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Abstract

This thesis is focused on constructing an affine version of the partition algebra and
investigating expected properties that such an algebra should admit. In fact we provide
two definitions of such an algebra in this thesis. The first definition is given by generators
and relations, and comes about by affinizing the partition algebra in a similar manner
employed by others on related diagrams algebras. The second definition is obtained by
generalising the orbit basis of the partition algebra in a particular manner. Both such
algebras give rise to actions on a tensor space which extends the action in Schur-Weyl
duality between the partition algebra and group algebra of the symmetric group. We
establish a strong connection to one of these affine partition algebras with the Heisenberg
category. Namely we prove that a certain endomorphism algebra of a given object in
the Heisenberg category is a quotient of the affine partition algebra.

Pursuing the construction of such algebras has also lead to new results regarding
both the partition algebra and symmetric group. For the partition algebra we obtain
a complete description of the center in the semisimple case, and give an alternative
description of the blocks in the non-semisimple case. For the symmetric group, we
generalise certain results regarding the centers of the group algebras of the symmetric
groups to certain centraliser algebras. From such we are able to provide a centraliser
construction of the degenerate affine Hecke algebra, and show that a certain limit of
centralizer algebras appears as an endomorphism algebra in the Heisenberg category.
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1 Introduction

In this chapter we summarise various results to set the scene and motivate the work of
this thesis. We begin by recalling the classical Schur-Weyl duality between the general
linear group and the symmetric group, and an extension involving the degenerate affine
Hecke algebra. We review some properties of the degenerate affine Hecke algebra and
discuss its construction. We describe various generalisations of Schur-Weyl duality and
the resulting diagram algebras which emerge. We summarise the construction of new
affine versions of some of these diagram algebras. We end the chapter by discussing the
main questions investigated within this thesis, summarise the structure of the thesis,
and providing a list of the main results.

1.1 Schur-Weyl Duality

For any n ≥ 0 we let GLn(C) denote the group of invertible n-by-n matrices with entries
in C. Also let V = Cn be its fundamental n-dimensional representation. For any k ≥ 0
we view the k-fold tensor space V ⊗k as a representation of GLn(C) given by the diagonal
action. The symmetric group Sk also acts on this space via permutating the k tensor
components. This pair of actions

GLn(C) 	 V ⊗k � Sk (1.1)

commute with one another, and the centralizer of one action in EndC(V ⊗k) generates the
other. As such they satisfy the double centralizer theorem. This gives the classical Schur-
Weyl duality, established first by Schur in [Schur01]. This duality allows information
regarding the representation theory of these two groups to flow back and forth, and
hence gives a powerful tool in investigating and answering problems for either group.
One may restate this result by working with the special linear group SLn(C) instead of
GLn(C), or further still by working with their corresponding Lie algebras gln and sln or
their universal enveloping algebras U(gln) and U(sln) respectively.

The duality of Equation (1.1) has seen numerous generalisations in various directions.
A quantum (or q-deformation) of this duality was given by M. Jimbo in [Jimbo86]
where the universal enveloping algebras U(gln) is replaced by its quantum group, and
the symmetric group is replaced with the Hecke algebra. An affine counterpart to this
quantum duality of M. Jimbo was established by V. Chari and A. Pressley in [CP96],
where the quantum group is replaced with the quantum affine group and the Hecke
algebra is replaced with the affine Hecke algebra.

Another generalisation of Schur-Weyl duality, which is of particular interest for this
thesis, was established by T. Arakawa and T. Suzuki in [AS98]. This involves replacing
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V ⊗k by M ⊗ V ⊗k, where M is any (possible infinite dimensional) module over U(gln),
and replacing Sk with the degenerate affine Hecke algebra Hk introduced by V. Drinfeld
in [Dri86]. Put into symbols we have commuting actions

U(gln) 	M ⊗ V ⊗k � Hk. (1.2)

For an arbitrary M , these commuting actions are far from satisfying the double central-
izer theorem. However, by specialising M and working with quotients of Hk referred to
as cyclotomic quotients, then the double centralizer theorem can be shown to hold, and
gives rise to the so called higher Schur-Weyl dualities. See for example the works of J.
Brundan and A. Kleshchev in [BK08].

1.2 Constructing Hk from CSk

Often the degenerate affine Hecke algebra Hk is defined by a presentation, where the
generators are the simple transpositions of the symmetric group Sk alongside new pair-
wise commuting generators which resemble the Jucys-Murphy elements of the group
algebra CSk in a manner we explain below. In this section we briefly summarise the
construction of Hk, with greater detail given in Section 2.1.7 (see also [K05]).

Firstly, the Jucys-Murphy elements Y1, . . . , Yk of the group algebra CSk are a collec-
tion of pairwise commuting elements defined by the sum of certain transpositions (see
Definition 2.11). These elements play an important role in the representation theory of
CSk. In fact, A. Okounkov and A. Vershik in [OV96] used the Jucys-Murphy elements
to provide a spectral approach to the representation theory of CSn, recovering its com-
binatorial features in a natural fashion. Let si denote the simple transposition in Sk

exchanging i and i + 1 for each 1 ≤ i ≤ k − 1, which generate the algebra CSk. The
Jucys-Murphy elements share the following relations with these generators:

� siYj = Yjsi for all j 6= i, i+ 1.

� Yi+1 = siYisi + si for all 1 ≤ i ≤ k − 1.

The second relation demonstrates a recursive structure for the Jucys-Murphy elements,
in particular they can be defined from such by setting Y1 = 0. This recursive structure
was an important aspect of the work in [OV96].

To go from CSk to the degenerate affine Hecke algebra Hk, one adjoins new pairwise
commuting generators (called affine generators) yi for each 1 ≤ i ≤ k, and imposes
relations between these generators and the simple transpositions which are identical to
above where one replaces Yi with yi (see Definition 2.23 for the presentation of Hk).
Hence the generators yi resemble the Jucys-Murphy elements Yi in the sense that they
share a handful of analogous relations, in particular an analogous recursive structure.
We have a surjective algebra homomorphism Hk → CSk by projecting yi 7→ Yi for each
1 ≤ i ≤ k. Also it can be shown that as a vector space Hk ∼= C[y1, . . . , yk]⊗CSk, where
C[y1, . . . , yk] is the space of polynomials in k commuting variables. In this manner we
have obtainedHk by adjoining a polynomial algebra to CSk, but have asked the variables
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to satisfy some non-trivial relations which project down to analogous relations satisfied
by the Jucy-Murphy elements. It is worth mentioning that this procedure to construct
Hk from CSk relied on a choice of what relations to impose on the affine generators.
We will discuss more on this matter at the begining of Chapter 4.

The action of Hk on M⊗V ⊗k in Equation (1.2) is obtained by allowing the generators
yj to act in a manner which extends the action of the Jucy-Murphy elements Yj on V ⊗k

in Equation (1.1) onto the M component (see Theorem 2.27). One can also interpret the
algebra Hk diagrammatically, as described later in Section 2.1.7, were the permutations
are viewed using string permutation diagrams, and the affine generators yi are viewed
as decorations on the strings. The relations above which the generators yi are asked to
satisfy can be interpreted as local relations encoding how decorations can move along a
string and how they interact with crossings of strings.

The properties of the Jucys-Murphy elements of the group algebra of the symmetric
group have been abstracted (see for example [GG11] where Jucys-Murphy elements are
defined in the general setting of cellular algebras belonging to strongly coherent towers).
Hence many algebras possess their own versions of Jucys-Murphy elements. Also the
Jucys-Murphy elements are not unique, that is many such collections of Jucy-Murphy
elements may be defined for a given algebra.

1.3 Diagram Algebras

In this section we summarise properties of certain examples of diagram algebras, which
are algebras with a diagrammatically defined basis where the product is given by the
linear extension of diagram concatenation. These algebras come about from generalisa-
tions of Schur-Weyl Duality. We also describe the construction of algebras which are to
most of these examples of diagram algebras what the degenerate affine Hecke algebra is
to the group algebra of the symmetric group.

