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A B S T R A C T

A major medical problem in the circulatory system is the frequent occurrence 
of atherosclerosis and thrombosis in arterial bends and bifurcations. Although the 
exact mechanism remains unclear, it has been suggested that the local fluid dy-
namics plays an important role. Therefore, detailed analysis of flow phenomena 
and hemodynamic stresses in arterial bifurcations is of immediate interest.

In addition to in vivo and in vitro experiments, numerical simulations of blood 
flow in arterial bifurcation models also contribute to a better understanding of the 
flow patterns and shear stress distributions in these bifurcations, and thereby help 
to clarify the link between fluid dynamics and atherogenesis.

The problem of blood flow in an arterial bifurcation involves many compli-
cating factors, four of them are considered to be important, namely (i) the three- 
dimensional geometry of the bifurcation, (ii) the pulsatile nature of the flow, (iii) 
the non-Newtonian character of the blood, and (iv) the distensibility of the arterial 
wall. In this dissertation, a full analytical treatment of blood flow in 3-D arterial 
bifurcations is presented. The incompressible 3-D time-dependent Navier-Stokes 
equations are employed to describe the flow, and a finite volume code ASTEC, 
which has an unstructured finite element mesh, is adopted to solve the equations. 
In the predictions, the non-Newtonian characteristics of the blood are taken into 
account and their effects on bifurcation flow fields investigated. Possibilities of 
accommodating the vessel wall compliance are also explored, and a simplified ap-
proach is proposed, in which the flow equations and wall displacements are solved 
separately within a time step, but are coupled in the sense that the boundary con-
ditions of the former are updated through the solution of the later. This approach 
is valid provided that the wall movement is much slower than the motion of fluid 
and the flow is generally parallel to the wall. It has been applied to a straight circu-
lar tube. For bifurcation predictions, however, the vessel wall is assumed to be rigid.

A comprehensive range of code validation exercises are carried out, especially 
for T-bifurcations. The predictions are proved reliable by comparison with pub-
lished laboratory measurements.

Finally, numerical predictions for physiological flow in canine femoral bifur-
cations are performed, in which the true bifurcation geometries are used. Results 
are validated against the best available in vivo measurements so far obtained. It is 
demonstrated that the presented numerical modelling scheme in conjunction with 
the new generation of super-computers can be used as an efficient and reliable tool 
for detailed analysis of blood flow in arterial bifurcations. Incorporation of the 
distensibility of the arterial wall in the bifurcation prediction will complete such 
an analysis.

Some of the material published during the course of the project is included in 
Appendix F.
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N O M E N C L A T U R E

A Cross-sectional area

c Wave speed

Cr Courant number (Cr =  A )

D, Undeformed vessel diameter

d Vessel diameter

dA Control surface area

dV Control volume

E Young’s modulus

F Longitudinal force

f Frequency

F¿ Body force

H¿ Undeformed vessel wall thickness

h Vessel wall thickness

J2 Second invariant of strain rate tensor (S¿j)

k Turbulent energy

Li Undeformed vessel length

1 Vessel length

m Mass flow rate

p Static pressure

Pc Cell Peclet number (Pc  =

Q Volume flow rate

r radius

Re Reynolds number (Re =

Sij Strain rate tensor

t Time

tp Pulse time

u¿ Velocity
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u,v,w Velocity components in 3-D flows 

Coordinates

Cartesian coordinates in 3-D flows

Xi

x,y,z

Greek Sym bols

a Womersley number (a =  f

aq Parent to larger daughter vessel angle

a. 2 Parent to smaller daughter vessel angle

7 Shear rate

6ij Kronecker delta

A t Time step

tijk Alternating unit tensor

e Turbulent dissipation rate

A Wave length

p Dynamic viscosity

V  Vector differential operator

v Kinematic viscosity

Curvilinear coordinates 

p Density

<7 {j Stress tensor

r Shear stress

'P Generic scalar

u) Angular frequency

Subscripts

1 Parent vessel of bifurcation models
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3 Smaller daughter vessel of bifurcation models

Ao Bifurcation apex

eff Effective

i,j,k Generic components

L Laminar

N Newtonian

n-N Non-Newtonian

ost Oscillatory

st Steady

T Turbulent

w Wall

Superscripts

n Generic time step
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CHAPTER 1

INTRODUCTION

Atherosclerosis is a widespread disease accounting for almost half of the deaths 

in the industrialised world. It causes much disabling morbidity, including chest 

pain, fainting spells, leg cramps, heart attacks, stroke, and aortic aneurysms. This 

complicated disease affects only specific arteries and is highly localised within these 

vessels. The selective localisation of atherosclerotic lesions strongly suggests that 

there is an important relationship between the disease and the characteristics of 

the blood flowing through the arteries. Furthermore, it is the detailed flow char-

acteristics in those most commonly diseased regions which are of particular interest.

Atherosclerotic plaques have been found to occur predominately in certain 

large and medium-sized arteries, such as, the abdominal aorta as well as the iliac, 

femoral, coronary and carotid arteries, but to be more specific, they are particularly 

prevalent in regions of branching and sharp curvature where unusual flow patterns 

are expected. Blood flow in such regions remains, nevertheless, beyond fully de-

tailed understanding at present. This is in part due to its complexity; the flow is 

highly unsteady and passes through vessels which are complicated both in geom-

etry and in their visco-elastic nature; furthermore, blood is a very complex fluid. 

An additional important factor is a lack of techniques for accurate and detailed 

investigation of arterial blood flow in vivo. Although substantial progress has been 

made through laboratory model studies using Laser Doppler anemometry or flow 

visualisation techniques, these usually involve some degree of simplification, such 

as idealised geometry, steady flow, rigid wall and Newtonian fluid, which may well 

be questionable in arterial bifurcation flow. Similar limitations have also applied to 

most previous numerical simulations. However, the latest computational dynamics 

techniques and a new generation of supercomputers have provided the possibility
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to investigate this flow problem more realistically. The goal of this dissertation 

is, by making use of these tools, to model more closely the actual flow field at 

arterial bifurcations, and thus to provide comparable numerical results to in vivo 

measurements as well as those unobtainable in vivo. In doing so, it would help to 

reduce the need for in vivo experiments. Moreover, the detailed numerical results 

obtained may contribute to a better understanding of the role of hemodynamics in 

the process of atherosclerosis.

1.1 H E M O D Y N A M IC S  A N D  A T H E R O S C L E R O S IS

Cardiovascular disease remains the major cause of death in western societies. 

According to statistics, more people in the UK die from this than from any other 

cause. The disease itself is most frequently caused by atherosclerosis. The complex 

process of the development of atherosclerotic lesions is characterised by the accumu-

lation of materials in the intimal layer of arteries, and changes in both cellular and 

connective tissue components of the vessel wall. The basic lesion, the atheroma, 

is usually seen microscopically as a fibrous plaque with accumulations of smooth 

muscle cells, large amounts of connective tissue like a cap around a deeper pool 

of tissue debris, foam cells, and spaces from lipid crystals. These atheromatous 

lesions may lead to narrowing (stenoses) and hardening of the arterial wall, and 

can progress to more complex plaques which result in further complications such 

as media thinning, elastic tissue loss and fragmentation.

Atherosclerosis is a highly localised disease which generally affects the major 

central arteries, including the aorta, the coronary arteries, carotid arteries and 

the large arteries of the upper leg, rather than the peripheral circulation. It is 

not normally seen in certain other arteries, e.g. the pulmonary, renal, mesenteric, 

mammary, and intercostal arteries. Furthermore, the distribution of the lesions 

within the affected vessels is also very focal. Within the aorta, the abdominal
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aorta is severely affected, whereas the thoracic aorta is relatively free of plaque 

(Clarkson, 1963). In the coronary arteries, lesions are usually found at the outer 

walls of the bifurcation site, while the inner walls downstream from the bifurcation 

are left free (Svindland and Walloe, 1983). Such a distinct spatial pattern of the 

atherosclerotic lesions can also be noticed in the human carotid arteries. At the 

outer wall of the internal carotid sinus, intimal plaques are thickest, while the inner 

walls of the bifurcation as well as the apex of the flow divider are well protected 

regions (Ku and Giddens, 1985).

The selective localisation of atherosclerotic lesions and the involvement of bi-

furcations and geometrical contorted regions as their preferential sites, have pro-

vided a primary motivation for the resurgence of interest in arterial fluid dynamics. 

Besides biochemical and cytological factors, various hemodynamic characteristics 

have been proposed to correlate the development of atherosclerosis with local flow 

conditions in the arterial system. A list of these includes hypotheses concerned 

with senescence, arterial hypertension, turbulence, wall shear stresses, and flow 

separation.

Aging is associated with the arterial hardening. It is generally agreed that 

atherosclerosis is ubiquitous and increases in severity with age. This results from 

the fact that in man and probably in most animals the size of the arterial vessel 

increases with age while at the same time elastic wall components are replaced by 

the much stiffer collagen. According to the fundamental laws of fluid dynamics, it is 

inevitable that the pulsatile arterial flow in the aging vessel undergoes pronounced 

changes, such as, the well known augmentation of pulse pressure difference be-

tween peak systolic and end diastolic arterial pressure. However, evidence to date 

does not point to aging as a necessary determinant, but rather as a time factor in 

atherosclerosis.
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Hypertension has been related to clinical complications of atherosclerosis (Wilens, 

1951), particularly in coronary artery disease (Dawber et al, 1957). However, the 

role of blood pressure from a fluid mechanics viewpoint is not yet clear. At one 

time it was thought that blood-arterial wall lipid transport was due to a pressure 

driven, bulk flow process, but later experimental data tend to refute any major 

importance of such a pressure effect. The increased pressure pulse and the as-

sociated alteration of velocity waveform, and increase of peak velocity were also 

hypothesised to be important. A stronger suggestion made recently was that the 

mean blood pressure plays a major role due to its effect on arterial geometry — a 

potential risk factor(Nerem and Levesgue, 1983). It has been reported that gross 

elevation of aortic pressure distorts the geometry of the aortic tree to the point 

where angles of branching are markedly changed (Fry, 1976). This could have the 

effect of changing a relatively well-behaved flow field into a considerably more tor-

tuous one which would result in a significant alteration in the local detailed fluid 

dynamics characteristics.

Turbulence has also been postulated as a possible atherogenic factor (Mitchell 

and Schwartz, 1965; Wesolowski et al, 1965). However, both in vitro studies in 

model bifurcations and in vivo monkey coaractation experiments fail to support 

this suggestion. First, measurements in several arterial branch models give no in-

dication of turbulent flow over a physiological range of Reynolds numbers and flow 

division ratios (Bharadvaj et al, 1982(a)). Furthermore, in vitro pulsatile flow ex-

periments using laser Doppler anemometry and in vivo pulsed Doppler ultrasound 

studies of carotid arteries in normal human subjects do not exhibit turbulence (Ku 

and Giddens et al, 1985). Findings show that strong secondary flow patterns at 

normal carotid bifurcations exist, while turbulence does not. Consequently, it has 

been suggested by several authors that turbulence is not a prominent feature at 

sites of early plaque formation.
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Flow separation has been regarded as a primary hemodynamic factor associ-

ated with lesion development (Fox and Hugh, 1966). It is suggested that regions 

of local flow separation at arterial branch points and along curved segments cause 

zones of stasis to form. The bloodstream stagnates locally and allows platelets 

and fibrin to form a mesh at the wall in which lipid particles become trapped and 

eventually coalesce to form atheromatous plaques. Nevertheless, the configurations 

chosen in this study were not representative of typical configurations in the arterial 

system. Consequently, severe adverse pressure gradients were generated locally in 

these experiments which excessively accentuated flow separation behaviour com-

pared with anticipated behaviour in the vascular tree. Although zones of flow 

separation may well influence lesion development within the arterial system, the 

results of this study should not be interpreted as being representative of typical 

arterial flow conditions (Gessner, 1973).

Wall shear stresses have received most attention and have long been considered 

as an important factor in the pathogenesis of atherosclerosis. Different hypotheses 

have been postulated from this point of view, those of (i) high wall shear stress, 

(ii) low wall shear stress, and (iii) wall shear stresses which change direction over 

time. Fry (1969, 1972) demonstrated that extremely high shear stresses can re-

sult in actual mechanical damage to the endothelial lining of the arterial wall and 

increase permeability to lipid, thus he suggested that this can foster the onset of 

early atheroma. This view was supported by observations in hyper-cholesterolemic 

diet animals. However, subsequent experiments found that these very high rates of 

shear required for mechanical damage to the arterial wall do not exist in the actual 

circulation. Caro and co-workers (1971, 1981) studied the distribution of early 

atheroma in a large number of human and canine subjects and showed that early 

lesions occur preferentially in regions where arterial wall shear rate is expected to 

be relatively low, while the development of lesions is inhibited or retarded in those 

regions where wall shear rate is expected to be high. This hypothesis has gained
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much support from other laboratory and theoretical investigations (Friedman et al, 

1981; Kjaernes et al, 1981). It suggests that the development of atheroma is asso-

ciated with shear dependent mass transport phenomena rather than wall damage 

due to the motion of blood. The explanation of this concept is that accumulation 

of material in the wall is in part due to alteration of material entering the wall and 

inadequate efflux of material from the wall to blood.

The low shear stress hypothesis is also supported by experimental studies of 

flow in a scale model of the human carotid bifurcation (Ku and Giddens et al, 1985). 

These studies not only confirmed earlier findings that atherosclerotic plaques tend 

to form in area of low, rather than high wall shear stress, but also indicated that 

marked oscillation in the direction of wall shear stress may enhance atherogenesis. 

This proposal has now been generally accepted, although the underlying mecha-

nisms are not yet clearly established.

The mechanisms by which hemodynamic factors influence the development of 

atherosclerosis have been studied in a number of laboratories. Two of the major 

theories of atherogenesis are : (i) endothelial injury; and (ii) insufficient efflux of 

endogenous cholesterol. Although some form of injury to arterial endothelial cells 

may result in traumatic aneurysm, dissection and thrombosis; and insufficient rate 

of mass transfer from arterial wall to blood may account for the buildup of plaques 

in regions with constant low wall shear stress, neither of these hypotheses ade-

quately explains the complex set of experimental and observed data encompassing 

atherosclerosis. However, parts of each of these theories in conjunction with an-

other factor which is constantly present in the artery may have the potential to 

account for such complicated phenomena. Evidence to date indicates that this 

factor is the hemodynamic stress associated with arterial blood flow. Thus, a de-

tailed study of flow patterns and shear stress distributions at arterial bifurcations 

becomes highly desirable.
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1.2 G E N E R A L  F E A T U R E S  OF A R T E R IA L  B IF U R C A T IO N  F L O W

Flows at bifurcations have been studied by numerous investigators both ex-

perimentally and numerically (e.g. O’Brien, 1976 and 1977; Bharadvaj, 1982(a,b); 

Ku and Giddens, 1983 and 1987; Perktold et al, 1990 and 1991). The general fea-

tures of bifurcation flow which are relevant to flow in arteries can be summarised 

as follows :

(a) highly unsteady flows;

(b) substantially three-dimensional with secondary flows in the branches;

(c) flow separation in the branch with lower mean velocity;

(d) increasingly disturbed flow as branch angle increases;

(e) considerably higher wall shear stress at the apex in comparison with 

the outer wall.

Figure 1.1 illustrates the flow distribution, separation-reattachments and vortices 

in the median plane of a 90° glass model T-junction with uniform diameter. For an 

upstream Reynolds number (Re0) of 245 and a flow division of Q1/Q 2 — 0.25, paired 

spiral secondary flows and separation zones are clearly present: a large separation 

zone in the main tube at the entry of the daughter tube; and a small secondary 

corner separation zone at the entry of the side branch. Such patterns may also 

occur in the arterial circulation.

The flow patterns at the bifurcation and the formation and sizes of the separa-

tion regions are strongly influenced by the detailed bifurcation geometry including 

vessel diameters, branching angle and the shape of the apex; upstream flow rate as 

manifested through the Reynolds number; flow division between branches; and the 

pulsatile nature of the flow, i.e., the shape of the flow waveform, as well as the am-

plitude and frequency of the pulsation. It is, therefore, very important to model the 

bifurcation geometry, pulse waveform, upstream boundary conditions and down-
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stream resistances physiologically accurately. It should also be emphasised that a 

fully three-dimensional modelling of the flow under pulsatile conditions is virtually 

essential, due to the presence of the non-negligible three-dimensional phenomena, 

such as secondary flow in the bifurcating and curved regions, and the highly un-

steady nature of the arterial flow. In addition, there are two relatively minor factors 

which may have influences on the flow at bifurcations, i.e., the distensibility of the 

blood vessel wall and the non-Newtonian viscosity of the blood. In most of the 

previous studies, they were regarded as “second-order” factors and were generally 

neglected. However, recent experimental results (Moravec and Liepsch, 1983; Ku 

and Liepsch, 1986) tend to indicate that wall compliance and non-Newtonian flow 

behaviour may well be important factors in the understanding of arterial bifur-

cation flows. To explore their effects further, the distensibility of the vessel wall 

and the non-Newtonian effects of the blood must be accommodated in numerical 

modelling of these flows.

Fig. 1.1 Partical paths in the median plane of a rounded T-junction at

Re0=245 and Q i /Q2 =  0.25. (From Karino et al, 1979)
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1.3 M O D E L  D E S C R IP T IO N  A N D  ITS V A L ID IT Y

The basic equations required for modelling fluid flow are the equations of con-

servation of mass and momentum, the constitutive equations specifying the me-

chanical properties of the material, and if heat transfer and chemical reactions are 

involved, the energy and reaction rate equations. These coupled with the boundary 

conditions are all that are needed for a numerical simulation. To construct a math-

ematical model for a specific problem, the equations can be simplified accordingly.

Focusing upon the problem of blood flow in arterial bifurcations, the general 

features of the flow have been described in the preceding section. It should be noted 

that despite the existence of such complex phenomena as separated and secondary 

flow; blood flow in arterial bifurcations can be regarded as laminar, since in the 

human circulatory system the duration of a heartbeat is too short to develop a full 

turbulent flow (Liepsch, 1986).

Also emphasised in the previous section is the necessity of accommodating the 

three-dimensional nature of the bifurcation geometry and the pulsatility of the 

flow. This demands the treatment of the full three-dimensional time-dependent 

Navier-Stokes equations. As for the bifurcation geometry, an idealised 90° T - 

bifurcation was adopted first for code validation purpose, since a complete set of 

experimental data for such a bifurcation was available. As presented in chapter 5, 

the T-bifurcation geometries used in this study were the same as those employed 

in the experiment. For the modelling of physiological flow in canine femoral bifur-

cations, geometries of the two bifurcation models adopted here were based upon 

data from the in vivo measurements (Jones et al, 1990), in which branching angles, 

B-mode ultrasound images of the cross-sections of the upstream parent and both 

daughter vessels, and the origin of both vessels were all photographed. True geo-

metrical data measured from photographs were used in the predictions. Details of
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these are described in chapter 6.

Blood flow in arteries is pulsatile with instantaneous blood velocity and pres-

sure varying during a cardiac cycle according to the pumping action of the heart. 

When dealing with flows in idealised T-bifurcations, a sinusoidal oscillating pres-

sure gradient was superimposed on a steady flow to generate the pulsatile flow. 

When canine femoral bifurcation flows were treated, two types of physiological ve-

locity waveform were employed. One was an averaged velocity waveform in canine 

arteries, another was the in vivo waveform measured upstream of each bifurcation 

models.

Two dimensionless parameters have been consistently used in this dissertation 

to characterise the flow, they are defined as follows:

inertial force pUd
Reynolds number =  —--------- -------=  -------  (1-1)

viscous force p

/transient inertial force d [pu
Womersley number =  \ ---------;--------- ------------- =  —  (1-2)

V viscous force 2 y p

d being the parent vessel diameter, U the time-averaged velocity in the parent 

vessel, p the fluid density, p the dynamic viscosity, and u> the angular frequency of 

the pulsating flow. In the canine femoral bifurcations studies, the mean Reynolds 

number was about 100 and the Womersley number around 2.2.

Blood is a suspension of a variety of cells in an aqueous solution called plasma. 

In large blood vessels, it is reasonable to consider blood as a homogeneous incom-

pressible fluid. But blood is not generally Newtonian, its viscosity varying with 

shear rate. While at very high shear rates (>  1000S'-1 ) blood can be assumed as
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Newtonian, but at low shear rates the viscosity of blood decreases with the increase 

of shear rate. Actually in large arteries such high shear rates occur only during a 

relative short part of the cycle period, and in addition, predominantly close to the 

wall. Consequently, it is more appropriate to treat blood as a non-Newtonian fluid. 

Several functional forms for constitutive equations have been developed to model 

the non-Newtonian behaviour of blood (Walburn and Schneck, 1976; Nakamura 

and Sawada, 1988; Rodkiewicz et al, 1990). Among these the general power law 

was considered to be more appropriate and was therefore adopted in this study .

The arterial wall is anisotropic and viscoelastic. In the actual circulation the 

radial dilatation of large arteries is up to 2-15%, while the longitudinal movement 

is very small because of the tethering of vessels to the surrounding tissues. A large 

variety of mathematical models for the mechanical properties of the arterial wall 

have been derived under various assumptions. Among these models the pseudo 

strain energy functions derived from finite nonlinear elastic deformation analysis 

were claimed to be one of the simplest and most accurate forms. In this model 

the arterial wall is assumed to be homogeneous, incompressible and non-linearly 

elastic. These assumptions have been proven valid within the normal physiological 

pressure range (Fung et al, 1979; How and Clarke, 1984). Hence, a polynomial 

form of strain energy function was adopted in this study. A simplified coupled 

approach to incorporate this in the fluid flow modelling was developed, i.e., fluid 

flow equations and wall displacement equation are solved separately within a time 

step, but are connected in terms of pressure and boundary conditions. The essen-

tial procedures of this approach can be summarised as follows: at each time step 

(i) solve the flow equations as if the wall is rigid, (ii) apply the pressure obtained 

from (i) as loading on the wall and solve the stress-strain function to evaluate 

radial displacement of the wall, (iii) the result of (ii) is then used to determine 

the new boundary position for (i). This approach is valid provided that the wall 

movement is much slower than that of the fluid and the flow is generally parallel to
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the wall. At the present stage, however, this approach has only been applied to a 

straight circular tube. Due to the insufficient memory capacity of ULCC’s CRAY 

X-M P/28 (which has been replaced by CONVEX) and the time constraints of this 

study, applications to bifurcation geometry will be carried out in future studies.

1.4 O B J E C T S  O F R E S E A R C H

Due to the potential importance of arterial blood flow related hemodynamic 

stress in atherogenesis, this research focuses on gaining and analysing detailed in-

formation on flow held and wall shear stress distribution in physiologically valid 

arterial bifurcation models, by means of computational fluid dynamics techniques. 

The main purposes of the research may then be stated as follows:

(a) to construct a purpose-built module to be able to generate grids for 

arbitrary three-dimensional arterial bifurcations with the minimum 

user input.

(b) to incorporate the non-Newtonian viscosity of blood in the existing code 

and to investigate its effects on a bifurcation how held.

(c) to explore the possibility of incorporating wall compliance in the existing 

fluid how modelling code.

(d) to carry out a wide range of code validation exercises for how in idealised 

T-bifurcations under various how conditions by comparison with 

reliable LDA measurements.

(e) to provide predictive data for in vivo canine femoral bifurcation measure-

ments of Jones et al, and hence to validate the numerical results against 

the experimental ones.

and in addition

(f) to provide wall shear stress distributions which were unobtainable in vivo.
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In doing so, it would help

(g) to reduce the need for in vivo measurements.

(h) to acquire a better understanding of the role of hemodynamics in the 

formation of atherosclerosis.

1.5 M E T H O D O L O G Y  A N D  S T R A T E G Y  E M P L O Y E D

The problem of blood flow in arterial bifurcation involves many complicating 

factors, such as, complex 3D geometry, pulsatility, wall distensibility and non- 

Newtonian viscosity. Full incorporation of all these features in one prediction is a 

tedious computational task and no one has yet achieved this so far. However, in 

numerical studies it is possible to isolate each one of these and to investigate their 

individual and combined influence on the flow field of interest, and consequently to 

make the model more close to reality. This is the rationale followed in this research.

From the numerical simulation point of view, several methods are available for 

the solution of flow equations, of which the finite difference/ finite volume (FV) 

method and the finite element (FE) method are the most important ones. The 

major advantage of FE methods is their ability to cope with complex geometries 

and highly non-uniform grids. Therefore, the application of finite element methods 

to flow problems of complex 3D geometries with high velocity gradients seems to 

be more appropriate. Nevertheless, the cost of inverting the global matrices that 

they introduce in time-dependent flows is quite prohibitive. On the other hand, 

FV methods are more efficient in their use of computer storage and time, but are 

less amenable to irregularly shaped geometries. Although coordinate transforma-

tion can be used to good effect on some simple problems, accurate representation 

of complex geometries is far more difficult. To make a compromise between com-

putational economy and geometrical flexibility, it would be ideal to combine the
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features of both FE and FV methods in one. The newly released CFD code ASTEC, 

developed at UKAEA, provided such a unique combination. While retaining the 

efficiency of FV solution methods, it has an unstructured mesh giving it the flexi-

bility of a FE system. This unusual feature has made it the most suitable code for 

the current application, although it does not have adaptive or transient gridding 

capability.

An alternative code is FL0W3D from AERE, Harwell. It is a FV code using 

non-orthogonal body-fitted coordinates. Although its latest version is capable of 

accommodating almost all the features of the flow problem under consideration, its 

earlier version (at the time this research started) could not tackle 3D bifurcation 

geometries unless highly idealised. Yet, since FL0W3D has become one of the 

market leaders in FV codes, and especially in our research center (Thermo-Fluids 

Engineering Research Center, City University) Collins et al have about 11 years’ 

experience of using this code for various problems including transient laminar flows 

as well as turbulent flows (eg. Ciofalo and Collins, 1988; Ciofalo and Collins, 1990), 

it would be of interest for validation purposes to provide an extra set of predictive 

data using FLOW3D as a basis for code to code comparison. Hence, in this re-

search ASTEC was used for solving the flow problem, while FLOW3D was solely 

used at the initial stage of code validation (see chapter 5).

The strategy of the analysis followed a logical progression. First of all, a com-

prehensive range of code validation exercises was performed. This was started 

with predictions of fully developed flow in a straight circular tube with (i) non- 

Newtonian viscosity, (ii) pulsatility of flow, and (iii) wall elasticity being taken 

into account in turn, in order to test the code’s capability of dealing with these 

cases, and the accuracy of predictions checked through quantitative comparison 

with established analytical solutions and laboratory measurements. This was fol-

lowed by investigations of both steady and pulsatile flows in an idealised plane 90°
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T-bifurcation under various flow conditions, and the predictions were validated 

against published LDA measurements. These results would not only demonstrate 

the reliability of the numerical predictions, but also give a clear indication of how 

the bifurcation flow field and wall shear stress distribution were influenced by the 

basic flow parameters. Then the investigation proceeded to study flow in a 3D 

T-bifurcation of circular cross-section with (i) Newtonian and (ii) non-Newtonian 

fluid; these results would reveal the importance of three-dimensional modelling 

and the effects of flow pulsatility and non-Newtonian viscosity. Having done these, 

true physiological flows in canine femoral bifurcations were studied and detailed 

information on flow field and wall shear stress were obtained. Finally, predicted 

velocity profiles were validated by means of quantitative comparison with the in 

vivo measurements obtained by Jones et al (1990).

All calculations presented in this dissertation were carried out on ULCC’s 

CRAY X-M P/28, while pre- and post-processing were performed on Sun worksta-

tions at the City University.
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CHAPTER 2

N U M E R IC A L  M E T H O D S  F O R  T H E  S O L U T IO N  OF 3D  

T I M E -D E P E N D E N T  N A V IE R -S T O K E S  E Q U A T IO N S

2.1 IN T R O D U C T IO N

The flow of blood through an arterial bifurcation segment can be considered as 

a time-dependent three-dimensional incompressible laminar flow. In this chapter, 

the basic equations are introduced, and the currently employed numerical meth-

ods for solving these equations, including discretisation methods, advective term 

schemes, time differencing schemes and pressure-velocity coupling algorithms, are 

summarised. This is followed by an introduction and comparison of commercially 

available CFD (computational fluid dynamics) software packages; among them 

ASTEC is described in detail.

2.2 G O V E R N IN G  E Q U A T IO N S

Modelling fluid flow requires the simultaneous satisfaction of two conserva-

tion principles, namely those of continuity and momentum. Expressed in compact 

tensor notation, with summation over repeated indices, the basic continuity and 

momentum equations may be expressed as:

and

dp d_  +  g - ^ , )  =  0 ( 2 . 1 )

d  d  d
d t (pui) +  a^ipu’Ui) =  3 ^ «  +

( 2 . 2 )

Since no heat transfer is involved in this particular problem, the energy equation 

can be omitted. In these equations, iq is the velocity of the fluid, aq the Cartesian 

coordinates, p the fluid’s density, atJ the stress tensor and F* the body force which 

consists mainly of inertial force due to gravitational acceleration and is usually

36



negligible in analysing blood flow in arteries.

For a Newtonian fluid with a constant viscosity of the stress

tensor aij is given by:

o~ij — pSi:j d- ASkk&ij d- (2.3)

where 6ZJ is the Kronecker delta, S,j the strain rate tensor defined as:

, _  1 (dui duj\ 
ij ~ ~  2 \dxj  +  d x j (2.4)

and A the material constant. Since the fluid is assumed to be incompressible, the 

condition of incompressibility diii/dxi =  0 reduces Eqn.(2.3) to the form:

&ij — p&ij d- 2/j.Sij (2.5)

substituting these into Eqn.(2.2), the governing equations for an incompressible 

Newtonian fluid are obtained:

and

duj
dx^

=  0 (2 .6 )

dui
~dt

1 dp + p
pdxi p

d2ut
dxjdxj

(2.7)

For 3-D flows, Eqns (2.6) and (2.7) comprise four equations for four flow vari-

ables, i.e., three velocity components and pressure. Together with appropriate 

initial and boundary conditions these equations are solvable.

As mentioned in Chapter 1, blood is not a Newtonian fluid. Its viscosity is not 

a constant, but varies with the strain rate. To accommodate the non-Newtonian
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behaviour of blood the Newtonian equation (2.5) can be generalised as (for details, 

see Appendix A):

crij =  -pSij +  2 p(J2)Sij (2.8)

where p is a function of J2 — the second invariant of the strain rate tensor:

J2 =  \Sij S „  (2.9)

Substituting Eqn.(2.8) into Eqn.(2.2), we obtain a set of governing equations for 

an incompressible non-Newtonian fluid:

and
du{ du{ 
dt 3 dx j

To solve Eqns (2.10) and (2.11), the constitutive equation for the non-Newtonian 

behaviour of the blood must be specified. Details about the constitutive equations 

of the blood and its incorporation in the flow equations are covered in Chapter 3 

and 4 respectively.

These governing equations are complex non-linear partial-differential equa-

tions. The numerical approaches for solving these equations are discussed in the 

succeeding sections.

2.3  D IS C R E T IS A T IO N  M E T H O D S

2.3 .1  Spatial Discretisation

Methods used to discrétisé the flow governing equations can be roughly di-

vided into three categories: (a) finite difference/finite volume methods; (b) finite 

element methods; and (c) spectral methods.

Oui
dxi

= 0 ( 2 . 1 0 )

1  dp 1  d
pdx i  p dx j

/ T \ ( dui du;'
( 2 . 1 1 )
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Finite difference and finite volume methods have the similar appearance, but 

differ slightly in the methodology used. The usual procedure used in finite differ-

ence methods is to approximate the derivatives in Eqns. (2.1)-(2.2) via a truncated 

Taylor series. Thus the unknowns of the resulting algebraic equations contain only 

the values of the flow variables at discrete points. The same view is adopted in fi-

nite volume methods, in which the computational domain is split up into a number 

of non-overlapping control volumes, and the differential equations are integrated 

over each control volume, ensuring discrete conservation of mass, momentum and 

energy. To evaluate the required integrals in the formulation, interpolation proce-

dures or profile assumptions expressing the variation of flow variables between the 

grid points are needed. The resulting discrete equation is a system of nonlinear 

algebraic equations containing the values of flow variables at grid points.

One of the most attractive features of the finite difference or finite volume 

methods is that they are easy to understand and lend themselves to direct physical 

interpretations. For this reason and their relatively less computer cost, they are 

now by far the most popular methods in CFD. However, the significant drawback 

of the finite difference methods (on a regular coordinate grid) is that they are less 

amenable to irregular-shaped geometries, as the representation of curved or in-

clined boundaries on a Cartesian grid is not convenient. This problem has been 

partially overcome by the introduction of body-fitted curvilinear coordinates, but 

even so, accurate representation of complex geometries is still problematical.

Finite element methods subdivide the computational domain into a set of ele-

ments, which could be triangles or quadrilaterals in 2D and tetrahedra or hexahedra 

in 3D. Each flow variable is approximated by a ’shape function’ or profile assump-

tion and the discretised equations are usually derived by the use of a variational 

principle or the Galerkin method, which is a special case of the method of weighted 

residuals.
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Finite element methods were originally developed for stress and strain analysis 

in structural mechanics, but were rapidly expanded into many other areas, partic-

ularly they are receiving increased attention in CFD (Cuvelier et al, 1986). The 

major advantage of finite element methods is their more general geometric capabil-

ities, so that irregular geometries can be treated with relative ease. However, these 

methods are computationally very expensive for the time-dependent flows due to 

the global matrices introduced. Although Gresho (1984) and others have modified 

the finite element algorithm for solving the time-dependent incompressible Navier- 

Stokes equations, the computer code produced was still more expensive than the 

standard finite difference codes. Moreover, high-order differencing schemes and 

model changes can be cumbersome to implement.

Spectral methods are characterised by the expansion of each flow variables in 

a truncated series of global polynomials. An essential aspect of spectral methods 

is the choice of expansion functions which must be appropriate to the boundary 

conditions of the problem. For example, Fourier series are only appropriate for 

problems with periodic boundary conditions; while in the general, nonperiodic 

case, normalised to [—1,1], the appropriate class of functions is the polyno-

mials, such as Chebyshev and Legendre functions.

Numerical spectral methods for partial differential equations were originally 

developed by meteorologists. These methods used in fluid mechanics prior to 1970 

are now termed spectral Galerkin methods, in which the equations are derived by 

the techniques used in classical analysis, and the fundamental unknowns are the 

expansion coefficients. With the advent of computers, an alternative discretisation 

method — spectral collocation technique — has been developed (Kreiss and Oliger, 

1971; Orszag, 1972), in which the unknowns are the values at selected collocation 

points, and the series expansion is used solely for the purpose of approximating
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derivatives.

Spectral methods have become the prevailing tool for large-scale calculations. 

They are more accurate than comparably resolved finite difference and finite volume 

algorithms, but prove correspondingly more difficult in handling general boundary 

conditions and usually require more operations per mesh point. Thus, by the 

present time their applications have been mostly restricted to simple problems.

2 .3 .2  Treatm ent of Advection

The main consideration in the derivation of the discretisation equations is the 

formulation of the advection and diffusion terms. It has been recognised that the 

advection-diffusion discretisation scheme has a direct consequence on the accuracy 

of the solution, and the convergence of the problem is also dependent on the scheme. 

Thus, it is essential to choose an appropriate advection diffusion formulation that 

leads to stable and accurate results with grids of modest fineness.

The established methods, such as the central-differencing scheme, upwind 

scheme, hybrid scheme (Spalding, 1972), and the power-law scheme (Patankar, 

1980), have their own drawbacks in terms of accuracy and stability. The central- 

differencing scheme is likely to give a physically unrealistic solution (‘wiggles’ ) when 

the cell Peclet number (Pc =  £H(T) exceeds 2. Although it is, in principle, possible 

to refine the grid until Pc is small enough (<  2), this strategy is not feasible in most 

practical problems. A remedy for this is the upwind scheme, but it is well known 

that this scheme causes severe false diffusion. An alternative is the hybrid scheme 

which is a combination of the central-differencing and upwind scheme (use central- 

differencing scheme when \Pc\ < 2, and upwind scheme when \Pc\ >  2), but still 

can not eliminate false diffusion errors. Thus, a number of new formulations have 

been proposed for preventing ‘wiggles’ while minimising numerical diffusion. These 

may be summarised as follows:
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(a) ‘Skew upwind’ schemes based on the concept of Raithby (1976), that the 

direction of the velocity vector is used in obtaining the convective influence from up-

stream. Similar techniques are ‘mass-flow-weighted skew upwind’ (Hassan, 1983), 

‘vector upstream’ (Lillington, 1981) and ‘bounded skew upwind’ (Syed and Chiap- 

petta).

(b) Higher-order schemes, such as the second-order upwind, the third-order 

upwind based on the quadratic upstream interpolation ‘QUICK’ (Leonard, 1979), 

the ‘Hermitianpolynomial’scheme (Glass and Rodi, 1982) and the ’spline’ methods 

(Rubin and Graves, 1975; Kumar, 1981).

(c) Methods based on a locally exact solution of the differential quations, such 

as the ‘locally analytical method’ (Wong and Raithby, 1979; Stubley et al, 1980), 

and the ‘finite analytical method’ (Chen et al, 1981).

(d) Modified-central differencing schemes, such as CONDIF (Runchal, 1987), 

and NONDIF(Hedberg, 1989).

A large number of comparative studies has been conducted and their major 

results are summarised by Patankar (1988). He concluded that the formulation 

of a satisfactory advection-diffusion scheme still remains an unresolved question. 

Lower-order schemes such as upwind or hybrid are stable and monotonic but in-

volve severe false diffusion. Higher-order schemes such as QUICK eliminate false 

diffusion but produce nonphysical overshoots and undershoots, and lead to oscil-

lations and divergence. Also, higher-order schemes imply a significant increase in 

computational complexity — one way of handling this is the ‘deferred correction 

approach’ employed by Burns and Wilkes (1987), where the extra terms are ab-

sorbed into the source term on the right hand side of the equations.
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2 .3 .3  T im e Differencing Schemes

For transient problems, the time derivative of the flow variable in the differ-

ential equations can be approximated in many ways. If the equation for a flow 

variable </> is written in the form:

§£  = m  (2. i2)

then the discretised form can be generalised as:

¿ n + l  _  i n

A t =  y +1) + (i -  * w )  (2.i3)

The quantity of x is used to denote the level of implicitness, for example, x =  1.0 

gives the fully implicit scheme; x =  0.5 gives a Crank-Nicolson scheme and x =  

0.0 reduces to the fully explicit scheme. It is known that the fully implicit and 

the Crank-Nicolson schemes are usually considered as unconditionally stable in a 

mathematical sense, while the explicit scheme is subject to the Courant stability 

criterion, which can be expressed as:

C r  =  \  C/A <  1Ax/At (2.14)

where Cr is the Courant number, c the celerity of propagation in the analytical 

solution, A x  the width of the smallest mesh, and At the time step.

2.4  C O M P U T A T IO N  A L G O R IT H M S

The available methods for solving flow equations can be roughly divided as 

being based on primitive variables or vorticity. The methods based on vorticity- 

stream function have been rather popular in two-dimensional simulations for a 

long time. The essential feature of this approach is that the pressure makes no 

appearance, thus, instead of dealing with the continuity equation and the momen-

tum equations, only two equations need to be solved to obtain the stream function 

and vorticity. However, this method has difficulties for the specification of the
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vorticity boundary conditions at sharp corners, and is not easy to extend to three- 

dimensional situations, for which a stream function does not exist. Therefore, 

attention has turned to formulations based on the primitive variables, namely the 

velocity components and pressure.

A number of currently employed velocity/pressure coupling methods originate 

from the SIMPLE procedure which was first introduced by Patankar and Spalding 

(1972). Essentially, the SIMPLE method is based on a two-step iterative cycle, 

in which a guessed pressure field is introduced in the momentum equations to 

evaluate velocities, and then a pressure-correction equation derived by enforcing 

continuity under certain simplifications, is solved to obtain an improved guess. 

However, the original SIMPLE method is rather slow to converge and needs heavy 

under-relaxation. Thus, a number of more efficient variants of SIMPLE have been 

developed, and are outlined as following:

(a) SIMPLER method (Patankar, 1980; 1981), in which an extra equation is 

solved for the evaluation of pressure. It has been found to give faster convergence 

than SIMPLE.

(b) SIMPLEST method (Spalding, 1980), which is based on an explicit treat-

ment of convective and implicit treatment of diffusive terms in the momentum 

equations.

(c) SIMPLEC method (Van Doormaal and Raithby, 1984), which uses con-

sistent under-relaxation for the momentum and pressure corrections. It has been 

shown to allow faster convergence for problems dominated by pressure gradients 

and drag forces. For a number of model problems, it has proved less sensitive than 

SIMPLE to selection of under-relaxation factors (Burns et al, 1987).

(d) PISO method (Issa, 1985), in which an additional pressure-correction step 

is performed at each iteration to improve the solution of the momentum equations 

while maintaining continuity. For transient problems, it may be used as a non-

iterative algorithm, but requires an accurate solution of the linearised equations.
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On the whole, it has proved to be faster than SIMPLE for transient problems 

in which the flow field varies markedly at each step, but not for ‘smooth’ time- 

dependent flows (Ciofalo and Collins, 1988).

(e) PISOC method, in which the similar modifications of SIMPLEC are ap-

plied to PISO.

To solve the linearised momentum equations and pressure-correction equa-

tions, the Gauss-Seidel point-by-point or line-by-line methods have been com-

monly used. However, these methods converge very slowly, especially when a large 

number of grid points are involved. An alternative method for solving multidimen-

sional discretisation equations is the Strongly Implicit Procedure (SIP) described 

by Stone (1968) which has been found more reliable for large three-dimensional 

problems, especially those with many internal blockages (Burns, et al, 1987). Ex-

perience has also shown that it is best to solve the pressure-correction equation to 

a higher degree of accuracy than the other equations. Since the matrix represent-

ing the pressure-correction equation is symmetric, the preconditioned conjugate 

gradient (PCG) method may be applied. Kightley and Jones (1985) have found 

that a simple incomplete Cholesky preconditioning is a good compromise between 

efficiency and reliability on both scalar and vector computers.

