

City, University of London Institutional Repository

Citation: Ghanem, M. C., Chen, T. & Nepomuceno, E. G. (2023). Hierarchical

reinforcement learning for efficient and effective automated penetration testing of large
networks. Journal of Intelligent Information Systems, 60(2), pp. 281-303. doi:
10.1007/s10844-022-00738-0

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/28765/

Link to published version: https://doi.org/10.1007/s10844-022-00738-0

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Vol.:(0123456789)

Journal of Intelligent Information Systems
https://doi.org/10.1007/s10844-022-00738-0

1 3

Hierarchical reinforcement learning for efficient and effective
automated penetration testing of large networks

Mohamed C. Ghanem1 · Thomas M. Chen1 · Erivelton G. Nepomuceno2

Received: 23 May 2022 / Revised: 14 August 2022 / Accepted: 22 August 2022
© The Author(s) 2022

Abstract
Penetration testing (PT) is a method for assessing and evaluating the security of digital
assets by planning, generating, and executing possible attacks that aim to discover and
exploit vulnerabilities. In large networks, penetration testing becomes repetitive, complex
and resource consuming despite the use of automated tools. This paper investigates rein-
forcement learning (RL) to make penetration testing more intelligent, targeted, and effi-
cient. The proposed approach called Intelligent Automated Penetration Testing Framework
(IAPTF) utilizes model-based RL to automate sequential decision making. Penetration
testing tasks are treated as a partially observed Markov decision process (POMDP) which
is solved with an external POMDP-solver using different algorithms to identify the most
efficient options. A major difficulty encountered was solving large POMDPs resulting from
large networks. This was overcome by representing networks hierarchically as a group of
clusters and treating each cluster separately. This approach is tested through simulations
of networks of various sizes. The results show that IAPTF with hierarchical network mod-
eling outperforms previous approaches as well as human performance in terms of time,
number of tested vectors and accuracy, and the advantage increases with the network size.
Another advantage of IAPTF is the ease of repetition for retesting similar networks, which
is often encountered in real PT. The results suggest that IAPTF is a promising approach to
offload work from and ultimately replace human pen testing.

Keywords Penetration testing · Artificial intelligence · Machine learning · Reinforcement
learning · Hierarchical reinforcement learning · Markov decision process · Vulnerability
assessment

 * Mohamed C. Ghanem
 mohamed.ghanem@city.ac.uk

 Thomas M. Chen
 tom.chen.1@city.ac.uk

 Erivelton G. Nepomuceno
 erivelton.nepomuceno@mu.ie

1 Department of Electrical and Electronic Engineering, City, University of London, Street,
London EC1V 0HB, UK

2 Department of Electronic Engineering, Maynooth University, Street, Maynooth W23 F2K8,
Ireland

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-022-00738-0&domain=pdf

 Journal of Intelligent Information Systems

1 3

1 Introduction

Modern networks are generally becoming larger and more complex due to increasingly
sophisticated applications. At the same time, cyber security threats are more frequent
and commonplace, prompting security professionals to add more security layers and
policies (He & Bode, 2006). Unfortunately, networks continue to have vulnerabilities
due to human errors, misconfigurations, and systems weaknesses (Bacudio et al., 2011).
Penetration testing (PT) is a proactive approach to protect networks by identifying their
exploitable vulnerabilities. PT is a central, often mandatory component of cyber secu-
rity audits. It constitutes all standard auditing and testing tasks starting from informa-
tion gathering and analysis, planning, identifying vulnerabilities, and executing relevant
exploits (Backes et al., 2017).

In the beginning, most PT processes were done manually with tests run against a
limited number of hosts, which allowed manual PT to be effective. Then the prolifera-
tion of computer networks forced the automation of PT tools to cover more ground in
a short time (Phong & Yan, 2014). Nonetheless, automation was not enough in light of
highly technological organizations with hundreds or more IP addresses and increasingly
complex applications and virtualization; PT experts found it difficult to assess the secu-
rity of every component in a reasonable time. To meet this challenge, machine learning
(ML) has become indispensable to further improve efficiency, accuracy and coverage. In
addition, PT is a repetitive process where organizations perform the testing periodically
or whenever a major network upgrade occurs (e.g., new infrastructure added) (Abu-
Dabaseh & Alshammari, 2018). Intelligent PT tools capable of learning from experi-
ence are well suited for repetitive similar tasks.

Metasploit, Core Impact, Nessus and other tools that come with Kali and Parrot paved
the way for more automated PT but always required a portfolio of scripts and tools com-
manded and orchestrated by an experienced human tester. Core Impact was the first auto-
mated vulnerability scanner that initiated the use of AI leading to popularity of this tool
with early stage testers. To achieve more efficiency, other research has focused on using AI
and ML for penetration testing which can be more efficient and more effective, saving time
and resources compared to manual testing (Abu-Dabaseh & Alshammari, 2018).

This paper focuses on reinforcement learning (RL), an artificial intelligence tech-
nique that enables a system to learn and adapt without following explicit instructions
but instead by interacting with its environment (Yaqoob et al., 2017). The introduction
of RL in pen testing, especially with current size and complexity of network infrastruc-
ture, is considered as a valuable addition to PT practice. In fact, a higher number of
online services mean a larger exposition surface with attacks that can range in scale
from massive state-sponsored attacks to simple attacks on individuals and small busi-
nesses in the hopes of gaining credentials or financial details (Ghanem & Chen, 2019).

In our experiments with embedding RL into PT tools, notably Metasploit, a scalability
problem was encountered arising from exponential growth in computational power demand
as the size of the RL environment increased (Ghanem & Chen, 2019). Moderate and
large size networks led to very large POMDP environments in terms of number of states,
transitions and observations. After considering different approaches, this paper proposes
to tackle the scalability problem using hierarchical reinforcement learning (HRL) which
reduces dimensionality by decomposing the RL problem into several sub-problems.

In this paper, Section 2 reviews the current challenges in automating PT. Sec-
tion 3 presents RL principles in the context of PT. In Section 4, HRL is proposed and

Journal of Intelligent Information Systems

1 3

described for automating PT. Section 5 describes the new IAPTF framework. Solution
of POMDP is discussed in Section 6. Experimental results are given in Section 7.

2 Research background

In this section we will briefly review PT and current challenges in its regular automation
(also called blind), highlighting the existing tools and systems to address the efficiency
issues in medium and large LANs. This section will establish the motivation behind our
research which aims to address the scalability problem experienced in our previous paper
(Ghanem & Chen, 2019).