Firstly, when one replaces the group GLn(C) with the subgroup of orthogonal matrices
On(C) (or the symplectic subgroup Spn(C) when n is even) in Equation (1.1), then the
algebra playing the role of Sk is the diagram algebra called the Brauer algebra Bk(n)
(respectively Bk(−n)) which was first introduced by Brauer in [Br37]. Thus we have
commuting actions

On(C) 	 V ⊗k � Bk(n) (1.3)

which satisfy the double centralizer theorem. The Brauer algebra Bk(δ) may be defined
for any parameter δ ∈ C. The group algebra of the symmetric group CSk is a subalgebra
of Bk(δ), where the diagrammatic basis of Bk(δ) contains the permutation diagrams of
Sk, and new diagrams which introduce ‘cups’ and ‘caps’. When taking the product of
two diagrams within Bk(δ), in general ‘floating loops’ will appear, and these are resolved
by replacing each such occurence with the scalar δ.

M. Nazarov defined Jucys-Murphy elements for the Brauer algebras in [N96]. A variety
of relations between these Jucys-Murphy elements and a natural generating set of Bk(δ)
(including a relation which can recursively define the Jucys-Murphy elements) were
proven. M. Nazarov also define a new algebra Wk constructed from Bk(δ) by adjoining

9



new pairwise commuting affine generators which were asked to satisfy various relations
which projected down to relations satisfied by the Jucys-Murphy elements. Hence there
is a surjective algebra homomorphism Wk → Bk(δ) sending the affine generators onto
the corresponding Jucys-Murphy elements. Also the polynomial algebra in the affine
generators is a subalgebra of Wk. The algebra Wk is called the degenerate affine Wenzl
algebra or just the affine Wenzl algebra. The affine generators may be interpreted
diagrammatically as decorations on the underlying diagrams defining Bk(δ). Also new
central generators were added in the construction ofWk as a means to resolve decorated
floating loops which appear within the diagrammatics, a feature which was absent in the
diagrammatics of the symmetric group. The algebra Wk also gives rise to commuting
actions

U(on) 	M ⊗ V ⊗k �Wk, (1.4)

where U(on) is the universal enveloping algebra of on, the orthogonal Lie algebra, and M
is taken to be any (possible infinite dimensional) module over U(on). In this sense, the
algebra Wk is to the Brauer algebra Bk(δ) what the degenerate affine Hecke algebra Hk
is to the group algebra of the symmetric group CSk. See also the work of Z. Daugherty,
A. Ram, and R. Virk in [DVR11] where the algebra Wk is studied in unison with a
non-degenerate version called the affine BMW algebra, with a focus on such commuting
actions.

Returning to the classical Schur-Weyl duality of Equation (1.1), if one replaces V ⊗k

with the mixed tensor space V ⊗s ⊗ (V ∗)⊗r where s, r ∈ Z≥0 such that s + r = k, and
where V ∗ is the dual representation of V , then the algebra which replaces the symmetric
group Sk is the diagram algebra called the walled Brauer algebra Bs,r(n). Hence we
have commuting actions

GLn(C) 	 V ⊗s ⊗ (V ∗)⊗r � Bs,r(n), (1.5)

which satisfy the double centralizer theorem. The algebra Bs,r(δ) may be defined for any
parameter δ ∈ C, is a subalgebra of the Brauer algebra Bk(δ), and contains the group
algebra C(Ss×Sr). The walled Brauer algebras first appeared independently in [Koi89]
and [Tur89], which were partially motivated by such a duality. It was later studied in
[BHCLLS94] as a means of decomposing the mixed tensor space into irreducible GLn(C)
representations. Jucys-Murphy elements have also been defined for the walled Brauer
algebras, and new algebras which are to the walled Brauer algebras what Hk is to CSk

were introduced independently by A. Sartori in [Sar13], and by H. Rui and Y. Su in
[RS13]. In the latter these algebras were called the affine walled Brauer algebras, and
were denoted by Baff

s,r(ω0, ω1) = Baff
s,r. They were constructed in an analogous manner

in which M. Nazarov constructed Wk, by introducing new pairwise commuting affine
generators to the walled Brauer algebra and imposing relations on such generators which
project down to relations satisfied by the Jucys-Murphy elements. As one could expect,
these affine generators may be interpreted diagrammatically as decorations added to the
diagrammatics of the walled Brauer algebra. A collection of central generators were also
added to account for decorated floating components, as was done for Wk. It was shown
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that the affine walled Brauer algebra gives rise to commuting actions

U(gln) 	M ⊗ V ⊗s ⊗ (V ∗)⊗r � Baff
s,r, (1.6)

where one has replaced the mixed tensor space V ⊗s ⊗ (V ∗)⊗r with M ⊗ V ⊗s ⊗ (V ∗)⊗r,
where M is any (possible infinite dimensional) module over U(gln), and replaces the
walled Brauer algebra Bs,r(n) with Baff

s,r.
Again returning to the classical Schur-Weyl duality of Equation (1.1), if one replaces

the group GLn(C) with the subgroup of permutation matrices, which one may identify
with the symmetric group, then the diagram algebra which appears in the duality is the
partition algebra A2k(n). Hence we have commuting actions

CSn 	 V
⊗k � A2k(n), (1.7)

which satisfy the double centralizer theorem. This duality was orginally proved by V.
Jones in [J94]. Compared to the other dualities we have discussed, this case is unique
in the sense that no classical Lie algebra is involved, but rather the group algebra of the
symmetric group. The partition algebra A2k(δ) may be defined for any parameter δ ∈ C,
in fact we will often set A2k := A2k(z) where z is a free central generator of the algebra
(see Section 2.2 for more details). This algebra was first introduced by P. Martin in
the works of [M91] regarding problems in statistical mechanics. It is a diagram algebra
and was defined by a diagrammatic basis and structure constants. It was later given a
presentation in [HR05] and [East11]. T. Halverson and A. Ram in [HR05] gave the first
definition of Jucys-Murphy elements (defined diagrammatically) for the partition algebra
A2k(δ). Later J. Enynag gave a recursive definition for these Jucys-Murphy elements in
[Eny12] and [Eny13] and proved a variety of relations involving these elements.

To the best of the author’s knowledge, before starting this thesis there was no algebra
which played an analogous role for the partition algebra which Hk plays for CSk. Al-
though, while writing this thesis such an algebra was defined in the works of J. Brundan
and M. Vargas in [BV21], and more details of this algebra and its connection to our
work will be given later in Section 4.3.

1.4 Aims of the Thesis

The main aim of the thesis is to construct an affine partition algebra, that is an algebra
which is to the partition algebra what the degenerate affine Hecke algebra is to the
group algebra of the symmetric group, and to investigate some of its structural and
representation theoretic properties. However, there is no canonical definition of what it
means to be such an algebra. Thus it is important that we make clear what we would
consider to be an appropriate definition for an affine partition algebra. We say that Aaff

2k

is an affinization of A2k if the following hold:

1. Aaff
2k contains both A2k and the polynomial algebra C[x1, . . . , x2k] in 2k commuting

variables as subalgebras.
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2. The variables xi should satisfy relations which are analogous to relations in A2k

which are satisfied by Jucys-Murphy elements (for some fixed choice of Jucys-
Murphy elements of A2k), including recursive relations for the Jucys-Murphy ele-
ments.

3. A2k is a quotient of Aaff
2k in such a way that the quotient map Aaff

2k → A2k projects
the variables xi to corresponding Jucys-Murphy elements.

4. Given any Sn-module M , there exists an action of Aaff
2k on the tensor space M⊗V ⊗k

which commutes with the diagonal action of Sn. This action should extend Equa-
tion (1.7) in an analogous manner to how Equation (1.2) extended Equation (1.1).

5. There exists a diagrammatic description of Aaff
2k which generalises that of A2k where

the variables xi are interpreted as decorations.

