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Abstract

We determine the all-loop dressing phases of the AdS3/CFT2 integrable system re-
lated to type IIB string theory on AdS3×S3×T4 by solving the recently found cross-
ing relations and studying their singularity structure. The two resulting phases
present a novel structure with respect to the ones appearing in AdS5/CFT4 and
AdS4/CFT3. In the strongly-coupled regime, their leading order reduces to the
universal Arutyunov-Frolov-Staudacher phase as expected. We also compute their
sub-leading order and compare it with recent one-loop perturbative results, and
comment on their weak-coupling expansion.
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1 Introduction
The gauge/string correspondence [1] is a remarkable relation between quantum gauge
and gravity theories. In the planar limit [2] of certain dual pairs, the correspondence
can be understood in terms of an integrable system with the ’t Hooft coupling constant
λ entering as a free parameter.1 At small values of λ the integrable system reduces
to an integrable spin-chain with local interactions [5]. At large values of λ, in the
thermodynamic limit, the integrable system is described by a set of integral equations
known as the finite-gap equations [6]; these integral equations can be obtained using the
classical (Lax) integrability of the string theory equations of motion [7].

1For a comprehensive review and list of references see [3]. A detailed exposition of integrable string
theory on AdS5 can be found in [4].
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Integrable systems’ S-matrices satisfy the Yang-Baxter equation, which allows for an
arbitrary scalar factor in its solution. Fixing this factor requires imposing additional
constraints, the most powerful of these being crossing symmetry. In the context of the
AdS5/CFT4 integrable system, crossing symmetry constraints were first identified in [8].
The solution of these constraints [9–14], the so-called dressing phase, conventionally
written as σ ≡ eiθ, is a key ingredient in matching the strong and weak coupling limits
of the dualilty [15].

In the AdS5/CFT4 and AdS4/CFT3 integrable systems a non-perturbative dressing
phase was found by Beisert, Eden and Staudacher in [10]; we will denote it by σBES. At
small coupling the dressing phase is trivial at the leading two orders: σBES = 1 +O(λ3),
while for large λ it appears already at the leading order. It is conventional to refer to the
first two orders in the strong coupling expansion of a dressing phase as the Arutyunov-
Frolov-Staudacher (AFS) [15] and Hernández-López (HL) [16, 17] orders, which appear
at (O(λ1/2) and O(λ0)), respectively. Expanding σBES at strong coupling, one finds the
leading AFS phase [15] which is expected to be universal for many integrable string
theory backgrounds. The next-to-leading term gives the HL phase. This was first found
through a one-loop sigma-model computation [16–18] and can also be obtained through
a semi-classical quantisation of the finite gap equations [19]. This latter derivation shows
explicitly that the HL phase is the same for all states in a given background. Finally, since
the dressing phase is the same in AdS5/CFT4 and AdS4/CFT3, one may ask whether
σBES is a universal dressing phase of AdS/CFT integrable systems.

The AdS3/CFT2 correspondence [20] for theories with 16 supercharges has recently
been investigated using integrability methods. There are in fact two distinct classes of
AdS3 backgrounds with this amount of supersymmetry: AdS3×S3×T4 and AdS3×S3×
S3 × S1; these were studied following Maldacena’s seminal paper, see for example [21].

The integrablity approach to the AdS3/CFT2 correspondence was initiated in [22].
Building on the actions [23] (see also [24]), string theories, in a certain kappa-gauge,
on such AdS3 backgrounds were shown to be classically integrable [22].2 The finite gap
equations [22] and conjectured all-loop Bethe Ansaetze were written down in [22, 27].
However, this procedure keeps track only of the excitations which remain massive in
the BMN limit [28]. Fully incorporating the massless modes remains an open issue; for
recent progress on this, see [29].

In [30, 31] an S-matrix and Bethe Ansatz for the AdS3 × S3 × S3 × S1 integrable
system was written down. Expanding on this, in [32] the exact integrable S-matrix and
associated Bethe Ansatz of the integrable system associated to Type IIB string theory on
AdS3×S3×T4 with R-R flux was constructed.3 A number of recent papers have performed
important perturbative calculations for string theory on AdS3 backgrounds [26, 34–40].
Further, the integrability of a family of AdS3 × S3 × T4 theories with both R-R and
NS-NS flux has been investigated [41]. Integrability appears also to play an important
role in AdS3 black-hole solutions [42].

The integrable system related to Type IIB string theory on AdS3 × S3 × T4 with
2Classical integrability has also been investigated independent of any kappa-gauge fixing [25,26].
3For other work in this direction see [33].
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R-R flux has two dressing phases, as can be expected on fairly general grounds [32,43].4
The phases satisfy two crossing relations [32] (see equation (2.8) below).5 One can check
that these crossing relations imply that the two dressing phases behave differently under
double-crossing, and therefore the two phases must be distinct. In this paper we find
the non-perturbative dressing phases of the AdS3/CFT2 S-matrix by solving the crossing
relations. We identify the bound states of the system and show that the full S-matrix
including these dressing phases has the right pole structure to account for such bound
states.

We perform a strong coupling expansion of our dressing phases and find that at
the AFS-order both dressing phases are the same as the AFS-phase of AdS5/CFT4 and
AdS4/CFT3, confirming its universality. This is in agreement with an explicit strong-
coupling regime calculation done in [34,36,38]. At the HL-order, our phases are different
from one another, confirming that the system does have two distinct dressing phases.
Only the sum of these two phases is the same as the HL-phase of AdS5/CFT4 and
AdS4/CFT3. This shows that, unlike the AFS-phase, the HL-order phase is not universal.
We find that at the HL-order our dressing phases are almost, though not quite, the same
as the ones obtained in [36]. We discuss the possible origins of this discrepancy and
how it may be resolved.6 In the near-flat space limit our dressing phases agree with the
results of [38]. We also give a weak-coupling expansion of our dressing phases.

This paper is organised as follows. In section 2 we review the crossing relations derived
in [32] and their interpretation in terms of the rapidity torus. In section 3 we solve the
crossing relations non-perturbatively. In section 4, we analyse the BPS bound state
spectrum and the corresponding singularities of the S-matrix. In section 5 we perform
a strong-coupling expansion of the two phases, compare with the results of [36, 38] and
give the weak coupling expansion of the phases. Some technical results are relegated to
the appendices.

Note added: Shortly after this paper, another work appeared [44], where a semiclassical
derivation of dressing phases was performed for the AdS3×S3×S3×S1 and AdS3×S3×T4

backgrounds, taking into account some issues of anti-symmetrisation, cutoffs and surface
terms. The results for AdS3 × S3 × T4 agree with the Hernández-López order of our
proposal, and the ones for AdS3 × S3 × S3 × S1 are half of that, irrespectively of the
masses of the excitations. This is compatible with the crossing (and in particular double-
crossing) equations of [30], which suggests that the AdS3 × S3 × S3 × S1 phases may be
found in terms of the ones presented here, even at all-loop. We plan to return to this
issue in the near future.

4This is quite natural since in AdS3/CFT2 the left- and right- movers are independent.
5By inspection, there is no straightforward linear combination of the two phases whose crossing

relation would reduce to the AdS5 crossing relations [8].
6We would like to thank Matteo Beccaria, Fedor Levkovich-Maslyuk, Guido Macorini, and Arkady

Tseytlin for discussions about this point.
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2 Rapidity torus and crossing equations
In this section we will consider the crossing equations of [32] on the rapidity torus where
the AdS3 × S3 × T4 dispersion relation is uniformized.

