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Abstract

The arrangement of members plays a crucial role in determining the resistance of retic-
ulated cylindrical shells, in addition to rise-to-span ratio, cross-section of the members,
rigidity of the joints, and support conditions. Although studies on the comparison of shell
structures with different configurations are available, the effect of the member arrange-
ment on the performance of reticulated shell structures based on the valency of elements
was never investigated before. This paper investigates the effect of edge valency on the
load resistance of shell structures by studying the behaviour of four cylindrical shell con-
figurations with different edge valencies of vertices and faces. The limit load of the shell
structures - with different rise-to-span ratios, length-to-span ratios, support conditions,
load patterns, and different magnitudes of initial geometric imperfection – is calculated
based on geometrical and material non-linear analyses. The results show that the increase
in the edge valency of the vertices increases the overall resistance of single-layer reticu-
lated cylindrical shells with rigid joints. In addition to edge valency, member orientation
plays a prominent role in determining the overall resistance of single-layer reticulated shell
structures with longitudinal edges supported. The data on edge valency help to rearrange
the members within a structure so that the overall resistance is not compromised, while the
designer aims for an economical solution.
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1. Introduction

Barrel vault is a type of spatial structure used to cover large spaces without columns
(Figure 1). They are developable surfaces with zero Gaussian curvature. The cylindrical
shape provides more volume under the surface, and the resulting structure is more efficient
than traditional grid systems. Triangulation is adopted for many structures due to the sta-
bility provided by the triangulated geometry. Single-layer triangulated cylindrical shells
are robust and result in uniform stress distribution [1, 2]. They are constructed with mem-
bers of equal length, and the resulting structure is lighter than other types of vaults [3].
The uniformity of member cross-section and equal length of members make these struc-
tures more popular and reliable due to the immense economic benefit. They are analysed
and designed as structures with pin connection between the members. However, reticu-
lated shells with non-triangulated faces should have rigid joints for adequate stability. The
rigid joints make the structure more predictable, with lesser deflection and lesser variation
in stress distribution. These reticulated shells can be adopted for structures with lower
dimensions and lower load resistance requirements (Figure 1(b)).

Comparison of the performance of triangulated single-layer reticulated cylindrical shells
with non-triangulated cylindrical shells is rare in the literature. In fact, most studies are
conducted on triangulated cylindrical shells because of their superior performance and
popularity. The experimental test on single-layer barrel vaults found that bracing influ-
ences the stability and overall resistance of the structure [3]. The three-way arrangement of
the members results in uniform stress distribution and smaller deflections in the structure,
especially under non-uniform load distribution [3]. The presence of rigid joints greatly in-
fluences the stress distribution and the deflection in reticulated shells. Parke obtained the
most economical rise-to-width (rise-to-span) ratio as 0.17 from the comparative analysis of
the strength-to-weight ratio and the stiffness of three reticulated cylindrical configurations
[4]. The shell with a rise-to-span ratio of 0.17 was found to be the lightest and experienced
the least deflection, the maximum axial force, and the minimum bending moment in the
cases of symmetric and asymmetric load. Gioncu explained the different parameters af-
fecting the stability of triangulated barrel vaults and instability modes in spatial structures,
such as member, node, line, and overall instability [5]. Many studies have been conducted
on single-layer reticulated domes, which are applicable to cylindrical shells to a great ex-
tent. Abedi conducted experimental studies on reticulated domes, including the dynamic
behaviour of nodal snap-through buckling by inducing initial velocities at the node [6].
Lenza studied the dynamic effect of the snap-through buckling on doubly curved shells
[7]. Kato et al. investigated the impact of the slenderness of the members on the global
stability of single-layer domes [8]. Yamada et al. studied the imperfection sensitivities
in single-layer lattice domes [9]. Lopez et al. conducted the numerical and experimental
investigation on a single-layer lattice dome with semi-rigid joints [10]. Fan et al. studied
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Figure 1: Examples of single-layer reticulated cylindrical shells: (a) Merineda City Shopping Mall, A
Coruña (reproduced with permission from Lanik, Spain) (b) BT Savani Hospital, Rajkot (reproduced with
permission from Lakhlani Associates, India) (c) Dimensions of a single-layer reticulated cylindrical shell
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the elasto-plastic stability of single-layer reticulated dome structures [11]. Yan et al. stud-
ied the ‘coupled instability behaviour’ in single-layer reticulated dome structures, where
the interaction between member buckling and overall buckling of the structure was inves-
tigated [12]. Reticulated structures are very sensitive to imperfections due to the spatial
arrangement of the members. Several studies have incorporated the effect of imperfection
in reticulated shell structures. Although it is difficult to introduce actual imperfections
into the structures, there are methods available to model shell structures, which provide
the least favourable position of members and nodes [13]. The effect of the initial curva-
ture of the members on the elasto-plastic stability and the member buckling was explored
by Fan et al. [14]. Consideration of imperfections will result in a reduction of load re-
sistance of the structures. Therefore, imperfection analysis is necessary while analysing
any shell structure. In fact, structural imperfection sensitivity can be included in the shape
optimisation of structures such that the resulting geometry has a high buckling load [15].

Limited studies are available on the performance comparison of cylindrical shells with
different configurations. Parke investigated the optimum member arrangement among the
triangulated configurations [4]. Later, the effect of member arrangement was studied in
detail by considering the stiffness-weight ratio, strength-weight ratio, stress distribution,
and redundancy of 13 single-layer cylindrical shells [16, 17]. The significance of trans-
verse members, longitudinal members, and bracing members was identified in the study
(Figure 2). The author also noted that the absence of bracing members (i.e., the absence
of triangulation) resulted in a lack of integrity between the elements, and the stability of
those reticulated shell structures depended primarily on the rigidity of the joints. A sim-
ilar study considering the imperfection in the shell structures concluded that the lack of
bracing members would increase the sensitivity towards imperfections due to the inability
to transfer forces between the ‘segments’ [18]. Later, an extensive parametric study of
triangulated vaults showed the influence of asymmetric load, support condition, material
yield stress, and geometry of the collapse mechanism on the load-carrying capacity [19].
These studies demonstrate that triangulated structures are always stable and economical in
comparison to non-triangulated shell structures.