We refer to these five properties as the affinization properties. It is worth mentioning
that such properties could be abstracted to describe the affinization of any diagram
algebra which possess a collection of Jucys-Murphy elements and belongs to some Schur-
Weyl duality. In particular the algebras Hk, Wk, and Baff

s,r satisfy analogous properties
in relation to the underlying diagram algebras CSk, Bk(δ), and Bs,r(δ) respectively.
Hence in our terminology we say that Hk,Wk, and Baff

s,r are affinizations of CSk, Bk(δ),
and Bs,r(δ) respectively. Some aspects of these affinization properties are fairly vague,
although we give a bit more detail below. We do not expect that abstracting the above
properties would give a good notion of affinizing an algebra in a more general sense,
and we do not pursue defining such a notion in this thesis. We simply wish to be
more concrete in what our main aim of the thesis was implying. So we treat the above
description of an affinization of A2k as a guide/benchmark for our constructions.

We briefly give some additional details to the affinization properties above. Firstly
all five such properties certainly seem appropriate to ask since each of the algebras Hk,
Wk, and Baff

s,r satisfy analogous properties, and none of the five properties appears to
be asking too much. Affinization property 1 confirms that we at least have a non-trivial
superalgebra of the partition algebraA2k which contains the affine algebra C[x1, . . . , x2k].
Affinization property 2 enforces the affine generators xi to share at least some important
structure with that of Jucys-Murphy elements. This property is quite vague. Informally
we want the affine generators to share as much structure with Jucys-Murphy elements as
they can while still satisfying the other affinization properties. In particular, we do not
want to add too many relations for the affine generators to satisfy which would prevent
the set of monomials xn1

1 · · ·x
n2k
2k (for ni ∈ Z≥0 for each 1 ≤ i ≤ 2k) from being linearly

independent, or worst still which collapses the algebra Aaff
2k down to A2k. For example

if we imposed the relation y1 = 0 in Hk, which satisfies item 2 since Y1 = 0, then the
algebra Hk would collapse to CSk. Affinization property 3 simply means that the affine
generators do not satisfy relations not shared by Jucys-Murphy elements. As such, in
the sense of satisfying item 1, item 2, and item 3, we refer to the affine generators xi as
affinizations of the Jucys-Murphy elements. Lastly affinization properties 4 and 5 are
asking the most of Aaff

2k , which are the key representation theoretic and structural results,
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respectively, which we expect to be satisfied when comparing to the algebras Hk, Wk,
and Baff

s,r.

1.5 Structure of Thesis

This section closes out the introduction by summarising the structure of the thesis.
We first give a discussion of what can be found in each of the proceeding chapters,
highlighting the new definitions and new results established. For ease of navigation, we
then provide a list of the main features of the thesis in the order in which they appear.

Chapter 2 will recall most of the theory and results regarding both the partition algebra
and the symmetric group which we will use throughout the thesis. For the symmetric
group, one of the main aspects we wish to focus on is the center of the group algebra of
the symmetric group and the works of H. Farahat and G. Higman in [FH59]. Namely we
recall a basis of the center by class sums, a polynomial property of the respected structure
constants, and how this is used in [FH59] to define an algebra over a polynomial ring
which “interpolates” these centers. The other main aspect of the symmetric group we
recall is the role of the Jucys-Murphy elements with regard to the representation theory of
the symmetric group and in the construction of the degenerate affine Hecke algebra. For
the partition algebra, we will also be interested in recalling the Jucys-Murphy elements
and their role in the representation theory. We recall the definition of new generators σi
introduced by J. Enyang in [Eny12], and how they were used to give a new presentation
for the partition algebra and a new recursive definition for the Jucys-Murphy elements.
We also give details to the Schur-Weyl duality of Equation (1.7), and recall a basis of
the partition algebra which is particularly well-adapted to this duality called the orbit
basis. We end the chapter by describing how one can define the partition algebra from
the ground up with a focus on Schur-Weyl duality and the orbit basis.

Chapter 3 focuses on proving two new results regarding the partition algebra. The
first result is Theorem 3.17, which gives a description of the center of the semisimple
partition algebras by supersymmetric polynomials (see Definition 3.1) in normalised
Jucys-Murphy elements. The centers of the (semisimple) diagram algebras mentioned
above have all been shown to equal certain (super)symmetric polynomials in some col-
lection of Jucys-Murphy elements. As such an analogous result for the partition algebra
was expected but not yet know. This is what our result gives, and it is worth remarking
that such a clean answer was not necessarily expected since the Jucys-Murphy element
in the partition algebra are much more complicated than their counterparts in the other
aforementioned diagram algebras. Before this description of the center of the semisimple
partition algebra, the primitive central idempotents had been constructed by P. Mar-
tin and D. Woodcock in [MW99]. In their work they gave a recursive construction of
the so-called splitting idempotent associated to a certain exact sequence related to the
partition algebra. Then by multiplying this idempotent by the primitive central idem-
potents of group algebras of the symmetric group sitting inside the partition algebra,
one recovers the primitive central idempotents for the partition algebra. They gave a
complete and explicit description of the primitive central idempotents for A4(δ) (k = 2
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case), and highlighted that information about the blocks in the non-semisimple case can
be determined by the blow up of certain denominators in the coefficients appearing in
such primitive central idempotents. The work of [MW99] was conducted prior to the
definition of the Jucys-Muprhy elements for the partition algebra. The second new result
of Chapter 3 is Corollary 3.25 which closes out the chapter and gives an alternative de-
scription of the blocks of the partition algebra A2k(δ) in the non-semisimple case. These
blocks were already described in an elegant manner by P. Martin in [Martin96] (see also
[DW00]) as corresponding to certain chains of Young diagrams which satisfy a particular
combinatorial condition involving the parameter δ. On the other hand our result given
in Corollay 3.25 describes these blocks using certain generating functions which appear
naturally from the action of certain central elements of the partition algebra on simple
modules. The results of this chapter were published in [Cre21], although some of the
proofs and exposition have been significantly streamlined in this thesis.

Chapter 4 is where we tackle the main aim of this thesis by introduced an affine parti-
tion algebra, which we denote by Aaff

2k . This is constructed by employing a procedure to
the partition algebra A2k(δ) analogous to what was done for the other diagram algebras
mentioned above. We give greater details to this procedure at the start of the chapter.
In short we begin by establishing a variety of relations involving both the Jucys-Murphy
elements and the new generators σi of J. Enyang. We then go on to use such relations
to define Aaff

2k by a presentation. The recursive relations of the Jucys-Murphy elements
of the partition algebra are much more complicated than their counterparts in other
diagram algebras, and hence choosing what relations to include in our presentation of
Aaff

2k was less clear. In fact we treated the generators σi of J. Enyang in a similar manner
to the Jucys-Murphy elements in our procedure to construct Aaff

2k , that is not only do we
introduce affine generators xi to affinize the Jucys-Murphy elements but we also intro-
duced new generators τi to play a similar role for the elements σi. This is a significant
addition to what has been employed by others, and as such it is less obvious from its
definition whether Aaff

2k is indeed an appropriate affine version for the partition algebra.
However throughout the remainder of the chapter we show that Aaff

2k satisfies (fully or at
least partially) each of the affinization properties 1 to 5 described previously. Most of
these properties only hold if one makes the choice of introducing the new generators τi
as we did. We interpret such as evidence to suggest that this was the correct approach
to take in constructing Aaff

2k .
The first half of Chapter 4 investigates structural properties of Aaff

2k . We prove many
relations between the generators which allows us to establish that both the partition
algebra A2k and polynomial algebra C[x1, . . . , x2k] are subalgebras of Aaff

2k . We also
prove that a large collection of polynomials in the variables x1, . . . , x2k are central, and
that such polynomials project down to the center of the semisimple partition algebras
via evaluation by normalised Jucys-Murphy elements. We prove in Theorem 4.24 that
we have commuting actions

