ir- F D ^ ° i9 7x 1.9 = 1275 * 103 w / mJ = 1275 k w / “ !

where d is the heated tube bore (= 11.9 mm).

vi) Calculated exit bulk temperature. fThcVgir-

The exit bulk temperature based on the corrected rate of energy input to the fluid 

is given by

(Tbe)calc =  Tb„ +

= 13 06 + 4180.7 x 999.4 x ° ( 0 7 7 6 7 9  x  10'V60) = 30 00’ C

The specific heat capacity Cbm used in this calculation is evaluated at the average 

bulk temperature Tbm, given in vii) below. Consequently, (Tbe)Caic> Tbm and Cbm 

must be found iteratively. The measured exit bulk temperature is used as an initial 

estimate of (Tbe)Caic-

vii) Average bulk temperature. Thm

In accordance with the assumed UHF boundary condition the local bulk 

temperature is assumed to vary linearly along the tube. Its average value is taken 

equal to the arithmetic mean of the inlet bulk temperature and the calculated exit 

bulk temperature. That is

Tbm = j(T b0 + Tbe) = 5(13.06 + 30.00) = 21.53° C
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The average film temperature is taken as the arithmetic mean of Tbm and TWm, 

given by

viii) Average film temperature. Tfm

Tfm = 5<Tbm +  TWm) =  |<21.53 + 48.39) = 34.96" C 

ix) Fluid properties

Values of fi, k, c, p and /? are evaluated at the reference temperatures Tb0, T bm and 

Tfm using equations (B.l), (B.3), (B.5), (B.6) and (B.7) respectively.

Re f erence °C k C P ,
Temperature kg/m s W/m K J/kg K kg/m 3 lO-^K-i

Tb0 13.06 0.001197 0.5922 4187.8 999.337 1.269

Tbm 21.53 0.000966 0.6058 4180.7 997.88 2.230

Tfm 34.96 0.000721 0.6250 4178.4 994.05 3.455

Note that p (at Tb0) and c (at Tbm) are used in calculation vi) above.

x) Dimensionless parameters

The Reynolds number Re, Prandtl number Pr and the heat flux based Grashof 

number Grq are respectively given by

Re = 4p0V
7rd/z
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The Grashof number based on the temperature difference (TWm — Tbm), denoted 

simply by Gr here, is defined by

Gr -  g / W r .  -  T bJ  
M 5

Values of Re, Pr, Grq and Gr evaluated from the above equations with the 

properties (except for p0 in Re) taken at the reference temperatures Tb0, Tbm and 

Tfm are tabulated below.

Re f erence 
Temperature

T b 0

T bm

T fm

Re Pr Grq Gr

1143 8.46 3.75 x 105 3.93 x 10«
1417 6.67 9.85 x 105 1.06 x 105
1898 4.83 2.64 x 108 2.92 x 105

T)-2 Sample Spreadsheet

A spreadsheet program was developed to perform all the data reduction 

calculations for each test. Extracts from the spreadsheet for Test 35A are shown 

on the following pages.
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VERTICAL TÜBE HEAT TRANSFER RIG : EXPERIMENTAL DATA REDUCTION

TEST NO: 35A DATE: 18-04-91 TIME: 16:26:04

RAV DATA:

VOLUME FLOVRATE = 0.7679 L/min LOVER TERMINAL TEM]j - 15.67
VALL TEMPIf 4 mm'1 ~ 20.39

HEATING VOLTAGE = 11.189 V VALL TEMPI 10 mm1 = 20.68
HEATING CURRENT = 81.44 A VALL TEMPI 29 mm) = 24.58

VALL TEMPI 67 mm) = 26.78
INLET BULK TEMP = 13.06 degC VALL TEMPI 118 mm) = 30.96
EXIT BULK TEMP = 29.32 degC VALL TEMPI 194 mmI — 32.84

VALL TEMPI 397 mm) = 40.10
AMBIENT TEMP 21.63 degC VALL TEMP) 601 mm1 = 45.42

VALL TEMPI 804 mm :1 = 47.24
VALL TEMPI 1210 mm ;1 = 53.97
VALL TEMP) 1617 mmi = 59.22
VALL TEMPI 1896 mm1 = 58.70

UPPER TERMINAL TEMP = 53.27

degC
degC
degC
degC
degC
degC
degC
degC
degC
degC
degC
degC
degC
degC

TEST NO: 35A DATE: 18-04-91

CORRECTED DATA:

VOLUME FLOVRATE

HEATING VOLTAGE 
HEATING CURRENT

INLET BULK TEMP 
EXIT BULK TEMP

AMBIENT TEMP

= 0.7679 L/min

- 11.189 V
= 81.44 A

= 13.06 degC
= 29.32 degC

= 21.63 degC

TIME: 16:26:04

LOVER TERMINAL TEMP
VALL TEMPIf 4 mmi
VALL TEMPI! 10 mmj
VALL TEMPI: 29 mmj
VALL TEMPII 67 mmi
VALL TEMPI 118 mmi
VALL TEMPI 194 mmj
VALL TEMPI 397 mmj
VALL TEMPI 601 mmj
VALL TEMPI 804 mmj
VALL TEMPI 1210 mmj
VALL TEMPI 1617 mmj
VALL TEMPI 1896 mm)

UPPER TERMINAL TEMP

15.95 degC 
20.69 degC 
20.99 degC 
24.89 degC 
27.09 degC
31.28 degC 
33.16 degC 
40.42 degC 
45.74 degC 
47.56 degC
54.29 degC 
59.55 degC 
59.02 degC 
53.59 degC

TEST NO: 35A DATE: 18-04-91 TIME: 16:26:04

PHYSICAL PROPERTIES:

*INLET BULK* *MEAN BULK*
TEMPERATURE 13.06 degC 21.53 degC
DYN.VISCOSITY 0.001197 kg/m s 0.000966 kg7m s
CONDUCTIVITY 0.5922 V/m K 0.6058 V/m K
SPECIFIC HEAT 4187.8 J/kg K 4180.7 J/kg K
DENSITY 999.37 kg/m"3 997.88 kg/m'3
EXPANSION COEFF. 1.27E-04 1/K 2.23E-04 1/K

*MEAN VALL* *EXIT BULK*
TEMPERATURE 48.36 degC 30.00 degC
DYN.VISCOSITY 0.000563 kg/m s 0.000798 kg/m s
CONDUCTIVITY 0.6414 V/m K 0.6183 V/m K
SPECIFIC HEAT 4180.5 J/kg K 4178.4 J/kg K
DENSITY 988.77 kg/m~3 995.65 kg/m"3
EXPANSION COEFF. 4.46E-04 1/K 3.04E-04 1/K
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TEST NO: 35A DATE: 18-04-91 TIME: 16:26:04

DERIVED RESULTS:

♦BASED ON INLET BULK PROPS+
POVER INPUT 911.20 V REYNOLDS NUMBER 1143.4

PRANDTL NUMBER 8.46
MEAN VALL TEMP 48.36 degC GRASHOF NUMBER -

(Twm-Tbm) based 39244
HEAT LOSS 5.58 V heat flux  based 374663

MEAN NUSSELT NUMBER 9.55
VALL HEAT FLUX 12749.6 V/nf 2 ♦BASED ON MEAN BULK PROPS+

REYNOLDS NUMBER 1417.1
EXIT BULK TEMPcal 30.00 degC PRANDTL NUMBER 6.66

GRASHOF NUMBER -
ENERGY BAL.ERROR -3.96 l (Tvm-Tbm) based 105624

heat flux  based 985678
MEAN NUSSELT NUMBER 9.33

TEST NO: 35A DATE: 18-04-91 TIME: 16:26:04

** LOCAL VARIATIONS (based on in le t  bulk p roperties) ♦♦

x/d (Tw-Tb)x h(x) (x/d)/RePr Nu(x)
K V/nf 2 K

0.31 7.60 1678.0 3.2126E-05 33.72
0.85 7.84 1626.9 8.7694E-05 32.69
2.45 11.57 1102.0 2.5266E-04 22.15
5.65 13.43 949.1 5.8347E-04 19.07
9.92 17.17 742.5 1.0245E-03 14.92

16.32 18.37 694.1 1.6862E-03 13.95
33.39 23.82 535.3 3.4505E-03 10.76
50.47 27.33 466.5 5.2148E-03 9.38
67.55 27.33 466.4 6.9791E-03 9.37

101.69 30.45 418.7 1.0507E-02 8.41
135.84 32.08 397.4 1.4035E-02 7.99
159.33 29.06 438.7 1.6462E-02 8.82

TEST NO: 35A DATE: 18-04-91 TIME: 16:26:04

** LOCAL VARIATIONS (based on mean bulk p roperties) ♦♦

x/d (Tw-Tb)x Mx) (x/d)/RePr Nu(x)
K V/nf 2 K

0.31 7.60 1678.0 3.2922E-05 32.96
0.85 7.84 1626.9 8.9868E-05 31.96
2.45 11.57 1102.0 2.5893E-04 21.65
5.65 13.43 949.1 5.9794E-04 18.64
9.92 17.17 742.5 1.0499E-03 14.58

16.32 18.37 694.1 1.7280E-03 13.63
33.39 23.82 535.3 3.5360E-03 10.51
50.47 27.33 466.5 5.3440E-03 9.16
67.55 27.33 466.4 7 .1521E-03 9.16

101.69 30.45 418.7 1.0767E-02 8.23
135.84 32.08 397.4 1.4383E-02 7.81
159.33 29.06 438.7 1.6870E-02 8.62
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TEST NO: 35A DATE: 18-04-91 TIME: 16:26:04

IIIIIIIIIIIIIIIIIIIIIIII
RESULTS BASED ON PROPERTIES AT MEAN FILM TEMPERATURE:

1898.0
4.82

291288
2634652

9.04

TEMPERATURE 
DYN.VISCOSITY 
CONDUCTIVITY 
SPECIFIC HEAT 
DENSITY
EXPANSION COEFF.

34.95 degC 
0.000721 kg/m s 

0.6250 V/m K 
4178.4 J/kg K 
994.05 kg/nf3 

3.45E-04 1/K

REYNOLDS NUMBER 
PRANDTL NUMBER 
GRASHOF NUMBER -  

(Twm-Tbm) based 
heat flux  based ! 

MEAN NUSSELT NUMBER

TEST NO: 35A DATE: 18-04-91 TIME: 16:26:04

** LOCAL VARIATIONS (based on mean film  p roperties) **

x/d (Tw-Tb)x h(x) (x/d)/RePr Nu(x)
K V/m 2 K

0.31 7.60 1678.0 3.3986E-05 31.95
0.85 7.84 1626.9 9.2772E-05 30.97
2.45 11.57 1102.0 2.6729E-04 20.98
5.65 13.43 949.1 6.1725E-04 18.07
9.92 17.17 742.5 1.0839E-03 14.14

16.32 18.37 694.1 1.7838E-03 13.22
33.39 23.82 535.3 3.6502E-03 10.19
50.47 27.33 466.5 5.5167E-03 8.88
67.55 27.33 466.4 7.3832E-03 8.88

101.69 30.45 418.7 1 .1115E-02 7.97
135.84 32.08 397.4 1.4848E-02 7.57
159.33 29.06 438.7 1.7415E-02 8.35

TEST NO: 35A DATE: 18-04-91 TIME: 16:26:04

RePr)i
RePrd/L)i
GrPrd/L)i
Gr/Re)i
’Gr/Re~2)i
|GrqPrd/L)i
Grq/Re)i
Grq/Re~2)i
RePr)b
RePrd/L)b
GrPrd/L)b
Gr/Re)b
Gr/Re"2)b
GrqPrd/L)b
Grq/Re)b
Grq/Re'"2)b
RePr)f
RePrd/L)f
GrPrd/L)f
Gr/Re)f
Gr/Re~2)f
GrqPrd/L)f
Grq/Re)f
Grq/Re~2)f

9.67838E+03 
6.06172E+01 
2.08060E+03 
3.43236E+01 
3.00200E-02 
1.98634E+04 
3.27686E+02 
2.86600E-01 
9.44426E+03 
5.91509E+01 
4.40871E+03 
7.45332E+01 
5.25939E-02 
4 .11417E+04 
6.95538E+02 
4.90802E-01 
9 .14869E+03 
5.72997E+01 
8 .79383E+03 
1.53471E+02 
8.08591E-02 
7.95388E+04 
1.38812E+03 
7.31357E-01
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Table E .l Summary of experimental results. (Tests 6A — 35A).

qw % Energy 
W /m 2 Bal.Error

T est ^  ^ b 0 (T b e)meas (T b e)calc T bm TWm Tfm Q g Qloss

No. L/min °C °C °C °C °C °C W W

10A 0.0493 16.95 51.91 50.84 33.89 37.90 35.90 119.87 3.68 1635.7
15A 0.0452 17.20 88.07 87.15 52.18 58.29 55.23 227.43 7.55 3095.6

19A 0.1169 14.91 30.62 30.34 22.63 27.65 25.14 127.37 1.87 1766.8
8A 0.1232 15.26 41.36 40.75 28.01 35.49 31.75 221.83 3.34 3075.9
24A 0.1271 17.58 58.23 57.35 37.46 46.56 42.01 356.10 4.66 4947.7
14A 0.1191 14.42 73.60 72.43 43.43 53.76 48.59 487.74 6.76 6771.4

21A 0.2028 15.40 23.50 24.29 19.85 25.14 22.49 126.46 0.95 1767.0
17A 0.1986 13.09 27.76 28.92 21.00 29.44 25.22 221.58 2.53 3083.8
7 A 0.1918 14.42 39.58 40.09 27.25 37.64 32.45 346.41 3.73 4824.4
23A 0.2022 16.88 50.21 50.92 33.90 46.33 40.12 483.64 4.90 6740.0
12A 0.2000 14.45 61.74 62.39 38.42 53.35 45.88 673.72 6.49 9393.5

34A 0.3240 14.03 22.81 23.48 18.76 27.28 23.02 214.89 1.81 2999.9
33A 0.3296 15.16 34.63 35.67 25.41 41.19 33.30 474.94 4.49 6623.0
31A 0.3351 16.30 54.78 55.03 35.67 56.53 46.10 909.13 6.18 12712.0
32A 0.3357 16.84 76.07 76.45 46.64 71.94 59.29 1401.63 8.97 19606.3

18A 0.4145 13.51 20.55 21.55 17.53 26.57 22.05 233.91 1.72 3268.8
22A 0.4196 15.14 30.85 32.11 23.62 40.50 32.06 499.29 3.72 6976.8
6A 0.4070 13.25 44.08 44.56 28.91 51.75 40.33 893.61 6.67 12486.6
11A 0.4157 14.53 62.40 62.11 38.32 66.89 52.61 1384.98 8.99 19371.5
25A 0.4254 16.14 71.90 72.02 44.08 74.01 59.05 1663.71 9.74 23285.1

3.16
1.31

1.80
2.41
2.22
2.02

-8.87
-7.35
-1.98
- 2.10
-1.36

-7.03
-5.04
— 0.66
-0.63

-12.52
-7.40
-1.53

0.62
- 0.21



Table E .l (continued)

qw % Energy 
W /m 2 Bal.Error

T est V T b 0 (T b e)meas (T b e)calc T bm TWm Tfm Qg Qloss

No. L/min °C °C °C °C *C °C W W

26A 0.5988 15.89 20.81 21.30 18.59 26.84 22.72 226.40 1.02 3172.9 -8.92
27A 0.5979 15.84 26.43 27.17 21.51 37.49 29.50 474.34 2.89 6637.1 -6.56
28A 0.6009 16.08 37.66 38.44 27.26 53.70 40.48 940.59 5.80 13160.1 -3.47
29A 0.6015 16.35 49.03 49.09 32.72 64.46 48.59 1377.61 7.77 19285.0 -0.18
30A 0.5983 15.68 63.06 63.04 39.36 76.29 57.82 1981.70 10.15 27756.0 0.04

16A 0.7612 11.91 15.76 16.15 14.03 21.90 17.97 226.76 1.45 3172.0 -9.32
20A 0.7792 13.73 22.11 22.77 18.25 34.51 26.38 493.55 3.01 6905.9 -7.27
35A 0.7679 13.06 29.32 30.00 21.53 48.36 34.95 911.20 5.58 12749.6 -3.96
9A 0.7723 13.15 37.13 38.67 25.91 60.86 43.39 1380.17 8.22 19314.7 -6.05
13A 0.7702 12.77 50.69 50.74 31.76 73.01 52.38 2046.30 10.58 28659.4 -0.14



Table E.2 Values of dimensionless groups with properties evaluated at inlet bulk temperature Tb0. (Tests 6A — 35A).

T e s t
N um ber

Re P r R e P r  
= Pe

R e P rd / L  
= Gz

G r G r /R e G rP r  
= Ra

G r P r d / L G r ( q ) G r ( q ) / R e G r ( q ) P r  
= R a (q )

G r ( q ) P r d / L

10A 8 1 .2 7 .5 5 6 .1 3 7 e + 0 2 3 .8 4 4 e + 0 0 9 .8 0 9 e + 0 3 1 .2 0 7 e + 0 2 7 .4 0 9 e + 0 4 4 .6 4 1 e + 0 2 7 .9 5 8 e + 0 4 9 .7 9 5 e + 0 2 6 .0 1 1 e + 0 5 3 .7 6 5 e + 0 3
15A 7 4 .9 7 .5 0 5 .6 1 7 e + 0 2 3 .5 1 8 e + 0 0 1 .5 3 9 e + 0 4 2 .0 5 5 e + 0 2 1 .154e + 05 7 .2 3 0 e + 0 2 1 .5 4 8 e + 0 5 2 .0 6 8 e + 0 3 1 . 161e+ 06 7 .2 7 5 e + 0 3

19A 1 8 2 .8 8 .0 1 1 .4 6 4 e + 0 3 9 . 170e+ 00 9 .5 4 6 e + 0 3 5 .2 2 3 e + 0 1 7 .6 4 7 e + 0 4 4 .7 8 9 e + 0 2 6 .7 1 6 e + 0 4 3 .6 7 4 e + 0 2 5 .3 8 0 e + 0 5 3 .3 7 0 e + 0 3
8A 1 9 4 .5 7 .9 3 1 .542e + 03 9 .6 5 8 e + 0 0 1 .4 9 0 e + 0 4 7 .6 6 2 e + 0 1 1 .181e + 05 7 .3 9 9 e + 0 2 1 .2 2 3 e + 0 5 6 .2 8 7 e + 0 2 9 .6 9 4 e + 0 5 6 .0 7 1 e + 0 3
24A 2 1 2 .7 7 .4 2 1 .5 7 9 e + 0 3 9 .8 8 7 e + 0 0 2 .3 9 2 e + 0 4 1 .1 2 4 e + 0 2 1 .775e + 05 1 .1 1 2 e + 0 3 2 .5 8 1 e + 0 5 1 .2 1 3 e + 0 3 1 .9 1 6 e + 0 6 1 .2 0 0 e + 0 4
H A 1 8 3 .9 8 .1 3 1 .4 9 5 e + 0 3 9 .3 6 3 e + 0 0 1 .8 3 9 e + 0 4 9 .9 9 8 e + 0 1 1 .495e + 05 9 .3 6 1 e + 0 2 2 .4 1 3 e + 0 5 1 .3 1 2 e + 0 3 1 .9 6 1 e + 0 6 1 .2 2 8 e + 0 4

21A 3 2 1 .3 7 .9 0 2 .5 3 7 e + 0 3 1 . 589e+01 1 .0 7 3 e + 0 4 3 .3 4 0 e + 0 1 8 .4 7 6 e + 0 4 5 .3 0 9 e + 0 2 7 . 147e+04 2 .2 2 4 e + 0 2 5 .6 4 4 e + 0 5 3 .5 3 5 e + 0 3
17A 2 9 6 .0 8 . 4 6 2 .5 0 3 e + 0 3 1 .568e+ 01 1 .2 3 9 e + 0 4 4 .1 8 8 e + 0 1 1 .048e + 05 6 .5 6 5 e + 0 2 9 .0 9 9 e + 0 4 3 .0 7 4 e + 0 2 7 .6 9 6 e + 0 5 4 .8 2 0 e + 0 3
7A 2 9 6 .1 8 .1 3 2 .4 0 7 e + 0 3 1 .508e + 01 1 .8 4 8 e + 0 4 6 .2 4 0 e + 0 1 1 .502e + 05 9 .4 0 8 e + 0 2 1 .7 1 8 e + 0 5 5 .8 0 0 e + 0 2 1 .3 9 6 e + 0 6 8 .7 4 4 e + 0 3
23A 3 3 2 .5 7 . 5 7 2 .5 1 7 e + 0 3 1 ,577e+ 01 3 .0 1 6 e + 0 4 9 .0 6 9 e + 0 1 2 .2 8 3 e + 0 5 1 .4 3 0 e + 0 3 3 .2 5 1 e + 0 5 9 .7 7 7 e + 0 2 2 .4 6 1 e + 0 6 1 .5 4 1 e + 0 4
12A 3 0 9 .1 8 .1 2 2 .5 1 0 e + 0 3 1 .572e + 01 2 .6 6 7 e + 0 4 8 .6 3 1 e + 0 1 2 .1 6 6 e + 0 5 1 .3 5 7 e + 0 3 3 .3 6 1 e + 0 5 1 .0 8 7 e + 0 3 2 .7 2 9 e + 0 6 1 .7 0 9 e + 0 4

34A 4 9 5 .2 8 .2 2 4 .0 7 1 e + 0 3 2 .5 5 0 e + 0 1 1 .4 3 9 e + 0 4 2 .9 0 5 e + 0 1 1 . 183e+05 7 .4 0 7 e + 0 2 1 .0 1 4 e + 0 5 2 .0 4 8 e + 0 2 8 .3 3 7 e + 0 5 5 .2 2 1 e + 0 3
33A 5 1 8 .8 7 .9 5 4 . 126e+03 2 .5 8 4 e + 0 1 3 .0 9 7 e + 0 4 5 .9 6 9 e + 0 1 2 .4 6 3 e + 0 5 1 .5 4 3 e + 0 3 2 .5 9 7 e + 0 5 5 .0 0 6 e + 0 2 2 .0 6 6 e + 0 6 1 .2 9 4 e + 0 4
31A 5 4 3 .3 7 .6 9 4 . 180e+03 2 .6 1 8 e + 0 1 4 .7 2 7 e + 0 4 8 .7 0 1 e + 0 1 3 .6 3 7 e + 0 5 2 .2 7 8 e + 0 3 5 .7 3 6 e + 0 5 1 .0 5 6 e + 0 3 4 .4 1 4 e + 0 6 2 .7 6 4 e + 0 4
32A 5 5 1 .8 7 .5 8 4 . 181e+03 2 .6 1 9 e + 0 1 6 . 1 10e+04 1 . 107e+ 02 4 .6 3 0 e + 0 5 2 .9 0 0 e + 0 3 9 .4 1 6 e + 0 5 1 .7 0 7 e + 0 3 7 .1 3 5 e + 0 6 4 .4 6 9 e + 0 4

18A 6 2 4 .7 8 .3 5 5 .2 1 6 e + 0 3 3 .2 6 7 e + 0 1 1 .4 1 3 e + 0 4 2 .2 6 3 e + 0 1 1 .180e+ 05 7 .3 9 2 e + 0 2 1 .0 2 7 e + 0 5 1 .6 4 3 e + 0 2 8 .5 7 2 e + 0 5 5 .3 6 9 e + 0 3
22A 6 6 0 .0 7 .9 6 5 .2 5 3 e + 0 3 3 . 2 9 0 e+01 3 .3 0 5 e + 0 4 5 .0 0 7 e + 0 1 2 .6 3 0 e + 0 5 1 .6 4 7 e + 0 3 2 .7 3 0 e + 0 5 4 .1 3 6 e + 0 2 2 . 172e+ 06 1 .3 6 0 e + 0 4
6A 6 0 9 .2 8 .4 2 5 .1 2 7 e + 0 3 3 . 2 1 1 e+01 3 .4 3 9 e + 0 4 5 .6 4 5 e + 0 1 2 .8 9 4 e + 0 5 1 .8 1 3 e + 0 3 3 .7 7 5 e + 0 5 6 . 198e+ 02 3 .1 7 7 e + 0 6 1 .9 9 0 e + 0 4
11A 6 4 3 .6 8 .1 0 5 .2 1 4 e + 0 3 3 . 2 6 5 e+01 5 .1 6 3 e + 0 4 8 .0 2 2 e + 0 1 4 . 183e+05 2 .6 2 0 e + 0 3 7 .0 0 5 e + 0 5 1 .0 8 8 e + 0 3 5 .6 7 5 e + 0 6 3 .5 5 4 e + 0 4
25A 6 8 6 .7 7 .7 3 5 .3 0 9 e + 0 3 3 .3 2 5 e + 0 1 6 .6 5 0 e + 0 4 9 .6 8 4 e + 0 1 5 .1 4 1 e + 0 5 3 .2 2 0 e + 0 3 1 .0 3 1 e + 0 6 1 .5 0 1 e + 0 3 7 .9 6 8 e + 0 6 4 .9 9 0 e + 0 4

