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ABSTRACT

The development and application of mathematical models for instruments used in 
pressure metrology are presented. Applications to industrial instrument design are 
followed by the use of finite element analysis applied to the modelling of an optically 
driven vibratory sensor. Results for the latter compare favourably with measurements 
on an experimental prototype.

For pressure standards metrology, an interactive program, PVE (Pressure Viscosity 
Elasticity), has been developed to simulate oil and gas operated pressure balances, 
inclusive of both pressure-elasticity and pressure-viscosity effects. The program uses 
"unit" load data generated by a purpose-built FEA (Finite Element Analysis) program 
to characterise a given pressure balance. Then by iteration, the pressure and the 
piston-cylinder gap profiles along the engagement length are computed and displayed 
graphically. The distortion coefficient, A, defined by the effective area equation 
A = A0(l + A P), is then calculated from the piston and cylinder elastic distortions and 
the pressure profile.

The PVE program has been applied to the NPL range of (simple geometry) pressure 
balances (series 100,200, 300 and 400). Results show that A is essentially constant for 
each of the balances. For the series 100 and 200 balances, A is approximately 3.3 
ppm/MPa whereas for the series 300 and 400 balances its value is 3.0 ppm/MPa. The 
oil viscosity variations along the engagement length are large for the series 400 balance 
operating at its full pressure (320 MPa) but even in this case, A remains constant. 
Applications were also made to two other designs, a RUSKA 2481 re-entrant oil 
operated balance and a RUSKA 2470 re-entrant gas operated balance. For the oil 
operated one, A was found not to be constant and the effective area, A  needed to be 
approximated with a cubic polynomial. Consequently, for this balance, A varied 
between -0.7 and -1.94 ppm/MPa in the range 28 to 280 MPa. For the gas operated 
balance, A was found to be constant at 0.14 ppm/MPa in its operating range up to 17 
MPa.

The PVE and FEA programs are both implemented on a graphics workstation. The 
theoretical approach adopted and the programs developed are discussed and 
presented.
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CHAPTER 1

Introduction

Pressure is one of the most important variables to be measured in scientific and 

industrial applications. It is a quantity which cannot be measured directly but is derived 

from base units through definitions (i.e force acting upon an area). The unit of pressure 

is the Pascal (Pa). In general, pressure measuring instruments can be divided into two 

main groups, those that are direct and indirect. The first group determines the value 

of applied pressure by directly calculating the force applied upon an accurately known 

area whereas instruments of the second group are based on transforming pressure to 

some other variable which is then measured (e.g. the use of elastic elements to produce 

displacements or strains). The latter instruments are always calibrated using the first 

group such as manometers or dead weight testers, also known as pressure balances. The 

pressure balance in particular has found wide application in pressure metrology and 

forms the primary standard for measuring pressure over a range of four orders of 

magnitude from 0.1 MPa (1 bar) to 1000 MPa. Only in the region 0.1 MPa is the 

pressure balance surpassed in its accuracy by the mercury manometer (figure 1.1).

sc.Oh 
+ 1
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D
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10-

UHV

Orifice flow

-o -6 -310" 10 10 u? i î  îcf Ï?
(1 atm) Pressure (Pa)

Figure 1.1. Uncertainties in NPL pressure standards.
(Taken from NPL booklet on "pressure and vacuum", National Physical Laboratory, Teddington, U.1C, 1984).

1



When used for calibration, a pressure balance may be considered as a pressure 

generating instrument which is used to calibrate pressure measuring instruments such 

as those based on the deformation of an elastic sensing element. The latter form the 

bulk of industrial instruments used for non-vacuum pressure measurement. Typical 

highest accuracies for industrial instruments are now 0.1 % (1000 ppm) uncertainties 

and directly reflect the improvements in primary standards over last few decades. 

Typical errors for pressure balances are now such that they show less than 250 ppm 

uncertainty over the entire range from 0.1 to 1000 MPa. The primary reason for this 

high accuracy for the pressure balance is that distortion effects, which become the 

dominant error at higher pressures, can be corrected. These distortions change the 

piston and cylinder geometries, so the effective area, A, arising from the balance of 

forces on a loaded piston, given by:

P _ m - §
A

is not constant but depends on a linear term in pressure P. So,

A = Ao (1  + A P) (1.1)

where Ao is the nominal area and A is known as the distortion coefficient (reference

[I])-

Since A can be of the order of 3xl0'6 (3 ppm) per MPa, the need to determine A 

accurately particularly for high pressure balances is apparent. The confidence to which 

A is known experimentally is very variable and uncertain as emerged from a recent 

international comparison of high pressure balances. This was pointed out at a recent 

meeting of the BIPM high pressure group in Paris (Molinar et al [2]). Although 

theoretical work for determining A has been considered previously, it has been only of
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limited generality in being incapable of handling balances of complex geometries. 

However, numerical methods can be applied to more general cases.

Consequently, this thesis is concerned with the development of a theoretical numerical 

approach for the mathematical modelling of pressure balances to determine the 

distortion coefficient A. The use of numerical modelling techniques within engineering, 

applied to industrial design, is now widespread. Within instrumentation, mathematical 

models are finding application for sensor and transducer design.

Chapter 2 reviews this area highlighting the success of the Computer Aided Design of 

Instruments (CADI) research group at the Measurement and Instrumentation Centre 

of the City University. This includes design methods for conventional pressure sensors 

with industrial applications. The chapter also introduces the Finite Element (FE) 

method commonly used in CAD design of instruments. The FE method and other 

analytical techniques were applied to simulate optically driven resonant sensors and 

results compared with experiment.

In chapter 3 the pressure balance is introduced, previous work is reviewed and the 

theoretical approach adopted to the mathematical modelling is developed. This 

includes the translation of the approach into the formulation of the PVE 

(Pressure-Viscosity- Elasticity) program which uses data generated by a purpose-built 

Finite Element Analysis (FEA) program. Both programs form the numerical model 

which allows the calculation of the distortion coefficient incorporating both elastic and 

fluid pressure- viscosity effects.

3



A primary purpose of this thesis was to show the adequacy (or otherwise) of equation

1.1 which represents the effective area with only a linear term in pressure as well as 

calculating the actual value of A for a number of primary balances. Chapter 4 applies 

the model to the U.K. National Physical Laboratory (NPL) series of primary oil 

operated pressure balances and two RUSKA designs (of RUSKA Instruments 

Corporation/U.S.A.): one oil operated and one gas operated. Extensive results for all 

these balances are presented in this chapter including graphical display of quantities 

of interest.

Finally, chapter 5 summarises the work and points out the potential contribution to 

the future understanding and design of pressure balances.
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CHAPTER 2

Design of Pressure Sensors using 

Mathematical Models

2.1 Introduction

The mathematical modelling of pressure balances to be described in the next chapter 

builds on the expertise developed within the Computer Aided Design of Instruments 

(CADI) research group at City University. In this chapter the area of modelling and 

design of industrial pressure sensors using diaphragms and capsules is reviewed. This 

was an early area of success for the CADI group which highlighted the conceptual 

design breakthroughs that can be made once appropriate mathematical models have 

been developed. The modelling of diaphragms and capsules involved the application 

of finite difference methods to solve the appropriate differential equations of thin shell 

theory and the subsequent development of design methods based on the modelling. 

More recent mathematical modelling has extended the field beyond pressure sensing 

using principally the finite element (FE) method (reviewed in [3,4]). Since the FE 

method is adopted for modelling of pressure balances (as explained in the next 

chapter), section 2.3 of this chapter introduces the FE method including modern trends 

in its use on interactive graphics workstations.

As part of this work, techniques of mathematical modelling, including finite element 

analysis, were applied to optically driven miniature resonating structures. With optical 

drive through optical fibres, a potential application is to low cost and intrinsically safe



pressure sensors. The modelling is described briefly in section 2.4. Fuller details are 

provided in a paper published by the author and appended to this thesis.

2.2 Diaphragms and Capsules

Diaphragms and capsules are widely used as primary sensors within industrial pressure 

measuring instruments. Modern instruments of this type have low errors (typically 

better than 0.5% uncertainty) and are of complex construction often involving the use 

of corrugated diaphragms or capsules made of two corrugated diaphragms edge 

welded at their periphery (figure 2.1). The corrugations are introduced to ensure a 

linear pressure deflection characteristic over the required pressure range (typically 1 

bar). Thus the centre deflection is an accurate representation of the applied pressure. 

Diaphragms are characterised by variables such as thickness, overall diameter, number 

and height of corrugations, Young’s modulus, Poisson’s ratio etc. The linearity of a 

given diaphragm (or capsule) is very difficult to predict since no adequate analytical 

theory exist for these devices. Consequently, in the past, the design of pressure sensors 

based on these elastic elements was costly and time consuming. For example, the 

design of nesting capsules could take up to a year because of the three main 

requirements: (i) given sensitivity, (ii) given non- linearity error and (iii) "nesting" of 

the top diaphragm onto the bottom diaphragm under overload pressures. The process 

of design would require several iterations to achieve these requirements. Each 

iteration would require tooling, manufacture and testing of capsules.

Mathematical models for diaphragms and capsules were developed in an early thesis 

(Turley [5]) and shown capable of predicting sensitivity and linearity. These models 

were based on the solution, by finite difference methods, of Reissner’s differential
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equations for a thin shell. The work illustrated the nature of the use of mathematical 

models for gaining insight into diaphragm and capsule performance with the 

subsequent emergence of a methodology for the design of nesting capsules. Before a 

mathematical model for a sensor (pressure or otherwise) can be used for design it is 

necessary to specify those variables that a designer is free to vary within a model. This 

requires geometric characterisation. For example for a corrugated diaphragm, design 

variables would be diaphragm thickness, diameter, number and height of corrugations 

and these must be incorporated into a mathematical model. Sensitivity analysis, by 

computer simulation, would then be used to determine which of these variables are 

important and which can be neglected for the purpose of design. In this way the 

mathematical models (which had been validated by experiment at an earlier phase) 

can be used efficiently and the design process can be automated. Further, having 

appropriate mathematical models can open up possibilities for better design. This is 

illustrated for the design of perfectly nesting capsules in what some designers have 

previously called a "black art". Since the computer model developed in reference [5] 

allows the deformation of the diaphragms (forming the capsule) to be traced, the 

insight is to start with capsule nested so forming a "diaphragm" (figure 2. Id).

This nested capsule is "blown apart" through computer simulation and the top and 

bottom diaphragms are then "frozen". These form the capsule which is then tested 

under compression and extension for linearity and sensitivity over the desired pressure 

range. If unsatisfactory, the parameters of the nested "diaphragms" are altered 

systematically until a satisfactory design is achieved. With this method, perfect nesting 

is guaranteed under overload. In fact, in the early industrial designs, nesting was so 

good that in liquid filled capsule-stacks used in differential pressure measurement, a 

time lag of minutes occurred before the diaphragms in a capsule stack would release 

(due to the viscosity of the liquid). In later designs the end convolutions were modified

7
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Figure 2.1. CAD of pressure capsules: (a) designed capsule, (b) under rated extension,
(c) under rated compression, (d) under 250% compressive overload showing perfect nesting (ref. [4]).



and the simulation repeated. A design of a single capsule is shown in figure 2.1, with 

the designed capsule, its shape under extension and compression load and its perfect 

nesting behaviour under a designed 250% overload in pressure.

Closely related pressure sensing elements are snap action diaphragms. A snap action 

diaphragm is basically a thin shell diaphragm experiencing an in-plane tensile stress 

due to an externally applied pressure. A schematic diagram (axisymmetric view) of a 

conical snap action diaphragm is shown in figure 2.2a, with the principal geometrical 

dimensions indicated. As the in- plane stresses increase under loading, the stiffness of 

the diaphragm increases. These diaphragms are generally used as force or pressure 

operated switches, ideally suited for these applications due to their positive action, 

large displacements and good reproducibility. An ordinary diaphragm shows a 

characteristic of progressive pressure against centre deflection. This means that as the 

applied pressure increases, the rate of displacement of the diaphragm centre is 

reduced. For the snap action diaphragm, a sudden change in the diaphragm profile, as 

pressure is increased, occurs with a loss of stability due to the increase of the 

compressive stresses. "Snap through" occurs at one pressure and "snap back" at a lower 

pressure resulting in hysteresis. To simulate these conditions, numerical methods (e.g. 

the Finite Element (FE) method) were most appropriate to use due to the complexity 

of the geometry, very large displacements and more importantly, the instability of the 

structure in order to predict the pressure-deflection characteristics. Obtaining the 

latter would be clearly an impossibility with the use of analytical methods. The model 

developed using the FE method was employed to generate dimensionless performance 

curves for such diaphragms which can lead to a simple design methodology. These 

performance curves are shown in figure 2.2b interrelating design parameters of the 

diaphragms [6].
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xio1

b

Figure 2.2. Conical snap action diaphragms.
(a) geometrical characterisation, (b) computer generated non-dimensional performance curves (ref.[4,6]). 

{E is the Young's modulus and W is the centre deflection of the diaphragm }.
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Looking at these normalised performance curves, it can be seen that sensitivity analysis 

performed with the FE model led to the elimination of a large number of design 

variables {from eight to four (t, Hi, Ro, E)}. The design methodology developed in 

reference [6] used these curves within a simple interactive program on a personal 

computer.

To summarise, in the development of models and their subsequent use for design, the 

following stages can be seen:-

1. Model development and its validation with existing (or constructed) sensors.

2. Geometrical characterisation of the sensor with a number of design variables.

3. Sensitivity analysis to determine the principal design variables (geometric and 

material).

4. The use of dimensional analysis to form dimensionless groups.

5. The production of performance curves.

6. The development of a methodology for design.

In some cases all the stages can be followed (e.g. for snap action diaphragms) whereas 

for others, this is not possible. For example for capsules, dimensionless groups cannot 

be formed due to geometric complexity (therefore, stages 4 and 5 are omitted).

A more detailed review of the work reported in this section can be found in reference 

[4] where interactive finite element modelling of load cells is also described.
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23 The Finite Element (FE) Method and its use

The Finite Element (FE) method is a numerical method for solving field problems. 

A field problem can be structural (e.g. solving for displacements), thermal (e.g. solving 

for temperature) or fluid (e.g. solving for velocity). In a structural problem, for 

example, a structure is divided into a "finite" number of small units known as 

"elements".

This requires an idealisation of the problem to be considered and depending on this 

idealisation, the FE model can be represented either in one, two or three dimensions. 

Appropriate elements in the FE theory are available to represent the structure 

conveniently. For example, a beam element for a one dimensional representation, 

triangular or quadrilateral elements for a two dimensional representation and finally 

perhaps brick elements for representing the structure in three dimensions. In general, 

elements possess nodes on their boundaries and in some cases inside them. Once an 

element type is chosen for an idealised structure, the structure is represented by a 

number of elements and nodes associated with them. The elements are joined together 

via their corresponding boundary nodes (both assigned by integer number) to form 

the mesh which divides the structure. This is known as the discretisation of the 

structure. The unknown field variables (depending on the type of the field problem) 

are defined at nodes and the number of these variables at a node is known as the degree 

of freedom (dof) per node (e.g. for a 2D structure, dof per node = 2, representing the 

displacements in the x and y directions at each node).

The number of dof in the system (the whole structure) is the product of the number 

of nodes and the number of dof per node. Similarly, the number of degrees of freedom
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per element is the product of the number of nodes per element and the dof per node. 

Data are supplied to define the coordinates of each nodal point and the element 

topology (list of global node numbers associated with a particular element which in 

turn will define the mesh). Added to these data are: defining which of the nodal 

parameters at specific node(s) have boundary constraints and finally the material 

properties of the structure (Young’s modulus, Poisson’s ratio).

Having defined the structure in terms of elements and their associated nodes, the next 

step would be to specify the behaviour of each individual element, i.e. the displacement 

variations within the element. This is defined as a prescribed function in terms of the 

displacements (and possibly their derivatives) at the nodal points.

Thus, if the displacement at each node is known, the displacement anywhere within 

the element can also be extracted. Functions describing these displacements and their 

variations are known for each type of element and are called the interpolation functions. 

It is important to note that an element will behave in exactly the same way the 

displacement variations are assumed. In this way, the finite element (FE) solution will 

depend entirely on this idealisation, and consequently, the solution will only be as good 

as the idealisation itself. Following this, the next stage relates the variables of the nodal 

displacement to the corresponding forces. This is known as forming the stiffness matrix 

of an element; the more stiff, the more load is required to get the same displacement. 

Once the element behaviour is known, the behaviour of the entire structure can be 

defined in terms of the behaviour of individual elements. This is achieved by tying all 

elements together and forming the system stiffness matrix. It represents the 

contribution of each element in the structure. This will result a set of system equations 

which can be solved (after applying the necessary boundary conditions) for the 

unknown nodal variables (e.g. displacement) which in turn (in most cases) are required
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to be displayed. In some problems, this stage would be sufficient to terminate the 

procedure while in other problems, depending on the requirement, the calculated 

values are used to determine other quantities of interest (e.g. stress, strain, etc).

In summary, modelling of any field problem using the FE method will involve the 

following steps:

1. Idealisation of the problem which will include simplifying the structure and deciding 

whether it can be represented in one, two or three dimensions. This will in turn lead 

to the selection of an appropriate type of element and an idealised model geometric 

dimensions, together with material properties.

2. Discretisation which involves generating an element mesh for the structure.

3. Boundary constraints which arise from support conditions and external loading (e.g. 

force, pressure etc).

4. Formulation of the appropriate equations representing the behaviour of the 

structure under consideration.

5. Solution of appropriate equations to obtain field variables at nodal points.

6. Further calculations to determine other quantities of interest from nodal variables, 

e.g. strain, stress etc.

7. Presentation of the results either numerically and/or graphically.

In modern terminology, steps 1 to 3 are known as the pre-processing stage, steps 4 and 

5 as the analysis stage and finally steps 6 to 7 are known as the post-processing stage. 

In practice it is very likely that a field problem demands a considerable effort to
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implement the three stages. Since the FE method is a numerical method and, by nature, 

it posses systematic and repetitive procedures, efficient methods have been developed 

for producing FE packages.

The recent availability of the graphics workstations with the power of (previous 

generation) super computers, including interactive graphic facilities, has geared the 

thrust in the development of FE packages to integration of all the three stages 

(preprocessing, analysis and post processing) in a highly interactive fashion. A package 

PEARS (Plane Elastic Analysis and Reaction Stresses) developed at Rutherford 

Appleton Laboratory (RAL) is an example of such an FE package. A structure can be 

entered graphically including the definition of boundary and loading conditions, 

followed by the solution of the system equations and finally a graphical presentation 

of the results, all with the use of "pop-up" menus. As an example, figure 2.3 shows the 

mesh of a typical cylinder of a pressure balance of simple geometry (explained in detail 

in chapter 3) together with the boundary (support) conditions marked as a series of x’s 

and the pressure loadings marked by arrows, while figure 2.4 shows the distorted shape 

of the same geometry due to the application of a linear pressure along the innermost 

bore of the cylinder. It can be seen from figure 2.4 that, for example, the radial 

displacement can also be displayed in a graphical form on a separate sub-window using 

the pop-up menus. With such a package, the user requires very little knowledge about 

the FE method and a typical problem can be entered, solved and viewed in 30 minutes 

on a Sun/SPARC workstation. Of this time, the analysis stage takes only a few minutes. 

Therefore further explorations such as change of support conditions (boundary values) 

and/or loading can be done interactively in a single session.

On the other hand, a number of commercial FE package are available. These packages 

are integrated packages in the sense that they incorporate the preprocessing, analysis
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and the post-processing stages. However, they are non-interactive packages and the 

user requires some knowledge about the FE method. In general, in order to use these 

packages, the geometry, material properties, boundary constraints and loading 

conditions are entered in an input file with a restricted format. This data file is 

"launched" for mesh generation, system equation set-up and solution of the nodal 

variable (and other quantities of interest) in an off-line process. The results are usually 

provided in an output file (in numerical form). Some of these packages have 

complementary viewing facilities which have to be "launched" at a later stage of the 

analysis stage. In terms of providing the user with a fairly large number of element 

types and accommodating the modelling of different field problems (structural, 

thermal, flow, etc), these packages are more flexible than the highly interactive 

integrated packages described earlier. However, the user has to keep track of (with 

some knowledge about the FE method) the node and element numbering, the way the 

boundary values and the loading conditions are interpreted and finally the difficulty 

which arises from having the post-processing stage (if available) as an off-line process. 

This is a disadvantage when comparing these packages with the interactive ones. An 

example of the non-interactive integrated packages is a package known as LUSAS which 

was used in the modelling of optically driven resonant structures explained in section 

2.4. For the latter modelling procedure, it required a few hours to set the input file and 

to get the solution. Further, explorations could also take a considerable amount of 

time, and in fact, some of the analysis carried out (the photothermal analysis) took 

several hours.

As mentioned earlier, the mathematical modelling using the FE method, can be 

carried out using interactive (e.g. p e a r s ) or non-interactive (e.g. LUSAS) packages. 

Although these types of packages, when combined, provide a great flexibility in 

modelling of field problem, yet they are often limited in meeting the full requirement
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of the modelling exercise. This is evident in the sense that, by definition, the more 

general a package is, the less specific it becomes since the analysis stage is not 

accessible to the user. This situation leads to the requirement of developing purpose 

built FE analysis programs around which application specific pre- and post-processing 

programs can be developed. These type of FE analysis programs are increasingly based 

on standard library sub-routines. For example, the purpose built FE Analysis (FEA) 

program developed for the modelling of pressure balances (as explained in Chapter 

3) was based in the NAG/FE library.

The finite element library (FELIB), known as the NAG/SERC Finite Element library, 

was originally developed at Rutherford Appleton Laboratory ( r a l ) with the aim of 

providing a tool for the development of purpose built FE analysis programs in a 

relatively simple and efficient manner with reasonable flexibility. The FELIB is based 

on FORTRAN and is supplied in two parts known as l e v e l  0 and LEVEL l.

LEVEL 0 is a set of subroutines tailored specifically for the use in FE analysis programs. 

They facilitate the modeller with a tool to construct systematically the structure of an 

FE analysis program such as choosing the appropriate element type, its associated 

interpolation functions, determine the stiffness matrix of that element, assemble (tie 

together) all elements of a geometry resulting in the system stiffness matrix and other 

complementary routines such as integration routines, matrix manipulation (addition, 

multiplication, inversion etc) and system matrix solution. Also, other routines are 

available to handle a standard form for reading-in the geometry mesh (coordinates 

and topology), loading data and for writing (outputting) the calculated parameters 

(such as displacement, stress, strain etc) to a device or a file. Details of LEVEL o 

subroutines are documented in reference [7].
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LEVEL l library consists of example programs for solving static and dynamic problems 

[7]. These example programs use routines available in LEVEL 0 library and they 

(example programs) attempt to bridge the gap between theory and practice (i.e. 

programming techniques) of the FE method. The programs are portable and have a 

modular structure so that modifications are made with little difficulty to suit the 

requirements of the problem. In this way, the overall structure of an FE analysis 

program can be defined and the time taken (from problem definition to producing a 

working analysis program) can be reduced if the modeller selects the appropriate 

(example) program that is close to his/her problem.

2.4 Modelling of Optically Driven Resonant Sensors

The use of resonating structures in optical sensing systems has been proved to be one 

of the successful approaches to the measurement of physical parameters [8]. These 

sub-systems are often based on relating the measurand to the change in the resonant 

frequency of a structure which is set into a flexural mode of vibration. With 

optically-driven resonators, the optical power is modulated at a frequency equal to the 

resonant frequency of the structure. Light is converted into thermal energy due to the 

photothermal conversion which takes place at the surface of the vibrating structure 

since the latter is coated with an absorbent material, usually evaporated onto the 

structure. Recently these techniques are being applied to silicon microstructures for 

pressure sensing (see Uttamchandani et al [9]).

Although a considerable amount of experimental work in the field has been reported 

by a number of groups, as yet comparatively, little theoretical modelling work is done. 

The background expertise in mathematical modelling of sensors including finite
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element techniques (explained earlier) was applied to this area. Details are provided 

in a publication (Grattan et al [10]) which is appended to this thesis. A particular device 

previously investigated (see references [11,12]) has been chosen for modelling.

The schematic diagram of the mounted vibrating (quartz crystal) structure is shown in 

figure 2.5, while figure 2.6 shows a cross section through the thickness of the (quartz) 

structure. As indicated, a coating of an absorbent material covers one side of the 

structure, suitably chosen to absorb the maximum light energy at a particular 

wavelength (820 nm, near infrared). The overall size of the quartz structure was 12.5 

mm long, 6 mm wide and 125 ^m thick.

The objectives of the work consisted of :

a. The development of a general purpose computer program to simulate the 

photothermal conversion to study the sensitivity of the process and the temperature 

profile through the thickness of the vibrating structure, both analytically and 

numerically.

b. A theoretical determination of the maximum deflection of the structure, its resonant 

frequency, mode shapes, prediction of the frequency/load relationship and the effect 

of the size of the optical fibre on the maximum deflection.

The photothermal analysis required solving Fourier heat equations governing the 

photothermal conversion, then the a.c. temperature rise at the surface of the vibrating 

structure can be calculated as well as the temperature profile through its thickness 

which in turn will govern the deflection of the structure. A typical temperature profile 

is shown in figure 2.7.
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Figure 2.6. A section through the thickness of the vibrating quartz element.
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The photothermal model was extended (subsequent to publication of reference [10]) 

to implementation of other possible schemes for driving the structure, namely, 

applying modulated optical power directly onto the coated surface rather than via the 

non-coated one. The model also accommodated absorption in the vibrating structure, 

if any.

Further, the photothermal model also allowed the varying of a number of input 

parameters interactively with graphical presentation of the temperature profile during 

one cycle of the input optical signal.

On the other hand, the structural analysis included the use of analytical and numerical 

methods to determine the frequency of vibration, the deflection, the mode shapes and 

prediction of the frequency/load relationship.

Static deflection was then determined by three methods:

i. by approximating the structure to a simple beam with a linear temperature gradient 

across its thickness,

ii. by treating the structure as a bimetallic strip and

iii. using the Finite Element (FE) method with shell elements provided with a 

commercial package LUSAS [13].

Once the static deflection is determined using any one of the above methods, and as 

the system is experiencing a flexural mode of vibration, it can be approximated to a
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single degree of freedom under forced vibration. The dynamic deflection could then 

be calculated by multiplying the static deflection by the Q factor of the system.

Applying the FE method, the resonant frequency of the structure, its mode shapes of 

vibration and the frequency/load relationship were determined.

In summary, for an average input optical power of 4mW (at a wavelength of 820 nm) 

and Q factor of 2700, the dynamic deflection was found to be 0.65 /<m, 0.59 ^m and

0.27 /um in the case of the simple beam, bimetallic strip and the FE method 

respectively. This result is to be compared with an experimental result of between 1 

nm and 2 /¿m, and a theoretical value of 50 /¿m reported by Mallalieu [12] (for more 

details see reference [10]). On the resonant frequency, the calculation using the FE 

method agreed within 23% of the experimental results while the discrepancy in the 

slope of the frequency/load relationship was 8% but linearity was confirmed (see figure 

2.8). These discrepancies can be due to errors in dimensions and composition of the 

coated material resulting from an evaporation process.

The models developed for the modelling of the quartz structure have been applied to 

a typical Si micromachined diaphragm structure (76Q«m x 76Q«m x 4^m), used as a 

pressure sensor [9], In particular, the effect of the size of the fibre carrying the 

modulated optical power was investigated. This was done by varying the area on which 

the (optically produced) thermal load is distributed on the diaphragm and calculating 

the corresponding deflection (using an FE model of the diaphragm). It was found that 

a significant change in deflection can occur if a 500 /¿m fibre was used instead of a 100 

/<m. In this case, the deflection can drop by about 60% if the larger fibre was used for 

a fixed geometry and average input power.
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Figure 2.7. A  typical temperature profile through the thickness of a vibrating quartz element.

Figure 2.8. Predicted frequency/load relationship of a prototype fibre optic based pressure sensor.
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2.5 Conclusions

In this chapter a review of the development and use of mathematical models for sensor 

development has been provided together with an introduction to the finite element 

method which is now widely used in many branches of engineering. The work on optical 

sensor modelling highlighted the development and validation of mathematical models 

in a relatively new area whereas the diaphragm and capsules work highlighted the use 

of developed and validated models for design in a well established conventional area. 

The particular success of the latter area is that capsules and diaphragms can now be 

designed in about one tenth of the time and at about one tenth of the cost compared 

with the largely empirical methods used previously. Such CAD pressure sensors also 

have improved accuracy, typically 0.1% total error compared with 0.2 % to 0.5% using 

conventional methods.

The description, development and use of mathematical models applied in this chapter 

to industrial pressure metrology leads naturally to tackling the problem of pressure 

standards metrology in the following chapters.
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CHAPTER 3

Mathematical Modelling of Pressure Balances

3.1 Introduction

Having reviewed the area of mathematical modelling of pressure sensors and 

introduced the finite element technique in the last chapter, this chapter introduces the 

pressure balance, reviews previous modelling work and then proceeds to explain the 

theoretical approach adopted towards the modelling of pressure balances. The 

approach is implemented in the form of two programs: the Finite Element Analysis 

(FEA) program which is used to characterise a pressure balance and the 

Pressure-Viscosity-Elasticity (PVE) program which uses the FEA program-generated 

data to allow simulation of any pressure balance (oil or gas operated) inclusive of both 

elastic and viscosity effects.