CSn 	M ⊗ V ⊗k � Aaff
2k , (1.8)

which extend Equation (1.7) in the manner we desired. Such an action would not be
possible without working with the new generators τi instead of Enyang’s generators σi.
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The last section of the chapter is concerned with invesitgating whether Aaff
2k satisfies

affinization poroperty 5. This leads us to establishing connections with the Heisenberg
category Heis introduced by M. Khovanov in [Kho14], and to the work of J. Brundan and
M. Vargas in [BV21]. We prove in Theorem 4.53 thatAaff

2k projects onto an endomorphism
algebra of a particular object in the Heisenberg category. The morphism spaces of the
Heisenberg category are diagrammatically defined, and this projection of Aaff

2k sends
our generators to very natural diagrams, with the generators xi getting mapped to
decorations. We suspect that the projection of Aaff

2k onto such an endomorphism space
is an isomorphism of algebras, which would show that Aaff

2k satisfies 5. At this moment
however we are only able to prove a surjective algebra homomorphism. Recently J.
Brundan and M. Vargas in [BV21] defined a subcategory APar of the Heisenberg category
generated by one object and a set of morphisms which they called the affine partition
category. They used this category to recover results in the representation theory of the
partition algebra. One obtains an algebra APk, which they also call the affine partition
algebra, by taking the endomorphism algebra of a certain object in their category APar.
We prove that the affine partition category APar is in fact a full subcategory of the
Heisenberg category Heis. As a consequence, we obtain a basis for the morphism spaces
of APar, and prove that the algebra APk of J. Brundan and M. Vargas is a quotient
of our affine partition algebra Aaff

2k . The results of Chapter 4 have been submitted for
publication (see [CD21]).

Chapter 5 is broken into two sections. The first is concerned with certain centralizer
algebras of the group algebra of the symmetric group. Namely, given any subset X ⊂
{1, . . . , n} let Stabn(X) denote the subgroup of Sn consisting of permutations fixing X
element-wise, then the focus is on the centralizer algebra

Zn(X) := {g ∈ CSn | πg = gπ for all π ∈ Stabn(X)}.

When X is the empty set ∅ then the algebra Zn(X) is simply the center of CSn. We
generalise many of the results of H. Farahat and G. Higman in [FH59] (which are recalled
in Chapter 2) to these centralizer algebras. We provide a class sum basis for Zn(X) and
prove a polynomial property regarding their respected structure constants in Theorem
5.17. From such we define a new algebra Z(X) over the polynomial ring C[z] (see Defini-
tion 5.33) which generalises the Farahat-Higman algebra presented in [FH59, Page 214].
The remainder of the section proves a variety of results regarding this new algebra, many
of which generalise known results regarding the Farahat-Higman algebra. A particularly
interesting result is Theorem 5.43 where we establish a connection between Z(X) and
the degenerate affine Hecke algebra. As a corollary we realise Z(X) as an endomorphism
algebra of a particular object in the Heisenberg category in a natural fashion. This sec-
tion appears quite disjoint from our previous work regarding the affine partition algebra,
however these results came about from investigating the image in EndSk(M ⊗ V ⊗k) of
the action of Aaff

2k given in Equation (1.8).
The second section of Chapter 5 focuses on certain subalgebras Q2k(M,n) of the

endomorphism algebras EndSn(M ⊗ V ⊗k) , and uses the algebras Z(X) to establish
certain spanning sets for Q2k(M,n). When M is a free CSn-module, we provide in
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Proposition 5.54 a basis for Q2k(M,n) which generalises the orbit basis of the partition
algebra. In a way we view the algebra Q2k(M,n) as a generalisation of the partition
algebra A2k(n) ∼= EndSn(V ⊗k) with the extension of the tensor space V ⊗k to M ⊗ V ⊗k
where M is any CSn-module. In Theorem 5.52 we implicitly describe how the elements
of such a basis of Q2k(M,n) multiply, with the main feature being that the structure
constants are polynomial in n. This allows us to define a new algebra Qaff

2k which we
obtain from the algebras Q2k(M,n) in a similar manner to how Z(X) was obtained from
the centralizer algebras Zn(X). The algebra Qaff

2k is our second construction of an affine
partition algebra. Unlike with Aaff

2k , we do not know a generating set or presentation
for Qaff

2k , but we do have a basis for it. Under a certain projection Qaff
2k → Q2k(M,n)

the basis elements of Qaff
2k which do not vanish form a spanning set for Q2k(M,n), and

this spanning set is a basis whenever M is a free CSn-module. We end the chapter by
proving the existence of an algebra homomorphism Aaff

2k → Qaff
2k . We suspect that such

a map is an isomorphism, but this appears very difficult to prove at this point.
In summary the main features of the thesis are as follows:

Chapter 3:

– Theorem 3.17: Z(A2k(δ)) = SSymδ[N1, . . . , N2k] for δ 6∈ {0, 1, . . . .2k − 2}.
– Corollary 3.25: Alterntaive description of the blocks of A2k(δ) for any δ ∈ C.

Chapter 4:

– Definition 4.7: Definition of the Affine Partition Algebra Aaff
2k .

– Theorem 4.18: Aaff
2k satisfies affinization properties 1, 2, and 3.

– Theorem 4.24: Aaff
2k satisfies affinization property 4.

– Theorem 4.53: Aaff
2k partially satisfies affinization property 5.

Chapter 5:

– Theorem 5.17: Polynomial structure constants for class sum basis of Zn(X).

– Definition 5.33: Definition of the X-marked cycle shape algebra Z(X).

– Theorem 5.43: Establishing an isomorphism Z(X) ∼= EndHeis(↑⊗|X|).
– Theorem 5.52: Polynomial structure constants for defining basis of Q2k(M,n).

– Definition 5.56: Definition of the Orbit Affine Partition Algebra Qaff
2k .

– Theorem 5.65: Construction of an algebra homomorphism Aaff
2k → Qaff

2k .
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2 Background

2.1 Symmetric Group Algebra

2.1.1 Definitions and Presentation

For any bijection π : N→ N we define Sup(π) := {i ∈ N | π(i) 6= i} and refer to such a set
as the support of π. We denote by SN the set of all such bijections with finite support,
and refer to its elements as permutations. This is an infinite group under composition
of functions, and we write 1 for the identity. For any π ∈ SN we write ||π|| := |Sup(π)|.
We say a permutation π 6= 1 is a cycle if it acts transitively on its support. When this
is the case we write π = (a1, a2, . . . , ak) where {a1, . . . , ak} = Sup(π) and

π(ai) = ai+1(mod k+1).

The length of a cycle is the size of its support, and from our convention all cycles are of
length at least 2. By decomposing the support of a permutation π into disjoint orbits,
we obtain a unique decomposition π = π1π2 · · ·πk into cycles with pairwise disjoint
supports (up to rearrangement of cycles), and we say that π contains a cycle if it is
present in this decomposition. Given any n ∈ N we let [n] := {1, 2, . . . , n} and define
the finite subgroup Sn := {π ∈ SN | Sup(π) ⊆ [n]}. Naturally Sm ⊆ Sn for m ≤ n and
SN = ∪n≥1Sn. We identify Sn with the symmetric group of permutations of [n] in the
obvious manner, and let si := (i, i+ 1) denote the simple transposition exchanging i and
i+ 1. We have the well-known presentation of Sn in terms of the simple transpositions
as follows:

Theorem 2.1. The group Sn has a presentation with generating set {si | i ∈ [n− 1]}
and relations

(i) s2
i = 1, for i ∈ [n− 1].

(ii) sisj = sjsi, for j 6= i− 1, i+ 1.

(iii) sisi+1si = si+1sisi+1, for i ∈ [n− 2].

�

Let [n′] := {1′, 2′, . . . , n′}, then we view Sn diagrammatically by associating a given
π ∈ Sn with the graph whose vertex set is [n]∪ [n′] and edge set {{i′, π(i)} | i ∈ [n]}. We
draw [n] and [n′] as rows with vertices increasing from left to right and with the former
row above the latter.
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Example 2.2. Diagrammatically the permutation π = (1, 3, 2)(4, 5) viewed in S6 may
be interpreted by

π =

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′ 6′

From this perspective the product of permutations corresponds to stacking diagrams
and reading off the resulting pairs of vertices formed from the bottom and top row.
This set up will be given a more formal treatment to define the partition algebra in
Section 2.2.1. Also these diagrammtics will be extended to the degenerate affine Hecke
algebra in Section 2.1.7.

