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ABSTRACT

This thesis is concerned with the application of com-

puter aided measurement techniques to the analysis of electroen- 

cephalographic (EEG) signals. In particular, it deals with the 

detection of spike-and-slow-wave complexes (SAWCs) which are 

characteristic of the onset of an epileptic absence.

Numerous algorithms have been developed to provide the 

above detection and a review of some of the more important of 

these is presented. From this review, an alternative model and 

algorithm are developed based on an FIR (finite impulse response) 

filter, that represents a differentiator in series with a Hilbert 

transformer, followed by a cubic filter, which effectively re-

duces the background noise.

This algorithm, like its predecessors, suffers from the 

difficulty of where the detection levels should be set in order 

to achieve no missed features with no false alarms. An alterna-

tive approach is then investigated based on the Wigner Distribu-

tion, which provides a simultaneous time and frequency domain 

analysis. The results of this work are presented and appear to 

offer significant advantages over the more usual one-domain 

analyses.

Finally, some discussion of the results obtained and 

suggestions for further work are made, mainly in the area of 

improving the computational speed of the Wigner Distribution and

associated SAWC detection algorithms.
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CHAPTER 1

INTRODUCTION

Despite major advances in medical science, the origins 

and treatment of many conditions remain as elusive as they were 

in previous epochs. Disorders of the brain, many of which bring 

with them certain variations in behavioural patterns from the 

accepted norm, are perhaps still some of the least well under-

stood and treatable conditions. In some cases there is an obvious 

physical reason for the disorder (e.g. brain damage, tumour, etc) 

but in many others there is no obvious cause. Perhaps one of the 

most well known of these disorders is epilepsy, to which refer-

ence has been made since the earliest of times.

In comparatively recent times, the medical profession 

has been provided with very effective drugs and electronic diag-

nostic aids to tackle this condition. It is the latter of these 

which forms the subject matter of this thesis. Clearly, the 

objective for any piece of equipment is to be as reliable and 

accurate as possible. This is especially true in the case of 

epilepsy as a wrong diagnosis can involve very serious implica-

tions for the patient. An incorrect positive indication can in 

many ways be more serious than an erroneous false result. Al-

though not life threatening, anybody diagnosed as suffering from 

epilepsy will suffer a considerable disruption to their life; 

e.g. disqualification from certain types of employment, ineligi-
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bility to hold a driving licence, inability to drink alcohol 

(which has an adverse reaction with anticonvulsant drugs), etc.

In addition to the above practical limitations, a 

person with epilepsy may be subjected to an increased level of 

stress. A full tonic-clonic epileptic fit can be a very disturb-

ing and even frightening event to witness. Part of this fear is 

undoubtedly attributable to a lack of understanding of what is 

happening which has been compounded down the ages by such beliefs 

as a fit equates to some form of "demonic possession" (Engel Jr., 

1989). Fortunately, the ideas of possession and mental illness 

are slowly being dispelled but many people still exhibit irra-

tional fear towards those unfortunate enough to suffer this 

affliction. The resulting stress and possible isolation are very 

serious issues which, from the author's own experience, should 

not be underestimated.

It is clear from the above that any diagnostic aid to 

be used for the detection of epilepsy must be highly accurate. 

This however poses considerable problems, not least because human 

identification appears to be based more on an acquired intuitive 

basis rather than any rigorously defined set of rules. This makes 

it very difficult to define a set of criteria and hence develop a 

suitable model on which a decision could be based. Add to this 

the problems associated with the signal itself, which is of very 

low amplitude, non-stationary and, frequently, heavily corrupted 

by noise, and some idea of the magnitude of the problem becomes 

apparent.

One factor which has been generally accepted in recent 

years is the need for long-term monitoring for reliable diagno-
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sis. This can create additional problems in terms of the volume 

of data to be analysed, and the manner in which it is collected; 

it is clearly unreasonable to expect the patient to spend long 

periods in an EEG laboratory physically attached to an EEG ma-

chine. Various techniques have been developed to permit long-term 

monitoring to be conducted in as near a normal environment as 

possible. These have been in the main, based on radio telemetry 

systems where the patient is reasonably free to move around a 

special flat which has been fitted with radio receivers which are 

in turn connected to a central computer.

The approach adopted and reported in this thesis in-

volves a portable microprocessor based instrument. This is used 

to analyse the EEG record in real-time and, ultimately to record 

(on a cassette or other suitable medium) only those portions of 

the record where an abnormality is suspected. The work has con-

centrated on the development of a suitable model and signal 

processing techniques with which to perform the real-time analy-

sis .

A review of some of the previous work in this area has 

been conducted and some of the algorithms and models which ap-

peared to offer some prospect for real-time implementation were 

identified. A few of these were coded and run on a Motorola 68000 

based system with varying degrees of success. From this work, a 

detection model was derived to identify the characteristic 

spike-and-wave complex, based on a Hilbert-transformed differen-

tiator, a cubic filter and a level detector for the spike and a 

separate filter and level discriminator for the wave. The results 

of this work are recorded in Chapters 4 and 5 of this thesis.
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The real-time detection method developed was tested 

with pre-recorded data and produced good results. However, it 

suffered from the common problem of having to trade with missed 

features against false alarms. For zero missed features, a number 

of false alarms arose and for zero false alarms, a number of 

features were missed. From comments made earlier in this chapter, 

neither case is acceptable.

This led to work on an alternative approach. From 

discussions with EEG technicians, it became apparent that human 

observations were in some subtle way based on a simultaneous time 

and frequency domain analysis. The terms "sharp" and "high fre-

quency", "slow" and "low frequency" were constantly intermixed. 

This produced an interest in algorithms which offered such a 

capability and a technique known as the Wigner Distribution was 

identified as a possible candidate. This was implemented in a 

suitable format with quite startling results. A very characteris-

tic output was obtained for the spike-and-wave complex from which 

it was comparatively easy to separate out other types of input 

(e.g. artifact bursts which are the most common cause of false 

alarms). The results of this work are recorded in Chapter 6.

Some work is still required before a fully engineered 

instrument based on the Wigner Distribution would be available 

for field trials. Some suggestions are made for further work at 

the end of the thesis. It is the author's opinion that , based on 

the initial results, the technique could prove to be of consider-

able importance in the future.
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CHAPTER 2

EPILEPSY

2.1 - Introduction

During the last decades, many goals have been reached 

in the scientific world. For example, human beings have already 

put their feet on the Moon and interplanetary spacecraft have 

made what was known about distant planets more clear. Channels 

are dug under seas, organs are transplanted from person to 

person and surgery is carried out on babies still inside their 

mothers' wombs. However, despite all this progress and despite 

surgical interventions and modern drugs that have been synthe-

sized in order to try to eliminate epileptic seizures, which have 

been known for the last 6000 years, these are still causing 

trouble to millions of people all over the globe every day.

Known over the centuries as "the sacred disease" or 

"the falling sickness", epilepsy was and unfortunately still is 

eguated with spirit possession, both as a form of punishment for 

sin and as a type of mental illness. In fact it is just a condi-

tion characterized by recurrent events of cerebral origin, during 

which a disturbance of movement, sensation, consciousness and 

behaviour occurs (Sutherland and Tait, 1969).

New means of communication, including modern medical 

textbooks, have given the public more detailed information about
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many modern diseases, but leave a very high percentage of the 

population uninformed about what epilepsy is and about what to do 

when a colleague at work or a person in the streets has an epi-

leptic attack. For example, Lennox (1960) states that, in the 

fifth century B.C., 2.6% of the "Hippocratic writings" were about 

epilepsy whilst Engel Jr. (1989) states that the 1988 edition of 

the Cecil Textbook of Medicine has a chapter about epilepsy that 

constitutes 0.5% of the whole book.

To provide a full introduction to the subject of epi-

lepsy, a general idea about the different types, their causes and 

consequences, the modern forms of diagnosis and treatment and the 

story of the author's own life as a person who has epilepsy will 

be included in this chapter.

2.2 - Epilepsies and Seizures

2.2.1 - Medical history

According to 0. Temkin, in his book "The Falling Sick-

ness" (1945), the first reference to epilepsy was made about 

6000 years ago in the Babylonian Code of Hamurabi. It was related 

to the laws pertinent to the marriage and employment of people 

who had epilepsy. The Indian writings "Ayurvedic", from the same 

era, also contained a detailed description of epilepsy.

About the year 400 B.C., Hippocrates attributed sei-

zures to a disorder of the brain and he and his disciples decided 

to abandon the term "sacred disease" (this term had been in use 

because of the general belief that those who had epileptic sei-
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zures were possessed by evil spirits or gods and should be treat-

ed by the invocation of occult and religious powers). They knew 

that there was a relationship between skull fractures and sei-

zures involving limbs on the opposite side of the body. The term 

epilepsy became more usual.

In the first century A.D., the Bible has some passages 

that describe typical epileptic seizures, where the patient is 

considered to be possessed by evil (see item 2.2.2). Five cen-

turies later, Galen made another notable contribution by suggest-

ing that there were also extracranial causes. He introduced the 

terms idiopathic or protopathic for epilepsies originating in the 

brain and sympathetic for those originating outside the brain. He 

also introduced the term aura for a certain kind of warning that 

the patient has before the attack.

Although some natural therapies included appropriate 

diet and hygiene, superstition still dominated leading to the 

prescription of human blood, powdered skull, onion and garlic. 

Cauterization of both the occiput and the bregma was advocated. 

Until the nineteenth century, castration was also prescribed, not 

only to prevent genetic transmission of epilepsy but also because 

there was a belief among practitioners of natural medicine that 

some convulsions originated in the testes and that masturbation 

made it worse.

In medieval times, the remarkable insight of 

Hippocrates and Galen disappeared in Europe and the old ideas 

that those who suffered from epilepsy (still known then as "the 

falling sickness") were possessed by evil spirits and should be 

avoided came back. By the sixteenth and seventeenth centuries,
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more humane treatment of epileptic people was advocated by 

Paracelsus and Thomas Willis; the belief that epilepsy was infec-

tious was discarded and other diseases such as smallpox, ergotism 

and syphilis were considered as causes of epileptic attacks in 

some patients.

In 1754, Pedro de Horta, a Spanish physician who 

worked at the Capuchin convent of Los Angeles, a village in New 

Spain, wrote a book totally concerned with epilepsy, called 

Informe Medico-Moral de la Penosissima, y Rigorosa Enfermedad de 

la Epilepsia (A Medico-Moral Account of the Most Painful and 

Rigorous Illness of Epilepsy). The book was published in Madrid 

in 1763. It was a treatise on epilepsy as possession by demons 

(Engel Jr., 1989) .

In 1770, Simon A. Tissot recognized that chronic cere-

bral dysfunction acted as a predisposing factor for epilepsy and 

that this should be distinguished from the provoking cause. He 

also defined idiopathic epilepsy, with known brain injury, as 

different from essential epilepsy, presumably due to an epileptic 

disposition. In 1815, Esquirol defined both grand mal and petit 

mal seizures. In 1824, Calmeil introduced a classification of 

epileptic seizures based on their severity and described ab-

sences and generalized convulsive status epilepticus, while , in 

1825, Bouchet and Cazauvieilh, through the analysis of brains at 

autopsy from patients with epilepsy, described that atrophy of 

the temporal lobes was common. In 1854, Delasiauve, redefined 

idiopathic and symptomatic as these terms are used nowadays. In 

1859, the National Hospital for the Paralysed and Epileptic at 

Queens Square, was founded in London (because members of the
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British royal family had epilepsy). In 1880, after microscopic 

analysis became possible, W. Sommer disclosed that the loss of 

neurons had occurred in brains of epileptic persons. In 1886, the 

neurosurgeon Victor Horsley, helped by Ferrier, resected a 

cortical scar on a patient who had a depressed skull fracture and 

suffered from focal motor seizures, rendering the patient sei-

zure-free .

In 1873, John Hughlings Jackson defined epilepsy as 

follows (Trimble and Reynolds, 1988):

"Epilepsy is the name for occasional, sudden,
excessive rapid and local discharges of the
grey matter."

Major advances in pharmacotherapy came with the intro-

duction of phénobarbital by Hauptmann in 1912 and with the demon-

stration in 1937, by Merritt and Putnam, with phenytoin, that 

antiepileptic drugs could be dissected from their sedative and 

hypnotic properties. (Engel Jr., 1989).

Underlined by the invention of the electroencephalo-

graph (EEG) by Hans Berger in 1929 and supported later by more 

specialized methods such as the depth electrode implantation, 

lobectomy (removal of the temporal lobe) was introduced as a form 

of treatment for epilepsy in medically intractable cases.

Gibbs, Davis and Lennox defined, in 1935, "petit mal 

absences" as brief interruptions of consciousness associated with 

a rhythmic 3 cycles per second discharge of regular spike and 

wave complexes on the EEG.

In 1969, a classification of epileptic seizures, de-
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veloped by Henri Gastaut, was adopted by the International League 

Against Epilepsy (ILAE). In 1981, an International Classification 

of Epilepsies and Epileptic Syndromes was developed by a commis-

sion charged by ILAE and it has been reviewed since then because 

there has been no general agreement (Dam and others, 1987).

During the last two decades, new harmless means of 

detecting brain abnormalities, such as computerized axial tomog-

raphy (the CT scan), magnetic resonance imaging, the magnetoen-

cephalogram and the telemetric EEG, have appeared in the market.

2.2.2 - Religious remarks

The persecution of epileptics and the use of religious 

practices as forms of treatment have been used since the most 

remote times . Temkin (1945), Lennox (1960) and Beran (1987) give 

several examples of religious and historical episodes, where one 

or more of the people involved had epilepsy. Many of these exam-

ples are in the bible and, probably, the most famous is the story 

of Jesus expelling the evil from an epileptic child (Matthew, 

17:14-18; Mark, 9:17-27 and Luke, 9:38-42). The text below corre-

sponds to Luke, 9:38-42 (Holy Bible, New International Version, 

1984) .

38 A man in the crowd called out, "Teacher,I 
beg you to look at my son, for he is my only
child.

39 A spirit seizes him and he suddenly 
screams; it throws him into convulsions so 
that he foams at the mouth. It scarcely 
ever leaves him.

40 I begged your disciples to drive it out, but
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they could not."

41 "O unbelieving and perverse generation",
Jesus replied, "how long shall I stay with 
you and put up with you? Bring your son 
here."

42 Even while the boy was coining, the demon 
threw him to the ground in a convulsion. But 
Jesus rebuked the evil spirit, healed the boy 
and gave him back to his father.

Other cited passages that are possible references to 

epileptic symptoms are: Numbers, 24:4; 1 Samuel, 19:24; Ezekiel 

1:28, 43:3; Daniel 8:17; Acts, 9:4-18 (Saul, who was also called 

Paul, suffers in the road to Damascus) and*Revelations, 1:17. The 

symptoms described may also be provoked by migraine (a severe 

recurring form of headache, often with nausea and disturbance of 

vision), syncope (simple faint) and anorexia (lack of appetite 

for food).

Buddha has been considered epileptic by some authors 

but there is no evidence that his mystical experiences had any-

thing to do with epilepsy. On the other side, according to Len-

nox, Mohammed had seizures from the age of three years old and 

admitted once:

"This is a common affliction of the prophets, 
of whom you know I wish to be counted as one."

Temkin wrote that the Byzantine Christians, in order to 

discredit Mohammed, might have called him epileptic. Temkin and 

Beran have also interpreted mystical experiences by St. Ignatius, 

St. Teresa of Avila, the Mormon prophet Joseph Smith and the 

Hebrew prophets Hosea, Jeremiah, Isaiah and Ezekiel as epileptic.
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There is no proof that a special relationship exists 

between epilepsy and exceptional talents, but Lennox and others 

accept the names of many famous rulers, warriors (probably due to 

traumas caused during fights), philosophers, scientists and 

artists as epileptic, among them Alexander the Great, Caligula, 

Julius Caesar, Peter the Great, Pythagoras, Socrates, Charles 

Dickens, Molière, Pascal, Newton, Nobel, Paganini, Dostoyevski, 

van Gogh, Handel, Tchaikovsky, Beethoven and Truman Capote.

2.2.3 - Epilepsy in literature

Feodor M. Dostoyevsky included epileptic characters in 

the novels The Insulted and Injured, The Idiot, The Brothers 

Karamazov and The Possessed. Silas Marner is George Elliot's 

epileptic character. Michael Crichton gave a wrong idea about an 

epileptic person in the novel The Terminal Man, apologising 

formally in the paperback edition (Engel Jr., 1989). Shakespeare, 

in his plays Othello and Julius Caesar made the main characters 

have fits. In Julius Caesar, Act 1, Scene 2, the following hap-

pens :

CASSIUS: But soft, I pray you. What, did Caesar 
swound ?

CASCA: He fell down in the market-place, and
foam'd at the mouth, and was speech-
less .

BRUTUS: 'T is very like: he hath the falling
sickness.
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2.2.4 - Terminology and definitions

To help the reader to understand the technical vocabu-

lary that will be used in this work, the definitions of some 

specific medical terms will be given below. Except where noted, 

such definitions are based on Engel Jr.'s work (1989). The read-

er, however, shall keep in mind that the main idea, in both 

Chapters 2 and 3, is just to give a very basic introduction to 

the subject. For this reason, the reader is encouraged to refer 

to specialized literature for more detailed information.

1) Epileptic seizures

"Epileptic seizures are the clinical manifesta-
tions (symptoms and signs) of excessive and/or 
hypersynchronous, usually self-limited, abnor-
mal activity of neurons in the cerebral cortex. 
Many types of epileptic seizures occur. The 
behavioral features of an epileptic seizure 
reflect the functions of the cerebral cortical 
areas where the neuronal activity originates 
and spreads. An epileptic seizure may consist 
of impaired higher mental function or altered 
consciousness, involuntary movements or cessa-
tion of movement, sensory or psychic experi-
ences, or autonomic disturbances; it often 
occurs as a combination of dysfunctions and a 
progression of symptoms. Epileptic seizures 
have electrophysiological correlates that 
usually, but not always, can be recorded by a 
scalp enlectroencephalogram (EEG) ... Epileptic 
seizures are so commonly referred to as sei-
zures ..."

In this work, the words epileptic seizure / epileptic 

attack may be replaced by seizure and fit.

2) Epileptic disorders

"An epileptic disorder is a chronic neurologi-
cal condition characterized by recurrent epi-
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leptic seizures. The diagnosis of an epileptic 
disorder implies that a neurological abnormali-
ty responsible for generating epileptic sei-
zures persists between these events."

3) Epilepsy

"The word epilepsy, in general sense, is var-
iously used to refer to the existence of a 
class of symptoms, epileptic seizures. In the 
specific sense, the word epilepsy is used to 
refer only to those conditions of chronic 
recurrent epileptic seizures that can be con-
sidered epileptic disorders. Because there are 
many types of epileptic disorders, it is more 
correct to refer to them as epilepsies."

"... there is no disease named epilepsy. What 
is called epilepsy is the chronic recurrence of 
sudden abnormal reactions of the brain such as 
epileptic seizures... The term 'epilepsy' should 
be used with caution in order to avoid the 
notion of a disease entity. Terms such as 'the 
epilepsies' or 'epileptic seizure disorders' 
are preferable". (Niedermeyer and L. da Silva, 
1987)

In Brazil, 

cerebral dysrhythmia, 

nation.

the word epilepsy is popularly denominated 

Bannister (1987) also uses such a denomi-

4) Ictal, postictal and interictal

"Ictus and ictal event refer to the epileptic 
seizure itself, as identified clinically or 
electrophysiologically. Postictal phenomena are 
transient clinical and/or electrophysiological 
abnormalities in brain function that result 
from the ictus and appear when the ictal event 
has ended. The period of time during which 
postictal symptoms persist (usually seconds to 
a few days) is referred to as postictal period. 
The interictal period is the time between the 
resolution of postictal abnormalities and the 
beginning of the next ictal event."

5) Epileptic focus

"An epileptic focus is defined electrophysio-
logically as the cortical area that appears to 
be the major source of interictal epileptiform
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EEG discharge. EEG epileptiform discharges are 
usually focal, indicating a single epileptic 
focus; bilateral and independent, indicating 
epileptic foci in the two hemispheres; multifo-
cal, indicating three or more epileptic foci; 
or diffuse (either widespread or generalized), 
in which case there is no apparent epileptic 
focus.

6) Aura

"An aura is typically regarded as a warning 
that precedes an epileptic seizure, although 
most auras are now known to actually be the 
beginning of the ictal event."

7) Pseudoseizure

"The term pseudoseizure is used in the general 
sense to denote any nonepileptic event that 
resembles an epileptic seizure."

2.2.4.1 - Definitions of epilepsy

As seen before, the classification of different kinds 

of epilepsy and epileptic seizures have always brought disagree-

ment, controversy and confusion even among the most famous spe-

cialists in the area. As M. Parsonage wrote:

"At the moment it would appear that the whole 
matter remains sub-judice and there seems to be 
little likelihood of any final pronouncements 
in the immediate future" (Laidlaw and others, 
1988) .

For this reason, several definitions of the terms 

epilepsy and seizure, given by different authors, will be listed 

ahead.

1) "...epilepsy is thus a disease of grey 
matter, and has not any uniform seat. It is a
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disease of tissue, not of structure" (Gowers, 
1881) [ref: Niedermeyer and L. da Silva, 1987].

2) "Epilepsy is an occasional sudden, exces-
sive, rapid and local discharge of the grey 
matter of some part of the brain." (H. Jackson, 
1873) [ref: Laidlaw and others, 1988].

3) "Epilepsy is an established tendency to 
recurrent seizures." (Jeavons and Aspinall,
1985)

4) "Epilepsy is a condition characterized by 
recurrent discrete episodes, primarily of 
cerebral origin, in which there is a disturb-
ance of movement, sensation, behaviour or 
consciousness" (Sutherland and Tait, 1969).

5) "Epilepsy is a paroxysmal and transitory 
disturbance of the functions of the brain which 
develops suddenly, ceases spontaneously, and 
exhibits a conspicuous tendency to recurrence" 
(Walton, 1977) .

6) "A person is said to suffer from epilepsy if 
he has a continuing tendency to epileptic 
seizures" (Hopkins, 1985).

7) "There is no disease named "epilepsy". 
Rather, epileptic seizures are abnormal reac-
tions of the brain caused by a large number of 
diseases" (Niedermeyer and L. da Silva, 1987).

8) "Epilepsy is a symptom of a discharging 
lesion, which may be situated in many different 
areas of the brain and be due to many different 
causes" (Bannister, 1987).

2.2.4.2 - Definitions of seizure

1) "Epileptic seizure is a paroxysmal discharge 
of cerebral neurones apparent to the subject 
and/or an observer" (Hopkins, 1985).

2) "An epileptic attack is the manifestation of 
a paroxysmal discharge of abnormal electrical 
rhythms in some part of the brain...Loss or 
impairment of consciousness frequently occurs 
in association with an attack, but a paroxysmal 
electrical discharge may involve certain parts 
of the brain without interfering with con-
sciousness" (Bannister, 1987).
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2.2.5 - Classifications

As prognosis and treatment may be determined on the 

diagnosis of a specific epileptic syndrome, which is based on the 

seizure type and other clinical information, it is useful to 

classify both the epileptic seizures and the epilepsies independ-

ently.

2.2.5.1 - Classification of epileptic seizures

There are basically three types of seizures. Their 

denominations and definitions follow below.

1) Generalized seizures are those in which the first 

clinical changes indicate initial involvement of both hemi-

spheres .

2) Partial seizures are those in which the first clini-

cal changes indicate initial activation of a system of neurons 

limited to part of one cerebral hemisphere.

3) Unclassifiable seizures are those that cannot be 

classified because of inadequate or incomplete information and 

some that defy, until now, classification in other categories.

As a more detailed classification is out of the scope 

of this thesis, a simple and practical classification that 

highlights some fundamental concepts, based on the clinical 

features of fits and differences in their pathophysiology, fol-

lows below. (It is similar to the Classification of Epileptic
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1. GENERALIZED (involvement of both hemispheres)

a. Tonic-clonic (grand mal)

b. Tonic

c. Atonic

d. Absence (petit mal)

e. Myoclonic

2. PARTIAL (focal - involvement of one hemisphere)

i. Without loss of consciousness (simple)

ii. With loss of consciousness (complex)

a. With motor signs (e.g. movement of 

head, eyes, tongue, limbs)

b. With somato- or special sensory symptoms 

(e.g. auditory, gustatory, olfactory, 

visual)

c. With autonomic features (e.g. epigastric 

sensations, nausea, vomiting)

d. With psychic symptoms (e.g. fear, déjà vu, 

jamais vu)

e. With automatisms

3. PARTIAL SEIZURES SECONDARILY GENERALIZED

i.e. clinical or electrical evidence of focal dis-

charge before, during or after the generalized 

seizure

TABLE 2.1 - CLASSIFICATION OF SEIZURES
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4. UNCLASSIFIABLE

Examples in neonatal seizures: rhythmic eye move-

ments, chewing movements and swimming movements.

Seizures that was published by the Commission on Classification 

and Terminology of the International League Against Epilepsy - 

ILAE on 1981.)

2.2.5.2 - Classification of epilepsies

Centuries ago, the epileptic disorders were classified 

according to the type of seizure. For this reason, they have been 

divided into petit mal and grand mal. Later, distinctions were 

made between partial and generalized epilepsies. The specific 

disorder of psychomotor or temporal lobe epilepsy was also recog-

nized. In terms of the respective causes, the epilepsies have 

been classified as primary (idiopathic) or secondary (symptomat-

ic) . These definitions follow below.

1) Primary or idiopathic epilepsies are those in which 

there is no identifiable cause (the patient seems to have an 

inherited liability to seizures which are provoked by genetic

factors).

2) Secondary or symptomatic epilepsies are those that 

can be attributed to identifiable intracranial and/or extracrani-

al lesions.

Primary epilepsy was more common years ago. In fact, it
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Table 2.2 CLASSIFICATION OF EPILEPSIES

1. BY ETIOLOGY (causes)

a. Primary

b. Trauma

c. Perinatal brain damage

d. Tumour

e. Cerebrovascular accident

f. Parasitic disease

g. Infectious disease

h. Metabolic or toxic

i. Other (sleep-related, etc.)

j. Unspecified brain damage

2. GENERALIZED NONCONVULSIVE EPILEPSY

a. Typical absence epilepsy (petit mal)

b. Atypical absence epilepsy

c. Others

3. GENERALIZED CONVULSIVE EPILEPSY 

i. Major epilepsy (grand mal)

a. Tonic-clonic epilepsy

b. Tonic epilepsy

c. Clonic epilepsy

d. Others

4. PETIT MAL STATUS (EPILEPTIC ABSENCE STATUS)

20



5. GRAND MAL STATUS EPILEPTICUS

a. Tonic-clonic status epilepticus

b. Others

6. PARTIAL EPILEPSY, WITH AND WITHOUT IMPAIRMENT OF 

CONSCIOUSNESS

a. Motor signs

b. Sensory symptoms

c. Autonomic symptoms (visceral)

d. Psychic symptoms

e. Others

7. INFANTILE SPASMS

8. OTHERS

was provoked by a lack of knowledge. In the last years, thanks 

to modern methods of investigation, more causes of secondary 

epilepsies have been discovered, which has led to the expansion 

of this group. Sometimes it has been said that all epilepsies are 

secondary because they are caused by some kind of cerebral disor-

der.

Three different international classifications have been 

published during the last two decades, which are: 1) The 1970 

International Classification of the Epilepsies (ILAE), 2) The 

1985 International Classification of the Epilepsies and Epileptic
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Syndromes (ILAE), which is a more sophisticated version of the 

previous one (the word partial has been substituted by localiza-

tion-related) and 3) The 1987 World Health Organization Classifi-

cation on Diseases to Neurology, that allows disorders to be 

classified by etiology (cause) or seizure type and whose main 

feature is to recognize different kinds of status epilepticus.

Table 2.2 shows a condensation of the WHO classifica-

tion (Engel Jr., 1989).

2.2.6 - Causes of epilepsy

There are several diseases that cause epilepsy. The 

most common causes, shown on table 2.3, can be summarized accord-

ing to the age of the patient (Laidlaw and others, 1988).

2.3 - Clinical Manifestations

According to Gloor and Fariello (1988),

"The investigation of the mechanisms that cause 
seizures to suddenly arise in a generalized 
fashion all over the brain has received less 
attention in epilepsy research than studies on 
the cellular mechanisms causing partial (focal) 
epilepsy, where a small group of neurons is 
thought to give rise to localized epileptic 
discharge."

From the homeopathic point of view, both internal and 

external phenomena may provoke the occurrence of seizures. For 

example, Borland (1988) states that in case of women "They (the 

seizures) occur either during or near the period" and in general
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Table 2.3 CAUSES OF EPILEPSY AS A FUNCTION OF AGE

1. NEONATAL (1st. month)

a. Birth injury (cardiac arrest, respiratory 

arrest, perinatal brain injury, 

haemorrhage, etc.)

b. Congenital abnormalities (arteriovenous 

malformation, etc.)

c. Metabolic disorders (hypoglycemia, 

hypocalcemia, etc.)

d. Meningitis and other infection

2. INFANCY ( 1 - 6  months)

a. As above

b. Infantile spasms

3. EARLY CHILDHOOD (6 months to 3 years)

a. Febrile fits (chronic maternal ill health, 

parental subfertility, delivery by Caesarian 

section, etc.)

b. Birth injury (cerebral malformation, etc.)

c. Infection (meningitis, neurosyphilis, etc.)

d. Trauma (intracranial hemorrhage, etc.)

e. Poisons

f. Metabolic defects (hepatic failure, etc.)

g. Cerebral degenerations

4. CHILDHOOD AND ADOLESCENCE

a. Primary epilepsy (hereditary predisposition)
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b. Birth injury

c. Trauma

d. Infection

e. Cerebral degenerations

f. Poisons

5. EARLY ADULT LIFE

a. Trauma (penetrating wounds and closed wounds 

- people most at risk include combatants in 

wars, motorists and their passengers, workers 

on building sites, rugby players, boxers, etc.)

b. Tumour

c. Primary epilepsy (hereditary predisposition)

d. Birth injury

e. Infection

f. Cerebral degenerations

g. Poisons (alcohol, cocaine, insulin, lead, ether, 

insecticides, barbiturates, etc.; withdrawal of 

alcohol, antiepileptic drugs, narcotic analge-

sics, barbiturates and other drugs)

6. LATE ADULT LIFE

a. Vascular disease

b . Trauma

c. Tumour (glioma, meningioma, etc. - growth of 

strange cells, not neurons, in the brain - 

popularly denominated cancer of the brain)

d. Cerebral degenerations
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"there tends to be an aggravation at the new moon". To give the 

reader an idea about the most famous types of generalized sei-

zures (those that involve both hemispheres), that are the absence 

seizure and the tonic-clonic seizure, a resume will be presented.

There are contradictions, even among specialists, 

concerning items such as the duration of the events and the 

occurrence or not of auras at the beginning of a tonic-clonic 

seizure.

2.3.1 - Absence seizure (petit mal)

Petit mal epilepsy is invariably a disorder of child-

hood. It is often associated with contractions of the muscles. 

These contractions are very brief having no meaning in asking 

the patient if he has or not lost consciousness (Hopkins, 1985). 

The patient has no warning of these attacks during which his 

higher mental functions are disturbed to a variable degree.

A typical attack starts and ends abruptly, rarely 

lasting more than 10 seconds. The main ictal events are a cessa-

tion by the child of the ongoing activities and a motionless 

stare. The child's face may look a little pale, the eyes may be 

rotated upwards, the eyelids may flutter and the head may be 

slightly dropped forwards. Posture of the limbs and trunk is 

usually kept in the pre-ictal position avoiding fall of the 

child. After the seizure, the child is usually unaware that an 

absence has occurred and resumes what was being done before. 