2.1 Penetration testing

PT has been a cornerstone in cyber security practice during the last decade. It implies plan-
ning and performing a real and controlled attack on a digital asset (machine, Web server,
software or network) with the aim of evaluating its security, PT is becoming as key meth-
ods employed by organizations for strengthening their defenses against cyber threats (Sar-
raute et al., 2012). The process of PT is often divided into a sequence of tasks in order
to methodically and comprehensively assess the security of the system and often include
actively identifying vulnerabilities and perform a set of actions to test if the target could be
compromised by running exploits against those vulnerabilities (Yaqoob et al., 2017).

In practice, PT tasks shown in Fig. 1 vary from case to case but generally start with an
information gathering phase, where the expert explores the web using OSINT (open source
intelligence) techniques to gather information about the target system. After completing
the first phase, the PT expert will engage in a discovery phase to actively harvest security
related information such as the system architecture, configurations and security measures
in place. Next the PT expert will analyze the gathered information to look for potential vul-
nerabilities for exploitation in order to gain control (full or partial) or escalate the privilege
held. Lastly, the newly gained access will be used to penetrate further, repeating this pro-
cess until the desired target is achieved or no more attack vectors are possible. The findings
of PT are reported along with expert recommendations.

A key element about PT practice is it remains non-standard in term of methods and
approaches and also involves the use of a versatile tools, systems and frameworks to
accomplish different activities and tasks. For instance, the information gathering phase

Fig. 1 Simplified network PT workflow and activities

 Journal of Intelligent Information Systems

1 3

typically involves utilizing tools such as traffic monitoring, port scanning and OS finger-
printing in order to gather relevant information that can be used to dress target system
security profile and therefore determine if it contains a vulnerability that can be exploited.
On the other hand, the exploitation phase requires the use of different framework and even-
tually customized payload modules and scripts in order to execute the relevant exploits
aiming to take advantage of the identified vulnerabilities with the aim of compromising the
target or gaining additional privilege or control over it. The post-exploitation tasks also are
not standardized and additional tools such as rootkits are used to maintain the breach and
work toward further penetration also called pivoting. Finally, PT also involves testing sce-
narios and attack vectors that differ per asset (Ghanem & Chen, 2019).

2.2 PT automation and optimization

The first attempt to address PT automation was attack planning as part of the AI Planning
in Cyber Security domain (Boddy et al., 2005). Independently, the approach was put for-
ward by Core Security researchers (Sarraute et al., 2013) and implemented in their PT tool
Core Impact. Their approach captures most security variables and solves scenarios based
on the probability of success of actions, execution time, and generated traffic.

In related work, (Backes et al., 2017) attempted to automate PT by mitigating vulner-
abilities and countermeasures by conducting comprehensive what-if analyses. A concep-
tual framework is provided to reason about mitigation actions applied to a network model.
The approach determines optimal combinations that minimize attacker success following a
holistic mitigation strategy (Backes et al., 2017).

In a recent work, (Zennaro & Erdodi, 2020) attempted to apply RL to solve capture the
flag (CTF) scenarios. Fundamentally, CTF competitions are very specific scenarios which
do not account for many variables in typical PT, but the study was significant for investi-
gating the relevance of different RL techniques.

A noteworthy proposal aimed to automate exploitation and post-exploitation by com-
bining deep RL and the PowerShell empire post-exploitation framework (Maeda &
Mimura, 2021). RL agents pick a PowerShell module and use its internal features as action
states and then compare the learning progress of three RL models; A2C, Q-Learning, and
SARSA. The results showed that A2C is the most efficient and trained agent can eventually
obtain the admin privileges of the domain controller system.

2.3 Research motivations and contribution

During the last decade, several researchers attempted to tackle PT automation and optimi-
zation using AI techniques. In our previous research (Ghanem & Chen, 2019) we proposed
the first versatile, fully automated and intelligent framework for network PT called IAPTF
(Intelligent Automated Penetration Testing Framework). However, the approach used in
modelling the PT domain as RL problem for medium and large networks resulted into
enormous POMDP environments that were difficult to solve and we experienced the well-
known curse of dimensionality problem (Sarraute et al., 2012). Furthermore, the previous
work faced two major challenges:

• Exploitation the re-use of the knowledge already learned in the future to determine
automatically the best action in a given state.

Journal of Intelligent Information Systems

1 3

• Exploration the number of explored attack vectors resulting from continuous policies
improve in parallel with agent exploring new states.

The current work aims to overcome the aforementioned challenges. For the scalability
issue, we propose an innovative hierarchical RL representation which is embedded within
IAPTF and tackles large networks efficiently and effectively by dividing large networks
into clusters following a security-oriented logic, and then tackling each cluster separately
as small network at first stage, then the network of head of clusters. In terms of captur-
ing expertise for reuse, we propose a novel knowledge extraction, generalization using
scripts and an expert system which is dedicated to expertise processing, storing and direct
future re-use (Bertoglio & Zorzo, 2017), while the use of hierarchical RL enabled IAPTF
to achieve an accepted balance between efficiency and exploration notably by guarantee
(Al-Emran, 2015).

3 Reinforcement learning

RL provides a conceptual framework to address a fundamental problem in artificial intel-
ligence, the development of situated agents that learn how to behave while interacting with
the environment. RL is increasingly seen as a general framework for learning in a human
way in both model-free and model-based approaches (Bacudio et al., 2011). In this section,
RL fundamentals will be reviewed, as well as POMDP modeling and solving.

3.1 POMDP fundamentals

RL came from the notion that a human expert can be assisted or ultimately replaced by
automated systems. RL provides a conceptual framework to address a fundamental prob-
lem in Ai which is how situated agents can learn how to behave by interacting with the
environment. In RL, this problem is formulated as an agent-centric optimization in which
the goal is to select actions to gain as much reward as possible in the long run (Yaqoob
et al., 2017; Ghanem & Chen, 2019). An overview of RL is shown in Fig. 2.

Sequential decision making is usually formalized as a Markov decision process (MDP)
when fully observed with no uncertainties, or otherwise as a partially observed Markov
decision process. There are two basic approaches to solve MDP and POMDP which are
planning and reinforcement learning.

