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Abstract

We investigate the potential of Neural-Symbolic integration to reason about what a

neural network has learned. By undertaking a systematic study of the literature on

explainable Artificial Intelligence, we propose a new taxonomy that showcases the

methods in a structured manner and enables the integration of earlier work. Initially,

two promising symbolic-inspired explainability methods for deep neural networks are

evaluated. We examine the limitations of a concept-based XAI approach and expand

the applicability of the method to a new data domain. The approach is extended by

integrating ontology querying to provide more comprehensive explanations. Having

examined the internal representation of the network, we investigate the appropriate-

ness of a decision tree extraction method to explain the inner operations. Specifically,

we apply the original proposal to increasingly complex visual tasks while extending

the method to provide a deeper understanding of the extracted trees. In order to over-

come the limitations identified in the examined methods, we propose a novel Neural-

Symbolic approach to explainability by exploring the connection between conceptual

representation and expressive first-order logic operators for intuitive and powerful

explanations corresponding to human reasoning. The relevant framework is adapted

from Logic Tensor Networks and modified to add a continual interactive explanation

mechanism for model-agnostic querying and constraining. We examine the reasoning

capabilities of neural networks that have been trained using the framework to identify

the necessary requirements for a model to be integrated effectively. This allows us

to establish what constitutes valuable background information for improving deduc-

tion as compared to previously published benchmarks. Using the novel interactive

framework, we present a method for acting on information extracted by any XAI ap-

proach to prevent the model from learning unwanted behaviour and biases and show

how the method can be applied to quantitative fairness. Compared with another

constraint-based neural network approach, we demonstrate improved accuracy, while

maintaining fairness based on two common fairness metrics. Furthermore, we incor-

porate the initial work on concept groundings into the new framework to facilitate

comprehensive conceptual and logic-based explanations of the black box model (i.e.,

CNN and transformer). It demonstrates that model explanations can retain truth-

ful representations of operations and internal representations, passing a benchmark

proposed for truly explainable AI.
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Chapter 1

Introduction

Recent years have seen a vast increase in the popularity of Artificial Intelligence-

based systems, including Neural Networks and similar approaches. As a result, these

approaches are now pervasive in many aspects of our daily lives, including the use of

media, mobile phones, finance, as well as health care, as they are becoming more so-

phisticated in their capacity to solve a wider range of problems. Artificial intelligence

approaches provide a variety of benefits, including process cost reduction, repeatabil-

ity, improved efficiency, effective decision making, as well as a means for developing

new products and services. In addition to disrupting many industries, artificial in-

telligence is also spawning new technologies and trends that can transform our lives,

such as self-driving cars and intelligent assistants.

As a field of research, Artificial intelligence dates back more than half a cen-

tury, but has since seen exponential growth in research output due to a wide range

of factors, including increasing computational capacity, greater affordability, better

generalizability of models, and the availability of unprecedented amounts of data

(Rosenblatt, 1958; LeCun et al., 2015). The combination of these factors led to sig-

nificant improvements in predictive performance across a variety of tasks. Complex

Machine Learning (ML) models, such as Neural Networks (NN), exhibit powerful

classification, prediction, and optimisation capabilities, but they lack transparency

and comprehensibility. Such models have the advantage of being able to discriminate

using an arbitrary function in an end-to-end manner, with the optimisation based on

an input-output mapping, and the model having the flexibility to adjust a vast num-

ber of parameters as required. A weakness of the models’ complex and distributed

representation is that they can be considered black boxes in terms of interpretability

since the parameter values do not directly provide any insight into the underlying

logic and reasoning of the model. Historically, accuracy and interpretability have
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been suggested to be unavoidable tradeoffs. However, recent research has identified

more effective methods for dealing with this trade-off.

Many situations demand more from an AI system than simply providing a suit-

able outcome. Rather, we may wish to understand more about the reasoning process

used to arrive at a decision. The commonly used approach of evaluating accuracy

on a test set may serve as an initial metric to measure the performance of an AI

system; however, the system may still learn decision-making procedures that may

be inherently inappropriate for the task (Rudin, 2019). This phenomenon may be

due to the limited scope of information available in the dataset, which constrains the

applicability of the learned reasoning steps.

With the advancement of artificial intelligence, economic growth is expected to ac-

celerate, transforming society based on the way we interact with technology. Accord-

ingly, regulators and stakeholders expect that AI will be inclusive and beneficial to

everyone. The UK Parliament House of Lords AI select committee (House of Lords

and Select Committee on Artificial Intelligence, 2018), for instance, mentions in its

report that, “we believe it is not acceptable to deploy any artificial intelligence system

which could have a substantial impact on an individual’s life unless it can generate a

full and satisfactory explanation for the decisions it will take”.

As part of current initiatives undertaken by regulatory authorities at different lev-

els (such as, e.g., the EU General Data Protection Regulation 2016/679 (European

Union, 2016)) as well as societal discussions regarding a desire for greater transparency

and accountability in automated decision-making, research into better interpretable

and comprehensible methods and systems in Artificial Intelligence (AI) is expanding.

Therefore, there has been a wide variety of methods introduced in recent years, lead-

ing to a diverse mixture of approaches geared towards understanding the behaviour

of a model. A number of approaches aim to extract decision-related information from

complex models into simple models, thus achieving considerable interpretability at

the expense of confined performance that results from introduced model constraints,

while others provide explanations by describing representative cases (e.g. Frosst and

Hinton (2017); Kim et al. (2018)). A number of methods reduce the dimensionality

of a model representation in order to facilitate visual analysis of its inherent features

(e.g. Van Der Maaten et al. (2009)). In other approaches, a local explanation is

provided, which restricts the explanation to specific instances that serve as proxies

for the model’s behaviour (e.g. Ribeiro et al. (2016)). Consequently, we have devoted

a considerable portion of the following work to providing a holistic review and taxon-
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omy of the wide range of explainbility approaches, a necessity in such an expanding

and dynamic field of research.

The initial focus will be on extending existing explainability methods and explor-

ing their limitations so as to reveal some fundamental weaknesses. By doing so, we

emphasise the human’s involvement in an explainable AI (XAI) system. Here, it is

useful to draw inspiration from the way people communicate explanations in their

daily lives. An objective for explanations is to be intuitive and thus similar to human

explanations, which have a proven track record of effective communication. Never-

theless, they must be truthful to the representations and operations of the models,

since only sound explanations should be accepted. Often, as will be demonstrated,

the coherence of representation as well as operation is not sufficiently addressed in

current XAI approaches.

Furthermore, we consider explainable AI to be more than a fixed description of a

static system. Neural-symbolic approaches to XAI should be an interactive, continu-

ous process that allows not only to describe the system but also to convey information

back to the system, enabling the user to act on the system’s description.

1.1 Illustrating why XAI is needed

The majority of current Machine Learning systems have a substantial reliance on

statistical and data-driven strategies in common in order to perform a large variety

of tasks. This pivotal role of large amounts of data as input, processed using sophis-

ticated statistical techniques without explicit generation of interpretable knowledge

along the way, results in incomprehensible representation and a lack of understanding

of internal operations. The corresponding systems are opaque ”in the sense that if

one is a recipient of the output of the algorithm (the classification decision), rarely

does one have any concrete sense of how or why a particular classification has been

arrived at from inputs. Additionally, the inputs themselves may be entirely unknown

or known only partially” (Burrell, 2016). Due to the opacity of this process, under-

standing the outcomes of a system’s decision-making processes presents a challenge.

Different factors contribute to the need for explainability of models, particularly when

impacting safety-critical areas. Caruana et al. (2015) describes a representative ex-

ample of interpretability in the medical domain. In an innovative piece of medical

research, they developed a neural network model to calculate the likelihood of se-

vere illness leading to death for patients entering a hospital with pneumonia. The

objective was to determine quickly whether a patient needed to be admitted to the
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hospital or sent home. It was found that the model predicted a patient’s likelihood of

death with surprising accuracy, but it was fortunately not implemented until further

investigation was conducted. It became apparent from looking at the behaviour of

the neural network model that it had inferred the practice that patients with pneumo-

nia and asthma have a minimal risk of death. Research contradicted the conclusion

drawn by the model, however it was the pattern derived from the training data that

achieved high accuracy on the dataset. The reason behind this unusual pattern was

the fact that patients with asthma were regularly directly admitted to intensive care,

receiving immediate treatment and often succeeding in their treatment and therefore

recovering well. As a consequence, the model could have caused significant harm if it

had not been revised and the behaviour thoroughly investigated.

1.1.1 Goals of explaining ML systems

Aside from the regulatory necessity of integrating explainable methods into auto-

mated decision making, there are several benefits to gaining insight into the decision

making process. The variety of possible scenarios and associated contexts is as diverse

as the range of terminology associated with AI explainability and its multitude of ap-

plications and stakeholders. Nonetheless, prominent figures in the field of Machine

Learning have voiced reservations regarding the necessity of explainable AI (LeCun

et al., 2017), while others have questioned the validity of post-hoc explanations of

black-box models in particular (Rudin, 2018).

The requisite characteristics of an explainable system are one primary cause of

a lack of consensus; these properties derive directly from the varying application

domains with differing necessity and specific purposes of explanation (including re-

quirements for an explainable system). The purpose sets the tone for constraints and

desiderata, and is therefore an important aspect when considering interpretability.

However, there are distinct applications where explanations may not be necessary.

For instance, predictions which will not result in immediate decisions, or fields that

are not safety-critical. In such instances, the consequences for an unacceptable result

are not necessarily severe. In many instances, it is argued that the need for explana-

tions is justified by the consequences of a model’s output as well as the appropriate

means to measure the model’s performance in this context. Currently, most machine

learning practices rely heavily on measuring the accuracy of the models based on a

held-out test set. As part of the Machine Learning paradigm, we assume that the

data collection process for training should correspond as closely as possible to the

data encountered by the model in deployment. However, if this assumption does not
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hold or should be violated in some way, there may be a benefit in being able to collect

more information than merely performance metrics.

In some applications scenarios, for example, an explanation is necessary to justify

a system and its behaviour, and it may be possible to find a satisfactory solution

through a thorough analysis of the data distribution prior to training. Further, the

specific type of use-case also determines the requirements regarding the coverage of

the explanation. The following are typical explanation purposes motivating the use

of explainable approaches (Adadi and Berrada, 2018):

• Explain to Justify: ensure that decisions are made correctly and increase trust in

the system. The ability to query our model and discover implicit interactions so

that we can gain an understanding of which features may be important in terms

of the decisions made by the model. These explanations ensure the integrity of

the model and prevent unwanted inclinations or differentiation.

• Explain to Control: improve the prevention of errors and the detection of flaws.

Providing the capability to evaluate and validate any data point and how a

model arrived at a particular decision in relation to individual entities. Key

stakeholders should be able to demonstrate and comprehend that the model

works as expected. These explanations help to ensure model transparency and

prevent unwanted discrimination.

• Explain to Improve: in understanding the inner workings of a system, we can

find ways to improve it. A model’s interpretability can be beneficial to machine

learning engineers, as it allows for improved maintenance and continuous learn-

ing of techniques across different tasks, based on an improved understanding of

the model’s behaviour.

• Explain to Discover: we want to learn new facts and gather information to gain

knowledge and insights. Transparency will make such information accessible

and allow for extrapolation of the discovered facts in the future.

Current XAI methods are typically tailored to a particular use case. We suggest that

a truly explainable system that serves as a communication bridge will be capable

of addressing all of the above use-cases collectively. Additionally, many approaches

maintain a disconnect between the actual description and the goal of the explanation.
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While the purpose of these methods may be to control against unwanted discrimi-

nation, current XAI methods simply display disparities without addressing them di-

rectly. Such methods are considered unidirectional tools and provide only descriptive

information with no capability to act upon it.

1.2 Interpretable and Comprehensible Models

Before outlining the variety of solutions addressed in the literature regarding the facil-

itation of understandable decision making, it is crucial to clarify how interpretability

and explainability are defined. Accordingly, we will examine different explainable AI

methods with the aim of dissecting various aspects of interpretability and distinguish-

ing different criteria for a model’s explanation.

Interpretability is nowadays often referred to as an indicator that a human is capable

of understanding the machine-learning model to an undefined extent. In contrast to

symbolic representations, we may not be able to fully reconstruct the reasoning of a

connectionist system. In reading the UK Government’s report on the current state of

AI in the UK, (House of Lords and Select Committee on Artificial Intelligence, 2018),

another central issue becomes apparent. The report mentions that terminology varied

considerably among practitioners. The terms transparency, interpretability, intellige-

bility, and explainability are often used interchangeably.

In machine learning literature, interpretability is loosely defined as the ability

to explain or to provide the meaning in understandable terms to a human (Miller,

2017). The implicit assumption is that information representation is expressed in

understandable terms constituting a self-contained explanation. Consequently, the

explanation can be seen as an “interface between humans and a decision maker that

is at the same time both an accurate proxy of the decision maker and comprehensible

to humans” (Guidotti et al., 2018). Hence, interpretability refers to being able to

better understand the decision policies of a machine-learned response function and

ultimately explain the relationship between input and output variables in a way that

is human-interpretable.

In general, an explanation is a set of statements that are usually formulated to de-

scribe a particular collection of facts that address the underlying causes, context, and

consequences of those facts (Drake, 2018). As well as establishing rules or laws, the

description may also clarify these rules or laws in relation to the objects or phenom-

ena it examines. The theory of communication specifically proposes communication
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to be predominately symbolic (Littlejohn, 1977). Here, the so-called symbolic inter-

actionism suggests that humans interpret and assign meaning to events through a

set of symbols that are interrelated. Many years of research on communication have

been built upon these fundamentals as they may establish a broad framework for all

forms communications (Littlejohn, 1977).

Consequently, we will concentrate on two core components of desirable explana-

tions: symbols and operations as relations between symbols. This perspective ties

directly into the notion of neural-symbolic explanation, in which we intend to in-

tegrate the powerful learning capabilities of neural networks with the intuitive and

expressive logical description using symbols and operators to serve as bridges of com-

munication. The establishment of this communication bridge necessitates that infor-

mation be revised and inserted in tandem with its extraction. Therefore, we propose

several experiments for measuring the effectiveness of translating information into the

network as well as extracting information on what the network has learned.

1.3 Objectives and Contributions

In this thesis, we shall investigate the potential of neural-symbolic approaches to rea-

son about what a deep neural network has learned. Our objective here is to examine

the multiple advantages that can be achieved from this approach to explainable ar-

tificial intelligence. Particularly, we are interested in examining its ability to derive

model-inherent logic through the use of multiple levels of abstract representation.

Methods currently in use for XAI usually rely on statistically driven explanations

based on input features that fail to take into account the powerful representations

learned by the model. We propose that an effective XAI method, as opposed to ex-

isting XAI approaches, should act as a lingua franca between an AI system and a

human counterpart, rather than simply presenting information in an understandable

manner. Since a neural-symbolic approach is presented as a communication bridge,

we examine the effectiveness of the model as it relates to its ability to revise model

behavior through constraints. As a result, a continuous human-machine interactive

process for more understandable and desirable AI systems is enabled.

An analysis of the extensive literature on XAI methods with a variety of method-

ologies is followed by an investigation of two existing symbolic-inspired explainability

methods for deep networks with an examination of their limitations. These will high-

light the existing shortcomings of present XAI approaches. Afterwards, we argue
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for tighter neural-symbolic integration to help overcome the observed limitations and

introduce our method as an interactive communication bridge. We further propose a

novel approach to explainability using real-valued (fuzzy) logic training and evalua-

tion of deep neural networks.

The contributions can be summarised as follows:

• We introduce a new taxonomy for explainable artificial intelligence that presents

the methods in a systematic accessible manner and allows for the integration of

earlier work.

• We investigate the limitations of the symbol grounding related TCAV method

and extend the approach to new data domains. In order to arrive at more

comprehensive explanations, the approach is further integrated with ontology

querying.

• We study the limitations of the Soft Decision tree rule extraction method for

explaining the operations within a neural networks. In addition, we present an

adaptation of the approach to increasingly complex visual tasks. By restricting

the model in specific ways, we allow for better understanding of the model.

• We propose a bottom-up Neural-Symbolic approach to explainability by inte-

grating knowledge and data into a neural network and enabling post-hoc infor-

mation extraction as well as targeted retraining based on knowledge revision.

• We implement and adapt a framework for neural networks to enable continual

learning and iterative querying by caching learned representations and by using

network querying in first-order logic to check for knowledge learned by the deep

neural network.

• We examine the reasoning capabilities of the proposed framework and identify

what constitutes valuable background information that contributes to improved

deduction.

• We present a method for acting on information extracted by any XAI approach

in order to prevent the model learning unwanted behaviour or bias. By lever-

aging an existing XAI method, namely SHAP (Lundberg and Lee, 2017), we

demonstrate how our method can be used to identify and address undesired

model behaviour. Furthermore, we demonstrate how bias can be identified us-

ing the querying mechanism of the proposed framework.
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• We apply the proposed method and tool to the field of quantitative fairness in

finance. We demonstrate improved accuracy in comparison with another state-

of-the-art neural network-based approach (Padala and Gujar, 2020) across three

datasets while retaining fairness based on two common fairness metrics.

• We demonstrate that the framework is capable of dissecting model explanations

into complex concepts and facilitating interactive learning. It enables domain

experts to learn about the data-inferred decision making process of large ML

models by querying the model and defining constraints for further learning as

part of an iterative process. In an iterative process, it is possible for domain

experts to gain insight into the data-driven decision making processes of large

ML models using abstract concepts integrated into expressive first-order logic

queries and subsequently to set constraints to guide further learning.

1.3.1 Contributions

The following publications contain material in this thesis:

• Benedikt Wagner, Artur D’Avila Garcez, Neural-symbolic Integration for Fair-

ness in AI, AAAI 2021 Spring Symposium, AAAI-MAKE 2021.

• Benedikt Wagner, Artur D’Avila Garcez, Neural-Symbolic Integration for In-

teractive Learning and Conceptual Grounding, NeurIPS 2021, Workshop on

Human and Machine Decisions (WHMD 2021).

• Benedikt Wagner, Artur D’Avila Garcez, Neural-Symbolic Reasoning under

Open-World and Closed-World Assumptions, AAAI 2022 Spring Symposium,

AAAI-MAKE 2022.

• Roberto Confalonieri, Ludovik Coba, Benedikt Wagner, Tarek R. Besold, A his-

torical perspective of explainable Artificial Intelligence, Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, Volume 11 Issue 1, 2021.

The publication taking a historical perspective on explainable AI is related to the

arguments presented in chapter 5 and the section 3.3. The publication on Fairness

will be discussed in section 6.4. The publication on Reasoning is covered in section

6.3 and the work on Conceptual Grounding in section 6.5.
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1.4 Structure

Considering the increasing awareness of the need for AI to be explainable, the question

of how to accomplish such a goal has gained renewed attention. Our goal is to take

advantage of the neural-symbolic approach to tackle this challenge. As we will outline

in the following section, we propose to investigate this area because the neural and

symbolic approaches are complementary, and this angle has not been widely explored

in the context of explainability in AI.

Initially, we will provide a high-level introduction to particular terminology, concepts,

and prerequisite knowledge in chapter 2. Subsequently, we cover a wide range of

explainability approaches in order to provide a broader context. As a result of the

lack of structure in the field of explainable AI, we create a taxonomy to introduce the

wide range of methods in a systematic manner in chapter 3. Furthermore, this allows

practitioners to categorise the vast range of approaches in an accessible manner. The

structure of this taxonomy is derived from earlier studies on rule extraction (Andrews

et al., 1995) in order to facilitate comparisons with existing approaches.

Following this, we examine two existing methods more closely and extend them

in different ways in chapter 4. To begin with, we examine the TCAV method in de-

tail, we translate the approach into a new domain of data in order to understand its

potential limitations. More importantly, we integrate ontologies so that background

knowledge can be included for more thorough explanations. The focus here is on the

grounding of concepts that are similar to symbol grounding. In order to dissect the

model explanation into various concepts, we use intermediate representations of the

model to arrive at the groundings. However, while the approach provides a pathway

toward gaining insights into the model, it lacks the operations and relations that are

critical to providing expressive explanations.

Since we can only decompose model explanation into the sensitivities of classes with

respect to concepts, we subsequently examine the feasibility of an alternative tree-

based method with an approach that emphasises the explanation of internal oper-

ations. Using this approach, the model architecture will be distilled into a simpler

format that will provide insight into how a model is constructed. In this case, the

emphasis is placed on the operational representation by converting the explanation

into a sequential structure similar to that of a neural network. Using this approach,

we investigate limitations of the approach with respect to increasingly complex visual

tasks and extend the method to the medical domain and introduce more intuitive

explanation representations.
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In order to overcome the limitations identified, we propose a more comprehensive

neural-symbolic approach to explainability in chapter 5. This chapter emphasises the

connection between conceptual foundations and expressive first-order logic operators

for intuitive and powerful explanations corresponding to human reasoning. The rel-

evant framework is extracted from Logic Tensor Networks and extended to add a

continual explanation mechanism for model querying and constraining in chapter 6.

Our initial approach will be to explore the reasoning capabilities of a neural net-

work that has been trained using differentiable fuzzy logic as a constraint. Hence,

we will be able to identify the necessary requirements for the model to be integrated

accordingly as well as identify potential explanation limitations. Following this, we

will illustrate our novel approach by showing how it can accomplish fair classifica-

tion. We compare our approach to other ML techniques that are capable of producing

fair classification based on particular quantitative fairness notions. In this context,

fairness refers to preventing the model of unjust treatment of people belonging to a

protected group. The fact that our framework will remain model agnostic is one of

its key contributions. In other words, this allows for any ML model to be integrated

and trained in accordance with the proposed fairness constraints.

Lastly, we incorporate the initial work on grounding concepts into a new framework

that allows for comprehensive conceptual and logical explanations of the black box

model in chapter 7. It will be demonstrated that the explanations can retain truthful

representation of operations and representations while achieving desireable intuitive-

ness.
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Chapter 2

Background

In the following section, we will provide an overview of the fundamental background

information as well as explanations of terminology used in subsequent chapters. We

will keep the introduction of the background material to a level that shall make the

thesis self-contained and provide a basis on which everything that follows shall be

based. Nonetheless, we will refer to other works that provide a more comprehensive

explanation of specific topics.

We will introduce the related work in two ways. The taxonomy introduced in

chapter 3 will provide an overview of many common explanationability methods. As

a result of the interdisciplinary nature of the experiments, their corresponding appli-

cation domain, and variety of assessed approaches, it is didactically more appropriate

to introduce related work within each section.

2.1 Symbolism

It has historically been possible to broadly classify Artificial Intelligence research into

two main approaches, namely symbolism and connectionism. The computational the-

ory of mind provides the basis for symbolic artificial intelligence, where the goal is to

construct computational models that closely resemble cognitive processes (Piccinini

and Bahar, 2013). These processes operate at an abstract conceptual level, as op-

posed to low-level sensory data, and therefore the syntactic relationship of a given

symbol to others is of crucial importance over its semantic meaning. The distinction

between a symbolic system and something other than a symbolic system is not as

simple as it initially appears, since there is an element of ambiguity involved. In this

thesis we will focus on logical systems in particular and investigate how they could

potentially benefit for the sake of explainability.

In a logical system, there is a formal language, which can be interpreted through

12



some form of semantic interpretation, as well as a set of deductive rules. Therefore,

an interpretation refers to an assignment of meaning to the symbols of a formal lan-

guage. Models in logic are used to interpret abstract entities in a way that leads to

conclusions about whether a sentence relating such entities qualifies as true based on

interpretation of that model. Using deductive rules, it is possible to deduce sentences

that follow logically from another set of sentences.

A number of logical sentences form the so-called Knowledge-Base K. There is a

syntactic consequence that can be drawn from it K ` l when there is a rule that

deduces l from K. We further say that K |= l or K entails l if l is true for every

interpretation in which all sentences in K are true.

We describe a deductive system as sound when K ` l implies K |= l and as

complete when K |= l implies K ` l . Hence, when a deductive system accurately

describes the semantic relationship between statements and knowledge base, it is

termed ”sound and complete” (Odense, 2019).

We are now going to examine propositional logic, as it lays the fundamental prin-

ciples of most logical systems. In this context, we employ a countable set of propo-

sitional variables X1, X2, ..., also referred to as atoms, as well as a set of connectives

{¬,→,∧,∨}. Well-formed formulas refer to logical statements that follow the rules of

the formal system. Formulas or sentences that are well-formed here are either atoms

or can be derived from other well-formed formulas. Additionally, we assign a truth

value to each atom in order to determine whether the formula is true or false.

The operators serve as the pillar for logical sentences, where ¬ is the negation or

not, ∧ is known as conjunction or and, ∨ as disjunction or or, and → as implication.

Throughout this thesis, we refer to the implications from left to right, as follows:

antecedent on the left to the consequent on the right.

Logical systems provide inference rules that enable truth assignments to be de-

duced from the truth assignments of other sentences. Modus Ponens permits us to

deduce information from the knowledge base {φ → ψ, φ}, enabling us to derive ψ.

Conjunction allows derivation of {φ ∧ ψ} from {φ, ψ}. Using Simplification, it is

possible to deduce ψ and φ from {φ ∧ ψ}.

First-Order-Logic extends propositional logic through the use of logical and non-

logical symbols. In addition to the connectives presented above, the logical symbols

will also include the universal and existential quantifiers (∀ and ∃). Moreover, we

employ variables, constant symbols, functions and relations. Functions and relations
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also have an associated arity, which specifies the number of arguments they require.

If each required argument is assigned to a variable, constant, or function, these are

also called terms. The connection of terms with relation symbols produces what is

known as an atomic formula, which builds the most fundamental form of well-formed

formulas in first-order logic. We use quantifiers to construct well-formed formulas,

which means if ψ is a well-formed formula, ∀xψ and ∃xψ are also. In this context, ψ

is also referred to as scope of the quantifier. Quantifiers are labelled as bound if the

variable is contained within the scope, otherwise they are labelled as free.

Any sentence that contains a universal quantifier is true if the scope holds true

when the quantified variable is replaced with any element of the set of objects. A

sentence that includes the existential quantifier is true if the scope is true for any

element in the set of objects used to replace the quantified variable. Atomic formulas

are considered grounded when the argument of the relation is a constant or a function

of constants, i.e. when the arguments do not contain variables.

For an in-depth presentation of propositional and first-order logic, we refer the

reader to Russell and Norvig (2010) (pp. 234-357).

2.1.1 Decision Trees

Originally, decision trees were developed to represent a deterministic symbolic system

in an interpretable manner. Even though the information may be equivalent to a set

of rules, the representation of information is easily comprehensible. Consequently,

decision trees are frequently employed as part of explainability approaches that at-

tempt to provide insight into how a model operates.

Decision trees are graphical representations of propositional statements, each repre-

sented by a node. Through internal nodes or split nodes, input data will branch out

and end up in a terminal node or leaf node which provides the decision in classifica-

tion scenarios.

Decision trees have the advantage of being nonlinear in nature, where simpler models

such as linear regression and logistic regression may still fail to perform well. Mod-

elling real-world phenomena typically requires features to interact with each other as

well as nonlinear outcomes. In these scenarios, decision trees can serve as an effective

but also comprehensible model.

Based on a training set of data, a variety of algorithms can be applied to grow a

tree. Two widely used methods of building decision trees are based on information

gain (Quinlan, 1992), and the classification and regression trees algorithm (CART)

(Friedman, 2001).
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In the event of a split, information gain is determined by the difference in average

entropy before and after the split. Here, the entropy is a measure of uncertainty of P

defined as: H(P ) = −
∑

x∈X P (x) log(P (x)), where P is the probability distribution

over a finite set X. If input examples are associated with training labels, we can

derive probability distributions that correspond to entropies based on the frequency

of labels.

As a result of the division of a set of examples into two subsets based on a split,

probability distributions corresponding to each subset will have different entropies.

Afterward, we compute the size-weighted average of both entropies. It is calculated

as |X1|
|X| H (X1) + |X2|

|X| H (X2), for the subsets X1 and X2 from X. Subsequently, the

information gain can be calculated by comparing this average with the prior entropy.

With this method, we can iteratively build the tree and choose splits that maximise

information gain at each node of the tree. As a result, this process can either be

repeated until a predefined threshold of splits is achieved, or until only one class of

label is present at a node, which is then added as a leaf node.

A tree-like structure resulting from the combined statements provides a user with a

decision model that allows them to comprehend conditional statements at each step,

and how the accumulation of such steps leads to a conclusion. Nevertheless, they are

typically less accurate than vector-based models such as neural networks.

2.2 Connectionism

Rather than rules, well-formed sentences, or symbols, Artificial Neural Networks

(ANN) are the essential component of the connectionist framework. Artificial neu-

ral networks are based on biological inspiration by using simple computational units

known as neurons are connected in conjunction with each other by weights. Further,

this type of modelling allows us to use low-level sensory information as inputs. We are

especially interested in Deep Neural Networks (DNN) as their powerful applicability

across a wide range of applications combined with the black-box nature of the model

calls for greater transparency. A network is considered deep when it contains multiple

layers and is therefore complex.

2.2.1 Artificial Neural Networks

Originally inspired by the nervous system (McCulloch and Pitts, 1943), the principle

concepts between artificial and biological neurons are similar. Inputs are received by

each neuron from its connected neurons. If that input passes a threshold, the neuron
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will fire, sending the signals to all of the other connected neurons (McCarthy, 1963).

In essence, a neural network may be viewed as a parallel model composed of simple

computational units. These units, referred to as neurons, are linked by weights which

facilitate the transmission of information.

Rosenblatt (1958) introduced the perceptron, which is the most basic form of ANN.

It consists of a single layer with one neuron predicting class based on a row of input

data. The neuron in the perceptron is binarised, which means it is considered either

on or off based upon a simple step function that establishes the threshold.

To be more precise, in a neural network each neuron has an associated output O (xi)

and an associated input I (xi). The input is determined by the weighted sum of the

connected neuron outputs:

I (xi) =
∑
j

wj,iO (xj) + bi

where bi ∈ R represents an additional parameter known as bias, and wj,i the weights

from neurons j to i. The activation function here is a step function that determines

the output where f(x) = 1 and O (xi) = 1 if I (xi) ≥ 0 following from w ∗ x+ b ≥ 0.

Otherwise O (xi) = 0. A large number of activation functions exist, also known

as transfer functions, which are used to map input from the neuron to an output

g : R→ R. Commonly used functions include the logistic function σ(x) = 1
1+e−x and

the Rectified Linear Unit ReLu(x) = max(0, x).

These ANN models are particularly popular because they can be adapted by means

of a learning algorithm. The neural network essentially adapts to a given task based

on some data by adjusting the weights and biases in order to improve on a certain

metric (Russell and Norvig, 2010).

A typical example of such a metric is the mean squared error E = 1
n

∑n
i=1

(
Yi − Ŷi

)2

where Yi represents the label associated with the example i and Ŷi the predicted label

produced by the model. Given a set of examples, gradient descent may be used to

optimize the parameters of a model with respect to the error function. This can be

achieved using a technique called backpropagation, which propagates errors along a

sequence of layers inside the model.

ANNs that do not have a sequence of layers, such as the perceptron, are ineffective

in solving tasks that require non-linear decision boundaries. A simple perceptron, for

example, cannot replicate the XOR logical gate. However, by adding so-called hidden

layers between input and output layers that use a non-linear activation function,

it has been demonstrated to be a powerful approach to solving complex problem

16



sets. In fact, ANNs with two hidden layers with nonlinear activation function can

yield universal function approximators (Hornik et al., 1989), meaning that they could

approximate any continuous function. When this additional layer is applied, the ANN

is referred to as a Multilayer-Perceptron (MLP).

2.2.2 Convolutional Neural Networks

Despite the fact that MLPs are universal approximators, architectural tweaks have

been made to ANNs in order to achieve more effective learning in specialised areas.

Computer vision is one such area that demands spatial invariance since the location of

objects in an image should not influence the decision-making process during inference.

A convolutional kernel, also known as a filter, is used to exploit the symmetry of the

data by restricting the connections of a hidden neuron to a small segment of the

input data. A filter kernel can be thought of as a small array of weights, typically a

3x3 matrix, although it may vary in size. For each segment of the image, the filter is

applied by calculating the dot product between the input values, in this case the pixel

values, and the filter. Upon storing the output in an array, the filter is shifted across

the image in such a way that each segment of the image is covered. As a result, a series

of dot products based on image inputs and filters is produced, which is also called

a feature map or activation map. As each filter moves across multiple segments of

the input image, its weights remain fixed, which is known as parameter sharing. The

filters themselves are usually learned through backpropagation and gradient descent.

It is common to have multiple filters resulting in differing depths of output as a result

of the computation of numerous feature maps.

Additionally, CNNs employ the so-called pooling layers for dimensionality reduction,

also known as downsampling, in order to reduce the number of parameters in the

created feature map or input. A pooling operation can move over segments of an

entire input, but it does not contain an array of weights. By aggregating the values

within the segment, the filter/kernel populates the output array. There are two

prominent types of aggregation: maximum pooling and average pooling. The max

pooling method selects the pixel that has the greatest value to pass to the output

array. Averaging pooling computes the average pixel value within each segment to

pass on to the output array.

Pooling and convolutional layers are also called partially connected in contrast to

their fully connected counterparts. Here, the values of the pixels are not directly

connected to the output nodes. As the name suggests, in a fully connected layer each

node in the output layer is directly connected to every node in the previous layer.
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This procedure is usually used to carry out a classification task based on the extracted

features.

Fukushima (1980) and LeCun Yann et al. (1998) provide some of the foundational

work for CNN. The ability to successfully backpropagate to identify patterns would

lead to a much broader spectrum of architectures based on such initial concepts.

The improved exploitation of computational resources for more effective training on

large datasets has been a major driver for architectural changes. An example of

such would be the GoogleNet architecture Szegedy et al. (2015) which introduced the

concept of inception layers. This technique utilizes multiple filters simultaneously on

each layer, allowing the neural network to learn the best weights during training and

automatically select the most useful feature maps.

2.2.3 Recurrent Neural Networks

In spite of their considerable success in a variety of areas, ANNs and MLPs con-

sider all input simultaneously and information only flows in one direction. It is also

for this reason that such networks are referred to as feed-forward networks. This is

due to the fact that the network considers a single input in isolation and does not

consider temporal factors. Although in ANNs it has been assumed that inputs and

outputs occur independently of one another, this assumption does not hold in tem-

poral domains as the output at one time step may depend on that at the previous

time step. This led to the introduction of models that allow recurrence through the

use of self-connections. Through such self-connections, a recurrent neural network

may function like a memory in that it considers information from past inputs. This

has been shown to be particularly useful to model time series. Here, the objective is

to predict the next n steps of a time series given the previous m steps. As a result,

recurrent networks are commonly employed for unsupervised learning tasks.

Recurrent neural networks, like their feed-forward counterparts, often consist of a

visible input and output layer and intermediate/hidden layers that learn to model

time-dependence. In addition, RNNs share the same weight parameters within each

layer, while feed-forward models have different weights across each node. Neverthe-

less, both architectures use backpropagation and gradient descent to determine the

parameters of the model that are optimal. RNN utilises backpropagation through

time (BPTT) as a means of adjusting for the self-connections. Though conceptually

similar in the sense that both approaches adjust model parameters in accordance with

some error signal at the output layer, the BPTT variation differs somewhat. Here,

the error is summed up at each time step, where by comparison feed-forward networks
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do not require this error summation since there are no shared parameters across each

layers. Nevertheless, this can lead to problems such as vanishing and exploding gra-

dients, as well as complicating computation for long-term time series. If the gradient

determining the updates to the parameters becomes too small (vanishing gradient),

the weight updates become insignificant and no learning occurs. Conversely, too large

(exploding) gradients can result in unstable updates and poor performance.

To address the vanishing gradient problem for application domains where it is benefi-

cial to retain information over time, long-short-term memory (LSTM) networks have

gained popularity (Hochreiter and Schmidhuber, 1997). In addition to the standard

RNN units, LSTM use special units called memory cells that can maintain informa-

tion in memory for long sequences and learn to select stored information from the

earlier portion of the sequence, if needed.

2.2.4 Transformer

Recent developments have seen a significant increase in the use of transformer net-

works in various domains. This architecture was originally proposed for Natural

Language Processing, where it has proven superior to both LSTMs and RNNs in a

variety of benchmarks. Computer vision has recently shifted towards this architecture

as well.

The primary objective of these models is to handle large quantities of training data.

Using large models that have been pre-trained using a significant amount of unanno-

tated data, the goal is to provide a general-purpose deep learning model that can be

adapted to downstream tasks.

Transformers, as originally proposed by Vaswani et al. (2017), operate on an encoder-

decoder architecture in which the encoder processes the input into an encoding that

contains the most relevant information from the input. By decoding the encodings

and incorporating the associated information, the decoder generates the output. This

principle has been extensively utilised in autoencoders, where a feed-forward neural

network is employed to compress the input into an intermediate layer of lower dimen-

sionality with an output layer that has the same number of nodes (neurons) as the

input layer. In the transformer architecture by Vaswani et al. (2017), both the en-

coder and decoder are composed of a feed-forward neural network and a self-attention

mechanism. In addition to the original neural machine translation task, transformers

have been adapted to a variety of other applications, in which the decoder component

may not be necessary since no data is generated.

The novel component is a mechanism referred to as attention which, which performs
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different weightings on the various parts of input data. It was originally intended

to model sequences and the relations between them without using recurrent units

(Vaswani et al., 2017). A powerful feature of the architecture is its ability to capture

relational information. In particular, the so-called multi-head self-attention mecha-

nism is responsible for the effectiveness of this approach.

In a neural network, attention is a mechanism by which a model can learn to predict

by selectively focusing on a given set of data. The amount of attention is measured

with learned weights, and the result is usually expressed as a weighted average. In

self-attention, the model makes predictions about one part of an observation related

to the same sample based on other parts of the observation.

In the self-attention mechanism, input is encoded as sets of key-value pairs K and V .

Similarly, the query Q is intended to facilitate a search mechanism for relevant infor-

mation. Formally, we define Q ∈ RL×dk as query matrix, K ∈ RL×dk as key matrix,

and V ∈ RL×dv as value matrix, where L is the length of the input sequence. dk and

dv correspond to the dimensions of the query and the value vectors, respectively.

The sum of the value vectors is weighted, while the weights assigned to the values are

determined by the product of the query matrix with the keys:

Attention (Q,K,V) = softmax

(
QK>√
dk

)
V

In the current transformer implementations, a slight modification is made to include

additional key, value, and query matrices.The reason for this modification stems from

the fact that regular dot-product attention is prone to attending mostly similar words

since their embeddings will be similar. In order to learn more complex relations, this

additional step of mapping the translation into additional key, value, and queries

provides a way to circumvent this limitation.

A multi-head mechanism distributes the inputs into smaller chunks and then computes

the scaled dot-product attention over each subspace in parallel, rather than computing

it all at once. Calculating the scaled dot-products over subspaces in parallel allows the

so-called multi-headed attention to be calculated, further increasing the complexity.

The independent attention outputs are then concatenated and transformed into the

dimensions required. It is intended to “jointly attend to information from different

representation sub-spaces at different positions” (Vaswani et al., 2017).

MultiHead(Q,K,V) = [head1; . . . ; headh] W
O

where

headi = Attention
(
QWQ

i ,KWK
i ,VWV

i

)
20



and WO,WQ
i ,W

K
i , and WV

i , are learneable parameters, where WQ
i ∈ Rdmodel×dk ,

WK
i ∈ Rdmodel×dk and W V

i ∈ Rdmodel×dv (dmodel being the embedding size).

In addition to its ability to handle the complexity of tasks such as NLP, this

architecture has also exceeded expectations within the domain of computer vision

(Radford et al., 2021) owing to the amount of information it can process through the

large number of parameters it contains.

2.3 Why Explainable AI is Challenging

Although recent advances in artificial intelligence and machine learning have con-

tributed to further complexity of the models, it is not a new problem that lack of

transparency in these systems is a concern. Starting from the late 1970s, expert sys-

tems have been created in order to achieve human-like reasoning capabilities across

a variety of application areas. Explanations of the inner workings of these systems

were desirable not only since they could be used to improve the development of these

systems, but also to promote trust between users and the systems’ outputs. Contrary

to today’s connectionist AI and ML systems, expert systems were computationally

symbolic in nature. In theory, explicit symbolic representations rather than their

distributed connectionist counterparts would permit easier access to individual rea-

soning steps and chains of inference. Yet, in many instances the symbolic traces of

a system’s decision were also too complex for direct interpretation (see, e.g., (Preece

et al., 2018) for a modern example).