There is no convulsion, unless the petit mal seizure is associ-

ated with major seizures (Sutherland and Tait, 1969). Sometimes,
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during very slight attacks, the patient may not be totally uncon-

scious, but is aware of an abnormal feeling , a state often 

described as "sensation".

Petit mal seizures may be very frequent; patients that 

have from 10 to 50 seizures a day are occasionally encountered. 

In some particular cases, the abnormal electrical discharges 

occur almost continually (benign or petit mal status epilepticus) 

and the patient remains in a state of relative confusion. Absence 

seizures that are associated only with loss of consciousness 

constitute approximately 10% of all absence seizures. Most fits 

are characterized by myoclonic jerks, which have bilateral mani-

festation (both eyelids blink, for example). These fits are 

particularly frequent soon after waking.

Petit mal seizures may disappear or be replaced by 

grand mal seizures in adolescence.

2.3.2 - Tonic-clonic seizure (grand mal)

Comparing an absence seizure to a drizzle, a tonic- 

clonic seizure may be compared to a storm or even a hurricane.

The patient may feel some involuntary muscular contrac-

tions and be irritated, depressed and giddy for several hours or 

days before the seizure.

In about three-fifths of all cases (Bannister, 1987), 

the seizure begins with a warning of the attack, known as an 

aura. Depending on the area of the brain that is affected by the 

discharge, the patient may experience abnormal feelings in one of 

the senses, such as visions (flashing lights, balls of fire,
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etc.)/ tastes, sounds and smells? other sensations include feel-

ings of unreality (jamais vu), feelings of familiarity (déjà vu), 

fear, strong impulse to speak with inability to do so, etc. It 

occurs before consciousness is lost and in some cases, the pa-

tient manages to take some form of precaution against damage such 

as lying down. In the rest of the cases, the patient has no 

warning and loses consciousness at the onset of the attack.

Immediately after the aura or at the very beginning of 

the attack, the convulsion itself starts with a widespread con-

traction of muscles that make the body rigid and incapable of 

keeping a normal posture and causing the fall of the person to 

the ground which may cause injuries. Due to the contraction of 

the respiratory muscles, the air that is expelled from the lungs 

may provoke the emission of a cry or a grunt. There are several 

consequences of the lack of coordination in the movements of the 

muscles. For example:

1) The jaws are contracted and both the tongue and the 

cheek may be bitten.

2) Breathing is stopped, and the lack of oxygen in the 

blood changes the colour of the patient, mainly the face, to 

dusky blue (cyanosis).

3) Movements of swallowing are stopped and salivation

occurs.

4) Incontinence of urine and sometimes feces occurs 

(Hopkins, 1985) .

Due to all these contractions, the patient will later 

feel his muscles to be painful. Although the discharge involves 

both hemispheres, sometimes the person may rotate his head and
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eyes and draw his mouth to one side.

After this first phase known as the tonic phase (from 

the Greek word tonos, "tension"), which lasts from a few seconds 

to not more than thirty seconds (Bannister, 1987), the clonic 

stage (from the Greek word klonos, "violent motion") begins. 

During the clonic stage, a series of shock-like short and inter-

rupted jerks of the face, arms, body and legs take place. A few 

minutes later, the interval between these movements becomes 

longer and the jerks cease, leaving the patient usually uncon-

scious for a period of up to half an hour. When consciousness 

comes back, a state of confusion and unreality still dominates, 

and it may be better for the patient to sleep for several hours. 

Headache is common after the seizure.

The EEG signal that characterizes the grand mal convul-

sion consists of multiple high-amplitude spikes that are normally 

widespread and synchronous in both hemispheres (see Chapter 3).

2.4 - Incidence and Prevalence

Both incidence and prevalence rates are determined by 

epidemiologists. These rates are difficult to establish. Factors 

like methodology (definition of epilepsy, definition of seizure, 

etc.) and population taken into account (general population or 

population of patients in general practice, house-to-house survey 

or medical files, country where the study was carried out, etc.) 

lead to different results. The sex and age-specific rates also 

vary from author to author.

In different studies, the incidence rate has varied
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from 0.2% to 0.6%; in those studies where single seizures that 

occurred at some time were taken into account, the incidence rate 

is about 3% (Richens, 1988). The prevalence rate, which is more 

difficult to establish, owing to factors like the varying presen-

tation of seizures, the long-term remissions and the case-finding 

methods, has varied from 0.1% to 5% (Laidlaw and others, 1988).

2.5 - Means of Investigation

The most common tests are the EEG (electroencephalo-

gram) , the CT (CAT) scan [computerized (axial) tomography] and 

the skull X-ray. Other modern methods of investigation include 

the MRI (magnetic resonance imaging) and the MG (magnetoencepha-

logram) . For a more detailed description of these methods, the 

reader should refer to Chapter 3.

2.6 - The Modern Treatment of Epilepsy

2.6.1 - The diagnosis of epilepsy

In 1988, A. Richens wrote:

"Few neurologists have a major interest in 
epilepsy. Once a diagnosis has been made, 
effective drug therapy, sympathetic social 
support and willingness to sit and listen are 
the most important aspects of good management. 
These requirements have never been prominent in 
neurological training, with the result that 
adult epilepsy is often ill-managed, commonly 
by changing junior staff. The essential conti-
nuity in care is totally lacking.... The mis-
diagnosis of epilepsy is common."
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A valuable confirmatory evidence of epilepsy may be 

provided in some patients by the evidence from an EEG, particu-

larly in the cases where specialized techniques, such as ambula-

tory or telemetric EEG, are used to register the occurrence of 

epileptic events.

Unfortunately, too much importance is given sometimes 

to insignificant abnormalities reported from standard EEG record-

ings, which leads to wrong diagnosis. For example, in 1983, Betts 

found that 20% of the patients who had been admitted to a psychi-

atric hospital with a diagnosis of epilepsy did not have the 

disorder. In cases where it is very difficult to obtain a clear 

diagnosis, the best thing to do is to let time clear the matter, 

avoiding "therapeutic trials" of antiepileptic drugs. It seems 

better to delay treatment until seizures have occurred because 

there is no clear evidence that antiepileptic treatment is effec-

tive in preventing late epilepsy (Chadwick, 1988; Dam and others, 

1987).

2.6.2 - The antiepileptic drugs

There are more than 20 antiepileptic drugs. Those that 

are recommended as a first choice are listed in Table 2.4 accord-

ing to the type of epilepsy (Aicardi, 1988).

The efficacy of these drugs depends a lot on their own 

properties and on metabolism, that varies according to the pa-

tient's age. Consequently, age becomes an important factor in the 

determination of the dose itself and the number of doses.

The adverse effects of medication for a long period can
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TABLE 2.4

RECOMMENDED DRUGS FOR TREATMENT OF EPILEPSY

EPILEPSY TYPE DRUGS

Partial seizure, Carbamazepine, phenytoin,
primarily phenobarbitone, primidone,
or secondarily 
generalized tonic- 
clonic seizures

Absence, juvenile Ethosuximide, sodium
myoclonic epilepsy, valproate/valproate acid,
myoclonic or atonic 
seizures

be divided into 3 categories, that are:

1) those that are caused by the drugs' unwanted side-

effects ;

2) those that are caused by excessive dosage of the

drugs and

3) the idiosyncratic reactions between the drugs and 

the patients' body chemistry.

All drugs provoke side-effects. Less than 50% of 

epileptic patients who are receiving treatment can expect to 

become seizure-free without unacceptable side effects. Some 

typical toxic side-effects caused by antiepileptic drugs, that 

are normally dose-dependent, are:

1) gastrointestinal disturbances (nausea, gastric
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distress, vomiting, diarrhoea, etc);

2) neuropsychiatrie disturbances (slurred speech, 

tremor, disturbance of balance causing difficulty in controlling 

one's body movements - ataxia, diplopia, dizziness, blurred 

vision, etc);

3) weight gain, skin reactions (acne, urticaria, etc), 

hair loss (reversible), overgrowth of the gums, etc (Engel Jr., 

1989; Hopkins, 1985; Laidlaw and others, 1988).

According to Iivanainen and Lehtinen (1979), chronic 

intoxication with phenytoin and/or phenobarbitone has already 

been a common additional cause of death in patients who died of 

pneumonia or seizures.

The barbiturates are the most prescribed anticonvul-

sant drugs worldwide. A consequence of overuse (including de-

pendence and addiction) of this sort of drugs is chronic intoxi-

cation, with clinical characteristics such as sluggishness, 

lethargy, difficulty in thinking, poor memory and learning 

disabilities, which are also typical of chronic epileptic pa-

tients. For this reason, the use of barbiturates as antiepilep-

tic drugs must be seriously considered, mainly in the treatment 

of epileptic children (Niedermeyer and L. da Silva, 1987). 

Another problem is the fact that a barbiturate addict may be 

mistakenly diagnosed as an epileptic person because the clinical 

characteristics of both are similar. As seen in item 2.2.6, 

although barbiturates are used as antiepileptic drugs, both use 

and withdrawal of barbiturates may cause epilepsy.

Patients with chronic epilepsy, mainly those who live 

in institutions for the mentally retarded, have traditionally
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been exposed to increasing doses of multiple drugs with freguent 

changes of drugs and dosages. Adverse reactions due to drug 

interactions, most of which affect the central nervous system 

and increase the risk of disturbing cognitive functions ("pa-

tients often complain of poor memory function, of slowing of 

their thinking or of difficulties in maintaining concentration", 

Dam and others, 1987), are common and improvement in seizure 

control is not ensured. Such a policy has been questioned in the 

last few years. In patients receiving, and complying with, 

optimal doses of a single antiepileptic drug, the addition of 

further agents is likely to result in a significant ( > 75%) 

improvement in seizure control in only 10% of patients 

(Beghi and others, 1987; Chadwick, 1988).

Neil Gordon, in 1988, wrote:

"It is relatively recently that doctors have 
realized that fits sometimes can be reduced in 
number, and even stopped, by reducing drugs. 
Even status epilepticus can be halted occasion-
ally by curarising the patient and withdrawing 
all anticonvulsants. This is obviously a com-
plex situation which may involve many factors, 
such as direct toxic effects of the drug, 
side-effects such as drowsiness, and even wrong 
diagnosis. However, it may well be true that 
the anti-epileptic drugs are interfering with 
the 'normal' mechanisms that are supposed to be 
preventing the fits, and so are doing much more 
harm than good."

Based on these facts, the neurologists have now a 

general agreement that monotherapy shall be used wherever possi-

ble (Richens, 1988). Even a poem has been written in order to 

emphasize monotherapy.
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"An epileptic young girl of St Kitts, 
had too many drugs for her fits, 
but she will grow prettier 
more clever and wittier,
the more of these drugs that she quits."

Still far from ideal conditions, approximately 20% 

of patients are resistant to antiepileptic drugs. As there is 

also the problem of chronic toxicity, more effective and less 

toxic drugs are still to be developed. Only one new antiepileptic 

drug [vigabatrin (Sabril)] has been launched in the UK during 

the last 16 years. It is the first drug to be obtained as a 

result of research into inhibitory neurotransmission (Richens, 

1990).

2.6.2.1 - Antiepileptic drugs and pregnancy

During pregnancy, an epileptic mother may suffer sever-

al grand mal seizures. The baby may be harmed due to direct 

injury to the mother's abdomen when the mother falls, or due to 

the lack of oxygen in mother's blood during the convulsion. 

Although these circumstances may be unusual, the use of anticon-

vulsants during pregnancy is advized by neurologists.

The effects of antiepileptic drugs on the fetus must be 

considered. The results of two studies will be shown here as 

examples.

1) Based on the Rochester (Minnesota-USA) population, 

Annegers and others determined in 1978 that 2.4% of children born 

to mothers with epilepsy not taking antiepileptic drugs during
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pregnancy, 10.7% of children born to mothers who took drugs 

during pregnancy and 3.8% of children of men with epilepsy, had 

malformations.

2) In Montreal, Dansky and others determined in 1982 

that 15.9% of children born to mothers who were taking antiepi-

leptic medication had congenital malformations, as compared with 

6.5% for mothers who were not (Laidlaw and others, 1988).

2.7 - Social and Emotional Aspects

Although references about convulsions and laws perti-

nent to the employment and marriage of people with epilepsy were 

already included in the Babylonian code of Hammurabi thousands of 

years ago, misconceptions about epilepsy are still common in our 

modern times. Most of them have religious roots.

People all over the globe are still ill-informed and 

have strange ideas about epilepsy. It happens mainly because a 

tonic-clonic seizure is frightening to see and comes without 

warning. This can make people who are around the victim think 

that it has something to do with the devil or an evil spirit, and 

can lead to the partial or total rejection of that person by 

society. Sometimes, the doctor prescribes the correct medication 

but gives no information about what is going on, cooperating this 

way to the propagation of catastrophic wrong ideas.

In 1893, the Charity Organization Society estimated 

that 2 to 3 in 1000 children were epileptic in the United King-

dom and found that very few were in school. The Society consid-
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ered this to be the beginning of a sad downhill path. They wrote:

"The life of many epileptics may soon be told. 
As a child, he is not educated. As a young man, 
he fails to obtain employment, or obtaining it 
with difficulty, he keeps it only on suffer-
ance. As years advance, and strength decreases, 
he retires to the workhouse or to the asylum." 
(Morgan and Kurtz, 1987).

This grim picture is unfortunately not just a thing of 

the past, it is all too common today and not only in third-world 

countries (see the examples below).

In the foreword of Hazeldine's publication "EPILEPSY, 

What it is, ..." (1986), A. Aspinall wrote:

"Although epilepsy is primarily a medical 
phenomenon, those who live with it frequently 
suffer more from public attitudes than from the 
epilepsy. It is not an exaggeration to say that 
the stigma of epilepsy still exists in this 
modern age."

For example, an experiment was taken by Sands and 

Zalkind in the United States in 1972 (Dinnage, 1986). A campaign 

was mounted to educate employers about epilepsy, in order to help 

epileptic people become employed. It had no effect. The attitudes 

of the employers were not modified. Only one third of them would 

recommend employing a person who had epilepsy. This number was 

the same in other cities that were not involved by the campaign.

Three other examples are given by Laidlaw and others

First, in 1971 in a survey in the UK, only 57% of the

(1988) .
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population agreed that epileptic people should be employed and 

32% said that they would not permit their child to play with a 

child with epilepsy.

Second, The British Medical Association Working Party 

on Immigration recommended as recently as 1965 that "for social 

and economic reasons" epileptic people should not be permitted to 

enter this country.

Third, even people with well-controlled epilepsy have 

difficulties in entering the medical, nursing or teaching profes-

sions in the UK.

All these examples confirm Aspinall's point of view and 

prove that people with epilepsy are still rejected.

There is no doubt that to feel rejected is to feel 

stressed. So, from the emotional point of view, to have epilepsy 

is to be stressed. As the level of stress increases, the number 

of fits increases becoming, sometimes, a self-reinforcing phe-

nomenon.

Public attitudes must change. Unfortunately, it is a 

slow progress (Jeavons and Aspinall, 1985).

2.7.1 - The author's life as an epileptic person

Many textbooks concerned with epilepsy contain stories 

about the lives of some people who have epilepsy, but these 

stories are normally told by the doctors, which may cause some 

distortion. Based on this fact, the author has decided to include 

his own story, which follows below.

My family lived in Araucaria, a small city located
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20 km from Curitiba, the capital of Parana State, in Brazil.

According to information given by my parents, I was 

born in normal conditions and was also a very healthy baby till 

the age of 1 year and 3 months, when I was inoculated against 

infantile paralysis. A few weeks later, I lost appetite, had 

severe intestinal problems and became very frightened. As time 

passed, I started to have seizures. The doctor, who had given 

assistance in my birth, insisted it had nothing to do with the 

vaccine, but was probably caused by some kind of infection in the 

throat (maybe the doctor was hiding the truth - later, he pre-

scribed anticonvulsants) .

Brain injuries may also have been the primary cause. I 

also had two falls, once beating my head against a box made of 

wood and another against a pile of bricks.

As far as I remember, I have had both petit mal and 

grand mal seizures from the age of 6 years old. Days before the 

seizures occurred, I became very nervous. That was enough to give 

my parents the idea that the seizures were approaching them-

selves. By the age of 8, following the doctor's advice, my par-

ents took me to Curitiba where my throat was examined by a spe-

cialist who said it was in perfect conditions. This specialist 

recommended an electroencephalogram. This EEG was sufficient to 

reveal that I had epilepsy and medication was started immediate-

ly.

One year later, my family moved to Curitiba and I was 

treated by a neurologist. I received medication for ten years. 

During these years, I had a normal life, with good scores in my 

studies. A few seizures occurred during the first years of
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medication. The only recommendation given by the neurologist was 

that I should not swim. As a result of this, at the age of 33, I 

am still unable to swim.

When I was 18 years old, medication was stopped. I went 

on studying, got a job as a teacher, took the BSc degree in 

Electrical Engineering and had a normal life until the age of 27. 

By then, while I was writing my MSc dissertation, I was nominated 

the principal of the department in which I worked. With so many 

preoccupations on my mind, under stressful conditions for approx-

imately 8 months, I had another grand mal seizure and medication 

had to be restarted.

I gave up to the position I had been nominated to and 

got the MSc degree as soon as possible. During the next 2 years, 

taking 400 mg of carbamazepine daily, I went on teaching. I had 

no seizures in the meantime. At the end of this period, I came to 

London to study for a PhD, a goal I have always had in mind.

During the first 12 months in London, I was very happy 

and nothing went wrong.

In the second year, far from home and from friends, I 

had another grand mal seizure while working in the laboratory. 

The daily dose of carbamazepine was increased to 800 mg and one 

year later, after another tonic clonic seizure, it was increased 

to 1200 mg. In the last months, while writing the thesis, 1400 mg 

have been prescribed in order to raise the seizure threshold. 

Having already reached 78% of the maximum dose recommended for 

adults, I still feel "a little distant" (like dreams) sometimes. 

Some of these "sensations" are followed by handtremors, without 

loss of consciousness.
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Maybe these attacks are just a consequence of a stress-

ful life. If they are, I hope the number of fits decreases when 

I go back to Brazil so that the dose of the drug may be reduced 

because I feel that my memory has not been as good as it was a 

few years ago. I don't achieve to memorize new phone numbers, 

addresses, names, etc. I was informed by a doctor that it 

may be due to drug toxicity, even when it is kept in the 

therapeutic range. Fortunately, an awareness of the toxic 

effect of anticonvulsant drugs on the cognitive function 

has been increasing in the last years (Trimble and Reynolds, 

1988) .

From the psychological point of view, it is not easy to 

bear in mind the idea that you may fall in the streets; or scream 

and have convulsions during a concert; or say a lot of strange 

words while giving a conference or "get lost" and look to the 

ceiling of the classroom while teaching. Will those who are 

around understand what is going on? Shall I have some hope in 

future drugs? Why can't I go to the pub with my friends and drink 

some beers? Why can't I, as a responsible person, take a car and 

go somewhere on a bank holiday?

There is one way to react more positively. The best 

thing to do is to think that all I have is epilepsy and, if there 

is not a major handicap in parallel, my life is practically 

normal. All I need are some milligrams of an anticonvulsant drug, 

courage to do what I want and, mainly, comprehension from society 

if something goes wrong. There are other people who suffer much 

more.

40



2.8 - Summary

The same way a runny nose is a symptom that character-

izes diseases such as influenza, for example, the epilepsies are 

also symptoms that characterize several different brain diseases. 

The epilepsies are not diseases in their own right.

Subdivided in two basic groups, the epilepsies are 

classified as "symptomatic" (those that may be attributed to 

cerebral lesions) and "idiopathic" (those that cannot be at-

tributed to obvious cerebral damage).

Epileptic seizures, that in most cases prove that a 

person has some kind of epilepsy, are recurrent discharges of 

cerebral neurones in some part of the brain, leading normally to 

some degree of impairment of consciousness and movements of the 

limbs. The seizures may be apparent to the subject and/or to an 

observer and are basically classified as generalized or partial.

In generalized seizures, the electrical discharges 

disrupt both brain hemispheres, causing loss of consciousness and 

bilateral movements of the limbs whilst in partial seizures the 

discharges disrupt just one hemisphere. In this case, the patient 

retains some degree of consciousness and the limbs that are 

localized on the side opposite to the disrupted hemisphere are 

moved.

The two most famous types of seizures are both general-

ized and they are denominated "absence (petit mal) seizure" and 

"tonic-clonic (grand mal) seizures". During an absence fit, the 

patient stops his activities, stares, looks pale and remains 

unresponsive to his surroundings for some seconds, after which he
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restarts what he was doing . The patient does not fall and there 

is no convulsion. It is characteristic of childhood.

A tonic-clonic seizure is much more dramatic and is the 

manifestation of a high degree of disorder in the brain. In 

approximately 3/5 of all cases, it starts with an aura (a sensa-

tion similar to a dream). After this, the tonic (full of contrac-

tions) phase starts, with the patient loosing consciousness, 

becoming rigid in extension, falling to the ground and maybe 

urinating. After 30 seconds, approximately, the tonic phase is 

followed by the clonic (convulsive) one, which is characterized 

by a rhythmic generalized jerking of face, body and limbs and 

foaming by the mouth. A few minutes later, the convulsion ends 

and consciousness starts to return slowly. For several minutes, 

the patient stays in a state of confusion and drowsiness, with 

headache and muscular stiffness.

Probably due to the fact that a grand mal seizure is 

quite frightening, the person who has epilepsy has been consid-

ered along the centuries as a messenger from the devil who is 

capable of dealing with evil spirits. Such ideas and a lot of 

other myths, many with religious background, are still common. 

As a serious consequence of this, people who have epilepsy are 

still rejected by modern society, having difficulties in schools, 

employment and life in general, even when modern drugs and sur-

gery have permitted approximately 80% of epileptic people to have 

a seizure-free life.

Those who have epilepsy and those who don't still have 

a lot to learn about it.
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CHAPTER 3

THE ELECTROENCEPHALOGRAM

3.1 - Introduction

In 1985, it occurred in Mexico City. In 1988, it was in 

Armenia. On 17 October 1989, 83 years after a similar tragedy, 

San Francisco (USA) was the city that suffered most of the conse-

quences .

Earthquakes! Enormous tectonic plates, moving in oppo-

site directions at the rate of a few centimetres a year, become 

locked. Strain builds up until the moment a sudden release pro-

duces an earthquake.

The hypocenter, the point of first slip, is usually 

located about 10 kilometres down from the surface. In San Fran-

cisco, it was 18 kilometres.

The main quake is preceded and followed by low intensi-

ty quakes, that are called foreshocks and aftershocks respective-

ly. Other faint seismic chatters, known as microquakes, emanate 

from many faults. All these tremors have intrigued the scientists 

over the years. In order to detect them, the seismologists, have 

set out arrays of seismometers.

By studying these different sorts of signals, the 

geologists have tried to forecast the occurrence of major quakes. 

David Oppenheimer, from the U.S. Geological Survey, said:
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"Microquakes occur along a fault as a result of 
stress buildup. Over time, we see that their 
activity leaves one area quiet. Foreshocks 
behave the same way - their hypocenters appear 
anywhere but in that quiet area. That quiet 
area is where the sides are locked; that is 
where the earthquake will occur. The time 
aspect is the wild card..." (Canby, 1990).

Although the forecasts have been gross and imprecise so 

far, they have been, no doubt, helpful.

As the signals detected by seismometers represent the 

activity of the planet's crust, a record of signals, detected 

with several electrodes applied to the scalp, represents the 

electrical activity of the brain. This is the electroencephalo-

gram (EEG).

The same way a quiet area surrounded by quakes repre-

sents the region where an earthquake will take place, a quiet 

area of the brain may represent the region where a brain tumour 

is located, but, in the case of a seizure, it is the most active 

area, showing high-amplitude signals, that represents the region 

of the brain where abnormal electrical discharges of neurons are 

taking place.

The geologists would like to forecast the earthquakes 

with high precision in order to avoid tragedies. Similarly, those 

who study the human brain also have the hope that it will one day 

be possible to forecast the occurrence of seizures in epileptic 

people, so that precautions may be taken. It is not possible to 

avoid an earthquake but it is possible to avoid a seizure.

Surrounded by modern techniques such as the computer-

ized tomography, magnetic resonance imaging and magnetoencepha-

lography, electroencephalography remains the best way to monitor
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the brain for long periods.

3.2 - Origins of the EEG

Connecting non-polarizable electrodes from a galvanome-

ter with optical magnification to the cortex of animals, the 

British physiologist Richard Caton studied the electrical activi-

ty of the brains of cats, monkeys and rabbits. In 1875, he re-

ported:

"Feeble currents of varying direction pass 
through the multiplier when electrodes are 
placed on two points of the external surface 
(of the brain), or one electrode in the grey 
matter, and one in the surface of the skull".

In 1910, the Russian Kaufman commented that it was very 

difficult to maintain the electrode contact during seizures. In 

Poland in 1914, Cybulski recorded an epileptic seizure caused by 

stimulation to the cortex of a dog. Neminski demonstrated in 1925 

that signals could be recorded through the intact skull. Until 

1930, when valve amplifiers with a.c. coupling appeared, several 

workers had already studied successfully the changes in steady 

potentials of the cortex with the use of string galvanometers, 

that came into general use about 1906.

Using scalp electrodes, the Austrian psychiatrist Hans 

Berger recorded signals from the human brain on 6 July 1924 in 

Jena and published in 1929 the first report on the electroenceph-

alogram of man. In his experiments, he used many different types 

of electrode driving string or double coil galvanometers. He had
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received help from neurosurgeons who provided him with patients 

in whom pieces of the skull had been removed. The papers pub-

lished by Berger were ignored until 1934, when Adrian and Mat-

thews published the results they had obtained with scalp investi-

gations (Brazier, 1968).

During the 1930s, oscilloscopes replaced the galvanome-

ters. In the beginning, the results were recorded in photographs. 

In the 1940s, pen writers became available and made it possible 

to have an immediate lasting record. Another great technical 

advance came with the differential amplifier, which eliminated 

much of the external interference. The transistor, in the 1950s, 

made it possible to return to d.c. recording.

In the last decades, much effort has been made to 

construct reliable multichannel recorders. The electrodes are 

nowadays the major obstacle, mainly for d.c. recording (Cooper 

and others, 1980).

3.3 - The Basic EEG Machine

An EEG apparatus is usually manufactured as a complete 

unit that may have up to 20 channels, although 8 or 16 channels 

are more common. All these channels have the same basic charac-

teristics .

As shown in figure 3.1, an EEG machine is basically 

made up of four distinct sections:

1) the electrodes,

2) the montage selector,
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3) the filters and amplifiers and

4) the recording system.

Figure 3.1 - Block diagram of an EEG machine.

Figure 3.2 - Intracranial electrodes.
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3.3.1 - The electrodes

The electrodes connect the conducting fluid of the 

tissue, from which the electrical activities are to be recorded, 

to the input amplifier.

There are several types of electrodes, made in various 

formats and from various materials. A very common type of elec-

trode is the scalp electrode, which normally has a disc form with 

an approximate area of 1 square centimetre. Movement of the 

electrode in relation to the tissue leads to the generation of 

artifacts. To avoid this and to increase conductivity, this type 

of electrode is attached to the scalp with an adhesive paste 

(jelly). Two main problems appear with this kind of electrode. 

First, when the electrode is pressed against the scalp, there is 

the possibility of spreading the paste over a large area if it is 

used in excess, increasing the size of the area from which the 

signal is recorded (the areas should be small and as equal as 

possible) and maybe shorting out neighbour electrodes. Second, as 

time passes, the paste dries, decreasing the adherence and conse-

quently changes the impedance. Such pastes are not appropriate 

for use in recordings that last more than 45 minutes. Collodion 

is another substance that is used to solve this kind of problem, 

being used in over-hour recordings. In this case, the electrode 

has a hole in the surface, through which the substance may be 

added, making it possible to reach periods of five days without 

causing problems to the skin.

Another type is the needle electrode, which lies under 

the dermis and stays in place without the necessity of using
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special ingredients to hold it (it may fall out if the head is 

abruptly moved). The development of self-adhering electrodes has 

also been tried.

For these kinds of electrodes, the amplitude of the EEG 

signal is very low (see item 3.4). The impedance of the electrode 

attachment must be as low as possible. More than 5000 ohms cannot 

be accepted. When the skin is prepared appropriately, the imped-

ance may fall to 3000 or even 1000 ohms. Several ingredients like 

acetone, alcohol and soapy water have been used during the years 

to cleanse the skull surface. Nowadays, substances that are 

conducting electrolytes have been used. Sometimes the skin is 

scratched (the author may say that it is quite unpleasant) to 

lower the impedance.

When electrode attachment was checked years ago, re-

sistance instead of impedance was measured. This brought discom-

fort and hazards to patients. For example, if a standard resist-

ance meter was used, the patient would probably feel some pain 

provoked by the current. Many modern machines may check the 

impedance in one or all channels without causing any discomfort 

to the patient.

As the scalp EEG shows only a fraction of the activity 

inside the brain, it is sometimes necessary to record signals 

directly from the cortex. In this case, very special intracranial 

electrodes are used (see figupe 3.2 and item 3.4.2.2).

Hans Berger used to place the electrodes on the front 

and back of the head. As time passed, new techniques and forms of 

interpretation proliferated. As each region of the brain may have 

its own signal pattern, such as the alpha rhythm on the occipital
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region (see item 3.4.1), researchers started to place the elec-

trodes on different areas of the scalp. In order to standardize 

the manner of electrode placement in all laboratories, the 

International Federation of Societies for Electroencephalography 

and Clinical Neurophysiology recommended the system now known as 

"The International 10-20 System".

By using specific anatomical landmarks such as the 

nasion and the inion, from which the measurements are made, the 

electrodes are placed at 10% or 20% of predetermined distances. 

In this way, the relative placements remain the same as the 

individual grows. With letters designating the anatomical area, 

the general-purpose 10-20 system is illustrated in figure 3.3. 

The odd-numbered electrodes are placed on the left side and the 

even-numbered ones are placed on the right side. Both are sepa-

rated by the midline or zero electrodes. A total of twenty one 

electrodes is normally used, but other electrodes may be inserted 

if necessary.

Due to muscle movements, the electrodes are also 

sources of artifacts (noise). As Cooper and others (1980) wrote,

"Unfortunately, at the present time, electrodes
are far less stable than the amplifiers that
are available..."

3.3.2 - The montage selector

Normally, the electrode leads are connected to an array 

of sockets known as the head box, which is located near the 

patient. The head box is connected to the amplifier inputs
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Figure 3.3 - 10-20 system.

Figure 3.4 - Different forms of montage.

51

p
o
i
n
t



through a multiwire cable and a set of switches.

This set of switches permits the electroencephalogra- 

pher (EEGer) to select the appropriate "montage", that is a 

particular combination of electrodes at a particular point 

in time (Niedermeyer and L. da Silva, 1987). By using different 

montages, it may be easier for the reader to notice some special 

form of activity that would not be revealed by one single form of 

montage. Figure 3.4 shows two forms of montage.

Of great importance is the method by which the elec-

trodes are connected to the amplifiers. There are two basic 

methods, these are known as bipolar and unipolar (reference). In 

fact, both are bipolar.

In the bipolar method, the one most used in Europe, 

each amplifier measures the potential difference between two 

electrodes both of which are affected by appreciable EEG poten-

tials. In scalp-to-scalp linkages, this method is very useful to 

show changes in polarity. It is caused by the phase-reversal 

phenomenon as shown in figure 3.5. In 1958, Jasper recommended 

that "bipolar recording should always include montages with 

linked serial pairs in straight anteroposterior and transverse 

lines".