3.2 The Pressure Balance

A pressure balance (also known as a piston gauge or dead-weight tester) comprises a 

piston-cylinder assembly where the piston is engaged into a virtually sealed-base 

cylinder while the piston has a free rotational motion to ensure co-axiality and to 

reduce friction [1]. The schematic diagram for a simple type of a pressure balance is 

shown in figure 3.1. The piston and cylinder, both of a known cross sectional area, are 

separated by an initial clearance gap along a common distance of a fixed length known
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P . A

Figure 3.1. Schematic o f a simple geometry piston-cylinder 
assembly (pressure balance).
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as the engagement length. The piston often protrudes beyond the engagement length 

at the top and the bottom of the cylinder. Generally, pressure balances can either be 

oil or gas operated . In the oil type of balances, a transmitting fluid (lubricating oil) of 

known viscosity fills the base of the cylinder and the surrounding surface of the piston, 

retaining the piston in a floating position. On the other hand, in the gas operated 

pressure balances (assemblies using compressible fluids), air or gas (e.g. helium or 

nitrogen) replace the oil as the lubricating fluid and they often incorporate the facility 

to evacuate an ambient space around the piston-cylinder assembly.

Most of the available oil operated pressure balances operate in a mode known as the 

"gauge" mode whereas the gas operated balances usually operate in either "gauge" or 

"absolute" mode. A pressure balance generally measures the differential pressure 

across the top and bottom ends of the engagement length. In the gauge mode, the 

pressure at the top end of the engagement length is the ambient atmospheric pressure 

while in the absolute mode it is nominally zero.

The principle of operation of a pressure balance can be expressed by the basic equation 

for the pressure generated;

p _  m .g
A (3.1)

which indicates a balance of the gravity force, mg, against the pressure generated force, 

PA, on the piston. The determination of the effective area, A, is of fundamental 

importance to the operation of the balance.
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One very significant fact is that A is not constant because the piston and cylinder both 

distort under pressure. With A0 being the undistorted (nominal) area, the distortion 

coefficient A is defined by the equation

A = Ao (1 + A P ) (3.2)

and the constant A can be determined by experimental or theoretical means. Typical 

values for A can be between -2 and 4 ppm (parts per million) per MPa which becomes 

a significant and dominating correction term particularly for high pressure balances.

With regard to other designs of pressure balances, besides the simple design 

introduced, there are three other designs for high pressure balances. These are 

summarised as (Lewis et al [14]):

a. A pressure balance similar to the simple design but one in which the load is applied 

to the piston via an additional piston known as the auxiliary piston. This arrangement 

(shown in figure 3.2a) reduces the bending moment effects on the piston.

b. A re-entrant pressure balance (shown in figure 3.2b) where the generated pressure 

is allowed to act on the external surface of the cylinder as well as the base of the piston 

and along the engagement length.

c. A controlled-clearance pressure balance allowing the application of variable 

pressure to the external surface of the cylinder, aiming at the provision of some control 

on the gap along the engagement length. The schematic of this type of pressure balance 

diagram is shown in figure 3.2c.
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Figure 3.2. Schematic o f other pressure balance geometries, (a) With auxiliary 
piston, (b) A  re-entrant design and (c) A  controlled-clearance design.
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In designs b and c, the gap between the piston and cylinder is contracted over part of 

the engagement length, thus reducing the fluid leakage.

In general, the pressure balances are used to form the basis of the high pressure 

metrological scale within National Standards laboratories [1]. This scale extends up to 

and beyond 1000 MPa and is covered by a series of balances. For each balance, it is of 

great significance to have an acceptable level of confidence regarding uncertainties. 

The procedure in establishing a scale is to construct the lowest primary pressure 

balance at the highest possible accuracy using diametral measurements of the piston 

and cylindrical bore (see, for example, Peggs et al [15]). This balance will in turn be 

used to determine the accuracy of the next higher operating pressure range balance 

and so on to form the basis of the high pressure scale. This is implemented by a 

comparison procedure which involves connecting a pressure balance assembly directly 

to another one with a common reference level, both subject to a common applied 

pressure. This procedure is simply known as "balancing" or "cross-floating" and it allows 

the calculation of the effective area of the higher balance in terms of that of the lower 

one.

33 Determination of the Effective Area

The effective area for an ideal balance assembly (i.e. one in which the piston and 

cylinder are each straight, coaxial and free from taper) can be expressed as the 

arithmetic mean of the cross sectional areas of the piston and cylinder. For non-ideal 

cases, Dadson et al [1] have derived a formula for the effective area. These cases arise 

from either geometrical imperfections of the balance components and/or elastic 

distortions.
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A general formula for the effective area, A, derived from equation 23 of reference [1] 

(with some notational differences ) and used subsequently in this work is :

L

A = 7rr2f  1+ -^2- * 1 / ! [ u + u l - j^ - d y ]Of r V *0 L J d y  j

r 0 = r p + y p (L ) and ho = g + y c(L ) - y p (L ),

u = y P(y ) - y P(L ) and U = yc(y) - y c(L )

where, as shown in figure 3.3,

rp is the radius of the undistorted piston,

g is the initial clearance gap between piston and cylinder,

r0 is the radius of the distorted piston at the lowest extent of the engagement length (bottom end of the

engagement length),

ho is the radial gap at the same level,

yp is the piston radial distortion at any point along the engagement length, 

yc is the cylinder radial distortion at any point along the engagement length,

u, U  are the radial distortions with respect to the bottom of the engagement length, for the piston and 

cylinder respectively,

P is the balance operating pressure (i.e. the pressure difference between the bottom and the top of the 

engagement length),

L is the engagement length,

p is the pressure at any point along the engagement length referenced to the pressure at the top of the 

engagement length (i.e. p(0) = 0 and p(L) = P).

t is the distorted clearance gap at any point along the engagement length (t = g + yc - yP).

Note: The nominal (undistorted) area, A0, is obtained from equation 3.3 putting all distortions equal to 

zero, therefore Ao = ?r • rp2 { 1 4- (g/rp)}. Also, equation 3.3 has been specialised to the case of elastic 

distortions.

To determine the quantities yp and yc in terms of the applied pressure, evidently, the 

situation is complicated by the fact that the pressure distribution itself is dependent 

on the radial distortions in a manner which is in turn dependent on the variation with 

the pressure coefficient of viscosity of the transmitting fluid. A detailed analysis by 

Dadson et al [1] shows that a simplification can be made if it is assumed that radial

In eq. 23 of ref. [1], p  is the absolute Pressure. Also, the integrations are in oPPosite directions leading to a sign difference for 
the integration term.
® The origin of the equation involves the balance of forces on the Piston (downward force, mg, and three Pressure generated 
forces: on the base, on the flanks and a drag force on the flanks due to fluid motion).
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P(0)= 0

Figure 3.3. Piston and cylinder geometrical variables.
(Notes: 1 .1, yp, yc and p vary along the engagement length. 2. The undistorted piston and cylinder are 

assumed to be of perfect geometry, therefore rp and g are constants.)
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distortions (yp and yc) are each proportional to the actual applied pressure at the same 

position. As a result, it can be concluded that the distortion coefficient, A, is:

a. independent of the applied pressure (effective area is only a linear function of the 

applied pressure).

b. independent of the rheological properties of the transmitting fluid.

c. a combination of two separate parts depending on the elastic properties of both the 

piston and the cylinder.

As shown by Peggs et al [15], for a low pressure primary pressure balances (e.g. up to 

5MPa), the determination of the distortion coefficient with great accuracy is neither 

practicable nor necessary. However, distortion effects are of great significance as the 

operating pressure of the pressure balance is increased. Then in practice, for higher 

pressures, the distortion coefficient is determined accurately by cross-floating with 

another balance using the similarity method (see reference [1] for details of these 

methods).

With regard to the sources of uncertainties in the use of pressure balances, in general, 

these sources may be classified into two groups- intrinsic and extrinsic. The intrinsic 

ones arise from the calculation of the load forces and the pressure actuating the balance 

at a chosen level. However, it is common that the quantity of direct interest may well 

be the pressure at an external site in a system connected to the balance (e.g. a secondary 

pressure gauge to be calibrated or where a pressure phenomena is to be observed). 

The latter is known as the extrinsic source(s) of uncertainties [1]. The major intrinsic 

source of uncertainties would be in the determination of the effective area. This 

includes:
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i. Dependence upon temperature, which is merely determined by the thermal 

expansion coefficient of the balance components (piston and cylinder).

ii. Dependence upon the applied pressure which arises from the effect of the elastic 

distortion of the piston-cylinder assembly and the departure from the perfect 

cylindrical form of the piston or the cylinder. Added to that is the effect of the dynamic 

viscosity of the transmitting fluid which, at high pressures, affects the pressure 

distribution along the engagement length and in turn will alter the elastic distortion of 

the balance components.

iii. Dependence upon the method of attachment which incorporates, however carefully 

calibrated, the pressure seal and other complementary components of the pressure 

balance (screw threads, other fixing devices etc.) being close to (or even overlapping) 

the region of engagement of the piston and cylinder, the insufficiently thick cylinder 

walls and finally even the degree of the tightness of the closure of the system.

A summary of various sources of uncertainties is well documented by Peggs et al [15] 

for a low primary pressure balance (up to 4 MPa). It can be seen from Table 6 of 

reference [15] that the major contributors to the sources of uncertainties are the 

temperature effects (20 ppm/ °C) and the distortion coefficient (4.1 ppm/MPa) for the 

low pressure balance studied. Since temperature can be controlled to a fraction of a 

degree (0.1°C), the temperature effect becomes insignificant for higher pressure 

ranges leaving only the distortion coefficient as the major source of uncertainty.

3.4 Review of Previous Work

The pressure balance has been researched and documented by several workers over 

many years. Dadson et al [1] provide a comprehensive review which includes over a
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hundred references indicating the importance of the pressure balance in 

measurement. The main thrust of the research and the amount of work done were 

aimed for the accurate determination of the distortion coefficients. Dadson has shown, 

on quite general theoretical grounds, that for balances of simple geometries, the 

distortion coefficient is a constant (i.e. equation 3.2 is valid without any higher order 

terms). A recent meeting (1988) of the "High Pressure" group was held in Paris with 

the purpose of presenting an update survey by metrological National Laboratories 

concerned with high pressure measurement [16]. Molinar et al [2] quoted that a recent 

comparison between the work of thirteen National Metrological Laboratories, showed 

that the determining factor limiting the accuracy of pressure balances is an imperfect 

knowledge of the coefficient of elastic distortions in the piston-cylinder unit (the 

balance assembly).

A theoretical analysis reported by Wisniewski et al [17] used the Finite Element (FE) 

method to model a pressure balance (operating up to 300 MPa) assuming a linear and 

parabolic distribution along the engagement length. The distortion coefficient 

determined using the elastic distortions from the two pressure profiles seemed to agree 

with that of Dadson et al [18]. However, the analysis in reference [17] is incomplete 

due to the fact that pressure distribution along the engagement length can be anything 

between a severe drop at the top end to a severe drop at the bottom end of the 

engagement length. This is due to the order of magnitude of the elastic distortion 

compared to the initial gap as well as the effect of the viscosity variation due to the 

pressure viscosity dependence. The latter effect has not been taken into account in the 

analysis by Wisniewski et al [17]. Similar work has been reported by Klingenberg [19] 

but using analytical methods to determine the elastic distortions of pressure balances. 

This assumes a quadratic term in the pressure distribution along the engagement 

length of a high pressure balance. Since the effect of the dynamic viscosity is not taken
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into account, as the pressure balance is one operating at high operating pressure, the 

quadratic term may not be sufficient to represent the actual pressure distribution 

which, in turn, will generate the elastic distortions used in the calculation of the 

effective area and the distortion coefficients.

However, the effect of pressure-viscosity variations is analysed by Stuart [20] for 

different pressure ranges and two commonly used oils. In the latter analysis, an 

iterative method for the calculation of the actual pressure distribution (in the case of 

high pressure balances) is used, but the analysis is based on the assumption that the 

clearance between the piston and cylinder along the engagement length will remain 

constant. This implies that the effect of the elastic distortions is not already considered. 

In fact, Stuart suggests as a conclusion, that an alternative method would be to 

incorporate both the elastic distortions and the viscosity effect in an iterative analysis. 

This means that for an initial assumption of a pressure distribution (e.g. a linear one) 

elastic distortions will generate a specific clearance profile. For this profile, the effect 

of the viscosity is taken into account, resulting in a new pressure distribution. At this 

stage, the elastic theory has to be applied again (but with a new pressure profile) to 

determine a new clearance (gap) profile and so on, iteratively, until a small (e.g. less 

than 1%) change is observed either in the clearance or the pressure profiles along the 

engagement length. This will lead to the more accurate determination of the distortion 

coefficient.

The above procedure has been implemented by Molinar et al [2] using analytical 

methods. This requires the need for the repetition of the procedure concerned with 

the determination of the elastic distortions every time a new pressure distribution 

along the engagement length is to be found. This may require several hours for a 

particular balance and more importantly, the requirement for the "same" several hours,

38



for any repeated analysis for the "same" balance (such as a different initial gap, different 

oil etc). Further, the method adopted by Molinar [2] is based on an analytical approach 

for the determination of elastic distortions which is likely to be a limitation in case of 

modelling pressure balances of complex geometries. The latter limitation can be 

reduced significantly if the Finite Element (FE) method is employed (also suggested 

by Stuart [20]) due to the flexibility provided by the nature of the method itself.

It is interesting to note that the use of the (FE) method may overcome (probably to a 

large extent) the difficulty of modelling pressure balances of a complex geometry but 

it (i.e. the FE method) would still require a considerable time which may not be, at 

least in some cases, very different from that required for the analytical approach of 

Molinar [2]. That is for the same reason, this being the need to carry out the FE 

simulation every time a new pressure distribution is found and also, for every further 

exploration of the same balance.

A better approach, implemented in this work, would be to characterise the elastic 

distortions of any given balance in a form of some "base" data. The provision of this 

"base" (also described later as the "unit" load data) will inhibit the requirement for the 

repetitions of the FE analysis in an iterative approach.

With regard to the uncertainties in the measurement of the elastic distortions, 

measurement reported by Legras [21] claims that the uncertainties in A can be 

estimated to within 0.05 ppm/MPa for a pressure balance operating up to 200 MPa. 

Legras indicates that with such precise knowledge of A, uncertainties in the highest 

pressure generated (lOOOMPa) can be as low as 80 ppm.
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Measurement of pressure profiles along the engagement length of pressure balances 

have been performed by Welch and Bean [22]. These show a far from linear 

distribution along the engagement length (as is commonly assumed). From the 

pressure distribution, also confirmed by theory, Welch and Bean calculated the 

distortion coefficient for 21 MPa oil balances. To do this, they calculated an "effective" 

pressure along the engagement length by considering the point at which the pressure 

gradient, which they call the "downbreak" point, changed rapidly. Subsequently, Welch 

and Bean determine the distortion coefficient using the "downbreak" pressure point 

which appears as Pa/Ps in equation 2 of their paper. This equation is of a questionable 

validity. When Pa/Ps = 0.5, the equation agrees with a form obtainable from equation 

104 of Dadson et al [1]. In conclusion, it appears that there is no sound theoretical 

reason for using the formula except at Pa/Ps = 0.5. Indeed if the formula and method 

adopted by Welch and Bean were used in general, then the distortion coefficient would 

depend on the pressure profile (i.e distribution) which can change markedly during 

the operation of a high pressure balance as is shown later in the present work.

3.5 Theoretical Approach

In computing the effective area of a pressure balance, the pressure distribution along 

the engagement length is required as well as the elastic distortions of the piston and 

cylinder (equation 3.3). For high pressure oil operated balances, the pressure-viscosity 

dependence becomes a significant factor in determining the pressure distribution 

which in turn determines the elastic distortions. Therefore, the requirement is to 

incorporate both the elastic and viscosity effects in an appropriate model. The novelty 

of the model to be adopted relies upon the characterisation of any given pressure 

balance for its elastic properties by computer generated "base" data for further analysis 

incorporating viscosity effects. The characterisation avoids the requirement for high 

processing time as well as providing a general tool for treating complex geometries.
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Dadson et al [1] has documented the theory and practice of the pressure balance and 

this has been well researched. Elasticity theory is applied to a common piston-cylinder 

and it is concluded that the effective areas are only a linear function of the applied 

pressure, characterised by the distortion coefficient and the latter is independent of 

the rheological properties of the pressure transmitting fluid. Certain assumptions have 

gone into the theoretical analysis, the main ones being:

a. that Saint-Venant’s principle applies so that cylinder and piston end-effects can be 

neglected and

b. the pressure profile along the engagement length of the assembly is assumed to be 

reasonably smooth.

However, when the pressure distribution changes rapidly at either end of the 

engagement length both assumptions are simultaneously invalid. This situation can 

arise either when the gap under distortion becomes relatively small at the top end of 

the engagement length (leading to a rapid pressure drop at this end) or when the 

pressure-viscosity dependence of the fluid is very severe (leading to a rapid pressure 

drop at the bottom end). Indeed a paper by Stuart [20] shows that by iterative computer 

simulation, for a constant gap, 90% of the pressure can drop along the bottom 10% of 

the engagement length, for a pressure balance operating at 800 MPa with a high 

temperature lubricating oil as the pressure transmitting fluid. The initial clearance gap 

(initial gap) in high pressure balances is often kept as small as possible (typically 0.5 

/¿m or less) and then under operating pressures the distorted gap could be far from 

constant with the possibility of a large pressure drop occurring at the top end of the 

engagement length. This is so because elastic distortion effects tend to open up the 

bottom of the engagement length and, possibly, close up the top end.
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There is therefore a need for a better theoretical understanding of pressure balances 

in order to compute distortion coefficients for any pressure balance to determine if 

there are any deviations from the idealised situation described in equation 3.2. The 

approach adopted is to use the finite element method. This allows the evaluation of 

the distortion of the piston and cylinder as two separate problems for a given pressure 

distribution along the engagement length. The problem is that the actual pressure 

distribution will depend on the gap profile along the engagement length and also 

(particularly at high pressures) on the pressure viscosity dependence of the fluid. An 

iterative approach is therefore needed.

One approach would be to assume a particular pressure profile (e.g. linear) along the 

entire engagement length and find, using an FE program, the piston and cylinder 

distortions to obtain the gap profile along the engagement length. With this profile the 

one-dimensional laminar flow problem is then solved in an iterative manner (to 

incorporate viscosity-pressure dependence as done in reference [20] except now for a 

variable gap) to obtain a new pressure profile. The procedure is then repeated by 

re-running the FE program iteratively until there is convergence for the pressure 

profile. In principle the whole procedure could be automated using, say, the 

Newton-Raphson method applied to a particular pressure balance with a known initial 

gap and pressure transmitting oil. A severe problem is that the whole procedure would 

have to be repeated if the same balance was to be analysed with a different initial gap 

and/or a different oil. Given that it may take up to half an hour of computing time for 

a single FE "run" to obtain the distortion of the piston and cylinder for a given pressure, 

and perhaps 10 or more iterations for final convergence, it was therefore essential to 

find a more general and efficient approach.
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The approach adopted was to characterise a given piston-cylinder assembly through 

the application of known "unit" loads to both the piston and cylinder. A general 

purpose-built Finite Element Analysis (FEA) program was developed and this program 

is run for each "unit" load and the distorted profile data along the entire engagement 

length for the piston and cylinder is kept as a data file. The unit loads are moved along 

the engagement length of the assembly and a series of data files are constructed for 

the piston and cylinder. Typically these may b e l l  for the piston and 11 for the cylinder, 

thus totalling 22 runs of an FE program. The method relies on the superposition 

principle of linear systems which is valid for pressure balances since Hooke’s law 

applies. With this principle the distortions for an arbitrary pressure distribution could 

be reconstructed and it becomes a much simpler exercise iteratively to obtain the final 

converged pressure and gap profiles along the engagement length. From the latter, the 

effective area and hence distortion coefficient can be calculated. New conditions (e.g. 

a change in initial gap or change in the exponent term for the oil viscosity-pressure 

relationship) could be simulated interactively within minutes. The theory behind the 

method is described in more detail in section 3.6. The program developed is known as 

the PVE (Pressure- Viscosity-Elasticity) program as it is an extension of what may be 

called the PV (Pressure-Viscosity) program developed by Stuart [20], since the latter 

does not consider elastic distortions. The following section describes the detailed 

theoretical approach employed in the PVE analysis model and which operates on the 

"unit" load data generated by the FEA (described in section 3.10). The models 

developed were tested on the UK National Physical Laboratory (NPL) series of 

balances details of which are supplied in Appendix (A).

3.6 Development of the Pressure-Viscosity-Elasticity (PVE) Program

This section describes the PVE iterative program which accommodates both low and 

high pressure balances, whether oil or gas operated. It operates on the calculated

43



elastic distortions characterising a pressure balance obtained from the FEA program. 

At an early stage of the work, piston and cylinder distortions were obtained (using the 

FEA program) for the NPL series 100 pressure balance at 1 MPa operating pressure. 

These distortions were used by a program documented by Arbani [23] for the 

determination of the effective area. The distortion coefficient for the series 100 NPL 

pressure balance was found to be 3.12 ppm/MPa. To calculate distortion coefficients 

at other pressures, the method used by Arbani was simply to multiply the piston and 

cylinder engagement length distortions by the required pressure value (in MPa) and 

then re-run the effective area calculation program with the new distortions. The 

linearity assumption of elasticity theory is, of course, invoked in doing this. The results 

are certainly expected to be wrong for high pressure balances when viscosity changes 

become significant but they may also be incorrect for low pressure balances. The 

reason for this being that the 1 MPa "starting" distortions were obtained by applying a 

linear pressure distribution along the engagement lengths. This linear pressure 

distribution is only valid if the gap along the engagement length is constant. Although 

the initial gap along the engagement length is taken as constant, the distortion itself 

will change this, if it is comparable to the initial gap. That this effect is significant, is 

seen in the variation of the distortion coefficient for the series 100 results taken from 

appendix K of reference [23].

Pressure Distortion Coefficient
(ppm/MPa)(MPa)

0.5
1.0
1.5 
2.0
2.5
3.0
3.5
4.0
4.5
5.0

3.23
3.12
3.16
3.09
3.10
3.05
3.04 
3.00
2.95
2.95

Table 3.1. Distortion coefficients for the NPL Series 100 Pressure Balance
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The results show a decrease in A of several per cent over the range, which violates the 

assumption that A is constant in the equation 3.2.

The decrease in A was even greater for the series 200 balance (25%). To remedy this, 

an iterative approach could be adopted to determine the correct pressure profile and 

a PE (Pressure-Elasticity) program could be developed for low pressure balances 

where viscosity effects are insignificant. A better approach is to develop the more 

general PVE (Pressure-Viscosity-Elasticity) program which will accommodate both 

high and low pressure balances. Such a program will "automatically" model low 

pressure balances and indeed indicate the departure point between low and high 

pressure balances by perhaps looking at the departures, if any, from equation 3.2.

The first requirement in developing a PVE program is to characterise a piston-cylinder 

assembly by unit load data. A typical piston- cylinder arrangement is shown in figure 

3.4a. The engagement length (of say, the cylinder) is divided into a number of sections 

(e.g. 10 as shown in figure 3.4b) and a unit pressure load (1 MPa) is applied to each 

section in turn. For each load case we find (using the FE program) the radial 

displacements (distortions) at the centre of each section and form arrays yci, yc2, ..., 

ycio each with 10 values. For example, yc2 will contain the distortion data (beginning 

from the top of the engagement) when load case 2 (figure 3.4c) is applied. As the 

concern is only with changes of pressure that may occur along the engagement length 

one more array yell (or yCn + 1 with n sections along the engagement length) is needed 

for loadings away from the engagement length. The loading for this, is shown in figure 

3.4d.
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Typical pressure balance (axisymmetric view)

(b)
Load case 1

Figure 3.4 Engagement 
length and its unit load 

disribution.
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Then using the superposition principle (assuming n sections), the radial distortion can 

be found:

n+l
yc —S a d  • yd 

i— 1

along the engagement length for any pressure distribution where the coefficients ad 

are obtained by averaging the pressure distribution as shown in figure 3.5.

For example,

. Pa + Pb
C4~ 2

Of course the continuous distribution is being approximated in a piecewise stepped 

way but this is a reasonable approximation with an adequate number of sections, n.

An identical procedure can be adopted for the piston remembering the engagement 

length for the piston starts and ends away from the two ends of the piston. This leads 

to a distortion profile,

yP -  E  a pi • y pi
1=1

Thus with 10 sections there is a need to generate, once and for all, 22 arrays (i.e. run 

the FE program 22 times) for a particular cylinder support condition. If the cylinder 

support condition is changed (e.g. from sliding to clamped) only the cylinder runs will 

need to be repeated.
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Figure 3.5. A typical pressure profile and its use for calculating ac coefficients.



Clearly if a constant (1 MPa) pressure profile along the engagement length is applied 

then all the values of the a’s (ap’s and ac’s) will equal 1. For a linear pressure

distribution the array of a’s (ap or ac) will be (0.05,0.15,0.25,0.35,......, 0.95,1.0). Note

the last value of the array is always 1 (or the applied pressure in MPa in the general 

case).

The procedure adopted in the PVE program is as follows:-

1. Obtain a’s by assuming a known pressure profile along the piston-cylinder 

engagement length (a linear one is assumed).

2 . Find the radial distortions yp, yc and hence (knowing the initial gap) the gap profile 

along the engagement length.

3. With this gap profile assumed "frozen", use the PV (Pressure-Viscosity) iterative 

procedure to find a new pressure profile.

4. Calculate new a’s as indicated earlier, then repeat (iteratively) step 2 to 4 until 

convergence for the pressure profile is obtained.

5. Post process to display converged pressure and gap profiles and calculate the 

distortion coefficient.

The basis of the PV (Pressure-Viscosity) procedure is the application of a

one-dimensional laminar flow theory equation for the flowrate F through the annular
*

gap between piston and cylinder given by [20] :

P___L  ILB-13
L V 6

(3.4)

where p is the pressure difference between the ends of the gap,

The JZ in equation 3.4 is missing in reference [20], but this makes no difference to subsequent results since it is absorbed 
in the constant (k) introduced in equation 3.6.
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L the length of the gap (engagement length),

rj the coefficient of dynamic viscosity, assumed pressure independent,

R the mean of the radii of the piston and cylinder { R = rp + 0.5 h0, (see figure 3.3)}, 

and t the width of the gap between the piston and cylinder.

In practice the viscosity can change by orders of magnitude along the engagement 

length for high pressure balances. However, equation 3.4 can still be applied but to a 

very small section or layer along the engagement length because the gap t is very small 

compared to the engagement length (typically a ratio of 1 to 25000). So, even for 500 

layers along the engagement length the ratio of gap to the layer length is 1 to 50 and 

therefore, along such a layer length, t and V can be considered constant and therefore 

equation (3.4) becomes:

AP 1 TTRt3 
AL V 6

(3.5)

where now rj is the mean (pressure dependent) viscosity along a layer of length AL and 

Ap is the pressure drop across the layer. By flow continuity, F must be a constant. Also 

the mean radius can be assumed constant, and so equation (3.5) can be rearranged as:

Ap = F A L
k

i?(P)
~7T~ (3.6)

where k = n R/6 is a constant. If the entire engagement length is divided into N layers 

of equal length AL, the pressure at the nth layer from the top of the engagement length 

is just the sum of all the individual pressure drops. Denoting this as pn, equation 3.6 

may be written as:
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(3.7)
n
E A
j =i

pi
FAL n

E
j=l

where >7 j and tj are values for the jth layer. The value 77 j depends on the pressure at the 

jth layer pj, and is found from a given pressure viscosity relationship:

V =  V (p)

and hence for the jth section,

(3.8)

V j = V (pj) (3.9)

In an iterative procedure pj will be taken from a previous iteration.

Defining

,  . . .  _ S. Vj ( P j )
Sn (p ) - E 3 (3.10)

j=i r  
j

where p denotes the array of pressures from a previous iteration, it is found that:

Pn =
F AL

s> '> (3.11)

At the bottom of the engagement length, where n = N, the pressure p is fixed at the 

balance operating pressure so pN is a constant (equal to the balance operating pressure, 

P). The constant term Fa L/L can then be found and (3.11) becomes:
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(3.12)Pn
N

N
W ) SniP')

Calculating pn for all layers results in the current pressure array p. For convergence, 

p and p/ must be the same. The procedure for the PV program is then summarised as:-

a. Assuming a linear pressure profile along the engagement length, an initial array p' 

is constructed for the pressure along the N equal sections.

b. Using equation (3.10), Sn(p)> (n = 1.... N) is computed, and hence from (3.12) the 

current array p can be found.

c. Test for convergence (Is p = p'?). If not, reset p 'to  p and repeat steps b and c (i.e. 

iterate) until convergence occurs.

The NPL series 400 pressure balance was chosen to test the above procedure. This 

required the generation of the "unit" load data which in turn requires the application 

of the FEA program (section 3.7 and 3.9.2).