2.1 Uniformizing the dispersion relation
The all-loop dispersion relation for massive excitations on AdS3 × S3 × T4 reads [32]7

E(p) =
√

1 + 16h2 sin2 p

2 . (2.2)

In analogy with the relativistic case, it is convenient to introduce a rapidity variable z
which uniformizes the dispersion relations. In the present setting, given the similarity
with the AdS5×S5 dispersion relations, the rapidity will also live on a complex torus [8].
Following the conventions of [4], let us define

p(z) = 2 amz , sin p(z)
2 = sn(z, κ) , E(z) = dn(z, κ) , (2.3)

in terms of Jacobi’s elliptic functions, where the elliptic modulus is κ = −16h2. This
defines a torus with a real period 2ω1 and an imaginary period 2ω2 that depend on h
through

ω1 = 2 K(κ) , ω2 = 2iK(1− κ)− 2 K(κ) , (2.4)
where K is the complete elliptic integral of the first kind. The Zhukovski variables x±(z)
are meromorphic functions on the torus

x±(z) = 1
4h

(
cn(z, κ)
sn(z, κ) ± i

)
(1 + dn(z, κ)) . (2.5)

They satisfy the shortening condition [32](
x+(z) + 1

x+(z)

)
−
(
x−(z) + 1

x−(z)

)
= i

h
. (2.6)

One can check that the Zhukovski variables and the dispersion relations are also ω1-
periodic, so that we can always restrict to |Re(z)| 6 ω1/2, corresponding to −π < p 6 π.
In this parameterization the real z-axis lies in the physical region, since it corresponds
to real momentum and positive energy.

The crossing transformation corresponds to changing the sign of momentum and
energy. In terms of x±(z) this is achieved by sending x± → 1/x±, which amounts to a
shift by half of the imaginary period of the rapidity torus, z → z±ω2. For a meromorphic

7We express the dispersion relation in terms of the coupling constant h(λ), which is related to the
world-sheet coupling λ by

h(λ) =
√
λ

4π +O(1/
√
λ). (2.1)

In [36] it was shown that there is no O(1) term in the strong coupling expansion of h(λ).
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Figure 1: The rapidity torus with several significant curves. The solid blue line is the real z-axis
(physical region), the dashed blue line is the z = ω2 axis (“crossed” region). In the leftmost
figure the torus is divided in four regions by |x±| = 1 and in the central figure it is divided by
Im(x±) = 0. The rightmost picture depicts both sets of curves, which intersect in eight points
with real part ±ω1/4.

function on the torus shifting up or down makes no difference, but the S-matrix that we
are interested in will not be meromorphic on the product of two such tori. In fact, due
to the presence of the dressing factors, we expect it to have and infinite number of cuts
there.

Based on the experience with the AdS5 × S5 case it is convenient to identify distinct
regions on the z-torus. The curves |x±(z)| = 1 divide the torus into four non-intersecting
regions, depicted in figure 1(a), and so do the curves Im(x±) = 0, see figure 1(b). These
two sets of curves intersect in eight points that lie on Re(z) = ±ω1/4, see figure 1(c).

2.2 The crossing equations
In [32] the all-loop S-matrix for AdS3 × S3 × T4 strings was proposed. It contained two
undetermined dressing factors σ(p1, p2) and σ̃(p1, p2). Unitarity and physical unitarity
constrain them to be of the form

σ(p1, p2) = ei θ(p1,p2), σ̃(p1, p2) = ei θ̃(p1,p2), (2.7)

where θ(p1, p2) and θ̃(p1, p2) are antisymmetric real analytic functions for real p1, p2.
It was also shown that crossing invariance requires these factors to obey a set of

crossing equations,

σ(p̄1, p2)2 σ̃(p1, p2)2 = g(p1, p2) , σ(p1, p2)2 σ̃(p̄1, p2)2 = g̃(p1, p2) ,

σ(p1, p̄2)2 σ̃(p1, p2)2 = 1
g̃(p̄2, p1) , σ(p1, p2)2 σ̃(p1, p̄2)2 = 1

g(p̄2, p1) ,
(2.8)

6



where the bar indicates crossing and

g(p1, p2) =
(
x−2
x+

2

)2
(

1− 1
x+

1 x
+
2

)(
1− 1

x−1 x
−
2

)
(

1− 1
x+

1 x
−
2

)2
x−1 − x+

2
x+

1 − x−2
,

g̃(p1, p2) =
(
x−2
x+

2

)2
(
x−1 − x+

2

)2(
x+

1 − x+
2

) (
x−1 − x−2

) 1− 1
x−1 x

+
2

1− 1
x+

1 x
−
2

.

(2.9)

Antisymmetry requires that in (2.8) the shift by ω2 is done in opposite directions in the
first and the second variables of the dressing factors; this leaves us with two distinct
choices. Fixing the direction of the shift amounts to choosing a path for analytic con-
tinuation of the dressing phase from the physical to the crossed region. As discussed in
appendix B, compatibility with the perturbative results requires

p̄1 ≡ p(z1 + ω2) , p̄2 ≡ p(z2 − ω2) , (2.10)

This is the same convention as in the case of AdS5 × S5 [4].
By iterating the crossing transformation twice we find that the dressing factors are

not 2ω2-periodic

σ(z1 + 2ω2, z2)2

σ(z1, z2)2 = g(z1 + ω2, z2)
g̃(z1, z2) =

(
x+

1 − x+
2

x+
1 − x−2

x−1 − x−2
x−1 − x+

2

)2

,

σ̃(z1 + 2ω2, z2)2

σ̃(z1, z2)2 = g̃(z1 + ω2, z2)
g(z1, z2) =

1− 1
x+

1 x
−
2

1− 1
x+

1 x
+
2

1− 1
x−1 x

+
2

1− 1
x−1 x

−
2

2

.

(2.11)

This confirms our expectation that the dressing factors have cuts on the rapidity torus.
We are interested in solving the crossing equations

σ(z1 + ω2, z2)2 σ̃(z1, z2)2 = g(z1, z2) , σ(z1, z2)2 σ̃(z1 + ω2, z2)2 = g̃(z1, z2) . (2.12)

Our result will be manifestly antisymmetric, so that the crossing equations in the second
variable will automatically follow.

We have to give a prescription for performing the continuation from z to z+ω2 on the
torus. In order to construct the dressing factors σ and σ̃ we will exploit some properties
of the Beisert-Eden-Staudacher (BES) phase [10], which compels us to choose a path
compatible with the crossing transformation for that phase. This has been discussed
in detail in [13], and we will follow the procedure outlined there. Figure 2 depicts the
paths we will use to reach the crossed region along curves γ(z) that go from z to z + ω2
with constant Re(γ), which lie close to the boundaries of the region |Re(γ)| < ω1/4 and
crossing the lines |x±| = 1 in the region Im(x±) < 0.8

8This is a subset of the paths used in the case of AdS5, see section 4 in [13].
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Figure 2: The paths used for analytic continuation from z to z + ω2 (in purple) are vertical
segments that lie close to the boundary of |Re(γ)| < ω1/4. They cross the red lines |x±| = 1
when Im(x±) < 0.

3 Solutions of the crossing equations
In order to solve (2.12) we will consider the crossing equations for the sum and the
difference of the two phases θ(p1, p2) and θ̃(p1, p2). Let us denote the product and the
ratio of the dressing factors by

σ+(p1, p2) ≡ σ(p1, p2) σ̃(p1, p2) , σ−(p1, p2) ≡ σ(p1, p2)
σ̃(p1, p2) , (3.1)

and corresponding phases by θ+(p1, p2) and θ−(p1, p2). It is also useful to rewrite each
phase as [45]

θ(p1, p2) = χ(x+
1 , x

+
2 ) + χ(x−1 , x−2 )− χ(x+

1 , x
−
2 )− χ(x−1 , x+

2 ) , (3.2)

where χ is an antisymmetric function, with similar expressions for θ̃(p1, p2), θ+(p1, p2)
and θ−(p1, p2).

