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In Section 4.1 of the paper, we tested the sensitivity of GeDS with respect to the

sample sizeN . In this supplement, we present the results of some further sensitivity

tests and comparisons of GeDS with existing spline methods. In Section 1, we use the

data simulated as in Example 1 of the paper (see Section 4.1 therein) in order to test the

sensitivity of GeDS with respect to the choice of stopping rule and with respect to the

tuning parameters� 2 (0; 1) and � exit 2 (0; 1) (see Section 3.1 of the paper and Kaishev et

al. (2016)). In Section 2, we expand the numerical comparisons of Section 4.1 of the paper

including four additional test functions commonly used in the literature (c.f. Table 3).

For convenience, in what follows the stopping rules de�ned by Equations (10), (9) and

(11) in Section 3.1 of the paper are referred to correspondingly asratio of deviances(RD),

(exponentially) smoothed ratio (of deviances)(SR) and likelihood ratio (test) (LR).

* Corresponding author's address: Faculty of Actuarial Science and Insurance, Bayes Business School
(formerly Cass), City, University of London, 106 Bunhill Row, London EC1Y 8TZ, UK. E-mail address:
d.dimitrova@city.ac.uk
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1 Sensitivity tests

In this section, we test the sensitivity of GeDS with respect to the tuning parameters

� 2 (0; 1) and � exit 2 (0; 1) and the choice of stopping rule among RD, SR and LR.

Recall that the parameter� exit is related to the model selection rule which determines

when to exit from stage A, i.e. it determines the number of knots,� , in the knot set � �; 2 of

the linear spline �t f̂ (� �; 2; �̂ ; x) and hence, the number of knots of the �nal higher order

ML spline �t f̂
�
�t � � (n� 2);n ; �̂ ; x

�
. The parameter� determines the weight put on the cluster

range and the mean cluster size within each cluster of residuals of same sign, according to

Step 6 of stage A, and as explicitly de�ned in Step 5 of Kaishev et al. (2016). It therefore

a�ects to some extent the ordering of the cluster weights and hence, the knot placement.

In the Normal case, Kaishev et al. (2016) recommend to choose� depending on how

wiggly the underlying function f is and on the Signal to Noise Ratio (SNR), SNR=

(var(f ))0:5=� � . However this approach is not appropriate in the broader framework of

GLMs as it is not possible to separately distinguish a noise component and a signal com-

ponent. Moreover mean and variance in general are not independent and observations

are often signi�cantly heteroscedastic and there is no invariance with respect to a linear

transformation of the function f . Therefore, as also con�rmed by our sensitivity tests,

the choice of� and � exit in the GLM framework depends more complexly and jointly on

the particular distribution (from the EF) of the data and the smoothness/wiggliness of

the underlying function f . Hence, universal rules for selecting the tuning parameters� ,

and � exit are di�cult to formulate, although some general guidance for the range of these

parameters could still be given, as illustrated next.

For the purpose of this test we use functionf 1, de�ned by Equation (17) in the paper, as

the \true" predictor and generate 200 samples of 500 Poisson observations as described in

Example 1 of Section 4.1. Then we �tted GeDS employing the three alternative stopping

rules, RD, SR and LR in stage A of the method with di�erent choices of the tuning

parameters� 2 (0; 1) and � exit 2 (0; 1). The results of this sensitivity study are summarized

in Tables 1 and 2. More speci�cally, results for the RD rule with two sets of parameters,

f � exit = 0:995;q = 2g and f � exit = 0:9952; q = 4g are coded in Tables 1 and 2 as RD1 and

RD2; results for the SR rule withf � exit = 0:995;q = 2g and f � exit = 0:99;q = 2g are coded
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as SR1 and SR2; and the LR rule withf � exit = 0:995;q = 2g and f � exit = 0:5;q = 2g,

coded as LR1 and LR2. Note that RD, SR and LR involve an additional parameter,q,

with a default value q = 2 (c.f. Kaishev et al. (2016)). We have tested its in
uence on the

stopping rule and the �nal GeDS �ts in the GNM (GLM) framework, see Tables 1 and 2,

and have concluded that it is rather modest.

Table 1 summarizes means and standard deviations (in parentheses) of the number of

knots estimated by GeDS for di�erent stopping rules and values of the tuning parameters,

� exit and � . In Table 2 we present theL1 norm of the di�erence between the true function

and the GeDS �t.