26A 9 6 0 .6 7 .7 9 7 .4 7 9 e + 0 3 4 .6 8 4 e + 0 1 1 .7 7 7 e + 0 4 1 .8 5 0 e + 0 1 1 .384e+ 05 8 .6 6 7 e + 0 2 1 .3 6 3 e + 0 5 1 .4 1 9 e + 0 2 1 .0 6 1 e + 0 6 6 .6 4 7 e + 0 3
27A 9 5 8 .0 7 .8 0 7 .4 6 9 e + 0 3 4 .678e+ 01 3 .4 2 3 e + 0 4 3 .5 7 3 e + 0 1 2 .6 6 9 e + 0 5 1 .6 7 1 e + 0 3 2 .8 3 5 e + 0 5 2 .9 5 9 e + 0 2 2 .2 1 0 e + 0 6 1 .3 8 4 e + 0 4
28A 9 6 8 .6 7 .7 4 7 .5 0 1 e + 0 3 4 .6 9 8 e + 0 1 5 .8 3 2 e + 0 4 6 .0 2 1 e + 0 1 4 .5 1 6 e + 0 5 2 .8 2 8 e + 0 3 5 . 784e+ 05 5 .9 7 1 e + 0 2 4 .4 7 9 e + 0 6 2 .8 0 5 e + 0 4
29A 9 7 6 .3 7 .6 8 7 .5 0 2 e + 0 3 4 .6 9 8 e + 0 1 7 .2 3 4 e + 0 4 7 .4 1 0 e + 0 1 5 .5 5 9 e + 0 5 3 .4 8 1 e + 0 3 8 . 753e+ 05 8 .9 6 5 e + 0 2 6 .7 2 5 e + 0 6 4 .2 1 2 e + 0 4
30A 9 5 4 .7 7 .8 3 7 .4 7 8 e + 0 3 4 . 6 8 4 e+01 7 .7 5 2 e + 0 4 8 . 120e+01 6 .0 7 2 e + 0 5 3 .8 0 3 e + 0 3 1 . 162e+ 06 1 .2 1 8 e + 0 3 9 .1 0 5 e + 0 6 5 .7 0 3 e + 0 4

16A 1 0 9 8 .4 8 . 7 7 9 .6 3 0 e + 0 3 6 .0 3 2 e + 0 1 9 .5 7 4 e + 0 3 8 .7 1 6 e + 0 0 8 .3 9 4 e + 0 4 5 .2 5 7 e + 0 2 7 .7 7 6 e + 0 4 7 .0 7 9 e + 0 1 6 .8 1 8 e + 0 5 4 .2 7 0 e + 0 3
20A 1 1 8 1 .4 8 .3 0 9 .8 0 0 e + 0 3 6 . 138e+01 2 .6 2 7 e + 0 4 2 .2 2 4 e + 0 1 2 . 179e+05 1 .3 6 5 e + 0 3 2 .2 3 8 e + 0 5 1 .8 9 4 e + 0 2 1 .8 5 6 e + 0 6 1 . 163e+04
35A 1 1 4 3 .4 8 .4 6 9 .6 7 8 e + 0 3 6 .0 6 2 e + 0 1 3 .9 2 4 e + 0 4 3 .4 3 2 e + 0 1 3 .3 2 2 e + 0 5 2 .0 8 1 e + 0 3 3 .7 4 7 e + 0 5 3 .2 7 7 e + 0 2 3 .1 7 1 e + 0 6 1 .9 8 6 e + 0 4
9A 1 1 5 2 .8 8 .4 4 9 .7 3 1 e + 0 3 6 .0 9 4 e + 0 1 5 . 184e+ 04 4 .4 9 7 e + 0 1 4 .3 7 6 e + 0 5 2 .7 4 1 e + 0 3 5 . 756e+05 4 .9 9 3 e + 0 2 4 .8 5 9 e + 0 6 3 .0 4 3 e + 0 4
13A 1 1 3 7 .7 8 .5 4 9 .7 1 6 e + 0 3 6 .0 8 6 e + 0 1 5 .7 6 6 e + 0 4 5 .0 6 8 e + 0 1 4 .9 2 5 e + 0 5 3 .0 8 4 e + 0 3 8 .057e + Q 5 7 .0 8 2 e + 0 2 6 .8 8 1 e+06 4 .3 1 0 e + 0 4



Table E.3 Values of dimensionless groups with properties evaluated at average bulk temperature Tbm. (Tests 6A -  35A)

T e s t
N u ifc e r

Re P r R e P r  
= Pe

R e P r d / L  
= Gz

G r G r /R e G r P r  
= Ra

G r P r d / L G r ( q ) G r ( q ) / R e G r ( q ) P r  
= R a (q )

G r ( q ) P r d / l

10A 1 1 9 .2 4 .9 3 5 .8 8 3 e + 0 2 3 .6 8 5 e + 0 0 4 .0 7 0 e + 0 4 3 .4 1 3 e + 0 2 2 .0 0 8 e + 0 5 1 .2 5 8 e + 0 3 3 . 169e+ 05 2 .6 5 8 e + 0 3 1 .5 6 4 e + 0 6 9 .7 9 3 e + 0 3
15A 1 5 2 .2 3 .4 2 5 .2 0 9 e + 0 2 3 .2 6 3 e + 0 0 1 .66 4 e + 0 5 1 .0 9 3 e + 0 3 5 .6 9 5 e + 0 5 3 .5 6 7 e + 0 3 1 .5 5 3 e + 0 6 1 .0 21e + 04 5 .3 1 6 e + 0 6 3 .3 3 0 e + 0 4

19A 2 2 1 .3 6 . 4 7 1 .4 3 3 e + 0 3 8 .9 7 4 e + 0 0 2 . 185e+ 04 9 .8 7 4 e + 0 1 1 .4 1 5 e + 0 5 8 .8 6 1 e + 0 2 1 .5 0 6 e + 0 5 6 .8 0 7 e + 0 2 9 .7 5 3 e + 0 5 6 . 109e+ 03
8A 2 6 3 .4 5 .6 6 1 .4 9 0 e + 0 3 9 .3 3 5 e + 0 0 5 .0 5 5 e + 0 4 1 .9 1 9 e + 0 2 2 .8 6 0 e + 0 5 1 .7 9 1 e + 0 3 4 .0 1 6 e + 0 5 1 .5 2 4 e + 0 3 2 .2 7 2 e + 0 6 1 .4 2 3 e + 0 4
24A 3 2 9 .7 4 .5 6 1 ,505e+ 03 9 .4 2 5 e + 0 0 1 .1 5 2 e + 0 5 3 .4 9 3 e + 0 2 5 .2 5 6 e + 0 5 3 .2 9 2 e + 0 3 1 . 186e+ 06 3 .5 9 7 e + 0 3 5 .4 1 3 e + 0 6 3 .3 9 0 e + 0 4
H A 3 4 5 .7 4 .0 4 1 ,396e+ 03 8 .7 4 1 e + 0 0 1 .82 7 e + 0 5 5 .2 8 4 e + 0 2 7 .3 7 5 e + 0 5 4 .6 1 9 e + 0 3 2 .2 4 1 e + 0 6 6 .4 8 2 e + 0 3 9 .0 4 6 e + 0 6 5 .6 6 6 e + 0 4

21A 3 5 9 .4 6 . 9 7 2 .5 0 5 e + 0 3 1 ,569e + 01 1 .7 7 2 e + 0 4 4 .9 3 0 e + 0 1 1 .2 3 5 e + 0 5 7 .7 3 5 e + 0 2 1 .1 6 6 e + 0 5 3 .2 4 4 e + 0 2 8 .1 2 7 e + 0 5 5 .0 9 0 e + 0 3
17A 3 6 2 .0 6 .7 6 2 .4 4 6 e + 0 3 1 .5 3 2 e + 0 1 3 . 162e+ 04 8 .7 3 4 e + 0 1 2 .1 3 7 e + 0 5 1 .3 3 8 e + 0 3 2 .2 7 2 e + 0 5 6 .2 7 7 e + 0 2 1 .5 3 5 e + 0 6 9 .6 1 7 e + 0 3
7A 4 0 3 .5 5 .7 6 2 .3 2 5 e + 0 3 1 .4 5 6 e + 0 1 6 .6 2 6 e + 0 4 1 .6 4 2 e + 0 2 3 .8 1 8 e + 0 5 2 .3 9 2 e + 0 3 5 .9 5 9 e + 0 5 1 .4 7 7 e + 0 3 3 .4 3 4 e + 0 6 2 .1 5 1 e + 0 4
23A 4 8 9 .0 4 .9 3 2 .4 1 2 e + 0 3 1 .5 1 1 e+01 1 . 263e+ 05 2 .5 8 2 e + 0 2 6 .2 2 9 e + 0 5 3 .9 0 2 e + 0 3 1 .3 0 6 e + 0 6 2 .6 7 1 e+03 6 .4 4 4 e + 0 6 4 .0 3 6 e + 0 4
12A 5 2 9 .0 4 . 4 7 2 .3 6 6 e + 0 3 1 .482e+ 01 1 .9 9 9 e + 0 5 3 .7 7 8 e + 0 2 8 .9 3 7 e + 0 5 5 .5 9 8 e + 0 3 2 .3 7 8 e + 0 6 4 .4 9 5 e + 0 3 1 .0 6 3 e + 0 7 6 .6 6 0 e + 0 4

34A 5 5 9 .0 7 .1 8 4 ,015e+ 03 2 .5 1 4 e + 0 1 2 .5 4 9 e + 0 4 4 .5 6 0 e + 0 1 1 .831e+ 05 1 . 147e+ 03 1 .7 7 4 e + 0 5 3 . 174e+ 02 1 .2 7 4 e + 0 6 7 .9 8 0 e + 0 3
33A 6 6 5 .3 6 .0 3 4 .012e+ 03 2 .5 1 3 e + 0 1 8 .7 0 3 e + 0 4 1 .3 0 8 e + 0 2 5 .2 4 8 e + 0 5 3 .2 8 7 e + 0 3 7 . 108e+ 05 1 .0 6 8 e + 0 3 4 .2 8 6 e + 0 6 2 .6 8 5 e + 0 4
31A 8 3 9 .9 4 .7 4 3 .9 8 5 e + 0 3 2 .4 9 6 e + 0 1 2 .3 6 9 e + 0 5 2 .8 2 0 e + 0 2 1 . 124e+ 06 7 .0 3 8 e + 0 3 2 .7 4 3 e + 0 6 3 .2 6 6 e + 0 3 1 .3 0 2 e + 0 7 8 . 152e+ 04
32A 1 0 3 1 .0 3 .7 9 3 .9 0 9 e + 0 3 2 .4 4 8 e + 0 1 5 .2 8 0 e + 0 5 5 . 121e+ 02 2 .0 0 2 e + 0 6 1 .2 5 4 e + 0 4 7 .6 1 5 e + 0 6 7 .3 8 6 e + 0 3 2 .8 8 7 e + 0 7 1 . 808e+ 05

18A 6 9 3 .6 7 .4 3 5 .1 5 4 e + 0 3 3 .2 2 8 e + 0 1 2 .3 6 2 e + 0 4 3 .4 0 6 e + 0 1 1 .7 5 5 e + 0 5 1 .0 9 9 e + 0 3 1 .697e + 05 2 .4 4 7 e + 0 2 1 .2 6 1 e + 0 6 7 .8 9 8 e + 0 3
22A 8 1 3 .0 6 .3 1 5 . 130e+03 3 .2 1 3 e + 0 1 8 .0 1 8 e + 0 4 9 .8 6 2 e + 0 1 5 ,059e+ 05 3 . 169e+ 03 6 .4 7 6 e + 0 5 7 .9 6 6 e + 0 2 4 .0 8 7 e + 0 6 2 .5 5 9 e + 0 4
6A 8 8 7 .6 5 .5 4 4 .9 1 4 e + 0 3 3 .0 7 8 e + 0 1 1 .6 4 9 e + 0 5 1 .8 5 8 e + 0 2 9 .1 2 9 e + 0 5 5 .7 1 8 e + 0 3 1 .7 3 9 e + 0 6 1 .9 5 9 e + 0 3 9 .6 2 7 e + 0 6 6 .0 3 0 e + 0 4
11A 1 0 9 7 .1 4 .4 8 4 .9 1 7 e + 0 3 3 .0 7 9 e + 0 1 3 .8 0 4 e + 0 5 3 .4 6 7 e + 0 2 1 .7 0 5 e + 0 6 1 ,068e + 04 4 ,8 7 6 e + 0 6 4 .4 4 4 e + 0 3 2 .1 8 5 e + 0 7 1 .3 6 8 e + 0 5
25A 1 2 4 8 .7 3 .9 8 4 .9 7 6 e + 0 3 3 .1 1 6 e + 0 1 5 .4 7 8 e + 0 5 4 .3 8 7 e + 0 2 2 . 183e+ 06 1 .367e + 04 7 .9 6 7 e + 0 6 6 .3 8 0 e + 0 3 3 .1 7 5 e + 0 7 1 .9 8 8 e + 0 5

26A 1 0 2 8 .6 7 .2 1 7 .4 2 1 e + 0 3 4 .6 4 8 e + 0 1 2 .4 2 3 e + 0 4 2 .3 5 6 e + 0 1 1 .7 4 8 e + 0 5 1 .095e + 03 1 .8 4 5 e + 0 5 1 .7 9 4 e + 0 2 1 .3 3 1 e + 0 6 8 .3 3 7 e + 0 3
27A 1 1 0 2 .5 6 . 6 7 7 .3 5 1 e + 0 3 4 .6 0 4 e + 0 1 6 .2 7 7 e + 0 4 5 .6 9 4 e + 0 1 4 . 186e+05 2 .6 2 1 e + 0 3 5 . 122e+ 05 4 .6 4 6 e + 0 2 3 .4 1 5 e + 0 6 2 . 139e+ 04
28A 1 2 6 3 .8 5 .7 6 7 .2 8 1 e + 0 3 4 .5 6 0 e + 0 1 1 .687e+ 05 1 .3 3 5 e + 0 2 9 .7 2 2 e + 0 5 6 .0 8 9 e + 0 3 1 .6 2 7 e + 0 6 1 .2 8 7 e + 0 3 9 .3 7 2 e + 0 6 5 .8 7 0 e + 0 4
29A 1 4 2 0 .5 5 .0 7 7 . 197e+03 4 .5 0 7 e + 0 1 2 .9 8 5 e + 0 5 2 . 101e+ 02 1 .5 1 2 e + 0 6 9 .4 7 2 e + 0 3 3 .4 7 0 e + 0 6 2 .4 4 3 e + 0 3 1 . 758e+ 07 1 . 101e+ 05
30A 1 6 1 0 .7 4 .3 8 7 .0 6 2 e + 0 3 4 .4 2 3 e + 0 1 5 .2 2 1 e + 0 5 3 .2 4 1 e + 0 2 2 .2 8 9 e + 0 6 1 .4 3 4 e + 0 4 7 .4 0 4 e + 0 6 4 .5 9 6 e + 0 3 3 .2 4 6 e + 0 7 2 .0 3 3 e + 0 5

16A 1 1 6 3 .5 8 .2 2 9 .5 6 6 e + 0 3 5 .9 9 1 e + 0 1 1 .327e+ 04 1 .1 4 1 e+01 1 .0 9 1 e + 0 5 6 .8 3 4 e + 0 2 1 .0 7 1 e + 0 5 9 .2 0 9 e + 0 1 8 .8 1 0 e + 0 5 5 .5 1 8 e + 0 3
20A 1 3 2 7 .6 7 .2 8 9 .6 6 9 e + 0 3 6 .0 5 6 e + 0 1 4 .6 0 4 e + 0 4 3 .4 6 8 e + 0 1 3 .3 5 3 e + 0 5 2 . 100e+ 03 3 .8 7 4 e + 0 5 2 .9 1 8 e + 0 2 2 .8 2 1 e + 0 6 1 .7 67e + 04
35A 1 4 1 7 .1 6 .6 6 9 .4 4 4 e + 0 3 5 .9 1 5 e + 0 1 1 .0 5 6 e + 0 5 7 .4 5 3 e + 0 1 7 .0 3 9 e + 0 5 4 .4 0 9 e + 0 3 9 .8 5 7 e + 0 5 6 .9 5 5 e + 0 2 6 .5 6 9 e + 0 6 4 .1 1 4 e + 0 4
9A 1 5 7 7 .1 5 .9 6 9 .3 9 2 e + 0 3 5 .8 8 2 e + 0 1 2 .0 0 7 e + 0 5 1 .2 7 3 e + 0 2 1 . 196e+ 06 7 .4 8 8 e + 0 3 2 . 156e+ 06 1 .3 6 7 e + 0 3 1 .2 8 4 e + 0 7 8 .0 4 1 e + 0 4
13A 1 7 8 4 .0 5 .1 8 9 .2 4 0 e + 0 3 5 .7 8 7 e + 0 1 3 .6 3 7 e + 0 5 2 .0 3 9 e + 0 2 1 .8 8 4 e + 0 6 1 .1 8 0 e + 0 4 4 .8 4 4 e + 0 6 2 .7 1 5 e + 0 3 2 .5 0 9 e + 0 7 1 .5 7 1 e + 0 5



Table E.4 Values of dimensionless groups with properties evaluated at average film temperature Tfm. (Tests 6A -  35A)

T e s t
N um ber

Re P r R e P r  
= Pe

R e P r d / L  
= Gz

G r G r /R e G rP r  
= Ra

G r P r d / L G r ( q ) G r ( q ) / R e G r ( q ) P r  
= R a (q )

G r ( q ) P r d / L

10A 1 2 4 .1 4 .7 2 5 .8 5 8 e + 0 2 3 .6 6 9 e + 0 0 4 .6 1 6 e + 0 4 3 .7 2 0 e + 0 2 2 . 179e+05 1 .3 6 5 e + 0 3 3 .5 7 9 e + 0 5 2 .8 8 4 e + 0 3 1 ,6 8 9 e + 0 6 1 .0 5 8 e + 0 4
15A 1 5 9 .9 3 .2 4 5 .1 8 5 e + 0 2 3 .2 4 7 e + 0 0 1 .9 0 9 e + 0 5 1 . 194e+ 03 6 . 192e+05 3 .8 7 8 e + 0 3 1 .7 7 4 e + 0 6 1 . 109e+04 5 .7 5 2 e + 0 6 3 .6 0 3 e + 0 4

19A 2 3 4 .5 6 .0 7 1 .4 2 4 e + 0 3 8 .9 1 6 e + 0 0 2 . 708e+ 04 1 . 155e+ 02 1 .6 4 5 e + 0 5 1 .0 3 0 e + 0 3 1 .8 5 6 e + 0 5 7 .9 1 5 e + 0 2 1 . 127e+ 06 7 .0 5 7 e + 0 3
8A 2 8 5 .3 5 .1 8 1 .4 7 8 e + 0 3 9 .2 5 5 e + 0 0 6 .5 9 8 e + 0 4 2 .3 1 3 e + 0 2 3 .4 1 8 e + 0 5 2 .1 4 1 e + 0 3 5 .1 9 7 e + 0 5 1 .8 2 2 e + 0 3 2 .6 9 2 e + 0 6 1 .6 8 6 e + 0 4
24A 3 5 9 .2 4 .1 5 1 .4 9 2 e + 0 3 9 .3 4 2 e + 0 0 1 .4 91e + 05 4 . 152e+ 02 6 . 192e+05 3 .8 7 8 e + 0 3 1 .5 2 2 e + 0 6 4 .2 3 7 e + 0 3 6 .3 2 0 e + 0 6 3 .9 5 8 e + 0 4
14A 3 7 8 .4 3 .6 5 1 .3 8 3 e + 0 3 8 .6 6 2 e + 0 0 2 .3 7 4 e + 0 5 6 .2 7 4 e + 0 2 8 .6 7 7 e + 0 5 5 .4 3 4 e + 0 3 2 .8 8 6 e + 0 6 7 .6 2 5 e + 0 3 1 .0 5 4 e + 0 7 6 . 6 0 4 e+04

21A 3 8 2 .9 6 .5 0 2 .4 8 7 e + 0 3 1 .5 5 8 e + 0 1 2 .2 7 8 e + 0 4 5 .9 5 1 e + 0 1 1 .4 8 0 e + 0 5 9 .2 7 1 e + 0 2 1 .4 8 9 e + 0 5 3 .8 8 9 e + 0 2 9 .6 7 5 e + 0 5 6 .0 5 9 e + 0 3
17A 3 9 9 .4 6 .0 6 2 .4 2 0 e + 0 3 1 .5 1 5 e + 0 1 4 .5 8 6 e + 0 4 1 . 148e+ 02 2 .7 7 9 e + 0 5 1 .7 4 0 e + 0 3 3 .2 6 1 e + 0 5 8 . 166e+ 02 1 .9 7 6 e + 0 6 1 .2 3 8 e + 0 4
7A 4 5 0 .6 5 .1 0 2 .2 9 7 e + 0 3 1 .4 3 9 e + 0 1 9 .5 9 6 e + 0 4 2 . 129e+ 02 4 .8 9 2 e + 0 5 3 .0 6 4 e + 0 3 8 .5 2 9 e + 0 5 1 .893e + 03 4 .3 4 8 e + 0 6 2 .7 2 3 e + 0 4
23A 5 5 1 .9 4 .3 2 2 .3 8 2 e + 0 3 1 .4 9 2 e + 0 1 1 .8 3 5 e + 0 5 3 .3 2 5 e + 0 2 7 .9 1 9 e + 0 5 4 .9 6 0 e + 0 3 1 .8 7 4 e + 0 6 3 .3 9 5 e + 0 3 8 .0 8 8 e + 0 6 5 .0 6 5 e + 0 4
12A 6 0 6 .4 3 .8 5 2 .3 3 3 e + 0 3 1 ,461e+ 01 2 .9 9 8 e + 0 5 4 .9 4 4 e + 0 2 1 . 153e+ 06 7 .2 2 3 e + 0 3 3 .5 1 6 e + 0 6 5 .7 9 8 e + 0 3 1 .3 5 3 e + 0 7 8 .4 7 1 e + 0 4

34A 6 1 9 .3 6 .4 1 3 .9 6 9 e + 0 3 2 .4 8 6 e + 0 1 3 .8 4 4 e + 0 4 6 .2 0 7 e + 0 1 2 .4 6 3 e + 0 5 1 .543e+ 03 2 .6 4 6 e + 0 5 4 .2 7 3 e + 0 2 1 .6 96e + 06 1 .0 6 2 e + 0 4
33A 7 8 7 .8 5 .0 0 3 .9 4 0 e + 0 3 2 .4 6 7 e + 0 1 1 .5 4 1 e + 0 5 1 .9 5 6 e + 0 2 7 .7 0 7 e + 0 5 4 .8 2 7 e + 0 3 1 .2 3 6 e + 0 6 1 .5 6 9 e + 0 3 6 . 181e+ 06 3 .8 7 2 e + 0 4
31A 1 0 1 9 .6 3 .8 3 3 .9 0 6 e + 0 3 2 .4 4 6 e + 0 1 4 .2 3 7 e + 0 5 4 . 156e+ 02 1 .623e+ 06 1 .017e+ 04 4 .8 0 8 e + 0 6 4 .7 1 6 e + 0 3 1 .8 4 2 e + 0 7 1 . 154e+ 05
32A 1 2 6 6 .0 3 .0 3 3 .8 3 3 e + 0 3 2 .4 0 0 e + 0 1 9 .4 0 6 e + 0 5 7 .4 3 0 e + 0 2 2 .8 4 7 e + 0 6 1 .783e+ 04 1 .3 2 9 e + 0 7 1 .0 5 0 e + 0 4 4 .0 2 3 e + 0 7 2 .5 1 9 e + 0 5

18A 7 7 4 .4 6 .5 7 5 .0 9 0 e + 0 3 3 .1 8 8 e + 0 1 3 .7 3 1 e + 0 4 4 .8 1 8 e + 0 1 2 .4 5 2 e + 0 5 1 .5 3 6 e + 0 3 2 .6 4 9 e + 0 5 3 .4 2 0 e + 0 2 1 .7 4 1 e + 0 6 1 . 090e+ 04
22A 9 7 7 .7 5 .1 4 5 .0 2 8 e + 0 3 3 .1 4 9 e + 0 1 1 .5 1 9 e + 0 5 1 .5 5 4 e + 0 2 7 .8 1 3 e + 0 5 4 .8 9 4 e + 0 3 1 ,2 0 3 e + 0 6 1 .2 3 1 e + 0 3 6 .1 8 8 e+06 3 .8 7 5 e + 0 4
6A 1 1 1 6 .2 4 .3 0 4 .7 9 7 e + 0 3 3 .0 0 4 e + 0 1 3 .4 1 2 e + 0 5 3 .0 5 7 e + 0 2 1 .4 6 6 e + 0 6 9 . 183e+03 3 .5 1 2 e + 0 6 3 . 146e+ 03 1 .5 0 9 e + 0 7 9 .4 5 2 e + 0 4
11A 1 4 1 1 .5 3 .4 0 4 . 793e+ 03 3 .0 0 2 e + 0 1 7 .9 3 4 e + 0 5 5 .6 2 1 e + 0 2 2 .6 9 5 e + 0 6 1 .6 8 8 e + 0 4 9 .9 0 7 e + 0 6 7 .0 1 9 e + 0 3 3 .3 6 5 e + 0 7 2 . 107e+ 05
25A 1 5 9 8 .2 3 .0 4 4 .8 5 8 e + 0 3 3 .0 4 3 e + 0 1 1 . 102e+ 06 6 .8 9 2 e + 0 2 3 .3 4 8 e + 0 6 2 .0 9 7 e + 0 4 1 .5 6 3 e + 0 7 9 .7 7 7 e + 0 3 4 .7 4 9 e + 0 7 2 .9 7 5 e + 0 5

26A 1 1 3 6 .1 6 .4 6 7 .3 3 8 e + 0 3 4 .5 9 6 e + 0 1 3 .6 1 9 e + 0 4 3 . 186e+01 2 .3 3 8 e + 0 5 1 .464e+ 03 2 .7 2 7 e + 0 5 2 .4 0 0 e + 0 2 1 .7 6 1 e + 0 6 1 . 103e+ 04
27A 1 3 2 0 .1 5 .4 6 7 .2 0 7 e + 0 3 4 .5 1 4 e + 0 1 1 .2 0 4 e + 0 5 9 . 1 18e+01 6 .5 7 1 e + 0 5 4 .1 1 6 e + 0 3 9 .6 3 3 e + 0 5 7 .2 9 7 e + 0 2 5 .2 5 9 e + 0 6 3 .2 9 4 e + 0 4
28A 1 6 5 1 .9 4 .2 8 7 .0 7 6 e + 0 3 4 .4 3 2 e + 0 1 3 .9 8 3 e + 0 5 2 . 4 1 1e+02 1 .7 0 6 e + 0 6 1 .0 6 9 e + 0 4 3 .7 3 2 e + 0 6 2 .2 5 9 e + 0 3 1 .5 9 9 e + 0 7 1 .0 0 1 e + 0 5
29A 1 9 1 0 .1 3 .6 5 6 .9 8 0 e + 0 3 4 .3 7 2 e + 0 1 7 .2 9 3 e + 0 5 3 .8 1 8 e + 0 2 2 .6 6 5 e + 0 6 1 .669e + 04 8 .2 1 8 e + 0 6 4 .302e+ 03 3 .0 0 3 e + 0 7 1 .8 8 1 e + 0 5
30A 2 2 0 6 .5 3 .1 0 6 .8 4 6 e + 0 3 4 .2 8 7 e + 0 1 1 .2 9 1 e + 0 6 5 .8 4 9 e + 0 2 4 .0 0 4 e + 0 6 2 .5 0 8 e + 0 4 1 .7 7 2 e + 0 7 8 .0 3 2 e + 0 3 5 .4 9 8 e + 0 7 3 .4 4 3 e + 0 5

16A 1 2 8 8 .0 7 .3 4 9 .4 5 5 e + 0 3 5 .9 2 2 e + 0 1 2 . 161e+ 04 1 .6 7 8 e + 0 1 1 .5 8 7 e + 0 5 9 .9 3 7 e + 0 2 1 .7 2 6 e + 0 5 1 .3 4 0 e + 0 2 1 .2 6 7 e + 0 6 7 .9 3 7 e + 0 3
20A 1 6 0 7 .8 5 .8 9 9 .4 6 5 e + 0 3 5 .928e+ 01 9 .6 9 2 e + 0 4 6 .0 2 8 e + C 1 5 .7 0 6 e + 0 5 3 .5 7 3 e + 0 3 7 .9 9 0 e + 0 5 4 .9 6 9 e + 0 2 4 .7 0 3 e + 0 6 2 .9 4 6 e + 0 4
35A 1 8 9 8 .0 4 .8 2 9 . 149e+ 03 5 .7 3 0 e + 0 1 2 .9 1 3 e + 0 5 1 ,5 3 5 e + 0 2 1 .4 0 4 e + 0 6 8 .7 9 4 e + 0 3 2 .6 3 5 e + 0 6 1 .388e + 03 1 .2 7 0 e + 0 7 7 .9 5 4 e + 0 4
9A 2 2 4 0 .2 4 .0 4 9 .0 4 9 e + 0 3 5 .6 6 8 e + 0 1 6 . 167e+ 05 2 .7 5 3 e + 0 2 2 .4 9 1 e + 0 6 1 .5 6 0 e + 0 4 6 .3 8 1 e + 0 6 2 .8 4 8 e + 0 3 2 .5 7 7 e + 0 7 1 .6 1 4 e + 0 5
13A 2 6 0 6 .4 3 .4 1 8 .8 8 7 e + 0 3 5 .5 6 6 e + 0 1 1 . 134e+ 06 4 .3 4 9 e + 0 2 3 .8 6 6 e + 0 6 2 .4 2 1 e + 0 4 1 .4 5 1 e + 0 7 5 .5 6 8 e + 0 3 4 .9 4 8 e + 0 7 3 .0 9 9 e + 0 5



APPENDIX F

COMPUTER PROGRAM LISTING

A full listing of the computer program embodying the numerical procedures 

described in Chapter 3 is given below. The program is coded in FORTRAN 77 and 

has been run on IBM and DEC—VAX mainframes. NAG Library routines for the 

solution of unsymmetric band matrix systems are called in Subroutine SOLVE.