A partially observable Markov decision process is a tuple (S,A, T,R, � ,O,B) where S
is the set of possible states; A is the set of possible actions; T is the set of possible transi-
tions; R ∶ S|A is the reward function; O is the set of possible observations; B is the belief
distribution calculated from Prob (O ∣ S); γ is the discount factor with preset value in the
[0, 1] domain; and π is the set of learned policies πi. Belief state space denoted as B is a
|S|− 1 dimensional simplex whose elements are probability distributions over states. T is a
state transition and observation probability matrix, defined by the following equations:

R is a reward function, defined by the equation:

(1)Ta
ss�

= P[St+1 = s�|S(t) = s,A(t) = a]

(2)Oa
so�

= P[St+1 = o�|S(t) = s,A(t) = a]

 Journal of Intelligent Information Systems

1 3

The overall reward Gt and state value functions are:

and the action value function Qπ(s,a) is:

Policy function is defined as:

Belief probabilities are calculated as:

Transition model describes transitions between beliefs, rather than transitions between
states, where bo

a
 is the belief state reached when starting in belief state b, taking action a,

and observing o. It is calculated as:

(3)Ra
s
=

t=n∑

t=0

[R(t + 1)|S(t) = s,A(t) = a]

(4)Gt =

k=m∑

k=0

�
kRt+k+1

(5)V
�
(s) =

∑

�

[G(t)|S(t) = s]

(6)Q
�
(s, a) =

∑

�

[G(t)|S(t) = s,A(t) = a]

(7)Π(a|s) =
∑

�

[A(t) = a|S(t) = s]

(8)b ∈ B|b(S) = Prob(S|currentstate)

Fig. 2 The POMDP conceptual framework in context of PT (Moerland et al., 2020)

Journal of Intelligent Information Systems

1 3

Then the belief states iterate through time and get updated as follows:

Policies map beliefs to actions:

Finally, the Bellman equation for POMDP backups is defined as:

In the next subsection we will describe the representation of PT practice as a POMDP
environment.

3.2 RL for intelligent automated PT

RL is often presented as the most efficient ML technique for sequential decision-making
in control problems. In the quest for AI-led PT practice and unlike previously proposed
approaches involving supervised learning where it is difficult to provide supervision, RL is
suited because usually there is incomplete knowledge about the correct or optimal action
in a given stage. In recent years, RL has achieved impressive advances in AI exceeding
human expert performance in many domains notably in sequential-based problems (Roijers
et al., 2013).

Modern RL involves a combination of planning and learning resulting in the field of
models (initially known or learned) and learning to approximate a global value function
or policy graph. While RL has shown great success in defensive cyber security, notably
intrusion detection and cyber threat intelligence, it usually faces challenges like random-
ness, uncertainty and partial observability in offensive security. Nonetheless, it comes with
important benefits such as data efficiency, targeted exploration, stability and explainability
as discussed in (Moerland et al., 2020) and its suitability for PT has been demonstrated
(Ghanem & Chen, 2019).

3.3 Representing PT as RL problem

In RL, we enumerate three approaches as illustrated in Fig. 3. In model-free RL, the learn-
ing occurs without access to any pre-representation or pre-structuring of the environment.
Rather than building such an internal model, the RL agent instead stores estimates for the
expected values of the actions available in each state or context, shaped by a history of
direct interaction with the environment. By contrast, in model-based RL, the agent does
possess an internal model, one that both predicts action outcomes and estimates the imme-
diate reward associated with specific situations. Decisions are made through planning
instead of on the basis of stored action values (Sarraute et al., 2012).

(9)bo
a
(s�) =

P(o�s�)
∑

sP(s
��s, a)b(s)

P(o�b, a)

(10)P(bo
a
∣ b, a) =

∑

s�

P(ot+1 = o ∣ st+1 = s�)
∑

s

P(s� ∣ s, a)b(s)

(11)Π ∶ B → A

(12)V(b) ← max
a∈A

[
∑

s∈S

R(s, a)b(s) + �

∑

o

P(bo
a
|b, a)V(b(a, o))

]

 Journal of Intelligent Information Systems

1 3

In short, the distinction between model-free and model-based RL lies fundamentally
in what information the agent stores in memory. In model-free RL, the agent stores a
representation of the value associated with individual actions which is an estimate of
the cumulative reward the agent expects to gain over the course of future behavior,
when beginning in a particular situation with a particular action. Updates to these val-
ues, known collectively as the value function, are driven by reward prediction error
which is generated based on action outcomes experienced during direct interaction
with the environment (Spaan, 2012).

HRL expands the set of actions available to the RL agent to include a set of tem-
porally extended sub-tasks or subroutines. In the implementation of HRL that we will
take as our focus — the options framework3 introduced by (Sarraute et al., 2013),
these temporally abstract actions are referred to as options. Options can be selected for
execution, just like low-level (primitive) actions. Once this happens, behavior is guided
by an option-specific policy, which dictates the action to be selected in each possible
situation or state. Each option is additionally associated with an initiation set, defining
the situations in which the option can be selected or launched; a termination function,
which dictates when execution of the option ends; and an option-specific reward func-
tion, a pseudo-reward function, which attaches a special form of reward to specific
outcomes, effectively defining the goals being pursued during execution of the option.

4 Hierarchical RL for large networks

The obvious approach to address the scalability issue in POMDP solving is by solving
smaller environments which arise from dividing large environments into many smaller
ones by either splitting a large network into a number of sub-networks or by consid-
ering each phase activities and tasks separately. We detail here the two approaches
considered and implemented initially within IAPTF, then justify the choice of the clus-
tering approach to achieve an efficient hierarchical RL representation of PT (Jain &
Niekum, 2018).

Fig. 3 A comparison of planning, model-based and model-free RL approaches and implication on policy
and value function

Journal of Intelligent Information Systems

1 3

4.1 Network security‑based clustering

In this subsection, we will present the methodology adopted to address the scaling issue
encountered in solving the RL problem for medium and large size networks (Ghanem &
Chen, 2019). Initially, we will re-introduce the proposed POMDP model which will serve
as a starting point to the new hierarchical RL model for representing large network PT. To
achieve this goal we had to consider two options: the PT phases separation and security
cluster separation. The latter was the most adequate in terms of efficiency and relevance.
The obvious approach to address the scalability issue in POMDP solving is by solving
smaller environments which arise from dividing large environments into many smaller
ones by either splitting the large network into an number of sub-networks or by considering
each phase activities and tasks separately.

Initially we considered a task-oriented clustering approach which aimed to divide large
POMDP into smaller environments covering each one or two tasks or activities. This
approach will certainly reduce the size and thus the solving time but it will produce incon-
sistent results as PT practice is highly interactive and some activities are repetitive and
dependent on each other making tasks and activities separation irrelevant. As the task-
based approach turned out to be inadequate, we changed to a more realistic and logical
approach based on dividing a large network into several clusters. Each cluster is tackled
separately as a small network and then the network of clusters is dealt with in the final
stage. We refer to this approach as security clustering which mimics real-world PT prac-
tice by considering each part of network with the same security protection and defense at
the time. Figure 4 details large LANs often found in corporate context security clustering
which will be detailed later in the next subsection.

The proposed approach involves the adoption of a two-tier hierarchical POMDP rep-
resentation of PT practice which is fundamentally different from sub-networking basic
decomposition of POMDP as it relies on security isolation aspect and not on the network
addressing mechanisms. The output is a set of small clusters (number is at least twice as
superior than the subnets number) and a network of clusters. Clustering will therefore gen-
erate many small size POMDP environments and their solving will be time-efficient as we
expect to avoid the scalability issue (Ghanem & Chen, 2019).