RD1 RD2 SR1 SR2 LR1 LR2

� = 0:1
12.61 17.09 16.68 13.65 9.3 15.31
(4.1) (5.94) (4.17) (3.13) (2.35) (5.25)

� = 0:2
13.05 17.45 16.45 13.64 9.48 15.78
(4.17) (5.99) (3.63) (2.77) (2.33) (5.86)

� = 0:5
12.2 18.05 14.53 12.04 8.94 15.38

(3.49) (7.91) (3.64) (2.18) (1.76) (5.44)

� = 0:7
11.22 16.21 13.22 10.79 7.95 15.13
(4.01) (7.94) (3.67) (2.14) (1.61) (6.25)

Table 1: Average number of knots selected by GeDS and their standard deviations (in
parentheses).

RD1 RD2 SR1 SR2 LR1 LR2

� = 0:1
0.16 0.141 0.143 0.153 0.188 0.149

(0.045) (0.03) (0.033) (0.039) (0.05) (0.037)

� = 0:2
0.153 0.135 0.137 0.145 0.178 0.143

(0.042) (0.026) (0.029) (0.037) (0.048) (0.035)

� = 0:5
0.167 0.148 0.161 0.167 0.185 0.157
(0.05) (0.044) (0.051) (0.05) (0.05) (0.048)

� = 0:7
0.224 0.208 0.216 0.226 0.238 0.207

(0.036) (0.093) (0.039) (0.034) (0.028) (0.045)

Table 2: AverageL1 distance between the \true" function and the GeDS �t on the linear
predictor scale and the corresponding standard deviations (in parentheses).

Looking at Table 1 and comparing column RD1 with SR2 and column RD2 with SR1,

one can see that the mean number of knots are pairwise similar but the standard deviations
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under the SR rule are much smaller, i.e. the estimated number of knots is much less disperse

and more stable under the SR, as noted in Remark 1 in the paper. The results (means and

standard deviations) in column LR2 suggest that by tuning� exit the LR rule can generate

number of knots comparable with those under the RD and SR rules (c.f. columns RD2 and

SR1) but as can be seen, the corresponding standard deviations in LR2 are much higher,

i.e., results are more volatile. An overall observation based on Table 1 is that increasing

the tuning parameter � from 0:1 to 0:7 does not signi�cantly a�ect the estimated number

of knots under the RD and LT stopping rules, whereas for the SR rule, increasing� leads

on average to smaller number of knots. Our experience suggests that the role of� may be

more signi�cant for other test functions (see Section 2).

Analysing the results of Table 2, one can conclude that minimumL1 distance on average

is obtained for � = 0:2 all across the columns, i.e. for all three rules and choices of� exit

and q. Best L1 distances are achieved under RD2, SR1 and LR2 and the results in these

three columns of Table 2 are very close. However, looking also at the results under RD2,

SR1 and LR2 in Table 1, one can conclude that overall, the SR rule, with the default value

q = 2, performs best as, under it, the number of knots has smallest standard deviation (c.f.

SR1, Table 1).

In summary, for this particular test example, we can see that better GeDS �ts are

achieved with low values of� = 0:1; 0:2, values of� exit = 0:995 and the default valueq = 2.

However the results also suggest that the GeDS procedure is fairly robust. Furthermore,

in Kaishev et al. (2016) the SNR was identi�ed as a major factor in
uencing the choice

of � . However as mentioned previously in this section, the SNR measure is not directly

applicable within the GLM context and by analogy, one can compare the variability of

Yi � � i to the variability of � i . Thus, we recommend that a low value of� is chosen when

the variability of Yi � � i is high compared to the variability of � i .

2 Further test examples and comparisons

In order to provide further insight into the GeDS numerical performance and how it com-

pares with the GSS, SPM and GAM models (see respectively Gu (2014), Wand (2018) and

Wood (2006)), we have used four additional test functions with varying degree of smooth-
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ness; smooth functionsf 2 and f 3, less smoothf 5 and highly oscillating f 4. These functions

have been used also by other studies on the Normal GLM regression (see e.g. Kaishev

et al. (2016) and references therein). The test functions and corresponding predictors are

summarized in Table 3.