3.1 The BES and HL phases
In what follows we will use some properties of the BES [10] and HL phases [16], which we
briefly recall here. The AdS5 S-matrix contains a single dressing phase, which satisfies
the crossing equation [8]

σBES(z1, z2)σBES(z1 + ω2, z2) = h(x±1 , x±2 ),

h(x±1 , x±2 ) ≡ x−2
x+

2

x−1 − x+
2

x−1 − x−2

1− 1
x+

1 x
+
2

1− 1
x+

1 x
−
2

.
(3.3)
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The solution is given by the BES phase [10]. A particularly useful representation of this
phase in the physical region was given by Dorey, Hofman and Maldacena (DHM) [12]

χBES(x, y) = i
∫
	

dw

2πi

∫
	

dw′

2πi
1

x− w
1

y − w′
log Γ[1 + ih(w + 1/w − w′ − 1/w′)]

Γ[1− ih(w + 1/w − w′ − 1/w′)] . (3.4)

The leading term in the strong coupling limit (h → ∞) of this phase9 is given by the
Arutyunov-Frolov-Staudacher (AFS) phase [15]

σAFS(x1, x2) =
1− 1

x−1 x
+
2

1− 1
x+

1 x
−
2

1− 1
x+

1 x
−
2

1− 1
x+

1 x
+
2

1− 1
x−1 x

+
2

1− 1
x−1 x

−
2

ih(x1+1/x1−x2−1/x2)

, (3.5)

while the next-to-leading order correction is the Hernández-López (HL) phase [16],

χHL(x, y) = π

2

∫
	

dw

2πi

∫
	

dw′

2πi
1

x− w
1

y − w′
sign(w′ + 1/w′ − w − 1/w) . (3.6)

For later convenience, let us perform one of the two integrals in (3.6) and obtain the
representation

χHL(x, y) =
( ∫
x −

∫

x

)
dw

4π
1

x− w
(log (y − w)− log (y − 1/w)) , (3.7)

where the two integrals are performed in the upper and lower unit semi-circle respectively,
counterclockwise in both cases.

The HL phase solves the “odd” part of the AdS5 crossing equation [9]

σHL(z1, z2)σHL(z1 + ω2, z2) =
√
h12

h1̄2
=
√
h12 (h12)∗ , (3.8)

where
h12 (h12)∗ = `HL(x+

1 , x
−
2 ) `HL(x−1 , x+

2 )
`HL(x+

1 , x
+
2 ) `HL(x−1 , x−2 ) , `HL(x, y) ≡ x− y

1− xy , (3.9)

where complex conjugation amounts to sending x±k → x∓k .10

3.2 Solution for the sum of the phases
Taking the product of the two crossing equations (2.12), we find an equation for σ+

σ+(z1, z2)2
σ+(z1 + ω2, z2)2 = g12 g̃12 . (3.10)

9To find the asymptotic expansion of the BES phase at strong coupling one can expand the integrand
using that i log Γ(1+ix)

Γ(1−ix) = −x log x2

e2 − π
2 sign(Rex)−2

∑∞
n=0

ζ(−2n−1)
2n+1

(−1)n

x2n+1 for Rex 6= 0. This expression
corrects some typos in the expansion given in [46].

10One can check that in order for (3.7) to solve (3.8) it is necessary to choose the path of analytic
continuation as in figure 2. To do this one can mimic the arguments presented in appendix A.
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We observe that the r.h.s of this equation can be written in terms of the function h12
appearing on the r.h.s of the AdS5 crossing equation (3.3)

g12 g̃12 = (h12)3

(h12)∗ , (3.11)

where the shortening condition (2.6) is used. The above relation allows us to solve the
crossing equation (3.10) using parts of the AdS5 dressing phase

σ+
12 = (σBES

12 )2

σHL
12

, i.e. θ+
12 = 2θBES

12 − θHL
12 . (3.12)

To show that σ+
12 defined in this way satisfies equation (3.10) one need only use equa-

tions (3.3) and (3.8). It is convenient to express σ+
12 in terms of a DHM-like double-

integral representation, by defining χ+(x, y) as

χ+(x, y) = 2χBES(x, y)− χHL(x, y)

=
∫
	

dw

2πi

∫
	

dw′

2πi
1

x− w
1

y − w′

2i log Γ[1 + ih(w + 1/w − w′ − 1/w′)]
Γ[1− ih(w + 1/w − w′ − 1/w′)]

− π

2 sign(w′ + 1/w′ − w − 1/w)
 ,

(3.13)

in the physical region. Notice that the above expression is exact to all orders in the
coupling h.

Let us comment on the strong-coupling behaviour of the above expression for σ+. In
the next subsection we will show that the difference of the two phases has no term at
the AFS order. Taking this into account, it follows that both σ and σ̃ reduce to σAFS at
leading order, as expected on general grounds and confirmed by the explicit calculations
in [36]. Moreover, this result confirms that θ+ θ̃ is equal to θHL – the AdS5 HL term, as
predicted by [36].

3.3 Solution for the difference of the phases
Taking the ratio of the two crossing equations (2.12), we get

σ−(z1, z2)2

σ−(z1 + ω2, z2)2 = g̃12

g12
, (3.14)

where
g̃12

g12
= `−(x+

1 , x
−
2 )`−(x−1 , x+

2 )
`−(x+

1 , x
+
2 )`−(x−1 , x−2 ) , `−(x, y) ≡ (x− y)

(
1− 1

xy

)
. (3.15)

Notice that this equation involves the ratio rather than the product of the dressing
factor with its analytic continuation. As we show in appendix A.2, defining χ−(x, y) in
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the physical region (|x|, |y| > 1) by the integral

χ−(x, y) =
∫
	

dw

8π
1

x− w
log

[
(y − w)

(
1− 1

yw

)]
sign((w − 1/w)/i) − x↔ y

=
( ∫
x −

∫

x

)
dw

8π
1

x− w
log

[
(y − w)

(
1− 1

yw

)]
− x↔ y ,

(3.16)

solves the crossing equation (3.14). By construction, χ− is antisymmetric. As mentioned
in the previous subsection, in the strong coupling expansion χ− is zero at leading (AFS)
order; at the next-to-leading (HL) order it has a non-zero term, which we discuss in
detail in section 5. Finally, we note that the integrand of χ− has a trivial expansion in
the coupling h, in contrast to the solution of the crossing equation (3.10) which is solved
by an integrand with a non-trivial series expansion in h. This is because equation (3.14)
is “odd” in the sense of [9].

The all loop expressions for χ and χ̃ are then given by

χ(x, y) = χBES(x, y) + 1
2
(
−χHL(x, y) + χ−(x, y)

)
,

χ̃(x, y) = χBES(x, y) + 1
2
(
−χHL(x, y)− χ−(x, y)

)
.

(3.17)

These solutions are expressed in terms of the non-perturbative BES phase plus terms
at the HL order. These latter contributions to χ and χ̃ are independent of h. As such,
they can be added to the DHM representation of the BES phase without affecting the
h-resummation.

4 Single poles and bound states
There is a close connection between simple poles in the physical region of the S-matrix
and the bound states of the model. In this section we will first give a brief overview of
the expected bound state spectrum, and then discuss the corresponding simple poles.