Fig. 4 Two-level hierarchical representation of PT practice using security clustering

 Journal of Intelligent Information Systems

1 3

4.2 Hierarchical POMDP representation for PT

The most important component of IAPTF-Prep is the security clustering scripts. This mod-
ule output is twofold. Firstly, the cluster constitutions in term of name and IP address of
each machine and the belonging cluster. secondly the head (or heads) of each cluster which
is in theory the most vulnerable machine with root/admin control.

The proposed approach focuses on a key characteristic of network PT practice namely
security isolation overview. This is a common approach for hackers and cyber attackers as
they oversee the target network from a security point of view and not simply networking
functioning in the aim of extracting key information about the security isolation and reach-
ability (Bacudio et al., 2011). It will be noticed in the proposed clustering approach that
some fundamental networking features and aspects were neglected in the task of dividing
large LANs and WANs and thus modeling them into smaller POMDP environments. The
eliminated networking data are indeed irrelevant from the PT point of view and doing so in
IAPTF comes for the benefit of scalability as removing such useless details which results
in reducing the associated POMDP environment size and therefore contribute hugely into
improving the efficiency. Finally, it is important to highlight that the one-way filtering and
blocking workflow adopted in security systems (firewalls, routers and intrusion detection)
is a key element in our proposed clustering approach making the clustering approach fun-
damentally different from the regular sub-netting approach which is by default symmet-
ric (reciprocity of reachability between subnets) as illustrated in Fig. 5 where SN0 and
SN1 are considered the only subnets in the network following the symmetric reachability
approach (Stock, 2017).

In term of adapting the proposed POMDP representation, we opted for a two-tier (lev-
els) approach; first is to consider each security cluster as a separate network and only
represent the data about machines in that cluster in the low-level POMDP environments
(Joglekar, 2008). Then we represent the network of the head of each cluster and including
all possible connections including machine-to-machine and cluster-to-cluster connections
information to fully reflect the real-world inter-cluster connectivity. In the Clustering mod-
ule we implemented three scripts detailed below.

The first script defines the cluster composition and named Cluster-composition.py
which the output is the full security clustering of the network. In other words, the result is
many clusters (number will depend on the size of the network, configurations and security

Fig. 5 Security clustering approach output from regular sub-netting in context of medium LAN, election of
HoCs and constitution of intra-clusters network

Journal of Intelligent Information Systems

1 3

setting DiD but will be at least three) which contain each many machines belonging to the
same cluster will be treated similarly. The idea behind this assumption is the nature of the
networking environment, the machine belonging to the same sub-net often has a similar
defense and protection. In fact, an attacker who gains control of a host will easily progress
to the rest of the machine on the same sub-net or cluster as a trust relation (in some appli-
cations) exists between the infected host and the remaining allowing the attacker to take
advantage to execute the exploit against those machines.

The second script named Clusters-Connectivity.py oversees capturing and process-
ing information regarding the type of connections (active and available) along with the
type of the used protocol, security, and other relevant information such as the number of
hopes. The number of hops is purely related to the existing security mechanism separating
two different machines (cluster) such as firewalls, IDSs, IPSs, routers, and so on. The full
details about the representation are in the previous section.

The third script named HoC.py is in charge of identifying the head of clusters HoC (in
some occasion more than one machine is designated as HoC). The idea starts by reducing
the low-risk machine first and only focus on machine with a large attack surface. Attack
surface stands for the number of open ports, running services and associated vulnerabilities
in the machine making it more likely to be targeted and exploited by hackers. We exclude a
honeypot machine (or even a honey-net) from being HoC. An illustrative example with the
output of HoC.py on the test-bed network basing on IAPTF-Prep vulnerability assessment
output data is in Fig. 5.

Finally, it is worth noting that the proposed approach does include the attacker machine
which is often connected through the Internet (external) but will be considered as an inde-
pendent cluster (C0) for the purpose of modeling.

4.3 Representing PT in form of POMDP environment

In this section, we reintroduce the proposed representation of the PT problem in form of
POMDP environment. This has been detailed in past paper (Ghanem & Chen, 2019) where
the proposed representation which was introduced through a series of illustrative examples.
In this paper, we will not re-introduce fully the proposed representation but simply build
upon it and only focus on the features and aspects that are relevant for the HRL repre-
sentation. Information about security and the network topology and security architecture
are therefore included RL state space in addition to representing configuration and built of
each machine in the network.

State space The most important part of the representation deals with states which include
machines, networking and security information. First we consider machines configuration
as separate entities. A computer machine or networking device, either physical or virtual,
is represented by the character M, R or S depending on its functionality in the network,
respectively, Computer, Routing device, or Security Device. Then, each character is fol-
lowed an assigned ID number such as M1 or R2. Then we represent available and active
connection of each machine and the the cluster to which it belongs as character C followed
by ID number. The main information represented about a machine are the OS, version,
Service-Pack or Knowledge-Base, open TCP or UDP ports, running services. In addition
as the Vulnerability Assessment data is merged into the POMDP representation we add
the relevant CVE number and details about the status which is either Secured, Vulnerable,
Compromised, Untested or simply Unknown. An example of machine representation is

 Journal of Intelligent Information Systems

1 3

provided in Fig. 6. The second phase of representation covers the networking data about
connection and reachability. The example of M13 and M20 connected using a TCP on
SMTP and HTTP over SSL via a router and belonging to the same security cluster is rep-
resented as M13-M20-TCP-SMTP-C5. The third and final phase covers networking func-
tionality and security consideration. We extract information from Trace-Route function and
add information about hops number at the end which will represent the number of network-
ing equipment separating the two machines with only security and routing mechanism and
system being considered as hops between the machine. Thus, machines belonging to the
same cluster should have a direct connection or at worst only one hop and this is reflected
in the model by the number 0 or 1 meaning zero and one hops. Fig. 6 is an example of
POMDP state space representation.

Action space the actions representation is meant to mimic real world PT actions per-
formed by testers and thus encompass all PT tasks and sub-tasks following a certain nota-
tion. As with any RL problem, the number of action is known, static and limited and PT
does not fall out of this logic and we include in this space a variety of PT related actions
such as Probe, Detect, Connect, Scan, Fingerprint, VulnAssess, Exploit, PrivEscal, Pivot
in addition to some generic action that will be used for control purpose by RL agent. The
number of actions that the expert can perform is huge and cannot be totally represented
within the RL action space such as Terminate, Repeat and Give-Up and others as detailed
previously in [20]. Furthermore, as in PT domain successful or failed action might require
further or repeating actions we defined some additional actions in order to differentiate
between the original action and the others action. In practice, the purpose of such represen-
tation is to deal with the special and complex scenarios notably:

Fig. 6 Example of partial POMDP representation of PT practice including states, actions, observation, ini-
tial-belief, transition and observation probabilities and rewards

Journal of Intelligent Information Systems

1 3

• Actions failed to fully (root) control a machine that leads to further action attempting
user session or escalates privileges or switching to other attack paths.