The reference method is an attempt to make the signal 

registered at a particular point be a real representation of the 

electrical activity at that point only. In this method, one 

electrode (the reference) is common to all or to a group of 

electrodes and the electrode that lies nearest to the focus of 

activity shows the greatest difference in potential. It is a good 

method of registering striking patterns such as spike-and-
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slow-wave complexes.

Three possibilities of choosing a reference arise. In 

the first one, any electrode may be used as reference. In the 

second one, the ear lobe and in the third one, a point inside 

the EEG machine, where the average value of all signals is ob-

tained, are used as references. No matter where this "neutral" 

electrode is placed, the brain potentials that affect it cannot 

be ignored, especially when different points on the scalp have 

common components.

Each method has its advantages and disadvantages. This 

has been a subject of debate in the EEG community for a long 

time.

phase reversal 
/

(a)

Figure 3.5 - (a) Bipolar and (b) unipolar
derivations.
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3.3.3 - The filters and the amplifiers

EEG signals are normally described as functions of 

several different waveforms and their respective amplitudes. 

In order to permit the EEGer to select the appropriate waveform 

and amplitude, eliminating most noises, each channel contains 

basically two filters and three amplifiers.

A lowpass and a highpass filter are provided, both with 

variable cutoff freguencies, usually covering the band 

0 - 100 Hz. The degree of attenuation for the cutoff frequencies 

may depend on the manufacturer.

The amplifying sections are an input balanced amplifi-

er, an intermediate amplifier, that has variable gain, and an 

output amplifier. The total gain may have to reach, for example, 

the order of 20000 so that a 50 /iV signal may cause a deflection 

of 1 cm in the pen.

3.3.4 - The recording system

The recording system usually comprises a writing system 

(polygraph). The output signal of each channel drives a moving 

coil or moving iron electromagnetic system to which a pen or a 

very thin tube (ink-jet system) is attached. As this electromag-

netic system stays in a fixed position, the time scale for the 

record is provided by a recording paper that travels perpendicu-

larly to the direction of the pen deflection. The paper driving 

system has to be very stable and accurate.

The driver amplifiers have to be matched to the elec-
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tromechanical characteristics of the writing system and this has 

to be well calibrated in terms of its oscillatory properties, so 

that each trace represents the real corresponding signal.

Both the inertia and the friction of the writing system 

are factors that determine the high frequency response of an EEG 

apparatus. Whilst the pen writers reach a usual upper cutoff 

frequency of 100 Hz, the ink-jet writers, that have low inertia 

and low friction, may reach up to 1 kHz.

3.3.5 - Electrical safety

All electrical equipment used in medical practice must 

meet special safety requirements. In the case of the electroen-

cephalograph, a very low value of earth leakage current must be 

assured. If the patient has to be in contact with other electri-

cal equipment, as during a surgery, for example, the electroen-

cephalograph must be completely insulated from the others.

Special attention must be given to safety conditions if 

connections are made with data acquisition, data storage and data 

processing equipment. This is not only the case of sophisticated 

electroencephalographs, but also of portable monitors that are 

carried by the patient.

3.4 - The EEG Signal

It is not easy for astronomers, for example, to under-

stand what is really going on inside the Sun when all they can 

see is its surface. Similarly, it is not easy for neurologists to
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study the brain based on a few signals collected from the skull 

surface or even from the cortex, which are just a gross represen-

tation of the its activities. For this reason, the EEG has been a 

source of disagreement among those who have worked in the area. 

While some researchers have reported good results, others have 

said that no meaningful information may be obtained from such a 

complex and distorted signal (Stowell, 1970).

A typical EEG machine has 8-20 electrodes of approxi-
9 . ,mately 1 cm whilst the number of neurons in the brain reaches 

the millions. It means that the signal recorded by each channel 

represents the raw average value of all neuronal activity of the 

underlying cerebral cortex over an area of about 6 cm . Conse-

quently, only the synchronized signals emitted by a lot of cells 

will be picked up by each electrode.

If the brain of an individual is in perfect condition, 

the synchronous neuronal activity will be considered normal, but, 

if the individual's brain has some imperfection, then the neurons 

will generate abnormal synchronous discharges. This is what 

happens, for example, in individuals who have epilepsy.

It is very difficult to describe an EEG signal quanti-

tatively. It is neither deterministic nor random. The waveform 

has, in general, a nonstationary form that cannot be represented 

by a single model. Different models that describe just a few EEG 

phenomena such as the alpha rhythm and the petit mal seizure 

spikes have been elaborated during the last decade (Niedermeyer 

and L. da Silva, 1987). In terms of amplitude, the peak-to-peak 

value of the scalp EEG lies between 10 and 100 /¿V (in adults, 

more commonly between 10 and 50 /¿V) , with spikes reaching 200 nV.
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For corticographic (cortex) discharges, it may vary from 500 to 

1500 /iV, reaching several millivolts in prominent spiking. In 

terms of frequency, the range may vary from DC to several kilo-

hertz, although for the majority of cases the frequency response 

goes from 0.16 Hz to 100 Hz.

There are many waveforms that characterize normal or 

abnormal brain activities. Some of the best known waveforms found 

in EEGs of adults will be considered next.

3.4.1 - The EEG of a normal person

In order to determine the boundaries of normality and 

abnormality, the EEGs of normal people have been recorded since 

the previous works led by Hans Berger.

The frequency range 0.1 - 70 Hz is the most important 

from the clinical point of view. In order to make it easier to 

describe EEG records quantitatively, EEG frequencies were classi-

fied into the following bands:

delta

theta

alpha

beta

below 3.5 Hz (usually 0.1-3.5 Hz) 

4-7.5 Hz 

8-13 Hz

above 13 Hz (usually 14-40 Hz)

In a normal adult person, the medium (8 - 13 Hz) and 

the fast (14 -30 Hz) ranges predominate whilst both the slow

(0.3 - 7 Hz) and the very fast ( > 30 Hz) ranges are not common.

Both the "alpha" and the "beta" rhythms were introduced 

by Berger in his second report, published in 1930. Although the
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first one refers to the range 8 - 13 Hz, it was defined by 

Chatrian and others (1974) as having the extra properties of 

being

"most prominent in the posterior areas, present 
most markedly when the eyes are closed, and 
attenuated during attention, especially 
visual."

This phenomenon is illustrated in figure 3.6.

The beta rhythm, with an usual amplitude lower than 30 

/lxV and a maximum frequency of 35 Hz, predominates in the frontal 

and the central regions. It is blocked by motor activity or 

tactile stimulation.

It has been observed empirically that the maximum 

amplitude of each rhythm is an inverse function of its frequency 

range.

There is no logic in the sequence of Greek letters. The 

reason is purely historical (Niedermeyer and L. da Silva, 1987; 

Cooper and others, 1980). Other rhythms such as the "mu" rhythm 

and the "kappa" rhythm are out of the scope of this work.

It is quite obvious that only scalp EEGs have been used 

with normal people.

3.4.2 - The EEG of an epileptic person

3.4.2.1 - Epileptic patterns

Epilepsy is generally characterized by the appearance 

of spiky waveforms (single spikes, multiple spikes, sharp waves 

and spike-and-wave complexes) in both ictal (during attack) and
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h e y e s - o p e n  interval

Figure 3.6 - The alpha rhythm, prominent in the 
occipital region (channels 3 and 6), is blocked 
by eye opening.

Figure 3.7 - Typical epileptiform waveforms.

interictal (between attacks) EEGs, as shown in figure 3.7.

It must be stressed here that such waveforms, when 

interpreted in a wide sense, are also seen in the clinical EEGs 

of healthy individuals who do not have epilepsy. The appearance
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of epileptiform discharges in an EEG without the occurrence of 

seizure does not constitute epilepsy (Laidlaw and others, 1988). 

The misuse of terms like "petit mal discharges" and "3/sec 

spike-wave complexes" that may be registered in conditions other 

than absence seizures and the lack of communication between 

epileptologists and EEGers, has provoked serious mistakes like 

the prescription of the wrong drug (Niedermeyer and L. da Silva, 

1987).

3.4.2.2 - Intracranial (depth) recording

Partial epilepsies are characterized by localized 

epileptiform events, i.e., events that are generated in a special 

region of the brain (by tumours, for example).

In such cases, the scalp EEG, which is in fact a sim-

plification of the depth EEG, may not register these sharply 

localized ictal events. In the case of neurosurgical treatment, 

the possibility of the insertion of intracranial electrodes 

arises. These electrodes have an approximate surface area of 

1 mm and are generally more numerous than in the scalp EEG.

Assuming that the electrodes are appropriately placed 

in the damaged cortical region (see figure 3.2), the recording of 

spiky waveforms is practically constant.

3.4.2.3 - Scalp recording

Unlike the depth recording, the scalp EEG does not 

necessarily show spiky epileptiform events, especially in the
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case of partial seizures. A simple change in the amplitude of the 

ongoing activity or the appearance of a different kind of activi-

ty, within the alpha, beta or theta range, in the channels that 

cover the damaged cortical region, may be sufficient to indicate 

that the person has partial epilepsy. Sometimes, ictal changes in 

the scalp EEG may not be registered at all in partial epilepsies.

In the case of generalized epilepsies, the scalp EEG is 

much more efficient. For example, a tonic-clonic seizure is 

characterized by a fast buildup of spikes that are followed by 

spike-wave activity in all channels (there are no localizing 

features). Both activities become less frequent and irregular as 

the convulsion ends. During the clonic phase, due to muscle 

jerks, the traces are constantly contaminated by artifacts. The 

EEG recording of an absence seizure is in general characterized 

by the appearance in all channels of a relatively symmetrical and 

regular sequence of spike-and-wave complexes (SAWCs) with a 

repetition rate of about 3 Hz and duration of approximately 10 

seconds. This characteristic signal starts abruptly 1 or 2 sec-

onds before any clinical manifestation may be noticed and may 

continue shortly after consciousness starts to return.

Figure 3.8 shows part of an EEG that registered an 

absence seizure followed by a tonic-clonic one.

3.5 - The EEG in Epilepsy

3.5.1 - The routine EEG

A routine EEG may have a duration varying from 15 to
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Figure 3.8 - Tonic-clonic seizure preceded by 
an absence seizure.

40 minutes approximately. By the end, many meters of paper, 

folded into pages, will have been obtained. Based on the recorded 

traces and on a report written by the EEGer, the neurologist 

will do the interpretation in order to avoid mistakes.

The fact that a patient is epileptic does not mean that 

a single routine EEG will show epileptic waveforms. This is due 

to the fact that epilepsy is not a static condition. The proba-

bility of recording a seizure during a routine EEG is quite low 

and the probability of recording epileptiform events is not high. 

For example, Ajmone Marsan and Zivin reported in 1970 that, from 

a series of routine EEGs performed in a large number of epileptic 

patients, approximately 35% showed interictal epileptiform sig-
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nals, 15% never did , even with 10 or more repeated EEGs, and 

50% showed epileptiform discharges in some tracings only.

3.5.2 - The long-term EEG

As a normal EEG does not exclude epilepsy and an abnor-

mal EEG may be recorded from a normal person, a single routine 

EEG may not be sufficient under certain circumstances. To avoid 

mistakes that may cause prejudice towards the patient, the best 

thing to do is to increase the time of observation, increasing in 

this way the chance of recording a seizure. For this reason, 

since the 1960s, the investigators have sometimes employed the 

long-term EEG (hours or even days). To make it possible to dif-

ferentiate epileptic attacks from non-epileptic attacks, the 

recording of the patient's movements on cine film in the 60s and 

nowadays on video, has also been employed. It is now known that 

not all epileptic seizures are accompanied by EEG changes 

(Binnie, 1988), which makes video monitoring very useful.

In order to allow the patient to stay in a normal 

environment instead of a closed EEG room, ambulatory monitoring 

has also been used, which has been made possible thanks to cas-

sette recorders and telemetric systems by cable and radio .

To show the importance of the long-term EEG, part of a 

report by J. Sivenius and others (in Dam and others, 1987) is 

transcribed below (VTM EEG = video telemetric EEG):

"The indications for the study in the first 
100 patients were differential diagnosis of 
seizures (46 patients), determination of the 
type of seizures (47 patients), and other
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paroxysmal symptoms (6 patients). Seizures with 
simultaneous irritative EEG finding were found 
for 27 patients, while seizures without irrita-
tive finding were recorded in 29 patients. Four 
patients had seizures both with and without 
bursts in EEG. Forty patients had no seizures 
during the registration.

In 40 patients the VTM EEG examination led 
to a change in therapy. For 10 patients the 
anticonvulsant therapy was stopped and for 22 
patients considerable changes were made in 
medical therapy. Ten patients were referred to 
the hospital psychiatrist...

For the majority of epileptic patients medi-
cal control of seizures causes no serious 
problems. When the seizures are atypical or EEG 
findings are missing and the seizures occur 
frequently, there is a need for long-term EEG 
monitoring. Inadequate control of seizures 
despite adequate antiepileptic drug concentra-
tions may be due to false diagnosis or to 
medication that is not suitable for the type of 
seizures. With VTM EEG non-epileptic and epi-
leptic seizures can be differentiated 
reliably."

The long-term EEGs, mainly those that are just recorded 

on magnetic tape, are not so "easy" to interpret. Costing two or 

three times more than a 16-channel routine EEG, they are also 

time consuming. Their examination is very laborious and requires 

specialized staff (Blumhardt, 1986). For this reason, computers 

have been employed during the last few decades in the analysis of 

EEG signals, mainly in the detection of epileptiform events.

The theory of some spike-detectors developed by several 

authors will be discussed in Chapter 4.

3.6 - New Techniques

Thanks to modern computers, new techniques, that give 

the neurologist a deeper view of the human brain, have emerged in
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the last few decades.

A few characteristics of some of these techniques 

will be presented in the next section. Each technique has it's 

advantages and disadvantages. For a more detailed description, 

the reader should refer to appropriate bibliographical 

references.

3.6.1 - The x-ray

In the same way a simple chest radiograph may reveal 

unsuspected lung diseases or cardiac lesions, causes of epilepsy 

such as intracranial calcifications and bony changes may be 

revealed by a skull x-ray (Laidlaw and others, 1988).

3.6.2 - Magnetic resonance imaging (MRI)

A sequence of radio-frequency pulses induces resonance 

in a series of sensitive nucleons. The Fourier transformation of 

these spatially coded signals generates a series of two- 

dimensional images that represent 5 mm-thick cross-sectional 

slices of the brain, which are used to construct a three-dimen-

sional image. As resolution is the main shortcoming, a long time 

(up to one hour) use to be necessary in order to make enough 

measurements to obtain a high-resolution image (Siemens, - ).

The latest commercially available MRI models have made 

it possible to obtain an image in 5-10 minutes, using lmm-thick 

slices.

Less invasive than X-ray, this technique may be repeat-
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ed as many times as necessary.

3.6.3 - Computed tomography (CT)

Materials of different densities such as bone or calci-

fication, soft tissue or water, fat and air may be distinguished 

in a radiograph. A more quantitative reading of tissue density 

that makes it possible to distinguish between the different 

intracranial tissues is given by CT .

A collimated x-ray beam, with a thickness of 1-13 mm, 

is transmitted through the skull from many directions and angles. 

Its intensity is measured before and after transmission. Depend-

ing on the average absorption level provoked by each tissue in 

each location, the respective result is obtained by a computer 

and printed out in a corresponding location. The method requires 

that the patient stays still from some seconds to a minute.

When CT is performed carefully, a very high percentage 

( > 95%) of intracerebral abnormalities such as tumours, infarcts 

and haemorrhages may be detected and accurately localized (symp-

tomatic epilepsy). In relation to an EEG, which detects up to 90% 

of the irregularities caused by brain tumours and is accurate in 

only 60% of their localizations, CT is still considered comple-

mentary to the EEG (General Electric, 1976; Scott, 1987).

3.6.4 - Magnetoencephalogram

Not only electrical fields but also magnetic fields are 

originated by ionic currents at the cellular level in the central
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nervous system. This magnetic field has a strength in the order 

of magnitude of 10-8 Gauss whilst the earth's magnetic field has 

a strength of 0.5 Gauss.

Thanks to a special magnetometer that was introduced 

some years ago, which is based on the superconducting effect at 

the temperature of liquid helium and is sensitive enough to 

measure fields in the order of 10-10, it is now possible to 

measure the magnetic field produced by the human brain. External 

magnetic fields, that are almost constant over long distances, 

are eliminated by subtracting the potentials that are induced in 

two coils that are placed closely to each other.

Like the CT, the MEG is also valuable in the management 

of symptomatic epilepsy.

3.7 - Summary

Reported by Hans Berger more than 60 years ago, the EEG 

is still a subject of controversy.

Representing the electrical activity of the brain and 

obtained through a series of electrodes attached to the scalp 

(extracranial electrodes) or inserted into the brain (intracrani-

al electrodes), it is considered by some clinicians as a series 

of distorted scratchy ink-on-paper traces from which no signifi-

cant information may be obtained (Stowell, 1970). Other research-

ers have reported special and significint results.

Even with the advent of computer-assisted diagnostic 

systems such as computed tomography, EEG is still paramount in 

the management of epilepsy (Richens, 1988) and is quite valuable
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when measuring the effect of medical treatment (Ebersole, 1989).

The long-term EEG, used in the last few years in order 

to minimize mistakes, has transformed electroencephalography into 

a computer-assisted process.
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CHAPTER 4

COMPUTER ANALYSIS IN ELECTROENCEPHALOGRAPHY 

PATTERN RECOGNITION TECHNIQUES

4.1 - Introduction

In 1989, the American interplanetary spacecraft Voyager 

2, that had been launched 12 years before, passed by the planet 

Neptune.

As it approached the planet, it started to show some of 

the planet's characteristics that were still unknown, including 

three great spots on its surface, two of which were dark with 

slow rotation (relative), with the third one in between. This 

last was the smallest; it was white and had fast rotation. The 

greatest dark spot, with a diameter equivalent to that of Earth, 

showed a white cloud in its surroundings, which left the scien-

tists very curious. Due to the planet's rotation the spot(s) 

appeared and disappeared. This factor made the scientists have 

some suspicion that the white cloud could not be the same but a 

new distinct one at each time.

Curiosity is always a good factor in research. The 

research team that was responsible for data collection and 

analysis was not satisfied with the results obtained so far. The 

scientists wanted to obtain more detailed information about the 

great spot and all they could do was to process the images that 

were sent by the spacecraft.
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A technique the research team employed was to select 

two series of pictures, one of them always showing the big spot 

as the reference in the centre and the other having the polar cap 

as the main reference, as if the pictures had been taken at each 

Neptunian day, and to replay them at higher speed. That was 

enough to show that the great dark spot rotated counter-clockwise 

and that the white cloud in question seemed to be the same while 

other white clouds appeared and disappeared. This way, it was 

possible to have a basic idea about the weather in the distant 

planet.

All this was made possible thanks to computers (includ-

ing the 3 computers that controlled the spacecraft and all its 

activities and the computers on Earth) and to the fact that 

Voyager 2 filmed the planet for several hours. If the spacecraft 

had taken only a few pictures, maybe none of the spots would have 

been revealed. If they had not been revealed, no special details 

about them or the whole planet would be known.

In electroencephalography, a few EEGs may not show any 

special detail. If some epileptiform patterns appear in the EEG, 

it does not mean that the person has epilepsy. If the EEG is 

normal, it does not prove that the patient is not epileptic. If 

the person has epilepsy, what kind of epilepsy is it? Is the 

treatment effective? All these questions may have more precise 

answers nowadays, but, as discussed in Chapter 3, long-term moni-

toring is a necessary tool and its analysis must be made automat-

ically by computers whenever possible.

Even pronounced disagreements may exist among EEGers 

and among neurologists. In 1964, W. B. Matthews, who worked at
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the Derbyshire Royal Infirmary, wrote:

"It is common knowledge that in this country it 
(the EEG) is mainly used by those with no 
training in neurophysiology and often with 
insufficient experience of clinical neurology."

This has been the author's own experience during the 

last three years in London. Having the same EEG and the same 

report in their hands, two neurologists said it was "normal". The 

third one said it "contained abnormalities".

Scarcity of qualified specialists is another reason to 

make use of computer evaluation of EEGs, even routine EEGs. This 

way, mistakes made by non-specialized technicians may be avoided 

and the good EEGer will be free to give more attention to very 

special recordings instead of spending time with the analysis of 

easily classifiable EEGs (Barlow, 1979).

In this chapter, a general idea will be given about 

different methods that have been developed during the last two 

decades to analyze EEG signals, with emphasis on the detection of 

spikes and SAWCs. A few of them were implemented in analogue 

form, others were implemented either in hybrid or digital form.

4.2 - Analysis of EEG Signals

In 1938, EEG pioneers Albert Grass and Frederick Gibbs 

tried, maybe for the first time, to automate the analysis of EEG 

signals. Recording the EEG on film and playing it back repeti-

tively through an electronic filter (like the soundtrack of a
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movie), they obtained, by Fourier transformation, the frequency 

spectrum of the recorded data and concluded:

"After having made transforms of 300 electroen-
cephalograms, we are convinced that the system 
not only expresses data in a manner more useful 
and concise than is possible by present meth-
ods, but that in many cases it indicates impor-
tant changes in the electroencephalogram which 
would otherwise remain hidden."

The application of computers to the analysis of brain 

electromagnetic signals has received reasonable attention during 

the last twenty years. Glover and his co-workers (1986) gave four 

basic advantages that automated scoring of EEGs can offer over 

visual scoring:

1) They can ease the work of the EEGer by providing 

off-line, faster than real-time analysis of lengthy records.

2) They can provide reliability and repeatability in 

the analysis of data.

3) They can offer a tool for detailed quantification 

of sharp transient (ST) activity, which could be used to study 

the effect of drug treatment.

4) They could eventually lead to a comprehensive 

definition of an ST, and thus contribute to the standardization 

of ST detection.

As discussed in Chapter 3, there are two main kinds of 

EEG activity in general terms. One is what is denominated "the 

normal EEG" and the other is "abnormal", many of which will be 

the EEG of the epileptic person. In the first case, the basic
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idea is to monitor the background (stationary) activity. In the 

second case, it is necessary to detect transients (nonstationari- 

ties), mainly spikes and spike-and-wave complexes (SAWCs).

Methods of analysis in both the time and the frequency 

domains have been used.

In the time domain, amplitude and time interval are the 

main factors to be analyzed. To analyze amplitude, the use of 

statistical features such as mean value, standard deviation, 

skewness and curtosis is made. When analysis of the time interval 

is carried out, features like level (zero) crossing of the origi-

nal signal and both its first and second derivatives are commonly 

employed. Combination of amplitude and time interval analysis 

gives different sets of features that can be used to classify the 

EEG signal (Niedermeyer and L. da Silva, 1987).

In the frequency domain, spectral amplitude and power 

intensities are the features commonly selected to study the 

signal in the empirically defined bands (subdivisions of the 

classical frequency bands have been adopted by several authors).

4.2.1 - Analysis of background activity

Long-term monitoring of background activity is mostly 

unnecessary in normal clinical practice , but it is useful, for 

example:

1) in the scoring of EEGs obtained during "sleep 

stages" [study of brain signals in sleep analysis] (Haustein and 

others, 1986),

2) when the effect of medical treatment is being
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measured and

1989).

3) in intra-operative neurological monitoring (Gotman,

In the last case, for example, a patient who is under-

going cardiac or carotid surgery (both disturb the blood flow 

to the brain) or neurosurgery, may benefit from such kind of 

monitoring. In fact, it is always important whenever there is a 

possibility of brain damage, be it direct (neurosurgery) or 

indirect (anesthesia, bleeding during the introduction of a 

catheter, etc).

Spectral analysis is the main method of characteriza-

tion of background EEGs. The basic method of determination of 

spectra by complex demodulation or heterodyning (Walter and 

Brazier, 1968) has not been widely applied in EEG analysis .

To avoid ringing in the presence of transients, low-Q 

analogue filters , succeeded by 12-bit digital filters (in the 

70s 8-bit wordlength machines were shown to be inadequate) and 

threshold detectors were originally employed to extract informa-

tion about period and amplitude, variables constantly used in 

pattern recognition algorithms (Principe and others, 1979). More 

recently, the Fast Fourier Transform has commonly been used to 

obtain the important banded intensities that characterize the EEG 

in each case, such as the alpha rhythm. Normally, the final 

result comes in the form of a histogram showing the frequency 

variation of a sequence of EEG segments. To decrease the proc-

essing time of the FFT, the use of both Haar and Walsh functions, 

that have values equal to "+l" and "-1" only, have been tried as



orthogonal functions, in place of sine and cosine functions, but 

satisfactory results have not been obtained (Barlow, 1979; Weide 

and others, 1978).

As on-line real time analysis is necessary in these 

situations, a drastic reduction of bandwidth (2-15 Hz) was normal 

20 years ago. Lately, this bandwidth has been increased to 0-40 

Hz (Niedermeyer and L. da Silva, 1987).

Spectral estimators that operate based on autoregres-

sive (AR) models have also been used (Jansen and others, 1981; 

Smith and Lager, 1986; Blinowska and others, 1988).

4.2.2 - Detection of transient activities

The detection of epileptiform signals generated by the 

brain during seizures (ictal) or in between seizures (interic- 

tal) may help, for example, in the localization of an epilepto-

genic focus in cases of partial epilepsies, such as temporal lobe 

epilepsy. Once it has been proved that the person is epileptic, 

it may also be useful for detecting seizures (Viglione and 

others, 1970 and 1973). Due to the great interest that exists in 

studying correlations between behaviour and the occurrences of 

petit mal absences, much effort has been expended in order to 

detect them, this being the main area of application of seizure 

detection (Niedermeyer and L. da Silva, 1987).

The detection of transient nonstationarities is by 

itself a goal. Another goal is the reduction of the size of the 

data set, which facilitates the classification of the data.

Two important types of epileptiform features are the
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spike and the spike-and-wave complex. Sharp waves, that have a 

duration in the range 70-200 ms, are out of the scope of this 

work. It must be emphasised here that not all transient events 

are necessarily epileptiform.

If an electroencephalographer is asked why a particular 

section of an EEG was considered to contain an abnormal paroxys-

mal pattern (transient), the EEGer will consistently answer that 

the section in question differed from background activity 

(Carrie, 1972) . For this reason, in this kind of analysis, the 

epileptiform event is considered to be the "signal" whereas the 

background activity is considered to be the "noise", making the 

detection of these features a typical example of the application 

of a pattern recognition approach in EEG analysis. This has led 

to several pattern recognition methods, including:

1) matched filtering,

2) various combinations of amplitude, slope and sharp-

ness, normally of the leading and trailing edges of the spike,

3) band filtering,

4) decomposition of the EEG into segments and

5) autoregressive estimation.

4.2.2.1 - Matched filter

The matched filter is mainly used to detect the 

presence of signals embedded in white noise. Keeping this idea in 

mind, it has been used mainly in the detection of SAWCs (signal), 

where a SAWC pattern, that constitutes the template, is convolved
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with the input EEG (noise). When the signal matches the template, 

a high value is obtained at the output. One problem is the fact 

that the background EEG cannot be represented by white noise 

(Comley and Brignell, 1981). The basic block diagram and wave-

forms are shown in figure 4.1.

In a similar way, the computation of the crosscorrela-

tion coefficient between the EEG signal and the template, which 

is not reversed in time, has also been employed.

Looking at the template in figure 4.1, it becomes easy 

to understand that, although the input signal is characterized 

by both the spike and the slow wave, the slow wave contributes to 

most of the output signal. In this way, a high correlation coef-

ficient may be obtained for an input signal that has a large 

slow wave and a very-low-amplitude spike or no spike at all, 

which will lead to detection errors.

To overcome this problem, Weinberg and Cooper (1972) 

used two distinct templates, one for the spike and another for 

the slow wave. The 'recognition index' was obtained by multiply-

ing both coefficients when they were positive.

Some practical results will be discussed on Chapter 5.

4.2.2.2 - Use of derivatives

The application of differentiators in the detection of 

sharp transients is very basic.

The two criteria most often mentioned for the visual 

recognition of epileptiform spikes are duration and sharpness. 

Duration may be obtained by measuring level crossings of the
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slopes which depend on the first derivative, while sharpness is 

a function of second derivative. Shown in figure 4.2, are a 

typical spike and both its first and second derivatives (a spike 

is defined as having a duration from 20 to under 70 ms - in the

(b)

(c)

( d )

Figure 4.1 - Matched filter, (a) Block diagram, 
(b) input signal, (c) template and (d) output 
signal.
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past, it was considered to have a duration below 1/12 s or 83.3 

ms) .

Some basic characteristics and some of the main differ-

ences in the methods that are based on derivatives will now be 

discussed.

1) An heuristically derived method was developed by 

Carrie in 1972. He used a hybrid computer to process signals from 

one channel only. The detection of a spike was considered to be 

when the peak voltage level that was reached in the (filtered) 

second derivative was three or more times greater than the moving 

average value for this measurement for a preceding epoch. Accord-

ing to Carrie, other authors had already used similar methods, 

but with fixed threshold values.

The author mentions that the use of the second deriva-

tive is more efficient in the discrimination of sharp transients 

than the first derivative, mainly in segments that contain low- 

amplitude spikes and high-amplitude slow waves, where the highest 

value for the first derivative may occur during the slow wave and 

not during the spike.

Later, in 1977, Carrie and Frost used the same tech- 

nigue to monitor a single channel in the detection of SAWCs.

2) In 1973, Walter and his colleagues presented a very 

simple analogue circuit that was intended to help in the quanti-

fication of sharpness of EEG transients. The circuit consisted of 

four operational amplifiers, two used to obtain the first and 

the second derivative signals and the two others to full-wave 

rectify both signals. A "deadband" is included in the rectifiers
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to avoid the detection of low-amplitude signals. The second 

derivative has been considered of main interest.

Following this report, a comment is made on it by E. 

Glaser, recommending great caution in the use of the second 

derivative as a factor of characterization of the shape (sharp-

ness) of a waveform because the amplitude of the second deriva-

tive is proportional not only to the sharpness of the signal but 

also to its original amplitude. As an example, Glaser mentions 

that if a component in an EEG signal is seen simultaneously by 

two electrodes A and B located apart and if the amplitude of this 

component is K times higher in A than in B, so will be the second 

derivative. Using such criterion, the wave may be considered 

sharp only at electrode A, which is not true.

3) J. Smith, in 1974, avoided measuring the sharpness 

through the second derivative as this method enhances the high- 

frequency noise present in the data, making it susceptible to 

errors. He decided to measure, instead, the time interval (T2) it 

took for the slope to change from the magnitude of one polarity 

to a large magnitude of the opposite polarity. This time interval 

should be sufficiently short.

The sequence of measurements chosen by Smith was:

(1) to measure the slope of the first half of the spike 

(first leg) through the first derivative and 

check if it exceeded some threshold for some preset 

time,

(2) to check the sharpness and

(3) to check if the slope of the second half remained 

above threshold for a specific time interval.
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Digital circuitry was used to measure the time inter-

vals.

The author passed the EEG signal through a lowpass 

filter with a cutoff frequency of 60 Hz, admitting that 30 Hz 

could be selected if necessary, in which case the threshold 

levels would have had to be changed. An analogue pseudo-differen-

tiator with a transfer function given by "G(s)=s/(s+b)" was 

simulated. A PDP-8/I minicomputer was used by Smith.

This technique of measuring a time interval instead of 

the second derivative was used later, in 1981, by Comley and 

Brignell. Implementing the algorithm in a prototype based on the 

CP1600 microprocessor, they found an interval of 8 ms to be suit-

able to specify the rate of change of apex.