C***********************************************************************
c *
C *** L A C O N I C  *** *
C *
C A PROGRAM FOR TVO-DIMENSIONAL LAMINAR FORCED *
C OR COMBINED (VERTICAL DUCTS ONLY) CONVECTION *
C IN PARALLEL PLATE, CIRCULAR AND CONCENTRIC ANNULAR CHANNELS * 
C *
C MAIN FEATURES OF CALCULATION PROCEDURE: *
C * QUASI-INCOMPRESSIBLE (BOUSSINESQ), VARIABLE PROPERTY *
C FLUID *
C * SIMULTANEOUS SOLUTION OF INTEGRAL CONTINUITY EQUATION *
C AND MOMENTUM EQUATIONS FOR VELOCITIES AND PRESSURE *
C * CALCULATION OF TRANSVERSE VELOCITIES FROM CONTINUITY *
C DIFFERENTIAL EQUATION *
C * SIMULTANEOUS SOLUTION OF ENERGY DIFFERENTIAL EQUATION *
C AND STEPVISE ENERGY BALANCE (OPTIONAL) FOR TEMPERATURE *
C * FULLY IMPLICIT FINITE DIFFERENCE SCHEME *
C * DIRECT SOLUTION OF EQUNS BY BAND MATRIX METHOD *
C * ITERATION AT EACH AXIAL STEP TO HANDLE TEMPERATURE *
C COUPLING OF EQUNS *
C *
c***********************************************************************

BLOCK DATA INOUT
C*********************************************************************** 
C INITIALIZES INPUT/OUTPUT UNIT REFERENCE NUMBERS *
C NI -  INPUT DATA FILE *
C NO -  LINEPRINTER OUTPUT *
C NSC- STORAGE FILE (CONTINUITY CHECK SUMMARY ) *
C NSS- STORAGE FILE (ITERATIVE REFINEMENT SUMMARY ) *
C NSF- STORAGE FILE (FLUID FLOW RESULTS SUMMARY ) *
C NSH- STORAGE FILE (HEAT TRANSFER RESULTS SUMMARY) *
C NS1- STORAGE FILE (NUSSELT NO. VS. XSTAR -  INNER) *
C NS2- STORAGE FILE (NUSSELT NO. VS. XSTAR -  OUTER) *
C NS3- STORAGE FILE (U PROFILES AT SPECIFIED STEPS) *
C NS4- STORAGE FILE (T PROFILES AT SPECIFIED STEPS *
C NS5- STORAGE FILE FRICT.MOD. VS. XCROSS -  INNER) *
C NS6- STORAGE FILE FRICT.MOD. VS. XCROSS -  OUTER) *
C NS7- STORAGE FILE (U VS. XCROSS AT Y=0.0 (0 .1)1.0 ) *
C***********************************************************************
c

COMMON /IO /N I, NO,NSC, NSS,NSF, NSH, NS1, NS2, NS3,NS4,NS5,NS6,NS7 
DATA N I, NO,NSC,NSS, NSF, NSH,NS1 , NS2, NS3,NS4,NS5, NS6,NS7/

1 20 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 /
END
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PROGRAM MAIN
C***********************************************************************

MAIN SEGMENT READS INPUT DATA, ORGANISES MARCHING PROCEDURE, * 
CALCULATES STATION VARIABLES AND OUTPUTS RESULTS. *

*

INPUT DATA: *
KCOORD: COORDINATE SYSTEM (1=2-D PLANE, 2-AXISYMMETRIC) *
EASE : DOMAIN TYPE (1=C/L-VALL, 2=VALL-VALL) *
KUIN : INLET VELOCITY PROFILE (1=UNIF0RM, 2=PARAB0LIC) *
NDIR : FORCED FLOW DIRECTION (-1=D0VN, O=F0RCED ONLY, 1=UP) *
KSOLN : FLOW AND/OR TEMP SOLUTIONS (1=B0TH, 2=FL0V, 3=TEMP) *
KEBAL : INTEGRAL ENERGY BALANCE OPTION (O=N0, 1=YES) *
KVIDI : VISCOUS DISSIPATION INCLUDED (O=N0, 1=YES) *
RADRAT: RADIUS RATIO, R1/R2 (E.G. 0=TUBE, 1=PARALLEL PLATES) * 
KTBCI : THERMAL BOUNDARY CONDITION AT INNER VALL (1=UHF, 2=UVT)*
TBCI : HEAT FLUX RATIO (FOR KTBCI=1) OR DIMENSIONLESS TEMP *

(FOR KTBCI=2) AT INNER VALL *
LTBCI : AXIAL STEP NUMBER FOR START OF TBCI AT INNER VALL *

(KTBCI, TBCI AND LTBCI ONLY READ IF  KASE=2) *
KTBCO : AS FOR KTBCI BUT AT OUTER VALL *
TBCO : AS FOR TBCI BUT AT OUTER VALL *
LTBCO : AS FOR LTBCO BUT AT OUTER VALL *
GNUM : GRAVITATIONAL PARAMETER *
RENUM : REYNOLDS NUMBER BASED ON DOMAIN VIDTH -  INLET PROPS *
PRNUM : PRANDTL NUMBER -  INLET PROPS *
BRNUM : BRINKMANN NUMBER -  INLET PROPS (ONLY READ IF  KVIDI=1) *
RHORAT: AVERAGE/INLET DENSITY RATIO *
KPR0P(1:4) : TEMPERATURE DEPENDENCE OF RHO, MU, K AND CP *

(0=NONE, l=POLYNOMIAL, 2=P0VER LAV) *
PCON( 1 ,1 :6 ) :  DIMENSIONLESS CONSTANTS FOR RHO-VS-T EQUN *
PCON( 2 ,1 :6 ) : DIMENSIONLESS CONSTANTS FOR MU-VS-T EQUN *
PCON(3,l:6): DIMENSIONLESS CONSTANTS FOR K-VS-T EQUN *
PCON(4,1 :6 ) : DIMENSIONLESS CONSTANTS FOR CP-VS-T EQUN *

(PCON(N,l:6) ONLY READ IF  KPROP(N) = 1 OR 2) *
NDIV : NUMBER OF TRANSVERSE GRID DIVISIONS (NDIV MUST BE EVEN)*
NSTEP : NUMBER OF AXIAL STEPS *
NDX : NUMBER OF DIFFERENT AXIAL STEP SIZES (21 MAX) *
D X(1), LDX(l) . . .  DX(NDX), LDX(NDX): AXIAL STEP SIZE , STARTING *

STEP NUMBER (LDX(1)=1) *
ISTAT : AXIAL STEP INCREMENT FOR STATION RESULTS PRINTOUT *
IPROF : AXIAL STEP INCREMENT FOR PROFILE RESULTS PRINTOUT *
IPLOT : AXIAL STEP INCREMENT FOR U-VS-Y AND T-VS-Y PRINTOUT *
KSNUI : STORE NUSSELT NO.-VS-XSTAR -  INNER (0=NO, 1=YES) *
KSNUO : AS FOR KSNUI BUT AT OUTER VALL *
KSFRI : STORE FRICTION MOD.-VS-XCROSS -  INNER (0=NO, 1=YES) *
KSFRO : AS FOR KSFRI BUT AT OUTER VALL *
NSU : NUMBER OF U PROFILES TO STORE (SPECIFIED AXIAL STEPS) *
INCRU : TRANSVERSE DIVISIONS INCREMENT FOR U PROFILE STORAGE *
LSU(l) . . .  LSU(NSU): AXIAL STEP NUMBERS FOR U PROFILE STORAGE * 
NST : AS FOR NSU BUT FOR T PROFILES *
INCRT : AS FOR INCRU BUT FOR T PROFILES *
LST(l) . . .  LST(NST): AS FOR LSU(l) . . .  BUT FOR T PROFILES *

C***********************************************************************
c

PARAMETER (MAX1=101,MAX2=51,MAX3=103,MAX4=21,MAX5=24,MAX33=297)
C

DIMENSION DX(MAX4),LDX(MAX4),IU(MAX2),IT(MAX2),
1 LSU(MAX5),LST(MAX5),US(MAX5+2,MAX1),TS(MAX5+2,MAX1)

C
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REAL NUI3, NUI4,NUI5, ND03, NU04, NU05,NUMEAN,
1 NUI3X, NUI4X, NUI5X,NU03X,NU04X,ND05X

C
COMMON /IO /N I, NO, NSC,NSS,NSF,NSH,NS1, NS2, NS3, NS4,NS5,NS6, NS7 
COMMON /Cl/FRHO(MAX3),FMU(MAX3),DFMU(MAX3),FK(MAX3),DFK(MAX3),

1 FCP(MAX3),FCPM(MAX3),PCON(4,6),KPROP(4),CUP,RHORAT 
COMMON /C2/U(2,MAX1),V(2,MAX1),P(2,MAX1),V(MAX1),

1 T(2,MAX3),E(MAX1)
COMMON / C3/KKTBCI, KKTBCO, HFLUXI, HFLUXO,TBAL, TBAL1 
COMMON /C 4 /X , DELTX, DELTY, RADRAT,RADFN1 , RAD(MAXI) ,Y(MAX1)
COMMON /C 5 /R 1, R2, R3, R4, R5, R6,R7, R8,R9, NM2, NM1, NDIV, NP1, NP2, N2M3, 

1 N3M3,RX1,RX2,RDYDX2
COMMON / C6/KASE, KVIDI, KEBAL, NDIR 
COMMON /C8/KITER 

C
CHARACTER TY0(3)*19
CHARACTER TY1(2)*12,TY2(2)*10,TY3(3)*11,TY4(3)*5,TY5(4)*7,

1 TY6(2)*3,TY7(3)*4,TY8(2)*5,TY9(2)*6,SYMB(41)*1,DIGIT(10)*1 
CHARACTER DOT, CROSS, BLANK, VEL, TEMP 

C
DATA TYO/’ PARALLEL PLATE CIRCULAR

1 ’ CONCENTRIC ANNULAR’ /
DATA T Y 1/’ C/L -  WALL WALL -  VALL’ /
DATA TY 2/’ UNIFORM ’ , ’ PARABOLIC’ /
DATA TY3/’ DOVNVARD ’ , ’ HORIZONTAL’ , ’ UPWARD ’ /
DATA TY4/’ CONST’ , ’POLYN’ , ’POWER’ /
DATA TY5/ ’ DENSITY’ , ’VISCOS. ’ , ’ CONDUC. ’ , ’ SP. HEAT’ /
DATA TY6/’ NO’ , ’YES’ /
DATA TY7/’ BOTH’ , ’ FLOW’ , ’TEMP’ /
DATA TY8/’ HFLUX’ , ’TWALL’ /
DATA TY9/’ BANDUP’ , ’ BANDET’ /
DATA D IG IT /’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’4 ’ , ’ 5 ’ , ’ 6’ , ’ 7 ’ , ’ 8’ , ’ 9’ , ’ 0’ /
DATA DOT,CROSS,BLANK,VEL,TEMP/’ . ’ , ’ U’ , ’T ’ /

C-----------------------------------------------------------------------------------------------------------------------------------------------
C READ, ECHO AND INTERPRET INPUT DATA FOR EACH PROBLEM

WRITE(NO,l)
1 FORMAT(’ l ’ , ’ PROBLEM INPUT DATA: ’ , / ,  IX , 128 ( ’ =*=’ ) , / )
C
C **** PROBLEM DEFINITION
C

READ(NI, *)KCOORD,KASE,KUIN,NDIR
WRITE(NO,*)’KCOORD=’ , KCOORD,’KASE=’ ,KASE,’KUIN=’ ,KUIN,

1 ’NDIR=’ ,NDIR
READ(NI,*)KSOLN,KEBAL,KVIDI
WRITE(NO,*)’ KSOLN=’ ,KSOLN,’KEBAL=’ ,KEBAL,’KVIDI=’ ,KVIDI
IF(KCOORD.EQ. 1 . AND. KASE. EQ. 1 ) THEN
KGEOM=l
RADRAT=1.0
DHFACT=4.0
UFACT=1.5
ELSE IF(KCOORD. EQ. 1 . AND.KASE. EQ.2 )THEN
KGEOM=l
RADRAT=1.0
DHFACT=2.0
UFACT=1.5
ELSE IF(KCOORD. EQ.2 .AND. KASE. EQ. 1 ) THEN
KGEOM=2
RADRAT=0.0
DHFACT=2.0
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UFACT=2.0
ELSE IF(ECO ORD.Eq.2 .AND.EASE. EQ.2 )THEN 
KGE0M=3
READ(NI,*)RADRAT
WRITE(NO,*)’ RADRAT=’ , RADRAT
DHFACT=2.0
UFACT=2.0
END IF
IF(EASE.EQ. 1 ) THEN
ETBCI=1
TBCI=0.0
LTBCI=1
ELSE
READ(NI,*)ETBCI, TBCI,LTBCI
WRITE(N0,* ) ’ ETBCI=’ , ETBCI,’TBCI=’ ,T B C I,’ LTBCI=’ , LTBCI 
END IF
READ(N I,* )ETBCO, TBCO, LTBCO
VRITE(N0,*)’ETBC0=’ , ETBCO,’ TBC0=’ ,TBCO,’ LTBC0=’ , LTBCO 
READ(N I,* )GNUM, RENUM, PRNUM
WRITE(NO, *) ’ GNDM=’ , GNUM, ’ RENUM=’ , RENUM, ’ PRNUM=’ , PRNUM
IF (E V ID I. Eq. 1 ) THEN
READ(NI,*)BRNUM
WRITE(NO,* ) ’BRNOM=’ , BRNDH
ELSE
BRNUM=0.0 
END IF

**** FLUID PROPERTY VARIATIONS

DO 5 1= 1,4  
DO 5 J = 1 ,6 
PC0N(I,J)=0.0 
CONTINUE
READ(NI,*)RHORAT
WRITE(N0,*)’RH0RAT=’ ,RH0RAT
NC0NP=O
READ(NI,*)(EPR0P(J),J=1,4)
WRITE(N0,*)’ EPRO P(J),J=1,4:’ , (EPROP(J),J=1,4)
DO 8 1= 1,4
IF(EPROP(I).Eq.O)THEN
NC0NP=NC0NP+1
ELSE
READ(NI,*)(PC0N(I,J),J=1,6)
WRITE(NO,*)’ P C 0 N (I,J),J= 1,6 :’ , (PC0N (I,J),J=1,6)
END IF
CONTINUE
EVP=2
IF(NC0NP.Eq.4)EVP=l
EBE=2
IF(NDIR.Eq.0 .OR.EPROP( 1 ) .Eq.0)EBE=1

****ITERATIONS PER AXIAL STEP

IF(NC0NP.Eq.4)THEN
NITMAX=1
ELSE
NITMAX=2 
END IF
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30 FORMAT(7X,’ DIMENSIONLESS PARAMETERS: (BASED ON WIDTH’ ,IX ,
1 ’AND INLET PROPS.)’ , / )

IF(EASE.EQ.2)THEN
WRITE(NO,3 2)TY8(KTBCI) , TBCI, LTBCI

32 FORMAT(9X,1A5,’ (INNER) = ’ ,E 12 .5 ,4 X ,’ FROM AXIAL STEP NO.’ ,14)
END IF
WRITE(NO,34)TY8(KTBCO),TBCO, LTBCO, GNÜM, RENUM,PRNÜM, QDISS 

34 FORMAT(9X,1A5,’ (OUTER) = ’ ,E 12 .5 ,4 X ,’FROM AXIAL STEP NO.’ ,1 4 , /
1 9 X ,’ G = ’ ,E 13 .5 ,2 X ,’RE = ’ ,F 1 3 .2 ,2 X ,’ PR = ’ ,F 1 2 .2 , /
2 9 X ,’ BR = ’ ,E 12 .5 , / / )

WRITE(NO,40)RHORAT,(TY5(I), 1 = 1 ,4 ) ,(TY4(KPR0P(I)+1),1= 1,4 )
40 FORMAT(7X,’ FLUID PROPERTY VARIATIONS:’ , / /

1 9X ,’ DENSITY RATIO(MEAN/DATUM) = ’ ,F8. 4 , / /
2 14 X ,4 (7 X ,1A 7 ),/,9 X ,’TYPE’ ,4(9X,1A5),/ )

DO 46 J = l,6
WRITE(N0,42)J,(PCON(I,J),1= 1,4 )

42 FORMAT(9X,’ CONST ’ , I I ,4 (2X,E 12 .5))
46 CONTINUE

WRITE(NO,50)NDIV, NSTEP, DX( 1 ) ,LDX(1)
50 FORMAT(//,7X,’ GRID AND MARCHING DETAILS:’ , / /

1 9 X ,’NO.TRANSVERSE DIVISIONS = ’ , 1 5 , /
2 9 X ,’TOTAL NO.AXIAL STEPS = ’ , 1 5 , /
3 9 X ,’ AXIAL STEP CHANGES:’ ,4 X ,’ DX’ ,4 X ,’ FROM STEP’ , / /
4 28 X ,E11.4 ,2X ,I4 )

IF(NDX.GT.1)WRITE(N0,53)(DX(J),LDX(J),J=2,NDX)
53 F0RMAT(28X,E11.4,2X,I4)

WRITE(NO,55)NITMAX
55 F0RMAT(/,9X,’NO.ITERATIONS PER AXIAL STEP = ’ , 1 2 , / / )

WRITE(NO,57)ISTAT, IPROF, IPLOT 
57 FORMAT(7X, ’PRINTING INSTRUCTIONS : ’ , / /

1 9 X ,’ INCREMENT FOR PRINTING STATION VARIABLES = ’ , 1 4 , ’ STEP(S)’ , /
2 9 X ,’ INCREMENT FOR PRINTING PROFILE VARIABLES = ’ , I 4 , ’ STEP(S)’ , /
3 9 X ,’ INCREMENT FOR PRINTING PROFILE PLOTS = ’ , I 4 , ’ STEP(S)’ , / / )  

WRITE(NO,60)TY6(KSNUI+1),TY6(KSNU0+1),TY6(KSFRI+1),
1 TY6(KSFR0+1),NSU

60 FORMAT(7X,’ VARIABLES STORED:’ , / /
1 9 X ,’NUSSELT NO. VS. XSTAR (INNER)?’ ,3 X ,1A 3 ,/
2 9 X ,’NUSSELT NO. VS. XSTAR (OUTER ? ’ ,3 X ,1A 3,/
3 9X ,’ FRICT.MOD. VS. XCROSS (INNER)?’ ,3X ,1A 3,/
4 9 X ,’FRICT.MOD. VS. XCROSS (OUTER)?’ ,3 X ,1A 3 ,/
5 9 X ,’NO. U PROFILES STORED = ’ ,13)

IF(NSU.GT.O)WRITE(NO,61)INCRU,(LSU(J),J=1,NSU)
61 F0RMAT(9X,’ U PROFILES STORED: TRANSVERSE INCREMENTS = ’ , 1 2 , / ,

1 2 7 X ,’ AT AXIAL STEPS = ’ , 6 1 5 , / , (51X,615))
WRITE(N0,62)NST

62 F0RMAT(9X,’ NO. T PROFILES STORED = ’ ,13)
IF(NST.GT.O)WRITE(NO,63)(LST(J), J=1,NST)

63 F0RMAT(9X,’T PROFILES STORED: TRANSVERSE INCREMENTS = ’ , 1 2 , / ,
1 2 7 X ,’ AT AXIAL STEPS = ’ ,6 15 ,( /5 1X ,615))

C----------------------------------------------------------------------------------------------------------------------------------------------
C INITIALISE
C----------------------------------------------------------------------------------------------------------------------------------------------
C
C ****GRID SPACING, AXIAL POSITION, STEP LENGTH AND PRINT CONTROL
C

DELTY=1.0/NDIV
DELTX=DX(1)
X=0.0
MDX=2
MSTAT=ISTAT+1
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MPR0F=IPR0F+1
MPL0T=IPL0T+1
MSU=1
MST=1

C
C ****INTEGER CONSTANTS BASED ON NO.TRANSVERSE DIVISIONS
C

ND2=NDIV/2
NM3=NDIV-3
NM2=NDIV-2
NM1=NDIV-1
NP1=NDIV+1
NP2=NDIV+2
NP3=NDIV+3
N2M3=NDIV*2-3
N3M3=NDIV*3-3

C
C ****COMPUTE TRANSVERSE ft RADIAL POSITIONS
C

DO 64 M=1,NP1
Y(M)= (M -l) *DELTY
RAD(M)=RADRAT+(1 . O-RADRAT)*Y(M)

64 CONTINUE 
C
C ****REAL CONSTANTS
C

Rl=l.O/DELTY 
R2=1.0/(2*DELTY)
R 3=l.0 /(RENUM*PRNUM*DELTY**2)
R4=R3*BRNUM/4.0
R5=l.0 / (RENUM*DELTY**2)
R6=NDIR*(GNUM*RH0RAT/(RENUM**2))
R 7=l.0 / (RENUM*PRNUM)
R8=l.0 / (RENUM*DELTY)
R9=1.0/RENUM 
RX1=1.0/DELTX 
RX2=1.0/(2*DELTX)
RDYDX2=0.5*DELTY/DELTX 
RADFN1=0. 5*DELTY*( 1 . O-RADRAT)
RADFN4=2. 0*DELTY/(3 .0 * (1.O+RADRAT))

C
C ****UNIFORM OR PARABOLIC INLET PROFILE
C

IF(KUIN. EQ. 1 . AND.KASE.EQ.l)THEN 
DO 65 M=1,NP1

65 U(1,M)=1.0
ELSE IF(KUIN. EQ. 1 . AND.KASE. EQ.2 )THEN 
DO 70 M=1,NP1 

70 U(1,M)=1.0
ELSE IF(KUIN.EQ.2 .AND.KASE.EQ.l)THEN 
DO 80 1 = 1 ,NDIV

80 U(1,M)=UFACT*(1-Y(M)**2)
U(1,NP1)=0.0
ELSE IF(KUIN. EQ.2 .AND.KASE. EQ.2 )THEN 
IF(KGEOM.EQ.l)THEN 
DO 90 I=1,NDIV

90 U( 1 , M)=UFACT*(1-(ABS(2*Y(I)- 1 ) **2))
ELSE IF(KGE0M.EQ.3)THEN
RADFN2=(RADRAT**2-1.0 )/ALOG(RADRAT)
RADFN3=1.0 / ( 1 . 0+RADRAT**2-RADFN2)
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c ****STORE INLET VELOCITY AND TEMPERATURE PROFILES
C