A central feature of deep learning and most connectionist systems is the process of

learning that takes place during the training phase. Unfortunately, this process can

potentially, via its learning outcome, also lead to unanticipated behaviour of the sys-

tem. As we hitherto have no standard method for testing the decision logic the system

inferred from the training data, it is challenging to anticipate undesired system be-

haviour before it occurs: The rules governing the system’s operations are inducted

purely from observation of the training data which establishes the system’s inter-

nal connectionist representations. Current machine learning algorithms utilise the

large amounts of data and computing power available for training in order to identify

complex relations between input features; however, disaggregating these complex re-

lationships into an understandable manner is difficult, which ultimately complicates

or altogether prohibits oversight and control at scale. Consider, as an example, the

fact that learning from historical data may lead to the propagation of established

misconceptions. Often the underlying rules are obscured within the optimised model,
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possibly resulting in poor generalisation and perpetuation of undesirable practices

and prejudices.

State of the art machine learning methods (especially Deep Learning) are black boxes

that make them unintelligible. In this section, we outline intuitively the technical

properties that contribute to the opacity and why this makes explaining what exactly

is occurring in these models challenging. As a starting point, we describe what a

classification model does, regardless of whether it is highly parameterised and com-

plex, or sparse and simple. We consider a set of training data distributed across the

input space. As individual data points have labels or classes assigned to them, the

model is applied to identify the underlying feature representations that enable us to

distinguish between different classes (i.e. to identify an encoding of data properties

that ultimately enables the model to distinguish between classes). One of the reasons

for the lack of interpretability of the model is that the feature representations are not

known but learned during the optimisation process. Moreover, complex connection-

ist models employ distributed representations, which means that even if we were to

extract the learned representation, individual data points would be encoded as high-

dimensional vector representations of the features. This is depicted in the following

illustrations, which highlights some of the key challenges in this regard.

Figure 2.1 illustrates an example of a non-distributed representation that is some-

Figure 2.1: Illustration of a local representation (inspired by Hoffman (2018)).

times described as a “local representation” or “sparse representation”. The dimen-

sionality of this type of representation, for instance, would increase as the number of

inputs increased, so it is considered rather inefficient. Aside from this, the representa-

tion does not include any information about how features relate to one another. The
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principle strength of distributed representations is that they are capable of accounting

for “semantic similarities” between data points and their features. Figure 2.2 provides

Figure 2.2: Illustration of a distributed representation (inspired by Hoffman (2018)).
In a Neural Network, the distributed feature representations are learned during the
training phase.

an illustration of a distributed representation of the same data. As multiple features

now jointly represent the concepts within the data, the efficiency of information repre-

sentation within these data-points has been greatly improved. Information regarding

relationships between concepts can be obtained, e.g., from joint occurrences of certain

individual features. Relationships between data points can be identified, for example,

by identifying the joint occurrence of concepts using several individual characteris-

tics. A substantial amount of research has been invested in discovering meaningful

computational features that describe data and the relationships between data points

while also allowing for good predictive performance of models based on these repre-

sentations (Arel et al., 2010). An important factor contributing to the current success

of deep learning is precisely the ability to employ training algorithms to learn rich

distributed representations automatically from data. Developing a method to trans-

late the distributed representation and operations into understandable information is

a significant challenge.

2.4 Approaches to Explainable AI

It is the purpose of this thesis to present various methods that attempt to make sense

of these distributed representations. Our next two subsections will introduce two

approaches that we will use in order to conduct a variety of experiments.
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2.4.1 Lime

As a first method we introduce a local surrogate approach, in which interpretable mod-

els are used to explain individual predictions of the underlying black-box model. In-

terpretable model-agnostic local explanations (LIME) refers to an approach in which

variations in the input data surrounding the instance of interest are used to probe a

black-box model Ribeiro et al. (2016). Using perturbed samples and the correspond-

ing model predictions, LIME generates new data. Using these generated data points,

an interpretable model is developed on the basis of weighting the samples by their

proximity to the instance prediction that is being explained. Typically, the inter-

pretable model of choice is a simple linear regression, although other models may be

applied. Although the method was originally developed for tabular data, it has since

been adapted for other types of data. By using sections of an image that have been

grayed out, pertubations are created in images. By doing so, the interpretable model

can learn which areas are important for the black-box model to predict the output.

Local surrogates can be described in the following manner Ribeiro et al. (2016):

explanation (x) = arg min
g∈G

L (f, g, πx) + Ω(g)

where the explanation for a given instance x is model g which minimises a loss L

measuring how close the explanation is to the black-box prediction of model f , while

maintaining a low level of model complexity Ω(g). G refers to the family of possible

explanations and πx defines the size of the neighbourhood around the instance x that

is explained. We refer the reader to Ribeiro et al. (2016) for a more comprehensive

description of the entire approach.

2.4.2 Shapley

An alternative local explanation method that has recently gained popularity is the

Shapley value approach. Originally proposed by Shapley (1953), it has recently been

adapted for machine learning models by Štrumbelj and Kononenko (2014) and Lund-

berg and Lee (2017). Essentially, the goal is to capture the average marginal contribu-

tion of each feature value across various possible feature combinations. The Shapley

value for a particular feature of a specific input represents its contribution to the

prediction with respect to the average prediction for the dataset Lundberg and Lee

(2017). To determine this value, the authors propose that features are systemati-

cally added to the model to determine the average change in prediction. The SHAP
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method is applicable to both classification and regression tasks. In combining vari-

ous feature attribution approaches into one framework and publishing an accessible

implementation, Lundberg and Lee (2017) contributed to a significant increase in the

popularity of this methodology. According to SHAP, an explanation is provided as

follows:

g (z′) = φ0 +
M∑
j=1

φjz
′
j

where g is the explanation model, z′ ∈ 0, 1 is referred to as coalition vector, M is

the maximum coalition size and φj ∈ Ris the feature attribution for a feature j, also

known as Shapley values. With a value of 1, the coalition vector indicates that a

feature is present, whereas a value of 0 signifies that it is absent. In order to compute

Shapley values, we simulate that only some features are in play (“present”) while

others are not (“absent”). This representation of coalitions allows the computation

of Shapley values φ by employing a simple linear model. In this representation, the

instance of interest x translates to a coalition vector of all 1s, with all value features

being present. It is pertinent to note that in the vast majority of ML models, a feature

cannot be absent. The SHAP method computes outputs for these combinations by

replacing absent features with sampled feature values from the dataset and averaging

the results. As a result, Shapley values can be computed for all coalitions. A more

detailed explanation with examples can be found in Lundberg and Lee (2017) and

Molnar (2019).
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Chapter 3

Taxonomy of XAI methods

In the following chapter, we intend to outline the current landscape of research on

explainable artificial intelligence in a systematic manner. One of our goals is to

provide a practical framework that will extend previous survey on rule-extraction

methods that were considered outside of the recent surge of interest in XAI. In order

to accomplish this, we extend and adapt an existing taxonomy by Andrews et al.

(1995) in accordance with current trends. We can use this as an opportunity to form

a framework that not only analyses recent developments, but also systematically

encompasses a wide range of work that can be considered Neural-Symbolic. This

is necessary in order to align Neural-Symbolic approaches which provide some XAI

characteristics with existing XAI research. By conducting this systematic review

along the framework dimension introduced earlier, we are also able to gain a deeper

understanding of the proposed methods and their differences. By doing so, we will be

able to formulate an overview table along the proposed dimensions. We will then use

this overview to stimulate further investigation of specific promising approaches that

address the XAI challenge from a neural-symbolic perspective, as well as incorporate

emerging trends that will meet the current XAI demands and identify gaps.

In light of the large variety of interpretability methods that are employed in the

surveyed publications, we identified the need for a deeper investigation of comparisons

between the different approaches. The proliferation of explainability papers tends to

make it increasingly hard to find comparable methods aiming to gain insight into

the behaviour of a Machine Learning model, particularly as new approaches are pro-

posed. An effective comparison of methods would require authors to engage actively

with the following criteria. Moreover, a better understanding of the approach should

be accessible more readily without requiring extensive disentanglement of technical

details.

In the survey by Andrews et al. (1995) (henceforth, ADT), the authors introduce a
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taxonomy allowing different rule extraction techniques to be categorised, discusses

how they operate, and defines criteria for evaluating their effectiveness. The authors

develop a schema for the extraction of rules from trained neural networks based on a

coherent taxonomy. The first five dimensions have been derived and extended from

the existing taxonomy in order to apply them to the broader field of XAI beyond

rule extraction. It follows that while the ADT dimensions are related to the first five

dimensions, they are not identical. The reason for this is that they were intended

to describe methods for extracting rules, which are only a subset of the methods we

outline below. This is done by extrapolating the ADT dimensions, while preserving

the original intention. The three additional dimensions (6-8 in the list below) are

presented because they could be considered the most descriptive of the current XAI

approaches. While these three dimensions have been discussed before to describe XAI

methods, the combination and integration into the taxonomy is novel. The proposed

dimensions are:

• Quality of the information representation

• Expressive power of the information representation

• Translucency of the model

• Portability of the method

• Complexity of the algorithm

• Locality of the explanation representation

• Stage of the method application

• Use cases of the approach

Below, we will discuss the taxonomy and its dimensions. Many of these dimensions

and this taxonomy are applicable to a wide selection of XAI methods.

1. The quality of the extracted information can take many different forms. Accu-

racy and fidelity are two of the most relevant metrics. Typically, the accuracy of

an explanation representation may be determined based on a dataset in accor-

dance with the standard measure of model performance. Fidelity describes how

accurately the information represents the model that the method is attempting

to explain or interpret. It can be calculated using any dataset to measure the

percentage of predictions that are congruent between the explanation and the
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original model. Consequently, the explanation may yield 100% fidelity while

achieving less than 100% accuracy, when the extracted representation mimics

all misclassifications of the main model.

For both of these metrics, it is assumed that the representation used to com-

prehend the behaviour of the complex model is capable of data inference from

raw input to the desired output space and is therefore able to perform the task

independently of the underlying model. As such, this holds true for models

that are inherently interpretable, as well as for example extracted rules, trained

surrogate models, and distillation methods. In cases where the method is lim-

ited in its ability to establish input to output mappings, particular adaptations

such as local fidelity may be required. However, if this is not the case and

the representation provides only excerpts or summative information from the

model, the quality of the information representation refers to the truthfulness

or soundness of the explanation, more specifically to how closely the simplified

representation matches the true inner working of the model.

2. The expressive power of the derived representation refers to the breadth of in-

formation that is reported. Originating from symbolic rule extraction, where

for example boolean and fuzzy logic are distinguished, it is also applicable to

the various types of explainability methods proposed more recently. In this

context, there are a number of possibilities for presenting information, such as

coefficients, heatmaps, or more general measures of feature importance. The

type of representation is usually drawn from the task and its corresponding

data domain.

Additionally, this taxonomy dimension is closely related to the level of abstrac-

tion of the explanation, which can result in different levels of intuitiveness that

makes the information itself more accessible and more readily understandable.

It is possible that different requirements will apply depending on the context

and the time available to revise and digest the information. Moreover, a consid-

eration of the target audience and the expertise of the individual is imperative.

Data scientists, compliance officers, decision-makers, and other stakeholders

may have different backgrounds and different areas of expertise as well as ex-

perience in the topic to which the model is applied. Thus, the nature of the

explanation and its expressive power depends on the consideration of the recip-

ient of the explanation.
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3. Translucency refers to the degree of granularity at which we approximate the

behaviour of the models. Generally speaking, one may consider translucency

as the depth of the explanation and the extent to which one wishes to repre-

sent the reasoning and functioning of the internal behaviour of the represented

model. To accomplish this, it is necessary to incorporate the model’s latent

representations and their responses to different inputs. Contrary to this, many

methods are aimed at mimicking the input-output behaviour in a comprehen-

sible manner. There are three levels of detail derived from the Neural Network

rule extraction methods (Andrews et al., 1995). First, so-called pedagogical

approaches, where models are being treated as black boxes. Second, decompo-

sitional approaches, which builds the explanation out of a multitude of smaller

components of the explained model, keeping in mind the internal representa-

tions of the model. And third, eclectic approaches being hybrids of the two

methods. In spite of the fact that these definitions were derived from neural

network rule extraction, they remain relevant and applicable to most post-hoc

explanation techniques.

4. Portability of the approach describes the architectural and training requirements

of the model we are seeking to explain. As a best case scenario, there are no

special requirements and the method is model-agnostic and therefore applicable

to all underlying models.

For example, the portability dimension may be closely related to the degree to

which a method can be tailored to particular previously trained models. If the

objective of an XAI method is to provide a sound and truthful representation of

a model, this can often only be accomplished by taking advantage of the inherent

biases of the underlying model. Nevertheless, this limits the applicability of the

method to this particular model architecture. Following from the dimension

of translucency above, pedagogical approaches are typically model-agnostic as

they only consider input and output, whereas decompositional methods also

focus on the inner representations and workings of the approximated model

resulting in constraints.

5. Complexity describes the effectiveness and efficiency of the search for a compre-

hensible representation. Even though an exhaustive search could provide rules

for the entire input-output behaviour of the original model, such a search would

often be computationally infeasible. Although this trade-off has its roots in the
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search for logical rules, it also applies to non-symbolic methods. There is a

trade-off between the truthfulness of the explanation and the complexity of the

search underlying many approaches. In this regard, permutation-based meth-

ods are an intuitive example, which are typically limited to isolated features,

since the computational resource required would not permit their extension to

feature interaction. Here, permutation-based approaches refer to the process of

manipulating input data in a systematic manner while simultaneously observing

changes in the output to discern patterns of behaviour. The more interaction

we wish to accommodate, the more computationally expensive the process be-

comes.

6. Locality indicates how many instances are to be considered in an explanation,

and thus, describes a specific level of abstraction of the explanation. Generally,

we distinguish between two levels, namely local and global. A local explanation

is only applicable to a single instance, hence, one input-output pair. On the

other hand, global explanations are generalizable across all instances of the

trained model.

A distinction between these two paradigms of explanation is essential as they

are fundamentally different. A global explanation describes the model as a

whole, whereas a local explanation describes one particular instance.

7. Stage of the method application describes the process stage in which the method

is applied. It may be divided into three distinct categories (based on the presen-

tation by Khaleghi (2019)). Each dimension will be further explained in section

3.1.1.

A pre-training approach is intended to provide insights into the data and its

implications for the model prior to the optimisation based on data. In particu-

lar, these methods can be used to identify unrepresented classes in the data in

order to detect unsound grounds for a model to be effective.

Inherently interpretable models provide ways to understand the behaviour of the

models by introducing particular constraints. An example of such constraints

may be requiring a simpler model structure or enforcing monotonicity.

Lastly, Post-Training methods (also referred to as post-hoc), which require the

use of a trained model after it has been optimised for a particular task, aim

to gain a deeper understanding of the model’s behaviour on a particular input

instance or globally.
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8. The use-case of the method relates to the intended data domain for the ap-

proach. Although many methods are typically designed to excel in particular

data domains, they are often adapted to address alternative data domains as

well.

3.1 Characterisation of Methods

There is an absence of coherent structure in the field of explainable Artificial Intel-

ligence, as there is no standard procedure to differentiate between methods, which

may lead to a great deal of confusion in regards to what methods are appropriate

and what alternatives are comparable. To make the allocation of individual methods

intuitively clear, a suitable structure should permit easy application without exten-

sive prior knowledge of the entirety of the field. Today, the most common method of

distinguishing between approaches is to indicate its locality. As a result, all methods

are restricted to two categories, namely global and local interpretation. It is, how-

ever, difficult to find similar approaches due to the variety of methods available to

achieve local or global interpretability. The following framework presents a practical

approach to achieving local or global interpretability. Instantiation has been chosen

as the guiding dimension due to its popularity and intuitive nature in the data science

process flow. Therefore, practitioners may assign desired methods in accordance with

their own constraints and requirements.

1. Pre-Training

2. Training Inherently Interpretable Models

3. Post-Training

Although we will discuss methods in all three categories to establish the taxonomy,

our main focus will be on the post-training category as the majority of XAI methods

as well as our proposed method fall into this group.

Furthermore, it is important to note that different approaches and techniques are

needed for different tasks. In particular, different data types pose different challenges

when it comes to explaining an instance or model. Classification models for images

could be better explained through visual representations, whereas tabular data could

perhaps be better explained through rules, feature importance, and probabilities.

Such specificity also applies to natural language or time series data. Nevertheless,

many methods can be applied in different contexts. When not explicitly stated,
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described techniques have been applied to various tasks or could be applied to various

tasks.

3.1.1 Pre-Training

Pre-training methods are typically used before developing a model, since it is vital to

analyse and understand the data before selecting the appropriate model. Therefore,

pre-training explainability techniques are independent of a model as they are intended

to be applied to the data themselves (Arya et al., 2019).

It is important to note that datasets are becoming increasingly large and complex.

As the number of features and data entries increases, analysis becomes more chal-

lenging, as traditional logic extraction and visualisation techniques have limitations

with regard to scalability. The following sections will present some representative

methods that may be adequate to handle current practices and dataset sizes. There

are several approaches that facilitate data interpretation, such as the obtention of

meaningful representative features and sparsity (a small number of features) (Car-

valho et al., 2019). Pre-training interpretability is therefore closely related to data

interpretability, which is realised by exploratory data analysis techniques. Among

them are classical descriptive statistics, as well as data visualisation methods, such as

Principal Component Analysis (PCA) and t-SNE (t-Distributed Stochastic Neighbor

Embeddings), as well as clustering methods, such as k-means and MMD-critic (Max-

imum Mean Discrepancy). All of which will be briefly outlined below. Using these

approaches, data visualisation can be accomplished, which in turn becomes crucial

to the interpretation of data before the model can be built. It consists of the visual

presentation of information and data in order to facilitate a better understanding

of the data and resulting implications for the model. Thus, determining whether

the model’s assertions are reliable requires that one understands the underlying data

structure and relationship.

Among the most prevalent methods is the practice of looking for prototypes and

criticisms. Prototypes are representations of the underlying data distribution. By

contrast, a criticism refers to an instance which is not represented by such prototypes,

so it is an outlier. Many approaches have been developed to identify prototypes within

data sets. Clustering algorithms that return data points of the dataset as cluster cen-

tres are appropriate for finding prototypes. Among these clustering algorithms is the

k-medoids method which is based on k-means (Kaufman and Rousseeuw, 2008). This

method aims to minimise the distance between a point designated as the centre of

a cluster and the points that are labelled as being in the cluster. With k-medoids,
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actual data points are selected as centres, allowing for greater interpretability than

with k-means, wherein the centre of a cluster is not necessarily one of the input data

points.

Many clustering methods, however, are primarily concerned with finding represen-

tative points as opposed to outliers, such as criticisms. As such, the MMD-critic

introduced by Kim et al. (2016) focus on the discovery of criticisms in the same man-

ner as prototypes. By comparing the distribution of the data with the distribution of

selected prototypes, the algorithm identifies prototypes which minimise the disparity

between the two distributions. The instances in densely populated areas are consid-

ered prototypes, whereas examples outside these clusters which are drawn from the

data distribution are considered criticisms.

We can utilise visualisation methods to identify key features and meaningful repre-

sentations from our data that indicate what might influence the way a model takes

decisions in a human-comprehensible manner. Since we are often dealing with a vast

feature space, dimension reduction techniques are important since it helps to reduce

the feature space and, in turn, give us more compact representations that can be

visualised, and thus show us what might be influencing a model to make a certain

decision. In order to enable visual interpretation, the following representational tech-

niques are commonly employed.

One of the most widely used techniques is PCA (Pearson, 1901; Jolliffe, 2002). This

approach aims to reduce the feature dimensions of a dataset while preserving as much

variability as possible. Specifically, this is accomplished by identifying new variables

that are linear functions of those in the original dataset. Each of these linear func-

tions maximises the variance of the data and is uncorrelated with the other. These

so-called Principal Components (PCs) represent the number of uncorrelated features

in which the first PC is the source of the greatest amount of variance in the data,

followed by the second PC, in decreasing order. Despite its robustness, it does have

some limitations. A PCA may fail to identify the most compact description of data if

the principal components are statistically dependent yet uncorrelated (Jolliffe, 2002).

Self-organising map (SOM) is another popular method for reducing the dimension

of the data while maintaining its topological structure (Kohonen, 1982). SOM is

characterised by its ability to generate effectively spatially organised internal rep-

resentations of the input signals of features and their abstractions and is a neural

network architecture originally intended for unsupervised machine learning.

Latent semantic analysis (LSA) is a method that was developed to improve the ef-

fectiveness of information retrieval systems (Landauer et al., 1998). Dimensionality
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reduction is achieved through the creation of clusters of data that are based on the

latent representation. As a result, the semantic similarity contained within the latent

vector representation is utilised for comparing data points and representing data in a

lower-dimensional space.

The t-Distributed Stochastic Neighbour Embedding (t-SNE) (Van Der Maaten and

Hinton, 2008) is a nonlinear dimensionality reduction technique that is suitable for

embedding high-dimensional data in a two- or three-dimensional space to facilitate

visual analysis. In particular, each high-dimensional object is represented as a low-

dimensional point in such a way that similar objects are modelled as nearby points

and dissimilar objects are modelled as distant points. Initially, t-SNE develops a

probability distribution over pairs of high-dimensional objects by assigning a higher

probability to similar objects, whereas a lower probability is assigned to points that

are dissimilar. Then, the t-SNE method establishes an equivalent distribution over

the low-dimensional points, and minimises the comparison of the Kullback-Leibler

divergence between the two distributions.

An automated generative approach using variational autoencoders (VAE) by Kingma

and Welling (2014) refers to a type of artificial neural network that can be used to

learn efficient encoding methods for unlabelled data. Validation and refinement of the

encoding takes place by attempting to reconstruct the input from the encoding. By

training the network to ignore noise in the data, autoencoders learn how to represent

a set of data more efficiently.

One illustration is the application of identifying a molecule and its governing factor

interactions in genomics research. There are however thousands or even millions of

features within these datasets that are active in a variety of cellular and develop-

mental contexts. Interpreting and comprehending the data at this magnitude is a

challenge. Therefore, practitioners often apply sparsity penalties or dimensionality

reduction techniques to make the data manageable and comprehensible to facilitate

the identification of promising candidates for experiments (Murdoch et al., 2019).

The use of word embeddings and t-SNE to visualise the semantic similarity of text

features before training a model is another example of insights obtained before the

model optimisation process (Molnar, 2019).

To summarise, pre-training explainability refers to a variety of methodologies em-

ployed to gain a better understanding of the available dataset prior to modelling. Us-

ing pre-modelling explainability to extract data-related insights can help to build AI

systems that are more efficient, understandable, and robust. Using methods such as

t-SNE or PCA to reduce the dimensionality of the data allows us to remove noise from

34



the data that hinders its comprehension. The reduction in complexity, however, may

not be desirable and appropriate in all circumstances. Some low-level representations,

such as an image, cannot easily be translated into a lower dimensional representation.

In addition, it is precisely this complexity and weak regularities that black-box mod-

els often rely upon to achieve high performance. Therefore, the elimination of weaker

regularities could lead to diminished effectiveness in particular domains. Moreover,

these methods are fundamentally limited by the fact that they do not account for

the variety of ways in which the model may learn undesirable behaviour during the

optimisation stage. Consequently, these approaches are most effective when com-

bined with alternative explainability methods that emphasize explaining what has

been learned.

3.1.2 Inherently Interpretable Architecture

Whenever a machine learning system is employed on a task, it may be advisable to

determine to what extent comprehensibility is an essential criterion. In the event that

comprehensibility is of critical importance to the project’s outcome, it is imperative

to develop a model based on interpretable techniques from the outset. The majority

of approaches in this category can be interpreted globally due to the fact that these

types of methods incorporate architectural features resulting in some level of inter-

pretability.

The architecture of the model can be restricted in a way that makes its behaviour

more understandable, thus achieving interpretability inherently. Among the methods

for accomplishing this is through the imposition of linearity between features and

targets. Moreover, monotonicity can be enforced, which ensures that the relationship

between a feature and the outcome is consistent, either increasing or decreasing, over

all values in the feature range. Further differences in methods and complexity can be

found in the way feature interactions are dealt with. When feature interactions are

taken into account, models usually perform better but their complexity also increases,

hence affecting their interpretability. As an example, Decision Trees are a method

allowing for nonlinearity and complex interaction of features, while still maintaining

the ability to follow their behaviour. However, an arbitrarily large number of feature

interactions associated with a deep tree may limit the interpretability of the system.

We present interpretable models that are rule-based, which are comprehensible global

predictors that successfully execute decisions by describing the mapping as a set of

rules. These methods are most appropriate for use with tabular data in which the

features themselves are meaningful in isolation.
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Letham et al. (2015) present a model that is described as being inherently concise and

convincing to domain experts. The model is implemented as a Bayesian Rule List

based on Decision Trees. It calculates a posterior distribution over possible decision

lists, thereby assigning probabilities to potential splits. The confined architecture of

this sparse Bayesian generative model has demonstrated less predictive performance

than an unconstrained generative model, as would be expected.

Lakkaraju et al. (2016) introduce a framework for constructing models that aim at

obtaining interpretable and precise predictions in which Interpretable Decision Sets

(IDS) are extracted. Therefore, the expressive power is limited to propositional if-

then rules. In this approach, each rule is independently applicable and the resulting

decision sets are deemed to be simple, and easily understood. Furthermore, this

approach aims to discover accurate, concise, and non-overlapping rules that cover the

entire feature space. It is based upon the belief that decision sets are more efficient

than decision lists. The rules in decision lists are implicitly dependent on all prior

rules, while the rules in sets are independent of each other.

In Malioutov et al. (2017), the authors propose a linear programming approach

to infer both conjunctive and disjunctive clause rules based on training data. The

optimisation formulation allows the resulting rule-based global predictor, known as

1Rule, to automatically adjust accuracy and interpretability. As opposed to other

methods, this approach is less dependent on heuristic solutions, but computationally

more costly.

The methods above have significant advantages when the task requires simulatability.

Simulatable models are those in which a human can simulate and reason about the

decision-making process, anticipating the possible outcomes. As a result, we may

predict the output of a trained model for an arbitrary input. Because of their human

readability, rule-based methods have a very high degree of simulatability. These

methods can be very effective provided that they are also capable of delivering an

appropriate predictive performance. An example of a real-world deployment of these

methods is in hospitals. When patients are diagnosed with atrial fibrillation, patients,

relatives, and caregivers are often interested in predicting the chances that the patient

will suffer a stroke in the coming year. Moreover, given the potential repercussions

of medical decisions, it is vital that predictions be not only accurate, but also easily

understood by both caregivers and patients. By virtue of their inherent transparency,

rule-based methods facilitate the anticipation of and trust in decisions (Kaufman and

Rousseeuw, 2008).

Among the interpretable models, they may be the most intuitive. In order for this
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statement to be valid, the number of rules must be small, the conditions must be short,

and the rules must be organised into a decision list or non-overlapping decision set.

Decision rules generated by the methods can be as expressive as a decision tree, yet

more compact. Many decision trees also suffer from replicated subtrees, which occurs

when both a left and a right child node have the same structural elements. Due to

the threshold in the conditions, decision rules provide robustness against monotonic

transformations of input features. These are also robust against outliers, as it is only

necessary to determine if a condition holds or not.

However, rule-based methods are typically ineffective for describing linear rela-

tionships between features and outputs. They share this limitation with decision

trees. Neither decision trees nor rules are capable of producing smooth curves for

predicting outcomes, but only discrete steps. The issue here relates to the fact that

it is the most applicable for categorical inputs. Prior to making use of numerical

features, it is necessary to categorize them. While it is possible to cut a continuous

feature into intervals in a variety of ways, it is not simple to achieve and involves

many challenges.

Almost all of the research and literature in the field of rules focuses on classification

and frequently overlooks regression. Although a continuous target can always be seg-

mented into intervals and transformed into a classification problem, you will always

lose some information. It is generally more attractive to employ an approach that

can be applied both to regression and to classification problems.

The following set of methods is dedicated to approaches returning an intelligible

predictor equipped with a comprehensible explanation using representatives. A pro-

totype is a representative for a set of similar instances. Having prototypes among

the observed points is desirable for descriptive accuracy, but often results in inferior

predictive accuracy.

Kim et al. (2014) present the Bayesian Case Model (BCM), which involves a compre-

hensible predictor that can learn prototypes through clustering the data and identi-

fying distinct subspaces. Each individual representative of a cluster is selected and

labelled a prototype. In order to decompose a space into subspaces, a set of fea-

tures are taken into account that are crucial to distinguishing clusters. Prototypes

accompanied by descriptions of their essential characteristics are presented in the

explanations. As with all Bayesian approaches, choosing the correct prior can be

challenging in different situations. Additionally, the approach can become computa-

tionally intensive when a multitude of features are present.

Bien and Tibshirani (2011) present the transparent Prototype Selection (PS) method
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for selecting prototypes in a classification setting. It is based on the principle that

finding representative samples from a large data set has greater interpretative value

in certain domains than generating an optimal linear combination of elements within

the data set. Every prototype is a component of the real data, for example, actual

hand-drawn digits. As an example, in medical applications, this would mean that

prototypes correspond to actual patients, providing useful information to domain ex-

perts who want to interpret the underlying data sets. This method can be used solely

for finding prototypes, however the authors propose that it be used as a classifier as

well, by applying the nearest-neighbour rule to the set of prototypes.

Models based on prototypes have been applied to a variety of data types, but predom-

inantly images and tabular data. An interpretable and sparse data representation is

generally considered truthful if the prototypes are representative. This method is best

suited to explaining general behaviour without explicitly requiring the explanation

to comprehend the entire operation of the model on all instances within the dataset.

Kim et al. (2014) demonstrate the ability to gain insight into image recognition by ex-

amining representative prototypes. Bien and Tibshirani (2011) describe their method

and its utility in the biomedical field, specifically protein classification.

The methods to follow describe a set of approaches to the problem of explainability

that are based on inherently comprehensible architectures but are distinct from the set

of methods previously examined. Caruana et al. (2015) present a generalised additive

model (GAM) learning method that can be adapted for different applications. In

spite of the author’s focus on pneumonia, the method is being applied to a wide

range of other medical applications (Caruana et al., 2015). In their paper, GAMs are

introduced as the benchmark for comprehensibility when solely univariate terms are

considered. The explanations describe the contribution of different features as well

as their shape functions, which provide insight into a feature’s linearity. When taken

together, this allows for a comprehensive review of different models. In their work,

the authors primarily focus on the application of this method to tabular data.

The authors of the method apply this model to the problem of patient prioritisation

for pneumonia patients in a hospital. Using this method, the authors research the

problem of determining which patients in a hospital should be given priority treatment

for pneumonia. A model was developed to predict the likelihood of death within the

next 60 days and patients with a greater mortality risk were granted a higher priority.

As a result of a thorough examination of the univariate and pairwise terms that

were interpreted as curves and heatmaps, researchers found various counter-intuitive

properties indicative of faulty model behaviour. A particular confounding factor, a
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specific preconditions, was picked up by the model as a positive signal because these

patients had previously received more examination & intensive treatment leading to

their recovery. As a result, researchers were able to identify and correct for errors

using the interpretable model, thus ensuring that the model can be trusted in practical

application.

Recently, this approach was extended to include neural networks. In Agarwal et al.

(2021), the authors integrate multiple neural networks in place of linear models to

reach the same feature-based explanations. Using this approach, the model learns to

perform tasks by combining a linear combination of neural networks that each pay

attention to a specific input feature. In terms of accuracy, they are comparable to

existing generalised additive models, however, since they are based on neural networks

rather than boosted trees, they are more flexible. The increase in the number of

learnable parameters, however, also causes an increase in the computational cost.

GAM, GLM, and their extension have been around for many years, and therefore

have been extensively researched. Particularly, the wide range of extensions provides

a flexible set of tools that can be used across a variety of fields. In spite of this, the

number of ways to extend the simple linear model can be overwhelming. Furthermore,

most modifications to the linear model render the model less interpretable.

Ustun and Rudin (2016) propose a sparse linear model called SLIM that is used to

create scoring systems based on the data collected. It is motivated by the controversial

scoring system for criminals called COMPASS (Larson et al., 2016). Based on the

high level of sparsity and the small number of coefficients, it provides interpretable

capabilities that enable qualitative understanding of predictions. With the application

of SLIM to the COMPASS dataset, it is possible to achieve the same predictive

accuracy while maintaining the full descriptive power. Consequently, they were able

to detect any bias and illegal discrimination that may have been present. While

this sparsity in the model is adequate for the task they are presenting and allows

for straightforward interpretation, it lacks the effectiveness to solve tasks in more

complex scenarios.

Wu et al. (2018) propose the use of a model complexity function in order to find more

interpretable neural networks during the training phase. Essentially, the penalty

favours models that have decision boundaries that can be easily approximated by

small decision trees and is therefore referred to as tree-regularisation. The average

length of a decision path is defined as the human simulatability factor. A main

contribution of this work is the use of a surrogate regularisation function while training

and mapping each candidate neural model parameter vector to an estimate of the
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average path length. A multilayer perceptron network is used to implement the

regularised approximation function and thus achieve differentiability. A discussion

of three different medical applications is presented, namely predicting therapeutic

outcomes of hospitalised septic patients, predicting HIV treatment outcomes, and

human speech processing. The authors argue that the decision trees which mimic the

predictions of a constraint tree-regularised deep model are small enough to be easily

simulated by the user while imparting to the practitioner an understanding of the

model’s inherent nonlinear predictive behaviour (Wu et al., 2018).

The boundary between inherently interpretable methods and post-training methods

is in some instances fluid. In some approaches, the system generates an inherently

interpretable model in the form of a sparser model that attempts to replicate the

behaviour of an unconstrained black box model.

3.1.3 Post-Training

In some applications of machine learning models, accuracy is of paramount impor-

tance, but a certain level of comprehensibility is also desired. In some circumstances,

the structure and shape of the input data hinder the use of highly interpretable mod-

els such as linear regression, despite the necessity for an understandable outcome and

transparent behaviour of the model. In the following methods the approaches aim

to explain the behaviour of complex, nonlinear, non-transparent, black-box settings

by approximation. Some of these techniques are not limited to providing insights

into black-box models but can also contribute to enhancing the understandability of

partially interpretable models.

Following the training of a model, there are several ways in which insights may be

gained. In some cases, a statistical test is employed, while others aim to obtain logic

information from the models. Throughout this process, we will review a selection of

representative methods across a wide range of approaches.

The term “feature importance” refers to the extent to which a predictive model is

dependent on a distinct feature. The assigned importance scores provide information

about the degree to which a particular feature contributes to a particular decision or

the model’s decision making process more generally. However, the latter is frequently

an aggregate of the former. In an intuitive sense, features that score high, positively

contribute to the decision-making process. A feature importance score is simply the

outcome of applying a specific post-hoc explanation method. These methods can

vary widely in the manner in which they arrive at such an evaluation. In some cases,
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gradient-based information is used; in others, local or global surrogates are employed.

Below, we will present representative methods for each approach.

3.1.3.1 Gradient-Based Visualisations

The use of so-called activation-maximisation methods is becoming increasingly pop-

ular as a technique for gaining insights into the inner workings of Deep Neural Net-

works. This process involves synthesising an input that highly stimulates a neuron

within the network. By leveraging a deep generative network that is designed to

take advantage of prior knowledge, Nguyen et al. (2016) report improvements to con-

ventional activation maximisation methods that solely synthesise neurons based on

gradient information. It is claimed that this network is capable of generating truthful

synthetic images, revealing learned features in a comprehensible manner, and is gen-

eralizable to different network architectures. The interpretability is achieved through

the generation of realistic images which maximise feature activation and demonstrate

the features learned by a neuron. However, the current application focuses on image

data and convolutional neural networks.

In contrast to focusing on features within the model representation, the vast majority

of methods attempt to understand a model’s decision in terms of its inputs. Here, the

variation is to modify the optimisation procedure, such as back-propagation. A pop-

ular example is layer-wise relevance propagation (LRP) (Schwarzenberg et al., 2019;

Nie et al., 2018).This algorithm is based on propagating a prediction by the neural

network backwards into input space, using a set of specially designed propagation

rules. Neurons receive a share of the network’s output, which is then divided evenly

among predecessor neurons until it reaches the input layer (Montavon et al., 2019).

The LRP algorithm has been applied to computer vision tasks where it is efficiently

displayed as heatmaps and masks illustrating the positive and negative relevance of

pixels within an input image.

There are many similar methods that have gained a lot of traction, including back-

propagation or gradient-based approaches. Often these methods are optimised for,

but theoretically not limited to, visualisation-based systems for image classification.

The distinction between the gradient-based methods is primarily determined by how

the output score is propagated back through the activation functions, such as the

rectified linear unit or sigmoids (Nie et al., 2018). Most of these popular local in-

terpretability methods produce saliency maps which illustrate predictively influential

regions in the input image rendering them limited to image recognition tasks.
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Gradient-based methods have the advantage that they are easily adaptable to

different network architectures. Additionally, they are typically faster to compute

than other model-independent methods. Particularly true in the case of the image

domain, in which explanations are often visual, and we readily recognise what is

relevant to the decision of the model. By highlighting only important pixels, it is

simple to identify the relevant parts of an image. A number of other methods, such

as LIME and SHAP, can be used to explain image classification, but they are more

expensive to compute.

The problem with most interpretation methods is that it is difficult to determine

whether an explanation is correct and a great deal of the evaluation is strictly qualita-

tive. A study was conducted to investigate whether saliency methods are insensitive

to model and data characteristics (Adebayo et al., 2018). This would indicate that

the explanation is not related to the model and data, so insensitivity in this context

is not desirable. The article demonstrated that many gradient-based visualisations

failed their insensitivity check acting similarly to edge detectors. Edge detectors in

this context simply highlight strong pixel colour changes in an image; they are not

dependent on a prediction model or abstract features underlying the image, and do

not require any training.

3.1.3.2 Statistical Insights Into Features

In this category of methods, the black-box model is queried and statistical metrics

are extracted for feature importance or other descriptive statistics in order to provide

information about the prediction procedure. Research into efficient statistical analysis

has provided numerous methods for gaining insights into a model’s behaviour by

altering inputs. An approach that is commonly used is the partial dependence plot,

also known as PDP. The PDP chart illustrates the marginal effect that one or more

features have on the prediction capability of the machine learning model (Friedman,

2001). The partial dependence plot reveals linearity, monotonicity, and more complex

dependencies between the feature and the target prediction.

This metric also has a local equivalent, the individual conditional expectation plot

(ICE). In contrast to the PDP, which provides a comprehensive overview of the model

as a whole, the ICE plot shows the interaction effects between features within a single

instance of data (Goldstein et al., 2015). Resulting plots contain one line for each

case separately, whereas PDP depicts the average of all these individual lines.

Recently, the Shapley value has gained popularity, originally proposed by Shapley

(1953). This approach has been specifically adapted to Machine Learning models
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and tasks by Štrumbelj and Kononenko (2014) and was popularised by the effective

library by (Lundberg and Lee, 2017). We introduced the method in section 2.4.2.The

objective is to capture the average marginal contribution of a feature value across a

selection of all possible combinations of features. Shapley values for each feature of

a specific input indicate its relative contribution to the prediction in relation to the

average prediction for this dataset (Lundberg and Lee, 2017). In order to determine

this value, the authors propose to establish a baseline by selecting a subset of random

feature values from the dataset and predicting using those values. By predicting

with this baseline and without the relevant feature, the method produces marginal

contributions from the feature. Shapley values are effective for both classification and

regression tasks.

Due to SHAP’s ability to compute Shapley values, all the advantages associated

with Shapley values are available. It is based on a solid theoretical foundation in

game theory. Predictions are distributed fairly across the feature values, allowing

us to obtain contrastive explanations that compare the prediction to the average

model prediction. In addition, a large number of Shapley values can be calculated,

enabling global interpretations of the models. There are several global interpretation

approaches, including global feature importance, feature dependence, interactions,

and summary plots. The global interpretations in SHAP are consistent with the local

explanations, since they are built upon them.

However, applying SHAP to neural networks can be computationally costly and time

consuming. As a consequence, the approach is not suitable for computation of Shapley

values for numerous instances. Therefore, a number of global SHAP methods may

not be computationally feasible for these applications, including global SHAP feature

importance.

Moreover, feature dependence is ignored by the neural network adaptation of SHAP.

Many other permutation-based interpretation techniques suffer from this limitation.

Since feature values are typically replaced with values from random instances, it

is usually easier to select samples from the marginal distribution. Nevertheless, if

features are dependent, such as correlated, then a large amount of weight will be

placed on data points that are unlikely.

The counterfactual explanation is another ML-adapted approach that has recently

attained increased prominence. The explanation is communicated by referring to nec-

essary changes in inputs to produce an alternative outcome prediction (counterfac-

tual). Following the publication of Wachter et al. (2017), counterfactual explanations

gained traction as the authors argued for counterfactual reasoning in the context of
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the GDPR (European Union, 2016). Most methods involve a loss function that takes

a specific instance and a counterfactual class referring to the desired outcome as in-

puts.

