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Real-time battery temperature monitoring using
FBG sensors: a data-driven calibration method

Li Zhang, Xuan Liu, Kang Li, Dajun Du, Min Zheng, Qun Niu, Yi Yang, Qi Zhou, Tong Sun, and Kenneth
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Abstract— Battery storage has an important role
to play in integrating large scale renewable power
generations and in transport decarbonization. Real-
time monitoring of battery temperature profile is
indispensable for battery safety management. Due to
the advantages of small size, resistance to corrosion,
immunity to electromagnetic interference, and mul-
tiplexing, fiber Bragg-grating (FBG) sensing has re-
ceived substantial interests in recent years for battery
temperature measurement. However, traditional tem-
perature calibration for FBG sensors often requires a
high-standard reference, and cause the sensors fail to
be consistent during the calibration or re-calibration
processes. To tackle the challenges, an ensemble data-
driven calibration method is developed in this paper
for FBG sensors. The calibration model consists of a
linear part and a nonlinear part. First, the fuzzy C-
means (FCM) algorithm is used to extract the linear
relationship between the measured FBG wavelength
shift and temperature variation. Then, the empirical
mode decomposition (EMD) technique is used to
classify the intrinsic mode functions (IMFs) and the
remainder for the unmodeled nonlinear information.
The unmodeled nonlinear information is further com-
pensated using battery state of charge (SOC) and
cycle number information. The experimental results
confirm that the proposed temperature calibration
method achieves desirable accuracy and reliability,
with both the mean absolute error and root mean
square error being around 0.2 ℃ respectively. Com-
pared with the traditional temperature calibration method, the proposed approach can be used online in real-life applications.

Index Terms— Lithium-ion battery, Data-driven method, Temperature calibration, FBG, EMD
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I. INTRODUCTION

L ITHIUM-ION batteries have several distinctive ad-
vantages such as high energy density and high power

density, which have been increasingly used in power grids 
[1]–[3] and in electric vehicles (EVs) [4]–[6]. Temperature 
seriously influences the performance of a lithium-ion 
battery such as the usable capacity and internal resis-
tance. It has been widely recognized that inappropriate 
operation temperature can accelerate the degradation of 
lithium-ion batteries [7], [8]. Furthermore, during the 
charging/discharging process, heat is accumulating. In 
particular, under abuse conditions such as overcharging, it 
may cause overtemperature and even explosion. Therefore, 
to guarantee the operational safety, thermal management 
plays an essential role in the battery management system



(BMS).
Thermocouple and thermistor have been the most 

popular temperature sensors for battery temperature mon-
itoring [9]. However, they are sensitive to corrosion and 
electromagnetic radiation and each temperature measur-
ing point needs a separate data channel. For an energy 
storage system (ESS), this will significantly increase the 
number of sensors and other supporting facilities, which 
makes the already limited space even more compacted, 
particularly in EVs. Therefore, the Fiber Bragg-grating 
(FBG) sensors are attracting increasing interests in bat-
tery management due to the advantages of smaller size, 
mechanical robustness, resistance to corrosion and im-
mune to electromagnetic interference [10], [11]. Moreover, 
a single optical fiber can be inscribed with multiple FBG 
sensors for temperature measurements, which can save a 
lot of cost and space [12]. In general, the FBG sensors 
can be attached to specific locations on the battery shell 
to monitor the surface temperature [13], or insert inside 
the battery to measure its internal temperature [14]. 
Thereinto, the encapsulation cells should be fabricated 
from scratch by manufacturers, otherwise it will damage 
the cells or change their performances to insert the 
FBG sensors into the commercial cells [15]. While the 
temperature sensors have been successfully bonded on 
the surface of commercial cells [12], [16], and the surface 
mount FBG sensors can be easily scaled up to battery 
packs where accurately monitoring the temperature profile 
of cells inside the packs are extremely important for safe 
operation of the packages. Thus, in this study, the surface 
mounting FBGs will be applied to commercial cells to 
improve measurement accuracy.