IF(NSU. GT.0 .AND.LSU(MSU). EQ.0 )THEN 
IR0VU=O
DO 105 M=1,NP1,INCRU 
IR0VU=IR0VU+1 
US(1,IROVU)=0.0 
US(2,IR0VU)=Y(M)
US(3,IR0VU)=U(1,M)

105 CONTINUE
US(1,1)=X 
MSU=MSU+1 
END IF 

C
IF(NST. GT.0 .AND. LST(MST).EQ.0 )THEN 
IR0VT=O
DO 110 M=1,NP1,8 
IR0VT=IR0VT+1 
TS(1,IROVT)=0.0 
TS(2,IR0VT)=Y(M)
TS(3,IR0VT)=T(1,M)

110 CONTINUE
TS(1,1)=X  
MST=MST+1 
END IF 

C
C ****ADIABATIC BOUNDARIES IN ENTRANCE REGION
C

IF(KASE.EQ.2 .AND. LTBCI. GT. 1 ) THEN
KKTBCI=1
HFLUXI=0.0
END IF
IF(LTBC0.GT.1)THEN 
KKTBC0=1 
HFLUXO=0.0 
END IF 

C
C ****NON-ZERO INLET VALL TEMPERATURES
C

IF(KTBCI. Eq.2 .AND. LTBCI.EQ.l)THEN
KKTBCI=2
T(1,1)=TB C I
T(2,1)=TBCI
END IF
IF(KTBCO.EQ.2 .AND. LTBCO.EQ.l)THEN 
KKTBC0=2 
T(1,NP1)=TBC0 
T(2,NP1)=TBC0 
END IF 

C
C ****INLET FLUID PROPERTIES
C

CALL PR0PS(1,NP3,1)
CUP=FCPM(NP2)
FRH0A=FRH0(NP2)
FRH0A1=FRH0(NP2)

c
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C ****COMPUTE TEMPERATURE AND HEATFUNCTION (OPTIONAL) IF  REQUIRED
C

IF(KSOLN.EQ.1.0R.KS0LN.EQ.3)THEN
CALL BANDET
KR0UT=2
VRITE(NSS,* )MSTEP,KROUT,KITER 
END IF

C---------------------------------------------------------------------------------------------------------------------------------------------
C COMPUTE STATION VARIABLES
C---------------------------------------------------------------------------------------------------------------------------------------------
c
C ****LOCAL DIMENSIONLESS NUMBERS AND AXIAL DISTANCES
C

REI=RENUM*DHFACT
REX=REI/FMU(NP2)
PRI=PRNUM
PRX=PRI*FCP(NP2)*FMU(NP2)/FK(NP2)
PEI=REI*PRI 
PEX=REX*PRX 
XCROSS=X/(DHFACT*REI)
XCROSX=X/(DHFACT*REX)
XSTAR=XCROSS/PRI
XSTARX=XCROSX/PRX

C
C ****LOCAL VALL FRICTION MODULI
C

IF(KS0LN.EQ.1.0R.KS0LN.EQ.2.0R.KS0LN.EQ.3.AND.MSTEP.EQ.1)THEN 
C  OUTER BOUNDARY--------

FM0D03=(DHFACT*R1*FMU(NP1))*(-3*U(2,NP1)+4*U(2,NDIV)-U(2,NM1)) 
FM0D04=(DHFACT*Rl*FMU(NPl)/3)*(-ll*U(2,NPl)+18*U(2,NDIV)- 

1 9*U(2,NM1)+2*U(2,NM2))
FM0D05=(DHFACT*Rl*FMU(NPl)/6)*(-25*U(2,NPl)+48*U(2,NDIV)~

1 36*U(2,NM1)+16*U(2 ,NM2)-3*U( 2 ,NM3))
C  INNER BOUNDARY--------

IF(EASE.EQ.2)THEN
FMODI3=(DHFACT*Rl*FMU(l))*(-3*U(2,l)+4*U(2,2)-U(2,3))
FMODI4=(DHFACT*Rl*FMU(l)/3)*(-ll*U(2,l)+18*U(2,2)-9*U(2,3)+

1 2*U(2,4))
FM0DI5=(DHFACT*R1*FMU(1)/6)*(-25*U(2,l)+48*U(2,2)-36*U(2,3)+

1 16*U(2,4)-3*U(2,5))
END IF

C --------PERIPHERAL AVERAGE--------
IF(KASE.EQ.1)THEN
FM0D3=FM0D03
FM0D4=FM0D04
FM0D5=FM0D05
ELSE IF(KASE.EQ.2)THEN
FM0D3=(FM0DI3*RADRAT+FM0D03)/ ( 1 . O+RADRAT)
FM0D4=(FM0DI4*RADRAT+FM0D04)/ ( 1 . O+RADRAT) 
FM0D5=(FM0DI5*RADRAT+FM0D05)/ ( 1 . O+RADRAT)
END IF  
END IF 

C
C ****INTEGRATED MEAN VALL FRICTION MODULUS (SIMPSON’ S RULE)
C

IF(NITER.EQ.NITMAX)THEN 
IF(MSTEP.EQ.l)THEN 
FMODM=2*FMOD3 
FMODl=FMOD3

c
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IC0UNT=1
ELSE IF(MSTEP. GT.1 ) THEN 
IC0UNT=IC0UNT+1 
IF(IC0UNT.EQ.2)THEN 
FM0D2=FM0D3
ELSE IF(ICOUNT.EQ. 3)THEN
FMODM=(FMODM*(X-2*DELTX)+(FMOD3+4*FMOD2+FMODl)* (DELTX/3)) /X 
FMODl=FMOD3 
ICOUNT=l 
END IF 
END IF 
END IF 

C
C ****COMPUTE DEFECT PRESSURE AND CONTRIBUTIONS IF  REQUIRED
C

IF(KS0LN.EQ.3)THEN
DPFRIC=-2*FMOD3*X/(RENUM*DHFACT**2)
DPAV=DPFRIC
ELSE IF(KSOLN.EQ. 1 . OR.KSOLN.EQ.2 )THEN

C --------X-SECTION AVERAGED DEFECT PRESSURE--------
DPAV=0.0
DO 140 M=2,NDIV,2
DPAV=DPAV+RADFN4*(RAD( Ï - 1 ) *P(2 ,M -l) +4*RAD(I)*P( 2 ,« )+

1 RAD(M+1)*P(2,M+1))
140 CONTINUE
C --------MOMENTUM CONTRIBUTION--------

PMOM1=0.0 
DO 150 M=2,NDIV,2
PM0M1=PM0M1+RADFN4*(RAD(M-l)*U(2 ,M-1)**2+4*RAD(M)*U(2 ,M)**2+ 

1 RAD(M+1)*U(2,M+1)**2)
150 CONTINUE

DPM0M=-(PM0M1-PM0M)
C --------X-SECTION AVERAGED DENSITY AND BUOYANCY CONTRIBUTION--------

FRHOAl=0.0 
DO 160 M=2,NDIV,2
FRH0A1=FRH0A1+RADFN4*(RAD(M-l)*FRH0(M-l)+4*RAD(M)+FRHO(M)+

1 RAD(M+1)*FRH0(M+1))
160 CONTINUE

DPBU0Y=DPBU0Y-R6*(FRHOA+FRHOAl-2.0 )+DELTX/2.0
C ---------WALL FRICTION CONTRIBUTION--------

DPFRIC=DPAV-DPBUOY-DPMOM 
END IF 

C
C ****LENGTH AVERAGED FRICTION MODULI BASED ON PRESSURE
C

IF(KSOLN.EQ. 1 . OR.KSOLN. EQ.2 )THEN 
FM0DAP=-(DPAV*RENUM*DHFACT**2)/ (2*X) 
FM0DAV=-(DPFRIC*RENUM*DHFACT**2)/ (2*X)
ELSE IF(KSOLN.EQ.3)THEN 
FM0DAV=FM0D3 
FM0DAP=FM0D3 
END IF 

C
C ****LOCAL VALL HEAT FLUXES
C

HFI3=HFLUXI
IF(KKTBCI•EQ.1 ) THEN
HFI4=HFLUXI
HFI5=HFLUXI
ELSE
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c
c
c

c
c
c

500

c
c
c

550
C
C
C

HFI4=(11*T(2,1)-18*T(2,2)+9*T(2,3)-2*T(2,4))*(FK(1)/(6*D ELTY)) 
H FI5=(25*T(2,1)-48*T(2,2)+36*T(2,3)-16*T(2,4)+3*T(2,5))*
(FK(1)/ (12*DELTY)) 
END IF
HF03=HFLDX0
IF(KKTBCO. EQ.1 ) THEN
HF04=HFLUX0
HF05=HFLUX0
ELSE
HF04=(11*T(2,NP1)-18*T(2,NDIV)+9*T(2,NM1)-2*T(2,NM2))*

1 (FK(NP1)/(6*DELTY))
HF05=(25*T(2,NP1)-48*T(2,NDIV)+36*T(2,NM1)-16*T(2,NM2)+ 

1 3*T(2,NM3))*(FK(NP1)/(12*DELTY))
END IF

****LOCAL BOUNDARY TEMPERATURES

TI3=T(2,1)
IF(KKTBCI. EQ.2 )THEN 
TI4=T(2,1)
TI5=T(2,1)
ELSE
TI4=(HFLUXI*(6*DELTY/FK(1))+18*T(2,2)-9*T(2,3)+2*T(2,4))/11
TI5=(HFLUXI*(12*DELTY/FK(1))+48*T(2,2)-36*T(2,3)+16*T(2,4)

1 -3 * T (2 ,5 ))/2 5  
END IF  
T03=T(2,NP1)
IF(KKTBCO.EQ.2)THEN 
T04=T(2,NP1)
T05=T(2,NP1)
ELSE
T04=(HFLUX0*(6*DELTY/FK(NP1))+18*T(2,NDIV)-9*T(2,NM1)+

1 2*T(2,NM2))/11
T05=(HFLUX0*(12*DELTY/FK(NP1))+48*T(2,NDIV)-36*T(2,NM1)+

1 16*T(2,NM2)-3*T(2,NM3))/25
END IF

****LOCAL BULK TEMPERATURE

SUMUCT=0.0
DO 500 M=2,NDIV,2
UC1=U(2 ,M-1)*FCPM(M-1)*RAD(M-l)
UC2=4*U(2,M)*FCPM M)*RAD(M)
UC3=U(2,M+1)*FCPM(M+1)*RAD(M+1)
SUMUCT=SUMUCT+(UC1*T(2,M-1)+UC2*T(2,M)+UC3*T(2,M+1)) *DELTY/3.0 
CONTINUE
TBULK=2. O+SUMUCT/(FCPM(NP2)* ( 1 .O+RADRAT))

****LOCAL X-SECTION AVERAGED TEMPERATURE

TAV=0.0
DO 550 M=2,NDIV,2
TAV=TAV+RADFN4* (RAD (M-l) *T (2 ,M-1) +4*RAD (M) *T(2 ,M)+ 

1 RAD(M+1)*T(2,M+1))
CONTINUE

****FLUID PROPERTIES

T(2,NP2)=TBULK
T(2,NP3)=TAV
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CALL PR0PS(1,NP3,2)
C
C ****LOCAL NUSSELT NUMBERS
C

IF(EASE. EQ.2 .AND.HFI3.NE.0 .0 )THEN 
NUI3=HFI3*DHFACT/(TI3-TBULK)
NUI3I=NUI3/FK(NP2)
NUI4=HFI4*DHFACT/(TI4-TBULK)
NUI4X=NUI4/FK(NP2)
NUI5=HFI5*DHFACT/(TI5-TBULK)
NUI5X=NUI5/FK(NP2)
END IF
IF(HF03. NE.0 .0 )THEN 
NU03=HF03*DHFACT/(T03-TBULK)
NU03X=NU03/FK(NP2)
NU04=HF04*DHFACT/(T04-TBULK)
NU04X=NU04/FK(NP2)
NU05=HF05*DHFACT/(T05-TBULK)
NU05X=NU05/FK(NP2)
END IF

C---------------------------------------------------------------------------------------------------------------------------------------------
C PRINT AND STORE STATION RESULTS
C---------------------------------------------------------------------------------------------------------------------------------------------
C
C ****PRINT STATION RESULTS AT SPECIFIED STEPS
C

IF(MSTEP. EQ.MSTAT. OR.MSTEP. EQ. 1 ) THEN 
VRITE(NO,650)NITER,MSTEP,X, DELTX 

650 FORMAT( ’ 1 ’ , ’STATION VARIABLES: ’ , 3X,
1 ’ ITERATION N0.=’ , I 2 ,7 X , ’ STEP NO.= ’ , I4 ,7 X ,’ X=’ ,F10 .5 ,7X ,
2 ’ DX=’ ,F 8 .5 ,7 X ,’ (BASED ON DOMAIN VIDTH)’ , / , lX , 1 2 8 ( ’ * ’ ))

VRITE(NO,660)REI, REX,PRI, PRX,P E I,PEX, XCROSS, XCROSX,XSTAR, XSTARX
660 FORMAT(/,40X,’ **HYDRAULIC DIAMETER BASED DIMENSIONLESS GROUPS**’

1 , / / ,3 0 X , ’ INLET BULK PROPS’ , 1 0 1 , ’LOCAL BULK PROPS’ , / ,
2 15 X ,’REYNOLDS NO. = ’ ,F 14 . 2 , 13 X ,F14 .2 , / ,
3 15 X ,’PRANDTL NO. = ’ ,F 14 .2 , 13X,F14. 2 , / ,
4 15 X ,’ PECLET NO. = ’ , E14.5 , 13X,E14. 5 , / ,
5 15 X ,’ (X/DH)/RE = ’ , E14. 5 , 13X, E14. 5 , / ,
6 15 X ,’ (X/DH)/PE = ’ , E14. 5 , 13 X ,E 14 .5 ,//)

IF(KSOLN. EQ. 1 . OR. KSOLN. EQ.2 )THEN
VRITE(NO,661)DPAV, DPMOM, DPBUOY, DPFRIC

661 FORMAT(15X,’PRESSURE DIFFERENCES:’ ,
1 20X,’ TOTAL ’ , 1 1 X , ’MOMENTUM’ ,10 X ,’BUOYANCY’ ,10 X ,’ FRICTION’ , /
2 56X,’ DEFECT’ , 1 1 X , ’ CONTRIB.’ ,10 X ,’ CONTRIB.’ ,10 X ,’ CONTRIB.’ , /
3 47X,4(6X,E12.5), / / )

END IF
VRITE(NO,662)FM0DAV,FM0DAP,FM0D03,FM0D04,FM0D05

662 FORMAT(15X,’VALL FRICTION MODULI (F.RE): ’ ,
1 / , 47X, ’ (F.RE)AVE = ’ ,F 10 .4 ,’ (FLOV LENGTH AVERAGE)’ ,
2 / , 47X, ’ (F.RE)APP = ’ ,F 10 .4 ,’ (APPARENT FLOV LENGTH AVERAGE)’ ,
3 / / , 56X, ’ 3-POINT’ , 1 IX , ’4-POINT’ , 1 IX , ’ 5-POINT’ ,
4 / ,3 7 X ,’ (OUTER) ’ ,3(8X ,F10.4))

IF(KASE.EQ.2)THEN
VRITE(NO,664)FM0DI3, FM0DI4,FM0DI5 

664 F0RMAT(37X,’ (INNER) ’ ,3(8X,F10.4))
END IF
VRITE(NO,666)FM0D3,FM0D4,FM0D5 

666 F0RMAT(24X,’ (PERIPHERAL AVERAGE) ’ ,3(8X,F10.4 ) / /)
VRITE(NO,670)NU03,NU04,NU05,NU03X,NU04X,NU05X
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670 FORMAT(15X, ’ NUSSELT NUMBERS: ’ ,
1 25X, ’ 3-POINT’ , 1 IX , ’ 4-POINT’ , 1 IX , ’ 5-POINT’ , / ,
2 18 X ,’ (OUTER -  INLET BULK PROPS) ’ ,3(8 X ,F 10 .4 ), / ,
3 18 X ,’ (OUTER -  LOCAL BULK PROPS) ’ ,3(8X,F10.4))

IF(KASE.EQ.2)THEN
WRITE(NO,675)NUI3, NUI4, NUI5, NUI3X,NUI4X, NUI5X 

675 F0RMAT(18X,’ (INNER -  INLET BULK PROPS) 5,3 (8 X ,F 10 .4 ), / ,
1 18 X ,’ (INNER -  LOCAL BULK PROPS) ’ ,3(8 X ,F10 .4 ))

END IF
VRITE(NO,680)T03,T04,T05,TI3,TI4,TI5 

680 FORMAT(//,15X,’ BOUNDARY TEMPERATURES:’ ,
1 19 X ,’ 3-POINT’ , 1 1 X , ’4-POINT’ , 1 1 X , ’ 5-POINT’ , /
3 37X ,’ (OUTER) ’ ,3 (6 X ,E 12 .5 ) ,/,3 7 X ,’ (INNER) ’ ,3 (6X, E 12 .5 ) / /)

WRITE(NO,685)TBULK,TBAL1,TAV 
685 FORMAT(15X,’MEAN TEMPERATURES:’ ,

1 / , 47X, ’ (T)BULK = ’ ,E 1 2 .5 , ’ (FROM U fe T PROFILES)’ ,
2 / ,4 7 X ,’ (T)BAL = ’ ,E 1 2 .5 , ’ (FROM ENERGY BALANCE)’ ,
3 / , 47X, ’ (Tj AVE = ’ ,E 1 2 .5 ,’ (X-SECTIONAL AVERAGE)’ , / / )

WRITE(NO,690)(T Y 5 (I),1 = 1 ,4 ) ,FRH0(NP2),FMU(NP2),FK(NP2),FCP(NP2),
1 FRH0(NP3),FMU(NP3),FK(NP3),FCP(NP3),
2 f r h o (n p i ) , fm u (n p i ) , f k (n p i ) , f c p (n p i ),FRH0(1),FM U(1),FK(1),FCP(1) 

690 FORMAT(15X,’ PROPERTY RATIOS:’ ,14X,
1 4(11X,1A7)
2 / , 32X, ’ (BULK/DATUM) ’ ,4(9 X ,F9.5),
3 / ,2 9 X ,’ (AVERAGE/DATUM) * ,4(9 X ,F9.5),
4 / ,2 2 X , ’ (OUTER BOUNDARY/DATUM) ’ ,4 (9 X ,F9.5),
5 / ,2 2 X , ’ (INNER BOUNDARY/DATUM) ’ ,4 (9 X ,F9.5), / / )

IF(NITER. Eq. NITMAX. AND.MSTEP. Eq.MSTAT)MSTAT=MSTAT+ISTAT 
END IF 

C
C ****STORE FLUID FLOW RESULTS
C

IF(NITER.Eq. NITMAX)THEN
WRITE(NSF,692)MSTEP, XCROSS, FM0DI3,FM0D03, FM0D3, FMODM,

1 FMODAV,FMODAP, DPAV, DPMOM, DPBUOY,DPFRIC 
692 F0R M A T(1X,I4,2X,E12.5,6(1X,F9.3),4(2X,E11.4))

END IF
C
C ****STORE HEAT TRANSFER RESULTS
C

IF(NITER.Eq.NITMAX)THEN
WRITE(NSH, 694)MSTEP, XSTAR, TBULK, TBAL1,TAV, T I3 ,T03, NUI3, NU03 

694 F0RM AT(1X,I4,6(2X,E12.5),2(2X,F10.4))
END IF 

C
C ****STORE NUSSELT NO. t FRICTION MODULUS FOR EACH BOUNDARY

IF(KSNUI. Eq. 1 . AND.NITER.Eq.NITMAX)WRITE(NS1 ,* ) XSTAR, NUI3 
IF(KSNUO. Eq. 1 . AND.NITER.Eq.NITMAX)WRITE(NS2,* )XSTAR, NU03 
IF(KSFRI. Eq. 1 . AND.NITER.Eq.NITMAX)WRITE(NS5,* )XCROSS, FM0DI3 
IF(KSFRO. Eq. 1 . AND.NITER.Eq.NITMAX)WRITE(NS6,* )XCROSS, FM0D03

C---------------------------------------------------------------------------------------------------------------------------------------------
C PRINT AND STORE PROFILE RESULTS
C-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
c
C ****PRINT PROFILE VARIABLES AT SPECIFIED STEPS
C

IF(MSTEP. Eq. MPROF. OR.MSTEP. Eq. 1 ) THEN 
WRITE(NO,695)NITER,MSTEP,X,DELTX
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695 FORMAT( ’ 1 ’ , ’ PROFILE VARIABLES: ’ , 3X,
1 ’ ITERATION NO.=’ , I2 ,7 X , ’ STEP NO.-’ , I4 ,7 X ,’X - ’ ,F10 .5 ,7X ,
2 ’ DX=’ , F8.5 ,7X, ’ (BASED ON DOMAIN WIDTH)’ , / , IX ,12 8 ( ’ *’ )) 

VRITE(NO,700)(M,U(2,M),V(2,M),P(2,M),V(M),T(2,M),E(M),
1 M+ND2,U(2,M+ND2),V(2,M+ND2),P(2,M+ND2),V(M+ND2),
2 T(2,M+ND2),E(M+ND2),M=1,ND2)

700 FORMAT(/,
1 2 (3 X ,’M D V P V T  E ’ ,
2 9 X ),//,2 ( lX ,I3 ,F 9 .5 ,F 11 .6 ,F 10 .4 ,F 8 .5 ,2 E 12 .5 ))  

VRITE(NO,705)NP1,U(2,NP1),V(2,NP1),P(2,NP1),
1 V(NP1),T(2,NP1),E(NP1)

705 FO RM AT(67X,I3,F9.5,F11.6,F10.4,F8.5,2E12.5)
IF(NITER. EQ.NITMAX.AND.MSTEP. EQ.MPROF)MPROF-MPROF+IPROF 
END IF 

C
C ****STORE AXIAL VELOCITY PROFILE AT SPECIFIED STEPS
C

IF(MSTEP. EQ. LSD(MSD).AND.NITER.EQ. NITMAX)THEN 
IR0VU=O
DO 706 M=1,NP1,INCRU
IR0VU=IR0VU+1
US(MSU+2,IR0VU)=U(2,M)

706 CONTINUE 
US(1,MSU)=XCR0SS 
MSU-MSU+1
END IF 

C
C ****STORE AXIAL VELOCITY AT EQUALLY-SPACED TRANSVERSE POSITIONS
C

IF(NITER.EQ.NITMAX)THEN 
INCRU1-NDIV/10
WRITE(NS7,708)MSTEP,XCROSS,(U(2,M),M=1,NP1,INCRU1)

708 F0RM AT(1X,I4,1X,E12.5,11(1X,F9.5))
END IF 

C
C ****STORE TEMPERATURE PROFILE AT SPECIFIED STEPS
C

IF(MSTEP. EQ. LST(MST). AND. NITER. EQ.NITMAX)THEN 
IR0VT=O
DO 710 M=1,NP1,INCRT
IR0VT=IR0VT+1
TS(MST+2,IR0VT)=T(2,M)

710 CONTINUE
TS(1,MST)=XSTAR 
MST=MST+1 
END IF

C---------------------------------------------------------------------------------------------------------------------------------------------
C PRINT TRANSVERSE PROFILES ON LINEPRINTER

I F ( (MSTEP.EQ.MPLOT. OR.MSTEP. EQ. 1 ) . AND.NITER. EQ. NITMAX)THEN 
WRITE(NO,7 12 )NITER, MSTEP, X, DELTX 

712 FORMATAI’ , ’ PROFILE PLOTS: ’ , 7X,
1 ’ ITERATION NO.-’ , 1 2 , 7 X ,’ STEP NO.-’ , 1 4 ,7 X ,’ X - ’ ,F10 .5 ,7X ,
2 ’ DX-’ ,F8.5 ,7X, ’ (BASED ON DOMAIN WIDTH)’ , / , IX ,12 8 ( ’ * ’ ))

C
C ****FIND MAX.AND MIN.VALUES OF DEPENDENT VARIABLES
C

UMIN-1.0E30 
UMAX—1.0E30 
TMIN-1.0E30
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TMAX=-1. 0E30
DO 715 M=1,NP1
UMIN=AMIN1(UMIN,U(2,M))
UMAX=AMAX1 ( UMAX,U(2 ,M))
TMIN=AMIN1 (TMIN,T (2 ,M))

715 TMAX=AMAX1 ( TMAX,T (2 ,M))
C
C ****PRINT MIN.AND MAX.VALUES
C

WRITE(N 0,720)UMIN,TMIN,UMAX, TMAX 
720 F0RMAT(1X,’ ORDINATE’ ,7 X ,’ Ü’ , 1 1 X , ’ T ’ , /

1 2 X ,’MIN.VAL.’ ,2 E 1 2 .3 , / ,2 X ,’MAX.VAL.’ ,2 E 12 .3 ,/)
C
C ****SCALE ALTERNATE VALUES OF VARIABLES TO RANGE 0 TO 50
C

DO 725 M=1,NP1,2 
IA=(M+l)/2
IU(IA)=NINT(1.0+50*(U(2,M)-UMIN)* ( 1 .0 /(UMAX-UMIN+1. 0E-30))) 