A typical convergence for the pressure profile was assumed when the elements of the 

two arrays p and p/ do not differ, on average, by more than 0.01%. A typical number 

of layers chosen is 500.

The oil used in all the NPLpressure balances is a high temperature lubricant, di-2-ethyl 

hexyl sebacate, a synthetic ester of molecular weight 426. This has advantage over 

commonly used mineral oils in remaining a liquid in the range up to 800 MPa. Its 

viscosity dependence is taken from [20]:
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(3.13)

with r]o = 21.1 mPa.s and the viscosity exponent term z = 0.55, pressure p in MPa. The
*

viscosity ratios at the maximum operating pressures for the series 100 to 400 balances 

are then easily computed as 1.08,1.37,3.26 and 55.6 respectively, indicating a marked 

change only for the series 400 balance. For a balance operating over the full possible 

range for the oil (up to 800 MPa) the change is an astronomically large value of 3900.

logics + 1.2 = (logio ?7o + 1.2) • (1 + p/200)z

With 500 layers and a 0.01% error on pressure convergence, the PV subprogram of 

the PVE program converged in the order of 1 minute for the series 400 balance 

operating at maximum pressure (320 MPa). Convergence of the pressure profile at the 

0.1% to 1% error level in the PVE program took typically ten iterations and therefore 

a total run time of approximately 10 minutes. These times were for the program 

running on a Whitechapel M G-l workstation. There is an improvement by 

approximately a factor of ten in time when the PVE program is run on the Sun/SPARC 

workstation.

High pressure balances now operate up to, and in some cases beyond 1000 MPa. 

Therefore it was essential to test the PVE program for such higher pressures. This was 

done with the NPL series 400 balance and it was found that convergence could not be 

obtained at pressures greater than 500 MPa. An improved method which does 

converge, was then adopted as explained in the following section.

The maximum operating pressures are assumed to be: series 100; 5 MPa. series 200; 20MPa, series 300; 80MPa and series 
400; 320MPa . Further, the viscosity ratios are with respect to ambient pressure ( 7 ]0  the value at the top of the engagement 
length).
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3.7 Improvement to PVE Convergence

The flow equation (3.5) can be rewritten in differential equation form rather than the 

difference form given, so:

where y is the distance along the engagement length (from its top). The method 

adopted by Stuart [20] and extended in the present work, as described in the previous 

section, was to re-arrange the above equation as:

where k = jt R/6

p is then obtained by integration. The integration cannot be done explicitly since rj is 

a function of p. Consequently, the PV iterative method was developed, where 

essentially values for p used in rj are obtained from a previous PV iteration and the gap, 

t, was variable with y but "frozen" for the entire PV iteration.

If equation 3.14 is rearranged and integrated, then

7TR t

6

3
F = diE. (3.14)dy 77(p)

(3.15)

(3.16)
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then the integration (now along the p axis) can be done explicitly since rj (p) is known, 

so no iteration is required.

Letting 6F/ n R = a (a constant) and I(p) equal to the r.h.s. of 3.16,

a  • y = I (p ) (3.17)

and a  is found from the condition at the bottom end of the engagement length for 

which y = L and p = pN, so,

I(p) is evaluated numerically as a sum dividing the pressure axis into N equal layers 

each of step length Ap = pn /N. Equation 3.18 will then map p to y with non-equal steps 

along the y axis in general.

With this method, a modified PVE program was produced following steps 1 to 5 (in 

the previous section) but no iteration required for step 3. Also, in step 4, care was 

required in calculating the new values of a’s. The reason being that the a’s require p’s 

at mid sections (see for example figure 3.3) on the y axis. The mapping of p to y in 

equation 3.18 will not produce appropriate mid-section y’s so interpolation was 

required.

L

and therefore,

(3.18)
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3.8 Extension to Gas Operateci Pressure Balances

For gas operated balances, compressibility must be accounted for and therefore the 

mass flowrate must be constant anywhere along the engagement length. Then equation

3.14 can be suitably modified by multiplying both sides by p, the gas density. Then 

Oo-F) will be the mass flowrate, and I(p) (the r.h.s) has to be modified to:

I (P ) (3.19)

For a gas, the density is proportional to absolute pressure, so,

P = k'(P + P0)

f

where k is a constant and p0 is the pressure at the top end of the engagement length 

(i.e. p0 = atmospheric pressure for gauge and p0 = 0 for absolute mode operated gas 

balances).

The result is that equation 3.17 is modified to:

a  ' • y = I'(P )

where a'-.± EL
7TR k'

(a constant) and

(3.20)
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Consequently, equation 3.18 becomes

(3.21)

The PVE program was suitably modified and in order to accommodate both gas and 

oil balances in one program, the term (p + p0) in equation 3.20 was modified to give 

(p + P0)0 where /3 = 1 for Gas or f} = 0 for Oil operated balances. Further, for the gas 

operated balances, z = 0 in equation 3.13 since usually there is no pressure viscosity 

dependence.

3.9 Determination of the Effective Area and the Distortion Coefficients

Having obtained the final converged pressure and gap profile for a balance simulated 

at its actual operating pressure, the effective area and the distortion coefficient can be 

calculated simply by using the general formula derived by Dadson et al [1] (equation 

23) and mentioned in section 3.3. The distortion coefficient is simply given by:

X = —  ~ A° . 106 (3.22)
P

in parts per million per MPa (ppm/MPa), where 

A is the effective area of the balance,

Ao is the nominal (undistorted) area of the balance and 

P is its operating pressure (in MPa).
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Finally, the PVE program presents graphically the final converged pressure and gap 

profile alongside a numerical display of the summary of the input data (initial gap, 

number of layers, oil properties etc). A sample of the input and output displays are 

given in Appendix B.

For the graphical presentation, the G IN O graphics library is used in the PVE program 

to display pressure and gap profiles. In using equation 23 of reference [1], the 

integration is performed as summation over a (typical) 1000 layers along the 

engagement length. This approach is very much simpler than using Peggs’ effective 

area program (appendix B of reference [1]). The reason is that Peggs’ program has 

been designed for measured diametrical data. In this modelling work the undistorted 

balance is assumed perfect in geometry and consequently only about 20 lines of coding 

were required to calculate the effective area, whereas Peggs’ A R E A  program is several 

hundred lines of code. A typical PVE run will take a few minutes processing time on 

a Sun/SPARC workstation.

3.10 Development of the Finite Element Analysis (FEA) Program

The FEA program was based on the NAG /SERC library of subroutines for finite element 

computations. This library was developed originally at R A L with SERC  support and is 

now marketed by NAG Limited as the N A G /FE Library [7]. The FEA program was 

developed to model any axisymmetric piston-cylinder assembly. Triangular six noded 

isoparametric elements were used. A separate preprocessor, f e m g e n  [24], is used to 

enter a model and mesh the model with triangular elements. To the geometric and 

topological data obtained from FE M G E N  in the form of a file is added the material 

property data (Young’s modulus, Poisson’s ratio), restraint data representing support
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(clamping) conditions and pressure loading data. The FEA program developed is then 

run and an output file of displacements is produced for reading by FEM V IEW  [24], a 

post processor program which allows the display of displaced shape and hence the 

distortion of the piston (or cylinder). The FEA program has been developed to allow 

pressure loading on the edges of the triangular elements (in groups or individually). 

In this way, arbitrary pressure loadings can be prepared before running the FEA 

program. For example, unit pressure loads on single elements are required along the 

engagement length for the PVE program whereas it is equally easy to apply a linear 

graded pressure along the elements of the entire engagement length as a staircase 

approximation.

In the previous chapter (section 2.3), the N A G /FE library was briefly described. 

Alterations were made to the L E V EL l library to adapt it for the modelling of pressure 

balances. In this work, example program 1 known as SEG M EN T l . i  (see reference [7]) 

was initially considered since it can handle the static analysis of plane solids. 

Modifications made to the code of SEG M EN T l . l  included the way the model geometry 

and topology are read, coordinate transformation from a plane type of problem (as in 

SEG M EN T l . l )  to an axisymmetry problem (for the pressure balance), the way the 

loading information (the application of pressure loading on the piston and the 

cylinder) was applied and finally the modification of output routines to suit the use of 

the PVE program and the use of FEM V IEW  to display the elastic distortions of the 

balance components. The FEA program, at present, is over 1400 lines of code of which 

only about 50 lines of it remained unchanged from the original few hundred lines or 

so of the SEG M EN T l . l  code. Despite this, the LEV EL i  library was still of great help. 

Listing of the FEA program is provided in appendix C where all the N A G /SER C  library 

statements appear in a italic script whereas the changes to the example chosen are 

highlighted in bold script.
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All the information required to model a pressure balance geometry are prepared for 

a typical 11 runs for each of the piston and cylinder and this will produce 22 data files 

presenting the "unit" load data characterising the elastic distortion for a balance.

3.11 Implementation of the Computer Models: General

This section describes the purpose built programs which were developed and were 

required for the modelling of a pressure balance. The section also describes briefly the 

order in which the programs were run. Some of these programs are based on some 

libraries and other graphic routines. For example, the FEA program is based on the 

NAG/FE library while the PVE program uses GINO library subroutines for graphical 

presentations. Additionally, the FEA program requires that the model geometry is 

entered prior to it being run. For this purpose, the FEMGEN/FEMVIEW commercial 

package is used. The modelling of a pressure balance requires, in summary, the 

following steps:

a. The definition of the pressure balance geometry (using FEMGEN- the pre-processing 

package).

b. An interface program to adjust the format generated from FEMGEN to match the 

format required by the NAG/FE library.

c. The characterisation of the elastic distortions of the balance assembly using the 

purpose built FEA program.

d. Prior to running the PVE program, another interface program is required to adjust 

the format generated from step c (due to the use of the FE library) to match the format 

required by PVE program. A similar interface program may also be required if it is 

intended to view the distorted geometry. In the latter case, the format generated due
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to the analysis of step c has to be matched with the one required by f e m v ie w  (the post 

processing package).

e. The PVE program for the determination of the effective area, distortion coefficient 

and to display, graphically, the gap and pressure profile along the engagement length 

of a pressure balance.

All the purpose-built programs for the implementation of steps b, c and d are meant 

to handle the structural analysis of pressure balances of any geometry. These programs 

are transparent to the user, therefore no editing or recompilation is necessary when 

modelling another pressure balance. Likewise is the program in step e where the 

distortion coefficient, pressure and gap profiles can be obtained for any type of 

lubricating oil or initial clearance gap of a particular pressure balance. The FEA 

program (step c) and the PVE program (step e) are the major programs within a total 

of about 3000 lines of code while the other interface programs are of about 500 lines 

or so. They are all written in FORTRAN77.

The concept of these programs is described in the following subsections and the 

introduction of the FE method (chapter 2, section 2.3) which may assist the following 

up of the listing of the FEA program (Appendix C).

3.11.1 Input Requirements for the FEA Program and its Mechanism

As mentioned earlier, the FEA program will require information on the structure 

geometry and mesh. This should include the nodes, their coordinates and structure 

topology. Further information needed would be the material properties (Young’s
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Modulus and Poisson’s ratio) and which nodes are restrained in either x (radial) 

direction or y (axial) direction (or both). The geometry and topology generated by the 

pre-processing package (FEMGEN), are saved, for a particular pressure balance 

geometry, in a file known (conveniently) as pisina (piston-input-analysis) in the case 

of the piston and cylina (cylinder-input-analysis) in the case of the cylinder. This is the 

first requirement. Having created the '’pisina" and "cylina" files, their data format is 

changed to match the requirements of the NAG/SERC (LEVEL 0) format library 

routines. Appended to that would be the material properties and the restraint 

information. The later are extracted by viewing the geometry (using FEMGEN) and in 

the case of the piston, these restrained nodes would be at the top side of the piston, 

restrained in the y direction (i.e. no allowance for the motion in the y direction) while 

in the case of the cylinder, they would either be restrained in the y direction only 

(forming the sliding support condition) or some nodes would be restrained (from the 

motion) in both x (radial) and y direction (forming the clamped support condition).

The second input file required for the FEA program is the one containing node 

numbers at which the elastic distortion may be required (usually along the engagement 

length). In fact, the user can edit arbitrary node numbers as long as the total number 

of these nodes is the "header" for this file. It (the file) is known as the engnodsp and 

engnodsc for the piston and the cylinder respectively (engagement nodes piston and 

engagement nodes cylinder).

The third and final input file required for the FEA program is the assignment of 

pressure loading on elements of the piston and cylinder. The FEA program can handle 

any number of loads applied either to individual elements or groups of elements. The 

input files which will include loading specifications are known as lodcasp and lodcasc 

for the piston and cylinder (load case piston and load case cylinder) respectively. For
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example, if it is required to apply a pressure load on, say, elements number 1, 2 and 3 

simultaneously and then it is intended to apply some other loading on elements 1, 5, 

6 and 8 as another load case (and so on), the user can edit these two (or more) load 

cases at once. The lodcasp and lodcasc files should comply with a certain format and 

the FEA program will "interpret" these files and it will extract the loaded nodes, their 

coordinates, calculate and assign the forces (equivalent to the pressure applied in 

MPa) on each node as well as the total number of loaded nodes. If any mismatch in 

the advised restricted format is detected, the FEA program will flag an error message 

and the execution will be aborted. Due to these interpretations, some temporary files 

are created. For example, for two load cases in the example above, they would appear 

as "lcfOOl" and "lcf002" corresponding to load case file 1 and load case file 2. Generally, 

these "lcfxxx" files (where xxx can be from 1 to the total number of load cases) will not 

be normally displayed to the user but they are accessible, if required, for diagnostic 

purposes. After obtaining the solution for the elastic distortion at the nodes of interest, 

all "lcf' files can be deleted.

Having prepared the input files including the geometry, topology, load cases and nodes 

along the engagement length for a particular pressure balance design, the FEA 

program would be ready to solve the "unit" load (base) data and produce the output 

data files containing the engagement length elastic distortions for a pressure balance. 

For convenience, they are known as podxxx and codxxx (piston output distortion and 

cylinder output distortion and xxx is as in lcf above). Normally, these files would be 

generated starting from the top section to the bottom section along the engagement 

length. For example, if ten sections are assigned along the engagement length, ten 

output data files would be generated for each of the piston and the cylinder (podl to 

podlO and codl to codlO) respectively. Two more files are usually generated for each 

of the piston and cylinder (podll in the case of the piston and codll in the case of the
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cylinder) and they will correspond to a load case having no load (zero pressure) along 

the engagement length and the full pressure ( 1 MPa) away from the engagement length 

(to incorporate the effect of the applied pressure on the bottom side of the piston). 

Finally, another two files are generated (known as podl2 and codl2 for the piston and 

the cylinder respectively) and they would include the elastic distortions along the 

engagement length for the case of a linear pressure distribution applied along the 

engagement length. This load case would assume 1 MPa away from and at the bottom 

end of the engagement length and atmospheric pressure (p = 0) at the top end of the 

engagement length. Consequently, the bottom section of the engagement length will 

have a pressure of 0.95 MPa decreasing to 0.05 MPa at the top section.

The results included in podl to podll and codl to codll are used in the PVE program 

for the calculation of the effective area, distortion coefficient and displaying 

graphically the pressure and gap profiles while the results written into podl2 and codl2 

are used for checking purposes by comparing their values (engagement length radial 

distortions) with the ones viewed using the FEMVIEW package.

3.11.2 Data Preparation for the PVE Program

The previous section described how the FEA program generates the essential 11 "unit" 

load data files for the piston (being podl to pod ll) and for the cylinder (being codl 

to codll). As the PVE program relies on the application of the superposition method, 

it is required to prepare each of the 11 data files into one file in the form of a two 

dimensional array. The program to convert the single dimensional array of each of the 

11 data files is known as the analysis to pve program (an2pve). It basically converts a 

column vector to a row vector starting from podl to pod ll forming what is known as
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the piston data file array, then repeats the same process on the codl to cod 11 forming 

the cylinder data file array. The two latter files are usually named as being related to 

a particular pressure balance model (e.g. ps200tun and cs200tun would be the two 

dimensional array files for the piston and the cylinder for the NPL pressure balance 

series 200 tungsten carbide). These files will be input files to the PVE program for the 

calculation of the distortion coefficient.

3.12 Application of the Computer Models to the NPL series 400 High Pressure 
Balance

The detailed application of the models developed are dealt with in the next chapter 

including the application to NPL and RUSKA pressure balances. In order to validate 

the models developed, a high pressure balance was chosen as a "test bed" where the 

oil viscosity effect and the elastic distortions are expected to be significant. The 

pressure balance chosen was the high pressure NPL (series 400) balance (operating 

up to 320MPa). The model validation included the generation of the "unit" load data 

using the FEA program for the piston and cylinder which in turn formed the base data 

for the PVE program. The following subsections describe the procedure followed in 

the application of the models.

3.12.1 Support Conditions - Definitions

Prior to introducing the procedure implemented in testing the models, it should be 

noted that one of the requirements for running the FEA program is to define the 

support conditions for a pressure balance. This section will define these conditions for 

the NPL series 400 pressure balance. Other NPL balances are described in chapter 4.
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In general, a sliding support condition would be if a node or a group of adjacent nodes 

along an edge is allowed to move either in the x (radial) direction or y (axial) direction. 

On the other hand, a clamped support condition would be if the node(s) is/are not 

allowed to move in either direction. With regard to the piston support conditions, in 

all the pressure balances modelled, the nodes along the top edge of the piston are 

allowed to slide radially and are clamped in the y (axial) direction.

In a typical NPL series 400 pressure balance, the piston will float alongside a cylinder 

in which the shoulder and the base of the cylinder can be defined, as labelled in figure 

3.6. The cylinder support conditions can either be:

a. Sliding support where the cylinder shoulder and base are allowed to slide radially.

b. Clamped support where the cylinder shoulder and base are restrained form 

movement in both x and y directions.

The following section will describe the application of the FEA program to the NPL 

series 400 pressure balance as a "test bed".

3.12.2 Application of the FEA Model

The FEA can be initiated to generate the "unit" load data characterising the piston and 

the cylinder. This will form the 22 data files for the piston and the cylinder (11 each) 

containing the elastic distortions for IMPa (unit) pressure load. These will be used by 

the PVE program.
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Figure 3.6. Schematic of a cylinder for NPL series 400pressure balance.

{Note: In the assembly of the balance, a threaded collar (not shown) is hand tightened onto the shoulder 

of the cylinder which in turn secures the base of the cylinder to its support (also not shown).}
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An additional run of the FEA program is to find the elastic distortion for the balance 

operating at a unit pressure of IMPa. Results are shown in figure 3.7 for both the 

cylinder sliding and clamped conditions. To obtain these, the IMPa pressure was 

applied at the base of the piston and cylinder along the flanks below the engagement 

length. Along the engagement length, the pressure was assumed to decrease linearly 

to zero at its top end. Similarly with the cylinder, a full unit pressure of IMPa was 

applied below the engagement length with the exception of the recess at the base where 

normally an "O" ring would fit. Here the pressure is applied to the vertical face of the 

recess to simulate the transmission of the radial pressure through the "O" ring when

present. With the absence of the "O" ring, both faces of the recess would need to be
*

loaded . Along the engagement length, a linear distribution of the pressure is applied. 

In general, a linear distribution is only valid if the initial gap remains constant and 

pressure-viscosity dependent variations along the engagement length are insignificant.

The "unit" load generation and the IMPa runs took about two hours on a Sun/SPARC 

workstation. It can be seen from figure 3.7 that ten sections were assumed along the 

engagement length. The distorted shape (displayed by the element mesh) is fairly 

linear for the linear pressure distribution applied. Although the elastic distortion for 

any pressure can be estimated (details of which are explained in chapter 4, section 

4.2.1), for this balance, this will be unrealistic since the viscosity effect is highly 

significant and the elastic distortion is comparable with the initial gap between the 

piston and cylinder where the latter is usually small. This is due to the high operating 

pressure. For the FE analysis of the balance, the material from which the balance was 

constructed is assumed to be steel (Young’s modulus E = 2.1x10 N/mm and Poisson’s 

ratio of 0.3).

’ The "O" ring may transmit a vertical component of force onto the "O" ring recess due to a Poisson effect. However, simulations 
(using the PVE program), with the presence or the absence of the ”0 ” ring, showed only a 1 % change in the value of the distortion 
coefficient A. So, the precise loading condition on the "O" ring recess is not important.
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Piston Cylinder Sliding

Figure 3.7. Radial distortions at 1 MPa for NPL series 400 pressure balance



In the FEA program, a test run was carried out for 20 sections along the engagement 

length (figure 3.8 showing the mesh used) and distortion coefficients were then 

calculated using the PVE program. Results were found to be within 1% of those 

calculated using a 10 section model. Therefore, ten sections have been adopted for all 

other pressure balances to be simulated in this work. The 20 section FEA model had 

approximately twice as many elements as the ten section model and a single (one load 

case) run took several hours.

3.123 Application of the PVE Model

The "unit" load data were used by the PVE program to calculate the distortion 

coefficients and present, graphically, the gap and pressure profile for both the piston 

and cylinder. The distortion coefficients were determined (over the operating range 

of the balance and up to 320MPa) for the cylinder sliding and clamped support 

conditions assuming an initial gap of 0.5 /<m and a di-2-ethyl hexyl sebacate oil of 21.1 

mPa.s viscosity (at ambient pressure) and exponent term (z) of 0.55 (see equation 

3.13).

For the sliding or the clamped support, there was virtually no change in the distortion 

coefficient over the entire operating pressure range (32MPa to 320MPa). The 

distortion coefficient remained at approximately 3.00 ppm/MPa.

The graphical presentation of the gap and pressure profiles (along the engagement 

length) at the maximum operating pressure of the balance are shown in figure 3.9. No 

significant difference was observed for these profiles in the case of cylinder sliding or 

clamped support conditions. It can be seen that the pressure severely deviates from
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Figure 3.8. The 20 section model for the NPL series 400pressure balance.
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linearity and the major drop is at the top 5-10% of the engagement length. With regard 

to the gap profile, there is a significant difference in the minimum and maximum gap 

values. The gap is not constant but it is clearly following the pressure profile. However, 

the change in the gap is approximately 5.0 ̂ m (in 0.5 ^m initial gap) between the top 

and bottom ends of the engagement length, and the gap tends to close up at the top of 

the engagement length at very high pressures. For example, a 0.25 ^m initial gap 

produces a negative gap (clearly an impossibility).

To show the effect of the initial gap on the pressure profile along the engagement 

length and the distortion coefficient, the series 400 pressure balance (sliding support) 

was simulated for other initial gaps of 1,2 and 4 ¿¿m. It can be seen, from the graphical 

presentation of these cases in figures 3.10 to 3.12, that there is a wide variation with 

regard to the pressure profiles (and consequently the gap profiles which follow the 

pressure ones) but the distortion coefficient remained relatively unchanged with a 

variation of approximately 7%, (Table 3.2).

NPL Series 400 Summary 
at 320 MPa Operating Pressure

Initial Gap 
0*m)

Distortion Coefficient X 
(ppm/MPa)

0.5 2.99

0.5 (and z = 0) 3.05

1.0 3.02

2.0 3.07

4.0 3.20

Table 3.2. Summary o f the distortion coefficients for the NPL series 400 balance
simulated with different initial gaps.
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Another possible investigation would be to simulate the same balance (with a cylinder 

sliding support condition) with the assumption of having a lubricating oil of no 

pressure-viscosity dependence. This was simulated by putting the exponent term in the 

pressure viscosity relationship, z, equal to 0. Results (figure 3.13) show the pressure 

drop is even more severe than the normal working conditions of the balance as was 

presented in figure 3.9. The distortion coefficient, however, did not change 

significantly from the nominal value of approximately 3 ppm/MPa.

Finally, in order to simulate the series 400 balance at a constant initial gap, the balance 

was simulated at an unrealistic initial gap of 32 pm  as shown in figure 3.14. It can be 

seen that the pressure profile obtained from this simulation agrees with a similar result 

shown by Stuart [20] where the latter analysed high pressure balances incorporating 

viscosity effects but for a constant initial gaps. With regard to the gap profile, it is 

evident that the profile is fairly constant while the distortion coefficient was found to 

be 3.5 ppm/MPa.

For the normal operating conditions of the pressure balance, it may be concluded that 

the distortion coefficient remained fairly constant regardless of the oil viscosity or the 

initial gap. This is in good agreement with the conclusion drawn from the analysis 

reported by Dadson et al [1] where it states that the distortion coefficient is 

independent of the rheological properties of the transmitting fluid, the piston-cylinder 

engagement length gap and the applied pressure.

On the other hand, the results obtained are in contrast to those reported by Stuart [20] 

as the latter work showed that the drop would rather be at the bottom end of the 

engagement length but the analysis was carried out for a constant gap.
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3.13 Conclusions

The FEA and the PVE programs have been successfully applied to the NPL series 400 

balance with some unexpected conclusions regarding the pressure profile distribution 

along the engagement length. Simulations for different initial gaps showed a wide 

variation in the pressure and gap profiles while the distortion coefficient remained 

unchanged (3.0 ppm/MPa). Further, a simulation for a constant viscosity oil (viscosity 

exponent term z = 0) results in a distortion coefficient of 3.05 ppm/MPa compared to 

2.99 ppm/MPa for the real oil. This represents an insignificant change although for the 

real oil the viscosity changes by a factor of 56 along the engagement length when the 

balance operates at its maximum pressure of 320 MPa.

The interesting observations on pressure and gap profiles and distortion coefficients 

presented in the previous section fully justifies the development of the general PVE 

program. It allows the user to interactively change parameters of any balances. For a 

given balance, these include, initial gap and viscosity data. A simulation run, including 

the graphical presentation, takes only a few minutes.
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CHAPTER 4

Application to Pressure Balances

4.1 Introduction

The computer models developed for simulating any pressure balance and their testing 

with the NPL series 400 high pressure balance were described in the previous chapter. 

In this chapter, the basic methodology developed is applied to other NPL balances and 

detailed results are presented. Also, the behaviour of the series 400 balance is 

considered in greater depth since it is the high pressure balance and the 

pressure-viscosity effect becomes significant. Further, in order to show the generality 

of the method developed, the simulation of other pressure balances was carried out, 

namely, the RUSKA 2481 oil operated pressure balance and the RUSKA 2470 gas 

operated one.

The following section presents the results for the NPL pressure balances while section 

4.3 deals with the RUSKA balances.

4.2 The NPL Pressure Balances

The computer models developed were applied to the NPL pressure balances, series 

100, 200, 300 and 400. These types cover the primary standards of the NPL pressure 

range. Series 100 operates up to 5MPa, series 200 up to 20MPa, series 300 up to 80MPa
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and finally series 400 pressure balance operating up to 320MPa. A summary of the 

NPL balances (geometrical, pressure range etc) is shown in Table 4.1a.

It can be seen from Table 4.1a that starting from the lowest pressure range balance 

(series 100) to the highest one (series 400), it is evident that there is a successive halving 

of the piston diameter. Also it can be seen that the series 200 to 400 balances, all have 

the same outer cylinder diameter. For simulating these balances, detailed dimensions 

are needed and these are provided in Appendix A. Also required are material data 

(both elastic and fluid) as described in Table 4.1b. Finally, the support conditions for 

a balance geometry need to be defined. These were briefly stated for the series 400 

pressure balance in chapter 3 (section 3.9.1) and are discussed more fully below.

The schematic diagram for the series 100 is shown in figure 4.1a while figure 4. lb shows 

a typical schematic for the series 200 to 400 pressure balances. In the operation of a 

balance, the method of loading the top of the piston with weights is such that there is 

likely to be negligible restraints in the x (radial) direction so the boundary condition 

applied at the top of the piston is a restraint in the y (axial) direction only. Therefore 

the piston will always posses the sliding support condition. As regard to the cylinder, 

it is assumed that the shoulder and base (see figure 4.1b) will slide radially so these 

two edges are restrained in the y direction. This is defined as the cylinder sliding 

support condition as it is expected to be the normal operating condition. However, it 

is possible that the clamping collar (not shown) may be tightened too firmly when 

assembling the balance leading to the prevention of sliding at the cylinder shoulder 

and/or base. The worst condition would be if both shoulder and base are restraint from 

movement in both x (radial) and y (axial) directions. This is defined as the cylinder 

clamped support condition.
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Geometrical
Data

NPL Simple Geometry Balances Series 
100 200 300 400

Type of Balance 

Oil used

Press. Range (MPa) 

Eng. length (mm) 

Piston Radius (mm) 

Cylinder OD (mm)

OU

Sebacate

5.0 20 80 320 

74.0 40 35 25

12.5 6.25 3.125 1.5625

32.5 23.75 26.875 28.45

(a)

Symbol Description Unit Value
E Youngs modulus N/mm2 2.10x10s
V Poissons ratio 0.30

7o Vise, at amb. press. mPa.s 21.1

z Exp. term (eq. 3.13) 0.55

(b)

Table 4.1 Summary of (a) the geometrical and (b) the fluid data 
for the NPL series o f balances
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Figure 4.1. Schematic of cylinders for the NPL pressure balances, 
(a) Series 100. (b) Series 200, 300 and 400.
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The simulation carried out for these type of balances was essentially following the same 

procedure as for the NPL series 400 pressure balances described in chapter 3 (section 

3.9). That is, for each balance, and using the FEA program, the preparation of the 

"unit" (base) data is performed so obtaining the elastic distortions at unit pressure 

loading of IMPa for 10 sections along the engagement length for both the piston and 

cylinder. Having obtained the "unit" load data, the PVE program was run to determine 

and present graphically the pressure and gap profiles along the engagement length and 

calculate the distortion coefficient of an assembly. In addition, for each balance, the 

piston and cylinder elastic radial distortions at 1 MPa operating pressure are 

presented. These can be used to estimate distortions at any given pressure by a 

proportional scaling of the IMPa results provided that the gap remains essentially 

constant and viscosity variations are small. Then the pressure distribution along the 

engagement length remains a linear one, so scaling is possible. The validity of this 

scaling is described for each balance in the following subsections.