• Action partially failed due to uncertain or incomplete information and which might
succeed when additional information becomes available.

• Actions prevented or stopped by security defense (Firewalls or Intrusions Detection
Systems) which may be re-attempted under different circumstances.

In terms of transition and observation probabilities as well as the rewarding scheme they
remain unchanged from our previous work (Ghanem & Chen, 2019).

5 Intelligent automated PT framework

In this section, we will gradually introduce the different components and modules consti-
tuting the proposed IAPTF framework.

5.1 Pre‑processing and memory building

In our proposed framework, the main challenge we noticed is that PT is a highly repeti-
tive practice which led us to take advantage of this repetitively, re-usability and similar-
ity rather than having it as counterweight to our framework performances (Babenko &
Kirillov, 2022). We came up with idea of extracting the knowledge output during any test-
ing and make it general (perform generalization processing) then store it into an expert
system for future use. The first part of this activity is the generalization tasks which are
done through python scripts directly on the output XML files of the POMDP PT solv-
ing results. Once done, we progress into storing this precious knowledge in a basic expert
system (ES) using CLIPS (Zhou et al., 2008). The diagram of IAPTF-Prep system e con-
stituted from all modules of IAPTF responsible of preparing, processing and constructing
the memory is illustrated in Fig. 7. There are several different modules and features in
the proposes architecture, but we only focus in this section on functions which offload the
POMDP solving XML files and extract from the policy graph (PG), basing on standard
formula and input regarding network configuration the decision (acting) policy made in
each situation which is extracted in their original context to avoid irrelevant generalization.
Then, a python script named ES-Generalization.py is applied into this data to produce a
general format from which specific data is removed such as IP addresses, machine name,
non-generic data.

The next step in building the IAPTF memory is the implementation of the expert system
which will oversee storing and reusing of decision policies. Since the aim of this research
is mainly applying RL in PT practice, the ES was a second priority, and we decided that we
will not implement a heavy weight ES within IAPTF and only relying on CLIPS which is a
public domain software tool for building expert systems. We will briefly describe how the
general production system tool CLIPS is used to extract, process, store and reuse expertise
for network penetration testing purposes using previous testing captured experiences. The
proposed system can also be applied to real-time time decision making assist in terms of
replying to PT tasks.

In IAPTF we opted for a direct application of CLIPS expert system to achieve our
objective of capturing and replaying human CEH expertise and knowledge. CLIPS is a
complete environment for developing IAPTF expert systems which includes an integrated

 Journal of Intelligent Information Systems

1 3

editor and a debugging tool and enable inferences or reasoning. CLIPS provides the three
key elements of: memory for data, knowledge-base, and rule-base. The written program
consists of rules, facts, and objects with the inference engine to select rules (action) to be
executed for a given object. In IAPTF, we built a PT expert system by performing some
modification into the default CLIPS code by introducing features such as single and mul-
tiple string pattern matching, certainty factors and timestamp with uses of MSF plugins
adapted for pre-processing. The complexity of MSF in terms of data handling and stor-
ing add nonetheless more complexity and challenges for our proposed expert system. To
overcome these shortcomings, we proposed an integration of our developed CLIPS expert
system with MSF-POSTGRESQL database. Thus, IAPTF allows the simplification of the
complex data workflow by considering complete testing and attacking scenarios instead of
atomic actions. Finally, a python script will ensure CVE and NVD databases import and
store within the IAPTF-Memory and it will oversee the following:

• Storing and structuring in a specific format enabling CVE use and search by the
IAPTF-Core directly basing on customized research criteria

• Enabling the usage of a lighter version of the large database both in terms of number
of CVEs and the description information stored within the original databases CVE and
NVD. Only relevant information from PT point of view is kept in IAPTF-Memory.

• Direct interaction with Metasploit MSF console to enable real-time search narrowing
and prioritization based on NVD score as calculated per CVSSv3.

5.2 IAPTF‑core module

Figure 8 illustrates IAPTF-Core module functioning, the main component is the RL sys-
tem and the memory.In terms of solving PT generated POMDP problems, we opted for a
rigorous approach aiming to scientifically elect the best solving approach following several
metrics (Ghanem & Chen, 2019).

Fig. 7 IAPTF-Prep modules ensuing data collection, processing and storing functioning along with popu-
lating and interacting with the Expert System

Journal of Intelligent Information Systems

1 3

The first step towards the solving is to select the appropriate solving approach. As we
already demonstrated that PT practice versatility required a model-free RL and thus pre-
eliminated solving approaches related to the model-based RL namely learning a model
and using a model, we then considered the two available options: policy search and
value iteration. PT practice is by default decision-making oriented tasks and this nature
give more credit to the policy search approach as the quality of the solving is more
related to the relevance of the decision policy (PG) rather than the accumulated value
form repeating the task during many iterations. Fig. reffig:choices summarizes the solv-
ing choices and directions made in IAPTF.

As described earlier, our choice of embedding RL within the PT practice comes from
its suitability, relevance, and pertinence to sequential decision-making problems of
which PT is one of them. The second challenge we faced was to decide on the modeling
approach with two major candidates namely model-free and model-based approaches
being considered and investigated. Here again the nature of PT activities and the ver-
satility of possible tasks that vary with the tested asset have heavily influenced the
choice of model-free approach. In fact, despite limiting the scope of IAPTF to computer
network PT, the environment remains complex and hard to capture fully which made
impossible the adoption of model-based RL approach. Finally, the solving techniques
were discussed, and the choice of policy search technique was made over the value iter-
ation. This obvious choice is backed by our initial aim of fully automating and optimiz-
ing the PT practice and thus offloading the human expert whether CEH or CPT of deci-
sion making duties and thus having the software agent as replacement require decision
policy tree which we construct from the POMDP solving output of policy graphs (PG).

Once the modeling approach and solving technique choices were made, the second
major step was electing the appropriate solving modes; approximate or exact. The aim
of this work is not only to embed RL within the PT practice to enable an intelligent
automation of the PT tasks but also enhance accuracy and efficiency. Therefore, we
opted for a more comprehensive framework which offers flexibility at an early stage
of development. The idea is to implement and test both solving mode starting with the
approximate one because of its flexibility. Many approximate solving algorithms were
shortlisted to finally select PERSEUS which was the first solving algorithm imple-
mented during early modeling stage to test and evaluate the proposed representation
of PT practice as POMDP problems. Nonetheless, as IAPTF aims a high efficiency
and accuracy other exact solving algorithms were candidates to be integrated and early
assessment confirmed that GIP is the most relevant and efficient candidate. Thus, PER-
SEUS and GIP (both original and modified version) were embedded within IAPTF
through the external solver POMDPsolve, and many modifications were introduced to
allow a more flexible solving and input handling.