725 IT(IA)=NINT(1.0+50*(T(2,M)-TMIN)*(1.0/(TMAX-TMIN+1.0E-30)))
C
C ****LOOP TO PRODUCE CONSTANT ORDINATE LINES
C

I0DIV=51
DO 745 LINE = 1,5 1 
I0=52-LINE 

C
C ****MARK AXES
C

IF(I0 .Eq.l.0R .I0 .Eq.51)TH EN  
DO 730 IA=1,ND2+1 

730 SYMB(IA)=DOT
DO 735 IA=6,ND2+1,5 

735 SYMB(IA)=CROSS
ELSE IF(IO.Eq.IODIV)THEN 
SYMB(1)=CR0SS 
SYMB(ND2+1) =CROSS 
ELSE
SYMB(1)=D0T 
SYMB(ND2+1)=D0T 
END IF  

C
C ****SEARCH FOR VALUES AND ASSIGN SYMBOLS
C

DO 738 IA=1,ND2+1 
IF(IU IA).Eq.10)SYMB(IA)=VEL 
IF(IT(IA).Eq.IO)SYMB(IA)=TEMP 

738 CONTINUE
C
C ****PRINT LINE AND ORDINATE VALUE
C

IF(IO.Eq.IODIV)THEN
I0DIV=I0DIV-5
ORD=0.02*(IO-1)
VRITE(NO,740)ORD,(SYMB(IA),IA=1,ND2+1)

740 F0RMAT(2X,F3.1 ,1X,51A1)
ELSE
VRITE(N0,742)(SYMB(IA),IA=1,ND2+1)

742 F0RMAT(6X,51A1)
END IF
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c
c

748

749

750

775
C—
C
C—
C
C
C

900
C----------
C
C----------

920
1
2
3
4

930
940
C

950
1

****REFILL ARRAY SYÏB VITH BLANKS 
DO 744 IA=1,ND2+1 
SYMB(IA)=BLANK 
CONTINUE

****PRINT ABSCISSA VALUES AND ANNOTATE AXES

IADIV=INT(NP1/10)
DO 748 IY=1,IADIV 
SYMB(5*IY)=DIGIT(IY)
SYMB(5*IY+1)=DIGIT(1)
SYMB(1)=DIGIT(1)
VRITE(NO,749)(SYMB(IA),IA=1,ND2+1)
F0RMAT(6X,51A1)
WRITE(NO,750)TY1(EASE)
FORMAT(’ O’ , ’ ABSCISSA IS  TRANSVERSE GRID POSITION FR0M’ ,1A12) 
IF(NITER. EQ. NITMAX.AND.MSTEP.Eq.MPLOT)MPLOT=MPLOT+IPLOT 
END IF  
CONTINUE

END OF STEP -  UPDATE VARIABLES

****PROFILE VARIABLES

( 1 ,M)=P|[2,M)
(1,M)=U| 2,M)

1,M =V| 2,M)
(1,M)=T|¡2,M)

****STATION VARIABLES

TBAL=TBAL1
CUP=FCPM(NP2)
FRH0A=FRH0A1
CONTINUE

END OF PROBLEM -  PRINT SUMMARY TABLES k  STORAGE FILES

VRITE(NO,920)
FORMAT(’ l ’ , ’ SUMMARY -  FLUID FLOW RESULTS: (INLET BULK PROPS)’ , / ,  
IX ,12 8 ( ’ * ’ ) , / / , I X , ’ STEP’ ,3 X ,’ (X/DE)/RE’ ,2 X ,’ (F.RE)IN ’ ,1X ,
’ (F.RE)OUT’ , I X , ’ (F.RE)LOC’ , IX , ’ (F.RE)MEAN’ , 1 X , ’ (F.RE)AVE’ ,
I X , ’ (F.RE)APP’ ,5 X ,’ (DP)’ ,7 X ,’ (DP)MOM’ ,6 X ,’ (DP)BUOY’ ,
5 X ,’ (DP)FRIC’ , / )
REWIND NSF 
DO 940 M=1,NSTEP
READ(NSF,* )MSTEP,XCROSS, FM0DI3, FM0D03,FM0D3,FMODM,
FMODAV, FMODAP, DPAV,DPMOM, DPBUOY, DPFRIC 
WRITE(NO,930)MSTEP,XCROSS,FM0DI3,FM0D03,FM0D3,FMODM,
FMODAV, FMODAP,DPAV, DPMOM,DPBUOY, DPFRIC 
F0R M A T(1X,I4,2X,E12.5,6(1X,F9.3),4(2X,E11.4))
CONTINUE

IF(KS0LN.EQ.1.0R.KS0LN.EQ.3)THEN 
WRITE(NO,950)
FORMAT(’ l ’ , ’ SUMMARY -  HEAT TRANSFER RESULTS: (INLET BULK PROPS)’ 
, / , IX ,12 8 ( ’ *’ ) , / / , IX , ’ STEP’ , 3X, ’ (X/DH)/PE’ , 5X, ’ (T)BULK’ , 8X,
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2 ’ (T)BAL ’ ,8X, ’ (T)AVE ’ , 6X, ’ (T)INNER’ , 6X, ’ (T)OUTER’ , 5X,
3 ’ (NU)INNER’ ,3 X ,’ (NU)OUTER’ ,/ )

REWIND NSH
DO 975 M=1,NSTEP
READ(NSH,* )MSTEP, XSTAR, TBÜLK,TBAL1,TAV,T I3 , T03, NUI3,NU03 
WRITE(NO,960)MSTEP, XSTAR, TBÜLK,TBAL1,TAV,T I3 , T03,NUI3, NU03 

960 F0RM AT(1X,I4,6(2X,E12.5),2(2X,F10.4))
975 CONTINUE

END IF 
C

IF(NSU.GT.O)THEN
WRITE(N0,986)

986 FORMAT(’ l ’ , ’ SUMMARY -  VELOCITY PROFILE DEVELOPMENT:’ ,
1 / , IX ,12 8 ( ’ * ’ ) , / / , I X , ’ STEP’ ,5 X ,’ (X/D)/RE’ ,2 X ,’ U(Y=0.0)’ ,2X,
2 ’ U (Y=0.1)’ ,2 X ,’U(Y=0.2)’ ,2 X ,’ U(Y=0.3)’ ,2 X ,’U(Y=0.4)’ ,2X,
3 ’ U(Y=0.5)’ ,2 X ,’U(Y=0.6)’ ,2 X ,’ U(Y=0.7)’ ,2 X ,’U(Y=0.8)’ ,2X,
4 ’ U(Y=0.9)’ ,2 X ,’U (Y=1.0)’ ,/ )

REWIND NS7
MSU=1
IF(LSU(MSU).EQ.0)MSU=2 
DO 990 1 = 1 ,NSTEP
READ(NS7,* )MSTEP,XCROSS, (U(2 ,M),M=1 , NP1 , INCRU1)
IF(MSTEP. EQ. LSU(MSU))THEN 
MSU=MSU+1
WRITE(NO,987)MSTEP,XCROSS,(U(2 ,M),M=1,NP1,INCRU1)

987 FORMAT(IX ,1 4 ,1X ,E 12 .5 ,11(1X ,F 9 .5 ))
END IF

990 CONTINUE 
C

DO 992 M=1,IROWU
WRITE(NS3,991)(US(I,M),1 = 1 ,NSU+2)

991 F0RMAT(26(1X,E12.5))
992 CONTINUE 

END IF
C

IF(NST.GT.O)THEN 
DO 995 M=1,IROWT
WRITE(NS4,994)(T S (I, M),1 = 1 ,NST+2)

994 F0RMAT(26(1X,E12.5))
995 CONTINUE 

END IF
C-----------------------------------------------------------------------------------------------------------------------------------
C END OF RUN
C------------------------------------------------------------------------------------------------------------------------------------

WRITE(NO,2000)
2000 FORMAT(’ 0’ ,56 X ,’ E N D O F R U N ’ )

STOP
END
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c***********************************************************************
C SUBROUTINE TO COMPUTE PROPERTY RATIOS(RHO,MU,K,CP)AND PROPERTY *
C TEMPERATURE DERIVATIVES(MU AND K ONLY)AT SPECIFIED TEMPERATURES*
C***********************************************************************
c

PARAMETER (MAX1=101,MAX2=51,MAX3=103,MAX4=21,MAX5=24,MAX33=297) 
COMMON /Cl/FRHO(MAX3),FMU(MAX3),DFMU(MAX3),FK(MAX3),DFK(MAX3),

1 FCP(MAX3),FCPM(MAX3),PCON(4,6),KPROP(4),CUP,RHORAT
COMMON /C2/U(2,MAX1),V(2,MAX1),P(2,MAX1),V(MAX1),

1 T(2,MAX3),E(MAX1)
COMMON /C4/X,DELTX, DELTY, RADRAT, RADFN1, RAD(MAXI) , Y(MAXI)

C
C ****DENSITY
C

IF(KPROP( 1 ) . EQ.0 .AND. X. EQ.0 .0 )THEN 
DO 5 M=M1,M2 

5 FRHO(M)=1.0
ELSE IF(KPROP(l).EQ.l)THEN 
DO 10 1 = 1 1 ,1 2

10 FRH0(M)=PC0N(1,1)+T(M3,M)*(PC0N(1,2)+T(M3,M)*(PC0N(1,3)+
1 T(M3,M)*(PC0N(1,4)+T(M3,M)*(PC0N(1,5)+T(M3,M)*PC0N(1,6)))))

END IF 
C
C ****VISC0SITY
C

IF(KPROP( 2 ) .EQ.0 .AND. X. EQ.0 .0 )THEN 
DO 15 M=M1,M2 
FMU(M)=1.0 

15 DFMU(M)=0.0
ELSE IF(KPR0P(2).EQ.1)THEN 
DO 20 M=M1,M2
FMU(M)=PC0N(2,1)+T(M3,M)*(PC0N(2,2)+T(M3,M)*(PC0N(2,3)+

1 T(M3,M)*(PC0N(2,4)+T(M3,M)*(PC0N(2,5)+T(M3,M)*PC0N(2,6)))))  
DFMU(M)=PC0N(2,2)+T(M3,M)*(2*PC0N(2,3)*T(M3,M)*(3*PC0N(2,4)+

1 T(M3,M)*(4*PC0N(2,5)+T(M3,M)*5*PC0N(2,6))))
20 CONTINUE

ELSE IF(KPR0P(2).EQ.2)THEN 
DO 30 M=M1,M2
C0MMN=PC0N(2,1)*T(M3,M)+PC0N(2,2)
FMU(M)=COMMN**(-PCON(2,3))

30 DFMU(M)=-PC0N(2,1)*PC0N(2,3)*C0MMN**(-PC0N(2,3)+1)
END IF  

C
C ****THERMAL CONDUCTIVITY
C

IF(KPROP( 3 ) .EQ.0 .AND.X.EQ.0 .0 )THEN 
DO 35 M=M1,M2 
FK(M)=1.0 

35 DFK(M)=0.0
ELSE IF(KPR0P(3).EQ.1)THEN 
DO 40 M=M1,M2
FK(M)=PC0N(3,1)+T(M3,M)*(PC0N(3,2)+T(M3,M)*(PC0N(3,3)+

1 T(M3,M)*(PC0N(3,4)+T(M3,M)*(PC0N(3,5)+T(M3,M)*PC0N(3,6))))) 
DFK(M)=PC0N(3,2)+T(M3,M)*(2*PC0N(3,3)*T(M3,M)*(3*PC0N(3,4)+

1 T(M3,M)*(4*PC0N(3,5)+T(M3,M)*5*PC0N(3,6))))
40 CONTINUE

END IF
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o
****SPECIFIC HEAT

IF(KPROP(4). EQ.0. AND.X.E(j. 0.0)THEN 
DO 45 ï = ï l ,M2 
FCP(M)=1.0 

45 FCPM(M)=1.0
ELSE IF(KPR0P(4).EQ.1)THEN 
DO 50 M=K1,X2
FCP(M)=PC0N(4,1)+T(M3,M)*(PC0N(4,2)+T(M3,M)*(PC0N(4,3)+

1 T(M3,M)*(PCQN(4,4)+T(M3,M)*(PC0N(4,5)+T(M3,M)*PC0N(4,6))))) 
FCPM(M)=PC0N(4,l)+T(M3,M)t(PC0N(4,2)/2+T(M3,M)*(PC0N(4,3)/3+

1 T(M3,M)*(PC0N(4,4)/4+T(I3,M)*(PC0N(4,5)/5+
2 T(M3,M)*PC0N(4,6)/6))))

50 CONTINUE
END IF 
RETURN 
END
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SUBROUTINE BANDUP
C*********************************************************************** 
C SUBROUTINE TO COMPUTE VELOCITIES, PRESSURE AND STREAMFUNCTION. *
C COEFFICIENTS AND RIGHT-HAND SIDES OF INTEGRAL CONTINUITY *
C EQUATION AND CONTINUITY AND MOMENTUM DIFFERENTIAL EQUATIONS *
C ARE BANDED IN A FORM SUITABLE FOR SOLUTION BY SUBROUTINE SOLVE.*
C TRANSVERSE VELOCITIES ARE SUBSEQUENTLY CALCULATED USING *
C CONTINUITY DIFFERENTIAL EQUATION. *
C***********************************************************************
c

DOUBLE PRECISION A,B,Z 
C

PARAMETER (MAX1=101,MAX2=51,MAX3=103,MAX4=21,MAX5=24,MAX33=297) 
COMMON /Cl/FRHO(MAX3),FMU(MAX3),DFMU(MAX3),FK(MAX3),DFK(MAX3),

1 FCP(MAX3),FCPM(MAX3),PCON(4,6),KPROP(4),CUP,RHORAT 
COMMON /C2/U(2,MAX1),V(2,MAXl),P(2,MAX1),V(MAX1),

1 T(2,MAX3),E(MAX1)
COMMON / C4/X, DELTX, DELTY,RADRAT,RADFN1,RAD(MAXI) , Y(MAX1)
COMMON /C 5 /R 1, R2, R3, R4, R5,R6,R7, R8,R9, NM2, NM1, NDIV, NP1, NP2, N2M3, 

1 N3M3,RX1 , RX2, RDYDX2
COMMON / C6/KASE, KVIDI,KEBAL, NDIR 
COMMON /C7/A(8,MAX33),B(MAX33),Z(MAX33)

C
C-----------------------------------------------------------------------------------------------------------------------------------------------
C COMPUTE BAND PARAMETERS
C-----------------------------------------------------------------------------------------------------------------------------------------------

MSUB=4
MSUP=3
MBAND=MSUB+MSUP+1
NBAND=N3M3
JMID=MSUB+1

C-----------------------------------------------------------------------------------------------------------------------------------------------
C CLEAR ARRAYS
C-----------------------------------------------------------------------------------------------------------------------------------------------

DO 10 I=1,NBAND 
B(I)=0.0 
DO 10 J=1,MBAND 

10 A (J,I)=0 .0
C-----------------------------------------------------------------------------------------------------------------------------------------------
C MOMENTUM EQUATIONS
C-----------------------------------------------------------------------------------------------------------------------------------------------
c
C ****ASSEMBLE COEFFICIENTS AND RIGHT-HAND SIDES
C

DO 30 M=2,NDIV 
A1=RX1*U(2,M)
A2=R2*V(2,M)
A3=R5*FMU(M)
A4=DFMU(M)*(R5/4)*(T(2,M+1)-T(2,M-1))
RADFN=RADFN1/RAD(M)

C ---------AXIAL-------
I=2+(M-2)*3
A(JM ID-3,I)=-A2-A3*( 1 . O-RADFN)+A4 
A(JMID,I)=A1+2*A3 
A JM ID-1,I)=RX1
A(JMID+3,I)=A2-A3*(1.0+RADFN)-A4 
B(I)=A1*U(1,M)+RX1*P(1,M)-R6*(FRH0(M)-1.0)
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C --------TRANSVERSE--------
1= 1 -1
A(JM ID,I)=1.0 
A(JMID+3,I)= -1 .0  

30 CONTINUE
C
C ****INNER BOUNDARY MODIFICATIONS
C
C --------AXIAL--------

IF(EASE.EQ.l)THEN
A(JMID,2)=A(JMID,2)+(4.0/3)*A(JMID-3,2)
A(JMID+3,2)=A(JMID+3,2)-(1.0/3)*A(JMID-3,2)
END IF
A(JMID-3,2)=0.0

C
C ****OUTER BOUNDARY MODIFICATIONS
C
C --------AXIAL--------

A(JMID+3, N3M3-1)=0.0
C --------TRANSVERSE--------

A(JMID+2, N3M3-2)=A(JMID+3,N3M3-2)
A(JMID+3,N3M3-2)=0.0

C-----------------------------------------------------------------------------------------------------------
C INTEGRAL CONTINUITY EQUATION
C-----------------------------------------------------------------------------------------------------------
C
c ****a s s embl e c o e f f i c i e n t s  and r ig h t - hand s i d e s
c

Al=DELTY/2 
DO 50 M=2,NDIV 
1=3*(M-l)
A (JM ID ,I)=-1.0  
A(JM ID-3,I)=1.0 
A(JMID-4, I)=Al*RAD(M-l)
A(JMID-1,I)=A1*RAD(M)

50 CONTINUE
C
C ****INNER BOUNDARY MODIFICATIONS
C

IF(EASE.EQ.l)THEN
A(JM ID-1,3 )=A(JM ID-1,3) + (4 .0 /3 )*A(JMID^l ,3)
A(JMID+2,3)=A(JM ID+2,3)-(1 .0 /3 ) *A(JMID-4,3)
END IF
A(JMID-4,3)=0.0 
A(JMID-3,3)=0.0 

C
C ****OUTER BOUNDARY MODIFICATIONS
C

A(JMID-1, N3M3)= 2 .0*A(JMID-1, N3M3)
A JMID,N3M3)=0.0 
B(N3M3)=(1.0+RADRAT)/2.0

C-----------------------------------------------------------------------------------------------------------
C SOLVE EQUATIONS AND RETURN RESULTS
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

CALL SOLVE(MBAND,NBAND,MSUB,MSUP)
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SUBROUTINE BANDET
C*********************************************************************** 
C SUBROUTINE TO COMPUTE TEMPERATURE AND HEATFÜNCTION (OPTIONAL). *
C COEFFICIENTS AND RIGHT-HAND SIDES OF ENERGY DIFFERENTIAL *
C EQUATION AND STEPVISE ENERGY BALANCE (OPTIONAL) ARE BANDED *
C IN A FORM SUITABLE FOR SUBROUTINE SOLVE. *
C***********************************************************************
c

DOUBLE PRECISION A,B,Z 
C

PARAMETER (MAX1=101,MAX2=51,MAX3=103,MAX4=21,MAX5=24,MAX33=297) 
COMMON /Cl/FRHO(MAX3),FMU(MAX3),DFMU(MAX3),FK(MAX3),DFK(MAX3),

1 FCP(MAX3),FCPM(MAX3),PCON(4,6),KPROP(4),CUP,RHORAT 
COMMON /C2/U(2,MAX1),V(2,MAX1),P(2,MAX1),V(MAX1),

1 T(2,MAX3),E(MAX1)
COMMON /C3/KKTBCI,KKTBCO, HFLUXI,HFLÜXO, TBAL,TBAL1 
COMMON / C4/X, DELTX, DELTY, RADRAT,RADFN1, RAD(MAXI) , Y(MAXI)
COMMON /C 5 /R 1, R2, R3, R4, R5, R6, R7, R8, R9,NM2,NM1, NDIV, NPI, NP2,N2M3, 

1 N3M3,RX1 , RX2, RDYDX2
COMMON /C6/EASE,KVIDI, KEBAL, NDIR 
COMMON /C7/A(8,MAX33),B(MAX33),Z(MAX33)

C
C-----------------------------------------------------------------------------------------------------------------------------------------------
C COMPUTE BAND PARAMETERS

IF(KEBAL.EQ.O)THEN
MSUB=1
MSUP=1
NBAND=NM1
INCR=1
ELSE IF(KEBAL.EQ.l)THEN
MSUB=3
MSUP=2
NBAND-N2M3
INCR=2
END IF
MBAND=MSUB+MSUP+1
JMID=MSUB+1
JM=JMID-INCR
JP=JMID+INCR

C------------------------------------------------------------
C CLEAR ARRAYS

DO 10 I=1,NBAND 
B(I)=0.0 
DO 10 J=1,MBAND 
A (J,I)=0 .0  

10 CONTINUE
C---------------------------------------------------------------------------------
C ENERGY DIFFERENTIAL EQUATION
C-----------------------------------------------------------------------------------------------------------
C
C ****ASSEMBLE COEFFICIENTS AND RIGHT-HAND SIDES
C

DO 20 M=2,NDIV 
I=1+(M-2)*INCR 
A1=RX1*U(2,M)
A2=R2*V(2,M)
A3=R3*FK(M)/FCP(M)
A4=DFK(M)*(R3/(4*FCP(M)))*(T(2,M+1)-T(2,M-1))
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RADFN=RADFN1/RAD(M)
A(JM,I)= -A 2-A 3*( 1 . O-RADFN)+A4 
A(JMID,I)=A1+2*A3 
A(JP ,I)=A2-A3*( 1 . O+RADFN)-A4 
B(I)=A1*T(1,M)

20 CONTINUE
C
C ****INNER BOUNDARY MODIFICATIONS
C

IF(KKTBCI. EQ. 1 ) THEN 
A (JM ID ,l)=A (JIID ,l)+(4.0/3)*A (JM ,l)
A J P ,l) = A ( J P ,l) -( 1 .0 /3 ) * A 7 jIf l)  
B(1)=B(1)-HFLUXI*(2*DELTY/(3*FK(1)))*A(JM,1)
ELSE IF(KKTBCI.EQ.2)THEN 
B (1)=B (1)-A (JM ,1)*T(2,1)
END IF  
A(JK,1)=0.0 

C
C ****OUTER BOUNDARY MODIFICATIONS
C

IF(KKTBCO.EQ.1 ) THEN
A(JMID, NBAND)=A(JMID, NBAND)+(4 .0 /3 )*A(JP , NBAND)
A(JM,NBAND) =A(JM,NBAND)-(1 .0 /3 ) *A(JP ,NBAND)
B(NBAND)=B(NBAND)-HFLUXO*(2*DELTY/(3*FK(NP1))) *A(JP,NBAND) 
ELSE IF(KKTBCO.Eq.2)THEN 
B(NBAND)=B(NBAND)-A(JP,NBAND)*T(2,NP1)
END IF
A(JP,NBAND)=0.0

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C STEPVISE ENERGY BALANCE (OPTIONAL)
C-----------------------------------------------------------------------------------------------------------------------------------

CEBAL=DELTX*R7
IF(KEBAL.EQ.1)THEN

C
C ****ASSEMBLE COEFFICIENTS AND RIGHT-HAND SIDES
C

DO 30 M=2,NM1 
1=2*(M-l)
A(JM ID,I)= -1.0  

30 A(JM ,I)=1.0
DO 35 M=2,NM2,2 
1=2*(M-l)
A( 1 , I )=U(2 ,M -l)*FCPM(M-l) *RAD(M-l)*DELTY/3.0 
A( 3 ,I)=4*U(2 ,M)+FCPM(M)*RAD(M)*DELTY/3.0 
A(5,I)=U(2,M+1)*FCPM(M+1)*RAD(M+l)*DELTY/3.0 

35 CONTINUE
C
C ****INNER BOUNDARY MODIFICATIONS
C

A(JM,2)=0.0 
IF(KKTBCI.EQ. 1 ) THEN
A (3,2)=A (3,2)+(4 .0 /3)*A (l,2)
A (5 ,2 )= A (5 ,2)-(1.0 /3 )* A (1,2 )
B(2)=B(2)+HFLUXI*(CEBAL*RADRAT-A(1,2)*2*DELTY/(3*FK(1))) 
ELSE IF(KKTBCI.EÇ.2 )THEN 
A(3 ,2 )=A(3 ,2 )+CEBAL*RADRAT*2*FK( 1 ) /DELTY 
A(5 ,2 )=A(5 ,2 )-CEBAL*RADRAT*0. 5*FK( 1 ) /DELTY 
B(2)=B(2)+T(2,1)*CEBAL*RADRAT*3*FK(1)/(2.0*DELTY)
END IF 
A (l,2)=0 .0
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c
C ****OUTER BOUNDARY MODIFICATIONS
C

A(3,NBAND)=1.0
A ( JM,NBAND)=U(2 ,NM1)*FCPM(NM1) *RAD(NM1) *DELTY/3.0
A(JMID, NBAND)=4*U(2,NDIV)*FCPM(NDIV)*RAD(NDIV)*DELTY/3.0
B (NBAND) =0.5*CUP* ( 1 . 0+RADRAT) *TBAL
IF(KKTBCO. EQ. 1 ) THEN
B(NBAND)=B(NBAND)+HFLUXO*CEBAL
ELSE IF(KKTBCO.EQ.2)THEN
A(JM,NBAND)=A(JM, NBAND)-CEBAL+O. 5*FK(NP1 ) /DELTY 
A(JMID, NBAND)=A(JMID, NBAND)+CEBAL*2. 0*FK(NP1)/DELTY 
B(NBAND)=B(NBAND)+T( 2 ,NP1)*CEBAL*3*FK(NP1)/ (2*DELTY)
END IF 
END IF

C-----------------------------------------------------------------------------------------------------------------------------------------
C VISCOUS DISSIPATION EFFECT (OPTIONAL)
C-----------------------------------------------------------------------------------------------------------------------------------------

IF(K V ID I.EQ. 1 ) THEN 
VDSUM=0.0 
DO 45 M=2,NDIV 
I=1+(M-2)*INCR
VD=FMU(M)*R4*RAD(M)*(U(2,M+1)-U(2,M-1))**2
B(I)=B(I)+VD/FCP(M)
IF(KEBAL. EQ. 1 ) VDSUM=VDSUM+VD 

45 CONTINUE
IF(KEBAL.EQ. 1 ) THEN
VDI=FMU(1)*R4*RAD(1)*(-3*U(2,1)+4*U(2,2)-U(2,3))**2
VD0=FMU(NP1)*R4*RAD(NP1)*(3*U(2,NP1)^4*U(2,NDIV)+U(2,NM1))**2
VDSUM=(VDSUM+(VDI+VDO)/2)*DELTY
B(NBAND)=B(NBAND)+VDSUM*DELTX
END IF
END IF