Further, for all NPL balances, the simulation assumes a gauge mode of operation 

where the top end of the engagement length experiences the atmospheric pressure.

4.2.1 The NPL Series 100 Pressure Balance

Using the FEA model, the radial distortions for IMPa are shown in figure 4.2 with a 

magnification factor of 106 and it can be seen that the distorted shape (displayed by 

the element mesh) is almost linear. One can estimate proportionally, the actual elastic 

distortion for any operating pressure from these results. In order to do that, the 

dimensions of the piston and cylinder have to be known. For example, for the cylinder 

sliding support, the movement (or distortion) at the bottom of the cylinder (which is
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the bottom end of the engagement length) can be estimated to be 0.25 of the base 

length (32.5mm - see Appendix A) resulting in a movement of approximately 0.08 /¿m. 

Then at 5 MPa, this movement will be 0.4 ^m. This is the largest movement in the 

balance but is small compared to the initial gap of 1.5 ^m. Since this balance is a low 

pressure one, and as the pressure profile is shown to be almost linear (see below) 

meaning that the viscosity effect can be ignored, then this scaled estimation of the 

elastic distortions will not be a bad approximation.

The graphical presentation (using the PVE program) of the gap and pressure profiles 

along the engagement length, at the maximum operating pressure of the balance, is 

shown in figures 4.3 and 4.4 for the cylinder sliding and clamped conditions 

respectively. It can be seen that in both cases, the pressure varies linearly between the 

top and bottom end of the engagement length. However, some difference in the gap 

profile can be seen if one compares the sliding and clamped support conditions. In 

both cases, the gap is not constant although there is a change of approximately 0.5 nm  

(in 1.5 /<m initial gap) between the top and bottom ends of the engagement length.

Using the same (PVE) program, for the sliding support, it was found that the distortion 

coefficient varies between 3.25 ppm/MPa at an operating pressure of 0.5 MPa to 3.29 

ppm/MPa at the maximum operating range of 5.0 MPa. As regard to the clamped 

support, the distortion coefficient varied between 2.28 ppm/MPa to 2.33 ppm/MPa for 

the same operating pressure range. The decrease in the distortion coefficient is 

approximately 30% between the sliding and clamped support conditions. The results 

of the PVE program are presented (over the entire pressure range) for the both 

support conditions in Table 4.2. This result is in good agreement with the work 

reported by Dadson et al [1] and Peggs et al [15] since at low pressures, which is the 

case in this balance, there will be no viscosity effect.
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Cylinder Sliding Cylinder Clamped

Figure 4.2. Radial distortions at IMPafor NPL series 100pressure balance 
(magnification lx  1(f).
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Series 100, Initial gap 1.5 [im,
Nom inal area 490.9327 sq.m m .

Pressure Distortion Coefficient A (ppm/MPa)

(MPa) Sliding Clamped

0.50 3.25 2.28
1.00 3.26 2.28
1.50 3.26 2.29
2.00 3.27 2.29
2.50 3.27 2.30
3.00 3.27 2.31
3.50 3.28 2.31
4.00 3.28 2.32
4.50 3.29 2.32
5.00 3.29 2.33

Table 4.2. Distortion coefficients for the NPL series 100 pressure balance
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4.2.2 The NPL Series 200 Pressure Balance

The radial distortions for IMPa are shown in figure 4.5. The distorted shape (displayed 

by the element mesh and obtained using the FEA program) is fairly linear for the IMPa 

applied pressure (with an assumed linear pressure distribution along the engagement 

length as for the series 100). One can estimate the elastic distortion for any pressure. 

Again, for this balance, this will not be a bad estimation as this balance still operates 

at relatively low pressures which implies that the elastic distortion are somewhat small 

compared to the initial gap of 1.0 /im and the effect of the viscosity variations can be 

ignored as is confirmed by the relatively linear pressure profile along the engagement 

length (see below).

As for the series 100 balance, the pressure and gap profiles are presented and the 

distortion coefficients are determined (using the PVE program) for both the cylinder 

sliding and clamped support conditions. The pressure and gap profiles along the 

engagement length at the maximum operating pressure of the balance, for the sliding 

support, is shown in figure 4.6 while figure 4.7 shows the same profiles but for the 

cylinder clamped conditions. It can be seen that in both cases, the pressure deviates 

somewhat from linearity compared to series 100 pressure balance. As regard to the 

gap profile, there is some difference in the minimum and maximum gap for the sliding 

and clamped support conditions. Again, in both cases, the gap is not constant and is 

clearly following the pressure profile. There is a change of approximately 1.1 ^m (in 

1.0 nm  initial gap) between the top and bottom ends of the engagement length.

As regard to the distortion coefficients, for the sliding support, it was found that A varies 

between 3.27 ppm/MPa at an operating pressure of 2.00MPa to 3.32 ppm/MPa at the
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Figure 4.5. Radial distortions at 1 MPaforNPL series 200pressure balance 
(magnification lx  10r>).
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Series 200, Initial gap 1.0 /¿m
Nom inal area 122.7381 sq.m m .

Pressure Distortion Coefficient A (ppm/MPa)

(MPa) Sliding Clamped

2 3.27 2.83
4 3.27 2.84
6 3.27 2.89
8 3.28 2.87

10 3.28 2.89
12 3.29 2.91
14 3.30 2.92
16 3.31 2.94
18 3.31 2.96
20 3.32 2.97

Table 4.3. Distortion coefficients for the NPL series 200 pressure balance
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maximum operating range of 20MPa. As regard to the clamped support, the distortion 

coefficient varied between 2.83 ppm/MPa to 2.97 ppm/MPa for the same operating 

pressure range. The decrease in the distortion coefficient is approximately 12% 

between the sliding and clamped support conditions. The results of the PVE program 

are presented (over the entire pressure range) for the sliding and clamped support 

conditions in Table 4.3.

Finally, the series 200 pressure balance was simulated as being made of tungsten 

carbide. The distortion coefficient was found to be constant at a value of 0.94 ppm/MPa 

over it operating pressure range. This value is to be compare with a theoretical value 

of 0.87 ppm/MPa obtained from equation 104 of Dadson et al [1] and an experimental 

value of 1.5 ppm/MPa provided by NPL for this balance [26].

4.23 The NPL Series 300 Pressure Balance

For the series 300 balance, the radial distortions for IMPa are shown in figure 4.8. The 

distorted shape (displayed by the element mesh and obtained using the FEA program) 

is fairly linear for the 1 MPa pressure distribution applied. For this balance, estimating 

elastic distortions at high pressures by scaling the IMPa results (of figure 4.8) will not 

be as a good an approximation as the estimations for the series 100 and 200 balances. 

This is because the pressure becomes high enough so that the elastic distortion are 

comparable with the 1.0 /(m initial gap. In addition, the effect of the dynamic viscosity 

becomes potentially significant. The resulting pressure profile becomes far from a 

simple linear distribution necessary for scaling.
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Figure 4. Radial distortion at 1 MPa for NFL series 300pressure balances 
(magnification 2x  1(T>).
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Series 300, Initial gap 0 .5 /¿m 
Nom inal area 30.68452 sq.m m .

Pressure Distortion Coefficient A (ppm/MPa)

(MPa) Sliding Clamped

8 3.04 2.96
16 3.03 2.97
24 3.04 2.98
32 3.05 3.01
40 3.06 3.02
48 3.07 3.04
56 3.08 3.05
64 3.09 3.06
72 3.09 3.07
80 3.10 3.07

Table 4.4. Distortion coefficients for the NPL series 300 pressure balance
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The gap and pressure profiles along the engagement length at the maximum operating 

pressure of the balance, for the sliding support, are shown in figure 4.9 while figure

4.10 shows the same profiles but for the cylinder clamped conditions. It can be seen 

that in both cases, the pressure deviates significantly from linearity compared to series 

100 or series 200 pressure balance. As regard to the gap profile, there is a significant 

difference in the minimum and maximum gap for the sliding and clamped support 

conditions. Again, in both cases, the gap is not constant and is clearly following the 

pressure profile. The change in the gap is approximately 2.2 /¡m (in 0.5 /im initial gap) 

between the top and bottom ends of the engagement length.

The distortion coefficients were also determined using the PVE program and for the 

sliding support, it was found that the A varies between 3.04 ppm/MPa at an operating 

pressure of 8.00MPa to 3.10 ppm/MPa at the maximum operating range of 80MPa. As 

regard to the clamped support, the distortion coefficient varied between 2.96 

ppm/MPa to 3.07 ppm/MPa for the same operating pressure range. For this balance, 

there is essentially little change in the distortion coefficient between the two support 

conditions. The results of the PVE program are presented (over the entire pressure 

range) for the sliding and clamped support conditions in Table 4.4.

4.2.4 The NPL Series 400 Pressure Balance operating up to 320MPa

In the previous chapter (section 3.9), the NPL series 400 balance was chosen as a test 

bed to show the validity of the models. Presented there were the results for this balance 

using both the FEA and PVE programs. It could be seen that pressure profile changes 

very significantly between a simulation of the balance with a constant gap compared 

to the simulation with a converged actual gap. This confirms the significant effect of
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Series 400, Initial gap 1.0 pm  
Nom inal area 7.674814 sq.m m .

Pressure Distortion Coefficient A (ppm/MPa)

(MPa) Sliding Clamped

32 3.03 3.00
64 3.01 2.99
96 3.00 2.99

128 3.00 2.99
160 3.00 2.99
192 3.00 2.99
224 3.01 3.00
256 3.01 3.00
288 3.01 3.03
320 3.02 3.03

(a)

Series 400, Initial gap 0.5 pm  
Nom inal area 7.672357 sq.mm.

Pressure Distortion Coefficient A (ppm/MPa)

(MPa) Sliding Clamped

32 3.00
64 2.98

Same96 2.96
128 2.98 as
160 2.99 for
192
224

3.02
2.99

Sliding

256 3.00 Support
288 3.00
320 2.99

(b)

Table 4.5. Distortion coefficients for the NPL series 400 pressure balance 
simulated with (a) 1.0 um and (b) 0.5 um initial gaps.
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the viscosity as well as the contribution of the initial gap being very small and 

comparable to the elastic distortion at high pressures. A summary of the pressure 

profiles for various initial gaps is presented in figure 4.11. However, the distortion 

coefficient was found to be constant at 3.00 ppm/MPa over the operating range (0- 

320MPa) for both the cylinder sliding and clamped support conditions as shown in 

Table 4.5.

43 Further Studies on the NPL Series 400 Pressure Balance

As this balance is the highest in the range of the NPL pressure balances, further studies 

were carried out. Namely, the simulation of the balance at higher pressures (up to 

1200MPa) and the investigation of the behaviour of the balance with tungsten carbide 

being the material of construction instead of steel. The cylinder sliding support was 

chosen for these simulations.

43.1 The NPL Series 400 Pressure Balance Simulated up to 1200MPa

As mentioned in chapter 3 (section 3.4), the PVE program was modified to employ a 

non-iterative procedure for the PV analysis. As a result, the series 400 pressure balance 

was simulated as being operated at very high pressures (up to 1200MPa). The first step 

was obviously verifying the results obtained from this version of the PVE program with 

the one employing the P V iterative method (see discussion in section 3.7). It was found 

that the distortion coefficients calculated by the two methods (iterative and 

non-iterative) varied (at the most) by approximately 1% for the series 100, 200, 300 

and 400 balances (operating up to 320MPa). This confirmed the validity of the PV 

non-iterative method. The next step was to actually simulate the series 400 pressure
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balance (sliding support) at pressures higher than 320 MPa. This was successfully 

achieved and up to 1200MPa as described below.

The balance was first simulated at an operating pressure of 800MPa. The minimum 

operating initial gap was found to be 2.0 /im and the resulting A 3.17 ppm/MPa. This 

simulation is presented graphically in figure 4.12 showing the gap and pressure profiles. 

It required 1000 layers (steps) along the pressure axis compared to the typical 500 

layers when simulating the same balance at 320 MPa. The operating pressure was 

increased simulating the balance at 1000 MPa but at 2.2 ^m initial gap as shown in 

figure 4.13. It can be seen from figures 4.12 and 4.13 that the pressure profile behaved 

as an "inverted" S-shaped profile which is very different from the previous results 

(figure 4.11) while the distortion coefficient (A = 3.25 ppm/MPa) was increased by 

only 2% compared to the 800MPa result and by 8% compared to the result of 320MPa 

which can be regarded as remaining fairly constant despite of having a different 

pressure and gap profiles. The simulation of the series 400 balance at lOOOMPa still 

required 1000 layers. Assuming an operating pressure of 1200 MPa for the series 400 

balance, and an initial gap of 2.7 /im, the distortion coefficient was found to be 

approximately 3.37ppm/MPa, a change of 12% which may be regarded as an extreme 

case of operation for any present day balance. Note that some 2000 layers were 

required to simulate the latter case. The pressure and gap profiles were very similar 

to those in figure 4.13 (the simulation at 1000 MPa).

4.3.2 The NPL Series 400 Pressure Balance Simulated up to 320MPa with Tungsten 
Carbide

It is useful to see how the series 400 high pressure balance would behave if made of 

tungsten carbide. For this simulation, a first attempt, reported in reference [25], was
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Figure 4.12. Pressure and gap profiles for the NPL series 400 pressure balance
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to assume that the Poisson’s ratio of tungsten carbide (being 0.23 compared to 0.3 for 

steel) will have little contribution to the elastic distortions if compared to the 

contribution from the difference in the Young’s modulus where the latter (i.e tungsten 

carbide) has a substantially greater Young’s modulus of 5.64x10 N/mm . As the ratio 

of the two modulii is 0.372, the piston and cylinder distortions (i.e. the 22 runs) already 

generated using the FEA program, were divided by this ratio and the PVE program 

was run for the series 400 (now with tungsten carbide as being the material replacing 

stainless steel). Results for 0.5,1.0,2 and 4/un initial gaps are presented in figures 4.14 

to 4.17. Again, these results show a wide variation in gap and pressure profiles but a 

small variation in the distortion coefficient. The value of X varies from 1.12 to 1.28 

ppm/MPa for the initial gaps quoted above. Another significant change occurs when 

the viscosity of the oil was "killed" (z = 0), where the distortion coefficient was found 

to be 1.12 ppm/MPa (figure 4.18). This turns out to be approximately the same value 

as in the low pressure limit (A= 1.15 ppm/MPa). If the result of this analysis is 

compared with the theory reported in section 5.2.1 of reference [1] (equation 105 and 

106 and described as the "normal method" in [19]),. the latter will give a X value of 

approximately 0.78 ppm/MPa for the series 400 balance made of tungsten carbide. This 

shows that the (FEA and PVE) analysis results a distortion coefficient value higher by 

more than 20% compared to the "normal method". This led to the second and more 

accurate attempt carried out at a later stage (following the publication of reference 

[25]) as explained below.

The second attempt, and the accurate one, was to reproduce the "unit" load data for 

the series 400 balance using the FEA program (i.e 22 runs for the piston and cylinder) 

but assuming the correct value for both the Young’s Modulus (5.83x10 N/mm 

provided by NPL) and Poisson’s ratio (0.23). These unit data were used by the PVE 

program to calculate the distortion coefficient. It was found that for an initial gap of
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Figure 4.14. Pressure and gap profiles for the NPL series 400pressure balance
simulated as made of tungsten carbide with a 0.5 pm initial gap.
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Figure 4.17. Pressure and gap profiles for the NPL series 400pressure balance
simulated as made of tungsten carbide with a 4 pm initial gap.
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0.5 or 1.0 /¿m, the distortion coefficient was approximately 0.8 ppm/MPa. This is still 

higher than the "normal method" reported in Dadson et al [1], but very much closer 

compared to the result from the first attempt described above. Further, this result is 

similar to one obtained from an analysis reported by Molinar et al [2] (for a balance 

of different geometry) where the latter has calculated a distortion coefficient of 0.747 

ppm/MPa.

4.4 The RUSKA Pressure Balances

The methods developed were applied to two of RUSKA pressure balances (2481 and 

2470) to show their generality. The RUSKA 2481 is an oil type of balance operating 

up to 280MPa while the RUSKA 2470 is a gas balance operating up to 17MPa and is 

a primary standard. These balances are made of tungsten carbide and were simulated 

as being operated in the gauge mode of operation. Table 4.6 provides their 

geometrical, material and fluid data (details in Appendix A). Moreover, there was no 

knowledge of the actual (designed) initial gap inwhich case it was assumed at apossible 

value. Note that both RUSKA models are reentrant type of balances.

The schematic diagram for both RUSKA balances is shown in figure 4.19 where the 

shoulder and base are indicated. As mentioned in section 4.2, added to data needed 

for the simulation of the balances, the knowledge of the support conditions are 

required. Similar to the NPL balances, the piston will always possess a sliding support 

condition.

For the cylinder of the RUSKA 2481 oil balance, two cases of support conditions 

emerged, defined as:
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Geometrical
Data

RUSKA Model
2481 2470

Type of Balance Oil Gas

Oil used M ineral —

Operating Pressure (M Pa) 280.00 17.00

Engagem ent length (mm) 23.03 22.23

Piston Radius (mm) 1.625 1.625

(a)

Symbol Description Unit Value
E Y oun gs m odulus N/m m 2 5.83X105

V P oisson s ratio 0.23

Vo V ise, at amb. press. m Pa.s 25.80

z Exp. term  (eq. 3.13) 0.67

(b)

Table 4.6 Summary o f (a) the geometrical and (b) the fluid data 
for the RUSKA pressure balances
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Figure 4.19. Schematic of the cylinders for the RUSKA pressure balances, 

(a) RUSKA 2481 (oil operated) and (b) RUSKA 2470 (gas operated).
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Case A: Shoulder sliding radially and "O" ring edge clamped,

and

Case B: Shoulder sliding radially and "O" ring edge sliding axially.

With regard to the cylinder of the RUSKA 2470 gas balance, the support conditions 

were to assume the shoulder sliding radially.

The simulation carried out for these type of balances essentially followed the same 

procedure as for the NPL balances described in detail for the series 400 (chapter 3, 

section 3.9 and chapter 4, section 4.2). Regarding the pressure loading for the RUSKA 

balances, full pressure is applied up to the "O" ring position for the cylinder. The 

RUSKA oil operated pressure balances were simulated with both the sebacate oil (as 

used in NPL balances) and a straight mineral oil, the latter being the normal operating 

oil for the RUSKA 2481 pressure balance.

4.4.1 The RUSKA 2481 Oil Operated Pressure Balance

The radial distortions for IMPa are shown in figure 4.20 and 4.21 for case A and case 

B support conditions respectively. The distorted shape is far from linear unlike the 

NPL pressure balances. This is expected due to the fact that this type of pressure 

balance is a re-entrant one. Being a high pressure balance, it will experience the 

variation of pressure due to change in viscosity which in turn will affect the gap and 

pressure profile along the engagement length which means that an estimation of the 

elastic distortions at high pressure (from scaling up the IMPa distortions) will be
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Figure 4.20. Radial distortion at 1 MPa for the RUSKA 2481 (oil operated) pressure balance,
cylinder support condition Case A (mag. 5x 1(P for piston & 3 x  lu fo r  cylinder).
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cylinder support condition Case D (mag. 5 x Id' for piston & 3 x  lu for cylinder).



incorrect (for the same reasoning as outlined for the NPL series 300 and 400 pressure 

balances).

Due to the tapered edge in the design of the cylinder of this balance and being 

reentrant, the balance will experience upward forces (in the axial direction). This is 

another significant difference between the RUSKA and NPL balances.

Using the PVE program, support conditions case A with 2.0 /¡m initial gap and case B 

with initial gaps of 1.5 and 2.0 /¿m were simulated using the mineral oil.

The pressure and gap profiles for both support conditions A and B are shown in figure 

4.22. Both profiles are different from the simple design of the series 400 NPL pressure 

balance. For the RUSKA design, case A, the pressure drops rapidly over the bottom 

half of the engagement length. This is in contrast to the NPL design where the rapid 

drop was over the top half of the engagement length. The gap profile, however, does 

not follow the pressure profile due to fact that this design is a reentrant one where 

there will be a full operating pressure acting on the outer edge of the cylinder up to 

the "O" ring position. The gap profile is unusual since it has a turning point (minimum) 

at one third way up the engagement length.

For support condition case B two initial gaps of 1.5 /¡m and 2.0^m were simulated and 

the pressure and gap profiles were found to be very similar. Results for 2 ^m initial 

gap are shown in figure 4.22. The pressure profile is similar to that of case A but the 

drop is less severe whereas the gap profile for this case is much smoother compared 

to that of case A.
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For case A, the distortion coefficient was found to be varying from -0.70 ppm/MPa at 

28MPa to -1.96 ppm/MPa at 280MPa. The distribution of the distortion coefficient 

over the operating range of the balance versus the operating pressure is shown in figure

4.23 and it can be seen that it is neither constant nor even linear. As regard to case B, 

the distortion coefficients for both initial gaps (1.5 and 2.0 ^m) were obtained and 

found to be the same to within 1% percent. For an initial gap of 1.5 /¿m, the distortion 

coefficient varied between -0.74 ppm/MPa and -1.49 ppm/MPa while for the 2.0 /¿m 

initial gap X varied between -0.73 ppm/MPa and -1.54 ppm/MPa over the operating 

pressure range (28MPa to 280MPa). As shown in figure 4.23, the variation of the 

distortion coefficient is of a similar behaviour to that of the case A. Results for 2 nm  

initial gap are provided in Table 4.7a for cases A and B.

Simulating the RUSKA 2481 for both cases A and B but with the sebacate oil (similar 

to the one used in NPL balances), the pressure and gap profiles were found to be very 

similar as in figure 4.22. The X profiles are shown in figure 4.23 and it can be seen that 

they are less steep for both support conditions A and B when comparing with the 

mineral oil. Also, the lower limit of X (at 28 MPa) remained unchanged regardless of 

the support condition or the type of the oil used.

The X distributions in figure 4.23 need to be fitted with a two-degree polynomial. 

Consequently, it was found that the effective area, A, must have a cubic term, so:

A = A0 (1 + aP + bP2 + cP3) 

a, b and c are constant coefficients.

122



D
i
s
t
o
r
t
i
o
n
 
C
o
e
F
P
i
c
i
e
n
t
 
(
L
a
m
b
d
a
)
 
in
 
p
p
m
/
M
P
a

P ressu re  in  MPa
X101

-1
X 1 0

Figure 4.23. V aria tio n  o f  the distortion coeffic ient (  X )  
fo r  the R U S K A  2 4 8 1 (o il operated)  pressure balance.



RUSKA 2481 (O il), Initial gap 2 .0 ¿¿in

Pressure Distortion Coefficient A (ppm/MPa)

(M Pa) Case A Case B

28.0 -0.70 -0.73
56.0 -0.92 -0.88
84.0 -1.14 -1.01

112.0 -1.30 -1.13
140.0 -1.45 -1.22
168.0 -1.60 -1.31
196.0 -1.72 -1.38
224.0 -1.82 -1.44
252.0 -1.90 -1.49
280.0 -1.97 -1.54

Nom inal Area 8305976549 sq. mm.

(a)

C onstants®  of the RUSKA 2481 A Profile Fit
C3üfl Case A Case B

s M in e ra l O il Sebacate O il M in e ra l O il Sebacate O il

a -0.47 -0.47 -0.58 -0.58

b -8.81xl0'3 -6.98xl0'3 -5.74xl0‘3 -4.70xl0'3

c 1.24X10"6 8.24X10-6 SAlxlO'6 6.60xl0'6

@A = a + bP + cP2
{where A in pjun/MPa, P in MPa, a m ppm/MPa, 
b in ppm/(MPa) and c in ppm/(MPa) }.

(b)

Table 4.7. The RUSKA 2481 oil operated pressure balance.(a) Distortion 
coefficients, (b) Coefficients for the A distribution f i t .

124



The fitted coefficients for the A curves are given in Table 4.7b for cases A and B using 

both the mineral and the sebacate oils. Using the given values of a, b and c, the curves 

were fitted to better than 2%.

Finally, the RUSKA 2481 was simulated for the conditions as in case B (with the 

mineral oil) but the "O" ring seal was assumed to be at the bottom of the cylinder 

engagement length. This investigation was to simulate a non-reentrant design similar 

to the NPL series 400 pressure balance. For this case (a "non- reentrant" RUSKA 

2481), the distortion coefficient was found to be constant at a value of 0.76 ppm/MPa 

over the operating pressure range.

It can be concluded that for cases A and B, the distortion coefficient experienced a 

variation due to the existence of upward forces occurring at the bottom of the cylinder 

(due the tapered design) while the simulation of the same balance as a non-reentrant 

one showed a constant A (with a positive value). This is in good agreement with the 

theory reported in Dadson et al [18] since for the non-reentrant (simple) design there 

will be no forces (i.e. no stresses in the y , axial, direction) along the cylinder.

4.4.2 The RUSKA 2470 Gas Operated Pressure Balance

The radial distortions for this balance (gas) operated at IMPa are shown in figure 4.24. 

The distorted shape is somewhat similar to the RUSKA 2481 oil balance. For an initial 

gap of 1.0 /¿m (actual implemented gap unknown), the pressure and gap profiles are 

presented in figure 4.25 using the PVE program. The pressure drop along the 

engagement length is very similar to the simple design of the series 200 NPL pressure 

balance being not very far from linear. The gap profile, however, does not follow the
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Figure 4.24. Radial distortion at 1 MPa for the RUSKA 2470 (gas operated) pressure balance
(magnification 5x  lOr for piston & 3 x  lu for cylinder).



 



pressure profile but it is fairly constant although this balance is a reentrant one. The 

distortion coefficient was found to be constant at a value of 0.14 ppm/MPa over the 

operating range of the balance (1.7 MPa to 17 MPa). These results are presented in 

Table 4.8.

A sensitivity test was carried out to investigate the effect of the "O" ring position on 

the distortion coefficient. The first attempt was to simulate the balance having the "O" 

ring at the most left and most right of the "O" ring edge (see schematic figure 4.19). 

This required the reproduction of the 22 run for the "unit" load data using the FEA 

program. The application of the 1 MPa radial distortions for these two cases were very 

similar to the "O" ring in its normal position. Likewise the pressure and gap profiles 

obtained from the PVE program showed relatively no change when comparing these 

profiles when having the "O" ring at the left, middle (normal) or right positions.

However, an interesting result was obtained as regard to the distortion coefficients. 

Firstly, the distortion coefficient remained almost constant with operating pressure for 

the left or right position, but it showed a change of sign, a negative average value of 

-0.055 ppm/MPa when having the "O" ring at the left position to a positive average 

value of 0.18 ppm/MPa in the case of having the "O" ring at the right position. This 

leads to the conclusion that this (RUSKA 2470) can deliver a virtually zero distortion 

coefficient by adjusting the "O" ring position along its edge.

A further investigation included the simulation of the RUSKA 2470 gas balance but 

assuming it operates with oil (of the same type as in the NPL series of balances). This 

simulation showed a distortion coefficient of about -1.0 ppm/MPa which is significantly 

different from that when operating with gas.
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RUSKA 2470 (Gas), Initial Gap 1.0,um

Pressure Distortion Coefficient X
(MPa) (ppm/MPa)

1.70 0.12
3.40 0.16
5.10 0.16
6.80 0.16
8.50 0.16

10.20 0.15
11.90 0.14
13.60 0.14
15.30 0.13
17.00 0.12

Nominal Area 8-300871462 sq. mm.

Table 4.8. Distortion coefficients for the RUSKA 2470 gas operated
pressure balance.
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Finally, as for the RUSKA 2481 oil type of balance, the RUSKA 2470 (gas balance) 

was simulated assuming a non-reentrant design. That is assuming that the "O" ring seal 

is at the bottom of the cylinder engagement length. For the same 1.0 m initial gap, the 

distortion coefficient was constant but now at a value of +1.00 ppm/MPa. Further, 

simulating this case as if the RUSKA 2470 is filled with oil (as used in the NPL 

balances), A was found to be 1.05 ppm/MPa, again unchanged.

4.5 Summary of the Results and Conclusions

Having described the detailed results for all the simulated pressure balances, the 

summary of the distortion coefficients are re-presented (for convenience) in Table 4.9 

for the NPL pressure balances and Table 4.10 for the RUSKA pressure balances.