Fig. 8 IAPTF-Core module diagram with RL functioning and memory handling

 Journal of Intelligent Information Systems

1 3

6 Solving POMDP problem

When it comes to the solving method, we considered, implemented and tested both
methods of solving POMDP problem: approximate solving and exact solving. Most
exact solving of POMDPs algorithms operate by optimizing the value function over all
possible beliefs states but exact solutions are typically computationally intractable for
all but the smallest problems. As the exact solving involving value iteration for deter-
mining the value function of POMDPs, the optimal action can be read from the value
function for any belief state (Pineau & Gordon, 2003). But the exact solution comes at a
cost of time and computational power which is exponential in actions and observations
dimensionality of the belief space grows with number of states.

Figure 9 summarizes the choices made in the journey to model PT as RL problem
along with the solving approach we opted for in our proposed framework.

6.1 POMDP approximate solving

The approximate solving approach is efficient but inexact because it relies on a discrete
choice of belief states. In this work we will use it for guidance and comparison purpose.
We will utilize Point-Based Value Iteration (PBVI) which begin at some initial belief
then pick belief points by forward simulation and prune by distance. It approximates an
exact value iteration solution by selecting a small set of representative belief points and
then tracking the value and its derivative for those points only which ensures the value
function increases for every belief point in every iteration. In practice, PBVI relies on a
stochastic approach in choosing belief points, and by maintaining only one value hyper-
plane per point, PBVI is reputed for successfully solving large problems which network
PT in one of them. In IAPTS, we used PERSEUS (Spaan & Vlassis, 2005); Randomized
Point-based Value Iteration for POMDPs which performs approximate value backup
stages, ensuring that in each backup stage the value of each point in the belief set is
improved. Perseus performs backup stages until some convergence criterion is met, and
the convergence criteria can be by tracking the number of policy changes (Walraven &
Spaan, 2017; Spaan & Vlassis, 2005).

Fig. 9 IAPTF RL modeling and solving choices

Journal of Intelligent Information Systems

1 3

6.2 POMDP exact solving

The second possible solving method of POMDP is the exact. Exact solving POMDP prob-
lem and computing the optimal solutions is challenging because of the high computational
requirements of POMDP solution algorithms. We opted for several algorithms use a sub-
routine to prune dominated vectors in value functions, which requires a large number of
linear programs (LPs) to be solved and it represents a large part of the total running time.
In this paper we show how the LPs in POMDP pruning subroutines can be decomposed
using a Benders (Sarraute et al., 2012). The resulting algorithm incrementally adds LP
constraints and uses only a small fraction of the constraints. Our algorithm significantly
improves the performance of existing pruning methods and the commonly used incremen-
tal pruning algorithm. Our new variant of incremental pruning is the fastest optimal prun-
ing-based POMDP algorithm. Full algorithm function was detailed in (Zhang et al., 2003)
and (Walraven & Spaan, 2017) proposed and implemented an enhanced version which we
utilized in this research.

6.3 External solvePOMDP

In IAPTF, we opted for the option of relying on a state-of-the-art external POMDP solver
called SolvePOMDP rather than implementing our internal one including LP solver and
solving algorithms and associated libraries and functions from the scratch. SolvePOMDP
is an open-source Java program for solving POMDPs. This solver includes an exact solv-
ing called generalized value-iteration pruning algorithm (GIP) (Walraven & Spaan, 2017)
and an approximate solving called randomized point-based value iteration algorithm (PER-
SEUS) (Spaan & Vlassis, 2005). It comes with two built-in linear programming solvers
that can be used without any additional configuration namely LPSolve and JOptimizer. The
latter solver runs faster but remains less reliable as some minor numerical instability prob-
lems often result in producing unreliable output. In this research, JOptimizer was only used
during early research phase as we tested the initial POMDP representation of PT practice.
The input for SolvePOMDP is a set of *.POMDP files defined using Cassandra’s POMDP
file format (Cassandra et al., 2013) and the output resulting solutions are represented by
alpha vectors and policy graphs (Spaan, 2012).

7 Test results

7.1 Test‑bed and testing environment

The experiments were run on a HP Z2 tower with CPU Intel Xeon processor E7-2176,
8 core, 20MB cache and 3.70GHz, an unbuffered memory of 64GB DDR4 2666 DIMM
ECC, graphical Nvidia QUADRO P4000 8GB GFX. This machine runs Linux Calculate
20 kernel version 5.4.6 which is the fastest and most resource-efficient Linux distribution
based on Gentoo. This built maintains an optimal balance between state-of-the-art process-
ing libraries and a renowned stability.

The SolvePOMDP runs without time horizon limit until a target precision 𝜖 = 0.001
is reached. A discount rate (factor) of 0.95 was used to improve performance. We ini-
tially tested several discount rates varying from 0.5 to 0.99 and we settled on a 0.95

 Journal of Intelligent Information Systems

1 3

value which guaranteed a better balance between efficiency (time required for solving)
and testing coverage (number of generated attack vectors). The POMDP environments
generator is implemented in a Python script which import processed data directly from
IAPTF memory and rely on the following parameters: number of machines (physical
and virtual) N, number of identified vulnerabilities V, number of pre-fetched (relevant)
exploits E, number of security clusters C, and number of machines with unchanged con-
figuration I (since last testing).

Once POMDP environment files are created, they will be parsed into a buffer file which
serves as input for the SolvePOMDP solver. At the end of each round, output PGs are
translated by the attack-vector-gen.py script into attack vectors then transmitted to Metas-
ploit framework to act upon. On the other hand, output PGs are processed in parallel using
a Generalization.py scripts to make them general and are then fed to the CLIPS expert sys-
tem for future direct application. In terms of SolvePOMDP parameters, the table in Fig. 10
summarizes the POMDP solving experiences set-up and used parameters.

Fig. 10 IAPTF-Core module diagram with RL functioning and Memory handling

Journal of Intelligent Information Systems

1 3

7.2 Results and discussion

To evaluate the new IAPTF and notably the HRL representation as well as the different
new modules, we planned a series of tests on real-world data captured for real corporate
network and reconstructed and implemented on a Virtual Box environment. Although the
tests cover different network size varying from 2-200 machines, our main focus are medium
(30-100) and large (100-200) networks. Previous attempts to solve POMDP environment
generated from a medium size LAN required a large amount of time of 149.5 hours (6.2
days) for a network of 100 machines which is an unreasonable amount of time. The poor
performances in medium networks of 30-100 machines was expected as the exact POMDP
solving is a P-SPACE complete problem compared with NP-complete in approximate solv-
ing, thus the time required for solving became computationally intractable. We tested the
new hierarchical representation of PT which meant solving several small size POMDP
problem for each cluster then solving the inter-clusters POMDP problem. We accounted
for the overall time required and we repeated the test 20 times for small networks, 10 times
for medium networks, and 5 times for large networks. The obtained results for five solving
approaches, namely PERSEUS, RL-GIP-LPSolve, RL-GIP-LPSolve+Initial Belief HRL-
GIP-LPSolve, and HRL-GIP-LPSolve+Initial Belief are plotted in Fig. 11 showing the
mean values and standard deviations.