As the fundamental difference among shell configurations is their connectivity between
members, investigation of the relationship between the connectivity of the members and
the load capacity of the shell structures is of great interest. The connectivity between the
members can be redefined based on the parameter “Valency”, one of the ’parameters of
structures’ defined by Loeb [20]. Parameters such as valency are helpful in creating differ-
ent non-triangulated dome configurations [21]. Load capacity, material use, redundancy,
stress distribution, and aesthetic appearance will vary among these reticulated shell struc-
tures. Although comparisons of different cylindrical shell configurations have been made
earlier, the effect of valency on the global stability of reticulated shells is rarely mentioned
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Figure 2: Members defined as per their orientation in a cylindrical shell structure

in the literature. Hence, an attempt has been made in this paper to study the influence
of edge valency of vertices on the overall resistance of single-layer reticulated cylindrical
shells. Different cylindrical shells with varying edge valency are subjected to Geometri-
cal and Material Nonlinear Analysis (GMNA) [22]. The performance of these cylindrical
shells is compared to the average edge valency of vertices and faces. The study identifies
the importance of considering edge valency in optimising the performance of rigid-jointed
structures.

2. Configuration based on the valency of elements

Any reticulated structure can be defined as a combination of vertices, edges, faces, and
cells (Figure 3). Two vertices help to form an edge, three or more edges combine to create a
face, and four or more faces combine to form a cell. As a result, these elements are related
to each other. Three parameters can be introduced to define the relationship between the
elements. Loeb defined them as the ‘parameters of structures’: dimensionality, valency,
and extent [20].

2.1. Parameters in a structure
The first parameter, ‘dimensionality,’ is the degree of freedom of an element. For

example, the dimensionality of a vertex is zero since it has zero degrees of freedom. Sim-
ilarly, the dimensionality of an edge, face, and cell is one, two, and three, respectively. A
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structure can be redefined as the combination of elements with dimensionalities of zero,
one, two, and three. Similar to the way elements with different dimensionalities are re-
lated to each other, the total number of elements with different dimensionalities are related
to each other within a structure, based on the equation named ‘Euler-Schlaefli relation’
(Equation 1).

j∑
i=0

(−1)iNi = 1 + (−1)i (1)

Ni denotes the number of elements with dimensionality i. For example, N0 is the
number of vertices in a structure. j denotes the number of dimensions considered for a
structure (e.g., j = 2 for a two-dimensional structure and j = 3 for a three-dimensional
structure). For two-dimensional structures, Equation 1 is simplified to Equation 2, and
for three-dimensional structures, Equation 1 is simplified to Equation 3. These equations
ensure that the configurations are in ‘closed-form’, i.e., open-ended edges or faces are
not present in the configurations. Therefore, the equations ensure that the elements of a
configuration are restricted.

N0 − N1 + N2 = 2 (2)

N0 − N1 + N2 − N3 = 0 (3)

The second parameter, ‘Valency,’ is the sum of elements of a certain dimensionality
that are connected to an element of a different dimensionality. For example, the edge
valency of a vertex in a cube is three because it is directly connected to three edges (Figure
3). Similarly, the vertex valency and the edge valency of any face in the cube are four,
and the vertex valency of the cell is eight. Different combinations of elements result in
different valencies, as there are four elements with different dimensionality available in a
three-dimensional structure (Table 1). The vertex valency of an edge and the cell valency
of a face are always two (E0 = F3 = 2) for every configuration. Similarly, the face valency
of an edge and the cell valency of an edge are always identical (E2 = E3), and the vertex
valency of a face and the edge valency of a face are always identical (F0 = F1). As a
result, the total number of valencies in a three-dimensional structure will be reduced to
eight. Only six of the eight valencies are independent, and the remaining two can be found
from the relations obtained from the Euler-Schlaefli equation (Equation 4 and Equation 5).

V1 − V2 + V3 = 2 (4)

C0 −C1 +C2 = 2 (5)

The third parameter – ‘extent’ – is the measurable quantity within a structure, such as
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Figure 3: A cube explaining the elements and valencies in a reticulated structure

Table 1: Different valencies in a configuration

Element Vertex Valency Edge Valency Face Valency Cell Valency

Vertex - V1 V2 V3
Edge 2 - E2 E3
Face F0 F1 - 2
Cell C0 C1 C2 -

length, area, and volume. The third parameter is critical for a reticulated structure since it
is directly related to the cost of the structure.

2.2. Interdependency of the valencies
The valencies in a structure are related to each other, and elements – such as edges

and nodes – can be found from the restrictions derived from the interdependence of the
valencies.

The number of edges in a structure is obtained by summing the edge valency of all the
vertices in the structure. Let Nr

0 be the number of vertices whose edge valency is r. Then
summing the edge valency of all the vertices will result in:

2N2
0 + 3N3

0 + 4N4
0 + .... =

n∑
r=2

rNr
0 (6)

The sum of edge valency of all the vertices equals the sum of vertex valency of all the
edges in a structure.
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n∑
r=2

rNr
0 =

n∑
s=2

sN s
1 (7)

The vertex valency of an edge is always two. As a result, s = 2 and sN s
1 = N1.