4.1 Short representations
The ground state is preserved by the algebra psu(1|1)4×u(1)4, where the four u(1) factors
represent central charges [30, 32]. The excitations transform in short representations of
this algebra, satisfying a shortening condition relating the four central charges by [30]

H2 − 4PP† = M2 . (4.1)

Bound states preserving some supersymmetry also transform in a short representation
of the symmetry algebra. Let us consider the two-particle state11 |Φ++̇

p Φ++̇
q 〉 containing

11There is no loss in generality in doing so, since the shortening condition (4.1) is expressed in terms
of central charges.
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two left-moving bosons.12 For generic values of the momenta p and q the tensor product
of two fundamental left-moving representations is an irreducible long representation.
However, at special points the tensor product becomes reducible. In particular, we find
that the shortening condition (4.1) is satisfied for x+

p = x−q and x−p = x+
q . Only at these

points it is possible to construct short sub-representations. Therefore any pole in the
S-matrix corresponding to a supersymmetric bound state will have to satisfy one of these
conditions.

An interesting feature of the psu(1|1)4 × u(1)4 algebra is that all short irreducible
representations are two-dimensional while all long irreducible representations have di-
mension four. A two-particle bound state will therefore transform in a representation
which has the same form as the fundamental representation, differing only in the values
of the central charges. This should be contrasted with the centrally extended psu(2|2)
algebra appearing in AdS5×S5 [47], where the fundamental representation has dimension
four while the M -particle bound state has dimension 4M [48].

At the points where the tensor product becomes reducible some of the elements of the
S-matrix become zero or develop poles. In order to fully understand the behaviour of the
S-matrix at these points we will need to take the dressing phase into account. This will be
further analysed in section 4.3. Here we will instead consider the matrix structure of the
S-matrix. Since some of the entries in the matrix vanish, the corresponding bound state
representation is formed from the states on which the S-matrix acts non-trivially. For
the point x+

p = x−q we find that the state |Φ++̇
p Φ++̇

q 〉 belongs to the short representation,
and we will therefore refer to it as a su(2) bound state. In the case x−p = x+

q the short
representation includes the state |Φ−−̇p Φ−−̇q 〉, and is a potential sl(2) bound state.13

To decide which bound state belongs to the physical spectrum we need to impose
additional constraints on the momenta of the fundamental excitations. In the region
s1 � s2 the wavefunction of a scattering state takes the general form14

Ψ(s1, s2) = ei(ps1+qs2) + S(p, q)ei(ps2+qs1), (4.2)

where the first term describes the incoming wave and the second term the outgoing wave.
To find a bound state we analytically continue the wavefunction to complex values of
the momenta

p = p′

2 + iv, q = p′

2 − iv. (4.3)

The wavefunction then behaves as Ψ(s1, s2) ∼ ev(s2−s1) + S(p, q)e−v(s2−s1) (s1 � s2).
For the bound state wavefunction to be normalizable the exponential multiplying S(p, q)
should be decaying. Hence we are interested in the solution where the momentum of the
first particle has a positive imaginary part. By solving the condition (2.6) for x±p and x±q

12Following the notation of [32] the left-moving bosonic excitations are Φ++̇ and Φ−−̇, and correspond
to excitations on AdS3 and S3, respectively. Similarly, the right-moving bosons are Φ̄++̇ and Φ̄−−̇. The
distinction between the “left-moving” and “right-moving” (or L and R) excitations comes from the fact
that Φ−−̇ carries positive angular momentum on AdS3, while the angular momentum of Φ̄−−̇ is negative.
Hence, these excitations can be thought of as left- and right-movers in the dual CFT2.

13In AdS5×S5 the physical bound states correspond to “su(2) bound states”. The “sl(2) bound states”
appear as bound states of the mirror theory [49].

14In order to avoid confusion with the dressing phase we denote the world-sheet coordinate by s.
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in the physical region, we find that for x+
p = x−q the momentum p has a positive imaginary

part, while x−p = x+
q leads to the imaginary part being negative. We hence conclude that

only the su(2) bound state can appear in the physical spectrum. In section 4.3 we will
check that the full S-matrix, including the correct scalar factor and the dressing phase,
has a corresponding pole in the physical region.

So far we have only considered bound states in the LL-sector. If we start with two
right-moving excitations we again find an su(2) bound state at x+

p = x−q , since the S-
matrix in [32] is symmetric under exchange of left- and right-movers. Let us finally
consider the state |Φ++̇

p Φ̄−−̇q 〉 consisting of one left- and one right-moving excitations.
In this case the shortening condition (4.1) is satisfied for x+

p = 1/x+
q and x−p = 1/x−q .

Neither of these solutions lie in the physical region |x±p | > 1, |x±q | > 1 and hence there
are no supersymmetric bound states in the LR-sector.

In summary we find that physical two-particle su(2) bound states exist in the LL-
and RR-sectors. The LR-sector, on the other hand, does not contain any bound states.

4.2 Giant magnons
At strong coupling of the AdS5/CFT4 duality the fundamental scalar excitations are
described by giant magnons [50]. The simple giant magnon is a string solution living in a
R× S3 subspace of AdS5× S5. The giant magnon solution can be extended to a solution
in R × S3, the dyonic giant magnon [51], which carries angular momentum M along
the additional angle. This solution corresponds to a bound state of |M | fundamental
magnons [52].

Since both the fundamental giant magnon and the dyonic extension live in R × S3

they can be directly embedded in AdS3 × S3 [35]. In AdS5 × S5 a dyonic giant magnon
with positive u(1) charge M can be continuously rotated to the corresponding magnon
with negative charge −M . However, in the case of AdS3 × S3 such a rotation is not
possible since the intermediate states would not sit inside S3, so the two states with
charges +M and −M are independent. In the scalar sector the left- and right-moving
excitations are distinguished by the sign of the angular momentum M . Hence, the dyonic
giant magnons with charges +M and −M correspond to bound states of |M | left- and
right-moving fundamental excitations, respectively. Setting M = 2 we find exactly the
two su(2) bound states expected from the representation theory considerations above.

4.3 Simple poles of the S-matrix
Scattering processes involving formation or exchange of bound states give rise to single
poles in the S-matrix for physical values of the spectral parameters. Let us consider the
s-channel diagram in figure 3(a). The process involves two fundamental particles from
the same sector, e.g. two left-movers, in the physical region |xi| > 1, i = p, q, which
form an on-shell boundstate and then split up again. Similarly to the case of the su(2)
sector in AdS5 [12], this should lead to a pole in the corresponding S-matrix element at
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Φ++̇
pΦ++̇

q

Φ++̇
p Φ++̇

q

(a) s-channel, LL sector

Φ̄++̇
p̄

Φ++̇
q Φ̄++̇

p̄

Φ++̇
q

(b) t-channel from crossing

Figure 3: On the left two particles in the same sector form an su(2) bound state in the s-
channel. Applying the crossing transformation to Φ++̇

p yields the t-channel diagram on the
right, where on particle has unphysical momentum p̄ (red dashed lines). Particles are labeled
as in [32].

x+
p = x−q . The relevant element is15

Apq = 〈Φ++̇
q Φ++̇

p | S |Φ++̇
p Φ++̇

q 〉 =
x−p − x+

q

x+
p − x−q

1− 1
x−p x

+
q

1− 1
x+

p x
−
q

σ−2
pq . (4.4)