A number of new techniques have recently been proposed, some of them being 

extensions of the Stone’s method. Lin (1985) has proposed the use of three free 

parameters to accelerate the convergence of Stone’s method. In the methods formu-

lated by Schneider and Zedan (1981) and Peric (1987), the five-diagonal matrix in 

Stone’s method is replaced by a nine-diagonal matrix. As a result, these modified 

methods are applicable to the discretisation formulations that lead to nine-diagonal 

matrices; they are also shown to be more efficient when applied to five-diagonal 

systems as well. In a series of papers, the use of multigrid techniques has been 

introduced. Phillips and Schmidt (1984) described the use of this technique for
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solving the diffusion equations. One useful aspect of the multigrid technique is 

that it allows local grid refinement in the regions of large gradients. The intro-

duction of local grid refinement in the solution of convection- diffusion equation is 

demonstrated by Phillips and Schmidt (1985a). They also presented a multilevel- 

multigrid technique for recirculating flows (Phillips and Schmidt, 1985b).

2.5 A V A IL A B L E  C O M P U T E R  C O D E S

2.5 .1  Introduction

Computational fluid dynamics (CFD) has been used for flow predictions since 

about 1965. With the rapid development of computer hardware, it has grown into a 

major technique area. Up to now, a number of CFD computer programs have been 

produced based on either finite difference/finite volume or finite element methods 

with various numerical features and varying degrees of modelling capabilities. In 

this section a comparison of some of the most popular CFD packages that are 

commercially available is presented. Particular emphasis is laid on ASTEC, which 

was used throughout this research.

2 .5 .2  Com parison of C F D  Codes

A list of some of the most popularly available CFD codes includes: PHOEN- 

ICS, FLOW3D, FLUENT, ASTEC, STARCD, FIRE, FIDAP, P/FLOTRAN and 

FEAT, all having three dimensional capability. Table 2.1 lists the suppliers of the 

computer programs. The modelling capabilities and numerical features of all the 

programs are compared in Table 2.2 and Table 2.3 respectively. Note that solving 

incompressible laminar flows with a Newtonian fluid for steady state conditions is 

generally regarded as a very basic requirement for a CFD code, and is ready to be 

treated by almost all these codes. Hence, only the additional modelling capabili-

ties, such as transient, non-Newtonian, multi-phase flow et al, and the numerical
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features of the codes are compared.

CODE TYPE* SUPPLIER COUNTRY

PHOENICS FV CHAM UK

FL0W3D FV CFDS Harwell UK

FLUENT FV CREARE Inc. USA

ASTEC Hybrid CFDS Harwell UK

STAR-CD Hybrid Computational
Dynamics UK

FIRE FV AVL LIST AUSTRIA

FIDAP FE Fluid Dynamics 
Int.

USA

P/FLOTRAN FE PDA Engineering USA

FEAT FE Nuclear Electric UK

*FE : Finite element code 
FV : Finite volume code
Hybrid : Essentially FV but offering unstructured 

mesh
Table 2.1 Suppliers of CFD Codes.

In both finite element and finite difference methods, the accuracy of the solu-

tion depends not only on the formulation of the convection and diffusion terms, but 

also on the fineness of the mesh and the mesh distribution. Thus, the accuracy of 

different program is hard to quantify, and in Table 2.3 it is given as the order of ac-

curacy of the advection schemes employed. The cost of each program is even more 

difficult to quantify, as it tends to be problem-dependent and machine-dependent. 

Generally, finite element codes using direct solution methods are more expensive.

The advent of supercomputers with their vector processing and parallel process-

ing capabilities has made some impact on how computer programs and numerical 

algorithms are designed. To obtain the best performance from current supercom-

puters, some of the codes have been specifically tailored and designed to achieve a 

high degree of vectorisation. This information is also included in Table 2.3.
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CODE PHOENICS FL0W3D FLUENT ASTEC STARCD FIRE FIDAP P/FLOTRAN FEAT

(1) Physical model 
Turbulent v /
Transient v ' X
Compressible V ' X X X
Non-Newtonain X V ' X X X
Two-phase X X X X X X
Buoyant v ' V '
Porous media V / v ' V ” X
Combustion V / v '
Chemical reaction v ' X X
Free surface V / X X X
Extra scalars v ' V / X X

(2) Grid FV FV FV FV FV FV FE FE FE
Type of grid S S S US US US US US US
Body-fitted
coordinates v / N/A N/A N/A N/A N/A N/A

Local grid 
refinement X X X v - v -

adaptive gridding X v / X X X

*FV : Finite volume S : Structured
FE : Finte element US : Unstructured

Table 2.2 Comparison of codes’ capabilities.



Apart from the flow solvers themselves, their pre- and post-processing facil-

ities are also important. All the codes listed here have their own grid generation 

capability and graphics package, but their ease of use varies from code to code.

CODE ADVECTION*
SCHEME

ACCURACY SOLUTION METHODS

PHOENICS Hybrid
Upwind

1st Iterative

FL0W3D Hybrid
Upwind

HUW
QUICK
CONDIF

lst/2nd Iterative

FLUENT QUICK 1st/2nd Iterative
ASTEC Hybrid

Upwind
SU

HSU
CONDIF

1st Iterative

STAR-CD lst/2nd ItenxtiVg
FIRE Iterative

FIDAP Galerkin 1st

P/FLOTRAN equal

FEAT Iterati U2

♦CONDIF
HSU
HUW
QUICK
SU

modified central differencing scheme 
hybrid skew upwind scheme 
second-order upwind scheme 
third-order upwind scheme 
skew upwind scheme

Table 2 .3  Comparison of codes’ numerical treatment.
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2 .5 .3  Details of A S T E C

2 .5 .3 .1  General features and capabilities of the code

The ASTEC code was developed for modelling fluid dynamics and associated 

physical phenomena in complex geometries. The equations for three-dimensional, 

single phase flow are solved on a finite element mesh, which allows great geomet-

rical flexibility. However, the discrete equations are derived using a finite volume 

approach, so that the code avoids the heavy usage of computing resources which 

characterises classical three-dimensional finite element flow codes. Its main fea-

tures and capabilities are summarised in Table 2.4. Numerical methods employed 

in the code are outlined in Table 2.5.

Physical Models: (a) Laminar flow
Turbulent flow ( k - c  model)

(b) Incompressible
Compressible for Mach numbers<0.2

(c) Steady 
Transient

(d) Buoyant (Boussinesq approximation
or fully compessible)

(e) Conduction in solids
(f) User-defined equations for scalars

Geometry : (a) 2D or 3D

(b) Unstructured mesh consists of 
arbitrarily shaped 8-node elements

(c) Boundaries :
Solid region
Inlet
Outlet
Thin surface 
Symmetry plane

(d) Porous media

Table 2 .4  Main features and capabilities of ASTEC.
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(a) Finite volume discretisation non-staggered grid
except for pressure

(b) Treatment of advection: Hybrid
Upwind
CONDIF
Hybrid skew upwind

(c) Pressure-correction eqn. solver: Conjugate gradients
Algebraic multigrid

(d) Other transport eqns solver: Algebraic multigrid
Gauss-seidel

(e) Time-differencing: Fully implicit

(f) Velocity/pressure coupling: SIMPLE

Table 2.5 Numerical methods employed in ASTEC.

RESTART

Fig- 2.1 Relationship between ASTEC, associated data files, and 

the pre- and post-processor.
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ASTEC itself is a flow solver, and it is supported by a pre-processor SOPHIA 

and a post-processor JASPER (all developed in UKAEA). As illustrated in Fig.2.1, 

to use the package involves firstly running the mesh generator to produce a mesh file 

specifying the geometry, together with an initial values file containing the starting 

guess for the solution. To run ASTEC, an additional parameter data file is required 

for choosing options and generally directing the calculation. For some problems, 

user-supplied Fortran subroutines may be required for specifying non-standard 

additions to the model. After running ASTEC, an output file is produced which 

provide diagnostic messages from the code, including error messages. In addition, 

a dump file is generated which contains final values for the variables in the same 

format as the initial values file. Thus this dump file may also be used to restart 

the code. Once a solution is obtained, pictures of the results can be plotted by 

running the post-processor using the mesh and final dump files as input.

2 .5 .3 .2  The m esh and discretisation

ASTEC has an unstructured mesh, which consists of arbitrary quadrilaterals 

in 2-D and 8-node blocks in 3-D. As shown in Fig.2.2, in 2-D situations a control 

volume around each node is defined by joining the midpoint of opposite sides in 

every element. Moving to 3-D, the region is split into eight node elements. Within 

each element, the points at the midpoint of each edge, and at the centre of gravity 

of the four nodes on each face, and at the centre of gravity of the eight nodes 

forming the element, are joined to construct a control surface around each node, 

which encloses the nodal control volume. The four points that define each face of 

the control surface need not be coplanar; the face is constructed from two triangles 

when the surface is not planar. Although each element must have eight nodes, note 

that there is no restriction regarding the number of elements to which a particular 

node belongs.
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CONTROL v o l u me ;

2-D 3-D

Fig. 2.2 Mesh used in ASTEC.

In ASTEC the Navier-Stokes equations are written in integral form, in which 

volume integrals are approximated by assuming that the mean value of the variable 

over the control volume equals the nodal value. However, the pressure gradient term 

is converted to a surface integral of pressure using Gauss’s divergence theorem. The 

surface integrals are evaluated by summing over the faces of the control surface 

shown in Fig.2.2. On each face, the pressure is assumed to be the mean of the 

pressures at the two nodes whose control volumes are separated by the face. When 

calculating fluxes through each face, only nodes belonging to the element in which 

the face lies are used. For the diffusive flux, the gradient of the variables is estimated 

from the nodal values around the element containing that face. When calculating 

the advective flux through a face, central differencing is used for low cell Peclet 

number (<  2), with a proportion of upwinding employed when cell Peclet numbers 

exceed two. A form of streamline upwinding is used to reduce false diffusion when 

the flow lies at an angle to the mesh. The flow through the face is estimated from 

the adjacent nodal velocities by employing the interpolation procedure of Rhie and 

Chow (1983).
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2 .5 .3 .3  Calculation procedure

In ASTEC, the procedure for solving the discrete equations is iterative and 

based on the SIMPLE method. As shown in Fig.2.3, each cycle consists of several 

outer iterations, each of which contains the following steps:

S T E P  1 Solve the linearised momentum equations to obtain an improved esti-

mation of u, v, w, reducing the errors in these equations by a specified proportion.

S T E P  2 Reduce the maximum continuity error by a specified proportion. Si-

multaneously, update the pressure p according to the changes in velocity that are 

required to ensure mass conservation.

S T E P  3 Solve the temperature and turbulence equations (if turbulent) to im-

prove estimates of T, k and e, again reducing the errors by a specified proportion. 

Also solve the scalar equations to improve estimates of any other scalars being 

calculated.

These iterations will cease if one of the following occurs:

(a) The maximum velocity change 8u from one iteration to the next becomes 

smaller than Cv — a small fraction (default 10-3 ) of a typical velocity for the prob-

lem, and the maximum continuity error smaller than d — the divergence of the 

velocity field and can be set as a small fraction (default 2 x 10-3 ) of the inverse of 

a typical time scale for the problem.

(b) The maximum velocity change Su from one iteration to the next becomes 

smaller than a user-specified proportion of the velocity change in the first iteration.

(c) The number of iterations reaches the maximum number allowed -  which 

can also be specified by the user.

Convergence of temperature and other scalar variables are controlled in the same 

way. Once velocities and these other scalar variables satisfy either (a) or (b), or 

once the maximum number of iterations have been performed, a cycle is complete
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and the code then proceeds to the next cycle in transient calculations until a spec-

ified finishing time is achieved, or to the stop in a steady state calculation.

Within each of the above described steps there are inner iterations, or sweeps. 

Convergence within iterations is also monitored. For the continuity equation which 

is solved by a diagonally preconditioned conjugate gradient method, the code deter-

mines the maximum value of V  • u over the mesh following the momentum equation 

solution, and then performs conjugate gradient sweeps until the maximum diver-

gence is a specified fraction (default 0.02) of the original. There is also a maximum 

number of sweeps (default 10000) which can be performed before the continuity 

procedure ceases. The same approach is adopted for solving the linearised mo-

mentum and scalar equations, but here the scheme consists of one Jacobi sweep 

followed by several sweeps of SOR*. These sweeps aims to reduce the maximum 

residual by a specified factor (default 0.02) from its original value. Again, there is 

a maximum number of sweeps that can be performed by the SOR solver (default 

20). These values can also be determined by the user.

* Successive Over-Relaxation
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Fig. 2 .3  The iterative scheme within a cycle.



CHAPTER 3

L IT E R A T U R E  S U R V E Y

3.1 IN T R O D U C T IO N

It was pointed out in chapter 1 that to investigate arterial bifurcation flow 

analytically, there are four major factors which need to be accommodated — the 

three-dimensionality of the bifurcation; the pulsatile nature of the (laminar) flow; 

the distensibility of the arterial wall; and the non-Newtonian character of the 

blood. In this chapter, both engineering and medical aspects of each factor are 

carefully surveyed. It includes description of geometries of arteries obtained from 

anatomical and/or ultrasonic Doppler and radiological investigations; recent devel-

opments in numerical grid generation, particularly for irregular geometries; and an 

overview of current understanding of blood flow in arteries, especially at bifurca-

tions. In addition, the viscous behaviour of blood and the mechanical properties 

of blood vessels, as well as their mathematical models are included. For the sake 

of completeness, a brief description of experimental techniques for measurement of 

blood flow in arteries is given in the last section.

3.2  G E O M E T R Y  O F A R T E R IA L  B IF U R C A T IO N S

In order to simulate hemodynamic phenomena in an arterial bifurcation nu-

merically, the geometry chosen becomes the first consideration. Studies of geome-

try of arteries by means of anatomical, surgery, ultrasonic Doppler and radiological 

techniques are discussed in this section. Elements of physiology of the circulatory 

system are summarised at the beginning of the section with the intention of sup-

plying the required background for understanding the various systems described in 

the dissertation. Finally, the importance of modelling accurately the bifurcation 

geometry and its influences on local detailed flow properties are addressed.
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3 .2 .1  Structure and Physiology of Arteries

The circulatory system of the human body consists of the heart muscle and 

two components: the pulmonary and systemic circulation. Major organs in the 

circulation are shown in Fig.3.1. The heart, composed of two atria (right and 

left atrium) and two ventricles (right and left ventricle), is a combination of two 

synchronised pulsatile pumps in series. The pulmonary circulation is initiated at 

the right ventricle and transmits blood only to lungs, where filtration of CO 2 and 

supply of fresh oxygen take place. The systemic circulation, which is initiated at 

the left ventricle, is responsible for the supply of fresh blood to all the organs and 

tissues of the body, and thus can be considered as the feeding line of all the ele-

ments of the body. The transmission of blood through arteries is one of the most 

important parts of this circulation.

A striking characteristic of the circulatory system is its geometric complexity. 

Blood must flow through many bends, bifurcations, taperings, and stenoses during 

its journey. The arterial tree comprises of vessels of various length and diameter 

which successively branch into smaller vessels. The anatomy of the canine aorta 

and its main branches is illustrated in Fig.3.2, and the relevant dimensions are 

given in Table 3.1. The aorta originates in the left ventricle at the aortic valve. Its 

initial part is relatively straight for about 3cm and is called the ascending aorta. 

It then curves about 180° (the ‘aortic arch’), branching off to the head and upper 

limbs. The aortic arch is tapered, curved, and twisted (i.e., it does not lie in 

plane). The aorta then pursues a fairly straight course down through the diaphragm 

to the abdomen and legs, giving off further branches. All other larger arteries, 

similarly, are curved and branched in a complicated three-dimensional way. There 

are relatively few straight segments of artery without branches where the fluid 

mechanics of long straight tubes can be applied.
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In tr o c r o n io l

Head

Fig. 3.1 Major organs in the circulation.

(From Dinnar, 1981)
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fa c ia l

Fig. 3 .2  Major branches of the canine arterial tree. 

(From McDonald, 1974)
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Main

Site
Ascending Descending Abdominal Femoral Carotid Inferior pulmonary

aorta aorta aorta artery artery Arteriole Capillary Venule vena cava artery

Internal diameter dj cm 1-5 1-3 09 0 4 0-5 0-005 0-0006 0-004 1-0 1-7
1-0-2-4 0-8-1-8 0-5-1-2 0-2-0-8 0-2-0-8 0-001-0-008 0-0004-0-0008 0-001-0-0075 0-6-1 -5 10-2-0

Wall thickness h cm 0-065 0-05 0-04 0-03 0-002 0-0001 0-0002 0-015 0-02
0-05-0-08 0-04-0-06 0-02-0-06 0-02-0-04 0-01-0-02 0-01-0-03

h/d, 0-07 0-06 0-07 0-08 0-4 0-17 005 0-015 0-01
0-055-0-084 0-04-0-09 0-055-0-11 0-053-0-095

Length cm 5 20 15 10 15 0-15 0-06 0-15 30 3-5
10-20 01-0-2 0-02-0-1 0 1-0-2 20-40 3-4

Approximate cross-sectional area 2cm 2 1-3 0-6 0-2 0-2 2x10 5 3x10 7 2x10 5 08 2-3
Total vascular cross-sectional cm2 2 2 2 3 3 125 600 570 3-0 2-3

area at each level 
Peak blood velocity -1cm s 120 105 55 100 I[ 0-75 0-07 0-35 11 25 70

40-290 25-250 50-60 100-120 lo-5-1-0 0-02-0-17 0-2-0-5 1l 15-40
Mean blood velocity cm s~ 1 20 20 15 10 I I 15

10-40 10-40 8-20 10-15 1L J1 6-28
Reynolds number (peak) 4500 3400 1250 1000 0 09 0-001 0-035 700 3000
a (heart rate 2 Hz) 13-2 11-5 8 3-5 4-4 0-04 0-005 0-035 8-8 15

Calculated wave-speed c q -1cm s 580 770 840 850 100 350
Measured wave-speed c cm s 500 700 900 800 400 250

-2 400-600 600-750 800-1030 600-1100 100-700 200-330
Young’s modulus E Nm x ltr 4-8 10 10 9 0-7 6

3-6 9-11 9-12 7-11 0-4-10 2-10

(From C. G. Caro, T. J. Pcdlcy, and W. A. Seed (1974). ‘Mechanics of the circulation’, Chapter 1 of Cardiovascular physiology (ed. A. C. Guyton). Medical and Technical Publishers, London.)

Table 3.1 Normal values for canine cardiovascular parameters. (From Caro et al, 1978)



3.2.2 Bifurcation Geometry

The human circulatory system consists of many anatomically different arterial 

branches, with various branch angles, diameter ratios of the daughters to parent 

vessel, and parent and daughter vessel curvature. The geometries of arterial bi-

furcations have been studied by a number of investigators. Because of its clinical 

importance, much of the work has been devoted to the carotid bifurcation. Based 

upon a study of biplanar angiograms, Bharadvaj et al (1982a,b) developed an ’av-

erage’ geometry of the human adult carotid bifurcation and constructed both glass 

and plexiglas models. As depicted in Fig.3.3, the carotid artery bifurcation consists 

of a main branch, namely the common carotid artery, which asymmetrically divides 

into two branches, the internal and external carotid arteries. The internal carotid 

artery is characterised by a widening in its most proximal part, the sinus or the 

bulb. Two assumptions were made in this model : (a) the arteries and the carotid 

sinus are circular in cross-section; (b) the parent and the daughter vessels are in the 

same plane at the bifurcation. Reneman et al (1985, 1986) used a multi-gate pulsed 

Doppler system to measure the relative diameter changes of the arteries during the 

cardiac cycle in young and old presumed healthy subjects; also the angle between 

the internal and common carotid artery was determined by means of a B-mode 

imagery. A more exhaustive study was undertaken by Forster et al (1985). In 

this study, a complete set of the common, internal and external arteries at various 

locations, the bifurcation angles and information on the tortuosity of the vessel is 

given in terms of mean values and standard deviations for a normal population. 

These data are valuable in constructing a three-dimensional model of the carotid 

bifurcation for both experimental and numerical studies.

Bifurcation geometries at other sites have been much less extensively studied 

than the carotid artery bifurcation. Casts of the human renal artery and the aortic 

arch are shown in Fig.3.4(a,b). It is important to emphasis that apart from the
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geometrical differences between the bifurcations at different sites, there are also 

rather large individual variations both in human and other mammalian species. 

Jones et al (1990) studied the geometry of and flow in the ilio-femoral bifurcations 

of eight mongrel dogs weighing from 15-25Kg. In this study, branching angles 

were measured from photographs; B-mode ultrasound images of the cross-section 

of the upstream parent and both downstream daughter vessels, and the origin of 

both vessels at the bifurcation were also photographed, as illustrated in Fig.3.5. 

All photographs were synchronised to the time of peak upstream pressure. From 

photographic prints, it was found that the parent to large daughter angle ranged 

from 7-46°, and the parent to smaller daughter angle from 5-50°. Diameters of 

the parent vessels varied from 2.3 to 4.6mm, and the ratio of the larger to smaller 

daughter vessel diameters from 1.47 to 2.37. These demonstrated that individual 

variations in branching angles and superficial geometry are significant. The detailed 

geometries shown in Fig.3.5 were adopted in the flow predictions described later in 

Chapter 6.

Fig. 3 .3 Idealised geometry of human carotid artery bifurcations.
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(From Jones et al, 1990)
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3.2.3 Geometric Effects On Flow In Bifurcations

The dependence of flow patterns and pressure on local arterial geometry has 

been examined by several authors. Four specific geometric parameters of the bifur-

cation were found to influence the detailed flow field. These variables, illustrated 

in Fig.3.6, are described below:

Flow

A 1
Qi

Fig. 3 .6  Geometric parameters of a bifurcation.

(1) At given downstream boundary conditions and given state of vaso-

constriction or vasodilation, the area ratios of daughter to parent vessels directly 

influence the flow partition between two branches which is known to have a sig-

nificant effect on the existence of flow separation in the branch vicinity (Richardson, 

1990), as well as the local pressure changes (Cho et al, 1985). Richardson proposed 

that for a given Reynolds number, there is a critical value of ^  given by:

Q
1 +  ^  - 1  = t t -

Q Re
(3.1)

where A is an empirical constant. Eqn.(3.1) serves as a demarcation between flows 

with and without separation.

(2 )0 i, 0 2. At a given branch flow rate ratio ^  and upstream Reynolds num-
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ber, pressure change coefficient y f  J in the parent vessel in the branch region 

rises with the increase of branch angle 0(0 =  0\ +  02) (Cho et al, 1985).

(3) Apex. Some bifurcations, such as the aorto-iliac, appear to have sharp 

apexes whereas others have more rounded ones. Greater apical sharpness is proba-

bly associated with less reflection of axial and periaxial streamlines into the saddle 

zone and the outer walls opposite the apex (Malcolm et al, 1979). In addition, an 

apex which is offset from the axis of the parent vessel induces considerable asym-

metry in the flow field and promotes increased secondary flows.

(4) Ru R2. Sharp curvatures of the outer walls may encourage boundary layer 

separation and cause large secondary velocities.

3.3  G R ID  G E N E R A T IO N  T E C H N IQ U E S

3.3 .1  Introduction

For the application to modelling of a bifurcation the grid generation prob-

lem is crucial, since the complex boundary shapes of the bifurcation have to be 

represented as accurately as possible, ensuring that no unnecessary errors are in-

troduced. Numerical grid generation has now become a fairly common tool for use 

in the numerical solution of partial differential equations on arbitrarily shaped re-

gions. Very substantial progress has been witnessed in this area in the past decade 

or so. A comprehensive survey of procedures and applications has been given by 

Thompson et al. (1982), and a number of conferences specifically in the area of 

numerical grid generation have been held (Thompson, 1982; Hauser, 1986). Recent 

general surveys have been given by Thompson (1984) and Eiseman and Eriebacher 

(1987).

With the introduction of boundary-fitted curvilinear coordinate systems gen-

erated to maintain coordinate lines coincident with the boundaries, finite difference
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codes can be written that are applicable to general configurations without the need 

of special procedures at the boundaries. However, this is achieved at the expense 

of making the computational domain more complicated due to the non-linear coor-

dinate transformation. Broadly speaking, numerical grid generation falls into two 

primary categories : algebraic methods and partial differential equation methods. 

A logic breakdown of these approaches is illustrated in Fig.3.7. Detailed discussion 

of these methods is given in the following sections.

special case

Fig. 3.7 L o g ic  b r e a k d o w n  o f  g r id  g e n e r a t io n  m e t h o d s .
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3 .3 .2  Algebraic M ethods

Algebraic mesh generation methods are those in which the coordinates are 

determined by interpolation among boundaries and/or intermediate surfaces. Al-

gebraic grid generation distinguishes itself from other grid generation methodolo-

gies by the ability to provide a direct functional description of the coordinate 

transformation between the computational and physical domains. The various in-

terpolation methods used in algebraic grid generation can be classified as : (a) 

uni-directional and (b) multi-directional.

Uni-directional interpolation means that the interpolation is in one curvilin-

ear coordinate direction only, therefore it is fundamentally between points. The 

simplest one is Lagrangian interpolation, which matches only function values. The 

Hermite method is another type of uni-directional interpolation, which is capa-

ble of matching both function and first derivative values. The more general uni-

directional construction is the multi-surface procedure. This procedure is con-

structed from an interpolation of a specified vector held followed by vector normal-

isation at each interpolation point in order to cause a desired telescopic collapse 

so that the boundaries are matched. The chief characteristic of the multi-surface 

procedure is the introduction of intermediate surfaces between the inner and the 

outer boundaries. The Hermite and Lagrangian interpolations are two special cases 

of the multi-surface procedure.

Multi-directional interpolation involves interpolation among functions defined 

along curves or surfaces, rather than among point values. The most general one is 

transfinite interpolation, which is generated by combining uni-directional interpo-

lation with Boolean sums. Transfinite interpolation matches the function at any 

number of points. It was introduced by Gordon and Thiel (1982) and has been 

used in several papers for both two-dimensional (Usab and Murman, 1983) and
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three-dimensional (Eriksson, 1982) grid generation.

One of the major advantages of algebraic methods is that the generation of a 

mesh is performed directly and is computationally very fast. Also these techniques 

allow the explicit control of grid point spacing. Unfortunately, since the methods 

do not possess inherent smoothing properties, discontinuities can arise in the mesh.

3 .3 .3  Partial Differential Equation M ethods

Partial differential equation systems are grid generation procedures in which 

the grids are the solution of a set of partial differential equations. These are fur-

ther split into sub-categories entitled hyperbolic, elliptic and parabolic methods to 

reflect the type of partial differential equation used to generate the grids.

When only one boundary is specified, hyperbolic partial differential equations 

may be used to obtain a grid by spatially marching from the given boundary. The 

inherent efficiency of the method is due to the use of a single sweep through physical 

space. In two dimensions, the primary system is given by:

xixv +  ViVr, =  0
<

xi y r j - xvVi =  V(( ,v)  

where U(£,r;) is the specified Jacobian which comes from the cell areas of the 

reference grid. The numerical solution of Eqn.(3.2) is relatively easy since march-

ing tridiagonal solutions can be used if an appropriate linearisation is carried out, 

which makes the hyperbolic grid generation faster than the elliptic system (dis-

cussed later) by one or two orders of magnitude. A fundamental development of 

the hyperbolic system was made by Starius (1977), and the application to general 

orthogonal grids was presented by Steger and Sorenson (1980). The hyperbolic 

methods, however, are applicable only to certain cases in which the inner bound-

ary is specified, but the surrounding outer boundary is arbitrary.

(3.2)
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Elliptic methods produce a grid by the solution of an elliptic partial differen-

tial equation. These methods have certain advantages as a mesh generator. First 

of all, elliptic methods treat the general case of a completely specified boundary 

rather than the case of only one specified boundary. Secondly, the basic solution of 

these methods is smooth in the sense of derivative continuity, and boundary slope 

discontinuities are not propagated into the field. Finally, some elliptic methods can 

guarantee a one-to-one mapping between the physical and computational domains.

The elliptic generation system is more popular than any other system due 

to the previously described merits and its flexible grid control property. Various 

different types of equations have been considered, as discussed in Thompson et al 

(1982), but the most widely used is the Poisson equation. In three dimensions the 

system of Poisson equations is:

£ xx  T £,yy T £zz  =  P ( £ i  Vi  0

Vxx T  Vyy T Vzz — Q{£i Vi C) (^‘^)

Cxx T Cyy T Czz =  P { C i  Vi  0

where P, Q and R are prescribed functions that are employed to control the grid. 

There are several ways to determine these control functions:

(a) Attraction to coordinate lines/points.

(b) Attraction to lines/points in space.

(c) Evaluation along a coordinate line.

(d) Evaluation on a coordinate surface.

(e) Evaluation from boundary point distribution.

(f) Iterative determination.

These approaches are discussed in detail in Thompson (1982).

To solve Eqn.(3.3) together with the control function equations, a number 

of numerical algorithms have been used, including point and line successive over-

relaxation (SOR), approximate factorisation and alternating direction implicit (ADI)
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schemes. The convergence can be accelerated by using multiple grid iteration 

(Forsey and Billing, 1988). For general configurations, point SOR is the most con-

venient to code and has been found to be rapid and dependable. Applications of 

elliptic generation systems have been made by many researchers (e.g. Thompson et 

al, 1974; Mastin and Thompson, 1978; Hauser and Taylor, 1986). In addition, an 

elliptic system can also be applied as a smoother to a grid generated by other means.

Parabolic mesh generation equations are usually derived from a suitable parabo-

lisation of elliptic equations. While attempting to retain some of the desirable 

properties of the elliptic approach, this method incorporates the single sweep pro-

cedure of the hyperbolic methods. In contrast to the latter methods, the outer 

boundary can be specified. In comparison with elliptic methods, the grid controls 

are generally weak and difficult. The parabolic approach has proved useful for a 

limited range of relatively simple geometries (Nakamura, 1982; Edwards, 1985).

The partial differential equation grid generation methods discussed above can 

be summarised as in Table 3.2. It should be stressed here that orthogonality is one 

of the most highly desirable properties in regard to mesh generation. An orthogonal 

coordinate system makes the application of boundary conditions more straightfor-

ward, enables much more efficient techniques to be adopted and permits a greater 

degree of vectorisation on supercomputers. On the other hand, severe departure 

from orthogonality will introduce truncation errors in difference expressions and 

thus reduce the accuracy of a numerical approximation. Orthogonal systems are 

generally applicable to any two-dimensional domain, but are difficult, or indeed 

impossible, to achieve in three dimensions. Therefore, it is of interest to generate 

grids which are nearly orthogonal, with the conditions for orthogonality being at 

least partially satisfied.
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^ M e th o d s
Properties''--^^

Hyperbolic Elliptic Parabolic

Numbers of
boundaries
specified

one all two

Continuity
no guarantee,
propagate
discontinuity

guarantee
no guarantee,
propagate
discontinuity

Orthogonality guarantee near
Orthogonality

near
Orthogonality

O ne-to-one
mapping no guarantee some

guarantee no guarantee

Solution
algorithm

no iteration, 
tridiagonal 

solution, 
fast

iteration 
SOR, ADI et al

slow

no iteration, 
tridiagonal 

solution, 
fast

Grid
control weakest strongest weaker

Table 3 .2  Summary of advantages and disadvantages of the three types of 

partial differential equation grid generation methods.

3 .3 .4  Special Techniques For Irregular Geom etries

In the above sections, the main approaches to the generation of structured 

meshes have been discussed. It is clear that structured meshes, whether derived 

from algebraic methods or partial differential equations, result in a set of curvilin-

ear coordinates. One way of viewing this is that, in two dimensions, the physical 

domain is mapped on to a rectangle in the computational domain, as shown in 

Fig.3.8. However, for realistic geometries, particularly for the three-dimensional 

bifurcations concerned here, it is very difficult to obtain a reasonable grid with 

the entire physical domain transferred to a single rectangular domain. Therefore, 

special techniques are required for gridding three-dimensional complex configura-

tions. Two methods are now popular for this purpose: (a) multi-block and (b) 

unstructured mesh generation.
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----------------- -- X

p h y s i c a l  d o m a i n  c o m p u t a t i o n a l  d o m a i n

Fig. 3 .8 Generation of a curvilinear coordinate system in 2D.

Fig. 3 .9  Block structure for an H (Cartesian) mesh topology.
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3 .3 .4 .1  M u lti-b lo ck  grids

The multi-block concept is to segment the physical domain into contiguous 

blocks, with grids being generated in each block (Fig.3.9). Thus, instead of utilis-

ing one global curvilinear coordinate system, several local curvilinear systems are 

constructed and connected together. This concept in mesh generation is very pow-

erful. The arrangement of blocks defines how the local curvilinear systems connect 

and the resulting connectivities between the local curvilinear systems define the 

grid topology. It is possible to construct a wide range of mesh topologies for any 

given configuration. In particular, it is possible to construct mesh topologies which 

are ideally suited for each component of the configuration, and different coordi-

nate systems are allowed in each block. This is an important aspect of the design 

and construction of high quality methods. Moreover, the multi-block concept is 

not restricted to any particular grid generation technique. The generation of grid 

points can be performed using either algebraic or elliptic partial differential equa-

tion methods.

One of the major concerns in generating multi-block grids is the treatment 

of grid points at block interfaces. It is important to state a necessary condition 

which block interfaces must satisfy, i.e., the grid points at the common edge of any 

two adjacent blocks must be continuous (see Fig.3.10). More continuity1 can also 

be enforced at the block interfaces, such as, (i) slope continuity and (ii) complete 

continuity. Slope continuity at block interfaces can be achieved directly by using 

either transfinite interpolation or an elliptic system with proper control functions. 

However, to achieve complete continuity at block interfaces, the position of grid 

points on boundaries must evolve as part of the solution procedure for interior mesh 

points. It is, therefore, not possible to solve for grid points on a block-by-block 

basis, but rather meshes in all blocks must be generated simultaneously.

1‘Continuity’ is used here in the sense of correspondence rather than mass conservation
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POINTS ON COMMON BOUNDARY 
ARE COINCIDENT

Fig. 3 .10  Point correspondence at block interface.

The multi-block approach is a very popular method of applying structured 

grids to complex geometrical shapes. It has been applied on a variety of complex 

three-dimensional geometries (e.g. Miki and Tagagi, 1984; Weatherill and Forsey, 

1985; Weatherill and Shaw, 1988). It has also been implemented in the latest 

version of FLOW3D (discussed in 2.5.2). Although the concept of multi-block 

mesh is attractive from a mesh generation view point, it is clear that additional 

complexities are introduced in the data handling and solution procedure for the 

mesh points. This added complexity is also carried over to the solution routine for 

the flow equations.

3 .3 .4 .2  Unstructured grids

An alternative approach to complex geometries is to divide the computational 

domain into an unstructured assembly of computational cells. The notable feature 

of an unstructured mesh is that the number of cells surrounding a typical interior 

node of the mesh is not constant. As shown in Fig.3.11, unstructured meshes are 

generally composed of triangles or arbitrary quadrilaterals in two dimensions (and 

tetrahedra or eight-node bricks in three dimensions). The techniques which are 

normally adopted to generate unstructured triangular meshes are either the Delau-

nay or the advancing front approaches, as discussed in detail by Peraire et al (1990).
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Fig. 3.11 Unstructured mesh (a) triangle mesh, (b) quadrilateral mesh.

The principal advantage of the unstructured mesh is that it provides a very 

powerful tool for discretising domains of complex shape, and naturally offers the 

possibility of incorporating adaptivity (discussed in the next section). However, 

such a mesh is poorly ordered and is therefore less amenable to the use of certain 

algorithms and vectorised computers. In addition, it requires considerably more 

computer time and storage, as well as much more involved data handling procedure 

than does the structured mesh.

3 .3 .5  A daptive Gridding

In various important physical phenomena, there is some distinctive attribute 

which is changing rapidly at some unpredictable locations in space and possibly 

in time as well. With fixed grids, such phenomena are often not adequately cap-

tured in numerical simulations. There are also cases in which the boundaries are 

not fixed, but are time dependent and move in response to influences of the flow 

field or solution. This is an important issue here since the arterial vessel wall is 

distensible during the cardiac cycle by the pressure and shear stress exerted on the 

wall by the blood. In these circumstances, there is a requirement for mesh gen-

eration techniques capable of moving or positioning points to resolve adequately
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the features of the physical field. This requirement has led to the development of 

adaptive mesh generation in which the mesh generator and flow algorithm interact.

From a simplistic viewpoint mesh adaptivity involves two distinct problems. 

One is to set up adaptivity criteria, i.e., to choose a feature of the flow field or solu-

tion to which mesh points should be concentrated. Another is a system of strategies 

employed to move or adapt the mesh. Adaptivity criteria are either based on an 

assessment of the error in the solution of the flow equations or are constructed 

to detect features of the flow field. These estimators are intimately connected to 

the flow equations to be solved. Hence, the choice of criteria is extensive. Once 

adaptivity criteria have been formulated, it is necessary to move points around the 

domain so as to achieve a better resolution of the flow and, in turn, reduce the 

error in the solution. There are three basic strategies that may be employed:

(1) redistribution of a fixed number of points,

(2) local refinement of a fixed set of points,

(3) local increase in algorithm order.

The development and application of adaptive grids have been surveyed by 

Eiseman and Eriebacher (1987). The above described adaptive grid schemes are 

dynamically coupled with the solution. For a problem with a merely moving bound-

ary, adaptive meshing is desirable but not necessary. For the problem of moving 

boundaries, then, a simpler treatment can be made. Instead of choosing an adap-

tivity criterion, equations for the movement of the coordinate system are required. 

The simplest procedure is to regenerate the coordinate system at each time step 

using the new boundary locations, which are either merely time dependent or func-

tions of parameters of the physical problem. The solution for the new coordinates 

at each time step thus is done separately from the physical solution at that step. 

Alternatively, the equations for the coordinate system can be added to the system 

of physical solution equations and the entire set of equations solved simultaneously
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at each time step. The incorporation of the moving grid into the solution algo-

rithm, in general, is the same regardless of the reason for grid movement. Several 

examples of grids following boundary motions are cited by Thompson et al (1982). 

Since the time derivative of the Jacobian for the coordinate transformation from 

physical to computational domain is introduced, more computations are necessary.

Having reviewed the geometry of arterial bifurcations and the relevant numer-

ical grid generation techniques, the remainder of the chapter will concentrate on 

the fluid dynamics aspect of the arterial bifurcation flow problem.

3.4  B L O O D  F L O W  IN  A R T E R IE S

3.4 .1  Introduction

Blood is pumped from the left ventricle into the circulatory system by the 

rhythmic contractions of the heart. This added blood creates a change in pressure 

and results in flow of blood along the aorta and throughout the circulatory system. 

At any given point the pressure and velocity change periodically, and hence the 

flow is pulsatile and associated with the propagation of a pressure wave. Fig.3.12 

shows typical pressure and flow velocities at various locations along the arterial 

system of a dog; the complicated waveforms and their changes are quite striking. 

The complete cardiovascular system is far too complicated to be amenable to a 

comprehensive analytical treatment, and the purpose of any analysis is always to 

investigate specific aspects of interest.

An extensive account of the historical development of ideas concerning the 

circulation of blood is given by Fishman and Richards (1964). The most remark-

able achievement in modern conception of the circulation of blood is attributed to 

William Harvey (1579-1657). In his book published in 1628, he formulated the 

principle of blood circulation based on quantitative measurements and
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Fig. 3 .12  Pressure and velocity waveforms in various arteries of a dog:

A -  Ascending aorta, B -  Thoracic aorta, C -  Abdominal aorta,

D -  Femoral artery, E -  Saphenous artery. (From McDonald, 1960)

extrapolations. Another landmark was the first measurement of blood pressure 

made by Hales (1733), who also developed quantitative measurements of the output 

of the heart, arterial dimensions and flow velocities. Although the work of Harvey 

and Hales was partly quantitative, it did not contain any computations which would 

be now regarded as fluid or solid mechanics. The first mathematical paper on blood 

flow was by Euler (1775). He developed the one-dimensional equations for inviscid 

flow of an incompressible fluid in an elastic tube. His equations included both the 

conservation of mass and the equations of motion. In addition, he postulated a 

nonlinear law relating the pressure at any point inside a blood vessel to its cross- 

sectional area. However, he was not able to develop any solution then, since the 

method of characteristics which is well suited to the solution of those equations was 

not known in Euler’s time. The velocity of propagation of the pulse wave in arteries
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was first derived by Young (1808), and was further developed and applied by many 

others. However, only recently have the details of arterial blood flow begun to 

attract attention. Starting from the work of Womersley (1955) and McDonald 

(1960), the pulse wave propagation calculations have been steadily improved and 

given more complete and precise understanding. In the last two decades or so, 

the numerical predictions of blood flow through bifurcations have been extensively 

developed by solving numerically the Navier-Stokes equations. A review of the 

development of these numerical methods and the recent numerical researches on 

this subject will be given in the sections below. Finally, experimental achievements 

in the measurement of blood flow in arteries will be covered in section 3.7.

3 .4 .2  Arterial W ave Propagation

In the earlier theoretical studies, two major methods were extensively used 

in the mathematical analysis of wave propagation in arterial blood flow. One is 

based on the linearised Navier-Stokes equations for incompressible flow, and the 

other on the method of characteristics.

In the first case, the principle assumptions are: (a) the mean flow velocities 

are small compared to the wave speed, (b) the strains in the arteries are small, (c) 

blood is a Newtonian incompressible fluid, (d) the convective acceleration terms of 

the Navier-Stokes equations may be neglected, and (e) the arterial wall behaviour 

is linear. Under these assumptions, the Navier-Stokes and continuity equations 

for one-dimensional flow can be linearised, the resulting equations being analogous 

to those for electric transmission lines. Pressure p and volume flow rate Q are 

analogous to voltage and current respectively.

— 1) n  I p  dQdx — +  a at
— Qv 4. iAÊz

d x  r  dp dt

where A represents the cross-sectional area, x the axial coordinate, and R the 

flow resistance per unit length of the artery; Gp approximates the leakage per unit

(3.4)
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length and results from outflow through small branches of the vessel. The lineari-

sation theory originated from the late 1950’s (e.g. McDonald, 1960), and has been 

developed and applied by many researchers.