C-----------------------------------------------------------------------------------------------------------------------------------------
C SOLVE EQUATIONS AND RETURN RESULTS
C-----------------------------------------------------------------------------------------------------------------------------------------

IF(MBAND.EQ.3)THEN 
CALL TRID(NBAND)
ELSE
CALL SOLVE(MBAND,NBAND,MSUB,MSUP)
END IF 

C
C ****STORE NEV TEMPERATURE PROFILE
C

DO 80 M=2,NDIV 
I=1+(M-2)*INCR 

80 T(2,M )=Z(I)
IF(KKTBCI. EQ. 1 ) THEN
T(2,l)=H FLU XI*(2*DELTY/(3*FK(l)))+(4.0/3)*T(2,2)- 

1 (1.0 /3 )* T (2 ,3)
END IF
IF(KKTBCO.EQ.l)THEN
T(2,NP1)=HFLUXO*(2*DELTY/(3*FK(NP1)))+(4.0/3)*T(2,NDIV)- 

1 (1.0/3)*T(2,NM1)
END IF
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COMPUTE BULK TEMPERATURE FROM ENERGY BALANCE

IF(KKTBCI. EQ.2 )HFLUXI=(3*T( 2 ,1 )-4*T(2 ,2 )+T( 2 ,3 )) *FK( 1 ) / (2*DELTY) 
IF(KKTBCO.EQ.2)HFLUXO=(3*T(2,NPl)—4*T(2,NDIV)+T(2,NM1))*FK(NP1)/ 

1 (2*DELTY)
TBAL1=TBAL*CUP/FCPM(NP2)+ 2 .O*(HFLUXI*RADRAT+HFLUXO) *CEBAL/

1 (FCPM(NP2)* ( 1 .O+RADRAT))

****STORE NEV HEATFUNCTION PROFILE (OPTIONAL)

IF(KEBAL.EQ.1)THEN 
DO 90 M=2,NM1 
1=2*(M-l)
E(M)=Z(I)

90 CONTINUE
E( 1 ) =HFLUXI*CEBAL*RADRAT
E(NDIV)=0.5*CUP*( 1 . O+RADRAT)*TBAL+HFLUXO*CEBAL+VDSUM*DELTX 
E(NP1)=E(NDIV)
END IF 
RETURN 
END
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SUBROUTINE SOLVE(MBAND,NBAND,MSUB,MSUP) 
C*********************************************************************** 
C SOLUTION OF UNSYMMETRIC BAND MATRIX VITH ITERATIVE REFINEMENT. *
C NAG ROUTINES CALLED DIRECTLY:F01LBF,F04LDF,X02AAF *
C *
C Z IS  THE CURRENT SOLUTION. COEFFICIENT MATRIX A IS FIRST COPIED*
C INTO AA. ON EXIT FROM F01LBF AA CONTAINS THE ELEMENTS OF UPPER *
C TRIANGULAR MATRIX. BB STORES THE RHS B INITIALLY AND ON LATER *
C ITERATIONS THE RESIDUAL VECTOR R=B-AZ. ON EXIT FROM F04LDF BB *
C CONTAINS THE SOLUTION OF THE RESIDUAL VECTOR EQUATION VHICH *
C OVERWRITES THE RESIDUAL. KITER IS THE ITERATION COUNTER. *
C CONVERGENCE CRITERION IS (MAX.CORRECTION).LE.2 .0*EPS*ZMAX. *
C EPS IS THE SMALLEST NUMBER FOR VHICH 1.0+EPS.GT.1.0 AND *
C REPRESENTS WORD LENGTH AND ATTAINABLE ACCURACY GIVEN BY X02AAF.*
C***********************************************************************
c

PARAMETER (MAX1=101,MAX2=51,MAX3=103,MAX4=21,MAX5=24,MAI33=297) 
DIMENSION IN(MAX33)
DOUBLE PRECISION A,B,Z,EPS,DUMMY
DOUBLE PRECISION AL(4,MAX33),AA(8,MAX33),BB(MAX33)
REAL*16 ADP,RDP,ZDP 

C
COMMON /IO/NI,NO,NSC,NSS,NSF,NSH,NSl,NS2,NS3,NS4,NS5,NS6,NS7 
COMMON /C7/A(8,MAX33),B(MAX33),Z(MAX33)
COMMON /C8/KITER 

C
C-----------------------------------------------------------------------------------------------------------------------------------------------
C SMALLEST REAL NUMBER
C-----------------------------------------------------------------------------------------------------------------------------------------------

EPS=X02AAF(DUMMY)
C-----------------------------------------------------------------------------------------------------------------------------------------------
C TOP JUSTIFY BAND
C-----------------------------------------------------------------------------------------------------------------------------------------------

DO 30 J=1,MSUB 
JJ=MSUB-J+1 
DO 10 I=1,MBAND-JJ 

10 A (I,J)= A (I+ JJ,J)
DO 20 I=MBAND-JJ+ 1 ,MBAND 

20 A (I,J)=0 .0
30 CONTINUE
C-----------------------------------------------------------------------------------------------------------------------------------------------
C COPY A INTO AA, B INTO BB AND INITIALIZE SOLUTION VECTOR
C-----------------------------------------------------------------------------------------------------------------------------------------------

DO 1 I=1,NBAND
Z(I)=0.0
BB(I)=B(I)
DO 1 J=1,MSUB+MSUP+1 

1 A A (J,I)= A (J,I)
C-----------------------------------------------------------------------------------------------------------------------------------------------
C DECOMPOSE AA
C-----------------------------------------------------------------------------------------------------------------------------------------------

IFAIL=0
IV=0
CALL F01LBF(NBAND,MSUB,MSUP, AA,8 ,AL,4 ,IN , IV , IFAIL) 
IF(IFAIL.EQ.O)GO TO 101 
VRITE(NO,100)IF A IL , IV

100 FORMAT(IX,’ ERROR IN F01LBF: IFAIL = ’ , I 2 ,2 X , ’ , IV = ’ ,1 6 ,/
1 I X , ’ (SEE NAG DOCUMENTATION FOR FOR POSSIBLE EXPLANATIONS)’ )

STOP
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INITIALIZE ITERATION COUNTER AND MAX.RELATIVE CORRECTION.

101

p

KITER=0
D0=0.0

V
c
p

START OF ITERATION

2 KITER=KITER+1 
C
C ****SOLUTION OF RESIDOAL VECTOR EQUATION
C

CALL F04LDF(NBAND,MSUB,MSUP, 1 , AA,8 ,AL,4 ,IN ,BB,3 16 ,IFAIL) 
IF(IFAIL.EQ.O)GO TO 103 
VRITE(NO, 102)KITER,IFAIL

102 FORMAT(IX,’ ERROR IN F04LDF ON ITERATION’ , 1 2 , ’ , IFAIL = ’ , 1 2 , /
1 I X , ’ (SEE NAG DOCUMENTATION FOR POSSIBLE EXPLANATIONS)’ )

STOP
C
C ****CORRECT SOLN.AND FIND MAX.VALUES IN SOLN.AND CORRN.VECTORS
C
103 BBMAX=0.0 

ZMAX=0.0
DO 3 1 = 1 ,NBAND 
Z(I)=Z(I)+B B (I)
IF(ABS(Z(I)).GT.ZMAX) ZMAX=ABS(Z(I))
I F (ABS(BB(I)) . GT. BBMAX) BBMAX=ABS(BB(I))

3 CONTINUE 
C
C ****CALCULATE RESIDUAL ELEMENT IN I-TH ROV IN DOUBLE PRECISION
C

DO 6 1 = 1 ,NBAND 
RDP=B(I)
MFIRST=1
MLAST=MSUB+MSUP+1
IF(I.LE.MSUB) MLAST=MSUP+I
I F (I . GT. NBAND-MSUP) MLAST=MSUB+1+NBAND-I
DO 4 J=MFIRST,MLAST
ADP=A(J,I)
ZDP=Z(J)
IF(I.GT.MSUB) ZDP=Z(I+J-MSUB-1)

4 RDP=RDP-ADP*ZDP
6 BB(I)=RDP 
C
C ^^CONVERGENCE TEST
C

ID2=0
D1=0.0
IF(BBMAX.GT.0.0) D1=BBMAX/ZMAX 
IF(BBMAX. GT. 2 . 0*EPS*ZMAX) ID2=1 
IF(D1.GT.DO/2.AND.KITER.NE.1) GO TO 7 
D0=D1
IF(ID 2.EQ .1) GO TO 2 
RETURN

7 VRITE(NO,1000) KITER
1000 FORMAT(IX,’MAX.CORRN.IN ITERATIVE REFINEMENT IS  GREATER THAN’ ,

1 ’ HALF OF THE PREVIOUS STEP.’ , / I X , ’ ILL CONDITION INDICATED.’ /IX ,
2 ’ PROGRAM TERMINATED IN SUBROUTINE SOLVE ON ITERATION’ ,13)

STOP
END
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SUBROUTINE TRID(NBAND)
C***********************************************************************
C SOLVES AX-B FOR VECTOR X WHERE A IS TRIDIAGONAL * 
C (FROM S.D.CONTE-’ELEMENTARY NUMERICAL * 
C ANALYSIS’ ,MCGRAV-HILL,1965.) * 
C * 
C NBAND=ORDER OF SYSTEM * 
C SUB-SUBDIAGONAL OF A * 
C DIAG-MAIN DIAGONAL OF A * 
C SUP-SUPERDIAGONAL OF A * 
C B-CONSTANT VECTOR * 
C * 
C SUP AND DIAG ARE DESTROYED * 
C SOLUTION VECTOR IS RETURNED IN Z *
C******************^****************************************************
c

PARAMETER (MAXI-101,MAX2=51,MAX3=103,MAX4-21,MAX5=24,MAX33=297) 
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION SUB(MAXI),DIAG(MAXI), SUP(MAXI)
COMMON /C7/A(8,MAX33),B(MAX33),Z(MAX33)

C
C ****COPY A INTO SUB, DIAG AND SUP
C

DO 1 J=1,NBAND 
SUB(J)=A(1,J)
DIAG(J)=A(2,J)

1 SUP(J)=A(3,J)
C

N-NBAND

C

NN-N-1
SUP(1)=SUP(1)/DIAG(l) 
B(1)=B(1)/DIAG(1)

DO 10 1= 2 ,N 
11=1-1

C
c ****dec om po se  a to  f or m a - lu  
c

DIAG(I)-DIAG(I)-SUP(II)*SUB(I)
IF(I.EQ.N)GO TO 10 
SUP(I)-SUP(I)/DIAG(I)

C
C ****COMPUTE Z WHERE LZ-B
C
10 B (I)= (B (I)-S U B (I)*B (II))/D IA G (I)
C
C ****COMPUTE X BY BACK SUBSTITUTION WHERE UX-Z
C

DO 20 K-l,NN 
I-N -K

20 B (I)=B (I)-SU P (I)*B (I+1)
C
C ****RETURN SOLUTION IN Z
C

DO 30 J=1,NBAND 
30 Z(J)-B (J)
C

RETURN
END
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N U M E R I C A L  S O L U T I O N S  F O R  D E V E L O P I N G  C O M B I N E D  C O N V E C T I O N  

B E T W E E N  U N I F O R M L Y  H E A T E D  V E R T I C A L  P A R A L L E L  P L A T E S
• •• HI

O . S z p i r o  , J . S . L e w i s  a n d  M . W . C o l l i n s

T h e  c a l c u l a t i o n  o f  h e a t  t r a n s f e r  r a t e s  f o r  l o w  R e y n o l d s  
n u m b e r  d u c t  f l o w s  w h e n  t h e  e f f e c t s  o f  p r o p e r t y  v a r i a t i o n s ,  
i n c l u d i n g  b u o y a n c y  f o r c e s ,  a r e  i m p o r t a n t ,  i s  a  t o p i c  o f  
p r a c t i c a l  i n t e r e s t .  T w o  d i f f e r e n t  n u m e r i c a l  c a l c u l a t i o n  
p r o c e d u r e s  a r e  a p p l i e d  t o  t h e  p r o b l e m  o f  a i d i n g  c o m b i n e d  
n a t u r a l  a n d  f o r c e d  c o n v e c t i o n  b e t w e e n  u n i f o r m l y  h e a t e d  
v e r t i c a l  p a r a l l e l  p l a t e s .  T e m p e r a t u r e  d e p e n d e n c e  o f  t h e  
f l u i d  p r o p e r t i e s  i s  f u l l y  r e p r e s e n t e d  b y  b o t h  m e t h o d s .  
R e s u l t s  a r e  p r e s e n t e d  f o r  u p w a r d  f l o w  s h o w i n g  i n c r e a s e d  
l o c a l  N u s s e l t  n u m b e r s  f o r  e t h y l e n e  g l y c o l  w h e n  b o t h  p l a t e s  
a r e  e q u a l l y  h e a t e d  a n d  f o r  t r a n s f o r m e r  o i l  w h e n  o n l y  o n e  
p l a t e  i s  h e a t e d .  A  f l o w  r e v e r s a l  a t  t h e  u n h e a t e d  w a l l  i s  
p r e d i c t e d  i n  t h e  l a t t e r  c a s e .

I N T R O D U C T I O N

T h e  i n f l u e n c e s  o f  t e m p e r a t u r e  d e p e n d e n t  p r o p e r t i e s  a n d  a  g r a v i t a t i o n a l  b o d y  
f o r c e  i n  m o d i f y i n g  t h e  c o u p l e d  v e l o c i t y  a n d  t e m p e r a t u r e  f i e l d s  i n  d u c t  h e a t  
t r a n s f e r  p r o b l e m s  w i t h  v i s c o u s  f l u i d s  a t  l o w  R e y n o l d s  n u m b e r s  a r e  w e l l  
r e c o g n i s e d  [ 1 ] .  U n d e r  t h e s e  c o n d i t i o n s  t h e  N u s s e l t  n u m b e r  d e v i a t e s  m a r k e d l y  
f r o m  c o n s t a n t  p r o p e r t y  s o l u t i o n s  f o r  f o r c e d  c o n v e c t i o n .  T h i s  i s  d u e ,  i n  p a r t ,  
t o  b u o y a n c y  f o r c e s  g e n e r a t e d  b y  t h e  i n t e r a c t i o n  o f  d e n s i t y  g r a d i e n t s  w i t h  t h e  
g r a v i t a t i o n a l  f i e l d .  T h i s  p a p e r  f o c u s e s  o n  t h e  s t e a d y  t w o - d i m e n s i o n a l  l a m i n a r  
f l o w  o f  a  f l u i d  w i t h  t e m p e r a t u r e  d e p e n d e n t  p r o p e r t i e s  b e t w e e n  v e r t i c a l  p a r a l l e l  
p l a t e s .  U n i f o r m  h e a t i n g  i s  i m p o s e d  a t  o n e  o r  b o t h  o f  t h e  p l a t e s  a n d  t h e  f l o w  i s  
u p w a r d  r e s u l t i n g  i n  a i d i n g  c o m b i n e d  n a t u r a l  a n d  f o r c e d  c o n v e c t i o n .

T h e  g e o m e t r i c a l  a n d  t h e r m a l  b o u n d a r y  c o n d i t i o n s  d e s c r i b e d  a p p r o x i m a t e  t h o s e  
e n c o u n t e r e d  i n  t h e  m o d e l l i n g  o f  f l o w  a n d  h e a t  t r a n s f e r  i n  t r a n s f o r m e r  l a y e r  
w i n d i n g s ,  s o l a r  c o l l e c t o r s  a n d  s o m e  n u c l e a r  r e a c t o r  c o o l i n g  p r o b l e m s .  L i q u i d  
c o o l a n t s  o f  m o d e r a t e  o r  h i g h  P r a n d t l  n u m b e r  a r e  e m p l o y e d  i n  t h e s e  a p p l i c a t i o n s  
b u t  a  l i t e r a t u r e  s e a r c h  r e v e a l e d  f e w  r e l e v a n t  h e a t  t r a n s f e r  m e a s u r u r e m e n t s  f o r  
c o m b i n e d  c o n v e c t i o n  i n  p a r a l l e l  p l a t e  d u c t s .  P r e i n i n g e r o v a  a n d  A l l e n  [ 2 ]  a n d  
T a y l o r  e t  a l  [ 1 8 ]  q u o t e  d a t a  f o r  a s y m m e t r i c  h e a t i n g  o f  t r a n s f o r m e r  o i l  a n d  J o s h i  
a n d  B e r g l e s  [ 3 ]  h a v e  m a d e  m e a s u r e m e n t s  w i t h  e t h y l e n e  g l y c o l  i n  b o t h  
s y m m e t r i c a l l y  a n d  a s y m m e t r i c a l l y  h e a t e d  d u c t s .  C l e a r l y  t h e  d a t a  p r e s e n t l y  
a v a i l a b l e  f o r  v i s c o u s  l i q u i d s  a r e  i n s u f f i c i e n t  t o  e s t a b l i s h  d i m e n s i o n l e s s  
c o r r e l a t i n g  e q u a t i o n s  a p p l i c a b l e  t o  a  w i d e  r a n g e  o f  c o n d i t i o n s .  I n  t h e  a b s e n c e  
o f  s u c h  d e s i g n  d a t a  t h e  u s e  o f  a  n u m e r i c a l  m e t h o d  i n c o r p o r a t i n g  b u o y a n c y  f o r c e  
a n d  s p e c i f i e d  p r o p e r t y  v a r i a t i o n s  s h o u l d  b e  c o n s i d e r e d .

*  D e p a r t m e n t  o f  E l e c t r i c a l  E n g i n e e r i n g ,  I m p e r i a l  C o l l e g e  o f  S c i e n c e  a n d  
T e c h n o l o g y ,  L o n d o n  SW 7 2 B T .
* •  S c h o o l  o f  M e c h a n i c a l  a n d  P r o d u c t i o n  E n g i n e e r i n g ,  M i d d l e s e x  P o l y t e c h n i c ,  
L o n d o n  NT 1 2 N Q .
* * *  D e p a r t m e n t  o f  M e c h a n i c a l  E n g i n e e r i n g ,  T h e  C i t y  U n i v e r s i t y ,  L o n d o n  E C 1 V  * (PB .
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I n  c o n t r a s t  t o  t h e  l a c k  o f  e x p e r i m e n t s ,  p r e v i o u s  a n a l y t i c a l  a n d  n u m e r i c a l  
s t u d i e s  o f  t h e  f l o w  a n d  h e a t  t r a n s f e r  b e t w e e n  p a r a l l e l  p l a t e s  a b o u n d  f o r  a  
v a r i e t y  o f  c o n d i t i o n s ,  t h i s  g e o m e t r y  o f t e n  s e r v i n g  a s  a  t e s t  c a s e  f o r  n e w  
t e c h n i q u e s .  A u s e f u l  r e v i e w  o f  c o n s t a n t  p r o p e r t y  f o r c e d  c o n v e c t i o n  s o l u t i o n s  
u p t o  t h e  e n d  o f  1 9 7 5  i s  p r o v i d e d  b y  S h a h  a n d  L o n d o n  [ 4 ] .

T h e o r e t i c a l  t r e a t m e n t s  o f  a i d i n g  c o m b i n e d  c o n v e c t i o n  w i t h  t h e  u n i f o r m  w a l l  
h e a t  f l u x  b o u n d a r y  c o n d i t i o n  i n c l u d e  t h e  a n a l y s i s  b y  R a o  a n d  M o r r i s  [ 5 ]  f o r  a  
p o s t u l a t e d  e s t a b l i s h e d  f l o w ,  a n d  t h a t  b y  S a v k a r  [ 6 ] w h i c h  c o n s i d e r s  a  p a r a b o l i c  
e n t r y  v e l o c i t y  p r o f i l e  a n d  a  l i n e a r i z e d  f o r m  o f  t h e  e n e r g y  e q u a t i o n .  Y a o  [ 7 ]  
c o n s i d e r e d  t h e  e f f e c t  o f  n a t u r a l  c o n v e c t i o n  n e a r  e n t r y  a s  a  s m a l l  p e r t u r b a t i o n  
o n  t h e  d e v e l o p i n g  f l o w  i n  a n  u n h e a t e d  c h a n n e l ,  a n d  a l s o  s u g g e s t e d  t h e  
p o s s i b i l i t y  o f  p e r i o d i c  r e c i r c u l a t i n g  c e l l s  m o v i n g  d o w n s t r e a m  f o r  t h e  r e g i o n  
w h e r e  n a t u r a l  c o n v e c t i o n  d o m i n a t e s .  D a l b e r t  [ 8 ] s o l v e d  t h e  b o u n d a r y  l a y e r  
e q u a t i o n s  f o r  a  s i m u l t a n e o u s l y  d e v e l o p i n g  f l o w  i n  f i n i t e  d i f f e r e n c e  f o r m .  A p a r t  
f r o m  t h e  d e n s i t y  d i f f e r e n c e  i n  t h e  b u o y a n c y  g e n e r a t i o n  t e r m  c o n s t a n t  p r o p e r t y  
v a l u e s  w e r e  a s s u m e d  i n  t h e s e  s t u d i e s .  M o r e o v e r  t h e  h e a t  t r a n s f e r  r e s u l t s
p r e s e n t e d  a r e  e i t h e r  i n  i n c o n v e n i e n t  f o r m  o r  a r e  i n a p p r o p r i a t e  t o  h i g h  P r a n d t l  
n u m b e r  f l u i d s .  T h e  n u m e r i c a l  s t u d i e s  o f  A l l e n  a n d  c o w o r k e r s  ( s e e  [ 1 4 ]  f o r  
e x a m p l e )  a n d  N i k i t e n k o  [ 1 5 ]  a r e  e x c e p t i o n s  i n  w h i c h  a l l  p r o p e r t y  v a r i a t i o n s  a r e  
c o n s i d e r e d  f o r  t h e  c o n d i t i o n s  o f  p r e s e n t  i n t e r e s t .

S i m i l a r  r e s t r i c t i o n s  a p p l y  t o  a n a l y t i c a l  [ 9 , 1 0 ]  a n d  n u m e r i c a l  [ 1 1 - 1 3 ]  
t r e a t m e n t s  o f  t h e  c o r r e s p o n d i n g  n a t u r a l  c o n v e c t i o n  p r o b l e m .

I n  t h e  f o l l o w i n g  s e c t i o n s  t w o  f i n i t e  d i f f e r e n c e  c a l c u l a t i o n  p r o c e d u r e s  a r e  
p r e s e n t e d ;  n a m e l y ,  a n  i m p l i c i t ,  m a r c h i n g  i n t e g r a t i o n  s c h e m e  a n d  a  t e c h n i q u e  i n  
w h i c h  t h e  d e v e l o p i n g  t e m p e r a t u r e  p r o f i l e s  a r e  a p p r o x i m a t e d  b y  a  s e r i e s  o f  
' t r u n c a t e d '  v e r s i o n s  o f  a  f u l l y  d e v e l o p e d  p r o f i l e .  C o m m o n  f e a t u r e s  o f  t h e  t w o  
m e t h o d s  i n c l u d e  p r i m i t i v e  v a r i a b l e  f o r m u l a t i o n ,  u s e  o f  t h e  i n t e g r a l  e n e r g y  
b a l a n c e  e q u a t i o n  a n d  i t e r a t i o n  t o  h a n d l e  t h e  c o u p l i n g  o f  g o v e r n i n g  e q u a t i o n s  
c a u s e d  b y  t h e  t e m p e r a t u r e  d e p e n d e n t  p r o p e r t i e s .

G O V E R N I N G  E Q U A T I O N S
F l o w  G e o m e t r y

V e r t i c a l l y  u p w a r d  l a m i n a r  f l o w  o f  a  f l u i d  w i t h  t e m p e r a t u r e  d e p e n d e n t  
p r o p e r t i e s  i n  a  h e a t e d  p a r a l l e l  p l a t e  d u c t  i s  c o n s i d e r e d .  F l u i d  i s  s u p p l i e d  t o  
t h e  b o t t o m  o f  t h e  d u c t  a t  a  u n i f o r m  t e m p e r a t u r e  t 0  w i t h  a  s p e c i f i e d  v e l o c i t y  
p r o f i l e  u 0 ( y ) .  T w o  p r o b l e m s  w i t h  d i f f e r e n t  t h e r m a l  b o u n d a r y  c o n d i t i o n s  a r e  
t r e a t e d :  ( i )  u n i f o r m  a n d  e q u a l  w a l l  h e a t  f l u x e s  ( s y m m e t r i c  p r o b l e m ) ,  a n d  ( i i )  
u n i f o r m  w a l l  h e a t  f l u x  a t  o n e  p l a t e ,  t h e  o t h e r  p l a t e  b e i n g  t h e r m a l l y  i n s u l a t e d  
( a s y m m e t r i c  p r o b l e m ) .  T h e  s y m m e t r y  o f  b o u n d a r y  c o n d i t i o n s  i n  t h e  f o r m e r  c a s e  
d e t e r m i n e s  t h a t  s o l u t i o n s  n e e d  o n l y  b e  o b t a i n e d  f o r  t h e  d u c t  h a l f - w i d t h ,  w h e r e a s  
t h e  f u l l  d u c t  w i d t h  m u s t  b e  c o n s i d e r e d  i n  t h e  a s y m m e t r i c  p r o b l e m .

T h e  o r i g i n  o f  t h e  x - y  c o o r d i n a t e  s y s t e m  i s  l o c a t e d  a t  t h e  l e a d i n g  e d g e  o f  
t h e  l e f t - h a n d  s i d e  p l a t e  w i t h  t h e  x - c o o r d i n a t e  a l i g n e d  i n  t h e  d i r e c t i o n  o f  f l o w  
i . e .  o p p o s i t e  t o  t h e  g r a v i t a t i o n a l  b o d y  f o r c e  v e c t o r  g e n e r a t i n g  b u o y a n c y  e f f e c t s  
i n  t h e  d u c t  ( s e e  F i g . 1 ) .  T o  u n i f y  t h e  t r e a t m e n t  o f  t h e  t w o  p r o b l e m s  t h e  
t r a n s v e r s e  w i d t h  o f  t h e  c a l c u l a t i o n  d o m a i n  i s  d e n o t e d  b y  t h e  s y m b o l  a  i n  b o t h  
c a s e s .