In summary, FBG sensors have been chosen as one of 
the most suitable means to allow practical measurements 
to be taken due to advanced packing technologies [17] 
and the inherent advantages that they have for a range 
of applications such as civil structure applications [17] 
and the battery temperature monitoring and estimation 
under investigation in this paper. The specific benefits 
of fiber o ptical s ensors h ave b een d iscussed b y s ome of 
the authors in detail in other publications [18] but they 
are particularly well suited to these situations where 
electrical monitoring is unsafe in harsh environment, 
thereby offering a  s ignificant sa fety ad vantage. Further, 
fiber o ptical s ensing m ethods s uch a s a re u sed h ere work 
well when electrical means of monitoring fail, for example 
where there is a large amount of electromagnetic noise, 
and data being read from conventional sensors can be 
corrupted. In addition, when there are a large number of 
sensors to be placed such as battery temperature profile 
monitoring in this paper, the FBG sensors are easy to 
install and lightweight. Finally, the use of FBG networks 
can offer a  c ompetitive c osting o ption, e specially when 
safety is to the fore in the measurement.

FBG sensors measure temperature which induces 
change in the effective refractive index of the core and the 
grating period, thus resulting in a shift of the reflected 
spectrum [19]. Meanwhile, any external strain will also

contribute to a peak shift in the reflected wavelength. 
The resonant wavelength peak shift is generally created 
by the variations of both temperature and strain. To 
decouple the impacts of the temperature from the strain, 
various methods have been proposed [20]–[22], however 
temperature calibration is a prerequisite for all these 
methods.

Generally speaking, temperature calibration needs to be 
conducted in a controlled environment. For example, 
constant specific e xternal t emperature e nvironments con-
trolled by a thermal chamber should be applied. The 
external temperature should be kept for a long enough 
period to ensure the temperature homogeneity in both the 
battery specimen and FBG sensor. The thermo-optic 
coe icient a nd t he h ost m aterial t hermal e xpansion coef-
ficient can be calibrated consequently [20]. Although this 
temperature calibration method can accurately identify 
the relevant parameters, some issues still exist. Firstly, 
the calibration method can only be performed offline 
and the whole process is extremely demanding and time 
consuming. Secondly, the method requires a high-precision 
thermal chamber to ensure the reliability of the calibration 
results, therefore it is not suitable for online real-time 
applications.

To overcome the shortcomings of the traditional temper-
ature calibration method for FBG sensors, a novel data-
driven calibration method is developed in this paper. The 
main contributions are summarized as follows:

• FBG sensors are applied to commercial 18650 
LiFePO4 lithium-ion battery cells for multi-point 
temperature measurements. Since the wavelength 
shift are the results of temperature variation, strain 
change and other unknown factors, both the state of 
charge (SOC) and the aging are taken into account 
to estimate the temperature.

• A novel temperature calibration model is developed 
which comprises a linear part and a nonlinear 
compensation part, where Fuzzy C-means algorithm 
is used to establish the linear relationship between 
the measured wavelength shift and temperature 
variation, and the remaining wavelength information 
is decomposed into the intrinsic mode functions 
(IMFs) and the residuum using the empirical mode 
decomposition (EMD) method. Then the irrelevant 
modes are selected from IMFs to represent the effect 
by the measurement noise, while the relevant modes 
are selected from the IMFs represents the effect of 
the SOC and the residuum is used to represent the 
aging effect.

• To build nonlinear compensation part of the temper-
ature calibration model, the relevant modes relating 
to SOC is represented using a polynomial model, 
while the residuum relating to the cycle number is 
modeled using a linear function.

• Experimental results confirm that the proposed
approach is capable of producing accurate and com-
parable temperature estimations as the conventional
temperature sensors without resorting to expensive



and laborious offline laboratory calibrations.
The remainder of this paper is organized as follows. 

The experimental setup is briefly i ntroduced i n Section
II. The framework of the data-drive calibration method is 
detailed in Section III. Experimental study is presented in 
Section IV to verify e icacy of the developed method, and a 
conclusion is made in Section V.

II. EXPERIMENTAL SETUP

Four commercial 18650 LiFePO4 lithium-ion battery 
cells (#1, #2, #3, #4) are used, which have a nominal 
voltage of 3.2 V and capacity of 1.6 Ah. FBG sensors are 
mounted on the surfaces of the battery cells. In this study, 
each cell uses three FBG sensors, namely FBG 1, FBG 2 
and FBG 3, as shown in Fig. 1.