Wachter et al. (2017), for example, presents the discovery of a counterfactual based

on a loss that contains two components. One component is the quadratic distance

between the model prediction for the counterfactual instance and the desired out-

come scenario that must be determined by the user in advance. It is followed by

a second term that measures the distance between the observed instance and the

counterfactual instance. Consequently, the resulting loss is a measure of how far the

predicted counterfactual outcome diverges from the user-desired outcome and how

far the counterfactual instance is from the input instance.

This method has the advantage that counterfactual explanations can be interpreted

in a straightforward manner. A prediction changes to the predefined prediction if the

feature values of an instance are changed based on the counterfactual. It is not nec-

essary to have access to the data or model to use the counterfactual method. Access

to the model’s prediction function is all that is required.

On the other hand, you will typically find multiple counterfactual explanations for

each instance. For some scenarios, this can prove to be problematic as selecting the

appropriate explanation can prove challenging.

3.1.3.3 Surrogates

Alternatively, surrogates are external models or explanators that approximate the

black-box model. These surrogates are capable of different representations. The

purpose of (interpretable) surrogate models is to approximate the predictions of the

underlying model as accurately as possible while at the same time being interpretable.

It is again possible to differentiate between local and global surrogate models. Global

surrogate models are interpretable models that are trained to approximate the predic-

tions of black-box models and are transparently observable in their entirety. Through

the interpretation of the fully comprehensible surrogate model, we obtain information

about the behaviour of the black box model. Local surrogate models, on the other

hand, serve as interpretable models that are intended to explain individual predic-

tions of black box machine learning models.

A popular method in this context is LIME, which stands for Local Interpretable

Model-Agnostic Explanation (Ribeiro et al., 2016). As the name implies, these ex-

planations describe specific instances through an approximation of the local factors

in the vicinity of the decision boundary of the instance. This approach explains a
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particular input instance’s decision using the weights of a local linear classifier. In

order to learn a linear classifier, we need to create a new dataset that contains per-

turbed samples and the corresponding predictions of the underlying model we are

trying to understand. Based on the proximity of the generated data to the instance

of interest, the generated data is then weighted during training of the linear classifier.

In this approach, the model is trained according to a local fidelity measure, which is

attempting to replicate the outputs of the model in a local area around the instance of

interest. This approach has the advantage of being agnostic towards the underlying

model.

Yang et al. (2018) presents an interpretation tree based on local explanations for

several Machine Learning models under the title Global Interpretation via Recursive

Partitioning (GIRP). This insight is developed by identifying and extracting a binary

tree known as an interpretation tree, which presents a set of decision rules which

approximate the original machine learning model. The method partitions the input

space in such a way as to maximise the variable contribution from local explanations

within each divided area. Given their dependency on contribution matrices, which

are extracted using local explanations across a whole dataset, explicit features as-

sociated with individual contributions are preferable, i.e., tabular data rather than

images and text. Despite its alleged global nature, the method can be seen as an

aggregation method of local explanations.

Krishnan and Wu (2017) propose a method called Partition Aware Local Model

(PALM). It is intended to help debug Machine Learning models by identifying and

summarising the dataset structure. The method employs a meta-model to separate

the training set into partitions, and then sub-models to mimic the pattern for each

partition. The meta-model proposed by the authors refers to a decision tree that

identifies the structure and produces rules that can be revised and aligned with do-

main experts. The various sub-models associated with the leaves in the tree, on the

other hand, capture abstract patterns by using more complex models. The initial

proposal is agnostic as to the type of model selected, although the form in which the

information is presented for interpretation can differ depending on the type of data

involved.

Several adaptations have been made to surrogates to facilitate the adaptation to a

variety of tasks. In fact, they can be configured in a variety of ways and can be used

to represent different types of information. Applications reach from image recogni-

tion tasks (Ribeiro et al., 2016) to responsible gambling (Sarkar et al., 2016). It is

important to select models and methods based on specific use cases, applications, and
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requirements associated with each scenario. A critical factor for surrogates that is

frequently overlooked and underreported is how accurate the representations are in

relation to the approximated black-box model. They provide the advantage of gen-

erality, since they are independent of the black box’s underlying model or technique.

Since any model from the interpretable models section can be used as a surrogate

model, this approach is highly flexible. Furthermore, it is possible not only to ex-

change interpretable models, but also underlying black box models. The flexibility of

these methods extends to the wide range of data domains that can be explained using

surrogates. For instance, LIME is one of the few methods that can handle tabular

data, text, and images. In interpreting the black box predictions in the neighborhood

of the data instance of interest, the fidelity measure (i.e. how well the interpretable

model approximates the black box predictions) gives us a reasonable indication of the

model’s ability to explain the black box predictions.

Despite this, for local surrogates, defining the neighborhood accurately is a challeng-

ing and unsolved problem. Typically, practitioners experiment with different kernel

settings in order to find an appropriate neighbourhood setting by observing whether

the resulting explanation makes sense. It does, however, exacerbate confirmation bias

and cannot be considered as a reliable indicator of appropriate explanations.

In general, one must be aware that conclusions are drawn about the model and not

about the data, as the surrogate model does not see the actual label. In order to con-

fidently conclude that the surrogate model is close enough to the black box model,

it is not clear what the appropriate cut-off for R-squared or fidelity is. Lastly, any

interpretable model you choose as a surrogate will come with both advantages and

disadvantages.

3.1.3.4 Distillation for Interpretability

The concept of knowledge distillation refers to the method of transferring hidden

knowledge that has been learned by a teacher model to a student model that is typ-

ically less complex. As proposed by Hinton et al. (2014), dark knowledge refers to

salient information that is hidden within logits in the output layer, which is also re-

ferred to as the soft targets. Soft targets are the probabilities of all output classes

predicted by the model and not just a single output class, which the authors refer

to as a hard target. As a means of increasing the information exchange between the

models, the authors propose an additional parameter, T , which controls how “soft”

or evened out the probability distributions for all classes will be.

Craven (1996) can be regarded as one of the pioneering efforts in converting neural
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networks into a sparser and more interpretable representation and on distillation for

interpretability. It is important to note that while this method uses a more complex

query mechanism and uses specific constraints in order to obtain a more accurate

imitation of input-output behavior, using the oracle mechanism as a tool in the in-

formation transfer step is consistent with all the following distillation methods.

Frosst and Hinton (2017) propose the soft decision tree (henceforth; SDT) as a sur-

rogate because it can be easily adapted to conventional distillation techniques since

the model has probabilistic characteristics. Their study illustrates the benefits of

using SDTs in visual tasks where logical rules are ineffective. Using this approach,

the model learns a hierarchy of filters that are utilized to assign each example to a

particular tree branch with a specific path probability, and for each split, it learns a

simple, static distribution over the range of output classes, k.

Che et al. (2016) implement Gradient Boosted Trees to distill the knowledge from a

Neural Network. The interpretability of the resulting GBT, however, is dependent on

a meaningful post-hoc explanation method, namely partial dependence. They also

use plain logit models without the mechanism to utilise the hyper-paramter temper-

ature, as well as using soft targets. Tan et al. (2018b) and Tan et al. (2018a) utilise

GBTs in addition to Generalised Additive Models (GAMs) using the logits as op-

posed to the soft targets. In this method, the teacher is a neural network, however

their experiments have been limited to binary classification problems.

Dhurandhar et al. (2018) proposes a method for transferring information between a

teacher and a student by utilizing confidence profiles, an approach related to dis-

tillation. The assumption is that the neural network represents a high-performing

teacher, and we can use some of its knowledge of the domain to instruct a simple, in-

terpretable, but generally underperforming student model. Weighting the data points

by their classification difficulty can assist the simple model in focusing on easier sam-

ples that it can successfully classify during training and, therefore, achieve better

performance overall. To achieve this, the authors assign weights to samples depend-

ing on how difficult it is for the network to classify them, and do so by introducing

probes. Throughout the network, each probe receives its input from a hidden layer

and has one fully connected layer with a softmax layer equal to the size of the network

output attached.

Xu et al. (2018) integrates distillation and dimensionality reduction into a visual

representation of a Neural Network classifier. This method embeds datapoints in a

low-dimensional space in order to simplify the transference of the information into a

simpler and more interpretable classifier model. After this, the authors graphically
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represent data points that are assigned similar probability vectors to enable monitor-

ing of the decision-making process, thereby aiding in the diagnosis of deep classifiers.

In general, the benefits and limitations of the surrogate methods also hold for

distillation approaches (see end of section 3.1.3.3). In principle, distillation methods

can replicate the behaviour of the underlying models more closely. The reason for

this is that soft targets provide more information than solely reproducing the output

prediction. There is still uncertainty, however, at what point we can consider the

explanations to be sufficiently close to the underlying model, and therefore determine

the effectiveness of the distilled surrogates.

3.2 Analysis & Taxonomy

Below is an analysis and table that summarises the methods that have been intro-

duced and described above. By providing this overview, practitioners should be able

to make an informed decision based on their specific requirements. There are addi-

tional dimensions of taxonomy that could have been included, however this overview

is centred around the dimensions that are most descriptive in distinguishing the dif-

ferent approaches. We will outline in subsection 3.2.1 that there are potential future

dimensions that are not currently being considered but are important for effective

holistic XAI approaches from the authors’ perspective.

Because the majority of introduced XAI methods do not explicitly state a comparable

measure of quality or truthfulness of the explanation, this dimension is not included

in the overview table. The majority of methods rely on specific heuristics and mea-

surements to determine the optimal explanation based on the given technique. This

dimension would not assist in drawing comparisons in the overview table, therefore

it is omitted. However, the quality is referred to in the discussion of individual ap-

proaches. Furthermore, the complexity of the algorithm is also rarely reported, and

a rigorous comparison of computational cost is outside the scope of this review. We

have nevertheless identified several problematic scenarios in the preceding section of

this chapter. Following the practice employed in the preceding chapter, we have or-

dered the list by the stage in which the method is applied. Table 3.1 provides an

overview of the categories of the different dimensions, and Table 3.2 applies such

categorisation to different practical approaches.

The problem of presenting information in a manner that is human-perceivable has

been the subject of extensive research efforts. A visual representation of data struc-

tures pre-training include hierarchies, clusters, local sparsities, outliers, and correla-
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tions within the data set (see section 3.1.1). Techniques that visualise and summarise

data sets enable a rapid and intuitive understanding of their structures and relation-

ships. Such underlying data structures will be leveraged extensively for purposes of

inference by the machine learning system. Hence, an understanding of the underlying

structure and relationship is critical to determining whether the model’s answers will

be reliable.

Representative instances and dimensionality reduced representations facilitate the un-

derstanding of complex relationships in datasets in an effective and intuitive way to

achieve high expressive power. The majority of these approaches are model-agnostic

and can be applied to complex datasets allowing for high portability. To take ad-

vantage of the specificities in each data domain, however, specific techniques may

be required. Many visualisation techniques provide a comprehensive overview of the

entire dataset. Further, many tools allow for user interaction by allowing users to

explore specific entities in greater detail. Alternatively, methods can also be applied

to specific subsets of the data. However, the explanation presented itself does not

take the model into account, and therefore should only be viewed as an explanation

of the AI system in conjunction with an inherently explainable method or a post-hoc

XAI method.

The inherently interpretable methods introduced in section 3.1.2 involve com-

promises related to linearity, monotonicity, and feature interaction. Through, for

example, the use of linear behaviour and the breaking down of complex scenarios into

simple rules for handling inputs, SLIM enhances trust in the system. In the same way,

rule-based systems facilitate understanding by creating straightforward rules that can

be understood easily by users. A relationship of trust is frequently established when

Dimension Categories

Portability Agnostic, NNs, RFs, NA (when inherently interpretable)
Locality Global, Local

Expressive Decision Tree (DT), Decision Rules (DR), Features Importance (FI),
Power Saliency Masks (SM), Sensitivity Analysis (SA),

Partial Dependence Plot (PDP), Prototype Based (PB),
Sparse Visualisation Based (dimensionality reduction etc.) (VI)

Stage Pre-Training, Inherently Interpretable, Post-Training
Use-Cases Various, Tabular, Image, Text

Translucency Pedagogical, Decompositional, Individual

Table 3.1: Overview of the different dimensions in which we categorised the different
methods in Table 3.2.
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Table 3.2: Summary of the reviewed methods and their characteristics.
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predictive accuracy is reasonable and extracted information matches human domain

knowledge and is consistent with expectations.

An inherently interpretable model is one that consists of functions that are monotonic,

linear, and does not take into account very complex feature interactions. Neverthe-

less, there are approaches such as GAMs that can account for nonlinear functions

that are complex. Further, rule-based methods can be applied to model nonlinear,

nonmonotonic phenomena that are highly multifaceted. However, this may compro-

mise the comprehensibility.

As these methods rely on standalone models, there are no restrictions regarding porta-

bility and model specificity. With respect to locality, rule-based methods are, in prin-

ciple, both globally and locally interpretable. The same applies to regression-based

interpretable models, such as SLIM and GAMs.

These methods are situated at different points of the accuracy-interpretability trade-

off spectrum. There are complex and accurate models that are difficult to interpret,

as well as simple and explainable models that are less effective. There may be com-

promises made with these explainable models when it comes to task complexity,

such as assuming linearity or monotonicity. Although the model provides simplified

interpretations for the tasks it is intended to solve and allows for straightforward

interpretation, it may be ineffective at solving tasks in more complex scenarios. The

GLM, with its different extensions, such as the use of neural networks Agarwal et al.

(2021), illustrate that often once models are adapted to more complex tasks, this is

usually done at the expense of explainability.

The purpose of post-hoc XAI methods is to facilitate complex modelling, while

providing insight that can be easily interpreted. In order to increase the level of

trust in Machine Learning systems, metrics such as feature importance need to align

with expert domain knowledge as well as meet reasonable expectations regarding the

underlying decision-making procedure. In addition, ensuring stability under small

data perturbations, as well as demonstrating acceptable predictability under simu-

lated scenarios, is required to create a more credible and trust-worthy outcome.

Similarly, trust is enhanced by surrogate models when interactions, coefficients, and

variable importance follow the understanding of domain experts and the explanation

remains consistent.

Through the use of gradient-based visualisations, the internal structures of complex

models may be exposed, helping to enhance trust in the localised internal mechanisms.

Gradient-based visualisations can be used to explore machine learning models of var-

ious complexity levels, but these methods likely excel in nonlinear, non-monotonic
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models. The expressive power here is typically bound to the expressiveness of indi-

vidual input features, since these are often used as information representation. In

order to obtain intuitive explanations, certain methods, however, take advantage of

simplifications in the approximation process. This may harm the overall truthfulness

of the underlying model.

We have introduced both model-specific and model-agnostic methods. Surrogates are

typically agnostic, however, they are sometimes used to exploit the internal structure

of methods based on their adaptation to particular models

Several local and global methods have been discussed, depending on the requirements,

methods can be chosen accordingly.

3.2.1 Identified Gaps

In our review of explainability approaches, we have seen that the different methods

employ a broad range of techniques to provide a better understanding of AI sys-

tems. It is apparent from the application domains of some of the reviewed methods

that many safety-critical or sensitive applications involve the use of machine learn-

ing systems. These applications cover a wide range of areas from healthcare to law

and finance. In such sensitive areas, it is imperative to ensure that systems do not

unwittingly discriminate against a particular group of people so as to maintain fair-

ness in machine learning models. A significant obstacle is the potential for models

to discriminate inadvertently against protected attributes due to hidden correlations.

Feature importance scores at the local level may indicate discrimination in certain

circumstances, particularly if classifiers are relying on sensitive features, even if these

correlations are hidden. However, one fundamental limitation of the current methods

is their inability to address any undesirable properties that are exposed by explana-

tion methods. Using a comprehensive neural-symbolic integration approach, which

we will outline in chapters 5, 6 and 7, this shortcoming may be addressed by providing

ways by which the decision-process can be influenced depending on what information

has been extracted. Unlike neural-symbolic approaches to XAI which historically con-

sidered the bi-directionality of capturing and inserting knowledge of an underlying

system, contemporary approaches almost exclusively focus on capturing knowledge.

Even though this approach is beneficial, it may require further development to allow

the user to act according to the observations made regarding model behaviour. Upon

preliminary review, we conclude that the lack of consideration of directionality may
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prove increasingly problematic. In order to make best use of XAI methods, practi-

tioners should be able to act on the extracted information through tools that allow

for interactive explanation and alteration.

Overall, the majority of methods have been applied to Neural Networks since their

superior performance across a variety of domains has made them popular. Though

specific methods built from the bottom-up may be more appropriate for specific use

cases, the need to better understand the existing models has led to an increase in

interest in post-hoc and model-agnostic methods. As a consequence, a promising and

effective approach to explainable AI must be compatible with existing systems, so as

to keep up with an ever-changing field composed of a wide range of applications.

Nevertheless, this push for general applicability has resulted in many methods lacking

the ability to leverage the inductive biases of underlying models and instead being

limited to imitating the input-output relationships based on underlying datasets. De-

spite the fact that flexibility and adaptability are desirable characteristics, we believe

that a promising method may require stronger alignment of representation than imi-

tation of input-output mappings or local approximation.

Considering the tradition of symbolic approaches, we believe there are two important

pillars of effective communication in explainable AI, namely representation and

operation (Littlejohn, 1977), as will be discussed in the upcoming chapters.

In neural networks, the learned transformation becomes crucial to performing the

task. For this reason, a method aiming to represent the model truthfully should

also attempt to provide understanding of the model-inherent representation (further

discussed in 4.1, 5, and 6.5). Here, we would like to highlight the TCAV approach

described in Kim et al. (2018) since it is one of the very few techniques that tries to

provide an understanding of intermediate representation based on learned transfor-

mation. The lack of consideration of methods that target inner representations may

result in a divergence between explanation and model. Based on our preliminary

analysis, we conclude that more investigation is needed regarding the appropriate

extraction and integration of extracted representations into a comprehensive expla-

nation.

In addition to taking into account the inherent representation, a meaningful explana-

tion should aspire to distill the internal operation in an accurate but understandable

manner. We suggest that it may be worth investigating whether it is possible to

represent the sequential steps of computation in a neural network in a way that is

simpler and more understandable.

53



Accordingly, identifying the gaps and diverging trends between Neural-Symbolic

work and contemporary XAI methods has prompted us to investigate two promising

methods that follow the inductive biases of Neural Networks more closely and provide

insights using the fundamental building blocks of internal representation and opera-

tion. Furthermore, the identified gaps motivated our own approach to XAI that is

motivated in chapter 5 and presented in chapter 6 and 7.
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Chapter 4

Post-Hoc Explanation for inherent
Concepts and Operation

Following an analysis of the existing literature on XAI, we propose to investigate

certain XAI methods due to their proximity to a Neural-Symbolic approach. Thus

our research will focus on understanding symbolic representation and the underlying

operational logic of an AI system. Specifically, we concentrate our efforts on neural

networks due to their popularity and inherent complexity. In particular, we aim to

determine which limitations prevent these methods from providing an effective ap-

proach to XAI. The basic principle of deep neural networks is that they comprise

multiple layers arranged sequentially, resulting in the representation of features at

multiple levels of abstraction.

As part of our first investigation, we examine the ability to capture abstract concepts

that emerge from multiple levels of abstraction within these sequential layers of a

neural network. By disentangling the inner representation of the model into concepts

of a more abstract nature akin to symbols, as opposed to using the input space as is

common practice in XAI methods, a more intuitive understanding may be achieved.

Furthermore, focusing on internal representations allows for the extension to multi-

modal models, increasing adaptability to a wide variety of tasks. It is our objective

to explain the different output class mappings that a model has learned based on

the importance of the disentangled internal representations. In this manner, we can

connect abstract intermediate representations in the form of concept symbols to the

output classes of a model. The evaluation of such approach will be centred around

the method by Kim et al. (2018).

Following the examination of the inner representation, we intend to investigate the

ability to understand model operations. In this context, the term operations refers

to the operational logic of the system that specifies how data and representations are
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interconnected and utilised in order to reach a decision. In order to generate more ac-

curate explanations, we wish to explore a method that utilises an inherent hierarchical

structure to mimic the sequential arrangement of layers. Based on the arguments ad-

vanced by Nguyen et al. (2021) and Craven (1996), we consider decision trees to be a

particularly suitable method for interpreting the sequential logic of a neural network.

To accomplish this, we will explore how to extract information from neural networks

into tree-structured representations through model distillation. In addition to being

inherently hierarchical, tree-structured representations have been demonstrated and

used as highly interpretable models that permit auditability. Through translating

the model operation into a highly transparent structure, we would be able to under-

stand how features are related to one another for the purpose of accomplishing a task.

Through examining features in relation to each other, it is possible to provide more

complex explanations, which will be examined across multiple datasets. As part of

this analysis, we will evaluate the model distillation into decision trees proposed by

Frosst and Hinton (2017). We will focus our efforts on investigating the appropriate

means for better understanding the inner operations of the machine. This will be ex-

amined by increasing the complexity of the task, and then interpreting the resulting

trees to provide information about model behaviour. The examination of represen-

tation as well as the investigation of operation will provide a robust foundation on

directions towards a more neural-symbolic centric perspective on XAI.

During the evaluation of the existing XAI methods targeting inner representa-

tion and operation, the focus should not only be on implementation of the existing

method, but also on further development and improvement. This will enable us to

judge whether these methods constitute the building blocks for an effective neural-

symbolic approach to XAI. In demonstrating the limitations, we go on to argue for

a more bottom-up approach to address the XAI challenges identified through the

experiments. Throughout this chapter, we will illustrate that XAI approaches that

concentrate on either representation or operation are fundamentally limited. Only

when both are considered concurrently can an effective basis for a Neural-Symbolic

approach to XAI be established.

4.1 Explaining Neural Networks using Concept Ac-

tivation Vectors for Concept groundings

The lack of methods that target the inner representation is one of the gaps identi-

fied in the section on the taxonomy of explainability. A key success factor of Deep
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Learning algorithms is their ability to convert low-level data into representations that

enable models to perform task solving. Therefore, it is important to determine if it

is possible to extract such representations in a meaningful way. However, as the rep-

resentations are highly distributed and learned, extracting and interpreting them is

not a straightforward task. As far as the author is aware, Kim et al. (2018) is one of

the first papers to propose the extraction of abstract concepts in the context of Deep

Learning intermediate representation for explaining Convolutional Neural Networks.

The focus of their research is primarily on computer vision as a domain of applica-

tion due to the intuitive nature of the representation. Images depict objects that are

formed through the arrangement of specific pixel values. These objects may consist

of concepts such as, for example, specific patterns or shapes.

To investigate the appropriateness of this method for reasoning about what has been

learned, we will implement this approach into the PyTorch framework in the following

experiments and run experiments. The accompanying code is located in the nlp cav

folder of the repository. In particular, we are interested in seeing if the grounding of

abstract concept representations can provide sufficient explanations to reason about

what the model has learned. Moreover, we chose natural language as a complex data

domain for our experiment in order to test the method’s adaptability. To do so, we

present a novel ontology querying pipeline that automatically learns concept expla-

nations by enriching the concept representation.

Despite extensive research conducted in the area of Machine Learning explainability,

there is often no direct connection to the application of Natural Language Processing

(NLP). Thus, the majority of NLP explainability methods utilised today are drawn

from other data domains and do not take advantage of the advantages afforded by

customized approaches.

Currently, among the most popular methods in the language domain are saliency

based explanations, which result in feature attribution in the input space (Arras

et al., 2016; Schwarzenberg et al., 2019). Aside from their limited suitability for NLP,

they are also mostly limited to local explanations. This means that they are designed

to explain specific decisions in the context of specific input instances. Moreover, since

the input dimension in NLP are often extremely high-dimensional, if words are con-

verted into vectors, feature attribution methods such as those described above would

result in too granular and complex explanations. To ensure the effectiveness and va-

lidity of the model as well as prevent potential undesired biases, more comprehensive

approaches must be developed that provide a means to assess what factors drive the

decisions of a system intuitively.
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The interpretation of machine learning models poses several challenges due to the fact

that they operate on low-level input features that are transformed through non-linear

internal transformation using numerous sequential layers. Considering the high per-

formance of neural networks and recent research, these powerful distributed neural

networks may be able to capture abstract concepts via non-linear activations which

may result in abstractions akin to human understandable concepts, as demonstrated

by Zeiler and Fergus (2014). As a result of this, it would be beneficial to capture

aspects of higher-level concepts and operations, such as logical rules, in order to pro-

vide meaningful explanations. This section will focus on capturing abstract concepts.

By applying the proposed method, we will be able to test the output classes of a

model based on user-defined abstract concepts for language models applied to the

classification problems. This model will produce scores that will allow us to deter-

mine what concepts have contributed to the model’s prediction of a specific class and

by how much compared to other concepts.

However, in the context of NLP, the definition of a concept is not easily discernible.

It is important to note that isolated words are already concepts that are refined when

observed in context as part of sentences. Nonetheless, our approach goes beyond sim-

ple word importance. We will examine word groups associated with a concept and

used in multiple contexts with the same meaning. One example would be the concept

of family that incorporates words like mother, father, daughter, son, relatives, and

more. Each output class will be assessed on the importance of talking about family.

Another way in which language is used abstractly in practice is by using specific

forms of expression to convey abstract ideas. A good example of this is sarcasm,

where the true meaning of the words are not intended to be taken literally. In order

for a model to account for abstract patterns such as these, a latent representation

must be utilised.

4.1.1 Related Work

The approach we use in this section closely follows the methodology outlined in Kim

et al. (2018). In this paper, the authors introduce the notion of Concept Activation

Vectors (CAV). Essentially, a CAV represents a vector pointing to the direction of

activation values associated with representative datapoints of the concept in a hidden

layer. Through the use of this vector, we can compute the sensitivities of output

classes in relation to specific concepts. For example, given a model that identifies

zebras and an example set that exemplifies the concept “stripe patterns”, TCAV

(Testing with Concept Activation Vectors) is able to quantify the impact of stripes
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on the prediction of a zebra as a single number. Here, TCAV refers to the general

method, and CAV refers to the explicit vector representation that is used to extract

the concept.

Recently, it has been proposed to use convolutional kernels for similar purposes

(Townsend et al., 2021). In this paper, the authors arrive at an approximate descrip-

tion of a CNN’s behaviour by employing logic rules that connect to convolutional

kernels. The authors suggest that, as a result of this connection to convolutional

kernels, the semantic concepts they represent are incorporated. It is shown that the

kernels identified within the last convolutional layer may be referred to as symbolic

in that they exhibit strong reactions to similar input images that effectively divide

output classes into sub-classes.

Therefore, both approaches emphasise the use of latent model representation in order

to extract abstract concepts. We will investigate the potential for an adaptation of

the TCAV approach in the linguistic domain as the authors confine their study to the

image domain. As a result of the intuitiveness of high-level concepts within an image

and their relationship to pixel values, an approach that would generate explanations

based on concepts and not numeric pixel values (using saliency maps) would be de-

sireable.

Translation and adaptation of the approach for the NLP domain, however, may pro-

vide a number of advantages over other the image domain. The semantic interpre-

tation of the embedding spaces in NLP has been studied for some time. In fact,

Kim et al. (2018) relate their idea to NLP techniques such as Word2Vec in order

to motivate the use of semantically meaningful directional vectors in the embedding

space (Mikolov et al., 2013). The depiction of the word embeddings and mappings in

Figure 4.1 illustrates the ability of vector embeddings to capture abstract concepts

in embedding space by means of distributed learned representations. Therefore, this

is intuitively a compelling reason to use the TCAV method, which is based on the

extraction of semantically rich embeddings, in the domain of natural language.

Our adaptation of the TCAV method also incorporates the integration of ontologies

in order to arrive at concept groundings. As will be outlined, this enables the extrac-

tion of concepts from the model representation more effectively by using common-

sense knowledge.

4.1.2 Method & Experimental Setup

As already stated, the basis of the approach is TCAV by Kim et al. (2018). The

method here is adapted to be used in the language domain and we developed a
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Figure 4.1: Illustration of the semantic meaning of rich vector embedding spaces
(GoogleDevelopers, 2021). Here it is demonstrated how the embeddings may be used
to produce powerful analogies.

customised pipeline that allows for ontology integration. In this section, we will

summarise the method and explain our adaptations and relate to the original TCAV

method.

We consider every Neural Network with inputs x ∈ Rn and any layer l within the

network consisting of m neurons, as proposed by Kim et al. (2018). As a consequence,

data inference as projection into layer l can be expressed as follows:

fl : Rn → Rm

In order to gain a more comprehensive understanding of how the network functions,

we will make use of the latent representations inside the network. A layer l that will

be used to extract the concept representation must be selected in advance.

While the choice of layer for extraction is fully customisable, in NLP it is advisable

and sufficient to choose an early layer when using commonly used pre-trained word

vectors. Due to the fact that these embeddings have already captured semantic

information, it is not necessary to select particularly deep layers, as is the case in

computer vision. This differs from the approach taken in Kim et al. (2018) where the

results show that the layer l can be detrimental to the identification of meaningful

concepts associated with the explanations. Further discussion of this subject will be

presented in chapter 7.

4.1.2.1 Defining the Concepts and CAVs

For the purpose of probing the model for user-defined concepts, Kim et al. (2018)

suggests collecting a set of examples representative of such concepts. This can either

be done manually or by selecting a dataset that includes labelled concepts. Note that
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there are no prerequisites for the training data of the concept as well as the model

architecture. As a result, we can test the trained model on concepts that were not

included in the initial training set in order to obtain insight into the generalisability of

the model. The capability of the method to extract meaningful concepts is dependent

on the successful optimisation of the network based on initial conditions, meaning that

we assume that the network has learned concepts using common ML practice (such

as cross-validation and regularisation).

For our NLP adaptation of this approach, we employ a pipeline that is capable of

extracting conceptually related words and automatically populating sets of examples

based on these words. It is accomplished by querying an external Knowledge-Base to

find words that are relevant to the specific concept. We utilised ConceptNet which

is a semantic network composed of over over 1.6 million assertions of commonsense

knowledge encompassing the spatial, temporal, social, physical, and psychological

aspects of everyday life (Speer et al., 2017). We query the ConceptNet ontology to

capture a rich set of appropriate related words solely based on a single concept key-

word. Figure 4.2 illustrates this for the concept of family.

When the appropriate words have been extracted, we perform an automatic search

of the entire dataset to identify sentences that contain any of the concept-related

words. In the current implementation, the n-gram size surrounding the word can be

determined by the user. Furthermore, we need to populate a negative set, ideally of

equal size, derived from sentences that do not include any words associated with the

concept of interest.

We may also use the same data aggregation process as Kim et al. (2018) and utilise

other datasets for the testing of concepts. Probing the network about concepts that

are not part of the training set is an important feature of this approach. An important

component of this method is identifying the Concept Activation Vector. Specifically,

this vector corresponds to a vector within the activation space of the user-defined

layer l, which represents the concept of interest. With the positive and negative sets

of the concept obtained, the CAV is then calculated by training a linearly separating

hyperplane that distinguishes between examples containing and excluding the con-

cept. Once a hyperplane is found, the CAV is merely the normal of the hyperplane.

One can achieve this by training a binary linear classifier on the activations of the

sets in the hidden layer of the network. This process is depicted in Figure 4.3 and

will be illustrated using an example below.
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Figure 4.2: Illustration of the ConceptNet ontology integration to automatically cre-
ate sets for the extraction of concept activation vectors. Using the RelatedTo relation,
we can derive words from the same concept and create more comprehensive sets than
following the approach proposed by Kim et al. (2018).

4.1.2.2 Sensitivities and Derivatives

In many of the interpretability methods outlined in the taxonomy, explanations are

derived through computing the gradient of the output logit values with respect to the

input features. As a consequence, the explanation will always reside within the input

space, such as the importance of individual pixels or word embedding dimensions.

∂hk(x)

∂xa

where hk(x) is the logit for a document x and xa is a single word in document x.

These saliency methods take advantage of such derivatives to assess the sensitivity of

different output classes to changes in the embedding of word a.

However, in this method we attempt to measure the sensitivity of inputs to the

direction of a concept that exists at hidden layer l. We define vlC ∈ Rm as the unit

CAV for the concept C in hidden layer l. The activations for each input x at hidden

layer l are denoted as fl(x). Following (Kim et al., 2018), we calculate the sensitity

of concept C with respect to class k as the directional derivative SC,k,l(x) where

hl,k : Rm → R maps the activation vector to the logit output of class k:

SC,k,l(x) = lim
ε→0

hl,k
(
fl(x) + εvlC

)
− hl,k (fl(x))

ε
= ∇hl,k (fl(x)) · vlC

As such, we are not computing this metric on a per-word basis, but on a per-

concept basis on a set of words. Once again, we adhere to Kim et al. (2018) by

computing the directional derivatives for different classes of input. This means that
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we calculate the sensitivities of the model we are attempting to explain for each

output class. The TCAV score is defined as follows:

TCAVQC,k,l
=
|{x ∈ Xk : SC,k,l(x) > 0}|

|Xk|

where k denotes one of the class labels in our dataset, and Xk represents all inputs

associated with that label. The score is then defined as the fraction of inputs from

class k whose activation in layer l was positively influenced by the concept C under

consideration, resulting in a TCAVQC,k,l
∈ [0, 1].

We follow the implementation of Kim et al. (2018) where TCAVQC,k,l
only depends

on the sign of SC,k,l. Alternatively, the magnitude of the conceptual sensitivities may

be considered. The advantage of this approach is the ability to interpret TCAVQ

globally across all inputs for each label.

We also introduce an assessment of the accuracy of separation within the hidden

layer l. Here, we only consider CAVs resulting from a linear hyperplane that has high

accuracy above the threshold t and can therefore distinguish positive and negative sets

according to their activation values. The hyperplane may fail to distinguish between

the positive and negative sets of our concepts, which could render the resulting CAV

meaningless. Hence, the pipeline will not calculate any scores for concepts that the

model may not have learned to represent based on a set accuracy threshold t ≤ 0.8.

4.1.3 Experiments & Results

Here, we will demonstrate the applicability of our method through the implementation

of the pipeline, and thus, introduce the TCAV method to the NLP domain. Our

dataset for this application is the widely known newsgroup dataset. Despite focusing

on images for the majority of this thesis, because data in this domain lends itself well

to intuitive concepts and levels of abstraction, we wanted to contribute something

original in this section. As a consequence, we wanted to illustrate how concepts

can be applied to the language domain given that the original TCAV paper focuses

exclusively on images. Nevertheless, in chapter 7 we also demonstrate some of the

shortcomings of TCAV on image data and draw direct comparisons. The reader

should refer to Kim et al. (2018) for a detailed examination of TCAV on images.

The NLP newsgroup dataset consists of approximately 18000 posts on 20 topics,

divided into two subsets: one for training (or development) and another for testing

(or evaluation). Each of the 20 separate newsgroups is associated with a specific

topic. Some newsgroups have strong connections (e.g. comp.sys.ibm.pc.hardware /
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comp.sys.mac.hardware), while others are highly dissimilar (e.g talk.politics.mideast

/ misc.forsale ).

We train an LSTM model with batch-size of 128, 5 epochs, a sequence length of

20, learning rate of 0.01, hidden layer size of 256 and word embedding size of 300.

The code for all the experiments within this thesis is published in the accompanying

repository. We use pretrained word vectors for this experiment. The embeddings

used in this approach are the so-called ConceptNet Numberbatch embeddings, but

any other vector embedding technique could have been used instead (Speer et al.,

2017).

ConceptNet Numberbatch is comprised of word vector embeddings that can be used

to impose some semantics of word as a starting point for further machine learning

efforts. The ConceptNet Numberbatch system is built upon the open data project’s

knowledge graph we also use for populating the concepts sets, from which the word

embeddings are derived. As such, the embeddings benefit from the fact that they have

semi-structured, common sense knowledge from ConceptNet. As a result, a method

is presented for learning about words that is not based solely on viewing them in the

dataset context and determining their meaning from that context. The semantics,

which will enable us to identify concepts in the embedding space, will rely on broader

knowledge and data.

When training the LSTM model configuration using the Adam optimiser, we obtain

98% accuracy on the dataset. Our subsequent objective is to explain specific output

categories using abstract grounded concepts. According to the TCAV procedure, a

positive and negative set is generated by utilizing the ConceptNet API. The end-

user only has to enter the concept of interest, and the pipeline will populate a set of

m terms from the Knowledge Graph using the “RelatedTo” attribute. A schematic

representation of the step can be found in Figure 4.2.

With the acquired m terms, we extract text passages in which these terms are used.

Although the text passages may be extracted from another dataset, here we rely on

the same newsgroup data. After extracting the passages, we populate a negative set,

which does not contain any of the initially extracted terms.

This process is repeated for three exemplary concepts: family, hierarchy, and drugs.

Our next step is to use the extracted concept sets to derive the concept activation

vectors required to calculate the concept importance scores (TCAV). As illustrated in

Figure 4.3, we feed the positive and negative sets into the Neural Network. At layer l,

also known as the bottleneck layer, we train a linear classifier using the activations of

both text input sets. By using the resulting hyperplane, we can extract the orthogonal
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concept activation vectors for each concept: family, hierarchy, and drugs.

Figure 4.3: Illustration of the pipeline that we employ to derive the Concept Activa-
tion Vectors. We calculate the m-dimensional activation in layer l of interest using the
extracted positive and negative sets. Using a linear classifier, we derive the Concept
Activation Vector (CAV) as proposed by Kim et al. (2018).

Subsequently, Sfamily,recautos,l(x) provides a quantitative measure of the sensitivity

of model output class rec.auto in relation to concept family within a model layer l

indicating a pre-concept scalar quantity of an input. This process is then repeated for

a set of inputs for each class k (here k = rec.auto) and concept C (here C = family)

in order to calculate TCAV scores. They represent the fraction of inputs belonging

to class rec.auto whose layer-l activation vector has been positively influenced by

concept C = family.

We can use this process to compare the different TCAV concept scores for a specific

Figure 4.4: Exemplary concept sensitivities for the religion newsgroup class. The
figure illustrates the importance of the concepts that the user assigned to the pipeline.

class, as shown in Figure 4.4. This way, one can determine which class outputs are
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significantly influenced by the various concepts in comparison, thus providing greater

understanding of the model.

Figure 4.5 and Figure 4.6 are graphical representations of the concept importance for

all 20 output classes. While some results appear intuitive, such as the insignificant

contribution of the concept ”family” to the class ”comp.sys.mac.hardware”, others

appear to be less intuitive. In this instance, we would be able to investigate by

extracting some of the inputs of the class in question whose activation in layer l is

associated with C.

Figure 4.5: As we are inferring 20 different newsgroup classes, an informative infor-
mation presentation presents the TCAV scores for a specific concept across different
classes. Here we check the ”hierarchy” concept for all of the different classes.

We demonstrate this with respect to the class rec.auto that has received a high

score from TCAV for the concept family. The following four text extracts provide

evidence of why the model emphasised the concept of family. ”fun-to-drive family

vehicle”, ”sedan is designed for mothers”, ”number of different drivers in a family”,

and ”I had a dream that my dad bought a Viper”. Based upon the extracted text, it

appears that the model has discovered a strong connection of the output class rec.auto

in relation to the importance of discussing a car’s usefulness to the family as context

while also highlighting that cars can be a personal matter.

Next, we examine whether these values can be extracted from a more complex

linguistic concept. Using the same pipeline as Figure 4.3, we replace the custom Con-

ceptNet sentence extraction mechanism with the SARC dataset containing examples

of sarcasm (Self-Annotated Reddit Corpus by Khodak et al. (2019)). We attempt to

determine whether we can apply the same approach to find out if sarcasm is particu-

larly prominent in specific categories of newsgroup. However, upon training the linear

classifier in layer l in order to construct the linear hyperplane, the linear classifier does
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Figure 4.6: Here we show the TCAV scores for the ”family” and ”drugs” concept
across all of the 20 different newsgroup classes.

not meet the accuracy threshold t > 0.8 that we imposed on the TCAV method. As a

result, we are not able to differentiate between sarcastic and non-sarcastic language in

the high-dimensional space due to the fact that the model did not learn such complex

representation for a relatively simple task of distinguishing the newsgroups.

4.1.4 Limitations of the TCAV approach

In our initial experiment, we were successful in linking the output of the model with

high-level concepts. The end-user may be able to consider the appropriateness of the

model when connecting concepts to various output categories. This approach has

provided sensible results for the proposed model and data and pointed to initially

less intuitive connections, such as the connection between the concept of family and

the topic of automobiles. By means of abstraction, information can be communi-

cated more effectively, in a manner akin to the understanding of human explanations.