4)

ters (SI, S2 

Figure 4.3-a, 

(1 ) 

(2)

(3)

(4)

(5)

(6 )

Ktonas and Smith proposed in 1974 a set of 6 parame- 

,..., S6) to characterize a spike. Illustrated in 

these parameters respectively represent: 

maximum spike slope before reaching the peak; 

maximum spike slope after reaching the peak; 

time it takes for the spike to reach its peak after 

attaining maximum slope;

time it takes for the spike to reach maximum slope 

after reaching its peak;

sum of S3 and S4, that is a measure inversely 

proportional to the spike sharpness; 

time interval between two zero crossings of the 

same polarity of the first derivative.

Based on this work, another set of 10 parameters was
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redefined in 1981 by Ktonas and his coworkers. Seven parameters 

are shown in figure 4.3-b. The other three are:

(1) slope 1 and slope 2, defined as the maximum 

magnitude of the first derivative during the lead-

ing and the trailing edges of the spike, respec-

tively, and

(2) sharpness, defined as the second time derivative of 

the spike at its peak.

Spike detection algorithms based on these parameters 

have been developed by other researchers (Oliveira and others, 

1983; Glover and others, 1986).

Figure 4.3 - Sets of parameters defined to 
characterize a spike.
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5) In 1983, in order to obtain some of the parameters 

described before and some that were derived, Oliveira, Queiroz 

and Silva also used derivatives. In an hybrid microcomputer 

system, the first-order and the second-order differentiators were 

analogue. The main difference was the fact that both differenti-

ators were independently configured in parallel, being, this way, 

more stable. An advantage the authors gave is the fact that the 

analogue circuitry permits a very high time definition without 

the need to sample the signals at high rates.

6) Qian, Barlow and Beddoes (1988) presented the re-

sults of a sharp transients detector, consisting of two main 

stages. The first stage was another kind of differentiator. Its 

output consisted of the difference between the current input 

sample and another one that occurred a number of samples 

earlier [x(n) - x(n-m), where m > 1]. The second stage was a

product operator, the inputs for which were the present sample 

and a slightly delayed sample of the differentiator output sig-

nal .

For more details, see Chapter 5.

4.2.2.3 - Bandpass filters

In order to detect a spike followed by a slow-wave 

(SAWC), a signal that characterizes petit mal epilepsy, some au-

thors have employed two independent bandpass filters. A basic 

description of three distinct methods follows below. The first 

one was reported by Quy, Fitch and Allison in 1980, the second by 

De Vries, Wisman and Binnie in 1981 and the third by Principe and
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Smith, in 1982.

1) The system was developed to help in the detection of 

petit-mal-seizure signals (not individual SAWCs) previously 

recorded on cassette tapes. As the signals were analyzed at a 

speed 60 times greater than real-time speed, the detection of 

slow waves was obtained with a 120-240 Hz bandpass filter (equiv-

alent to 2-4 Hz in real time) while the detection of spikes was 

obtained with a 720-1080 Hz filter (equivalent to 12-18 Hz). Both 

signals were rectified and converted to DC levels; the signal 

that corresponded to the spikes was passed through a 120-240 Hz 

filter (equivalent to 2-4 Hz) in order to isolate the rhythmic 

spikes. Both signals were then compared to threshold levels and 

passed through an AND gate in order to activate the output when a 

seizure was detected.

2) To monitor one channel of EEG, two analogue and 

active 4th-order bandpass filters were configured in parallel. 

One of the filters, with a bandwidth of 15-30 Hz (/3 band), was 

used to detect the spikes. The other filter, with a bandwidth of 

1-4 Hz (<5 band) , was used to detect the slow waves. Both filters 

were followed by Schmitt triggers. A monostable circuit was 

triggered by the spike, remaining "HIGH" for 300 ms. During this 

interval, if a slow wave was detected, a SAWC was considered to 

have been recognized.

3) A fourth-order digital bandpass filter covering 

the range 10-25 Hz, sampled at 240 Hz, and another covering the 

range 0.8-6 Hz, re-sampled at 80 Hz , were used to detect the
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spike and the slow wave, respectively. Period discrimination and 

threshold logic circuitry was used to analyze the filtered data.

4.2.2.4 - Breakdown of the EEG into segments

Developed by Gotman and Gloor (1976), the method in-

volved the breakdown of the EEG into smaller units, as shown in 

figure 4.4. First, the signal was broken down into segments, 

where a segment was defined as the section between two consecu-

tive extrema of amplitude. The segments were then grouped into 

sequences. The end of a sequence was determined when a segment 

that could not belong to that sequence was found. Two segments, 

two sequences or a segment and a sequence, that were adjacent and 

of opposite direction, were then used to form a wave, in which 

both a segment and a sequence were referred to as half-waves. By 

using segments and sequences to compose the waves, the activity 

of both sharp waves and slow waves could be examined. In the case 

of rhythmic activity, both signals, composed of segments or 

sequences, would be equal (each sequence would contain only one 

segment).

Later, the waves were submitted to appropriate decision 

criterion, that included amplitude relative to background activi-

ty, sharpness and duration.

4.2.2.5 - Inverse autoregressive filtering

Assuming that an EEG signal could be represented by 

a filtered noise signal with normal distribution, Lopes da Silva
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(a)

(b)

Figure 4.4 - Decomposition of an (a) EEG into 
(b) segments, (c) seguences and waves. Examples 
of waves: ABC is composed of 2 segments; AFM is 
composed of 2 sequences and AFG is composed of 
a sequence and a segment.
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and his colleagues (1975, 1977) tried to detect the presence of 

non-stationarities by passing the EEG signal through an inverse 

autoregressive filter (the autoregressive filter model should 

provide the best fit for the on-going EEG activity) and checking 

the generated error signal with chi-square statistics, as shown 

in figure 4.5.

Considering that the interictal EEG of an epileptic 

patient resulted from filtered noise to which spikes were added, 

the output of the inverse filter would, in normal conditions, be 

a noise signal with normal distribution. If the error signal 

deviated at a certain probability level from a normally distrib-

uted noise, a nonstationary signal such as a spike, for example, 

was considered to be present.

The selected EEG epochs had a typical duration of about 

10 seconds and were analysed off-line by a PDP-11/20 computer.

4.3 - Summary

Some methods of automatic detection of non-stationari- 

ties in EEGs, which have been developed during the last twenty 

years, have been reviewed.

The need for automated detection was discussed and some 

of the major problems considered, e.g. problems of model defini-

tion, non-stationarity of the EEG signal, etc.
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CHAPTER 5

DETECTOR OF SPIKE-AND-SLOW-WAVE COMPLEXES

5.1 - Introduction

Several years ago, a six-year-old boy was taking a test 

of his mother language during his first year at primary school. 

It was one of his first tests. Although he did his best, he 

didn't achieve the maximum mark because he wrote a very strange 

four-word sentence, that was not part of the story being dictated 

by the teacher. Days later, showing the results and the tests to 

his parents, the boy said that all he could remember was the 

moment he was writing the last of those four words, a non-exist-

ent word, when he tried to remember the grammar rules that speci-

fied if it should be written with an s or a z. That strange 

sentence was certainly a consequence of a petit mal attack 

(absence), that lasted just a few seconds, but nobody could be 

sure of this. Nowadays, it would be possible to be sure. The 

patient may carry a long-term EEG monitor that will register the 

signals on such occasions, so that a higher degree of confidence 

can be put on the diagnostic results.

As seen in Chapter 2, petit mal epilepsy, a form of 

generalized epilepsy, is a typical disorder of childhood (adults 

may also have it). An absence attack, with an usual duration from 

5 to 20 seconds, consists of impaired consciousness and is com-
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monly associated with some kind of automatism (a clinical ab-

sence is usually present when the discharge lasts more than 5 

seconds). Sometimes the patient does not lose consciousness and 

it is described as a "sensation". The patient has no warning of 

these attacks (Gloor and Fariello, 1988) . The characteristic EEG 

waveform is a generalized 3 Hz spike and wave discharge, that may 

start at a 4 Hz rate and slow down quickly to 3 Hz and even 2.5 

Hz during the final phase, as shown in figure 5.1. According to 

Niedermeyer and L. da Silva (1987),

"... the spike wave discharge apparently repre-
sents a succession of excitation and inhibi-
tion. The clinical ictal activities are thus 
constantly curbed by intervening inhibitory 
impulses that prevent the attack from progress-
ing into massive downward discharges with motor 
effects..."

(such as a grand mal attack).

During an EEG, special activating techniques are used 

to precipitate discharges. In the case of absences, a powerful 

technique is hyperventilation, which was known prior to the 

advent of EEG. Sometimes the most powerful activating techniques 

are used but abnormalities may not emerge (Chadwick, 1988), which 

is a good reason to make use of long-term EEG monitoring equip-

ment .

In 1979, Barlow wrote:

"...mixed fast and slow transients, such as 
spike and slow-wave complexes ... have received 
rather less attention, and hence, this is an 
area especially requiring further work since 
these kinds of events are also very much a part 
of clinical EEG".
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Having in mind these words and the future development 

of a portable SAWC (spike-and-wave complex) monitor that may be 

carried by the patient, a SAWC detector has been developed and 

the study of its features is the subject of this chapter.

The fact that 3 Hz spike-wave complexes are not only 

characteristic of petit mal epilepsy must be remembered here.

100 uV
1 s

5

6

Figure 5.1 - EEG of a typical absence attack.

5.2 - The Spike-and-Slow-Wave Complex (SAWC)

Officially termed spike-and-slow-wave complex (hyphena-

tion facilitates use in plural form), it is defined as a pattern 

consisting of a spike followed by a slow wave (IFSECN, 1974). The 

use of older terms like spike-and-dome complex, dart-and-dome 

complex and wave-and-dart complex has been discouraged.

5.2.1 - The SAWC waveform and its spectrum

Classical 3/s SAWCs are not standard in their format. 

By isolating some of these complexes from a pre-recorded EEG, the
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respective spectra were obtained by employing the Fourier series 

method, using equation 5.1, in order to obtain both the even and 

the odd components, since the waveform is neither even nor odd. 

In this method, the waveform is considered to be repetitive as 

it is during a petit mal discharge.

A oo
x(t) =  +  2_j [An cos(27rnf0t) +  Bn sin(27rnf0t)] (5.1)

n = 1

where: An =  Jr
i  io  J

o

T n

R  —  —  °n — nr>1 o

x(t) cos(27rnf0t) dt

x(t) sin(27rnf0t) dt

The results obtained are shown in figure 5.2. Due to 

the distortion caused by the different windows (rectangular, 

Hamming, hanning, etc), especially when the total number of sam-

ples is relatively low as in this case, the use of FFT has been 

avoided in this section.

5.2.2 - SAWC models defined in the time domain and 

their respective spectra.

As discussed earlier, the formats of the SAWCs differ 

substantially. This presents problems when an attempt is made to 

define a general-purpose mathematical model. Simple mathematical 

models can be derived for models used by other researchers. 

Equation 5.2 describes a model where the spike is represented by
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Figure 5.2-a - Examples of SAWCs and their 
respective spectra.
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Figure 5.2-b - Examples of SAWCs and their 
respective spectra (cont).
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0 . 2

Figure 5.3 - Real-time SAWC model and its
spectrum.

a triangle and the slow wave by the positive half of a sine-wave 

cycle (Niedermeyer and L. da Silva, 1987). Other authors (Comley 

and Brignell, 1981) substituted the triangle by two straight 

lines of different lengths, as shown by equation 5.3 (this model 

shall be used to represent isolated SAWCs only).

In order to obtain a more sophisticated mathematical 

model, primarily for the slow wave, it was decided, in first 

place, to derive a real-time SAWC model and then base the mathe-

matical model on this. With this idea in mind, a total of 52 

SAWCs that were available from a 7O-Hz-bandwidth EEG record were 

sampled at a rate of 600 Hz and digitized using the ILS software 

package running on an IBM PC-AT. (A sampling rate of 600 Hz was 

chosen to give a good resolution to the waveform). The SAWCs were
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then aligned according to the maximum value of their spikes and 

the total mean value was calculated. The resulting average SAWC 

is shown in figure 5.3 with its respective spectrum.

Based on this real-time model, two other mathematical 

models represented by equations 5.4 and 5.5 and illustrated in 

figure 5.4, were then defined.

x(n) =  1.550 (1 Sn 2l11) 0.550 0 <  n <  42 (5.2-a)

x(n) =  sin(7r 0 — 0.550 42 <  n <  332 (5.2-b)

x(n) = 0 <  n <  12 (5.3-a)

x(n) =  -  0.0548 n +  1.6570 12 <  n <  40 (5.3-b)

x(n) =  sin(7r n 293^ )̂ — 0-535 41 <  n <  332 (5.3-c)

x(n) =  ft 0 < n <  12 (5.4-a)

x(n) =  -  0.0548 n +  1.6570 12 <  n <  41 (5.4-b)

(n -  41)
x(n) =  -  0.0253 (n -  41) e 90 -  0.5333 41 <  n <  332 (5.4-c)

IIX

0 <  n < 14 (5.5-a)

■ ( " ) - ! '  2 " I4 H  +  2l5<n M 14)2 ! '

i -  14
33 14 <  n <  332 (5.5-b)
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(b)

Figure 5.4 - Spectra of the mathematical SAWC
models, (a) With reference to equation 5.4 and
(b) with reference to equation 5.5.
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5.3 - The First Experiments

In order to make it possible to process signals in real 

time with a Motorola 68000-system MVME-133, a data acquisition 

board has been developed. Its main components are a 10-bit 

analog-digital converter that has an input scale ranging from 0 

to 5 volts, an 8-bit digital-analog converter with two outputs 

ranging from 0 to 2.5 volts and an 8-channel multiplexer. A full 

circuit diagram is illustrated in Appendix E.

Making use of the ILS digital-signal-processing package 

and/or basic algorithms appropriately developed for the Motorola 

system, three experiments concerned with the detection of SAWCs, 

that had been previously carried out by other authors, were 

repeated in order to gain experience in the area. No major 

attention was given to false alarms caused by artifacts.

The experiments were concerned with the following 

techniques:

1) matched filter,

2) differentiation and

3) arithmetic detector.

5.3.1 - A basic matched filter

Previously described in Chapter 4, the matched filter 

can be used to detect the presence of a known form of signal 

embedded in white noise. Its characteristic equation is defined 

by equation 5.6, where s(t) represents the template and x(t) and 

y(t) represent the input and the output signals, respectively
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(Niedermeyer and L. da Silva, 1987; Turin, 1960).

y(t) =  x(A) s(A — t) dA (5.6)

Making use of ILS and using the segment of EEG shown in 

figure 5.5, the first trial was carried out by selecting as the 

template the first SAWC (on the left) and the second trial was 

carried out by selecting as the template the meanvalue of the 

first four SAWCs. As can be observed, the obtained results demon-

strate that the first selected template was not so good as the 

second, which could be expected since the SAWC waveforms differ 

significantly, mainly in terms of spike amplitude. Such problems 

were mentioned in Chapter 4. Once the template has been selected, 

the selection of the detection level is also an obstacle, since 

false alarms (see figure 5.5 for t=2530 ms) must be avoided. 

Another problem is the fact that the input EEG signal cannot be 

represented by white noise. To check if any improvement could be 

obtained by making it "more white", the original EEG signal was 

contaminated with white noise at different levels and the results 

checked again. As shown in figure 5.6, there was no improvement.

A very simple correlation algorithm was written in 

assembler for the Motorola 68000-system in order to implement the 

matched filter in real time. The spike-and-wave template, that 

had a total of 200 samples (sampling frequency of 600 Hz), was 

stored in memory in reversed order.
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Figure 5.5 - Matched filter, (a) First SAWC 
used as template, (b) mean value of the first 4 
SAWCs used as template.
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The most serious problem was the excessively long 

processing time, which was a consequence of the high number of 

multiplications and shifts, since the template was defined to 

have a high resolution. For the selected sampling frequency, it 

took 1.38 ms to process each sample, which corresponds to 87 % 

of the sampling period. To decrease the processing time, the 

sampling frequency should be reduced in order to decrease the 

template resolution and a better algorithm developed.

5.3.2 - Differentiation

After employing ILS to check the waveforms that were 

obtained with a differentiator, as shown in figure 5.7, the 

experiment carried out by Comley and Brignell (1981) was repeated 

in real time. In this case, instead of using the second deriva-

tive to check the sharpness of the spikes (the second derivative 

is noisy), the time interval taken by the input signal to change 

from a positive to a negative slope was used. This is equivalent 

to the time taken by the first derivative to change from a posi-

tive to a negative value (considering only the positive detection 

level, as shown in figure 5.8-a). The first derivative was ap-

proximated by the function x(n) - x(n-l) and later filtered 

through a second-order Butterworth lowpass filter with a cutoff 

frequency of 50 Hz in order to decrease the false alarm rate 

caused by the noise introduced by the differentiation process.

The matched filter detects the presence of both the 

spike and the slow-wave. A fourth-order Butterworth lowpass 

filter with a cutoff frequency of 7 Hz (for more details, see
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Figure 5.7 - Differentiation of a segment of 
EEG signal containing SAWC features.

item 5.4.4), was added to the spike detector to make the methods 

equivalent. In this way the detection of isolated spikes would 

not be taken into account. Both this filter and the 50 Hz lowpass 

filter mentioned above were designed by employing the widely 

used method known as bilinear transformation (Open University, 

1984; Rabiner and Gold, 1985). The detector output was activated 

only when the presence of both the spike and the slow wave were 

confirmed.

The value of 7 Hz for the cutoff frequency was selected 

based on the fact that the slow waves differ quite a lot in 

format (see figure 5.2) and some of them have very low amplitude, 

which causes difficulty in their detection. As they normally have 

a sharp rise at the beginning, the capture of this part (of the 

wave) is the best way to detect them. Cutoff frequencies of 4 Hz
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and 10 Hz were also tried, but some problems arose. In the first 

case, it was too difficult to detect those slow waves with low 

amplitude and the time delay caused by the filter was excessive. 

In the second case, the output signal was too noisy. Based on the 

results and on the fact that Principe and Smith (1982) used an 

upper frequency of 6 Hz for the slow-wave bandpass filter (see 

Chapter 4), 7 Hz was selected.

Once more, the greatest difficulty was to select the 

appropriate detection levels for the first derivative and for the 

slow wave.

(a)

(b)

Figure 5.8 - Association of (a) a differentia-
tor and (b) a lowpass filter for the detection 
of a SAWC. (The time interval T was used to 
check the spike sharpness).
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5.3.3 - An arithmetic detector

A so called arithmetic detector, with a block diagram 

illustrated in figure 5.9, that had been recently published 

(Qian and others, 1988) with the purpose of detecting sharp 

transients, was first checked with the software package MATHCAD 

and later implemented in real time.

y (n )=x (n ) -x (n -N )  

z(n)=y(n).y(n-M)

Figure 5.9 - Arithmetic detector.

The difference filter is in fact a comb filter (Proakis 

and Manolakis, 1988; Terrel, 1980) and the corresponding differ-

ence equation is given by equation 5.7. Its transfer function is 

represented by equation 5.8, which has N zeros spaced around the 

unit circle in the z-plane at the locations given by equa-

tion 5.9.

y(n) =  x(n) — x(n — N) (5.7)

H(z) =  1 -  z_N (5.8)
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where n =  0, 1, 2, ... , N— 1 (5.9)
j27T

Z n  =  e N

|H(f)| =  2 |sin(nirfT,)| (5.10)

In the frequency domain, the transfer function is given 

by equation 5.10. Depending on the selected value of N, a chosen 

frequency range may be emphasized. In this experiment, using 

600 Hz as the sampling frequency (Ts=1.67 ms), N was made equal 

to 18. This value was chosen in order to obtain a frequency range 

limited by zeros located at 0 Hz and 33.33 Hz, with a central 

frequency of 16.66 Hz, following suggestions given by the au-

thors .

The product operator was tested for different values of 

M and the respective waveforms are shown in figure 5.10. In this 

case, as there is a single detection level, the difficulties 

mentioned earlier decreased.

5.4 - The Spike-and-Wave Detector

Based on the differentiation theorem, demonstrated by 

equation 5.11 (Carlson, 1981), it is very common to employ some 

degree of differentiation in the detection of sharp transients
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(see Chapter 4). Both the frequency and the impulse responses of 

a differentiator are odd functions.

x(t) > X(f) (5.11-a)

(5.11-b)

or

Hdjf(0 =  j 2 7T f (5.11-c)

In digital filtering, a differentiator may be realized 

in the form of an FIR (finite impulse response) filter or approx-

imated by a comb filter (N=l in equation 5.7). In the first case, 

due to the sawtooth waveform of the frequency response (see 

figures 5.11-a and 5.11-b), the discrete impulse response must be 

composed of a high number of samples and the use of a window 

other than the rectangular window is advisable, in order to avoid 

the Gibbs phenomenon (Strum and Kirk, 1988). In the second case, 

the frequency response is approximated by a sinusoidal function 

instead of a straight line, as shown in figure 5.11-c.

It can be shown that a differentiator produces a bipo-

lar output that will, in the case of spike detection, be asymmet-

rical, presenting serious problems for reliable detection (see 

figure 5.7) . Having in mind the idea that only one detection 

level should be used (the output signal should be unipolar) 

and that a spike is unipolar (it may be represented by a trian-

gle) , an even frequency response function was adopted for the
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spike detector. The triangular shape was chosen in order to give 

the high-frequency components the same degree of enhancement as 

given by a differentiator and to keep the number of samples of 

the discrete impulse response low.

Figure 5.11 - Frequency response of a differen-
tiator. (a) FIR - rectangular window, (b) FIR - 
Hamming window and (c) comb filter.

5.4.1 - The spike detector - DIFMOD

Shown in figure 5.12-a and 5.12-c are the respective • 

frequency response curves of a digital differentiator and that of 

the chosen transient enhancer. As can be seen, the phase compo-

nents are nil in the second case. In other words, the chosen 

transient enhancer is equivalent to a differentiator connected in 

series with a Hilbert transformer, which has a frequency response 

curve like that illustrated in figure 5.12-b. All the Hilbert 

transformer does is to change the phase of positive frequency 

components by -90 degrees and negative frequency components by 90
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degrees (for this reason it is also known as a quadrature phase 

shifter). For example, a signal that is obtained through the 

summation of a series of cosines becomes the summation of a 

series of sines.

The transient enhancer will be denominated DIFMOD.

(a) ( b ) (c)

Figure 5.12 - Frequency response of the spike 
enhancer - (a) differentiator, (b) Hilbert 
transformer and (c) DIFMOD.

To give the reader a basic idea of how DIFMOD works, 

two sequences of waveforms will be used. The first sequence, 

illustrated in figure 5.13-a, represents the DIFMOD beingcomposed 

of a differentiator followed by a Hilbert transformer and the 

second, illustrated in figure 5.13-b, represents these blocks in 

reversed order.
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Making the input signal an even triangular waveform, 

that is obtained with a summation of cosine functions, in the 

first case, the differentiated signal becomes a summation of 

negative sines that is transformed into a new summation of co-

sines by the Hilbert transformer. In the second case, the Hilbert 

transformer changes a summation of cosines into a summation of 

sines and this, after being differentiated, becomes a new summa-

tion of cosines. As can be observed, the maximum and the minimum 

values of the output signal correspond to the positive and nega-

tive peaks of the triangular waveform, since these points have 

the highest degree of sharpness.

TIME

(1)

(2 )

Figure 5.13 - Changes caused in a triangular 
waveform by the DIFMOD. (1) Differentiator 
followed by a Hilbert transformer and (2) 
Hilbert transformer followed by a differentia-
tor. (a) Input signal, (b) output from the 
first stage and (c) output from the second 
stage (the amplitudes are not absolute).
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For the implementation of the DIFMOD, the first idea 

that may be considered is just to implement the Hilbert trans-

former and to associate it with a differentiator approximated by 

equation 5.7 (N=l). The main problem is the fact that the Hilbert 

transformer frequency response curve has the shape of a signum 

function (also known as sign function) and its discrete impulse 

response has an infinite number of terms that do not decrease 

rapidly (see equation 5.12), which makes it necessary to use a 

high number of terms to approximate it. In practice, an optimum 

Hilbert transformer is not easy to be approximated, no matter 

what the chosen number of terms is, mainly due to Gibbs phenome-

non near the origin, which makes it even more complicated than 

the FIR differentiator.

n /  0 (5.12-a)

hHilb(n) = 0 n = 0 (5.12-b)

A simple way that may be employed to derive the dis-

crete impulse response for the DIFMOD is by convolving a triangle 

function (Carlson, 1981) with two impulse functions, as shown in 

figure 5.14. These functions and their respective impulse re-

sponses are represented by equations 5.13, 5.14 and 5.15.
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Figure 5.14 - Frequency response of the spike 
detector [ H3(f) = Hl(f) * H2(f) ] .

Hl(f) =  A tri(J-) (5.13-a)lO

h 1 (t) =  Af0 sinc2(f0t) (5.13-b)

H2(f) =  5(f -  fQ) + 5(f + fQ) (5.14-a)

h2(t) =  2 cos(27rf0t) (5.14-b)
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h3(t ) =  2Af0 sinc2(f0t) cos(27rf0 t) (5.15-d)

Now, comparing figure 5.14-c with figure 5.12-c, it 

can be seen that the slopes located between -fs/2 and fs/2 

correspond to the slopes located between -fo and fo, respective-

ly. This way, by making t=n.Ts=n/fs, where fs is the sampling 

freguency and by making fo=fs/2, the general formula for h(n.Ts), 

which depends on fs, is obtained. By making fs=l, the normalized 

discrete impulse response h(n), represented by equation 5.16, is 

obtained.

h(n) =  A sinc2(^) c o s( iit t ) (5.16)



Both its graphical representation and table of values

are illustrated in figure 5.15.

n  h ( n )
- 2 0 0
-1 9 - 0 .0 0 1
- 1 8 0
-1 7 - 0 .0 0 1
- 1 6 0
- 1 5 - 0 .0 0 2
-1 4 0
- 1 3 - 0 .0 0 2
- 1 2 0
- 1 1 - 0 .0 0 3
- 1 0 0
- 9 - 0 .0 0 5
- 8 0
- 7 - 0 .0 0 8
- 6 0
- 5 - 0 .0 1 6
- 4 0
-3 - 0 .0 4 5
- 2 0
- 1 - 0 .4 0 5

0 1
1 - 0 .4 0 5
2 0
3 - 0 .0 4 5
4 0
5 - 0 .0 1 6
6 0
7 - 0 .0 0 8
8 0
9 - 0 .0 0 5

10 0
11 - 0 .0 0 3
12 0
13 - 0 .0 0 2
14 0
15 - 0 .0 0 2
16 0
17 - 0 .0 0 1
18 0
19 - 0 .0 0 1
20 0

c
WX

-10 -5 10

Figure 5.15 - Impulse response for the DIFMOD.
(a) Table of values for |n| < 2 1  and
(b) graphical representation for |n| < 11.

The values of h(n) are A at the origin, zero for even 

values of n and proportional to sinc2(n/2) for odd values of n; 

for this reason they decrease rapidly for increasing values of n. 

All these factors contribute significantly to a reduced process-

ing time, if compared, for example, to the FIR differentiator or 

Hilbert transformer. Here, it must be emphasized that if it is 

decided to make fo=fs/10 or fo=fs/4, for example, in equation
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5.14-d, instead of making fo=fs/2, the only disadvantage will be 

the increase of the significant number of terms for h(n) (i.e. 

the fundamental frequency of the frequency response curve in-

creases) .

As can be seen from the table of values in figure 5.15, 

the value of h(17) is already equal to a thousandth of the maxi-

mum value. In order to obtain a good compromise between accuracy 

and speed of computation, a maximum value of n=17 was chosen for 

the preliminary studies. Both a rectangular and a Hamming window 

were used. The respective frequency response curves and rela-

tive-error curves, shown in figure 5.16, were obtained. As ex-

pected, the Hamming window reduces the error in the central 

region of the curve, but it decreases the linearity near the 

origin making the gain for DC levels and low frequency components 

much higher than expected. For this reason, the rectangular 

window was considered more appropriate.

Unlike a differentiator, the DIFMOD cannot be approxi-

mated by a very simple function and for this reason it has to be 

implemented as an FIR filter by convoluting the input signal with 

the sample impulse response. If the number of terms of h(n) is 

reduced to a total of 3, in order to reduce the processing time, 

an approximation that may be used is that obtained with equation 

5.17, which is derived from the function that approximates a 

differentiator through the autoconvolution of its unit sample 

response. The main difference, is the fact that the gain at the 

origin will not tend to zero in the first case. Distortion in 

H (f) will exist in both cases, and for this reason no approxima-

tion has been used in the implemented algorithm.
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Figure 5.16 - Frequency response curves and the 
respective error curves for the DIFMOD (N=17), 
using (a) rectangular window and (b) Hamming 
window.
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-0 .5  n =  - 1

1.0 n =  0 (5.17-a)

-0 .5  n =  1

or

H(f) =  sin2(7r^) (5.17-b)

The DIFMOD frequency response curve may be approximated 

by other functions such as the absolute value of a sine wave or a 

pair of parabolas limited in time, but the number of terms of the 

respective sample impulse responses will be high, offering no 

major advantages.

In figure 5.17, the outputs from a differentiator and 

from the DIFMOD, having a SAWC at the input, are compared to show 

the change of waveform introduced by the Hilbert transformer. The 

chosen sampling frequency was 600 Hz.

1 .5

~ 1:>
w 0.5ua3 0»-

5 "0*5cu
c« -1 

- 1.5

A.  A  rt A .  /. l \ i L Cs v  v y y

--------------------1_____________ i__________

1

100  200  300  400  500  600  700  800  900  1000
TIME (ns)

(a)

-

VV^VVv\rV'/̂ wv "
' -”v - V " v v

100 200  300 400 500  600  700  800  900  1000
TI ME ( n s )

(b)

Figure 5.17 - Outputs from (a) a differentiator 
and from (b) the DIFMOD in response to a typi-
cal SAWC. (The amplitudes are not absolute).
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5.4.2 - The cubic filter

A spike enhancer process is normally followed by some 

kind of filter or comparator that further processes the output of 

the first section. Some authors use a simple amplitude comparator 

to detect the spikes, having a high rate of false alarms . Other 

authors include a lowpass filter before the detector in order to 

decrease the level of noise and, in consequence, the false detec-

tion rate, but the main disadvantage of this process is the fact 

that not only the "background noise" from the enhancement process 

is decreased but also the amplitude of the spike feature, making 

the level-detection process less reliable and more sensitive to 

the threshold setting (Stelle and Comley, 1989).

As can be appreciated from figure 5.17-c, the normal 

spike feature has a peak amplitude that is 3 or 4 times higher 

than the noise amplitude. Based on the technique applied by Qian 

and her colleagues (see item 5.3.3), where the present output 

sample was multiplied by a preceding sample [y(n).y(n-k)], the 

output samples could simply be squared (k=0) enhancing, this way, 

the important part of the signal [y(n) relatively greater than 

or equal to 1] and shrinking the noisy samples [y(n) relatively 

smaller than 1], The disadvantage of this technique is the fact 

that a possible negative noise spike would become positive and be 

considered as a real spike. For this reason, a cubic filter, that 

elevates the input signal to the power of 3,  was considered more 

appropriate. This way the spikes would be enhanced even more than 

in the case of squaring, the background noise would become very 

low and the negative values would remain negative and could be
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ignored (made equal to zero). To avoid overflow during the cubing 

process, the input signal was firstly squared and divided by a 

constant. This result was then multiplied by the original input 

sample and divided once more by another constant. The values of 

these constants depend on the maximum value of the input signal. 