4.5.1 The NPL Pressure Balances

For the NPL pressure balances, the sliding support is assumed to be the normal 

operating condition. The distortion coefficient showed a A constant (to within a few 

percent) at 3.30 ppm/MPa for the series 100 and 200 balances, and 3.00 ppm/MPa for 

the series 300 and 400 balances. However, a clamped support condition may arise due 

to variations in the assembly. That is if the torque applied to the cylinder retaining 

collar is too large, a frictional contact could prevent the cylinder base and shoulder 

from sliding freely. For this (clamped) condition, there is a significant decrease of 30% 

in A for series 100 and a decrease of 12% for the series 200 balances. For the series 300 

and 400 balances, there is no significant change in A between the clamped and sliding 

support conditions. However, there is a noticeable change in A when simulating the 

series 400 high pressure balance at an extended range of its operation (up to 1200 MPa)
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where A was found to be approximately 3.37 ppm/MPa. Further, the simulation of the 

series 200 balance but made of tungsten carbide resulted in a distortion coefficient of 

0.94 ppm/MPa at 20 MPa and remained unchanged for lower operating pressures, 

compared to 1.5 ppm/MPa, an experimental value of A for the same balance (provided 

by NPL [26]). Finally, the latter simulation was carried out on the NPL series 400 

balance (i.e. made of tungsten carbide) and the distortion coefficient was found to be 

constant at 0.78 ppm/MPa over the operating pressure range of the balance.

In this study, the detailed simulation of the series 400 high pressure balance, in 

particular, has shown the great value of the PVE program developed and the 

methodology on which it is based. With graphical display of the pressure and gap 

profiles, considerable insight into the operation of a balance can be obtained. For 

example, figure 4.11 showed a wide variation in these profiles but with a small variation 

in A (constant to within 7%). This result validates the assumption of a constant 

distortion coefficient in the operation of this (high pressure) balance. In fact, it was 

one aim of the work presented in this thesis to verify (or otherwise) the validity of the 

normally used effective area equation for all the NPL pressure balances and in 

particular the high pressure one.

The simulation of any balance (once characterised with "unit" load data using the FEA 

program) takes only a few minutes using the PVE program running on a Sun/SPARC  

workstation. Repeated runs allow one to build up tables for the distortion coefficient 

versus the operating pressure range and even beyond the normal operating conditions 

of a balance.
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It is of interest to note that the actual form of the pressure profile along the engagement 

length of a simple geometry balance (such as the NPL pressure balances) can vary 

considerably. Simulated results indicated that the actual profile will be a compromise 

between the non uniformity of the gap profile and the severity of oil viscosity changes 

with pressure. This can be summarised as presented in Table 4.11.

Dadson et al [1] provided an analytic formula for calculating the distortion coefficient 

for pressure balances of simple geometry. For a balance with the piston and cylinder 

made of the same material, X is given by [1]:

2 v + (4.1)

t
where E is the Young’s modulus, v Poisson’s ratio, R cylinder inner radius and R the 

cylinder outer radius. Applying this formula to the NPL balances, results agree well 

with those obtained from the simulation in this thesis for the series 100 to 400 cylinder 

sliding support conditions (Table 4.12).

The experimental X values for all NPL pressure balances is (4.0±0.4) ppm/MPa. This 

value (provided by NPL [26]) is obtained by the similarity method applied to the series 

300 balance and by cross-floating for the lower and higher balances. This is significantly 

different from the values in Table 4.12 and points to the need for further study.

4.5.2 The RUSKA Pressure Balances

The RUSKA 2481 oil and RUSKA 2470 gas operated balances are of reentrant design 

with a fairly complex geometry. In general, with complex geometries, the evaluation
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of the distortion coefficient cannot be expressed by simple analytic expressions. So, 

here the value of a generally applicable method such as developed in this thesis, 

becomes particularly significant.

The results for the distortion coefficients (summarised in Table 4.10) show that the 

RUSKA 2481 balances has a non-linear effective area characteristic. The fitted 

characteristic for A = a + bP + cP is good to better than 2% (with the given values 

of a, b and c).

Taking case B as the more likely balance boundary conditions, one can compare results 

with those provided by the manufacturer [27] who give a = -1.86 ppm/MPa, 

b = -3.5x10 ppm/(MPa) and with no c term. There is therefore a difference both in 

shape and the mean value of A. There is approximately a factor of two difference for 

mean A between the results presented in this thesis and those quoted by RUSKA. 

Clearly, this needs further exploration. Also, simulating a non-reentrant version of this 

balance gave a constant A (of 0.76 ppm/MPa) indicating the possibility that the 

reentrant design has overcompensated on A to produce a rather large negative and 

variable value.

With regard to the RUSKA 2470 gas operated pressure balance, the distortion 

coefficient was found to be essentially constant over the operating pressure range at a 

small average value of 0.14 ppm/MPa (details presented in Table 4.10). Further 

simulation showed that the distortion coefficient could be made exactly zero by careful 

positioning of the "O" ring seal. The manufacturer claims that this design gives a zero 

distortion coefficient [27]. The results in this thesis indicate this to be a possibility.
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Series 100, Initial gap 1.5 pun, Nominal area 490.9327 sq. mm. Series 200, Initial gap 1.0 |xm, Nominal area 122.7381 sq. mm.

Pressure Distortion Coefficient A. in ppm/MPa Pressure Distortion Coefficient A in ppm/MPa

MPa Sliding Clamped MPa Sliding Clamped

0.50 3.25 2.28 2.00 3.27 . 2.83
1.00 3.26 2.28 4.00 3.27 2.84
1.50 3.26 2.29 6.00 3.27 2.89
2.00 3.27 2.29 8.00 3.28 2.87
2.50 3.27 2.30 10.0 3.28 2.89
3.00 3.27 2.31 12.0 3.29 2.91
3.50 3.28 2.31 14.0 3.30 2.92
4.00 3.28 2.32 16.0 3.31 2.94
4.50 3.29 2.32 18.0 3.31 2.96
5.00 3.29 2.33 20.0 3.32 2.97

(a) (b)

Series 300, Initial gap 0.5 pun, Nominal area 30.68452 sq. mm.

Pressure Distortion Coefficient A in ppm/MPa

MPa Sliding Clamped

8.00 3.04 2.96
16.0 3.03 2.97
24.0 3.04 2.98
32.0 3.05 3.01
40.0 3.06 3.02
48.0 3.07 3.04
56.0 3.08 3.05
64.0 3.09 3.06
72.0 3.09 3.07
80.0 3.10 3.07

Table 4.9. Distortion 
coefficients for NPL 

pressure balances for 
cylinder sliding and 

clamped support, 
(a) Series 100, (b) Series 

200, (c) Series 300, 
(d) Series 400 at 1.0 jim 

initial gap, (e) Series 400 
at 0.5 (im initial gap.

(c)

Series 400, Initial gap 1.0 |xm. Nominal area 7.674814 sq. mm. Series 400. Initial gap 0.5 |xm. Nominal area 7.672357 sq. mm.

Pressure Distortion Coefficient A in ppm/MPa Pressure Distortion Coefficient A in ppm/MPa

MPa Sliding Clamped MPa Sliding Clamped

32.0 3.03 3.00 32.0 3.00
64.0 3.01 2.99 64.0 2.98 same
96.0 3.00 2.99 96.0 2.96
128 3.00 2.99 128 2.98 as
160 3.00 2.99 160 2.99
192 3.00 2.99 192 3.02 for
224 3.01 3.00 224 2.99
256
288

3.01
3.01

3.00
3.03

256
288

3.00
3.00 sliding support

320 3.02 3.03 320 2.99

(d) (e)
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RUSKA 2481 (O il), Initial gap 2.0 ̂ m

Pressure Distortion Coefficient A (ppm/MPa)

(M Pa) Case A Case B

28.0 -0.70 -0.73
56.0 -0.92 -0.88
84.0 -1.14 -1.01

112.0 -1.30 -1.13
140.0 -1.45 -1.22
168.0 -1.60 -1.31
196.0 -1.72 -1.38
224.0 -1.82 -1.44
252.0 -1.90 -1.49
280.0 -1.97 -1.54

Nom inal Area 8305976549 sq. mm.

(a)

RUSKA 2470 (G as), Initial Gap 1.0 /¿m

Pressure Distortion Coefficient A
(MPa) (ppm/MPa)

1.70 0.12
3.40 0.16
5.10 0.16
6.80 0.16
8.50 0.16

10.20 0.15
11.90 0.14
13.60 0.14
15.30 0.13
17.00 0.12

N om inal Area 8300871462 sq. mm.

(b)

Table 4.10. Distortion Coefficients for the RUSKA pressure 
balances, (a) RUSKA 2481 (oil) and (b) RUSKA 2470 (gas).
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max /  min viscosity 

ratio

max / min gap ratio

small ( a l ) large (>  > 1)

small ( s  1) 

large (>  > 1)

linear

bottom end 
biased

top end biased

top, bottom, linear 
or combination

Table 4.11 Qualitative pressure profile distributions in pressure balances

NPL Balances 

Series

Distortion Coefficient (ppm/MPa)
4c

Formula This Work®

100 3.26 3.27

200 3.07 3.29

300 2.91 3.07

400 2.87 3.00
* R' in eq. 4.1 taken as outermost radius of NPL cylinders. 

® Average values taken from table 4.9.

Table 4.12 Comparison o f analytical and numerical values for 
the NPL pressure balances.
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CHAPTER 5

Conclusions

The work presented in this thesis involved the development and application of 

mathematical models to pressure metrology; both pressure sensing and pressure 

generating instruments.In the early stages of the work, the use of analytic and 

numerical (Finite Element, FE) methods were applied to the modelling of pressure 

sensors in a relatively new area, namely, the optically driven resonant structures. Also 

reviewed was the use of the mathematical models applied to industrial design of 

pressure sensors (using conventional techniques based on elastic elements). 

Regarding the optically driven sensors, a device based on quartz-crystal resonating 

structure was successfully modelled to calculate various parameters such as the 

maximum deflection, resonant frequency and the frequency/load relationship. Results 

showed good agreement with the experimentally investigated prototype device in 

contrast to theoretical values previously determined by other workers (details can be 

found in chapter 2, section 2.4 and a publication appended to this thesis). This work 

naturally led to tackling the modelling of an instrument used in pressure standards 

metrology: the pressure balance.

For modelling the pressure balance, a novel approach was implemented by 

characterising a given pressure balance with some "base" data which incorporated the 

elastic behaviour of the balance and this data was subsequently used to simulate the 

balance behaviour incorporating the pressure-viscosity effects which become apparent
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particularly at high pressures (above 100 MPa). A purpose built program was 

developed to simulate and present graphically the behaviour of any pressure balance. 

The modelling was essentially based on the use of the Finite Element (FE) method 

and other numerical techniques.

The model was applied to pressure balances of simple geometries (such as the NPL 

primary pressure balances, series 100 to series 400, covering an operating pressure 

range up to 4 to 320 MPa respectively) and more complex geometries including the 

reentrant gas and oil operated balances (such as the RUSKA balances).

Results were in good agreement with well established theoretical work based on 

analytical methods and reported by Dadson et al [1]. The latter work showed that a 

pressure balance can be characterised by relating its effective area to the applied 

pressure by a linear term in pressure with A, being the distortion coefficient. Although 

Dadson showed, on theoretical grounds, that the distortion coefficient is for simple 

type of balances constant, independent of the piston-cylinder gap profile or 

rheological properties, yet it (i.e. the work) noted that this may not be the case for 

certain conditions at very high pressures.

In this thesis, by application of the models to the NPL series of balances, it was shown 

that the distortion coefficient of a pressure balance of a simple geometry, remains 

essentially constant at about 3.00 ppm/MPa (for details, see section 4.5.1 of chapter 

4). However, at very high pressures applied to these (simple type) balances, the 

distortion coefficient deviates noticeably to a value of 3.25 ppm/MPa at 1000 MPa and 

3.37ppm/MPa at 1200 MPa applied pressures.
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For the series 300 (operating up to 80 MPa) and the series 400 (320 MPa) NPL high 

pressure balances, the distortion coefficient, A, was constant (at 3.00 ppm/MPa) despite 

significant variations in the pressure and gap distributions along the engagement 

length of the balance. In addition, for the series 400 balance, results show a significant 

contribution to the pressure profile due to the oil pressure-viscosity variations along 

the engagement length.

The experimental values (of 4 ppm/MPa for all NPL balances) were obtained by 

tracing back to cross-floating experiments with the series 300 balance using the 

similarity method. Since the modelling developed in this thesis can be applied to 

simulate a pressure balance design made of different materials (e.g. steel or tungsten 

carbide) it is possible to test the validity of the similarity method. This needs further 

exploration.

On the other hand, the application of the methodology developed (in the models) to 

other types of balances of more complex geometries led to some interesting results. 

These were shown by applying the models to the RUSKA reentrant pressure balances, 

the RUSKA 2481 oil operated and the RUSKA 2470 gas operated balances. For the 

oil operated balance, the distortion coefficient was found to be change from -0.7 

ppm/MPa at 28 MPa to -1.96 ppm/MPa at 280 MPa (the maximum operating pressure 

of the balance). This reconfirmed the analysis reported by Dadson et al [1] where the 

equation A = A0(l +AP) does not hold if the cylinder of the balance is experiencing 

stresses in the axial direction which is the case for the RUSKA 2481 balance. For this 

balance, it was found that it was necessary to fit the variation (with the applied 

pressure) with a two-degree polynomial as: A = a + bP + cP implying a cubic term 

in the effective area A = A0(l + aP + bP^ + cP ) where a, b and c are constants were 

determined {a = -0.58 ppm/MPa, b = -4.7xl0"3 ppm/(MPa)2 and c = 6.6xl0’6
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ppm/(MPa) } with p being in MPa. Experimentally, it is difficult to obtain such a fit. 

If only a linear term was assumed (as is normally the case), the uncertainties would 

very high (of the order of 350 ppm). RUSKA have given an experimental fit for the
'l

effective area which includes terms a and b only {a = -1.8ppm/MPaandb = -3.5x10' 

ppm/(MPa) , [27]} resulting in a factor of approximately two difference between 

simulated and experimental results for the average value of A.

'I

With regard to the RUSKA 2470 gas operated balance, the model developed showed 

an excellent agreement for value of the distortion coefficient when compared with 

experimental values reported by the manufacturer. The distortion coefficient was 

found to be essentially constant at an average value of 0.14 ppm/MPa over the (17 

MPa) operating pressure range of the balance. The experimental average value of A 

was reported to be approximately zero.

In conclusion, the pressure balance results show a great confidence in the models 

developed which feature, in summary, the following:

1. A powerful tool for the modelling of any pressure balance incorporating both elastic 

and viscosity effects.

2. Graphical representation of the pressure and gap profiles along the engagement 

length of a pressure balance.

3. Handling simple and complex geometries in an efficient and novel way by 

characterising a given geometry (using the finite element method) and thereby 

providing a great flexibility for further analysis including the determination of the 

effective area and distortion coefficient.

140



5. Allowance for simulation of a pressure balance outside its normal operating 

conditions (such as different "O" ring seal positions, different operating oil, different 

initial clearance gap etc) with little further expense in computing time.

All the above features are implemented in two computer programs, the Finite Element 

Analysis (FEA) program for generating base data and the Pressure Viscosity Elasticity 

(PVE) program for calculating (iteratively) the pressure and gap profiles. These 

programs are together of the order of 2500 lines of FORTRAN77 code and they run on 

a Sun/SPARC station.

Once the geometry for a balance has been characterised and the "base" data generated 

(using the FEA program), the PVE can generate pressure and gap profiles and 

determine the effective area and the distortion coefficient within few minutes. 

Therefore, further explorations (feature 5) can be simulated interactively with just a 

few more minutes.

The power of the models developed in this thesis for pressure balances and the 

availability of powerful computer workstations will lead to the possibility of developing 

a dedicated highly interactive package for the further understanding and future design 

of pressure balances, incorporating further features such as calculation of leakage flow 

rates, piston fall rates, simulation of the similarity method etc.

On the experimental front, there is growing interest in the measurement of pressure 

profiles along the engagement length of high pressure balances. The ability to simulate 

such profiles during the operation of the balance should lead to further work in this
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area and also to lead to methods for measuring gap profiles. Since the gap and its 

variations are of the order of microns, it maybe possible to use optical techniques to 

measure gap profiles. If one of the two profiles is measured, it maybe adequate to infer 

the other through the simulation results. If optical techniques are used, then the 

developing area of optically driven silicon (Si) micromachined resonator sensors may 

find a place in these profile measurements.

It is hoped that in the future, simulation of other pressure balances with the fruits of 

this thesis work will lead to an improvement in the knowledge of the distortion 

coefficient for primary standard balances coupled with experimental work in 

laboratories maintaining National Standards. This should lead to the improvement in 

the agreement of inter-comparisons carried out between the National Laboratories.
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Appendix A

Geometrical data for NPL and RUSKA pressure balances



Piston Dimensions for the NPL Pressure Balances

Dimension Series

(mm) 100 200 300 400

a 12.50 6.25 3.125 1.5625
b 5.00 5.00 5.00 5.00
c 74.00 40.00 35.00 25.00
d 6.00 5.00 5.00 5.00
*

Engagement length

c

Piston Dimensions for the RUSKA 2470

Gas Operated Pressure Balance

Dimension (mm)

a 1.625
b 18.42
c ’ 22.23
d 10.00
*

Engagement length

Axis of symmetry

Piston Dimensions for the RUSKA 2481

Oil Operated Pressure Balance

Dimension (mm)

a 1.625
b 13.17
c* 23.03
d 9.40
*

Engagement length



Cylinder D im ensions for the NPL Series 100 
Pressure Balance

Dimension (m m )

a 54.00
b . 32.50
c 74.00
d 17.50
e 15.00
f 12.50
*

Engagement length

Cylinder Dimensions for the NPL 

Series 200 to 400 Pressure Balances
Dimension Series
( m m ) 200 300 400

a 6.25 3.125 1.5625
b 13.75 16.875 18.437
c 20.00 20.00 20.00
d 10.00 10.00 10.00
e 30.00 30.00 30.00
f 20.50 23.60 25 .19
g 1.40 1.24 1.24
h 2.50 2.275 2.25
i 8.60 13.76 23 .76
j , 0.75 1.00 1.00
k 40.00 35.00 25.00

*
Engagement length

Cylinder Dimensions for the RUSKA2481 
Oil Operated Pressure Balance

Dimension ( m m )

a 7.625
b 14.375
c 5 .87
d 11.48
e 5.30
f 6.25
g 4.50
h 2.45
i 2.275
j . 1.625
k 23.03

*
Engagement length

Cylinder Dimensions for the RUSKA 2470 
Gas Operated Pressure Balance

Dimension ( m m )

a 2.285
b 3 .62
c 4.75
d 10.93
e 11.30
f 10.655

g . 1.625
h 22.23

*
Engagement length
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Appendix B

Sample Input and Output Data for the PVE Program
*

*
For confidentiality reasons, a listing of the PVE program is not provided in this thesis. 

For availability, please contact the author.
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Data Description

R U S K A 2 4 8 1 /O I L

0

10

p 2 4 8 1 a

c 2 4 8 1 a

2 8 .0

2 .0

2 3 .0 3

1.625

1000

2 5 .8

0 .6 7

1 .0 e -3

1.0

n

n

m o d e l  / s u p p o r t  c o n d i t io n  

A N  O IL BA LANCE 

n o . o f  s e c t io n s

n a m e  o f  d a t a  f i le  ( p i s to n )  "CASE a "

n a m e  o f  th e  d a t a  f i le  ( c y l in d e r )  "c a s e  a "

a p p l ie d  p r e s s u r e  ( M P a )

g a p  ( m ic r o n s )

e n g . l e n g th  (m m )

r a d iu s  (m m )

n o . o f  la y e r s

v is c o s ity  a t  a m b ie n t  p r e s s u r e  

e x p o n e n t  t e r m  o f  v is c o s ity  

E R R O R  NORM

A TM O SPH E R IC  PR ESSU R E ( in  a tm o s )  

n o  c h e c k  o n  d a t a  f i le  a r r a y  ( p i s to n )  

n o  c h e c k  o n  d a t a  f ile  a r ra y s  ( c y l in d e r )
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Enter Pressure Balance Model & Support Condition

Model/Support : RUSKA2481/OIL

Is the balance modelled an Oil or Gas type balance? 
Enter 0 if the balance being modelled is Oil type 
Enter 1 if the balance being modelled is Gas type

Hint: to remember this, 0 is like the 'O' in Oil

0
Enter no. of sections 

10
Enter piston disp. array file name 
p2481a
Enter cylinder disp. array file name 
c2481a
Enter Applied Pressure in MPa

28.000000000000
Enter Initial Piston/Cylinder Gap in microns

2.0000000000000
Enter Engagement Length in mm 

23.030000000000
Enter Radius of the Piston in mm 

1.6250000000000 
Enter Max. No. of Layers 

1000
Enter Viscosity at ambient pressure, (in cP) 

25.800000000000
Enter exponent term, in Visco-Press relation 

0.67000000000000 
Enter ERROR NORM 

1 .OOOOOOOOOOOOOD -03 
Enter Atmospheric Pressure (in atmos)

1.0000000000000

Do you want to check any element of the array?(y,n) 
n
Do you want to check any element of the array?(y,n) 
n

ERROR NORM = 0.55178469028602
ERROR NORM = 1.3873361860991D-03
ERROR NORM = 8.7046630546431D-05

S U M M A R Y

Model/Support : RUSKA2481/OIL

Applied Pressure 28.000000000000 MPa 
Initial Gap 2.0000000000000 microns 
Exponent term. 0.67000000000000

Solution obtained after 3 iterations at:- 
Min Gap = 2.0219595487901 microns
Max Gap = 1.9865899212426 microns
ERROR NORM of 8.7046630546431D-05

EFFECTIVE AREA

New Area = 8.3058132048958 in sq. mm
Old Area = 8.3059765490000 in sq. mm
Change in Area = -19.665851839166 ppm
Lamda = -0.70235185139878 ppm/MPa



Appendix C

Listing of the FEA Program
*

*

For more details, please see chapter 3 section 3.11
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lc ..... FEA.f
2c..... Finite Element Analysis (FEA)
3c23456789012345678901234567890123456789012345678901234567890123456789012 
4c
5 double precision abss,
6 & apress, b, bt, btdb, coord, ap, pi,
7 & d, db, det,e, elk, eta,fun,
8 & gder, geom, jac, jacin, der, loads, nu,
9 & quot, rad, radis, sysk, wght, x, xi, dsysk
10c
11 integer dif, dimea, iecnt, docnt, dofel,
12 & dofnod, elnum, eltop, eltyp, hband, iabss, ib, ibt,
13 & ibtdb, icoord, id, idb, ielk, ieltop, ifncow, ifun,
14 & igder, igeom, ijac, ijacin, ilder,
15 & iloads, inf, iquad, irestr, isteer,
16 & isysk, itest, iwght, jabss,
17 & jb, jbt, jbtdb, jcoord, jd, jdb, jelk, jeltop, jgder,
18 & jgeom, jjac, jjacin, jlder, jnf, jrestr 
19c
20 integer jsysk, kn, mslop, melop,
21 & nele, nf, nin, ninl,
22 & nin2, nodel, nodnum, nout,
23 & noutl, nout2, nqp, numss, oisysk, ojsysk,
24 & resnod, restr, steer, totdof, totels, totnod, icontr
25c
26 integer ianlc, ianth,ie,iend,is,isid,iside,ist,istep,istp,
27 & lnodf5, icoln, kchkl, knoadd, noteq, Inodt,
28 & itlc, lefl, lef2, lelplc, mk, mlc, mortlc, nengn, nengnl, nengn2,
29 & nchel, ncl, nf2, nf4, nrf, nf5, ndsid,
30 & nlnods, nnps, ntle, oln, olel, orof,
31 & lcwn, mkf, mkfs, mkfe, cs, ps, chlcwn, mkn, mkns, mkfr,
32 & sumel, sumnod, num, mcowlc 
33c
34 integer lef, int, iourc, i, j, k, m, engnfo, iengnfo 
35c
36 integer qdrnt, iqdrnt, aqdrnt
37c
38 integer ihf,ihforc,ihf6,ihfmid,ihfoln,ivf,ivforc,ivf6,
39 & ivfmid,ivfoln,indsid,iradis,jradis,iap,iianlc,iie,iis,iisid,
40 & iistp,imortlc,ioln,izolnxc,izolnyc,iolel,iicoln,ichfoln,icvfoln,
41 & ichf,icvf,inchel,idsysk,jdsysk,iwork,ix 
42c
43 real zolnxc, zolnyc, hforc, hf6, hfmid, hf, vforc, vf6,
44 & vfmid, vf, hfoln, vfoln, chf, cvf, chfoln, cvfoln,work 
45c
46 parameter(ihf= 500,ihforc = 500,ihf6 = 500,ihfmid = 300, ihfoln = 500,
47 & ivf=500 , ivforc = 500 , ivf6 = 500 , ivfmid = 300 , ivfoln = 500 ,
48 & indsid = 500 , iradis = 800jradis = 2', iap = 300,
49 & iianlc = 300 ,iie = 300 ,iis = 300 ,iisid = 300 , iistp = 300 ,
50 & imortlc = 300 ,ioln = 500 ,izolnxc = 500 , izolnyc = 500 ,
51 & iolel = 300 , iicoln = 500 ,ichfoln = 500 , icvfoln = 500 ,
52 & ichf = 500 , icvf = 500, inchel = 300, iengnfo = 50)
53c
54 parameter(iqdrnt = 300)
55c
56 parameter(icoord = 800,idsysk = 800,ieltop = 800,iloads = 800,inf=800,
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57 & irestr = 800, isysk = 800, jcoord = 2,jdsysk = 600jeltop = 10,jrestr = 3,
58 & jsysk =  600,imps =  3, pi = 3.1415927)
59c
60c
61 parameter(iabss = 2, ib = 4, ibt = 12, ibtdb = 12, id = 4,
62 & idb = 4, ielk = 12, ifun = 6,
63 & igder =  2,
64 & igeom = 6 , ijac = 2 , ijacin = 2 , ilder = 2 ,
65 & isteer = 12, iwght = 7 , ¡work = 3, ix = 2,
66 &jabss = 7 ,jb  = 12, jbt =4,jbtdb = 1 2 ,
67 & jd = 4 , jdb = 12, jelk = 12, jgder = 6 , jgeom = 2 ,
68 & jjac = 2 ,  jjacin = 2 ,  jlder = 6  , jnf =2)
69c
70 dimension abss(iabssjabss), b(ib,jb), bt(ibt,jbt),
71 & btdb(ibtdbjbtdb), d(id,jd), db(idb, jdb),
72 & elk(ielk,jelk), fun(ifun),
73 & gder(igder,jgder), geom(igeom,jgeom),jac(ijac,jjac),
74 & jacin(ijacin, jjacin), der(ilder,jlder), steer(isteer),
75 & wght(iwght), work(iwork), x(ix)
76c
77 dimension coord(icoordjcoord), dsysk(idsyskjdsysk),
78 & eltop(ieltop,jeltop), loads(iloads),
79 & hf(ihf),hforc(ihforc),hf6(ihf6),hfmid(ihfmid),hfoln(ihfoln),
80 & vf(ivf),vforc(ivforc),vf6(ivf6),vfmid(ivfmid),vfoln(ivfoln),
81 & ndsid(indsid),nf(infjnf), radis(iradis,jradis),
82 & restr(irestr,jrestr),sysk(isysk,jsysk),ap(iap),
83 & ianlc(iianlc),ie(iie),is(iis), isid(iisid), istp(iistp),
84 & mortlc(imortlc), oln(ioln), zolnxc(izolnxc),zolnyc(izolnyc),
85 & olel(iolel),icoln(iicoln), chfoln(ichfoln), cvfoln(icvfoln),
86 & chf(ichf), cvf(icvf), nchel(inchel), engnfo(iengnfo)
87c
88 dimension qdrnt(iqdrnt)
89c
90 logical first
91c
92 character*6 lcfn
93 character*7 lcfnd
94 character*8 forfn
95 character *10 fname
96c
97 data icontr 1-991, ninl/1/, noutl/2/, nin2 111, nout2181,
98 & ncl 191, nrf / l l / ,  nf2 /12/,lefl /13/, nf4 /14/,
99 & lef2 /15/, nengnl /16/, nengn2 H I I, orof /18/, nf5 /19/,
100 &mkf/30/
101c
102c open input file for cylinder data generated from FEMGEN plus rest. info. 
103c
104 open(ninl,file = ’cylina’,status = ’old’)
105c
106c open cylinder output file for input to 
107c femview conversion program 
108c
109 open(noutl,file = ’cylictlc’,status = ’unknown’)
110c
111c open input file for piston data generated from FEMGEN plus rest. info. 
112c
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113
114 c
115 c
116 c
117 c
118
119 c
120 c
121 
122
123
124
125
126
127
128
129 c
130
131
132
133 
134c 
135c
136
137
138
139
140
141
142 
143c 
144c 
145c 
146 
147c
148
149
150
151
152
153
154
155
156
157
158
159
160 
161 
162
163
164
165 
166c
167
168

open(nin2,file = ’pisina’,status = ’old’)

open piston output file for input to 
femview conversion program

open(nout2,file = ’pisictlc’, status = ’unknown’)

open(lefl, file = ’lodcasc’, status = ’old’) 
open(lef2, file = ’lodcasp’, status =  ’old’) 
open(nengnl, file = ’engnodsc’, status = ’old’) 
open(nengn2, file = ’engnodsp’, status =  ’old’) 
open(nf2, file = ’lcffohvtmp’, status = ’unknown’) 
open(ncl,file = ’lcfchklst’,status = ’unknown’) 
open(nf4, file = ’lcfnff4’, status = ’unknown’) 
open(nf5, file = ’lcfordup’, status = ’unknown’)

rewind (ninl) 
rewind (noutl) 
rewind (nin2) 
rewind (nout2)

print* ,*************************************************> 
print*,’* *’
print*,’* P R E S S ' U R E  B A L A N C E  
print*,’* *’
print*,’* Finite Element Program Analysis 
print*,’*
prin t*  ,*************************************************>