Fig. 1: The layout of the FBG sensors

The FBG sensors are interfaced with a Micron-Optics 
interrogator for measurements, and a thermocouple is also 
attached to the location close to the FBG sensors as a 
reference. Typically, the resolution and the accuracy 
tolerance of the FBG sensors are 1 pm and ±0.5 nm 
respectively, while for the thermocouples, these are 0.1 ℃ 
and ±1 ℃ respectively. The battery experiments are 
managed by a NEWARE battery test system to cycle the 
cells under the room temperature environment and the 
current and voltage signals are collected. The experimental 
set-up is shown in Fig. 2.
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Fig. 2: Battery test system

In this study, a standard Constant-Current 
Constant-Voltage (CC-CV) charging process and a 
Constant-Current (CC) discharging process are applied 
to the test

cell, where the cell is first c harged w ith c onstant a  1.6 
A current until the terminal voltage reaches the upper 
cutoff voltage (3.6 V). Then the cell i s charged under the 
constant voltage mode until the charging current decreases 
to 75 mA. The sampling frequency for all the measurement 
equipment is set at 1 Hz. For the CC discharging process, 
a 1.6 A constant current is used to discharge the cell to 
the lower cutoff voltage of 2.0 V. The resting time between 
the charging and consequent discharging phase is set to 
10 minutes. The characteristic wavelengths of FBGs 1, 2 
and 3 are 1534 nm, 1539 nm and 1544 nm, respectively. 
The measurements of cell #1 are shown in Fig. 3.
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Fig. 3: The temperature and peak wavelengths measured 
during the charging and discharging process

III. THE PROPOSED DATA-DRIVEN CALIBRATION METHOD

In this section, the temperature measurements by FBG 
sensors are calibrated via a linear model combined with 
a nonlinear compensation model. The linear correlation 
model is built using the fuzzy C-means algorithm, while 
the nonlinear compensation model is built using the 
EMD method. The data-driven calibration methodology 
is elaborated below.

A. Problem formulation
Generally speaking, a FBG sensor will reflect a cer-

tain narrow band of spectrum and the centered peak 
wavelength is known as the Bragg wavelength [23], [24] 
which will shift due to several factors, such as thermal 
and mechanical effects, a nd t his c an b e e xpressed as:

λB = 2neΛ (1)

where ne is the effective refractive index at the grating 
location and Λ is the grating period [20]. The wavelength 
shift (∆λB) due to temperature variation (∆T ) and strain 
variation (∆ε) can be expressed as follows:

∆λB

λB
= (α+ ξ)∆T + (1− Pe)∆ε (2)

where Pe is the photo-elastic coefficient, α is the thermal
expansion coefficient and ξ is the thermo-optic coefficient



[24] of the fiber material. Both temperature variation ∆T
and strain change (∆ε) are unknown, hence to estimate
the temperature variation, Eq. (2) can be simplified as
follows:

∆λB = f(∆T ) + Z (3)

where f(∆T ) = λB(α + ξ)∆T is the effect of temperature 
variation on the wavelength shift, while Z represents the 
remainder wavelength shift.

It is worth noting that in this paper, wavelength 
shift is expressed as a combination of thermal output 
and mechanical strain in Eq. (2), where the first term 
represents the lumped thermal effect including the thermo-
optic effect and thermal apparent strain, and the second 
term represent the lumped mechanical strain effect. For 
the first term, the main contributor is the variation of the 
silica refraction index, induced by the thermo-optic effect, 
while the effect induced by thermal expansion which alters 
the period of the microstructure, is marginal. Since the 
wavelength shift due to temperature variation is modelled 
as a linear function as elaborated earlier, hence errors 
induced by the linear model is lumped into the second 
term Z in Eq. (3), which will be modeled using a nonlinear 
function elaborated below.

It is clear that Z represents the lumped contribution of 
the strain variation and other captured factors or modeling 
errors on ∆λB . Hence,

∆T = (∆λB − Z)/(α+ ξ) = f−1(∆λB − Z) (4)

It is also worth noting that both the thermal expansion 
coe icient and the thermo-optic coe icient vary with the 
temperature, hence the FBG wavelength response to the 
temperature is a nonlinear relationship in general. 
However, these coe icients are often treated as constants if 
the temperature does not change significantly or in cases 
where very high precision requirement on temperature 
measurement is not required [25]. In other words, f(·) is 
usually treated as a linear function over the room 
temperature range, while the higher order nonlinear re-
lationships are ignored. In an experimental study on 
temperature measurement using FBG sensors at 1550 nm 
[26], a nonlinear temperature response model was built 
where the quadratic term in the Bragg wavelength shift is 
approaching to a constant from 0 °C to 40 °C at 1549 nm. 
Therefore, in this paper the wavelength shift to the 
temperature variation is treated as a linear relationship, 
while the impact of Z on the wavelength shift is represented 
by a nonlinear function.