As discussed in appendix A.4 the dressing factor is regular at x+
p = x−q , so that Apq has

a simple pole there.
This s-channel process is related through crossing symmetry to the exchange of a

bound state in the t-channel, depicted in figure 3(b). There the particle of momentum p
has been crossed so that x±p̄ = 1/x±p are not in the physical region. Since the two
processes are related by crossing symmetry, the poles in the s-channel automatically fix
the singularities in the t-channel. In fact crossing symmetry implies [32]

ApqÃp̄q = 1, where Ãpq = 〈Φ++̇
q Φ̄++̇

p | S |Φ̄++̇
p Φ++̇

q 〉 , (4.5)

so that a pole of Apq corresponds to a pole of Ã−1
p̄q . We can check this explicitly by

considering

Ãp̄q =
1− 1

x−p̄ x
+
q

1− 1
x−p̄ x

−
q

1− 1
x+

p̄ x
−
q

1− 1
x+

p̄ x
+
q

σ̃−2
p̄q . (4.6)

Since σ̃ is regular when continued inside the unit circle (see appendix A.4), Ãp̄q has a
zero at x+

p̄ = 1/x−q , as expected.
If we consider S-matrix elements involving one left- and one right-moving particle we

expect no poles, since there are no corresponding bound states. Therefore a process such
as the one depicted in figure 4(a) should not happen. Indeed, the S-matrix element

15Here we write the S-matrix elements in the “spin-chain frame”. Accounting for the frame factors
does not modify the pole structure [32].

14



Φ̄−−̇pΦ++̇
q

Φ̄−−̇p Φ++̇
q

(a) RL s-channel (forbidden)

Φ−−̇p̄

Φ++̇
q Φ−−̇p̄

Φ++̇
q

(b) crossed LL t-channel (forbidden)

Figure 4: On the left the would-be Landau diagram for one left- and one right-moving particle
is depicted. This process should be absent. Similarly, the crossed process on the right should
be absent, and the corresponding S-matrix element have no pole.

B̃pq = 〈Φ++̇
q Φ̄−−̇p | S |Φ̄−−̇p Φ++̇

q 〉 =
1− 1

x−p x
+
q

1− 1
x+

p x
−
q

1− 1
x+

p x
+
q

1− 1
x−p x

−
q

σ̃−2
pq , (4.7)

is regular in the physical region, and in particular has no pole at x+
p = x−q . It is an

interesting check that the same holds in the crossed channel, whose exchange diagram
would be as in figure 4(b), should it exist. Again crossing symmetry relates the two
processes by

B̃pqBp̄q = 1, where Bpq = 〈Φ++̇
q Φ−−̇p | S |Φ−−̇p Φ++̇

q 〉 , (4.8)

which implies the first crossing equation in (2.8). Since B̃pq has no singularity at x+
p = x−q

we expect Bp̄q to have no singularity at x+
p̄ = 1/x−q . Explicitly we have

Bp̄q =
(x−p̄ − x−q )2

(x−p̄ − x+
q )(x+

p̄ − x−q )

1− 1
x−p̄ x

+
q

1− 1
x+

p̄ x
−
q

σ−2
p̄q . (4.9)

The rational terms have a pole at x+
p̄ = 1/x−q , but once the dressing factor is continued

to the crossed region as in (A.27), this is canceled by a zero of σ−2, so that the result is
non-singular.

The solutions to the crossing equations that we found can be modified by multiplying
them by some “CDD factors”. Similarly to the AdS5 case [14], we expect them to be
meromorphic functions of the spectral parameters that solve the homogeneous crossing
equations

σCDD
pq σ̃CDD

p̄q = 1 , σCDD
p̄q σ̃CDD

pq = 1 . (4.10)

Such factors would introduce pairs of zeros and poles in the two phases, for instance by
letting

χCDD
pq = i

2 log (x− y)c1
(1− xy)c2 , χ̃CDD

pq = i

2 log (x− y)c2
(1− xy)c1 , (4.11)
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with c1, c2 integer constants. However, since the pole structure of the dressing factors
and of the resulting S-matrix agrees with the one we expect from the bound state content
of the theory we can consistently set

σCDD
pq = 1 , σ̃CDD

pq = 1 , (4.12)

so that the full dressing phases are given by (3.17), up to non-trivial solutions of the
homogeneous crossing equations with no poles in the physical region.

5 Expansions of the dressing factors
In section 3 we solved the AdS3 crossing equations (2.12) in terms of (3.17). In what
follows we give the strong- and weak-coupling expansions of these all-loop phases.

5.1 Strong-coupling expansion
In this subsection we compute the strong coupling expansion of the dressing phases in
order to compare with the perturbative string theory calculations of [36]. The dressing
phases have an expansion in terms of local conserved charges qr(pk) [15]

θ(p1, p2) =
∞∑
r=1

∞∑
s>r

r+s=odd

cr,s(h) [qr(p1)qs(p2)− qr(p2)qs(p1)] , (5.1)

where cr,s(h) are functions of the coupling constant h with expansion

cr,s(h) = hc(0)
r,s + c(1)

r,s + c(2)
r,sh

−1 + . . . (5.2)

and are antisymmetric in r, s. The phase θ̃(p1, p2) has a similar expansion where the
coefficients will be denoted c̃r,s(h). The expression above is similar to the corresponding
one in AdS5, but unlike that case, we will need to include the r = 1 terms. This new
feature was first noted in [36]. For r > 2 the conserved charges are given by

qr(pk) = Qr(x+
k )−Qr(x−k ) = i

r − 1

[
1

(x+
k )r−1 −

1
(x−k )r−1

]
, Qr(x) ≡ i

r − 1
1

xr−1 ,

(5.3)
where we introduced the function Qr(xk) for later convenience. For r = 1 the charge is
just the momentum

q1(pk) = Q1(x+
k )−Q1(x−k ) = −i log

(
x+
k

x−k

)
, Q1(x) ≡ i log

(1
x

)
. (5.4)

Expressing θ(p1, p2) in terms of χ (cf. equation (3.2)), we obtain the expansion

χ(x, y) =
∞∑
r=1

∞∑
s>r

r+s=odd

cr,s(h) [Qr(x)Qs(y)−Qr(y)Qs(x)] . (5.5)
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with a corresponding expression for χ̃. The coefficients cr,s and c̃r,s can be obtained by
expanding the integrands through which χ and χ̃ are defined at large h and at large
x and y and then performing the integrals. The expansions for χBES and χHL are well
known in the literature, and in particular we have

χHL(x, y) = 2
π

∞∑
r=2

∞∑
s>r

r+s=odd

(r − 1)(s− 1)
(r − s)(r + s− 2) [Qr(x)Qs(y)−Qr(y)Qs(x)] . (5.6)

The expansion for χ− (cf. equation (3.16)) is

χ−(x, y) = − 1
π

∞∑
r=2

∞∑
s>r

r+s=odd

(r − 1)2 + (s− 1)2

(r − s)(r + s− 2) [Qr(x)Qs(y)−Qr(y)Qs(x)]

+ 1
2π

∞∑
s>1

s=even

[Q1(x)Qs(y)−Q1(y)Qs(x)] .
(5.7)

Expanding (3.17) at large h we find

χ(x, y) = hχAFS(x, y) + 1
2(χHL(x, y) + χ−(x, y)) +O

(1
h

)
,

χ̃(x, y) = hχAFS(x, y) + 1
2(χHL(x, y)− χ−(x, y)) +O

(1
h

)
,

(5.8)

where we have extracted the h-scaling of each phase. At leading order both phases reduce
to the AFS one, as it was found in the perturbative string expressions obtained in [36],
so that

c
(0)
BLMMT r,s = c̄

(0)
BLMMT r,s = c(0)

r,s = c̃(0)
r,s = δr+1,s . (5.9)