*>
*>

iecnt = 2

do 9999 docnt = 1, iecnt 
if(docnt.eq.l)then 

nin = nin? 
nout = nout2 
lef = lef2 
nengn= nengn2

print*,’ = = = = = = = = = = = = =
print*,’ PISTON ANALYSIS ’
print*,’ = = = = = = = = = = = = =

elseif(docnt.eq.2) then 
nin = ninl 
nout = noutl 
lef = lefl 
nengn= nengnl

print*,’ = = =  = = = = = = = = = =
print*,’ CYLINDER ANALYSIS ’
print*,’ = = = = = = = = = = = = =

endif

rewind (nf2) 
rewind (nf4)



Jun 14 11:17 1990 FEA.f Page 4

169 rewind (ncl)
170c
171c
172c --------------------------------------------------------
173c ! Set (itest) for full checking !
174c !-------------------------------------------------------
175c
176c
177 itest = 0
178 call feinit
179c ..........................................................
180c
181c . input nodel geometry
182 c
183 c ..........................................................
184 c
185 print*,’start of inputting: nod geo., ele. top., mat prop.’
186 c input of nodal geometry
187 c
188 read(nin,2320)totnod,dimen
189 do 10 i = l,totnod
190 read(nin,2330)nodnum,(coord(nodnum,j),j = 1,dimen)
191 write(nout,2330)nodnum,(coord(nodnum,j) j  = 1,dimen)
192 10 continue
193 c
194 call conlcf(lef, ist, iend, istep, iside, apress, mlc,
195 & ianth, itlc, is, iis, ie, iie, istp, iistp, isid, iisid,
196 & ap, iap, mortlc, imortlc, ianlc, iianlc,
197 & nf4, lelplc, lcwn, mkf, cs, ps, chlcwn, int, lcfn,
198 & mkfs, mkfe, qdrnt, iqdrnt, aqdrnt)
199 c
200 call lechlc (mkf, chlcwn, mkn, mkns, lewn, itlc, nf4, ist,
201 & iend, istep, is, iis, ie, iie, istp, iistp, isid, iisid, lelplc,
202 & mortlc, imortlc, ianlc, iianlc, ap, iap, sumel, sumnod, num,
203 & nnps, lcfnd, lcfn, iside, ianth, mlc, qdrnt, iqdrnt)
204 c
205 c
206 c
207 c ..........................................................
208 c
209 c . input of element topology
210 c
211 c ..........................................................
212 c
213 read(nin,2320)eltyp,totels,nodel
214 do 20 i = l,totels
215 read(nin,2320)elnum,(eltop(elnum,j + 2) j  = 1,nodel)
216 write(nout,2320)elnum,(eltop(elnum,j + 2),j = 1,nodel)
217 c
218 call conlcn (mkn, mkf, lcwn, chlcwn, itlc, ist, iend,
219 & istep, iside, is, iis, ie, iie, istp, iistp, isid, iisid,
220 & ndsid, indsid, eltop, ieltop, jeltop, ianlc, iianlc, mortlc,
221 & imortlc, ntle, elnum, ap, iap, coord, icoord, jcoord, lcfn,
222 & lcfnd, mkns, mlc, ianth, qdrnt, iqdrnt)
223 c
224 e lto p (e ln u m ,l)  =  eltyp
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225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260 
261 
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

eltop(elnum,2) = nodel 
20 continue 
c

call confor (mkn, mkfr, nf2, lcwn, chlcwn, pi, ap, iap,
& oln, ioln, zolnxc, izolnxc, zolnyc, izolnyc, olel, iolel, nnps,
& nlnods, hforc, ihforc, hf6, ihf6, hfmid, ihfmid, hf, ihf, vforc,
& ivforc, vf6, ivf6, vfmid, ivfmid, vf, ivf, hfoln, ihfoln, vfoln,
& ivfoln, lcfnd, forfn, qdrnt, iqdrnt) 

c
cRelease the following STOP only to make sure that "lcfxxx” files are OK. 
c STOP 
c
c ..........................................................
c . input of material properties and
c . construction of stress-strain matrix d .
c . for plane strain
c ..........................................................
c

read(nin,2340)nu,e 
print*,’Poisson ratio = ’, nu 
print *,’Youngs modulus =  ’, e 
call daxi (d,idjd,e,nu,numss,itest) 

c
c ..........................................................
c . input of number of degrees of freedom
c . per node, input of restrained node
c . data and construction of nodal freedom .
c . array nf
c ..........................................................
c

read(nin,2320)dofnod 
read(nin,2320)resnod 

c print*,’ dofnod = ’, dofnod 
c print*,’ resnod = ’, resnod 

k = dofnod + 1
c... Free Node COUnt... unconstrained nodes in the geometry (ifncow). 
c

ifncow = 0 
do 30 i = 1, resnod 

read(nin,2320) (restr(ij), j = 1, k) 
do 35 kn = 1, k 

if (restr(i,kn).eq.0) then 
ifncow = ifncow + 1 

endif
35 continue 
30 continue 
c

oisysk = ifncow + ((totnod - resnod) * dofnod) 
c

call formnf (restr,irestr,jrestr,resnod,totnod,dofnod,nf,inf,jnf,
& totdof,itest) 

c
print*,’nodal geo, elem. top., mat. prop: input- ended.’ 

c
print*,’calc, semi-bandwidth...’ 

c calculation of semi-bandwidth
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281 c
282 first = .true.
283 do 40 nele = l,totels
284 call fredif (nele, eltop,ieltopjeltop,nf, inf,jnf,dofnod, first,
285 & dif,itest)
286 40 continue
287 hband = dif + 1
288 c
289 ojsysk =  hband
290 c
291 c print *,’oisysk = ’,oisysk
292 c print*,’ojsysk = ’,ojsysk
293 c
294 print*,’global stiffness matrix assembley...’
295 c
296 c ......................................................
297 c
298 c . global stiffness matrix assembly
299 c
300 c ......................................................
301 c
302 c
303 if((totdof.gt.isysk).or.(hband.gt.jsysk)) then
304 print*,”
305 print*,’@@@@@@@@@@@@@@@@@@@@@@@@@@@@’
306 print* .’INSUFFICIENT ARRAY SIZE FOR SYSTEM MATRIX’
307 print*,’@@@@@@@@@@@@@@@@@@@@@@@@@@@@’
308 print*,”
309 print*,’Execution Aborted’
310 STOP
311 endif
312 c
313 call matnul (sysk,isysk,jsysk,totdof,hband,itest)
314 dofel = nodel* dofnod
315 call qtri7 (wght,iwght,abss,iabssjabss,nqp,itest)
316 iourc = 0
317 do 50 nele =  l,totels
318 iourc = iourc +1
319 call elgeom (nele,eltop,ieltop,jeltop,coord,icoord,jcoord,geom,
320 & igeomjgeom,dimen,itest)
321 c
322 c print*,’integrate elem. stiff, using nqp quad point’
323 c
324 c ......................................................
325 c . integration loop for element stiffness .
326 c . using nqp quadrature points
327 c ......................................................
328 c
329 call matnul (elk,ielkjelk,dofel,dofel,itest)
330 do 60 iquad =  l,nqp
331 c
332 c print*,’form lin. sh. fun., space deriv. in loc. cord’
333 c ..........................................................
334 c . form linear shape function and space
335 c . derivatives in the local corrdinates.
336 c . transform local derivatives to global
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337 c . coordinate system
338 c ..........................................................
339 c
340 xi — abss(l,iquad)
341 eta = abss(2,iquad)
342 call trim6 (fun,ifun,der,ilder,jlder,xi,eta,itest)
343 call matmul (der,ilder jlder,geom,igeom,jgeom,jac,ijac,jjac,
344 & dimen,nodel,dimen,itest)
345 call matinv (jac,ijacjjacjacin,ijacin,jjacin,dimen,det,itest)
346 cali matmul (jacin,ijacinjjacin,der,ilderjlder,gder,igder,
347 & jgder,dimen,dimen,nodel,itest)
348 c
349 c print*,’formation of strain/disp. matrix5
350 c ..........................................................
351 c . formation of strain-displacement
352 c . matrix b and output to work file for
353 c . later recovery process
354 c ..........................................................
355 c
356 c radius at quadrature points
357 rad = O.OdO
358 do 70 i =  l,n od el
359 rad =  ra d + fu n (i)* g eo m (i,l)
360 70 continue
361 call b2p2 (b,ib jb,gder,igder,jgder,fun,ifun,geom,igeom,jgeom,
362 & nodel,itest)
363 c
364 c ..........................................................
365 c . formation of element stiffness elk
366 c ..........................................................
367 c
368 c print*,’formation of element stiffness matrix’
369 call matmul (d,id,jd,b,ib jb,db,idb jdb,numss,numss,dofel,
370 & itest)
371 ca&matran (b,ibjb,bt,ibtjbt,numss,dofel,itest)
372 call matmul (bt,ibt,jbt,db,idb,jdb,btdb,ibtdb,jbtdb,dofel,
373 & numss,dofel,itest)
374 quot =  dabs(det)*wght(iquad)*2.0d0*pi*rad
375 do 80 i =  l,dofel
376 do 90 j  = l,dofel
377 btdb (i,j ) =  btdb(i,j) *quot
378 90 continue
379 80 continue
380 cailmatadd (elk,ielkjelk,btdb,ibtdb,jbtdb,dofel,dofel,itest)
381 60 continue
382 c
383 c ..........................................................
384 c . assembly of system stiffness matrix
385 c . sysk
386 c ..........................................................
387 c
388 c print*,’assembley of stiffness matrix., subs: direct,assym’
389 call direct (nele,eltop,ieltop jeltop,nf,inf,jnf,dofnod,steer,
390 & isteer,itest)
391 call assym (sysk,isyskjsysk,elk,ielkjelk,steer,isteer,hband,
392 & dofel,itest)
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393 50 continue
394 c
395 c print*,’aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’
396 c do 1 o l  = 1, isysk
397 c do 2 o2 =  1, jsysk
398 c if(sysk(ol,o2).ne.0.0d0) then
399 c print*,’sysk(’,o l,’,’,o2,’) =  ’, sysk(ol,o2)
400 c endif
401 c2 continue
402 c l  continue
403 c print*,’aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’
404 c
405 c print*,’our check counter = ’,iourc
406 c print*,’ =  = = = = = = = = = = = = = = = = = = = = = =  = =
407 c
408 c
409 c ..........................................................
410 c ! !
411 c ! Duplicate sysk into dsysk !
412 c ! !
413 c ..........................................................
414 c
415 print*,’[ sysk -- dsysk ]: duplicate started
416 c
417 c open(90, file = ’orsysk’, status =  ’unknown’)
418 c open(91, file = ’ordsysk’, status = ’unknown’)
419 c rewind(90)
420 c rewind(91)
421 do 100 i = 1, oisysk
422 do 110 j = 1, ojsysk
423 dsysk(ij) = sysk(ij)
424 c write(90,*) i, j, sysk(i,j)
425 c write(91,*) i, j, dsysk(ij)
426 110 continue
427 100 continue
428 c close(90)
429 c close(91)
430 c
431 print*,’sysk: Duplicate completed ... dsysk formed ...’
432 c
433 c.... You can control the no. of load cases to be solved
434 c.... by adjusting START and END of loop 200.
435 c.... Default is from 1 to total no. of load cases (chlcwn)
436 cSTART Start Load Case is mslop (mStart Looping on Load Cases)
437 cEND. End " " is melop (mEnd Looping on Load Cases)
438 c
439 c
440 mslop = 1
441 melop = chlcwn
442 mcowlc = 0
443 c
444 print*,”
445 print*, ’Number of Load Cases to Solve for (auto set) = ’, chlcwn
446 print*,”
447 print*,’ = = = = = = = = = = = = = = = = = = = = = = = = =
448 print*,’Solution will start from LOAD CASE NO. 1 to ’, chlcwn
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449
450
451
452
453
454
455
456
457
458
459 c
460 c
461 c
462 c
463 c
464 c
465 c
466 c
467 c
468 c
469 c
470 c
471 c
472 c
473 c
474 c
475 c
476 c
477 c
478 c
479 c
480 c
481 c
482 c
483 c
484 c
485 c
486 c
487
488
489 c
490 c
491
492
493
494
495
496 c
497
498
499
500
501
502
503
504

print*,’IF YOU WISH TO CHANGE THIS, THEN:-’ 
print*,”
print*,’ 1. Type ~ C ’
print*,’ 2. Copy this file to a temp file’
print*,’ 3. With the editor, LOCATE this line by:-’
print*,’ a. type vi temp’
print*,’ b. type :/CHANGE’
print*,’ 4. Follow instructions as advised.’
print*,’ =  = =  = = = = =  = = =  =  = = = =  = =  =  = = = = = = = = ’ 
print*,”

CHANGE CHANGE CHANGE CHANGE CHANGE CHANGE

***********************************************************

* You have edited this program to change the start and END *
* sequence of solving for load cases. To do that, reset *
* the values of:- *
* *
* mslop and melop *
* *
* to whatever values you wish. *
* *

* For example: To start from loads case no 10 and ending at 11 *
* change mslop to 9 and melop to 11. *
*

* OBVOIUSLY, you have to delete chlcwn *
* *

* DO THIS in the FOLLOWING 2 LINES. COMPILE and RUN * 
****************************************************************
* *

* PLEASE PLEASE PLEASE

* *
* WHEN YOU FINISH, DELETE temp and RECOMPILE F E A i
* *
****************************************************************

mslop = 1 
melop = chlcwn

print*,’--------------------------------------------------------’
print*,’Total No. of Load Cases to be Solved = ’, chlcwn 
print*,’Starting from Load Case No. = ’, mslop
print*,’Ending at & including Load Case No. =  ’, melop 
print*,’-------------------------------------------------------- ’

m = mslop 
chlcwn = melop 
do 200 lcwn = m , chlcwn 

print*,’Solving for Load Case No. ’, lcwn 
mcowlc = mcowlc + 1 
lnodf5 - 0
call bulcfo (lcwn, lnodf5, mkfr, nf5, oln, ioln,

& hfoln, ihfoln, vfoln, ivfoln, forfn)
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505 c
506 call mklcfr (n£5, nrf, lnodf5, kchkl, knoadd, noteq,
507 & icoln, iicoln, nel, mk, nchel, inchel, lnodt, oln, ioln,
508 & hfoln, ihfoln, vfoln, ivfoln, chf, ichf, cvf, ievf, chfoln,
509 & ichfoln, cvfoln, icvfoln, lewn, chlcwn, lefnd, forfn)
510 c
511 call vecnul (loads, iloads, iloads, itest)
512 call cloads (nrf, lnodt, oln, ioln, nodnum, dofnod, nf,
513 .& inf, jnf, hfoln, ihfoln, vfoln, ivfoln, work, iwork, loads,
514 & iloads)
515 call solrad (sysk, isysk, jsysk, loads, iloads, totdof,
516 & hband, itest, totnod, dofnod, nf, inf, jnf, radis, iradis,
517 & jradis, x, ix)
518 call outfv (totnod, nout, radis, iradis, jradis,
519 & dofnod, icontr)
520 call savpa (fname, orof, nengn, lef, radis, iradis,
521 & jradis, engnfo, iengnfo)
522 call chanlc (m, lewn, mcowlc, chlcwn, doent, ieent)
523 c print*,’oisysk = ’, oisysk
524 c print*,’ojsysk = ’, ojsysk
525 call recovr (oisysk, ojsysk, sysk, isysk, jsysk,
526 & dsysk, idsysk, jdsysk)
527 200 continue
528 call ftsofn (doent, ieent)
529 c
530 c........ nulling sysk ... ready for another geometry if any.
531 c
532 call nulsys (oisysk, ojsysk, sysk, isysk, jsysk,
533 & dsysk, idsysk, jdsysk)
534 c
535 C & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & &

536 c ....................................................
537 c
538 c . F o r m a t s
539 c
540 c . from 1200 to 2900
541 c . 9010 & 9020 are reserved
542 c . commented formats act as an index
543 c ....................................................
544 c
545 cl250 format(2x, i5, 3(8x,el4.7))
546 cl290 format(el4.7)
547 cl300 format(i5)
548 2320 format(16i5)
549 2330 format(i5,2fl0.5)
550 2340 format(2fl0.0)
551 c2400 format(i5,2(2x,fl0.5), i5, fl0.3, 2x, i5)
552 c2410 format(i5,2x, el4.7, 2x, el4.7)
553 c2420 format(el4.7, 2x, el4.7)
554 c2430 format(flO.O)
555 c2440 format(alO)
556 c2450 format(’lc f , 13.3)
557 c2460 format(4(2x, i5), 2x, fl0.3, 3(2x, i5))
558 c2470 format(’lcfn’, 13.3)
559 c2480 format(’lcfor’, 13.3)
560 c
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561 c
562 call fefm
563 c
5649999 continue
565 c
566
567
568
569
570
571
572
573
574
575
576
577
578
579 c
580 c
581 c
582
583
584 c
585 c<
586 c
587 c
588 c
589 c
590 c
591 c
592 c
593 c
594 c... sub. conici. Breaks the I/P load case file into individual files.
595 c
596 subroutine conlcf(lef, ist, iend, istep, iside, apress, mlc,
597 & ianth, itlc, is, iis, ie, iie, istp, iistp, isid, iisid,
598 & ap, iap, mortlc, imortlc, ianlc, iianlc,
599 & nf4, lelplc, lcwn, mkf, cs, ps, chlcwn, int, lcfn,
600 & mkfs, mkfe, qdmt, iqdrnt, aqdrnt)
601 c
602 integer lef, ist, iend, istep, iside, mlc, ianth, itlc,
603 & nf4, lelplc, lcwn, mkf, cs, ps, chlcwn, is, ie, istp,
604 & mkfs, mkfe, int, isid, mortlc, ianlc, i, j, k
605 c
606 integer iis, iie, iistp, iisid, imortlc, iianlc, iap
607 c
608 integer qdrnt, iqdmt, aqdmt
609 c
610 double precision apress, ap(iap)
611 dimension is(iis), ie(iie), istp(iistp),isid(iisid),
612 & mortlc(imortlc), ianlc(iianlc)
613 c
614 dimension qdmt(iqdrnt)
615 c
616

close (nini) 
close (nin2) 
close (noutl) 
close (nout2) 
close (nel) 
close (nf2) 
close (nf4) 
close (nf5) 
close (nrf) 
close (lefl) 
close (lef2) 
close (nengnl) 
close (nengn2)

stop
end

i)@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

S U B R O U T I N E Sft******************************

character*6 lcfn
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617 rewind(lef)
618 itlc = 0
619 mkfs = mkf
620 c print*,’in conici... mkf = ’,mkf
621 3000 read (lef, 1300) ist, iend, istep, iside
622 read (lef, 2430) apress
623 c print*,’apress =  ’, apress
624 read (lef, 1300) aqdrnt, mlc, ianth
625 itlc = itlc + 1
626 if ((ianth.eq.O).and.(mlc.eq.O)) then
627 go to 3010
628 else
629 go to 3000
630 endif
631 c
632 3010 print*,’constructing load case files...’
633 c3010 print*,’total no. of sub load cases = ’,itlc
634 c
635 rewind (lef)
636 do 3020 i = 1, itlc
637 read (lef, 1300) is(i), ie(i), istp(i), isid(i)
638 c print*,’is(’,i,’) = ’,is(i)
639 c print*,’ie(’,i,’) = \ie(i)
640 c print*,’istp(’,i,’) =  ’,istp(i)
641 c print*,’isid(’,i,’) =  ’,isid(i)
642 read (lef, 2430) ap(i)
643 c print*,’ap(’,i,’) = ’,ap(i)
644 read (lef, 1300) qdrnt(i), mortlc(i), ianlc(i)
645 c print*,’mortlc(’,i,’) = ’,mortlc(i)
646 c print*,’ianlc(’,i,’) = ’,ianlc(i)
647 3020 continue
648 c
649 lcwn = 0
650 do 3050 i = 1, itlc
651 if((mortlc(i).eq.0.and.ianlc(i).eq.l).or.
652 & (mortlc(i).eq.0.and.ianlc(i).eq.0)) then
653 lcwn =  lcwn + 1
654 endif
655 3050 continue
656 c
657 chlcwn = lcwn
658 lcwn = 0
659 rewind (lef)
660 do 3060 i = 1, itlc
661 read (lef, 1300) is(i), ie(i), istp(i), isid(i)
662 read (lef, 2430) ap(i)
663 read (lef, 1300) qdrnt(i), mortlc(i), ianlc(i)
664 j = mortlc(i)
665 k = ianlc(i)
666 if (i.eq.l) then
667 lcwn = lcwn + 1
668 call mklcf (lcwn, int, lcfn)
669 open (mkf, file = lcfn, status = ’unknown’)
670 rewind (mkf)
671 write (mkf, 2460) is(i), ie(i), istp(i), isid(i),
672 & ap(i), qdrnt(i), mortlc(i), ianlc(i)
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673
674
675
676
677
678
679
680 
681 
682
683
684
685
686
687
688
689
690
691
692
693 c
694
695
696
697
698
699
700
701
702
703 c
704
705
706
707
708
709
710
711
712
713 c.
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

if (j.eq.O.and.k.eq.0) then 
if(i.eq.itlc) then 

go to 3060 
else

print*,’ERROR1: LOAD CASE FILE FORMAT FAILED’ 
print*,’Execution Aborted...’
STOP 

endif 
endif 
go to 3060 

endif
if(j.eq.0.and.k.eq.0) then 

cs = 0
elseif (j.eq.O.and.k.eq.1) then 

cs = 1
elseif (j.eq.l.and.k.eq.0) then 

cs = 2
elseif (j.eq.l.and.k.eq.l) then 

cs = 3 
endif

if (mortlc(i-l).eq.0.and.ianlc(i-l).eq.0) then 
ps =  0

elseif (mortlc(i-l).eq.0.and.ianlc(i-l),eq.l) then 
ps =  1

elseif (mortlc(i-l).eq.l.and.ianlc(i-l).eq.O) then 
ps = 2

elseif (mortlc(i-l).eq.l.and.ianlc(i-l).eq.l) then 
ps = 3 

endif

if ((cs.eq.0).or.(cs.eq.2)) then 
if (ps.eq.0) then

print*,’ERROR2: TOO MANY (END) IN LOAD CASE FILE’ 
print*,’Execution Aborted...’
STOP

elseif (ps.eq.l) then 
lcwn = lcwn + 1 
call mklcf (lcwn, int, lefn) 
mkf = mkf + 1

......... . print*,’cs02/psl... mkf = ’, mkf
open (mkf, file =  lcfn, status =  ’unknown’) 
rewind (mkf)
write (mkf, 2460) is(i), ie(i), istp(i), isid(i),

& ap(i), qdrnt(i), mortlc(i), ianlc(i) 
go to 3060 

elseif (ps.eq.2) then
write (mkf, 2460) is(i), ie(i), istp(i), isid(i),

& ap(i), qdrnt(i), mortlc(i), ianlc(i) 
go to 3060 

elseif (ps.eq.3) then
print*,’ERROR3: LOAD CASE FILE SEQUENCE MISMATCH’ 
print*,’Execution Aborted...’
STOP

endif
endif
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729 c
730 if ((cs.eq.l).or.(cs.eq.3)) then
731 if (ps.eq.O) then
732 print * ,’ERRO R4: TOO MANY (END) IN LOAD CASE FILE’
733 print*,’Execution Aborted...’
734 STOP
735 elseif (ps.eq.l) then
736 lcwn = lcwn + 1
737 call mklcf (lcwn, int, lcfn)
738 mkf = mkf + 1
739 c................ print*,’csl3/psl... mkf = ’,mkf
740 open (mkf, file =  lcfn, status = ’unknown’)
741 rewind (mkf)
742 write (mkf, 2460) is(i), ie(i), istp(i), isid(i),
743 & ap(i), qdrnt(i), mortlc(i), ianlc(i)
744 go to 3060
745 elseif (ps.eq.2) then
746 print*,’ERROR5: LOAD CASE FILE SEQUENCE MISMATCH’
747 print*,’Execution Aborted...’
748 STOP
749 elseif (ps.eq.3) then
750 write (mkf, 2460) is(i), ie(i), istp(i), isid(i),
751 & ap(i), qdmt(i), mortlc(i), ianlc(i)
752 go to 3060
753 endif
754 endif
755 c
756 3060 continue
757 if (lcwn.ne.chlcwn) then
758 print*,’ERROR6: CONSTRUCTED LOAD CASE FILES VS I/P FILE’
759 print*,’ Check: FAILED’
760 print*,’Execution Aborted...’
761 STOP
762 endif
763 mkfe =  mkfs + chlcwn -1
764 do 3070 i = mkfs, mkfe
765 close (i)
766 3070 continue
767 mkf = mkfs
768 1300 format(i5)
769 2430 format(flO.O)
770 2460 format(4(2x, i5), 2x, fl0.3,3(2x, i5))
771 c print*,’out of conici., mkf = ’,mkf
772 return
773 end

775 c... sub. mklcf. Creates load cse files to accomodate input load cases.
776 c
777 subroutine mklcf (lewn, int, lcfn)
778 integer lcwn, int
779 character*6 lcfn
780 int = lcwn
781 write(lcfn, 2450) int
782 2450 format(’lc f, 13.3)
783 return
784 end
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785 c= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
786 c... sub. lechlc. Checks no. of elem. per load case. Get no. of nodes.
787 c... Write them in their approp. files lcfns (Load Case Files incl. Nodes).
788 c
789 subroutine lech lc  (m kf, ch lcw n, mkn, m kns, lcwn, itlc, nf4, ist,
790 & iend, istep , is, iis, ie, iie, istp, iistp, isid, iisid, lelp lc,
791 & m ortlc, im ortlc, ianlc, iianlc, ap, iap, sum el, sum nod , num,
792 & nnps, lefnd, lcfn , iside, ianth, m lc, qdrnt, iqdrnt)
793  c
794  in teger m kf, m kn, lcw n, ch lcw n, itlc, nf4, ist, iend, istep ,
795 &  nnps, le lp lc , sum el, sum nod, num , m kns, i, m, is, ie, istp,
796 & iside, ianth, m lc, isid, m ortlc, ianlc
797 c
798 in teger iis, iie, iistp, iisid , im ortlc, iianlc, iap
799 c
800 in teger qdrnt, iqdrnt
801 c
802  d ou b le  precision  ap (iap )
803 d im en sion  is(iis), ie ( iie ) , is tp (iistp ),is id (iis id ),
804  & m ortlc(im ortlc), ian lc(iian lc)
805 c
806 d im en sion  qdrnt(iqdrnt)
807  c
808 character*6 lcfn
809 character*7 lefnd
810 m kn =  m kf +  1
811 m kns =  m kn
812 do  24000 lcw n =  1, ch lcw n
813 m kn =  m kn +  1
814  call m klfcn (lcw n, lefnd)
815 op en  (m kn, file  =  lefnd, status =  ’unknow n’)
816 rew ind (m kn)
817 c
818 call d etlc  (m kf, itlc, ist, iend , istep , iside, ianth,
819 & m lc, is, iis, ie, iie, isid, iisid , istp, iistp, m ortlc,
820 & im ortlc, ianlc, iianlc, ap, iap, lcwn, lcfn, qdrnt, iqdrnt)
821 c
822  if  (lcw n .g t.l)  then
823 c prin t* ,’in l e c h lc .. after call d etlcd etlc .. nf4 =  ’, nf4
824 en d if
825 rew ind (nf4)
826 do  24005 i =  1, itlc
827 ist =  is(i)
828 ien d  =  ie(i)
829 istep  =  istp (i)
830 le lp lc  =  0
831 d o  24010 m  =  ist, iend, istep
832 le lp lc  =  le lp lc  +  1
833 24010 continue
834 w rite ( n f 4 ,1300) le lp lc
835 24005 continue
836 rew ind (nf4)
837 sum el =  0
838 do  24015 i =  1, itlc
839 read  ( n f 4 ,1300) num
840 sum el =  sum el +  num
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841 24015 continue
842 sumnod = sumel * nnps
843 write (mkn, 1300) sumnod
844 24000 continue
845 c print*,’after 24000.. mkn = ’,mkn
846 mkn = mkns
847 c print*,’ out of lechlc .. mkn = ’, mkn
848 c print*,’mkns = ’, mkns
849 1300 format (i5)
850 return
851 end
852 c =  = = = = = = = = = = = = = = = = = = = = = = = = = = =
853 c... sub. detlc. Gets the details of all parameters in each load case from
854 c... lcfs files. Counts itlc for each.
855 c
856 c
857 subroutine detlc (mkf, itlc, ist, iend, istep, ¡side, ianth,
858 & mlc, is, iis, ie, iie, isid, iisid, istp, iistp, mortlc,
859 & imortlc, ianlc, iianlc, ap, iap, lcwn, lcfn, qdrnt, iqdrnt)
860 c
861 integer lewn, int, mkf, itlc, ist, iend, istep, iside, ianth,
862 & mlc, is, ie, isid, istp, mortlc, ianlc, i
863 c
864 integer iis, iie, iistp, iisid, imortlc, iianlc, iap
865 c
866 integer qdrnt, iqdrnt, aqdrnt
867 c
868 double precision ap(iap), apress
869 dimension is(iis), ie(iie), istp(iistp),isid(iisid),
870 & mortlc(iniortlc), ianlc(iianlc)
871 c
872 dimension qdrnt(iqdrnt)
873 c
874 character*6 lcfn
875 itlc = 0
876 c print*,’in detlc.. mkf = ’, mkf
877 call mklcf (lcwn, int, lcfn)
878 open (mkf, file = lcfn, status =  ’unknown’)
879 rewind (mkf)
880 25000 read (mkf, 2460) ist, iend, istep, iside, apress, aqdrnt,
881 & mlc, ianth
882 itlc = itlc 4- 1
883 if (mlc.eq.0) then
884 go to 25005
885 else
886 go to 25000
887 endif
888 c
889 25005 rewind (mkf)
890 do 25010 i = 1, itlc
891 read (mkf, 2460) is(i), ie(i), istp(i), isid(i), ap(i),
892 & qdrnt(i), mortlc(i), ianlc(i)
893 25010 continue
894 close (mkf)
895 2460 format(4(2x, 15), 2x, fl0.3, 3(2x, 15))
896 return
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897 end