Through the enrichment of vector representations through ConceptNet, concept sets

can be automatically generated, making the method more accessible.
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Nevertheless, there are some major limitations. There is a possibility that the in-

terpretation of the TCAV score may not be as accessible as intended by the original

proposers Kim et al. (2017). While the normalised scores provide some insight into

the importance of concepts, they are not designed to conform to any specific mathe-

matical properties. In this case, the interpretation is dependent on the TCAV scores

of other concepts or output classes.

Additionally, as illustrated by the examples in Kim et al. (2018), the choice of layer

l may be essential in the extraction of concept activation vectors. According to the

study, depending on which layer the concept is extracted from, there may be a very

weak signal, making it difficult to derive meaningful activation vectors. Our intro-

duced threshold t becomes essential in this context as it prevents us from extracting

meaningless scores.

Moreover, the layer-dependence may not pose such a significant challenge with our

NLP extension since we recommend the use of pre-trained word vectors, which is a

common practice today (Qi et al., 2018). Consequently, the word sequences, after

having been converted to vectors, are already semantically rich when they arrive at

the input layer. Training from scratch as well as learning complex transformations

(e.g. in the image domain) with multiple levels of abstraction may make it more

difficult to select the appropriate extraction layer.

More importantly, however, the importance of concepts is only assessed individually,

and the user is not given the opportunity to connect concepts in order to under-

stand them. An example that would require the combination of concepts may be

the discussion of a specific topic with a sarcastic undertone, which would result in

much stronger explanations. Isolating the significance of particular abstractions and

leaving out the internal operations of the model connecting the abstractions, leaves

out an essential component. To provide the user with an effective method to reason

about what has been learned, the consideration of operations on top of the learned

representations is vital. In the absence of combining the concept representations, the

expressive power of the method will remain limited to individual concept sensitivity

levels.

Hence, our focus will now shift to a method that concentrates specifically on the

operation by distilling the model into a sequential structure. Specifically, we are at-

tempting to discover how features are combined to arrive at a decision, so that we

may better understand the internal reasoning process of the model.
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4.2 Soft Decision Trees

Knowledge distillation and extraction techniques can be used to reduce complex mod-

els into simpler representations in order to achieve high predictive performance in

an understandable manner. One of the limitations of classical knowledge extrac-

tion methods is that they fail to effectively operate in domains with low-level sensory

data. Therefore, current image classifiers and language models are often opaque when

it comes to making predictions. Frosst and Hinton (2017) propose to produce visual

explanations through the creation of a surrogate model that provides insight into the

decisions that are being made. In order to accomplish this, they use a tree-structured

hierarchy of representational filters. Tree-based approaches have been purposefully

selected for this task as the decision tree classifier is one of the most intuitive ap-

proaches to classification in use. In this approach, hierarchical decisions are made in

sequence utilising the input features and learned filters. By retracing a decision, a

user can quickly understand the reasoning behind the decision, and this serves as a

useful conduit between data and human understanding. This facilitates the explana-

tion of not only why a particular decision was made, but also illustrates the broader

functionality of the model.

The contribution of Frosst and Hinton (2017) is primarily theoretical as the analysis

of the distillation process using Soft Decision Trees is limited in scope and based

on a single extracted tree. Consequently, it would be of interest to examine how

representative the initial results are and to challenge the approach through various

experiments with varying data-domains. Thus, we can determine whether the method

is effective in providing a means to reason about what has been learned.

4.2.1 Related Work

Various knowledge extraction techniques may be categorised according to their con-

text in relation to the two main AI paradigms. Firstly, the symbolic perspective

strives to establish logical rules that are comprehensible and are consistent with the

model. Secondly, the more recent advances in knowledge extraction, which have been

derived from the connectionist perspective and attempt to distill a large model into

a smaller one.

TREPAN was the first prominent method to use a trained neural network to extract

information that could be represented as a surrogate comprehensibly (Craven, 1996).

The learning of the surrogate tree itself occurs in a similar manner to the C4.5 algo-

rithm, where the objective is to extract symbolic rules that describe the behaviour
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of a neural network. More specifically, we build decision trees using so-called M-of-N

rules, which means that at least M out of N rules must be satisfied for a condition to

be met. A greedy search algorithm, which maximises information gain, can be used to

generate tree-based structures of such rules. The features can be incrementally added

up to the point where information gain is no longer being improved or the size reaches

a predetermined threshold. TREPAN combines artificial examples in addition to the

dataset to query the neural network and provide sufficient samples for reliable split

generation on lower branches.

TREPAN has been extended to incorporate semantic information derived from an

ontology in a method proposed as TREPAN Reloaded Confalonieri et al. (2021). The

authors include ontologies, which model domain knowledge, in the process of extract-

ing explanations in order to enhance their understanding. They also show that using

this semantic information increases human understanding of the model.

While the process of distillation is in many ways similar to the process of knowledge

extraction, there are some differences discussed below. To begin with, it is critical

to recognise that the connectionist approach originally aimed to develop distillation

based on the fact that many of the state-of-the-art neural networks were of consider-

able size. As a consequence of the large size, computational costs are high. Moreover,

in order to deploy models on smaller devices, such as smartphones, reasonably effi-

cient models must be used to compute on smaller devices (Tan et al., 2018a). Due to

this reason, distillation is sometimes referred to as model compression.

Distillation’s core concept is to train a large accurate model that runs slowly with high

computational demands, then distill its knowledge into smaller, faster yet nonetheless

accurate models. The process can be characterised as mimic learning since complex

models, such as a deep model or a network ensemble, serve as the base model or

teacher model to train a student or mimic model. The distillation or mimicking pro-

cess is characterised by the use of soft labels that are generated by the teacher as

target labels for training the student model. These targets fall within the range of

[0, 1] and are the output of the teacher model. The main objective of this approach

is to overcome the loss of accuracy associated with shallower or smaller models.

It is this sparsity in the smaller student model that is useful for more comprehen-

sively presenting the inner operations of the model. Thus, a variety of interpretable

surrogate models have been proposed as student models, such as General Additive

Models or Soft Decision Trees (Tan et al., 2018a; Frosst and Hinton, 2017).

Yıldız et al. (2012) proposed Soft Decision Trees as an alternative to common Deci-

sion Tree classification. Instead of hard decision nodes deciding which instance goes
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to each child node based on the outcome of a logical test, a soft decision node routes

instances to all its children based on probabilities determined by a sigmoidal function.

The resulting decision boundary allows for a smooth boundary in the feature space.

Frosst and Hinton (2017) present an implementation of Soft Decision Trees for image

recognition. Based on the input-output function of a neuron, the authors use the term

(wx + b) as split condition, which represents the input potential of a neuron within

a neural network and is also referred to as node mask in this context. In terms of

optimisation, the main benefit of such a design is that it is continuously differentiable

with respect to all model parameters.

4.2.2 Method

In the Soft Decision Tree, as it is continuously differentiable, we can optimise the pa-

rameters using gradient descent on the loss function corresponding to the parameters.

To use this approach, it is necessary to forego the hard binary splits that are generally

imposed on data when using regular decision trees. After training, each inner node i

has a learned filter wi and a bias bi. If we consider one example inner node, then we

calculate the probability of selecting the branch on the right as follows:

pi(x) = σ(xwi + bi)

where wi are the weights or filters of the model, σ is the logistic sigmoid function, x

represents the input data, and b specifies the bias of the inner node, also illustrated in

Figure 4.7. In this manner, each inner node computes the correlation between node

masks and the input image, and assigns probabilities for negative correlations on the

left and positive correlations on the right.

The model introduced above is related to a hierarchical mixture of experts proposed

by Jordan and Jacobs (1994). Frosst and Hinton (2017) refer to each expert as a

bigot, since these experts always yield the same distribution after training. As a

result, they will always produce the same distribution. Thus, the model will learn a

hierarchy of different filters based on which each example is assigned to a particular

bigot or leaf with a specific path probability. The static distribution of all possible

output classes k computed at the leaf is given by:

Ql
k =

exp(φlk)∑
k′ exp(φ

l
k)

where Q indicates the probability distribution at leaf l. The learned parameters at

each leaf are represented by φ. The leaf node will provide the softmax calculation for
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k individual classes. In addition, to prevent overly even (soft) distributions, Frosst

and Hinton (2017) apply the inverse temperature β to the activations of each mask

node prior to computing the sigmoid function. As a result, the probability of nodes

takes the following form:

pi(x) = σ(β(xwi + bi))

The probability distributions for the leaf nodes for different paths are computed at

Figure 4.7: Illustration of a Soft Decision Tree with one inner node, two leaf nodes,
and the connecting soft splits that feed into the output probability distributions Ql

and Qr for a binary classification (Frosst and Hinton, 2017).

the final layer node, as depicted in Figure 4.7.

We minimise the following loss function to optimise the trainable model parameters:

L(x) = −log(
∑

l∈leafnodes

P l(x)
∑
k

TklogQ
l
k)

for a single training example with input vector x and the target distribution T , which

can be either a one-hot vector when using dataset labels or soft targets when distilling

the soft targets from a teacher model. P l(x) denotes the path probability at that leaf

and Q is the probability distribution for k classes at leaf l. The function is equivalent

to the weighting of the categorical cross-entropy.

Consistent use of the input data is an important aspect of ensuring the intelligibility
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of a model. In spite of the fact that each node of the tree is characterised by a differ-

ent set of weights and biases, the input vector x remains the same. By comparison,

the structure of a general neural network is a sequential progression from the input

layer through all layers. Consequently, the output of the previous layer serves as the

input for the next layer. However, the input of each split node in soft decision trees

is independent of the output of prior layers, enabling a comprehensive understanding

of the operation at every level.

It was originally proposed that Soft Decision Trees should make predictions compa-

rable to ensembles by considering the probability distribution of each leaf node. The

disadvantage of this approach is that it is impossible to directly trace the decision-

making process within the tree as the decision is distributed across the entire tree.

Thus, in our adapted approach we opted to make predictions based only on nodes in

the tree with the highest probability. It is important to note that this decision is at

the expense of a reduced performance in the model.

An initial investigation will be conducted to replicate the Soft Decision Tree on the

MNIST dataset, as described in the initial paper (Frosst and Hinton, 2017). Upon

replication to a satisfactory level, additional experiments with different data may be

considered. Using this new approach, the experiments were conducted with a partic-

ular focus on how knowledge is represented and whether it presents a feasible commu-

nication method to learn about the model operations. We implement the proposed

method of SDT distillation process within Python using the Pytorch framework. The

accompanying code is located in the SDT folder of the repository. Experiments are

conducted on different datasets to determine the adaptability and to provide more

detailed results to the method in general. Beginning with the initial method and

experiment put forth by Frosst and Hinton (2017), we examine comprehensibility

and performance of the image recognition task as a function of image structure and

complexity of the depicted objects. As part of our research, we also investigated

the application of the SDT method to alternative data domains, such as tabular and

natural language data. However, we believe that the model is fundamentally lim-

ited compared to alternative interpretable models that can be applied to these data

domains. It is one of the advantages of the node mask to provide information in a

visual format for a large number of input dimensions. For tabular data, regular deci-

sion trees (or the extraction of them by means of TREPAN) provide a much better

level of comprehensibility. For natural language, using word vectors as inputs to the

tree would necessitate aggregation per word vector to determine the importance of
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each word. It is possible to achieve this level of explanation by using inherent self-

attention, without resorting to a surrogate, which requires additional approximation.

Therefore, our focus in this section remains the intended data domain.

4.2.3 Experiments & Results

If not specifically stated, each experiment was conducted with the given train and

test sets split from each dataset source. Further, we obtain a validation set using

10% of training data entries. The best performing model in terms of accuracy on the

validation set was selected to calculate and report test set results.

For investigating the effectiveness of the knowledge representation, we perform a num-

ber of modifications to the implementation. To ensure that our implementation is

compatible with various experiment runs, we track important metrics for comparison

and adapt the implementation for wider compatibility to a range of datasets. Fur-

thermore, additional functions were implemented to provide a visual representation

of the tree in a way that promotes understanding in addition to saving the decision

traces through the three, thus allowing the classification process to be tracked.

4.2.3.1 MNIST

In general, our results are consistent with those reported in Frosst and Hinton (2017).

Frosst and Hinton (2017) achieve 94% on the identical test set using a tree built with

8 layers that was trained directly from the data, compared to the 92% using our

implementation. Due to the lack of information regarding the implementation of the

original paper, it is difficult to determine the reasons for the small difference in accu-

racy. Additionally, all hyperparameters except tree depth had to be estimated since

they had not been published.

The training of 50 epochs of a 4-layer Soft Decision Tree takes 23 minutes using a

NVIDIA GeForce 1080, a 8-layer SDT requires more than 160 minutes, and a 10-

layer SDT may take up to 10 hours1. There is an exponential growth in computation

time for larger trees due to the exponential growth in the number of nodes for each

additional layer. Hyperparameters are determined using the best performing model

on the validation set.

Figure 4.8 illustrates the Soft Decision Tree trained on the MNIST data. The weights

are rescaled for the visualisation to the full range (0,255) in order to convey as much

1We observe no variation in performance after 45 epochs and made a choice to use 50 epochs for
training.
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Figure 4.8: Distilled Soft Decision Tree with layer depth of 4 trained on MNIST in
40 epochs. We add labels of the classes with highest probability to each of the nodes
within the tree. The squares at the leafs of the tree depict the probability distribution
across each of the classes (0-9) using the grey scale.

information about the filter as possible. Note, the filters that split at the top hier-

archy of the tree are abstract, whereas nodes later in the tree learn representations

that are more easily linked to classes. This aligns with the sequential operation of

the neural networks as outlined in Zeiler and Fergus (2014). As a result, upper nodes

and the first NN layers must distinguish the majority of classes while layers at the

end of the network and leaves at the bottom of the tree can be specialised to focus

on particular classes. This aligns with our idea of classification using Soft Decision

Trees, because upper nodes have to split most of the classes while lower nodes are

more specifically fine-tuned towards the true labels.

Based on a standard MNIST Convolutional Neural Network architecture from the

Keras library (Chollet, 2015), we are able to achieve an accuracy of 99% on the test

set. Subsequently, we distill the knowledge into the Soft Decision Tree, by training it

on the soft targets from the Neural Network. Compared to the 91% accuracy of the

distilled 4-layer SDT, the 4-layer SDT exclusively trained on data achieves only 81%

accuracy.

To illustrate the classification hierarchy of the tree, the nodes in Figure 4.8 and

Figure 4.9 have been attributed to classes with the highest probability. Moreover,

the leaves at the bottom of the graph correspond to the class probabilities, to which

we apply the argmax function for classification (as indicated by the label numbers

attributed to each leaf). Using soft decision trees, all classes will be associated with

probabilities at every leaf, however in our variation only the leaf with the greatest
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Figure 4.9: Distilled Soft Decision Tree with layer depth of 4 trained on MNIST
illustrating a classification of the digit zero. We add a path with highest probability
in green to retrace the decision to a sequence of filters.

level of certainty is responsible for the result. We highlight the most probable classes

in decreasing order at each node to facilitate interpretability.

The decision trace in Figure 4.9 illustrates the path associated with the highest prob-

ability leaf of a specific instance. A green arrow indicates the path with the highest

probability, responsible for assigning the final prediction. On the green path, the num-

bers below each inner node are the pre-activation logit β(xwi + bi), where we scale β

the correlation of input x to each given mask wi and add a bias bi. Afterwards we

apply the sigmoid (σ) activation function which breaks at 0. A negative correlation

leads to a left branch, while a positive one leads to a right branch. Moreover, we

present the correlations within each node mask where the homogeneous single-colour

area represents zeroes. Positive correlations are denoted by lighter pixels while neg-

ative correlations are denoted by darker pixels.

As the tree-depth increases, the accuracy and fidelity of the SDT is improved, but

it is at the expense of computational resources and interpretability. The inclusion

of additional filters may make it easier to find a sufficient representation of the NN,

however the number of nodes becomes too large to be intuitively comprehensible.

A four-layer SDT consists of 15 nodes, whereas an eight-layer SDT already has 255

nodes, with each node contributing to the classification to a lesser degree. The masks

of each node become less significant as the number of masks increase, thus becoming

accumulative and thereby making the classification process more difficult to under-

stand as each node models weaker irregularities.

76



Tree Depth Distilled Accuracy Fidelity

4 No 81% –
4 Yes 91% 92%
5 No 91% –
5 Yes 91% 93%

Table 4.1: Accuracy and fidelity of different Soft Decision Trees on the MNIST dataset
with and without Distillation.

4.2.3.2 Fashion MNIST

Label Description

0 T-shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot

Figure 4.10: Left: Different classes of the fashion-MNIST dataset. Right: Example
images of the Fashion-MNIST dataset (Xiao et al., 2017). Each row corresponds to
the labels in the table on the left.

As we explore different datasets to assess the adaptability of the SDT distillation

method, we gradually increase the difficulty of the domain by varying the complexity

of the objects. The fashion MNIST dataset, provided by Xiao et al. (2017), is made

up of 70000 samples of different fashion items depicted as 28x28 grayscale images. As

the dataset contains three-dimensional objects rather than handwritten digits, it was

proposed as a more challenging task than that of MNIST.

As with MNIST, we are expected to classify 10 different classes, as shown in Figure

4.10. The SDT is trained in 60 epochs and a stopping criterion is introduced that

halts the optimisation process after 10 consecutive epochs without improvement.

Using a tree with 4 layers, we are able to attain 78% accuracy on the test set through

Distillation with 81% fidelity to the network. Prior to this, we train a convolutional

neural network in order to identify soft targets for distillation distillation, which yields

93% accuracy on the test set.
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Figure 4.11: Distilled Soft Decision Tree with layer depth of 4 trained on Fashion-
MNIST after 40 epochs achieving 78% accuracy. Various filters highlight the distin-
guishing features of specific clothing items.

Looking at the nodes located in the first layers of the tree, it is evident from the de-

picted masks that the model has learned to distinguish between clothes on the right

and shoes including bags on the left. The significant differences in underlying struc-

ture seem to provide a good basis for dividing the classes for classification purposes.

This is also consistent with the abstractions of neurons in the first layers of NNs, as

demonstrated by Zeiler and Fergus (2014).

However, increasing the depth of the tree does not appear to enhance fidelity or accu-

racy significantly while reducing the ease of understanding the tree as outlined in Ta-

ble 4.2.

Tree Depth Distilled Accuracy Fidelity

4 No 72% –
4 Yes 78% 81%
5 No 82% –
5 Yes 83% 83%

Table 4.2: Results of different Soft Decision Trees on the Fashion-MNIST dataset
with and without Distillation.

4.2.3.3 CIFAR-10

In order to increase the difficulty of the image classification task, we also conducted

experiments using the CIFAR-10 dataset (Krizhevsky, 2009) as it presents an even

more demanding challenge. This dataset consists of 60000 colour images that belong
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Label Description

0 Airplane
1 Automobile
2 Bird
3 Cat
4 Deer
5 Dog
6 Frog
7 Horse
8 Ship
9 Truck

Figure 4.12: Left: Different classes of the CIFAR-10 dataset. Right: Example images
of the CIFAR-10 dataset (Krizhevsky, 2009). Each row corresponds to the labels in
the table on the left.

to 10 different classes. These images have a size of 32 by 32 pixels with three channels

(RGB).

An advantage of convolutional neural networks for these tasks is their ability to learn

feature mappings from input images. Because objects can be depicted from many an-

gles and positions, spatial invariance is essential for a CNN to be able to perform well

in these types of tasks. Using the Convolution Neural Network without considerable

hyperparameter tuning, we achieve a 95% accuracy on the test set.

Following several iterations with different trees of varying size, the best possible

achievement we are able to achieve is around 35% test accuracy. The layer depth did

not appear to have a significant impact on accuracy, since the model was underper-

forming regardless of the layer depth. The results showed that varying the layer depth

from 4 to 8 resulted in only marginal performance differences (33%-35%). Distilling

the information in the Soft Decision Tree of this network did not demonstrate any

significant improvements, with performance being improved by less than 1%.

Soft Decision Trees may be limited in their ability to represent complex images and

therefore be unable to classify complex images, due to this fundamental limitation.

As evidenced by Figure 4.13, the learned filters used to represent the information con-

sidered by the classification algorithm are producing incomprehensible abstractions.

This type of highly incomprehensible format makes it impossible to reason with the

tree and misses the main purpose of the use of the Soft Decision Tree approach. The
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Figure 4.13: Soft Decision Tree with layer depth of 4 trained on CIFAR-10 after 40
epochs.

many different positions of the objects can cause difficulties as we only have a limited

amount of nodes and connections to perform effective classification.

4.2.4 Limitations of Soft Decision Trees

In all of our investigations, the results indicate that trees may vary greatly in terms

of accuracy and fidelity when it comes to varying the depth of the trees. We conclude

that the accuracy-intelligibility trade-off cannot be resolved by Soft Decision Trees,

rather this method can be viewed as a means to cover a space between the extremes.

Distillation has the advantage of being adaptable to a wide variety of architectural

designs and requiring few assumptions. Although such flexibility may be desirable,

it may not be accurate to assume that the underlying network is being described as

closely as possible. Distillation may allow for the transmission of information to a cer-

tain extent, however there are limitations through approximation when utilising only

soft targets for the transfer of information. In particular, the utilised node mask does

not possess the ability to adapt to complex domains. The lack of feature mappings

available to Soft Decision Trees renders them fundamentally ineffective in the appli-

cation of explaining complex image classifiers. While soft targets may force a closer

approximation of the inherent model structure into the extracted representation (see

the Fashion-MNIST example), the underlying representations differ significantly. A

node-mask filter in the Soft-Decision-Tree is limited to a linear mapping, whereas

the feature mappings of Convolutional Neural Networks are based on non-linear con-

volutional transformations that allow for powerful feature representation (as will be
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demonstrated in chapter 6 and 7). In addition, the expressiveness of the operations

are limited when compared to logic-based methods that would be able to capture

full first-order logic. Despite the fact that a soft decision tree representation is fully

differentiable, it lacks the precision and power of logic.

The result is that both the extracted representations as well as the connections

among these representations impede the attempt to approximate a black-box model

as closely as possible. In the next chapter we will create a synthesis of what has been

presented and motivate the choice of a neural-symbolic approach.
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Chapter 5

Need for Neural-Symbolic
integration for XAI

Based on a review of a variety of explainability methods, we have focused on two

specific methods that address the pressing problem of opaque autonomous decision-

making by focusing either on the inherent representations of the models or on its se-

quential operations. Post-hoc model-agnostic methods are currently the most widely

used, owing to their practicality. As such, these methods provide domain experts with

the tools necessary to gain some degree of understanding of the underlying mecha-

nisms that influenced a particular decision.

The representation implied varying degrees of expressiveness based on the data, do-

main, and algorithmic performance. A logic or tree-based approach may achieve

greater transparency with regard to the underlying rules that lead to a decision. In

the case of images, this level of detailed understanding may be undesirable as it does

not further understanding, as shown by our result.

Nevertheless, with increasing complexity of tasks, it is desirable that an explana-

tion method be flexible in abstraction, use intermediate representations of the model.

Ideally, the model should be capable of learning and implementing data transforma-

tions that will enable powerful yet comprehensible representations to be generated.

It should be noted that, although a hierarchical structure is created in the Soft De-

cision Tree, the data fed into the nodes at each layer is still the untransformed input

vector. Though it helps with comprehension of individual nodes for simple datasets,

this negatively impacts the model’s ability to learn representations that are able to

capture information that is needed to achieve high levels of accuracy and fidelity in

complex tasks.

In order to achieve intuitive and powerful model explanations, we may require

XAI methods to allow for representations that can capture powerful concept repre-
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sentation based on data integrated with comprehensive operations. A powerful yet

intuitive approach to XAI may only be possible through both the extraction of inner

representation in conjunction with the ability to connect the concepts using logical

explanations.

Our study of the TCAV approach revealed that it is effective at extracting represen-

tation and subsequently linking the output of the model with high-level concepts. By

creating explanations on a concept level, this allows for intuitive explanations, but

does not offer the opportunity to grasp the underlying relationships of such concept

symbols in the model reasoning process. The study of Soft Decision Trees indicates,

however, indicates that methods which allow full transparency into the operational

structure of the model may be unable to handle complex tasks.

Currently, most XAI methods are very specialised in the sense that they tend

to focus on one aspect of the Machine Learning pipeline rather than considering it

as effective communication bridge more broadly. As a result of this, there is an-

other major limitation: Current approaches to XAI are considered to be one-way

communication channels. Because of the current design, expert knowledge cannot be

incorporated back into the network once we gain insights into the behaviour of the

model. As outlined in Bader and Hitzler (2005), we have the capability to extract

and revise knowledge, but are currently lacking a mechanism for reintegrating them

back into the model. The propositional knowledge extraction method TREPAN is

also subject to this limitation. The vast majority of XAI methods focus on obtaining

the extracted representations and validating them, opposed to tightly integrating the

approach with the original network.

XAI, if viewed as an effective communication bridge, should be capable of feeding

information back into the network if we are able to access representations and their

relationships accurately. The model and its representation would be continually re-

fined and consolidated over time through interaction with domain experts who can

review and revise the information.

5.1 Neural-Symbolic Systems

In the following paragraphs we illustrate why a neural-symbolic approach may be able

to overcome some fundamental limitations that have been demonstrated in the ex-

periments above. In addition to taking advantage of model-inherent representations,

it permits us to counteract any undesirable model behaviour and take advantage of
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logic’s expressiveness. We will later demonstrate the benefits of such an integration

through a variety of experiments.

To begin with, we investigated the hidden representations within a trained Neural

Network, but were unable to reason directly about the underlying operations. With-

out an understanding of the behaviour of the model, the trust and understanding

gained with this technique will always remain limited. We then evaluated the ap-

proximation of a model by reducing the complexity of its underlying structure, thus

allowing for the extraction of knowledge on how the model operates. Nevertheless,

we also saw the limitations of the task in terms of its technical complexity, due to the

lack of versatility.

In light of the above limitations, we consider the integration of logically connected

symbolic representations in combination with the powerful learning abilities of neu-

ral networks to be the most promising method of a holistic approach to explainable

Artificial Intelligence. There has been a steady increase in research efforts devoted

to breaking down the inherently incomprehensible information representation found

in neural networks. Comparatively fewer attempts have been focused on rectifying

several fundamental shortcomings through the integration of symbol grounding and

logical reasoning.

A primary goal of this integration is to retain the ability to learn from data and ex-

perience while also being able to reason based on what has been learned. The use of

Neural-Symbolic integration has the potential to address a number of notable short-

comings that characterise standard neural networks and their explanations, including

limited generalisation, lack of robustness, and lack of comprehensibility. It is note-

worthy that there are a number of integration methods that relate to explainability

to some degree, but this dimension is often not of primary concern.

Although neural networks and symbolic systems are frequently regarded as two ir-

reconcilable methods, their differences are more subtle than is commonly assumed.

Symbolic systems operate at a symbolic level, which involves reasoning on abstract

entities in accordance with a logical structure. The purpose of a logical system is to

model the same type of reasoning utilised by humans in their everyday lives, thereby

rendering the system more comprehensible. It should be noted that there is a differ-

ence between human reasoning and humans explaining their reasoning. We intend to

emulate the latter using the proposed neural-symbolic XAI method in chapter 6 and

to do so, we use elements of symbolic systems that are derived from the former.

Conversely, neural networks operate at a sub-symbolic level. The individual neurons

do not necessarily constitute a recognisable concept. A model may rather rely on its
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predictive capacities rather than any robust abstract reasoning to model weak statis-

tical regularities in a dataset. Thus, integration could connect low-level information

processing, such as perception and pattern recognition, with reasoning and explana-

tion at a higher level of conceptual information (Garcez et al., 2008).

It is the complementary nature of symbolism and connectionism that is at the foun-

dation of the Neural-Symbolic approach. It is widely acknowledged that symbolic

systems are unable to match the versatility and scalability of learning algorithms

used in neural networks (Garcez et al., 2008). However, neural networks lack the

ability to generate verifiable and understandable abstract reasoning capabilities that

are associated with symbolic systems. When translated symbolically, ‘cows give milk’

does not refer to any specific cow, but can be generalised to encompass all cows. It is

understood that neural networks are limited to the set of training data provided, and

that there are no guarantees that ‘cow’, ‘milk’, and their relationship will be encoded

correctly (Mundt et al., 2020). In fact, research has shown that Neural Networks are

susceptible to minor pertubations in low-level input, referred to as adversarial attacks

(Kurakin et al., 2017).

Besides the complementary nature of these approaches, a general question about dif-

ferences arises about where the substantive differences are manifested. Odense (2019)

provides extensive formal alignments showing that the primary difference between

neural networks and logical systems arises from representational differences.

The benefits of the Neural-Symbolic integration include the fact that the repre-

sentations are abstract, reusable, and general in nature. In fact, they alleviate some

of the key issues associated with current Deep Learning (DL) methods. Although the

data efficiency and sample complexity of deep learning systems are highly compu-

tationally and data intensive, symbolic approaches are less demanding. In addition,

DL approaches do not tend to generalise out of distribution and provide a limited

basis for a transfer of knowledge, whereas symbolic representations overcome these

limitations. Moreover, DL systems are opaque, in contrast to symbolic approaches

that follow a transparent, human-comprehensible decision making process (Garcez

et al., 2019).

If the right level of abstraction is applied, such as objects, concepts, and their re-

lationships, explanations based on logical operations might be effective, even in the

high-dimensional domains of images and videos. Moreover, a comprehensive general-

isation of models may not be possible until a higher conceptual level is attained.

Upon analysing knowledge extraction methods and investigating the advantages of us-

ing soft decision trees to extract information into tree-based structures, we concluded
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that these methods are insightful and usable, but are difficult to apply in safety-

critical fields where accurate and reliable information regarding a system’s behaviour

is needed. A significant contributing factor to this issue is that most explainability

methods fail to take into account the decomposition of hidden representation within

a network.

Figure 5.1: Illustration of the neural-symbolic cycle (Garcez et al., 2001): knowl-
edge extraction will be carried out by querying a deep network interactively and
learning continually, thus applying the neural-symbolic cycle multiple times. The
neural-symbolic cycle can be seen as offering common ground for communication and
system interaction, allowing for a human-in-the-loop approach. Symbolic knowledge
representations extracted from the learning system at an adequate abstract level for
communication with users should allow knowledge consolidation and targeted revi-
sion. In the next chapter, we will evaluate its reasoning capability as wee as applica-
bility in the context of improving fairness constraints. Knowledge inserted into the
training of the deep network in the form of first-order logic constraints will be shown
to improve fairness while maintaining performance of the system in direct comparison
with current standard methods on different fairness metrics.

Figure 5.1 illustrates the general principle behind using Neural-Symbolic tech-

niques to approach Machine Learning problems. A system is proposed, where one

side consists of a symbolic representation that is both writable and readable by hu-

man experts, while the other side comprises a Neural Network with the potential

to fully utilise the powerful connectionist training methods. With an iterative loop,

symbolic (expert) knowledge can be embedded into the Neural Network as well as

learned and refined knowledge extracted from the Neural Network. Using raw data,

pre-defined rules can be adjusted, allowing them to be modified as needed.

Systems that synthesize neural networks and symbolic representations typically

address each of the following characteristics explicitly: Representation, Extraction,
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Reasoning, and Learning.

Knowledge representation can facilitate the mapping between the integrated symbol-

ism and connectionism. There are various types of representations, such as rule-based,

formula-based, and embeddings. In the manner described previously, the objective

may be to extract symbolic information from a trained neural network for explaining

and reasoning purposes. Furthermore, efforts have been made to facilitate the process

of learning from data directly into a neural-symbolic systems. For instance, Inductive

Logic Programming (ILP) can be used to develop logic programs directly from ex-

amples (França et al., 2014). Further, learning with logical constraints has generally

proven beneficial for improving data efficiency (Garnelo and Shanahan, 2019). These

constraints may be implemented, for example, as a logic module layered on top of a

regular neural network. Consequently, models are able to gain insight into relations

in-between the abstractions as well as assist in guiding the model towards explana-

tions. Also, one of the primary functions of neural-symbolic systems is to facilitate

reasoning. As an example, the system might facilitate the generation of new knowl-

edge based on the knowledge acquired during the training phase (Garcez et al., 2002).

Moreover, explainability is becoming an increasingly important characteristic of neural-

symbolic systems. Neural networks, due to the extensive number of parameters,

provide powerful learning capabilities when the number of hidden units, number of

layers, as well as optimisation and regularisation techniques are correctly set up. As

models are being utilised in areas with impactful automated decision making, there is

an increasing need for explainability and interpretability in neural-symbolic systems.

Early on, several proposals had been put forward to extract logical rules from neural

networks (Craven, 1996). Despite these efforts, most methods were unable to cope

with the exponentially increasing complexity of the data and network.

Ideally, approaches to explainability in AI should facilitate explanations that are con-

sistent with human explanations via symbolic reasoning and are therefore intuitive

to understand. However, this should not imply that the model capabilities are fun-

damentally simplistic and susceptible to under-fitting to complex scenarios. Our goal

is to utilise the power of learning through differentiable optimisation over distributed

representations to provide task solutions from data-driven models in conjunction with

an interface that allows users to reason about what has been learned.

At present, neural networks that are sufficiently trained may contain concept repre-

sentations that are human-comprehensible and have an inherent logic. However, there

is no method that is capable of precisely obtaining information of this type. In the

current state of Knowledge Extraction, techniques only approximate the input-output
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behaviour, and we have no way to compel the extracted representation to follow the

underlying logic of the network. A substantial share of explanation methods have tra-

ditionally been achieved through post-hoc explanation techniques (as outlined in the

taxonomy). Even though an explanation that is solely based on statistical techniques

may be beneficial, it is far from being a guaranteed and credible explanation. The ma-

jority of explainability methods are not powerful enough to provide guarantees about

the truthfulness or accuracy of the explanations in relation to the underlying models,

and current metrics lack an effective method of expressing the uncertainty associated

with these models. The measured fidelity is supposed to be a reliable indicator of

the conformance of our representation to the underlying model. It has been demon-

strated, however, that this metric may not be powerful enough to find representations

that allow the user to understand the reasoning behind a given representation (White

and Garcez, 2020), a gap that symbolic integration could potentially address.

In the process of providing explanations, one of the limitations of current post-hoc

XAI methods is that they do not consider domain knowledge and general background

information.

5.2 Reasoning about What Has Been Learned

Following from this analysis, we propose to define XAI more broadly as the alignment

of model behaviour with human comprehension. The presented approaches have em-

ployed different methods for conveying insight into the model itself, but the most

essential desiderata remains the communication between the model and the user.

Therefore, if we wish for intuitive human-like explanations as the main communi-

cation method, the alignment must take place at some higher level of abstraction.

While the predominant low-level and statistical-based explanations are effective for

debugging models, logical and reasoning-based explanations require more abstract

grounded knowledge utilising higher-level concepts.

Moreover, relying on approximation by any explanation method necessarily results in

a loss of information and, consequently, may reduce the quality of the explanation. In

contrast, a strong alignment could yield more accurate information if the fundamental

building blocks are the same.

It appears reasonable to exert a common ground of inherent logic from the ground up

in order to facilitate mutual interactions between humans and artificial intelligence

systems. This common ground can be conceptualised as the modularity that inte-

grates perception at the sub-symbolic level with reasoning at the symbolic level. AI
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advances have provided robust solutions to a number of perception-related problems.

Nevertheless, we would like to facilitate the integration of logic using symbolic rep-

resentations in order to ensure that the model can be understood at a fundamental

and intuitive level.

In the following chapter, we propose a framework that allows for a direct interpreta-

tion of the abstract representation and operations in a neural network. Ideally, this

functionality would be imposed after training so that it could easily be incorporated

into existing applications. Furthermore, to guarantee that the structure is able to

adapt to the complexity of tasks, considerable flexibility will be needed. If we wish to

ensure that effective communication is not compromised by irreconcilable differences,

we should ensure that the model is accessible by means of human-interpretable oper-

ations and abstractions that are accurate.

By using this approach, we anticipate to overcome some of the fundamental limita-

tions we observed in the Soft Decision Tree experiments. These limitations include the

limited ability to solve complex tasks while simultaneously understanding the model’s

reasoning process comprehensively. Furthermore, unlike the TCAV demonstration,

the proposed method may give us a better understanding of operational reasoning

capabilities using concept representations within the model.

In addition, Neural-Symbolic integration may allow us to overcome the static limi-

tations of the current machine learning paradigm. Explainability methods of today

do not provide us with the ability to act on extracted knowledge. When undesired

properties are discovered, the only means to influence the model is to retrain it until

a satisfactory model is found. However, retraining as a process is unguided and can

only be influenced indirectly through the collection of additional data. The result is

that many explanation methods are only limited in their usefulness, since the con-

sequences commonly involve catastrophic forgetting of acquired information (French,

1999; Parisi et al., 2019). This refers to the phenomenon that previously learned in-

formation is erased upon learning new information. In the neural-symbolic approach,

the goal is to allow for interactive continual reasoning about what has been learned

in order to improve the model as needed.

It is important to distinguish between reasoning as it occurs during learning, which

is predominantly concerned with how information is used to accomplish a task, and

reasoning as it occurs after we have learned something. It is the latter question that is

fundamental to explainability whereas the former question represents the central ques-

tion addressed by a wide variety of model architectures and optimisation methods. In

the following chapter we will address both, and we strive to produce mechanisms that
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allow us to reason about information that accumulates inside the model during the

learning process. Nevertheless, both perspectives are inherently linked as the model

reasoning steps during optimisation are integral to how we conduct the reasoning

process regarding what hase been learning.

We are going to investigate the potential of the extended Logic Tensor Networks

(LTN) framework (Serafini and Garcez, 2016) to enable the full Neural-Symbolic cir-

cle, including knowledge extraction and translation as shown in Figure 5.1. It would

demonstrate the potential of Neural-Symbolic systems in enabling bi-directional com-

munication between the AI system and human experts and users and, therefore, make

a significant contribution towards creating an understandable, continual, and inter-

active artificial intelligence system.
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Chapter 6

Neural-Symbolic Integration for
interactive XAI

Futia and Vetrò (2020) underline the importance of neural-symbolic integration for

explainability by suggesting that traditional explainable AI (XAI) methods lack the

ability to provide explanations for the variety of target audiences. While most of the

explainability methods may be valuable at providing insight to ML experts, domain

experts in applications such as finance or healthcare may struggle to interpret the

explanations given. It is proposed that interactive integration with semantically-

rich representations is key to refining explanations targeted at different stakeholders

(Futia and Vetrò, 2020). Indeed, having flexibility in the abstract representation of

information that forms an explanation is key to leveraging domain expertise through

interaction and revision of the decision making process.

We propose to define explainable AI as the alignment of model behaviour with

human values achieved through model comprehensibility and revision using a commu-

nication bridge. With the use of the neural-symbolic cycle (Fig.5.1), we seek to bridge

low-level information processing such as perception and pattern recognition with rea-

soning and explanation at a higher-level of abstract knowledge. If one wishes to obtain

intuitive, human-like explanations, the alignment must take place at a high level of

abstraction with an ability to drill down to deeper explanations as the need arises, as

in the case of a child’s sequence of why questions. While the predominant low-level

and statistical explanations are effective for debugging, logical and reasoning-based

explanations require a more abstract knowledge representation utilising higher-level

concepts.

Our aim is to query the neural network for symbolic knowledge so that a direct inter-

pretation of abstract representations and operations on those representations becomes

feasible. The approach seeks to explain and possibly revise a decision making process
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post-hoc, and to be model-agnostic. Furthermore, to ensure that the model can adapt

to the complexity of tasks in the usual way as popularised by current ML, we aim to

retain the advantages of gradient-based, end-to-end learning. As a means of ensuring

that the common communication layer is not hindered by irreconcilable disparities

between the symbolic (discrete) and neural (continuous) representations, we will need

to ensure that the model can be queried with human-interpretable operations at an

adequate level of abstraction.

The Neural-Symbolic bridge between logic and Neural Network serves as this com-

munication layer, as logic provides the semantic precision required of the questions

to be put to the model. Although the use of logic may seem to be a barrier at first

sight, it is required to formalise knowledge and interaction with a precise semantics.

The gap that may exist can, in principle, be filled by building wrappers to formulate

logical queries e.g. using natural language (Singh et al., 2020).

The core building block of the system will be the usual logical operators (conjunc-

tion, disjunction, negation, implication). The goal is to provide an intuition into the

operations that the ML model has inferred, based on the observed data of a given

task. The logical operators connect the symbol representations also in the usual way.

Symbols are tangible references which will be used to denote abstract concepts that

arise through learning of model-specific, data-driven representations. These abstract

concepts will be derived from within a trained model, giving rise to explanations that

are grounded on the model’s inherent representation and operations.