Therefore, Equation 7 is modified to:

n∑
r=2

rNr
0 − 2N1 = 0 (8)

Equation 8 helps to find the number of edges in a structure from the edge valency of
all the vertices. For example, a basic unit such as a triangle has three edges (N1 = 3), and
the summation of the edge valency of the vertices gives twice the number of the edges
(Equation 9).

n∑
r=2

rNr
0 = 2N2

0 = 6 (9)

The total number of vertices in a structure is given by:

N0 =

n∑
r=2

Nr
0 (10)

Valency can change from position to position in structures like reticulated shells. There-
fore, the average edge valency of vertices is defined as follows:

v̄1 =

n∑
r=2

rNr
0

N0
(11)

From Equations 8 and 11, the relation between the number of vertices, edges, and the
average edge valency of vertices is derived as follows:

v̄1N0 − 2N1 = 0 (12)

The sum of face valency of all edges and the sum of edge valency of all faces in a
structure are equal. i.e.,

n∑
t=2

tN t
1 =

n∑
u=3

uNu
2 (13)

Similar to Equation 11, the average value of face valency of edges and edge valency of
faces are computed as follows:
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ē2 =

n∑
t=2

tN t
1

N1
(14)

f̄1 =

n∑
u=3

uNu
2

N2
(15)

From equations 13, 14, and 15, the relation between the number of edges, the number
of faces, the average edge valency of faces, and the average face valency of edges in a
structure is derived as follows:

ē2N1 − f̄1N2 = 0 (16)

Similarly, the relation between cell valency of edges and edge valency of cells is:

n∑
w=3

wNw
1 =

n∑
x=6

xN x
3 (17)

The cell valency of the edges and the face valency of the edges are always equal (w =
t). Therefore, Equation 17 is modified to:

n∑
t=3

tN t
1 =

n∑
x=6

xN x
3 (18)

The average edge valency of cells is defined as follows:

c̄1 =

n∑
x=6

xN x
3

N3
(19)

From Equations 14, 18, and 19, the relation between the number of edges, the number
of cells, the average face valency of edges, and the average edge valency of cells is derived
as follows:

ē2N1 − c̄1N3 = 0 (20)

Similar expressions can be obtained for vertex-face valency relation:

n∑
y=2

yNy
0 =

n∑
z=3

zNz
2 (21)

The vertex valency of faces is equal to the edge valency of faces (z = u). Therefore,
Equation 21 is modified to:

9



n∑
y=2

yNy
0 =

n∑
u=3

uNu
2 (22)

The average vertex valency of face and the average face valency of vertex are:

f̄0 =

n∑
u=3

uNu
2

N2
(23)

v̄2 =

n∑
y=2

yNy
0

N0
(24)

From equations 22, 23, and 24, the relation between the number of vertices, the number
of faces, the average face valency of vertices, and the average vertex valency of faces is
derived:

v̄2N0 − f̄0N2 = 0 (25)

The sum of vertex valency of all cells is equal to the sum of cell valency of all vertices
in a structure (Equation 26).

n∑
a=2

aNa
0 =

n∑
b=6

bNb
3 (26)

The average vertex valency of cells and the average cell valency of vertices are:

c̄0 =

n∑
b=6

bNb
3

N3
(27)

v̄3 =

n∑
a=2

aNa
0

N0
(28)

From equations 26, 27, and 28, the relation between the number of vertices, the number
of cells, the average cell valency of vertices, and the average vertex valency of cells is
derived as follows:

v̄3N0 − c̄0N3 = 0 (29)

The sum of face valency of all cells is equal to the sum of cell valency of all faces in a
structure (Equation 30).

10



n∑
d=2

dNd
2 =

n∑
g=4

gNg
3 (30)

The cell valency of a face is always two (d = 2). Hence, Equation 30 is modified to:

n∑
g=4

gNg
3 − 2N2 = 0 (31)

The average face valency of cells is given by:

c̄2 =

n∑
g=4

gNg
3

N3
(32)

From Equations 31 and 32, the relation between the number of faces, the number of
cells, and the average face valency of cells is obtained as:

c̄2N3 − 2N2 = 0 (33)

From Equations 16, 20, and 25:

ē2N1 = f̄1N2 = c̄1N3 = v̄2N0 (34)

Expressing N1, N2, and N3 in terms of N0 and substituting in Equation 3 will result in:

1
v̄2
−

1
ē2
+

1
f̄1
−

1
c̄1
= 0 (35)

Equation 35 connects the average vertex valency of face, average edge valency of face,
average face valency of edge, and average cell valency of edge.

From equations 12,16, and 25:

v̄1ē2 − 2v̄2 = 0 (36)

If reticulated cylindrical shell configurations are considered as a two-dimensional net,
the face valency of all the edges will be two (ē2 = 2). Hence, Equation 36 is modified to:

v̄1 − v̄2 = 0 (37)

As a result, Equation 4 will result in v̄3 = 2. The two-dimensional configurations
divide the space into two (N3 = 2). Substituting these values in Equation 20 will lead to:
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N1 − c̄1 = 0 (38)

The results of Equations 36, 37, and 38 will modify Equation 35 as follows:

1
v̄1
+

1
f̄1
−

1
N1
−

1
2
= 0 (39)

Equation 39 is valid for any configuration in two-dimension [20]. Although the single-
layer lattice cylindrical shells are three-dimensional in nature, they can be considered as a
two-dimensional net. As the number of edges is constant for a selected cylindrical shell,
the values of average edge valency of vertices and average edge valency of faces are in-
versely proportional to each other. The effect of these factors on the overall resistance of
the single-layer reticulated shells is investigated in this paper.

2.3. Nomenclature based on the edge valency
The three parameters are helpful in creating different single-layer reticulated shell con-

figurations (Figure 4). As the parameters vary for each configuration, a nomenclature can
be generated based on the selected parameters, such as valency, so that the nomenclature
itself can describe the important properties of the configuration [21].