899 c... sub. mklfcn. Generates load case files (same no. as lcfs). These
900 c... will include total loaded nodes per load case, nodes, coord, elem no.
901 c... applied pressure.
902 c
903 subroutine mldfcn (lcwn, lefnd)
904 integer lcwn
905 character*7 lefnd
906 write (lefnd, 2470) lcwn
907 2470 format (’lefn’, 13.3)
908 return
909 end

911 c... subroutine to construct the Load Case Nodes files for each load case.
912 c... It should also include total no. of loaded nodes at very top, (loca. 1).
913 c... This is done in sub. lechlc. When you get here, all the lcfs
914 c... are already open & the pointer is at location 2 of the file.
915 c
916 subroutine conlcn (mkn, mkf, lewn, chlcwn, itlc, ist, iend,
917 & istep, iside, is, iis, ie, iie, istp, iistp, isid, iisid,
918 & ndsid, indsid, eltop, ieltop, jeltop, ianlc, iianlc, mortlc,
919 & imortlc, ntle, elnum, ap, iap, coord, icoord, jcoord, lefn,
920 & lefnd, mkns, mlc, ianth, qdrnt, iqdrnt)
921 c
922 integer mkn, mkf, lcwn, chlcwn, itlc, ist, iend, istep, iside,
923 & ntle, elnum, mkns, m, j, k, mlc, ianth,is, ie, istp, isid,
924 & ndsid, eltop, ieltop, jeltop, icoord, jcoord, mortlc,
925 & ianlc, inel
926 c
927 integer iis, iie, iistp, iisid, indsid, imortlc, iianlc,
928 & ianth, mlc, iap
929 c
930 integer qdrnt, iqdrnt
931 c
932 double precision coord (icoord,jcoord), ap(iap)
933 dimension is(iis),ie(iie),istp(iistp),isid(iisid),
934 & ndsid(indsid), mortlc(imortlc), ianlc(iianlc),
935 & eltop(ieltop,jeltop)
936 c
937 dimension qdrnt (iqdrnt)
938 c
939 character* 6 lefn
940 character*7 lefnd
941 mkns = mkn
942 c print*,’just before 4000 ...mkn = ’,mkn
943 do 4000 lcwn = 1, chlcwn
944 mkn = mkn +1
945 c if (lcwn.gt.l) then
946 c print*,’in conic/ mkf used in detlc.within 4000/mkf = ’,mkf
947 c print*,’within 4000.. mkn = ’,mkn
948 c endif
949 c
950 c
951 call detlc (mkf, itlc, ist, iend, istep, iside, ianth,
952 & mlc, is, iis, ie, iie, isid, iisid, istp, iistp, mortlc,
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953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000 
1001 
1002
1003
1004
1005
1006
1007
1008

& imortlc, ianlc, iianlc, ap, iap, lcwn, lcfn, qdrnt, iqdmt) 
c

call mklfcn (lcwn, lcfnd) 
do 4005 m = 1, itlc 

ist = is(m) 
iend = ie(m) 
istep = istp(m) 
iside = isid(m) 
ntle = 0

c print*,’elnum = ’,elnum
c

do 4010 inel = ist, iend, istep 
c print*,’inel = ’,inel

if(elnum.eq.inel) then 
ntle = ntle + 1 
if(iside.eq.l) then 

do 4020 j = 1,3 
ndsid(j) = eItop(elnum, j + 2) 

write (mkn, 2400) ndsid(j), coord(ndsid(j),l),
& coord(ndsid(j),2), elnum, ap(m), qdrnt(m) 

c print*,’writting into nfl(sidl) elnum = ’,elnum
c print*,’writting into nfl(sidl) ndsid = ’,ndsid(j)
4020 continue
c

elseif(iside.eq.2) then 
do 4030 j = 1,3 

ndsid(j) = eltop(elnum, j + 4) 
write (mkn, 2400) ndsid®, coord(ndsid(j),l), 

&coord(ndsid(j),2), elnum, ap(m), qdrnt(m) 
c print* ,’writting into nfl(sid2) elnum = ’,elnum
c print*,’writting into nfl(sid2) ndsid = ’,ndsid®
4030 continue
c

elseif(iside.eq.3) then 
do 4040 k = 1,2 

ndsid(k) = eltop(elnum, k + 6) 
write (mkn, 2400) ndsid(k), coord(ndsid(k),l), 

&coord(ndsid(k),2), elnum, ap(m), qdrnt(m) 
c print*,’writting into nfl(sid3) elnum = elnum
c print*,’writting into nfl(sid3) ndsid = ’,ndsid(k)
4040 continue

ndsid(3) = eltop(elnum,3) 
write (mkn, 2400) ndsid(3), coord(ndsid(3),l), 

&coord(ndsid(3),2), elnum, ap(m), qdrnt(m) 
c print*,’writting into nfl(sid3) elnum = ’,elnum
c print*,’writting into nfl(sid3) ndsid = ’,ndsid(3)

endif 
endif

4010 continue 
4005 continue 
4000 continue 

mkn = mkns
c... never dose mkn’s here.!!, this sub. is called for each elenum 
c... read from pisina file without calling lechlc sub. again 
c... where mkn’s are originally opened 
c mkne = mkns + 1 + chlcwn
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1009 c do 4060 i = mkns, mkne
1010 c close(i)
1011 c4060 continue
1012 2400 format(i5, 2(2x,fl0.5), i5, fl0.3, 2x, i5)
1013 return
1014 end
1015 c =  = =  = = = = = = = = = = = = = = = = = = = = = = = = = = = =
1016 c... construct files nf2 and lcforXXX.nf2 contains the all horiz. and
1017 c... vertical forces of all nodes.lcforXXX contains same as nf2 BUT sorted
1018 c... as for each node appropriately with node numbers associated.
1019 c
1020 subroutine confer (mkn, mkfr, nf2, lcwn, chlcwn, pi, ap, iap,
1021 & oln, ioln, zolnxc, izolnxc, zolnyc, izolnyc, olel, iolel, nnps,
1022 & nlnods, hforc, ihforc, hf6, ihf6, hfmid, ihfmid, hf, ihf, vforc,
1023 & ivforc, vf6, ivf6, vfmid, ivfmid, vf, ivf, hfoln, ihfoln, vfoln,
1024 & ivfoln, lcfnd, forfn, qdrnt, iqdrnt)
1025 c
1026 integer mkn, mkns, mkfr, lcwn, chlcwn, nf2, oln,
1027 & olel, nnps, nlnods, mkne, i
1028 c
1029 real zolnxc, zolnyc, hforc, hf6, hfmid, hf, vforc, vf6,
1030 & vfmid, vf, hfoln, vfoln, fdeex, fdeey, radius
1031 c
1032 c real fdee
1033 c
1034 integer izolnxc, izolnyc, ihf, ihforc, ihf6, ihfmid,
1035 & ivf, ivforc, ivf6, ivfmid, ihfoln, ivfoln, iolel, ioln,
1036 & iap
1037 c
1038 integer qdrnt, iqdrnt
1039 c
1040 double precision ap(iap), pi
1041 dimension zolnxc(izolnxc), zolnyc(izolnyc),
1042 & hf(ihf), hforc(ihforc), hf6(ihf6), hfmid(ihfmid),
1043 & vf(ivf), vforc(ivforc), vf6(ivf6), vfmid(ivfmid),
1044 & hfoln(ihfoln), vfoln(ivfoln),olel(iolel),oln(ioln)
1045 c
1046 real fds, sinth, costh
1047 dimension qdrnt(iqdrnt)
1048 c
1049 character*7 lcfnd
1050 character*8 forfn
1051 mkns =  mkn
1052 mkne = mkns + 1 + chlcwn
1053 c
1054 c print*,’in confer/closing all mkn(s)’
1055 c print*,’mkn = ’,mkn
1056 c print*,’mkns = ’,mkns
1057 c print*,’mkne = ’,mkne
1058 c print*,’chlcwn = ’,chlcwn
1059 c
1060 do 4999 i = mkns, mkne
1061 close(i)
1062 4999 continue
1063 mkn = mkns
1064 mkfr = mkn 4- 1
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1065 c
1066 c print*,’out of 4999/into 5000/.. mkn = ’,mkn
1067 c print*,’mkfr = ’,mkfr
1068 c print*,’nf2 =  ’,nf2
1069 c print*,’this routine operates only on two channels at a time’
1070 c print*,’these are mkn & mkfr/ they are closed each time’
1071 c
1072 do 5000 lcwn = 1, chlcwn
1073 call mklfcn (lewn, lcfnd)
1074 call mkforf (lcwn, forfn)
1075 open (mkn, file = lcfnd, status = ’unknown’)
1076 open (mkfr, file =  forfn, status = ’unknown’)
1077 rewind (mkn)
1078 rewind (mkfr)
1079 rewind (nf2)
1080 read (mkn, 1300) nlnods
1081 write (mkfr, 1300) nlnods
1082 do 5040 i = 1, nlnods
1083 read (mkn, 2400) oln(i), zolnxc(i), zolnyc(i), olel(i),
1084 & ap(i), qdrnt(i)
1085 5040 continue
1086 c
1087 do 5050 i = 1, nlnods, nnps
1088 fdeex = abs (zolnxc(i) - zolnxc(i + 2))
1089 fdeey = abs (zolnyc(i) - zolnyc(i + 2))
1090 radius = zolnxc(i + l)
1091 c print*,’radius = ’,radius
1092 c
1093 c..... for vertical nodes where x coord are same
1094 c..... radius is always the xc of the midside node
1095 cxx if (fdeex.lt.l.0d-10) then
1096 cxx fdee = fdeey
1097 cxx if((qdrnt(i).eq.l).or.(qdrnt(i).eq.4)) then
1098 cxx ap(i) =  ap(i)
1099 cxxc print*,’vertical element... +ve pressure’
1100 cxxc print*,’qdrnt(’,i,’) = ’, qdrnt(i)
1101 cxxc
1102 cxx
1103 cxx
1104 cxxc
1105 cxxc
1106 cxxc
1107 cxx
1108 cxx
1109 cxx
1110 cxx
1111 cxx
1112 cxx
1113 cxx
1114 cxx
1115 cxx
1116 cxxc.

elseif((qdrnt(i).eq.2).or.(qdrnt(i).eq.3)) then 
ap(i) = -l.OdO * ap(i) 
print*,’vertical element... -ve pressure’ 
print*,’qdrnt(’,i,’) = ’, qdrnt(i) 
print*,’ap(’,i,’) = ’, ap(i)

endif
hforc(i) = 2.0d0*pi*radius*fdee*ap(i)
hf6(i) = hforc(i)/6.0
hfmid(i) = 4.0 * hf6(i)
vf(i) = 0.0
write (nf2, 2420) hf6(i), vf(i)
write (nf2, 2420) hfmid(i), vf(i)
write (nf2, 2420) hf6(i), vf(i)

endif
for horiz. nodes where y coord are same

1117 cxxc. radius is always the xc of the midside node 
if (fdeey.lt.l.0d-10) then1118 cxx

1119 cxx
1120 cxx

fdee = fdeex
if((qdmt(i).eq.l).or.(qdrnt(i).eq.2)) then
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1121 cxx
1122 cxxc
1123 cxxc
1124 cxxc
1125 cxx
1126 cxx
1127 cxxc
1128 cxxc
1129 cxxc
1130 cxx
1131 cxx
1132 cxx
1133 cxx
1134 cxx
1135 cxx
1136 cxx
1137 cxx
1138 cxx
1139 cxxc
1140 cxx
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160 
1161 
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

aP(i) = ap(i)
print*,’horizontal elem ent... + ve pressure’ 
print*,’qdrnt(’,i,’) = ’, qdrnt(i) 
print*,’ap(’,’,’,i,’) =  ’, ap(i) 

elseif((qdrnt(i).eq.3).or.(qdrnt(i).eq.4)) then 
ap(i) = -l.OdO * ap(i) 
print*,’horizontal element... -ve pressure’ 
print*,’qdrnt(’,i,’) = ’, qdrnt(i) 
print*,’ap(’,i,’) =  ’, ap(i) 

endif
vforc(i) = 2.0d0*pi*radius*fdee*ap(i) 
vf6(i) = vforc(i)/6.0d0 
vfmid(i) = 4.0d0 * vf6(i) 
hf(i) = 0.0 
write (nf2, 2420) hf(i), vf6(i) 
write (nf2,2420) hf(i), vfmid(i) 
write (nf2,2420) hf(i), vf6(i) 

endif

if((fdeex.gt.l.0d-10).and.(fdeey.gt.l.0d-10)) then 
fds = sqrt(fdeex**2 +  fdeey**2) 
sinth = fdeey/fds 
costh = fdeex/fds 
hforc(i) = 2*pi*radius*fds*ap(i)*sinth 
vforc(i) = 2*pi*radius*fds*ap(i)*costh 
hf6(i) = hforc(i)/6.0 
hfmid(i) =  4.0 * hf6(i) 
vf6(i) = vforc(i)/6.0d0 
vfmid(i) = 4.0d0 * vf6(i) 
if(qdmt(i).eq.l) then 

write (nf2,2420) hf6(i), vf6(i) 
write (nf2,2420) hfmid(i), vfmid(i) 
write (nf2,2420) hf6(i), vf6(i) 

elseif(qdrnt(i).eq.2) then 
hf6(i) = -l.OdO * hf6(i) 
hfmid(i) = -l.OdO * hfmid(i) 
write (nf2, 2420) hf6(i), vf6(i) 
write (nf2, 2420) hfmid(i), vfmid(i) 
write (nf2, 2420) hf6(i), vf6(i) 

elseif(qdmt(i).eq.3) then 
hf6(i) = -l.OdO * hf6(i) 
hfmid(i) = -l.OdO * hfmid(i) 
vf6(i) = -l.OdO * vf6(i) 
vfmid(i) = -l.OdO * vfmid(i) 
write (nf2,2420) hf6(i), vf6(i) 
write (nf2, 2420) hfmid(i), vfmid(i) 
write (nf2, 2420) hf6(i), vf6(i) 

elseif(qdrnt(i).eq.4) then 
vf6(i) = -l.OdO * vf6(i) 
vfmid(i) = -l.OdO * vfmid(i) 
write (nf2, 2420) hf6(i), vf6(i) 
write (nf2, 2420) hfmid(i), vfmid(i) 
write (nf2, 2420) hf6(i), vf6(i) 

else
print*,’ERROR100: SUB. (confor) FAILED TO DETECT’ 
print*,’ AN ELEMENT AT A SLOPE.’
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1177
1178
1179
1180 
1181 
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200 
1201 
1202
1203
1204
1205
1206
1207
1208
1209
1210 
1211 
1212
1213
1214
1215
1216
1217
1218
1219
1220 
1221 
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232

print*,’Execution Aborted’
STOP

endif
cxx endif
c
5050 continue 

c
rewind (nf2) 
do 5070 i = 1, nlnods 

read (nf2,2420) hfoln(i), vfoln (i) 
write(mkfr, 2410) oln(i), hfoln(i), vfoln (i)

5070 continue 
close (mkn) 
close (mkfr)

5000 continue 
c
1300 format(i5)
2400 format(i5,2(2x,fl0.5), i5, fl0.3, 2x, i5)
2410 format(i5, 2x, el4.7,2x, el4.7)
2420 format(el4.7,2x, el4.7) 

return 
end

c =  = = = =  = = = =  = = = = = = = = = = = = = = = = = = = 
c... sub mkforf. Creats lcforXXX file names. Used in confor sub. 
c

subroutine mkforf (lcwn, forfn) 
integer lcwn 
character*8 forfn 
write (forfn, 2480) lcwn 

2480 format (’lcfor’, 13.3) 
return 
end

0 = = = = = = = = = = = = = = = = = = = = = = = = = = = = 
c... sub. (mklcfr) constructs file which includes the combined 
c... identical loaded nodes. It operates on the f5 for one complete 
c... load case just before solving, 
c

subroutine mklcfr (nf5, nrf, lnodf5, kchkl, knoadd, noteq,
& icoln, iicoln, ncl, mk, nchel, inchel, lnodt, oln, ioln,
& hfoln, ihfoln, vfoln, ivfoln, chf, ichf, cvf, icvf, chfoln,
& ichfoln, cvfoln, icvfoln, lcwn, chlcwn, lcfnd, forfn) 

c
integer nf5, nrf, lnodf5, kchkl, knoadd, noteq,icoln,

& lcwn, chlcwn, i, j,
& ncl, mk, nchel, lnodt, oln 

c
integer ihfoln, ivfoln, ichf, icvf, ichfoln, icvfoln, iicoln,

& inchel, ioln 
c

real hfoln, vfoln, chf, cvf, chfoln, cvfoln
dimension hfoln(ihfoln), vfoln(ivfoln),chf(ichf),cvf(icvf),

& chfoln(ichfoln), cvfoln(icvfoln),icoln(iicoln),nchel(inchel),
& oln(ioln) 

character*7 lcfnd 
character*8 forfn

c... nrf is closed in (cloads) sub.....
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1233 c
1234 open (nrf, file = ’lefored’, status = ’unknown’)
1235 rewind (nrf)
1236 rewind (nf5)
1237 c...... print*,’lnodf5 = \lnodf5
1238 do 6010 i = 1, lnodf5
1239 read (nf5,2410) oln(i), hfoln(i), vfoln(i)
1240 6010 continue
1241 c
1242 rewind (nf5)
1243 rewind (ncl)
1244 kchkl = 0
1245 knoadd = 0
1246 noteq = 0
1247 c
1248 do 6020 j = 1, lnodf5
1249 c print*,’in 7020 &&&&&&&&&&&&&’
1250 read (nf5, 2410) icoln(j), chfoln(j), cvfolnQ
1251 c print*,’icoln(’j ,’) =  ’,icoln(j)
1252 c print*,’chfoln(’,j,’) =  ’,chfoln(j)
1253 c print*,’cvfoln(’,j,’) = ’,cvfolnQ
1254 chf(j) = chfoInQ
1255 cvf(j) = cvfolnQ
1256 c print*,’before if kchkl .ne. 0 ..’
1257 c print*,’kchkl = ’,kchkl
1258 if (kchkl.ne.0) then
1259 rewind (ncl)
1260 do 6030 mk =  1, kchkl
1261 c print*,’I am in 7030 # # # # # # # # # # # # # #
1262 read (ncl, 1300) nchel(mk)
1263 c print*,’nchel(’,mk,’) = ’, nchel(mk)
1264 c print*,’icoln(’,j,’) = ’, icolnQ
1265 if (icolnQ .eq.nchel(mk)) then
1266 c print*,’I am within if icoln =  nchel-1 am going to
1267 go to 6020
1268 endif
1269 6030 continue
1270 endif
1271 c
1272 if (j.eq.lnodf5) then
1273 write (nrf, 2410) icoln(j), chf(j), cvfQ
1274 noteq = noteq + 1
1275 go to 6020
1276 endif
1277 c
1278 do 6040 i = j +1, lnodf5
1279 c print*,’in 6040 .... ’
1280 if (icolnQ .eq.oln(i)) then
1281 c print*,’before addition within 6040’
1282 c print*,’chf(’,j,’) = ’,chf(j)
1283 c print*,’cvf(’j ,’) = ’,cvf(j)
1284 chf(j) = chf(j) + hfoln(i)
1285 cvf(j) = cvfQ + vfoln(i)
1286 c print*,’after addition within 6040’
1287 c print*,’chf(’,j,’) = ’,chf(j)
1288 c print*,’cvf(’j , ’) = ’,cvfQ
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1289 knoadd = knoadd + 1
1290 c print*,’knoadd = ’.knoadd
1291 c print*,’before if knoadd.eq.l
1292 c print*,’kchkl = ’.kchkl
1293 if (knoadd.eq.l) then
1294 kchkl =  kchkl + 1
1295 write (ncl, 1300) icolnQ
1296 c print*,’into chklist ’,icoln(j)
1297 endif
1298 endif
1299 6040 continue
1300 c
1301 c print*,’Just after 6040 ..before if knoadd.eq.O.’
1302 c print*,’noteq = ’,noteq
1303 if (knoadd.eq.O) then
1304 noteq = noteq + 1
1305 endif
1306 c print*,’Just after 6040 .. after if knoadd.eq.O.’
1307 c print*,’noteq = ’,noteq
1308 c
1309 knoadd = 0
1310 c print* ,*************** into r£3 ******************>
1311 write (nrf, 2410) icoln(j), chf(j), cvf(j)
1312 c print 2410, icolnQ, chf(j), cvf(j)
1313 c
1314 6020 continue
1315 c print*,’kchkl = ’.kchkl
1316 c print*,’noteq = ’.noteq
1317 lnodt = noteq + kchkl
1318 c print*,’Inodt = ’,lnodt
1319 print*,’load vector assembly file for this load case ...’
1320 print*,’file: lcfored ...... constructed ...’
1321 1300 format (i5)
1322 2410 format(i5, 2x, el4.7, 2x, el4.7)
1323 return
1324 end
1325 c =  = = = = = = = = = = = = = = = = = = = = = = = = = = =
1326 c... sub. bulcfo . Back Up Load Case FOrce file.
1327 subroutine bulcfo (lcwn, lnodf5, mkfr, nf5, oln, ioln,
1328 & hfoln, ihfoln, vfoln, ivfoln, forfn)
1329 integer lcwn, lnodf5, mkfr, nf5, oln, i
1330 c
1331 integer ihfoln, ivfoln, ioln
1332 c
1333 real hfoln, vfoln
1334 dimension hfoln(ihfoln), vfoln(ivfoln), oln(ioln)
1335 character*8 forfn
1336 c.... print*,’in bulcfo/ mkfr is only used, op&closed/ mkfr = ’,mkfr
1337 call mkforf (lcwn, forfn)
1338 open (mkfr, file = forfn, status = ’unknown’)
1339 rewind (mkfr)
1340 rewind (nf5)
1341 read (mkfr, 1300) lnodf5
1342 do 6000 i = 1, lnodf5
1343 read (mkfr, 2410) oln(i), hfoln(i), vfoln(i)
1344 write(nf5, 2410) oln(i), hfoln(i), vfoln(i)
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1345 6000 continue
1346 close (mkfr)
1347 1300 format (i5)
1348 2410 format(i5, 2x, el4.7, 2x, el4.7)
1349 return
1350 end

1352 c.... subroutine cloads .. constructs the loads array after reducing lcforXXX
1353 c.... This operates on lcfored file which has total no. o f  lines" = lnodt,(from
1354 c....mklcfr subroutine.
1355 c.... (call vecnul) is to be called every time needed out of this routine
1356 c
1357 subroutine cloads (nrf, lnodt, oln, ioln, nodnum, dofnod, nf,
1358 & inf, jnf, hfoln, ihfoln, vfoln, ivfoln, work, ¡work, loads,
1359 & ¡loads)
1360 integer nrf, lnodt, oln, nodnum, dofnod, nf, i, j, k
1361 integer ihfoln, ivfoln, iwork,ioln, inf, jnf, ¡loads
1362 real hfoln, vfoln, work
1363 c
1364 double precision loads (iloads)
1365 dimension hfoln(ihfoln), vfoln(ivfoln), work(iwork),oln(ioln),
1366 & nf(inf,jnf)
1367 c
1368 print*,’no. of loaded nodes for this load case = lnodt
1369 c
1370 c print*,’in cloads.. nrf is only used/ nrf = ’, nrf
1371 rewind (nrf)
1372 do 7000 i = 1, lnodt
1373 c print*,’into 7000--------- ’
1374 read (nrf, 2410) oln(i), hfoln(i), vfoln(i)
1375 nodnum = oln(i)
1376 do 7010 j = 1, dofnod
1377 if (j.eq.l) then
1378 work(j) = hfoln(i)
1379 endif
1380 if (j.eq.2) then
1381 work(j) = vfoln(i)
1382 endif
1383 7010 continue
1384 c
1385 do 7020 j = 1, dofnod
1386 k = nf(nodnum, j)
1387 if (k.eq.0) then
1388 go to 7020
1389 endif
1390 loads(k) = work(j)
1391 7020 continue
1392 7000 continue
1393 c
1394 c print*,’out of 7000 . & closing nrf...’
1395 C..... CLOSING NRF unit no.
1396 close (nrf)
1397 2410 format(i5, 2x, el4.7, 2x, el4.7)
1398 return
1399 end
1400 c =  = = = = = = = = = = = = = = = =
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1401 c.... subroutine for solution and generating (radis).
1402 c
1403 subroutine solrad (sysk, isysk, jsysk, loads, iloads, totdof,
1404 & hband, ¡test, totnod, dofnod, nf, inf, jnf, radis, iradis,
1405 & j radis, x, be)
1406 double precision sysk(isysk,jsysk),radis(iradis,jradis),x(ix),
1407 & loads (iloads)
1408 dimension nf(inf, jnf)
1409 integer isysk, jsysk, iloads, totdof, hband, itest, totnod,
1410 & dofnod, nf, i, k, inf, jnf, be, iradis, jradis
1411 c
1412 c print*,’.............................’
1413 c print*,’subroutine CHOSOL called’
1414 print*,’equation solution in progress - please wait...’
1415 c print*,’.............................’
1416 call chosol (sysk,isysk,jsysk,loads,iloads,totdof,hband,itest)
1417 c print*,’return from CHOSOL........ ’
1418 print*,’solution : done.......... ’
1419 do 8000 i = 1,totnod
1420 do 8010 k = 1,dofnod
1421 if(nf(i,k).ne.O)then
1422 x(k) = loads(nf(i,k))
1423 radis(i,k) = loads(nf(i,k))
1424 else
1425 x(k) = O.OdO
1426 radis(i,k) = O.OdO
1427 endif
1428 8010 continue
1429 8000 continue
1430 c
1431 c........................................................................
1432 c do 8020 i = 1, totnod
1433 c do 8030 k = 1, dofnod
1434 c if (nf(i,k).ne.0) then
1435 c print*,’nf(’,i,’ ,’,k,’) = ’,nf(i,k)
1436 c print*,’loads(’,nf(i,k),’) = ’,loads(nf(i,k))
1437 c endif
1438 c8030 continue
1439 c8020 continue
1440 c........................................................................
1441 c do 8040 k =  1, dofnod
1442 c do 8050 i =  1, totnod
1443 c print*,’displacement (’,i,’ ,’,k,’ ) is :’
1444 c print 1290,radis(i,k)
1445 c8050 continue
1446 c8040 continue
1447 c
1448 return
1449 end

1451 c... subroutine for writting output results into (ic) file for FEMVIEW
1452 c
1453 subroutine outfv (totnod, nout, radis, iradis, jradis,
1454 & dofnod, icontr)
1455 double precision radis (iradis, jradis)
1456 integer totnod, nout, dofnod, icontr, i, k, uadis, jradis
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1457 c
1458 do 8060 i = 1, totnod
1459 write (nout, 1250)i,(radis(i,k),k = l,dofnod)
1460 8060 continue
1461 write (nout, 1300) icontr
1462 1250 format(2x, i5, 3(8x,el4.7))
1463 1300 format (i5)
1464 return
1465 end
1466 c= =  = =  =  =  =  =  =  = =  =  =  = = = = = = = = = = = = = = =
1467 c... subroutine for saving results for post analysis of pressure profile
1468 c
1469 subroutine savpa (fname, orof, nengn, lef, radis, iradis,
1470 & jradis, engnfo, iengnfo)
1471 integer engnfo, iengnfo, orof, nengn, lef, i, iradis, jradis,
1472 & totengn
1473 c
1474 double precision radis (iradis, jradis)
1475 dimension engnfo(iengnfo)
1476 character* 10 fname
1477 read (lef, 2440) fname
1478 open (orof, file = fname, status = ’unknown’)
1479 print*,’results into load case file ... file name: ’, fname
1480 rewind (orof)
1481 rewind (nengn)
1482 read (nengn,1300) totengn
1483 do 99000 i =  1, totengn
1484 read (nengn,1300) engnfo(i)
1485 99000 continue
1486 do 99010 i = 1, totengn
1487 write(orof, 1290) radis(engnfo(i),l)
1488 c print*,’writting into fname....... ’
1489 99010 continue
1490 close (orof)
1491 1290 format (el4.7)
1492 1300 format (i5)
1493 2440 format (alO)
1494 return
1495 end
1496 c =  = = = =  = =  = = = = = = = =  = = = =  = = = = = = = = =
1497 c... subroutine for checking all load case are done. Verify itlc vs m.
1498 c
1499
1500 c
1501
1502 c
1503
1504 c
1505
1506
1507
1508
1509
1510
1511
1512

subroutine chanlc (m, lcwn, mcowlc, chlcwn, docnt, iecnt)

integer m, lcwn, mcowlc, chlcwn, docnt, iecnt, j

print*,’check for another load case ...’ 
print*,’mcowlc = ’.mcowlc 

j = chlcwn - m + 1 
if (mcowlc.eq.j) then

if ((docnt.eq.l).and.(docnt.eq.iecnt)) then
> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * >

print*,’No. of Loops on CHOSOL ... Check: PASS’ 
print*,’End of Piston Analysis ...’
print* ’’fr**************************************** 
print VEnd of Analysis.......AUTO STOP : PASS’
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1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

>****************************************> 
c... Next STOP is AUTO .. NEVER DELETE ..