The neural-symbolic framework adopted in this chapter is that of Logic Tensor Net-

works (LTN) as described in Serafini and Garcez (2016) and Badreddine et al. (2020).

However, instead of treating the learning of the parameters from data and knowledge

as a single process, we emphasise the dynamic and flexible nature of training from

data, followed by querying the trained model for knowledge and then by consoli-

dating that knowledge in the form of constraints for further training, as part of a

cycle with stopping criteria defined by the user. We make LTN iterative by saving

the parametrization learned at each cycle in our implementation, while not requiring

the use of any specific model architecture, thus making the approach fully model-

agnostic.

By using LTNs, we wish to incorporate representational capabilities with greater

complexity, due to the addition of information-rich latent representations. However,

we retain the ability to incorporate inherent logic through the symbolic interpretation.
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We will begin this chapter by introducing the LTN framework, which we will em-

ploy and adapt for the purpose of continual learning and reasoning about learned

knowledge. Additionally, this involves the specification of different approaches that

can be used to acquire knowledge by using the framework. Furthermore, we explore

the practical reasoning capabilities more generally of neural networks as part of differ-

entiable fuzzy logic systems. Methods that use fuzzy logic operators to distill logical

knowledge into a model architecture employing constraint-based differentiable con-

tinuous function optimization are referred to as differentiable fuzzy logic methods. In

this study, we will examine limitations associated with neural-symbolic frameworks

arising from the difference between the assumptions underlying logical systems and

machine learning techniques. To substantiate this, we provide a comparison with a

study conducted by Bianchi and Hitzler (2019), improving on the reasoning abilities

baseline by considering the outlined considerations. Following these investigations

on reasoning capabilities, we will apply this framework more practically within the

context of quantitative fairness in order to illustrate how the continual reasoning fa-

cilitated by the neural-symbolic approach is capable of guiding the model operations

in accordance with human values. As an additional benefit, it will connect to existing

XAI methods of the post-hoc category outlined in the taxonomy chapter. We explore

how such a method, in this case SHAP, might be incorporated into the framework

for interactive revision. Through the use of this integration, we will show that the

framework can also complement existing XAI methods by providing the capability

to act on the extracted information. Finally, we will illustrate how the ability to

incorporate concept groundings into the proposed framework can give rise to power-

ful logical explanations of the model that are intuitively understandable. The study

will describe how concept activation vectors, introduced in chapter 4, can be used to

integrate abstract representation into first-order logic. We will demonstrate the im-

plementation and use of this methodology on a variety of datasets and deep learning

model architectures. These model architectures have proven to be capable of learning

generalisable concepts that are suitable of being disseminated to new and different

tasks.

The purpose of this chapter is to demonstrate that neural-symbolic integration

can serve as a strong foundation for more trustworthy, fair, and transparent Artificial

Intelligence systems. Following a discussion of potential reasoning limitations of fuzzy

logic systems such as the one employed in this chapter, we show how the method lends

itself to the alignment of human values (such as fairness) with learning systems. The
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approach provides a means to reason about what has been learned in an accessible

manner.

The contributions of this chapter are:

• We implement and outline the use of LTN for continual learning and iterative

querying by caching the learned representations and by using network querying

in first-order logic to check for knowledge learned by the deep neural network.

• We evaluate the reasoning capabilities of the proposed framework and specify

what constitutes valuable background knowledge that contributes to improved

deduction.

• We introduce a method that allows one to act on information extracted by any

XAI approach in order to prevent the learning model from learning unwanted

behaviour or bias discovered by the XAI approach. We demonstrate how our

method can leverage an existing XAI method, known as SHAP (Lundberg and

Lee, 2017), to discover and address undesired model behaviour.

• We apply the proposed method and tool to the field of quantitative fairness in

finance. Experimental results reported in this section show comparable or im-

proved accuracy across three datasets while achieving fairness based on two fair-

ness metrics, including a 7.1% average increase in accuracy in comparison with

a state-of-the-art neural network-based approach (Padala and Gujar, 2020).

6.1 Related Work

A variety of methods have been developed to integrate neural and symbolic ap-

proaches. Marra et al. (2021) provide a taxonomy of various Neural-Symbolic inte-

gration methods and draw connections between these methods and the closely related

domain of Statistical Relational Artificial Intelligence (StarAI). For a comprehensive

overview of the broad field, this survey provides an in-depth assessment. Our re-

search will focus on the category of Differentiable Fuzzy Logics (DFL), which has been

proposed as a category of Neural-Symbolic methods in Krieken et al. (2020). The

comparable methods considered here are also computational models that integrate

logical reasoning and deep learning into a fully differentiable end-to-end optimizable

architecture.

Based on neural-symbolic approaches that employ fuzzy logic with real-valued logical

operators, it is possible to construct a differentiable loss function that is derived from
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background knowledge, which can involve multiple logical formulas. Through the use

of data, these approaches use fuzzy logic to determine the truth value of statements

in the form of logical formulas. As the method works in a semi-supervised setting,

the data itself can be labelled, unlabelled or sparsely labelled. A representation of

this approach can be found in: Badreddine et al. (2020); Serafini and Garcez (2016);

Guo et al. (2016); Diligenti et al. (2017); Marra et al. (2019).

In the following, we will provide a high-level overview of the DFL methods before they

are discussed in more detail using parts of the LTN framework below. The semantics

in Differentiable Fuzzy Logic (DFL) methods are derived from vector embeddings

and functions, with logic terms being interpreted in that vector space derived from a

real (valued) world. Objects are d-dimensional vectors of real values in the domain.

Predicates are mappings from these vectors to fuzzy truth-values in the interval [0, 1],

which may be modelled by trainable NNs that contain learnable parameters θ, con-

sidered interpretations, as they assign meaning to the symbols of the logical language.

Therefore, varying values of θ will have different implications for the embedded in-

terpretation. For the purpose of emphasising that symbols are interpreted based on

their grounding onto real numbers, we will use the symbol grounding, denoted by G.

The truth values of logical formulas containing quantifiers are determined by using

an aggregation function A : [0, 1]n → [0, 1]. Moreover, to derive fuzzy truth values for

atomic formulas that will be aggregated into the satisfiability of the knowledgebase

of logical formulas, Sat(K), DFL methods rely on fuzzy logic operators that preserve

(some) properties of Boolean logic (Krieken et al., 2020). In LTN and other DFL

methods, the parameters θ, associated with the predicate groundings, are learned

using the maximum satisfiability with respect to the knowledge-base 〈K,Gθ〉 as an

optimisation method. This is subsequently reduced to an optimisation problem that

can be approached using gradient-descent methods:

θ∗ = arg max
θ∈Θ

SatA(Gθ(K))

subject to an aggregation A of all logical formulas. θ∗ is obtained by minimising a loss

function that encompasses grounded knowledge 〈K,Gθ〉 and maximising satisfiability.

Upon convergence of the satisfiability to 1, the network satisfies all formulas contained

in the knowledge base K. In light of the fact that all fuzzy operators, including

aggregations, are differentiable, gradient descent can be employed to achieve this

optimisation.

In order to contextualise the method employed, we would like to highlight two

related approaches in particular. Hu et al. (2016) present a framework that utilises a
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distillation process, which we describe in the section on soft decision trees, to learn

from data and rules. The purpose of the distillation method using soft decision trees

is to provide a simplified model for enhancing explainability, whereas in the approach

provided by Hu et al. (2016), the authors employ this method for translating logical

formulas into a neural network. In this scenario, a neural network is used as a student

model and a teacher model for distillation. Essentially, the student network is used

for inference, while the teacher encodes logical rules into the network. It is done by

combining the losses from the student and teacher networks, which is a convex combi-

nation of each loss. Accordingly, the student network is iteratively trained to encode

a set of constraint clauses. However, the approach to encoding logical constraints into

the network is different from DFL methods.

In the LTN method, constraints are directly imposed on the network parameters

during the learning steps, and the satisfiability of each formula is explicitly opti-

mised. Through direct connection between the logical formulas and the network, the

approach allows for more transparent representation of individual constraint satisfia-

bility as well as higher assurance of explicit behaviour.

Marra et al. (2019) introduce an approach called LYRICS, which is closely re-

lated to the LTN framework which will be described in detail below. As with other

Differentiable Fuzzy Logic approaches, logical constraints are translated into a loss

function that measures the overall statisfiability of the knowledge-base based on the

parameters of the network. The essential difference the authors propose is the addi-

tion of a hyper-parameter, namely weights to each of the logical formulas. As will be

shown in the section on modularity of loss, this addition can be easily accomplished

in the LTN framework in a variety of ways and is therefore not a disavantage of the

framework itself.

While the LTN approach enables a combined learning of logic and data, Deep Logic

Models (DLM) (Marra et al., 2020) and KENN (Daniele and Serafini, 2019) serve

to impose logic onto the model during inference. Both approaches are based on the

modification of the model prediction, in accordance with a set of logical constraints.

As part of the KENN framework, a knowledge enhancer is a function that modifies

the output of a neural network according to a set of weighted constraints, formulated

in quantifiable terms Daniele and Serafini (2019). A training set provides the basis for

learning the weighting of the logical clause constraint. The LTN framework presents

training data and logical constraints uniformly based on logic formulas, therefore en-

suring that the data and knowledge are consistent. KENN, on the other hand, may
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minimise the loss by overlooking logical clauses, if the data is preferred to the knowl-

edge. As opposed to LTN, where the constraints may be written in full first-order

logic, KENN is limited to universally quantified clauses. DLM differs from KENN

primarily in the way constraints are imposed on the predictions (Marra et al., 2020).

An undirected graphical model is used alongside the neural network in this case, in

which the graphical model corresponds to the logical constraint. As a result, they

correspond to groundings of propositional formulas based on the target truth assign-

ment and the weights of the formula. Again, the weights of each formula are learned

through optimisation. Similar to LTN, DLM evaluates constraints with fuzzy seman-

tics. However, it only takes into account propositional connectives, whereas LTN

supports both universal and existential quantifiers.

The approach of Markov Logic Networks (MLN) and its variants differs from the

method of real logic adopted in this context. MLNs measure the degree of truth of a

formula according to the number of models that satisfy that formula; i.e. the more

models that satisfy it, the higher the degree of truth (Richardson and Domingos,

2006). Hybrid MLNs introduce a relation between real features and constants, which

is pre-determined rather than learned (Jue and Domingos, 2008). Instead, real logic

determines the level of truth of complex formulas through (fuzzy) logical reasoning,

and the connection between the features of different objects is learned through op-

timisation. Furthermore, MLNs are based on a closed world assumption, while Real

Logic operates under an open-world assumption.

The use of Logic Neural Networks (Riegel et al., 2020) facilitates a more modular

approach to the architecture of the network, since it corresponds directly to a system

of logical formulas. Each individual neuron is associated with an element of a formula

in real-valued logic, resulting in disentangled representations. Each of the formulas

here is accompanied by a learnable weight as is also done in LYRICS (Marra et al.,

2019).

This architecture results in a representation that is inherently interpretable since in-

dividual neurons function as logical connections that can be understood. In contrast,

we use distributed representations, which are learned to follow the specified real-

valued logic constraints. This allows for a greater degree of flexibility in learning as

well as the use of low-level input data, such as images. In spite of the fact that dis-

tributed representations may emphasise functionality over inherent interpretability,

we will show how our approach can address this challenge by grounding the learned

representation in human-comprehensible symbols.
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6.2 Method

The specific framework used in this section builds upon Logic Tensor Networks (Ser-

afini and Garcez, 2016). Hence, we utilise its central notion of Real Logic as a fully-

differentiable first-order logic. However, our approach is modified by instead of treat-

ing parameter learning using data and knowledge as a single process, we emphasise

the dynamic and flexible nature of the process of training from data, querying the

trained model for knowledge, and adding knowledge in the form of constraints for fur-

ther training, as part of an interactive cycle (as illustrated in Figure 6.2). Therefore,

our approach focuses on the core of the LTN method: constraint-based learning from

data and first-order logic knowledge. Moreover, we make the framework iterative by

saving the learned parametrisation at each cycle in our implementation, while remov-

ing the previously proposed use of Neural Tensor Networks for predicate mappings

(Socher et al., 2013; Serafini and Garcez, 2016). As part of the experiments below,

we utilise a variety of neural network architectures, including standard feed-forward

networks when not specified otherwise.

As a result, we refer to the LTN adaptation as a framework for both indicating

the semantics of real logic as well as the translation of task learning from data and

knowledge into an optimisation process based on the satisfiability levels of individual

clauses. In our adaptation of the framework, we do not refer to LTN as a model in

the classical sense as it is model-agnostic.

In light of this, the framework and experiments described below cannot be viewed as

mere applications of the LTN method. Although we are building on the formalised

system outlined in Badreddine et al. (2020) that provides us with the differentiable

fuzzy logic setting, the actual implementation extends the existing work on several

key points. Among the distinctive characteristics of our approach is the attention

paid to the explainability aspect and the introduction of various methods for extract-

ing information to reason about what has been learned. It is true that some form of

transparency is commonly recognised as a positive side-effect, however giving primary

consideration to this characteristic as a core feature is something not prevalent in the

LTN and DFL context in general.

Further, with the focus on enabling human-machine interaction, the continuous ap-

plication of revision, consolidation, and extraction of knowledge is another key con-

tribution. LTN, described in Serafini and Garcez (2016); Badreddine et al. (2020) is

centred around simultaneous learning from background knowledge and data using a

neural network architecture, while we are interested in extracting information that
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allows for oversight along with interactive continual learning.

As we begin this section, we will provide an overview of the aspects of LTN relevant to

this thesis. Further, we will outline how the continuous approach fits into this frame-

work. Moreover, we discuss how the existing optimisation function may be extended

to provide the user with greater control over the model behaviour and the resultant

model reasoning. The purpose of this is to derive a general definition and investi-

gate reasoning capabilities of LTNs and differentiable fuzzy logic systems in general

as part of the subsequent sections. Here we show how different underlying assump-

tions may lead to varying deductive capabilities. This behaviour is examined in more

detail, as a comprehensive understanding of the reasoning capabilities of the model

and of its potential limitations is fundamental to the development of an interactive

framework. In order to demonstrate how the framework can be used in a variety of

practical XAI settings, it is necessary to clarify how a neural-symbolic model, trained

on data and background knowledge, is capable of deducing knowledge from given

information. We can thus gain an understanding of what will constitute adequate

background knowledge to construct a system whose reasoning capacity is worthy of

investigation. In the absence of reasoning capabilities within the model, an extraction

and revision of inherent knowledge would be unnecessary. As we illustrate different

levels of deductive capability using different settings of background knowledge and

model architecture through an illustrative example of a particular logical axiom, we

will expand these findings by assessing the deductive capacity of our approach across

two datasets in comparison with existing research from Bianchi and Hitzler (2019).

In this study, we demonstrate that, by considering the underlying assumptions and

limitations of DFL systems, practical reasoning capabilities can be improved using

the continual framework.

6.2.1 Language

Logic Tensor Networks (Serafini and Garcez, 2016; Donadello et al., 2017; Badred-

dine et al., 2020) implement a many-valued first-order logic (FOL) language L, which

consists of a set of constants C, variables X , function symbols F and predicate sym-

bols P . Logical formulas in L allow for the specification of background knowledge

pertinent to the task at hand. The syntax in LTN follows from FOL, with formulas

consisting of predicate symbols with negation (¬), binary connectives: conjunction,

disjunction, implication, bi-implication (∧,∨,→,↔) and quantifiers: universal and

existantial (∀,∃). Formulas in L also facilitate the specification of relational knowl-

edge using variables. As an example, consider the atomic formula partOf (o1, o2),
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which indicates that object o1 is a part of object o2. Additionally, since we are in-

terested in learning and reasoning in real-world scenarios, exceptions to the rule may

occur. Due to the fuzzy semantics adopted by the language, formulas may be par-

tially true in case of exceptions.

To obtain a broader description of the underlying syntax and semantics, we refer

the reader to Badreddine et al. (2020) who provides an extensive definition of the

underlying real-valued (fuzzy) logic. Furthermore, Fagin et al. (2021) discusses the

correctness and power of real-valued logics more specifically by providing an axioma-

tisation and subsequently showing what information can be inferred. We confine the

methodology in this thesis to the components that are relevant to the framework used

and its applications.

6.2.2 Grounding

As for the semantics of L, LTN deviates from the standard abstract semantics of

FOL and proposes a concrete semantics where domains are interpreted in the real

field R as defined in Real Logic Serafini and Garcez (2016). LTN adopts the term

grounding, denoted by G, instead of interpretation, in order to indicate that symbols

are interpreted in accordance with their groundings onto real numbers. Every object

denoted by a constant, variable or term is grounded onto a tensor of real numbers.

Function symbols are grounded as functions in the vector space, that is, an m-ary

function maps m vectors of real numbers to one vector of real numbers. Predicates

are grounded as functions that map inputs onto the interval [0, 1] representing the

predicate’s degree of truth. Any sentence formulated as a first-order logic expression

may be grounded in L using logical connectives.

The semantics for the connectives is defined according to fuzzy logic semantics:

conjunctions are approximated by t-norms (e.g. min(a, b)), disjunctions by t-conorms

(e.g. max(a, b)), negation by fuzzy negation (e.g. 1 − a) and implication by fuzzy

implications (e.g. max(1 − a, b)). Readers may refer to van Krieken et al. (2019);

Krieken et al. (2020) for a detailed description and analysis of various fuzzy operators

and their impact on reasoning.

We list in tables 6.1 & 6.2 a number of these fuzzy logic operators that can be

viewed as hyper-parameters within the LTN framework. LTN employs the standard

strict and strong negation N(a) = 1− a in order to ground negated terms.

Krieken et al. (2020) and Badreddine et al. (2020) demonstrate that for the majority

of scenarios, the product (Goguen) operators provide a more suitable approach to

differentiable learning due to the behaviour of the gradients during the optimisation.

100



Name a ∧ b a ∨ b
Gödel min(a, b) max(a, b)

Goguen/Product a · b a+ b− a · b
 Lukasiewicz max(a+ b− 1, 0) min(a+ b, 1)

Table 6.1: Common conjunction and disjunction operators used in fuzzy logic.

The authors show that multiple fuzzy logic operators can result in exploding or van-

ishing gradients, and therefore poor performance. Additionally, the operators should

propagate the gradients to multiple inputs at once in order to prevent passing updates

to a single input.

Name I(a, b) or a→ b
Kleene-Dienes max(1− a, b)
 Lukasiewicz min(1− a+ b, 1)
Reichenbach 1− a+ a · b

Table 6.2: Common fuzzy implications.

In general, all clause groundings can be portrayed as a computational graph struc-

ture that may incorporate one or more neural networks for the learned projections

low-level input to the [0,1] interval. Figure 6.1 illustrates the computation graph

for a specific FOL clause utilising fuzzy logic operators. These computation graphs

are automatically generated using the LTN implementation accompanying the thesis.

Thus, all formulas in L consisting of constants C, variables X , function symbols F and

predicate symbols P become differentiable. It is possible to accomplish this through

aggregation functions which are a component of the logical language.

An aggregation function determines the semantics of the quantifiers. These ag-

gregations constitute another vital component of the fuzzy logic framework proposed

by LTN. In order to obtain a satisfiability level (scalar) that serves as the optimi-

sation criterion for training, it is necessary to aggregate all individual formulas in

the knowledge-base K. In other words, each formula will be assigned a fuzzy truth

value, enabling further understanding of the statisfiability of each logical clause. The

subsequent aggregation may be as simple as taking the average or tailored to impose

a particular behaviour on the system (as will be discussed in the section 6.2.5).

Furthermore, universal and existential quantifiers need to be expressed in fuzzy logic

in L. They permit statements to specify how many individuals or objects in the

domain satisfy an open formula by relating statements to free or bounded variables

X . The universal quantifier ∀ in the term ∀x : T (x) indicates that everything in the
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Figure 6.1: Diagram illustrating how fuzzy Lukasiewicz connectives and fuzzy impli-
cations can be used to ground a clause. Specifically, the following fuzzy logic clauses
is grounded in fuzzy logic: ∀x, y : ¬A(x, y) → B(x) ∧ C(y). A in this illustration is
a binary predicate, while B and C are unary predicates. Furthermore, here x and y
represent free variables.

domain satisfies the property denoted by T . Similarly, the existential quantifier ∃ in

the term ∃x : T (x) indicates that there is at least one element in the domain which

satisfies the property T .

Using all available data, one could, for example, enforce or learn about the general

behaviour of a model using the universal operator in the LTN framework to evalu-

ate the truth value of particular terms. LTN therefore replaces x with all objects xi

(xi ∈ x) in the data whenever a quantified free variable (∀x) is part of a formula in

L. The truth-value of such formula is then obtained by aggregating the truth-values

of each grounded object xi.

Within the LTN framework, the following are common aggregation functions used

for quantification and aggregation of logical clauses Badreddine et al. (2020):

AM(x1, . . . , xn) =
1

n

n∑
i=1

xi (mean)

ApM(x1, . . . , xn) =

(
1

n

n∑
i=1

xpi

) 1
p

(p-mean)

ApME(x1, . . . , xn) =1−
(

1

n

n∑
i=1

(1− xi)p
) 1

p

(p-mean error)

ApM is the generalized mean, and ApME can be understood as the generalized mean

when measured in terms of the errors. In this respect, ApME measures the power of

each value’s deviation from the ground truth 1. We follow the recommendation by

Badreddine et al. (2020) and employ ApME with p ≥ 1 to approximate the universal

quantifier ∀, and ApM with p ≥ 1 for the approximation of the existential quantifier
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∃, if not explicitly stated. There are certain values of p that result in special cases of

particular aggregators:

lim p→+∞ApM(x1, . . . , xn) = max(x1, . . . , xn) (6.1)

lim p→−∞ApM(x1, . . . , xn) = min(x1, . . . , xn) (6.2)

lim p→+∞ApME(x1, . . . , xn) = min(x1, . . . , xn) (6.3)

lim p→−∞ApME(x1, . . . , xn) = max(x1, . . . , xn) (6.4)

In a fuzzy logic context, these continuous (min to max) approximators can be useful

for fine-tuning the strictness of the various quantified axioms. In some cases, min

may be an appropriate candidate for ∀, when all objects oi ∈ x should be strictly

grounded in accordance with the term. As a consequence, the high value of p will re-

sult in outliers in x being penalised more harshly during aggregation, thereby having

a more direct impact on the optimisation process.

In this thesis, we estimate binary connectives by using the product t-norm and its

corresponding t-conorm and Reichenbach implication, if they are not specified differ-

ently for individual applications below. Badreddine et al. (2020) demonstrate that

this setup is superior due to enhanced gradient propagation for robust learning.

6.2.3 Learning

As part of grounding the knowledge K with its symbols in data, a set of parameters

must be learned: θ. Additionally to LTN functions and predicates being learnable

mappings, the objects denoted by LTN constants and variables can also be learnable

embeddings. Even though we will demonstrate how the framework can accommodate

a wide range of model architectures, we will present here the default architecture that

is implemented in the accompanying repository. By using a multilayer perceptron to

model each predicate, if not explicitly stated, the parametrisation used in this thesis

is:
h(1)(v) = g(1)

(
vV

(1)T
P + b(1)T

)
h(2)(v) = g(2)

(
h(1)(v)V

(2)T
P + b(2)T

)
G(P )(v) = σ

(
h(2)(v)V

(3)T
P + b(3)T

)
where each g(l) is an activation function, e.g. ReLU, V (l) is a mxn weight matrix,

l corresponds to the layer and b(l) a bias vector; σ denotes the sigmoid activation

function which ensures that predicate P is mapped from Rmxn to a truth-value in

[0, 1].
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Since the grounding of a formula Gθ(φ) denotes the degree of truth of φ, one natural

training signal is the degree of truth of the formulas in the knowledge-base K. The

objective function is therefore to maximise the satisfiability of all formulas in K:

θ∗ = arg max
θ∈Θ

SatA(Gθ(K))

which is subject to an aggregation A of all formulas (e.g. the above-mentioned p-

mean). This approach is consistent with that taken by other differentiable fuzzy logic

methods mentioned above.

The neural tensor network proposed in Serafini and Garcez (2016) has been replaced

with a multilayer perceptron due to its enhanced efficiency and general applicability.

However, as will be demonstrated, there are no restrictions as to what type of function

or neural network may be employed as the method is agnostic. A sigmoid function

may be used to appropriate any mapping by projecting the output into [0,1]. In this

thesis, we will demonstrate that even intermediate representations of networks can

be mapped onto truth values for the purpose of providing explanations for models.

Further, we would like to point out that the initial proposition of utilising one neural

network per predicate mapping by Serafini and Garcez (2016) is not being utilised

in this thesis. The adaptation will use a single network to map several predicates

if the dimension of the inputs for the predicate groundings aligns. In other words,

if the predicate grounding is also based on the same real features, we will add an

additional output neuron instead of adding another neural network. Unless otherwise

stated, we use this singular network representation to create a more parameter efficient

representation that enables joint information representation for multiple predicate

mappings.

6.2.4 Continuous Querying

One of the main benefits of establishing a grounded theory T = (K,Gθ) is the ability

to conduct queries. These queries examine whether a certain fact φ holds true based

on the grounded real logic truth values that fall within the interval [0, 1].

LTN inference using first-order logic clauses is not a post-hoc explanation in the tradi-

tional sense. As presented here, we propose that inference should be an integral part

of an iterative method that allows incremental explanation through the distillation of

knowledge guided by data. We achieve this by computing the value of a grounding

Gθ(φq), given a trained network (set of parameters θ), for a user-defined query φq.

Specifically, we save and reinstate the learned parameters stored in our adapta-

tion of the LTN implementation. This is done by storing the parameters θ resulting
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Figure 6.2: Illustration of the LTN interactive-learning pipeline: knowledge revision
will be carried out by querying a deep network interactively and learning continu-
ally, thus applying the neural-symbolic cycle multiple times. The illustration will be
modified throughout the thesis to illustrate where exactly the experiments alter the
framework.

from the optimisation process of maximising the satisfiability of all formulas in K
θ∗ = arg maxθ∈Θ SatAGθ(K). This also means that changes made to the knowledge-

base followed by further training will not reinitialise parameters, but will instead

start from saved θ∗. Therefore, as part of the interactive-learning LTN pipeline, it is

possible to add knowledge to the previously trained network. Having this functional-

ity allows us to continually query and guide the learning process according to added

knowledge Knew, an approach akin to that of continual learning (depicted in Figure

6.2). While continual learning is particularly relevant for learning a series of different

tasks, our main objective is to explain and refine the existing task.

A query is any logical formula expressed in first-order-logic. Queries are evalu-

ated by calculating the grounding G of any formula whose predicates are already

grounded in the neural network, or even by defining a predicate in terms of ex-

isting predicates. For example, the logical formula ∀x : (A(x) → B(x)) can be

evaluated by applying the values of x, obtained from the dataset, to the trained net-

work, obtaining the values of output neurons A and B in [0,1] (corresponding to the

truth-values of predicates A and B, respectively), and calculating the implication

with the use of the Reichenbach-norm and aggregating for all x using the p-mean.
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Algorithm 1: LTN-active learning cycle

Input: Dataset, Knowledge (in the form of FOL)
Output: Model satisfiability measured as overall sat-level

1 for each predicate P in K do
2 Initialize Gθ(P) // each P can be a multilayer perceptron or output

neuron

3 for epoch < num-epochs do
4 max satGθ(K) // optimize θ to achieve max satisfiability of K

5 while Revision do // user-defined Boolean

6 for each FOL-query φq do
7 Calculate G (φq) // query the network to obtain the truth-value of φq

8 if G (φq) < t // t in [0,1] is a user-defined minimum sat value

9 then
10 Add φq to Knew

11 Apply XAI-method // we use Shapley values

12 for each predicate P do
13 Inquire Gθ(P) // query predicate-specific groundings

14 if Gθ has undesired property f(Gθ) then // user-determined desiderata

15 Revise f(G) to Knew // method-dependent revision

16 if Knew 6= ∅ then
17 K ← K ∪Knew
18 θ∗ = arg maxθ∈Θ Gθ(K) // re-train the network

Algorithm 1 illustrates the steps we take to continuously refineKnew with a human-
in-the-loop. The queries are derived from questions a user might have about the
model’s response: how does the model behave for a specific group? How does the
model behave for particular edge-cases? These questions can be translated relatively
easily into FOL-queries. Simultaneously, an XAI method may further inform the user
about possible undesired model behaviour which may not be as apparent as the above
common questions. This can be accomplished by a variety of XAI methods which
may give insight into the functionality of a black box model.
In the section on fairness, the XAI method SHAP (Lundberg and Lee, 2017) will be
shown to report a discrepancy in how the variable reported income is used by the ML
system for men and women, for example. This can be influenced and addressed by
adding knowledge to Knew and retraining, as will be illustrated and quantified in the
upcoming experiments.

A network revision encompasses the use of new data and new knowledge through
training examples and optimisation. In other words, the trainable parameters of
the underlying neural network must be adjusted to conform to the revised knowl-
edge base. Along with revising knowledge and continuously updating the system,
a user may also introduce new predicates. In a later section of this thesis, we will
demonstrate how we can not only revise existing predicate mappings but introduce
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supplementary predicate mappings at a later stage in the revision process to enhance
the system behaviour. Depending on the task, it may be sufficient to add one more
output node or to create an entirely new network. Nevertheless, even with a novel
network component added to the system, it will be possible to utilise existing learned
knowledge through interconnected optimisation in K. A logical formula may utilise
logical connectives to establish connections with existing predicate mappings, thereby
enabling the optimisation of newly introduced parameters using learned knowledge.

6.2.5 Modularity of data and knowledge

It is an integral part of the learning process to derive new knowledge from given in-
formation, thus we want to highlight how this process may manifest differently within
the introduced framework.
In Badreddine et al. (2020), the authors illustrate how LTN could be applied to binary
classification, multi-class classification, clustering, logical reasoning, and regression.
In addition to the ability to apply a Neural-Symbolic method to imitate well-known
areas of application, we will explore why both traditional data-driven and logical ap-
proaches can be improved by an integrative approach, and how the user may guide
the learning process based upon personal preference.
DFL methods raise the question of what constitutes a desirable optimisation signal,
when we learn from data and knowledge simultaneously. Usually, the quality of an
approach to machine learning is evaluated in terms of its ability to achieve the desired
outcomes on held-out data, using metrics such as accuracy, precision, recall, and F1
score.1 Symbolic reasoning, on the other hand, is typically evaluated according to
the validity of its conclusions. These conclusions must, for instance, satisfy certain
constraints. It remains an open challenge in an integrated AI system to determine
the appropriate evaluation measures and training signals for learning from data and
knowledge simultaneously. Throughout this section we will detail the ways in which
the user may influence the capabilities of the system in accordance with their prefer-
ences and illustrate the extent to which the proposed framework may be adapted to
a wide range of training signals as well as improve the performance of purely data-
driven or logical approaches.
Using a data-driven approach, we are able to develop a robust mapping of groundings
from low-level inputs in domains that are traditionally mediated by symbolic or logical
approaches. Thus, real-world data can be processed and the system is less susceptible
to failure when observing inputs that are not identical to those previously observed.
By being able to interpolate the observed inputs, the ML models have the capability of
performing in an open world scenario where new data may be introduced at any time
as long as it falls within the sampled data distribution. Many logical systems, on the
other hand, are bound to the closed world assumption where knowledge is assumed to
be complete. Moreover, supplemental background knowledge can provide an outlet

1Precision is the number of true positives divided by the total number of positive results, including
incorrectly identified samples. Recall (also known as sensitivity) is the number of true positives
divided by the total number of samples that should have been labelled as positives. The F1 score
refers to the harmonic mean of the precision and recall.
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for overcoming fundamental limitations in data-driven domains where models have
been widely used over recent years. Hence, we should distinguish between different
forms of knowledge that can be incorporated into an integrated system, which allow
for varying types of reasoning that may help overcome existing constraints of purely
data-driven approaches.

On the one hand, there are propositional statements in which we state explicitly
how an input corresponds to a truth value. Thus, this form of knowledge may be
utilised for classification, since the groundings can be mapped according to training
data and their respective labels. By explicitly adding propositions to each known
mapping, this information can be integrated (e.g. A(ai) for predicate class A). Alter-
natively, the user may directly specify input variables of a quantifiable term, ensuring
that only certain variables are mapped appropriately (e.g. ∀a : A(a), specifying the
range of quantification to variables of a set a or using guarded quantification). The
two approaches will be referred to as positive propositions for predicates.
As a consequence, negative propositions are explicit negative (or counter) examples
of predicate mappings. We will demonstrate in this thesis that such propositions
are crucial for gradient-based learning of mappings in DFL approaches. Similar to
supervised learning environments, such information is required to be accounted for in
trained models to learn meaningful mappings that are robust and useful for interpo-
lation.
Notably, under the closed world scenario of particular logical systems, the negative
proposition can be derived from the positive proposition due to their complemen-
tarity. Hence, for DFL systems applied to closed world domains, such knowledge is
required to be derived, as illustrated in the different scenarios of the section to follow.

In contrast to these propositional statements, open quantifiable logic clauses may
employ free variables that are utilised to employ general axioms to inform general
model behaviour. In these type logical formulas the variable used for quantification
is unrestricted since it is the relationship between variables that offers information
(e.g. ∀x : A(x) → B(x)). For instance, this allows for quantifiable knowledge to be
used to transmit information from areas with data to those with no data. A user may
wish to utilise background knowledge to transfer information from a domain in which
propositional information is present to another domain in which such information is
absent (as illustrated in Figure 6.3).
Furthermore, in a semi-supervised setting, we can supplement incomplete proposi-

tions with general knowledge using quantifiable clauses. Even though propositional
information in many traditional logic tasks is assumed complete, in real-world situa-
tions, it is frequently sampled. The application of quantifiable axioms can be utilised
to enrich the model trained on sampled data by guiding interpolation and extrapola-
tion to be more robust.
Moreover, we wish to emphasise that any existing loss function may be incorporated
into K. As an example, any loss function LB can be expressed as SatB-value by
declaring that SatB = 1− LB. Therefore, users are able to leverage existing classifi-
cation losses to learn predicate mappings.
Notably, the optimisation signal of DFL methods can be constructed in a modular
fashion, providing further benefits. An individual may elect to adopt either a data-
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Figure 6.3: Illustration of the different settings in which quantifiable axioms can com-
plement existing data for a transfer into a new domain or to complement incomplete
input data for the purpose of interpolation and extrapolation.

driven or knowledge-driven approach depending on the specific application domain.
We propose an extension to the existing LTN framework where we are treating all
logical formulas in the knowledge base equally to give the user the ability to assign
preferences to each formula.

SatA(Gθ(Kw) =
w1 ∗ SatA(Gθ(Kprop) + w2 ∗ SatA(Gθ(Kquant)

w1 + w2

where Kprop entails all of the propositional knowledge and Kquant contains the general
quantifiable clauses that enable transfer information (Figure 6.3). In this manner,
the user is able to control the importance of specific information during optimisation,
regardless of the number of propositional or general clauses that are provided. Simi-
larly, further splits may be utilised so that negative propositions are equally weighted
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positives, irrespective of the sample size.

SatA(Gθ(Kw) = (w1 ∗ SatA(Gθ(Kproppos) + w3 ∗ SatA(Gθ(Kpropneg)
+ w2 ∗ SatA(Gθ(Kquantpos) + w4 ∗ SatA(Gθ(Kquantneg))
÷ (w1 + w2 + w3 + w4)

Thus, this weighting facilitates equal distribution of importance across different infor-
mation, here differentiated into positive and negative propositional and quantifiable
axioms.

The objective of this modular approach is not to create an additional hyper-
parameter w for each of the formulas in K as in Marra et al. (2020). Instead, we
suggest a default weighting of equal importance to counter any imbalances. Essen-
tially, the objective is to prevent special treatment of a particular type of information
as doing so may lead to biased results. Because the relative importance of data, ex-
pressed as propositions, versus general knowledge, expressed as quantitative axioms,
is highly dependent on the domain, we suggest equal treatment by default. Neverthe-
less, the ease of access to this parameter allows the user to customise the treatment
of information accordingly.
In spite of the fact that the results of such optimisation may differ from the originally
proposed LTN approach, where balancing of the information is not considered, the
difference disappears for optimal solutions with sat-levels converging toward 1. As
introduced by Serafini and Garcez (2016), the authors propose equal consideration
for all entries in the knowledge base K, which may lead to imbalances of relative
importance for specific tasks. However, the updating of model parameters may still
dynamically place relative importance on specific axioms through the chosen aggre-
gation function. Regardless, a weighted grouping will be equivalent to the original
LTN approach (Serafini and Garcez, 2016), when:

SatA(Gθ(K) = SatA(Gθ(Kw) = 1

Therefore, if both systems satisfy all of the axioms with a sat-level = 1, then their
practical reasoning capabilities, which will be elaborated in the next section, will be
equal. In practice, achieving a global maximum of sat-level = 1 may not be feasible
with noisy samples of real-world data. Accordingly, prioritisation may be essential
to incorporating the right reasoning capabilities into the system in situations where
only a local optimum can be achieved.
Having provided a brief introduction into how different integration of knowledge
through weighted clauses might be achieved and might lead to varying reasoning
capabilities, we now wish to elaborate more on how precisely such reasoning capabil-
ities may be defined and subsequently demonstrated through specific examples with
both generated and existing datasets in comparison to other published work.

6.2.6 Practical Reasoning

Using the aforementioned method, the reader is well positioned to progress to sec-
tions 6.3 and 6.4 in which two practical application domains associated with XAI are
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discussed. Readers may choose to proceed to these sections if the real-world exam-
ples are didactically appealing. In this section, the method is supplemented by an
examination of its reasoning abilities. We propose that in order to reason about what
has been learned, it is worthwhile to discuss what the method can initially learn and
deduce. We shall demonstrate how the system’s ability to generalise to unseen cases
and to deduce facts from learned observations depends on how logic formulas are
formulated. Thus, we believe that establishing these limitations will provide a more
robust foundation for our proposed framework. However, these subsections are not
essential to fully comprehend the practical applications that follow in the sections on
fairness (6.3) and concept explanations (6.4).

The term reasoning has been used frequently in the AI and ML literature recently
to denote various inference tasks. It seems desirable to specify the way that reasoning
can be performed within an AI system. The most intuitive definition is that of a
system capable of generating conclusions from a given knowledge-base. In a seminal
paper about reasoning in ML (Bottou, 2014), Leon Bottou argues that “instead of
trying to bridge the gap between machine learning and sophisticated all-purpose
inference mechanisms, we can algebraically enrich the set of manipulations applicable
to training systems, and build reasoning capabilities from the ground up.” More
importantly, Bottou shows that there is continuity between algebraically rich inference
systems such as logical or probabilistic systems and simple manipulations such as the
mere concatenation of learning models.

By translating symbolic knowledge into regular loss functions, DFL can make
reasoning a part of learning as argued by Bottou. In this setting, one can analyse how
knowledge and data follow specific rules of inference by observing in which way the
loss term influences model learning while establishing a way to measure the reasoning
capabilities that these optimisations enable. Alternatively, one can extract knowledge
explicitly from the trained model and evaluate by proxy the reasoning capabilities of
the model on the basis of such extracted knowledge. Accordingly, we will refer to this
as reasoning about what has been learned.

In the first setting mentioned above above, one evaluates both the network’s for-
ward (inference) and backward pass (learning). In the second setting, the focus is
exclusive on the forward pass. Furthermore, while the former is interested in specific
examples (local reasoning), the latter takes the view of reasoning capabilities obtained
through a set of examples (global reasoning). In this respect, while Krieken et al.
(2020) analyses each fuzzy operator at a time w.r.t. their ability to translate rules of
inference into the neural network (based on specific examples by analysing the partial
derivatives of logical subformulas), in this chapter, we take a broad perspective and
evaluate reasoning w.r.t. a set of axioms being trained in a network through a set of
examples.

Traditionally, reasoning in LTN is the process of searching for a set of parameters
and groundings that satisfy a given logical proposition (Badreddine et al., 2020).
Since, as discussed, in this chapter we are concerned with evaluating the capabilities
of a trained network, in what follows we define practical reasoning in LTN as akin to
the task known as inference in Machine Learning. We therefore focus on reasoning
given a single grounded theory 〈K,Gθ〉 under the usual assumption that some sound
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statistical evaluation, e.g. cross-validation or bootstrapping, has been applied to
select the best available grounding (set of parameters).

Given a logical axiom Λ to be checked on a LTN, we generate symbolically a set of
formulas {φ}Λ such that Λ |= φ, where |= denotes logical consequence. We say that
a LTN proves formula φ, written 〈K,Gθ〉 ` φ, if the satisfiability of φ given the best
available grounding is greater than a predefined real number q (0.5 ≤ q < 1), that is:

〈K,Gθ〉 ` φ if Gθ(φ) > q.