In the second case, the flow is treated as quasi-one-dimensional but the non-

linear terms of the equations are retained. The basic equations for the method of 

characteristics are:

The continuity equation
dA d . A.
_  + _ (u /i) + V =  o

The momentum equation

du du 1 dp 
dt ^  dx p dx

and the third equation

A =  A (p ,z,t)

(3.5)

(3.6)

(3.7)

where A is the cross-sectional area, x the axial coordinate, u the average flow ve-

locity of blood, ip the seepage through the wall per unit length, and f represents 

the resultant of all longitudinal body and dissipative forces. In the method of 

characteristics, Eqns.(3.5) and (3.6) are written as a pair of ordinary differential 

equations along families of characteristics x(t) with slopes dx/dt =  u±c, where c is 

the local Young’s velocity, c =  \JhE/2rp. These equations are suitable for numeri-

cal integration by computer. Lambert (1958) was the first to apply this method to 

blood flow. A significant development of the method of characteristics was made 

by Anliker et al (1971), in which a major canine arterial pathway was modelled 

by a tapered elastic tube with branches simulated by a distributed leakage which 

depends on both pressure and flow; also the effects of viscosity were taken into 

account.

Many advantages are associated with the use of the linearised equations. Su-

perposition of partial solutions immediately yields periodic solutions in the form
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of Fourier series, and the analogy of the mathematical treatment with that of 

electric transmission line makes available the rich experience accumulated in that 

field. However, the assumptions required for linearisation are rather far reaching 

and may well introduce errors. The theory based on the nonlinear equations is 

extremely versatile, and non-uniformities of cross-sectional area, elastic properties 

of the blood vessel, or the effects of external forces introduce no additional diffi-

culties. One of the problems is that the calculations must be continued until a 

periodic state has been reached, which might make the calculations very lengthy, 

but it must be admitted that this can be easily overcome with the aid of present- 

day computers.

It can be seen from the above discussion that the two techniques — one based 

on linearisation of the equations and the other on the method of characteristics - 

complement each other. They are not only applicable to a segment of the arterial 

tree, but can also be applied, either separately or in combination, to the entire ar-

terial system. One of the best currently available approaches is that presented by 

Stettler et al (1981). This model was developed for the prediction of pressure and 

flow pulses propagating in the arterial system, based on the assumption that each 

arterial conduit could be represented by a combination of three types of segment. 

These types are (a) segments with no or only small side branches, (b) bifurcation 

segments, and (c) pathological segment, as shown in Fig.3.13. Along segments of 

the first, type, the pulse propagation was calculated by means of the method of 

characteristics and a first order integration. For the other two types the linearised 

theory was utilised. The standard case for the human arterial pathway extending 

from the heart to the foot, with eight major branches, was defined using published 

data and prescribing the ejection pattern from the heart. Therefore, this model 

permitted a more realistic simulation of bifurcations and stenoses than was possible 

previously.

82



Applications of both linear and nonlinear theories to characterise and inter-

pret the arterial system have been numerous (e.g. McDonald, 1960; Lighthill, 1975; 

Caro et al, 1978). Comparisons with experiments have shown that many of the 

characteristic features of the propagation of the pressure and flow waves in a partic-

ular arterial system can be explained either quantitatively or qualitatively by these 

theories. However, it should be born in mind that in these models, the flow was 

treated as one-dimensional. This implies that only spatial averages of the pressure 

and velocity at a given cross section are calculated. Therefore, detailed local flow 

information is not obtainable.

(c)

Fig. 3 .13  Models of arterial elements from which a conduit is formed: (a) seg-

ment with a continuous outflow (no or only small side branches), (b) bifurcation 

segment, (c) pathological segment.
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3 .4 .3  Flow A t Arterial Bifurcations

In the analysis of wave propagation in an arterial system, the local flow pat-

tern is not of specific interest. However, other physiological phenomena are strongly 

dependent on the local flow behaviour in the vicinity of geometric transitions. For 

example many studies have suggested that local fluid mechanical factors, such as 

the distribution of wall shear stress or pressure, play an important role in atheroscle-

rosis and thrombosis. This has led to a number of theoretical and experimental 

investigations of the local flow patterns in regions of bends, stenoses and bifurca-

tions.

Over the past decade, considerable progress has been made in numerical sim-

ulation of blood flow through arterial bifurcations. Some of the most important 

research is summarised in Table 3.3. In these studies the following assumptions are 

made: the blood is homogeneous, incompressible and Newtonian, and the flow is 

laminar, stationary and isothermal, the vessel wall being rigid.

Preliminary numerical studies were performed by O’Brien et al (1976, 1977) 

on two-dimensional unsteady flow through symmetric bifurcations using a vortic- 

ity stream function method. This algorithm has some attractive features and as 

discussed previously has been rather popular for two-dimensional simulations for 

some time. As was pointed out, the pressure makes no appearance, and, only two 

equations need to be solved to obtain the stream function and vorticity. However, 

the major shortcoming of the method is its inappropriateness for three-dimensional 

situations, for which a stream function does not exist. Thus, attention has turned 

to methods that use the so-called primitive variables, namely the velocity com-

ponents and pressure. These procedures were adopted in most of the research in 

Table 3.3, in which the flow patterns, velocities, pressures and wall shear stresses 

for steady and/or unsteady flow were computed using finite difference or finite
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Reference Geometry Type of Flow Numerical Methods

O’Brien et al 2-D Y-type Unsteady Vorticity Stream

(1976) Function

O’Brien & Ehrlich 2-D T-type Unsteady Vorticity Stream

(1977) Function

Liepsch & Moravec 2-D T-type Steady Finite Difference

(1982)

Perktold & Hilberit 2-D Carotid Unsteady Finite Element

(1986)

Rindt et al 2-D Carotid s&u Finite element

(1987)

Khodadadi et al 2-D T-type Unsteady Finite Difference

(1988)

Wille(1984) 3-D Symmetric Steady Finite Element

Dinnar et al 3-D T-type Unsteady Finite Difference

(1988)

Rindt et al 3-D Carotid Steady Finite Element

(1989)

Perktold & Peter 3-D T-type Unsteady Finite Element

(1990)

Perktold et al 3-D Carotid Unsteady Finite Element

(1990)

Perktold et al 3-D Carotid Unsteady Finite Element

(1991)

Table 3.3 Summary of numerical research on blood flow in bifurcations.
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element techniques. These investigations have served to identify regions of separa-

tion and vortex motion and have provided numerical estimates of the distributions 

of wall shear stress and pressure which may qualitatively represent those found in 

vivo.

It should be noted that most of the previous numerical simulations are re-

stricted to two dimensions. Three-dimensional modelling is virtually essential, 

due to the absence of non-negligible three-dimensional phenomena, such as sec-

ondary flows, in a two-dimensional case. Only in the recent few years, have three- 

dimensional simulations become possible. As an initial step, Wille (1984) developed 

a three-dimensional mathematical model of steady flow in a symmetrical bifurca-

tion by using the finite element method. Nevertheless, this method required too 

long a computational time, thus prohibiting for the time being further simulation 

development. Another computation scheme based on finite difference methods was 

presented by Dinnar et al (1988). In an application to a 90-degree T-bifurcation 

of rectangular cross-section, the suggested scheme proved to be extremely efficient 

compared with the finite element method. This method, however, is confined to 

rather simple geometries. The modelling of pulsatile flow in an asymmetric three- 

dimensional bifurcation with a complex geometry has been rarely performed. This 

is mainly because the complexity of the geometry combined with the pulsatile na-

ture of the flow not only creates difficulties in generating efficiently an appropriate 

mesh but also results in a large demand in computer storage and time. Only with 

a highly vectorised fluid dynamics code and a dedicated computer can the solu-

tion of such a problem become practicable. However, the very great computational 

power have permitted finite element methods to be used again. In the last couple 

of years, three-dimensional simulations have been performed by Rindt et al (1989) 

for steady flow in a carotid bifurcation (using the penalty function finite element 

method), Perktold and Peter (1990) for pulsatile flow in an arterial T-bifurcation, 

and Perktold and Resch (1990) for pulsatile flow in a human carotid bifurcation,
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by using the newly developed pressure correction finite element method with su-

percomputers. To the author’s knowledge, no bifurcation flow simulation has been 

carried out with the non-Newtonian character of the blood and the vessel wall 

distensibility taken into account.

3.5  R H E O L O G IC A L  P R O P E R T IE S  OF B L O O D

3.5 .1  Introduction

The rheological properties of blood and its constituents play an important role 

in the physiology of the blood circulation. Extensive work has been done on deter-

mination of the mechanical properties of blood and its role in the cardiovascular 

system of human and animals. Yet even now, with the most modern sophisticated 

equipment and methods available, there is still much that is not known about this 

extremely complicated fluid.

3 .5 .2  A n  Outline of B lood Rheology

Human blood is a suspension of a variety of cells in an aqueous solution called 

plasma, which contains about 90% water by weight, 7% plasma protein, 1% in- 

oraganic substances, and 1% other organic substances. The cellular contents are 

essentially all red cells (erythrocytes), with white cells of various categories (leuko-

cytes) and platelets making up less than 3% of the total cellular volume. The red 

cells are small, numbering about 5 million/mm3, and they normally occupy about 

45% of the blood volume. Human red cells have a biconcave discoid shape at rest 

with a diameter of 7.6 fim (Evens and Fung, 1972), but they are flexible enough 

to pass easily through capillaries of about one-half this dimension. Other cells 

(white cells and platelets) are normally not numerous enough to affect the fluid 

dynamics behaviour of blood, but platelets play a significant role in the formation 

of blood clots, as well as being involved in the later stages of the development of
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atherosclerosis.

The mechanical properties of blood are determined by those of plasma, the 

rheological properties of the red cells, and the distribution and interaction of 

individual cells in the circulation. Plasma is a pale yellow transparent fluid, 

and is incompressible. The density of plasma is 1.03 x 103Kg/m3 and that of 

red cells 1.10 x 103Kg/m3; while whole blood has a density between 1.05 and

1.06 x 103Kg/m3. Normal plasma behaves like a homogeneous Newtonian fluid 

with viscosity of 0.0012 — 0.0016 Kg/{ms) at body temperature (37°C) (Chien et 

al, 1966). Its viscosity varies with temperature in the same way as does that of wa-

ter. Whole blood however can not be assumed as Newtonian, due to the presence 

of suspended cells. The experimental results in Fig.3.14 (Whitmore, 1968), which 

are based on several studies with human blood, show the variation of the apparent 

viscosity with rate of shear. It is found that the non-Newtonian behaviour be-

comes insignificant when the shear rate is greater than 10005'- 1, and the apparent 

viscosity approaches an asymptotic value (4 x 10~3Kg/ms). However, as the shear 

rate decreases the apparent viscosity increases slowly, until at a shear rate less than 

1 S'-1 it rises extremely steeply.

The viscosity of blood also depends strongly on the volumetric fraction of red 

cells (hematocrit), as shown in Fig.3.15. At hematocrit up to about 12% suspen-

sions of red cells in plasma behave like a Newtonian fluid at all shear rates, although 

they have a higher viscosity than plasma. As the hematocrit increases, not only 

does the viscosity of the suspensions increase, but also non-Newtonian behaviour 

is revealed.

As outlined in the foregoing, blood is a very complex fluid. Its viscosity varies 

with shear rates, hematocrit, as well as temperature, vessel diameter and disease 

state if any. In large blood vessels, it is reasonable to consider blood as a homo-
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geneous incompressible fluid. It is universally agreed that at very high shear rate 

(>  1000S'-1 ) blood can be assumed as Newtonian, but at low shear rate the vis-

cosity of blood decreases with the increase of shear rate. Actually in large arteries 

such high shear rates occur only during a relatively short part of the cycle period, 

and in addition, predominantly close to the wall. Consequently, while for conve-

nience blood has been assumed to be Newtonian, it is more valid to accept the 

converse postulation that blood behaves comprehensively as a non-Newtonian 

fluid, and only for a part of the time period and in a part of flow cross-section area 

as a Newtonian fluid (Rodkiewicz et al, 1990). Thus, an appropriate constitutive 

equation for the viscous behaviour of whole blood is necessary for a realistic mod-

elling of blood flow in large arteries. Various proposed models and their validity 

will be discussed in the next section.

Fig. 3 .14  Variation of apparent viscosity of human blood

with rate of shear. (From Whitmore, 1968)
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Fig. 3 .15  Relationship between viscosity and rate of shear for human blood cell

suspended in their own anticoagulated plasma at 25°C for various hematocrit. 

(From Brooks et al, 1970)

3 .5 .3  The Constitutive Equation

As was described in the last section, the behaviour of blood is essentially 

non-Newtonian, its viscosity decreasing with an increase in the shear rate. This 

behaviour is typical of a pseudoplastic fluid. Moreover, it was observed under static 

loading conditions that whole blood exhibits a yield stress, i.e., a certain minimum 

force is necessary in order to initiate flow (Cokelet et al, 1963). This suggests a 

Bingham plastic behaviour. However, it should be pointed out that the yield stress 

for blood is extremely small, only of the order of 0.05 dyn / cm2 (0.005N/ m2) .

Several functional forms for constitutive equations have been used to model 

the non-Newtonian behaviour of blood, such as the general power law, Bingham 

model, Casson model, biviscosity model, and Walburn and Schneck model.
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(a) Power law

A general power law can be expressed in the form :

T =  m in (3.8)

where r : shear stress 

7 : shear rate 

m : consistency index 

ri : non-Newtonian index.

Parameters m and n are assumed to be constant for a given hematocrit and a given 

chemical composition. To allow for the presence of a yield stress, the power law 

equation can easily be modified:

T =  Ty +  m^n

where ry is the yield stress.

(3.9)

(b) Bingham model

In this case the relation between shear stress and shear rate is given by:

r =  Ty ~ V i  M > Ty<
7 =  0 |T| < Ty

where 7 is a constant. This relationship is linear, the line 

origin.

(3.10)

not passing through the

(c) Casson model

This model attempts to describe both the yield stress property of Bingham 

plastic fluid and the pseudoplastic behaviour, as shown in Fig.3.16. The analytical 

relation for Casson’s fluid has the form:

y ft  =  \fh +  v V l  M > t v
V (3.11)

7 =  0 |t | < Ty
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CASSON FLUID

Fig. 3 .16  Rheogram for different types of flow behaviour, assuming constant 

pressure and temperature.

It was derived for pigment-oil suspension of printing ink (Casson, 1959). Eqn.(3.11) 

can be written in the following way:

T =  ( T y  ~  V 2i )  +  M > t „

7 =  0 \t \ <Ty

The first part is a Bingham’s fluid behaviour, the second part has a power law 

relation between shear stress and shear rate. It is a special case of a general power 

law with a yield stress.

(d) Biviscosity model

This is a modified Bingham model developed for modelling the pulsatile flow 

behaviour for slurries (Nakamura and Sawada, 1987). The constitutive equation of
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the biviscosity model is written as follows:

Tij —  2([Ib  H-  Ty's/2'K ) €>ij 7T ^  7Tc
<

Tij =  2 ( ¡lB +  T y V 2 T c )e i3 7T <  7TC

where : (i,j) component of the deviatoric stress tensor 

&ij : (i,j) component of the deformation rate tensor 

He  • plastic viscosity

7T . 7T —

7rc : a constant, which is chosen such as to satisfy the relation

HByfZnc <  1.0.

The difference between Bingham model and biviscosity models is that when 

the velocity gradient tends to zero, the apparent viscosity coefficient tends to be 

infinite in a Bingham, but has a finite value in a biviscosity model.

(e) Walburn and Schneck model

This is a modified general power law to account for various factors that would 

influence blood flow behaviour. By performing a multiple regression analysis on 

the viscometric data obtained from anticoagulated blood samples, Walburn and 

Schneck (1976) found an empirical constitutive equation for whole blood which 

depends upon shear rate, hematocrit, and total protein minus albumin (TPMA).

r =  C lec*Hlec^TPMAlH% l- c*H (3.14)

where C\ : constant, C\ = 0.00797Pa • s -1 

C2 ■ constant, C2 =  0.0608 

C3 : constant, C3 =  0.00499 

C\ : constant, C4 =  14585 1/Kg 

H : hematocrit (%)

TPMA : the total protein minus albumin (g/1)

(3.13)
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Among the five rheological models of blood, Casson’s equation has been the 

most popular one in the past. Many investigators (e.g. Merrill et al, 1965 and 

1967; Chien et al, 1965) have used this equation with a reasonable degree of suc-

cess. Casson model is valid for steady flow and simple problems in which the strain 

rate tensor can be calculated in prior. Nevertheless, it is well known that the form 

of basic equation of Casson model is changed very much by the stress distribution 

in a fluid, and the shear stress can not be written explicitly for very low shear 

rates. So, efforts have to be made to find a more appropriate form especially for 

the low shear rate region. The biviscosity model is one of this type, in which the 

shear stress can be written explicitly. It was demonstrated that at a mean shear 

rates of about 20 —  150 S-1 , the calculated velocity profiles based on the bivis-

cosity model agree with the measured one very well (Nakamura and Sawada, 1988).

However, in either Casson or biviscosity model, a yield stress exists. It should 

be pointed out that the yield stress for whole blood has been observed and mea-

sured only under static loading conditions. This behaviour is mainly attributed to 

the interactions between the protein fibrinogen and the erythrocytes. Doubts have 

been raised regarding the existence of the yield stress in dynamic situations. That 

is, although fluid velocities and velocity gradients pass routinely through zero in an 

oscillating flow, there is probably not enough time for static phenomena to appear. 

In addition to this, as mentioned earlier, the yield stress for blood is very small and 

virtually constant. Thus, on balance a more appropriate form of the constitutive 

equation would be the general power law.

Based on a power law functional form containing two parameters, a consis-

tency index and a non-Newtonian index, the Walburn and Schneck model has been 

developed. Instead of having only one independent variable — shear rate, the W 

and S model includes two additional independent variables, namely, hematocrit 

and TPMA. Application to the pulsatile flow in a conduit has shown that results
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based on the W and S model are not only in conformity with some experimental 

results, but are also closer to the actual situation as compared with the other mod-

els. Nevertheless, it should be stressed that this model may not be valid in some 

parts of the flow held where the shear rates are very high, because it was developed 

at the low shear rate experimental facility. Therefore, further improvement in the 

constitutive equations of blood is still needed.

3 .5 .4  The Effects of N on—Newtonian Characteristics on Bifurcation  

Flows

In most of the previous studies pure Newtonian behaviour of blood was as-

sumed, since the non-Newtonian behaviour of blood has been regarded widely as a 

‘second-order’ effect on arterial bifurcation flow. The non-Newtonian effects have 

been much less extensively studied than the other factors. Currently, however, 

attention is being paid to them, and they may have some significance in the parts 

of the bifurcation of greatest interest.

Moravec and Liepsch (1983) studied the differences in flow behaviour of New-

tonian and non-Newtonian fluids in a simplified three-dimensional model of the 

human renal artery bifurcation under both steady and unsteady states. In this 

study, aqueous glycerine was used as the Newtonian fluid and the aqueous solution 

of polyacrylamide as the non-Newtonian. The velocity distribution proximal and 

distal to (i.e. upstream and downstream of) the bifurcations was measured using 

a Laser-Doppler anemometer. It was found that differences between the flow 

patterns in Newtonian and non-Newtonian fluids occurred mainly in zones of flow 

separation and reverse flow; and for vessel diameters exceeding 1mm, the influence 

of non-Newtonian behaviour upon velocity distributions distal to bifurcations was 

significant.
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Non-Newtonian effects on arterial bifurcation flows have also been investi-

gated by Ku and Liepsch (1986). The model used for this study was a simple 

90° T-bifurcation with rigid and elastic walls. Aqueous glycerine solution and a 

viscoelastic separan mixture were used as Newtonian and non-Newtonian fluids 

respectively. Flow visualisation studies were done with a sheet of laser light in 

the plane of the bifurcation; and the velocity distribution was measured for both 

steady and pulsatile flows with a LDA. This study further revealed the substan-

tial differences in the flow behaviour of the Newtonain and non-Newtonian fluids, 

especially behind the bifurcation in the main tube, where secondary flow and flow 

separation started (see Fig.3.17). What is more, another separation zone at the 

flow divider was observed when using a non-Newtonian fluid in an elastic silicone 

rubber model, as shown in Fig.3.18. All these results tend to indicate that non- 

Newtonian flow behaviour cannot be neglected, even in large blood vessels. It is 

concluded, therefore, that it is necessary to accommodate this factor in numerical 

studies.
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--------------ACQUEOUS G L Y CE RO L  SOLUTION -----------ACQU EO US  SEPARAN M IX TU RE

r) = 13.84 mPas q = 14.1 mPas

Fig. 3 .17  Comparison of a Newtonian and a viscoelastic fluid at pulsatile flow 

over a whole cycle at 2.5mm behind a 90° T—junction of a glass model with rounded

corners. The entrance Reynolds number 250 and the flow rate ratio Q2/Q0 =  0.5. 

(From Liepsch, 1986)

Fig. 3 .18  Comparison of a Newtonian and a viscoelastic fluid at pulsatile flow 

over a whole cycle at 2.5mm behind a 90° T-junction of an elastic silicon rubber 

model with sharp corners. The flow conditions the same as those in Fig.3.17.

(From Liepsch, 1986)
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3.6 T H E  M E C H A N IC A L  P R O P E R T IE S  OF B L O O D  V E SSE L S

3 .6 .1  Introduction

For the purpose of blood flow analysis, it is essential to know the elasticity2 

and viscoelasticity3 of the blood vessels, as well as the interfacial conditions between 

the blood and the blood vessel. The mechanical properties of blood vessels have 

been extensively studied for many years. Experimental results have demonstrated 

the nonlinearity of the stress-strain relationship and the existence of viscoelastic 

time-dependent behaviour, such as hysteresis, creep and stress relaxation. These 

mechanical properties must have a structural basis. In this section, the structure 

of the blood vessel and its correlation with the mechanical properties are discussed; 

various mathematical expressions of the stress-strain relationship are summarised 

and assessed. The effects of wall distensibility on arterial bifurcation flows are also 

addressed.

3 .6 .2  The Structure and Com position of the B lood Vessel W all

Blood vessels are viscoelastic inhomogeneous multi-layered tissues. They are 

mainly composed of four types of tissue in various proportions: endothelial lin-

ing, elastin and collagen fibres, and smooth muscles (as illustrated in Fig.3.19). 

The endothelial lining is the innermost layer of the vessel wall that comes in con-

tact with the flowing blood. It provides a smooth surface and offers a selective 

permeability to various substances carried in the blood stream but is too soft to 

contribute to the elastic properties of the wall. Hence, the mechanical properties 

of this monocell layer can be omitted from the discussion on overall elastic per-

2Elasticity: A reversible stress/strain behaviour.

3Viscoelasticity: Having both viscous and elastic properties.
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formance. Elastin fibres are protein substances, rubbery in constitution and very 

extensible. In stretching of up to about 60% their original length the elastic fibres 

follow Hooke’s law. However, for extensions beyond this value they will become 

highly nonlinear. The range of Young’s modulus of the elastin fibres is 3 x 105 to 

6 x 105N/m2. Collagen fibres are also protein substances, but they are much stiffer 

having an elastic modulus of the order of 3 x 105 to 1 x 107N/m2. The behaviour 

of collagen is non-Hookean, and exhibits some plastic deformation. The collagen 

fibres are arranged in the wall with a degree of slackness so that they do not con-

tribute to the elastic behaviour until some stretching has taken place. It can be 

concluded that at small displacement of the vessel wall the elastin plays a major 

role, while the collagen fibres do not interfere. When this displacement becomes 

large the performance of the wall is dominated by the collagen fibre behaviour. The 

primary function of the muscles is to provide active tension by contraction under 

physiological control and thereby change the diameter of the vessel; their elastic 

modulus varies from 6 x 103iV/m2 in the passive state to 5 x 107iV/m2 in the active 

state.

INTIMA

MEDIA

ADVENTITIA

Endothelium 
Basal Membrane

Connective Tissue

Internal Elastic 
Membrane

Smooth Muscle 
Cells

Autonomic Nerves

Connective Tissue

Fig. 3 .19  Schematic illustration of the structure of arterial wall.
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These components are arranged in three concentric layers, namely, the intirna, 

the media and the adventitia (see Fig.3.19). The intima consists of a single layer 

of endothelium with a thin layer of elastin and collagen fibres. The media, which 

forms the large part of the vessel, consists of tight helix fibres with the smooth 

muscle cells lying between them. The mechanical properties of the wall are deter-

mined mainly by the connective tissue and the smooth muscle of the media. The 

adventitia consists of elastin and collagen fibres that merge with the surrounding 

tissues. The adventitia and the outer part of the media of large arteries contain 

small blood vessels (vasa Vasorum), lymphatics and nerves.

The forces which deform the elastic walls of arteries include the pressure and 

shear stress exerted by the blood, the tension developed by the wall smooth muscle 

and tethering imposed by surrounding tissue. The mechanical properties of the 

constituents vary with many factors, but mainly with age (Abramson, 1962).

3 .6 .3  M athem atical Representations of the Stress-Strain Relationship

A proper mathematical description of the mechanical behaviour of the arte-

rial wall is essential to the investigation of their effects on arterial flow. A large 

variety of mathematical expressions has been derived with various assumptions of 

arterial wall behaviour, such as, membrane, thick shell, elastic, viscoelastic, linear 

and nonlinear. These various descriptions can also be classified as uniaxial, biaxial 

and triaxial models according to the number of modes of wall motion defined in 

the expression. If a uniaxial model is postulated, the wall motion will usually be 

in the radial rather than the longitudinal direction, because the tethering inhibits 

longitudinal wall motions more than radial movement. For this reason the mechan-

ical properties of arteries are commonly defined in terms of a distensibility, which 

is the fractional change of luminal cross-sectional area A divided by the distending
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pressure.

D
1 /  dA'

(3.15)
A \ dp )

The Young’s modulus for circumferential stretch is calculated from the equation

A pi 2ded 2(l -  a2) 
A  de d 2 -  d 2

(3.16)

where A pi is the change in internal pressure of the vessel, A de is the corresponding 

change in the external vessel diameter de, di is the internal diameter, and a is the 

Poisson’s ratio known to have the value of 0.5. If the vessel is assumed to be thin- 

walled, its wall thickness h =  0.5 x (de — di) is small compared with di, and di and 

de are approximately equal. In these circumstances, Eqn.(3.16) can be reduced to

2A d _  d ( l - a 2) 
dAp Eh

By substituting Eqn.(3.15) into Eqn.(3.17) and note that

1 dA 2dAd 2A d
~A~dp =  d2Ap =  JKp 3̂‘ 18^

In the case of a material for which er2 is negligible compared with 1, Eqn.(3.16) is 

approximately equivalent to

D E{h/d)

These equations have been extensively applied in both linear and nonlinear theo-

ries of arterial wave propagation (McDonald, 1960; Gordon and Scala, 1970). For 

the investigation of blood flow in a three-dimensional arterial bifurcation segment, 

however, such a uniaxial elastic model is not adequate.

The wall motion of blood vessels is not one-dimensional. It has been found 

that when subjected to physiological loads an arterial segment deforms circumfer-

entially by 2-15%; when an artery is excised it shortens by up to 60%. However, 

during the heartbeat the longitudinal deformation is small. Various models used 

to describe the biaxial and triaxial deformations of an arterial segment may be
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classified as: small strain analysis4, incremental analysis5, and finite deformation 

analysis6.

In the small strain and incremental analysis the stress components are directly 

expressed as a function of strains. A different approach based on a strain-energy 

function is used for finite nonlinear elastic deformation analysis. Although a large 

variety of forms of the strain energy functions have been postulated, there are es-

sentially only two schools of thought: one uses polynomials (Patel and Vaishnav, 

1972; Wesley, 1975), while the other uses exponential functions (Ayorinde et al, 

1975; Demiray, 1972; Fung, 1973, 1975, 1979). In the two-dimensional (circumfer-

ential and longitudinal) case the strain energy function pQW l2) is a function of the 

strains Egg and Ezz. A form of p0W G) advocated by the polynomial hypothesis is

p0W {2) =  Aa2 +  Bab +  Cb2 +  Da3 +  Ea2b +  Fab2 +  Gb3 (3.20)

where a =  Egg, b =  Ezz, and A, B, ..., G are material constants. The seven 

constants form shown in Eqn.(3.20) is the simplest polynomial function for the 

nonlinear theory. If the fourth degree terms are introduced the number of con-

stants increases to 12. Patel and Vaishnav (1972) have shown that the accuracy of 

the function is not much improved by the inclusion of the fourth degree terms.

The form of exponential function preferred by most authors adopting the sec-

ond approach is the following:

p0W W  =  £ exp[a 1 (Egg2 -Egg*2) +  a2 (Ezz2 - E zz**)

+ 2a4{EggEzz — Egg*Ezz*)\ (3.21)

where C (N/m2) and a4, a2, 03, a4 (dimensionless) are material constants, and

4Assume the material is isotropic and linearly elastic.

5Based on the use of the linear small strain theory to describe nonlinear stress-strain behaviour.
6 Assume the work done in deforming an elastic is stored as strain energy which is then ex-

pressed as a function of strains only.
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Egg*, Ezz* are strains corresponding to a pair of arbitrarily selected stresses S$$,

Sz

Both these functions can be used. If the seven-constant polynomial form is 

chosen, by utilising the equilibrium equations for a thin-walled cylinder of mid-

wall radius r, and wall thickness h, subjected to an inner wall pressure p and a 

longitudinal force f , together with the assumption of incompressibility7, the fol-

lowing expressions can be derived (for detail see Appendix B):

P =  J [6-Da3 +  (4A +  3D +  4Eb)a2 +  2{A +  E b + B b  +  Fb2)a +  Bb + Fb2)]

< f  =  2irrh [6Gb3 +  (4(7 +  3G +  4Fa)b2 +  2(C +  Ba +  Fa +  Ea2)b (3.22)

+Ba +  Ea2 -  §))'

The Green’s strains are defined as:

(3.23)

where r, 1 are deformed mid-wall radius and length, and R , L are undeformed mid-

wall radius and length. Once the material constants are obtained, Eqns.(3.22-3.23) 

can be used to predict the stresses and the principal strains for any combination 

of pressure and longitudinal force.

These models based on either polynomial or exponential functions have been 

applied to the study of the mechanical properties of various subjects, such as, 

the dog aorta (Patel and Vaishnav, 1972), rabbit arteries (Fung et al, 1979), and 

arterial prostheses (How and Clarke, 1984). For the exponential strain energy 

function, the constants C, oq, a2, a4 are determined by a modified Marquart’s

7Volume of the material does not change under all states of stress.
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nonlinear least squares algorithm — by minimising the sum of the squares of the 

differences between the experimental and theoretical data. For the polynomial, 

the ordinary least square procedure is sufficient. These studies have shown that 

the third order polynomial function is adequate to give a satisfactory fit to the 

experimental data; it is simpler but can be applied to a wider range of materials. 

The exponential form has the overall smaller coefficients of variations, hence it is 

preferred if one wishes to study the systematic changes in the arterial segment due 

to some other factors.

3 .6 .4  The Effects of W all Distensibility on Bifurcation Flow

Among the four major factors which influence the flow fields at arterial bifur-

cations, distensibility of the arterial wall has been regarded as a ‘second- order’ 

effect in most of the previous work. Even so, it is well known that distensibility is 

an important factor in pulsed-wave propagation. Some recent experimental studies 

have shown the differences between rigid and elastic wall behaviour during pulsatile 

flow. Liepsch (1985) investigated the pulsatile flow in a straight thin-walled elastic 

tube both theoretically and experimentally. Comparisons of axial velocity profiles 

in a rigid and an elastic tube showed that the maximum velocity was reduced in 

the elastic model. Investigations on bifurcations have been performed by Liepsch 

et al (1983, 1988) for human renal arteries, and Ku and Liepsch (1986) for a 90 

degree T-junction model. It was observed that there were obvious reductions in 

negative velocities and the size of secondary flow region in the elastic models; and 

the shear stresses were reduced by up to 25% depending on the elasticity of the 

wall. All these demonstrated the fact that wall elasticity may well be an important 

factor in the understanding of bifurcation flows.
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3 .7  E X P E R IM E N T A L  T E C H N IQ U E S  F O R  M E A S U R E M E N T  OF

B L O O D  F L O W  IN  A R T E R IE S

3 .7 .1  Introduction

The study of blood flow through arterial bifurcations has two primary pur-

poses. One is to give a quantitative description of local flow and velocity distri-

bution. The other, of great potential importance for the understanding of arterial 

disease, is to obtain detailed distribution of wall shear stress, which is relevant 

to the early onset of atherosclerosis. In this section, experimental techniques cur-

rently used for such purposes are surveyed. These include optical instruments 

such as Laser-Doppler anemometry and Doppler ultrasound techniques for veloc-

ity measurement. Devices for measuring wall shear stress in models and difficulties 

in measuring it accurately in vivo are also discussed.

3 .7 .2  Velocity M easurem ent

Many measurement systems have been developed to obtain information on 

flow and velocity distribution. For a long time mechanical probes have provided 

the principal means of measuring fluid velocity. For instance, total-pressure probes 

in conjunction with static-probes have been used in measuring mean velocity and 

hot-wire or hot-film devices in measuring instantaneous velocity. Although hot-

wire and hot-film anemometry has provided much quantitative information on 

fluid velocity, its application has been substantially limited to constant property 

flows of low temperature, low speed and low turbulence intensity, outside regions 

of recirculation. New measuring techniques — ultrasound and optical techniques 

— can overcome all of these limitations, because unlike mechanical probes, they 

do not disturb the flow (this quality is described in engineering terms as ‘non- 

invasive’ ). An optical method — Laser-Doppler anemometry (LDA) —  has found 

a wide application in measuring velocity profiles in arteries both in vitro and in
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model studies. Various Doppler Ultrasound techniques have also been developed 

and extensively applied to in vivo studies and clinical diagnoses.

In addition to velocity measurement techniques, flow visualisation methods 

have also played an important role in obtaining a clear picture of the flow field of 

interest. The methods normally used are: colouring streamlines, adding particles 

and hydrogen bubble techniques. A summary of experimental techniques used cur-

rently for the study of flow patterns in bifurcations is given in Table 3.4.

Flow Visualisation Velocity Measurement

Methods Authors and 

References

Methods Authors and 

References

Hydrogen

Bubble

Bharadvaj et al (1982a) 

Ku and Giddens (1983)

LDA Khodadadi et al (1988) 

Ku and Giddens (1987) 

Bharadvaj et al (1982b)

Colouring

Streamline

Stehbens (1975) 

Malcolm and Roach 

(1979)

Doppler

Ultrasound

Ku et al (1985) 

Reneman et al (1986) 

Jones et a l (1991)

Adding

Particles

Feuerstein et al 

(1976)

Karino et al 

(1979)

Hot-film

Hot-wire

Anemometer

Schultz et al (1969) 

Olson (1971) 

Nerem et al (1974)

Table 3 .4  Summary of experimental techniques for study of flow

patterns in arteries.
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3 .7 .2 .1  Doppler ultrasound techniques

Doppler ultrasound technique has shown fundamental application both in re-

search animals and for diagnosis in human subjects (Reneman, 1974; Taylor et al, 

1988). Its main advantages are as following:

(a) It is non-invasive with no surgery, no catheterisation, and little or no 

trauma to disturb the system being measured.

(b) It provides relatively accurate in vivo measurement of blood pressure, 

blood flow velocity and dynamic changes of vessel diameter.

(c) It enables diagnosis of arterial occlusive disease.

( d) It is relatively inexpensive and reliable, and measurements are repeatable.

3 .7 .2 .1 .1  Principles of Doppler ultrasound

Historically, the Doppler effect was first observed by Christian Doppler (1843). 

He found that the apparent frequency of a constant frequency source is dependent 

on the motion of both the source and the receiver. If the effective path length is 

being reduced with time, the received frequency is greater than that of the source, 

and vice versa.

The use of transcutaneous Doppler ultrasound for the measurement of blood 

velocity was first reported by Satomura (1959) and subsequently by many others 

(e.g. Baker et al, 1964; Stegall et al, 1966). The principle on which a Doppler 

ultrasound system is based is shown in Fig.3.20. In its simplest form a pencil probe 

which houses co-planar emitting and receiving crystals is used. The transmitter 

crystal T sends a beam of ultrasound which is backscattered in all directions by 

the blood cells moving within the vessel. The receiver crystal R picks up part of 

this scattered ultrasonic power with a shift in frequency. This effect, called the 

Doppler shift A / ,  is given by:
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A /  = 2 fu  cos iß
(3.24)

Where /  is the transmitter frequency, u is the velocity of blood cells, and c is the 

velocity of sound in blood. When ultrasound is incident on a vessel a range of 

Doppler shift frequencies is generated corresponding to the velocity profile across 

the vessel. To measure u from this spectrum, specially designed Doppler spectrum 

processors are used.

3 .7 .2 .1 .2  D evelopm ent and applications of Doppler ultrasound

The first Doppler technique used to detect blood velocity was continuous wave 

(CW) ultrasound, which is still widely used in the clinical environment. In a CW 

Doppler the transmitting and receiving crystals are mounted side by side on a 

probe placed on the subject’s skin (as shown in Fig.3.20), and the transmission 

and reception of ultrasound signals are continuous. Because the target volume is 

large and blood cells travel at different velocities within the blood vessel, a spec-

trum of Doppler frequencies is produced. The problem is then to detect u from 

this spectrum. Three techniques have been used for this purpose. These are the 

zero crossing detector, the average frequency meter and the spectrum analyser.

Fig. 3 .20  Principle of Doppler ultrasound.

108



The first application of Doppler ultrasound techniques in the evaluation of ar-

terial disease was performed by Strandness et al (1967). The principle was simple: 

the course of an artery was traced along the limb whilst the operator listened for 

sudden changes in the characteristics of the signal. It was soon found that com-

pression of the limb produced changes in the distal flow patterns, and that these 

changes were different in normal and in occluded vessels (Rittenhouse and Brock- 

enbrough, 1969). The next step was the discovery that pressures changes in the 

leg (measured with a Doppler detector in conjunction with a sphyg momanometer) 

seems to correlate with the level of disease (Lewis et al, 1972). They observed 

that the blood pressure at the ankle did not alter greatly following exercise in a 

healthy state, but in disease it fell substantially (up to 50% of the resting pressure) 

immediately after exercise.

Of the organs that require examination for vascular function, the heart is per-

haps the most inaccessible, while at the same time being one of the most important. 

Kalmanson et al (1970, 1972) have extensively exploited the use of the Doppler ve- 

locimeter for the diagnosis of right ventricular disease using both transcutaneous 

and catheterised probes. Further, Tunstall Pedoe (1972) has successfully exploited 

pattern recognition techniques. By making directional measurements of subclavian 

artery flow patterns, he achieved an 85% accuracy in the diagnosis of aortic incom-

petence. Subsequently, Fitzgerald and his colleagues (1976) have applied sonogram 

pattern recognition methods to the study of coronary artery blood flow.

However, simple CW Doppler systems are unable to measure the distance 

between the probe and the moving target. This has severely restricted their appli-

cation to measuring velocity profiles especially in multidirectional flows. A series of 

more sophisticated techniques has been developed to allow velocity and position of 

the target to be measured simultaneously. The first of these was the pulsed wave 

(PW) Doppler developed independently by Flaherty and Strauts (1969), Peron-
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neau and Leger (1969), and Wells (1969). In a PW Doppler, pulses of ultrasound 

are transmitted at a regular frequency and received by the same crystal. By only 

receiving returning signals within a limited time span (range-gating), the instru-

ment could investigate flow in a narrow spatial range. PW Doppler has been used 

in measurement of the instantaneous velocity profile in a vessel and its variation 

through the cardiac cycle, (eg. Peronneau et al, 1972; Reneman et al, 1985; Vieli 

et al, 1986). It has also been added to a B-mode ultrasound imager to provide 

combined anatomical imaging and flow data (Phillips et al, 1980). An important 

limitation of the PW Doppler method is that the maximum velocity which may be 

measured at any particular range is restricted by ambiguity with the pulse repe-

tition frequency. Therefore, it is often combined with CW Doppler to detect high 

frequencies.

3 .7 .2 .2  L aser-D opp ler anem om etry (L D A )

LDA has undergone considerable development since the technique was first 

introduced by Yeh and Cummins (1964) for velocity measurements of small tracer 

particles suspended in a flowing fluid. Although a number of different optical sys-

tems and different fringe modes have been used in LDA, its main components, as 

shown in Fig.3.21 , consists of a laser light source, optical systems to transmit and 

collect light, a photodetector and a signal processor.

Fig. 3.21 Principle of Laser-Doppler anemometer.
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The laser is a source of coherent light of appropriate intensity, its beam is 

split into two parts which cross to form a fringe grid in the local region of the flow 

where velocity measurements are required. Tracer particles in the fluid passing 

through the fringe grid send out a different frequency. From the Doppler shift of 

scattered radiation, or from fringe considerations, a linear relationship between the 

frequency difference of the two scattered beams and the velocity of the particles 

can be derived as follows:

2 Ux ib
/D = - f  sinI (3-25)

where ?/> is the angle between the incident beams, A the wave length of the laser 

beams, and Ux is the measured velocity component. The photodetector measures 

the frequency difference and converts the optical signal to an electronic signal which 

is processed by an appropriate signal-processing arrangement.

The advantage of the LDA lies in its high temporal and spatial resolution. 

The measuring volume can be smaller than 10~4mra3, depending on the focal and 

beam distances. This optical method is linear and has a fast response time. No 

calibration is necessary and the flow is not disturbed. Up to now, a number of 

3-D LDA systems have been developed which allow the three orthogonal velocity 

components to be measured simultaneously. Therefore, LDA is being used more 

and more in the place of hot wires for quantitative measurement of instantaneous 

velocity, especially for complex flows involving high turbulence intensities and re-

circulation.