2.1.2 Conjugacy Classes of SN and Sn

In this section we recall the conjugacy classes of SN and Sn. We define a graded monoid
whose elements index the conjugacy classes of SN, and whose n-filtered components
index the conjugacy classes of Sn. Some of the notation used in this section is non-
standard to better compare with the results proven in Chapter 5.

The group SN acts on itself by conjugation, and the conjugacy classes of SN are
precisely the orbits of this action. As such for any π ∈ SN the conjugacy class of SN
containing π is given by CL(π) := {τ | τ = σπσ−1 for some σ ∈ SN}. Conjugation has a
natural description in cycle notation as shown in the following lemma (see for example
[JL93, Proposition 12.13]).

Lemma 2.3. Express π ∈ SN in cycle form as

π = (a1,1, a1,2, . . . , a1,n1) · · · (am,1, am,2, . . . , am,nm)

where {ai,j | 1 ≤ i ≤ m, 1 ≤ j ≤ nj} = Sup(π). Then for any σ ∈ SN,

σπσ−1 = (σ(a1,1), σ(a1,2), . . . , σ(a1,n1)) · · · (σ(am,1), σ(am,2), . . . , σ(am,nm)).

�

From this lemma we see that σ ∈ CL(π) if and only if σ contains the same number of
cycles of a given length as π. We will encode this information into a monoid as follows:
Let C denote the free commutative monoid on the infinite set {ci | i ∈ N}. Let ZN

≥0 be
the set of functions l : N→ Z≥0 with finite support, that is there is only a finite number
of elements i ∈ N such that l(i) 6= 0. Then for any l ∈ ZN

≥0 we write

cl :=
∏
i∈N

c
l(i)
i ,

which is well-defined since C is commutative and l has finite support. Then as a set
C = {cl | l ∈ ZN

≥0}. We can associated any element λ = cl of C with the conjugacy class
of SN consisting of all permutations which contain l(i) number of cycles of length i+ 1,
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for each i ∈ N. We denote such a class by CL(λ). To help with the generalisations we
will make later in Section 5.1.2, we will define a formal object called a cycle shape which
we may identify bijectively to the elements of C.

Given a set A, a cycle with entries belonging to A is a tuple (a1, . . . , am) ∈ A×m for
some m ∈ N, where we only care about the order of the coordinates up to cyclic shifts.

Definition 2.4. Let ∗ be a formal symbol. We define a cycle shape to be a finite
collection of cycles with entries belonging to {∗}, where no cycles of length one are
present. We write a cycle shape as a formal product of its cycles by juxtaposition, where
the order of the cycles is immaterial.

We let ∅ denote the unique cycle shape consisting of no cycles. It is clear that the
set of all cycles shapes indexes the conjugacy classes of SN, where the class associated
to a cycle shape is all the permutations of SN one can obtain by replacing the symbols
∗ with distinct elements of N. We may also identify C with the set of cycle shapes by
associating an element λ = cl with the cycle shape consisting of l(i) cycles of length i+1
for each i ∈ N. We illustrate this by the following example.

Example 2.5. Consider the element λ = c2
1c

1
2c

2
3 ∈ C, we identify λ with the cycle shape

λ = (∗, ∗)(∗, ∗)(∗, ∗, ∗)(∗, ∗, ∗, ∗)(∗, ∗, ∗, ∗),

where we have added colours to aid in demonstrating the identification. The correspond-
ing conjugacy class of SN is given by

CL(λ) = {(a1, a2)(a3, a4)(a5, a6, a7)(a8, a9, a10, a11)(a12, a13, a14, a15) | (ai)
15
i=1 ∈ N!15},

where N!15 is the subset of the 15-fold cartesian product of N consisting of tuples with
pairwise distinct entries.

We will not distinguish between an element of the monoid C and its associated cycle
shape. We define a degree function deg : C → Z≥0 by

deg(cl11 c
l2
2 · · · c

lk
k ) :=

∞∑
i=1

(i+ 1)li.

In terms of the cycle shape, the function deg is simply counting the number of symbols
∗ appearing among the cycles. Recall that ||π|| = |Sup(π)|, then given any conjugacy
class C of SN and permutations π, σ ∈ C, it is clear from Lemma 2.3 that ||π|| = ||σ||.
As such it makes sense to set ||C|| = ||π|| for any π ∈ C. One can note that given λ ∈ C
and π ∈ CL(λ), we have that deg(λ) = ||π|| = |Sup(π)|. Viewing Z≥0 as a monoid under
addition, it is clear that deg is a monoid homomorphism, and hence provides a grading
for the monoid C. For any n ∈ Z≥0 we let Cn := {λ ∈ C | deg(λ) = n} denote the n-th
graded component of C. Also let

C≤n := {λ ∈ C | deg(λ) ≤ n} =
⊔

0≤m≤n
Cm
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denote the n-th filtered component of C. Now for any n ≥ 0, the group Sn acts on itself
by conjugation and the conjugacy classes of Sn are the orbits of this action. Hence for
any π ∈ Sn, the conjugacy class of Sn containing π is given by

CLn(π) := {τ | τ = σπσ−1 for some σ ∈ Sn}.

Given any conjugacy class C of SN and n ≥ 0, let Cn := C∩Sn. For the following result
see [FH59, Lemma 2.1].

Lemma 2.6. Given a conjugacy class C of SN and n ≥ 0, the set Cn is non-empty if
and only if ||C|| ≤ n, and in this case Cn is a conjugacy class of Sn.

�

This result thus tells us that the n-th filtered component C≤n of C gives an indexing set
of the conjugacy classes of Sn. Given any λ ∈ C, the set CLn(λ) := CL(λ) ∩Sn is non-
empty whenever deg(λ) ≤ n, and in which case it is the conjugacy class of Sn consisting
of all permutations obtained by replacing the symbols ∗ with distinct elements from [n].
It is well-known that the conjugacy classes of Sn are in bijection with the partitions of
n, and in turn these are in bijection with the n-th filtered component C≤n in a natural
fashion. We have chosen to focus on C≤n as our indexing set for the conjugacy classes
of Sn since this perspective will generalise better for the results on Chapter 5.

2.1.3 The Center of CSn and the Cycle Shape Algebra Z

In this section we recall the center of the group algebra of Sn given in terms of the class
sum basis. We also recall the definition of an C[z]-algebra Z first presented in the works
of H. Farahat and G. Higman in [FH59], and recall some of its basic properties. What is
covered here will be generalised in Chapter 5 to certain centralizer algebras of the group
algebras of the symmetric groups.

We let CSn denote the group algebra of Sn over C. Thus any element of CSn is a
formal C-linear combination of permutations of [n]. We let

Zn := Z(CSn) = {z ∈ CSn | zπ = πz for all π ∈ Sn}

denote the center of CSn.

Definition 2.7. For n ∈ Z≥0 and λ ∈ C≤n, define the class sum element Kn(λ) ∈ CSn

by

Kn(λ) :=
∑

π∈CLn(λ)

π.

Proposition 2.8. The set of class sums {Kn(λ) | λ ∈ C≤n} forms a basis of Zn.

Proof. We first show that each class sum is central. For any σ ∈ Sn and λ ∈ C≤n, since
CLn(λ) is an orbit with respect to conjugation we have that

σKn(λ)σ−1 =
∑

π∈CLn(λ)

σπσ−1 =
∑

π∈CLn(λ)

π = Kn(λ).
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Thus σKn(λ) = Kn(λ)σ for all σ ∈ Sn, confirming that Kn(λ) belongs to Zn. We now
show that any central element is a linear combination of class sums. Let

z =
∑
π∈Sn

aππ

belong to the center Zn. Thus σzσ−1 = z for all σ ∈ Sn, and so aπ1 = aπ2 for any π1

and π2 belonging to the same conjugacy class of Sn. Hence setting aλ := aπ for any
π ∈ CLn(λ), we have that z is the sum of terms aλKn(λ) for each λ ∈ C≤n, showing
that z is indeed a linear combination of class sums. Lastly since conjugacy classes are
disjoint, the class sums are clearly linearly independent.