D i f f e r e n t i a l  E q u a t i o n s

T h e  f o l l o w i n g  p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s  g o v e r n  t h e  c o n s e r v a t i o n  o f  
m a s s ,  a x i a l  m o m e n t u m ,  t r a n s v e r s e  m o m e n t u m  a n d  e n e r g y  r e s p e c t i v e l y  f o r  t h e  s t e a d y  
t w o - d i m e n s i o n a l  l a m i n a r  f l o w :
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Ì2 +11 = o
3 x  3 y

(2 )

(3)

(M

(1)

V i s c o u s  d i s s i p a t i o n ,  a x i a l  d i f f u s i o n  a n d  s o m e  s m a l l  t e r m s  a r e  i g n o r e d .  
E q a t i o n s ( 1 ) - ( ! * )  a r e  c o u p l e d  t h r o u g h  t h e  f l u i d  p r o p e r t i e s  w h i c h  a r e  a s s u m e d  t o  b e  
f u n c t i o n s  o f  t e m p e r a t u r e  a l o n e ,  s o  t h a t  t h e  p r o p e r t y  s p a c e  d e r i v a t i v e s  r e q u i r e d  
i n  E q u a t i o n s ( 2 ) - ( 4 )  c a n  b e  r e p l a c e d  b y :

S i i - d ^ . ^ t  ( 3 p _ . d j j . 3 _ t  > 3 k  _  d k  . 3 t
3 y  d t  3 y  3 x  d t  8 x  3 y  d t  3 y

D e n s i t y  v a r i a t i o n  i s  a d m i t t e d  i n  t h e  x - d i r e c t i o n  b o d y  f o r c e  t e r m ,  b u t  o t h e r w i s e  
t h e  f l u i d  i s  t r e a t e d  a s  i n c o m p r e s s i b l e .

I n t e g r a l  B a l a n c e  E q u a t i o n s

F u r t h e r  c o n s t r a i n t s  a r e  e x p r e s s e d  b y  t h e  i n t e g r a l  c o n t i n u i t y  a n d  s t e p - w i s e  
e n e r g y  b a l a n c e  e q u a t i o n s ;  v i z ,

i  r
u  = —  / u

m a  J
d y

a n d

o
_2_A t .  =

b  p  u  a  c
A x

(5)

( 6 )m m
w h e r e  f o r  v a r i a b l e  s p e c i f i c  h e a t  t h e  b u l k  t e m p e r a t u r e  i s  d e f i n e d  b y

t ,  = I  u  c  t  d y  /  f  u  c  d y  ( 7 )b m mo . o
I n  E q u a t i o n s ( 6 ) a n d  ( 7 )  c m d e n o t e s  t h e  m e a n  s p e c i f i c  h e a t  a p p r o p r i a t e  t o  t h e  
t e m p e r a t u r e  i n t e r v a l  o r  l o c a l  t e m p e r a t u r e  r e s p e c t i v e l y .

B o u n d a r y  a n d  I n i t i a l  C o n d i t i o n s

T h e  f o l l o w i n g  b o u n d a r y  c o n d i t i o n s  a p p l y  g e n e r a l l y

v ( x , 0 )  = 0 v ( x , a )  = 0 u ( x , 0 )

3 u

3 t  . n . a

*  U ' 0) = '  K g-lx,«) = 0

w h e r e a s  —  ( x , a )  = 0  f o r  t h e  s y m m e t r i c  p r o b l e m  o n l y  a n d  u ( x , a )  = 0 f o r  t h e

a s y m m e t r i c  p r o b l e m  o n l y .  I n i t i a l  c o n d i t i o n s  a r e  s p e c i f i e d  a s  f o l l o w s :

u ( 0 , y )  = u 0 ( y )  , v ( 0 , y )  r  0 , p ( 0 , y )  = p Q , t ( 0 , y )  = t Q

w h e r e  u 0 ( y )  a l l o w s  e i t h e r  a  u n i f o r m  o r  a  p a r a b o l i c  a x i a l  v e l o c i t y  p r o f i l e  t o  b e  
s p e c i f i e d  a t  e n t r y .
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N U M E R I C A L  M E T H O D S

M a r c h i n g  I n t e g r a t i o n  S c h e m e

T h i s  m e t h o d  f o l l o w s  c l o s e l y  t h e  p r o c e d u r e  a p p l i e d  b y  C o l l i n s [ l 6 ] a n d  o t h e r s  
t o  a  v a r i e t y  o f  a x i s y m m e t r i c  c y l i n d r i c a l  c o o r d i n a t e  p r o b l e m s .  T h e  m e t h o d  i s  n o w  
p r e s e n t e d  f o r  t h e  t w o - d i m e n s i o n a l  c a r t e s i a n  c o o r d i n a t e  p r o b l e m  d e s c r i b e d .

A r e c t a n g u l a r  f i n i t e  d i f f e r e n c e  g r i d  ( s e e  F i g . 2 )  w i t h  M t r a n s v e r s e  
d i v i s i o n s  i s  e m p l o y e d .  T h e  a x i a l  s p a c i n g  i s  a l s o  u n i f o r m  a b o u t  t h e  g r i d  p o i n t  
( n , m )  b u t  m a y  b e  d o u b l e d  a t  a r b i t r a r i l y  c h o s e n  l o c a t i o n s  i n  t h e  m a r c h i n g  
p r o c e d u r e .  E q u a t i o n s ( 1 ) - ( 4 )  a r e  f i r s t  r e n d e r e d  d i m e n s i o n l e s s  u s i n g  t h e  
s u b s t i t u t i o n s  g i v e n  i n  t h e  N o m e n c l a t u r e  a n d  t h e n  r e p l a c e d  a c c o r d i n g  t o  t h e  
f o l l o w i n g  i m p l i c i t  s c h e m e :

2 AX A Y

mi U ( n + 1 . m ) - U ( n ,m ) + V ( n , m ) U ( n + 1 , m + 1 ) - U ( n + 1 . m - 1 ) -  jp G
A X _ 2  A Y P ( R e a

P ( n + 1 , m ) - P ( n , m j + 1 ( f
U ( n + 1 ,  m + 1 ) - 2 U  ( n + 1 , m ) +U ( n + 1 , m - 1 )~|

AX (Rea Ü  P A Y 2 J

(8)

+ F * T ( n f 1 , m + 1 ) - T ( n + l , m - l ) . U ( n + 1 , m t - 1 ) - U ( n + l , m - 1 )
2  A Y

n j I n ) V ( n + 1  , m ) - V ( n  m)
A X

2  A Y

+ V ( n
’  2  A Y

( 9 )

8 P ( n + 1 , m + l ) - 8 P ( n + 1 , m - 1 ) - P ( n + l , m + 2 ) - P ( n + 1 , m - 2 )

’(Rea>o^

12  A Y

L n n + 1 , m + l ) - 2 V ( n + 1 , m ) + V ( n + 1 , m - 1 ) + F 1 T ( n + 1 , m + 1 ) - T ( n + 1 , m - 1 )

r A X 2 y 2 A Y

V ( n + 1  ) - V ( n + l  , m - l  ) + T ( n + 1  , m ) - T ( n , m ) U ( n , m + 1  ) - U ( n , m - 1  )
A Y  A X  '  2  AY (10)

U( n,m) p| T ( n + l  , m ) - T ( n , m ) j .  . | T (n + 1  ,m +1 ) - T ( n + 1  , m - 1  )
A X V ( n , m )  I----------- ------ 2  A Y -----------------

F  ( R e  P r ) \  kc a  o'

T (n+1 ,m+1) - 2 T (n+1 ,m)+T(n+1,m-1 )
AŶ

+f : T ( n , m ) - T ( n , m - 1 ) T ( n + 1 , m + 1 ) - T ( n + 1 , m - 1 )
A Y  '  2  A Y ( 11 )

I t  i s  a s s u m e d  t h a t  t h e  e l l i p t i c  n a t u r e  o f  t h e  p r e s s u r e  f i e l d  i s  s u f f i c i e n t l y  
w e a k  t o  p e r m i t  a  m a r c h i n g  s o l u t i o n  w i t h  t h e  t r a n s v e r s e  m o m e n t u m  e q u a t i o n  
r e t a i n e d .  T h i s  w a s  c o n f i r m e d  b y  t h e  p r e d i c t i o n s  w h i c h  d e m o n s t r a t e d  n e g l i g i b l e  
t r a n s v e r s e  p r e s s u r e  v a r i a t i o n s .

F o r  t h e  s o l u t i o n s  p r e s e n t e d  i n  t h i s  p a p e r  8 0  t r a n s v e r s e  g r i d  d i v i s i o n s  w e r e  
e m p l o y e d  a n d  t h e  i n i t i a l  m a r c h i n g  s t e p  A X  w a s  1 . 0 .  A f u l l  d e s c r i p t i o n ,  
i n c l u d i n g  d e t a i l s  o f  t h e  t r e a t m e n t  o f  b o u n d a r y  c o n d i t i o n s  a n d  a  s t a b i l i t y  
a n a l y s i s ,  a r e  g i v e n  b y  C o l l i n s [ l 6 ] .
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T h e  d i m e n s i o n l e s s  f o r m s  o f  E q u a t l o n s ( 5 ) - ( 7 ) a r e

1 = r 1 U  d Y
9 0

( 1 2 )

G r
AT. = ------------- &------------  AX

b ( F  ) ( R e  P r )  
c m  a  o ( 1 3 )

a n d
T t  = A  dY '  A  <F c > m  di 

0 0 (HO
E q u a t i o n s ( 1 2 )  a n d  ( 1 4 ) a r e  e v a l u a t e d  n u m e r i c a l l y  i n  t e r m s  o f  o r d i n a t e s .

T h e  c a l c u l a t i o n  p r o c e d u r e  f o r  e a c h  m a r c h i n g  s t e p  m a y  b e  s u m m a r i s e d  a s
f o l l o w s :  E q u a t i o n s ( 8 ) - ( 1 0 )  w r i t t e n  f o r  e a c h  i n t e r i o r  p o i n t  a r e  s o l v e d
s i m u l t a n e o u s l y  w i t h  E q u a t i o n ( 1 2 )  f o r  t h e  3 M - 2  u n k n o w n  v a l u e s  o f  U , V  a n d  P  a t  t h e  
n+ 1  l e v e l .  T h e  v e l o c i t i e s  t h u s  o b t a i n e d  a r e  n e x t  u s e d  i n  t h e  s o l u t i o n  o f  t h e  
e n e r g y  e q u a t i o n s  f o r  t h e  u n k n o w n  t e m p e r a t u r e s .  A  t o t a l  o f  M - 1  e q u a t i o n s  a r e
i n v o l v e d ,  E q u a t i o n ( 1 3 )  r e p l a c i n g  E q u a t i o n ( 1 1 )  f o r  t h e  t r a n s v e r s e  g r i d  p o s i t i o n  
n e a r e s t  t o  t h e  h e a t e d  w a l l  (m  = 2 ) .  T h i s  t e c h n i q u e  a t  o n c e  g u a r a n t e e s  t h e  
e n e r g y  b a l a n c e  a n d  s a t i s f i e s  t h e  w a l l  t h e r m a l  b o u n d a r y  c o n d i t i o n .  A  r e f i n e m e n t  
o f  t h e  s o l u t i o n s  i s  a c h i e v e d  b y  r e p e a t i n g  t h e  c a l c u l a t i o n s  a l l o w i n g  t h e  
t e m p e r a t u r e s  a t  t h e  n +1 l e v e l  t o  b e  u s e d  i n  e v a l u a t i n g  t h e  p r o p e r t y  r a t i o s  Fp , 
F k , ( a n d  t h e i r  d e r i v a t i v e s  w i t h  r e s p e c t  t o  T  : F ' u a n d  F ' k  ) F c  a n d  F p , a n d  o t h e r  
t e m p e r a t u r e  d e p e n d e n t  e x p r e s s i o n s .

T r u n c a t i o n  T e c h n i q u e

T h i s  m e t h o d  w a s  d e v e l o p e d  s p e c i f i c a l l y  f o r  h i g h  P r a n d t l  n u m b e r  f l u i d s ,  h a s
b e e n  a p p l i e d  t o  b o t h  c y l i n d r i c a l  a n d  p l a n e  d u c t  f l o w s  a n d  i s  d e s c r i b e d  i n  d e t a i l
e l s e w h e r e  [ 1 * 1 , 1 7 ] .  O n l y  t h e  e s s e n t i a l s  w i l l  b e  e x p l a i n e d  h e r e .

I t  i s  a s s u m e d  t h a t  t h e  a x i a l  v e l o c i t y  p r o f i l e  d e v e l o p s  r a p i d l y  i n  
c o m p a r i s o n  w i t h  t h e  t e m p e r a t u r e  p r o f i l e ,  a d o p t i n g  a  n e w  ' f u l l y  d e v e l o p e d '  f o r m  
c o u p l e d  t o  t h e  t e m p e r a t u r e  p r o f i l e  a t  e a c h  a x i a l  p o s i t i o n .  I n i t i a l l y ,  t h e  a x i a l  
m o m e n t u m  e q u a t i o n  i s  s o l v e d  f o r  t h e  f u l l y  d e v e l o p e d ,  c o n s t a n t  p r o p e r t y  v e l o c i t y  
p r o f i l e  w h i c h  i s  s u b s e q u e n t l y  u s e d  i n  t h e  s o l u t i o n  o f  t h e  e n e r g y  e q u a t i o n  f o r  
t h e  f u l l y  d e v e l o p e d  t e m p e r a t u r e  p r o f i l e .

T h e  m a i n  a p p r o x i m a t i o n ,  f r o m  w h i c h  d e r i v e s  t h e  a d j e c t i v e  ' t r u n c a t i o n ' ,  
r e l a t e s  t o  t h e  t r e a t m e n t  o f  t h e  d e v e l o p i n g  t e m p e r a t u r e  p r o f i l e .  I t  i s  a s s u m e d  
t h a t  t h e  f l u i d  t e m p e r a t u r e  i n c r e a s e s  f r o m  t h e  u n i f o r m  d u c t  e n t r y  v a l u e  t o  a t t a i n  
a  p r o f i l e  a p p r o p r i a t e  t o  a  f u l l y  d e v e l o p e d ,  f o r c e d  c o n v e c t i o n  c o n d i t i o n  f a r  
d o w n s t r e a m  w h i c h  n e g l e c t s  t r a n s v e r s e  c o n v e c t i o n .  A t  i n t e r m e d i a t e  p o s i t i o n s ,  
t r u n c a t e d  v e r s i o n s  o f  t h i s  f u l l y  d e v e l o p e d  p r o f i l e  a r e  e m p l o y e d  i n  t h e  v i c i n i t y  
o f  t h e  h e a t e d  w a l l  w i t h  t h e  r e m a i n d e r  o f  t h e  c r o s s - s e c t i o n  u n i f o r m l y  a t  t h e  d u c t  
e n t r y  t e m p e r a t u r e .  T h e n  a t  a n y  ( i n i t i a l l y  u n k n o w n )  a x i a l  d i s t a n c e  t h a t  
t r u n c a t e d  t e m p e r a t u r e  p r o f i l e  i s  u s e d  f o r  e v a l u a t i n g  a l l  t e m p e r a t u r e  d e p e n d e n t  
q u a n t i t i e s ,  i n c l u d i n g  b u o y a n c y ,  i n  a  f u r t h e r  s o l u t i o n  o f  t h e  a x i a l  m o m e n t u m  
e q u a t i o n  t o  f i n d  t h e  d i s t o r t e d  ' f u l l y  d e v e l o p e d '  v e l o c i t y  p r o f i l e .  T h e  a s s u m e d  
s i m i l a r i t y  o f  t e m p e r a t u r e  p r o f i l e s  a t  t h e  h e a t e d  w a l l  f o l l o w s  f r o m  t h e  u n i f o r m  
w a l l  h e a t  f l u x  b o u n d a r y  c o n d i t i o n ,  w h e r e a s ,  t h e  t r u n c a t i o n  d i s t a n c e  i s  v i e w e d  a s  
t h e  d e p t h  o f  p e n e t r a t i o n  o f  t h e  t h e r m a l  b o u n d a r y  l a y e r  w h i c h  i n c r e a s e s  w i t h  
a x i a l  d i s t a n c e .

F i n a l l y ,  b o t h  p r o f i l e s  a r e  u s e d  t o  c a l c u l a t e  t h e  b u l k  t e m p e r a t u r e  a n d  t h e  
a x i a l  d i s t a n c e  i s  f o u n d  f r o m  E q u a t i o n ( 6 ) .

T h e  f i n i t e  d i f f e r e n c e  e q u i v a l e n t s  o f  t h e  g o v e r n i n g  e q u a t i o n s  a r e  s o l v e d  b y  
s u c c e s s i v e  o v e r - r e l a x a t i o n ,  t y p i c a l l y ,  u s i n g  1 0 0  t r a n s v e r s e  d i v i s i o n s .
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R E S U L T S

T h e  c o n d i t i o n s  a n d  h e a t  t r a n s f e r  p r e d i c t i o n s  f o r  t w o  s a m p l e  c a s e s  a r e  s h o w n  
i n  F i g . 3 a n d  F i g .  4 r e s p e c t i v e l y .  F o r  t h e  s y m m e t r i c  h e a t i n g  o f  e t h y l e n e  g l y c o l
n o  d i r e c t  c o m p a r i s o n  c o u l d  b e  m a d e  w i t h  [ 3 ] s i n c e  t h e  o r i g i n a l  t e s t  d a t a  w e r e
n o t  a v a i l a b l e [ 1 9 ] .  T h e  a s y m m e t r i c  h e a t i n g  c o n d i t i o n s  c o r r e s p o n d  t o  a n  
e x p e r i m e n t  o n  n a t u r a l  c o n v e c t i o n  o f  t r a n s f o r m e r  o i l  t h r o u g h  a  n a r r o w  v e r t i c a l  
a n n u l a r  d u c t [ l 8 ] .  F u l l y  d e v e l o p e d  f l o w  a t  t h e  s t a r t  o f  h e a t i n g  w a s  a s s u m e d  i n  
a l l  c a l c u l a t i o n s  o t h e r  t h a n  t h e  m a r c h i n g  i n t e g r a t i o n  t r e a t m e n t  o f  t h e  a s y m m e t r i c  
p r o b l e m ,  w h e r e  t h e  m o r e  a p p r o p r i a t e  u n i f o r m  e n t r y  p r o f i l e  w a s  u s e d .  T h e
p a r a b o l i c  i n i t i a l  c o n d i t i o n  i s  i m p l i c i t  i n  t h e  t r u n c a t i o n  m e t h o d .

T h e  a c c u r a c y  o f  t h e  m a r c h i n g  i n t e g r a t i o n  s c h e m e  c a n  b e  j u d g e d  f r o m  t h e  
c o n s t a n t  p r o p e r t y  s o l u t i o n s  ( G r = 0 ) ,  w h i c h  a g r e e  c l o s e l y  w i t h  a n a l y t i c a l  f o r c e d  
c o n v e c t i o n  s o l u t i o n s  i n  [ 4 ]  e x c e p t  n e a r  e n t r y .  I n  F i g . 4  t h e  d i f f e r e n c e  i s
p a r t l y  a t t r i b u t a b l e  t o  t h e  d i f f e r e n t  e n t r y  v e l o c i t y  p r o f i l e s  a s s u m e d .  T h e  
c o r r e s p o n d i n g  v a r i a b l e  p r o p e r t y  p r e d i c t i o n s  e x h i b i t  l a r g e  i n c r e a s e s  i n  N u s s e l t  
n u m b e r  f o r  t h e  a i d i n g  c o m b i n e d  c o n v e c t i o n  c o n d i t i o n s  i n v e s t i g a t e d .  I n  F i g . 3  a  
m i n i m u m  i n  N u  a r o u n d  ( x / d j^  ) / ( R e P r  ) fc = 0 . 0 0 7  i s  n o t e d .  T h i s  a r r e s t m e n t  o f  t h e  
u s u a l  N u s s e l t  n u m b e r  d e c l i n e  i s  i n  q u a l i t a t i v e  a g r e e m e n t  w i t h  e x p e r i m e n t a l  
d a t a [ 3 , 1 9 ] .  C o n s i s t e n t l y  l o w e r  v a l u e s  a r e  p r e d i c t e d  b y  t h e  t r u n c a t i o n  m e t h o d ,  
s i n c e  f o r  t h e  s a m e  b u l k  t e m p e r a t u r e  a  h i g h e r  w a l l  t e m p e r a t u r e  ( a n d  h e n c e  a  l o w e r  
N u )  i s  r e q u i r e d  c o m p a r e d  w i t h  a  f u l l  s o l u t i o n .  T h i s  d i s c r e p a n c y  r e d u c e s  w i t h  
a x i a l  d i s t a n c e  a s  t h e  v e l o c i t y  a n d  t e m p e r a t u r e  p r o f i l e s  a l i g n .  T h e  
d i s a p p o i n t i n g  c o m p a r i s o n  w i t h  t h e  e x p e r i m e n t a l  d a t a  o f  T a y l o r  e t  a l [ l 8 ] i s  n o t  
u n e x p e c t e d ,  s i n c e  a  l a r g e  u n c e r t a i n t y  m u s t  a t t a c h  t o  t h e  m e a n  o i l  v e l o c i t y  u s e d  
i n  t h e  p r e d i c t i o n s ,  w h i c h  w a s  e s t i m a t e d  f r o m  p r e s s u r e  d e f e c t  c o n s i d e r a t i o n s .  
A l l  p h y s i c a l  p r o p e r t y  v a r i a t i o n s  w e r e  t a k e n  i n t o  a c c o u n t  f o r  b o t h  f l u i d s .  A p a r t  
f r o m  d y n a m i c  v i s c o s i t y ,  t h e s e  w e r e  a d e q u a t e l y  r e p r e s e n t e d  b y  l i n e a r  f u n c t i o n s  o f  
t e m p e r a t u r e .  T h e  n e e d  t o  t r e a t  a l l  p r o p e r t y  v a r i a t i o n s  ( a n d  e s p e c i a l l y  
v i s c o s i t y )  f o r  v i s c o u s  l i q u i d s  w a s  e s t a b l i s h e d  i n  s e p a r a t e  c a l c u l a t i o n s ,  w h e r e  
b u o y a n c y  a n d  o t h e r  e f f e c t s  w e r e  a s s e s s e d  i n d i v i d u a l l y .

A x i a l  v e l o c i t y  a n d  t e m p e r a t u r e  p r o f i l e  p r e d i c t i o n s  a r e  c o m p a r e d  i n  F i g . 5 
a n d  F i g . 6 a t  t w o  a x i a l  l o c a t i o n s  f o r  e a c h  c a s e  t r e a t e d .  T h e  a c c u m u l a t i v e  e f f e c t  
o f  b u o y a n c y  a n d  v a r i a b l e  v i s c o s i t y  o n  t h e  v e l o c i t y  p r o f i l e  i s  e v i d e n t .  I n  v i e w  
o f  t h e  a p p r o x i m a t e  n a t u r e  o f  t h e  t e m p e r a t u r e  p r o f i l e  p r e s c r i b e d  b y  t r u n c a t i o n  
t h e  a g r e e m e n t  o f  v e l o c i t y  p r o f i l e s  i s  e x c e l l e n t .  I n  t h e  a s y m m e t r i c  c a s e ,  t h e  
s t r o n g  h e a t i n g  e v e n t u a l l y  c a u s e s  a  f l o w  r e v e r s a l  a t  t h e  u n h e a t e d  w a l l .  
P r e d i c t i o n s  o f  t h e  a x i a l  p o s i t i o n  o f  o n s e t  d i f f e r  s l i g h t l y  a s  i n d i c a t e d  i n  
F i g . 4 .

C O N C L U D I N G  R E M A R K S

T w o  e f f e c t i v e  n u m e r i c a l  m e t h o d s  a r e  a v a i l a b l e  f o r  t h e  c a l c u l a t i o n  o f  
l a m i n a r  c o m b i n e d  c o n v e c t i o n  d u c t  f l o w s  w h i c h  c o n s i d e r  a l l  p r o p e r t y  v a r i a t i o n s .

C a l c u l a t i o n s  m a d e  f o r  t h e  f l o w  o f  v i s c o u s  l i q u i d s  b e t w e e n  v e r t i c a l  p a r a l l e l  
p l a t e s  u n d e r  a i d i n g  c o n d i t i o n s  s h o w  a  c o n s i s t e n t  i n c r e a s e  i n  h e a t  t r a n s f e r  o v e r  
c o n s t a n t  p r o p e r t y  f o r c e d  c o n v e c t i o n  s o l u t i o n s .  F o r  a c c u r a t e  p r e d i c t i o n s  w i t h  
t h e s e  f l u i d s  a l l  p r o p e r t y  v a r i a t i o n s  m u s t  b e  a c c o u n t e d  f o r .

T h e  m e t h o d s  a r e  a b l e  t o  p r e d i c t  p h e n o m e n a  a s s o c i a t e d  w i t h  a  s t r o n g  b u o y a n c y  
c o n t r i b u t i o n  s u c h  a s  t h e  a r r e s t m e n t  o f  d e c r e a s i n g  N u s s e l t  n u m b e r  a n d  t h e  o n s e t  
o f  f l o w  r e v e r s a l .
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Fig.l Models and coordinate systems. Fig.2 Finite difference grid

Fig.3 Local Nusselt number variation.Symmetric heating of ethylene glycol.
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Fig.A Local Nusselt number variation.Asymmetric heating of transformer oil.
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Fig.5 Comparison of velocity and 
temperature profiles. Symmetric 
heating of ethylene glycol.