The accuracy of the LDA depends mainly on the accuracy of one’s knowledge 

of the illuminating light frequency, the design of the optics and the accuracy of 

measurement of the Doppler shift frequency.
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Many attempts have been made with LDA to investigate the complicated flow 

field in arterial bifurcations. It has shown great advantages in obtaining detailed 

velocity profiles in model and in vitro studies, but is not applicable to in vivo mea-

surement (Durst et al, 1982). This is because one of the necessary conditions for 

the operation of LDA is a transparent medium with a suitable concentration of 

tracer particles. Although it was demonstrated that Doppler signals could be ob-

tained from the laser light scattered by red cells, it was also shown that the quality 

of the signal diminished with increasing hematocrit and that with whole blood, 

i.e. a hematocrit of 45%, measurable signals could not be obtained from vessels of 

inside diameter greater than around 250¡im. Therefore, it can be concluded that 

in general LDA is unlikely to be of any value in the study of local velocity in vivo 

or in whole blood flowing in glass tubes.

3 .7 .3  W all Shear Stress M easurem ent

Accurate measurements of wall shear stress at the boundaries of a three- 

dimensional flow field are indeed difficult. So far, no method has yet been proved 

possible to measure wall shear stress accurately as a function of time either in vivo 

or in vitro. This is because: (i) the velocity gradient varies rapidly across a thin 

boundary layer (<  2mm) near the arterial wall, so any probe must be accurately 

embedded in the wall; any protuberance can significantly affect the local distribu-

tion of shear stress; (ii) the wall shear probe must respond accurately to higher 

frequencies than a velocity probe; and (iii) the wall shear stress may reverse its 

direction when the average and centre-line velocity do not; furthermore, it always 

has a phase lead over those velocities, thus the problems associated with reversal 

are more pronounced than in velocity measurement.

In general, wall shear stress is measured in two ways: (i) to measure it directly 

with a hot-film shear probe (Ling et al, 1968) or an electrochemical technique 

(Lutz, 1975); (ii) to estimate it by measuring the velocity profile near the wall
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and extrapolating it to zero at the wall. The former methods assume a boundary 

layer type flow exists in the neighbourhood of the sensor; they have poor frequency 

response (this issue is discussed in detail by Pedley (1980)) and are confined to 

steady flow studies. For the latter approach, sample volume resolution problems 

arise and even when the velocity profile is known quite accurately, extrapolation 

to estimate wall shear is notoriously inaccurate. The inaccuracy comes from both 

errors in the location of the exact wall position, and in that velocity measurements 

can not be made as close to the wall as desired because of having to retain an 

adequate Doppler signal.

A previous study of steady flow in a carotid bifurcation model (Bharadvaj et 

al, 1982b) showed that the method for estimating wall shear stress from the mea-

sured velocity profiles gave values within 15% of the theoretical Poiseuille result 

in the common carotid artery proximal to the bifurcation. More recently, several 

attempts have been made to derive unsteady wall shear from LDV measurements 

of near wall velocities. Ku et al (1985) studied the instantaneous wall shear stress 

in a rigid carotid bifurcation under pulsatile flow conditions. Deters et al (1986) 

obtained the time-varying wall shear rate in a compliant cast of a human aortic 

bifurcation. Since the cast wall is in motion through the pulsatile cycle, the time 

variation of the distance from the velocimeter sampling volume to the cast wall 

was obtained from LDV measurements of the velocity of the wall itself.
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CHAPTER 4

CODE IM PROVEM ENT

4.1 IN T R O D U C T IO N

The employed computer code ASTEC has three-dimensional,time-dependent 

capabilities and an unstructured finite element mesh which provides the possibility of cop-

ing with the three-dimensional bifurcation geometry. However, to make the code 

more suited and robotic for the current application, there are several aspects that need 

to be improved. Firstly, the pre-processor — mesh generator SOPHIA is not very 

straightforward in use, especially for complex bifurcation geometries. It needs a 

great deal of input data, for which careful preparation and calculation (sometimes 

necessary) have to be done beforehand. Secondly, at the beginning of this research 

ASTEC did not have non-Newtonian modelling capability, although possibilities 

of implementing this in the code do exist. Finally, the code could not treat prob-

lems with moving boundaries. In this chapter, improvements on the forgoing as-

pects are described. It contains the development of a purpose-built automatic 

grid generation routine for general bifurcation geometries, the implementation of 

non-Newtonian model, and a preliminary scheme to incorporate the arterial wall 

compliance.

4.2  G R ID  G E N E R A T IO N  F O R  G E N E R A L  3 -D  B IF U R C A T IO N  

G E O M E T R IE S

4 .2 .1  M esh Generation Procedure in S O P H IA  (old)

SOPHIA is a semi-automatic interactive mesh generator which produces 3-D 

finite element mesh for use with the ASTEC. Before using the routine, the outline 

of the structure to be modelled should be divided into a few structural blocks, 

each of these must have six sides which can be a plane or a curved surface. The
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geometry of each block is defined by twenty points. As shown in Fig.4.1, these 

structural point are the eight “corners” and the twelve “mid-face” points. Note 

that although the term “corner” is used here these could be points on a curve. The 

grid generation procedure is illustrated in Fig.4.2. First of all, coordinates of the 

structural points are read into the routine to locate the block, then the topology 

of the block is requested to generate the block structure. To describe the topol-

ogy, each block has its own local node numbering system. It lists the corners first 

working anti-clockwise from bottom to top, then the mid-points starting between 

the first two corners.

(D local node number 
2 global node number

Fig. 4.1 3-D structural block.

Fig.4.1 also shows the £ — 77 — £ axes for the local node system. These do 

not have to be the same as the global x — y — z axes. The sub-division of the block 

is based on the number of elements required in the £, 7/, and (  directions, which 

are specified by the user. Note that where two blocks are adjacent the numbers of 

elements at the common edge must be the same in order to keep the mesh lines 

continuous. The edge of each block is subdivided either equally or non-uniformly 

under the control of a weighting factor. Boundary condition patches are requested 

to specify boundary conditions in the mesh. In ASTEC code, each patch has a
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Fig. 4.2 Grid generation procedure in SOPHIA.
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unique name and a corresponding NOB* number. Listed in descending order of 

priority, the standard boundary condition patches are: walls, solid regions, inlets, 

outlet, symmetry lines and symmetry planes. Having generated the mesh, all data 

which specify the complete mesh geometry are saved in a data file in binary for-

mat. An initial values file is also produced after the completion of mesh generation.

Fig. 4 .3  Definition of general bifurcation geometry.

4 .2 .2  Definition of General Bifurcation Geom etries

A bifurcation consists of three vessels which intersect each other. Before defin-

ing the geometry for a general bifurcation, two assumption are made: (i) all vessels 

are circular in cross section; and (ii) intersection areas between parent and daughter 

vessels are not smoothed. If the bifurcation is planar, i.e., parent and daughter ves-

sels are in the same plane, a local view of the bifurcation geometry in the symmetry 

plane can be illustrated as Fig.4.3. In such a case, the geometry of the bifurcation 

is defined by the vessel diameters at the branching (di,d2,d3), the branch angles 

( a i ,a 2), and the relative position of the apex {x a o iDAo)- Let 0  (x0,y0) be the 

intersection of the two daughter vessels’ axes, and x — y — z be the global axes. 

Since the vessels are assumed to be circular, using the general analytical geometry
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equation of a cylinder and the formulae for coordinate transformation, their ge-

ometries in the bifurcation area can be mathematically expressed as: 

parent vessel

{y ~ r-i)2 + 22 = ri2 (4.1)

daughter vessel No.l

[(y -  y0) cos cq -f (x -  x0) sin cq]2 +  z 2 =  r 2 (4.2)

daughter vessel No.2

[(y -  ya) cos a 2 +  (x -  x0) sin a 2]2 +  z2 =  r32 (4.3)

where ?q, r2 and r3 being the radius of each vessel. Intersection between parent 

vessel and daughter vessel No.l can be described by satisfying Eqns.(4.1) and (4.2) 

simultaneously. Solving the coupled equations, two roots are obtained:

x =  x 0 + (y0 -  y ) cos a l ± J ( y - r l )2 -  (rq2 -  r22) /  sin ctx (4.4)

Since the intersection area of interest is on the left hand side of the daughter vessel, 

the smaller root is then chosen. Hence, points at the intersection between parent 

and daughter vessel No.l are given by:

x x 0 -j- (:Vo ~ y) cos ax -  yj(y -  rq)2 -  (iq2 -  r22) /  sin cq

=  ± y /r12 -  (y -  n ) 2
(4.5)

Similarly, points at the intersection between parent and daughter vessel No.2 are 

obtained:

x -  x 0 + (y -  y0) cos a2 -  \ j { y -  rq)2 -  (rq2 -  r32) /  sisin a 2

z = ± <Jr 12 -  ( / /  -  / ' !  y
(4.6)

Points at the intersection between two daughter vessels are given by:
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' ______ __________________
x =  x o +  è ;\ lc 22{y ~ Vo)2 -  c3 [Cx{y -  yQ)2 -  (r22 -  r32)] -  C2(y -  ya)

[(y -  yo) cos ai +  (x -  x0) sin ax]2
(4.7)

where
C\ — c o s2Qi — cos2a2 

' C2 =  sin a\ cos a.\ +  sin a 2 cos a 2 

C3 =  sin2« !  — sin2a 2

(4.8)

From Fig.4.3 relationships between x0, yQ and the basic known geometric data 

can be derived:

where

xo =  xAo ~ OA0 ■ cos f3

Vo =  y Ac -  OA0 ■ sin p

/3 =  arctan

0A„

(d2/d3) sin «2 — sin 
cos «1 — (d2/ d3) cos «2

d2
2 sin(«i +  /3)

(4.9)

(4.10)

(4.11)

(4.12)

Positions of the two shoulder points Ax and A 2 may also be determined:

xAi =  x Ao -  OA0 ■ cos (3 +  [cos « ! (?//40 -  0 A o ■ sin ¡3) -  d2/2 ]/sin  on (4.13)

x A2 =  x Ao -  OA0 ■ cos fd +  [cos a2(d 1 -  yAo +  OA0 • sin /3) -  4 /2 ] /  sin a 2 (4.14)

Note that the bifurcation is assumed to be planar when deriving the above 

relations. If the bifurcation is non-planar, i.e., there is an off-plane angle for
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one of the daughter vessels, then the plane shown in Fig.4.3 can be considered as 

the plane where the parent and one of the daughter vessels sit, while the other 

daughter vessel is drawn as its projection on the defined plane. In that case, an 

extra coordinate transformation should be performed for the daughter vessel lying 

an angle to the bifurcation plane.

4 .2 .3  The P u rp ose-built Routine

In the previous section, bifurcation geometry at the local branching area is 

described mathematically. A complete definition of a general bifurcation geometry 

should also include information on variation of diameters of each vessel, as well 

as their length. In this section, a purpose-built routine which aims at minimis-

ing the user input for the mesh generator SOPHIA is presented. The preparation 

procedure for a bifurcation with constant parent and daughter vessel diameters is 

presented first; it is then extended to the case where vessel diameters are allowed 

to change.

Fig.4.4(a) shows the symmetry plane of a bifurcation with constant vessel di-

ameters. Positions of Ah Ai and other points at intersections can be determined 

using relations derived in the last section. First of all, the bifurcation is divided 

into six parts, each of which can be represented as part of a cylinder. For each 

part, the following two steps are performed:

Step 1 Split each part into three blocks as illustrated in Fig.4.4(b). Each 

block satisfies the requirement for a structural block used in SOPHIA, i.e., it has 

eight corners, the geometry being defined by twenty points.

Step 2 Specify subdivision requirements for each block, ensuring that (i) 

numbers of elements at block interfaces are well-matched, and (ii) at cross-sections, 

distribute finer grids near the wall; in the axial direction, distribute finer grids near 

the branching.
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Fig. 4 .4  Grid generation procedure for a general 3D bifurcation.

Since these two steps have to be repeated for each block, a standard subrou-

tine was written to perform these automatically and is called once for each block. 

This subroutine allows vessel diameter to change linearly. For those cases where 

the variations of vessel diameters are non-linear, the vessel should be further split 

into smaller parts, within which a linear variation applies. This treatment is rather 

crude for bifurcations having curved branches or non-linear vessel profiles. There-

fore, a standard subroutine to generate grid for a curved tube was designed, this 

can be called wherever a curved segment exists. A further improvement is to con-

sider the use of a polynomial function for the description of vessel profiles.

Boundary condition patches for each block follow their own rules, for example, 

block 1 in Fig.4.4(b) has a maximum of two types of patches: (i) a symmetry plane, 

and (ii) a symmetry plane and an inlet or outlet, depending upon whether it is a

121



internal segment or includes any inlets or outlets. To designate boundary condi-

tion patches more conveniently, a special numbering system was adopted so that 

blocks having the same types of boundary condition patches can be easily identified.

The flow chart of the routine is illustrated in Fig.4.5. It requires only basic 

geometric data and produces all necessary informations required by the mesh gen-

erator SOPHIA. By using this routine together with the SOPHIA, the amount of 

user input is significantly reduced. Applications to various bifurcation geometries 

are presented in the following section.

4 .2 .4  Applications

In order to demonstrate the applicability of the grid generation routine devel-

oped, applications to a variety of bifurcation geometries were carried out. These 

include idealised 90° T-bifurcations, curved branches, canine femoral bifurcation, 

and human carotid bifurcation models. Fig.4.6 shows the grid configuration for a 

90° T-bifurcation, in which diameters of the main and branch tubes are the same 

and kept constant. Fig.4.7 illustrates the grid configuration for a curved branch 

having a curved angle of 45°. Fig.4.8 shows the grid configuration for a canine 

femoral bifurcation, which has a 1.47 diameter ratio between the daughter ves-

sels and 7° and 40° bifurcation angles from parent to larger daughter vessels and 

parent to smaller daughter vessels respectively. Again the cross-sectional area of 

each vessel is constant. Fig.4.9 shows the grid configuration for a human carotid 

bifurcation model with variable diameters for the larger daughter vessel.

In all these applications, only the basic defined geometrical data, such as vessel 

diameters and bifurcation angles were supplied by the user. The generated grids 

are suitable for use with finite volume and finite element based fluid flow solvers. 

It is demonstrated that the mesh generation routine developed is a convenient 

and efficient tool in the grid generation of a considerably complicated bifurcation
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geometry. However, a further study concerning the smoothing of bifurcation corner

areas still needs to be done.

Fig. 4 . 5  F lo w  c h a r t  o f  t h e  g r id  g e n e r a t io n  r o u t in e .
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Fig. 4 .6  Grid configuration of a T-bifurcation.

Fig. 4.7 G r id  c o n f ig u r a tio n  o f  a  c u r v e d  b r a n c h .
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Fig. 4 .8 Grid configuration of a canine femoral bifurcation.

Fig. 4.9 G r id  c o n f ig u r a t io n  o f  a  h u m a n  c a r o t id  b ifu r c a t io n  m o d e l .



4.3  IM P L E M E N T A T IO N  OF N O N -N E W T O N I A N  M O D E L

The momentum equations for an incompressible non-Newtonian fluid was in-

troduced in chapter 2 (Eqn.(2.11)), where the viscosity is considered as a function 

of the second invariant of the strain rate tensor. In the ASTEC code, the con-

servation equations are written in the integral form and are solved numerically by 

applying them to individual control volumes. The integral form of the momentum 

equations can be expressed as:

p^  J u dV =  — p J uu ■ dA -  J VPdV  +  J peffÇVu) ■ dA (4-15)

where u is the velocity vector, dA and dV the elements of control surface area and 

control volume respectively, and pejj  the effective viscosity. Since ASTEC employs 

the k — e turbulence model, it is more general to define the effective viscosity as:

dejj =  HL +  d-T (4-16)

where p i  being the laminar viscosity which is constant, and px the turbulent vis-

cosity which is calculated from:

k2
Ar =  C rf—  (4.17)

with Cfj, a constant, k and e the turbulent energy and dissipation rate. Although 

turbulent modelling is of no interest here, note that in ASTEC whether the flow 

is laminar or turbulent, px is set and used from the local values of k and e. Thus 

by setting non-zero values of k in the initial values file or user supplied subrou-

tine, the local turbulent viscosity can be prescribed even for a laminar calculation. 

This feature has been utilised to accommodate the non-Newtonian viscosity. The 

detailed procedures are as follows:

(a) Set p l  =  0, thus pef j  =  px',
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(b) Set £ =  =constant (by default CM =  0.09), thus fix — pk2\

(c) Use the constitutive equation of //(J2) to calculate the local nodal 

viscosity fin-Ni and set fix — pn-N\

(d) Set k =  yjfix/p-

Steps (b)-(d) are implemented in a user supplied subroutine, which is called ev-

ery iteration immediately after the scalar variables are updated. By doing so, the 

non-Newtonian viscosity is specified and calculated from the local values of shear 

rate.

One question arises here is that of the constitutive equation, i.e., what form of 

p(J2) should be used ? This question has been addressed in chapter 3, where five 

rheological models of blood were discussed in detail, among them a general power 

law expression was considered to be more appropriate. Take the general power law 

for instance, the relationship between shear stress r and shear rate 7 is given by:

t  =  m|7 |” (4.18)

with m and n being constants. Hence the non-Newtonian viscosity can be written 

as:

fln-N =  Pn-Ndil) =  (4.19)

For a simple shear flow, the shear rate is:

7 = 2 S12 (4.20)

In this case, all other components of S{3 vanish and the second invariant of the 

shear rate tensor J2 depends only on S'12:

J2 =  5'i22 (4.21)

So that from Eqn.(4.20), we have:

It I =  2y(u  (4.22)
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Thus, for general 2D or 3D flows Eqn.(4.19) may be modified as:

Hn-N =  n ih )  =  m( 2y/H)n 1

where J2, expressed in a 3D Cartesian coordinate system, is:

(4.23)

Ji — —

(  dw dv
+ l ¥  + &,

'd uY  (dv Y  (dw'  
dx)  +  \dy)  +  \ dz j

1 2 (du dw\ 2
1 +  ä l  +  ä i

1
+  4

'du dvy 
dy +  dx.

(4.24)

Note that the similar approach can also be applied to other non-Newtonian mod- 

els, e.g., the general form of the Casson relation may be derived as:

(4.25)

coroCh

HM
COouCOw>
UM2<2
Q

SHEAR RATE (1/s)

Fig. 4.10 Dynamic non-Newtonian viscosity of human blood with a hematocrit 

of 45% at 23°C.
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Fig.4.10 shows the dynamic flow curve of human blood with hematocrit of 45% 

at 23°C' (Liepsch and Moravec, 1984). The experimental data were fitted using a 

power law relation of Eqn.(4.18), and the two constants were obtained: m =  0.042, 

n =  0.61. Substituting these into Eqn.(4.23) yields the constitutive equation for 

blood:

H(J2) =  0.042(2y/J2)-°'39 (Pa-s) (4.26)

Eqn.(4.26) is valid when ^  0 and rather small. On the other hand, when J2 

is sufficiently large, the blood viscosity is constant. The point of transition from 

Eqn.(4.26) to the Newtonian equation, n =constant, depends on the hematocrit 

H. For normal blood with a normal hematocrit, H  =  45%, experimental results 

showed that the transition point was around 7 ~  700S1-1, and the dynamic viscos-

ity approached an asymptotic value of 0.004 Pa-s. The Fortran subroutine for the 

specification of non-Newtonian viscosity is listed in Appendix C.

4.4  IN C O R P O R A T IO N  O F T H E  C O M P L IA N T  W A L L

To solve the flow field in an arterial bifurcation with a distensible wall is a 

rather complex problem, since it couples the modelling of mechanical behaviour of 

the arterial wall and the modelling of fluid flow. This problem may be analyzed 

as a feedback system of two functional components as illustrated in Fig.4.11. In 

the lower block, arterial wall is regarded as a conduit for fluid flow with a specified 

shape. For a given upstream flow condition the fluid flow equations can be solved 

and velocities and stresses including normal stress (pressure) and shear stress are 

obtained. This stress distribution may then be applied as loading on the arterial 

wall which can be regarded as an elastic or a viscoelastic body as represented by
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the upper block. Using the theory of solid mechanics, the stress-strain equations 

for the arterial wall can be derived and wall displacements are evaluated. These re-

sults are then used to determine the boundary conditions for the fluid flow problem 

represented by the lower block. This cycle should be carried out until a consistent 

solution is achieved. Then the calculation can proceed to the next time step.

Fig. 4.11 A feedback system of two functional units.

Such a fully coupled treatment is an ideal way to accommodate the distensible 

wall in the fluid flow modelling and has been applied to one-dimensional flow anal-

ysis. However, when applied to three-dimensional flow modelling, it brings about 

great computational difficulties. A fully coupled simulation demands the merger of 

a solid mechanics code and a fluid dynamics code into a single one. Although the 

importance of this merge has been realised recently, no such a code has been devel-

oped so far. Since the effect of wall compliance on flow at arterial bifurcations has 

drawn researchers’ attention only recently, very little has been learned on this even 

from experimental studies, it is thought reasonable to accommodate this factor in 

a rather simplified way before a comprehensive approach is practicable. Up to now, 

the only numerical study on arterial bifurcation flow with the wall distensibility be-

ing taken into account is that of Reuderink (1991), in which an decoupled approach
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was used for flow analysis in a distensible model of the carotid arterial bifurcation. 

The calculation was performed in three sequential steps: (i) calculate the pressure 

distribution using a one-dimensional model for wave propagation; (ii) calculate the 

wall motion due to this pressure distribution; and (iii) solve the flow equations with 

the wall motion prescribed as boundary conditions. This approach was claimed to 

be valid if the pressure distribution is mainly dependent upon wave phenomena 

but not on local fluid flow effects. This point is difficult to justify as the pressure 

distribution from the three-dimensional flow equations were not calculated and 

compared with the one from the one-dimensional analysis. In this dissertation, a 

simplified coupled scheme is proposed for the incorporation of the distensible wall. 

Details of this approach are described in the following two subsections.

4 .4 .1  M athem atical M od el of the Arterial W all

The arterial wall is assumed to be isotropic, incompressible and non-linearly 

elastic and can be modelled as a thin walled cylinder undergoing finite deforma-

tion. As discussed in chapter 3, the third-order polynomial strain-energy function 

can be applied to describe the stress-strain relationship for an artery under these 

assumptions, and two expressions which relate the Green’s strains (circumferential 

and longitudinal) with inner wall pressure (P) and longitudinal force (F) were also 

derived (see Eqn.(3.22)). Considering the fact that in actual circulation, longitu-

dinal movement of the vessel wall in large arteries is very small, except for the 

pulmonary artery and the ascending aorta (Petal et al, 1964). it is therefore as-

sumed here that the longitudinal wall motion is negligible. This assumption leads 

to a simplified form of Eqn.(3.22):

P  =  * [6 Da3 +  (4 A +  W )a 2 +  2 Aa]
< (4.27)

F  =  2ttrh (Ba  +  Ea2 — jĵ J

where A, B, D, E are material constants which are derived from experimental data,
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h and r are deformed mid-wall radius and wall thickness, and a is the circumfer-

ential Green’s strain defined as:

R, 1
(4.28)

Let Ri and Hi denote the original (undeformed) mid-wall radius and wall thick-

ness. From the assumption of incompressibility, the volume of the artery remains 

constant when stressed:

-irhr =  7r H{Ri (4.29)

h HiRi 1 Hi
(4.30)2 a +  1 Ri

Substituting Eqn.(4.30) into Eqn.(4.27) yields:

1 H,
P =

2a +  1 Ri
6Da3 +  (4A +  W )a 2 +  2 Aa (4.31)

Eqn.(4.31) gives a nonlinear relationship between pressure and the circum-

ferential strain. Once the material constants and the undeformed dimension are 

known, it may be solved for a at any given pressure P. Subsequently, the longi-

tudinal force F at the same pressure can be obtained. For convenience of use, 

Eqn.(4.31) can be converted into a polynomial functional from between pressure 

and diameter within the physiological pressure range:

A
A

(4.32)

where P0 is the mean systemic pressure of 100 mmHg and D0 is the diameter at 

P0. This relation is used to approximate vessel dilation under a distending pressure.

To obtain the polynomial function of Eqn.(4.32), the material constants have 

to be known. For this purpose a number of experimental works have been done, their
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major results are summarised in Table 4.1. Using the material constants obtained 

by How and Clarke (1982), a third order polynomial function is derived:

-jj- =  0.10676 ( J r )  — 0.18182 ( J r )  +  0.27130 +0.80151 (4.33)

This is compared with their experimental data as shown in Fig.4.12.

Model* A B C D 
(xlO N/m*)

E F G Reference

R.C.A -7.1889 3.1255 0.1911 1.3711 10.2775 -3.3677 0.0787 Fung et al 
(1979)

R.L.I. -16.3871 -0.3854 2.9122 16.0463 29.6790 1.1872 -2.2552
R.L.A -14.7220 -4.1606 4.4821 16.5753 29.9390 6.2093 -1.8999
R.U.A -12.0062 5.1405 -1.5936 -2.1292 23.5706 -7.3431 2.2069

How &
A.P. 3.0231 2.9227 4.1104 -1.6959 -1.8700 -2.8331 -1.9322 Clarke(198f)

R.C.A Rabbit carotid artery
R.L.I. Rabbit left iliac
R.L.A. Rabbit lower aorta
R.U.A Rabbit upper aorta
A.P. Arterial prostheses with internal diameter between 3 and 6mm

Table 4.1 Summary of material constants for the polynomial strain

energy function.

Fig. 4 .12 Comparison of computed pressure-diameter curve for an 

0.34mm thick graft (— ) and measured values (+ ) of How and Clarke.
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4 .4 .2  Treatm ent of M oving W all

Over a pulsatile cycle, the motion of arterial wall due to the pulsating pressure 

is predicted using the pressure-diameter relationship described in the last section. 

This is only one aspect of the problem, the remainder of the problem is how to 

accommodate the wall movement in the flow modelling.

Solving the flow field with a distensible wall requires the grid to be time de-

pendent because of the wall moves. There are two basic strategies that may be 

employed:

(a) Redistribution of a fixed number of grid points at each time step using new 

wall locations.

(b) Local grid enhancement according to wall movement.

In approach (a), near wall points are redistributed to account for the contraction 

and dilation of the arterial wall. As a consequence, the space between these grid 

points are reduced or increased. This approach has the advantage of not increasing 

the computer storage and time during the solution, and of being straightforward 

in data structure. The disadvantage is the possibility of the grid becoming too 

skewed. In approach (b), grid points are added locally in near wall regions. The 

practical advantage of this method is that the original grid structure is preserved. 

But the computer storage and time increase with the grid enhancement, and the 

coding and data structure are difficult.

Now turning to the fluid flow solver ASTEC, it is separated from the grid gen-

erator and the geometry data are read and processed only at the beginning of flow 

calculation. Such a code structure does not allow either approach (a) or (b) to be 

fully implemented within a practical time scale. However, the idea of (b) that the 

original grid structure is unchanged is quite useful. Thus, an adapted version of 

(b) was used for ASTEC. Rather than adding grid points as vessel dilates, it moves
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the wall boundary on a pre-generated mesh according to the new wall position. 

Therefore, the boundary points on the wall are time dependent, i.e., points on the 

wall at this time step may be either inside or outside the wall at the next time 

step. Those points inside the wall are treated as free-nodes, and those outside are 

treated as solid region.

MAX. POSITION 
OF THE WALL

MIN. POSITION 
OF THE WALL

| WALL MOTION 

= >

Fig. 4 .13  Illustration of the moving wall treatment.

Before using this approach, grids are generated based on an estimated max-

imum position and the known minimum position of the wall. As illustrated in 

Fig.4.13, between the minimum and the estimated maximum wall positions, very 

fine grids are generated in order to reduce errors introduced by defining wall posi-

tions during the transient cycle. Calculations start from the minimum wall position 

which corresponds to the lowest pressure. At each time step, flow governing equa-

tions are solved first and pressures on the wall are evaluated and averaged at each 

cross-section, then the deformed vessel diameters are calculated using the pressure- 

diameter relationship. According to the variation of vessel diameter, wall bound-

aries are moved and flow equations are solved under the new boundary conditions.
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This cycle is carried out until a converged solution is achieved, then calculations 

proceed to the next time step.

Such a treatment is coupled since the pressure used to determine the wall dis-

placement is the one obtained from the instantaneous solution of the flow equations. 

The major simplifications made here are: (i) the longitudinal motion of the artery 

is negligible, and (ii) the radial displacement is uniform and can be expressed as 

a polynomial function (usually in 3rd order) of the pressure exerted by fluid on 

the wall. This moving wall treatment is valid provided that: (i) the motion of the 

wall is much slower than that of the fluid, and (ii) the grid in near wall regions is 

very fine. The former is generally true because typical variations of arterial 

diameter as a pulse passes are only about ±2% (Lighthill, 1975), while the later 

is user controllable. The disadvantage of this treatment is that the computational 

mesh occupies a large amount of computer memory especially when a bifurcation 

geometry is concerned.
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CHAPTER 5

CODE VALIDATION

5.1 IN T R O D U C T IO N

In all numerical predictive work, one question is always present, i.e., how 

accurate and reliable are the predictions ? To answer this, one has to examine 

thoroughly all the possible sources of error. In predictions obtained using CFD, 

there are mainly three sources of error, they are: (i) the mathematical model,

(ii) the discretisation method, and (iii) the numerical algorithm. For the arterial 

bifurcation flow under consideration, the validity of the mathematical model was 

discussed in chapter 1, and since the flow is laminar for which the mathematical 

equations involve no empiricism, the accuracy of the predictions is expected to be 

in a good order. The magnitude of the discretisation error is dependent upon both 

the discretisation approach and the mesh density. This error can be reduced by 

either using a higher-order discretisation formula designed to reduce the truncation 

error, or refining the grid. Information on the former was provided in chapter 2, 

and the later is problem dependent which will be dealt with in the following numer-

ical predictions. The errors associated with the numerical algorithm are dominated 

by the convergency criteria.

Apart from accuracy consideration of these kinds, it should also be born in 

mind that no codes are guaranteed to give reasonable and accurate results to any 

kinds of problems at any different levels, even within the code’s capability. There-

fore, external code validation for a particular problem at different levels is highly 

desirable. In general, code validation exercises may involve one or all of the following:

(a) comparison with the analytical solution if one exists.

(b) comparison with laboratory data set up specifically for validation purposes.

(c) code to code comparison.

(d) comparison with a wide range of application experimental data.
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In this chapter, a comprehensive range of code validations are covered. Starting 

from the simple problem of steady flow in a rigid tube, it proceeds to complex case 

with the non-Newtonian viscosity, the pulsatility of the flow and the elasticity of 

the wall being taken into account in turn. To test the code’s suitability for bifur-

cation flow configuration, computational results for a plane 90° bifurcation under 

both steady and pulsatile flow conditions were validated against reliable laboratory 

measurements. Moreover, comparison with an alternative code FLOW3D was also 

performed. This was followed by a complete set of predictions for pulsatile flow in 

a 3D 90° bifurcation with a Newtonian and a non-Newtonian model respectively. 

Effects of 3D geometry, pulsatility, and non-Newtonian viscosity were investigated 

individually and the results were compared with published LDA measurements of 

Ku and Liepsch (1986). All predictions presented in this chapter were performed 

with ASTEC code unless otherwise stated.

5.2 F L O W  IN  T U B E S

5.2 .1  Three-dim ensional Steady Flow In a Rigid Circular Tube  

W ith  (a) N ew tonian, and (b) N on-N ew tonian Fluid

At the begin of this research, the ASTEC code was not ready to deal with 

non-Newtonian fluid flow. To test the implementation of the non-Newtonian model 

described in the preceding chapter, simple problems of fully developed flow in a rigid 

circular tube with (i) Newtonian, and (ii) non-Newtonian fluid were studied and 

the results were compared with analytical solutions. The tube was 8mm in diameter 

which is of the same order as those of large arteries, and the Reynolds number was 

250 which is within the physiological flow range. The domain was divided into 

18 elements in the radial direction and 4 elements in the axial direction. At the 

inlet of the tube in axial direction a fully developed velocity profile was prescribed, 

while both secondary velocity components were set equal to zero. Pressures at the
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outlet was assumed to be zero. Since flow at the inlet was fully developed, the axial 

velocity profile at the outlet had to be the same as the prescribed inlet profile. In

the Newtonian fluid case, computed velocity profile at the outlet was compared 

with the Hagen-Poiseuille solution given by:

where r is the radial position and U is the cross-sectional average velocity. As 

shown in Fig.5.1(a), an excellent agreement was achieved with the average velocity 

error of 0.48% and the maximum error of 0.53%.

For a non-Newtonian fluid obeying the power law r =  7777", its fully developed 

velocity profile is given by:

Using a blood like fluid with m =  0.042 and n =  0.61, comparison between calcu-

lations and Eqn.(5.2) was made as shown in Fig.5.1(b). The errors occurred did 

not exceed 1% of the average velocity.

The velocity gradient, or shear rate, for both Newtonian and non-Newtonian 

fluid was also calculated and compared in Fig.5.2. As can be seen, the shear rate 

goes from zero at the tube axis where the fluid velocity is maximum, to a maximum 

at the wall, where the fluid velocity is zero. For the blood-like non-Newtonian fluid, 

a zero shear rate zone is formed near the tube axis and the shear rate close to the 

wall is higher than that of the Newtonian fluid.

(5.1)

(5.2)
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n/n

Fig. 5.1 Comparison between theoretical solution (— ) and calculation (ooo) for 

fully developed flow in a straight tube with (a) Newtonian, and (b) non-Newtonian 

fluid.

Fig. 5.2 Comparison of shear rate between a Newtonian (— ) 

and a non-Newtonian (o o o) fluid.
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5 .2 .2  Three-dim ensional Pulsatile Flow In a Rigid Circular Tube  

W ith  Newtonian Fluid

Following the steady flow prediction presented in the last section, prediction 

of pulsatile flow in a tube of same diameter was performed. The pulsatile flow was 

achieved by superimposing a sinusoidal oscillating flow on the steady flow, and the 

variation of pressure gradient at the inlet was given by:

8P
— —  = 232 +  3140 cos(27r/f) (Pa/m) (5.3)

where f, the frequency of pulsation, was constant at 1.4HZ. The Womersley pa-

rameter, defined as a =  R ^P k JJv  was equal to 8.18, and the average Reynolds 

number was 600. At the inlet of the tube pressure gradient described by Eqn.(5.3) 

was imposed. In ASTEC the pressure gradient boundary condition can be specified 

as (see Fig.5.3):

(dP_
\ dx

where ‘+ ’ stands for elements at the inlet and ‘ x ’ for elements adjacent to the inlet. 

Ax is the distance between the inlet and adjacent elements in x direction and ¡3 

is an under-relaxation factor. The length of the tube was chosen to be 20 times its 

diameter because the estimated entry length, according to Lighthill (1975) Le =  

(0.03Re)d, was about 18d. Calculation was carried out for 2 complete cycles and 

in each cycle forty nonuniform time-steps were used. Computed velocity profiles 

at the outlet of the tube were compared with the analytical solutions reported by 

Womersley (1955) (for details, see Appendix D). As shown in Fig.5.4, reasonable 

agreement is achieved. Errors occurred were not large than 3% of the time-averaged 

mean axial velocity. Fig.5.5 illustrates the pressure gradient, volume flow rate and 

wall shear rate versus time, giving an indication on their phase relationship. In 

this case, the phase lag of the flow rate is about 80° and that of the wall shear rate 

is about 40°.

P n(+)  =  ( l - / 3 ) P n~1(+) +  l3 P n( x )  +  A x

141



FLOW

/ / / / / / / y / / / /
* X

* X

* X

* X

/  /  / / / / / / / / / /

AX

Fig. 5.3 Pressure gradient boundary condition.

'— ' O . l m / s  (U)

Fig. 5.4 Comparison between theoretical solution (— ) and calculation (o o o) 

for pulsatile flow in a rigid tube over a whole cycle.
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Fig. 5.5 Relation of flow (Q) and wall shear rate (S) 

to the pressure gradient (P).

5 .2 .3  Three-dim ensional Pulsatile Flow In an Elastic Circular Tube  

W ith  New tonian Fluid

To make an initial investigation on the effect of wall compliance, pulsatile flow 

in an elastic tube was calculated using the moving wall treatment described in the 

last chapter. The elastic tube adopted in the calculation was the same as the one 

used in the theoretical and experimental study of Liepsch et al (1985), where the 

tube with an inner diameter of 8mm and a wall thickness of 1mm was made of 

silicone rubber (SilGel 600). The pressure-diameter curve for the silicone tube is 

shown in Fig.5.6. It expands approximately 2.5% in diameter during the pulsatile 

experiment.

The pulsatile flow conditions in the elastic tube were the same as those in 

the rigid case discussed in the last section. Since in the actual experiment a rigid 

plexiglas tube was used as the run-in tube for the silicone model, the obtained 

axial velocity profiles for the rigid tube were then used as the upstream boundary
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condition for the elastic tube. Calculated velocity profiles were compared with the 

experimental data of Liepsch et al (1985) at 45° intervals (The measurement was 

taken at r/R=0.0, 0.25, 0.5, 0.75 and 0.9 every 22.5°). As is seen in Fig.5.7, the 

agreement between the calculation and the measurement is generally good. Some 

discrepancies can be observed: the predicted velocity profiles look fuller than the 

measurements during flow acceleration (between phase angles 0° and 90°), but are 

lower during flow deceleration (especially at phase angle 180°). Reasons for these 

are difficult to explain, since they may well involve in some degree the experimental 

errors which were reported to be 1-5% of the measurement range.

In Fig.5.8 the axial velocity profiles of the elastic model are compared with 

those of the rigid model. The results are presented at 45° intervals. The compar-

ison shows that in general, there is no significant difference between the velocity 

profiles in the rigid and the elastic tubes. During flow acceleration velocity profiles 

in the elastic tube are slightly lower than those in the rigid tube. This results 

mainly from the cross-sectional area expansion of the elastic tube.

Fig, 5,6 Pressure-diameter curve for the silicone model.
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Fig. 5.7 Comparison between calculation (— ) and experiment (o o o) for un-

steady flow in an elastic tube.

Fig- 5-8 Comparison of velocity profiles in a rigid (— ) and an elastic (ooo) tube.
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5.3 F L O W  IN  B IF U R C A T IO N S

5.3 .1  T w o-D im ensional Steady Flow In A  T —Bifurcation

As a first step towards the modelling of arterial bifurcation flow under real 

physiological situation, steady flow through an idealised 2D 90° bifurcation with 

rigid wall was studied under various flow parameters, i.e., Reynolds number and 

branch to main tube flow rate ratio. Numerical results obtained were validated 

against published LDA measurements of Liepsch et al (1982), which were proven 

to be reliable.

5 .3 .1 . 1  Problem  definition and grid resolution tests

For code validation purpose, the bifurcation geometry and flow conditions 

adopted in the experimental study were reproduced in this prediction, as shown in 

Fig.5.9 and Table 5.1. Prior tests were carried out for case 3 using three grid dis-

tributions, i.e., 34x22, 40x36 and 50x44, in order to determine grid dependence. 

Results of these calculations indicated that a 40x36 grid was sufficient with the 

maximum axial velocity differing by 1.2% with the finer grid and 6.1% with the 

coarser grid. However, to make a quantitative comparison with the measurements, 

the 50x44 grid was selected which was non-uniformly distributed accounting for 

the rapid spatial variations of flow parameters around the bifurcation region. Since 

ASTEC treats a two-dimensional problem as a three-dimensional one with flow 

restricted between two symmetric planes, the actual size of the mesh consisted of 

840 elements and 1870 nodes. With this mesh a typical calculation for case 3 re-

quired 165.8 seconds on a CRAY X-M P/28.

In this simulation the fluid was distilled water with a constant density of 

l000Kg/m3 and a dynamic viscosity of 1.02 x 10~3Kg/(ms). For the upstream
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boundary condition, a fully developed axial velocity profile and zero normal veloc-

ity were specified at the inlet. Since the x-exit was placed well downstream, the 

fully developed flow with specified flow partitioning was assumed there. At the 

y-exit pressure was assumed to be zero. No-slip condition was imposed on the 

rigid wall.

Case No. Re Q2/Qo

1 250 0.23
2 515 0.23
3 496 0.44
4 525 0.64
5 1130 0.23

Fig. 5 .9  Bifurcation geometry. Table 5.1 Flow parameters investigated.

5 .3 .1 . 2  Com parison of calculated and measured velocity profiles

Numerical calculations were performed for all cases listed in Table 5.1. It can 

be noticed that cases 1, 2 and 5 have the same branch to main tube flow rate 

ratio but different Reynolds number, while cases 2, 3 and 4 have roughly the same 

Reynolds number but different flow rate ratio. Results of these should give an clear 

indication of how the flow field is influenced by the two parameters (Re and Qi/Qo)-

Figs.5.10 and 5.11 present the axial velocity profiles in the main and branch 

tube respectively for cases 1 to 5. It is observed that the profiles are qualitatively 

similar in all cases but for higher Reynolds numbers, the negative velocities at the 

bottom wall of the main tube are more pronounced, and the reverse flow region
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Fig. 5 .10  Axial velocity profiles in the main tube.

(X/2H)

1 4 8



).05m/s

(CASE 1) (CASE 2) (CASE 3) (CASE 4)

Fig. 5.11 Axial velocity profiles in the branch tube.
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along the upstream wall of the branch expands in length. For the same Reynolds 

number, with the increase of Q^/Qo how separation in the main tube after the 

bifurcation grows remarkably while the separation region in the branch becomes 

narrower and moves slightly upwards. Results of the location and size of the sep-

aration zone are summarised in Table 5.2. These results are in good qualitative 

agreement with the measurements.

To validate the predictive results, a quantitative comparison of calculations 

and measurements was performed. In Fig.5.12 the calculated axial velocity profiles 

are compared with the LDA measurements for case 3. It is observed that there is 

a very good agreement between the calculations and the measurements, especially 

in the main tube the axial velocity profiles were predicted quite accurately. Some 

differences are found in the branching tube. This may largely attribute to the 

three-dimensional effects of the tube used in the experiment.

A further quantitative comparison was made with an alternative code FL0W3D, 

as presented in Fig.5.13. It is demonstrated that the computational results of 

ASTEC and FL0W3D are consistent. However, their computer costs are strikely 

different. For this case, the CPU time with ASTEC was about 35 times higher 

than with FL0W3D.