Since the class sums form a basis of the center Zn, one may express the product of
two class sums elements as a C-linear combination of class sum elements. It turns out
that the structure constants appearing in such products are polynomial in n. For the
following result see [FH59, Theorem 2.2].

Proposition 2.9. Let z be a formal variable. For any n ∈ Z≥0, and each λ, µ, τ ∈ C,
there exists a unique polynomial f τλ,µ(z) such that in Zn we have

Kn(λ)Kn(µ) =
∑
τ∈C≤n

f τλ,µ(n)Kn(τ).

�

Note that in general the conjugacy classes of SN are of infinite size, and hence the class
sum elements do not have analogs in the setting of the group algebra CSN. Moreover, the
center of the group algebra CSN is trivial. However, one can define a new algebra over
the polynomial ring C[z] by more or less replacing the structure constants above with
their corresponding polynomial. This is what was done in [FH59], and the new algebra
Z which is formed in some sense plays the role of the the center of CSN comparable to
the finite cases Zn. For the following definition see [FH59, Page 214].

Definition 2.10. Let Z be the free C[z]-module with basis {K(λ) | λ ∈ C}. Equip Z
with the product given by the C[z]-linear extension of

K(λ)K(µ) =
∑
τ∈C

f τλ,µ(z)K(τ),

where f τλ,µ(z) are the polynomials in Proposition 2.9.

It is not a given that Z is a C[z]-algebra, but this was proved in [FH59], which we now
summarise. Firstly, from the definition of Z, it is certainly a distributive ring, that is
an object which satisfies all the axioms of a ring except possibly the associativity of the
multiplicative product, and the existence of a multiplicative identity. From Proposition
2.9 it follows that, as distributive rings, we have a surjective homomorphism prn : Z →
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Zn given by prn(K(λ)) = Kn(λ) and prn(z) = n. The kernel Ker(prn) is generated by
the polynomial z − n and the elements K(λ) such that deg(λ) > n. Hence one can see
that we have the trivial intersection⋂

n≥0

Ker(prn) = 0.

From such a result, one can show that given any R1, R2 ∈ Z, then R1 = R2 if and only
if prn(R1) = prn(R2) for all n ≥ 0. Then since each Zn has a multiplicative identity and
is associative, one can deduce the same for Z.

As a C[z]-algebra Z is of infinite rank, with a basis indexed by the set of cycle shapes
C. It is worth remarking that for any λ ∈ C, the basis element K(λ) of Z is not a class
sum element for any CSn, nor is it an element of CSN. Such a basis element should be
thought of as a formal object which projects down to the class sums Kn(λ) of CSn for
any n ≥ 0.

We end this section with a brief discussion of some structural properties of Z. In
Chapter 5 these properties will be proved as special cases in a more general setting. It
can be shown that lifting the degree map deg on the cycle shapes C to a map acting on Z,
in the natural manner, gives a filtration of Z. Moreover, the multiplication of elements
in Z exhibit unique leading terms which are encoded by C. That is to say, given any
λ, µ ∈ C we have that

K(λ)K(µ) = cλ,µK(λµ) +
∑
τ∈C

deg(τ)<deg(λµ)

f τλ,µ(z)K(τ),

where cλ,µ ∈ N and λµ is the product of λ and µ in C. Hence cλ,µK(λµ) is the term of
highest degree appearing in the product K(λ)K(µ) in Z. This leading term result can
be used to prove that the set {K(ci) | i ∈ N} is a generating set for Z, which natural
extends the fact that the elements ci generate the monoid C.

2.1.4 Jucys-Murphy Elements

We will be interested in a family of commuting elements of CSn called the Jucys-Murphy
elements. These elements were studied in the works of [Jucys74] and [Murphy81] with re-
gard to giving an alternative description of the center of CSn and of Young’s seminormal
form. They have a simple explicit description as a sum of certain transpositions.

Definition 2.11. For i ∈ [n], the i-th Jucys-Murphy element Yi ∈ CSn is defined by

Yi =
∑

1≤j<i
(j, i).

It was demonstrated by A. Okounkov and A. Vershik in [OV96] that the Jucys-Murphy
elements can be used to provide a new spectral approach to the representation theory of
CSn. It was shown that each simple CSn-module possesses a basis which diagonalises
the action of the Jucys-Murphy elements. Thus one may associate to any simple module
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a tuple of eigenvalues which plays the role of a weight from the representation theory of
semisimple Lie algebras. Then a combinatorial analysis of such weights recovers many
of the classical results regarding the representation theory of CSn. Such results will be
summarized in the next section. For this section we recall various algebraic properties
of the Jucys-Murphy elements. We start by establishing the commuting and recursive
relations.

Lemma 2.12. The following relations are satisfied in CSn:

(i) YiYj = YjYi for all i, j ∈ [n].

(ii) siYj = Yjsi for all j 6= i, i+ 1.

(iii) Yi+1 = siYisi + si for all i ∈ [n− 1].

Proof. Item (ii) is immediate whenever j < i, otherwise conjugating Yj by si simply
permutes the transposition (i, j) and (i+1, j) around, leaving the sum invariant, proving
(ii). This implies that Yj commutes with CSi for all i < j which gives item (i). Lastly
conjugating Yi by si gives the sum of transposition (j, i+ 1) for all j < i. This differs to
Yi+1 by the term si, which proves (iii).

As mentioned in Chapter 1, these relations are precisely the relations which are used to
construct the degenerate affine Hecke algebra Hn via a presentation (see Section 2.1.7).
The relation

Yi+1 = siYisi + si, (2.1)

and its affine counterpart (see (2)(iii) from Definition 2.23) were core components in the
inductive arguments used in the combinatorial analysis of [OV96] in understanding the
weights of simple modules. One may alternatively define the Jucys-Murphy elements by
setting Y1 = 0 and constructing Yi+1 for i > 1 recursively according to Equation (2.1).

We end this subsection by giving an alternative description of the center Zn of the
group algebra CSn using the Jucys-Murphy elements. First let C[y1, . . . , yn] be the
polynomial C-algebra in n commuting variables y1, . . . , yn. Then Sn acts on C[y1, . . . , yn]
by permuting the variables, that is for any π ∈ Sn and f ∈ C[y1, . . . , yn] we have that
(π ◦ f)(y1, . . . , yn) := f(yπ(1), . . . , yπ(n)). The subalgebra of symmetric polynomials is
given by

Sym[y1, . . . , yn] := {f ∈ C[y1, . . . , yn] | π ◦ f = f, ∀π ∈ Sn}.
By item (i) of Lemma 2.12 we have a C-algebra homomorphism C[y1, . . . , yn] → CSn

by letting yi 7→ Yi. We denote the image of Sym[y1, . . . , yn] under this homomorphism
by Sym[Y1, . . . , Yn].

Theorem 2.13 (Theorem 1.9 of [Murphy83]). The center of CSn is given by

Zn = Sym[Y1, . . . , Yn].

�

In Chapter 3 we will prove a new analogous result regarding the center for semisimple
partition algebras.
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2.1.5 Representation Theory

In this section we summarise some of the combinatorial features of the representation
theory of CSn. Much of the notation presented here and some of the results will be
used throughout the thesis. We will give an analogous description of the representation
theory of the semisimple partition algebras in Section 2.2.3.

For any n, l ∈ Z≥0, a tuple λ = (λ1, . . . , λl) ∈ Nl is called a partition of n, written
λ ` n, if λ1 ≥ λ2 ≥ · · · ≥ λl and |λ| := λ1 + · · · + λl = n. We let ∅ denote the unique
partition of 0, and let Λn := {λ ∈ Nl | l ≥ 0, λ ` n} denote the set of partitions of n.
We associate any partition λ = (λ1, . . . , λl) ∈ Λn with the set of coordinates

λ = {(i, j) | 1 ≤ i ≤ l, 1 ≤ j ≤ λi}.