In this paper, the base temperature (T0) is set at 25 ℃, 
the temperature estimated via the FBG sensor, namely 
TFBG can be expressed as

TFBG = T0 +∆T = T0 + f−1(∆λB − Z) (5)

where ∆λB = λ − λ0. λ and λ0 represent the measured peak 
wavelength and the characteristic wavelength of the FBG 
sensor. Note that this temperature estimation

equation is generic and suitable for different batteries 
and FBG sensors made of different materials. Here, the 
temperature model includes both a linear part f and a 
nonlinear part Z which can be constructed below.

B. Fuzzy C-means method to identify the linear model

The relationship between temperature variation and 
wavelength shift was investigated in [16], [22], [27], and 
their relationship is a linear function. A detailed inves-
tigation of FBG 1 attached on cell #1 is given below. The 
measured cell surface temperature variation ∆T and the 
measured wavelength shift ∆λB are shown in Fig. 4. It is 
clear that the temperature responses of the FBG 
wavelength is approximately linear.

Fig. 4: Relationship between ∆T and ∆λB via FBG 1 of
cell #1

In order to extract the temperature effect, clustering
methods are used to extract the relationship between
the temperature variation ∆T and the wavelength shift
∆λB . Among the various clustering methods, Fuzzy C-
means (FCM) is a popular clustering method due to its
robustness to ambiguities and it can extract much more
information than hard clustering methods [28]. FCM is
an iterative process which partitions the input data into
a certain number of clusters with the respect to the
membership value and the distance. The objective function
of FCM can be expressed as

Jm(U,P ) =
N∑
j=1

c∑
i=1

(µij)
m(dij)

2 (6)

where N is the number of input data, P is the cluster
center matrix, U is the membership function matrix. µij

is the likelihood value which presents the degree of the
ith input data belonging to the jth cluster, which satisfies
the constraints in Eq. (7). m is the fuzziness parameter
which is used to set the fuzziness of the cluster. dij is the
distance between the ith input data and the jth cluster
center. In this paper, the distance refers to the Euclidean
distance.





c∑
i=1

µij = 1, j = 1, 2, ..., N

0 ≤ µij ≤ 1, i = 1, 2, ..., c, j = 1, 2, ..., N

0 <
N∑
j=1

µij < N, i = 1, 2, ..., c

(7)

By applying the Lagrangian multiplier technique, the
membership function can be calculated as follows:

µt
ij =

1∑c
k=1(

dij

dkj
)

2
m−1

(8)

where t is the number of iterations. The new cluster center
can be calculated as

P
(t+1)
i =

∑N
j=1 (µ

(t)
ij )

mxj∑N
j=1(µ

(t)
ij )

m
(9)

The center of each cluster is considered to be the 
representative sample of the measurements in each cluster. 
Therefore, the relationship between the temperature vari-
ation and wavelength shift can be extracted in term of the 
relationship between the cluster centres. Various number 
of clustering centres are tested in this study, the results 
show that the minimum residual can be obtained when the 
number of cluster centres is 5. For the case of FBG 1 on cell 
#1 as shown in Fig. 4, the clustering centres obtained by 
the FCM are presented as the red circles in Fig. 4, and the 
solid line shows the best fit. For each cluster center, its 
projection on the y-axis represents the wavelength shift 
∆λB caused by the corresponding temperature variation 
∆T on the x-axis. Then the linear fitting process using the 
clustering centres is repeated 10 times to obtain the 
average parameters. Thus, the linear relationship between 
∆T and ∆λB is expressed as

f(∆T ) = 0.0255∆T + 8.358 (10)

Obviously, Eq. (10) is equivalent to the first term in Eq. 
(2). Thus, the slope of this linear fitting equation can be 
regarded as the thermal sensitivity of the FBGs, which is 
considered as 25.5 pm/℃. Our previous work [11] has 
indicated that the sensitivity to temperature of such the 
surface mounted FBG sensor is on average 21 pm/℃. This 
is because the optical fiber will be stretched during 
installation and the cured glue will change the thermal 
conductivity. It is clear that the proposed method is viable 
and the remainder of the wavelength shifts can also be 
viewed as the result of the strain effect.