We then check whether 〈K,Gθ〉 ` φ for all φ ∈ {φ}Λ, which gives us a measure
of the neural network’s reasoning capability. For example, to check whether a NN
satisfies the axiom of Modus Ponens, we define Λ = {A,A→ B |= B}. Given atomic
formulas P (x) and Q(x), suppose that 〈K,Gθ〉 ` P (a) and 〈K,Gθ〉 ` ∀x(P (x) →
Q(x)). Thus, Q(a) is added to the set of formulas to be checked for satisfiability in
the NN, i.e. Q(a) ∈ {φ}Λ; {φ}Λ may contain therefore all the instances that can be
obtained given a set of axioms Λ. Examples of such axioms may include transitivity,
monotonicity and symmetry of relations.

Given a set of examples E ⊆ {φ}Λ, the relation ` allows one to measure the
reasoning capability of network 〈K,Gθ〉 w.r.t. Λ by measuring the level of satisfiability
of all the cases in E in comparison with the satisfiability of all φ in {φ}Λ. Suppose
for example that one wishes to evaluate in practice the reasoning capability of a given
neural network that has been trained to recognise images with various bounding
boxes in them. Suppose further that it is useful to check whether the network has
learned that, whenever a bounding box is inside another bounding box, which in
turn is inside another bounding box then the first bounding box must be inside that
last bounding box. In other words, this property P of bounding boxes satisfies the
transitivity relation, namely, φ = ∀X, Y, Z : (P (X, Y ) ∧ P (Y, Z)) → P (X,Z). A
set of examples E may contain a number of bounding boxes b1, b2, ...bn satisfying
instances of the above transitivity relation, such that given for example P (b1, b2)
and P (b2, b3), one concludes that P (b1, b3) holds. Checking the network’s reasoning
capability w.r.t. property P includes checking whether P (b1, b3) is satisfied by the
network (soundness) but also quantifying the size of E as a proportion of {φ}Λ (as a
measure of completeness), in this case all possible cases of transitivity.

Notice how practical reasoning takes into account the ability of the system to
interpolate and extrapolate. In what follows, the LTN network will be queried sys-
tematically to obtain a measure of its reasoning capability. Our definition applies
directly to the reasoning tasks evaluated in Bianchi and Hitzler (2019), where the
reasoning capability of LTN is studied in the context of a set of experiments.
Here, we allow such experiments to be generated systematically based not only on
Prolog semantics but on any proof theory, in particular with open-world semantics.
As previously mentioned, querying using first-order logic (FOL) clauses in LTN is not
only a post-hoc explanation in the traditional sense. We argue that querying should
form an integral part of an iterative reasoning process allowing for incremental ex-
planation and system improvement through the extraction of knowledge guided by
reasoning capability and data (c.f. Figure 6.2).
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Before we demonstrate how this process works through experiments, we wish to es-
tablish underlying concepts related to assumptions that may affect the system’s ca-
pabilities during learning.

6.2.6.1 Open world and closed systems

The Open World Assumption is typically associated with (machine) learning systems
since an integral part of learning is discovering new knowledge, therefore knowledge
should not be assumed to be complete (as in the Closed World Assumption). Nev-
ertheless, in supervised learning, models are typically restricted to inferring labels
based on a finite set of labels within a dataset. The model thereby learns to associate
any data with a predefined set of labels based on a closed set of labels. Hence, while
the models can exist in an open world setting, since they create mappings for any
inputs x ∈ R, the supervised training of these models may be viewed as a realisation
of the closed world assumption of the models. A possible method of circumventing
this problem is to recognise unknowns, which is referred to as open set recognition,
but it is typically neglected in supervised Machine Learning settings. Mundt et al.
(2020) examine this phenomenon in supervised learning and factors it into a con-
tinuous learning framework. The underlying assumptions of the system’s framing
need to be taken into consideration in continual learning settings as well as in the
neural-symbolic systems since it has a direct impact on the system’s effectiveness.
Mundt et al. (2020) propose that beyond the closed world scenario, models cannot
be expected to be evaluated solely on held-out data obtained from the training dis-
tribution. As a result, in domains where inference data cannot always be assumed
to come from the same distribution, Mundt et al. (2020) differentiates three types of
possible inputs:

• Knowns : inputs originating from the same distribution as the training data.
Predictions made by the model are accurate and certain.

• Known unknowns : unknown inputs to the model that cannot be determined
with certainty. An explicit label can optionally be assigned to examples that
do not belong to the set of known concepts for explicit training. Uncertainty in
prediction may indicate that a model is aware of its limitations.

• Unknown unknowns : unseen instances that belong to unexplored, unknown
data distributions or classes for which the prediction is generally overconfident
and incorrect

Differentiation of this type is analogous to the notion of predicate grounding that
underlies all Differentiable Fuzzy Logic methods. Here, we commonly learn the pred-
icates mappings using sampled data based on knowns. Depending on the learned
predicate mappings of the model, inputs may have uncertain affiliations (known un-
kowns). However, instances that do not fall within the sampled data distribution
and known predicates may be incorrectly assigned to learned predicates with high
certainty (unknown unknowns).
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Consequently, a consideration of this distinction between open and closed domains
and the completeness of predicates becomes an essential part of applying Neural-
Symbolic systems as it influences the reasoning capabilities. We will proceed to
demonstrate how different assumptions can be integrated and result in varying de-
ductive capabilities. By applying LTN to data, we are able to demonstrate different
reasoning capabilities depending on the assumptions made. Moreover, we examine
the influence of differing degrees of knowledge (in)completeness on reasoning.
We will outline and demonstrate potential reasoning limitations in the following sec-
tions using synthetic exemplary data, and then explain how the iterative approach
can help overcome these limitations by comparing it to previously published work by
Bianchi and Hitzler (2019). To be able to reason about what has been learned, we
must identify the possible limitations of the system’s capabilities as they influence
the type of information that can be extracted from and distilled into the system.

6.2.6.2 A dissection of A ∨B

The following is a list of exemplary scenarios that illustrate how various assump-
tions, data, and knowledge can affect the reasoning ability of differentiable fuzzy
logic systems. We intend to demonstrate how the same neural-symbolic system will
have varying reasoning capabilities due to learning predicate groundings based on a
sampled data distribution. The purpose of this section is to examine the particular
differences of specific setups of data, knowledge, and architecture by way of visual
representations of various scenarios.

Figure 6.4 illustrates the task of learning A ∨ B based on sampled data and a
neural network based on differentiable fuzzy logic. In this section, we will attempt to
provide a high-level understanding of why specific data and knowledge selection may
have a significant impact upon the system’s capacity to generalise and deduce.
The scenarios will have different data and knowledge to be learned, and require spe-
cific activation functions. These characteristics will result in different extrapolation
abilities. In addition, each scenario is suited to either open- or closed-world assump-
tions in terms and deductive capability, as demonstrated by a specific entailment
that will be checked. The accompanying graphs are intended to illustrate the neural
network’s learned functions and highlight possible deficiencies that may result from
the derived solution. Our analysis will be followed by a series of experiments in the
next section where we will apply the conclusions to practical applications.
As a starting point, we will ground predicates in real data as part of logical rules, as
this will influence the system’s inference and reasoning capabilities. Figure 6.4 illus-
trates an exemplary data grounding task. We sample data a ∈ A, b ∈ B, and finally
c 6∈ A∨B (which will be referred to as negative examples for A∨B). By introducing
A and B as unary predicates, we can learn mappings of data that belongs to these
predicates.
The knowledge to be learned here includes not only the individual groundings of A
and B based on the training set T but also the logical clause A∨B. Due to the nature
of LTN, we can not only extract the truth value of an input belonging to A∨B, but
also dissect the groundings with respect to the predicates A or B individually. The
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Figure 6.4: In our system, predicates are learned from data a ∈ A (yellow),b ∈ B
(blue), and c 6∈ A ∨B (black).

illustration shows the decision boundary of the predicate A in yellow and the decision
boundary of B in blue.
We are explicitly interested in the behaviour of the intended entailment in each of
these scenarios. Observing whether the deduced implication ¬A → B holds, allows
us to assess our deductive reasoning abilities in different scenarios.
As a result of the different assumption, we need to differentiate between the query
¬(A)→ B and the more precise query (A∨B)∧¬A→ B. While in a closed environ-
ment the domain of interest does not need to be specified, in an open environment it
is required as will be demonstrated below.

Scenario 1

Figure 6.5: (Closed World): In this scenario, we are making the assumption that any
data given must belong to either the domain A or domain B. This is due to the
introduction of the softmax function at the output layer.

Knowledge Base: ∀a, b : A(a) ∨B(b); no explicit negative examples

Output Activation Function: Softmax function

Extrapolation: All inputs will be assigned A∨B. This means ∀x : A(x)∨B(x) will
always be true for any real valued input

Assumption: Closed World

Entailment: ¬A→ B always correct
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Description: The assumption we are making in this scenario is that any data in-
put will belong to either domain A or domain B. Training a model based
on the singular axiom ∀a, b : A(a) ∨ B(b) may not yield meaningful results
when confronted with out of distribution data as the model will confidently
assume that the axiom is true at all times for every input. The precise query
(A ∨ B) ∧ ¬A → B is equivalent to ¬A → B, which is always entailed within
the underlying model architecture due to the softmax activation function at the
output layer. The scenario presented here directly corresponds to the analysis
of Mundt et al. (2020) that suggests the majority of classification tasks adhere
to the closed-world assumption.

Scenario 2

Figure 6.6: (Open World, without negative examples): This system assumes that
the majority of the data belong to A and B. Although the entailment may have the
desired property, it is a fallacy as ¬A and ¬B are mostly undefined since Known
Unknowns are not taken into account.

Knowledge Base: ∀a, b : A(a) ∨B(b); no explicit negative examples

Output Activation Function: Sigmoid function

Extrapolation: Undefined outside the samples a and b (training data distribution)

Assumption: Open World

Entailment: The precise query (A∨B)∧¬A→ B should hold true although ¬(A)
may be unspecified for the input space leading to erroneous fuzzy truth values
when evaluating on any real input

Description: The knowledge base consists exclusively of positive examples in this
scenario. Accordingly, the model infers that A is always true and B is always
true. Furthermore, A ∨ B will be true for all instances seen during training
including the entailment ¬(A) → B, although ¬(A) is most likely not defined
in this model grounding. It is important to note that this open-world system
does not take into account any Known Unknowns. Outside of the training
distribution, the model may incorrectly and confidently infer that instances
belong to A and B.
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Scenario 3

Figure 6.7: (Open World, with negative examples): By adding negative examples
of A or negative examples of B, we are able to avoid that all data belong to both
domains. Here we consider Known Unkowns which allows for better extrapolation as
the model learns to differentiate between A and B.

Knowledge Base: ∀a, b : A(a)∨B(b); ∀a : ¬B(a); ∀b : ¬A(b); no data for ¬A∧¬B

Output Activation Function: Sigmoid function

Extrapolation: Behaviour outside a and b is dependent on sample distribution for
b 6∈ A and a 6∈ B

Assumption: Open World

Entailment: (A∨B)∧¬A→ B will hold true but only generalise if there are b 6∈ A
and a 6∈ B

Description: The addition of negative examples for A and negative examples for B
allows the system to avoid that all inputs are assigned to to both domains A
and B. Here, we consider a limited sample of Knowns as Known Unkowns for
the individual predicates, allowing for more meaningful extrapolations as the
model learns to distinguish between A and B. However, we do not consider any
data that belongs outside of the sample distribution of A and B, which means
that for ∀x : ¬A(x) ∧ ¬B(x) the model may produce potentially undesirable
results. The deduced entailment ¬A → B may be correctly recognised by the
system provided that there are b 6∈ A and a 6∈ B in the sample distribution used
for training.

Scenario 4

Knowledge Base: ∀a, b : A(a) ∨ B(b); ∀a : ¬B(a); ∀b : ¬A(b); ∀c : ¬A(c); ∀c :
¬B(c)

Output Activation Function: Sigmoid function
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Figure 6.8: (Open World, with positive examples c): This scenario is comparable
to scenario 3 but introduces Known Unkowns outside the predicates A and B of
consideration. This should allow for better extrapolation and generalisation.

Extrapolation: Outside the known predicates A and B certainty of the model is
dependent on the sample size of c where ∀c : ¬A(c) ∧ ¬B(c)

Assumption: Open World

Entailment: (A∨B)∧¬A→ B will be correct. Precise query is needed in this open
setting because ¬A ∧ ¬B is in the data

Description: This scenario is comparable to scenario 3 but adds Known Unkowns
outside of the previously considered predicates A and B to the knowledge-base.
We include c 6∈ A ∨ B to explicitly learn about instances that are outside of
A∨B. Ideally, this should result in improved extrapolation and generalisation.
If we want to query the deduced entailment, we need to be precise in our query
as Differentiable Fuzzy Logic systems mainly use real data for quantification. In
order to query the deduced entailment, it is important to be precise in the query
as more data is sampled outside A ∨ B.Thus, ∀x : (A(x) ∨ B(x)) ∧ ¬A(x) →
B(x) will ensure that we are only querying the behaviour within the domain of
interest.

Scenario 5

Knowledge Base: ∀a, b : A(a) ∨ B(b); ∀a : ¬B(a); ∀b : ¬A(b); ∀c : ¬A(c); ∀c :
¬B(c); ∀c : C(c)

Output Activation Function: Sigmoid and softmax function

Extrapolation: Outside the known predicates A and B, everything becomes C,
defining the unknown class (open set recognition)

Assumption: Open World

Entailment: ¬A→ B, unless ¬A(x) ∈ C(x) (such as c). Correct entailment
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Figure 6.9: (Open World, with negative examples of A,B, and examples of C): This
scenario is comparable to to scenario 4. However, we alter the architecture of the
system in order to allow for improved extrapolation associated with open set recog-
nition.

Description: The scenario described here is closely related to scenario 4. However,
we modify the architecture of the system in order to incorporate enhanced
extrapolation associated with open set recognition. This approach makes use of
a softmax activation function to distinguish between Knowns, Known Unkowns,
and Unknowns. As a result, the system is able to recognise the set it has learned
about (A and B). The Softmax will ensure that any real data will be assigned
either to the known class or to the unknown domains. After the system has
determined that the data belongs to a known domain, a sigmoid is utilised to
assign the inputs to a particular class within the known domain. As a result,
the entailment ∀x : (A(x) ∨B(x)) ∧ ¬A(x)→ B(x) will hold.

6.2.6.3 On the Raven’s paradox

As a followup to giving a brief abstract overview of how different configurations of
data, knowledge and architecture may lead to different capabilities, we would like to
provide an additional example of how this effect may manifest in a different context
as it pertains to different forms of reasoning.
Krieken et al. (2020) illustrate specific characteristics of reasoning capabilities in DFL
systems with reference to the well-known raven paradox (Hempel, 1945). In order
to approach the raven paradox, they specify and measure a class of differentiable
updates which have particular properties. Specifically, the focus of the authors is on
the fuzzy implications and adjustments to the relative importance of Modus Ponens
(MP) versus Modus Tollens (MT) updates, which is central2 to Raven’s paradox. The
paradox revolves around the question: What constitutes evidence for the statement
that all ravens are black? According to first-order logic, ∀x : raven(x)→ black(x).
In particular, the authors explore the problem associated with class imbalance in
weakly supervised settings and distinguish between reasoning based on positive and
negative (contrapositive) examples. The authors examine a number of gradient up-
dates of differentiable fuzzy logic systems during the learning process and demonstrate

2Does the observation of non-black objects varied in colour and unrelated to ravens provide
evidence that should increase the likelihood that all ravens are black?
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that positive examples receive more prominence than negative examples during the
updates. As a result, they argue that the majority DFL approaches may be less prone
to contrapositive reasoning. In the context of the paradox with the above-mentioned
background knowledge, this phenomenon can be illustrated when the model output is
equivalent to a non-black raven. The distinction of MP and MT differentiable updates
may be considered as follows:

• Modus Ponens: “It’s a raven so it has to be black”; increase the truth-value of
black during semi-supervised learning.

• Modus Tollens: “It is not black so it cannot be a raven”; decrease the truth-
value of raven by contraposition of the implication.

The majority of fuzzy implications will be associated with MP reasoning (see first
bullet point above). According to Krieken et al. (2020), this is undesirable, as MT
reasoning (second bullet point) can be more representative of what occurs in practice
in the real world.
While the debate regarding the importance of MT is bound to continue (MT does
not appear in Prolog for example), the difference between MP and MT is particularly
apparent in semi-supervised settings since the choice of Modus influences directly
how unlabelled data is used for system optimisation. We argue that MT may need
to be provided explicitly to the system in the form of a formula ∀x : ¬black(x) →
¬raven(x), allowing one to generate an adequate number of negative examples (non-
ravens of various colours) to counteract the imbalanced gradient problem. When
studying the Raven’s paradox in the context of learning systems, non-raven examples
are relevant and should be included as input to the system.
For optimal representational accuracy, direct access to the relevant data (instances
of non-ravens, non-black things ¬black(x) ∧ ¬raven(x)) may be the preferred option
to allow for a desirable interpolation, but the practicality of this may depend heavily
on the domain. There may be limitations in an open world setting, as the non-
black non-ravens may be difficult to specify as the domain may be harder to sample
adequately. In spite of this, it should be noted that the observed phenomenon can be
addressed both at the level of fuzzy logic and at that of data-driven analysis in the
LTN iterative approach. It is evident that the problem can be greatly simplified when
a closed-world assumption is adopted, and particularly when Clark’s completion is
assumed valid (not in the case of the raven’s paradox). One can illustrate this with the
well-known human reasoning example in which participants are told that if there’s an
exam tomorrow then Lisa studies late in the library, ∀x : exam(x) → library(Lisa).
If participants are also informed that there will be no exams tomorrow, they conclude
Lisa will not be in the library, which is a fallacy. A possible explanation is that most
participants assume, when told if there’s an exam tomorrow then Lisa studies late
in the library, that the completion holds, i.e. Lisa studies late in the library if and
only if there’s an exam tomorrow, ∀x : exam(x)↔ library(Lisa). Given this closed-
world assumption, it is not difficult to derive ∀x : ¬exam(x) → ¬library(Lisa),
which provides an adequate knowledge-base for the generation of negative examples
required for DFL learning.
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In the following section, we will show how the proposed iterative LTN framework
can be applied to address the imbalances and shortcomings discussed above. In
contrast to the suggestion by Krieken et al. (2020) that appropriate operators are
to be sought, we describe how a data-driven approach may provide an alternative
means of solving the aforementioned challenges. Through a variety of experiments,
we demonstrate that we can use the continual querying mechanism to learn about
any flawed reasoning of the trained model and provide appropriate information to the
system for correction. In this study, the reasoning capability of the neural network
will be enhanced significantly, improving upon previous published benchmarks on
Logic Tensor Networks Bianchi and Hitzler (2019).

6.3 Investigating the Neural-Symbolic Reasoning

Capabilities

We now evaluate comparatively the reasoning capabilities of NNs in the LTN frame-
work on the experiments used by Bianchi and Hitzler (2019) and Ebrahimi et al.
(2021). In their experiments, redundant rules (formulas) are added to the knowledge-
base. These are called redundant because they could be inferred symbolically from
the existing knowledge-base. They conclude that redundancy produces an increase in
the reasoning capability of NNs because the networks will see more data due to the
additional rules. We demonstrate that only specific additional information is helpful
in what concerns such improvement in reasoning.
In this section, the transition will be made to the practical applications of the pro-
posed framework. Having discussed potential limitations of existing differentiable
fuzzy logic methods, we now aim to demonstrate how the framework can be applied
to address these shortcomings. Initially, this will revolve around logic-based prob-
lems, but will subsequently lead to the application of fairness in ML classification
and computer vision. We intend to demonstrate the effectiveness of our approach
over traditional XAI approaches in gaining a comprehensive understanding of the
model behaviour as well as an interactive tool for guiding it.
In this section, we use the iterative continual framework of Figure 6.2 whereby a
closed world or open world assumption can be implemented by adding specific propo-
sitions or quantified formulas to the knowledge-base. In a closed-world, it is assumed
that information about a given domain is complete. The absence of information is
therefore treated as negative information, or a license to jump to conclusions until
further information to the contrary become available. By contrast, in an open-world,
completeness of information is not required. By making an open or closed-world as-
sumption with varying amounts of incomplete knowledge, reasoning capability results
will vary. This may not seem surprising in the presence of the definition of practi-
cal reasoning we have introduced above, although to the best of our knowledge, this
chapter is the first to address the issue systematically, which is important with all
the recent interest in NN reasoning.
In LTN, a quantified formula either expands the set of examples in an existing domain
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(a form of semi-supervised learning) or it helps with transfer learning from a data-rich
domain (defined by a set of predicates) to a domain with insufficient data (e.g. a new
predicate). In the first experiment below, we illustrate the first case and in the second
experiment information is transferred from a domain with high availability of data
(parent) to one without (ancestor) as illustrated in Figure 6.3.

6.3.1 Ontology Reasoning

The first example illustrates the manner in which the reasoning capabilities of a
system that presumes an open-world (NN) may be affected and assessed when it is
applied in a closed-world setting. An ontology’s subclass relations are given and quan-
tified formulas are utilised to derive and complement data in order to infer multiple
hop inferences on the ontology’s knowledge graph.

Figure 6.10: Exemplary taxonomy as proposed in Bianchi and Hitzler (2019) to learn
how a NN trained using the LTN framework can perform on ontology reasoning. The
task is to learn all subclass relations by extrapolating the subclass relation to any
length.

Domain: classes, to denote the taxonomy entries.

Constants: C1, .., C24 denoting the 24 classes for which an embedding is to be
learned.
(C1) = (C2) = · · · = (C24) = classes.

Predicates: sub(x, y) for the subclass relation. sub ∈ classes.

Variables: x, y, z are variable ranging over the domain.
(x) = (y) = (z) = classes.
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F1 score Precision Recall
Prolog 1 1 1

NN Revision 1 0.635 0.436 1
NN Revision 2 0.968 1 0.93

Table 6.3: F1 score, Precision and Recall of the deduced subclass relations; Prolog
compared with LTN with two revision steps, the first without any negative examples
and the second revision including negative examples.

Axioms Let D = {(x, y)} denote the 22 direct subclass relations, e.g. (Dog, Mam-
mal), dog is a subclass of mammal. D is the training data for learning the the
predicate groundings.

∀x ∈ D : ¬sub(x, x) (6.5)

∀x, y ∈ D : sub(x, y)→ ¬sub(y, x) (6.6)

∀x, y, z ∈ D : sub(x, y) ∧ sub(y, z)→ sub(x, z) (6.7)

Let E = {(x, y)} denote the negative complement of the subclass relation. As
Knowledge is assumed to be complete, it can be deduced by creating a set of
all possible relations without the known subclass relation.

Grounding: G(class) = R2. We learn embeddings in R2.
G(C1 | θ) = vθ(C1), G(C2 | θ) = vθ(C2), . . . , G(C24 | θ) = vθ(C24); every class
is associated with a vector of two real numbers. The embedding is initialised
uniformly at random.
G(x | θ) = G(y | θ) = G(z | θ) = 〈vθ(C1), . . . ,vθ(C24)〉.
G(sub | θ) : x, y 7→ sigmoid(MLP subθ(x, y)), where MLP subθ has 1 output neu-
ron.

Figure 6.11 illustrates the difficulty of integrating logical statements that originate
from primary logic-based approaches directly into DFL systems without considering
the open or closed world assumptions. Since there are only positive propositions in D,
the network grounds every variable positively to the predicate sub(x, z) when applying
formula (6.7). Training was done until there was no improvement in satisfiability for
50 subsequent epochs. Due to the fact thatD only contains positive propositions, each
variable in formula (6.7) is grounded positively to the predicate sub(x, z) using the
network. The formula does not provide any additional information for the gradient
updates and, therefore, does not enhance the reasoning capabilities of the NN. Only
formulas containing a negation in the consequent enable the network to acquire further
relevant information in order to improve its reasoning capabilities. In the absence of
such information, the network is unable to learn a meaningful interpretation of the
vector embeddings. This is reflected in a low F1-score (F1=0.64) when considering all
possible subclass relations (comparable to the results reported in Bianchi and Hitzler
(2019)). Notably, the precision here is 0.436 but the recall is 1, indicating that the
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Figure 6.11: Exemplary taxonomy as proposed in Bianchi and Hitzler (2019) to learn
how LTN can represent ontology reasoning and learn all subclass relations by extrap-
olating to any depth. The figure shows (on the left) subclass relations inferred before
and (on the right) after negative propositions were added with F1 scores of 0.64 and
0.97, respectively.

network is prone to false positives. Nevertheless, by assuming that knowledge is
complete, it is possible to deduce negative propositions E on the basis of transitive
closure. By generating negative propositions for learning, we impose data based
on a closed-world assumption upon an open-world model, leading to a significant
improvement of the F1 measure (F1=0.968).

6.3.2 Reasoning in an Open-World

The goal of this task is to be able to use quantified formulas to complete an exist-
ing domain but also to transfer information effectively into a new predicate domain.
Again, we compare results with Bianchi and Hitzler (2019), this time on the well-
known ancestor example from Inductive Logic Programming. We further compare
results with Prolog and the open-world theorem prover Coq, for the sake of a com-
parison with symbolic reasoning approaches. Using subsets of the knowledge-base
K in Prolog and Coq, we can derive comparisons on reasoning capability with in-
complete information and open domains. We shall also investigate continual learning
within the LTN iterative approach and its ability to reason with partial knowledge.
The iterative application of LTN allows one to increase the size of the knowledge-base
incrementally by querying the network. The following example illustrates how false
positives may be exacerbated over multiple deductive reasoning steps as part of this
iterative approach.

The ancestor example is a well-known family tree problem centred around the
learning of recursive relations, in particular the definition of ancestor as the recursive
application of a parent predicate. Given only positive propositions about the parent
relation, the ancestor relation is expected to be learned and to be generalised to the
recursive application of any instance of the parent relation3.

3In Prolog notation:
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The task is a combination of transferring information from the parent predicate
to the ancestor predicate while at the same time inferring the complement of the
existing formulas (non-parents). This is achieved by the quantified formulas and it
illustrates how false positives may be exacerbated over multiple reasoning steps.

Domain: people, to denote the individuals.

Constants: C1, .., C17 denoting the 17 individuals for which an embedding is to be
learned.
(C1) = (C2) = · · · = (C17) = people.

Predicates: par(x, y), anc(x, y) for the parent and ancestor binary relation, respec-
tively.
(par) = (anc) = people, people.

Variables: x, y, z are variable ranging over the domain.
(x) = (y) = (z) = people.

Axioms Let D = {(x, y)} denote the 22 parental relations, e.g. (joe, juliet), joe is
a parent of juliet, (janice, juliet), janice is a parent of juliet, etc. D denotes
the training data. The knowledge-base is incrementally expanded using the 10
quantifiable clauses listed in Figure 6.12 (left) and below.

∀x ∈ D : ¬par(x, x)

∀x ∈ D : ¬anc(x, x)

∀x, y ∈ D : par(x, y)→ anc(x, y)

∀x, y ∈ D : par(x, y)→ ¬par(y, x)

∀x, y ∈ D : anc(x, y)→ ¬anc(x, y)

∀x, y, z ∈ D : anc(x, y) ∧ par(y, z)→ anc(x, z)

∀x, y, z ∈ D : par(x, y) ∧ par(y, z)→ anc(x, z)

∀x, y, z ∈ D : anc(x, y) ∧ anc(y, z)→ anc(x, z)

∀w, x, y, z ∈ D : par(w, x) ∧ par(y, x)→ ¬par(z, x)

∀x, y, z ∈ D : ¬par(x, y) ∧ par(y, z)→ ¬anc(x, z)

Grounding: G(people) = R2. We learn embeddings in R2.
G(C1 | θ) = vθ(C1), G(C2 | θ) = vθ(C2), . . . , G(C17 | θ) = vθ(C17); every
individual is associated with a vector of two real numbers. The embedding is
initialized uniformly at random.
G(x | θ) = G(y | θ) = G(z | θ) = 〈vθ(C1), . . . ,vθ(C17)〉.
G(parent | θ) : x, y 7→ sigmoid(MLP parentθ(x, y)), where MLP parentθ has 1
output neuron.
G(ancestor | θ) : x, y 7→ sigmoid(MLP ancestorθ(x, y)), where MLP ancestorθ
has 1 output neuron.
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Known True Known False Unknowns Total

Revision 1 22 17 250 289
Revision 2 22 17 250 289
Revision 3 22 33 234 289
Revision 4 46 57 186 289

Table 6.4: Using the theorem prover Coq, we can derive proofs for true and false an-
cestor relation given axioms and propositions. It shows that although the information
is incomplete, each revision step adds to what can be deduced.

As shown in Figure 6.12, the full knowledge-base is split into partial knowledge-
bases and queried incrementally on knowledge that does not form part of the training
process. The formulas used here correspond to those in the small and extended
knowledge-bases used in Bianchi and Hitzler (2019). For efficiency, we use an embed-
ding of size 2 as opposed to 10 in Bianchi and Hitzler (2019). Furthermore, we employ
the product Real Logic operators introduced in Krieken et al. (2020). With the theo-
rem prover Coq, we can derive proofs of the ancestor relation given a knowledge-base
and propositions (i.e., examples). Coq derives these proofs under an open-world as-
sumption. The information is incomplete, although each revision step contributes to
the knowledge-base (Table 6.4).

F1 score Precision Recall Sat Coq True Coq True Coq Positive Negative
Level Positives Negatives Unknowns Unknowns Unknowns

LTN Rev. 1 0.597 0.426 1 1 22 17 250 (86.5%) 9.6% 90.4%
LTN Rev. 2 0.631 0.46 1 0.907 22 17 250 (86.5%) 9.6% 90.4%
LTN Rev. 3 0.875 0.84 0.913 0.912 22 33 234 (81%) 10.26% 89.74
LTN Rev. 4 0.884 0.84 0.933 0.945 46 57 186 (74.4%) 0% 100%

Prolog Rev. 1,2,3 0.647 1 0.47
Prolog Rev. 4 1 1 1

Table 6.5: F1 score, Precision and Recall of the deduced ancestor relations using Pro-
log and LTN for the revision steps depicted in Figure 6.12. Prolog achieves perfect
scores as expected with all the required information provided under the closed-world
assumption. Coq is unable to prove a large number of cases under open-world as-
sumption. LTN is able to perform well under open-world assumption given incomplete
information, while improving on the reasoning capabilities reported in Bianchi and
Hitzler (2019) with each revision step of the iterative LTN.

In a first revision step, we initialise the task with minimal background knowledge
consisting of the 4 formulas highlighted in the first column of Figure 6.12 and the 22
propositions (D) of the parent relation. The network is trained at each revision step
to learn a grounding for the clauses indicated by a green arrow in the figure. Upon
training, we observe a fast convergence to 99% satisfiability of K after 2,000 epochs,
whilst in Bianchi and Hitzler (2019) networks were optimised up to 10,000 and 20,000
epochs to converge.
By querying each clause after learning from clauses 1 to 4, it is evident that the

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
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Figure 6.12: Top: LTN solving the ancestor example Bianchi and Hitzler (2019)
as part of an iterative revision process: par(x, y) denotes that x is a parent of y;
anc(x, y) denotes that x is an ancestor of y. The figure shows the sat-level of each
formula and the green arrows indicate the formulas used for training at each revision
step. Bottom: Comparison of the graphs learned after each LTN revision with the
ground truth of the ancestor example; the graphs approach the ground truth as more
formulas that can generate negative propositions are retained by each revision.

network has acquired knowledge of clauses 5 to 8, as indicated by their satisfiability
levels at revision 1 in Fig.6.12. Thus, using the extended knowledge-base as presented
in Bianchi and Hitzler (2019) would not enhance the deductive reasoning capability in
this case (with the use of the product real logic operators Krieken et al. (2020)). The
network is generating many false positives (see Table 6.5) as numerous propositions
and quantified formulas in K specify positive relations. The majority of unknown
relations which cannot be deduced, as determined by the theorem prover Coq, are
inferred to be true by the network. Although, under the assumption of a closed world,
Prolog assigns all unknowns to false and achieves high precision (see Table 6.5). By
querying clauses 9 and 10, whose consequents are negative literals, a low satisfiability
value of around 37 % indicates also that the majority of parent relations that are not
part of the training data are assumed to be true by the network. Therefore, either
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more data containing negative examples should be considered or specific quantified
formulas should be added to LTN, both will yield the same effect of improving the
groundings. Here we opted for the latter option due to the simplicity of adding a
clause as a constraint to LTN. The incremental addition of clauses and the monitoring
of performance improvements should make revision easier when clauses (rather than
large chunks of data) may need to be removed later.
As part of revision step two, we add clause 9 having ¬par(z, x) in the consequent
to the LTN and continue to train the LTN for 2,000 additional epochs. Using this
revised knowledge, new training examples will be created using the existing predicate
and data. As shown in Figure 6.12 bottom, the added knowledge enables the network
to eliminate false positives from the par relation. Notably, this translates into an
improved inference of the anc relation by the network, as can be seen from the Table
6.5, despite Coq finding no additional proofs for these anc relation.

During revision step three, following an additional 2,000 epochs of training with
the clauses shown in Figure 6.12, the ¬anc relation is further specified. An exami-
nation of the F1 score in Table 6.5 indicates that the provision of negative examples
significantly enhances the reasoning capabilities of DFL-models. Further specifica-
tion of ¬anc cannot improve Prolog’s results where unknowns are assumed to be false
under the closed-world assumption.

Lastly, revision four adds the clauses that fully specify all ancestor relations within
the set of examples. All 46 positive anc relations can now be derived using the theorem
prover Coq. However, the ¬anc relations remain under-specified with 186 examples
not being provable under an open-world assumption.
The continuous revision of the model has demonstrated that one can eliminate an
undesirable model property by adding constraints that will increase the deductive
capabilities reported in Bianchi and Hitzler (2019). Using less than 1% trainable
parameters, we obtain a Mean Absolute Error of 0.04 and F1 of 0.884, while Bianchi
and Hitzler (2019) achieved 0.14 and 0.85. The results indicate that open-world DFL
methods are prone to recall while logical reasoners under a closed-world assumption
are better at attaining high precision when the domain is underspecified. Considering
this point is essential when making assumptions about the information required to
ground a domain through learning. Our findings also indicate that DFL methods
outperform logic-based methods when the information is incomplete.

Adding logically-redundant knowledge to a differentiable fuzzy logic system can
be beneficial to improve overall performance. When the performance is dependent on
or intended to measure the reasoning capability of the system, it is important to make
the underlying assumption of a closed-world or open-world reasoning explicit. The
first reasoning example used in this paper (ontology reasoning) showed how an open-
world DFL model trained without sufficient negative information fails to learn simple
relational knowledge. As expected, the iterative provision of negative information can
improve reasoning capabilities dramatically.
The second example used in this paper (the ILP ancestor example) showed the same
trend, with the iterative application of knowledge improving the reasoning capability
of the neural network. The neurosymbolic approach showed also a superior reasoning
performance than purely symbolic methods in the presence of incomplete information,
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F1 score Precision Recall Sat
Level

Prolog Rev. 1,2,3 0.647 1 0.47
Prolog Rev. 4 1 1 1

Coq (unk assumed false) Rev. 1,2 0.647 1 0.47
Coq (unk assumed false) Rev. 3 0.647 1 0.47
Coq (unk assumed false) Rev. 4 1 1 1

Coq (unk assumed true) Rev. 1,2 0.289 0.169 1
Coq (unk assumed true) Rev. 3 0.305 0.18 1
Coq (unk assumed true) Rev. 4 0.33 0.197 1

LTN Rev. 1 0.597 0.426 1 1
LTN Rev. 2 0.631 0.46 1 0.907
LTN Rev. 3 0.875 0.84 0.913 0.912
LTN Rev. 4 0.884 0.84 0.933 0.945

Table 6.6: F1 score, Precision and Recall of the deduced ancestor relation; Prolog
compared with LTN for the revision steps depicted in Figure 6.12. Prolog is perform-
ing well as all required knowledge is given under closed-world-assumption. LTN is
able to perform well under open-world assumption with incomplete information when
compared with open-world Coq. Unknowns refer to all relations that are not provable
under open-world assumption.

indicating how the combination of data and knowledge may benefit purely neural or
purely symbolic (reasoning) approaches. Our results showed that the network was
capable of capturing multi-hop steps and we intend to extend the evaluation to a
large-scale knowledge graph with increasingly sophisticated relations.

Having demonstrated how the framework can enhance the reasoning capabilities
of the AI system, we now show how the same concepts can be applied to the practical
application domain of fairness in machine learning classification. The aim of the next
section is to describe how revision and constraints can be used to remove biases from
the classifier that are picked up from the training data. Further, we compare how this
approach compares to existing fairness methods for neural networks and find that it
outperforms comparative methods on three datasets while obtaining the same level
of quantitative fairness.

6.4 Logic Tensor Networks for Fairness in AI

In this section, we propose an interactive neural-symbolic approach for fairness in AI
based on the Logic Tensor Network framework. We show that the extraction of sym-
bolic knowledge from LTN-based deep networks combined with fairness constraints
offer a general method for instilling fairness into deep networks via continual learning.
Explainable AI approaches which otherwise could identify but not fix fairness issues
are shown to be enriched with an ability to improve fairness results. Experimental
results on three real-world datasets used to predict income, credit risk in financial
applications and recidivism show that our approach can satisfy fairness metrics while
maintaining state-of-the-art classification performance.
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More specifically:

• We introduce a method that allows one to act on information extracted by any
XAI approach in order to prevent the learning model from learning unwanted
behaviour or bias discovered by the XAI approach. We demonstrate how our
method can leverage an existing XAI method, in this case SHAP Lundberg and
Lee (2017), to discover and address undesired model behaviour. To recap: the
goal of SHAP is to capture the average marginal contribution of a feature value
across different possible combinations. A single Shapley value for a feature of
this specific input denotes the contribution of such a feature to the prediction
w.r.t. the average prediction for the dataset (Lundberg and Lee, 2017). The
authors propose determining such a value by calculating the average change in
the prediction by randomly adding features to the model. The Shapley value
works for both classification and regression tasks, and is one of the most widely
used XAI algorithms today.

• We implement and outline the use of LTN for continual learning and iterative
querying by caching the learned representations and by using network querying
in first-order logic to check for knowledge learned by the deep neural network.

• We apply the proposed method and tool to the field of quantitative fairness in
finance and recidivism in crime. Experimental results reported in this section
show comparable or improved accuracy across three datasets while achieving
fairness based on two fairness metrics, including a 7.1% average increase in
accuracy in comparison with a state-of-the-art neural network-based approach
Padala and Gujar (2020).

While the majority XAI methods make a noticeable contribution to the obstacle of
gaining some understanding into model-behaviour, none of them address the problem
of how one should act upon the extracted information. Consequently, we do not
see the LTN approach as a method to be compared directly with the above XAI
approaches but to complement them. By applying the neural-symbolic cycle multiple
times, partial symbolic descriptions of the knowledge encoded in the deep network will
be checked and, through a human-in-the-loop approach, incorporated into the cycle
as a constraint on the learning process. This will enable an interactive integration
of a desired behaviour, notably fairness constraints, by checking and incorporating
knowledge at each cycle, instead of (global or local) XAI serving only to produce a
one-off description of a static system.

6.4.1 Quantitative Fairness

One of the main goals of the recent advancements in explainability encompasses con-
siderations of the fairness of automated classification systems. Although the discovery
of such unwanted behaviour is essential and useful, in this section, we can address spe-
cific undesired properties, discovered or specified symbolically, and alter the learned
model towards a fairer description.
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Figure 6.13: Illustration of the LTN pipeline for interactive continual learning: revi-
sion is carried out by querying a deep network interactively and learning continually,
thus applying the neural-symbolic cycle multiple times. Explanations extracted from
the network using e.g. SHAP can highlight bias in feature importance. Querying
the network in LTN-style shows the satisfiability of fairness constraints which can be
added to the knowledge-base K for further training. This process concludes once it
has been shown to reduce bias highlighter through a subsequent SHAP explanation
or the satisfiability of fairness constraints.

There have been a few methods addressing fair representation or classification: Dwork
et al. (2012) seek to achieve fair representation in data instead of focusing on the
classification. Agarwal et al. (2018) seek to achieve fair classification by proposing a
reductionist approach that translates the problem onto a sequence of cost-sensitive
classification tasks. Choi et al. (2019) study fairness in naive Bayes classifiers and
propose an interactive method for discovering and eliminating discrimination pat-
terns. Padala and Gujar (2020) integrate fairness into neural networks by including
complex and non-decomposable loss functions into the optimisation. Fairness remains
a significant challenge for Machine Learning. For an overview of the variety of fair-
ness notions, we refer the reader to Zemel et al. (2013); Dwork et al. (2012). For an
extensive overview of various fairness-oriented Machine Learning methods, we refer
the reader to Friedler et al. (2019) and Mehrabi et al. (2019).