5 .3 .1 .3  W all shear stress

For an incompressible fluid the

shear stress is given by:
<9ut|

7\V |wall (5.5)
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Main Tube

Cose No. Re Q 2/ O 0 Separation Point 

Xs/2H

Reattachment
Point

Xr/2H

Maximum Width 

Ws/2H

1 250 0.23 no separation no separation 0

2 515 0.23 0.30 0.95 0.15

3 496 0.44 -0 .25 3.0 0.23

4 525 0.64 -0 .40 4.5 0.35

5 1130 0.23 0.30 1.75 0.15

Branch

Case No. Re Q 2/ O 0 Separation Point 

Ys/2H

Reattachment
Point
Yr/2H

Maximum Width 

Ws/2H

1 250 0.23 0.51 3.05 0.45

2 515 0.23 0.51 4.80 0.45

3 496 0.44 0.54 5.60 0.35

4 525 0.64 0.56 5.50 0.34

5 1130 0.23 0.51 >6.2 0.45

Table 5.2 Location and size of the separation region.
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Fig. 5 .12 Comparison of axial velocity profiles with the LDA measurements.

-3.5 -0.5 -0.25 X/2H=0 0.25 0.5 0.75 1.0 3.5 5.0 11.8

___  AS TEC
o o o FL0W3D

Fig. 5 .13  Comparison of axial velocity profiles between ASTEC and FLOW 3D.
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where ut denotes the tangential velocity, n is the nornal unit vector on the wall. 

Numerical results of wall shear stress are plotted in Figs.5.14-5.17. They were 

non-dimensionalised in terms of the fully developed wall shear stress at the inlet 

for each case. Along the bottom wall of the main tube(Fig.5.14), the shear stress at 

upstream positions is constant indicating that the flow remains parabolic and has 

not been disturbed by the downstream bifurcation. Immediately after the outer 

corner of the bifurcation, shear stress drops abruptly reaching the minimum level 

which is negative except for the first case where flow does not separate. As the 

Reynolds number increases, the region of negative shear stress is enlarged. For 

a same Reynolds number, increased flow in the branch results in a decrease in 

wall shear. At the divider wall of the main tube(Fig.5.15), the wall shear stress 

is positive and the maximum value is found at x/2H ~  1.0. With the increase of 

Reynolds number, the value of wall shear stress rises. For a same Reynolds num-

ber, increased flow in the branch results in a decrease in wall shear downstream. 

At the upstream wall of the branch(Fig.5.16), the wall shear stress becomes very 

low with an average value well below zero. The shear stress curves intersect the 

zero line at two points except for the last case where there is only one intersection, 

indicating the extent of flow separation along the upstream wall of the branch and 

its dependence upon the flow parameters. The influence of Reynolds number and 

branch flow rate on the value of wall shear stress can be derived from this figure, 

which is generally the same as observed at the bottom wall of the main tube. At 

the divider wall of the branch(Fig.5.17), the shear stress is very high and unidirec- 

tionally positive. As the Reynolds number increases , the shear stress increases. 

For a same Reynolds number, increased flow in the branch results in a large in-

crease in wall shear. When considering the bifurcation as a whole, it is found that 

the minimum shear stress on the upstream wall of the branch is even lower than 

that on the bottom wall of the main tube, while the maximum shear stress on the 

divider wall of the branch is about the same as that on the divider wall of the main 

tube for small branch flow rate, but are significantly higher for larger branch flow
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5 .3 .2  Tw o-D im ensional Pulsatile Flow In A  T —Bifurcation

In the preceding section, predictions for steady flow in a T-bifurcation were 

validated. In this section, the pulsatility of the flow is taken into account with 

an intention of assessing the code’s validity when applied to unsteady separating 

flows. The numerical results were compared with the LDA measurements reported 

by Khodadadi et al (1988), who extended the work of Liepsch et al (1982).

5 .3 .2 .1  Problem  definition

The same bifurcation geometry as illustrated in Fig.5.9 was adopted here. The 

pulsatile flow was achieved by superimposing a sinusoidal oscillating flow on the 

steady flow and the frequency of pulsation was constant /  =  1.1 Hz. Under steady 

flow conditions the Reynolds number and flow rate ratio have been identified as 

the two controlling parameters of the present bifurcation flow. If a pulsating pres-

sure gradient is applied at the inlet of the bifurcation, the frequency of pulsation 

expressed as Womersley parameter a and the amplitude of the pulsation are intro-

duced as additional controlling factors. In this case, the average Reynolds number 

at the entrance of the bifurcation was 102 and the flow rate ratio ( Q 2 / Q 0 )  was 

kept constant at 0.7. The variation of pressure gradient at the inlet Is given 

in Fig.5.18, which was measured using two inductive pressure sensors placed one 

meter apart in the inlet section of the bifurcation during the experiment. The 

Womersley parameter was 4.9. A glycerine water solution was the working fluid, 

having a density of 1150 K g/m 3 and a dynamic viscosity of 8.4xlO -3 Kg/ms.

For the upstream boundary condition, the time-dependent velocity profiles ob-

tained from the analytical solution for fully developed pulsating flow were specified 

at the inlet. For an inlet pressure gradient of

dp
-  —  =  K st +  K osc cos 2tt f t (5.6)
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Fig. 5.18 Pulsating pressure gradient at the inlet, 

the instantaneous velocity profile is given by:

u(y,t) =  ust(y) +  u03C(y,t)

,, — ^ st u 2M-st — 0 n2 y
1 -

2'

K osc (M  sin 27r/t -f N  cos 2-irft) 
= 2nf p(̂ 2 + C2)

where

A =  cos 7 #  • cosh 7 H 

C =  sin 7 #  • sinh7 #

5  =  cos 7 y • cosh 73/

< D =  sin-yy • sinh7y

M  =  A2 +  C 2 -  A B - C D

N =  BC -  AD

7 = \/2 a
2H

(5.7)

(5.8)

(5.9)

(5.10)
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The normal velocity component at the inlet was assumed zero and a non-slip condi-

tion was imposed on the rigid wall. At the two outlets, fully developed flow with 

a constant flow division ratio (Q\IQa =  0.3) was specified at the x-exit which 

was placed 12 x 2H  downstream, while at the y-exit zero pressure condition was 

assumed.

5 .3 .2 .2  Com parison of calculated and measured velocity profiles

For the pulsatile flow defined above, calculations were performed on a 40x36 

grid which was tested to be capable of providing a grid independent solution. Us-

ing a fully implicit time-differencing scheme one pulse cycle was discretised into 

40 time steps which were unevenly spaced to account for steep temporal pressure 

gradients. The calculation was continued until a periodic solution was achieved 

for which about 3 cycles were needed in this case. Results at different locations 

of the bifurcation and different phases of the cycle were compared with the mea-

surements. Fig.5.19 presents the comparison of axial velocity profiles in the main 

tube. It is observed that at the leading edge of the bifurcation (x/2H =-0.5) the 

agreement is generally good and a tendency for reverse flow is apparent for phase 

angles between 180° and 225°. At the trailing edge of the bifurcation (x/2H=0.5) 

and downstream (x/2H=1.0), the agreement is very good except during the early 

period of flow separation corresponding to phase angles between 45° and 135°, 

where numerical results have slightly overpredicted the reverse flow. As the flow 

redevelops further downstream of the separation zone (x/2H=10.0), the measured 

and computed velocity profiles for the whole cycle are in excellent agreement.

Comparison of axial velocity profiles in the branch tube is shown in Fig.5.20. 

At the beginning of the branching (y/2H=0.5) good agreement is observed across
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Fig. 5 .19 Comparison of axial velocity profiles in the main tube. 

(— calculation, • • • measurement)
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Fig. 5.20 Comparison of axial velocity profiles in the branch tube. 

(—  calculation, • • • measurement)
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the tube throughout the cycle. As the flow moves downstream at y/2H=1.5, which 

is inside the separation zone for most part of the cycle, discrepancies are noticed 

for phase angles between 135° and 225°. The profiles farther downstream in the 

branch are in excellent agreement for the whole cycle.

From these comparisons, it may be concluded that in general the pulsatile flow 

has been predicted very well. Small discrepancies are observed mainly for phases 

where flow separations exist. These may largely due to the three-dimensional ef-

fects of the bifurcating flow, and perhaps rather slightly, the theoretical upstream 

boundary conditions used in the prediction as well as measurement errors which 

were estimated to be around 5% at close wall positions (< 1mm) and 1% else-

where. However, the differences found here are much less that with the numerical 

predictions also presented by Khodadadi et al (1988) where the separation zones 

were significantly exaggerated.

5 .3 .2 .3  W all shear stress

Wall shear stresses along the bottom wall of the main tube (W l), the upstream 

side walls (W2) and the dividing walls (W3) are presented in Fig.5.21 at three 

phase angles: 90°, 225° and 315°. Principally it shows the same feature as found in 

steady flow studies, i.e., in the vicinity of the leading (point marked as c) and the 

trailing (point marked as e) edges of the bifurcation the shear stress is high; on the 

bottom wall of the main tube opposite the trailing edge of the bifurcation (around 

points marked as a and b) and on the upstream side wall of the bifurcation (point 

marked as d) the shear stress is low. However, the values of the maximum and 

the minimum wall shear stress vary during the pulsatile cycle. It is found that the 

peak shear stress on the divider wall (W3) fluctuates between 0.5 and 0.9 N/m2 

and the minimum shear stress on the bottom wall (W l) changes between —0.2 and 

O.OQN/m2.
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Fig. 5.21 Wall shear stress along the bottom wall (W l), the upstream side wall

(W2) and the divider wall (W3) at three phase angles (90°, 225°, and 315°).



5.3.2.4 Effects of pulsation

The velocity profiles discussed above show that two separation zones are es-

tablished in the bifurcation. One is located on the bottom wall of the main tube 

opposite of the side branch and the other along the upstream wall of the branch. 

This finding is in conformity with the steady flow results for the same flow condi-

tions (Khodadadi et al, 1986). The predictions also indicate that the location and 

extent of these separation regions vary within a cycle. In order to demonstrate the 

effect of the pulsating pressure gradient on the two separation zones, the estimated 

location of the separation and reattachment points in the main and branch tubes 

obtained from the numerical predictions are plotted as a function of phase angle 

in Figs.5.22(a) and 5.22(b) respectively. The figures show a substantial variation 

of these locations within a cycle as compared with the steady flow results which 

are summarised in Table 5.3. At zero phase angle, a small separation zone is found 

downstream of the bifurcation in the main tube. It diminishes gradually and has 

almost disappeared at around 30°. For phase angles between 30° and 50°, no flow 

separation is noticed in the main tube. On the other hand, separation region in 

the side branch exists throughout the cycle. Around phase angle 220°, the sizes of 

the two separation zones are largest.

Main Tube Branch

Separation Point Reattachment Separation Point Reattachment
Point Point

Xs/2H Xr/2H Ys/2H Yr/2H

-0.11 1.46 0.55 2.10

Table. 5.3 Location of separation zone for steady flow (Khodadadi et al, 1986).
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Fig. 5 .22 Temporal variation of the location and size of the separation 

zones in (a) main tube and (b) branch tube.
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The effect of the pulsation on wall shear stress has been discussed previously. 

It is indicated that the maximum and minimum wall shear stresses fluctuate within 

a cycle. This suggests the importance of taking the pulsatile nature of the flow into 

account when the time varying wall shear is of special interest.

In summary, although some basic features of flow are consistent between steady 

and pulsatile flows, the results presented here show some major differences. First, 

velocity profiles upstream of the bifurcation are time varying and non-parabolic. 

According to Womersley theory they are intimately related to the frequency pa-

rameter (i.e. Womersley parameter) a; larger values of a result in more blunted 

profiles. Second, pulsatile flow changes the location, extent and size of separation 

regions. During part of flow acceleration, positive flow is seen throughout the main 

tube behind the branch, preventing the formation of the permanent separation 

region existing in steady flow. During later flow deceleration, separation regions 

have grown remarkably larger: about 40% greater in length at the bottom wall 

of the main tube opposite the flow divider and 20% greater in the side branch 

as compared with steady flow. Third, wall shear stresses vary over the pulsatile 

cycle. During flow acceleration, the maximum wall shear stress in the main tube 

upstream of the bifurcation is approximately 25% greater than in steady flow, due in 

large part to the fact that the steady flow profiles are parabolic while pulsatile flow 

profiles vary in time.
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5 . 3 . 3  T h r e e - D i m e n s i o n a l  P u l s a t i l e  F l o w  I n  A  T - B i f u r c a t i o n

Having validated numerical results for both steady and pulsatile flows in a 

2D bifurcation, code validation exercises proceeded to 3D cases. The experimen-

tal data used in this section were those of Ku and Liepsch (1986), who made a 

systematic study on pulsatile flow in a 3D T-bifurcation with the effects of non- 

Newtonian viscosity and wall elasticity investigated separately. While validating 

the 3D predictions against laboratory measurements, the emphases of this section 

are to present the three-dimensional characteristics of the flow, and to investigate 

in detail the effect of non-Newtonian viscosity on the flow field and wall shear 

stress. In addition, pressure distributions in the bifurcation region were obtained 

and are presented in Appendix E.

5 .3 .3 . 1  P roblem  definition

For the 90° T-bifurcation model treated here the diameter of the main tube 

was 6mm and that of the branch tube was 3mm. The bifurcation had a sharp 

corner, this being the only difference to the experimental model in which the bifur-

cation edge was slightly rounded. The element division for the model bifurcation 

is illustrated in Fig.5.23. Since the flow is symmetric, only half of the bifurcation 

was considered. The applied finite element computational mesh consisted of 5992 

eight-node 3D blocks and a total of 7290 nodes.

Calculations were performed under the pulsatile flow conditions reported in 

the experimental study, i.e., an average upstream Reynolds number of 250, a pul-

satile pressure amplitude of 1400Pa/m, and a Womersley parameter of 2.3 for the 

sine pressure wave. The flow rate in the side branch was 50% of the entrace flow 

rate. For the Newtonian fluid, a 70% aqueous glycerine solution with a density 

of 1080Kg/m3 and a viscosity of 0.013Kg/(ms) was used. For the non-Newtonian
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fluid, a separan-glycerine solution with a variable viscosity expressed in the power 

law as r  =  0.03770-85 was employed.

Under the sinusoidal pressure gradient, fully developed velocity profiles at var-

ious phases in a long straight tube were calculated using the Womersley equations. 

As shown in Fig.5.24, the centerline velocities are behind the pressure pulse by 

about 40°. These velocity profiles were then used as the time-dependent upstream 

boundary condition in the main tube. For the downstream boundary condition, 

fully developed flow with a constant flow division ratio was prescribed at the outlet 

of the side branch which was 12 times its diameter long (note that Fig.5.23 does 

not show the whole length of this branch for the sake of clarity); zero pressure was 

assumed at the other outlet. A total of 40 time steps was used in one pulsatile cycle 

and the calculation was continued for 1.5 cycles where the error in periodicity was 

1%. Each time step required about 50-70 iterations to converge; and one iteration 

took 4.5 seconds on a CRAY X-MP/28.

50%

f

Fig. 5 .23 Finite element subdivision of the 3D T-bifurcation.
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a
Fig. 5 .24 Fully developed velocity profiles cal cuffed using Womersley’s solution.

PROXIMAL

A

W2 DISTA]
DIVIDER WALL

J L

c D E f  TT~

OUTER WALL

Fig. 5 .25 Definition of cross sectional positions where numerical 

results are presented.

5 .3 .3 .2  Description of velocity field

Fig.5.25 gives the cross-sectional positions where numerical results are pre-

sented. The diagram defines two locations proximal to the bifurcation (marked as 

A, B) and four locations distal to the bifurcation (marked as C, D, E, F). The axial 

velocity profiles at these locations in the plane of symmetry (bifurcation plane), the 

plane through the axis of the main tube perpendicular to that of the bifurcation, 

and the plane through the axis of main tube at 45° to the bifurcation plane are 

illustrated at specified phase angles during the pulsatile cycle in Fig.5.26.
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Q

Fig. 5 .26  Axial velocity profiles in the plane of symmetry and planes 

through the axis of the main tube at 90° and 45° to the 

bifurcation plane at specified phase angles.

The axial velocity profiles upstream of the branching area are regular and ax- 

isymmetric over the whole cycle. Immediately after the bifurcation velocity profiles 

vary greatly. Near the divider wall relatively high axial velocities and steep veloc-

ity gradients can be observed. This shifting of mass flow towards the divider wall 

results from the branching effect. Along the outer wall, a dynamic zone of sepa-

rated flow is seen. This separation zone (outlined in dashed line in the bifurcation 

plane) expands and contracts during the pulsatile cycle, but remains permanent 

throughout the cycle. At the peak flow rate [ut =  40°), the maximum axial ve-
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locity behind the fiow divider at location D is 0.82m/s and the reverse velocities 

there are up to — 0.021ra/s. In the bifurcation plane flow separation zone is about 

2.5R in length along the outer wall and extends up to 0.25R from the wall. In 

the plane perpendicular to that of the bifurcation, flow separation region along the 

side walls is very small with much reduced reverse velocities (—0.0015m/s); while 

in the 45° plane flow separation along the wall at the non-divide side is more ob-

vious but still smaller than that in the bifurcation plane. At the flow deceleration 

phase ut =  90°, flow reversal is found maximum with negative velocities reaching 

—0.031m/s which is about 4% of the forward directed velocity. The separation 

region has grown larger, occupying about 3.4R in length and 0.33R in thickness 

in the bifurcation plane. Along the non-divide wall in the 45° plane and the side 

walls in the perpendicular plane, separation zones are noticed with reduced sizes. 

At the minimum flow rate {tot =  220°), flow separation region becomes smaller and 

occupies about 1.2R in length and 0.15R in thickness in the bifurcation plane. No 

flow separation is found in the 45° plane and the perpendicular plane.

From these results it can be noticed that under the flow condition studied here 

the flow separation zone is confined to a rather thin layer adjacent to the outer 

wall. This is mainly due to the smaller side branch used (having half of main branch 

diameter). Karino et al (1980) have studied experimentally the effect of branch to 

main tube diameter ratio and demonstrated that with decreasing side branch di-

ameter the recirculation zone opposite the side branch became smaller and thinner.

A significant feature of viscous 3D flow in a bending tube is the existence of 

secondary motion in cross stream planes due to the centrifugal force and the change 

of main flow stream direction. Secondary flow also occurs in bifurcations, since a 

bifurcation can be considered to be composed of two tubes bending in opposite 

directions. Figs.5.27 and 5.28 show the secondary velocity vector field and profiles 

at different cross-sections (defined in Fig.5.25) for the maximum and minimum
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flow rates.

SITE D

SITE F

0 . 2m/s

(a) at maximum flow rate [ut = 40°)

1 7 5



0.2m/s

(b) at minimum flow rate (ut =  220°)

Fig. 5 .27  Secondary velocity vector field at different cross-sections for the max-

imum and minimum flow rates.

176



SITE A

(scaled up 2 times)

0 Dw

SITE D

0.3m/s

SITE B SITE E

SITE C SITE F

(a) at maximum flow rate (ut — 40°)
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SITE A
(scaled up 2 times)

Dw

SITE D

0 .3m/s

SITE B

Dw

SITE E

DW

SITE C SITE F

(b) at minimum flow rate (ut — 220°)

Fig. 5 .28 Secondary velocity profiles at different cross-sections for the maxi-

mum and minimum flow rates.
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Upstream of the bifurcation at sites A and B, secondary velocity is completely 

directed from the outer wall towards the branching side, pointing at upstream in-

fluences due to flow branching. The secondary velocities at the branching side are 

higher than those at the outer wall. Near the flow divider and slightly downstream 

of the bifurcation at sites C and D, secondary flow is almost entirely directed to-

wards the divider wall except in a small region near the side wall, where secondary 

flow is directed towards the outer wall. The highest secondary velocity is found 

near the flow divider at site C reaching about one third of the maximum axial 

velocity at the same site. Downstream of the bifurcation at site E secondary flow 

shows high resemblance to a Dean type vortex. Near the symmetry plane secondary 

velocities are directed towards the divider wall and near the side wall they point cir-

cumferentially back towards the outer wall. The highest secondary velocity at this 

site is observed near the side wall, but it is considerably lower than the secondary 

velocities observed near the flow divider at site C. Further downstream at site F 

secondary flow has reduced in strength as compared with the secondary flow at site 

E. Near the symmetry plane secondary velocities are directed towards the divider 

wall but are very small in magnitude; near the side wall they are directed circum-

ferentially towards the outer wall showing some resemblance to a Dean type vortex.

5 .3 .3 .3  Description of W all shear stress

Fig.5.31 shows the wall shear stress along the outer wall (W l) and the divider 

wall (W2) at specified phase angles. At the peak flow rate (u>t =  40°) the wall shear 

stress distribution along the outer wall (W l) indicates flow separation. This is seen 

through the changing sign of the wall shear stress as the flow passes through the 

separation point and the reattachement point. Wall shear stresses at the divider 

wall are unidirectional and high in magnitude. The maximum wall shear stress is 

20.077V/m2 occurring at about one-half of a tube diameter behind the flow divider.
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Fig. 5 .29 Wall shear stress along the outer wall (W l) and the divider wall (W2) at

three phase angles (40°, 90°, and 220°).



At the deceleration phase (ut — 90°) wall shear stress distributions are similar 

to those at the peak flow rate, but with a slightly enlarged separation region and 

lower minimum wall shear stress which is — 1.12Ar/m 2 and located between sites 

C and E. At the minimum flow rate the zone of flow separation is small and the 

minimum wall shear stress is very close to zero. The maximum wall shear stress 

on the divider wall is l0.66N/m2, which is about half of the maximum wall shear 

stress at the peak flow rate.

Variations of the wall shear stress at different levels of the bifurcation during 

the pulsatile cycle are illustrated in Fig.5.30 where the locations of A, D and F 

have been previously defined in Fig.5.25. At the upstream position of site A, the 

wall shear stress at the branching side is higher than at the outer wall, indicating 

the flow deviation towards the branching wall. It is noteworthy that although this 

skew of flow is not seen obviously in the velocity profiles presented in Fig.5.26, even 

a slight shift in flow would result in a relatively large difference in wall shear. The 

peak wall shear stress at this site is 12.69N/m2 and occurs on the branching wall 

at flow acceleration phase around cut — 25°.

At site D (distal to the flow divider), the phasic variations of the shear stress 

on the outer and the divider walls are completely different. While the peak shear 

stress t w  =  14.04V/m2 occurs on the divider wall at flow deceleration phase 

(ut ~  80°), the shear stress on the outer wall is approaching the minimum level 

t w  = — l.l2N/m 2. Low and negative shear stress on the outer wall can be observed 

throughout the cycle, demonstrating the existence of flow separation. During the 

early flow acceleration between phase angles 220° and 340°, the flow is nearly stag-

nate.

Downstream at site F, the shear stress on the outer wall is low in magnitude 

but remains positive, suggesting that no flow separation occurs at this level. The
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maximum shear stress on the divider wall at site F is 8.37N/m2] this is about 

60% of the peak wall shear stress found at site D. The maximum, minimum and 

time-averaged shear stresses on the outer and divider walls at sites A, D and F are 

summarised and compared with those of a non-Newtonian fluid later in Table 5.4 

(section 5.3.3.5).

5 .3 .3 .4  Effects of three dimensionality

One of the most important three-dimensional phenomena in bifurcation flow 

field is the existence of secondary motion. As the fluid elements leave the parent 

tube and enter a branch, they are accelerated by centrifugal forces towards the flow 

divider side which results in secondary flows that are directed towards the divider 

wall in the bifurcation plane and away from it along the side wall of the branch. 

This phenomenon has already been seen in Figs.5.27 and 5.28, in which the highest 

secondary velocity is found to be about one third of the maximum axial velocity 

at the same cross section, suggesting the strength of the secondary motion. It is 

expected that this secondary flow in conjunction with the axial motion would result 

in helical type flow patterns in the branches as reported in the experimental stud-

ies of Bharadvaj et al (1982a) and Ku et al (1985). These flow patterns can only be 

seen through flow visualisations of the three-dimensional particle pathes in the bi-

furcation. However, such flow visualisations from numerical predictive data are still 

very difficult to achieve at present. It is hoped to be accomplished in future studies.

Note that the presence of the secondary circulation in bifurcation flow field 

not only affects the flow patterns in branches, but also causes a redistribution of 

axial velocity in the bifurcation plane resulting in a shift of peak velocity nearer 

to the divider wall and a reduction of velocity along the outer wall. These will 

have a direct influence on the value of the wall shear stress. Thus, in order to 

obtain exact and precise flow patterns and shear stress distribution in branching
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arteries it becomes essential to investigate the flow in a three-dimensional geometry.

5 .3 .3 .5  Effects of non-N ew tonian viscosity

In order to investigate the effect of non-Newtonian viscosity on the flow field 

and distribution of wall shear stress, numerical calculations were carried out for 

a non-Newtonian fluid under the same pulsatile flow conditions. The employed 

non-Newtonian fluid has a representative viscosity of 0.0l3Kg/(ms), which equals 

the viscosity of the Newtonian fluid used in the previous calculation. Comparisons 

of Newtonian and non-Newtonian results were made for axial velocity profiles in 

the plane of bifurcation and the plane perpendicular to that of the bifurcation at 

selected cross sections over a complete cycle, wall shear stress distributions along 

the outer and divider walls at specified phase angles, as well as the time varying 

wall shear stress at different levels of the bifurcation plane.

Fig.5.31 shows the axial velocity profiles in (a) the bifurcation plane, and (b) 

the perpendicular plane at sites A, D and F at different phase angles over one 

cycle. The Newtonian velocity profiles are drawn with solid lines, and those of 

the non-Newtonian with circles. In general, the shape of velocity profiles and the 

basic features of the flow approximately agree between the Newtonian and the 

non-Newtonian fluids. However, certain differences do exist. It can be observed 

that the non-Newtonian fluid results in blunted velocity profiles due to the shear 

thinning effect, and reduced reverse flow velocity and separation zone. Numerical 

results show that in the non-Newtonian case, flow separation occurs only during 

the period between late flow acceleration (u)t =  15°) and middle of flow decelera-

tion (ut =  160°), which occupies about 40% of the whole cycle. Furthermore, the 

extent of this separation zone is significantly reduced: its length along the outer 

wall is about one-half of that found in the Newtonian case.
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0.5m/s SITE A
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0.5m/s SITE F

(b) in the perpendicular plane

Fig. 5.31 Comparison of axial velocity profiles between Newtonian (— ) and 

non-Newtonian (•••) fluid in (a) the bifurcation plane, and (b) the perpendicular 

plane.
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Table 5.4 gives a summary of the maximum forward flow velocities and the 

maximum reversed flow velocities at site D (2.5mm behind the flow divider) over 

one pulsatile cycle for both the Newtonian and non-Newtonian fluids. The relative 

difference defined as (Un  — Uu- n )/Un  is also provided. It is demonstrated that 

under the flow conditions studied here the difference in maximum forward flow ve-

locities between the Newtonian and non-Newtonian fluids is relatively small (within 

the range of 5.5% to 8.12%), but the difference in reversed flow velocities is signif-

icant (up to 90.5%).

t
M a x i m u m f o r w a r d  v e l o c i t y  ( m / s ) M o x i m u m  r e v e r s e d  v e l o c i t y  ( m / s )

( d e g ) N e w t o n i a n n o n -
N e w t o n i a n

Un - U a -N / t t r \

Un  W
N e w t o n i a n n o n -

N e w t o n i a n

0 0 . 7 7 6 0 . 7 1 3 8 . 1 2 - 0 . 0 1 3 N o

4 0 0 . 8 2 3 0 . 7 7 7 5 . 5 9 - 0 . 0 2 1 - 0 . 0 0 3 8 5 . 7 1

9 0 0 . 8 0 7 0 . 7 6 2 5 . 5 8 - 0 . 0 2 7 - 0 . 0 0 6 7 7 . 7 8

1 3 0 0 . 7 2 1 0 . 6 8 1 5 . 5 5 - 0 . 0 2 1 - 0 0 0 2 9 0 . 4 8

1 8 0 0 . 6 0 2 0 . 5 6 7 5 . 8 1 - 0 . 0 1 0 N o

2 2 0 0 . 5 5 1 0 . 5 2 0 5 . 6 3 - 0 . 0 0 4 N o

2 7 0 0 . 5 7 2 0 . 5 3 8 5 . 9 4 - 0 . 0 0 2 N o —

3 1 0 0 . 6 5 5 0 . 6 1 9 5 . 5 0 - 0 . 0 0 1 N o

Table 5 .4  Comparison of Newtonian and non-Newtonian flow: maximum for-

ward flow velocity and maximum reversed flow velocity at site D (2.5mm behind 

the flow divider).

Distributions of wall shear stress along the outer wall (W l) and the divider 

wall (W2) are compared at the peak flow rate, flow deceleration phase and mini-

mum flow rate in Fig.5.32, where solid line represents the wall shear stress of the 

Newtonian fluid, and circles represent that of the non-Newtonian fluid. The dia-
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gram shows that in the non-Newtonian case the wall shear stress along the outer 

wall is higher (about 31% higher in average). Along the divider wall no significant 

difference is noticed except that the peak shear stress is slightly reduced (up to 

8%) with the non-Newtonian fluid.

Fig.5.33 presents the time varying wall shear stress at different levels of the 

bifurcation over a complete cycle. Again, the shear stress of the Newtonian fluid is 

drawn as solid line, and that of the non-Newtonian fluid as solid line marked with 

circles. Upstream of the bifurcation at site A, the shear stress on both the outer and 

branching walls is higher with the non-Newtonian fluid. Distal to the bifurcation 

at site D and further downstream at site F, the shear stress in the non-Newtonian 

case is higher on the outer wall but slightly lower on the divider wall than those of 

the Newtonian fluid. Comparison of the maximum, minimum and time-averaged 

shear stress on the outer and divider walls at these sites is presented in Table 5.5.

locations
Maximum t ,  (N/m2) Minimum t u  (N/m2) Time-overaged (N/m2)

Newtonian non -
Newtonian Newtonian non — 

Newtonian Newtonion non—
Newtonion

A 7.36 8.29 4.85 5.87 6.34 7.26

D -0.026 0.97 -1.12 -0.43 -0.65 0.30

F 1.77 2.72 0.80 1.87 1.29 2.43

(a) on the outer wall

locations
Maximum t . (N/m2) Minimum t .  (N/m2) Time-averaged (N/m2)

Newtonian non-
Newtonian Newtonian non-

Newtonian Newtonian non-
Newtonian

A 12.69 13.16 7.33 8.36 9.34 11.10

D 14.04 12.93 8.01 7.65 11.36 10.60
F 8.37 8.39 4.82 5.03 6.75 6.77

(b) on the divider wall

Table 5.5 Comparison of Newtonian and non-Newtonian flow: maximum, min-

imum and time-averaged shear stress on the outer and divider walls at sites A, D 

and F.
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F ig .5.32 Comparison of Newtonian (— ) and non-Newtonian (• • •) flow: wall 

shear stress along the outer wall (W l) and the divider wall (W2) at three phase 

angles (40°, 90° and 220°).
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Fig. 5 .33  Comparison of time varying wall shear stress between 

Newtonian (— ) and non-Newtonian (• • •) fluid.
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5 .3 .3 .6 Com parison with L D A  m easurem ents of K u  and Liepsch

The comparison of the calculations and the LDA measurements is confined 

to axial velocity profiles in the bifurcation plane at specified phase angles since no 

further experimental data is available. In the experiment axial velocities were mea-

sured in the plane of the bifurcation at 25mm upstream and 2.5mm downstream of 

the flow divider. Comparisons of velocity profiles at these locations are shown in 

Figs.5.34(a) and (b) for the Newtonian and the non-Newtonian fluid respectively. 

Under the pulsatile flow conditions studied, upstream velocity profiles at phase 

angles 0° and 90° are very close to each other, so is the case for phase angles 180° 

and 270°. Therefore, comparison with the experiment is presented for phase angles 

90° and 180° only.

In the diagram numerical predictions are drawn with solid line and experi-

mental data with symbols (* for ut =  90°, o for u>t — 180°). It is evdient that 

upstream velocity profiles agree very well between the calculations and the mea-

surements with the Newtonian fluid. In the non-Newtonian case, comparison of 

upstream velocity profiles was not made since the experimental data was not avail-

able. Downstream in the bifurcation, some differences can be noticed. First, the 

predicted maximum velocities are higher than those of the measurements. Second, 

with the non-Newtonian fluid flow separation was found only for part of the cycle 

in the prediction but was shown to exist throughout the cycle in the experiment. 

These discrepancies may in large part due to the bifurcation corner effect: sharp 

corner in the prediction and rounder corner in the experiment. Previous experi-

mental study (Karino et al, 1979) have shown that in a rounded T-bifurcation a 

much larger flow recirculation zone with more rapidly circulating fluid exists along 

the bottom wall; these would also result in a reduced maximum velocity at cross- 

sections where flow recirculation is present.
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(a) With the Newtonian fluid

(b) With the non-Newtonian fluid

Fig. 5 .34  Comparison between calculations (— ) and measurements (* for cot — 

90°, o for ut =  180°): axial velocity profiles in the bifurcation plane 25mm up-

stream and 2.5mm downstream of the flow divider for (a) the Newtonian fluid, and 

(b) the non-Newtonian fluid.
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5.4 SU M M ARY

It this chapter, a comprehensive range of code validation excises has been 

presented, and the effects of various factors investigated. Comparisons with the 

analytical solutions and the published LDA measurements have demonstrated that 

the presented predictive scheme is efficient and reliable on bifurcation flow prob-

lems. Features such as the three-dimensionality of the geometry, the pulsatility of 

the flow and the non-Newtonian viscosity of the fluid should all be accommodated 

in order to obtain exact and precise flow patterns and distribution of shear stress 

in arterial bifurcation models.
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CHAPTER 6

P R E D IC T IO N S  O F F L O W  IN  3D  C A N IN E  F E M O R A L  

A R T E R Y  B IF U R C A T IO N S

6 .1  IN T R O D U C T IO N

Numerical predictions presented in the previous chapter are confined to ide-

alised bifurcation geometries under sinusoidal pulsatile flow conditions. In this 

chapter, numerical results for true physiological flow in 3D canine femoral bifur-

cations are presented and analysed. Geometries of the two bifurcation models 

(referred as A and B in later text) adopted in the calculations were based upon 

data from in vivo measurements of Jones et al (1990). In the predictions, blood was 

assumed to be (i) Newtonian and (ii) non-Newtonian obeying the power law; the 

vessel wall being rigid. For the upstream boundary condition, two types of phys-

iological velocity waveform were employed. One was an averaged velocity wave-

form in canine arteries. Another was the in vivo waveform measured upstream of 

each bifurcation models. The presentation of the numerical results concentrates 

on the axial and secondary flow velocity and the pulsatile wall shear stress (in 

physical units). Furthermore, the effects of upstream boundary conditions and 

non-Newtonian viscosity on the bifurcation flow field and wall shear stress are in-

vestigated. Comparison of numerical predictions and the in vivo measurements is 

finally presented.

6.2 P R O B L E M  D E F IN IT IO N

6.2 .1  Bifurcation G eom etry

The two bifurcation models adopted here were based on data from the in vivo 

measurements (Jones et al, 1990), in which branching angles, B-mode ultrasound
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images of the cross-sections of the upstream parent and both downstream daugh-

ter vessels, and the origin of both vessels were all photographed. The bifurcation 

geometrical data were measured from photographes. Fig.6.1 gives a schematic 

illustration and three-dimensional representation of the two canine ilio-femoral bi-

furcation models. In both models A and B, the parent and daughter vessels are 

straight, with the bifurcation lying in one plane which is the plane of symmetry. 

These assumptions are consistent with the measurements. The two models have 

similar configurations and differ only in vessel diameters and the parent to large 

daughter angle.

Fig.6.1 also illustrates the sites at which the comparison between numerical 

predictions and measurements is presented. In terms of the parent vessel diameter, 

site 1 is two diameters upstream of the flow divider in the parent artery, site 2 is at 

the level of flow divider in the large daughter vessel, site 3 and 4 are one and four 

diameters downstream respectively, and site 5 is one diameter downstream of the 

flow divider in the smaller daughter vessel. For convenience of comparison, they 

are placed at 60° to the vessel axes, since the measurements were taken at such 

positions.

6 .2 .2  Boundary Conditions

The choice of appropriate boundary conditions is often considered to be im-

portant in determining the flow field of interest. For the flow problem treated here 

the boundary of the flow domain comprises three types: the vessel wall, the inflow 

and the outflow boundaries. Since the vessel wall was assumed rigid, the no-slip 

condition was then valid, i.e., each velocity component was set equal to zero. At 

the bifurcation inlet, two types of boundary conditions were employed:

T yp e 1 Time-dependent velocity profiles in a straight tube calculated based 

on an average velocity waveform in canine arteries.
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01-  7 °

02-  40°

Fig. 6 .1  Schemaic illustration and three-dimensional representation of the two 

canine ilio-femoral bifurcation models.



T yp e 2  Instantaneous axial velocity profiles obtained from the in vivo mea-

surements at site 1.

Fig.6.2 shows an average canine velocity pulse waveform under normal condi-

tions. It was allowed to develop in a straight tube which was ten diameters long, and 

the corresponding calculated velocity profiles at the exit of the tube are displayed 

in Fig.6.3. The reason for choosing the tube to be 10 diameters in length rather 

than long enough to be able to generate a fully developed flow was that in the mea-

surements the parent arteries of the two bifurcation models were found relatively 

straight and without branching within 8-10 diameters upstream of the bifurcation. 

The time-dependent axial velocity profiles shown in Fig.6.3 were prescribed at the 

bifurcation inlet, which is referred to as the type 1 inflow boundary condition. 

For the type 2 inflow boundary condition, the instantaneous axial velocity profiles 

obtained from the in vivo measurements were directly imposed. Fig.6.4 shows the 

measured average velocity waveforms and the axial velocity profiles at site 1 for 

models A and B. As can be seen, these velocity profiles are relatively symmetric. 

In should be mentioned that for both types of upstream boundary conditions, only 

axial velocities were specified, secondary velocity components at the inlet were as-

sumed to be negligible.

At the outflow boundaries, there are generally three types of treatment: (i) 

to assume fully developed flow; (ii) to assume a zero condition of surface traction; 

and (iii) to specify a constant pressure. The first type is more restrictive as it re-

quires the flow rate ratio between the two branches to be known as a priori; also the 

length of the specified branch has to be large enough to permit development. The 

other two types are more realistic for the flow problem under consideration. Hence 

the constant pressure outflow condition (iii) was used. For the two bifurcations 

investigated, zero pressures were specified at both outlets which were placed at five 

diameters (in terms of parent vessel diameter) downstream from the flow divider.
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Fig. 6 .2  Average canine velocity pulse waveform under normal conditions.

Fig. 6 .3  Calculated axial velocity profiles at the exit of a straight tube

10  diameters long for the pulse period between —¡| |<—.
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Fig. 6 . 4  Measured average velocity waveforms and instantaneous upstream ax-

ial velocity profiles in models A and B for the pulse period between —*| .
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6 .2 .3  Grid Resolution Tests

In order to determine grid dependence, preliminary calculations were carried 

out for bifurcation model B under steady flow condition using three grid distribu-

tions, i.e, 12, 18 and 24 elements in the radial direction. Results of these calcu-

lations indicated that a grid with 18 elements in the radial direction was a good 

compromise between accuracy and available computer time and storage. The av-

erage velocity differences were found to be 0.19% with the finer grid and 6.17% 

with the coarser grid. Since in both bifurcation models a symmetry plane was 

assumed to exist so that simulations were confined to only half of the bifurcation. 

The resulting computational mesh consists of 5040 eight-node elements and a total 

of 6070 nodes.

6.3  N U M E R IC A L  R E SU LTS

Flow predictions were conducted under three different schemes: (i) the type 

1 pulsatile upstream flow condition with a Newtonian assumption for the blood, 

(ii) the type 2 upstream flow condition with a Newtonian assumption, and (iii) the 

type 2 upstream flow condition with a non-Newtonian assumption for the blood. 

In this section, numerical results for scheme (ii) are presented. Predictions for (i) 

and (iii) are presented and compared with those of scheme (ii) later in section 6.4, 

where effects of the upstream boundary condition and the non-Newtonian viscosity 

on the velocity field and wall shear stress are discussed.

When blood is taken to be homogeneous and Newtonian, its density is 

1.05xl03K g/m 3 and kinematic viscosity about 4 x l0 _6m2/s (Pedley, 1980). Un-

der the in vivo pulsatile flow conditions (type 2), the average Reynolds numbers 

(defined as Re =  where V  is the average flow rate in the parent vessel over a
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whole cycle) were 92 and 108, and the Womersley parameters were 2.04 and 2.39 

for bifurcation models A and B respectively. These values are in the lower physio-

logical range, and therefore turbulent effects are unlikely.

6 .3 .1  Velocity Field

Velocity fields are presented for the two bifurcation models at the pulse phases 

of accelerated flow Ap, maximum positive flow Bp, decelerated flow Cp and max-

imum reverse flow Dp as defined in Fig.6.5. Figs.6.6 and 6.7 show the axial ve-

locity profiles in the plane of the bifurcation for models A and B respectively. A 

three-dimensional view of the axial velocity at cross-sections perpendicular to the 

bifurcation plane at sites 1-5 (as defined in Fig.6.1 ) are presented in Figs.6.8 and 

6.9 where the outer wall (the non-divider side) is seen from front.

MODEL (A ) MODEL (B )

Fig. 6 .5  Definition of pulse phases where numerical results

are presented.
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toO4̂

Fig. 6 .6  Axial velocity profiles in the bifurcation plane of model A at four dif-

ferent phases Ap, Bp, Cp and Dp during a cardiac cycle.



Fig. 6 .7  Axial velocity profiles in the bifurcation plane of model B at four dif-

ferent phases Ap, Bp, Cp and Dp during a cardiac cycle.
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Fig. 6 .8  Three-dimensional representation of axial velocity at cross-sections 

perpendicular to the bifurcation plane at sites 1-5 of model A during a cardiac 

cycle.
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Fig. 6 .9  Three-dimensional representation of axial velocity at cross-sections 

perpendicular to the bifurcation plane at sites 1-5 of model B during a cardiac 

cycle.