The edge valence of the vertices and the edge valence of the faces are used when cre-
ating the nomenclature for single-layer reticulated shell configurations. Regularly used
shell structures, such as triangulated shell structures, have identical edge valency of ver-
tices and faces on the inner surface (Figure 5). The nomenclature for these configurations
starts with the notation ‘V’ to identify that the edge valency of vertices is used during the
generation of the nomenclature. The edge valency of vertices for a cell is arranged in the
clockwise direction to arrive at the required nomenclature. For example, the nomenclature
based on the edge valency of vertices for the triangulated configuration is V.6.6.6 or V.63

(Figure 5). Nomenclature is provided for the selected configurations similarly (Figure 6).
A nomenclature provided for a single-layer shell configuration provides a good deal of
information about a structure. As stated earlier, ‘V’ indicates that the edge valency of ver-
tices in a face is used while generating the nomenclature. The number of edge valencies in
the nomenclature (three in the example given in Figure 5) provides the edge valency (and
the vertex valency) of each face in the structure. Each digit (six in the example) provides
the edge valency of vertex for each vertex in a face. The edge valency of vertex gives
the angle between the members in the plane of the reticulated shell. Here, the digit ‘six’
in the nomenclature implies that the ‘in-plane angle’ between the members is 60 degrees
(Figure 7). Therefore, the nomenclature can capture the arrangement of members and
the parameters in a configuration, such as the connections and angle between members.
Additional parameters such as rise (R), span (S), length (L), and member cross-sections
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(a) V.3.6.3.6 (b) V.36

(c) V.63 (d) V.44

Figure 4: Types of parameterised reticulated cylindrical shells used in the study. Nomenclature [21] based
on parameterisation principles is provided along with each cylindrical shell

can be included in the nomenclature to obtain the complete details of a reticulated shell
configuration.

2.4. Effect of edge valency
The connection rigidity of the single-layer reticulated shell configurations with edge

valency of face more than three should be maximum for obtaining a stable structure.
Therefore, rigid-jointed structures are used for the present study, even if triangulation is
present in the configuration. The edge valency should play a crucial role in the global and
local stability of every shell configuration. The effect of the defined parameters – edge
valency of vertices and edge valency of faces – are rarely compared in the earlier litera-
ture. Even though a comparison of the performance of different shell configurations was
conducted earlier [4, 16, 17, 18], the effect of valency was never introduced. To evaluate
the effect of the parameter – edge valency – on the global stability of single-layer reticu-
lated cylindrical shell configurations, different configurations with different edge valencies
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6 6
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Figure 5: V.63: The nomenclature assigned to the configuration by arranging the edge valency of vertices in
the clockwise direction

(a) V.3.6.3.6 (b) V.36

(c) V.63 (d) V.44
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3

6

3

3

3

3

3

3
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6

6

6
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4
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Figure 6: Nomenclature assigned to the four reticulated cylindrical shell configurations
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Figure 7: Edge valency provides the information on the in-plane angle between the members. In-plane
angle between the members is 120°, 90° or 60° if the edge valency is 3, 4 or 6, respectively

6

3
6

3

6 3

3

Figure 8: Difference in the edge valency of vertices at the edge region compared to that at the interior
region of the shell configuration

of vertices and different edge valencies of faces (Figure 4) are selected and subjected to
Geometrical and Material Nonlinear Analysis.

The edge valency of the vertices and faces can be different at the edge of the shell
structure from that at the interior region for cylindrical shell structures. For example,
the edge valency of vertices and faces are different for the configuration V.3.6.3.6 at the
interior region from the support region (Figure 8). Hence, average edge valency of vertices
(v̄1) and faces ( f̄1) are calculated for the selected single-layer cylindrical shells to compare
the overall resistance (Equation 11 and Equation 15). Although the average edge valency
of vertices and faces varies from the actual edge valency of the shell configurations (that
is, the edge valency of vertices and faces in the interior region), the difference will reduce
once the span of the shell structure increases (Table 2).

3. Comparison of the overall resistance of the shell configurations with respect to
edge valency

The overall resistance of the selected shell configurations was calculated by Geomet-
rical and Material Nonlinear Analysis and compared with their average edge valency of

15



Table 2: Average edge valency of vertices and faces for the shell configurations with varying length-to-span
ratios

Configuration L1 L2
v̄1 f̄1 v̄1 f̄1

V.3.6.3.6 3.906 3.850 3.907 3.858
V.36 2.967 5.5 2.982 5.622
V.63 5.061 3.0 5.3 3.0
V.44 3.492 4.0 3.624 4.0

vertices and faces. The span-to-rise ratio, length-to-span ratio, support condition, and load
distribution pattern were varied in the analysis to examine the applicability of the results
in the selected shell configurations (Figure 4).

3.1. Finite Element Modelling
The configuration data for nodes and members of the cylindrical reticulated shells

were created using Formex Algebra [23]. The shell structures were modelled by the finite
element package, Abaqus [24], using Timoshenko beam element ‘B31’ (two-node linear
beam) with each member divided into four beam elements. Circular hollow sections with
an outer diameter of 48.3 mm and thickness of 3.2 mm were adopted for all the members
[25]. The structural steel with yield strength of 250 MPa and Young’s Modulus of 200 GPa
with elastic-perfectly plastic constitutive relation was used for the finite element modelling
(Figure 9). The member cross-section was arrived at based on IS 800 – Indian code of
practice for general construction in steel [26]. The slenderness ratio of the members was
limited to 110, and the buckling of the individual members was avoided. The overall
resistance of the shell structures was calculated by finding the limit load from the load-
deflection response (Figure 10).