Appropriately scaled, the output of the cubic filter is shown in 

figure 5.18.

(a)

T I ME  ( n s )

(c)

Figure 5.18 - Waveforms of the complete spike 
detector in response to a SAWC. (a) SAWC, (b) 
DIFMOD output and (c) cubic filter output.
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The cubic filter is highly non-linear and the DIFMOD 

does not have a gain exactly equal to zero for DC values. In 

order to avoid problems during the cubing process, it is better 

to eliminate the DC level of the cubic-filter input signal.

5.4.3 - The moving average

At the beginning of the experiments, fixed values were 

selected for both the spike and the slow-wave detection levels 

(see next item). In the future, it would result in a series of 

difficulties because such levels would have to be individually 

adjusted for each subject (Gotman and Gloor, 1976). A basic idea 

is to make the detection levels dependent on the DC level of the 

input signal. For this reason and for the reason exposed on item

5.4.2 (the cubic filter input signal must have a zero mean 

value), the running average of the background activity had to be 

calculated.

The technique used is known as moving average. Once the 

DC level was estimated, its value was subtracted from the origi-

nal EEG signal before this entered the DIFMOD (the original 

sample, with DC level, was stored in memory) and the detection 

levels were derived.

In practical terms, the most basic idea to represent 

the moving average process is that shown in the example below and 

represented by equation 5.18, where a total of 3 samples is used 

(average of the current and past L samples, where L=2). Although 

equation 5.18 may induce the reader to think that the present 

result depends on the last output value, in fact it depends only
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on the input values as shows the demonstration below. The imple-

mented algorithm was based on this equation.

Considering x(n) as the input signal and y(n) as the 

output signal and supposing that the process has been running for 

some time, it can be said that:

y(0) =  J [ x ( - 2 ) + x ( - l ) + x ( 0 ) ]  

y (i) =  l W - i )  + *(0) +  x(i)]

y(2) =  l [x(0) +  x(l) +  x(2)] 

or

y(2) =  l [x( —1) +  x(0) +  x(l)] +  1 [x(2) -  x ( —1)]

This way, the general equation becomes:

y(n) =  y ( n - l )  +  |  [x(n) -  x(n-3 )]  

or, in a more general form,

y(n) =  y ( n - l )  +  j - L  {x(n) -  x [n -(L + l ) ]}  (5.18)

where L+l represents the total number of samples and x(n-(L+l)) 

represents the oldest sample.

In theory, the moving average is known as a parametric 

method of spectral estimation (Candy, 1988) and is an all-zero 

model that may be described by equation 5.19-a, where it is seen 

that the total number of samples is L+l and that there are no
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delayed outputs, which would provoke the appearance of poles 

(Kuc, 1988; Proakis and Manolakis, 1988; Strum and Kirk, 1988). 

The system function and respective frequency response are repre-

sented by equations 5.19-b and 5.19-c/5.19-d. The first zero, 

that is of major interest, occurs for f=fs/(L+l), where fs is the 

sampling frequency.

y ( n ) =  L + I  x ( n - k ) (5.19-a)
k = 0

"(«) = r a E - ' ‘
k = 0

(5.19-b)

H(e'
j27rfTŝ

= l+t £
-jflk

k=0 L+l sin(|)
(5.19-c)

M l  =  L+I
sln[7rfTs(L+l)]

sin(7rfTs) (5.19-d)

As an example, figure 5.19 shows the effects it causes 

on a segment of EEG in the time domain for both L=9 and L=19 and 

the respective frequency response curves. The sampling frequency 

that was used in this case was 200 Hz instead of 600 Hz, in order 

to reduce the total number of stored samples. As can be noticed, 

a disadvantage of this process in practical terms is the fact 

that a high number of samples is made necessary when the first 

zero is located near the origin, but, in compensation, it has the 

advantage that only one summation, one subtraction and one divi-

sion are, in fact, necessary for its computation, which may help 

to keep the processing time relatively low (see the next item).
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Figure 5.19 - Moving average filter,
(a) Effects caused on a segment of EEG for L=9 
and L=19 and (b) the respective frequency 
response curves.
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5.4.4 - The lowpass filter

If only noise-free EEG signals were to be analysed, 

which is possible in the case of analysis in non-real time where 

artifacts similar to the one illustrated in figure 5.20-a may be 

previously eliminated from the recordings, the spike detector 

would be enough to signal the presence of spike-and-wave fea-

tures, but this is not the case in real-time analysis. A very 

basic technique that is constantly used to reduce the number of 

false detections is to pre-filter the EEG signal leaving it with 

a maximum frequency range of 30 Hz or even less (Barlow, 1984), 

but this technique causes an abrupt distortion to the SAWC, as 

shown in figure 5.20-b, bringing serious difficulties for the 

normal spike detection. According to Niedermeyer and Lopes da 

Silva (1987),

"spikes are easier to differentiate from muscle 
artifact with an open high frequency filter 
than in a highly filtered and so uninterpreta-
ble recording".

Keeping this idea in mind and noting previous results 

obtained with the differentiator associated with a lowpass 

filter (see item 5.3.2), a slow-wave detector was added in order 

to guarantee that only a spike followed by a slow wave would be 

considered as a SAWC candidate; this technique had already been 

employed by other researchers (Bickford, 1959; De Vries and 

others, 1981; Principe and Smith, 1982).

It was first implemented in the form of a fourth-order 

Butterworth lowpass filter with a 7 Hz cutoff frequency followed
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Figure 5.20 - Effect of pre-filtering on the 
EEG signal, (a) Artifact and (b) SAWC.
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by a level detector (method already mentioned in item 5.3.2). 

Represented by equation 5.20 and with a frequency response curve 

illustrated in figure 5.21-a, the filter was first calculated for 

a sampling frequency of 600 Hz, which had previously been adopted 

for the DIFMOD. Later, in order to increase the coefficients 

accuracy, the sampling frequency for the lowpass filter was 

changed to 200 Hz [the bilinear transformation depends on the 

sampling frequency (Rabiner and Gold, 1985)], which was being 

used by the running-mean process to calculate the DC level. The 

processing time was 60 /¿s and the time delay was 75 ms.

A fourth-order 6.4 Hz 0.5-dB Chebyshev filter (- 3 dB 

at 7 Hz), whose frequency response curve is shown in figure 

5.21-b, was also implemented, but its main disadvantages were a 

higher value time delay (110 ms) and the ringing factor (see 

figure 5.22).

(s2 +  0.7653CC86 s +  1) (s2 +  1.84775907 s +  1)

II(z) 13 + 26 z 1 + 13 z ~ 2 12.5 +  25 z- 1  +  12.5 z ~ 2
10000 -  19405 z _1 + 9457 z ~ 2 10000 -  18686 z _1  + 8736 z- 2

(5.20-b)

Due to the number of multiplications and divisions that 

are necessary to process each sample through a 4th-order lowpass 

filter, the processing time is relatively high. In order to try 

to decrease it, another option of lowpass filter with a total
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7 Hz cutoff frequency, which consisted of a moving average 

section (L=8) followed by a first-order Butterworth filter 

(fc=ll Hz), was first tried. As can be seen from figure 5.21-a, 

the degree of attenuation to high frequencies was not very good. 

Experimentally, the averager section (The Open University, 1984) 

was modified and a good result was finally obtained for L=12, 

with a total cutoff frequency of 5.5 Hz, which compensates the 

low attenuation factor that it has for the higher frequencies. 

While the processing time was reduced to 38 /is, 20 /is of which 

were spent on the moving-average section, the time delay was 

reduced to 50 ms. Both values were the lowest obtained during the 

experiments. For this reason, this kind of filter was adopted. To 

keep the number of memory cells used by the averager relatively 

low, 200 Hz was kept as the sampling frequency.

The typical SAWC response waveforms obtained with the 

three different types of lowpass filters described above are 

illustrated in figure 5.22.

Figure 5.23 illustrates the final sequence of a SAWC, 

the detected spike, the filtered slow wave obtained with the 

averager-Butterworth filter and the detection levels. The ground 

level was selected as reference for the three waveforms.

As can be observed from figure 5.23, there is a delay 

caused by the lowpass filter. Consequently, a problem that arises 

is the time interval that exists between the spike-detector 

output and the real-slow-wave signal obtained from the lowpass 

filter. The real slow-wave may be anticipated by a false slow- 

wave, which is caused by factors such as the low-amplitude 

slow-wave that precedes the spike in some cases and/or the
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FREQUENCY (Hz)

Figure 5.21 - Three versions of lowpass filters 
tested for the detection of slow waves, (a) 
Moving average (L=12) in series with a first- 
order Butterworth, (b) fourth-order Butter- 
worth and (c) fourth-order 0.5-dB Chebyshev.

Figure 5.22 - Time response of three different 
lowpass filters to a typical SAWC. (a) Averag- 
er-Butterworth, (b) fourth-order Butterworth 
and (c) fourth-order Chebyshev.
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Figure 5.23 - Final sequence of the most 
important waveforms, (a) SAWC, (b) cubic filter 
output and (c) lowpass filter output.

response of the lowpass filter to the spike. To avoid the detec-

tion of this false slow-wave, a preset time interval has to be 

counted before the slow-wave detector is activated.

In general, the addition of the slow-wave detector 

produced a significant decrease in the number of false detec-

tions. Figure 5.24 shows as example an artifact, where the 

initial number of 31 detected spikes (false alarms) was 

reduced to 1 by the inclusion of the lowpass filter.
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Figure 5.24 - Reduction in the number of false 
alarms as a consequence of the inclusion of the 
lowpass filter in the algorithm, (a) Without 
and (b) with lowpass filter.
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In terms of SAWC detections, major difficulties arose 

only when the slow waves had very low amplitude or when spiky 

transients appeared (see items 5.3.2 and 5.6.2).

5.4.5 - The artifact rejection subroutines

The first basic algorithm was constituted of three

elements:

1) the spike detector,

2) the slow-wave detector and

3) the spike/slow-wave time interval counter.

The idea of activating the slow-wave detector after the 

detection of a spike was not good because of the transient re-

sponse that would be caused by the lowpass filter each time it 

was activated. For this reason, both detectors were always kept 

active. At the beginning, the detection levels were fixed. Later, 

they were made dependent on the DC level of the input signal.

If there were no artifacts at all or if the artifacts 

contained only spikes, the basic process mentioned above would be 

enough to provide a high SAWC detection and a low false alarm 

rate. Unfortunately, this is not always the case.

An examination of figure 5.25 shows that the artifacts 

may contain both spiky and slow-wave components. During tests 

with pre-recorded data, several algorithm changes were made in 

order to decrease the number of false alarms. The subroutines 

that were developed with such purpose were based on two main 

factors, which are:

132



1) the maximum number of spikes (1, 2 or 3) that may 

precede a slow wave and that can be accepted in a predetermined 

time interval and

2) the maximum value of the lowpass-filter output 

signal cannot be greater than a preset level (three times the DC 

level, for example).

Figure 5.25 - Artifacts
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If the detection of a polyspike-and-wave event is 

desired, the preselected number of spikes may be made equal to 

two or three, otherwise it is made equal to one. In fact, the 

poly-spike-and-wave will be registered as a single event; conse-

quently, the detection of the last spike and of the slow wave 

will be enough to register the occurrence and so the number of 

spikes can be made equal to one, which decreases the false alarm 

rate significantly.

Having a 3Hz SAWC sequence as a reference, the time 

period of 333 ms was used as an analysis time-window. In this 

interval, there cannot be more than one spike. A more detailed 

description of the main algorithm follows in the next item. The 

possibility of a false alarm still exists when the last spike of 

the artifact is followed by a slow wave.

5.5 - The Algorithm

The main algorithm was developed in order to guarantee 

the detection of a single SAWC or of sequence of SAWCs and to 

reject artifacts that have several spikes or very high amplitude 

slow waves. Once the first results were obtained with the first 

algorithm, that simply detected the spike and, some milliseconds 

later, the slow-wave, two time differences of special interest 

were measured. As figure 5.26 shows, they are T1 and T2. The 

respective values for the fourth-order Butterworth and for the 

averager filters, described in item 5.4.4, are 75 ms / 50 ms for 

T1 and 250 ms / 275 ms for T2. The main part of the algorithm, 

that is related to the detection of individual or multiple spikes
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and slow-waves, was made totally dependent on what happens during 

these intervals.

Figure 5.26 - Important time intervals in the 
detection of a spike and a slow wave.

A brief description of the algorithm will be made in 

the form of a sequence for a set of different possible wave-

forms, that are:

1) a single spike,

2) two or more single spikes following one another 

(possibly an artifact),

3) a single SAWC,

4) two spikes and a single slow-wave (SW) and

5) a spike followed by a half slow-wave (a probable 

SAWC) and another spike.

In the description below, SPCOUNTER is the spike coun-

ter and OUTPUT is normally nil, becoming equal to 1 when a SAWC 

is detected. RESET resets both SPCOUNTER and the time counter.
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The reader is reminded that both detectors are always active.

I - A single spike

1) Look first for a spike.

2) Once a spike has been detected, make SPC0UNTER=1
and wait till the end of T1 to look for a SW.

3) Start to look for a slow-wave (SW).

4) If no SW has been detected till the end of T2,
RESET.

II - Two or more spikes

Depending on the preselected number of spikes (SP) that 
are allowed to precede a SW, there are two possibili-
ties.

(a) First, for SP greater than one (SP= 2 or 3, for 
example), which is better for the detection of 
polyspikes, the algorithm is:

1) Look first for a spike.

2) Once a spike has been detected, make SPC0UNTER=1 
and wait till the end of T1 to look for a SW.

3) If in the meantime (till the end of T2) another 
spike is detected, add 1 to SPCOUNTER, clear the 
time counter and go on looking for a SW as 
before.

4) If the SPCOUNTER exceeds SP or the end of T2 is 
reached, RESET.

(b) Second, for SP=1, which is better for the rejection 
of multiple-spike artifacts, the algorithm is:

1) Look first for a spike.

2) Once a spike has been detected, make SPC0UNTER=1 
and wait till the end of T1 to look for a SW.

3) If in the meantime (till the end of T2) another 
spike is detected, RESET and go to step 2 
(ignore the first spike).
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Ill - A single SAWC

1) Look first for a spike.

2) Once a spike has been detected, make SPC0UNTER=1 
and wait till the end of T1 to look for a SW.

3) Start to look for a slow-wave (SW).

4) If a SW is detected during T2, wait till the end 
of T2 to make 0UTPUT=1.

5) Some milliseconds after making 0UTPUT=1, RESET. 

IV - Two or more spikes and a single SW

By combining II and III, there are two possibilities, 

(a) First, for SP greater than one, the algorithm is:

1) Look first for a spike.

2) Once a spike has been detected, make SPC0UNTER=1 
and wait till the end of T1 to look for a SW.

3) If in the meantime, before the detection of a 
SW, another spike is detected, add 1 to 
SPCOUNTER, clear the time counter and go on 
looking for a SW as before.

4) If the SPCOUNTER exceeds SP or the end of T2 is 
reached, RESET.

5) If a SW is detected during T2, wait till the end 
of T2 to make 0UTPUT=1.

6) Some milliseconds after making 0UTPUT=1, RESET, 

(b) Second, for SP=1, the algorithm is:

1) Look first for a spike.

2) Once a spike has been detected, make SPC0UNTER=1 
and wait till the end of T1 to look for a SW.

3) If in the meantime, before the detection of a 
SW, another spike is detected, RESET and go to 
step 2 (ignore the first spike).

4) If a SW is detected during T2, wait till the end 
of T2 to make 0UTPUT=1.
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5) Some milliseconds after making 0UTPUT=1, RESET.

V - A spike, half a slow-wave (a probable SAWC) and 
another spike.

1) Look first for a spike.

2) Once a spike has been detected, make SPC0UNTER=1 
and wait till the end of T1 to look for a SW.

3) Start to look for a slow-wave (SW).

4) If a SW is detected during T2, wait till the end 
of T2 to make 0UTPUT=1.

5) If another spike is detected before the end of 
T2, RESET and go to step 2 (ignore the probable 
SAWC).

6) If a SW is detected during T2, wait till the end 
of T2 to make 0UTPUT=1.

7) Some milliseconds after making 0UTPUT=1, RESET.

An observation must be made here. Several modifications 

are possible in the sequences discussed above. For example, if it 

is desirable to detect the presence of a probable SAWC (a spike 

followed by half a slow wave), T2 may be subdivided into T2a and 

T2b or simply decreased. In the first case, as soon as T2a is 

exceeded, OUTPUT goes to 1. The end of T2b may still be used to 

control the maximum time during which a SW may be detected. In 

the real-time algorithms developed for the Motorola system 

MVME-133, Tl, T2a and T2b are controlled by m_min, m_med and 

m_max, respectively (see Appendix B).

5.6 - Detection Levels and Results

Both the spike detection level and the slow-wave detec-
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tion level were made dependent on the DC level of the input 

signal. In order to select the appropriate values for these 

levels and to check the general performance of the developed 

algorithm, a non-contaminated EEG record with a duration of 150 

seconds and a maximum amplitude of 1.8 volts, containing a total 

of 57 SAWCs, was used. Four of the SAWCs were not taken into 

account because their spikes were not very sharp and had very low 

amplitude in comparison to the others in the record.

5.6.1 - Spike detection level

Varying the spike detection level from DC/30 to 2.DC in 

eleven steps, the total number of true and false detections was 

recorded. The respective results are listed in Table 5.1 and 

illustrated in figure 5.27.

Table 5.1 - Variation of the number of true 
and false detections as a function of the 
detection level.

DETECTION
LEVEL

DC/3 0 
DC/ 2 0 
DC/10 
DC/8 
DC/ 5 
DC/ 4 
DC/3 
DC/ 2 
DC
1.5 DC 
2.0 DC

TRUE
DETECTIONS

53
53
53
53
53
53
49
47
38
31
25

FALSE
DETECTIONS

70
25
7
4
1
0
0
0
0
0
0
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(a)

Figure 5.27 - Variation of the number of true 
(T) and false (F) spike detections as a func-
tion of the detection level, (a) From DC/30 to 
2.DC and (b) from DC/30 to DC/2.

As can be observed, there is a compromise between the 

number of true and false detections. Considering that the four 

SAWCs with very low amplitude did not belong to a group of normal 

SAWCs, any level between DC/4 and DC/3 may be chosen as the spike 

detection level, since all the other features may be detected 

without false alarms. As it is easy to divide a number by 4 in 

binary logic, DC/4 was adopted.

5.6.2 - Slow-wave detection level

A visual inspection of the output from the 7 Hz lowpass 

filter (taken via the DAC and output on a storage oscilloscope) 

suggested that the DC level would prove to be an adequate choice
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for the detection threshold and that no further enhancement of 

the signal would be required. To avoid false detections caused by 

isolated spiky transients, which cause variations in the output 

levels of both the spike and the slow-wave detectors, a level of 

DC+DC/8, that is 11.25 % above the DC level, was found to be more 

appropriate. Higher values brought problems to the detection of 

very-low-amplitude slow waves. A typical example of the lowpass 

filter output signal is shown in figure 5.28. Using the chosen 

level gave a good detection vs. missed feature rate, 58/0 with 

the test record.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
T I K E ( n s )

Figure 5.28 - Typical lowpass-filter output 
signal.

5.6.3 - Results

In terms of SAWC detection and artifact rejection, the 

performance of the developed algorithm was very encouraging. As 

mentioned above, the missed features were characterized by 

low-amplitude and non-sharp spikes such as those shown in 

figure 5.29.

141



Figure 5.29 - Examples of missed features.

The false alarms occurred only where a high-frequency 

transient mixed with a low-frequency component was present (a 

rectangular pulse, for example) or during an artifact (normally 

at its end), when the last spike was followed by a slow wave. Two 

examples are illustrated in figure 5.30.
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Figure 5.30 - Examples of false alarms.
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5.7 Discussion

A digital processing technique that permits the real-

time detection of spike-and-wave complexes (SAWCs) has been 

described. The spike and the slow-wave features are detected 

separately, with both the spike detector and the slow-wave detec-

tor being always active. Basically, the detection of a spike 

followed by that of a slow-wave in a preset time interval are 

necessary to confirm the occurrence of a SAWC.

As the coupling of a lowpass filter with the spike 

detector is just a means of reducing the number of false alarms 

that would occur with a simple spike detector and taking into 

consideration the fact that it is not too difficult to detect a 

slow wave, unless it has very low amplitude, more emphasis has 

been given to the performance of the spike detector.

Constituted mainly of a spike enhancer, which repre-

sents a differentiator in series with a Hilbert transformer, and 

a cubic filter, the spike detector is what makes this technique 

differ from others. It is more normal practice to use some form 

of differentiation to isolate the spike and some sort of lowpass 

filtering to reduce the noise caused by the differentiator.

Considering the input signal to have a zero mean value 

and the spikes to be positive, the spike enhancer, when excited 

by a spike, reproduces a high-amplitude positive peak, that may 

be considered as an even function, followed by a negative peak of 

lower amplitude. The cubic filter, by taking the input values to 

the cube, further enhances the positive peak that corresponds to 

the detected spike and reduces the relative low-level samples to
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almost zero (when the amplitude is normalized). A further feature 

is that the negative values remain negative. This way, while most 

of the noise is eliminated, the main peak is enhanced instead of 

having its amplitude reduced by a lowpass filter. One single 

detection level is enough since the negative values may be elimi-

nated.

The cubic filter has a highly non-linear transfer 

function [Vout(t)=f(Vin(t))], which is highly dependent on the 

amplitude variations of the input-signal. This has posed some 

difficulties in the selection of the constants that help to 

attenuate the filter input and output signals [in order to avoid 

overflow (8 MSB)] and of the spike detection level. For the 

selected values, the original EEG signal varies between 0 and 1.8 

volts. If the amplitude of the input signal is changed, then 

the detection level and the constants mentioned above may have to 

be modified. If only the constants are modified, the detection 

level may have to suffer modifications.

The spike detector performed well as a general purpose 

spike detector. From a total of 58 spikes, for the preset detec-

tion level (DC/4), 54 were detected without any false alarms. The 

spikes that were not detected and that were responsible for the 

non-detection of the respective SAWCs, belonged to a class of 

very-low-amplitude spikes. A decrease of the values of the atten-

uating constants of the cubing filter, which would increase the 

amplitude of the enhanced spikes, could be tried as a first step 

to detect them. Another possibility is a lowering of the spike- 

detection level, but the detection of these spikes could give 

rise to false alarms.
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Both the fourth-order Butterworth lowpass filter and 

the averager/first-order-Butterworth lowpass filter are good 

options.

Compared to the first one, the second offers the advan-

tage of a reduced time delay, which is essential for the detec-

tion of a sequence of SAWCS or of a spike followed by half a slow 

wave and another SAWC, for example. The main disadvantage is that 

it needs more memory to store the samples used by the averager. 

The same happens with the averaging filter from which the DC 

level of the input signal is obtained. Nowadays, the requirement 

for large quantities of memory does not seem to be a big problem.

The lowpass filter and the artifact rejection algorithm 

have been very helpful in the reduction of false alarms caused by 

isolated spikes or sequences of spikes with a low-frequency 

envelope (artifacts). As mentioned in item 5.4.5, the amplitude 

of the input signal was not used as a helping factor in the 

rejection of artifacts. It can, anyway, be checked and, if it is 

above a preset threshold, the real input signal can be ignored 

for some time (1000 ms, for example). During this interval, the 

input signal can be kept equal to an estimated value of the DC 

level (pre-calculated and stored in memory) in order to avoid 

abrupt changes in the detection levels and possible future false 

alarms. The real DC level shall not be used in such case because 

problems arise when it goes very low (when the input signal is 

nil for some time, for example). If the DC level is very low, the 

comparison level is very low and the input signal that follows 

such a period will be considered as an artifact and the program 

falls into a loop (low DC level => low comparison level => arti-
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fact flag on => low input signal (DC) => low DC level . ..).

During the experiments, information from only one 

channel was analyzed. In future, it is intended to expand the 

detection algorithm to deal with up to 5 or maybe 6 channels, 

which will permit the development of a more reliable interdepend-

ent SAWC detection and artifact rejection algorithm. For example, 

the ictal EEG of a typical absence seizure, that is a form of 

generalized seizure, is characterized by bilaterally synchronous, 

frontally predominant but generalized, 3/s SAWCs, which appear in 

all channels. Consequently, even if a SAWC is missed in some 

channels, its detection in another channel will be sufficient to 

confirm its presence.

To give a high resolution to the spike and to the 

corresponding signal at the output of the cubic filter, the spike 

detection algorithm was developed with a sampling frequency of 

600 Hz. If necessary, a reduction to 200 Hz could be considered 

to allow the multiplexing of several channels but with the 

advent of modern microprocessors, even more sophisticated algo-

rithms will be possible without the necessity of a reduction of 

the sampling frequency.

As the main idea is to build a monitor that can be 

carried by the patient, it must be as portable as possible and 

for this reason, neither the hardware nor the software can be 

too sophisticated at the moment (in a few-years time, they may 

be). So, the possibility of false detections exists. As mentioned 

in previous chapters, the EEG analysis must be as precise as 

possible so that correct decisions concerning diagnosis and 

treatment may be reached. For this reason, it is foreseen that
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the SAWC detector under discussion will be used not as a defini-

tive EEG-analysis tool but as an auxiliary tool that will select 

interesting segments of the EEG, which contain important fea-

tures. These segments will be subjected to a more elaborate 

method of SAWC detection, including visual interpretation by the 

EEGer if necessary.

The discussed method and many others are based on both 

time-domain and frequency-domain analyses of the signal, but 

considered separately. It is possible that a more reliable method 

of EEG analysis may be obtained if the signal is analyzed simul-

taneously in both domains. A mathematical tool that facilitates 

this kind of analysis is the Wigner Distribution, which is the 

subject of the next chapter.

5.8 - Conclusion

The presented approach to a SAWC detector is relatively 

simple and seems to merit further sophistication and exploration 

as a method of detection of spike-and-slow-wave complexes in real 

time. As the algorithm was tested with just a few prerecorded 

signals that did not vary on a daily basis, which is what happens 

in real life, the validation of the system performance cannot be 

overemphasized by the moment.
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CHAPTER 6

THE WIGNER DISTRIBUTION AND ITS APPLICATION 

TO THE MEASUREMENT OF EEG SIGNALS

6.1 - Introduction

Signal analysis and system modelling have typically 

been based on stationary signals and linear time-invariant 

systems. But, in practice, most signals, such as EEG, voice, 

image, radar and seismic signals ,to give only a few examples, 

are not stationary. For this reason, much attention has been 

given, during the last decades to non-stationary signal 

modelling and non-linear time-varying signal processing (Yu and 

Cheng, 1987).

In the study of a non-stationary signal, one of the 

most interesting aspects is the visualization of the variation of 

its spectrum as a function of time. The sound spectrogram 

(periodogram) was invented during the 1940s with this purpose in 

mind. In its modern form, it is calculated as the square of the 

Short-Time Fourier Transform (STFT), which consists of sliding a 

short-time window over the signal and computing the respective 

energy spectrum of each segment. This technique is very easy to 

compute and interpret, but it is useful only in the analysis of 

the local frequency characteristics of slowly time-varying 

signals, because good time-resolution requires a short-duration 

analysis window whereas good frequency-resolution requires a
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long-duration window. This is a consequence of the uncertainty 

principle, which is supported by the scaling theorem (Papoulis, 

1977). However, different windows (rectangular, triangular, 

Hamming, hanning, Kaiser) can be used for measuring different 

signal properties.

The Wigner Distribution (WD) is another type of 

time-frequency signal representation that overcomes the 

drawbacks presented by the STFT. Both the time-resolution and the 

frequency resolution are not dependent on a window function but 

rather on the intrinsic resolution of the signal itself. 

Furthermore, it has a great number of good properties and is of 

particular interest in the analysis of non-stationary signals, 

such as EEG signals. In 1932, the WD was proposed and applied 

in the area of quantum mechanics by E. Wigner. Later, in 1948, 

J. Ville proposed its use in signal analysis and since then 

it has also been known as The Wigner-Ville Distribution. It 

remained practically unnoticed and unused until 1980, when 

three definitive papers by T. A. C. M. Claasen and W. F. G. 

Mecklenbrauker were published.

6.2 - The Wigner Distribution

The Wigner Distribution is a two-dimensional transfor-

mation of a one-dimensional signal x(t), which shows its 

frequency characteristics as a function of its variation in the 

time domain. The WD can be written as:

oo

Wx(t,w) x(t +  £) x *(l  -  5)
- j w r dr

-00

(6 .1)
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where t is the time domain variable, w is the frequency domain 

variable and x*(t) represents the complex conjugate of x(t).

As with the Fourier Transform, the definition given 

by equation 6.1 is not very useful in practical terms because 

the signal must be known for all times (infinite integral). 

However, it is valid for theoretical demonstrations. In order 

to apply the WD to discrete-time signal processing (Discrete 

Time Wigner Distribution) and to calculate it via FFT tech-

niques, to take advantage of modern computer technology, 

equations 6.2 and 6.3 may be used (Claasen and Mecklenbrauker, 

1980; Boudreaux-Bartels, 1985; Yu and Cheng, 1987). Equation 6.3 

is a windowed version of equation 6.2, making it suitable for 

computer evaluation. The windowed version, also known as the 

Pseudo Wigner Distribution (PWD), causes some blurring in the 

frequency direction but no blur in the time direction. The re-

sults depend obviously on both the window size and type.

Wx (n,w) =  2 x(n +  m) x*(n — m) e (6-2)
m=-oo

Wx (n,w) =  2 ^  x(n +  m) x*(n — m) h(m) h*( —m) e (6.3)
m=-oo

The properties of the DTWD are similar to the 

continuous time case, with the exception of the periodicity in 

the frequency variable; this however is to be expected.

There are no restrictions imposed by the WD on the 

spectrum of the signal x(n) but as is known from discrete- 

signal theory (Oppenheim and Schafer, 1975), a sampled signal
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has a spectrum that is periodic with period 2n (or fs). As 

can be seen from equations 6.2 and 6.3, the WD in fact has a 

period n. The consequence of this is that frequency components 

that are ir apart in the spectrum will produce a similar effect 

in the WD. A simple solution to avoid such aliasing is to over-

sample the signal by a factor equal to or greater than twice 

the Nyquist rate (fs > 4.fmax).

Although oversampling may seem to be an easy solu-

tion, in practice, obstacles such as difficulties with 

interpolation methods and memory limitations imposed by 

computers (mainly personal computers) may appear.

Another factor is the aliasing caused by the rectan-

gular window. This may be in part eliminated by the use of 

other well known windows but the "corruption" of good data by 

such non-rectangular windows is not easy to justify (Burg, 

1975; Picone and others, 1988). In such case, the only solu-

tion is to make use of the analytic signal associated with the 

sampled signal x(n) (Martin and Flandrin, 1985; Boashash and 

Black, 1987). The analytic signal, also used in the communica-

tions field to facilitate the generation of single sideband 

signals, has a unilateral positive-frequency spectrum (infor-

mation on negative frequencies of any real-valued signal is 

redundant). Consequently, not only the aliasing problem is 

solved but also the WD will vanish in the negative frequency 

plane, cutting both the memory storage and processing time 

required. Therefore, if the analytic signal is used, the sam-

pling rate constraint becomes the Nyquist rate (fs > 2.fmax). 

More details about the analytic signal follow ahead.
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The analytic signal (Bracewell, 1978; Mohanty 1987) 

corresponding to a real function x(t) is a complex function 

defined by;

xa =  x(t) +  j x Hi|b(t) (6.4)

where xH^lb(t) is the Hilbert Tranform of x(t).