These plots indicate that the essential features of the flow in bifurcation mod-

els A and B are the same. In the parent vessels, velocity profiles are hardly affected 

by the flow branching downstream. They show a slight tendency to be skewed to-

wards the large daughter vessel side, but otherwise rather symmetric. Reverse flow 

occurs during late diastole. In the two daughter vessels, velocity profiles vary with 

position and phase during the pulse cycle. At the level of the flow divider in the 

larger daughter vessels, velocity profiles are slightly deviated from the centre-line 

towards the non-divider side during early flow acceleration, but gradually shift 

back to the centre-line and shift further towards the flow divider side during flow 

deceleration. As the flow moves downstream, the peak velocity returns to the centre 

of the vessel, and near the exits velocity profiles resemble very much fully devel-

oped time-dependent long tube profiles. On the outer wall of the larger daughter 

vessels, flow separation is not found during flow acceleration but is noticed during 

late flow deceleration just before flow reversal. This suggests that in bifurcation 

flow regions separated flow may not always exist throughout the cycle, its presence 

depending largely upon some physical parameters which characterise the flow, such 

as Reynolds number and flow boundary conditions. This finding is consistent with 

previous experimental observations (Richardson and Christo et al, 1990; Cho et al, 

1985). The size of this separation zone in the two models is found up to 30% of 

the vessel diameter extending from the outer wall on the larger daughter vessel side.

In the smaller daughter vessels, velocity profiles are rather symmetric during 

early flow acceleration but are soon shown to be skewed towards the flow divider 

side near the branching areas. During late flow deceleration, flow separation can 

be observed at the level of the flow divider. This separation zone occupies a max-

imum of 75% of the vessel diameter along the outer wall on the smaller daughter 

vessel side in both cases. As the flow moves downstream, however, this flow separa-

tion zone dies out rapidly and the flow is totally reversed across the vessel sections.
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Near the outlets of the smaller daughter vessels, velocity profiles are fully developed.

In Figs.6.11 and 6.12 are presented secondary velocity vector fields at defined 

cross-sections at pulse phases of maximum positive flow Ap, decelerated flow Bp 

and maximum reversed flow Cp for the bifurcation models A and B respectively. 

The right hand side at each cross-section corresponds to the divider wall. It is 

seen that in the two models A and B the structure of the secondary circulation is 

basically the same but differs in some details. In the parent vessel at cross-section 

A1-A2 which is 0.2mm downstream from the entrance, secondary velocities are 

very small during positive flow but are relatively large and rather distorted during 

reverse flow. This results from the assumption of zero secondary velocity field made 

at the inlet. In model A where the Reynolds number is lower than that in model 

B, the effect of this assumption is more obvious. However, the errors introduced 

are shown to diminish downstream. In fact, such an approximation is analogous to 

the accepted procedure for a numerical experiment to test equation stability. For 

example, in Collins (1980), even a substantial deliberate error in axial velocity was 

shown rapidly to diffuse out to a negligible effect, thus demonstrating good stability 

in the algorithm. Nevertheless, it would be preferable to include measurements of 

secondary as well as axial velocities for an upstream boundary condition wherever 

possible.

In the larger daughter vessels at cross-sections B1-B2 and C1-C2, the cen-

trifugal force induces a secondary flow which moves in a spiral course from the 

divider wall to the outer wall (non divider side) along the side wall and returns 

back along the symmetry plane during positive flow. The secondary velocities at 

the level of B1-B2 are larger than those at C1-C2 in both models, but a compari-

son between them shows that the secondary vortices in model B are much stronger. 

The centre of this secondary vortex is situated near the vertical centre-line of the 

cross-sectional plane. It moves down towards the symmetry plane as the flow
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moves downstream. In the smaller daughter vessel at cross-section D1-D2, similar 

secondary vortex patterns are found in model B, but no vortex motion is observed 

at this level in model A. During flow reversal, secondary velocities in both daughter 

vessels are very small.

The maximum forward flow velocity, maximum reversed flow velocity and the 

maximum secondary flow velocity at the level of flow divider in both models A and 

B at defined pulse phases are summarised in Table 6.1. It shows that in the two 

cases studies, flow reversal and secondary motion at the level of the flow divider are 

more pronounced in model B, for which the secondary flow velocity at the maximum 

flow rate is up to 23% of the maximum axial velocity at the level of the flow divider.

M o x .  f o r w o r d  f l o w 
v e l o c i t y  ( m / s )

U  mo*

M a x .  r e v e r s e  f l o w 
v e l o c i t y  ( m / s )

Umin

M a x .  s e c o n d a r y  
f l o w  v e l o c i t y  ( m / s )

Vmox
Vmox
ii ( % )

M o d e l
A

A p 0 . 1 2 5 7 0 . 0 0 4 5 3 . 6

B p 0 . 1 9 7 1 0 . 0 1 5 8 8 . 0

C p 0 . 0 4 0 7 - 0 . 0 0 6 6 0 . 0 0 5 0 1 2 . 4

D p - 0 . 0 2 6 2 0 . 0 0 0 6 2 . 3

M o d e l
B

A p 0 . 1 2 1 9 0 . 0 2 3 5 1 9 . 3

B p 0 . 3 4 1 0 - 0 . 0 1 2 7 0 . 0 7 1 8 2 2 . 9

C p 0 . 0 6 5 4 - 0 . 0 5 6 4 0 . 0 1 2 5 1 9 . 1
D p 0 . 0 0 5 3 9 . 4

Table 6 .1  Maximum forward flow velocity, maximum reversed flow velocity and 

maximum secondary flow velocity at the level of flow divider in models A and B 

during a cardiac cycle.

212



MODEL (A )

0 .02m/s (Ap)
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0 . 02m/s (Bp)

______  0 . 0 2 m / s  (Cp)

Fig. 6 .10  Secondary velocity vector field at different cross-sections of bifurca-

tion model A during a cardiac cycle.
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MODEL (B)

0 . 05m/s (Ap)
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D2

0 . 05m/s (Cp)

Fig. 6 .11  Secondary velocity vector field at different cross-sections of bifurca-

tion model B during a cardiac cycle.
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6.3.2  W all Shear Stress

Wall shear stress is presented at different locations in the parent and larger 

daughter vessels in both models over a cardiac cycle. As shown in Figs.6.12 and 

6.13, location 1 is one diameter above the flow divider in the parent vessel; location 

2, 3 and 4 are at the divider wall of the larger daughter vessel 0.5mm, 1.5mm and 

2.5mm downstream of the flow divider respectively; while locations 5,6 and 7 are 

at the corresponding levels at the outer wall (non-divider side).

Location 1 experiences a shear stress ranging from —0.63 to 1.92 N/m2 in 

model A and —0.98 to 3.35 N/m2 in model B. The peak wall shear stress occurs 

at the systolic acceleration phase which leads that of the peak flow rate by about 

0.05tp*. The wall shear stress at the divider wall (locations 2-5) is relatively high. 

At location 2 the maximum shear stress reaches a value of 2.21 N/m2 in model A 

and 5.03 N/m2 in model B occurring at the flow deceleration phase which is about 

0.02tp behind the phase of peak flow rate. As flow moves downstream, the value 

of peak wall shear stress drops.

Along the outer wall (locations 5-7) of model A, the variation of wall shear 

stress follows the pattern found at location 1, but with slightly reduced values. 

Flow separation in this model does not occur until late flow deceleration just be-

fore flow reversal. At location 5, the minimum wall shear stress is —0.47 N/m2 

and the time averaged mean value over the entire cycle is 0.21 N/m2. The outer 

wall of model B exhibits more reversals of wall shear stress. At location 5, the wall 

shear stress reaches a value of 2.92 N/m2 at the systolic acceleration phase, then 

falls and begins to shift in the negative direction at the middle of flow deceleration 

(t=0.54tp), indicating the beginning of flow separation. Here, the minimum wall 

shear stress is —0.89 N/m2 and the time averaged mean value is 0.20 N/m2. As

* Pulse time.
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flow moves downstream, the value of wall shear stress rises.

Fig. 6 .12  Wall shear stress vs phase at selected sites in model A.
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Fig. 6.13 Wall shear stress vs phase at selected sites in model B.

2 1 9



The maximum, minimum and the time averaged wall shear stresses at loca-

tions 1-7 in both models are listed in Table 6.2 in a later section where these values 

are compared with those obtained from a non-Newtonian model for the blood.

Fig.6.14 shows the shear stress along the parent-larger daughter outer wall 

(o o o) and the larger daughter divider wall (xxx) of model B at specified pulse 

phases. At the peak flow rate, the shear stress along the outer wall drops as the 

outer corner of the bifurcation approaches indicating a tendency of flow separation. 

Along the divider wall relatively high shear stress occurs with the maximum value 

appearing immediately after the flow divider. It then falls gradually until coincid-

ing with the shear stress on the outer wall at about 3 diameters downstream from 

the flow divider. During flow deceleration, the wall shear stress along the outer wall 

becomes lower and turns to negative at t=0.54tp. The minimum wall shear stress 

occurs at the level of the flow divider on the outer wall, while on the divider wall 

the wall shear stress is at its maximum. During the phase of peak flow reversal, 

wall shear stress along both the outer and the divider walls are low and negative 

suggesting a totally reversed flow in the parent and the larger daughter arteries.
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Fig. 6 .14  Wall shear stress along the outer wall (o o o) and the 

divider wall (xxx) of model B at specified phases.
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6.4  IN F L U E N C E S  OF V A R IO U S  F A C T O R S

6.4 .1  Bifurcation G eom etry

It is known that individual variations in the anatomy of arterial bifurcations 

both in human and in other mammalian species are rather astonishing. For the two 

canine femoral bifurcation models studies here, although the basic configuration of 

the two models principally agree, they differ slightly in detailed geometrical data. 

As seen from Fig.6.1, model A has a smaller parent vessel diameter and a smaller 

parent to larger daughter area ratio (1.09 for model A and 1.51 for model B), it 

also has a smaller parent to larger daughter angle (7° in model A and 15° in model 

B).

From the results of velocity field and wall shear stress presented in earlier 

sections, it can be observed that while the essential features of the flow are ap-

proximately the same in both models, there are at least three differences. First, 

the duration of reversed flow in the bifurcation outer corner area is different in the 

two models. As shown in Fig.6.15, the outer corner nearby area in model B experi-

ences more flow reversals than that in model A. At location 3 in model B reversed 

flow occurs during approximately 40% of the entire cycle, while at the same site in 

model A the duration of reversed flow is about 27% of the pulse cycle. Second, as 

listed in Table 6.1 secondary flow is more pronounced in model B owing partially 

to the larger branching angle between the parent and the larger daughter vessels. 

Third, as a consequence of the relatively strong secondary flow, axial velocity pro-

files at and after the level of flow divider in model B show more skewing towards the 

divider wall, hence resulting in higher velocity gradient differences between outer 

and divider walls.

However, these differences can/iot be fully explained with the rather small 

geometrical deviation of the two models. The other fact which should not be ig-
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nored is that these calculations were performed using the individual flow waveforms 

measured in each models. The difference in their flow waveforms must also be ac-

counted as another reason for these.

1 2  3 4 5

o.■p

1 . 0  

•p 0 .8  

0.G 

0. 4  

0 . 2  

0.0

]_ _ _ _ £ 3_ _ _ _ i J_ _ _ J 3_ _ _ _ _ U

Model A Model B

Fig. 6 .15 Duration of flow reversal in the outer corner region 

at defined points over a cardiac cycle.
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6.4.2 Upstream Flow Conditions

It was mentioned in section 6.2.2 that numerical predictions were carried out 

under two types of upstream flow conditions. Results presented so far have been 

concentrated on those obtained using the in vivo measured time-dependent up-

stream velocity profiles (type 2). It has been known that flow field and wall shear 

stress distribution are governed by upstream flow conditions in terms of Reynolds 

number, Womersley parameter and flow waveform. The effects of Reynolds num-

ber have been investigated in a T-bifurcation under steady flow conditions in last 

chapter. Here, the effect of flow waveform will be examined.

In Fig.6.16 dimensionless axial velocity profiles obtained using the specific in 

vivo measured flow waveform are compared with those from an averaged flow wave-

form in canine arteries. Due to the large amount of data involved, comparisons 

were only made for model A at phases of (a) flow acceleration, (b) peak flow rate 

and (c) maximum reversed flow. In the diagram solid lines represent results ob-

tained from the in vivo measured flow waveform (type 2), open circles represent 

those from the averaged flow waveform (type 1). It is obvious that velocity pro-

files from the two different waveforms do not agree even qualitatively. Using the 

average flow waveform, velocity profiles are more skewed towards the divider side 

owing to the larger Reynolds number (about 2.8 times higher than that in the type 

2). As a consequence of this, wall shear stress differences between the divider and 

outer walls are much greater in the case of type 1 waveform. This can be seen from 

Fig.6.17, where the shear stress on the divider and outer walls are compared. Since 

the pulse frequency and the shape of flow waveform are different, the comparison 

of wall shear stress is presented for the major part of flow acceleration and flow 

deceleration only. As shown in the figure, the peak wall shear stress on the divider 

wall is significantly higher, while the minimum shear stress on the outer wall is 

much lower when the type 1 upstream flow condition is employed. Therefore, to
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obtain the exact information on flow field and wall shear stress existing in various
A ,

branching rteries, individual flow waveform has to be used.

Fig. 6 .16  Comparison of axial velocity profiles in the bifurcation plane of model 

A between type 1 (o o o) and type 2 (— ) upstream flow conditions.

(Umax is the maximum axial velocity at the inlet.)
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t/tp

(a) OUTER WALL

(b) DIVIDER WALL

MODEL A

Fig. 6 .17  Comparison of time varying wall shear stress between type 1 (o o o) 

and type 2 (— ) upstream flow conditions.

(Wall shear stress was non-dimensionalised with respect to the wall shear stress of 

the fully developed flow at the inlet.)
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6.4.3 Non-Newtonian Viscosity

In order to investigate quantitatively the non- Newtonian effects on the veloc-

ity profiles and the distribution of wall shear stress, calculations were performed 

with both Newtonian and non-Newtonian assumptions for the blood under the 

same pulsatile flow condition (in vivo measured upstream velocity profiles) for 

each bifurcation model. In the non-Newtonian case a general power law expres-

sion, r == 0.042-70'61, was used (see section 4.3 for detail). In Figs.6.18 and 6.19 

calculated axial velocity profiles of a Newtonian fluid are compared with those of 

a non-Newtonian fluid for models A and B respectively. The Newtonian veloc-

ity profiles are drawn with solid lines and those of the non-Newtonian with open 

circles. The comparisons show rather minor differences. In general, the velocity 

profiles are blunted in the non-Newtonian case due to the shear thinning behaviour 

of the blood. This flow phenomenon has been demonstrated by others (Moravec 

and Liepsch, 1983; Perktold et al, 1991). The maximum difference in axial velocity 

obtained is 0.026m/s in model A and 0.076m/s in model B.

Since the variation of wall shear stress is of special interest in atherogenesis, 

comparisons of wall shear stress between the Newtonian and the non-Newtonian 

fluid were made. Figs.6.20 and 6.21 show the comparisons at pulse phases of (a) 

flow acceleration, (b) peak flow rate, (c) flow deceleration and (d) maximum re-

versed flow for models A and B respectively. Solid lines represent the wall shear 

stress of the Newtonian fluid and circles represent that of the non-Newtonian. 

Surprisingly, the influence of non-Newtonian viscosity is rather different in these 

two cases. In model A, the positive wall shear stress is slightly higher and the 

negative wall shear stress is lower in the non-Newtonian case. Whereas in model 

B, the peak wall shear stress is reduced in a relatively large proportion with the 

non-Newtonian fluid. The maximum, minimum and time averaged shear stress at 

locations 1-7 in both models over a entire cycle are summarised in Table 6.2. It
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is observed that for the non-Newtonian fluid the time averaged wall shear stress 

is up to 10% higher in model A but 26% lower in model B, the largest difference 

occurring at location 2 in model B.

MODEL (A )

Fig. 6 .18  Comparison of axial velocity profiles in the bifurcation plane of model 

A between Newtonian (— ) and non-Newtonian (o o o) fluid.
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( a )  (b )

MODEL (B )

Fig. 6 .19  Comparison of axial velocity profiles in the bifurcation plane of model 

B between Newtonian (— ) and non-Newtonian (o o o) fluid.
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Fig. 6 .2 0  Comparison of time varying wall shear stress between Newtonian (— ) 

and non-Newtonian (• • •) fluid at selected sites in model A.
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Fig. 6 . 2 1  Comparison of time varying wall shear stress between Newtonian (— ) 

and non-Newtonian (• • •) fluid at selected sites in model B.
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locotions

Moximum t * (N/m2) Minimum t * (N/m2) Time-averaged (N/m2)

Newtonian non-
Newtonian Newtonian

non-
Newtonian Newtonian non-

Newtonian

1(P) 1.92 1.97 -0 .63 -0.99 0.29 0.29

2(D) 2.21 2.23 -0 .30 -0 .67 0.45 0.46

3(D) 1.74 1.85 -0 .3 5 -0 .77 0.36 0.37

4(D) 1.61 1.81 -0 .37 -0 .79 0.33 0.34

5(0) 1.47 1.67 -0 .47 -0 .83 0.21 0.24

6(0) 1.51 1.71 -0 .45 -0 .80 0.25 0.28

7(0) 1.52 1.73 -0.42 -0.79 0.27 0.31

(o) Model A

locations

Maximum r* (N/m2) Minimum t .  (N/m2) Time-averoged (N/m2)

Newtonian non-
Newtonian Newtonian

non-
Newtonian Newtonian

non-
Newtonian

1(P) 3.35 2.76 -0 .98 -1 .38 0.30 0.25

2(D) 5.03 3.54 -0 .5 3 -1.01 0.83 0.61

3(D) 4.59 3.48 -0.59 -1 .09 0.74 0.59

4(D) 3.83 3.03 -0.61 -1.11 0.63 0.52

5(0) 2.92 2.44 -0.89 -1 .24 0.20 0.17

6(0) 3.06 2.56 -0 .86 -1 .24 0.27 0.22

7(0) 3.10 2.64 -0.82 -1 .23 0.31 0.26

(b) Model B

* P: parent vessel 
D: divider wall 
0: outer woll

Table 6 .2  Comparison of Newtonian and non-Newtonian flow: Maximum, min-

imum and time-averaged wall shear stress at selected locations in models A and B 

over a cardiac cycle.
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The somewhat opposite effects of the non-Newtonian behaviour on the wall 

shear stress in the two models indicate that the non-Newtonian effects are very 

sensitive to the flow conditions (e.g. Reynolds number) being studied. In the two 

models investigated here, although the time averaged Reynolds numbers do not 

differ greatly, the peak Reynolds numbers do (172 for model A, 304 for model B). 

Previous numerical studies (Appendix F, publication 6) have demonstrated that 

when the non-Newtonian characteristics of the bloodaretaken into account, the 

average value of wall shear stress tends to increase at low Reynolds numbers but 

decrease at high Reynolds numbers. Therefore, the effects of non-Newtonian vis-

cosity on the distribution of wall shear stress can not be generalised. They must 

be investigated under individual flow conditions.
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6.5 C O M P A R IS O N  W I T H  IN  V IV O  M E A S U R E M E N T S

To verify the computational results, quantitative comparisons between the cal-

culations and the in vivo measurements were made. The predictive data used in 

the comparisons were those obtained from the simulation scheme (iii), i.e., under 

the in vivo measured upstream flow condition with a non-Newtonian model for the 

blood. When making a comparison like this, there are several aspects which must 

be taken into account.

First of all, the arterial wall was treated as rigid in the predictions whereas 

blood vessels are viscoelastic. Although the deformable nature of the vessel is well 

known to be important in wave reflection and propagation, its effects on local ve-

locity profiles are still unclear. Most of the previous studies tend to regard this as a 

“secondary” effect. However, recent experimental investigations (Ku and Liepsch, 

1986) have found that the vessel wall compliance might have a significant effect 

on local bifurcation flows, especially when it is coupled with the non-Newtonian 

character of the blood.

Secondly, the measurements were performed by using the Doppler ultrasound 

device which measures the velocity components in the direction of beam (at an an-

gle of 60° to the vessel axis), but calculates the velocity as though it is parallel to 

the vessel axis. This assumption is likely to give misleading results in such complex 

flows.

Thirdly, there are uncertainties about the velocity very close to the wall and 

the position of the moving wall itself in the measurements. Therefore, comparison 

at this stage can only be done with caution.
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Figs.6.22 and 6.23 show the comparison of axial velocity profiles between pre-

dictions (— ) and the in vivo measurements (ooo) at sites 1-5 (defined in Fig.6.1) 

over a cardiac cycle for models A and B respectively. In each case, the right hand 

side is the outer wall and the left hand side is the flow divider side. Comparisons 

at site 1 demonstrate a very good agreement between the calculations and the 

measurements in both models, indicating that using the instantaneous axial veloc-

ity profiles measured at site 1 (60° to the vessel axis) as boundary conditions at 

the inlet (orthogonal to the vessel axis) is reasonably accurate. This is because in 

parent vessels upstream of the flow divider, flow is essentially parallel to the vessel 

axis and the axial velocity gradients are small.

Good agreement is also observed during late diastole in both daughter vessels 

at all sites, except at site 5 in the smaller daughter vessel of model A where pre-

dicted velocity profiles are totally reversed during pulse phases of late flow reversal 

(t5, t6) whereas measured profiles are shown to direct forward.

t 2

MODEL (A ) MODEL (B )

(a) Definition of pulse phases where results are compared
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Fig. 6 .22  Comparison between calculations (— ) and measurements (ooo): axial 

velocity profiles at sites 1-5 over a cardiac cycle for model A. The right hand side 

is the outer wall and the left hand side is the flow divider side.
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Fig. 6.23 Comparison between calculations (— ) and measurements (ooo): axial

velocity profiles at sites 1-5 over a cardiac cycle for model B. The right hand side 

is the outer wall and the left hand side is the flow divider side.



In pulse phases of flow acceleration and early flow deceleration (tl, t2, t3), 

some differences are noticed in both cases. Measured velocity profiles are higher 

than those predicted in model A, but are somewhat lower than the numerical re-

sults in model B. These discrepancies may in large part attribute to the assumption 

of parallel flow made in the measurements, since the secondary motion in these bi-

furcations (as discussed in a previous section) is non-negligible.

Attempt was also made to compare the computed secondary velocities with 

the in vivo measurements in which the secondary velocity components normal to 

the axis of the vessel in the bifurcation plane were measured at the level of the 

flow divider. This was achieved by angulating the transducer at 90° to the 

axis of the larger daughter vessel, so that the secondary velocity profile directed 

towards the flow divider is readily measurable. Comparison of secondary velocities 

in the plane of the bifurcation at site 6 in model B is presented in Fig.6.24, where 

the left hand side corresponds to the flow divider side, and the right hand side is 

the outer wall, forward flow being the flow directed from the outer wall towards 

the flow divider. The figure shows a generally good agreement between the calcu-

lations and the measurement. Secondary velocity profiles are skewed towards the 

flow divider side, except during early flow acceleration they are deviated towards 

the outer wall. Secondary flow in the plane orthogonal to that of the bifurcation 

is found to be insignificant at the level of the flow divider both in the predictions 

and in the measurements.
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Fig. 6.24 Comparison between calculations (— ) and measurements (o o o): sec-

ondary velocity profiles in the bifurcation plane at the level of the flow divider (site 

6) over a cardiac cycle. The right hand side is the outer wall and the left hand side 

is the flow divider side.

6.6 S U M M A R Y

Numerical predictions of the flow and shear stress in true canine femoral bifur-

cations were carried out under physiological pulsatile flow conditions. The calcula-

tions were performed on a supercomputer CRAY X-M P/28, on which a complete 

cycle took about two and half hours (50 time steps per cycle).
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Numerical results show that in the two canine femoral bifurcation models stud-

ied, the flow separation and secondary motion are rather weak in model A, hence 

the resulted shear stress differences between the divider and outer walls are rela-

tively small. In model B, the duration of flow reversal occupies about 40% of the 

entire cycle and the secondary velocity at the level of the flow divider is up to 23% 

of the axial velocity at the same site. The maximum wall shear stress obtained 

in model B is 5.4iV/m2 occurring near the flow divider on the divider wall, and 

the lowest time averaged wall shear stress is found at the outer wall of the larger 

daughter artery. In both cases investigated here, variations of the wall shear stress 

generally follow their flow waveforms in shape. No rapid oscillation in wall shear 

stress is found on the outer wall as shown to be present at the outer sinus of human 

carotid artery by others (Ku et al, 1985).

Comparisons between the Newtonian and non-Newtonian results demonstrate 

that, under the flow conditions studied the non-Newtonian characteristics of the 

blood do not have marked effect on determining general features of the flow field. 

However, as far as the wall shear stress is concerned, the non-Newtonian effects 

are significant.

Comparison between the predictions and the in vivo measurements show that 

while there is a reasonable agreement in general, local discrepancies still exist. 

These discrepancies may attribute to several factors, such as, the rigidness of the 

vessel wall in the prediction, and the assumption and uncertainties involved in the 

measurements. However, which of these factors is more important and to what 

extent the comparisons are affected by them are not known. These will be clari-

fied by future numerical studies with the distensibility of the arterial wall being 

accommodated.
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CHAPTER 7

CONCLUSIONS

In the present study a full analytical treatment of blood flow in general 3-D 

arterial bifurcations is presented. The flow in artery is assumed to be laminar 

and incompressible, the blood is (i) Newtonian, and (ii) non-Newtonian, the vessel 

wall being rigid. Under these assumptions, the three-dimensional time-dependent 

Navier-Stokes equations are solved using a newly developed CFD code ASTEC, 

which applies the finite volume method on an unstructured finite element mesh.

In order to provide accurate and reliable numerical results, code validation 

exercises are considered to be essential. For these, a comprehensive approach has 

been adopted, i.e., by means of comparison with (i) analytical solutions, (ii) exper-

imental data, and (iii) an alternative code. A variety of bifurcation geometries and 

flow conditions has been treated in this study. First of all, extensive calculations 

have been carried out for flow in idealised 90° T-bifurcations. In the 2-D case, 

steady flow at five different combinations of Reynolds number and branch to main 

tube flow rate ratio, as well as pulsatile flow driven by a sinusoidal upstream pres-

sure gradient have been investigated. Quantitative comparisons with the published 

LDA measurements (Liepsch and Moravec (1982) for steady flow, Khodadadi and 

Liepsch et al (1988) for pulsatile flow) have demonstrated a very good agreement 

between the numerical predictions and the laboratory measurements, especially in 

the pulsatile flow case the agreement is found to be much better than that also 

presented by Khodadadi and Liepsch et al (1988). Moreover, the comparison with 

the calculation obtained using an alternative code FLOW3D has further proved 

the reliability of the numerical predictions. These results also demonstrate that 

to obtain the exact information on flow field and wall shear stress in bifurcation 

regions, pulsatile flow can not be substituted by steady flow studies.
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To investigate the 3-D features of the flow and the non-Newtonian effects, 

pulsatile flow in a 3-D T-bifurcation has been calculated for a Newtonian and a 

non-Newtonian fluid respectively. The numerical results demonstrate that the bi-

furcation flow is substantially three-dimensional; this is seen through the Dean type 

vortex motion found in cross-stream planes of the branches. With respect to the 

effect of non-Newtonian viscosity, it has been shown that under the flow conditions 

studied ((Re)ave =  250, 14/V0 =  0.5), differences between the Newtonian and the 

non-Newtonian flow occur mainly in the region of flow separation. With the non- 

Newtonian fluid, the duration of flow separation is shorter and the reversed flow is 

weaker. As for the wall shear stress, the maximum shear stress on the divider wall 

is slightly reduced (about 8%) while the minimum shear stress on the outer wall is 

significantly increased (about 61%) in the non-Newtonian case. Comparisons with 

the rather limited experimental data have demonstrated a good qualitative and a 

reasonable quantitative agreement.

Finally, as a first step towards providing comparable numerical results to in 

vivo measurements, blood flow in true canine femoral arterial bifurcations has been 

predicted under physiological flow conditions. Influences of various factors such as 

bifurcation geometry, flow waveform and non-Newtonian viscosity have been in-

vestigated. From the results obtained it can be concluded that the flow field and 

distribution of wall shear stress in branching arteries are sensitive to all these fac-

tors. To gain a quantitative understanding on the velocity field and wall shear 

stress, flow studies have to be carried out using the individual geometric data and 

flow conditions for each case. Comparisons between the predictions and the in 

vivo measurements have been made cautiously. While there is a reasonable agree-

ment in general, local discrepancies do exist. These may attribute to the rigid 

wall assumption made in the predictions and the parallel flow assumption in the 

measurements. However, at this stage it is difficult to judge which factor is more
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important. This will be clarified by future studies with the compliant nature of the 

arterial wall taken into account.

To incorporate the distensibility of the wall, a simplified approach has been 

proposed and tested in a straight elastic tube. Nevertheless, applications of this ap-

proach to bifurcation geometries seem to be impracticable due to the large amount 

of memory required. In future studies, the transient gridding technique (avail-

able in the latest version of FLOW3D) will be adopted to accommodate this effect.
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A P P E N D I X  A

General Form of The Stress Tensor Equation For 

Incom pressible N on-N ew tonian  Fluids

It was defined in chapter 2 that the stress tensor for an incompressible 

Newtonian fluid is given by:

(Tij P^ij "h ^pSij ( 1 )

where ¡i is a constant. For non-Newtonian fluids, the relationship between the 

stress and strain is not the simple one given in Eqn.(l). However, for certain types 

of non-Newtonian fluids a relationship of the form of Eqn.(l) still applies:

Cij —  pSij -)- S\j ( 2)

where pn-N  is not a constant as p is, but a function of the strain rate tensor S tj . 

Since p n - N  is a scalar, in order to keep Eqn.(2) tensorially correct, i.e., every term 

is the equation must be a tensor of the same rank, p n - N  must be a scalar function 

of Sij. In other wards, it must be a function of the invariants of Sij. The invariants 

are those special combinations of the components of Sij that transform as scalars 

under a rotation of the coordinate system. Since Sij is a symmetric tensor, it has 

three invariants:

II sr> (3 )

/ .  =  I E s . A
* i

(4 )

h  =  E J 2 E ^ s u s 2js 3k (5 )
« j k
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For an incompressible fluid, I\ equals zero. In many simple flows (e.g. axial flow in 

a tube, cone -plate flows et al) I3 vanishes identically, and it is commonly assumed 

that / 3 is not very important in other flows. Hence, it is customary to assume that 

p n - N  is a function of / 2 only. But when ij =  0, / 2 is negative, hence it is more 

convenient to use

■h — 3 /2i — h  — ~Sij ■ Sij (6)

Thus, Hn—N is a function of J2 and Eqn.(l) can be generalised as:

crij =  -pS ij +  2 fi(J2)Sij (7)
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A P P E N D I X  B

Finite Nonlinear Elastic Analysis

Consider a thin wall cylinder of mid-wall radius r and wall thickness h, sub-

jected to a physiological loading, i.e., an internal pressure P and a longitudinal 

force F. By taking a longitudinal and a transversely cut segments, the circumfer-

ential stress S$, longitudinal stress Sz and radial stress Sr can be determined from 

equilibrium considerations:

s»=p( H )  <»
<2>

=  ~ ~ 2

For an incompressible material, the stresses are given by (Patel and Vaishnav, 

1972):

S e - S r =  ( 1  +  2 « ) ^ ( 4 )
aw

Sz - S r = (l + 2b)— ( 5 )

where W is the strain energy function which is expressed as a polynomial function 

in two principal strains:

W  =  Aa2 +  Bab +  Cb2 +  Da3 +  Ea2b +  Fab2 +  Gb3 (6)

where A, B,...G are the constitutive constants; a and b are the Green-St. Venant 

strains in the circumferential and longitudinal directions respectively. These strains
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are defined as follows:

a — 2 ^  ^  : “

b =  l-(K >  -  1 )  :  A ,  =  1

where .ft, and ft, are the initial undeformed mid-wall radius and length.

(7)

(8)

Substituting Eqns.(l) and (2) into (4) yields an equation relating pressure with 

strains and constitutive constants:

P =  ~  {&Da3 +  (4A +  3D +  AEb)a2 +  2(A +  Bb +  Eb +  Fb2)a

+  (Bb +  Fb2) }  (9)

Similarly, by substituting Eqns.(2) and (3) into (5) an expression for longitudinal 

force is obtained:

F  =  2nrh { ( 6G63 +  (4(7 +  3G +  4Fa)b2 +  2(C  +  Ba +  Fa +  Ea2) 

+ * «  +  * « » - £ ) } ( 1 0 )
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APPENDIX C

Fortran Subroutine For The N on-N ew tonian  M odel

c

C THIS SUBROUTINE SPECIFIES THE NON— NEWTONIAN VISCOSITY C
C OBEYINY THE POWER LAW C

C
SUBROUTINE SBOUND(NOD,MTYPE,KTYPE,NOB,X,Y,Z,ALPCO,ALPREF,CPCO,

- CPREF, ETACO,ETAREF,RHOCO,RHOREF,GAMP,PM11,PM22,PM33, PM12, PM13,
- PM23, TL, TN, UL, UN,VL,VN,WL,WN,SL,SN,DL,DN,EL,EN,P,VBOX)

C
PARAMETER (KTOTM=5000)
COMMON /SPACE/ ARR(l)
COMMON /SCALAR/ NUMSCA,ISCSRC,ISCDIF,PRANS,RELSCA,CSMIN,

- CONSCA,NUMSCD 
C

COMMON/PARAMS/DELT,TIMEND,IVUP,NMAT,IDRAG, INITCO, IVCAL,
- GX, GY, GZ,DCONV,CRIT,MTOT,KTOT,ITEMP,IPRINT, TEND, IDIFC, IPBND,
- IDUPRT, NUMTIM,BEX,IHEAT,IRSTRT,TIME,RELPRS, DIVMAX, ITRANS,
- RELVEL, RELTEM,CONVEL,CONTEM,CVMIN,CTMIN,ITIMAX, ISWMAX, IVRED,
- IBLADJ, SORFV,SORFS,NSMAXV,NSMAXS,RDFACV,RDFACS,RDFACD,NTURSC 

C
DIMENSION NOD(MTOT,8),MTYPE(MTOT),KTYPE(KTOT) , NOB(KTOT) ,X(KTOT) ,

- Y(KTOT) , Z(KTOT),ALPCO(NMAT),ALPREF(NMAT),CPCO(NMAT),CPREF(NMAT),
- ETACO(NMAT),ETAREF(NMAT),RHOCO(NMAT),RHOREF(NMAT),GAMP(NMAT),
- PM11 (NMAT) , PM22 (NMAT) , PM33 (NMAT) , PM12 (NMAT) , PM13 (NMAT) ,
- PM23(NMAT),TL(KTOT),TN(KTOT),UL(KTOT),UN(KTOT) ,VL(KTOT) ,
- VN(KTOT),WL(KTOT),WN(KTOT),SL(KTOT,NUMSCA),SN(KTOT,NUMSCA),
- DL(KTOT),DN(KTOT),EL(KTOT),EN(KTOT) , P(KTOT)
DIMENSION V B O X (KTOT),GRADT(KTOTM,3),D X Y (KTOTM),D Y Z (KTOTM) ,

DZX(KTOTM),GAMA(KTOTM),Dll(KTOTM),D12(KTOTM) , D13(KTOTM) ,
D21(KTOTM),D22(KTOTM),D23(KTOTM),D31(KTOTM),D32(KTOTM),
D33(KTOTM),DII(KTOTM)

SET CONSTANTS IN THE POWER LAW RELATIONSHIP

CONST=0.042 
AN=0.61
POWER=0.5*(AN-1.0)

CALL DATLOC('VOLSUB',IVS,IDVS,IERR)

INITIALISATION

DO 1 K=l,KTOT 
1 DII(K)=0.0

CALCULATE COMPONENTS OF SHEAR RATE

CALL GRADNO(UN,GRADT,NOD,ARR(IVS),X,Y,Z,VBOX, NOB)
DO 10 K=l,KTOT 
Dll(K)=GRADT(K,1)
D12(K)=GRADT(K,2)
D13(K)=GRADT(K,3)

10 CONTINUE
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CALL GRADNO(VN,GRADT,NOD,ARR(IVS),X,Y, Z, VBOX, NOB) 
DO 20 K=l,KTOT 
D21(K)=GRADT(K,1)
D22(K)=GRADT(K, 2)
D23(K)=GRADT(K,3)

20 CONTINUE
CALL GRADNO(WN,GRADT,NOD,ARR(IVS) , X,Y, Z, VBOX, NOB) 
DO 30 K=l,KTOT 
D31(K)=GRADT(K,1)
D32(K)=GRADT(K,2)
D33(K)=GRADT(K,3)

30 CONTINUE

DO 2 K=l,KTOT 
KT=KTYPE(K)
DN(K)=0.09
D X Y (K)= D 1 2 (K)+D21(K)
DYZ(K)=D23(K)+D32(K)
D Z X (K)= D 3 1 (K)+D13(K)
DII (K) =2.0* ( D U  (K) **2+D22 (K) **2+D33 (K) **2) 

& +DXY(K)**2+DYZ(K)**2+DZX(K)**2

I F ( D I I (K).LE.0.0025) D I I (K)=0.0025 
I F ( D I I (K).GT.l.OE+6) D I I (K)=1.OE+6 

C
GAMA(K)=CONST*DII(K)**POWER/RHOREF(KT) 
EN (K) =SQRT (GAMA (K) )

2 CONTINUE
C

RETURN
END
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APPENDIX D

Relationship O f Velocity, Flow R ate And W all Shear Stress 

To A n  Oscillatory Pressure Gradient

Consider the flow of an incompressible Newtonian homogeneous fluid in a 

long straight circular rigid tube under a periodic pressure gradient. If the tube is 

sufficiently long relative to its diameter (2R), the radial motion of the fluid can 

then be neglected and its axial velocity u is independent of the distance x along 

the tube. The momentum equation governing such a flow becomes:

d2u 1 du p du 1 dP
dr2 ^ r dr p dt p dx

where the oscillating pressure gradient may be represented by a simple harmonic 

motion and written in complex form:

dP
—  =  Ae,ut 
dx (2)

where u> =  27r /  is the angular frequency of the oscillating motion. This type of 

equation is a classic problem in mathematical physics. It was investigated by many 

authors since 1929 onwards, and its solution was applied to flow analysis in large 

arteries by Womersley (1955). Using the no-slip condition on the wall, its solution 

is given by:

u =
A_

iio p
1 -

J0 ^r^uj/vr 

J0 ^RyJuj/vi
itut

(3)

Where J0 is a Bessel function of the first kind of order zero and complex argu-

ment. The quantity RyJ^ is a non-dimensional parameter which was defined as 

the Womersley parameter a. In a non-dimensional form with y — r/R, Eqn.(3)
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becomes:
A

u =  -—  
i u p (4)

Jo ( a yi2 ILUt
Jo {od 2 )

The numerical solution of Eqn.(4) is concerned with complex quantities and 

may be made by separation into real and imaginary parts. Dwight (1941, 1961) 

tabulated the real and imaginary parts of a Bessel function of the first kind as Ber 

and Bei functions; it is his tables that were used in the velocity profile calculations.

Alternatively, Eqn.(4) may be expressed in terms of modulus and phase which 

Womersley (1955) regarded as more tractable. This involves the substitutions:

J0 (a y ii ) =  M0(ay)eido<'y') (5)

J0 (m =  M0(a )ete° (6)

Tables of M0(ay) and 0o(ay) are given by McLachlan (1941). If the real part of 

the pressure gradient is M  cos(cot — ^), the corresponding velocity is then

M
u =  — M ’0 sm(ut -  <f) +  t0) (7)

where
_  M0(ay)

°  ~  M 0(a)

60 =  0o(a) -  90(ay)

M ’o =  \Jl +  ha2 -  2h0 cos S0

f ori e — /ip sin6p
t  C L l l  C / )  -t j f

l-/lo COSÒo

(8)

Note that Eqn.(7) can also be written as:

M
u — — M '0 cos < uit — cj) — ( —up

, 7T
(9 )
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Hence the phase lag of velocity behind the pressure gradient is 90° — eQ, which 

varies with the ra d ia l  position y. Near the tube wall (y = l), e0 =  90°, the temporal 

variation of the velocity is in phase with that of the pressure gradient; however, 

near the centre, it is up to 90° out of phase when a is large. This effect produces 

higher velocities near the wall and lower velocities near the centre for certain values 

of ut. This then is the “annular effect” .

By integrating Eqn.(4) across the tube, the corresponding volume flow rate is 

obtained:

tup  ̂ c t i i j0(ai 2)J

where J\ is a Bessel function of order one. When the real part of the pressure 

gradient is M  cos(ut — </>), Eqn.(10) can be converted to modulus and phase form 

as:
_ 7rR2M  f 2 Ml 1
Q — --------- \ sm(tjt  — <p)------—— sm(wf — q> — ¿i0) \ (11)

cup l aM 0 )

where

8W =  135° -  9i +  90 (12)

Reduced to a single-phase relationship, the volume flow rate becomes:

t:R 2
Q = ------M M [0 sin(u>i — <j) +  £io) (13)

up

Tables of M [0 and £w are given by Womersley (1955). It can be derived that the 

phase lag of flow behind the pressure is 90° — £io; it tends to zero when a —> 0, but 

moves very slowly towards its asymptotic values of 90° at high values of a.

Similarly, by differentiating Eqn.(4) the corresponding shear stress can be
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obtained:

where

r = ~H
du
dr

¡i M a M i(y) 

R u>p M0
{ut — (f) — hio}

¿»io =  135 +

(14)

(15)

Hence, the wall shear stress is given by:

t w  =  M —j ~  cos {tot — (f)— (135° — Oi +  0o)} (16)

The phase lag of the wall shear stress behind the pressure gradient is up to 45° 

when a is large.
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A P P E N D I X  E

Pressure Distribution in a 3D T -bifurcation

Apart from the velocity field and variations of wall shear stress, pressure dis-

tribution in the branching region may also contribute to a better understanding of 

the flow phenomena occurring there. For the 3-D T-bifurcation studied in section 

5.3.3, the pressure contours in the bifurcation plane are presented in Figs.E.1(a) 

and (b) for the maximum and minimum flow rates respectively. As indicated in 

the figures, the maximum pressure locations are at the corner of the flow divider 

and its distal positions. Pressure variations are relatively large at the immedi-

ate vicinity of the branching area owing to the flow impingment and separation. 