The above methods are related because they introduce constraints either on the
data or the model during learning. The LTN-based approach used here introduces
constraints as a regularisation which therefore may apply to any model or dataset.
Also, in LTN, additional fairness axioms can be specified during training time by the
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user, which may be unrelated to the existing fairness axioms. Finally, at test time,
the protected variables defined by such axioms are not used, so that a final customer
of the ML system will not be asked for sensitive information on gender, race, etc.

Quantitative fairness metrics seek to introduce mathematical precision to the def-
inition of fairness in machine learning. Nevertheless, fairness is rooted in ethical prin-
ciples and context-dependent human value judgements. This functional dependence
on value judgements is manifested in mutually incompatible definitions of fairness
(Kleinberg et al., 2018; Lundberg and Lee, 2017). Rather than comparing extensively
different notions of fairness, this section focuses on fairness as a current desiderata of
explaining a models behaviour using XAI techniques, and therefore it uses the classi-
cal demographic parity metric and the legal notion of disparate impact to investigate
the applicability of LTN.
The majority of fairness ML approaches can be considered to target group fairness,
meaning parity between groups on aggregate. Dwork et al. (2012) advocate for the
more fine-grained individual fairness where similar individuals should be treated simi-
larly. Despite the focus on group fairness due to comparability, our approach can also
be used to achieve individual fairness. We use the following standard definitions of
group fairness to measure and compare with other methods. Following Agarwal et al.
(2018); Padala and Gujar (2020), we consider a binary classification setting where the
training examples consist of triples (X,A, Y ) where x ∈ X is a feature vector, a ∈ A
is a protected attribute, and Y ∈ 0, 1 is a label.

Definition 6.4.1. Demographic Parity (DP) A classifier h satisfies demographic par-
ity under a distribution over (X,A, Y ) if its predictions h(X) are independent of the
protected attribute A. That is, ∀a ∈ A and p ∈ {0, 1}

P[h(X) = p | A = a] = P[h(X) = p]

Given that p ∈ {0, 1}, we can say:

∀a : E[h(X) | A = a] = E[h(X)]

the metric itself is typically reported as difference between both sides of the equation
which converges towards 0 for fair classifier.

Definition 6.4.2. Disparate Impact (DI): Given (X,A, Y ) as specified above, a clas-
sifier h has disparate impact if:

P(h(x) > 0 | a = 0)

P(h(x) > 0 | a = 1)
≤ τ = 0.8

when we use the industry standard “80%-rule” (Feldman et al., 2015). This metric
compares the proportion of individuals from an unprivileged and privileged group that
receive a positive output which converges towards 1 for full removal of DI between
groups.
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6.4.1.1 Further experimental descriptions

All experiments were run using the Tensorflow version 2.0 as well as PyTorch 1.2.
The processor used i9 (4.5Ghz) with a NVIDIA 2080 TI GPU and 32GB Ram using
Windows 10. Training is done until the satisfiability of the knowledgebase reaches 1
or the maximum of 3000 epochs is reached. Each of the experiments uses a regular
feed-forward network with an output node for the predicate and two hidden layers of
size 50 and 25 with a single output. The notebooks can be found in the accompanying
repository inside the fairness subfolder.
As the datasets have been commonly studied across a variety of literature, we omit
an extensive analysis of them Padala and Gujar (2020); Choi et al. (2019). Compass
dataset has 6172 training examples after pre-processing (removing entries with empty
data), Adult 45222, and German 1000.
All of the evaluation metrics used in our experiments were chosen to achieve compara-
bility to the mentioned papers. We omit an extensive analysis of the appropriateness
of the metrics at hand to solely focus on aligning with other methods. Regarding a
discussions of the limitation of the fairness metrics, we refer the reader to (Dwork
et al., 2012; Pleiss et al., 2017). Validation is done using 5-fold and 10-fold cross-
validation to obtain comparability to (Padala and Gujar, 2020; Choi et al., 2019).
In our experiments, choosing higher values for the aggregation than p = 5 can lead
to NaN values in gradient back-propagation. This is a result of decreased precision
when using tensor cores in the GPU of tf.float16. These errors do not occur when
using CPU and can be avoided using lower values for p.

6.4.2 Experiment: Fairness using objective Features

The first experiment draws a parallel with a current state-of-the-art method in the
area of explainability. We demonstrate how traditional XAI methods are able to
benefit from a neural-symbolic approach. Most importantly, we show how the LTN
method can remove any undesired disparities in a model-agnostic approach when hav-
ing access to objective features as proposed in Dwork et al. (2012).
We use the same example as the authors of the popular SHAP library connecting
XAI and fairness Lundberg and Lee (2017). For more detailed exposition of SHAP,
we refer the reader to section 2.4.2. They aim to dissect the model’s input features
to understand the disparities based on quantitative fairness metrics in the context of
a credit underwriting scenario.
A data generation process allows one to ensure that the labels are statistically inde-
pendent of the protected class and any remaining disparities result from measurement,
labelling or model errors. We generate four hypothetical causal factors scaled between
[0-1] (income stability, income amount, spending restraint and consistency), which in-
fluence the observable features (job history, reported income, credit inquiries and late
payments). The customer quality for securing credit is the product of all the factors
that consequently determines the label as high-customer quality by being strong si-
multaneously in all factors. The observable features are subject to a bias introduced
to obtain disparities in the system. This bias influences the mapping of the underlying

133



factors to the observable features and therefore simulate an under-reporting of errors
for women (the implementation contains further detailed explanation). We generate
this synthetic data with 5000 data points for each gender.
We compare the demographic disparity between the gender groups by calculating
their Shapley values. We use such values as a popular way of gaining insight into
model behaviour, although other explainability methods could have been used, and
show that one can intervene in the model by adding knowledge for further training
of the LTN to reduce disparities. SHAP is used since it allows for detailed decom-
position of feature-based disparities. However, any XAI method that is capable of
highlighting undesirable disparities might have been chosen as an alternative method
to motivate the addition of fairness axioms.
Since the SHAP method uses the same units as the original model output, we can de-
compose the model output using SHAP and calculate each feature’s parity difference
using their respective Shapley value. Then, by adding clauses to LTN which seek to
enforce equality as a soft constraint, the neural network will be trained to reduce the
difference (axioms 6.10-6.14 below). Re-applying SHAP would then give a measure
of the success of the approach on parity difference.
Axioms 6.10-6.14 are created based on the idea of treating similar people similarly
from Dwork et al. (2012). It is argued that finding an objective similarity or distance
metric in practice can be challenging but should be possible4.
First, we split the data into two subsets for the protected (F ) and unprotected (M)
group, respectively, and create five subsets within each group, denoted RFi and RMi,
1 ≤ i ≤ 5, using quantile-based discretisation of customer quality5. The five axioms
(6.10 to 6.14) then state, according to the discretisation, that if a member (x) of set
RFi defaults on credit, i.e. h(x) = 1, then a member (y) of set RMi should also
default, h(y) = 1, and vice-versa. Due to our use of the LTN-based fuzzy logic, each
satisfiability is determined by aggregation. If aggregation by average is employed
(alternative aggregations are possible), then both protected and unprotected groups
should default equally on average. Given the different groups, one may wish to spec-
ify that equality in prediction is required, e.g. for the bottom 20% of the protected
group w.r.t. the unprotected group according to a fairness measure. In our approach,
the use of the generalised p-mean lends itself very well to this task by allowing for
different forms of aggregation for each equality sub-group (referred to as customer
quality 1 to 5 below). As a result, the user can specify in the system how strictly
each fairness axiom is expected to be satisfied (using the p-mean parameter p and
the satisfiability threshold t, c.f. Algorithm 1). Experiment 1 is summarised below.

Predicate: D for the positive class (i.e. credit default)

Training data: TD, a set of individuals who credit default; TN , a set of individuals
who do not credit default; RF1, ...,RF5 ⊂ {TD ∪ TN}, a set of female individ-

4The authors further advocate making such metric public to allow for transparency. They propose
the use of a normative approach to fairness as the absolute guarantee of fairness.

5This choice should be attribute-independent and application specific, e.g. based on reported
income from very low, low and medium, to high and very high, different groups may require different
interventions, i.e. different axioms according to policy and the situation in the real-world
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uals with customer quality 1 to 5; RM1, ...,RM5 ⊂ {TD ∪ TN}, a set of male
individuals with the same customer quality.

Axioms:

∀x ∈ TD : D(x) (6.8)

∀x ∈ TN : ¬D(x) (6.9)

∀x ∈ RF1, y ∈ RM1 : D(x)↔ D(y) (6.10)

∀x ∈ RF2, y ∈ RM2 : D(x)↔ D(y) (6.11)

∀x ∈ RF3, y ∈ RM3 : D(x)↔ D(y) (6.12)

∀x ∈ RF4, y ∈ RM4 : D(x)↔ D(y) (6.13)

∀x ∈ RF5, y ∈ RM5 : D(x)↔ D(y) (6.14)

Model: h(x) (denoting D(x)) is the multilayer perceptron described in Section 6.2.3.

We initially train the multilayer perceptron on the data alone (without axioms 6.10
to 6.14) and observe the disparities shown in the SHAP XAI chart shown in 6.14
(left). The network learned undesired disparities among gender groups as a result of
under-reporting errors in the data (equivalent to using only axioms 1 and 2 with an
LTN trained for 1000 epochs).

Figure 6.14: Disparity impact extracted with SHAP before and after LTN learning
of fairness constraints.

We subsequently add axioms 6.10 to 6.14 to the knowledge-base and re-train the
LTN with these axioms. As shown in the SHAP XAI chart of Figure 6.14 (right),
this decreases disparity considerably, having reduced the Disparity Impact from 0.64
to less than 0.001. This illustrates the ability of LTN to account for fairness after
having observed disparities in common XAI methods by adding appropriate fairness
axioms for further training. Despite its usefulness as proof-of-concept, we acknowledge
that the ideal notion of similarity among sub-groups can be impracticable. Next, we
continue our investigation with additional real-world data and derive a notion of
similarity automatically using the continual method.
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6.4.3 Experiment: Fairness and Direct Comparisons on Real-
World Data

We compare results on three publicly-available datasets used in the evaluation of
fairness, obtained from the UCI machine learning repository: the Adult dataset for
predicting income, German for credit risk, and COMPASS for recidivism. We fol-
low the experimental setup used in Padala and Gujar (2020), although they perform
extensive hyper-parameter tuning whilst our models are simpler. We compare our
LTN-based approach with another neural network-based approach that integrates
fairness constraints into the loss function using Lagrange multipliers Padala and Gu-
jar (2020) (FNNC), and with an approach for naive-Bayes classifiers Choi et al. (2019).
Gender is the protected variable in the Adult and German datasets, and race in the
COMPASS dataset. We train a neural network with two hidden layers of 100 and 50
neurons, respectively (Padala and Gujar (2020) trains networks of up to 500 neurons
per layer). We use the Adam optimiser with a learning rate of 0.001 trained for a
maximum of 5000 epochs. As in Padala and Gujar (2020), we report results averaged
over 5-fold cross-validation.
As before, we first train the network without fairness constraints, while before we
relied on an objective notion of similarity that made it possible to split the individu-
als into sub-groups, now we use a continual learning approach (when such objective
notion is not present). The trained network is queried to return the truth-value of
the predicate used for the classification task G(D(T )) for the entire training set T .
The output helps determine, as a proxy for similarity, the fairness constraints. As
done in the previous experiment, a quantile-based discretisation is carried out, but
this time according to the result of querying the network, after splitting the data
into two subsets for each class according to the protected variable. Therefore, we
obtain equally-sized groups for each protected and unprotected variable. Again, five
sub-groups are used and the axioms from Experiment 1 apply.
Querying axioms 3 to 7 reveals a low sat level at first as an indication of an unfair
model (satφn < 0.5). This is confirmed by measuring the fairness metrics with DI
≤ 0.4 and DP ≥ 0.03 across all datasets 6. The results are shown in Figure 6.15
which also includes the results of the approach to account for fairness in naive Bayes
classifiers Choi et al. (2019). The comparison with Choi et al. (2019) is not as straight-
forward as the comparison with FNNC Padala and Gujar (2020) because Choi et al.
(2019) use 10-fold cross-validation and do not measure DI or DP. Nevertheless, we
include the results of our approach using 10-fold cross-validation also in Figure 6.15
for the datasets. Since both LTN and FNNC are based on neural networks, we can
make a more direct comparison with FNNC Padala and Gujar (2020).
As illustrated in Figure 6.15, we are able to outperform other state-of-the-art methods
and achieve a lower variability across all datasets, and pass the DI and DP fairness
thresholds proposed by Padala and Gujar (2020). All experiments were carried out us-
ing the same hyper-parameters as reported above and aggregation parameter p = 5.

6this is also revealed in SHAP value disparity. We measure the fairness here using pre-defined
metrics as fairness is a known issue in these benchmarking datasets and therefore does not require
an XAI method for detection
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Figure 6.15: Comparative results of fairness-constrained learning: FNNC Padala and
Gujar (2020), NB-based Choi et al. (2019) and the LTN-based approach proposed
in this section using 5-fold cross-validation (LTN + Fairness Constraints or FC) and
10-fold cross-validation (LTN + FC 10-fold), on three datasets: Adult, German and
Compass. The fairness metrics only apply to FNNC and LTN; NB-based uses a
different metric for fairness and is therefore not directly comparable. The results of
FNNC and NB are reported by the authors.

Finally, we would like to emphasize the flexibility of our approach w.r.t. different
notions of fairness and its potential use with alternative fairness constraint construc-
tions. The approach is not applicable exclusively to the metrics used here. With
the increasing number and complexity of equality groups with larger p-values for ag-
gregation, and the currently-evolving many notions of fairness being developed, we
argue that rich languages such as FOL will be needed to capture more fine-grained
notions, possibly converging towards individual fairness (with the generalised mean
converging towards the min value).

Combining XAI methods with neural-symbolic approaches allows us to not only
learn about the undesired behaviour of a model but also intervene to address dis-
crepancies which is ultimately the goal of explainability in Artificial Intelligence. In
this section, we proposed the interactive model-agnostic method and algorithm for
fairness and have shown how one can remove demographic disparities from trained
neural networks by using a continual learning LTN-based framework. While the first
experiment demonstrated the effectiveness on addressing undesired gender-based dis-
parities on simulated data, we have investigated such effectiveness on real-world data
in the second experiment and compared to other methods.
Based on these results, it is clear that neural-symbolic integration can be useful for
continual revision after reasoning about what has been learned. However, so far we
have been limited to using the input values or the outputs of the model to specify
the queries to the network and to establish constraints that influence the behaviour
of the model. The user is thus severely limited in their ability to interact with the
model. Hence, in the following section we will demonstrate how model inherent rep-
resentation may be leveraged to arrive at more powerful logical descriptions of the
inner workings of the system by utilising predicate groundings.
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Chapter 7

Explainable AI using Concept
Groundings

The experiments in the previous chapter highlighted how the querying may be used
to understand the reasoning process of the neural network and therefore gain a better
understanding of its inner operations. As opposed to existing methods, we demon-
strate how a neural-symbolic approach to XAI may be used to incorporate knowledge
back into a network to align the network’s behaviour with the desired outcome and
values. This section aims to bring all of the above together and integrate abstract
concept grounding into the method in order to provide more intuitive understanding.
We connect TCAV and LTN in order to allow for complex conceptual explanation and
interactive learning. This enables domain experts to learn about the data-inferred
decision making process of large ML models by querying the model and defining
constraints for further learning as part of an iterative process.

In order to facilitate interaction and communication between AI systems and
humans, we may draw inspiration from previous research on the use of language to
communicate between cognitive agents (Cangelosi, 2006). Language in this context
refers to a means for representing and communicating about the world. In Harnad
(1990), the author draws attention to a problem known as the symbol grounding
problem, in which natural and artificial cognitive agents must develop an intrinsic
connection between their symbolic representations and some referents in the external
world. In this process, individuals may represent external referents in a conceptual
manner and use them as grounding for symbolic representations. The development
of these internal representations occurs as a result of interactions with entities in
the external world. Learning how to categorise allows us to form discrete and useful
concepts of our environment. Based on the following chain of representations and
entities, the cognitive mechanism underlying the grounding of physical symbols is
formed (Cangelosi, 2006):

external entities ⇔ internal representations ⇔ symbols.

The relationship between external entities and representation and symbols is bidirec-
tional, meaning that external entities affect representation and symbols, but symbols
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also affect how we represent. A practical translation of this can be accomplished by
drawing an analogy from this.

real world ⇔ neural network representation ⇔ concept groundings

During learning, the most distinguishing characteristic of this type of perception is
the requirement to warp the perceived into a similarity space of internal categorisa-
tions (Cangelosi, 2006). For the purposes of this process, we believe that a neural
network is the most suitable method of learning transformations that may be capa-
ble of producing semantic representation spaces. Thus, we are interested in focusing
on the bidirectional translation of neural networks into concepts. In the following
sections, we illustrate how we approach this problem using the proposed framework.

In the following section, we further examine how we can use the LTN framework
to reason about what has been learned by utilising inner representation. Our intent
is to make use of concept groundings as symbols to integrate into the first-order logic
framework of LTN. In this section, we wish to focus primarily on computer vision as
the data domain since it may lend itself to a more intuitive framing of the proposed
method as the notion of a concept in this domain is comparatively easily accessible.
In spite of this, the technique is not limited to computer vision and we have shown,
for example, how a concept might manifest itself in natural language.

Initially, we will be contextualising the different ways in which the framework may
be used to provide comprehensive model understanding as well as the way in which
the concept grounding fits into the framework and links to previous sections. This
will be followed up with an investigation that will outline how robust representations
of concepts can be established. Our goal is to arrive at transferable and generalizable
representations as the basis for our conceptual groundings. We identify state-of-the-
art models that enable such representations to be achieved.
After incorporating these into our framework, we demonstrate the ability of this
method to provide a powerful explanation based on different datasets used in exper-
iments. Additionally, the experiments will illustrate how a variety of models may be
incorporated into the method as the method is not prescriptive with regard to the
neural networks. Moreover, we demonstrate how concept representations can be used
to influence a model’s decision-making process. In this case, the concept representa-
tion enables straightforward communication with the model, since the user is able to
specify how concepts should be applied to arrive at a decision.

This concept grounding is intended to provide accurate and accessible communica-
tion with the neural network. The section addresses many of the deficiencies discussed
in chapter 3 & 4 and therefore provides a strong argument for using neural-symbolic
communication to understandable Artificial Intelligence, where fuzzy logic provides
the mathematical precision required to assess any formulated question or constraint
in an accessible manner.
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7.1 Practical Approaches to XAI using LTN

Following the outlining of the usefulness of Neural-Symbolic integration in mitigating
the undesirable properties that may be identified by conventional XAI methods or the
querying mechanism, we are now interested in highlighting how conceptual grounding
may provide further advantages. Specifically, the purpose of this subsection is to con-
textualise the following proposition in light of the previous work of this thesis. It has
been demonstrated above that LTN has the capability to provide post-training infer-
ences for any query φ that allows for revisions to the system’s reasoning capabilities.
We have illustrated the benefit of performing such inferences while simultaneously
training and building a knowledge base interactively. The following shall illustrate
how the querying mechanism may be applied at different levels to achieve a variety
of insights into the trained model. This will provide a high-level overview of how the
proposed method that will follow complements the previously mentioned procedure
for obtaining insights into the model.

As one approach, we may control a bounded variable x before aggregating ∀x
by restricting the selection of data to subsets that have distinctive features. In this
sense, it is similar to the sampling methods introduced in the taxonomy. It has the
advantage that LTN permits the use of FOL language which allows for simplicity
and ease of use. The objective is to isolate the behaviour of a certain group in
comparison to other groups. When combined with the fuzzy operators that enable
fully differentiable Neural-Symbolic methods, this group-specific treatment is already
an effective method for obtaining insights into model behaviour. The advantage of
this approach is that it can be integrated over any model that acts as a grounding
G in which the LTN represents the framework. In the fairness example, we utilise
this mechanism to not only query the model behaviour of protected groups compared
to unprotected groups, but also eliminate the undesired unfair treatment of specific
subgroups using the targeted subgroups as aggregation filters.

We can formalise this notion as targeted truth queries where we intent to quantify
over a set of elements of a domain for which the grounding satisfy some condition.
Such a query consists of (φq(x),D), where x is a bounded variable of the formula φq
and D are a set of examples where the dimensions of D = (d1, ...,dn) correspond to
those of the domain of x.
There are two approaches to achieve an equivalent outcome. Either we can specify our
target in our query φqt as part of the formula as proposed in Badreddine et al. (2020)
as Guarded Quantifiers. Essentially, the variables are dynamically masked according
to a condition before the aggregation operators are applied.
We can translate the fairness example accordingly.

∀x, y ∈ R : D(x(risk = i))↔ D(y(risk = i))

For a more elaborate of explanation of the semantics of this type of quantification,
we refer the reader to Badreddine et al. (2020). Our interactive LTN framework,
including connectives and quantifier, follows the Real Logic as defined in Badreddine
et al. (2020).
Alternatively, we propose the aggregation of specific closed variables if they satisfy a
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condition, which yields the same outcome in a static setting (applying the quantifi-
cation mask on a fixed feature). Hereby, we specify D to consist of a set of examples
where the condition holds Dt = (dt

1, ...,dt
n).

∀x ∈ RF1, y ∈ RM1 : D(x)↔ D(y)

Among the fundamental limitations of such targeted truth queries is the constraint
that we must specify the explanations for each distinct feature in the input space.
The application of this method is unsuitable for complex tasks when the input data is
very low-level, since a comprehensible explanation would require abstract conceptual
representations.
Our proposal to address this is to extend LTN by incorporating conceptual represen-
tations that allow meaningful intuitive explanations. Essentially, the model is trying
to assign concepts to learned distributed representations. By doing so, not only can
intuitive explanations be generated comparable to human explanations, but also the
procedures inside the model can be better understood. We are building on existing
ideas, including the Concept-Activation-Vector presented earlier in the thesis as well
as existing research on Linear Probes (Kim et al., 2018; Alain and Bengio, 2018). In
our apporach, outputs and inner representations of concepts inside any neural network
are mapped onto a logical predicate to obtain an explanation w.r.t. other predicates
(other outputs and inner representations connected via logical connectives: negation,
conjunction, disjunction, implication). Our aim is to query the neural network for
symbolic knowledge so that a direct interpretation of abstract representations and
operations on those representations become feasible.
In summary, if we consider the Differentiable Fuzzy Logic methods that use a sub-
symbolic model to ground low-level data into a symbolic representation, three distinct
approaches to explanation can be derived:

• Interpretability on Predicate grounding level which is achieved through a com-
bination of various model outputs. First-order logic can be used to formulate
queries that connect predicate truth values (output). One illustrative example
of this is the parent-ancestor relation above.

• Interpretability through targeted truth queries. This is done by closed aggre-
gating on specific data. The aggregation of groundings is based on distinctive
differences in input attributes. Illustrations of this approach are the fairness
examples above. This allows us to study the effect, specific features have on the
output groundings using bounded variables. In Badreddine et al. (2020), the
authors propose an alternative for targeted querying using so-called Guarded
Quantification. An example query would be ∀y(∃x : risk(x) = risk(y)(G(x) ↔
G(y))) The grounding is of the bi-implication are only aggregated for instances
that satisfy the respective risk condition for x and y.

• Interpretability through intermediate model representations. By extracting
inner embeddings, we can deduce how the model learned to perform a given task.
It is possible to extract these representations from a neural network, for example,
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by localizing and translating their respective activation patterns. We can obtain
a comprehensible description of the model reasoning process akin to human
reasoning by integrating representations into conceptual groundings in First-
Order-Logic. As will be demonstrated, the model classification of a zebra can
be broken down into human-recognisable concepts where we dissect the process
of recognising horses with stripes as zebras (∀x : horse(x) ∧ stripes(x) =⇒
zebra(x)).

If we acknowledge that XAI is fundamentally concerned with establishing a form of
communication between distributed representation based on various transformations
and human-level reasoning, the main challenge becomes the translation between both
levels.
The translation process can be divided into two distinct stages. In order to gather and
make sense of low-level sensory data, conceptual entities have to be translated into
symbols that refer to common concepts. An abstract concept is commonly used when
a human is asked to explain why a perception task was performed by highlighting a
distinguishing feature of an object. Furthermore, processes that provide information
about concept interaction, such as the conjunction of concepts, need to be captured. It
is through the logical operators that we gain an understanding of the type of relation
concepts are in. Although an approximation, as it may not capture the complex
interaction in its entirety.

7.2 Symbols and Conceptual Groundings

Symbols are tangible references which will be used to denote abstract concepts that
arise through learning of model-specific, data-driven representations. These abstract
concepts will be derived from within a trained model, giving rise to explanations that
are grounded on the model’s inherent representation and operations.
In fact, one of the core premises of the theory of communication is that communica-
tion is primarily symbolic (Littlejohn, 1977). According to symbolic interactionism,
humans interpret and assign meaning to events through a set of symbols that are
interconnected. Over the years, much research has been conducted on communica-
tion based on these principles, which can provide a broad framework for all forms of
communication.Though it may seem desirable to communicate complex concepts in
such an abstract way, the proposed approach in this chapter is more pragmatic and
focused on obtaining general, reusable concepts. As an illustration of this, Figure 7.1
provides a variety of visual examples of the visual concept of a banana across different
datasets. Once a model has learned a sound representation of a banana, it is capable
of identifying this concept regardless of whether it is a photo, a sketch, an illustration,
a ripe banana, or a banana cut into pieces. Even though these mappings are typically
associated with network outputs, general representations of various concepts can also
be identified within the network.

In recent years, Deep Learning research has focused on coming up with a transfer-
able approach to Machine Learning, as catastrophic forgetting of acquired knowledge
has proven inefficient and retraining deep model from scratch undesirable. As datasets
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Figure 7.1: Illustration of the ability of CLIP to transfer learned information into a
new domain (Radford et al., 2021). Here the distribution shift for bananas across
different datasets is visualised. By demonstrating that the model can perform well
across different domains demonstrates that a powerful representation is inherent to
the model. For example, ImageNet Sketch and ImageNet Rendition are using abstract
depictions of objects in the form of drawings, whereas ObjectNet produces objects in
different angles using various backgrounds. The performance reported refers to the
best zero-shop CLIP model, ViT-L/14@336px. The comparison model, ResNet-101,
has the same performance on the well known ImageNet validation set.

and model sizes have exploded in recent years, it is becoming increasingly important
to keep building upon learned information across various tasks. Particularly since the
introduction of pre-trained convolutions and transformers, the emphasis has shifted
from narrow end-to-end learning towards more general representation learning that
can be applied to diverse downstream applications. In this setting, practitioners fine-
tune models based on typically smaller datasets that had previously been optimized
based on much larger datasets. With this approach, the aim is to learn a reusable
representation, which results from a learned transformation that is transferable to a
new domain.
It is possible to measure the degree of transferability of a model to a variety of tasks
by looking at cross-dataset accuracy, since models that perform well across various
tasks can be assumed to be based on general reusable concepts. In this section, we
will discuss two types of models that have been particularly successful in transferring
knowledge in such way.

It is well established that convolutional neural networks perform well in a wide
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range of computer vision tasks. In addition, studies have shown that certain compo-
nents of a CNN are particularly useful for reusability across a range of applications
Yosinski et al. (2014). A CNN may broadly be divided into two parts:

• Convolutional Component: usually composed of several convolutional and pool-
ing layers that are stacked. The objective of this module is to generate and
extract features from an image, thus, the output containing layers is referred to
as a feature map (Zeiler and Fergus, 2014).

• Classifier: this part typically consists of fully connected layers. Based on the
detected features, the classifier produces predictions. In a fully connected layer,
every neuron has weighted connections to all of the outputs of the previous
layer.

Initial studies were done to use pre-trained components of Neural Networks based
on the intuition that a transformation must take place inside the network in order
to map information from very general data (image with pixels) to specific classes
(labels). Yosinski et al. (2014). Following this idea, the convolutional component
extracts general features in the early layer, and more specific features in the later
layer, where the classifier uses these feature mappings to make predictions. The
neural network visualisation work of Zeiler and Fergus (2014) validates such claims.
The common practice on the basis of this notion is to adapt pre-trained models to
new tasks by replacing the classifier and repurposing the convolutional component in
order to adapt to new tasks efficiently while incurring relatively low computational
costs. This means that abstract concepts are integral parts of the CNN, and we shall
demonstrate how general concepts map onto concepts in the following section.

Furthermore, the recent development of Transformer models offers yet another
common practice of models built for the purpose of providing reusable representa-
tions. Originally popular in Natural Language Processing, this model architecture
has since been adopted to the Computer Vision domain (Radford et al., 2021). Prior
to Transformers, Machine Learning models were commonly trained using a specific
dataset and components were reused, whereas in Transformers the learning of useful
representations is the key component of the method. As shown in Figure 7.2, the
representations acquired by these models have been shown to perform well on a wide
range of datasets even without the requirement of further training (zero-shot).
Among transformers’ major advantages is their ability to process enormous amounts
of data. This is directly related to the optimisation procedure commonly used to
train transformer models, including CLIP Radford et al. (2021). In contrast to mod-
els that are trained using datasets to assign single labels to images, CLIP is trained
using natural-language image descriptions, as illustrated in Figure 7.3. Using the
cosine similarity, both the image and text encoders seek to find a representation that
matches each image and its corresponding description in text (using full sentences).
The result is that the image is not only compressed into a single label, but also con-
tains additional information, for example, multiple labels identifying each object in
the image as well as the relationship between them. The ability to learn powerful
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Figure 7.2: CLIP is capable of outperforming the current state-of-the-art ImageNet
model using the rich feature representation. Classification is done using a linear layer
on top of the feature output of CLIP. The comparison was done with the the Noisy
StudentEfficientNet-L2 on 27 datasets by Radford et al. (2021).

mappings required for semantically rich representation is an outcome of the capacity
to retain more information due to the architecture of self-attention. Furthermore, it
requires less manual preparation of datasets for training since images with captions
are more prevalent than images with single labels Khan et al. (2021).
In addition to being able to perform well across a number of tasks, a representation

Figure 7.3: Illustration of the CLIP optimisation process (Radford et al., 2021). Im-
ages and their description are fed through their respective encoder. The dot product
of encoded image and its encoded description is supposed to be maximised.

of this type is general enough to serve as the basis for an interactive and intuitive
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approach to explainability, as will be shown. By repurposing transformer and CNN
models which are generally applicable across a wide range of datasets, we can un-
cover general concepts that can be used to form the symbolic representation of our
explanations. In the next section, we will discuss how these concept representations
can be integrated into our framework and used to develop an interactive intuitive
explainability method.

7.3 LTN for Conceptual Explanations in Computer

Vision

In the following, we will study three distinct methods that present strategies to derive
an abstract representation from a Neural Network by utilising the model representa-
tions as outlined above. Each of these methods of representation will be incorporated
into the LTN framework for interactive functionality, querying capabilities, and ex-
plainable extractions of information.
The first method will focus on convolutional neural networks and connect directly to
the TCAV work by Kim et al. (2018). Fuzzy logic will be used to interconnect various
concepts in order to address the shortcomings of chapter 3. The second method will
demonstrate how to integrate an image encoder. It will establish that the method
itself does not rely on a particular neural network architecture. Finally, we will out-
line how a multi-modal transformer can be integrated. The framework pipeline will
be further customised to automatically arrive at common sense concepts by utilising
external knowledge bases.
To obtain conceptual explanations that provide comprehensible descriptions of what
has been learned, we must ground low-level information into reusable concepts that
are present at hidden representations within the network. After outlining each ap-
proach briefly, we will subsequently demonstrate each of the proposed methods on
real images and trained neural network in an experimental setting.

7.3.1 Concepts in Convolutional Neural Networks

In our initial approach which, we draw inspiration from the TCAV approach (Kim
et al., 2018) but modify it substantially for the implementation in the LTN framework.

Consider any neural network that takes as input x ∈ Rn, which projects onto
any layer l within the network consisting of m neurons, according to a function:
fl : Rn → Rm. In an iterative explanation process, we seek to connect representations
inside the network. There is no restriction on which layer l to use, but in a CNN this
is generally the layer immediately before the fully-connected layer (i.e. the classifier)
(Odense and d’Avila Garcez, 2020).

We adapt TCAV Kim et al. (2018) to enable users to specify the concepts to be
checked (queried) at any adequate level of abstraction. Graziani et al. (2018) have
shown in an application to medical imaging that domain-related concepts can be
particularly valuable for gaining insight into the decision making process of models.
The approach proposed in this section extends this idea to allow for complex concept
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Figure 7.4: The proposed interactive-learning LTN pipeline to provide explanations
using concept groundings in hidden layer. We can use the feature map at any layer
l to decompose the activation patterns into recognisable concepts. Subsequently the
concept groundings may be put into relation with others and the output of interest
using first-order logic. In this example we may use the grounding of abstract concepts
I and H to explain class output P . Constraints can be added to train the NN
continually until the reasoning process is in line with the user’s expectation.

interactions (as defined by the logic) and model retraining using such logical rules as
constraints. Using random examples alongside a user-defined set of examples (images)
that capture a concept, we form a linear probe at layer l which evaluates the activation
values produced by the examples and already known concepts from which further data
can be selected for use.

In Kim et al. (2018), the linear probe at layer l serves as a building block for the
Concept Activation Vector used to calculate conceptual sensitivities of inputs and
classes. In this approach, we integrate the concept mapping directly into the inter-
active framework, allowing concepts to be combined into the logic, evaluated using
fuzzy logic, and chosen for further training of the neural network model. Addition-
ally, the mathematical properties resulting from fuzzy logic will be demonstrated to
provide advantages over method-specific TCAV scores.

The linear probe works as a classifier for our conceptual grounding, which is then
integrated as a logical predicate into the LTN framework. Figure 7.4 illustrates the
process. At each time that a user wishes to distil a model inference into specific
concepts C, they simply need to select a set PC of positive examples and a set N of
negative examples. The linear probe then serves to distinguish the activation values
of the neurons in layer l between {fl(x) : x ∈ PC} and {fl(y) : y ∈ N}.
This has the advantage of not being bound by pre-existing data or features. Inde-
pendent of the original task, examples (images) may be collected and any number of
user-defined concepts checked (queried) against the network. Inference is made based
on activation patterns in the feature map of layer l that have been established during
training.
Similarly to chapter 3, we construct an accuracy threshold that ensures that only
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distinct activation patterns are grounded into the framework. We only consider con-
cepts when the linear probe achieves high levels of accuracy above the threshold t,
and can therefore distinguish positive from negative concept sets accordingly. As a
result, concepts will be ignored when the underlying model has not learned a distinct
concept representation. In this section, the concept accuracy threshold is set to if
t = 0.85.

7.3.2 Concepts in Vision Transformers and Encoders

Figure 7.5: In this approach, we use the encoding of a vision transformer to ground the
abstract concepts and classes for outputs. We train linear probes on the rich feature
embedding of the CLIP model by Radford et al. (2021). As previously this allows
us to explain the predictions using first-order logic formulas that contain abstract
concepts.

Whereas in the previous approach feature mappings have to be extracted in an
intermediate layer, the CLIP transformers and encoders can be integrated directly
using the learned representations for concept groundings (see Figure 7.5).
As before, we employ a linear probe implemented as a single linear layer with sig-
moid output in order to decode activation patterns generated by the image encoder
and integrate them into the fuzzy logic framework. For the activation patterns to
be extracted, a user-defined set PC of positive examples is provided for each concept
C, similar to the CNN extraction procedure. Figure 7.5 illustrates this integration,
where Gθ(I(x)) refers to the grounding of concept CI and Gθ(H(x)) to CH .
Since the transformer and encoder were trained on a large number of images, the im-
age encoder is capable of producing vector representations that contain a vast amount
of information. Furthermore, the transformer learns a mapping C the image and a
natural language description, and not just an individual label based on the standard
1-of-N label.
Learning from natural language has several advantages over other methods of train-
ing. Natural language as a training target increases scalability significantly over stan-
dard labelling image classification datasets, as Radford et al. (2021) can integrate
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vast amounts of text-labeled images from the web. Additionally, the benefit of this
method over most unsupervised or self-supervised methods is the flexibility of zero-
shot transfer across domains, as not only a representation is learned but it is directly
linked to natural language. As a result of this connection, a suitable integration for
explainable concept grounding is possible. Natural language descriptions provide a
good fit for the foundation of the conceptual explanations we seek in our proposed
method.
Furthermore, the CLIP transformer also allows the direct encoding of text, meaning

Figure 7.6: This approach allows for zero-shot grounding of concepts and learning of
classes. We can use the text encoder in addition to the image encoder to measure
cosine similarity of encoded image and description to find the inferred output.

that each concept in C may be directly computed. It will suffice in this case to use a
natural language description of the concept for obtaining output values for the con-
ceptual groundings, as shown in Figure 7.6. In the first step, CLIP will compute the
image feature embedding and the text embeddings of all given text descriptions using
the appropriate image and text encoders. The cosine similarity between the text and
image embeddings is calculated and normalized using the temperature parameter τ
in order to obtain a softmax probability distribution.

In the section on reasoning capabilities, it is outlined that the network needs
“negative” examples to allow for sensible reasoning about the concepts learned un-
der open-world assumption. This is accomplished by incorporating random or user-
specific counter-examples in the form of a negative image- or text set N in the CNN
explanation as well as the CLIP image encoder. Due to the zero-shot approach em-
ployed by CLIP for text and image integration, the counterexamples here are provided
using alternative descriptions as text, as will be shown in the next section. Coun-
terexamples can be provided manually or derived using external knowledge-bases.
As opposed to the original CLIP that focuses solely on learning representations based
on scale, we provide logical explanations for image classification while using these
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representations. We will demonstrate how the conceptual dissection and integration
using logical connectives enables the construction of a model that is truly explainable,
accessible, and powerful.

7.4 Experimental Results

The experiments presented in this section demonstrate how the method can be applied
to different neural network architectures. The four different integrated architectures
should provide the reader with an indication of how this approach generalizes across
various neural network designs. The integration into our framework consists of point-
ing predicate truth values to either the neural network output nodes or to a linear
probe output. Class labels are usually outputs from a neural network, unless speci-
fied otherwise. Typically, model-inherent abstract concepts are specified using linear
probes.
In each section, examples used to extract and test the concept representation will be
outlined. When we used a pretrained network, we refer the reader to the original
publication for more information regarding the data used for training. Evaluation of
the knowledge base is performed using the following fuzzy logic operators: product
operator, reichenbach norm for implication, and generalised mean with p=2 for ag-
gregation. Training was done until there was no improvement in satisfiability for 5
subsequent epochs or a maximum of 50 epochs unless specified otherwise. The Adam
optimiser is used with a learning rate of 0.01. The number of training examples for
each concept will be reported in each section.
As we use pre-trained models, the outputs we explain have already been trained.
Specifically, we train linear probes to distinguish between activation patterns. A sep-
arate test set is used to evaluate the subsequent queries explaining the relationship
between concepts and outputs.