It has already been shown in Chapter 5 that the 

Hilbert Transform is a signal transformation that alters only the 

phases of the frequency components by 90 degrees, keeping their 

amplitudes constant. It is defined by:

oo

xHilb(t) =  I |  ^  (6-5)
- o o

Using FFT algorithms, the Hilbert Transform of x(t) 

can be easily obtained in practice by convolving it with 

1/ (7rt) , as shown below:

xHilb(t) = * x(t) (6-6)

where * denotes convolution.

Given a function x(t), its respective analytic 

function xa(t) may be written as:

xa =  e(t) e"J0(t) (6.7)

where e(t) represents the function envelope and 9(t) represents
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the phase. The instantaneous frequency is obtained by deriving 

the phase in relation to time as shown in equation 6.8 and the 

group delay, that represents the time delay experienced by each 

frequency component of x(t), is given by equation 6.9, where $(w) 

is the phase function of the Fourier Transform of x(t).

n(‘ ) =  ' '-^ r  (6-8)

T(„) = - (6.9)

6.2.1 - Properties of the Wigner Distribution

The Wigner distribution of a continuous-time signal 

x(t) has several interesting properties which will be summa-

rized below. Some of these properties are very useful in the 

analysis of EEG signals while others will be mentioned for the 

sake of completeness. For more detailed information, the 

references should be consulted. As mentioned earlier, keeping 

in mind that a periodicity occurs in the frequency domain, 

these properties are also valid for the DTWD. The properties 

are: 1

1) The WD of any real or complex signal is always real.

2) The WD of a real signal is an even function of the

frequency.

3) The integration of the WD over the frequency varia-

ble at a certain time tl yields the instantaneous signal power at 

that time, that is:
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N ‘)|p = A W x (t,w ) dw (6.10 )

4) The integration of the WD over the time variable 

at a certain frequency W1 yields the power spectral density at 

that frequency, that is:

OO
[X(W)|2 = W x (t,u>) dt

-oo
(6.11)

5) The WD has in the time domain the same support that 

the signal has. For example, the WD of a causal signal is nil 

for negative time.

6) The WD has in the frequency domain the same support 

that the spectrum of the signal has. For example, the WD of an 

analytic signal is nil for negative frequencies.

7) The WD preserves time shifts suffered by the signal.

8) The WD preserves frequency shifts suffered by the

signal.

9) The convolution of two signals in the time domain 

results in a one-dimension convolution of their WD1s in the time 

direction.

10) The WD of the sum of two signals is a bilinear 

function of the respective WD's and not only the sum of the 

WD1s, as shown by equation 6.12.

VVD(f + g) = VVD(f) + WD(g) + 2 Rc[\VD(f, g)] (6.12)

where WD[f] and WD[g] represent the autoterms and 2.Re[WD(f,g)] 

represents the crossterms.
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11) The multiplication of two signals in the time 

domain results in a one-dimension convolution of their WD's 

in the frequency direction.

12) The first local moment of the WD over the fre-

quency variable yields the instantaneous frequency of the 

signal. As defined in equation 6.8, the instantaneous frequency 

can be recovered from the WD by:

OO

co  Wx (t,cj) d l j

« (0==^---------  (6.13)

Wx(t,w) d u >
-O O

13) The first local moment of the WD over the time 

variable yields the group delay of the signal. As defined in 

equation 6.9, the group delay can be recovered from the WD by:

OO

t Wx(t,w) dt

T(w)==§i--------  (6-14)
*

Wx(t,uj) dt
-O O

6.2.2 - An example of the Wigner Distribution

The best way to appreciate the features that the 

Wigner Distribution offers in both the time and frequency 

domains is through an example, visualizing it through its 

perspective (three-dimensional) and its contour plots (two-dimen-

sional) . Using the causal formula, given by equation 6.3, with a 

rectangular window, the WD of a Gaussian function multiplied
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by a sine function, is obtained by taking the following steps:

1) Given the original equation, represented by 
equation 6.15, the respective analytic signal 
is obtained.

2) For each value of m, the analytic signal is shifted 
in one direction and its complex conjugate in 
the opposite direction. Their product is then 
obtained and a matrix whose rows represent each 
product is constructed.

3) The Fourier Transform of each column of the 
matrix is taken.

4) The WD is then obtained by taking the real part of 
the matrix and multiplying the result by 2.

a(n - nQ)2
x(n) =  e N sin(27rf0^) (6.15)

The signal, its respective WD in three dimensions and 

in two dimensions are shown in figure 6.1. While the perspec-

tive view offers a qualitative interpretation of the signal, 

the contour plot in the time-frequency plane permits a quantifi-

cation of the delay and the spreading of each frequency compo-

nent in the time domain.

6.2.3 - Interference in the Wigner Distribution

The WD distribution suffers from some undesirable side 

effects. The one that has caused the most trouble in this 

work is the so called crossterms interference or artifacts.

Based on properties 3 and 4, it would be a good idea to 

consider the WD as a totally positive function (Janssen,
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1988; Johnston, 1989) but due to its bilinear structure, support-

ed by property 10, there will always be an oscillation, that 

assumes positive and negative values, in between two func-

tions (in time and/or in frequency). In other words, the WD 

may be not nil in an interval of time and/or frequency where 

the signal is nil (Bodreaux-Bartels, 1985) . As an example, see 

Figure 6.3, which shows the WD of the signals described by 

(6.16).

x(n) =  e
-a(- ‘ 1 x2

N sin(27rf1̂ ) + e
-a(-

*22
N

sin(2*f2jq) (6.16-a)

<(")
-a(

n -  n j 
~N

sin(27rfî ) + e
-b(n - n- N si n(2 7rf2|l ) (6.16-b)

In the case of a sum of N sinusoidal signals, for 

example, there will always be ( 1 / 2 . N ( N - 1 ) )  spurious values 

(Cohen, 1989) and, consequently, in most practical cases, 

where the signals have an original wideband or a wideband 

provoked by discontinuities, caused by a rectangular window, for 

example, there will be interference obscuring the real WD. 

Unfortunately, the WD is totally positive only for one par-

ticular function, that is the Gaussian pulse (it may be shifted 

in time and it may be multiplied by a sine function, which 

causes a shift in frequency) . This is the right time to enhance 

one more benefit brought by the use of the analytic signal, that 

is: no interference terms between positive and negative 

frequencies (DC level) shall appear (Martin and Flandrin, 

1985; Yu and Cheng, 1 9 8 7 ) .  When a signal that contains a
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Figure 6.1 - WD of a Gaussian function multi-
plied by a sine function. (a) The signal, 
(b) perspective view and (c) contour plot of 
the WD.
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DC level is windowed through a rectangular window, discontinui-

ties normally appear. In order to avoid them, even when the 

analytic signal is in use, it is a good idea to eliminate the DC 

level.

The most basic way to eliminate part of this interfer-

ence is to use non-rectangular windows in equation 6.3, the so 

called Pseudo-Wigner Distribution, that is a frequency-smoothed 

WD. A second choice is to make use of the Smoothed Pseudo- 

Wigner Distribution (Martin and Flandrin, 1985-a-b), given by 

equation 6.17, that is a double convolution.

N-l M-l
P W Ín -'i Í M  =  2 lhN(r)S" $3  SmO) x(t +  1 +  T) x*(t +  1 -  t ) e J wr (6.17)

r=_N+l l= -M +l

The third and most popular choice of smoothing, adopted 

in this work, is to convolute the original WD with a two-dimen-

sional Gaussian function such as the one shown in figure 6.2 

(Bertrand and others, 1983; Janssen and Claasen, 1985; 

Johnston, 1989; Cohen, 1989), as defined by equation 6.18. As 

an example of this method, making k=[-5:l:5], 1=[-5:1:5], a=12 

and )9=12 (these values were selected experimentally and used 

throughout this work, except on the example concerned with equa-

tion 6.19, where k=l=[-3:1:3 ] and a=/3=9 were used), the original 

WD's illustrated in figure 6.3 assume the forms shown in figure 

6.4. As can be seen, a great percentage of the interference is 

eliminated and the WD tends to have only non-negative values, as 

desired. All this is due to the fact that the smoothing func-

tion has the effect of a lowpass filter in both dimensions, 

attenuating the signals that have sharp variations such as the
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artifacts.

The final result is a function of the so called auto-

terms .

w )  = i e p (6-18)

Figure 6.2 - Example of a two-dimensional 
Gaussian smoothing function.

Unfortunately, as with the process of AM-DSB detection, 

for example, where the averaging filter may eliminate not only 

the carrier, but also the relatively high-frequency components of 

the modulating signal, one negative consequence of the 

smoothing process is the reduction in amplitude not only of the 

artifacts but also of components that have sharp variations 

(compare figures 6.3-b and 6.4-b). As the main idea was just to 

check the different forms of the WD as a function of the
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(a)

(b)

T I MK (n-.

(C)

Figure 6.3-a - WD of the sum of two 
functions shifted both in time and in 
showing the artifact in between, 
signal, (b) perspective view and (c) 
plot of the WD. (With reference to 
6.16-a.)

Gaussian 
frequency 
( a) The 
contour 

equation
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(a)

(b)

T I MK ( n s  )

(C)

Figure 6.3-b - WD of the sum of two 
functions shifted both in time and in 
showing the artifact in between, 
signal, (b) perspective view and (c) 
plot of the WD. (With reference to 
6.16-b.)

Gaussian 
frequency 
(a) The 
contour 

equation
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(a)

(b)

(c)

Figure 6.4-a - Smoothed WD of the sum of two 
Gaussian functions shifted both in time and in 
frequency, (a) The signal, (b) perspective view 
and (c) contour plot of the WD. (With refer-
ence to equation 6.16-a.)
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Figure 6.4-b - Smoothed WD of the sum of two 
Gaussian functions shifted both in time and in 
frequency, (a) The signal, (b) perspective view 
and (c) contour plot of the WD. (With refer-
ence to equation 6.16-b.)
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signal waveforms, no major attention was given to the variations 

in amplitude that were caused by the smoothing process.

Another negative consequence is the smearing effect 

caused on the WD in both time and frequency domains. For such 

reasons, to achieve a good result, some time has to be spent in 

order to obtain an appropriate smoothing function for each par-

ticular case.

Although such drawbacks exist, the results justify by 

themselves the use of the Wigner Distribution in the analysis of 

both stationary and non-stationary signals.

Two other examples, concerned with equation 6.19, 

are presented in figure 6.5. The first one represents a linear 

FM signal while the second represents a non-linear FM signal.

x(n) =  A sin{2jr[f1 j* +  ^  2 ** (^ )2]} (6.19-a)

x(n) = A sin{27r[f1 ̂  + ̂ -3-^ (§)3]} (6.19-b)

6.3 - Application of the WD to EEG Signals

Being one of Cohen's Class of Time-Frequency Energy 

Distribution Functions, the Wigner Distribution has been used, 

mainly since 1980, in the area of signal processing, for the 

investigation of time-frequency interdependent phenomena. 

To give some examples, it has been used in the process-

ing of non-linear FM radar signals (Johnston, 1989), biological
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Figure 6.5 - Contour plot of the smoothed WD 
of an FM signal, (a) Linear sweep and (b) non-
linear sweep.
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signals (Martin and Flandrin, 1985; Morgan and Gevins, 1986; 

Jacobson and Wechsler, 1988), seismic signals (Boashash, 1985) 

and ultrasound (Costa, 1989) . Among these applications, there 

are two that are directly related to the human body. Morgan and 

Gevins have applied the WD in the analysis of event-related 

brain potentials while Jacobson and Wechsler have applied it in 

the analysis of visual information in the cortex.

In the present work, the WD has been employed to 

analyse several different forms of EEG signals, mainly spike- 

and-slow-wave complexes (SAWCs) and artifacts, since they are the 

major source of false detection of SAWCs.

6.3.1 - The experimental setup

Making use of the commercially available MATLAB-386 

package, the algorithm (see Appendix C), that was originally 

written by E. T. Costa (Costa, 1989) to be run in a Vaxstation- 

3200, was implemented with some modifications (data input and 

output and smoothing process) and run on an IBM-compatible 

personal computer, which had a memory capacity of 7 Mbytes and 

a clock frequency of 36 MHz.

Based on the fact that the vector "x", that represents 

the input signal, can have a maximum of 256 elements (samples) 

for the specifications given above and that the processing time 

is proportional to the vector length, a few experiments were 

made using different sampling frequencies. A sampling frequency 

(fs) of 160 Hz was considered adequate, since the EEG signal 

could be kept band-limited to 70 Hz and a total of 128 elements
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would represent a segment of 800 ms. This could represent a good 

part of a long duration artifact or a sequence of up to two 

SAWCs, while keeping the processing time to acceptable limits 

(see details below). As figure 6.6 shows, if 64 elements were 

used in order to decrease the processing time, only a single SAWC 

could be processed at such a sampling frequency. Although the 

result is equivalent to the one obtained with 128 elements in the 

limits of the SAWC (spreading in the time domain is different), 

it would not allow longer segments of EEGs to be processed, 

unless the sampling frequency were decreased, making it impossi-

ble to compare the results. A decrease in the sampling frequency 

would bring very low resolution to the spikes.

After digitization through the ILS package, the signal 

was stored in ASCII-format and transferred to MATLAB.

Once a WD matrix (or any other) is calculated, it 

can be displayed either in perspective (using the command MESH) 

or in the form of a contour plot (using the command CONTOUR). By 

using the command PLOT, the variation of amplitude of all rows 

or columns can also be displayed, allowing, for' example, an 

inspection to be made to ascertain if the smoothed WD still 

contains negative values.

For x(n) containing a total of N elements, the WD 

original matrix (before smoothing) has a dimension N.N with a 

time scale going from 0 to (N-l)/fs and a frequency scale going

from 0 to fs/2 .

Two are the main factors that determine the total proc-

essing time:

1) the value of N and
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(a)

( b )

(c)

Figure 6.6 - SAWC represented by 64 samples and
its smoothed WD. (a) The signal, (b) perspec-
tive view and (c) contour plot of the WD.
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2) the total number of elements AB that compose 

the two-dimensional smoothing function L(k,l), where 

A=kmax-kmin+l and B=lmax-lmin+l.

The smoothing process was simply performed by using 

the MATLAB command C0NV2, which convolves two matrices in both 

dimensions. As the command does not make use of FFTs (it works 

like a filter, using differential equations), most time was spent 

on this process. For example, using the same smoothing 

function, with A=B=11, and making N=128 and N=256, it took 5 

minutes in the first case and 40 minutes in the second to 

obtain the final smoothed WD matrix!

6.3.2 - Examples

The first three examples illustrated on figures 6.7,

6.8 and 6.9 demonstrate the application of the Wigner Distribu-

tion to a typical SAWC, a segment of normal EEG and an arti-

fact. The graphs represent the complete matrices of both the 

unsmoothed WD (0 to 800 ms and 0 to 80 Hz) and the smoothed WD 

(-32 ms to 832 ms and -3.2 Hz to 83.2 Hz, approximately).

These results demonstrated that it would be enough to 

smooth only the lower frequency half of the original WD matrix, 

since most of the energy of the EEG signal was located below 

40 Hz. This was considered to be the best way to decrease the 

processing time without the necessity of either altering the 

resolution of the signal in the time domain or writing a 

special program to obtain the double convolution. Using this
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(a)

TIME (ms)

(b)

( c )

Figure 6.7 - WD of a typical SAWC. (a) SAWC,
(b) unsmoothed WD and (c) smoothed WD.
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Figure 6.8 - WD of a segment of normal EEG
(a) EEG, (b) unsmoothed WD and (c) smoothed WD
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Figure 6.9 - WD of an artifact, (a) Artifact,
(b) unsmoothed WD and (c) smoothed WD.
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modified algorithm, the processing time was reduced from 5 to 2 

minutes. In the next examples, the smoothed WDs have a frequency 

scale that goes from -3.2 Hz to 43.3 Hz, approximately. The 

time scale is not altered.

The next twelve figures correspond to the WDs of four 

different SAWCs (more examples are given in Appendix D), four 

artifacts and four other segments of EEG that caused false 

alarms in the SAWC detector when the spike detection level was 

lowered. Since major importance was given to the shapes of the 

WDs and not to their amplitudes, the contour plots are normal-

ized (all with 17 contour lines).

Figure 6.10 shows that the spike-and-wave complex-

es, no matter how different they may be in terms of ampli-

tude, have similar WDs (in terms of shape), whose contour plots 

are characterized by a "T" shape, while figures 6.8, 6.11 and 

6.12 show that the WDs of a normal EEG, artifacts, and false- 

alarm SAWCs, respectively, have shapes that exhibit signifi-

cant differences among themselves and in relation to the WDs of 

SAWCs. These results give considerable weight to the idea that 

the Wigner Distribution provides the basis for a more elaborate 

and reliable method of analysis of EEG signals.

It is quite easy to distinguish one WD from anoth-

er by visual inspection, but, no matter if the WDs are computed 

either by a post-processor or by a real-time processor, an 

algorithm is required that allows such distinction to be made 

automatically.

A time-consuming method could be developed based on a 

two-dimensional matched filter, where the template is the WD of
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Figure 6.10-a - Smoothed WD of a SAWC. (a) The
signal and (b) contour plot of its WD.
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Figure 6.10-b - Smoothed WD of a SAWC. (a) The
signal and (b) contour plot of its WD.
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Figure 6.10-c - Smoothed WD of a SAWC. (a) The
signal and (b) contour plot of its WD.
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Figure 6.10-d - Smoothed WD of a SAWC. (a) The
signal and (b) contour plot of its WD.
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(a) The signal

- Smoothed WD of an artifact,
and (b) contour plot of its WD.
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Figure 6.11-b - Smoothed WD of an artifact,
(a) The signal and (b) contour plot of its WD.
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Figure 6.11-c - Smoothed WD of an artifact,
(a) The signal and (b) contour plot of its WD.
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Figure 6.11-d - Smoothed WD of an artifact,
(a) The signal and (b) contour plot of its WD.
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Figure 6.12-a - Smoothed WD of a false-alarm
SAWC. (a) The signal and (b) contour plot of
its WD.
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Figure 6.12-b - Smoothed WD of a false-alarm
SAWC. (a) The signal and (b) contour plot of
its WD.
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Figure 6.12-c - Smoothed WD of a false-alarm
SAWC. (a) The signal and (b) contour plot of
its WD.
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Figure 6.12-d - Smoothed WD of a false-alarm
SAWC. (a) The signal and (b) contour plot of
its WD.
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a standard SAWC.

below.

The description of a more basic algorithm follows

6.3.3 - False-alarm-rejection algorithm

The false alarms that occurred during the tests arose 

mainly as a consequence of lowering the detection levels. They 

were provoked by very sharp spikes mixed with slow waves, which 

were normally contaminated with spiky signals (in general, it 

is expected that the false alarms will be caused by artifacts). 

Consequently, high-frequency components will cover the respective 

WDs not only in the region corresponding to the spike (from 200 

ms to 350 ms in the smoothed WD) but also in the region 

corresponding to the slow wave (from 350  ms to 800  ms). This 

phenomenon can be observed in figure 6 . 1 3 , which shows as an 

example the perspective view and the contour plots of the WDs of 

a standard SAWC and of a typical false alarm. It can also be 

observed that in figure 6.13-b, the region corresponding to 

the spike shows more activity in the high frequencies when 

compared to figure 6.13-a and that such activity is dispersed 

around with positive and negative values. This is due to the 

fact that the artifact spikes are sharper than a normal spike 

and appear in groups, causing more crossterms to be generated by 

the high-frequency components, spread over a wider area.

Based on the facts discussed above and on a consider-

ation of the signals that were being analyzed (the artifacts 

had low amplitude), the first idea was simply to measure the
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(a)

Figure 6.13 - (a) WD of a standard SAWC. (b)
WD of a typical false alarm.
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mean value of the region of the WD that corresponds to the spike 

and to set a threshold. The mean value of the region that corre-

sponds to the slow wave varies significantly as the slow waves 

may have a low amplitude in a normal SAWC and very high ampli-

tude in an artifact; consequently, the total mean was not consid-

ered to be a good reference either from which to set a thresh-

old. For this reason, an algorithm that depended mainly on the 

shape of the WD and not on the magnitude of the values had to be 

obtained.

Figure 6.14 - Feature areas of the WD.

At the beginning of the experiments, all the segments 

of EEGs whose WDs were to be calculated were aligned either 

according to the maximum value of a spike (SAWCs, false-alarm
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SAWCs and artifacts), i.e. as if the spikes had been previously 

detected, or according to the maximum value of the segment 

(normal EEG or non-spiky artifacts). Now, having figure 6.14 as a 

reference, the area of inspection (Ai) was determined as the 

region were the "energy" of the WD of a normal SAWC should be 

minimum. A general-purpose coefficient, that may be used as a 

decision point, can be obtained for this area. The algorithm 

that determines such a coefficient follows below; it has been 

assumed that the precalculated smoothed Wigner Distribution 

contains 74 lines (frequency) and 138 columns (time).

6.3.3.1 - The algorithm

1) Load the precalculated smoothed WD
WD(1:74,1:138). % WD(lines,columns)

2) Select the area corresponding to SAWCs.
Asawc(11,cl) = WD(1:74,40:110)

3) Select the area of high frequencies around the spike 
region.
Ahf(12,c2) = WD(44:74,35:65)

4) Select the area of inspection.
Ai(13,c3) = WD(34:74,70:110)

5) Enhance the high-frequency variations in Ahf(l2,c2) 
by differentiation.
XI(14,c4) = diff(Ahf(12,c2))

6) Calculate both the standard deviation, that is a 
function of the variance, and the mean value of 
XI(14,c4) and divide the first by the second so 
that the result be independent of the amplitude of
the WD.
K 1  = std ( X I (1 4 ,c4))/mean(XI( 1 4 , c 4 )) %  constant 1

7) Calculate the maximum value of the WD in the region 
of interest (corresponding to the SAWC).
K2 = max(Asawc) % constant 2
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8) In the area of inspection Ai(13,c3), make constant 
K3 equal to the line number (proportional to 
frequency) % constant 3

9) Calculate the coefficient Y(l,c) for each point.
(K1 and K3 are independent of the amplitude;
K2 and Ai(l,c) cancel such dependence).
Y(1,c) = abs[Ai(l,c)/K2].K1.K3

10) If Y(l,c) is above a preselected threshold (K4), 
make the variable Z(l,c) equal to one, otherwise 
make it nil.
if Z(l,c) > K4, Z(l,c)=l % constant 4
otherwise, Z(l,c)=0

11) The final false-alarm rejection coefficient is the 
mean value of the matrix Z(13,c3).
FARC = mean[Z(13,c3)]

This way, the final coefficient has been made propor-

tional to three main variables, which are:

1) the relative amplitude [Ai(l,c)/K2] of the WD in 

the area of inspection (it is independent of the polarity),

2) the relative variation of amplitude ( standard 

deviation/mean value) of the WD in the region of high fre-

quencies near the spike (it tends to be higher for artifacts) and

3) the point, in terms of frequency, of the area of 

inspection where the coefficient is calculated. (The higher the 

value of the frequency component, the higher is the line number).

As can be observed from Table 6.1, the value of the 

coefficient will be very low (tending to zero) in the case of 

normal SAWCs and have a relatively high value for other kinds 

of signals. These results were obtained for a threshold (K4) 

equal to 10. The most important fact is that the coefficient 

does not depend on the real amplitude of the Wigner Distribu-
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tion, but on its shape.

Table 6.1 - Variation of the false-alarm 
rejection coefficient as a function of the 
signal (threshold = 10).

SIGNAL FARC

SAWC 1 0
SAWC 2 0
SAWC 3 0
SAWC 4 0
SAWC 5 0
SAWC 6 0
SAWC 7 0
SAWC 8 0
SAWC 9 0
SAWC 10 0
SAWC 11 0
SAWC 12 0
SAWC 13 0
SAWC 14 0
SAWC 15 0
SAWC 16 0
SAWC 17 0
SAWC 18 0
SAWC 19 0
SAWC 20 0

ARTIFACT 1 14
ARTIFACT 2 22
ARTIFACT 3 1476
ARTIFACT 4 468
ARTIFACT 5 1232

EEG 1 774
EEG 2 110
EEG 3 986
EEG 4 625
EEG 5 675

FALSE SAWC 1 270
FALSE SAWC 2 381
FALSE SAWC 3 1129
FALSE SAWC 4 1538
FALSE SAWC 5 479
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6.4 Discussion

The processing time was too high during the experi-

ments for the technique to be considered for any real-time analy-

sis, although it may be reduced significantly if more appro-

priate software is developed. The first idea is to use the WD to 

post-process records previously selected by the SAWC detector in 

order to confirm or not the detections made by this, so as to 

improve the quality of the analysis. (As discussed in the previ-

ous chapters, it is always the patient who suffers the conse-

quences of a low-quality EEG analysis).

The real-time implementation of the WD has already 

been investigated in 1987 by Boashash and Black. During the last 

decade, researchers have tried to obtain more efficient algo-

rithms for its computation. With the constant progress in 

microelectronics, the possibility of applying this technique 

to real-time analysis of signals in a few years time exists, 

leaving the hope that more precise EEG analizers will be made 

possible. For example, one possibility would be a portable unit 

constituted of a WD analizer that would detect SAWCs by itself 

based on the shape of the computed WD.

6.5 - Conclusion

Originally developed by Wigner in 1932 to be used in 

the field of quantum mechanics, the Wigner Distribution was 

used for the first time in signal analysis by Ville in 1948, who 

redefined it making use of the analytic signal instead of the

1 9 4



real signal. It is for this reason that it is also known as 

Wigner-Ville Distribution. Since 1980, when it was reintroduced 

by Claasen and Mecklenbrauker, it has been investigated as a 

time-freguency distribution that is of particular use in the 

analysis of nonstationary signals.

Having several desirable properties, its main draw-

back is the creation of artifacts, also known as crossterms, 

which corrupt the real spectrum, mainly when the signal con-

tains several components. The crossterms that are a conse-

quence of negative frequencies (aliasing) are eliminated by 

making use of a unilateral spectrum or, in other words, of the 

analytical signal; this also reduces significantly the re-

quired amount of memory. In order to reduce the amplitude of 

those artifacts that are caused by interference between the 

positive components, the original WD has to be smoothed with the 

use of time windows introduced into the general formula 

(Pseudo Wigner Distribution) or commonly by convolving the 

original WD with a two-dimensional Gaussian function (which is 

in fact a lowpass-filtering process). The different smoothing 

methods always cause some smearing in one or in both dimen-

sions .

The possibility of application of the WD to the analy-

sis of EEG signals, which are highly nonstationary, has been 

demonstrated. With the obtained results, it seems that the Wigner 

Distribution could prove to be a very powerful technique for the 

identification of spike-and-slow-wave complexes, which have a 

characteristic T-shape WD, in contrast to normal records of 

EEGs or artifacts, which have no particular form.
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The main problem lies in its computation. During the 

experiments, the processing time, especially for smoothing, was 

quite long and much attention had to be given to memory capacity. 

Part of the problem was due to the chosen test setup and not of 

the technique itself.

In 1989, H. Choi and W. Williams introduced another 

form of distribution known as the Exponential Distribution (ED) 

owing to its exponential kernel function. They applied it to the 

analysis of multicomponent signals such as brain waves evoked by 

words (evoked potentials).

The ED, like the WD, is also a member of the Cohens's 

class of time-frequency distributions and, due to its bilinear 

structure it also has crossterms. The main difference is that, 

with its more complex mathematical representation, the process of 

smoothing is inherent to the distribution. This way, by altering 

the kernel (in the WD, the kernel is equal to one), it is possi-

ble to smooth the distribution, controlling the amplitude of the 

interference caused by the crossterms. As with the WD, the price 

paid for the elimination of the crossterms is the spreading of 

the autoterms, which leads to a poorer resolution.
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CHAPTER 7

DISCUSSION AND CONCLUSIONS

7.1 - Discussion

This thesis has been concerned with the application of 

computer aided measurement techniques to assist in the diagnosis 

of medical conditions. In particular, it has addressed the prob-

lem of the reliable detection of epilepsy based on signals de-

rived from the surface of the scalp (i.e. the electroencephalo-

gram) .

The importance of a very accurate diagnosis of epilepsy 

was identified very early in the thesis. The need for an accurate 

positive indication is obvious, in order that suitable treatment 

may be prescribed. Also, it is important to the patient to be 

aware of their condition in order that they may take appropriate 

precautions to minimize the possible risk of personal injury in 

the event of an attack.

A negative result, while it may not bring very serious 

problems to an epileptic patient (the patient will just go on 

having some seizures while more tests are carried out), a posi-

tive result for a person v/ho is not epileptic may have very 

serious consequences. These may include the side effects of the 

drug(s), loss of job or difficulties in getting a job (e.g. a 

person who suffers from epilepsy cannot be a pilot, fireman, etc)
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and others, based on human prejudice, which may result in isola-

tion from society.

In order to improve the degree of accuracy in the 

diagnoses of brain diseases often related to epilepsy, the long-

term EEG has been adopted in cases where the normal EEG does not 

show significant results. With the long-term EEG, it is possible 

to capture and to quantify very rare and unpredictable events, 

which may appear in a space of hours or even days and not in 30 

or 40 minutes, that is the duration of a normal EEG recording.

The problem posed by the long-term EEG is the sheer 

volume of data that is obtained, which cannot be analysed by an 

human interpreter in a simple way. A fast review of the signal on 

an oscilloscope may be a convenient procedure in just a few 

cases. For this reason, it is necessary to reduce the dimension-

ality of the data set or, in other words, to compress the data. 

The approach taken to the problem in this thesis was to develop 

a computer aided technique based on a real-time feature extractor 

that could identify portions of the EEG record which appeared to 

be abnormal, in particular, the spike-and-slow-wave Complex.

The problem with these sorts of models is the difficul-

ty in defining an accurate model because of:

(a) the nature of the signal (low amplitude, distorted 

and non-stationary)

(b) the differences between various records and

(c) the different criterions used by different people 

to define what is abnormal in an EEG record and 

what is not.
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A reasonably comprehensive survey of previous models 

was carried out, all of which offered various advantages and 

disadvantages. From these, a one-dimensional real time model, 

constituted of a spike detector, a slow-wave detector and an 

artifact rejection algorithm, was developed. It offered good 

results, but, in the face of the above and in common with previ-

ous attempts, it was practically impossible to define a set of 

criteria with which there was neither missed features nor false 

alarms, as demonstrated in Chapter 5. This approach was clearly 

not going to prove suitable as a means of achieving the stated 

aims and objectives in terms of reliability.

Another model, based on the Wigner Distribution, was 

then developed. The WD offers simultaneous analysis of the signal 

in both the time and frequency domains and a more sophisticated 

set of criteria could be used. Also, it is felt that a two- 

dimensional analysis represents the method used by human observ-

ers more closely, where the words "sharp" and "high frequency" 

are frequently interchanged (often in the same sentence!). It was 

possible, with the WD, both to confirm SAWCs arid to reject 

false-alarms that had been previously detected by the one-dimen-

sional model. In clinical terms, it will lead to a more accurate 

and, consequently, to a more reliable diagnosis.

The major problem with the WD was concerned with the 

time taken to analyse a segment of signal. Some authors have 

claimed that they have obtained some algorithms that permit the 

Wigner Distribution to be obtained in real time (Boashash and 

Black, 1987; Sun and others, 1989) but these have not been fully 

investigated. An initial study suggests that the compromises
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necessary to compute the WD in real time lead to a significant 

loss of accuracy and so would probably prove unsuitable.