At HL-order all three terms on the r.h.s of equation (3.17) contribute and we find

c(1)
r,s = + 1

2π
1− (−1)s+r

2

[
s− r

s+ r − 2 −
1
2
(
δr,1 − δ1,s

)]
,

c̃(1)
r,s = − 1

2π
1− (−1)s+r

2

[
s+ r − 2
s− r

− 1
2
(
δr,1 − δ1,s

)]
,

(5.10)

for s > r > 0. Comparing to the semiclassical results [36] we find, for r > 1

c
(1)
BLMMT r,s = 4πc(1)

r,s , c̄
(1)
BLMMT r,s = 4πc̃(1)

r,s . (5.11)

The factors of 4π are there since [36] expand in
√
λ and we expand in h =

√
λ

4π (see equa-
tion (5.2)). In summary, the r > 1 coefficients at HL-order give the same contribution
to the dressing phases as those found in [36]. On the other hand, the r = 1 coefficients,
which come exclusively from the expansion of χ−(x, y) are

c
(1)
BLMMT 1,s = 8πc(1)

1,s , c̄
(1)
BLMMT 1,s = 8πc̃(1)

1,s . (5.12)

Taking into account the factor of 4π discussed above, we conclude that the r = 1 coeffi-
cients of [36] give twice the contribution found here.
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One possible origin for this discrepancy could have to do with the antisymmetrisation
procedure used in [36]. Unlike r > 1 terms, the r = 1 contributions to the BA dressing
phases can be simplified using the momentum conservation condition. As such, this part
of the phase need not be explicitly antisymmetric. In the next subsection we discuss
another possible likely source of this discrepancy.

Finally, the higher order coefficients c(n)
r,s = c̃(n)

r,s with n > 1 are exactly the same as in
the expansion of the BES phase.

5.2 Semiclassical and near flat space limits
In order to compare with perturbative results, it is convenient to write explicit expressions
for our phases in the semiclassical limit, i.e., when

x± = x± i

2h
x2

x2 − 1 +O
( 1
h3

)
. (5.13)

Such an expansion for the BES phase is well known: the leading order O(1/h) is given
by the AFS phase (3.5), which in our normalization reads

θAFS(x, y) = 1
h

x− y
(x2 − 1)(xy − 1)(y2 − 1) +O

( 1
h3

)
, (5.14)

whereas the next-to-leading-order is given by the HL phase which can be found by
expanding (3.6) under the integral. Doing so also for (3.16), we get to the expressions

θ(x, y) = θAFS(x, y) + 1
4πh2

x2

x2 − 1
y2

y2 − 1
[ (x+ y)2(1− 1

xy
)

(x2 − 1)(x− y)(y2 − 1)

+ 2
(x− y)2 log

(x+ 1
x− 1

y − 1
y + 1

)]
+O

( 1
h3

)
,

θ̃(x, y) = θAFS(x, y) + 1
4πh2

x2

x2 − 1
y2

y2 − 1
[ (xy + 1)2( 1

x
− 1

y
)

(x2 − 1)(xy − 1)(y2 − 1)

+ 2
(xy − 1)2 log

(x+ 1
x− 1

y − 1
y + 1

)]
+O

( 1
h3

)
.

(5.15)

As it was expected from the discussion in [32], the rational part of these expression
differs from the one found in [36]. The logarithmic part agrees16 with what conjectured
in [36], also in agreement with recent results found by unitarity techniques [39,40]. The
discrepancy in the rational part may come from the fact that the Bethe ansatz assumed
in [36] differs from the one of [32] by terms of the form

1− 1
x+y−

1− 1
x−y+

1− 1
x+y+

1− 1
x−y−

or
1− 1

x+y−

1− 1
x−y+

1− 1
x−y−

1− 1
x+y+

. (5.16)

16 One should keep into account a factor of −2 coming from the different definition of the phases
in [36].
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The former term in each product is antisymmetric, and can just be absorbed by a redef-
inition of the phase σ̃. This is not true for the latter term which is symmetric. This will
contribute to the Bethe ansatz in the finite gap limit as

1− 1
x+y+

1− 1
x−y−

= exp
(
i

h

x+ y

(x2 − 1)(y2 − 1)

)
+O

( 1
h3

)
. (5.17)

such a contribution has presumably to be taken into account before antisymmetrisation
and regularization procedure performed in [36] and may nontrivially affect it.

Let us also evaluate the dressing factors in the near-flat-space limit [53]

θ(p−, q−) = p−q−(p− − q−)
16h(p− + q−) +

p2
−q

2
−

(
p2
− + 2p−q− log q−

p−
− q2

−

)
256πh2(p− − q−)2 +O

( 1
h3

)
,

θ̃(p−, q−) = p−q−(p− − q−)
16h(p− + q−) −

p2
−q

2
−

(
p2
− − 2p−q− log q−

p−
− q2

−

)
256πh2(p− + q−)2 +O

( 1
h3

)
.

(5.18)

Using these results one can check that the dressing phases are compatible with the near-
flat-space results of [38].

5.3 Weak-coupling expansion
In this subsection we compute the weak-coupling expansion of the dressing phases. The
results for σBES are well known from AdS5/CFT4. The leading-order contribution to
the dressing phase starts at O(h6) [10], and comes from the r = 2, s = 3 terms in the
expansion of χBES.17

The AdS3 dressing phases (3.17) contain extra terms besides the BES phase. The
coefficients cr,s and c̃r,s that come from these extra contributions are all order h0 (see
equation (5.7) and (5.6)). The coupling constant dependence comes only from the charges
qr and qs in equation (5.5). In fact, the leading contribution comes from the r = 1 and
s = 2 term

θ(p, q) = 4c(1)
1,2

(
p sin2 q

2 − q sin2 p

2

)
h+O(h3) , (5.19)

with a similar expression holding for θ̃(p, q). Note that the O(h2) terms vanish. The
above result shows that the r = 1 terms, which are novel to AdS3, contribute at order h to
the BA,18 and so should modify the energy of states in the weakly-coupled spin-chain at
order h3. Notice that a priori we do not know how h(λ) behaves at weak coupling.19 This
prevents us from determining whether the h1 contribution to θ(p, q) in the equation above
comes with an integral power of λ as one would expect in a weakly coupled planar limit.
Nevertheless the above expansion is a new feature of the AdS3 spin-chain, which places
it in a different category to the spin chains investigated in [54]. This is not surprising,
since in contrast to [54], the AdS3 spin-chain consists of left-moving and right-moving

17See equation (5.5), and recall that for the BES phase there is no r = 1 term.
18Notice that, despite being linear in one of the momenta, such terms cannot be re-absorbed into a

shift of the Bethe Ansatz length, since c(1)
1,2 = −c̃(1)

1,2 so that they appear with opposite sign in θ and θ̃.
19Recall, for example, that in AdS5/CFT4 h ∼

√
λ while in AdS4/CFT3 h ∼ λ.
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sectors.20 Spin-chains with a left- and right-moving copy of a symmetry group will have
a larger family of operators that can act on them than the homogeneous chains of [54],
and it would be interesting to extend the analysis of [54] to this case, in order to better
understand the role of the r = 1 terms in the dressing phase.