Test function y � Poisson(� ) y � Gamma(�; ' )

f 2(x) = 4 x � 2 + 2 exp
�
� 16 (4x � 2)2�

� 2(x) = 5 + f 2(x) � 2(x) = 4 + f 2(x)
f 3(x) = 4 sin(8x � 4) + 2 exp

�
� 16 (4x � 2)2�

� 3(x) = f 3(x)=4 + 5 � 3(x) = f 3(x)=2 + 2
f 4(x) =

p
x(1 � x) sin (2� (1 + 0:05)=(x + 0:05)) � 4(x) = f 4(x) + 4 � 4(x) = 2 ( f 4(x) + 1)

f 5(x) = (4 sin(4 �x ) � sgn(x � 0:3) � sgn(0:72� x)) � 0:3 � 5(x) = f 5(x) + 5 :3 � 5(x) = f 5(x) + 3

Table 3: Additional test functions and predictors .

For each of the entries in the last two columns of Table 3, we generated random samples,

f X i ; Yi gN
i =1 , with correspondingly Poisson and Gamma distributed response variable,y, and

uniformly distributed independent variable, x, i.e., Yi � Poisson(� i ), Yi � Gamma(� i ; ' )

with ' = 0:2, � (X i ) = expf � (X i )g, � (X i ) = � j (X i ), j = 2; 3; 4; 5 and X i � U [0; 1],

i = 1; : : : N , for small and medium sample size,N = 180 and N = 500.

In all cases, we have run GeDS with values of the tuning parameters� exit = 0:995 and

� = 0:2 (and q = 2). In what follows we present the results forN = 500 as results for

N = 180 are similar.

As it can be seen from Fig. 1 for the Poisson case, for the predictor� 2, best performer is

the cubic GeDS(n = 4), followed by the quadratic GeDS(n = 3) whereas the SPM and GSS

although comparable in the width of the boxplots, are slightly worse in terms of medians.

The performance of GAM is noticeably worse, as it fails to capture the shape of the \true"

underlying predictor � 2 and is wiggling around it. As in Figures 2 to 6 in the paper, the

right-most panel shows the histogram of the number of internal knots of the linear GeDS

�t, which seems to concentrate mass compactly and symmetrically around the mean of

15:178 knots.

In Fig. 2 we compare the performances of the alternative models on the example of

the predictor � 3. Here the performance of the cubic GeDS(n = 4), SPM and GSS are

comparable, with the SPM and GSS slightly better. As before, the worse performer is the

GAM, which fails to capture the truth in the extreme minimum of the function and in the
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Figure 1: Comparison of the linear (n = 2), quadratic ( n = 3) and cubic (n = 4) GeDS �ts
with the mgcv , SemiPar and gss models (on the predictor scale, with \true" predictor
function � 2(x) in Table 3), based on �tting 1000 Poisson samples (empty circles) of size
N = 500.
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slight wiggle aroundx = 0:6. The distribution of knots in the third panel is again compact

and symmetric around the mean of 15:115.

In Fig. 3, we present results of the comparison for the predictor� 4 (the Doppler func-

tion), which is a very highly oscillating function used also in other studies. As it can

be seen, all the GeDS �ts (i.e. linear, quadratic and cubic) signi�cantly outperform the

GAM, SPM and GSS �ts, with the quadratic GeDS(n = 3) performing best. As for the

histogram of knots in the right-most panel, it concentrates mass around the mean number

of 28:249 knots, exhibiting a slight skewness to the right, which is somewhat natural given

the complexity of the underlying function. Overall, this example illustrates that GeDS is

particularly suitable for �tting highly spatially inhomogeneous non-smooth, possibly oscil-

lating functions.

Finally, in Fig. 4, we see on the example of� 5, which is a slowly varying predictor

with two jumps at x = 0:3 and x = 0:72, that the three GeDS �ts are comparable with

SPM and GSS with SPM performing slightly better on average and the worse performer

is again GAM. Analysing the performances of the alternative models locally, based on

all the simulations, one can see that all GeDS �ts capture the jumps signi�cantly better

than the alternatives (see e.g. panels (a) and (b) of Fig. 4). The histogram of knots

concentrates mass symmetrically around the mean of 40:114 knots which re
ects the fact

that the underlying function combines low frequency oscillations with jumpwise behaviour,

which requires a lot more knots.