3.2. Parametric Analysis
The parametric analysis adopted different span-to-rise ratios, two length-to-span ratios,

two support conditions, and two load cases. The span of the shell configurations was fixed
at 10 metres. A lower span was adopted, since cylindrical shells with non-triangulation
and rigid joints are usually utilised for structures with a lower span. The span-to-rise ratio
of the shell structures varied from 1/10 to 1/2 (denoted as R10 to R2). Length-to-span
ratios of 1 and 2 were considered for all the configurations (denoted as L1 and L2). The
supported conditions adopted were: (1) LES – Longitudinal Edges Supported, and (2)
AES – All Edges Supported (Figure 11). Two gravity load patterns were considered in
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Figure 9: Elastic—perfectly plastic constitutive relation adopted for the shell structures (σ = Engineering
stress, ϵ = Engineering strain, fy = Yield stress, and ϵy = Yield strain)

p

0

P

Figure 10: Limit load calculated for comparing the performance of cylindrical shell structures (p = Load
applied per unit area, δ = Vertical deflection of the node, and P = Limit load)
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LES AES

Figure 11: Different types of support conditions adopted in the study : (a) LES: Longitudinal edges are pin
supported (b) AES: All the edges (both longitudinal edges and the transverse edges) are pin-supported. The

sample picture of pin-connection is reproduced with permission from Lakhlani Associates, India

the investigation: (1) FL – Full-span gravity load covering the entire surface of the shell
structure, and (2) HL – Half-span gravity load covering half the surface from the apex of
the shell structure (Figure 12). Asymmetric load distribution analysis is critical for regions
with heavy snow fall, and it had caused the failure of reticulated structures in the past
[27]. Therefore, the effect of half-span gravity loading was considered in the analysis in
addition to full-span gravity load. The limit load of the structure is determined by varying
the mentioned parameters, and the results are examined with respect to the edge valency
of the corresponding shell configuration.

FL HL

Figure 12: Load patterns considered in the study : (a) FL: Full-span gravity load (b) HL: Half-span gravity
load
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The primary objective of the study was to find the influence of edge valency on the
overall resistance of the selected configurations. Many parameters, such as member length
and connection numbers, must be identical in order to have a fair comparison of the per-
formance of the four configurations. However, it was difficult to keep these parameters
identical for the given configurations due to the interdependence of different elements (Ta-
ble 3). It is quite evident from the table that keeping one element identical across all four
configurations will result in large variations in other elements. Hence, configurations were
tried to modify with the total weight (‘extent’ corresponding to the element ’length’) of the
elements being identical, which resulted in a large variation of the length among individ-
ual members. The chance of buckling of the members increased in configurations such as
V.63 due to this large variation in length. This problem was avoided by keeping the length
of individual members within a range such that the slenderness ratio of the members lies
within a defined range. A new parameter (λ) was introduced to reduce the effect of varia-
tion on the total weight of the cylindrical shell structures while comparing their limit load
(Equation 40). Here,‘P’ is the limit load and ‘W’ is the total weight of the structure. The
weight of the connections was not considered while calculating the total weight of the
structure. The members were welded to each other, and the contribution of the weight of
the welding material was insignificant compared to the total weight of the shell structure.

Table 3: Variation in number of elements in cylindrical shell configurations

Configuration N0 N1 N2

V.3.6.3.6 170 332 147
V.36 122 181 60
V.63 66 167 102
V.44 63 110 48

λ =
P
W

(40)

3.2.1. Variation of limit load with the rise-to-span ratios
The comparison of the limit load (P) and the parameter ‘λ’ with the change in the

rise-to-span ratios when the shell structure was subjected to uniform gravity load is pro-
vided in Figure 13. The same comparison is provided separately for V.63 configuration
with AES support condition (Figure 14), as there was a considerable variation in the val-
ues from those of other shell structures. It is evident from the above pair of graphs that
converting the limit load to λ to compare the performance of the four configurations does
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not alter their behaviour across different rise-to-span ratios. For example, the rise-to-span
ratio corresponding to the maximum load resistance for the configuration V.63, with lon-
gitudinal edges supported, is between 0.167 and 0.2. The rise-to-span ratio corresponding
to the maximum λ value lies on the same interval. The optimum rise-to-span ratio ob-
tained by Parke was 0.17 for a similar shell structure with translational restraint provided
at the longitudinal edges [4]. Hence, λ is used in the subsequent sections to compare the
performance of all the configurations considered.

Different configurations have different rise-to-span ratios corresponding to maximum
load capacity. The rise-to-span ratio corresponding to the maximum value of λ when
longitudinal edges are supported is 0.25 for the configurations V.3.6.3.6 and V.36; the rise-
to-span ratio corresponding to the maximum value of λ is between 0.167 and 0.2 for the
configuration V.63, and 0.167 for V.44. For configurations with all the edges supported,
the maximum value of λ was observed for shell structures with a rise-to-span ratio of 0.33
in all configurations.

Configurations with LES support condition have a lower rise-to-span ratio correspond-
ing to maximum load capacity than those with AES support condition. For example, the
rise-to-span ratio corresponding to the highest load capacity for the configuration V.3.6.3.6
with LES support condition is 0.25. However, the rise-to-span ratio for the maximum load
capacity for the same configuration with all the edges supported is 0.33. A similar ob-
servation was made for all four shell structures. Additional supports at the curved edges
provide additional load paths that cause an increase in load capacity with the rise of the
shell. However, as the rise becomes very high, the members become more slender, and
hence the load capacity is reduced. The structure cannot withstand a higher magnitude of
load for shell configurations with only longitudinal edges supported because it has lim-
ited load paths compared to shell structures with all edges supported. As a result, they
are deflected with a higher magnitude of deflection when subjected to a lower magnitude
of external load (Figure 15). The effect of variation in the configuration (change in edge
valency) is greater in shell structures with all edges supported compared to shell structures
with only longitudinal edges supported. All configurations with LES support have similar
buckling mode shapes when subjected to uniform gravity load (Figure 16). However, the
first buckling mode shape of the V.63 was different from other configurations when all
edges were pin-supported (Figure 17). This observation signifies the impact of variation
in the edge valency on the performance of reticulated shell structures with all edges sup-
ported. However, non-linear analysis needs to be conducted to validate the result, which
is performed in the next section.
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Figure 13: Variation of the limit load (P) and λ of cylindrical shell configurations with different rise-to-span
ratios when shell structures were subjected to uniform gravity load
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(a) V.3.6.3.6 (b) V.36