6 Conclusions
We have determined the non-perturbative dressing phases of the AdS3/CFT2 integrable
system associated to Type IIB string theory on AdS3× S3×T4 with R-R flux. This was
done by solving the crossing relations of [32]. Our solution differs from the BES dressing
phase that enters AdS5/CFT4 and AdS4/CFT3 integrable systems. The two phases we
have found are different from one another as is expected from the crossing equations.
We have investigated the spectrum of bound states of the system and show that it is
consistent with the full non-perturbative S-matrix. The details of this matching depend
crucially on the analytic properties of the dressing phases. As such, this represents a
strong consistency check of our solution

We have performed an expansion of the dressing phases at strong coupling. At the
leading order both phases reduce to the AFS-phase, in agreement with perturbative
world-sheet calculations [34, 36, 38]. At the next-to-leading order our phases differ from
one another and only their sum is the same as the HL-phase. We have compared our
expressions at this order with the results of [36,38] and found almost complete agreement.
In section 5.1 and 5.2 we discussed the likely origins of the discrepancy.

In order to further check whether our solutions correspond to the string theory phases,
it is necessary to test them against stringent perturbative calculations, beyond the HL-
order. In addition, studying their analytical properties in the string and mirror regions
may give further insights on the validity of our proposal.21 It would also be very inter-
esting to investigate the double poles/zeros of our phases and compare them to relevant
Landau diagrams as was done in AdS5/CFT4 in [12]. Another important direction would
be to build on [29] in order to understand how massless modes should be incorporated
into the integrable S-matrix. There is by now significant evidence that integrable spin-
chains play an important role in the context of AdS3/CFT2. Finding the origin of such
spin-chains in the CFT2 remains an outstanding challenge.
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A Useful formulae and identities
In this appendix we present the proofs of some identities we used in the main body of
the paper. In particular, we provide the proof that the phase χ−(x, y) solves the crossing
equation (3.14). This can be easily adapted to check that the Hernández-López phase as
defined in (3.7) solves the “odd” crossing equation (3.8) with the choice of path depicted
in figure 2.

A.1 Solving equation (3.14)
Let us define the following integral

Φ−(x, y) =
∫
	

dw

8π
1

x− w
log

[
(y − w)

(
1− 1

yw

)]
sign((w − 1/w)/i) − x↔ y

=
( ∫
x −

∫

x

)
dw

8π
1

x− w
log

[
(y − w)

(
1− 1

yw

)]
− x↔ y,

(A.1)

which is reminiscent of (3.7). This function satisfies a property which will be crucial in
what follows, that is22

Φ−(x, y)− Φ−(1/x, y) = 0. (A.2)
Furthermore, when |y| > 1 is fixed and |x| > 1 approaches the unit circle, Φ−(x, y) has a
jump discontinuity. As discussed in appendix A.3, the value of the discontinuity depends
on whether x approaches the unit circle form below the real line, in which case

Φ−(eiϕ+ε, y) = Φ−(eiϕ−ε, y) + δ↑(eiϕ, y) +O(ε), ε > 0, −π < ϕ < 0 , (A.3)

with23

δ↑(x, y) = − i2 log
[
(y − x)

(
1− 1

xy

)]
, (A.4)

or from above, where

Φ−(eiϕ+ε, y) = Φ−(eiϕ−ε, y) + δ↓(eiϕ, y) +O(ε), ε > 0, 0 < ϕ < π , (A.5)
22The proof of this is presented in appendix A.2.
23More precisely, the following relation holds up to an arbitrary function of y only, and in an appro-

priate branch of the logarithm, see A.3. Such a functions plays no role in the crossing equation.
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with δ↓(x, y) = −δ↑(x, y).
These ingredients are all we need to construct a solution of (3.14). In the physical

region we define
χ−(x, y) ≡ Φ−(x, y) |x|, |y| > 1 . (A.6)

In order to continue this function to the crossed region, it is important to recall our
choice of cuts of figure 2: both x+(z) and x−(z) will cross the unit circle below the real
line. Therefore, we define

χ−(x, y) ≡ Φ−(x, y) + δ↑(x, y) |x| < 1, |y| > 1 , (A.7)

which is continuous across the lower half circle by construction. Using (A.2) we have

χ−(x, y)− χ−(1/x, y) = −δ↑(1/x, y) = −δ↑(x, y) , |x|, |y| > 1 . (A.8)

Rewriting the left-hand-side of (3.14) in terms of χ(x, y) gives finally

σ−(z1, z2)2

σ−(z1 + ω2, z2)2 = e−2i(δ↑(x+,y+)+δ↑(x−,y−))

e−2i(δ↑(x+,y−)+δ↑(x−,y+)) , (A.9)

which coincides with (3.15).

A.2 Identity for Φ−(x, y)− Φ−(1/x, y)
In this subsection we prove equation (A.2). Define

F (x, y) = Fx(x, y)− F
x

(x, y) =
∫
x f(w, x, y)dw −

∫
xf(w, x, y)dw , (A.10)

where Fx, F

xcorresponds to the first and second integral, respectively, and

f(w, x, y) = 1
8π

1
x− w

log
[
(y − w)

(
1− 1

yw

)]
, (A.11)

so that Φ−(x, y) = F (x, y)− F (y, x). Since f(w, x, y)− f(w, x, 1/y) = 0, we see that

Fx(x, y)− Fx(x, 1/y) = 0 , and F

x

(x, y)− F

x

(x, 1/y) = 0 . (A.12)

A change of integration variable, u = 1/w, can be used to derive the following identity

F

x

(1/x, y) =
∫

xdw
8π

1
1/x− w log

[
(y − w)

(
1− 1

yw

)]

=
∫
x

du

8π u2
1

1/x− 1/u log
[
(y − u)

(
1− 1

yu

)]
(A.13)

= −
∫
x

du

8π
1

x− u
log

[
(y − u)

(
1− 1

yu

)]
−
∫
x

du

8π
1
u

log
[
(y − u)

(
1− 1

yu

)]
= −Fx(x, y)− φ−(y) ,

for arbitrary x with |x| 6= 1. Sending x→ 1/x in the above equation gives

Fx(1/x, y) = −F

x

(x, y)− φ−(y) . (A.14)

Combining equations (A.12), (A.13) and (A.14) and writing out Φ in terms of Fx and
F

xone may check that (A.2) holds.
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A.3 Discontinuities of Φ−(x, y) at |x| = 1
Let us split Φ−(x, y) in terms of Fx, F

xas in (A.10), and focus on the discontinuities
of F x(x, y). The discontinuity in x follows immediately from Cauchy’s theorem, and is
given by

F

x

(eiϕ+ε, y) = F

x

(eiϕ−ε, y) + d
(x)
↑ (eiϕ, y) +O(ε), ε > 0, −π < ϕ < 0 , (A.15)

crossing the unit circle from below, with

d
(x)
↑ (x, y) = i

4 log
[
(y − x)

(
1− 1

xy

)]
. (A.16)

Note that F x(x, y) is continuous in x across the upper half-circle.
To find the discontinuity in y, we can consider ∂yF

x(x, y) for |x|, |y| > 1; bringing
the derivative under the integral gets rid of the logarithm. The resulting function has a
discontinuity on the lower half circle:

∂yF

x

(x, eiϕ+ε) = ∂yF

x

(x, eiϕ−ε)+d(y′)
↑ (x, eiϕ)+O(ε), ε > 0, −π < ϕ < 0 . (A.17)

The appropriate primitive of d(y′)
↑ (x, y) in y gives the discontinuity of F x(x, y) from

below. Such a primitive is

d
(y)
↑ (x, y) = − i4 log (x− y) + φ↑(x) , (A.18)

where φ↑(x) is arbitrary function. Furthermore, there is also a discontinuity on the upper
half circle:

∂yF

x

(x, eiϕ+ε) = ∂yF

x

(x, eiϕ−ε) + d
(y′)
↓ (x, eiϕ) +O(ε), ε > 0, 0 < ϕ < π , (A.19)

whose primitive is

d
(y)
↓ (x, y) = i

4 (log (1− xy)− log x− log y) + φ↓(x) . (A.20)

It is easy to repeat this analysis for Fx(x, y), where we find essentially the same
results up to exchanging the upper and lower circles. Putting everything together
proves (A.4) up to such an arbitrary function of x, which however would drop out of the
crossing equation (A.9), canceling among the contributions of the four χ’s. Since the
crossing relations (A.9) are written in exponential form, the logarithmic branch cuts of
the discontinuities play no role.