This problem, however, is likely to be resolved in the 

not too distant future, as advances in VLSI technology provide 

even more powerful microprocessors and specialist digital signal 

processing (DSP) chips.

In the meantime, an hybrid solution is suggested which 

makes use of both the techniques described. The one-dimensional 

model would form the basis of the portable real-time unit, which 

would act as an "intelligent data compressor".

It would in fact be a very good data compressor because 

what it does is to select only portions of the record that 

contain abnormalities. By using a portable cassette recorder as a 

back-up store, long-term records may be saved for subsequent 

analysis. The feature extractor would be capable of reliable 

results, but, with a relaxed set of criteria, a number of false- 

alarms will occur. If a tight set of criteria is defined, there 

would be a possibility that features would be missed.

The output from the cassette recorder would then be 

subjected to a post-processing phase in which the one-dimensional 

model would again be used, but this time defined to a tighter 

criteria. Any feature rejected by this step would then be analy-

sed using the WD, from which an accurate result could be expect-

ed .

7.2 - Conclusions

The WD appears to offer the basis for a very reliable
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detection technique for the SAWC. At present, the available 

microprocessors are not powerful enough to permit its use in 

real- time , but this is likely to change. The suggestions for an 

interim "hybrid" solution would appear to meet the two objectives 

of a portable real-time analyser that may be conveniently carried 

by a patient, but that also offers high reliability in terms of 

accurate identification.

Neither of the models has undergone clinical trials. As 

the EEG signals that were used during the experiments were pre-

recorded signals which, by their nature, could be considered good 

since they had very distinctive SAWCs and obvious plots of arti-

facts. No major problems were encountered during the experiments.

Clearly, there is much work still to be done before an 

instrument suitable for clinical use can be produced. The appli-

cation of the Wigner Distribution could however prove to be a 

very significant step towards achieving this goal.
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PORTABLE ANALYSER FOR REAL-T IME 
DETECTION OF THE E P IL E P T I C  PRE-CURSOR

A. L. S t e l l e  R. A. Comley

ABSTRACT —  The a p p l i c a t i o n  o f  a po r tab le  microcomputer system to  
the  p ro b lem  o f  th e  l o n g  te rm  m o n i t o r i n g  o f  c l i n i c a l  EEGs i s  
d e s c r i b e d .  A d e t e c t i o n  a l g o r i t h m  i s  d e v e l o p e d  t o  i d e n t i f y  a 
fea ture  a s soc ia t ed  w i th  the onset o f  an e p i l e t p i c  a t ta ck  in r e a l -
time. The r e s u l t s  o f  p r a c t i c a l  t e s t s  are presented.

INTRODUCTION

The prospect o f  determ in ing  the under ly ing a c t i v i t y  o f  the brain  through 
the use o f  m o n i t o r i n g  e l e c t r o d e s  a t t a c h e d  t o  the  s u r f a c e  o f  the  s c a l p  has 
aroused vary ing  degrees  o f  i n t e r e s t  f o r  a number o f  years .  Some researchers  
have reported  s i g n i f i c a n t  r e s u l t s  in th is  area , w h i l e  o the rs  [S t o w e l l ,  1970] 
have been o f  the op in ion  that no meaningful in fo rm at ion  may be obta ined  from 
such a com plex  and d i s t o r t e d  s i g n a l .  R esea rch  has p r o g r e s s e d  r a p i d l y  to  
p r o v i d e  an u n d e r s t a n d in g  o f  the  s t r u c t u r e  and f u n c t i o n i n g  o f  the  b r a in ,  
l a r g e l y  through in va s i v e  techniques. Non- invas ive  mon i to r ing ,  the su b je c t  o f  
th is  paper, has concentrated  l a r g e l y  on the i d e n t i f i c a t i o n  o f  abn o rm a l i t i e s  
in the EEG record , an ' has not enjoyed such rap id  advances.

A number o f  f a c t o r s  con t r ibu te  to  th i s  s low r a t e  o f  progress ,  not l e a s t  
o f  which i s  th e  ab s c e n ce  o f  any c l e a r  d e f i n i t i o n  o r  a g r e e m e n t  as t o  what 
c o n s t i t u t e s  ' abnorm a l  a c t i v i t y ' .  Many human a n a l y s e s  wou ld  appea r  t o  be 
based more on a c q u i r e d ,  i n t u i t i v e  s k i l l s  r a t h e r  than any f o r m a l  c r i t e r i a .  
Also,  what may be cons idered abnormal in an EEG record  from one p a t i e n t  may 
be regarded as not unusual in tha t  from another ind iv idua l .

I t  has become i n c r e a s i n g l y  apparen t  in  r e c e n t  y e a r s  t h a t  in  o r d e r  f o r  
any d e g r e e  o f  c o n f i d e n c e  t o  be p l a c e d  on the  r e s u l t s  o b t a i n e d  f rom  an EEG 
r e c o r d ,  lon g  te rm  m o n i t o r i n g  i s  r e q u i r e d  [ B i n n i e ,  1988].  T h i s  p l a c e s  an 
u n p r a c t i c a l  burden on the  t r a d i t i o n a l  t e c h n iq u e s  o f  h a r d - c o p y  and manual 
in te rp re ta t ion  owing to  the p o t e n t i a l l y  l a r g e  amounts o f  data that must be 
recorded. A fu r the r  o b s ta c le  concerns the amount o f  freedom a p a t i e n t  is  tc 
be a l l o w e d .  I t  i s  c l e a r l y  no t  r e a s o n a b l e  t o  e x p e c t  th e  p a t i e n t  t o  remain  
i m o b i l i s e d  o r  w i t h i n  the  c o n f i n e s  o f  the  EEG l a b o r a t o r y  f o r  c o n s i d e r a b l e  
periods o f  t ime. Id ea ly ,  the monitoring system should a l l o w  as much freedom
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as poss ib le .  This  im p l i e s  some form o f  p o r tab le  unit  tha t  i s  sm a l l  enough to  
be c a r r i ed  e a s i l y  by the pa t i en t .

In order  to  overcome the problems o f  the volume o f  data a s soc ia t ed  with  
l ong  term m o n i t o r i n g  and the  need f o r  p o r t a b i l i t y ,  i t  was d e c i d e d  t h a t  a 
microprocessor  based, r e a l - t im e  d e t e c t i o n  system was requ ired .  The power o f  
modern microprocessors  makes r e a l - t im e  an a ly s i s  a p r a c t i c a l  p r o p o s i t i o n  and 
current l e v e l s  o f  i n t e g r a t i o n  make a por tab le  unit  f e a s ib l e .

The u n i t  d e v e l o p e d  i s  based on the  M o t o r o l a  68000 m i c r o p r o c e s s o r  
equipped with  8k words o f  n o n - v o l a t i l e  r e a d -w r i t e  memory and a ten-channel,  
t e n - b i t  a n a l o g u e - t o - d i g i t a l  conver te r .  A dual channel,  e i g h t - b i t  d i g i t a l -  
to -analogue conver te r  was a l s o  included in the p ro to type  to  a l l o w  the output 
o f  r e s u t l s  as the  d e t e c t i o n  a l g o r i t h m  was d e v e l o p e d .  T h i s  f a c i l i t y  w i l l  
p r o b a b l y  be r e t a i n e d  in  the  f i n a l  v e r s i o n  w i t h  a p o r t a b l e  FM tape  r e c o r d e r  
made a v a i l a b l e  as an o p t i o n a l  back-up s to r e  onto which the abnormal segments 
o f  the EEG record  may be saved f o r  subsequent v i su a l  inspect ion .

The monitor un it  has no standard p e r ip h era l  channels but i s  connected to  
a host computer (Motoro la  SYS133) f o r  program downloading and the dumping o f  
r e s u l t s  f o r  d i s p l a y  o r  f u r t h e r  a n a l y s i s .  T h i s  com puter  a id e d  measurement 
t e ch n iq u e  was d e v e l o p e d  some t im e  ago  and has been r e p o r t e d  in  an e a r l i e r  
pub l ica t ion  [B r i g n e l l ,  Comley & Young, 1976].

The d e v e lo p m e n t  o f  a s u i t a b l e  d e t e c t i o n  a l g o r i t h m  poses  the  m a jo r  
p rob lem  f o r  any such m o n i t o r i n g  sys tem .  The s p e c i f i c  a b n o r m a l i t y  o f  
i n t e r e s t  in the  c u r r e n t  r e s e a r c h  i s  th e  s p ik e - a n d - w a v e  com p lex  wh ich  i s  
a s s o c i a t e d  w i t h  the  o n s e t  o f  a p e t i t - m a l  e p i l e p t i c  a t t a c k  ( F i g .  1). The 
requirement f o r  r e a l - t im e  opera t ion  ru les  out the use o f  the more e lab o ra te  
d e t ec t ion  techniques and so leaves  us to  cons ider  the s im p le r  methods. Spike 
d e t ec to rs  are  probably the s im p le s t  a lgor i thm s  in th i s  c lass  and are usua l ly  
based on some form o f  d i f f e r e n t i a t o r  [Comley and B r i g n e l l ,  1981].
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THE BASIC DETECTOR

The d i f f e r e n t i a t i o n  p r o c e s s  i s  an odd fu n c t i o n  p r o d u c in g  a b i p o l a r  
output. I f  a s imple  l e v e l  checking method is  employed to  i d e n t i f y  the spike 
f e a t u r e s  then two  d e t e c t i o n  t h r e s h o l d s  a re  r e q u i r e d ,  ( F i g .  3) .  S in c e ,  in  
genera l ,  the output from the d i f f e r e n t i a t o r  w i l l  not be symmetr ica l ,  th i s  can 
present ser ious problems f o r  r e l i a b l e  de tec t ion .  I f  however an even funct ion  
i s  chosen, the above problems can be s i g n i f i c a n t l y  reduced.

The t r a n s f e r  f u n c t i o n s  f o r  th e  d i f f e r e n t i a t o r  and the  d e s i r e d  sys tem  
response are shown in F igu re  2. As can be seen, the degree  o f  enhancement t o  
high f requenc ies  i s  the same in both cases,  but the phase components are  a l l  
n i l  f o r  the  even f u n c t i o n .  In o t h e r  words ,  the s y s t em  i s  e q u i v a l e n t  t o  a 
d i f f e r e n t i a t o r  in  s e r i e s  w i t h  a H i l b e r t  t r a n s f o r m e r  ( q u a d r a tu r e  phase 
s h i f t e r ) .

—1 \

. I » d< r i p  , 1 H ( f ) 1 .

-fs/2 fs/2 - fs/2 fs/2° 
1 

oCT) /, e( n

-fs/2 fs/2 -fs/2 fs/2
-90°

a) D i f f e r e n t i a t o r b) D i f f e r e n t i a t o r
+ H i l b e r t  Transformer

Figure  2. System frequency and phase c h a r a c t e r i s t i c s .

Spike-and-wave

D i f f e r e n t i a l
Figure  3. Spike 
d e t e c to r  a lgor i thm 
ou tpu t .

'
D i f f e r e n t i a l  + 
H i l b e r t  Transformer
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The output from th i s  a lg o r i thm  has the ve ry  d e s i r a b l e  p rope r ty  o f  being 
u n ip o l a r ,  i . e .  th e  w h o le  s i g n a l  due t o  the  s p ik e  i s  c o n t a in e d  in  a s i n g l e  
p o s i t i v e  p u ls e .  Only  one t h r e s h o l d  com pa r ison  i s  now r e q u i r e d  wh ich  i s  
immune to the asymmetry problems o f  the s im p le r  d i f f e r e n t i a t o r  (F ig .  3). The 
p r i c e  p a i d  f o r  t h i s  s i g n i f i c a n t  i m p r o v e m e n t  i s  an i n c r e a s e  in  the  
c o m p u ta t i o n a l  l o a d .  T h i s  how eve r  i s  not  e x c e s s i v e  and the  a l g o r i t h m  has 
proved to  be v e r y  e f f e c t i v e  as the bas is  o f  a r e a l - t im e  d e t e c t i o n  system.

DETERMINATION OF THE TRANSFER FUNCTION

To p e r f o r m  th e  o p e r a t i o n  i l l u s t r a t e d  in  F i g u r e  2b i t  i s  n e c e s s a r y  t o  
convolve  the input s i g n a l  w i th  the d i s c r e t e  impulse response, h(n). Th is  may 
be der ived  as in d ica t ed  in F igure  4. Comparing F igure  2b w i th  F igure  4c, i t  
can be seen t h a t  th e  s l o p e s  l o c a t e d  b e tw een  -  f s/2  and fs/2  c o r r e s p o n d  
r e s p e c t i v e l y  t o  the s lopes  lo ca ted  between - f o  and fo. So, by making t  = nTs 
= n and f o  = f s / 2  = 1/2, the  n o r m a l i s e d  d i s c r e t e  im p u ls e  r e s p o n s e  i s  
ob ta ined :

h (n .T  )s h( n)
. 2 

A. s ine (n/2) c o s (n . it )

The number o f  c o e f f i c i e n t s  requ ired  f o r  the computation o f  h(n) can be 
kept qu i te  low s ince :

h(n)  = 0 f o r  even va lues o f  n

h(n) = A f o r  n = 0

and s in c e  h (n )  s i n c ^ n / 2 ) ,  i t  d e c r e a s e s  r a p i d l y  f o r  i n c r e a s i n g  n ( e . g .  f o r  
n = 5, s in c^ (n /2 )  = 0.016 and f o r  n = 15, s i n e  (n/2) = 0.0018).

A v a lu e  o f  n = 17 was chosen  f o r  th e  p r e l i m i n a r y  s t u d i e s  as t h i s  
represented a good compromise between accuracy and speed o f  computation.

Normal ly the output from the spike enhancer process would be f o l l o w e d  
with a low-pass f i l t e r  (second order  min.) and then a l e v e l  comparison would 
be employed to  i d e n t i f y  the spikes.  A ser ious  d isadvantage  o f  th i s  method is 
th a t  w h i l e  the  f i l t e r  r edu ces  the  ' n o i s e '  ou tpu t  f rom the enhancement 
p r o c e s s ,  i t  a l s o  r e du ces  the  a m p l i tu d e  o f  the  s p i k e  f e a t u r e ,  making l e v e l  
d e tec t ion  l e s s  r e l i a b l e  and very  s e n s i t i v e  to  the threshold  s e t t in g .

An a l t e r n a t i v e  a lgor i thm  has been developed in which the output from the 
enhancer i s  r a i s ed  to  the power o f  three and sca led  app ropr ia te ly .  This  has 
the e f f e c t  o f  a m p l i f y in g  the f ea tures  o f  i n t e r e s t  w h i l s t  reducing the 'noise '  
l e v e l  (F i g .  5) .
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Figure  4. The d i s c r e t e  impulse response o f  the spike d e t e c to r .

F igure  5. Operation o f  the

Cubic f i l t e r  output 

complete sp ike  d e t e c to r .
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SLOW WAVE DETECTOR

The s p i k e  d e t e c t o r  a l o n e  can o n l y  be c o n s i d e r e d  a r e l i a b l e  means o f  
d e t ec t ion  o f  the onset o f  an e p i l e p t i c  at tack  f o r  no ise  f r e e  EEG s igna ls .  A 
m a jor  s ou rc e  o f  c o r r u p t i o n  o f  th e  EEG a r i s e s  as the  r e s u l t  o f  musc le  
a r t i f a c t  and g e n e r a l l y  t a k es  the  form  shown in  F i g u r e  6. T h i s  i s  a 
p a r t i c u l a r  p ro b lem  f o r  any p o r t a b l e  s y s t em  where  a l a r g e  amount o f  musc le  
a c t i v i t y  i s  to  be expected . The ad d i t i o n  o f  a s low-wave  d e t e c t o r  can p rov ide  
a s i g n i f i c a n t  im p rovem en t .  T h i s  has been im p lem en ted  in  the  f o rm  o f  a 
f o u r t h - o r d e r  B u t t e r w o r t h  l o w - p a s s  f i l t e r  w i t h  a 7Hz c u t - o f f  f r e q u e n c y  
f o l l o w e d  by a l e v e l  d i s c r i m i n a t o r .  The above  v a l u e s  w e re  s e l e c t e d  as 
o f f e r i n g  the bes t  per formance f o l l o w i n g  e x t e n s i v e  e x p e r i m e n t a t i o n  on p r e -
r e co rd e d  data.

EXPERIMENTAL RESULTS

The comple te  d e t e c t i o n  a lgor i thm  has been t e s t e d  on the Motoro la  SYS133 
using p re-recorded  EEG data. These records  were band- l im i ted  to  70Hz and 
p la y e d  back a t  no rm a l  speed  t o  s i m u l a t e  r e a l - t i m e  o p e r a t i o n .  A s a m p l in g  
f r e q u e n c y  o f  600Hz has been used th rou gh ou t  the  t e s t s  but i t  i s  p lanned  t o  
reduce th i s  b e fo r e  t r i a l s  begin using the por tab le  unit .

I n i t i a l  r e s u l t s  have  been v e r y  e n c o u r a g in g ,  w i t h  a h igh  d e t e c t i o n  and 
low f a l s e  alarm r a t e  being achieved. A r t i f a c t  r e j e c t i o n  however does s t i l l  
pose c o n s i d e r a b l e  p r o b l e m s ,  as can be seen f rom  F i g u r e  6. The b a s i c  
a l g o r i t h m  has been m o d i f i e d  in  an a t t e m p t  t o  im p rove  t h i s  s i t u a t i o n .  I t  
invo lves  the use o f  350ms wide window during which a count is  accumulated o f  
the number o f  s p ik e  d e t e c t i o n s .  I f  more than tw o  s p ik e s  a re  e n co u n te red  
w ith in  the window p e r iod ,  then the record is  judged to  conta in  a r t i f a c t s  and 
so any d e t e c t i o n s  a r e  r e j e c t e d .  T h i s  im p ro ve s  the  p e r f o r m a n c e  o f  the 
a l g o r i t h m  c o n s i d e r a b l y  in te rms  o f  a r t i f a c t  r e j e c t i o n  w i t h o u t  any l o s s  in 
true spike and wave i d e n t i f i c a t i o n  f o r  the t e s t  records.
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CONCLUSIONS

The a b i l i t y  o f  a modern microprocessor  t o  analyse  a complex s i gn a l  and 
to  d e t e c t  s p e c i f i c  f ea tu res  in r e a l - t im e  has been demonstrated. T es t ing  o f  
the por tab le  v e rs ion  o f  the system is  about to  commence and i t  i s  hoped that 
f u l l  c l i n i c a l  t r i a l s  w i l l  be p o s s i b l e  in  the  near  f u t u r e .  M a jo r  a r ea s  o f  
i n t e r e s t  t o  us a r e  th e  p o t e n t i a l  f o r  c o n d u c t in g  l o n g  te rm  a n a l y s e s  on 
p a t i en ts  f o r  whom there  i s  cons ide rab le  doubt as t o  whether they s u f f e r  from 
ep i l e p s y  and f o r  such a c t i v i t i e s  as the screen ing  o f  var ious  drug regimes in 
order  to  p rov ide  a q u a n t i t a t i v e  measure o f  t h e i r  e f f e c t i v e n e s s .

Our work has t o  d a t e  c o n c e n t r a t e d  on the  a n a l y s i s  o f  EEG r e c o r d s  w i t h  
p a r t i c u l a r  r e f e r e n c e  t o  th e  s p ik e - a n d - w a v e  com p lex .  S in c e ,  h ow eve r ,  the  
funct ion ing  o f  the hardware monitor un it  i s  d e f in ed  e n t i r e l y  in so f tw are ,  we 
can f o r esee  numerous o th e r  p o t e n t i a l  appl i c a t i o n s  f o r  the techniques we have 
deve loped .

Our f u t u r e  p la n s  i n c l u d e  the  e xp an s ion  o f  the  d e t e c t i o n  a l g o r i t h m  t o  
dea l w i th  up to  f i v e  input channels in r e a l - t im e .  This  should a l l o w  f o r  a 
much more r e l i a b l e  a r t i f a c t  r e j e c t i o n  rout ine  t o  be deve loped. Further,  we 
a l s o  p lan  t o  i n v e s t i g a t e  th e  p o s s i b i l i t y  o f  a s s i g n i n g  one o r  more o f  the  
a v a i l a b l e  input channels to  monitor muscle movements as we f e e l  that th i s  may 
be a b l e  t o  p r o v i d e  v a l u a b l e  a d d i t i o n a l  i n f o r m a t i o n  d u r in g  the  on se t  o f  an 
e p i l e p t i c  attack.
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THE APPLICATION OF THE WIGNER DISTRIBUTION TO THE 
ANALYSIS OF EEG SIGNALS

A.L. Stelle* R.A. Comley**

ABSTRACT -- The need for a two-dimentional approach 
to the analysis of EEG signals is identified. The 
Wigner Distribution is proposed as a suitable candi-
date and a brief review of its major features is 
presented. The application of this algorithm to EEG 
records is described both in terms of the practical 
implications and the results obtained.

INTRODUCTION

The application of computer aided techniques to the analysis 
of EEG records poses many problems. The signal itself is low- 
level ( 150/jV typ.), non-stationary and subject to significant 
corruption (usually in the form of muscle artifact). Further, 
considerable variations exist between different patients and 
within a record from a single individual.

Computer Assisted Diagnostic Systems (CADS) have been developed 
to help the electroencephalographer particularly in the analysis 
of long-term EEG recordings of a large population of epileptic 
patients. These involve elements of quantitative analysis and 
pattern recognition, or both. The three main goals of such CADS 
are the detection of interictal epileptiform events, the detec-
tion of epileptic seizures, especially petit mal absences, and 
the localization of epileptogenic areas of the brain [Niedermeyer 
& Lopes da Silva, 1987].

A good example of pattern recognition is in the detection of the 
epileptiform event known as a spike-and-wave complex (SAWC), 
which characterizes attacks of petit mal epilepsy. Many methods 
have been proposed for such kinds of detection [E.g. Gotman & 
Gloor, 1976; Comley & Brignell 1981; Stelle & Comley 1989], which 
have met with varying degrees of success, but all suffer from the 
recurrent problem relating to the difficulty in defining a suit-
able model with which to describe the features of interest. These 
problems are compounded by the fact that trained electroencepha- 
lographers find it difficult to describe in any formal way, the 
processes and criteria they employ in their manual analyses.

One fact which has become increasingly apparent to us is that 
human interpretation is based on some form of simultaneous time 
and frequency analysis. The above examples of computer aided 
methods are based on both the waveform and the spectrum of the 
signal, but considered separately (i.e. in one dimension).

* CEFET-PR, Av. 7 de Setembro, 3165, 80.230-Curitiba-PR, BRAZIL
** City University, Northampton Sq., London. EC1V OHB ENGLAND
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The above would suggest that a much more reliable EEG analysis 
may be obtained from a consideration of both the time-domain and 
the frequency-domain features of the signal simultaneously, in a 
two-dimensional way. The most basic tool that permits such kinds 
of analysis is the spectrogram. This is most appropriate for 
analysing long segments of EEG (quasistationary signals) but is 
not particularly useful for the analysis of a single epilepti-
form event such as a SAWC, mainly because of the low number of 
samples and the necessity of using windows that corrupt the 
original signal. Another special tool that shows the variations 
of the signal in both the time and frequency domains is the 
Wigner Distribution (WD). This has already been applied success-
fully in such areas as the analysis of ultrasound signals [Costa 
& Leeman, 1989]. It is particularly efficient in the analysis of 
non-stationary signals, as is the case of epileptiform events. 
Some examples of the application of the Wigner Distribution to 
the analysis of EEG signals will be shown in this paper.

THE WIGNER DISTRIBUTION

The Wigner Distribution, defined by (1), was introduced by Wigner 
in the area of Quantum Mechanics in 1932 and applied in 
signal analysis by Ville in 1948. It remained in obscurity until 
1980, when Claasen and Mecklenbrauker gave it a new lease of 
life.

+00

Wx (t,w) x(t + r/2).x*(t - t/2).exp(-jwr).dr

—00

(1)

where: a) "t" represents time,
b) "w^ represents frequency and
c) "x (t)" represents the complex conjugate of x(t).

The WD offers several interesting properties, four of the more 
important are listed below. Properties 3) and 4) are of particu-
lar importance in this work. Property 3) permits flexibility as 
to where the feature to be identified is positioned within the 
time window. The significance of property 4) is that it repre-
sents a corruption of the output, the consequences of which will 
be seen later. 1 2 3 4

1) The WD of any signal (real or complex) is real.
2) The WD of a real signal is an even function of the fre-

quency.
3) If the signal is shifted in time, the WD is also shift-

ed in time.
4) The WD of the sum of two signals "f" and "g" is a 

bilinear function of "f" and "g" , or

212



As with the Fourier Transform, the definition given by (1) is not 
useful in practical terms, in order to apply the WD to discrete-
time signal processing and to calculate it via FFT techniques, 
equation (3), that represents the Discrete Time Wigner Distribu-
tion and (4), the Pseudo Wigner Distribution, may be used. In 
equation (4), due to the side effect provoked by the time window 
"h(m)H [Hamming, Hanning, etc], some blurring occurs in the 
frequency domain.

00 *
W (n,w) = 2 2  x(n + m).x (n - m).exp(-j2wm) (3)

°° * -kWx(n,w) = ^ ^ ( n  + m) .x (n - m).h(m).h (-m) . exp (-j 2wm) (4)

As expected, aliasing is caused by the sampled signal, but, as 
can be seen from (3) and (4) , the repetition period is "7r" rather 
than the "27r" that all spectra of the discrete-time signals have. 
For this reason, the signal should be sampled at least, at twice 
the Nyquist rate (fs > 4.fmax). This, however, is not a good idea 
in practical terms, mainly because of memory limitations and a 
considerable increase in processing time. The best solution is to 
make use of the analytic signal associated with "x(n)" because it 
has a unilateral spectrum.

The main drawback of the WD is the appearance of artifacts for 
any signal that is not a single Gaussian function ( no artifacts 
appear if the Gaussian function is modulating a sinusoidal sig-
nal) , as shown by equation (2). Such artifacts are composed of 
relatively high frequency spikes that assume positive and nega-
tive values. In order to eliminate them, the original version of 
the WD must be passed through a two-dimensional lowpass filter. 
The process is popularly known as "smoothing" and is commonly 
done by convolving the impure WD with a two-dimensional Gaussian 
function given by (5), where a/3 > 1 [Cohen, 1989].

L ( k , 1) = 1/ (a/?) . e x p ( - k 2/a -  l 2//3) (5)

As an e x a m p l e ,  both the impure WD and the smoothed WD of the 
signal r e p r e s e n t e d  by ( 6 )  are shown in Figure 1.

x(n) = exp(-a( (n-n1)/N)2) . c o s  (27rf1n/N) +

exp (-a ( (n-n2)/N) 2) . cos (27rf 2n/N) (6)
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T IME  ( n s )

UNSMOOTHED UD OF 2 S IM ILA R  GAUSSIAN FUNCTIONS - 3D U IEU SMOOTHED UD OF 2 S IM ILA R  CAUSSIAM FUNCTIONS -  3D UIEU

Figure 1.Application of the Wigner Distribution to a test wave-
form. (All WDs are normalised).

EXPERIMENTAL SETUP

For the implementation of the algorithm, the commercially avail-
able MATLAB-386 package was used. The program was run on a 386 
IBM-compatible personal computer that has a memory capacity of 7 
Mbytes and a clock frequency of 36 MHz.

The EEG signal, band-limited to 70 Hz and pre-recorded on magnet-
ic tape, was digitized at a frequency (fs) of 160 Hz and stored 
in ASCII-format files. Given x(n) with a total of N samples, the 
respective WD original matrix has N2 samples, with a time scale 
and a frequency scale that go from 0 to (N - 1) and from 0 to 
fs/2, respectively .

The total processing time depends on two factors: a) the value 
of N and b) the total number of samples (A.B) that compose 
the two-dimensional smoothing function L(k,l), where A=kmax- 
kmin+1 and B=lmax-lmin+1. During the experiments, the total 
processing time was checked for two distinct cases. First, for 
N=128 and A=B=11, it took 5 minutes for the final smoothed WD 
matrix to be obtained. Second, for N=256 and A=B=11, 40 minutes 
were necessary. Most of the processing time is spent on the 
smoothing process.

From the results obtained, it was noted that most of the energy 
of the EEG signal was concentrated below 40 Hz, and a decision 
was taken to smooth only the lower frequency half of the original 
WD matrix. In this way, a considerable decrease in the processing 
time was obtained without the necessity of changing the resolu-
tion of the signal in the time domain.
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Figure 2. Examples of the application of the Wigner Distribution 
to spike-and-wave complexes. (All WDs are normalised).
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DISCUSSION OF RESULTS

Initial results obtained with the WD are very encouraging. From 
the two examples given it can be seen that the basic form of the 
contour plot outputs are very similar for quite different spike- 
and-wave complexes: both exhibit a characteristic "T" shape. This 
has been repeated for all the SAWC inputs we have tried and shows 
a marked contrast to segments of normal records, for which no 
particular form is obtained, and for records containing arti-
facts. The processing time involved on our test setup is quite 
long and memory capacity can quickly give rise to problems. 
Various techniques aimed at overcoming these problems are being 
considered [Boashash & Black, 1987].

CONCLUSIONS

The application of the Wigner Distribution to the analysis of 
EEG records has been demonstrated. From our initial results it 
would appear that the technique is capable of offering a very 
reliable means of identifying spike-and-wave complexes from the 
EEG record, which is our primary area of interest. Further, 
preliminary studies with records containing artifacts suggest 
that a high degree of rejection would appear to be possible, 
although more work is required in this area before any firm 
conclusions may be drawn.
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PAG! 3 I 1ST yr-'p i 77op .')

ORG DATA.3

51 DC. L $FFFFFFFE
S2 DC. L $FFFEFFFD
S3 DC. L $FFFBFFF8
S4 DC. L $FFF6FFD3
S5 DC. L $FE6B03E8
*
»
*

A DRW DC. L $30000
ADR1 DC. L $30100
A DR 35 DC. L $30 ! 46
ATTEN1 DC. W $A
ATTEN2 DC. W $850
N DC. W $24

SPLEVEL DS. W 1
SPLIMIT DS. W 1
SF'COUN I DS. W !
SPIK8AHP OS. W !.

LAG DS. W 1

GAWPLAG DS. W !.

OUTFLAG DS. W 1

ARTPLAG DS. W 1

CLOCKFLG DS. W !.

ORG PROGRAM

SAWCDET JSR. L RESET
CLP:. w LPFCLQQ

MOVE. L £$FEFFE0,A3
MOVE.L £$FEFFD0,A4
MOVE.L £$FEFF80,A5
MOVE.L £$FEFF82,A6

MOVE. !.. SPK„BEGP,SPI
MOVE. L LPF_BE6P ,LPF

STATUSLO MOVE. W (A3!,D7
AND. W £$1 ,D7
BEQ. S STATUS! .0

ADDO.W £$i , : C'FCijO !
*’F . H L rr-'Cl ! ;C! - D ■

CMP. W £ $ 3 , D 7
6NE.S 1 NPU 1
BSET.B £-.!, 1 J l or;;- !■1

if""I

: 41 : 57 3YS: 0 0 0! . SAWCPHT.pa

KE DETECTOR + FLAGS

•17) =h ( 17 ) = - 1  ; h(-15)=h(15)=-2
13) =h ( 13) =—2 ; h(-1 1 )=h(l1 )=—3
•9)-h(9)=—5; h (-7) =h (7) = —8
■5) =h (5) =-16; h (-3)=h(3)=-45
•1 !-h(1)=-405; h (0 ) = 1 0 0 0

2 BYTES/SAMPLE — > $46 BYTES FOR •< (n) 
COMPARISONS: $30010 TO CONVOLUTE 
AND $30146 TO SHIFT ::(n!

»FIRST WINDOW-ADDRESS -- > h(0)
«1st.-ACQUIRED-SAMPLE (;•: (0) > ADDRESS 
»LAST -ACQUIRED-SAMPLE <:•: (35) } ADDRESS 
»ATTEN. Vo FROM FIR FILTER yspk(m> 
*ATTEN. Vo FROM CUBIC FILTER (yspk) 3 
»NUMBER OF SAMPLES (S<36=$24> > h(rP

»SPIKE DETECTION LEVEL (DC LEVEL/4)
»SPIKE AMPLITUDE LIMITER (1.75 » ' ■ : ; T !
»S''5 IKE COUNTER
•SPIKE SAMPLES COUNTER
-SPIKE FLAG

•SPIKE AND-WAVE FLAG

»OUTPUT-PULSE FLAG

» A R T I F A C T F L. A G

»CLOCK FLAG ==> fs = 200 Hz (LPF/DC!