Similarly, in Figures 5, 6, 7 and 8 we have compared GeDS to GAM and GSS leaving

out SPM since the corresponding package Wand (2018) cannot �t Gamma responses. As

can be seen from panels (c), the distribution of knots for all the four predictors is similar in

shape to the corresponding panels for the Poisson case (c.f. Figures 1, 2, 3 and 4), with the

di�erence that in the Gamma case all �ts require less knots on average and the histograms

are somewhat less dispersed. A common feature for all four test predictors is that the

worse performer is again the GAM. For the� 2 predictor (Fig. 5),the best performer is the

linear GeDS (n = 2) with an average of 7:153 knots, as a result of which the average of

5:153 knots for the cubic GeDS(n = 4) are not enough for it to capture the shape of the

underlying predictor, as it can be seen from the boxplots in Figure 5 (d).
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Figure 6: Comparison of the linear (n = 2), quadratic ( n = 3) and cubic (n = 4) GeDS
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Figure 7: Comparison of the linear (n = 2), quadratic ( n = 3) and cubic (n = 4) GeDS
�ts with the mgcv and gss models (on the predictor scale, with \true" predictor function
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Figure 8: Comparison of the linear (n = 2), quadratic ( n = 3) and cubic (n = 4) GeDS
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Figure 9: Comparison of the linear (n = 2), quadratic ( n = 3) and cubic (n = 4) GeDS �ts
with the SemiPar , mgcv and gss models (on the predictor scale, with \true" predictor
function � 5(x) in Table 3), based on �tting 1000 Normal samples (empty circles) of size
N = 2048.
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In the case of functions� 3 and � 5 the quadratic and cubic GeDS �ts and the GSS are

comparable, with the latter being slightly better than the best (cubic) GeDS (n = 4) �t

for � 3 (c.f. Fig. 6) and the best (quadratic) GeDS (n = 3) �t being slightly better than the

GSS for � 5 (c.f. Fig. 8). Similarly to the Poisson case, when �tting the Doppler function

data all GeDS �ts outperform the alternative methods GAM and GSS, as can be seen from

Fig. 7. As in the Poisson case, the GSS fails to capture the peculiar features, i.e. the

oscillations in the predictor function � 4 and the jumps in function � 5.

Finally, in order to ensure consistency with the Normal GeDS from Kaishev et al. (2016),

we also generated 1000 Normal samples of sizeN = 2048 each for the function� 5 = f 5 and

�tted these with GeDS and with GAM, SPM and GSS. The results are presented in Fig. 9

where it can be seen that the quadratic GeDS (n = 3) signi�cantly outperforms all other

�ts in terms of the median, but exhibits slightly more pronounced variation based on the

width of the corresponding boxes.

As a overall conclusion, one can con�rm that for all the example summarized in Table 3,

GeDS performed as a favourable alternative to the comparators GAM, GSS and SPM.

Lastly, we present an example whereby we have a quadratic spline curve (the \true"

function) on the interval [0; 1] with the following 8 internal knots 0.17, 0.24, 0.27, 0.3, 0.35,

0.4, 0.47, 0.52 and generate data by adding Normally distributed noise, see Fig. 10 (a).

We have then run GeDS, GAM, GSS and SPM procedures, with default tuning parameters

values, and obtained the �ts plotted on Fig. 10 (b). The GeDS �t has 9 internal knots,

0.14, 0.20, 0.23, 0.27, 0.3, 0.35, 0.41, 0.47, 0.52, indicated with black ticks on the horizontal

axis and the internal knots of the original spline curve are indicated with red ticks. As

can be seen, the two sets of internal knots are very close, mostly overlapping, with the

GeDS �t having one extra knot compared to the original spline curve. The nature of the

other estimators, GAM, GSS, SPM, is such that they generate splines with (designedly)

many, typically equidistant, knots which are appropriately smoothed via e.g. a smoothing

parameter that ensures no over�tting. Hence, these alternative estimators, by design, are

not aiming at recovering or optimizing the number of knots in the resulting spline �t (e.g.

in this example they have more than double the number of knots of the GeDS �t; see also

the p-spline �t for Example 3 on Fig 9 (b) in the paper and the related discussion in the
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(a)
(b)

Figure 10: Fitting a spline with known knots: (a) the true spline function and generated
data; (b) �tted curves

�rst paragraph on p.30). This is one further advantage of the proposed GeDS method.
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