(c) V.63 (d) V.44

Figure 15: Deflected profile for the configurations with LES support condition when subjected to uniform
gravity load

(a) V.3.6.3.6 (b) V.36

(c) V.63 (d) V.44

Figure 16: First buckling mode for the shell configurations with LES support condition when subjected to
uniform gravity load
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(a) V.3.6.3.6 (b) V.36

(c) V.63 (d) V.44

Figure 17: First buckling mode for the shell configurations with AES support condition when subjected to
uniform gravity load

3.2.2. Variation of limit load with edge valency
The limit load based on the value of λ for the configurations with length-to-span ratio

of one and uniform gravity load was compared with their average edge valency of vertices
and faces (Figure 18). The λ value was maximum for the configuration V.44 with the span-
to-rise ratio of 6 when the shell structure was supported on the longitudinal edges. For
shell structures with all edges supported, configuration V.63 with the span-to-rise ratio of 2
was found to have the highest value of λ. For configurations with all edges supported, the
limit load increases with the rise-to-span ratio. The additional supports help to increase
the load-taking ability of the structure by providing additional load paths.

The value of the parameter λ tends to increase with the edge valency of vertices. Con-
figuration V.44 was an exception to this behaviour. This observation clearly states the
influence of the orientation of the members (members in adjacent cells) on the overall
resistance of the configurations, in addition to the average edge valency. For V.44, the
transverse members act as an immediate load path and allow easier transfer of the load to
the supports (Figure 19). Although the limit load of V.63 was higher than that of V.44, the
weight of V.63 was much higher than that of V.44. Therefore, the value of λ was higher
for the configuration V.44. Similar observations were made for these two configurations
(V.63 and V.44) with all the rise-to-span ratios. However, the limit load was lesser for V.44
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Figure 18: Variation of the parameter λ with average edge valency of vertices and faces for length to span
ratio of 1 (L1) and full-span gravity load

with the span-to-rise ratio of two, as the slenderness of the transverse member was very
high compared to that of V.63, which resulted in a high value of λ for V.63 compared to
V.44 for shell structures with only longitudinal edges were supported. Bracing members
play an important role in transferring load to the supports for configurations with all edges
supported. Therefore, V.63 has better performance compared to the other configurations.
The variation of the value of λ is lower with span-to-rise ratio for all the configurations
with lower edge valency of vertices (or higher edge valency of faces) and supported on all
the edges (AES). In general, load capacity increases with the edge valency of vertices for
the selected single-layer reticulated cylindrical shells when all the edges are supported.

The comparison of limit load with the average edge valency of faces shows the exact
opposite behaviour to the comparison of limit load with the average edge valency of ver-
tices (Figure 18). The increase in the edge valency of vertices results in the reduction in

25



(a) V.3.6.3.6 (b) V.36

(c) V.63 (d) V.44

Figure 19: Transfer of load to the support for the shell structures supported only on longitudinal edges

edge valency of faces in any configuration. As a result, the overall resistance of the shell
structures increases with a decrease in the edge valency of faces. Equation 39 gives a sim-
ilar relation between the average edge valency of vertices and the average edge valency of
faces when the number of edges in a structure is kept constant

A similar behaviour was observed when the length-to-span ratio of the shell structures
was higher. For the length-to-span ratio of 2 (L2), the results are shown in Figure 20.The
variation of λ is lower with the span-to-rise ratio for shell structures with lower edge va-
lency of the vertices and supported along all edges. The performance of configuration
V.63 was improved when the length-to-span ratio was higher. V.44 does not exhibit any
advantage when all edges are supported due to the lower advantage provided by the lon-
gitudinal members in shell structures with higher length-to-span ratios compared to shell
structures with lower length-to-span ratios. Hence, the importance of higher edge valency
of vertices (or lower edge valency of faces) is significant when the length of the cylindrical
shell structure is much higher compared to the span.

The variation between the load capacity becomes limited once the length-to-span ratio
of shell structures becomes higher. There was not much variation in the limit load ca-
pacity for L4 structures compared to that of L2 (Figure 21) for all shell structures with
longitudinal edge supported (LES). The behaviour of shell structures with both support
conditions (LES and AES) was similar when the length-to-span ratio was higher. The
curved edge of the shell structure with a large length-to-span ratio, with only longitudinal
edges supported, was weak due to the lower edge valency of the edges (Figure 22).

In the next stage, the behaviour of shell configurations with different edge valencies
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(a) (b)

Figure 22: Failure of shell structures with higher length-to-span ratio (R4-FL): (a) V.3.6.3.6 (b) V.36.
Failure occurred in regions where lower edge valency of vertices are present.

was studied by subjecting them to semi-span gravity load. The study of unsymmetrical
load is important in regions with heavy snowfall. Therefore, investigating the effect of
unsymmetrical load on shell configurations will help designers identify which configura-
tion will be highly affected by the unsymmetrical load distribution. The procedure and the
parameters adopted were similar to those used in the study of shell structures considering
full-span gravity load. The results are provided in Figure 23. The value of λ decreases
with the increase in the edge valency of vertices when longitudinal edges are supported.
Although the limit load capacity was higher for configurations with a higher average edge
valency, the weight of the structures is higher, so the value of λ becomes lower. For shell
structures with all edges supported, the value of λ increases with increasing edge valency
of the vertices. The results for V.44 were different from the observed trend due to the
advantage of continuous transverse members available. The behaviour of shell configura-
tions considering average edge valency of the face was precisely opposite to the behaviour
of shell structures considering edge valency of vertices.