Pressure changes at the rest of the flow field due to viscous friction are rather small.

Figs.E.2(a) and (b) illustrate pressure distributions on the wall at different 

cross-sections (defined previously in Fig.5.25) for the maximum and minimum 

flow rates respectively. It is seen that proximal to the bifurcation at cross-section 

B, pressures on the wall at the branching side are lower than those on the outer 

wall. Distal to the bifurcation at cross-sections C and D, pressures on the wall at 

the divider side are higher than those on the outer wall. At the upstream position 

A and downstream positions E and F, cross-sectional pressure variations are very 

small.
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(a) at the maximum flow rate (ut — 40°)

(b) at the minimum flow rate {ut =  220°)

Fig. E .l  Pressure contours in the bifurcation plane of a 3D T-bifurcation for 

(a) the maximum ,and (b) the minimum flow rates.
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(b) at the minimum flow rate (ut — 220°)

Fig. E.2 Pressure distributions on the wall at different cross-sections for (a 

maximum, and (b) the minimum flow rates.
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A review of the numerical analysis of blood flow 
in arterial bifurcations

X Y Xu, MSc and M W Collins, MA, PhD, DSc, CEng, MIMechE, MIEE, MINucE 
Thermo-Fluids Engineering Research Centre, The City University, London

Arterial bifurcation flow  has been o f  special interest fo r  some years because o f  its important role in the formation o f  atherosclerotic 
plaques and thrombi. T o  investigate the flow  phenomena analytically, four major factors need to be accommodated— the three- 
dimensionality o f  a general bifurcation, the pulsatile nature o f  the laminar flow , the distensibility o f  the arterial wall and the non- 
Newtonian character o f  the blood. In this review, both engineering and medical aspects o f  each fa cto r  are carefully surveyed. It is 
demonstrated that the latest generation o f  computational fluid dynamics codes can treat this problem area and that it is both feasible  
and desirable to investigate the effects o f  each independent factor.

1 INTRODUCTION

A m a jo r  m ed ica l p r o b le m  in the arteria l system  is the 
frequ en t o c c u rr e n ce  o f  a th erosc le ros is  an d  th r o m b o s is  
in b e n d s  a n d  b ifu rca tio n s . A lth o u g h  the e x a ct m e c h a -
nism  is u nclear , a n u m b er  o f  h y p oth eses  h ave  b een  p r o -
p o s e d  to  relate h a e m o d y n a m ica l fo r ce s  to  the lo c a t io n  
o f  a th e r o sc le r o t ic  les ion s , such  as the h igh  a n d  lo w  
shear stress th eor ies  resp ectiv e ly  o f  F ry  (1) a n d  o f  C a r o  
et al. (2, 3). A c c o r d in g  to  F ry , early  a th e ro sc le ro tic  
les ion s  are to  b e  ex p e cte d  in re g io n s  w ith  h igh  shear 
stresses, w h ich  w ere  fo u n d  to  in d u ce  en d oth e lia l in jury. 
H o w e v e r , a c c o r d in g  to  C a r o  et al. early  les ion s  are 
m o re  lik e ly  to  d e v e lo p  in reg ion s w ith  lo w  shear stress 
d u e  to  the sh ea r -d ep en d en t m ass tra n sp ort m ech a n ism  
fo r  a th erog en es is . D esp ite  their a p p a ren t c o n tra d ic t io n , 
o n e  c o m m o n  certa in  p o in t  is that the lo c a l w all shear 
stress, a n d  thus the lo c a l f lo w  p attern , p la ys  an  im p o r -
tant ro le . T h is  has been  further c o n fir m e d  b y  so m e  
recen t ex p erim en ta l stud ies by  F e rn a n d e z  et al. (4) and 
K u  et al. (5). T h e re fo re , d eta iled  an alysis o f  f lo w  p a t-
terns in  arteria l b e n d s  a n d  b ifu rca tio n s  is o f  the u tm o s t 
im p o rta n ce .

C o n s id e ra b le  p rog ress  has been  m a d e  in  ex p erim en ta l 
stud ies o f  flo w  pattern s in m o d e l arteria l b ifu rca tion s . 
T h is  w o r k  g en era lly  in v o lv e d  f lo w  v isu a liza tion  stud ies 
by  m ea n s o f  c o lo u r in g  stream lines (6) a n d /o r  the h y d r o -
gen  b u b b le  te ch n iq u e  (7, 8), o r  a d d in g  p a rticles  (9) an d  
v e lo c ity  m ea su rem en ts  by  using  laser D o p p le r  a n e m o - 
m etry  a n d  a D o p p le r  u ltra sou n d  d e v ice  (10 , 11). O n ly  a 
few  in vivo m ea su rem en ts  exist in the literatu re (12 , 13) 
b e ca u se  o f  the d ifficu lties in m ea su rin g  th e v e lo c ity  p r o -
files a ccu ra te ly  in  in vivo studies.

E ffo r ts  h ave  been  m a d e  in n u m erica l s im u la tion  o f  
b l o o d  f lo w  th ro u g h  arteria l b ifu rca tio n s  in  recen t years. 
T h e  m o d e llin g  o f  su ch  a flo w  p r o b le m  in v o lv e s  a 
n u m b e r  o f  n o v e l features, such  as the c o m p le x  three- 
d im e n s io n a l g e o m e tr y  o f  the b ifu rca tio n , the p u lsa tile  
n a tu re  o f  the f lo w , the d is ten sib ility  o f  the arteria l w all 
a n d  the n o n -N e w to n ia n  ch a ra cteris tics  o f  the b lo o d . 
T h e  presen t rev iew  a ttem p ts to  tak e  a co m p re h e n s iv e  
v iew  o f  this research  su b je ct b y  in vestig a tin g  b o th  
m e d ica l a n d  e n g in eer in g  a sp ects o f  ea ch  feature, thus

The MS was received on 6 February 1990 and was accepted for publication on 12 
November 1990.

p r o v id in g  a c lea r ly  d e fin ed  line o f  a p p r o a c h  fo r  fu rther 
n u m erica l research .

2 THE BIFURCATION PROBLEM

In  o rd e r  to  sim u late  h a e m o d y n a m ic  p h e n o m e n a  in an  
arteria l b ifu rca tio n  n u m erica lly , the g e o m e try  ch o se n  
a n d  the g rid  g en era tion  b e c o m e  the first c o n s id e ra tio n . 
A  b r ie f d e scr ip tio n  o f  recen t d e v e lo p m e n ts  in these tw o  
areas o f  in terest to  the cu rren t a p p lic a t io n  is g iven  
b e lo w .

2.1 Geometry of arterial bifurcation

T h ere  is a w id e  ran ge  o f  c o n fig u ra t io n s  o f  b ifu rca tio n s  
in  the h u m a n  arteria l system . It has been  fo u n d  that 
a lm o st  all o f  th em  are g e o m e tr ica lly  irregu lar , ta p ered , 
to r tu red  a n d  b ra n ch e d  in  a c o m p lica te d  three- 
d im e n s io n a l w a y  (14). A lso , they  h ave  rather la rge  in d i-
v id u a l v a r ia t io n s  (15). T h e  g eom etr ies  o f  arteria l 
b ifu rca tio n s  h a v e  b e e n  stu d ied  b y  a n u m b e r  o f  in vesti-
g a tors . B ecau se  o f  its c lin ica l im p o rta n ce , m u ch  o f  the 
w o rk  w as d e v o te d  to  the c a r o t id  b ifu rca tio n . B a sed  
u p o n  a stu d y  o f  b ip la n a r  a n g io g ra m s , B h arad va j et al. 
(7) d e v e lo p e d  an  ‘ a v era g e ’ g e o m e try  o f  the h u m an  ad u lt 
ca r o t id  b ifu rca tio n  an d  co n s tru c te d  b o th  g lass a n d  p le x -
ig lass m o d e ls . R en em a n  et al. (16, 17) u sed  a m u lti-ga te  
p u lsed  D o p p le r  system  to  m ea su re  the relative  d ia m eter  
ch a n g es  o f  the arteries d u r in g  the c a r d ia c  c y c le  in  y o u n g  
a n d  o ld  p resu m ed  h ea lth y  su b je c ts ; a lso  the an g le  
betw een  the in terna l an d  c o m m o n  c a r o t id  artery  w as 
d e term in ed  b y  m ea n s o f  a B -m o d e  im ag ery . A  m o r e  
ex h a u stiv e  stu d y  w as u n d erta k en  by  F orster  et al. (18). 
In  this stu d y , a c o m p le te  set o f  the c o m m o n , in terna l 
a n d  externa l arteries at v a r iou s  lo c a t io n s , the b ifu r -
c a tio n  an g les a n d  in fo rm a t io n  o n  the to r tu o s ity  o f  the 
vessels is g iven  in term s o f  m ea n  va lu es a n d  sta n d a rd  
d e v ia t io n s  fo r  a n o rm a l p o p u la t io n , as sh o w n  in F ig . 1 
an d  T a b le  1. T h ese  d a ta  can  be u sed  to  im p ro v e  present 
p r o t o c o ls  a n d  d e fin e  lim its o f  a c c u r a c y  w h en  u tiliz in g  
u ltra son ic  D o p p le r  in fo rm a t io n  to  assess c lin ica lly  
b l o o d  f lo w  ch a ra cteris tics . M o r e o v e r ,  th ey  are v a lu a b le  
in  c o n s tru c tin g  a th ree -d im en sion a l f lo w  m o d e l o f  the 
c a r o t id  b ifu rca tion .
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Fig. 1 Generalized geom etry o f  carotid bifurcations, a and /? are the angles 
from  the com m on  carotid to the internal and external carotid arteries 
(C C A , IC A  and ECA) respectively, y is the bifurcation angle in the 
plane o f  the IC A  and ECA. S is the angle between the IC A /C C A  
plane and the E C A /C C A  plane

Table 1 Dim ensions o f  a generalized carotid 
bifurcation [data from  Forster et al. (18)]

Location in 
Fig. 1

Mean value 
deg

Standard
deviation

Angles 33.9 13.0
22.3 12.0
52.6 19.5
0.9 35.7

Coefficient
Mean value of variation

mm %

ICA 1 9.3 20.6
2 9.4 17.5
3 6.3 22.5
4 5.5 13.6
5 4.6 66.5
6 16.7 32.7
7 28.0 36.3

ECA 8 6.1 24.7
9 5.0 17.8

10 4.4 22.7
11 4.1 24.2
12 6.2 23.4
13 12.6 23.2
14 18.9 22.3

CAA 15 8.6 15.9
16 8.1 13.6
17 8.0 11.6
18 7.8 12.7
19 10.4 24.7
20 18.8 16.9
21 27.6 16.0
22 36.1 16.0

2.2 Grid generation

F o r  the a p p lica t io n  to  m o d e llin g  o f  a  b ifu r ca t io n  the 
grid  g e n e ra t io n  p r o b le m  is cru cia l, s in ce  the c o m p le x  
b o u n d a r y  sh ap es o f  the b ifu rca tio n  h av e  to  b e  re p -
resen ted  very  a ccu ra te ly , en su rin g  that n o  u n n ecessa ry  
e rrors  are in tro d u ce d . N u m erica l g rid  g e n e ra t io n  has 
n o w  b e c o m e  a fa irly  c o m m o n  t o o l  fo r  use in  the 
n u m erica l s o lu t io n  o f  partia l d ifferen tia l e q u a t io n s  on  
arb itrarily  sh ap ed  reg ion s. V ery  su bsta n tia l p rog ress  
has been  w itn essed  in this area  in the past d e c a d e  o r  so. 
A  c o m p re h e n s iv e  su rvey  o f  p ro ce d u re s  a n d  a p p lica t io n s  
w as g iven  by  T h o m p s o n  et al. (19), an d  a n u m b e r  o f  
c o n fe re n ce s  sp ecifica lly  in the area  o f  n u m erica l grid  
g en era tion  have b een  h eld  (20, 21). R ecen t general 
su rveys h ave  been  g iven  b y  T h o m p s o n  (22) and 
E isem an  an d  E rieb a ch er  (23).

W ith  the in tr o d u c t io n  o f  b o u n d a r y -fit te d  cu rv ilin ea r  
c o o r d in a te  system s g en era ted  to  m a in ta in  c o o r d in a te  
lines c o in c id e n t  w ith  the b o u n d a r ie s , fin ite d iffe ren ce  
c o d e s  ca n  b e  w ritten  that are a p p lic a b le  to  gen era l c o n -
fig u ra tion s  w ith o u t the need  o f  sp ecia l p r o ce d u r e s  at the 
b o u n d a r ie s . H o w e v e r , this is a ch iev ed  at the e x p en se  o f  
m a k in g  the partia l d ifferen tia l e q u a t io n s  in  the c o m p u -
ta tion a l d o m a in  m o r e  c o m p lica te d  d u e  to  the n o n -
linear c o o r d in a te  tra n sfo rm a tion . B r o a d ly  sp eak in g , 
n u m erica l g rid  g en era tion  falls in to  tw o  p r im a ry  ca te -
g o r ie s : a lg e b ra ic  m e th o d s  a n d  partia l d ifferen tia l e q u a -
tio n  m e th o d s . A  lo g ic  b r e a k d o w n  o f  these a p p ro a ch e s  is 
illu stra ted  in  F ig . 2.
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Special case

Fig. 2 L ogic breakdow n o f  grid generation m ethods

A lg e b ra ic  m e th o d s  are th o se  in w h ich  the co o rd in a te s  
are d e term in ed  b y  in te r p o la t io n  fr o m  the bou n d a ries . 
T h e  v a r io u s  in te rp o la tio n  m e th o d s  u sed  in a lg eb ra ic  
g rid  g en era tion  can  b e  classified  as : (a) u n i-d ire c t io n a l 
a n d  (b ) m u lt i-d ire ct io n a l. T h e  sim p lest u n i-d ire c t io n a l 
m e th o d  is L a g ra n g e  in te rp o la tio n  a n d  the m o s t  general 
o n e  is the m u lti-su rfa ce  p ro ce d u re . T h e  m u lt i-d ire c t io n  
transfin ite  in te rp o la tio n  is the m o s t  c o m m o n ly  used 
a lg e b ra ic  m e th o d . It w as in tr o d u ce d  by  G o r d o n  an d  
T h ie l (24 ) a n d  has been  used  in  several p a p ers  fo r  b o th  
tw o -d im e n s io n a l (25 ) an d  th re e -d im e n s io n a l (26 ) grid  
g en era tion . O n e  o f  the m a jo r  a d v a n ta g es  o f  a lg eb ra ic  

-m e th o d s  is that the g en era tion  o f  a m esh  is p e r fo rm e d  
d irec tly  a n d  is c o m p u ta t io n a lly  v ery  fast. A ls o  these 
te ch n iq u es  a llo w  the e x p lic it  c o n t r o l  o f  g r id  p o in t 
sp acin g . U n fo rtu n a te ly , s ince  the m e th o d s  d o  n o t 
p ossess  in heren t sm o o th in g  p ro p e rt ie s  d iscon tin u itie s  
ca n  arise in  the m esh.

P artia l d ifferen tia l e q u a t io n  system s are g rid  g en er-
a t io n  p r o ce d u r e s  in  w h ich  the g rid s  are th e so lu t io n  o f  a 
set o f  partia l d ifferen tia l e q u a t io n s . T h ese  are  further 
sp lit in to  su b -ca te g o r ie s  en titled  h y p e r b o lic , e llip tic  and  
p a r a b o lic  m e th o d s  to  reflect the ty p e  o f  partia l d iffe ren -
tial e q u a t io n  u sed  to  g en era te  the g r id s ; a m o n g  them  
the e llip tic  g e n e ra t io n  system  is th e m o s t  p o p u la r  o n e  
beca u se  o f  its in heren t sm o o th in g  p rop ertie s . T h e  a p p li-
c a t io n  o f  e llip tic  m e th o d s  ca n  b e  fo u n d  in T h o m p s o n  et 
al. (27 ) a n d  M a stin  an d  T h o m p s o n  (28). T h e ir  a d v a n -
tages o v e r  a lg e b ra ic  m e th o d s  are sm o o th n e s s  (here 
m ea n in g  the c o n t in u ity  o f  g e o m e try  d erivatives),

o r th o g o n a lity  o r  n e a r -o r th o g o n a lity  an d  o n e - t o -o n e  
g u a ra n teed  m a p p in g . It s h o u ld  b e  stressed h ere that 
o r th o g o n a lity  is o n e  o f  the h igh ly  d es ira b le  p ro p e rt ie s  in 
rega rd  to  m esh  g en era tion . A n  o r th o g o n a l c o o r d in a te  
system  m a k es  the a p p lic a t io n  o f  b o u n d a r y  c o n d it io n s  
m o r e  stra ig h tfo rw a rd , en a b les  m u ch  m o r e  e ffic ien t te ch -
n iqu es  to  b e  a d o p te d  a n d  p erm its a grea ter d eg ree  o f  
v e c to r iz a t io n  o n  su p e rco m p u te rs . O n  the o th e r  h an d , 
severe d ep a rtu re  fr o m  o r th o g o n a lity  w ill in tr o d u ce  
tru n ca t io n  e rrors  in d iffe re n ce  e x p ress ion s  a n d  thus 
red u ce  the a c c u r a c y  o f  a n u m erica l a p p ro x im a tio n . 
O r t h o g o n a l system s are g en era lly  a p p lica b le  t o  an y  
tw o -d im e n s io n a l d o m a in , bu t are d ifficu lt, o r  in d eed  
im p o ss ib le , to  a ch iev e  in  three d im e n s io n s . T h e re fo re , it 
is o f  in terest to  g en era te  g rid s that are n early  o r t h o g -
on a l, w ith  the c o n d it io n s  fo r  o r th o g o n a lity  b e in g  p a r -
tia lly  satisfied .

A p a rt  fr o m  the s tru ctu red  m esh es gen era ted  b y  the 
m e th o d s  d iscu ssed  a b o v e , s o m e  u n stru ctu red  m eshes 
c o m p o s e d  o f  triangles o r  a rb itra ry  q u a d rila tera ls  in  tw o  
d im e n s io n s  (an d  te tra h ed ron s  o r  e ig h t -n o d e  b r ick s  in 
three d im e n s io n s ) h av e  a lso  been  w id e ly  used , p a rt icu -
la rly  w h en  the d o m a in  o f  in terest is o f  c o m p le x  shape. 
T h e  te ch n iq u es  w h ich  are n o rm a lly  a d o p te d  to  gen era te  
u n stru ctu red  tr ia n gu lar  m esh es are e ith er  the D e la u n a y  
o r  the a d v a n c in g  fro n t a p p ro a ch e s , as d iscu ssed  in 
deta il b y  P era ire  et al. (29). O n  u n satu ra ted  m eshes, d is -
cre t iz a t io n  m e th o d s  w h ich  are  b a sed  u p o n  in tegra l p r o -
ced u res , su ch  as fin ite v o lu m e  o r  fin ite  e lem en t m e th o d s , 
are n atu ra l ca n d id a te s  to  use. T h e  p r in cip a l a d v a n ta g e
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Table 2 Summary of numerical research on blood flow in bifurcations

Reference Bifurcation geometry Type of flow Numerical methods

O ’Brien et al. (34)
O ’Brien and Ehrlich (35) 
Liepsch and Moravec (36) 
Perk told and Hilberit (37) 
Rindt et al. (38) 
Khodadadi et al. (39) 
Wille (40)
Dinnar et al. (41)
Rindt (42)
Perktold and Peter (43)

Two-dimensional Y-type 
Two-dimensional T-type 
Two-dimensional T-type 
Two-dimensional carotid model 
Two-dimensional carotid model 
Two-dimensional T-type 
Three-dimensional symmetric 
Three-dimensional T-type 
Three-dimensional carotid model 
Three-dimensional T-type

Unsteady
Unsteady
Steady
Unsteady
Steady and unsteady
Unsteady
Steady
Unsteady
Steady
Unsteady

Vorticity stream function 
Vorticity stream function 
Finite difference 
Finite element 
Finite element 
Finite difference 
Finite element 
Finite difference 
Finite element 
Finite element

o f  the u n stru ctu red  m esh  is that it p ro v id e s  a very  
p o w e r fu l t o o l  fo r  d iscre tiz in g  d o m a in s  o f  c o m p le x  
sh ap e , a n d  n atu ra lly  o ffe rs  the p o ss ib ility  o f  in c o r p o -
ra tin g  a d ap tiv ity . H o w e v e r , su ch  a m esh  is p o o r ly  
o r d e re d  an d  is th ere fo re  less a m en a b le  to  the use o f  
certa in  a lg or ith m s an d  v e cto r iz e d  co m p u te rs . In a d d i-
t ion , it requ ires co n s id e r a b ly  m o r e  c o m p u te r  tim e an d  
sto ra g e , as w ell as m u ch  m o r e  in v o lv e d  d a ta  h a n d lin g  
p r o ce d u r e  th an  d o e s  the s tru ctu red  m esh.

F o r  the p a rticu la r  b ifu rca tio n  p r o b le m  c o n c e rn e d , the 
g rid s m a y  be  gen era ted  in tw o  w a y s : (a) gen era tin g  
u n stru ctu red  m esh es a n d  (b ) seg m en tin g  the b ifu rca tion  
in to  c o n t ig u o u s  su b -re g io n s , w ith  grid s b e in g  g en era ted  
in ea ch  su b -re g io n  b y  u sin g  e ith er  a lg eb ra ic  o r  e llip tic  
g rid  g en era tion  m eth od s . T h e  p o ten tia l d isa d v a n ta g e  o f  
the fo rm e r  is the d ifficu lty  in c o n s tru c tin g  n u m erica l 
fin ite  d iffe ren ce  sch em es o n  u n stru ctu red  grids. T h is  d if-
ficu lty  is so m e w h a t d im in ish ed  by  fin ite e lem en t fo r m u -
la tion s , w h ich  ca n , in a sy stem a tic  fa sh ion , g en era te  a 
sch em e  o f  a rb itra ry  o rd er . H o w e v e r , the d ifficu lty  o f  the 
la tter lies in the treatm en t o f  the grid s at the in terfaces. 
S o m e  g rid  in terfacin g  p ro ce d u re s  have b een  d e v e lo p e d  
b y  M ik i an d  T a k a g i (30) a n d  S te in h o ff  (31).

T h ere  is n o w  a w id e sp re a d  a v a ila b ility  o f  c o m m e rc ia l 
p a ck a g e s  fo r  fin ite e lem en t a n d  fin ite d iffe ren ce  grid  
g e n era tion , su ch  as the w e ll-k n o w n  T O M C A T  p a ck a g e  
fo r  tw o -d im e n s io n a l g rid s (32), the H arw ell fin ite 
e lem en t p a ck a g e  T G I N  (33), the in teractive  m esh  g en er-
a to r  S O P H I A  (U K A E A )  a n d  F E M V IE W . 3

3 PULSATILE FLOW

T h e  c ircu la to ry  system  o f  the h u m an  b o d y  co n s ists  o f  
the heart m u scle  a n d  tw o  c o m p o n e n t s :  the p u lm o n a ry  
a n d  sy stem ic  c ircu la t io n  system s. T h e  sy stem ic  c irc u la -
t io n  in itia ted  at the left v en tric le  is r esp on sib le  fo r  the 
su p p ly  o f  fresh b l o o d  to  all the o rg a n s  a n d  tissues o f  the 
b o d y , an d  thus c a n  be co n s id e r e d  as the feed in g  line o f  
all the e lem en ts o f  the b o d y . T h e  tran sm iss ion  o f  b lo o d  
th ro u g h  arteries is o n e  o f  the m o s t  im p o rta n t parts o f  
this c ircu la tion .

B lo o d  is e jected  fro m  th e left v en tric le  in to  the c ir c u -
la to ry  system  b y  a p e r io d ic  a c t io n  o f  the heart. T h is  
a d d e d  b lo o d  crea tes a ch a n g e  in pressure an d  results in 
flo w  o f  b l o o d  a lo n g  the a o r ta  a n d  th r o u g h o u t  the c ir c u -
la to ry  system . A t a n y  g iv en  p o in t  the p ressure an d  
v e lo c ity  w ill ch a n g e  p e r io d ica lly , and  h en ce  the f lo w  is 
p u lsa tile  an d  a ssoc ia ted  w ith  the p r o p a g a t io n  o f  a p re s -
sure w ave . M o r e o v e r ,  in b e n d s  a n d  b ifu rca tio n s  there 
are u su a lly  s e co n d a ry  flow s. T h e  im p o rta n ce  o f  su ch  
s e co n d a ry  flow s  in the p a th og en es is  o f  a th erosc le ros is

has led  to  great in terest in  seek in g  d eta iled  k n o w le d g e  
o f  f lo w  fields in b ifu rca tion s . S o m e  o f  the recen t n u m eri-
ca l research  o n  th is su b je ct and  the d e v e lo p m e n t  o f  
n u m erica l m e th o d s  a n d  c o m p u te r  c o d e s  are su rveyed  
b e lo w .

3.1 Recent numerical studies

O v e r  the past few  years, c o n s id e ra b le  p rog ress  has been  
m a d e  in n u m erica l s im u la tion  o f  b lo o d  f lo w  th rou g h  
arteria l b ifu rca tion s . S o m e  o f  the m o s t  im p orta n t 
research  is su m m a rized  in T a b le  2. In these stud ies the 
fo llo w in g  a ssu m p tion s  are m a d e : the b lo o d  is h o m o g e -
n eou s , in co m p re ss ib le  an d  N e w to n ia n , an d  the f lo w  is 
lam in ar, sta tion a ry  a n d  iso th erm al, the vessel w all be in g  
rigid.

P re lim in a ry  n u m erica l stud ies h a v e  been  p e r fo rm e d  
b y  O ’B rien  et al. (34, 35) o n  tw o -d im e n s io n a l u nstead y  
f lo w  th rou g h  sy m m etr ic  b ifu rca tio n s  usin g  a v o rtic ity  
stream  fu n ctio n  m e th o d . T h is  a lg o r ith m  has som e  
a ttractive  features a n d  has been  rather p o p u la r  in tw o - 
d im e n s io n a l s im u la tion s  fo r  a lo n g  tim e. T h e  pressure 
m a k es n o  a p p ea ra n ce , an d , in stead  o f  d ea lin g  w ith  the 
co n t in u ity  e q u a tio n  a n d  tw o  m o m e n tu m  eq u a tion s , 
o n ly  tw o  e q u a tio n s  n eed  to  be so lv e d  to  o b ta in  the 
stream  fu n ctio n  an d  v o rtic ity . H o w e v e r , the m a jo r  
sh o r tc o m in g  o f  the m e th o d  is that it ca n n o t  easily  be 
ex ten d ed  to  th ree -d im en sion a l situ ation s , fo r  w h ich  a 
stream  fu n ction  d o e s  n o t  exist. T h u s , a tten tion  has 
tu rned  to  m e th o d s  that use the so -ca lle d  p r im itiv e  v a r i-
ab les, n a m ely  the v e lo c ity  c o m p o n e n ts  a n d  pressure. 
T h ese  p ro ce d u re s  w ere a d o p te d  in m o s t  o f  the n u m eri-
cal research  p a p ers  (36-43), in w h ich  the f lo w  patterns, 
v e locities , pressures an d  w all shear stresses fo r  steady  
a n d /o r  u n stead y  flo w  w ere c o m p u te d  using  fin ite differ^ 
en ce  o r  fin ite e lem en t tech n iq u es . T h ese  in v estig a tion s  
h ave  served  to  id en tify  re g io n s  o f  sep a ra tion  a n d  v o rte x  
m o t io n  an d  have p r o v id e d  n u m erica l estim ates o f  the 
d is tr ib u tion s  o f  w all shear stress a n d  p ressure w h ich  
m a y  q u a lita tiv e ly  rep resent th ose  fo u n d  in vivo. 
H o w e v e r , it sh o u ld  b e  n o te d  that p rev iou s  n u m erica l 
s im u la tion s  are m o s tly  restricted  to  tw o  d im en sion s. 
T h re e -d im e n s io n a l m o d e llin g  is v irtu a lly  essentia l, du e  
to  the a b sen ce  o f  n o n -n e g lig ib le  th ree -d im en sion a l p h e -
n om en a , such  as se c o n d a r y  flow s, in a tw o -d im e n s io n a l 
case. O n ly  a few  th ree -d im en sion a l s im u la tion s  have 
been  p er fo rm e d . A s an  in itial step, W ille  (40) d e v e lo p e d  
a th ree -d im en sion a l m a th em a tica l m o d e l o f  stead y  flow  
in a sy m m etrica l b ifu rca tio n  by  usin g  the fin ite elem ent 
m e th o d . N ev erth e less , th is m e th o d  req u ired  t o o  lo n g  a 
c o m p u ta t io n a l tim e, thus p r o h ib it in g  further s im u la tion  
d e v e lo p m e n t. A n o th e r  c o m p u ta t io n  sch em e b a sed  on
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fin ite d iffe ren ce  m e th o d s  w as p resen ted  b y  D in n a r  et al. 
(41). In  an  a p p lic a t io n  to  a 90 ° T -b ifu r ca t io n  o f  r e c -
ta n g u lar  c ro s s -se c t io n , the su g gested  sch em e p r o v e d  to  
be  ex trem e ly  e ffic ien t in  c o m p a r is o n  to  the fin ite 
e lem en t m e th o d . T h e  latest th re e -d im e n s io n a l sim u la -
tion s  h a v e  been  p e r fo rm e d  b y  R in d t (42) fo r  stead y  flo w  
in  a  ca r o t id  b ifu rca tio n  a n d  P e r k to ld  a n d  P eter  (43) fo r  
p u lsa tile  f lo w  in  an  arteria l T -b ifu r c a t io n  m o d e l, b y  
u sin g  a sta n d a rd  G a le rk in  fin ite  e lem en t m e th o d  w ith  
su p e rco m p u te rs . T o  o u r  k n o w le d g e , n o  n u m erica l 
stud ies h ave  b een  p e r fo rm e d  that d ea l w ith  the pu lsatile  
flo w  in a m o d e l o f  an  a sy m m etr ic  th ree -d im en sion a l 
artery  b ifu rca tio n  w ith  a c o m p le x  g e o m e try . T h is  is 
m a in ly  b eca u se  the c o m p le x ity  o f  th e g e o m e try  c o m -
b in ed  w ith  the p u lsa tile  n a tu re  o f  the f lo w  n o t  o n ly  
crea tes d ifficu lties in  g en era tin g  e ffic ien tly  an  a p p r o p r i-
ate m esh  bu t a lso  resu lts in  a la rge  d e m a n d  in c o m p u te r  
s to ra g e  a n d  tim e. O n ly  w ith  a h igh ly  v e cto r iz e d  flu id  
d y n a m ics  c o d e  an d  a su p e rco m p u te r  c a n  the so lu t io n  o f  
su ch  a p r o b le m  b e c o m e  p ra ctica b le .

3.2 Numerical methods and available computer codes

H is to r ica lly , the b a s ic  e q u a t io n s  fo r  flu id  f lo w  w ere fo r -
m u la ted  esp ecia lly  b y  N a v ie r  (18 22 ) a n d  S tok es  (1 8 4 0 -  
50). A  q u e st io n  th en  w as w h eth er  th ey  w ere  eq u a lly  
a p p lica b le  to  la m in ar  o r  tu rbu len t flow s , a n d  this issue 
w as r e so lv e d  b y  O s b o r n e  R e y n o ld s  in 1895 (44). H e 
d e c o m p o s e d  the b a s ic  e q u a t io n s  essentia lly  in to  a tim e- 
a v era g ed  (o r  sp a ce -a v e ra g e d ) m a in  f lo w  a n d  a tu rbu lent 
flu ctu a tio n  structure. T u rb u le n c e  m a y  b e  p h y s ica lly  
v iew ed  as the m o t io n  o f  th re e -d im e n s io n a l transient 
ed d ies  o f  sizes ra n g in g  fro m  th o se  o f  a co n fin in g  d u ct to  
the m icr o sc a le  o f  d is s ip a tio n  to  th erm al en ergy . H en ce , 
n o t  o n ly  are the b a s ic  e q u a t io n s  very  n on -lin ea r, 
req u irin g  s im u lta n eou s  sa tis fa c tion  o f  c o n t in u ity  and  
m o m e n tu m  p rin cip les , b u t tru e treatm en t o f  tu rb u len ce  
is b o th  th ree -d im en sion a l a n d  transient. L a m in a r  flow s, 
h o w e v e r , are a m en a b le  to  a ssu m p tio n s  o f  stead iness and  
g e o m e tr ica l sy m m etry , a n d  u p  to  the d e v e lo p m e n t o f  
d ig ita l c o m p u te rs  a n a ly tica l s o lu t io n s  ten d ed  to  b e  c o n -
fin ed  to  th em  fo r  cases o f  s im p le  flo w s  a n d  geom etries . 
S im ilar a ssu m p tio n s  w ere  h e ld  (bu t som ew h a t 
q u e s t io n a b ly )  fo r  the R e y n o ld s -a v e r a g e d  tu rbu lent 
e q u a tion s .

W ith  the ad ven t o f  d ig ita l c o m p u te r s  an d  fin ite d iffe r -
en ce  m e th o d s  in p a rticu la r, it b e ca m e  p o s s ib le  to  treat a 
m u ch  fu ller fo rm  o f  the eq u a tion s . T w o -d im e n s io n a l 
stead y  flo w s  b e ca m e  stan d ard , a n d  a ty p ica l e x a m p le  o f  
a la m in ar  treatm en t (a lso  a l lo w in g  fo r  tem p era tu re - 
d e p e n d e n t p rop ertie s , n o n -N e w to n ia n  v iscos ity  and  
v is co u s  d is s ip a tio n ) w as that o f  C o llin s  (45-47). B ecau se  
the s im p lify in g  a ssu m p tion s  w ere  th e o re tica lly  va lid , 
ap art fr o m  the n u m erica l a p p r o x im a t io n  a n d  so lu t io n  
e rrors , c o m p a r is o n s  w ith  ex p erim en t sh o u ld  b e  g o o d .  In 
fact, th is w as g en era lly  fo u n d . T u rb u le n t flow s , h ow ev er, 
req u ired  (a) the sp e c ifica tio n  o f  the in te ra ctio n  o f  the 
‘ tu rb u len t flu ctu a tio n  fie ld ’ o n  the m a in  fie ld  eq u a tio n s  
(a tu rb u le n ce  m o d e l)  an d  (b ) the v a lid ity  o f  the ‘ tw o -  
d im e n s io n a l stead iness ’ a ssu m p tion . A n  in tern a tion a lly  
k n o w n  ty p ica l tu rbu len t c o m p u te r  c o d e  w as that o f  
G o s m a n  et al. (48), n am ely  T E A C H -T . T h is  u tilized  the 
S I M P L E  a lg o r ith m  o f  S p a ld in g  (see n o te  o n  T a b le  3) to  
treat s im u lta n eou sly  the c o n t in u ity  an d  m o m e n tu m  
p r in cip les , a n d  the a d d it io n a l p a rtia l d ifferen tia l trans-

Table 3 Comparison of pressure-velocity coupling algo-
rithms [from Ciofalo and Collins (61)]

Algorithm SIMPLE SIMPLEC PISO PISOC

Stopping criterion
/M 10“ 3 1 0 - 3

Maximum number 
of iterations 100 100 1 1

RF (momentum 
equations) 0.1 0.1 0.01 0.01

CPU time (s) 758 424 670 620

eM Mass source residual (sum o f the absolute values o f net mass fluxes in/out 
o f the control volumes) required to stop the outer iterations

M  Total mass flowrate
RF Residual reduction factor (ratio o f final/initial residual) for stopping the 

linear equation iterative solvers

Notes:
SIMPLE The prototype o f all the pressure-velocity coupling algorithms.

It is essentially based on a two-step iterative cycle, in which a 
guessed pressure field is introduced in the momentum equa-
tions to evaluate velocities, and then a pressure-correction 
equation, derived by enforcing continuity under certain simpli- 
cations, is solved to obtain an improved guess.

SIMPLEC Proposed as an improvement to SIMPLE. It is based on a 
more consistent expression for the coefficients o f the discretized 
pressure-correction equation, and has been shown to allow 
faster convergence for problems dominated by pressure gra-
dients and drag forces.

PISO, PISOC In the PISO algorithm, an additional pressure-correction step 
is performed at each iteration to improve the solution o f the 
momentum equations while maintaining continuity. The same 
modifications for SIMPLEC may be equally applied to PISO, 
yielding the PISOC algorithm.

p o r t  e q u a t io n s  fo r  k (tu rb u len t k in e tic  en ergy) a n d  £ 
(d iss ip a tion  rate o f  k). G e n e ra l tu rb u le n ce  m o d e llin g  at 
that tim e w as w ell d e s cr ib e d  b y  L a u n d e r  a n d  S p a ld in g  
(49).

M o r e  recen tly , the ad v en t o f  su p e rco m p u te rs  an d  
their pa ra lle l p ro ce s s in g  has m ea n t that the full th ree- 
d im e n s io n a l transient e q u a tio n s  ca n  b e  treated . T h ese  
tw o  features h ave  b een  a c c o m p a n ie d  (as has been  seen) 
b y  a rb itrary  g rid  g e n e ra t io n  m e th o d s . H en ce , in  p r in -
c ip le , a lm o st  a n y  la m in a r  f lo w  c a n  b e  d ire ctly  s im u la ted  
(D S ), a n d  th is ca n  a lso  b e  d o n e  fo r  tra n sition a l a n d  even  
lo w  tu rbu len t flow s. F o r  h igh  tu rb u len t flow s , e ither 
c o n v e n t io n a l tu rb u len ce  m o d e llin g  o r  la rge  e d d y  s im u -
la tio n  is n eed ed  [ fo r  e x a m p le  see V o k e  a n d  C o llin s  (50) 
a n d  G r o t z b a c h  (5 1 )]. T h ere  are tw o  real reserva tion s , 
that o f  the c o m p u te r  s to ra g e  an d  ru n -tim e , that is p r a c -
tica b ility  a n d  co s t , a n d  the n ecessity  fo r  a w h o le  
seq u en ce  o f  c o d e  v a lid a tion s . H a v in g  sa id  this, h o w e v e r , 
su ch  c o d e s  are id ea l fo r  the p r o b le m  b e in g  co n s id e re d  
(an d  o th e r  h u m a n  c ircu la t io n  flow s), as they  ca n  p r o p -
erly  in vestig a te  pu lsa tility  e ffects  a n d  even , if  n ecessary , 
lo w  tu rb u len t effects. It m u st be  ad m itted , th o u g h , that 
the latter w o u ld  be a ta x in g  c o m p u ta t io n a l exercise , 
w ith  c o n n o ta t io n s  o f  g ro w th  o f  sm all d is tu rb a n ces  an d  
n u m erica l d iffu s io n  (52).

T h e  p u lsa tile  b lo o d  f lo w  th ro u g h  a th ree -d im en sion a l 
arteria l b ifu rca tio n , then , ca n  be  d e scr ib e d  b y  the tim e- 
d e p e n d e n t th ree -d im en sion a l N a v ie r -S t o k e s  eq u a tion s . 
E x p ressed  in c o m p a c t  ten sor  n o ta t io n , w ith  su m m a tion  
o v e r  rep eated  in d ices, the b a s ic  m o m e n tu m  an d  c o n t in -
u ity  p r in cip les  m a y  b e  ex p ressed  as 

Ô Ô Ô-(p u ,)  +  - ipUlu,) , - „ IJ+ F [J  (1)

an d

dp ô
~  +  (pud =  0Ot OXi (2)
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w h ere  a is a genera l stress a n d  F  a b o d y  fo r c e  so u rce  
term .

T h is  is a genera l fo rm , ex p ress in g  the basis  o f  m a n y  
n u m erica l treatm ents. O m itt in g  the d e v e lo p m e n t fo r  the 
sake o f  co n c ise n e ss  [b u t  see C o llin s  a n d  C io fa lo  (5 3 )], 
the e q u a tio n s  fo r  b l o o d  o f  c o n s ta n t d en sity  in a C a rte -
sian  c o o r d in a te  system  m a y  be  w ritten  as:

M o m e n tu m  e q u a t io n s :

8u 1 dp ( 82u d2u d 2u\

Tt +  p ~dx ~  +  ~¥y +  d *z)
du du du+ u — + v — +  w — = 0dx dy dz (3)

dv \_dp ( d h  d^v dhA 
dt p dy V\ d 2x  +  d2y +  d2z)

dv dv dv 
+  U  — + V - -  + W  — = 0dx dy dz (4 )

dw  1 dp (  d2w d2w  <92w\
~dt +  p  ~dz ~  V\d2x + ~d2y + ~d2z )

dw dw dw
+  U  —  +  v  —  +  W  —  =  0dx dy dz (5)

C o n tin u ity  e q u a t io n :

du dv dw
dx dy +  dz (6)

w h ere  u, v a n d  w are the v e lo c ity  c o m p o n e n ts  in the x, y 
a n d  z d ire c t io n s  resp ectiv e ly . T h e  p ressure is p, p is the 
d en sity  o f  the flu ids an d  v is the k in em a tic  v iscos ity . T o  
so lv e  n u m erica lly  su ch  e q u a tio n s  is an  a rd u o u s  task in 
c o m p u ta t io n a l flu id  d y n a m ics , esp ecia lly  w h en  the f lo w  
fie ld  o f  in terest is o f  a c o m p le x  g eom etry . G en era lly  
sp ea k in g , tw o  a p p ro a ch e s  c a n  b e  m a d e  to  treat this 
p r o b le m , th ose  u sin g  (a) fin ite  e lem en t a n d  (b ) fin ite d if-
feren ce  m eth od s .