Fig.6 Comparison of velocity and 
temperature profiles. Asymmetric 
heating of transformer oil.
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FLOW RATE PREDICTIONS FOR A THERMOSYPHON LOOP 

J.S. Lewis1, M.W. Collins2 and P.H.G. Allen2

’Energy Technology Centre, Middlesex Polytechnic, London N il 2NQ 
2 Thermo-Fluids Engineering Research Centre, The City University, London EC IV OHB, UK

A  theore tica l in vestiga tion  o f  s te a d y -s ta te  
therm o syp h o n in g  in  a c lo sed -lo o p  com prising  two vertica l 
tribes jo in ed  by u pper and  low er p lenum s has been 
undertaken . The equations governing  tw o -d im e n s io n a l  
developing la m in a r  com bined n a tu ra l and  fo rced  convection  
in  the heated  and  cooled sec tions were solved, by a 
f in ite -d i f fe r e n c e  m ethod , to provide p ressure  d ifferences  
required  f o r  the th erm o syp h o n  problem . N u m erica l results  
obtained fo r  w a ter  (P r  =  f . S )  flow s in  loops w ith  d ifferen t 
s o u r c e - to - s in k  e levation  d ifferences, a t various G ra sh o f  
num bers, co n firm  tha t buoyancy strong ly  in fluences the  
shape o f  the developing axial velocity  profile , and  hence the  
wall fr ic tio n . T he axial va ria tio n  o f  the average 
c r o s s -s e c tio n  tem pera ture  causing  the buoyan t driv ing  
fo rc e  is explained. A  co m parison  o f  the results, including  
flow  rate p red ic tions , is  m ade  w ith  conven tiona l 
o n e -d im e n s io n a l analysis.

1. INTRODUCTION

Closed-loop thermosyphoning is a reliable method of 
thermal energy transfer from a heat source to a heat sink 
at a higher level. Examples of practical equipment 

I designed to exploit natural circulation include, oil and gas 
insulated transformers, fuel—fired and solar water heaters, 
and nuclear reactor and engine cooling systems. The recent 
increased interest in all aspects (steady-state, transients 
and stability characteristics) of natural circulation loops is 
evident from the reviews given by Japiske (1973), Zvirin 
(1981), Mertol and Grief (1985) and Grief (1988). This 
paper contrasts two methods for calculating the steady 
flow rate in a simple (single flow path) thermosyphon loop.

Although of central importance in determining the 
surface temperatures obtaining for a given rate of heat 
transfer, thermosyphon flow rate cannot be specified a 
priori and is difficult to determine experimentally. In 
general, the fluid circulation rate depends on the loop 
geometry, the fluid properties and the thermal boundary 
conditions at the source and sink. Circulation occurs 
naturally due to a buoyant driving force caused by the 
density variation around the loop. At steady-state, this 
force balances the flow resistances of the circulation path. 
The distributed nature of both sides of this equality 
necessitates integration over the whole system.

Most previous analyses of thermosyphon loops have 
used one—dimensional models which consider all properties 
of the flow to be uniform over any cross-section and to 
vary only along the circulation path. An implicit weakness 
of this approach is that the spatially averaged 
cross-section temperature is taken equal to the local bulk

temperature. These two measures generally exhibit 
different values under heat transfer, and whereas the 
longitudinal gradient of the latter is related to heat flux, it 
is the variation of the former that is responsible for 
generating buoyancy. Furthermore, as one—dimensional 
analyses contain no information on transverse temperature 
and velocity gradients, friction and heat transfer 
coefficients must be supplied. Fully-developed forced 
convection values are often used although the experimental 
studies of Addlesee (1980), Creveling et al. (1975) and 
Huang (1987), which cover various loop geometries, 
indicate that such values are inappropriate for natural 
circulation. In reality, thermosyphon loop flows are 
characterised by simultaneously developing velocity and 
temperature profiles, and by combined natural and forced 
convection, prompting the alternative classification ‘mixed 
convection thermosyphon’ adopted by Japiske (1973). 
Moreover, these flows are not always unidirectional as 
observed by Creveling et al. (1975) and Stem et al (1988) 
who both reported regions of longitudinal flow reversal.

Morrison and Ranatunga (1980) compared laser 
doppler anemometry measurements of the water flow rate 
in an electrically heated thermosyphon loop with a 
one—dimensional analysis. The theoretical predictions 
underestimated the flow rate for Reynolds numbers below 
300 and overestimated it for higher Reynolds numbers. 
Attempts to include estimates of the developing flow 
friction factors and the average cross-section temperature 
in the analysis, based on forced convection correlations, 
met with mixed success.

Multidimensional analyses have emphasised a 
toroidal loop mounted in a vertical plane with uniform 
heating over the lower half and constant wall temperature 
cooling over the upper half. The two-dimensional, 
axisymmetric, finite-difference analysis of Mertol et al. 
(1982) ignored pipe curvature effects and cross-stream 
velocities, so that axial velocity was independent of the 
axial coordinate. Their friction factor and local Nusselt 
number results approached forced flow values at low 
Graetz number, but were significantly higher at high 
Graetz number. The flow rate predictions were in good 
agreement with the experimental data of Creveling et al. 
(1975). Ronen and Zvirin (1985) extended the results to 
higher Graetz numbers and compared the two-dimensional 
model and a one—dimensional model utilising friction and 
heat transfer coefficients from the two-dimensional 
results. The maximum difference in the predicted flow 
rates occured at low Graetz number and was less than 7%. 
Lavine et al. (1986,1987) solved the conservation equations 
in their complete elliptic form, including curvature effects, 
using a hybrid (upwind and central) finite-differencing 
scheme. The calculated velocity and temperature fields
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revealed strong three-dimensional effects, such as regions 
of longitudinal flow reversal, nonzero cross-stream 
velocities and nonaxisymmetric temperature profiles.

The present study deals with steady-state 
circulation in a thermosyphon loop with heating and 
cooling isolated in two vertical circular tubes which are 
joined by upper and lower plenums. This arrangement is of 
interest in transformer cooling, although the fluid 
considered in this preliminary investigation is water. 
Following a review of simple one—dimensional 
thermosyphon analysis, details are presented of an 
improved analysis which assumes two-dimensional, 
axisymmetric, developing combined convection in the 
heated and cooled tubes. Although it is recognised that 
buoyancy can cause flow reversals in vertical tubes, only 
unidirectional flows are treated. Tube flow computations 
have been performed for fixed tube lengths over limited 
ranges of the flow and heat transfer rates. The results were 
used to generate solutions for thermosyphons with 
different elevations, by matching pressure differences 
between the top and bottom of the loop for the heated and 
cooled paths. In this paper, results from the 
two-dimensional analysis are compared with the values 
predicted, or assumed, by the one-dimensional analysis.

2. MATHEMATICAL MODELS 

2.1 Basic Assumptions

The one— and two-dimensional analyses which follow 
consider steady flow and heat transfer in a closed-loop 
thermosyphon (Figure 1) comprising two vertical parallel 
tubular sections joined by large upper and lower plenums. 
Relevant dimensions which define this geometry are the 
lengths L\, and Lc, the diameters A, and Dc and the 
vertical distance Az between the centres of the heated 
(lower) and cooled (higher) tubular sections respectively.

The loop is filled with a single—phase, 
incompressible, Newtonian fluid which circulates in the 
direction of the axial coordinate z. Laminar Cow is 
assumed and axial diffusion and viscous heating are both 
neglected. All fluid properties are considered constant 
except in the body force term of the axial momentum 
equation where the density p is assumed to vary linearly 
with temperature T according to p = p0\ 1 — /?(T  — T0)]. In 
this (Boussinesq) approximation the volumetnc expansion 
coefficient 0 is constant and p0 is the density at reference

Figure 1 Loop geometry and bulk temperature 
variation.

temperature T0, taken to be the temperature in the 
bottom plenum. To simplify comparison of the two 
models, uniform wall heat fluxes ft, and qc are imposed at 
the heated and cooled sections respectively. The plenums 
are assumed to be adiabatic and to contain well mixed 
fluid, so that each attains a uniform temperature equal to 
the bulk temperature of the entering fluid. Fluid velocities 
in the plenums are considered small enough to ignore 
friction and to assume the pressure varies hydrostatically.

2.2 One—Dimensional Model

The one—dimensional governing equations for 
thermosyphon loops with cross sectional area A(x) a 
function of x are now presented, following closely the work 
of Zvirin and coworkers (1981a,1981b) and Ramos et al. 
(1985). Under the assumptions stated in the previous 
section conservation of mass, momentum and energy can 
be expressed by equations (1)—(3) respectively:

^ = 0  (i)

^ “35 “  -  a l  -  r - r 0)]scosa -  Ft (2)

j  j, l 4}h/Dh heated  section 
PoCUt — =  < 4 jc/D c cooled section (3)

( 0 plenums

where u(x), p(z) and T(x) are the axial velocity, pressure 
and temperature of the fluid, which can all vary with z  In 
equation (2), Ft represents the friction force per unit 
volume and ycosa is the component of the gravitational 
acceleration in the negative x direction. The specific heat 
capacity is denoted by c.

The velocity and temperature distributions around 
the loop are obtained by solving the coupled set of 
equations (1)—(3) recognising that both pressure and 
temperature are continuous. Applying the latter condition 
to the integral of the energy equation (3) around the closed 
loop shows that the uniform heat fluxes are related by 
fhALh =  —qcDcLc. Separate solutions of equation (3) for 
the heated and cooled tubes yield linear temperature 
variations as depicted in Figure 1.

Integration of equation (2) around the loop, using 
dz = cosa dz, where zis the vertically upward coordinate, 
eliminates the pressure and inertia terms. The momentum 
equation for the steady-state motion reduces to a balance 
between buoyancy and friction

where is the volume flow rate, f, are the Fanning 
friction factors for the tubes and Kj are the form loss 
coefficients associated with the changes of cross section. In 
this work, the fully-developed laminar forced flow friction 
factor / =  8/Re (radius based Reynolds number) is used 
and Kj is taken as 0.5 for each inlet and exit. The integral 
on the LHS of equation (4) is the area enclosed by the 
T  ~ z diagram (Figure 1) and is algebraically equal to 
A TAz, where A T  is the fluid temperature rise.

The flow rate and temperature rise are given by

' ' - P ^ f  <*:

550

- 3 1 8 -



and (6)

The axis and tube wall boundary conditions are 

dU/dR{X,0) = 0 , VJX.O) = 0

where Q is the heat transfer rate and R is the total flow 
resistance parameter in square brackets in equation (4).

2.3 Two—Dimensional Model

For the loop geometry considered, some limitations 
of the one-dimensional analysis can be overcome by 
two-dimensional modelling of the heated and cooled tubes. 
Thus both radial and axial variations of velocity and 
temperature are allowed for in the partial differential 
equations expressing conservation of mass, momentum and 
energy for each tubular section, viz.

oII+à

(7)

dp Gr , ,  1 f3>ff . 1 dU \ (8): KiJ* + HeIOTT + T i m )

d P l  1 (d3 V , 13V V) (9)=  ~ m + 7Z 5 R '“ 7Z*J

i f d » e  
ReVr (¿IRt "

, 139) (10)

where the * in equation (8) refers to upward flow and 
downward flow respectively .Equations (7)-{10) are made 
dimensionless using the following definitions:

(H)

9 =  T  A T T e , Re = , p r = , Gr = S Ê É s g à l

where ris  the radial coordinate and a is the tube radius. 
Both the axial and radial velocity components, u and v 
respectively, are normalised by the mean axial velocity u,. 
The pressure variable is based on the difference between 
the local static pressure and the hydrostatic pressure at 
the same elevation in a fluid of density p0.

The integral continuity equation and the energy 
balance equation are also used, namely

and dflb3X

1 C 'u R d R•'0 (12)

_ / ALh"1 heated (13)
" l - X l c ' 1 cooled

where subscript b refers to bulk temperature and X l  is the 
dimensionless tube length.The subscripts h and c refer to 
the heated tube and the cooled tube respectively.

For each computation the origin of the (X,R) 
coordinate system is relocated to the tube entrance, where 
the following uniform conditions are specified:

U[0,R) = 1 , V[0,R) = 0
(14)

w ) = o , M = j ; ^
Note that for convenience the pressure is set to zero at 
both entrances since only differences are of concern.

dP/dR(X,0) = 0 , d0/8R(Xfi) =  0
(15)

t W )  = 0 , VU,1) = 0 

W * 1) =  { _ ^ g h  heated

The wall temperature gradient condition in equation (15) 
is not used directly in solving the energy equation (10) 
since conservation is enforced through equation(l3) (see 
below). It is used, however, to recover tube wall 
temperature, for subsequent use in evaluating average 
cross-6ection temperature and local Nusselt number.

Computational details The governing equations 
were solved in finite-difference form using the marching 
procedure for laminar combined convection tube flows 
described by Collins (1980). Computations were performed 
on a rectangular grid with 80 uniform divisions in the 
radial direction. The axial step size A X  was 0.625 at each 
tube entrance and was doubled at arbitrarily chosen 
locations in the marching direction. For the solutions 
presented below, the numbers of axial steps used for the 
heated and cooled tubes were 82 and 92 respectively.

Implicit finite—difference equivalents of equations 
(8)—(10) were written for each radial grid position using 
backward differences in the axial direction and central 
differences in the radial direction. For equation (7), dV /8Y  
was centred about a position mid—way between radial grid 
points and dU/dX was approximated by averaging 
backward differences for the two adjacent radial positions. 
The integral in equation (12) and the bulk temperature in 
equation (13) were replaced using Simpson’s rule and the 
trapezoidal rule respectively. Derivative boundary 
conditions were expressed as one-sided differences.

At each marching step, unknown U, V and P values 
were found by solving the finite-difference equivalents of 
equations (7)—(S) and (12) using an elimination method. 
The velocities thus obtained were then used to solve the 
energy equations for the unknown 6 profile in a similar 
way. To guarantee that the overall energy balance was

Oo

Figure 2 Heat source-to-heat sink elevation
difference versus Grashof number for two 
Reynolds numbers.
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satisfied, equation (13) replaced equation (10) for the 
radial grid position nearest the tube wall. Refinement of 
the solutions was made by repeating the above procedure 
at each step, using the latest temperature information to 
evaluate the body force term in equation (8).

Therm os vohon pressure balance. Since pressure is 
path independent it follows that the pressure differences 
between the bottom and top of the loop for separate paths 
passing through the heated leg and the cooled leg are 
equal. This balance is expressed non-dimensionally by

+ —*»*)]

=  - [ Ai,S - ^ e , c  +  ^ 2(^ L c) ] [ ^ ] 4 (16)

where the dimensionless distance A Z  is based (arbitrarily) 
on the radius of the heated tube. For each tube, Kt  is a 
combined loss coefficient for entry and exit (assumed equal 
to 1) and A P* represents the change of defect pressure due 
to buoyancy and wall friction. The integral of the axial 
momentum equation (8) over the complete tube volume 
shows that the overall pressure difference, as determined 
by the finite-difference method, is

.1
A V al  = (! -  2/o u ( X L ,R ) m  da)

— A P bo h  +  A P b u o y d “ A P f r i c  (17 )

where is the average cross-section temperature. The 
first term in equation (17) corresponds to the momentum 
difference between the tuDe inlet and exit sections, and can 
be evaluated from the exit velocity profile solution. As the 
momentum change around the entire loop is zero, values of 
AP* for use in equation (16) are found by subtracting this 
term from A P.

For the two-dimensional calculation procedure, the 
Reynolds numbers (same flow rate) in the heated and 
cooled sections must be specified. As this would involve 
trial—and-error to find the steady circulation rate for a 
fixed loop geometry and a given heat flux, a related 
problem is considered. Instead of fixing all of the geometry 
factors, A Z is now treated as the unknown which is to be 
found from equation (16). In this formulation all the 
remaining parameters, including the Reynolds numbers, 
must be specified. Since the computations for the two 
tubular sections are performed separately, without 
reference to their relative vertical displacement, then each 
set of parameters will generate a solution for AZ.

3. RESULTS AND DISCUSSION

The results presented are for a loop (Figure 1) with 
heated and cooled tubes of equal diameter, so that Rei, = 
Rec and Grj, = Grc. The non-dimensional lengths of these 
two sections, Al i, and Al c, are taken as 200 and 300 
respectively. Consequently, the heat flux ratio - ç c/îh  is 
always 2/3. Two-dimensional flow and temperature field 
solutions were computed for a total of 9 cases, covering 
two Reynolds numbers (Re = 335 and Re =  669) and 
Grashof numbers from 7336 to 29345. The Prandtl number 
is taken as that for water at approximately 40°C, Pr = 4.3.

3.1 Thermosyphon Height

Sinceixed values of Al i, and Alc  are assumed, 
non-dimensional thermosyphon height is determined solely 
by AZ, the difference in elevation (dimensionless) between 
the centres of the heated and cooled sections. Values of 
AZ, calculated from equation (16) using AP results from 
the two-dimensional tube flow calculations, are plotted in 
Figure 2. Each plotted point corresponds to a 
thermosyphon of a different height. For a loop of known 
AZ, the Re ~ Gr characteristic is described by the 
intersection points of the appropriate horizontal line and 
the constant Re curves.

As Figure 2 can be viewed as a dimensionless 
presentation of Az versus A T with flow rate as a 
parameter, it follows from equation (4) that 
one—dimensional theory would predict each curve to be 
hyperbolic. The actual curves, based on two-dimensional 
calculations, are in fact somewhat flatter.

3.2 Axial Velocity Profiles

Figure 3 shows upward flow velocity profiles at four 
positions along the heated tube for the case of the furthest 
right point in Figure 2. The profile shapes can be explained 
in terms of the combined forced and natural convection 
effects. Close to the tube entrance the development 
appears to be qualitatively as for pure forced convection, 
with the maximum axial velocity occuring at or near to 
the tube centreline and increasing with A. At the same 
time, the fluid near the heated wall is being subjected to a 
buoyancy force, which eventually causes it to accelerate, 
drawing more fluid towards the wall. To satisfy mass 
continuity, axial velocities in the centre of the tube then 
decrease, leading to the development of a concavity in the 
velocity profile ana a consequent shift in the position of I 
the maximum velocity towards the wall.

The governing equations given in Section 2.3 show 
that for fixed Pr and Al  values, the profile shape at a
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given axial distance X depends on Re and Gr. The effect of 
increasing Grashof number, at constant Re, is produce 
more axial velocity profile distortion. Increasing Reynolds 
number has an opposite effect. For example, at a constant 
Gr = 22009, the magnitudes and radial positions of the 
minimum and maximum U values in the heated tube exit 
profiles (not shown) are 0.21 (at R =  0) and 1.46 (at 
R e 0.73) for Re =335, and 0.60 (at R = 0) and 1.36 (at 
R a 0.71) for Re = 669.

For some combinations of parameters investigated, it 
was predicted that onset of flow reversal would occur in 
the centre of the heated tube before the exit was reached. 
These cases could not be further pursued using the 
marching procedure described in this paper.

Axial velocity profiles for the cooled downward flows 
follow broadly the same pattern of development as in the 
heated tube. However, due to the reduced heat flux, the 
centreline axial velocity at tube exit is greater in all cases.

Local Nusselt numbers calculated for the tube exit 
positions are significantly higher than for simultaneously 
developing forced convection at the same value of X/RePr. 
The highest Nux values determined, corresponding to the 
case shown in Figures 3 and 4, are 8.42 and 7.55 for the 
heated tube and the cooled tube respectively.

Finally, it should be noted that the steep wall 
velocity gradients, illustrated in Figure 3, indicate that 
/Re is much higher than the fully-developed isothermal 
laminar flow value used in the one-dimensional analysis.

3.3 Bulk and Average Cro6s-Section Temperatures

Figure 4 compares the fib and fia variations around a 
loop with A Z = 192 for Gr =  29345. In the uniformly 
heated and uniformly cooled sections, dimensionless bulk 
temperature varies linearly between 0 and 1, the uniform 
temperatures in the lower and upper plenums respectively. 
In contrast, the average cross-section temperature varies 
non-Iinearly, only agreeing with the bulk temperature at 
the tube entrances and in the plenums.

The temperature difference (fia — fib) changes along 
each tubular section in a manner explained by the 
interaction between the MR) and U(R) distributions. Near 
the entrance to the heated tube. fia (  =  2 /  0 - i  HR dR ) 
increases more rapidly than fib ( = 2 / 0-i U6R dR  ).

Figure 4 Bulk temperature and average cross-section 
temperature variations (Gr =  29345,
Re =  669, AZ =  192).

Figure 5 Comparison of Reynolds numbers based on 
2—D and 1—D analyses.

This increase is associated with the growth of the thermal 
boundary layer on the heated wall, which has a greater 
effect on tfa than on fib, since at this stage the flow is 
mainly concentrated in the centre of the tube. At greater 
X, where maximum axial velocity and the maximum fluid 
temperature tend to coincide, (fia — fib) decreases.

The (fib — fia) variation in the cooled section is 
qualitatively similar to that just described, although 
despite the lower heat flux its magnitude is slightly greater 
throughout. This is consistent with a less distorted axial 
velocity profile and the consequent lower Nusselt number.

3.4 Comparison of 1—D and 2—D Models

Figure 5 compares the flow rates found from the 
one-dimensional and two-dimensional analyses, for all 9 
cases shown in Figure 2. For each case, corresponding to a 
thermosyphon of a different height, the same heat transfer 
rate is assumed for both analyses. Since A T is inversely 
proportional to u,, it follows that the product GrRe is also 
the same for both. The dashed lines in Figure 5 are not 
intended to show exact Re/Re(l—D) variations for fixed 
height thermosyphons, but simply connect points on the 
constant Re curves with the same A Z. They correspond to 
the region in Figure 2 where A Z  values overlap for the 
separate curves. The parameter Re is the Reynolds number 
from the two-dimensional analysis.

Table 1 shows the pressure difference contributions 
due to wall friction (—vej, buoyancy (+ve for heated tube 
and upper plenum, —ve for cooled tube) and form loss 
(—ve) in various loop components, for a loop with 
A Z = 192. In the case considered, Gr = 22360 and 
Re = 878 for the one-dimensional analysis. The 
corresponding values for the two-dimensional analysis are 
Gr = 29345 and Re =  669 (a 0.76 x 1-D value). The sum 
of all entries for each analysis is equal to zero. Note that 
the buoyancy contribution of the lower plenum is zero, 
since it is uniformly at the reference temperature.

In non-dimensional terms, average friction factor is 
equal to —APfrjC/AX. All pressure differences in Table 1 
are divided by ¿XL (=  XLh+ Xl c), the total length of 
tubing, and by the laminar forced convection value 
( /=  8/Re), so that the sum of the wall friction entries is 
equal to -1  for the one-dimensional analysis. The relative 
sizes of corresponding pressure differences can be compared 
by multiplying by the appropropriate Reynolds number.
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Table 1 Wall friction, buoyancy and form loss for 
1—D and 2—D analyses (GrRe » 1.96 x 107, 
A Z  = 192)

Re APfrir Re APbuov Re APfl
F T X l F T X l ITLT l

Heated Tube
1-D -0.400 0.636 -0.110
2-D -1.134 1.390 -0.084

Cooled Tube
1-D -0.600 -0.954 -0.110
2-D -1.515 -1.258 -0.084

Upper Plenum
1-D 1.538
2-D 2.656

As suggested in Section 3.2, the one-dimensional 
analysis severely underpredicts wall friction. In Table 1 the 
average value of /Re for the two-dimensional analysis is 
around 2.65 times (7% higher in the heated tube and 5% 
lower in the cooled tube) that assumed in the 
one-dimensional analysis. From the discussion in Section 
3.3, it is clear that the one-dimensional analysis also 
underpredicts the buoyant driving force, by assuming that 
0a is equal to 0b. In comparison, the magnitude of /&  dX 
in the two-dimensional analysis, is greater for the heated 
tube and less for the cooled tube. Indeed, in Table 1, the 
buoyancy force assisting the flow in the heated tube 
completely offsets that opposing the flow in the cooled 
tube. As Figure 5 shows, the friction ~ buoyancy balance 
established by the two-dimensional analysis gives a lower 
flow rate (Reynolds number) than estimated by the 
one-dimensional analysis, the discrepancy increasing with 
Grashof number. The accompanying increase in AT is 
partly responsible for generating the additional buoyancy 
necessary to overcome the higher wall friction.

Table 1 also illustrates the importance of taking 
account of form losses associated with abrupt changes of 
section. Although only nominal loss coefficients (i.e. 
all Aj =  0.5) were used in this study, they contributed 
approximately 6% of the total pressure loss due to wall 
friction and form drag in the two-dimensional analysis.
For the one—dimensional analysis this figure is 
approximately 18%, because of the much lower friction 
factor and the higher Reynolds number.

5. CONCLUDING REMARKS

An analysis has been performed of the steady flow in 
a simple closed-loop thermosyphon, incorporating 
two-dimensional modelling for the developing laminar 
combined convection in the vertical heated and cooled 
tubes. Buoyancy distortion of the axial velocity profile 
becomes more severe, producing steeper wall gradients, for . 
increasing values of the Grashof number. Calculated values 
of the associated wall friction parameter, ftte , are 
correspondingly higher than for fully-developed forced 
flow. Total buoyancy is underpredicted by 
one-dimensional analyses, due partly to their failure to 

| distinguish between bulk temperature and average 
cross-section temperature. The difference between these 
temperatures varies axially around the loop, both in sign 
and in magnitude. Flow rates predicted for water 
(Pr =  4.3) filled loops, covering several values of driving 
head and Grashof number, are up to 27% below those 
estimated by a simple one-dimensional analysis for the

same rates of heat transfer.
It was also found that form losses associated with 

changes of cross-section can be a significant proportion of 
the total flow resistance.
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