3.2.3. Limit load of shell structures with initial geometric imperfection
The real world structures will have imperfections and one needs to study the effect of

imperfection on shell structures. Hence, the shell structures were subjected to Geometri-
cal and Material Nonlinear Imperfection Analysis (GMNIA) [22] to study the effect of the
edge valency on the limit load capacity of the shell structures with initial geometric imper-
fections. The initial geometric imperfections were provided according to the eigenvalue
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buckling mode method [13]. The imperfections were scaled according to the first buckling
mode in the eigenvalue buckling mode method (Figure 16 and Figure 17). The first buck-
ling mode is the most critical mode in most structures, and imperfections modelled as per
the first buckling mode provide the structure with the least favourable imperfections.

The different magnitudes of imperfections were considered for the shell structures
based on the previous studied conducted (i = S/1000, i = S/500, and i = S/100). Shell
structures with longitudinal edge support are more sensitive to initial geometric imperfec-
tions than the shell structures with all edges supported (Figure 24 and Figure 25). When
the magnitude of the imperfections increases, the effect of edge valency is higher on the
limit load capacity for shell structures with longitudinal edges supports (Figure 26). In
fact, there is a slight decrease in the value of λ with the increase in the edge valency for
configurations with initial geometric imperfections. For configurations with all edges sup-
ported, the limit load increases with an increase in the average edge valency of vertices.
The reduction in the load capacity with an increase in the initial geometric imperfection
is higher for the V.63 configuration when all the edges were supported. Therefore, the
configurations with higher edge valency of the vertices were more affected by the initial
geometric imperfections compared to the configurations with lower edge valency. As ob-
served earlier, the effect of the edge valency of faces is exactly opposite to that of the edge
valency of vertices (Figure 27), which is in agreement with Equation 39. The parameter
λ increases with an increase in the edge valency of faces for shell structures with initial
geometric imperfections and longitudinal edges are supported. For configurations with all
the edges supported, the parameter λ decreases in general when the average edge valency
of the faces increases. Hence, adequate care should be taken while designing structures
with a higher edge valency of vertices, as they are more sensitive to initial geometric im-
perfections and the reduction in load capacity is much higher with increasing geometric
imperfection.

In general, an increase in the edge valence of the vertices resulted in an increase in the
overall resistance of the shell structures when the connections were rigid. These results
were prominent when the shells were supported at all edges, the span-to-rise ratios were
within the normal range (0.5-0.8), and the length-to-span ratio was higher (more than
one). The results obtained for configuration V.44 with longitudinal edges supported were
slightly different from the noted behaviour due to the importance of transverse members
in load transfer to the supports. It is worth considering the orientation of the members, in
addition to the edge valency of the members, in fully rigid jointed single-layer reticulated
structures.
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Figure 24: Load-deflection response for shell structures with different magnitude of initial geometric
imperfections and longitudinal edge support (L1-R6-FL-LES): (a) V.3.6.3.6 (b) V.36 (c) V.63 (d) V.44
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Figure 25: Load-deflection response for shell structures with different magnitude of initial geometric
imperfections and supported on all the edges (L1-R6-FL-AES): (a) V.3.6.3.6 (b) V.36 (c) V.63 (d) V.44
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Figure 26: Variation of the parameter λ with average edge valency of the vertices for cylindrical shells with
different magnitude of initial geometric imperfection and length to span ratio of 1 (L1)
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4. Discussion

One of the main goals of this study was to predict the effect of edge valency of the ver-
tices and faces on the limit load capacity of the single-layer reticulated cylindrical shells.
The nonlinear analysis revealed that the overall resistance of the reticulated shells im-
proves with increasing edge valency of vertices and decreasing edge valency of the faces
for most of the configurations. In addition to that, the support conditions, the rise-to-
span ratio, and the load pattern influence how the limit load varies with the edge valency.
The influence of the edge valency was more substantial for the shell structures when all
edges were supported (such as indoor stadiums and exhibition halls) than when only the
longitudinal edges were supported (such as railway station platforms). For structures sup-
ported by longitudinal edges, transverse members play a more prominent role in addition
to edge valency in overall stability [16]. The present study reinstates the importance of
transverse members in the load path for shell structures supported on longitudinal edges.
Configuration V.44 has a higher ‘limit load/weight’ value compared to V.63. Although
the load-bearing capacity of the V.63 configuration was higher, the weight of the mem-
bers was so large compared to the V.44 configuration, resulting in a lower limit load to
weight ratio. Hence, V.44 configuration with rigid connections between the members can
be safely adopted for shell structures with lower spans and lower load requirements. The
consideration of edge valency of the shell configuration alone is not adequate for predict-
ing the performance of the shell configuration, and the orientation of the members should
be considered by introducing the angle between the members in the adjacent faces. Analy-
sis of configurations with a higher length-to-span ratio, semi-span gravity load, and initial
geometric imperfections indicates a similar result.

All the results indicate that the higher edge valency of faces will reduce the limit load,
as higher edge valency of faces reduces the edge valency of vertex in a configuration.
Hence, the influence of edge valency of vertices alone can determine the behaviour of
the shell configurations to a great extent. Again, the orientation of the members, member
slenderness, rise-to-span ratio, and support condition play a crucial role in the behaviour
of shell structures in addition to the edge valency.

As stated earlier, optimising all the elements in a structure is difficult to achieve. Opti-
mising one element will lead to a disproportionate variation in the value of other elements
(Table 3). Hence, a multi-dimensional optimisation technique is required to study the
effect of a single parameter, keeping others as equal as possible across all the configura-
tions. The present investigation monitored a limited number of samples, while a larger
number of samples could clearly indicate how edge valency will affect the overall stability
of single-layer reticulated structures.