The results show some loss of performance for HRL (compared with regular RL for
very small networks) with number of machines up to 10 machines (4 clusters, 33 vulner-
abilities, 24 exploits). This issue is completely justified by the fact that clustering and
cluster processing is useless and only slow down IAPTF. In small networks, security
clustering produce often a big number of security clusters and thus many very small
(2-3 machines) POMDPs on the top of the POMDP representing the Heads of clusters.
This will result into forcing IAPTF in executing a big amount of data manipulation and

Fig. 11 Solving different size POMDP problem using different algorithm and initial belief handling
approaches. X-axis represents the number of machines and Y-axis represents time in seconds necessary to
solve the problem

 Journal of Intelligent Information Systems

1 3

POMDPs’ solving which are in fact unnecessary gorging the fact that Regular RL solv-
ing of entire POMDP is faster

However, HRL-GIP effect is largely appreciated in larger networks and reach a very
good rate in 100-machine network (25 clusters, 102 vulnerabilities, 80 exploits). HRL
approach requires 224087.118 ± 12564.7 (2.6 days) compared with 538318.624 ±
31964.2 (6.2 days) in regular RL-GIP. Going beyond the 100-machine size, HRL is at
least 4 times more efficient and reaching 200 machine size (52 clusters, 153 vulner-
abilities, 115 exploits), HRL-GIP performed almost as well as approximate PERSEUS
and required 340582.592 ± 16297.8 (3.9 days) compared with 1685011.539 ± 71160.5
(19.5 days) for RL-GIP and 278369.056 ± 5236.9 (3.2 days). When we repeat the tests
using the output of previous testing as initial belief (after processing), GIP-HRL surpass
PERSEUS performance and only required 1.2 days compared with 3.2 for approximate.

In terms of re-testing, we ran networks PT for each network 4 times each while intro-
ducing changes in the assessed network, the amount of change is different each time
and represent 10%, 30%, 50% and 75%. The tests were carried out for algorithm variant
with customized initial belief, namely RL-GIP-LPSolve+Initial-Belief and HRL-GIP-
LPSolve+Initial-Belief. The obtained results were better than expected in 10% and 30%
context which reflect the PT real-world domain. Figure 12 provides a comparative illus-
tration for each of the tests comparing with the initial testing.

The results confirm the hypothesis on the crucial impact of prior knowledge and
initial belief on the algorithm performances as it accelerate the convergence toward
optimal value. The obtained results in the context of 100- to 200-machine LANs were
extremely encouraging and nearly halved the consumed time as shown in Fig. 12.

Finally, we evaluated the overall effectiveness of IAPTF compared with regular semi-
automated MSF and human CEH manual testing. The efficiency was calculated based
on two metrics: the global testing time and the number of covered attack vectors, and
an overall efficiency ratio was calculated. In terms of consumed time and as shown in
Fig. 13, IAPTF over-performs CEH expert in medium and large networks despite the
heavyweight pre-processing and post-processing. IAPTF performs twice better than
human CEH in 200-machine network and 5 to 6 times better than blind automation.

In terms of coverage, we calculated the number of valid (either successful or failed)
attack vector covered which we measured and compared as summarized in Fig. 13(b).

The number of attack vectors covered by all variant of IAPTF exceed by far any test
performed by CEH. The number even doubled in large networks making IAPTF more
reliable in terms of PT output confidence.

Fig. 12 Re-testing the same network after introducing a percentage of changes in machines configurations

Journal of Intelligent Information Systems

1 3

8 Conclusion

This paper explores a novel approach of embedding RL techniques to the offensive cyber
security domain. By adopting a hierarchical RL representing of the complex PT domain
we overcame the huge scaling-up challenges in solving large POMDP encountered with
regular RL representation of PT on medium and large networks. The proposed approach
divides the network into security clusters and enables IAPTF to deal with each cluster
separately as small networks (intra-clusters), then proceed to the processing of the net-
work of clusters heads which results into covering all possible basic and most of com-
plex (multi-steps) attacking vectors and thus matching and even exceeding the effective-
ness of Certified Ethical Hackers. The proposed IAPTF is a versatile and comprehensive
framework which relieves human experts from time-consuming repetitive tasks and
unveil special and complex situations such as unusual vulnerabilities or combined non-
obvious combinations which are often ignored in manual testing.

In terms of output, and as this research focused mainly on improving efficiency and
effectiveness of IAPTF in large networks context, the obtained result are by far better in
terms of time efficiency and covered tests. Although, human CEH would spend the same
time in completing PT tasks on networks smaller than 100 machines, the number of cov-
ered attack vector and thus validated vulnerabilities is far superior in IAPTF. In larger
network up to 200 machines, neither CEH nor automated system can compete against
IAPTF when HRL is adopted as this approach addressed two major issues we faced with
previous RL representation: the performance enhancement and expertise capturing.

The first is illustrated by the result of solving several small POMDP problems
rather than dealing with one large and complex environment. The second is effectively
addressed by the HRL approach which facilitated and simplified the process of expertise
capturing and generalization which allow the re-usability in the case of retesting the
same network when only few changes were introduced which is often the real-world
context in PT. The results obtained confirm the efficiency, accuracy, and effectiveness
of the proposed framework IAPTF designed to offload and ultimately replace the slow,
costly and unreliable human PT experts. As draw back of the proposed approach, we
can identify the slight decrease in the covered attack vectors which would results in
missing some complex attack vectors that human hacker might adopt. This challenge
will constitute a research vector for future research works.

Acknowledgements This work is part of an ongoing PhD research project currently in writing-up stage.

Fig. 13 Re-testing the same network after introducing a percentage of changes in machines configurations

 Journal of Intelligent Information Systems

1 3

Author contributions Authors contributed equally to this work.

Data availability Data and Codes are available upon request.

Declarations

Consent for publication Authors give full consent for publication.

Competing interests The authors declare that they have no known competing interests or personal relation-
ships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abu-Dabaseh, F., & Alshammari, E. (2018). Automated penetration testing : an overview computer science
and information technology.

Al-Emran, M. (2015). Hierarchical reinforcement learning: a survey. International Journal of Computing
and Digital Systems, 4, 2210–142. https:// doi. org/ 10. 12785/ ijcds/ 040207.