C. EMD method to construct the nonlinear model
The linear model considers the impact of temperature on

the wavelength shift (∆λB). However, ∆λB is also affected 
by the mechanical strain, uncaptured thermal effect from 
the linear model, and some unknown factors, which can be 
lumped as the model residual (Z). Generally speaking, the 
strain variation represents the dimensional

change of the cell. Due to the coupling of temperature 
and strain, the strain is obviously caused by thermal ex-
pansion, which is reflected in the electrode expansion and 
hence electrode volume change. In addition to temperature 
effects which is already modeled using the linear function 
elaborated above, the strain variation of a lithium-ion 
battery is caused by the following factors, such as the 
electrode expansion and contraction with lithium interca-
lation/deintercalation, electrode volume change with the 
irreversible reaction deposits, and the dead volume and 
pressure change depending on the cell construction [29].

In this study, the cell structure is fixed, only the 
reversible electrode expansion and contraction and irre-
versible electrode volume change are analysed. Hence, Z 
can be modelled by using the combination of the short 
time effect and the long time effect. The short time effect 
considers the electrode change in each cycle due to the 
intercalation/deintercalation of lithium ions, which is also 
affected by the temperature [30]. Furthermore, the change 
of SOC due to the strain variation of the electrodes of the 
lithium-ion batteries has been researched [23], [30]–[32]. 
Thus, SOC is selected as the main contributor to the 
short-term strain variation.

In regard to the long time effect, the intercala-
tion/deintercalation of lithium ions, which is increased 
or decreased in speed by the temperature. It induced 
mechanical stress to the graphite lattice, which causes the 
crack and expansion of the electrode [33]. The electrode 
induces the irreversible volume change because of the 
cycle aging, leading to the strain change of cell shell. The 
experimental results [31] also indicated that the maximum 
strain of the electrode decreases with the increasing of the 
cycle number.

In summary, to compensate the temperature model, Z is 
modeled as a function of both the SOC and cycle numbers 
which will be elaborated in the following.

1) Decomposition of Z using EMD: Since Z is obtained by
extracting f(∆T ) from ∆λB , the measurement noise of ∆T 
from the thermocouple and the measurement noise of ∆λB 
from the FBG sensor are introduced. Therefore, Z will be 
decomposed into three groups, denoted as Zn, Zs and Zc 
and Z = Zn + Zs + Zc, where Zn represents the 
measurement noise, Zs represents the effect of the change of 
cell SOC, and Zc represents the effect of battery aging 
hence is a function of the cycle number respectively. 
Empirical mode decomposition (EMD) technique is used 
in this study to decompose Z. EMD is an adaptive time-
space analysis method proposed by Huang et al. [34] for 
non-stationary and non-linear signals. EMD break down 
any signal Z into a number of L components called 
intrinsic mode functions (IMFs) without leaving the time 
domain. The accumulation of the extracted IMFs with the 
residual can restore the decomposed signal, thus, Z can 
be expressed as

Z =
L∑

i=1

hi + r (11)



where hi represents the ith IMF and r is the residual of
the decomposition.

The flow chart of EMD algorithm is shown in Fig.5.
Accordingly, the implementation steps of the EMD algo-
rithm can be summarized as follows.

Fig. 5: The flow chart of EMD algorithm

Step 1 Initialisation: Set i = 1, n = 1, r0 = Z.
Step 2 Set k = 1, hi,0 = rk−1.
Step 3 Identify all local maxima and minima of hi,k−1.
Step 4 Construct the upper envelope, namely Ui,k−1 and

the lower envelope, namely Li,k−1 via the cubic splines
interpolation.

Step 5 Determine the mean, namely mi,k−1 of Ui,k−1

and Li,k−1. mi,k−1 = 1
2 (Ui,k−1 − Li,k−1).

Step 6 Calculate the ith IMF after kth iteration: hi,k =
hi,k−1 mi,k−1.