STOP
elseif (docnt.eq.l) then

P * 5****************************************>

print*,’No. of Loops on CHOSOL ... Check: PASS’ 
print*,’End of Piston Analysis ...’ 
print*’****************************************> 
go to 9020

elseif (docnt.eq.iecnt) then
print* ,****************************************> 
print*,’No. of Loops on CHOSOL... Check: PASS’ 
print*,’End of Cylinder Analysis ...’ 
print* ’’fr***************************************’ 
print*,’End of Analysis...... AUTO STOP : PASS’
pj.jjj£* >****************************************>

c... Next STOP is AUTO .. NEVER DELETE ..
STOP

endif
print*,’ERROR7: Number of Loops on CHOSOL ... Check: FAILED’ 
print*,’Execution Aborted...’
p|-{n f * > * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * >

c... Never Delete the next STOP
STOP

endif
9020 return 

end

c... subroutine for recovery of sysk from dsysk before next solution, 
c

subroutine recovr (oisysk, ojsysk, sysk, isysk, jsysk,
& dsysk, idsysk, jdsysk)
integer oisysk, ojsysk, 1, lm, isysk, jsysk, idsysk, jdsysk 
double precision sysk(isysk, jsysk), dsysk(idsysk, jdsysk) 

c
c open(93, file =  ’recovsysk’, status = ’unknown’) 
c open(91, file = ’orsysk’, status = ’old’) 
c rewind(93) 
c rewind(91)

print*,’sysk : start recovery .... ’ 
do 90301 = 1, oisysk 

do 9040 lm = 1, ojsysk 
sysk(l,lm) = dsysk(l,lm) 

c write(93,*) 1, lm, sysk(l,lm)
c read(91,*) 1,1m, sysk(l,lm)
9040 continue 
9030 continue 
c close(93) 
c close(91)

print*,’sysk: end recovery .... ’ 
c

return
end

c... subroutine to force the program to "STOP", should the (chanlc) sub. 
c... fades to stop or acknowledge, (i.e. slips)
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1569 c (Force To Stop On FiNish)
1570 subroutine ftsofn (docnt, iecnt)
1571 integer docnt, iecnt
1572 if (docnt.eq.iecnt) then
1573 printVERROR8: ANALYSIS PROGRAM FAILED TO AUTO STOP.’

y  ̂ print* ,*********************************************,
1575 print VSORRY: Subroutine ftsofn ACTIVATED MANUAL STOP.’
1576 print*,’ = = = = = = = = = = = = = = = = = = = = = = = ’
1577 STOP
1578 endif
1579 return
1580 end
1581 c =  = = = = = = = =  = = = = = = = = = = = = = = = = = = = = = =
1582 c... subroutine for nulling sysk and dsysk before next geometry if any.
1583 c
1584 subroutine nulsys (oisysk, ojsysk, sysk, isysk, jsysk,
1585 & dsysk, idsysk, jdsysk)
1586 integer oisysk, ojsysk, null, nullm, isysk, jsysk, idsysk, jdsysk
1587 double precision sysk (isysk, jsysk), dsysk (idsysk, jdsysk)
1588c
1589 print*,’sysk, dsysk : null start .... ’
1590 do 29030 null = 1, oisysk
1591 do 29040 nullm = 1, ojsysk
1592 sysk(null,nullm) = O.OdO
1593 dsysk(null,nullm) = O.OdO 
159429040 continue
159529030 continue
1596 print*,’sysk, dsysk : null end
1597c
1598 return
1599 end
1600c =  = = = = = = = = = = = = =
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Mathematical Analysis of Optically Powered Quartz 
Resonant Structures in Sensor Applications

K. T. V. GRATTAN, A. W. PALMER, N. D. SAMAAN, a n d  F. ABDULLAH

A b s t r a c t — A  mathematical analysis of quartz resonant structures 
used in fiber optic sensor systems and driven optically is undertaken 
using analytical and finite element methods. A study was made simu-
lating photothermal excitation of the structure to study important pa-
rameters relating to heat flow, the input optical duty cycle, the maxi-
mum displacement and the frequency-load relationship, and 
comparisons made w ith the results of experimental investigations. The 
extension of such work to other materials used in resonant sensor de-
vices is discussed.

I. I n t r o d u c t i o n

A. General Introduction

INTENSIVE research work over the last several years 
has resulted in the publication of many schemes for the 

sensing of important physical and chemical parameters by 
optical means, using fiber optic systems. Such work has 
been reviewed by a number of authors [1]—[3] and as the 
technology has begun to mature, the directions for future 
research are becoming more clear. For example, consid-
erable interest has been shown in systems which do pro-
vide an output in a nonanalog form and the transition of 
this new technology into the working environment (with 
the necessary retraining o f staff involved) may be eased 
by the use of sensor concepts and practices familiar from 
electrical and electronic sensor schemes to produce so- 
called “ hybrid” fiber optic sensors. Hence the specific 
advantages of optical sensors in terms of their immunity 
to interference, inherent safety, etc., can more clearly be 
appreciated, and their adoption could become more wide-
spread.

B. Quartz Resonators
The piezoelectric quartz resonator has been used as a 

frequency standard for many years and the frequency sen-
sitivity to strain/stress in quartz oscillators has been used 
as the basis of a number of conventional sensors, for force 
and pressure measurement in particular. Quartz has a high 
Q  factor, is readily available due to its use in conventional 
sensors and in addition it has good optical properties. It 
is very stable, can sustain both compressive and tensile
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stresses, and has a low aging rate. Thus is it not surprising 
that optically based (in addition to conventional electri-
cally driven) quartz sensors have been developed and de-
scribed in the literature for the measurement of force and 
pressure [4]—[ 12]. Quartz crystal resonators have the po-
tential to be used in any sensor scheme where the param-
eter to be measured can be converted to a stress effect in 
the crystal and thus to a corresponding resonant frequency 
change. As a result, there is a need to investigate these 
devices fully to extract their potential for optical sensor 
applications, to benefit from their digital form of (fre-
quency) information output.

C. Requirements
In spite of the usefulness of the quartz element as a 

sensor, as yet little mathematical analysis of the perfor-
mance and potential of such devices in sensor applications 
has been undertaken. Some authors [6]—[8] have empha-
sized, in their analyses, the resonant frequency and mode 
shapes of simple structures in quartz based sensors for 
different uses. In this paper, the more detailed analytical 
techniques recently made available (including the use of 
the finite element method) are implemented to model an 
optically driven quartz crystal plate, typical of that used 
in the fiber optic sensor schemes discussed previously by 
some of the authors [10] and other workers [2], [9], to 
yield a fuller assessment of various physical aspects of a 
prototype sensor scheme. In such an analysis, it is con-
sidered important to use a practical and experimentally 
demonstrated example as the basis of the verification of 
the model and thus make comparison with actual results 
of an experiment. Thus it could then be used more gen-
erally and widely for its principle objective, the design of 
resonator sensor systems without recourse to detailed ex-
perimental investigation of preprototype devices. Addi-
tionally, the modeling is not limited only to one material, 
such as quartz, and the characteristics o f other important 
resonant sensor materials, e .g ., silicon [19] can equally 
be predicted. Thus this leads to the development of a 
valuable tool for the sensor designer.

II. P h y s i c a l  D e s i g n  C o n s i d e r a t i o n s

A. Theoretical Background—Elementary Considerations
In this modeling exercise the sensors of interest arc 

those based on a vibrating quartz crystal executing a flex-
ural mode of vibration, such as the practical systems rc-
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ccntly realized and reported in literature [4|. |9 |. [I2 |. A 
schematic diagram of the crystal to be modeled and typi-
cal of such sensor elements is shown in Fig. I. Dimen-
sions used are those of McGlade et al. and Mallalieu [4], 
[13], where available, which are similar to the sensor ele-
ment size in the work of Grattan et al. [10]. It is assumed 
that the quartz crystal is clamped at both ends and it is 
driven optically by light from an input fiber. Thus the 
quartz crystal vibrates due to the photothermal effect [9], 
as it is coated with a thin layer of a material which absorbs 
the incident optical power. The material is chosen to be 
absorbant at a wavelength of the light source (most con-
veniently a LED) causing the resonance in the crystal, 
where the modulation frequency is the resonant frequency 
of the quartz crystal. The absorption of the light over the 
period that the source is energized heats the crystal and 
thus an ac stress component is applied in addition to the 
dc stress which is present due to the axial load generated 
by the measured parameter. Usually the latter effect is en-
larged by the special mechanical support used which is 
designed as appropriate for a particular specific experi-
mental application. A continuous stream of pulses will 
cause the crystal to vibrate at its resonant frequency, 
which is primarily a function of its physical parameters 
and geometry. The resonant frequency is given by [12]:

fo  =  1.028 [r//2] [£ /p ]‘/2 (1)
w here/0 is the resonant frequency, t is the thickness, / is 
the length o f quartz crystal, £  is the Young’s Modulus, 
and p is the mass density. The effect of the axial force on 
the resonant frequency is well known and quoted in the 
literature [6]—[8]. The frequency of the fundamental /  
when a dc stress is applied along the length of the crystal 
is given by [12]:

f l = / 5  +  [ 5 / p A2] (2)
where the effective length l, A / /  = ( 4 /3 ) ,  and 5 is the 
tensile stress applied along the length of the quartz crys-
tal.

B. Discussion o f  Previous Work ^
A simple theoretical analysis of the motion, resonant 

frequency, and mode shapes of a quartz crystal clamped 
at both ends and vibrating in the flexural mode has pre-
viously been reported [6], [7], A modified approach is 
mentioned by Albert [6], which uses a variation of the 
Rayleigh Method to determine the resonant fequency and 
the mode shapes, assuming simple harmonic motion. The 
results obtained were in agreement with those published 
by Paros [8] taking the same equation describing the mo-
tion of the quartz crystal experiencing vibration in the 
flexural mode. On the other hand, other systems have been 
implemented to measure the resultant force on the basis 
of driving a quartz crystal optically and electrically, and 
agreement was found with the frequency/load relation 
published by Mallalieu [13]. In the work of these authors, 
the photothermal effect has been analyzed in more detail 
to include the temperature profile through the quartz and
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Fig. 1. Schematic diagram of the quartz plate element and optical fiber 

providing incident energy.

the nichrome coating which acts as the optical absorber. 
A brief analysis is also shown in the work of Dieulesaint 
et al. [11] with some practical considerations. McGlade 
et al. and Mallalieu [4], [13] also show the frequency/ 
load response o f the optically driven crystal vibrating un-
der the same conditions as mentioned above. Grattan et 
al. [10], [14] discuss an experimental optically driven res-
onator system where the resonant frequency is determined 
by the coupling 'of light through the crystal from a criti-
cally cut fiber just below the crystal by means of the eva-
nescent wave emerging from that fiber. The analysis to be 
discussed has implications for this type of experimental 
system.

C. Aims and Objectives o f  This Work
The objectives of this work described in this paper are 

as follows.
The development o f a computer program simulating the 

photothermal conversion due to the absorption of optical 
energy in order to study the sensitivity of the process, in 
addition to studying the heat flow (temperature profile) 
through the thickness of the quartz crystal, by means of 
the finite element method.

The study o f the effect of duty cycle o f the input signal 
(a modulated optical signal) on a prescribed displace-
ment, assuming that the average power of the input signal 
is fixed. The practical consequences of such conditions 
are also investigated.

The investigation of the resonant frequency of the quartz 
structure as well as the frequency-load relationship, both 
determined using the finite element method. Thus, mode 
shapes can be deduced and in particular the first mode of 
vibration.

The theoretical determination of the displacement of the 
driven quartz for a constant optical power input under both 
static and dynamic conditions using two simple analytical 
methods in addition to the finite element approach.

D. Development of  the Model
A block diagram of the energy conversion process in 

such sensors is show-n in Fig. 2. The optical input power 
is modulated via the appropriate circuitry at a frequency 
which is the resonant frequency of the quartz structure.
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Fig. 3. Schematic diagram of the cross section through the quanz/ni- 
chrome structure.

This modulated output is incident on the quartz which is 
coated by an absorbing nichrome layer, yielding a tem-
perature rise at the quartz/nichrome interface causing the 
crystal to deflect. The form of the temperature rise is the 
fundamental component of the input modulated power.

The schematic diagram illustrating a section through the 
sensor is shown in Fig. 3. The modulated optical power 
travels through the thickness of the quartz with no dis-
turbance until it reaches the nichrome layer at the quartz/ 
nichrome interface, where it is assumed all the optical 
power is absorbed. The nichrome layer has to be thick 
enough in order to absorb all the optical power, yet thin 
enough to ensure a time constant less than the period of 
the modulated input signal. No heat is assumed to travel 
back, away from the quartz/nichrome interface and tem-
peratures at both face 1 and face 2 are assumed to be at 
the reference room temperature. The bottom face is as-
sumed to be an infinite heat sink.

The dimensions o f the quartz crystal studied are as 
shown on Fig. 1. Being typical of crystals used in recent 
experimental studies, they yield resonant frequencies in 
the tens of kilohertz range, which are easily measured op- 
toelectronically. The ^r-axis is defined as being along the 
length of the quartz, the y-axis along the breadth of the 
quartz and the z-axis (thickness) is perpendicular to the 
paper (out of plane). The clamping axes are along the y- 
axis in the xy-plane at both ends.

The objectives described require a detailed review of 
the work of Mallalieu et al. [9] by solving Fourier heat 
equations governing the photothermal conversion, finite 
element analysis o f the heat flow through the quartz thick-
ness and the implementation of Fourier analysis applied 
to a pulse from a source of fixed average input power. 
The latter involves the Fourier analysis of a pulse train 
input, as used in the experiment of McGlade et al. [4], 
As the fundamental component of this signal is driving 
the quartz at its resonant frequency, then at a constant 
average input power, the magnitude of the fundamental 
component of input power is given by:

v =  (P  sin (k ir ) ) /k x  (3)

where k is the duty cycle of the modulated input signal, 
and P is the average input power in milliwatts.

The first analytical method used to determine the max-

imum displacement is to approximate the quartz to a sim-
ple beam, and a uniform temperature increase will cause 
the quartz to increase its length [15] by A/, which is given 
by:

A/ =  a (A  T )l  (4 )

where a  is the linear thermal expansion coefficient, AT is 
the increase in temperature, and / is the original length of 
the bar. As shown in Fig. 4(a), the linear temperature dif-
ferential between the top and bottom surface of the quartz 
results a curvature of the beam, which gives a lateral de-
flection. The change in temperature, in this case due to 
the absorption of optical power, causes a rotation in the 
top and bottom sides of the quartz with respect to each 
other through an angle dd where:

« =  £ =  - [ a ( r 2 -  r , ) / r ] .  (5 )

Further, 7, and T2 are the top and bottom surface tem-
peratures, t is the thickness of the quartz crystal, k  and 
dO/dx  represent the curvature of the deflection of the 
beam, which in tum corresponds to the static deflection 
Fig. 4(b).

The photothermal analysis showed that the temperature 
profile through the thickness of the quartz has a local skin- 
effect characteristic, i .e ., the temperature drops exponen-
tially and falls aways within the first few tens of micro-
meters through the thickness, from the nichrome quartz 
interface as shown in Figs. 3 and 5. Due to this effect, a 
second analytical method was used which assumes the 
quartz crystal being artificially divided into two materials, 
each having different linear expansion coefficient a] and 
a 2, bonded together at a layer (which is few tens of mi-
crometers away from the quartz-nichrome interface, 
through the quartz thickness, the z-axis), yielding a thick-
ness r, at 25 ^m and thickness t2 at 100 /¿m where /, + t2 
is the total thickness of the quartz as shown in Fig. 4(b). 
Since the 100-^m thickness is experiencing no rise in tem-
perature. then the linear thermal expansion coefficient of 
this thickness is assumed to be zero and the linear thermal 
expansion coefficient of the 25-pim thickness to be that of 
the quartz. This is analogous to a bimetallic strip. The 
curvature of the crxstal due to such an effect is given by 
H6|:



/.RATTAN tt  a i :  ANALYSIS OF OPTICALLY POWFRKD QUARTZ RHSONANT STRUCTURES

(a) (b)

Fig. 4. Schematic of thermal effect on the beam, (a) Temperature gradient 
applied to the quartz beam, (b) Curvature due to the thermal effect.

Fig. 5. Temperature profile through the quartz plate as a function of its
thickness.

K
6(a| -  a2)r

(E . t ]  -  E2t \ f  
E,E2 r,r2(r, +  r2)

+ 4(f, + r2)
(6)

where

T temperature rise of the bimetallic strip,
k curvature,
q, linear thermal expansion coefficient o f top ma-

terial,
q 2 linear thermal expansion coefficient of bottom

material,
£ j, Ei the Young modulus of both thickness (equal in 

this case),
t total thickness of the crystal ( =r, +  f2).

In both analytical methods described above, the radius 
of the curvature R is given by

R =  \ / k . (7 )

From simple geometry, and for given geometrical and 
physical properties of the quartz crystal, the lateral de-
flection can be calculated. The dimensions used herein 
approximate to those of the experimental configuration of 
Mallalieu et al. [9] and McGlade et al. [4], being slot 
length / = 7 mm, total breadth d = 1 . 6  mm, and thickness 
t = 0.125 mm.

Finally, a model of this representative quartz crystal

developed using the finite element method was employed. 
The finite element method, in general, being an extension 
of the matrix displacement method, is particularly pow-
erful for solving a differential equation, together with its 
boundary conditions over a domain of a complex shape 
[17], The process, therefore, is to represent the domain 
by a large number of "finite” elements of simpler shape 
(if the domain is a complex one). This finite number of 
elements have associated with them nodal points. The 
larger the number of nodes per element, the more sophis-
ticated the element. Assuming an approximate variation 
of the function of interest over an element, the function 
can be obtained in terms of the nodal values of that func-
tion for a particular element.

In this way, various important parameters were deter-
mined, namely the resonant frequency and the change in 
that frequency due to applied load by introducing an ini-
tial stress in the beam, as well as the static deflection by 
assuming a temperature loading. In choosing an element, 
it is necessary that the function (displacement being the 
parameter of interest in this case) converges with an in-
crease in mesh refinement, i.e ., with an increase of the 
outlines o f the elements used to model the object (struc-
ture) of interest. The result of this converging (confirm-
ing) type of element is shown in Fig. 6(a), but a noncon-
verging type of element will result the behavior shown in 
Fig. 6(b), while Fig. 6(c) shows a partially converged 
function. The use of an element of the type producing 
such behavior should be avoided. Hence, if any type of 
element is chosen, the discritization of the structure has 
to be made such that a badly shaped element, (among the 
chosen type), does not occur, i.e ., keep the shape of the 
chosen type of element as equilateral as possible. Other-
wise numerical errors in the calculation can occur if a 
badly shaped element is chosen, such as nonequilateral 
triangle, or a distorted square element, especially at its 
comers.

The quartz crystal was assumed to be a thin plate struc-
ture and was discretized into 52 sem iloof elements as 
shown in Fig. 7, having 8 nodes each (one at each comer 
and four at midsides). The structure was assumed to be 
clamped at both ends in a similar way to the experimental 
configuration and temperature loading was implemented 
by assuming a temperature gradient through the thickness 
of the quartz plate. The displacement at the center of the 
structure was monitored. The 52-element mesh was in-
creased by approximately a factor of 4 for better accuracy 
of the results. The displacement calculated thereby was 
almost the same as in case of the 52-element mesh.

Since the quartz crystal was considered to be experi-
encing a flexural vibration in its first mode of vibration, 
at the resonant frequency, the system under consideration 
could be approximated to single degree of freedom under 
forced vibration. The maximum deflection under dynamic 
conditions was then given by multiplying the static de-
flection by the (?~factor of the system, where the static 
deflection is calculated by each of the three methods de-
scribed above and comparisons made.

:o 5
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Fig. 6. Convergence of a function using finite element method, (a) Con-
verging function, (b) nonconverging function, (c) a partially converging 
function.
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Fig. 7. Mesh of the structure analysis of the quartz plate showing nodes 
and elements.

III. R e s u l t s

A. Phororhermal Effect: Sensitivity and Duty Cycle
An analysis, similar to that of Mallalieu et al. [9] was 

carried out at a fixed average input power. This analysis 
was applied to explore the sensitivity to the nichrome 
thermal conductivity, as the temperature rise at the ni- 
chrome-quartz interface is greatly dependent on the ther-
mal conductivity of the material with which the quartz is 
coated, in the evaporation process during the preparation 
of the sensor, which can lead to a variable composition 
of the layer. It was found that a 100-percent increase in 
thermal conductivity of the nichrome yields to a 45-per-
cent decrease in the temperature rise at the quartz-ni- 
chrome interface. This in tum governs the maximum de-
flection experienced. The temperature profile for the 
distribution of heat through the quartz thickness was also 
extracted using the finite element method and this showed 
a similar distribution to that given by Mallalieu as seen in 
Fig. 5 where an exponential decay results and the tem-
perature (ac component) drops to zero at a distance of 
about 25 gm through the quartz thickness. A one dimen-
sional heat flow was assumed in the analysis above. Re-
calling (3). the magnitude of the fundamental component 
behaves as a sine function, i.e .. as the duty cycle de-

creases, the magnitude of the fundamental component also 
increases. This leads to a possible useful future experi-
mental investigation of the driving of the sensor at the 
lowest possible practical duty cycle (for a designed de-
flection) whereby pulsed-laser diodes can be used at low 
average power, and thereby lower the cost of the source.

B. Resonant Frequency and Deflection Mode Shape

Using the finite element model, the value of the reso-
nant frequency calculated was as expected, in agreement 
with the analytical values obtained from (1), for the same 
crystal geometry, physical properties, and boundary con-
ditions. A value of 10.3 kHz for an unloaded crystal is 
reported. The same system w'as solved to determine the 
change in frequency due to the applied load by applying 
an initial axial stress to the structure.

Fig. 8 illustrates a graph of the resonant frequency pre-
dicted as a function of load, together with, for compari-
son, the experimental measurement of Mallalieu [13] for 
a similar crystal. The latter experimental condition cannot 
be modeled exactly as precise dimensions o f the quartz 
crystal are not available. The ( t / l 2) ratio especially af-
fects the frequency experienced by the quartz, as seen 
from (1) and (2). Thus, say a 10-percent increase in the 
effective length of the quartz crystal due to the experi-
mental uncertainties and a 4-percent decrease in thickness 
due to manufacturing limitations, will cause the unloaded 
resonant frequency to decrease by approximately 23 per-
cent. Within this constraint the theoretical result shows 
close similarities to the experimental. A linear relation-
ship is seen, as well as an approximate similarity in the 
slope of the theoretical frequency-load relationship to that 
observed experimentally, being 4.9 x  10_4/ 0 g _l and 5.3 
X 10- 4 / 0g _ l. This gives agreement to within 8 percent 
and it is important as the linear relationship o f frequency 
to load is a particularly useful feature of the quartz reso-
nant sensor. The limited theoretical analysis of Kirman 
[12] also revealed a discrepancy of the same order be-
tween the calculated value of resonant frequency and that 
observed experimentally

Fig. 9 shows the mode shape of the fundamental com-
ponent, illustrating the calculated displacement of various 
points along the crystal, where as expected, the maximum 
deflection is at the center of the quartz crystal. This result 
is in agreement with the mode shapes derived theoreti-
cally in the simpler analysis of Albert [6] and is at vari-
ance with the mode shape suggested by Mallalieu [9].

C. Deflection

In this work, the deflection can be calculated assuming 
any arbitrary value of optical power. A value of 4-mW 
average input power as used by Mallalieu [13] was used. 
Three different methods were considered. Equations (5) 
and (7) yield the curvature of the deflected quartz crystal 
calculated assuming a linear temperature gradient through 
the thickness of the quartz. This method results a static 
deflection Z, of 0.24 nm.
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Fig. 8.  G r a p h  o f  r e s o n a n t  f r e q u e n c y  as  a  f u n c t i o n  l o a d  a p p l i e d  ( t h e o r e t i c a l  
a n d  e x p e r i m e n t a l ) .

F ig .  9 .  P r e d i c t e d  first mode shape along the quartz plate using finite ele-
ment method.

An alternative approach is to implement the bimetallic 
strip theory and assume the crystal artificially divided into 
two materials o f different linear thermal expansion coef-
ficients. From (6) and (7), a static deflection of 0.22 nm 
can be calculated which is in close agreement with the 
previous calculation.

The third and final method used to calculate the static 
deflection was the finite element method. Applying a tem-
perature load of the same profile through the crystal thick-
ness as that of Mallalieu [13], it was found to give a max-
imum displacement of 0.10 nm.

Recalling that the quartz crystal is experiencing a flex-
ural vibration in its first mode at the resonant frequency 
of the structure, and approximating the system to a single 
degree of freedom under forced vibration, the maximum 
deflection Zm3X, (at the center of the quartz crystal), under 
dynamic conditions is 0.65 and 0.59 /xm, respectively, 
from the first two methods, and 0.27 ¿xm using the finite 
element method. This assumes a reported value of Q of 
2700 for the quartz [4], and

Zn»* =  Z,Q. (8 )

This latter result is of the same order of magnitude as 
previous results and indicates the high confidence that can 
be placed on such a calculation. This is in closer agree-
ment with a value of “ a few micrometers” for 5.5-mW  
average input power which had been reported from ex-
perimental measurements [18], in contrast to a theoretical 
deflection of 50 ¿xm reported by Mallalieu et al. [9].

Additionally the use of an optical element < 1 ¿xm from 
the crystal in thè evanescent wave coupled device of Grat-
tan et al. [ 10] implied a submicron movement of the crys-
tal (for an optical power of <  1 mW with -  20-percent 
optical/electrical conversion), otherwise its movement 
would be severely damped by collision with the input fi-
ber.

IV. D i s c u s s i o n

Several mathematical models were developed to inves-
tigate theoretically the behavior of a quartz resonant 
structure, similar to that for which experimental results 
were available, and comparisons made.

The uncertainty of the dimensions of the quartz crystal 
used in the experimental configuration does lead to a sig-
nificant difference in calculating the resonant frequency 
and the frequency-load relationship, due to the depen-
dence of the resonant frequency on the thickness ( r ) of 
the quartz crystal and the length squared ( / : ). However, 
both the unloaded resonant frequency and the frequency-
load relationship calculated were in good agreement with 
experimental values, within the dimensional uncertainties 
of the crystal itself.

These factors mentioned may well affect the theoretical 
calculations of the maximum deflection which occurs at 
the center o f the quartz. However, the figures obtained 
for this deflection are of the same order of magnitude as 
those measured experimentally [18], whereas another the-
oretical approach reported by Mallalieu et al. [9] had 
shown a difference by a factor of up to 50. This shows the 
validity o f the theoretical approach described herein.

In the study of the photothermal analysis, it was shown 
that, for a fixed input power and fixed geometrical and 
physical properties o f the sensor, the material used in the 
evaporation process may be a significant factor governing 
the maximum deflection. This is due to the possible vari-
ations in the composition of the actual material coating 
the quartz.

Finally, an additional study was carried out to investi-
gate the effect of the duty cycle of the input signal by 
implementing a Fourier analysis and assuming a constant 
average input power. This analysis showed that the mag-
nitude of the fundamental component of the input signal 
(which is linearly related to the displacement) being de-
pendent of the duty cycle implies that the most economi-
cal use of the average input power is for the lowest prac-
tical duty cycle, to give a specific displacement.

Overall, this work has shown the utility of the tech-
niques described to investigate the resonant sensors dis-
cussed. Such an approach has an obvious application in 
the design of new sensors using the phenomenon de-
scribed and especially in the consideration of microstruc-
tures of comparable dimensions to optical fibers them-
selves in quartz or other materials [19].
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