»CLEAR FLAGS/COUNTERS (EXCEPT LPFCLOCK 
»AND CLOCKFLG)

»STATUS INPUT 
»SIGNAL INPUT 
»SIGNAL OUTPUT £ 1  
»SIGNAL OUTPUT £2

•POINT AT THE BEGINNING OF STACK l .CAR 
•POINT AT THE BEGINNING OF STAC! 2 (LPF;

•WAIT UNTIL STATUS GOES HIGH (IT IS ! 
-SAVE FIT "O"
»IF D ’ = 0, GO STATED *

* ! !V - Cl OCL> . CLOCKFLAG IS SET
■ O.F'F'C ICK - 3 =- => is - 200 H. 3 
»30 THE SAMPLE WILL BE PROCESSED b-
* BO ! H IF MEAN AVERAGER AND THE. U .
* FILTEf
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♦SIGNAL INPUT

INPUT MOVE.W (A4),D6
AND. L £f3FF,D6
NOP
NOP

♦CHECK ARTIFACT FLAG

BTST.B £i 1 ,ARTFLAG
BEQ. S BEGIN
MOVE.W PRESET DC, .06

♦AMPIITUDE LIMITER

BEG 1N CMP.W MAXLEVEL,D6
BEE - S SAVESAMP
MOVE.W MAXLEVEL.DC

- ■ - scrip MOVE, w r .. _ : i( • .ri: ;
NOP
NOP

♦ CALL U LA"! ES THF RUNNING MEAN VALUE

BTST.B £ 4-1. , CLOCK FL G
BNE. 1 BEGME’AN
MOVE.W DCLEVEL,D 1
.IMP MEAN OUT

BEGMEAN MOVE.L SPK_PTER,AO
CMP. L SPK_ENDP,AO
BLT. 5 MEAN
MOVE.L SPK_BEGP,SPK_PTER

MEAN MOVE.L SPK_PTER,AO
CLR.L DO
CLR. L 0 1
MOVE.W D6 , DO
MOVE.L K_SPMEAN,D1
MOVE.W (AO),D2
AND. L. £-f FFFF , D2
SUB. L D2., D 1
ADD. L DO, D 1
MOVE. W DO,(AO)+
MOVE.L AO,SPK _PTER
MOVE. !... D1,KSPMEAN
D I VS. W k i, n 1
•CO. !.. ETsFF,D1
-:ove . w VI.DCLEVEL

3 BE EN UK" TERM INED

E VS : 000 1 . v SAUCDt.■ .. Sr.

♦COLLECT SAMPLE 

♦ :•; (n ) OUTPUT CMOVE. B D6 , ( A.5! 1

♦CHECK IF THERE HAS BEEN AN ARTIFACT 
♦IF ARTFLAG IS NOT SET, GO AHEAD 
♦OTHERWISE, Vi n=DCLEVEL

♦COMPARE MAXLEVEL WITH SAMPLE
♦IF XN MAXLEVEL, START CALCULATIONS
♦ OTIlERWiE XN = MAXLEVEL
■> ':r w: rp DC LEVEL FOR THE lP H V L -
* V j n OU.TP1 T

COO H.:. !

♦IF CLOCK FLAG IS SET, THE SAMPLE IS 
♦PROCESSED. OTHERWISE KEEP THE LAS"
>' DCLEVEL VALUE AND SKIP THE "MEAN" 
♦SUBROUTINE

♦AO POINTS TO THE OLDEST SAMPLE ADDRESS 
♦IS THIS THE LAST MEM LOCATION IN STACK 
♦IF NOT, CALCULATE THE MEAN VALUE 
♦OTHERWISE, POINT TO THE FIRST MEMORY 
♦LOCATION

*:•; (n) — > DO
♦ K . MEiAN —  > D1

♦ D2= 0000. X X X X
♦K.MEAN OLDEST SAMPLE - D1
♦D1 = D1 * NEW SAMPLE
♦OLDEST SAMPLE IS REPLACED BY NEW.
♦ANn POINTER = AO = -former AO -t
♦STORE t .MEAN
♦FIRSI MEAN VALUE
♦ MAX [MUM NPUT VALUE 3FC --L 0
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1 /|i i ■- ■ i ’ vrp GYS:0001..SAHCDET.SA

*SPLEVEL, SWLEVEL AND MAXSWLEVEL ARE DETERMINED NOW

-si iur-i

MOVE. W D 1 , D7 m SPI .EVE! = DCL.EVEL / 4
ASR. W £42, D7
MOVE. W D7,SPLEVEL
MULS.W £47,D7
MOVE. W D7,SPLIMIT *■ SPLIMI 1 = 7 4SF'LEVEL = 1.75 *  DCLEVEL
NOP
NOP
MOVE. W D 1 , D7
ASR. W £ 4'3 , D7
ADD. W D1 , D7
MOVE. W D7,SWLEVEL * SW DETECTION LEVEL = DC + DC/ 8

ASL. W £41,D1 *MAX SW-LEVEL = DC LEVEL *  2,00
MOVE.W D1,MAXSWLEV MHIGH--AMPLIT. SPIKES ALSO CAUSE
NOP •kHIGH--AMPLIT. SIGNALS AT THE LPFIL. OUT)
NOP
SUP. w DCLEVEL, D6
MCI' T . W Ds ,SAMPLE - ! ' ! ; 0 :L SAMPLE

'ETECI OR STARTS HERE !PIR f ILTtCP ;

MOVE. L ADR 1,AO -MAO1 - :: (0!
MOVE.L ADR35,A1 H(A[! - -  (n-(N-l) )
MOVE. L ADRW,A2 - (A 2) - — h ( 0 >
OLR. 1. D2 «R: 'M ’• IS STORED IN D2

CLP. i. DO
CLP:. L D1
MOVE.W (AO)+,DO *D0 - ;< (n) ?< AO = AO + 2
ADD. W -<A1),DO •m AI = A1 - 2 ?< DO = ;< (n) + (n— (N-1 ) i
MOVE.W (A2)+,D1 * D i ::= h (n) -3 AS = A2 + 2
MOL.S. W 01 , DO *( n ) . h (n )
ADD. L DO, D2 «■SUMMATION
CMP. L £$30010,A2 *!S h(n) = h (<N -1 )/2 -1) ?
BGT. S LASTSUM MIL GREATER, SUM THE LAST TERM. OTHERWI
ADDQ.W £4-2, AO *SE, AO = AO + 2 (equivalent to h(n)-O)
SUL-'Q. W £42,A1 MAI = A1 - 2
JMP SUM
MOVE.W (AO),DO «DO = :< tn - (N-li/2)
MOVE.W (A2 ),D1 > D: -- --- h ' < N- 1 ) /2 )
MULS.W D1 , DO
ADD.!.. D O , D 2

DATA X (1! <== X(2) <== X(3).. .x (n) -= INPUT SAMPLE

MOVE.L A D R 1 , i-i0 »fi'.' -i sc ■■:>
MOVE.L AO , A I m po ' 0
. -TDQ. : £42 .. A < Mfo :■ ' n i l - ADDRESS 1

' v . W (Hi i -! , HSV -*■ * '1 in) 'WITH AUTO INCREMENT
c: if .! £430 ! 4 8 . A'C • ■' 1 :• SAM FT --. TO BE SHITTED
pnc: . : H i f- T > ££■ (NUMBER OF ADDRESSES;
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1/ 1 -> . Ï i - C V R  - r t iV i  I! R A T  V! SAWCOET.SA

*CUBIC FILTER

D I VS. W N, 0 2 »SUMMAT ION/N - yspk(m)
EXT. L D2 »EXTEND THE MSB FROM WORD TO LONGWORD
DIVS.W ATTENi,D2 »ATTENUATE yspk(m) IP NECESSARY
AND. L f.*FFFF,D2 »D2 = y(n ! = yspk(m) (ATTENUATED)

MOVE.W D2,D7 »SAVE y(n)
MULS.W D7,D2 *y (n! 3 ==>SMALL VALUES TEND TO ZERO
MULS.W D7 , D2 »AND NEC. VALUES ARE KEPT NEGATIVE
DIVS.W ATTEN2,D2 »ATTENUATE OUTPUT

NOP »BOTH SPIKE DETECTOR OUTPUT (D7) AND THE
NOP »CUBIC FILTER OUTPUT MUST BE ADDED TO
NOP »A CONSTANT LEVEL BEFORE BEING SENT TO
MOP »THE OUTPUT CADD.W £*50,D7;ADD.W £*10,D23
NOP »
NOP

- _■ 11.I. Ari! '! TODE COMPARATOR CAMPI. I TU DE !. T U r TT : !- ■

OU! : ip A I CMP. W SPLEVEL,02 »If . — , : : ) SF'LEV. , CLOAK L..
BLT. S CLEAR D2 »OTHERWISE, MAKE D2 - GPL IMI T AND
MOVE.W SPLIMIT,D2 »JUMF TO SPIKOUT
ORA. S SP H<OUT

R ìR D2 CL F:. L 02

■■ R IKE -DETECTOR OUTPUT AFTER COMPARISONS (CUBIC FILTER OUTPUT SPI.IMI F OR Co

SPIKOUT MOVE.W DCSAMPL,06 * INPUT--SIGNAL SAMPLE
NOP » INPUT SIGNAL.
NOP
NOP
NOP
NOP
MOVE.B D2, (AS) *z(n) — .> yspk(m>'3 AFTER COMPARISON

»FROM THIS POINT ON. THE SPFLAG IS SET, THE COUNTERS AND THE LOWPASS FILTER ARE 
»ACTIVATED, ETC.

BNE. S

3AMPCHEC MOVE.W 
BEQ.S 
CMP. W 
BHI . S

ADDSAMP * IF DIVA, CHECK THE VALUE. OF SPIKGAMP. 
»OTHERWISE, ADD £1 TO SPIKSAMP

SP1KSAMP,D7 
LPF Il-
SP IKEMIN,D7
SETSPFL.0

»IF THE NUMBER: OF SIGN IF. SPIKE-SAMPLES 
»IS = 0, GOTO LPFIL (NO SPIKE HAS BEEN 
*DE7ECTED YET). IF IT IS : SPlKEMIN. 
»INCREASE SPIKSAMP (SPIKE IS BEING  PROC. 
»OTHER" : s  * . A SPIKE HAS BEEN RETT ' ED . 
C i R '  THE S P IK E  FLAG  (SETS-:' : v

f.f 1 . 1
: •Hi

W »ADD
»PRA

: U  

0
SF ! KE 
I..FFII

-SAMFI E -OU YH

f  r i ’■OF ‘

2 2 4



'■■Ari: ■ !ET '■■■VP 122004 <1 1 / 5/9! ! •- 1 . SAWCDET. SA

CLE. W M »CLEAR M COUNTER, SAWFLAG AND SPIKSAMP
CLR. W SAWFLAG
CLR. W SP IKSAMP

*LOWPASS FILTER (SAMPLING FREQUENCY = 200 Hz ~=«> L.F'FCLOCK MUST BE = 3)

LPFU. tìTST. B £T1,CLOCKFLG »IF LPFCLOCK=3 (CLOCK_FLAG IS SET), THE
ONE. S LPF I HP »SAMPLE IS PROCESSED. OTHERWISE, KEEP
MOVE.W LPFMEM,DO »THE LAST LPF—OUTPUT VALUE AND SKIP
J MP LPF_OUT »THE LPF ROUTINE

LPF I MP CLR.W CLOCKFLG »CLEAR THE CLOCK FLAG
MOVE.W DCSAMPL,Dò »INPUT SAMPLE

»LOWPASS rILTER SUBROUTINE

'PALCULATPS THE RUNNING-MEAN VALUÈ

MOW: . L LPF PTER.AO » AO POINT': i 0 THE OLDEST-SAMPLE ADDRESS.
Cr-i'"-, !. FNDP0IN2,AO •IS THIS THE LAST MEM LOCATION IN STACK?

: c MEAN 1 » ! ! NO! O.L ■ "! ■ IT: THE ME AN VA! JE
MOVE.L LPF BEGP,LPF PIER • Ü f . -iJ if!; ! U ! MEl f* X RS f Ml-MUR •

' 'LAN ’ MOV E . i... LPF PTER.AO »LOCATIOn
DO

A.R. L Di.
move: . W Dò, DO ”■ k <n> DO
MOVE.L K LPMEAN,D1 »K. MEAN >!
MOVE. W (AO) , 0 2
.! !D. i E-LFFFF , D2 »D2=OOOi ■. :• v
SUB. L 02 , DI »K. MEAN - ÜLOES T SAMPLE == 01
ADD. L. DO, D 1 *D1 = D1 • NEW SAMPLE
MOVE.W DO,(AO!+ »OLDEST SAMPLE IS REPLACED BY NEW.
MOVE.L AO,LPF PIER »AND POINTER AO = former AO + 2
MOVE. 1. D1.K LPMEAN »STORE K.. MEAN
!.;■ IVS. W K2 , DI »FIRST MEAN VALUE
AMO. L £*3FF,D1 »MAXIMUM INPUT VALUE = 3FF -- > 5 V
CL.R.L DO

» 8 U ITER W ORTH 1S T -- Q R D E R
MOVE.W Di , XN »STORE (n )
MOVE.W DI , DO *
ADD. W XN 1,DO * x ( n  ) + : : ( n - 1 )
MULS.W COEF1, DO »COEF t* ( (n ) » (n-l)i
m o v e : . w YN 1, D1
MULS. W C0EF2, D1
ADD. L D1 , DO
d r vs. w C0EF3, DO »ASR £.. .Do ! AY 'Æ USED (BEFORE, THE USER
AND. L. ETFFFF, DO »SHALL CAL.CUi .A 'i: THE OTHER COEFFICIENTS)

'■’UVE . w DO , YN 1
MO' '!■ . W X N , X N 1
•m -'l . i‘j DO , LPFMEM V ! p|." - : ! ' i : • ; :

■ ■ m p . - ; n-p li.1 TP UT
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NOP

«CHECK OUTPULSE FLAG

r • il I r sT  '■ 'F'v ' i i / H / 9 1  I ’ ■ V  e -'7 SYS : 000 ! . . 7 AWCDE T . 3A

BTST.B £i 1,OUTFLAG * IF OUTPULSE IS SET, THEN THE OUTPUT
BNE.L PULSOUT «IS ACTIVE (SAWC HAS BEEN DETECTED).

«CHECK ARTIFACT FLAG

BTST.B 
BEG. S 
ADDO.W 
MOVE.W 
CMP. W 
BLT. L 
JMP

£* 1 ,ARTFLAG 
CHECSPFL 
£ f 1 , T 
T , 07
£$258,D7 
OUTNIL 
RESET 1

<• ! !!!.:• SPFL AG

IHECSPFL BTS ! B 
BEG.. S

£$ 1 , SPF LA' • 
OUTNIL

* IF ARTFLA6 IS SET, Vin = DCLEVEL DURING 
«THE NEXT 1000 ms (600 SAMPLES)

H S  T Is (S-.600)

«IF SP: LAb ili NOT SET (ZERO FLAG lb SET) 
«THEN '.'Q

«LPF OUTPUI LEVEL IS COMPARED WITH MAXSWLEV

CMP.W MAXSWLEV,DO
RLE.S CHECKMIN

BETARTFL BOLT.L 
JMP

£.T 1 , ARTFLAG 
OUTNIL

* IF LPF OUI -LEVEL MAXSWLEV,THEN I: 
«MUST BE AN ARTIP'AGT (SET ARTFLAG) 
«OTHERWISE. GHLCL M MIN <75 ms)

*M MIN IS CHECKED

CHECKMIN MOVE.W 
CMP. W 
BLE. S

M , D7
tlJ-11N , D7 
COUNTERS

«THE LPF OUT- LEVEL 5 TAFTS TO BE CHECKED 
*75 ms AFTER THE SPIKE DETECTION.

«SAWFLAG IS CHECKED

BTST.B £T1 ,SAWFLA6
BNE.S CHECK M

«IF SAWFL.AG IS SET, THEN CHECK M. 
»OTHERWISE, CHECK THE LPF OUT-LEVEL.

«LPF OUTPUT LEVEL IS COMPARED WITH SLOW-WAVE DETECTION LEVEL

CMP.W SWLEVEL.DO
Bt.T.S COUNTERS
B S E T . B £ $ 1 ,SAWFLAG

«IF LPF OUT LEVEL SWLEVEL, THEN GOTO
«COUNTERS.
«OTHERWISE, SET SAWFLAG AMD CHECK M.

-OBS: HHT HAY BE CHECKED EARLIER, IMMEDIATE: V AFTER I HE ADDITION (SP' G '
■■ •’.■in "SETS'-FLAG" . IF GPCOUNT 2, SETAR 1 " L WITHOUT WAI-ING FOR M

RE-E'!: 'MED.

!>1 nr, «■ I !- H 1 1 ' , !" ! i; ¡TEE' IS INCREASE
«0 !"HE1 W : a ü ?i rHE ■ ir-uv -■ Qf- 3p
«If i.: v; : Z."' REE'1 DE FF CTT ,
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PAO! 122084 4 SV:-: OOO i . . S A W C D E T . SA! IST V! R •M t .?: ■'! ! : S 7

MOVE.W SPCOUNT,DO
CMP. W £42,DO
BGT.S RESET 1
BSET.0 Li!,OUTFLAG
BRA. S PULSOUT

COUNTERS ADDQ.W £4“ 1 , M
MOVE.W M, DO
CMP. W M_MAX,DO
BLE. S OUTNIL

RESET 1 BSR.S RESET

OUTNIL MOVE.W LPFMEM,D7
MOVE.B D7,(A6)

STATUSHI MOVE.W (A3),D7
AND. W £41,D7
BNE. S STATUSHI

I r-r‘‘ STATUS! .0

»■SPIKE ■ D AR FF .'■; BEEN DETEC

PUL3QU t MOVE.B £4Eo , (Aii)
MOVE.W M_MED,DO
ADD I.W £416,DO
■ MP . W M, DO
LEO. S RESET1

ADD 1 ADDQ.W £4 1 , M
BRA.S STATUSHI

«RESET c.SUBROUTINES

RESET C.'LR. W SPFL.AG
Ci-R. W SPCOUNT
CLR. W SPIKSAMP
CLP. W T
CLR. W M
CLR. W SAWFLAG
CLR.W OUTELAG
CLR. W
r  rs

END

ARTFLAG

«OTHERWISE, RESET COUNTERS AND FLAGS 
«AND MAKE Vo » 0 (RESET 1)
«««(IT MAY BE BGT.S SETARTFL)
«SET OUTFLAG (OUTPUT PULSE!

«M = M + 1
«IF T < TMAX, Vo = 0
«OTHERWISE, RESET COUNTERS AND FLAGS
«(IT WAS JUST A SPIKE. PS: 5AWFLAG

«Vo = LP! IL. OUTPUT

«WAIT UNTIL STATUS GOES LOW 
«SAVE BIT "0"
«IF MOT = 0, GO 3TATHI

EAMPi.f • ;n>

f- Vo -■ 4 AO
«OUTPUT • • !1 .! IS ACT Is. “ WHILE COUNT!- 
■ INCREASES FRÜH M MED '0 "M_MED+4 16" 
«IF M = MMED t 1 6. RESET COUNTERS A
«FLAGS AND MAI I > RESET 1).
«OTHERWISI , INCREASE COUNTER AND GOT 
«STATUS!! I

«SPIKE FLAG
«SPIKE COUNTER
«SP I ICE-SAMPLES COUNTER
«TIME-INTERVAL COUNTER
«SAMPLE COUNTER
«SP IKE-AND-WAVE !: LAG
«OUTPUT-PULSE FLAG (Vo = !. !
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APPENDIX C

ADDITIONAL EXAMPLES OF 

THE WIGNER DISTRIBUTION OF SAWCs
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WIGNER

APPENDIX D

DISTRIBUTION ALGORITHM
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<*
P WIGNER DISTRIBUTION

NECESSARY VARIABLES IN WORKSPACE:

x -- > vector with a maximum number of 256 elements

RESERVED VARIABLE NAMES:

yl y2 y3 y4 p q ql t w zero

The parts of the proqram that precede and follow the 
calculation of the unsmoothed WD were added to the oriqinal 
proqram written by E. T. COSTA (1989).

clear

load eg7r.mat; 
x=eg7-mean(eg7); 
clear eg7

clc;home
K=max(size(x));
k=0:K-l;
zero=0*k;
fs=160;
t=k*1000/fs;
plot(t,x,t,zero);
title('INPUT SIGNAL')
xlabel('TIME (ms)')
ylabel('AMPLITUDE (V)')
pause

% Load data file or write equation 
% "x" is the time variable.

% Sampling frequency=160 Hz. 

% Time in "ms".

% WIGNER DISTRIBUTION (unsmoothed)

n=max(size(x));
[yl,y2]=analytic(x);
[y3,y4]=resize(yl,y2,n);
clear yl y2
pack
w=slidel(y3,y4,n); 
clear y3 y4 
pack
p=wigf ft(w) ; 
clear w 
pack 
mesh(p)
title('UNSMOOTHED WD') 
pause
contour(p,17)
title('UNSMOOTHED WD')
xlabel('TIME ')
ylabel('FREQUENCY ')
pause
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% SMOOTHING PROCESS AND GRAPH DISPLAY

clg
p=p(1:n/2,:); % Smooth only a half of the

% original WD.
a=5;b=5;alpha=12;beta=12; % Coefficients used to determine the
q=smooth(p,a,b,alpha,beta); % the 2-D Gaussian function.
pack

% CONTOUR PLOT WITH REAL SCALES

% time (ms) -- > left to right
% frequency (Hz) -- > bottom to top

[linefreq,colutime]=size(q); 
N=colutime-2 *a;
J=N/(1inefreq-2 *b) ;

tmin=0;
tmax=max(size(x))* 10 0 0/f s ; 
fmin=0; 
fmax=fs/2;

dt=(tmax-tmin)/ (N-l) ; 
df=(fmax-fmin)/ (N-l);

t=(tmin-a*dt:dt:tmax+a*dt); 
f=(fmin-b*df:df:fmax/J+b*df);

mesh(q) % The original matrix is displayed
title('SMOOTHED WD') % in three dimensions
pause
clg

contour(q,17,t,-fs/(2*J)+f) % The signals, which appear
xlabel('TIME (ms)') % in the frequency axis, shall
ylabel('FREQUENCY (Hz)') % be eliminated manually,
title('SMOOTHED WD (eliminate the signals manually)')
pause 
clg

% ROTATE THE ORIGINAL MATRIX

% The original matrix is rotated 
% 180° and displayed in three 
% dimensions.

contour(ql,17,t,f) 
title('SMOOTHED WD') 
xlabel('TIME (ms)') 
ylabel('FREQUENCY (Hz)')

end

ql=rot90(q'); 
mesh(ql)
title('SMOOTHED WD')
pause
clg

236



% The function ANALYTIC(X) determines the analytic signal 
% associated with the sampled signal x(t).
%
% It implements the following algorithm:
%
% 1) find y=fft(x);
% 2) zero out the "negative frequencies"
% 3) multiply all elements by 2, except the first one (DC);
% 4) find yl=ifft(y);
% 5) y2=complex conjugate of yl
%
% Calling: [yl,y2]=analytic(x).
%

function [yl,y2]=analytic(x)
n=max(size(x)) ;
y=fft(x);
y=y(1:n/2) ;
y(n)=0;
y=2.*y;
y(i)=y(i)*/2;
yl=ifft(y); 
y2=conj(yl); 
end

% The function RESIZE(yl,y2,n) creates two new vectors 
% y3 and y4 so that:
% 1) y3 has its last "n" elements equal to zero and the first
% elements equal to the elements of yl. If yl has "n"
% elements, y3 will have "2*n" elements;
% 2) y4 has its first "n" elements equal to zero and the
% remaining elements equal to the elements of y2. If y2
% has "n* elements, y4 will have "2*n" elements.
%
% CALLING: [y3,y4]=resize(y1,y2,n)
%

function [y3,y4]=resize(yl,y2,n);
m=length(yl);
l=length(y2);
nl=0:n-1;
y3(m+1:m+n)=0*nl;
y3(1:m)=yl;
y4 (1 + 1:1+n)=y2;
end

% SUBROUTINES
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% The function SLIDE1(y3,y4,n) performs the point by point 
% multiplication of y3 by y4 such that:
%
% 1) the 1st row contains y 3 ( 1 : n) . * y 4 ( 1 : n)
% 2) the 2nd row contains y3(2:n+l).*y4(0:n-1)
% 3) the nth row contains y3(n:2*n-l).*y4(-n+l,1)
% 4) the 1st row is divided by 2;
%
% To improve speed performance, the matrix is created in 
% blocks (smaller matrices) with n/16 columns by 1 row.
%
% CALLING: a=slidel(y3,y4,n)
%

function a=slidel(y3,y4,n);
clc
j =n-l;
k=n+2;
m=2*n+l;
for i=l:n/16

a ( i,:)=y3(i:j + i) .*y4(k-i:m-i) ; 
home;i 
end
a (1,:)=a(1,:)./2; 
for i=n/16+l:2*n/16

al(i-n/16,:)=y3(i:j+i).*y4(k-i:m-i); 
home;i 
end
for i=2*n/16+l:3*n/16

a2(i-2 *n/16,:)=y3(i:j+i).*y4(k-i:m-i); 
home;i 
end
for i=3*n/16+l:4*n/16

a3(i-3*n/16,:)=y3(i:j+i).*y4(k-i:m-i); 
home;i 
end
for i=4*n/16+l:5*n/16

a4(i-4*n/16,:)=y3(i:j+i).*y4(k-i:m-i); 
home;i 
end
for i=5*n/16+l:6*n/16

a5(i-5*n/16,:)=y3(i:j+i).*y4(k-i:m-i); 
home;i 
end
for i=6*n/16+1:7*n/16

a6(i-6*n/16,:)=y3(i:j+i).*y4(k-i:m-i); 
home;i 
end
for i=7*n/16+l:8*n/16

a7(i-7*n/16,:)=y3(i:j+i).*y4(k-i:m-i); 
home; i 
end
for i=8*n/16+l:9*n/16

a8(i-8 *n/16,:)=y3(i:j + i).*y4(k-i:m-i); 
home; i 
end
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for i=9*n/16+l:10*n/16
a9(i-9*n/16,:)=y3(i:j+i).*y4(k-i:m-i); 

home ;i 
end
for i=10*n/16+l:ll*n/16

al0(i-10*n/16,:)=y3(i:j+i).*y4(k-i:m-i); 
home ;i 
end
for i=ll*n/16+l:12*n/16

all(i-ll*n/16,:)=y3(i:j+i).*y4(k-i:m-i); 
home ;i 
end
for i=12*n/16+l:13*n/16

al2(i-12*n/16,:)=y3(i:j+i).*y4(k-i:m-i); 
home ;i 
end
for i=13*n/16+l:14*n/16

al3(i-13*n/16,:)=y3(i:j+i).*y4(k-i:m-i); 
home ; i 
end
for i=14*n/16+l:15*n/16

al4(i-14*n/16,:)=y3(i:j+i).*y4(k-i:m-i); 
home ; i 
end
for i=15*n/16+l:n

al5(i-15*n/16,:)=y3(i:j+i).*y4(k-i:m-i); 
home ;i 
end

% CREATING THE FINAL MATRIX

a(n/16+1:2*n/16,:)=al; 
a(2*n/16+l:3*n/16,:)=a2; 
a(3*n/16+1:4*n/16,:)=a3; 
a(4*n/16+l:5*n/16,:)=a4; 
a(5*n/16+l:6*n/16,:)=a5; 
a(6*n/16+l:7*n/16,:)=a6; 
a(7*n/16+l:8*n/16,:)=a7; 
a(8*n/16+l:9*n/16,:)=a8; 
a(9*n/16+1:10*n/16,:)=a9; 
a(10*n/16+1:11*n/16,:)=al0; 
a(ll*n/16+1:12*n/16,:)=all; 
a(12*n/16+l:13*n/16,:)=al2; 
a(13*n/16+1:14*n/16,:)=al3; 
a(14*n/16+l:15*n/16,:)=al4; 
a(15*n/16+l:n,:)=al5; 
end

% :16*n/16
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% The function WIGFFT(b) performs the Fourier Transformation
% on the matrix formed by the sliding function. Only the real
% part of FFT is required and, to improve speed, smaller
% matrices (n X n/16) are formed before the final result is
% obtained.
%
% CALLING: a=wigfft(b);
%

function a=wigfft(b); 
clc
n=length(b);
al=real(fft(b(:,1:n/16)));home;i=l
a2=real(fft(b(:,n/16+1:2*n/16)));home;i=2
a3=real(fft(b(:,2*n/16+l:3*n/16)));home;i=3
a4=real(fft(b(:,3*n/16+l:4*n/16)));home;i=4
a5=real(fft(b(:,4*n/16+l:5*n/16)));home;i=5
a6=real(fft(b(:,5*n/16+l:6*n/16)));home;i=6
a7=real(fft(b(:,6*n/16+l:7*n/16)));home;i=7
a8=real(fft(b(:,7*n/16+l:8*n/16)));home;i=8
a9=real(fft(b(:,8*n/16+l:9*n/16)));home;i=9
alO=real(fft(b(:,9*n/16+l:10*n/16)));home;i=10
all=real(fft(b(:,10*n/16+l:ll*n/16)));home;i=ll
al2=real(fft(b(:,ll*n/16+i:12*n/16)));home;i=12
al3=real(fft(b(:,12*n/16+l:13*n/16) ) ) ;home;i=13
al4=real(fft(b(:,13*n/16+l:14*n/16)));home;i=14
al5=real(fft(b(:,14*n/16+l:15*n/16)));home;i=15
al6=real(fft(b(:,15*n/16+l:n)));home;i=16 % :16*n/16

a=[al a2 a3 a4 a5 a6 a7 a8 a9 alO all al2 al3 al4 al5 al6];

clear al a2 a3 a4 a5 a6 a7 a8 a9 alO all al2 al3 al5 al6

a=2*a/n;
end
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% SMOOTH.M

The function SMOOTH(p) filters the original Wigner 
Distribution in order to remove the artifacts caused by 
crossterms.
It convolves the unsmoothed WD (p) with a two-dimensional 
Gaussian function determined by "a", "b", "alpha" and 
"beta".

% The values of "a", "b", "alpha" and "beta" may be changed

% CALLING: q=smooth(p,a,b,alpha,beta);

function q=smooth(p,a,b,alpha,beta); 
j=-a:1:a; 
k=-b:1:b;
[x/y]=meshdom(j,k);
l=exp(-x.'2/alpha-y.~2/beta)/ (alpha*beta); % Gaussian function
clc;home
s='SMOOTHING'
q=conv2(1,p);
clc;home
end
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