1.
−

if hi,k not satisfies the IMF criteria, increase k  as k = k + 1 and repeat Step 3 to 6.
2. if hi,k satisfies the IMF criteria, then set h i = hi,k 

and ri = ri−1 − hi.
Step 7 If ri represents a residuum, set r = ri and stop 

the process. If not, increase i as i = i + 1 and repeat Step 
2 to 6.

For the remainder of Z, the extracted IMFs are illus-
trated in Fig.6.

Among the decomposed modes, the irrelevant modes 
can be used to represent Zn and the relevant modes can 
be used to represent Zs and the residuum can be used to 
represent Zc. The three modes are modelled using different 
methods as follows.

2) Modelling Zn: The correlation coe icient (CORR) based
EMD de-noising method [35] is applied to select the 
irrelevant modes in this study for the calculation of Zn. 
Defines m as the indicator when the correlation coefficient 
between Z and Z − Zn starts to decrease sharply, Zn is 
thus can be expressed as

Zn =
m∑
i=1

hi (12)

Then the data of FBG 1 on cell #1 is trained for 10 times 
under same conditions. The correlation coe icients between 
Z and Z − Zn obtained with various values of m is 
presented in Fig. 7. It is evident that once m is greater than 
5, the correlation coe icient between Z and Z − Zn 
decreases significantly every time. Therefore, m is set to 
5 for FBG 1 on cell #1.

3) Modelling Zs: To capture the relationship between 
cell SOC and Zs, coulomb counting method is applied 
to calculate the SOC value of the cell in both charging 
and discharging processes. The distribution of Zs on 
each point SOC is presented in Fig. 8. There is a clear 
difference b etween t he d istributions o f Z s  i n t he charging 
and discharging processes. Polynomial fitting technique is 
then applied to fit the relationships b etween the cell SOC 
and Zs in the charging and discharging processes, named 
Zch and Zdis respectively. Therefore, Zs can be expressed 
as

Zs(t) =

{
Zch(t), I ≥ 0

Zdis(t), I < 0
(13)

where I represents the current through the cell at time t.
Zch(t) and Zdis(t) can be expressed as{

Zch(t) = p1s
4 + p2s

3 + p3s
2 + p4s+ p5

Zdis(t) = q1s
4 + q2s

3 + q3s
2 + q4s+ q5

(14)

where s represents the SOC value of the cell at time t, p1 
to p5, and q1 to q5 are the fitting c oefficients of  Zc h and 
Zdis respectively. The fitting coefficients can be  identified 
by using the least squares (LS) method. The identification 
results of FBG 1 on cell #1 which are the average value 
of 10 times repeated training are given in Table I.

4) Modelling Zc: As elaborated earlier, Zc is used to
describe the relationship between Z and the cell cycle 
number c. The average distribution of the EMD residual 
r is shown in Fig. 9, it is clear that r presents an 
almost linear downward trend with the increasing of cycle 
number. Therefore, Zc of FBG 1 on cell #1 can be 
expressed as follows:

Zc = −0.0014c + 0.009 (15)

In summary, Zs and Zc can be obtained according to Eq.
(13) to (15). The system compensation Z can be calculated
as the sum of Zs and Zc. Thus, according to Eq. (5), the
estimation of temperature (TFBG) can be calculated as
follows

TFBG = T0 + f−1((λ− λ0)− (Zs + Zc)) (16)

where λ and λ0 represent the measured peak wavelength 
and the characteristic wavelength of the FBG sensor. The 
identification of Zs and Zc is essential for different FBGs or 
different cells with different materials.



Fig. 6: The decomposed modes and residual via FBG 1 of cell #1 

TABLE I: The identified fitting coe icients for Zch and Zdis

Coefficient p1 p2 p3 p4 p5 q1 q2 q3 q4 q5
Value 0.0554 -0.1784 0.1501 -0.0294 -0.0009 -0.0893 0.1205 -0.0134 -0.0352 0.0103
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Fig. 7: Correlation with m repeating 10 times via FBG 1 
of cell #1

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In order to verify the accuracy and reliability of the 
proposed temperature calibration method, the data from 
the first 11 cycles of cell #1 are used for training, while the 
data of another 13 cycles (the 12th to the 24th cycle) of cell 
#1 is used for the validation. The reference temperature 
value is measured by the thermocouple. Coulomb counting 
method is used to calculate the SOC of the cell.