We view such a set pictorially by representing each coordinate (i, j) as a box � positioned
in row i and column j, where rows read 1 to l going from top to bottom, and the columns
read 1 to λ1 going from left to right. This pictorial representation of a partition λ is called
its associated Young diagram. In general we will not distinguish between a partition and
its Young diagram. We will let

Λ :=
⊔
n≥0

Λn

denote the set of all partitions.

Definition 2.14. Given λ ∈ Λ and box � = (i, j) ∈ λ, we let c(�) := j − i. Such a
statistic is called the content of the box. For any subset of boxes B ⊆ λ, we let c(B)
denote the multiset of contents of the boxes in B.

Given any λ, µ ∈ Λ, we write µ ⊆ λ whenever the associated Young diagram of µ
is contained within that of λ. In this case we let λ\µ denote the collection of boxes
contained in λ but not in µ, which is referred to as a skew diagram. We illustrate these
definitions with the following example:

Example 2.15. Consider the two partitions λ = (2, 2, 1), µ = (2, 1) ∈ Λ. Their associ-
ated Young diagrams are given by

λ = , and µ = .

We have that c(λ) = {1, 02,−1,−2} and c(µ) = {1, 0,−1}, with superscripts denoting
multiplicity. We have µ ⊆ λ and the corresponding skew diagram is given by

λ\µ = ,

where c(λ\µ) = {0,−2}.
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For any λ ∈ Λ, we call a box � = (i, j) 6∈ λ, for i, j ≥ 1, an addable box of λ if
adjoining it to the associated Young diagram of λ yields a new Young diagram for a
partition of |λ| + 1. Similarly, we call a box � ∈ λ a removable box of λ if removing it
from the associated Young diagram yields a new Young diagram of a partition of |λ|−1.
We now have enough notation to describe Young’s lattice.

Definition 2.16. Young’s lattice Ŝ is the graded directed graph with levels indexed by
the non-negative integers such that:

(1) Vertices on level n are given by the set Λn.

(2) An edge µ→ λ exists if there is an addable box � of µ such that λ = µ ∪�.

Example 2.17. The first five levels of Ŝ, reading top to bottom, are given by

∅

A path in Ŝ is a sequence T = (λ(i))ni=m, with n ≥ m, where λ(i) → λ(i+1) is an edge

for each m ≤ i ≤ n − 1. We let Path(λ) denote the set of paths in Ŝ starting at level 0
and whose terminal vertex is λ.

Young’s lattice Ŝ encodes many combinatorial features of the representation theory
of all the symmetric groups simultaneously. From definition we have a natural chain of
group algebras

C := CS0 ⊂ CS1 ⊂ CS2 ⊂ · · · . (2.2)

It was shown (see for example [OV96, Theorem 2.9]) that this chain is multiplicity-free.
That is, given any finite-dimensional simple CSn-module M , any simple constituent
in the restriction ResCSn−1(M) has multiplicity zero or one. The graph Ŝ describes the
multiplicity of such simple constituents as one restricts down the chain of Equation (2.2),
making Ŝ the Branching Graph of such a chain. This is summarised as follows (see
Theorem 2.2.10 of [K05]):

Theorem 2.18. For any n ∈ Z≥0:
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(1) The n-th level of Ŝ gives an indexing set for the isomorphism classes of simple
CSn-modules. We let Sλ denote a simple module of class λ ∈ Λn.

(2) For any λ ∈ Λn we have

ResCSn−1(Sλ) =
⊕
µ→λ

Sµ,

where the sum runs over all µ ∈ Λn−1 such that µ→ λ is an edge in Ŝ.

(3) For each λ ∈ Λn we have dim(Sλ) = |Path(λ)|.

�

One may use item (2) from above to construct a basis for any simple module of
the group algebra of the symmetric group. First for any λ ∈ Λn we have a canonical
decomposition

ResCSn−1(Sλ) =
⊕
µ→λ

Sµ.

We may iterate this process on the summands to obtain a decomposition of ResCSn−2(Sλ)
into simple CSn−2-modules, and such simple modules appearing can be indexed by
paths in Ŝ starting at level n− 2 and terminating at λ. Hence continuing to restrict the
summands down the chain of Equation (2.2) allows us to obtain a unique decomposition
of ResCS0(Sλ) into simple CS0-modules, i.e. into 1-dimensional C-vector spaces, which
are indexed by the paths in Path(λ). Thus as C-vector spaces we have

Sλ =
⊕

T∈Path(λ)

VT (2.3)

where VT is a 1-dimensional vector space. Note this shows that item (2) implies (3) of
Theorem 2.18. Picking a non-zero vector vT ∈ VT for each T ∈ Path(λ) gives a unique
(up to scalars) basis {vT | T ∈ Path(λ)} for Sλ. Such a basis is called a Gelfand-Zeitlin
basis, or simply a GZ-basis. We end the section by describing how the Jucys-Murphy
elements act on the GZ-basis of any simple module.

Definition 2.19. Let n ∈ Z≥0, λ ∈ Λn, and T = (λ(i))ni=0 ∈ Path(λ). For any i ∈ [n] let

cont(T, i) := c(�)

where � is the single box belonging to the skew diagram λ(i)\λ(i−1). We refer to such a
statistic as the contents of T at i.

For the following result see for example Theorem 2.2.10 of [K05].

Proposition 2.20. Let n ∈ Z≥0, λ ∈ Λn, and T = (λ(i))ni=0 ∈ Path(λ). Let vT be a
GZ-basis element of the simple module Sλ, then for each i ∈ [n] we have that

YivT = cont(T, i)vT.
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�

Hence the GZ-basis simultaneously diagonalises the action of the Jucys-Murphy ele-
ments, and thus Equation (2.3) gives the decomposition of Sλ into the shared eigenspaces
of the commuting actions of the Jucys-Murphy elements.

2.1.6 Schur-Weyl Duality

Consider an n-dimensional C-vector space V with basis {v1, . . . , vn}. For a, b, c ∈ [n], let
Eab denote the endomorphism of V acting on the basis by Eab (vc) = δb,cva where δb,c is
the Kronecker delta. For k ≥ 0 let V ⊗k := V ⊗ · · · ⊗ V with k components. The set of
simple tensors {va1⊗· · ·⊗vak | 1 ≤ i ≤ k, ai ∈ [n]} forms a basis of V ⊗k. For any i ∈ [k]
and a, b ∈ [n] we let Eab [i] denote the endomorphism of V ⊗k acting on simple tensors by

Eab [i](vc1 ⊗ · · · ⊗ vck) = vc1 ⊗ · · · ⊗ Eab (vci)⊗ · · · ⊗ vck .

Hence Eab [i] acts on the i-th component by Eab . Note Eab [i] and Ecd[j] commute for any
a, b, d, c ∈ [n] and i, j ∈ [k] such that i 6= j.

Consider the Lie algebra gl(V ) of endomorphisms of V with Lie bracket given by the
commutator. Let U(gl(V )) denote the universal enveloping algebra of gl(V ), which is
the algebra generated by the set of elements {eab | a, b ∈ [n]} and satisfying the defining
relations eabe

c
d − ecde

a
b = δb,ce

a
d − δa,de

c
b for all a, b, c, d ∈ [n]. The space V ⊗k may be

regarded as a U(gl(V ))-module with action U(gl(V ))→ EndC(V ⊗k) given by

eab 7→
k∑
i=1

Eab [i]. (2.4)

We let EndU(gl(V ))(V
⊗k) denote the space of endomorphisms which commute with this

action. The space V ⊗k is also an CSk-module by the natural action of permuting the k
tensor components. Let Φk,n be the corresponding representation, hence

Φk,n(π)(va1 ⊗ · · · ⊗ vak) = vaπ(1) ⊗ · · · ⊗ vaπ(k)

for any π ∈ Sk and ai ∈ [n]. It is clear that Φk,n(π)Eab [i] = Eab [π(i)]Φk,n(π), and thus
from Equation (2.4) we see that Φk,n(π) commutes with the action of U(gl(V )). Hence
we may regard Φk,n as an algebra homomorphism CSk → EndU(gl(V ))(V

⊗k). We describe
this action in terms of the endomorphisms Eab [i] as follows. For 1 ≤ i < j ≤ k let

Ωi,j :=
∑
a,b∈[n]

Eab [i]E
b
a[j]. (2.5)

Then one can observe that Ωi,j acts on simple tensors by exchanging the i-th and j-th
components. As such Ωi,j is the image of the transposition (i, j) of Sk under Φk,n, in
particular Φk,n(si) = Ωi,i+1. For the following result see for example the Theorem of
Section 3 in [CL74].
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Theorem 2.21. The algebra homomorphism Φk,n : CSk → EndU(gl(V ))(V
⊗k) is surjec-

tive, and is an isomorphism when n ≥ k.