The large-span single-layer domes cannot be tested in their actual dimensions, and the
scaled prototypes will not provide the actual behaviour of the reticulated shells due to their
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size effect. The experimental study of a substructure with actual dimensions of the mem-
bers and connections is possible when the actual stiffness of the boundaries is modelled.
Identifying the average valency in a shell structure will indirectly provide the influence of
joint stiffness on the resistance of single-layer reticulated shells with rigid jointed mem-
bers. Testing the substructures of the actual shell configurations is possible the relative
rigidity of the boundary of the considered shell substructure is known, by calculating with
the help of the average edge valency of elements. Hence, investigating the average value
of edge valency will help to calculate the relative stiffness of the boundaries to be adopted
for the substructure. A greater understanding of the present findings could also lead to
the theoretical improvement in how a configuration can be modified such that triangula-
tion may not be required for structures where joints are rigid, and load requirements are
limited; thereby reducing the total cost of the structure.

5. Concluding Remarks

The influence of the edge valency of the vertices and faces on the overall resistance
of single-layer reticulated cylindrical shells was studied, considering four configurations.
The results show that the limit load capacity increases with the edge valency of vertices
and decreases with the edge valency of faces. An increase in the edge valency of vertices
in a shell structure results in a reduction of the average edge valency of faces; hence, one
parameter is sufficient to study the relation of edge valency with the overall stability of
single-layer reticulated cylindrical shells. The optimum rise-to-span ratio corresponds to
the maximum ‘strength-to-weight’ ratio changes with the type of configuration and the
support condition. In fact, the support condition defines which configuration is optimum
based on the available load paths. When all the edges are supported – such as the roof of
an indoor stadium with four walls around – the edge valency of vertices plays a crucial role
in governing the overall resistance of the shell structure. Triangulated shell configurations
provide the maximum edge valency of vertices (i.e., minimum edge valency of faces),
thereby resulting in the most stable single-layer cylindrical shell configuration among the
shell structures considered. However, configurations such as V.44 with rigidly connected
members can be adopted when the span and load requirement are lower, as the strength-to-
weight ratio is higher for V.44 compared to V.63. Therefore, the present study reveals the
effect of edge valency on the overall resistance of single-layer reticulated shell structures.
The data on the edge valency helps the designer optimise the structure so that the resistance
is not compromised.

Although only four configurations with limited parameters are investigated in this
study, multi-parameter optimisation techniques will reinstate the importance of the edge
valency in the single-layer reticulated shell configurations. The same concept can be ex-
tended to multi-layer reticulated shell structures, as the concept is valid for any structure
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in three-dimension. Hence, future work will mainly cover the influence of edge valency
in double-layer reticulated shell structures and the involvement of member orientation in
global and local stability.

References

[1] N. Subramanian, Principles of space structures, Wheeler, 1999.

[2] G. Ramaswamy, M. Eekhout, Analysis, design and construction of steel space
frames, Thomas Telford, 2002.

[3] Z. Makowski, History and development of various types of braced barrel vaults and
review of recent achievements all over the world, in: Z. Makowski (Ed.), Analysis,
design, and construction of braced barrel vaults, Granada Publishing Ltd., 1985.

[4] G. Parke, Comparison of the structural behaviour of various types of braced barrel
vaults, in: Z. Makowski (Ed.), Analysis, design, and construction of braced barrel
vaults, Routledge, 1985, pp. 90 – 120.

[5] V. Gioncu, Buckling of reticulated shells: state-of-the-art, International Journal of
Space Structures 10 (1) (1995) 1–46. doi:10.1177/026635119501000101.

[6] K. Abedi, Propagation of local instabilities in braced domes, Ph.D. thesis, University
of Surrey (1997).

[7] P. Lenza, Instability of single layer doubly curved vaults, International Journal of
Space Structures 7 (4) (1992) 253–264. doi:10.1177/026635119200700403.

[8] S. Kato, T. Yamashita, Evaluation of buckling load of two-way single layer grid
shells, Journal of the International Association for Shell and Spatial Structures 51 (2)
(2010) 109–123.

[9] S. Yamada, A. Takeuchi, Y. Tada, K. Tsutsumi, Imperfection-sensitive overall buck-
ling of single-layer lattice domes, Journal of engineering mechanics 127 (4) (2001)
382–386. doi:10.1061/(ASCE)0733-9399(2001)127:4(382).
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Nomenclature

c̄0 Average vertex valency of cells in a structure

c̄1 Average edge valency of cells in a structure

c̄2 Average face valency of cells in a structure

ē0 Average vertex valency of edges in a structure

ē2 Average face valency of edges in a structure

ē3 Average cell valency of edges in a structure

f̄0 Average vertex valency of faces in a structure

f̄1 Average edge valency of faces in a structure

f̄3 Average cell valency of faces in a structure

v̄1 Average edge valency of vertices in a structure

v̄2 Average face valency of vertices in a structure

v̄3 verage cell valency of vertices in a structure

δ Vertical deflection of the apex node of the shell structure (m)
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ϵ Engineering strain

ϵy Yield strain of steel

λ The limit load capacity per unit weight of the structure

σ Engineering stress

B31 Two noded linear beam element used in Abaqus CAE

C0 Vertex valency of a cell

C1 Edge valency of a cell

C2 Face valency of a cell

E0 Vertex valency of an edge

E2 Face valency of an edge

E3 Cell valency of an edge

F0 Vertex valency of a face

F1 Edge valency of a face

F3 Cell valency of a face

fy Yield stress of steel

i The maximum magnitude of initial geometric imperfection applied to the structure

L Length of the shell structure

Ni The number of elements with dimensionality i

N0 Number of vertices in a structure

N1 Number of edges in a structure

N2 Number of faces in a structure

N3 Number of cells in a structure

Ny
x Number of elements with dimensionality ‘x’ and valency corresponding to the di-

mensionality ‘y’
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P Limit load of the shell structure per unit area (kN/m2)

p Load applied on the shell structure per unit area (kN/m2)

R Rise of the shell structure

S Span of the shell structure

V1 Edge valency of a vertex

V2 Face valency of a vertex

V3 Cell valency of a vertex

W Total weight of the structure
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