If we instead had considered the discontinuities of Φ−(x, y) when crossing the unit
circle in the upper half-plane we would have found an extra minus sign upon crossing.
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A.4 Singularities of the dressing phases
Let us investigate the singularities of the dressing phases θ(x, y) and θ̃(x, y). They are
defined in terms of χ(x, y), χ̃(x, y) by (3.17). Since the analytic properties of the BES
phase are well known [12, 13], we will focus on the semisum and semidifference of the
HL phase with χ−(x, y). We are interested in logarithmic singularities as x and y take
particular positions with respect to each other. To find them, let us consider the integrals

Ψ±(x, y) = 1
2
(
− ΦHL(x, y)± Φ−(x, y)

)
, (A.21)

where ΦHL(x, y) is the integral defining the HL phase in the physical region,

ΦHL(x, y) =
( ∫
x −

∫

x

)
dw

4π
1

x− w
(log (y − w)− log (y − 1/w)) , (A.22)

and Φ−(x, y) is defined in (A.1). Singularities may arise only at y = x or y = 1/x.
However, we can evaluate explicitly

Ψ±(x, y)
∣∣∣
y=x

= 0 , Ψ±(x, y)
∣∣∣
y=1/x

= 1
4π
(
4 Li2(x)− Li2(x2)

)
, (A.23)

with |y| > 1, so that no singularity arises from the integral representation. Since this
coincides with the phase in the physical region, we can conclude that there is no discon-
tinuity for the phases at x = y when both variables are in the physical region.

When y = 1/x one of the variables, e.g., x, must be inside the unit circle. Therefore,
as explained in appendix A.1, we must continue Ψ±(x, y) in x through the lower half-
circle. In order to do this we need to find the discontinuity of Ψ±(x, y) there. In
appendix A.3 we worked out the discontinuity of Φ−(x, y) to be as in (A.4), i.e.,

δ−↑ (x, y) = − i2 log
[
(y − x)

(
1− 1

xy

)]
. (A.24)

Using Cauchy’s theorem we find that ΦHL(x, y) satisfies

ΦHL(eiϕ+ε, y) = ΦHL(eiϕ−ε, y) + δHL
↑ (eiϕ, y) +O(ε), ε > 0, −π < ϕ < 0 , (A.25)

with
δHL
↑ (x, y) = − i2 log

[
y − x
y − 1/x

]
. (A.26)

Using this to analytically continue (A.21) we have that when |x| < 1 and |y| > 1, there
is no singularity in χ̃(x, y) at y = 1/x. However χ(x, y) has a logarithmic singularity
such that

e2iχ(x,y) ≈
(
y − 1

x

)
, when y ≈ 1/x . (A.27)
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B Choice of analytic continuation
Using the S-matrix derived in [32], one can write down two sets of crossing equations,
which turn out to be incompatible. This problem is not specific to our case, but also
appears, e.g., for AdS5. These two possibilities are related to the fact that charge con-
jugation can be implemented either with C or C Σ. In the first case the first entry has
to be analytically continued by z+ω2, while in the second case by z−ω2. The opposite
is true for the second entry.

We write these crossing equations for AdS3 × S3 × T4 in the following table. In the
first column we write the crossing equations explicilty in terms of σ, σ̃ (the functions g, g̃
are defined in (2.9)) and in the second column we write them in matrix form.

(I)
σ(z1 + ω2, z2)2σ̃(z1, z2)2 = g(x±1 , x

±
2 )

σ(z1, z2)2σ̃(z1 + ω2, z2)2 = g̃(x±1 , x
±
2 )

C−1 ⊗ 1 · Rt1(z1 + ω2, z2) · C ⊗ 1 = R(z1, z2)−1

(II)
σ(z1, z2 − ω2)2σ̃(z1, z2)2 = g̃−1

(
1
x±2
, x±1

)
σ(z1, z2)2σ̃(z1, z2 − ω2)2 = g−1

(
1
x±2
, x±1

) 1⊗ C−1 · Rt2(z1, z2 − ω2) · 1⊗ C = R(z1, z2)−1

(III)
σ(z1 − ω2, z2)2σ̃(z1, z2)2 = g(x±1 , x

±
2 )

σ(z1, z2)2σ̃(z1 − ω2, z2)2 = g̃(x±1 , x
±
2 )

ΣC−1 ⊗ 1 · Rt1(z1 − ω2, z2) · CΣ⊗ 1 = R(z1, z2)−1

(IV)
σ(z1, z2 + ω2)2σ̃(z1, z2)2 = g̃−1

(
1
x±2
, x±1

)
σ(z1, z2)2σ̃(z1, z2 + ω2)2 = g−1

(
1
x±2
, x±1

) 1⊗ ΣC−1 · Rt2(z1, z2 + ω2) · 1⊗ CΣ = R(z1, z2)−1

Looking at the first column, it is clear that rows (I) and (III) are incomplatible because
the r.h.s is the same but the analytic continuation is performed in opposite directions.
The same is true for rows (II) and (IV). Rows (I) and (II) are instead related by using
antisymmetry of the factors, as are (III) and (IV).

In order to fix the convention for analytic continuation we compare our results with
the perturbative results of [38]. We consider the matrix elements Apq, Ãpq,Bpq, B̃pq de-
fined in section 4.3 and we write the crossing equations in the form

Apq Ãp̄q = 1, B̃pq Bp̄q = 1. (B.1)

In order for the equations to be satisfied up to one-loop order in the NFS limit, we use
that p̄− = −p− and we note that we need to choose the branch of the log in such a
way that log(−p−) = log(p−) − iπ, which also implies the rule √−p− = −i√p−. We
can relate these choices of branches to the choice of the sign of the shift on the torus by
considering the analytic continuation of

η(p) =
(
x+
p

x−p

)1/4 (
ih

2
(
x−p − x+

p

))1/2

=
dn z2

(
cn z2 + i sn z2 dn z2

)
1 + 16h2 sn4 z

2
, (B.2)
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which is given by [4]
η(z ± ω2) = ± i

x+(z)η(z). (B.3)

By using (B.2) we find that in the NFS limit η(p−) = 1/2√p−. We can now compare
our choice of the log branch with the crossing transformation, finding

η(−p−) = 1
2
√
−p− = − i2

√
p− = η(z + ω2)

∣∣∣
NFS limit

. (B.4)

This allows us to conclude that crossing holds with a shift by +ω2 in the first variable.
The crossing equations in row (I) in the table are the ones that are solved in the main
text. Consistency with this choice allows us to conlcude that the crossing equations
written in [30, 31] should follow the same convention of shifting by −ω2 in the second
variable. This corrects footnote 10 in [30] and footnote 3 in [31].

A posteriori we can check in the same way that the solutions we found in the finite
gap (5.15) and near flat space limit (5.18) do indeed solve the crossing equations in those
limits when shifting the first variable by z → z + ω2 and resolving the branch of the log
accordingly.
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