Babenko, L., & Kirillov, A. (2022). Development of automated malware detection system. izvestiya SFedu.
Engineering Sciences:153–167. https:// doi. org/ 10. 18522/ 2311- 3103- 2021-7- 153- 167.

Backes, M., Hoffmann, J., Künnemann, R, Speicher, P., & Steinmetz, M. (2017). Simulated penetration test-
ing and mitigation analysis. arXiv:1705. 05088.

Bacudio, A., Yuan, X., Chu, B., & Jones, M. (2011). An overview of penetration testing. International Jour-
nal of Network Security & Its Applications, 3 (1-2), 19–38. https:// doi. org/ 10. 5121/ ijnsa. 2011. 3602.

Bertoglio, D.D., & Zorzo, A.F. (2017). Overview and open issues on penetration test. Journal of the Brazil-
ian Computer Society, 23(1), 1–16.

Boddy, M., Gohde, J., Haigh, T., & Harp, S. (2005). Course of action generation for cyber security using
classical planning. Proceedings of the 15th international conference on automated planning and sched-
uling. ICAPS’05:12–21.

Cassandra, A.R., Littman, M.L., & Zhang, N.L. (2013). Incremental pruning: A simple, fast, exact method
for partially observable markov decision processes. arXiv preprint arXiv:1302.1525

Ghanem, M., & Chen, T. (2019). Reinforcement learning for efficient network penetration testing. Informa-
tion, 11, 6. https:// doi. org/ 10. 3390/ info1 10100 06.

He, L., & Bode, N. (2006). Network penetration testing. In A Blyth (Ed.) EC2ND 2005. Springer, pp 3–12.
Jain, A., & Niekum, S. (2018). Efficient hierarchical robot motion planning under uncertainty and hybrid

dynamics.
Joglekar, N. (2008). Hierarchical planning under uncertainty: Real options and heuristics, pp 291–313.

https:// doi. org/ 10. 1016/ B978-0- 7506- 8552-8. 50014-1.
Maeda, R., & Mimura, M. (2021). Automating post-exploitation with deep reinforcement learning. Comput-

ers & Security, 102108, 100. https:// doi. org/ 10. 1016/j. cose. 2020. 102108.
Moerland, T., Broekens, J., & Jonker, C. (2020). Model-based reinforcement learning: a survey. https:// doi.

org/ 10. 48550/ arXiv. 2006. 16712.
Pineau, J., & Gordon, G. (2003). Point-based value iteration: an anytime algorithm for pomdps. In Proceed-

ings international joint conference of artificial intelligence, pp. 1025–1032.
Phong, C., & Yan, W. (2014). An overview of penetration testing. International Journal of Digital Crime

and Forensics (IJDCF), 6, 50–74. https:// doi. org/ 10. 4018/ ijdcf. 20141 00104.
Roijers, D.M., Vamplew, P., Whiteson, S., & Dazeley, R. (2013). A survey of multi-objective sequential

decision-making. Journal of Artificial Intelligence Research, 48, 67–113.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12785/ijcds/040207
https://doi.org/10.18522/2311-3103-2021-7-153-167
http://arxiv.org/abs/1705.05088
https://doi.org/10.5121/ijnsa.2011.3602
https://doi.org/10.3390/info11010006
https://doi.org/10.1016/B978-0-7506-8552-8.50014-1
https://doi.org/10.1016/j.cose.2020.102108
https://doi.org/10.48550/arXiv.2006.16712
https://doi.org/10.48550/arXiv.2006.16712
https://doi.org/10.4018/ijdcf.2014100104

Journal of Intelligent Information Systems

1 3

Spaan, M., & Vlassis, N. (2005). Perseus: Randomized point-based value iteration for pomdps. Journal
Artificial Intelligent Research (JAIR), 24, 195–220.

Spaan, M.T. (2012). Partially observable markov decision processes. In Reinforcement learning, pp
387–414.

Sarraute, C., Buffet, O., & Hoffmann, J. (2012). Pomdps make better hackers: accounting for uncertainty
in penetration testing. Proceedings of the twenty-sixth aaai conference on artificial intelligence, pp
1816–1824.

Sarraute, C., Richarte, G., & Lucángeli Obes, J. (2013). An algorithm to find optimal attack paths in nonde-
terministic scenarios. Proceedings of the acm conference on computer and communications security.
https:// doi. org/ 10. 1145/ 20466 84. 20466 95.

Stock, S. (2017). Hierarchical hybrid planning for mobile robots. KI-Künstliche Intelligenz, 31(4), 373–376.
Walraven, E., & Spaan, M.T.J. (2017). Accelerated vector pruning for optimal pomdp solvers. In AAAI.
Walraven, E., & Spaan, M. (2017). Accelerated vector pruning for optimal pomdp solvers. Proceedings of

the AAAI Conference on Artificial Intelligence, vol. 31(1).
Yaqoob, I., Hussain, S., Mamoon, S., Naseer, N., & Akram, J. (2017). Penetration testing and vulnerability

assessment. Journal of Network Communications and Emerging Technologies, 7, 12–21.
Zennaro, F.M., & Erdodi, L. (2020). Modeling penetration testing with reinforcement learning using cap-

ture-the-flag challenges and tabular q-learning. arXiv:2005. 12632.
Zhang, W., Nevin, D., Zhang, N., Supervisor, T., & Golin, G. (2003). Algorithms for partially observable

markov decision processes. https:// doi. org/ 10. 14288/1. 00982 52.
Zhou, R., Pan, J., Tan, X., & Xi, H. (2008). Application of clips expert system to malware detection system,

vol. 1, pp. 309–314. https:// doi. org/ 10. 1109/ CIS. 2008. 100.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1145/2046684.2046695
http://arxiv.org/abs/2005.12632
https://doi.org/10.14288/1.0098252
https://doi.org/10.1109/CIS.2008.100

	Hierarchical reinforcement learning for efficient and effective automated penetration testing of large networks
	Abstract
	1 Introduction
	2 Research background
	2.1 Penetration testing
	2.2 PT automation and optimization
	2.3 Research motivations and contribution

	3 Reinforcement learning
	3.1 POMDP fundamentals
	3.2 RL for intelligent automated PT
	3.3 Representing PT as RL problem

	4 Hierarchical RL for large networks
	4.1 Network security-based clustering
	4.2 Hierarchical POMDP representation for PT
	4.3 Representing PT in form of POMDP environment

	5 Intelligent automated PT framework
	5.1 Pre-processing and memory building
	5.2 IAPTF-core module

	6 Solving POMDP problem
	6.1 POMDP approximate solving
	6.2 POMDP exact solving
	6.3 External solvePOMDP

	7 Test results
	7.1 Test-bed and testing environment
	7.2 Results and discussion

	8 Conclusion
	Acknowledgements
	References