7.4.1 Convolutional Neural Network

In our first example, we establish a comparison directly with Kim et al. (2018) in
order to demonstrate the effectiveness of the method we propose. In this example,
we query a GoogLeNet model (Szegedy et al., 2015) trained on ImageNet to explain
the output class of zebras with respect to user-defined concepts, as illustrated in Kim
et al. (2018) and the bottom part of Figure 7.7.
Our initial objective is to compare the explanation on the same output (the zebra)

using the same concepts, as proposed by Kim et al. (2018). We extract the concepts
using images from the Broden dataset (short for broad and densely labeled), which
was created by combining several semantic segmentation and classification datasets in
order to dissect deep representations. The Broden dataset contains sufficient examples
for each concept to be able to effectively distinguish the internal activations. We
extract four different concept descriptions using images from the Broden dataset
(Bau et al., 2017) to dissect the zebra classification into the concepts of stripes, dots,
zigzags and an abstract representation of the horse-family concept equidae (horses,
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Figure 7.7: We produce local explanations (for individual inputs/images) and global
explanations (universally-quantified formulas) for the deep learning model by query-
ing specific neurons. We then reason about the generality of the explanations given
the truth queries extracted from the trained network. The figure shows some of
these queries associated with groundings in the neural network and their satisfiability
(sat) levels. Using linear probes to ground the activation patterns of intermediate
representations into the language of LTN, we are able to utilise abstract concepts
as explanation symbols in the logic. Following querying, the neural model can be
constrained based on a user selection of logical formulas Knew for further learning.
This iterative process seeks to align the model with user values in the context of
background knowledge K. In the figure, the Quagga is classified as a zebra. A user’s
desire to change such classification should trigger the addition of knowledge into Knew
informed by the queries to be satisfied by the final trained model. Notice that train-
ing from data may begin without any background knowledge which can be revised by
querying user-defined concepts and constraints deemed as necessary for the network
to learn.

donkeys, zebras and others). With the LTN integrated framework, the querying itself
can be carried out independently of the data used during training. An entire dataset
or, as in this case, an external dataset with previously unseen images can be fed as
input to evaluate or retrain the model.
As outlined in the previous section, we learn a linear probe to ground the activation
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patterns into the concepts specified to explain the prediction. Figure 7.4 illustrates
how we extract the concept groundings from the feature mapping that gets fed into the
GoogLeNet’s fully connected classifier. When using mutually exclusive concepts to
explain a model, it is possible to differentiate between linear probes by using a softmax
activation. The linear probe will be able to draw counter-examples in the form of
examples of alternative concepts or random images. In some instances, this may not
be desirable, as concepts may be present simultaneously. In this scenario, we follow
Kim et al. (2018) in selecting a negative set of images from the imagenet dataset,
which are neither part of the class to be explained nor the concepts to be explained.
We learn the groundings of the activation patterns for the specified concepts from
150 images of each concept and an equal number of negative examples for each class.
Subsequently, the truth-value of each query is calculated through fuzzy logic inference
using LTN. These queries can be specific to an image (local) or aggregated across the
entire set of examples (global).
The quantifier ∀ is used to aggregate across a set of data points by replacing x
with every image available from the dataset thus evaluating the model’s behaviour
across all available data. The following implication: ∀x : zebra(x)→ stripe(x), with
the symbol stripe(x) being replaced by the corresponding concept grounding in the
network, provides an insight onto how important the concept stripe(x) is for the
CNN’s classification output zebra(x) given the set of images x.

Figure 7.8: TCAV scores and fuzzy truth values for concept explanation of Zebra in
GoogLeNet trained on imagenet for comparison. The coloured bar shows the mean
value with the black line showing the range of the values.

The graph in Figure 7.8 shows the mean TCAV scores and mean fuzzy truth values
for the three concepts across 9 different inception layers (3a, 3b, 4a, 4b, 4c, 4d, 4e,
5a, 5b). We calculate the concepts based on 30 test images of zebras. TCAV scores
are directly computed and aggregated based on TCAV-specific definitions, whereas
we utilise the predefined ∀ operator of fuzzy logic. The added benefit of grounding in
fuzzy truth values is the relatively accessible interpretation such values offer compared
to the TCAV scores, which are unique to the method. While the TCAV scores differ
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significantly between layers for the same concept, the fuzzy truth values are stable
across layers.

Another important advantage of the fuzzy logic approach is the fact that we can
combine several concepts using the logic: ∀x : equid(x)∧stripe(x)→ zebra(x) returns
a truth value of 0.98 across a set of 3000 examples from ImageNet, indicating that the
CNN assigns any horse-like object with stripes to the class of zebras. When applying
a universal quantifier, the user is able to evaluate the decision making process of the
model in general, by examining the concepts on all available data, even if it has not
been used for training, thereby producing a global explanation.
One example image previously unknown to the model is the extinct quagga, an animal
characterised by a brown striped coat instead of the black and white pattern of zebras
which has been selected to illustrate the potential of local explanations. The model
identifies this animal correctly as a member of the Equidae family, recognises the
stripes on the animal and consequently classifies the image as that of a zebra, as
shown in Figure 7.7. By utilising the trained linear probes of the activation vectors
to ground individual images, we generate local explanations that provide insight into
why a particular image might be classified in a certain way according to the model.

Upon identifying potential undesired behaviour, for example by querying known
exceptions, a user can add new rules into the knowledge-base (by adding logical
formulas into Knew) for further training of the network. In case the specification of
quagga and zebra is to be changed, an alternative inference process can be imposed
on the CNN model. Recall that quagga are currently considered by the CNN to be
a subspecies of zebra. Assuming that the user decides to change this, as an example,
let us consider introducing concept probes bw(x) for black and white objects and
col(x) for colourful objects, and let us assume that these concepts are to be regarded
as mutually exclusive. Adding the following rule to Knew as a new constraint to be
satisfied by learning should force the neural model to only classify black and white
objects as zebras: φ5 = ∀x : equid(x) ∧ stripe(x) ∧ ¬bw(x)→ ¬zebra(x).1

Before further training, φ5 exhibits a low sat-level of satφ5 = 0.09, as the model
classifies all objects associated with the equid(x) and the stripe(x) concepts to the
zebra class regardless of their color. By retraining for only five iterations, the sat-
level increases to satφ5 = 0.94, which indicates that only black and white objects (in
conjunction with the stripe and equidae concepts) are now considered to be zebras.
Therefore, the example image of the quagga is no longer inferred to be in the zebra
class with G(zebra(xqua)) = 0.08, where xqua denotes the image of a quagga. The
neural model nevertheless identifies correctly the equidae and stripe concepts in the
quagga, with G(equid(xqua) ∧ stripe(xqua)) = 0.97.

It should be noted that the explanation itself does not affect the performance of
the model. Thus, prior to revising K, the behaviour of the model remains unchanged
due to the use of linear probes that solely interpret activation patterns. Kim et al.
(2018) demonstrate that connecting output labels to model-inherent abstract rep-

1Notice that the satisfiability of this rule should be the same as that of ∀x : equid(x)∧stripe(x)∧
col(x)→ ¬zebra(x), as we apply a softmax function to mutually exclusive concept probes; in this
case ∀x : col(x)↔ ¬bw(x).
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resentation is generalisable across a variety of computer vision tasks. This section
includes a direct comparison that illustrates that such extraction using our method
is significantly more stable than scores obtained by TCAV. A further advantage is
the illustrated combination of abstract concepts to derive model output explanations
and the ability to influence the behaviour of the model directly. Our approach and
the TCAV method have the disadvantage that exemplary data must be collected by
hand for each concept required for extraction, as well as the fact that the model has
learned representations of concepts.

In the next scenario, we will recreate one of the most prominently presented ex-
amples in which a model induces undesirable correlations during training. Frequently
cited (Ribeiro et al., 2016) and often referred to in introductory session on XAI, it
illustrates how undesirable correlations can be picked up by the classifier because
of flawed data collection. The identification of these types of anomalies can be a
challenge from merely examining the training data and observed predictions for the
classes, but XAI techniques can provide insight into potential undesired heuristics of
network architectures.
We reproduce the experiment by Ribeiro et al. (2016) that proposed a classifier for
distinguishing between images of wolves and dogs (huskies). We imitate the training
process of Ribeiro et al. (2016) by training a logistic regression classifier on the fea-
tures mappings of Google’s pre-trained Inception CNN. The training set of 80 training
images for wolves and huskies has been hand-selected. For pictures of wolves, we en-
sure that there is snow in the background, whereas for images of huskies, there is not.
Through the use of this biased dataset, we make sure that the classifier consistently
predicts wolf when there is snow or white surrounding the object, and dog otherwise,
regardless of any complex features such as animal colour, pose, or fur. The classifier is
intentionally trained to learn this simple predictive shortcut, as Ribeiro et al. (2016)
shows that users stop trusting the classifier when they are provided with an expla-
nation of the flawed internal model reasoning. In Ribeiro et al. (2016), explanations
are more complex, since participants need to connect the highlighted pixel values in
the image that identify significant parts of the image with the detection of snow as
a potential feature (see Figure 7.9 bottom). We provide logical explanations in the
form of FOL queries that can even be expressed in natural language.

To learn the linear probe, we utilise 25 images depicting nature with and without
snow in order to ground the images into the predicates snow, dog, and wolf. We
subsequently query the model on a validation set with 1000 imagenet examples that
contain huskies as well as dogs. Through the use of quantification, we derive the
global explanation that provides us with insights into the general model behaviour.
The following queries illustrate how the sat-values can confirm that the model uses
simple heuristics to arrive at its decision.
satφ1 , where φ1 = ∀x : wolf(x) → snow(x) confirms that across all images, the
model recognises snow in images that are classified as wolf. Additionally, the queries
indicate that images with snow are not considered dogs. The query φ3 concludes that
the recognition of snow coincides with the model recognising a wolf as expressed by
its high satisfiability.
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Figure 7.9: Fuzzy truth values for concept explanation of a husky in comparison
with Lime (Ribeiro et al., 2016). In this example, the framework proves valuable as
a means of confirming general patterns of decision-making where local explanations
allow the discovery of specific actions.

Additionally, we depict the local explanation in order to provide a comparison to
the LIME explanation (Figure 7.9 bottom). When we ground a particular image of
a husky (xhus), we can determine that the model recognises snow and classifies the
animal as a wolf. Unlike the LIME explanation, which relies on the interpretation
of the highlighted pixels by the user, our explanation grounds the image in human
readable concepts. Thus, our method can be directly understood without the need
for external interpretation.
Through the presented process, we wish to illustrate how alternative XAI approaches
may offer valuable insights into a variety of concepts. In this regard, local explana-
tions are particularly useful since they allow for more precise descriptions of individual
images. This could be useful for raising awareness of conceptual and relational queries
that may be of interest to users. LIME is limited to highlighting relevant regions in a
particular image, however, we evaluate behaviour across the entire dataset. Neverthe-
less, the disadvantage is that the behaviour that requires evaluation must be specified.
In such situations, the framework may prove valuable as a means of confirming general
patterns of decision-making where local explanations allow the discovery of specific
model behaviour.
The first experiment demonstrated how a robust model can be integrated into the
framework and queried to enhance trust. Using inherent concept representations,
we further illustrated how logical constraints could be used to influence this model’s
decision-making process. Additionally, we demonstrated how this approach could be
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employed to highlight flaws in model reasoning using a widely used XAI example. We
outlined the use of a convolutional neural network in the first set of examples, and in
the following section, we demonstrate the integration of the transformer architecture
including image encoders.

7.4.2 Transformer & Encoder

We illustrate in the second set of examples that our method meets the requirements
set by Doran et al. (2018) for truly explainable AI. The authors outline that existing
approaches “are lacking in their ability to formulate, for the user, a line of reasoning
that explains the decision making process of a model using human-understandable
features of the input data.” These human-understandable features in this context re-
fer to abstract representations of the low-level data as outlined.
They argue that existing methods leave the explanation generation to humans de-
pending on their background and claim that this exercise is dangerous as varying
knowledge about the data and its domain will lead to the deduction of different ex-
planations about why a model makes a decision. Furthermore, the authors propose

Figure 7.10: Illustration of a “truly explainable AI” system according to Doran et al.
(2018). Here the combination of symbols emitted in combination with background
knowledge yields a logical deduction about their relationship in the system’s decision
making process.

that “reasoning is a critical step in formulating an explanation about why or how
some event has occurred”.
We demonstrate that we can reproduce the example provided byy Doran et al. (2018)
and illustrated in Figure 7.10 with our system to show the adaptability of the ap-
proach. We use the pipeline depicted in Figure 7.5 that incorporates the CLIP image
encoder that was trained on 400 million pairs of image and text Radford et al. (2021).
These text pairs primarily contain descriptions of images in natural language which
are therefore highly suitable for grounding the model’s representation in concepts
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that can be understood by humans.
We collect images of boxes, concrete, machines, and factories using the imagenet
database with 100 example images each and equally sized negative sets using random
images as proposed by (Kim et al., 2018). Subsequently, we train linear probes util-
ising the extracted image embeddings vector representation by CLIP to ground the
images according to their respective labels.
This allows one to generate the explanation specified by Doran et al. (2018) translated
into first-order logic clauses. Through this method, we can generate local explana-
tions that are based on explicit grounding of images, and global explanations that
are based upon querying quantifiable variables across entire datasets.
In the explicit example image presented in Figure 7.10, the classifier grounding for
the factory predicate returns a high truth value. Furthermore, the system recognises
a machine, concrete, and lights in the image as intended (visualised in Figure 7.11)
To make more general statements about global model behaviour, we can use the

Figure 7.11: We illustrate that we can produce the desirable explanation proposed by
Doran et al. (2018). We incorporate the CLIP image encoder by Radford et al. (2021)
and collect images of boxes, concrete, machines, and factories using the imagenet
database with 100 example images each. Subsequently, we train linear probes utilising
the extracted image embedding vector representations by CLIP to ground the images
according to their respective labels. Subsequently we use fuzzy logic to evaluate the
reasoning process by incorpoating the extracted concepts.

quantifiable formulas φ1 = ∀x : mach(x) ∧ conc(x) ∧ box(x) → fact(x) evaluated on
2000 images extracted from imagenet to interpret the grounding Gφ1 = 0.97. The
model classifies a factory whenever it observes machines, boxes, and concrete in the
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sampled set. It is also possible to switch the antecedent and consequent in order
to reason about a possible bi-implication as learned behaviour. The grounding of
G(φ2) = ∀x : fact(x) → mach(x) = 0.92 indicates that for the factories that are
recognised, the model does not implicitly identify machines, and therefore does not
take advantage of them as shortcuts for the classification of factories. Furthermore,
the model also classifies factories that do not have concrete floors, manifested in the
following query: G(φ3) = ∀x : fact(x)→ conc(x) = 0.86. Boxes seem to be the least
important as shown by the small sat-level for: G(φ4) = ∀x : fact(x)→ box(x) = 0.46.
There is no restriction on the number of concepts, combinations, and logical formulae.
We can use first-order logic to derive explanations and reason about what has been
learned as the user desires.
Looking at the image of the Doran et al. (2018) example explicitly, we can conclude
that the model indeed does recognise boxes, concrete, and machines. As such, it
recognises the image as factory, as it has done for every image within the dataset that
contains all of the concept attributes in conjunction.

In the next example, we will demonstrate that by utilising the full CLIP trans-
former including text encoder, we are able to learn all desired groundings using a
zero-shot methodology. The desired concepts that need grounding are presented as a
natural language input, allowing for a determination of groundings without the need
for exemplary data, but only a description of the concept in natural language. In this
approach, groundings will be derived based on the transformer embeddings by calcu-
lating the cosine similarity of the concept prompts and encoded image and feeding
this value into a softmax function. We subsequently integrate these groundings into
the LTN framework for First-Order-Logic querying, as illustrated in Figure 7.12.
The groundings based on CLIP embeddings can only be derived on a zero-shot basis,
however, only if the prompts are mutually exclusive. Rather than being generative,
this model is discriminative, which means that it can only derive the most likely de-
scription given a given set of prompts.
By utilising the external knowledge graph ConceptNet as part of the pipeline, a user

is only required to provide a concept of interest in order to generate a set with mutu-
ally exclusive concepts automatically. ConceptNet is a multilingual knowledge graph
aimed at mapping the meaning of words that people use. The semantic network is
utilised here to derive counter-sets to each prompt using the ConceptNet attributes
antonym and distinct terms.
In our factory example, the user may specify the prompt “A photo of a concrete
floor” as the descriptive abstraction of interest. ConceptNet finds counter-examples
by replacing the concept “concrete” with “wooden”, “tiled”, and “linoleum floor” in
the pipeline. Similarly, negative set derivations are done for the prompt “A photo of
boxes” being replaced by “cylinders” “bins”, and “papers”. “A photo of a factory”
will have the negative set of “artist”, “farm”, and “company”. For the concept of
“machine”, ConceptNet derives “human”, “people”, and “organic things”.
In the event that ConceptNet fails to find terms that appear reasonable, the user may
manually refine the derived prompts. Moreover, the hyper-parameter responsible for
generating four alternative prompts for each of the concepts may also be changed.
The global explanation is in line with the previous explanation as the query: φ1 =
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Figure 7.12: We use the explanation benchmark by Doran et al. (2018) to derive zero-
shot explanations. Here the user only has to give the natural language description of
the concepts of interest as we use ConceptNet to derive mutually exclusive concepts.
These descriptions are encoded along the image of interest to derive explanations
without the necessity to collect example images for the concepts of interest. The
cosine similarities are then used to ground the concepts into the logical clauses to
derive model explanations.

∀x : mach(x) ∧ conc(x) ∧ box(x) → fact(x) also returns a truth value of 0.97. This
means on a test set of 2000 images, whenever the model recognises machines, con-
crete, and boxes it infers that the image shows a factory.
Moreover, we can derive interesting observations from the generated negative sets
as a result from parsing ConceptNet. Here, the generated negative set included the
concept of linoleum flooring which is a reasonable alternative for factory floors.
By using the CLIP model’s local explanation for the explicit example image provided
by Doran et al. (2018), we can discover that the model is indecisive regarding the floor
texture (G(lino(xdor)) = 0.68 and G(conc(xdor)) = 0.32). However, the model identi-
fies boxes and machines, and consequently infers a factory with high confidence.
By evaluation across the test set, we can query: φ2 = ∀x : lino(x) ∨ conc(x) ∧
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mach(x) → fact(x) which indicates that when the model detects a machine on
a concrete or linoleum floor, it also classifies that image as a factory. In addi-
tion, we can employ negation and inquire whether the absence of concrete or a ma-
chine necessarily implies the model does not recognise a factory (G(φ3) = G(∀x :
¬conc(x) ∧ ¬mach(x) → ¬fact(x)) = 0.74). We may also investigate whether the
model considers that the factory class implies either humans or machines being present
in the image (φ4 = ∀x : fact(x)→ peop(x) ∨mach(x)).

However, CLIP still presents some limitations that directly affect our integration.
Although the transfer learning capabilities offer an improvement over the standard
CNN architecture, zero-shot performance on particular datasets remains below that
of task-specific models. It is particularly true for more fine-grained classification,
such as identifying species of flowers or variants of aircraft. Despite the large sample
size used for pre-training generalizing well for some natural distributions, Radford
et al. (2021) demonstrate that out-of-distribution generalization still remains poor. In
addition, CLIP is limited to choosing only from a given set of concepts in a given zero-
shot classifier, despite our attempts to expand the scope by integrating an external
ontology. Compared to a more flexible approach such as image captioning which
could produce output, this is a significant restriction.
It is also important to consider the nature of the training data. CLIP learns to
ignore properties and objects that are ignored in captions. In essence, it allows
the model to learn invariance rather than imposing it through its architecture or
by constructing transformations for data augmentation. The data curation process
defines this invariance, so the way we choose our noisy labels or captions is the key to
determining how robust the model will be. The implications of this are significant in
domains in which all objects within a frame are critical, such as autonomous vehicles.
As a result, we propose that our tool may be increasingly useful in calling attention
to specific model behaviors and revealing ignored concepts in labels or invariances in
fine-grained classifications.

Using the experiments above, we wish to demonstrate the flexibility with which
different model architectures can be integrated into the framework. This section
emphasises that the approach is also capable of generalising to multi-modal data.
Furthermore, the transformer integration enhances accessibility as the user is only
required to present concepts that are of interest without the need for additional data
collection as the zero-shot method is readily available. The study also showed how the
generation of sets could be enhanced by external knowledge graphs so that the user
does not have to provide alternative concepts manually. Additionally, the experiment
illustrates the flexibility with which different types of concepts can be extracted and
combined using fuzzy logic. Since we can ground single images as well as aggregate
using quantifiable axioms, we are able to reason about the general decision-making
process the model has learned as well as why a particular decision was made.

160



7.5 Summary of Our Approach to Interactive XAI

Our work outlines the adaptation of the LTN framework to facilitate intuitive model
explanations based on abstract representation and interactive querying by using first-
order logic queries to check for knowledge learned by the deep neural network. Our
proposal includes three distinct contributions. We first present a definition for prac-
tical reasoning and evaluate the method’s ability to reason about what has been
learned. Second, we evaluate how the framework can be utilised to discover and
refine models that yield unfair classifications based on biased datasets. Third, we
demonstrate how concept extraction and logic integration can be fully integrated to
assist with explanation and revision of models.
The methodology section of this approach is a critical component of establishing
a strong foundation for understanding the reasoning capability of neural networks
through the use of differentiable fuzzy logic. The ability to reason about what is
learned relies on the limitations of the fuzzy logic systems underlying all explana-
tions. This evaluation focuses on assessing the reasoning capabilities of the proposed
framework on the basis of datasets and identifying what background knowledge con-
tributes to better deduction. As we intend to introduce a continuous mechanism for
bidirectional communication, we showed how effectively the network can learn such
constraints.
Based on our thorough evaluation of the limitations of differentiable fuzzy logic sys-
tems for extracting and refining knowledge continuously, we tested their suitability
in domains common to XAI applications. The presented work outlines a method of
preventing the models from learning unwanted behaviours and biases by acting on
information extracted from XAI approaches. As a result of continuous constrained-
based learning, our results demonstrate that by incorporating knowledge extraction
from deep networks into the LTN framework and utilising tailored fairness constraints,
it is possible to impart fairness into deep networks in a general manner. One of the key
differences between our method and other XAI-based approaches is evident. The fair-
ness experiments demonstrate that simply identifying undesirable model behaviour
is of limited value in certain situations. We show that our method can be utilised to
identify and correct undesired model behaviour by leveraging another XAI method,
in this case SHAP (Lundberg and Lee, 2017). On the basis of experiments conducted
on three real-world data sets used to predict income, credit risk, and recidivism, we
found that our approach can satisfy fairness metrics while maintaining state-of-the-
art classification performance.
Along with incorporating bidirectional communication into the approach for achieving
fairness, we demonstrated how Neural-Symbolic integration can be used to better un-
derstand the model’s decision-making process. As the TCAV strategy is integrated
with the LTN framework, complex conceptual explanations can be provided in an
interactive learning environment. This framework is shown to be capable of decom-
posing models into explanations that employ complex concepts grounded in logic
while facilitating user interaction. The method allows domain experts to study the
data-inferred decision making process of complex deep neural networks by querying
the model and refining the constraints in an iterative manner. We began by discussing
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the possibilities of internal representations in the context of different model architec-
tures that facilitate reusable concepts. For example, feature maps of convolutional
networks and large transformer models are rich representations for model dissection,
that can be used across a wide range of datasets.
In addition, we demonstrate how local XAI-methods may complement the framework
by guiding particular queries. In some cases, the user may be unaware of a particular
behaviour and may not consider querying it. It may be desirable to employ an XAI
method in such scenarios as a guide by making use of lower-level information, which
is normally restricted to local explanations. It is then possible for the user to inquire
about a global behaviour by exploring how the model makes use of different concepts
and representations to reach its conclusions.
Our research indicates that our method is capable of generating descriptions based
on a semantic knowledge graph, such as ConceptNet, to provide a broad range of
possible explanations for image classification. In this scenario, the user may specify a
particular concept of relevance, and the pipeline will then generate descriptions based
on the ConceptNet ontology. Our work has demonstrated that it is consistent with
the standard established by Doran et al. (2018) for truly explainable AI. When using
fuzzy logic to link symbols that represent abstract concepts, deep learning models
can be understood in a manner similar to human explanations.

7.5.1 Interpretation of Fuzzy Logic

One observation is that the integration of fuzzy logic is more precise than other
approaches to XAI. It is the outcome of fuzzy operators which satisfy certain math-
ematical properties. When compared to other XAI methods, such as TCAV, this
represents a significant improvement because it establishes a standard. It is common
for method-specific metrics to be introduced that may lead to confusion. As an ex-
ample of this, SHAP values are frequently interpreted in an overly simplistic manner,
ignoring the fact that these values are to be understood in relation to a specific base-
line. In some instances, this premise may not be appropriate since the method can
produce unrealistic baselines.

Moreover, the discretisation of symbol grounding exhibits some of the same char-
acteristics. Language encourages us to delineate concepts and objects in a distinctive
discrete manner for communication. At the same time, we recognise that reality
is composed of concepts that overlap in nature. In addition, these fluid concepts
are formed from low-level representations. Low-level distributed data is abundant,
whereas discretely structured and clean data is rare. A neural network is more effec-
tive at learning when transforming low-level data into distributed representations, as
opposed to localised representations.

Considering the form of representation, we are of the opinion that computation
should remain sub-symbolic. In this thesis, we propose that Neural-Symbolic inte-
gration encompasses symbolic representation as an interpretation of underlying dis-
tributed representation. As opposed to the more traditional approach (Manhaeve
et al., 2018), the neural and symbolic components do not constitute two separate
entities but rather different abstractions of the same. Recent research on the com-
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putational origin of representation reinforces this assertion (Piantadosi, 2021). The
author supports the notion that sub-symbolic dynamics may be used to generate
higher-level representations of structures, systems of knowledge, and algorithmic pro-
cesses. The author asserts that symbolic meanings and relations are the outcome of
sub-symbolic dynamics that implement them. Furthermore, it is essential to recog-
nise that a symbol’s meaning is intrinsically linked to its use. Having followed this
line of thought, it seems evident that the construction of new symbols can only be
derived from the construction of a semantically meaningful space. It is our intention
to depict this in a vector space where concepts are interrelated and may overlap.

The examples should have made it clear that even if tools are available for aligning
representations and operations, bridging the gap between low-level information and
abstract cognition will not be straightforward. The simplification of complex pro-
cesses and distributed representations in order to make them human comprehensible
will always be a trade-off that needs to be considered and balanced. The Neural-
Symbolic integration, however, allows us to be considerate of more underlying for-
malisations of cognitive processes in humans and how they may be best represented.
Consequently, in the context of machine learning we may ask whether we want the
model to portray the world as it is or how humans perceive it. Is the long-term ob-
jective of artificial intelligence to produce intelligence on a level that is comparable
to human intelligence, or is it to surpass human intelligence?
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Chapter 8

Conclusion

In this thesis, we explored the Neural-Symbolic approach to explainable Artificial
Intelligence. Traditionally, explainability has been considered merely a consequence
of integrating neural and symbolic systems. Further, many XAI methods have been
proposed without taking into account the extensive research conducted on Neural-
Symbolic AI. With this work, we propose to bridge the gap between neural and
symbolic paradigms to enhance understanding of model behaviour, but also between
explainable AI and Neural-Symbolic AI, to influence the observed characteristics of
the system interactively.

Initially, this thesis explored various explainability methods to determine whether
any promising approaches could be deemed Neural-Symbolic in their ability to al-
low one to reason about what the model has learned. Through this work, we have
compiled a novel taxonomy for explainable artificial intelligence that facilitates an im-
proved practical overview by categorising a wide variety of approaches in an organised
way, and that promotes a link with the structure of earlier work on rule-extraction
methods by Andrews et al. (1995). The taxonomy also lends itself to the extension of
further XAI and Neural-Symbolic methods in the future. The identification of gaps
and diverging trends between Neural-Symbolic approaches and contemporary XAI
approaches led us to investigate two promising approaches in greater depth. Specif-
ically, these methods are designed to follow the inductive biases of neural networks
more closely by utilising the fundamental components of internal representation and
operation.

In our initial experiments, we focused on the TCAV method because, as a form
symbol grounding, it enables the extraction of concepts as fundamental building
blocks for model explanations. A key advantage of this approach is that it presents
the model explanation through comprehensible symbols rather than emphasising the
relevance of specific features, which could result in the identification of specific pixel
values or word vector measurements. We were able to successfully associate the
predictions of the model with abstract concepts in this manner. In the course of
connecting the importance of different concepts to various output categories, the end
user may be able to assess the appropriateness of the model.

We developed the proposed method further by applying the idea of Kim et al.
(2018) to the natural language domain. By utilising ontology queries, the approach
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is improved subsequently in order to arrive at more comprehensive and semantically
rich explanations.

Despite this, we encountered some significant limitations with these approaches.
A potential challenge might be the interpretation of the TCAV scores, which may not
be as straightforward as originally intended by the authors Kim et al. (2017). Despite
the fact that the normalised scores give insight into the importance of concepts, they
are not intended to adhere strictly to any mathematical properties or logic. As a
result, the interpretation is based upon relating the TCAV scores to other concepts
or output classes.

Most notably, the importance of concepts can only be assessed individually, and
the user is not provided an opportunity to connect concepts in order to understand the
model inherent relations. As an example, sarcastic undertones may be used to discuss
a particular concept when a person struggles with mental health. A classifier that
would learn this combination of multi-modal concepts would require the XAI method
to account for the combination of concepts to be explained appropriately. As a
result, isolating the significance of particular abstractions, while ignoring the internal
operations of the model tying them together, leaves out an essential component that
should be addressed in model explanations.

We then examined whether it was feasible to distill complex models into a simpler
form in order to be able to overcome the black-box limitations and learn about the
model-inherent operations. By translating the model into a decision tree we mimic
the hierarchical and sequential flow of information in neural networks. Through the
construction of a decision tree, we are capable of understanding the operations within
a model and provide the user with the ability to trace the decision-making process.
In this thesis, we presented an adaptation of the distillation approach using Soft Deci-
sion Trees to increasingly complex visual tasks. As a result of constraining the model
by forcing it to commit to the most probable path, we can trace the decision-making
process throughout the tree, which facilitates better understanding of the model. The
distillation process is capable of producing interpretations that can be considered to
be understandable from an outside perspective, and, therefore, be compared to tradi-
tional Knowledge Extraction methods according to Brachman and Levesque (2004).
However, the proposed approach of the model did not allow the integration of up-
dated knowledge back into the network once we have gained insight into the model’s
behaviour. In accordance with Bader and Hitzler (2005), it should be desirable for
knowledge to be extracted and revised, but there is no mechanism for translating re-
vised knowledge back into the model. Nevertheless, this limitation also affects some
traditional rule-extraction models such as TREPAN.
We also observed significant limitations as a result of the complexity of the task.
Node masks are incapable of learning abstractions, and convolutional kernels cannot
be utilised. This drastically decreases this method’s effectiveness in domains with
low-level data that require abstraction in order to be effective. Further, the expres-
siveness of the operations is limited as compared to logic-based methods. Despite the
fact that a soft decision tree representation is fully differentiable, it lacks the power
of logic in terms of precision. As a result, both the extracted representations as well
as the relationships among these representations impair an attempt to approximate
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a black-box model as closely as possible.
As a means of achieving intuitive and compelling model explanations, XAI meth-

ods may be required to allow for representations that capture powerful concept repre-
sentations based on data integrated with comprehensive operations. The development
of a powerful yet intuitive approach to XAI may be dependent both on the ability to
extract the inner representations of concepts as well as the underlying operation in
which the concepts are embedded.
A study of the TCAV approach indicated that it is effective at extracting representa-
tion and performing links between the output of the model and high-level concepts.
Explanations at the concept level allow for intuitive explanations, but do not afford
the opportunity to grasp the underlying relationships between these concept sym-
bols in the context of model reasoning. The study of Soft Decision Trees indicates,
however, that methods that allow full transparency into the model reasoning process
may not be able to handle complex tasks. Presently, most XAI methods are highly
specialized in that they focus on a particular aspect of the machine learning pipeline
rather than viewing it as an effective communication channel more broadly.
Due to observing fundamental limitations in current XAI approaches, we believe that
the most promising form of explanation in AI is the integration of symbolic represen-
tations and their inherent logic, in conjunction with the powerful learning capabilities
of neural networks. In high-dimensional domains such as images and videos, logic ex-
planations may be effective when applied to the appropriate level of abstraction, such
as objects and their relationship, instead of pixel values.

The ultimate goal of a Neural-Symbolic approach to explainable AI system is the
ability to enable bi-directional communication between the AI system and humans
by acting as a lingua franca. This is an essential component for the achievement of
trustworthy and reliable systems and requires the abstraction to human-like concepts
(Gutzwiller and Reeder, 2021).

8.1 Neural-Symbolic Explainability & Future Work

The use of neural-symbolic methods is poised to be increasingly important in provid-
ing greater transparency to Artificial Intelligence. In this capacity, these methods are
likely to serve as more than just another explainability approach.

As Machine Learning methods are becoming more widely used, it will be essential
to provide explanations with varying degrees of abstractness and complexity, as out-
lined in Futia and Vetrò (2020). As part of our approach to XAI, we have attempted
to present explanations that would enable laymen to to understand the underlying
model representations.

The integration can be viewed as a paradigm shift allowing for active and inter-
active engagement between system and user by enabling communication. Therefore,
the neural-symbolic integration serves as a common layer of communication in which
different levels of abstraction can be utilised to exchange information from the model
to its human counterpart and vice versa. The alignment of model and human reason-
ing with the objective of facilitating better understanding will enable us to increase
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the trust we have in models.
In our method, we attempt to address both the grounding and the relational com-

ponents of symbolic systems. An integration of knowledge and data into a neural
network, with the ability to extract post-hoc information and perform continual en-
hancement based on knowledge revision, is proposed as a bottom-up Neural-Symbolic
approach to explainability.
As part of this approach, we provided three high-level contributions. Firstly, we pre-
sented a methodology and definition of practical reasoning to evaluate the method’s
capability to reason about what has been learned. Additionally, we analysed how the
framework can be applied to the discovery and refinement of models that yield un-
fair classifications based on biased datasets. Thirdly, we demonstrated how concept
extraction and logic integration can be fully integrated for model explanation and
revision.

We assessed the reasoning capabilities of the proposed framework based on datasets
and identify what information constitutes valuable background knowledge that con-
tributes to better deduction. In particular, it was demonstrated that it is essential to
consider whether a closed- or open-world assumption is appropriate for a given task.
We demonstrated that a Neural-Symbolic system can be enhanced through the ad-
dition of redundant logic knowledge relevant to the influence of particular properties
which are discovered through interactive queries.

Having thoroughly evaluated which limitations may be present in differentiable
logic systems used to extract and refine knowledge continuously, we tested their prac-
ticality in common XAI application domains. One of the key differences between our
approach and other XAI-based methods stands out from the experiment. We demon-
strate through the fairness experiment that simply identifying undesirable model
behaviour in certain situations is of limited value. Using the LTN framework, we
discussed how to identify potential unequal treatment and illustrated how fairness
may be achieved by using constraints in order to effectively minimise biases. We
conducted experiments on three real-world data sets used to predict income, credit
risk, and recidivism and found that our approach can satisfy fairness metrics while
maintaining state-of-the-art classification performance. Comparing our method with
other fairness-inducing ML techniques supports this conclusion.
The results are encouraging and indicate that fairness may be achievable in a flexible,
model-agnostic manner. In order for fairness and equality to be a prominent consid-
eration in Artificial Intelligence, we must provide practitioners with tools that make
it easier to incorporate it into existing workflows.

As well as incorporating bidirectional communication into the approach to achieve
fairness, we demonstrated how Neural-Symbolic integration can be used to better
understand the model’s decision-making process. Through the integration of the
TCAV strategy with the LTN framework, we are able to provide complex conceptual
explanations in an interactive learning environment. The framework is shown to
be capable of decomposing model explanations into complex concepts and facilitate
user interaction. Using it, domain experts can learn about the data-inferred decision
making process of complex deep neural networks by querying the model and refining
constraints for further learning, as part of an iterative process.
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We presented a comparison between the fuzzy logic based extraction of truth val-
ues and TCAV methods in our analysis of neural-symbolic XAI and showed that the
fuzzy logic properties of our systems present more consistent values with reduced
variability across layers. Moreover, we demonstrated that this method can yield local
as well as global explanations. XAI methods do not typically offer this level of flexi-
bility, as shown in the overview table of chapter 3 Fuzzy logic ensures that both local
and global explanations are always consistent with one another. This unification of
explanations constitutes a promising direction for XAI. Based on the audience re-
quirements, explanations can be tailored to meet the needs of different target groups.
Level of abstraction and level of explanation of concepts may both be considered
in the selection of the appropriate explanation. Nevertheless, it should be empha-
sised that meaningful explanations provided by this framework are dependent upon
the representational and operational capability of the underlying model. Without
any model-inherent form of conceptual representation, we are unable to combine any
meaningful symbols to ground an explanation. Furthermore, we demonstrated how
alternative XAI-methods can be incorporated into the interactive framework.

In this thesis, three distinct approaches were presented for the concept ground-
ings, including a CNN and two transformer-based approaches. The CNN approach
is designed to act as a blueprint for various different domain-specific adaptations.
Here, the key proposition is that the method can be customised for different types
of data and applications. As an example, the abstract concepts that are desired in
the application of medicine may be subject-specific and domain dependent. On the
other hand, transformers could be viewed as more general-purpose approaches to clas-
sification and caption that become intepretable using our method. Due to the fact
that these models have been trained on an extensive variety of datasets, and in the
case of CLIP on image captions, a large number of common concepts are likely to
have already been captured by the models. This means that the representations are
optimised to reveal various shapes, colours, and other common visual concepts that
we may use for explaining the decision-making process of image classifiers.
By doing so, we were able to avoid the necessity of providing data samples to extract
concepts. Due to the multi-modal nature of the model using natural language image
descriptions, we may use the text encoder to provide a desireable description of the
concept depicted in the image.
In terms of providing information-rich data representations, both the image encoder
and the multi-modal transformer have proven to be highly effective and robust. There-
fore, a user may modify the existing model to fit a particular use-case, while main-
taining the ability to understand how the model makes decisions in the particular
domain. Our research showed that the method is capable of generating alternative
descriptions using a semantic knowledge graph, such as ConceptNet, in order to pro-
vide a broad range of possible captions for images. Users are offered an approach
that provides a more accessible solution in which they are only required to provide a
simple concept description appropriate to explain their application comprehensively.
One of the advantages of using this method is that previously unknown facts are
possibly revealed.

Our work has demonstrated that it satisfies the standard established by Doran
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et al. (2018) for truly explainable AI. By linking symbols that represent abstract con-
cepts according to fuzzy logic, deep learning models can be understood in a way
similar to explanations that would be provided by a human. Questions that may be
posed in natural language from a model should simply be transformed into first-order
logic before being assessed. Furthermore, it integrates reasoning into the explana-
tion, which ”is a critical step in formulating an explanation about why or how some
event has occurred” Doran et al. (2018). We propose that our approach exceeds
this benchmark by making the flow of information bidirectional and redefining the
neural-symbolic interface as a common layer of communication.

Developing models that can yield generalisable concepts will be an ongoing effort.
With increasing complexity and size of models, it appears that models are able to
construct more complex transferable representations (see cross-dataset performance
of CLIP in Figure 7.2). We consider the multi-modality of data to be an important
step in the right direction as image captions might be able to convey a lot more
nuance in describing the content of the depicted images. The use of natural language
caption has led to a significant breakthrough in learning anthropocentric concepts for
perception tasks, which needs to be further improved and integrated into a neural-
symbolic framework for evaluation and explanation.

By providing a deeper and more comprehensive set of images or words relevant to
the concept, it may improve concept grounding in the convolutional neural network
and the transformer.

Furthermore, we believe that exploring the simultaneous learning of concepts and
tasks may be of interest. In our research, we focused mostly on post-hoc extraction of
information to reason about what has been learned and what needs to be addressed.
Nevertheless, it may be worthwhile to enforce discrete representations into the model
that will also be used to facilitate the execution of the intended task at the outset. As
the loss is modular, we would be able to train the inner representation of the model
by incorporating both the desired concepts as well as task-specific classification loss,
for instance. Although this may result in a more transparent model architecture, it
may limit the effectiveness of the model with respect to performance. However, some
domains may benefit from these types of representations. As a result, direct rule
extraction from localised neurons may become feasible (Odense and d’Avila Garcez,
2020).
As a result of the work by Kim et al. (2018) and Odense and d’Avila Garcez (2020),
we decided to extract concepts at particular layers. In light of the fact that we are
probing the network for the grounding of concepts, this may be extended to several
layers across the network. The probe could theoretically monitor all layers or multiple
layers within the network, whereas using the TCAV method is always limited to a
single layer due to the underlying nature of the Concept Activation Vector.
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Appendix A

Implementation of the LTN
framework

We have developed a Python implementation of the interactive framework, which
may be accessed at the following URL: https://github.com/benediktwagner/nesyxai.
In this implementation, Real Logic formulas are converted to PyTorch computational
graphs. Formulae of this type are capable of expressing complex statements about the
data, prior knowledge that must be satisfied during learning, and statements which
need to be proved. Additionally, this repository contains tutorials that effectively
represent and handle the most important tasks associated with deep learning. Typi-
cal tasks of this type include classification, regression, clustering, and link prediction.
In addition, the repository explains how to incorporate existing models in the frame-
work. Similarly, we introduce the fairness example described in chapter 6 to demon-
strate how fair classification can be achieved by using the framework and FOL con-
straints. The concept grounding work is also demonstrated using an accompanying
notebook. We have further added the ability to utilise a GPU which greatly improves
the efficiency of the method on large datasets.

Our continuous approach has also been incorporated into the main LTN library
for Tensorflow, enabling a broader set of users. The repository can be found using
the following URL: https://github.com/logictensornetworks/logictensornetworks).
While the earlier version was limited to static computation, the current version is
capable of interactive sessions (e.g. jupyter notebooks) which cache the parameters
in order to incrementally add logic formulae to the knowledgebase K.
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