F in ite  e lem en t m e th o d s  su b d iv id e  the ca lcu la tio n  
d o m a in  in to  e lem ents, a n d  o v e r  ea ch  e lem en t a p p r o x -
im ate  the d e p en d en t v ariab les  b y  a ‘sh ap e  fu n c t io n ’ o r  
p ro file  assu m p tion . T h e  d is cre tiza t io n  e q u a t io n s  are 
u su a lly  d er iv ed  b y  the use o f  a v a r ia tion a l p r in cip le  o r  a 
w e ig h ted  residu a l m e th o d  (su ch  as the G a le rk in  
m e th o d ). T h e  m a jo r  a d v a n ta g e  o f  fin ite  e lem ent 
m e th o d s  is their g e o m e tr ica l flex ib ility , s o  that c o m p le x  
g e o m e tr ie s  ca n  be m o d e lle d  w ith  relative  ease. H o w e v e r , 
these m e th o d s  are so p h is t ica te d  an d  c o m p u ta t io n a lly  
very  ex p en siv e  fo r  th ree -d im en sion a l p r o b le m s  du e  to  
the la rge  system  o f  a lg e b ra ic  e q u a t io n s  in v o lv e d . O n  the 
o th e r  h an d , fin ite d iffe ren ce  m e th o d s  are less c o m p li -
ca te d  a n d  less ex p en siv e  in  their use o f  c o m p u te r  
s to ra g e  a n d  tim e, b u t are less a m en a b le  to  g eo m e tr ica lly  
c o m p le x  p rob lem s.

T o  o v e r c o m e  these in heren t p ro b le m s , tre m e n d o u s  
e ffo rts  h ave  b een  m a d e . B o th  fin ite e lem ent a n d  fin ite 
d iffe re n ce  m e th o d s  h ave  b een  im p ro v e d  to  a certa in  
exten t. G r e s h o  (54) has m o d ifie d  the fin ite  e lem ent 
m e th o d  fo r  so lv in g  the tim e -d e p e n d e n t in co m p re ss ib le  
N a v ie r -S to k e s  e q u a tio n s , b u t the c o m p u te r  c o d e  p r o -
d u ce d  w as still m o r e  ex p en s iv e  than  the s ta n d a rd  fin ite 
d iffe ren ce  co d e s . F L O W 3 D , recen tly  d e v e lo p e d  at 
A E R E , H arw ell, is a g o o d  e x a m p le  o f  a flo w  m o d e llin g

c o d e  u sin g  fin ite d iffe re n ce  m e th o d s . It has three- 
d im e n s io n a l t im e -d e p e n d e n t ca p a b ility  a n d  uses n o n -  
o r th o g o n a l b o d y -f it te d  c o o rd in a te s . O n e  o f  the key  
features o f  F L O W 3 D  is its p o ly -a lg o r ith m  structure, 
w h e re b y  o p t io n s  are a v a ila b le  fo r  the user to  sp ecify  d if-
ferent s o lu t io n  a lg or ith m s , that is S I M P L E  (55), 
S I M P L E C  (56), P IS O  (57) a n d  P IS O C , a n d  d ifferen t 
linear a lg eb ra  so lvers , that is line re la x a tion , S ton es ’ 
m e th o d  a n d  I C C G  (58). T h e  c o d e ’ s arch itectu re  an d  
genera l ch a ra cteris tics  are d escr ib e d  b y  B u rns et al. (59). 
D eta ils  o f  the c o m p u ta t io n a l treatm en t o f  the e q u a tion s , 
w ith  em p h a sis  o n  n o n -o r th o g o n a l g rid s, are g iven  by  
B urns a n d  W ilk es  (60). T h is  so ftw a re  is b e in g  c o n t in -
u ally  tested  a n d  re fined  th ro u g h  a p p lica t io n s  to  b o th  
sim p le  test p r o b le m s  a n d  ch a llen g in g  p ra ctica l en g in eer -
in g  p ro b le m s . E x ten sive  stud ies o f  the transient lam in ar 
f lo w  o v e r  a c o m p le x  b a ck -s te p  a rra n gem en t v ia  this 
c o d e  h ave  been  ca rr ie d  o u t  b y  C io fa lo  an d  C o llin s  (61). 
In th is w o r k  the in flu en ces  o f  b o u n d a r y  an d  in itial c o n -
d it ion s , d iffe re n c in g  sch em es, tim e step p in g , p re ss u re - 
v e lo c ity  c o u p l in g  a lg o r ith m s a n d  o th e r  p a ra m eters  are 
d iscu ssed  in deta il. C o n c ise n e ss  p erm its re p o rt in g  here 
ju s t  o n e  o f  these features, that o f  the a b o v e  c o u p lin g  
a lg or ith m . T h e  in v estig a tion  is su m m a rized  as T a b le  3 
[T a b le  III o f  re feren ce  (6 1 )]. S I M P L E  has a lrea d y  been  
m e n tio n e d  an d  the o th ers  are d erivatives . S I M P L E C  
w as c o n c lu d e d  to  b e  the best a lternative , b o th  fro m  tim e 
asp ects an d  a ccu ra cy . P IS O  and P I S O C  h ave  resu lted  
in errors  in  certa in  c ircu m sta n ces . In  o u r  a p p lica t io n , 
w e w ill b e  in v estig a tin g  (p r o b a b ly )  tim e -d e p e n d e n t flo w  
structures, a n d  F ig . 3 [ta k e n  fro m  referen ce (6 1 )] g ives 
an  e x a m p le  o f  tw o -d im e n s io n a l effects. F ig u re  3a defines 
the g e o m e try , w h ile  F ig . 3b  g ives a ttractiv e  stream  fu n c -
tio n  p lo ts  fo r  a v arie ty  o f  R e y n o ld s  n u m b ers  a n d  tim es.

O n e  o f  the m a jo r  a im s o f  im p ro v in g  fin ite d ifferen ce  
c o d e s  is t o  ex ten d  their use to  cases o f  c o m p le x  g e o m e -
tries. F L O W 3 D  has th is ca p a b ility  b y  usin g  b o d y -fit te d  
c o o rd in a te s . A  sm a ll-a n g le  b ifu rca tio n  p r o b le m  can  be 
so lv e d  b y  in tr o d u c in g  a sp litter p la te  as a so lid  re g io n  in 
c o m p u ta t io n  sp ace . F u rth er, a genera l b ifu rca tio n  can  
b e  treated  b y  u sin g  m u lt ip le -b lo ck  stru ctu red  grids 
(w h ich  has ju s t  been  im p le m e n te d  in  R elease  3). H en ce , 
F L O W 3 D  sh o u ld  b e  co n s id e re d  as h a v in g  a n ear-fu ture  
g o o d  ca p a b ility  to  m o d e l a genera l arteria l b ifu rca tio n  
flow .

A n o th e r  en g in eer in g  c o d e  is A S T E C , recen tly  d e v e l-
o p e d  at U K A E A  (62). In th is c o d e , fin ite d iffe ren ce  
m e th o d s  h ave  b een  a p p lie d  o n  a  fin ite e lem ent m esh  
w h ich  m a k es  it a u n iq u e  flu id  flo w  c o d e  c o m b in in g  the 
e c o n o m y  o f  the fo rm e r  w ith  the g e o m e tr ica l flex ib ility  o f  
the latter. T h e  e lem ent req u ired  by  A S T E C  are a rb i-
trary  q u a d rila tera ls  in a tw o -d im e n s io n a l case  and  
e ig h t -n o d e  b lo c k s  in three d im en s ion s . A lth o u g h  each  
e lem ent m u st h av e  e igh t n o d e s , n o te  that there is n o  
restr iction  reg a rd in g  the n u m b e r  o f  e lem en ts to  w h ich  a 
p a rticu la r  n o d e  b e lo n g s . T h e  c o n s e rv a t io n  e q u a tio n s  are 
d e scr ib e d  in in tegra l fo r m  a n d  are so lv e d  n u m erica lly  
b y  a p p ly in g  th em  to  in d iv id u a l n o d a l c o n t r o l  v o lu m es. 
In A S T E C , the v o lu m e  in tegra ls are a p p ro x im a te d  by  
a ssu m in g  that the m ea n  va lu e  o f  the v a r ia b le  o v e r  the 
c o n t r o l  v o lu m e  eq u a ls  the n o d a l value. H o w e v e r , the 
p ressure g ra d ien t term  is c o n v e rte d  to  a su rface  in tegra l 
o f  p ressure usin g  G a u s s ’s d iv e rg e n ce  th eorem . T h e  
surface  in tegra ls  are ev a lu a ted  b y  su m m in g  o v e r  the 
faces o f  the c o n t r o l  surface , a n d  o n  each  face  the pres-
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(b) Streamline evolution for various Reynolds numbers (R) and times (R is based on free-stream velocity and step height H, t  is non-dimensional 
time = / u qIH, where u0 is impulsive starting velocity and / dimensional time)

Fig. 3 Two-dimensional transient predictions for a backward-facing step, 
using a modern CFD code [from Ciofalo and Collins (61)]
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Table 4 Main characteristics of FLOW3D and ASTEC

Capabilities FLOW3D ASTEC

(1) Type of flow
Y/YLaminar/turbulent Y/Y

Steady/transient Y/Y Y/Y
Incompressible/compressible Y/Y Y/Y
Non-buoyant/buoyant Y/Y Y/Y
Isothermal/non-isothermal Y/Y Y/Y
Newtonian/non-Newtonian Y/Y Y/Y

(2) Grid Body-fitted 
Adaptive grids

Finite element

Numerical methods FLOW3D ASTEC

Pressure/velocity coupling algorithms SIMPLE, SIMPLEC, PISO, PISOC SIMPLE
Space-differencing schemes Central (CD), upwind (UW), hybrid upwind (HU),

second-order upwind (HUW), third-order upwind (QUICK)
HU,

Skew upwind, 
reduced skew 
upwind

Linearized equation solvers Line relaxation (LRLX), preconditioned conjugate 
gradients (ICCG), Stone’s strongly implicit method (SIP) etc.

ICCG

Time-differencing schemes Crank Nicolson, fully implicit Fully implicit

sure a n d  the a d v ectiv e  an d  d iffu s iv e  flu xes are a p p r o x -
im ated  in term s o f  n o d a l va lu es o f  the variab les. T h e  
p ressure o n  the fa ce  is s im p ly  assu m ed  to  b e  the m ean  
o f  the p ressures at the tw o  n o d e s  w h o s e  c o n t r o l  
v o lu m e s  are sep ara ted  b y  th e face . T o  m in im ize  the false 
d iffu s io n  e rrors  a sso c ia te d  w ith  the a d v e c tio n  term s, a 
sk ew  u p w in d  sch em e is e m p lo y e d . A  sp ecia l in ter-
p o la t io n  p r o ce d u r e  o f  R h ie  a n d  C h o w  (63) is used to  
a v o id  pressure c h e c k e rb o a r d in g . T h e  p r o ce d u r e  fo r  
s o lv in g  the d iscre te  e q u a tio n s  is itera tive  a n d  ba sed  o n  
the S I M P L E  m e th o d . A  p r e co n d it io n e d  co n ju g a te  g ra -
d ien t a lg o r ith m  is u sed  to  ca lcu la te  the p ressure c o r r e c -
tion s . T h e  tim e d iffe re n c in g  is fu lly  im p lic it , so  that 
there is n o  C o u r a n t  stab ility  restr ic tion  to  the tim e step.

F L O W 3 D  an d  A S T E C  h ave  v ery  s im ilar cap a b ilities , 
w h ich  to g e th e r  w ith  the e m p lo y e d  n u m erica l m e th o d s  
are su m m a rized  in  T a b le  4. H o w e v e r , b y  u sin g  a fin ite 
e lem en t m esh  o f  e ig h t -n o d e  b lo ck s , A S T E C  p ro v id e s  
m u ch  grea ter  g e o m e tr ica l flex ib ility  th an  F L O W 3 D  
d o e s . T h e  A S T E C  c o d e , ag a in , a p p ea rs  to  b e  o f  h igh  
p o te n t ia l to  m o d e l flo w s  th ro u g h  a rea listic  arteria l 
b ifu rca tion .

A  fu rther a lternative  is th e c o m m e r c ia l c o d e  
P H O E N I X  fro m  C H A M  (c o n c e n tra t io n  heat an d  
m o m e n tu m ). C H A M  is c o n s id e r in g  a T - ju n c t io n  b ifu r -
ca t io n  p r o b le m  to  assess p r e d ic t io n s  c o m p a r a b le  to  
th ose  fro m  F L O W 3 D  o r  A S T E C  (D . B. S p a ld in g , 
u n p u b lish e d  p e rso n a l c o m m u n ica t io n , 1989).

T o  m a k e  the so lu t io n  o f  la rg e  th ree -d im en sion a l 
p r o b le m s  su fficien tly  fast, a h igh  d eg ree  o f  v e c to r iz a t io n  
is essentia l to  o b ta in  best p e r fo rm a n ce  fr o m  p resen t-d a y  
su p e rco m p u te rs . B o th  F L O W 3 D  a n d  A Z T E C  have 
been  ta ilo re d  fo r  th e su p e rco m p u te r  C R A Y  in  the sense 
that the p r o g r a m  is w ritten  s o  that the C R A Y  c o m -
piler C F T 7 7  w ill p r o d u c e  a  h igh ly  v e c to r iz e d  c o d e .

3.3 Validations of the computer codes

W ith  the n ew  g en era tion  o f  c o m p u te r  c o d e s  care fu l v a li-
d a t io n  exercises sh o u ld  be  ca rried  o u t , a n d  in  an  en g in -
eerin g  c o n te x t  th is is d iscu ssed  ex ten siv e ly  b y  C o llin s  
a n d  C io fa lo  (53). F o r  the cu rren t m e d ica l a p p lica t io n , 
the L D A  m ea su rem en ts o f  L ie p sch  a n d  M o r a v e c  (36)

K
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Fig. 4 Bifurcation geometry and mesh division (channel height 2 /7 = 1 0  mm)
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(b) In the branch tube

Fig. 5 Comparison between calculations of ASTEC and the LDA measure-
ment of Liepsch and Moravic (36) for a Reynolds number of 496 and 
a branch-main tube flowrate ratio of 0.44 (positions are indicated in 
Fig. 4)

w ere felt to  b e  idea l. F o r  b o th  F L O W 3 D  a n d  A S T E C  
sim p le  tests w ere  ca rried  ou t o n  a tw o -d im e n s io n a l 
stead y  la m in a r  f lo w  in  a T -b ifu r ca t io n  fo r  R e y n o ld s  
n u m bers  ra n g in g  fro m  250  to  1100. F ig u re  4  sh o w s the 
b ifu rca tio n  g e o m e try  an d  elem ent d iv is io n  used in the 
ca lcu la tio n s . A  qu a n tita tiv e  c o m p a r is o n  o f  the c a lc u -
la ted  a n d  m ea su red  results fo r  a R e y n o ld s  n u m b e r  o f  
496  a n d  a b r a n c h -m a in  tu be  flow ra te  ra tio  o f  0 .4 4  is 
p resen ted  in  F ig . 5, w h ile  in  F ig. 6 the c o m p u ta t io n a l 
results o f  A S T E C  are c o m p a r e d  w ith  th o se  o f  
F L O W 3 D  fo r  the sa m e test case. It is o b s e rv e d  that the 
c o m p u ta t io n a l resu lts o f  A S T E C  an d  F L O W 3 D  are 
con s isten t , a n d  s h o w  very  g o o d  ag reem en t w ith  m ea -
surem ent.

T h e  p resen ted  resu lts are fo r  the case  o f  stead y  flo w  
o f  a N e w to n ia n  flu id  in a  r ig id  tw o -d im e n s io n a l T -  
ju n c t io n  o n ly . S o  far, c o d e  v a lid a tion s  have a lso  been  
p e r fo rm e d  o n  p u lsa tile  f lo w  in a tw o -d im e n s io n a l T -

ju n c t io n , b o t h  stead y  a n d  p u lsa tile  f lo w  in a th ree- 
d im e n s io n a l T - ju n c t io n  w ith  a c ircu la r  c ro s s -se c t io n  
an d  steady  f lo w  o f  a n o n -N e w to n ia n  flu id  in  a rig id  
tu be. B ecau se  o f  the lim ita tion  o f  sp ace , these resu lts are 
n ot presen ted  here, part o f  them  b e in g  p u b lish ed  in 
C o llin s  a n d  X u  (64). T o  date , all the w o rk  is lam inar.

4 VESSEL W A L L  D IST E N SIB IL IT Y

B lo o d  vessel w alls are v isco e la s tic  in h o m o g e n e o u s  
m u lti-la y ered  tissues. T h e y  are  c o m p o s e d  m a in ly  o f  c o n -
n ective  tissues an d  s m o o th  m u scle . E x p er im en ta l results 
have sh ow n  that the b l o o d  vessel w all ex h ib its  n o n -
linear v isco e la s tic  p rop ertie s , a n d  the vessel d ia m eter  
m a y  ch a n g e  b y  so m e  10 per  cen t d e p e n d in g  o n  age.

In m o s t  o f  the p re v io u s  w o rk , d is ten sib ility  o f  the 
arteria l w all w as reg a rd ed  as a ‘ s e c o n d -o r d e r ’ e ffe ct  o n

(b) In the branch tube

■------------ ASTEC

Q D Q D D  FLO W  3D

Fig. 6 Comparison between calculations of ASTEC and calculations of 
FLOW3D for a Reynolds number of 496 and a branch-main tube 
flowrate ratio of 0.44 (positions are indicated in Fig. 4)
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arteria l b ifu rca tio n  f lo w  a n d  w a s g en era lly  n eglected . 
E v en  so , it is w ell k n o w n  th at d is ten sib ility  is an  im p o r -
tant fa c to r  in p u lse d -w a v e  p r o p a g a t io n . A  recen t e x p e r i-
m en ta l stu d y  p e r fo rm e d  b y  K u  a n d  L ie p s ch  (65) has 
sh o w n  the d iffe ren ces  b etw een  r ig id  a n d  e la stic  w all 
b e h a v io u r  d u rin g  p u lsa tile  flo w . T h e  ex p erim en t w as 
ca rried  o u t w ith  (a) a r ig id  g lass m o d e l an d  (b ) an elastic  
s ilico n  ru b b e r  m o d e l in p u lsa tile  flow . W h e n  d ea lin g  
w ith  the e lastic  s ilico n  m o d e l o b v io u s  re d u c tio n s  in 
n ega tiv e  v e lo c itie s  an d  the size o f  s e c o n d a r y  f lo w  
re g io n s  w ere  o b se rv e d . T h is  d e m o n stra te d  the fact that 
w all e la sticity  m a y  w ell be  an  im p o rta n t fa c to r  in the 
u n d ersta n d in g  o f  b ifu rca tio n  flow s. A  p r o p e r  m a th e -
m a tica l m o d e l o f  the m e ch a n ica l b e h a v io u r  o f  the 
arteria l w all is essential to  the in v estig a tion  o f  their 
e ffects  o n  arteria l flow . M a n y  d ifferen t d e scr ip tio n s  have 
been  d er iv ed  w ith  v a r io u s  a ssu m p tio n s  o f  arteria l w all 
b e h a v io u r , su ch  as m e m b ra n e , th ick  shell, e lastic, v is c o -
e lastic, linear o r  n on -lin ea r. T h ese  m o d e ls  h ave  been  
ex ten siv e ly  s tu d ied  a n d  a p p lie d  in lin ear th eories  o f  
W o m e rs le y  (66) an d  M c D o n a ld  (67) a n d  n o n -lin e a r  
th eor ies  o f  A n lik e t et al. (68). H o w e v e r , all these 
an a lyses are restr icted  to  o n e -d im e n s io n a l flow .

A  tw o -d im e n s io n a l w all m o t io n  (in rad ia l a n d  axial 
d ire c t io n s ) b a sed  o n  the m e m b ra n e  th e o ry  o f  th in  e lastic  
shells has b een  recen tly  a p p lie d  b y  L ie p sch  (69) in an 
in vestig a tion  o f  the p r o p a g a t io n  o f  pressure  w aves 
th ro u g h  a stra ight th in -w a lled  e lastic  tu be. T h is  stud y  
has sh o w n  that th eore tica l v e lo c ity  p ro file s  in  e lastic  
tu bes , o b ta in e d  fro m  m ea su red  pressure  g ra d ien t w a v e -
fo rm s  v ia  lin ear th eory , ag ree  w ell w ith  m ea su red  p r o -
files. It m a y  b e  c o n s id e re d  as a  startin g  p o in t  fo r  fu rther 
research  in the field . In fact, in the C ity  U n iv ers ity  
R esea rch  C en tre  a research  p r o g r a m m e  is b e in g  c o m -
m e n ce d  to  su rvey  a n d  d e v e lo p  a  m a th em a tica l m o d e l o f  
the arteria l w all.

A n  im p o rta n t issue to  a c c o m m o d a te  the w all d is ten si-
b ility  in  n u m erica l m o d e llin g  o f  an  arteria l b ifu rca tio n  
f lo w  is the p r o b le m  o f  m o v in g  b o u n d a r ie s , w h ich  
requ ires the c o o r d in a te  system  to  b e  tim e d ep en d en t 
b e ca u se  the b o u n d a r ie s  m o v e , e ith er  o f  th em selves o r  in 
resp on se  to  in flu en ces  o f  the p h y s ica l p ro b le m . T h e  s im -
plest p r o ce d u r e  is to  regen era te  the c o o r d in a te  system  
at e a ch  tim e step  usin g  the n ew  b o u n d a r y  lo c a t io n s , o r  
o th e r  fa c to rs  fr o m  the p h y s ica l so lu t io n  at the p re v io u s  
tim e step. T h e  so lu t io n  fo r  the n ew  c o o r d in a te s  at each  
tim e step  thus is d o n e  sep ara te ly  fr o m  the p h y s ica l s o lu -
t io n  at that step. A ltern a tiv e ly , the e q u a tio n s  fo r  the 
c o o r d in a te  system  ca n  be a d d e d  to  the system  o f  p h y s i-
ca l s o lu t io n  e q u a tio n s  a n d  th e en tire  set o f  eq u a t io n s  
so lv e d  s im u lta n eou sly  at e a ch  tim e step. F o r  the p a rt ic -
u lar p r o b le m  co n c e rn e d , the m o t io n  o f  the c o o r d in a te  
system  is ca u sed  b y  d e fo r m a t io n  o f  the arteria l w all. 
T h e  d r iv in g  fo rce s  that d e fo rm  the arteria l w all in clu d e  
the p ressure a n d  shear stress ex erted  b y  th e b lo o d . A s 
an  in itia l step, d e fo r m a t io n  o f  the arteria l w all ca n  be  
sim p lified  as c ircu m feren tia l e x ten s ion s  o n ly . B y ev a lu -
a tin g  th e n o rm a l pressure o n  the w all a n d  m o v in g  it 
a lo n g  the n o rm a l v e cto r  to  a ‘ fo r ce -fr e e ’ p o s it io n , the 
n ew  b o u n d a r y  lo c a t io n s  at e a ch  tim e step  w ill then  be  
d e term in ed . T h e  in co r p o r a t io n  o f  the m o v in g  g rid  in to  
the so lu t io n  a lg o r ith m , in gen era l, is the sam e regard less 
o f  the re a so n  fo r  g rid  m o v e m e n t. Several e x a m p les  o f  
g rid s fo l lo w in g  b o u n d a r y  m o t io n s  are c ite d  b y  T h o m p -
so n  et al. (19). S in ce  the tim e d er iv a tive  o f  the J a co b ia n

fo r  the c o o r d in a te  tra n sfo rm a tion  fr o m  p h y s ica l t o  c o m -
p u ta tio n a l d o m a in  is in tro d u ce d , m o r e  c o m p u ta t io n s  
are n ecessary .

5 N O N -N E W T O N IA N  E F F E C T S

B lo o d  is a su sp en s ion  o f  fo r m e d  e lem en ts  in  p lasm a. 
T h ese  fo r m e d  e lem en ts are th e  red  cells, w h ite  ce lls  an d  
p latelets, in  w h ich  red  cells are  b y  far the m o s t  n u m er-
o u s  a n d  co m p le te ly  d o m in a te  the m e ch a n ica l p r o p e r -
ties. E xten sive  w o r k  has b e e n  d o n e  o n  the 
d e te rm in a tio n  o f  the m e ch a n ica l p ro p e rt ie s  o f  b lo o d ,  
p a rticu la r ly  the va lu e  o f  b l o o d  v isco s ity  a n d  its d e p e n -
d e n ce  o n  shear rate. A lth o u g h  all th e issues a b o u t  the 
v isco u s  b e h a v io u r  o f  b lo o d  c o m p o n e n t s  h a v e  still n o t 
been  re so lv e d , it is w ell a c ce p te d  th at b l o o d  c a n  b e  c o n -
sid ered  as N e w to n ia n  at h igh  sh ear rates b u t n o n -  
N e w to n ia n  at lo w  shear rates.

In  m o s t  o f  the p re v io u s  stud ies p u re  N e w to n ia n  
b e h a v io u r  o f  b l o o d  w as a ssu m ed , s in ce  th e  n o n -  
N e w to n ia n  b e h a v io u r  o f  b lo o d ,  like w all d is ten sib ility , 
w as reg a rd e d  w id e ly  as a ‘ s e c o n d -o r d e r ’ e ffe ct  o n  
arteria l b ifu rca tio n  flow . T h e  n o n -N e w to n ia n  e ffects  
h ave  been  m u ch  less ex ten siv e ly  s tu d ied  th an  the o th er  
fa cto rs . C u rren tly , h o w e v e r , a tte n tio n  is b e in g  p a id  to  
th em , a n d  they  m a y  h ave  so m e  s ig n ifica n ce  in  th e parts 
o f  the b ifu rca tio n  o f  greatest interest.

M o r a v e c  a n d  L ie p sch  (70) s tu d ied  the d iffe re n ce s  in 
f lo w  b e h a v io u r  o f  N e w to n ia n  a n d  n o n -N e w to n ia n  flu ids 
in  a s im p lified  th ree -d im en sion a l m o d e l o f  th e h u m an  
renal artery  b ifu rca tio n  b y  u sin g  a  laser D o p p le r  an e -
m o m e te r . In  th is stud y , su bsta n tia l d iffe ren ces  w ere 
fo u n d  in  th e f lo w  b e h a v io u r  o f  the N e w to n ia n  a n d  n o n -  
N e w to n ia n  flu ids, e sp ecia lly  in  z o n e s  o f  f lo w  sep a ra tion  
a n d  s e co n d a ry  flow . A n o th e r  ex p erim en ta l w o r k  p er-
fo rm e d  b y  K u  a n d  L iep sch  (65 ) a lso  revea led  th is fact. 
A ll these results ten d  to  in d ica te  that n o n -N e w to n ia n  
flo w  b e h a v io u r  c a n n o t  be  n eg lected , ev en  in  la rge  b lo o d  
vessels. It is, th erefore , necessary  to  a c c o m m o d a te  this 
fa c to r  in  n u m erica l studies. B o th  o f  the c o m p u te r  c o d e s  
assessed  a b o v e  are ca p a b le  o f  treatin g  a n o n -N e w to n ia n  
flu id  flow .

6 C O N C L U S IO N

B lo o d  flo w  th ro u g h  an  arteria l b ifu r ca t io n  is lam in ar 
b u t su bsta n tia lly  th ree -d im en sion a l, c o n ta in in g  v o rt ice s  
a n d  s e co n d a ry  flow s. T h is  p r o b le m  in v o lv e s  m a n y  c o m -
p lica tin g  fa cto rs , su ch  as th re e -d im e n s io n a l g eom etr ies , 
p u lsa tility , w all d isten sib ility  a n d  n o n -N e w to n ia n  v is c o -
e lasticity . T h e  best lin e  o f  a p p r o a c h  to  dea l w ith  su ch  a 
c o m p le x  p r o b le m  is to  iso la te  e a ch  ch a ra cte r  a n d  stud y  
it sep arate ly . T h is  ra tion a le  w as a lso  fo l lo w e d  b y  K u  
a n d  L ie p sch  (65), in  o r d e r  to  sp ecify  the re la tive  e ffects  
o f  each .

T w o  e x a m p les  o f  the latest g e n e ra t io n  o f  c o m p u te r  
c o d e s , F L O W 3 D  a n d  A S T E C , h a v e  b e e n  assessed  in 
deta il, a n d  are ca p a b le  o f  trea tin g  th is p r o b le m  area. 
T h e  c o m p u te d  resu lts fo r  s tea d y  f lo w  in  a p la n e  T -  
b ifu rca tio n  h a v e  b een  v a lid a ted  b y  c o m p a r is o n  w ith  
p u b lish e d  L D A  m ea su rem en ts ; th e c o m p a r is o n  is very  
sa tis fa ctory . T h re e -d im e n s io n a l p r e d ic t io n s  h av e  a lso  
been  p e r fo rm e d  a n d  so m e  o f  the resu lts h a v e  b een  
p u b lish ed  (64).
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It is in ten d ed  to  in vestiga te  the e ffects  o f  n o n - 
N e w to n ia n  v isco s ity  a n d  flex ib le  w all in  a three- 
d im e n s io n a l T -b ifu r ca t io n  m o d e l, w h ich  sh o u ld  b e  the 
sam e as the o n e  e m p lo y e d  b y  K u  a n d  L ie p sch  (6 5 ); this 
w ill c o m p le te  the c o d e  v a lid a tio n  exercise . T h e n  it w ill 
b e  p o s s ib le  t o  p rog ress  to  in vivo b ifu rca tio n  f lo w  p re -
d ic t io n s , so m e  o f  w h ich  have a lrea d y  been  m a d e  (71).

A  pa ra lle l research  p r o g r a m m e  to  in vestiga te  m a th e -
m a tica l m o d e ls  o f  the arteria l w all is a lso  in p rogress .

T h e  rev iew  p resen ted  here is a b r id g e d  fr o m  an  earlier 
in terna l r e p o rt  by  the a u th ors  (72). F o r  a m o r e  th o r -
o u g h  an d  in -d e p th  d iscu ss ion  o f  c o m p u ta t io n a l flu id 
d y n a m ics  w o rk , the read er is re ferred  to  the rev iew  b y  
C o llin s  an d  C io fa lo  (53).
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A PREDICTIVE SCHEME FOR FLOW IN ARTERIAL BIFURCATIONS : 

COMPARISON WITH LABORATORY MEASUREMENTS
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ABSTRACT

This is an initial study of overall prediction exercise to simulate 
blood flow through three-dimensional arterial bifurcations, ASTEC
code is used with finite element grid definition and finite differ-
ence solution methods. Results are compared with laboratory measure-
ments of Ku and Liepsch for T-junctions. Comparison is excellent for 
two-dimensional steady flow tests, and very good for three-dimensional 
pulsatile flows.

INTRODUCTION

It is a well known fact that atherosclerosis and thrombosis occur 
predominantly in arterial bends and bifurcations. Although the exact 
mechanism is not yet well understood, more recent studies (Zarins 
et al., 1983; Ku et al., 1985) have confirmed Caro's observation (Caro 
et al.,1971) that atherosclerotic lesions develop more frequently in 
regions with low shear stresses and with recirculation. Therefore, 
detailed insight into the flow phenomena occurring in bifurcations 
possibly contributes to a better understanding of the mechanism 
underlying the formation of atherosclerotic plaques and thrombi.

Extensive studies have been performed on flow in arterial bifurca-
tions and branches. O'Brien et al. (1977) made a prediction of unsteady 
laminar flow through a two-dimensional T-junction based on a Vorticity- 
Stream function formulation. Detailed measurements and numerical calcu-
lations of steady flow in a plane 90 degree bifurcation were presented 
by Liepsch et al. (1982). The extension to the study of pulsatile flow 
was reported by Khodadadi et al.(1988). To investigate the effects of 
non-Newtonian behaviour and wall flexibility, Ku and Liepsch (1986) 
performed LDA measurements on flow at a three-dimensional T-bifurcation. 
An excellent review of previous research into the details of flow 
behaviour in model bifurcations has been made by Liepsch (1986).

The present study is an initial step of the overall prediction 
exercise which aims to simulate arterial bifurcation flows under real

Biomechanical Transport Processes, Edited by F. Mosora et al. 
Plenum Press, New York, 1990
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physiological condit ions, For convoninnon of comparison wir.lt pnhlishod 
measurements, the idealised T~bi£urcation models are adopted and the 
validation of the numerical results is provided. All calculations pre-
sented were performed using ASTEC (developed at UKAEA), a fluid flow 
code applying finite volume solution methods to a finite element mesh 
(Lonsdale, 1988). As assessed by Xu and Collin3 (1989), the unique com-
bination of great geometrical flexibility and high efficiency makes 
ASTEC a well-suited code for the current application.

NUMERICAL METHODS

The numerical predictions are based upon the system of time- 
dependent Navier-Stokes and continuity equations for viscous, incom-
pressible Newtonian fluid flow in a three-dimensional geometry with 
rigid walls. These equations can be written in the integral form

ju-dÂ = 0 (1)

P^f-Ju dV = -Pjuu-dA - fvPdV '+njvu-dA (2)

Where "u = (u,v,w)* is fluid velocity, dA and dV represent elements of 
control area and control volume respectively, and P is pressure. 
Together with appropriate initial and boundary conditions, equations (1) 
and (2) are uniquely solvable for velocity components and pressure.

The procedure for solving the discrete equations is iterative and 
based on the SIMPLE method as inferred by Patankar and Spalding (1972).
A preconditioned conjugate gradient algorithm is used to calculate the 
pressure corrections. To minimise the false diffusion errors associated 
with the advection term, a vector upwinding scheme is employed. The time 
differencing is fully implicit, so that there is no Courant stability 
restriction to the timestep.

To make solution of large three-dimensional problems sufficiently 
fast, a high degree of vectorization is essential to obtain best per-
formance from present-day supercomputers. ASTEC has been tailored for 
the supercomputer CRAY in tho sense that the programme in writton so 
that the CRAY compiler CFT 77 will-produce a highly vectorised code.

RESULTS AND DISCUSSION

Steady Flow in a Two-dimensional T~bifurcation

Particularly with a new code such as ASTEC careful validation 
exercises should be carried out. For these, the experimental data of Ku 
and Liepsch were felt to be ideal. To ensure that ASTEC is suitable for 
the current application, a simple test was carried out on a two-dimon- 
sional laminar flow in a T~bifurcation for Reynolds numbers ranging from 
250 to 1100. Figure 1 shows the bifurcation geometry and element division 
used in the calculation. Since ASTEC is a three-dimensional code, the 
two-dimensional problem was solved on the three-dimensional mesh of one 
element thick with flow restricted between two symmetric planes. The 
mesh consists of 840 elements and 1870 nodes. With this mesh a typical 
calculation for a Reynolds number of 496 and a flow rate ratio of
0.44 required 165.8 seconds on a CRAY X-MP/28.
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o
In this simulation the density of the fluid is lOOOKg/m , and the 

dynamic viscosity is 1.02x10 J Kg/(ms). At the inlet plane a fully 
developed axial velocity profile and zero normal velocities are specified. 
Since the two outlets are well downstroum, a fully developed axial velocity 
profile with specified flow rate has been assumed at one outlet, and zero 
pressure is assumed at the other. No-slip conditions are imposed on the 
rigid walls.

Figures 2 and 3 present the velocity vectors in the main and 
branching tubes respectively, for a Reynolds number of 496 and a flow 
rate ratio of 0.44. It. is seen that the velocity profiles are parabolic 
at the inlet and outlet regions. Before the bifurcation, the velocity 
profiles are almost unchanged until ubout 10mm upstream from the branching. 
Behind the bifurcation in the main tube, the velocity profiles are skewed 
towards the upper wall. A reverse flow region of about 20mm in length 
exists at the bottom wall. The flow farther downstream of the bifurcation 
becomes fully developed. In the branching tube, the reverse flow region 
along the upstream wall is more pronounced than in the main tube. The 
region of reverse flow is about 43mm in height which corresponds to 4.3 
times the diameter of the tube.

"20 -10 0 10 20 30 40 50 x(mm)

Fig. 2. Velocity vectors in the main tube (Re-496, V^/V^O.44).
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Fig. 3. Velocity vectors in the branching tube (Re=496, V3/Vj=0.44).

To examine the accuracy of the calculations, a quantitative 
comparison of the calculated and measured results has been performed. In 
Figure 4 the calculated axial velocity profiles are compared with LDA 
measurements obtained by Liepsch et al. (1982). It is observed that there 
is a very good agreement between the calculations and the measurements; 
especially in the main tube the axial velocity profiles are predicted 
quite accurately. Some differences are found in the branching tube. This 
may be due to the three-dimensional effects of the tube used in the 
experiments. The differences are, in fact, rather less than with numerical 
predictions also presented by Liepsch et al.

y/2H=0.5 L5 25 35 45 62 **** Predictions of Liepsch et al

Fig. 4. Comparison between calculations and the LDA measurements 
of Liepsch et al.(1982). (Re=496, Vj/Vĵ O ^ )
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Fig. 5. Shear-stress contours (Re=496, V^/Vj^O.44).

The shear-stress contours for a Reynolds number of 496 and a flow 
rate ratio Vg /V^ of 0.44 are shown in Figure 5. For convenience of 
comparison, the shear-stress contours are plotted as a percentage of their 
maximum and minimum values respectively. These values are given in terms 
of the fully developed wall shear-stress at the inlet. Figure 5 shows that 
there are two zones of low shear-stress formed, one is opposite the 
branching near the bottom wall of the main tube, with unothor along the 
upstream wall of the branching tube. In the region of the divider wall of 
the branching tube, a high shear-stress zone is formed. The same happens 
along the upper wall of the main tube around the corner area. Again, the 
agreement between the predicted shear-stress contours and those presented 
by Liepsch et al.(1982) is very good.

Steady Flow in a Three-dj mens i on a1 T~bifurcation

A three-dimensional prediction was performed on steady flow through 
a T-bifurcation with circular cross-section at an average upstream Reynolds 
number of 250 and a flow division ratio of 50:50. In this bifurcation, 
the diameter of the main tube is 6mm and the diameter of the side branch 
is 3mm. The element division for the model bifurcation is illustrated in 
Figure 6. Since the flow is symmetric, only half of the bifurcation was 
considered. The mesh used in the calculation consists of 5360 elements 
and 6526 nodes. A 70% aqueous glycerine solution with a density of l.l80Kg/m3 
and a viscosity of 0.013Kg/(ms) wus used in the simulation. The boundary 
conditions were the same as those applied to the two-dimensional case.

The calculation had a 'cold' start, which means that the initial 
guess of all variables was zero. When the convergence criterion for the 
maximum change of velocity components of two successive iterations was
less than 1.0x10  ̂
on a CRAY X-MP/28.

a converged solution was obtained in 335 seconds
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Fig. 6. Finite element mesh used in the calculation.

Figure 7 presents the axial velocity profiles in the symmetry plane. 
At the inlet and outlet regions, the axial velocity profiles hardly differ 
from parabolic ones. After the flow divider, maximum axial velocities are 
shifted towards the divider wall, which is primarily caused by the flow 
branching. A reg'ion with negative axial velocities could be seen at the 
bottom wall, with negative velocities reaching approximately 2cm/sec.

Figure 9 demonstrates the secondary flow at the cross-sections given 
in Figure 8. It is observed that secondary flow at the entrance of the 
main tube (A) is completely directed from the outer wall towards the 
branching side. At the flow divider site in the main tube (B), secondary 
flow is almost entirely directed towards the divider wall, where the 
highest secondary velocities are found. Downstream in the main tube (C) 
secondary flow shows high resemblance to a Dean type vortex. Near the 
symmetry plane secondary velocities are directed towards the divider 
wall and near the side wall they point circumferentially back towards the 
non-divider wall. At both sites in the branch tube (D and E), secondary 
velocities are directed towards the divider wall near the symmetry 
plane and circumferentially back near the side wall.

t
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Fig- 9. Secondary flow in the main and the branching tube. 
(0 : outer wall, D&: divider wall)
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Fig. 10. Calculated (-- ,••••) and measured axial velocity
profiles at 0 and 90 degrees in the symmetry plane 20mm 
upstream and 2.5mm downstream from the branch. \\\\ shows the 
limits of predicted reverse flow region for phase 0° and 
90°.

Pulsatile Flow in a Three-d jniens ion a 1 T-bifurcatlon

Following the steady flow prediction presented in the previous 
section, a preliminary prediction of pulsatile flow in the same three- 
dimensional T-bifurcation was performed. The flow conditions reported in 
the experimental study of Ku and Liepsch (1986) were reproduced in this 
prediction, i.e. an average main tube Reynolds number of 250, an average 
upstream pressure gradient, of 4000pa/in, a pulsatile pressure amplitude of 
lOOOpa/m, and a Womersley parameter of 2.3 for the sine wave input. 
Therefore, with 0° of phase representing the peak pressure, the pressure 
gradient at the inlet plane can be given by

3P _
SX 4000 + 1000 cos u) t (3)

By imposing the inlet pressure gradient as one of the 
the calculation was carried out from 0° of phase with 
solution of the steady flow case as its initial guess, 
in a cycle were used. The calculation for a quarter of 
minutes on a CRAY X-MP/28.

boundary conditions, 
the converged 
Thirty-six time steps 
a cycle took 15

Figure 10 illustrates the velocity profiles at 0 and 90 degrees in 
the symmetry plane 20mm upstream and 2.5mm downstream from the branch. 
Similar to the steady velocity profiles, the pulsatile profiles in the 
main tube 2.5mm downstream of the bifurcation are skewed towards the flow 
divider wall. A reverse flow region could always be seen at the bottom 
wall of the main tube throughout the cycle, although the extent of this 
region varies within the cycle. A most pleasing effect is the prediction 
in the right sense of the slight experimental increase and reduction 
going from 0° to 90° phase of the velocity profiles upstream and 
downstream of the bifurcation. These predictive results, then, are 
consistent with the laboratory measurements of Ku and Liepsch (1986).
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CONCLUSION

From the result a presented above, the Following conclusions can 
be drawn :

1. A predictive scheme for flow in two- and three-dimensional 
bifurcations is presented. Calculations for steady flow in a plane T- 
bifurcatjon, both steady and pulsatile Mow in a three-dimensional T- 
bifurcation have been performed.

2. The computed results for steady flow in a plane T~bif urcat.i on have 
been validated. Comparison of the calculations and the published LDA 
measurement is very satisfactory.

3. The presented predictive scheme has been proved to be efficient 
and reliable on three-dimensional problems.

4. It is intended to complete the pulsatile flow exercise for the 
entire 360° cycle, and to investigate the effects of non-Newtonian 
viscosity and flexible wall. Then it will be possible to progress to in vivo 
bifurcation flow prediction.
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