The temperature estimated via FBG 1 using the above 
proposed method is shown in Fig. 10. It is evident 
that the temperature estimated by the proposed method 
matches well with the reference temperature measured

Fig. 8: The distribution of Zs on SOC via FBG 1 of cell 
#1

by the thermocouple. The validation of a cycle using the 
developed method is shown in Fig. 11. It is clear that most 
of the errors are distributed within ± 0.5 ℃, only except for 
the points at high and low SOC levels where the errors are 
almost ± 1 ℃, which is still acceptable for the 
thermocouple accuracy tolerance level. Furthermore, the 1 
℃ error at high or low SOC levels has negligible impacts on 
fault diagnose [36] which often uses much larger 
temperature differences in setting the fault thresholds. 
From Fig. 11, the variation of the estimated temperature is 
found to be similar to the variation of the reference 
temperature which is often used to estimate SOC or



Fig. 9: The distribution of EMD residual verses cycle
number via FBG 1 of cell #1

capacity [37].
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Fig. 10: Temperature validation via FBG 1 of cell #1

Then the proposed method is applied to the signals 
obtained from other FBGs attached on cell #1, and the 
temperature estimation results via FBGs 2 and 3 are 
also analyzed. Similarly, the data collected in Cycles 1 
to 11 is used for modelling and the data obtained in 
Cycles 12 to 24 is used for validation. The temperature 
validation results of FBGs 2 and 3 are shown in Figs. 
12-15, respectively. It can be seen that the temperature
estimations obtained via FBGs 1, 2 and 3 are highly
consistent with the temperature data measured via the
thermocouple.

Furthermore, the root mean square error (RMSE), mean 
absolute error (MAE), maximum absolute error (MaxAE), 
mean error (ME) and variance (Var) of the validation 
results are listed in Table II.

TABLE II: The statistics of the estimated temperature
of cell #1

RMSE MAE MaxAE ME Var
FBG1 0.2 0.2 1 0.1 0.04
FBG2 0.3 0.2 1 0.1 0.05
FBG3 0.2 0.2 0.9 0.1 0.04
Avg 0.2 0.2 1 0.1 0.04

The statistics of the estimation errors also indicates 
that the proposed method can accurately estimate the
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Fig. 11: Validation results of Cycle #12 via FBG 1 of 
cell #1
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Fig. 12: Temperature validation via FBG 2 of cell #1

battery shell temperature via the peak wavelength data 
obtained using different FBG sensors. This again confirms 
the validity and effectiveness of the proposed method.

To further verify the effectiveness of the proposed 
method, FBG 1 of cell #4 is calibrated for the surface 
temperature. The data from the first 11 cycles of cell #4 
are used for training, while the data from the 15th to the 
27th cycle of cell #4 is used for validation. The validation 
results are illustrated in Figs. 16 and 17 and the statistics 
of the estimated errors are given in Table III.

TABLE III: The statistics of estimated temperature of 
cell #4

RMSE MAE MaxAE ME Var
FBG1 0.2 0.2 1.2 0.1 0.1

It is clear that the proposed calibration method once 
again achieves better estimation results on cell #4 which 
are validated on different cycles. It again confirms the 
effectiveness of the proposed method.

V. CONCLUSIONS

This paper has presented a novel data-driven based 
FBG sensor temperature calibration method that can 
perform FBG temperature calibration online, which will
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Fig. 13: Validation results of cycle #12 via FBG 2 of cell
#1
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Fig. 14: Temperature validation via FBG 3 of cell #1

not interrupt the normal operation of the ESSs. The pro-
posed method does not require high-standard laboratory 
equipment and environment, which makes it more friendly 
to use in real life applications. In the experiments, it is 
shown that the proposed temperature calibration method 
has achieved desirable estimation accuracy and reliability, 
with both the mean absolute error and root mean square 
error being 0.2 ℃. Due to the unstable electrochemical 
reactions inside the cell at high and low SOC levels, the 
strain variations of the cell become more di icult to capture 
by Zs, resulting in slightly large errors within ± 1 ℃ which 
will be still acceptable for the sate estimation and fault 
diagnoses in BMS, which will be further validated in our 
future work. In the study, the proposed method has been 
applied to different FBG sensors and different battery 
cells, and it will also be extended to other batteries made 
of different materials in the future work.
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