�

Schur-Weyl duality provides a much richer collection of results than just the above
theorem, but for our purposes such theory will not be required. We are only interested
in the morphism Φn,k and its various generalisations. In particular we will be describing
an extension of this morphism to the degenerate affine Hecke algebra in the next section.
To help compare and motivate this extension we end by stating the action of the Jucys-
Murphy elements, which follows directly from their definition as a sum of transpositions.

Lemma 2.22. For any k, n ∈ Z≥0, and i ∈ [n], we have that

Φk,n(Yi) =
∑

1≤j<i
Ωj,i.

�

2.1.7 Degenerate Affine Hecke Algebra

In this section we give the definition of the degenerate affine Hecke algebra Hn. This
algebra is constructed from the group algebra of the symmetric group CSn by adjoining
new pairwise commuting generators and imposing relations on them which are analogous
to those presented in Lemma 2.12. We present a variety of basic results regarding this
algebra with a focus on how it extends certain properties of CSn.

We begin by defining Hn by generators and relations.

Definition 2.23. The degenerate affine Hecke algebra Hn is the C-algebra presented
with generating set

{si, yj | 1 ≤ i ≤ n− 1, j ∈ [n]}
and defining relations

(1) (i) s2
i = 1, for i ∈ [k − 1].

(ii) sisj = sjsi, for j 6= i− 1, i+ 1.

(iii) sisi+1si = si+1sisi+1, for i ∈ [k − 2].

(2) (i) yiyj = yjyi for all i, j ∈ [k].

(ii) siyj = yjsi for all j 6= i, i+ 1.

(iii) yi+1 = siyisi + si for all i ∈ [k − 1].

We have overloaded the symbols si as elements of Hn and CSn, however it will be
shown that the subalgebra generated by these elements in Hn gives an isomorphic copy
of CSn. Relations (1) above are precisely the relations of the presentation of Sn given
in Theorem 2.1, while relations (2) are obtained from Lemma 2.12 by replacing the
Jucys-Murphy elements Yi with the generators yi respectively. Note that the relations
present in Theorem 2.1 and Lemma 2.12 are invariant under a shift in indices, hence we
immediately obtain the following result.
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Lemma 2.24. For any l ∈ Z≥0 we have an algebra homomorphism ρl : Hn → CSn+l

defined on the generators by ρl(si) = si+l and ρl(yi) = Yi+l.

�

For the case l = 0, the homomorphism ρ0 is a surjection of Hn onto CSn. We also
have a homomorphism ι : CSn → Hn given by ι(si) = si. Clearly the composition ρ0 ◦ ι
is the identity on CSn, and hence ι has a left inverse. This implies that ι is injective,
and thus CSn is indeed the subalgebra of Hn generated by the elements si for i ∈ [n−1].
So we may interpret any permutation π ∈ Sn as an element of Hn. Collectively CSn is
both a subalgebra and quotient of Hn.

We refer to the generators y1, . . . , yn as the affine generators. Relation (2)(iii) of
Definition 2.23 shows that the affine generators share the same recursive structure as
the Jucys-Murphy elements. The base case is taken to be the generator y1 itself, as
opposed to Y1 = 0. As such any affine generator may be expression in terms of the
generators si and y1, that is to say Hn = 〈si, y1 | 1 ≤ i ≤ n − 1〉. From this one can
deduce that Ker(ρ0) = (y1), the two-sided ideal of Hn generated by y1.

The algebra Hn has a natural basis.

Theorem 2.25 (Theorem 3.2.2 of [K05]). The set

{πya11 . . . yann | (a1, . . . , an) ∈ Zn≥0, π ∈ Sn}

is a basis for Hn.

�

As a corollary the subalgebra of Hn generated by the affine generators is precisely the
polynomial algebra C[y1, . . . , yn] in n commuting variables. The projection ρ0 acts on
this subalgebra by evaluating the variables at the Jucys-Murphy elements. In this sense
the algebra Hn was obtained from CSn by lifting the Jucys-Murphy elements to free
commuting variables.

Recall from Theorem 2.13 that the center of the group algebra of the symmetric group
is given by symmetric polynomials in the Jucys-Murphy elements. We have an analogous
result regarding the center of Hn.

Theorem 2.26 (Theorem 3.3.1 of [K05]). The center of Hn is given by

Z(Hn) = Sym[y1, . . . , yn],

the symmetric polynomials in the affine generators.

�

Restricting the projection ρ0 down to the center of Hn thus gives a surjective ho-
momorphism between the centers Sym[y1, . . . , yn] → Sym[Y1, . . . , Yn]. The inclusion
Sym[y1, . . . , yn] ⊆ Z(Hn) can be proven by direct computations, but it is worth men-
tioning that the reverse inclusion requires the use of Theorem 2.25.
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We now wish to describe a representation of Hk which gives a counterpart to the
representation Φk,n of CSk given in Theorem 2.21. Recall the set up in describing Φk,n

in Section 2.1.6. Let M be any (possibly infinite dimensional) U(gl(V ))-module with
basis {mi | i ∈ I} for some indexing set I. Then for any k ∈ Z≥0 we consider the tensor
space M ⊗ V ⊗k with basis {ma0 ⊗ va1 ⊗ · · · ⊗ vak | (a0, a1, . . . , ak) ∈ I × [n]k}. We refer
to the M component of the tensor space M ⊗ V ⊗k as the 0-th component. For any
a, b ∈ [n] and 0 ≤ i ≤ k, let Eab [i] denote the endomorphism of M ⊗ V ⊗k acting on the
i-th component by Eab (or by eab when i = 0). We may regard the operators Ωi,j given
in Equation (2.5) as operators of M ⊗ V ⊗k in the natural manner. We can extend the
definition by setting

Ω0,j :=
∑
a,b∈[n]

Eab [0]Eba[j],

For any j ∈ Z≥0. For the following result see [AS98, Section 2.2].

Theorem 2.27. For any k, n ∈ Z≥0 and U(gl(V ))-module M , we have an algebra
homomorphism

Φ
(M)
k,n : Hk → EndU(gl(V ))(M ⊗ V ⊗k)

given on the generators by

Φ
(M)
k,n (si) = Ωi,i+1, and Φ

(M)
k,n (yj) =

∑
0≤i<j

Ωi,j ,

for all i ∈ [n− 1] and j ∈ [n].

�

Comparing with the action of the Jucys-Murphy element Yj on V ⊗k displayed in
Proposition 2.61, the action of the corresponding affine generator yj on M ⊗V ⊗k differs

only in the term Ω0,j . Therefore the representation Φ
(M)
k,n has extended that of Φk,n in

Theorem 2.21 by allowing the affine generators to act in a way which has generalised
the action of the Jucys-Murphy elements onto an additional factor of M . For example,
letting l ≥ 0 and M = V ⊗l (with action given by Equation (2.4) with k replaced by l),
then one can deduce that the representation

Φ
(V ⊗l)
k,n : Hk → EndU(gl(V ))(V

⊗(l+k))

satisfies Φ
(V ⊗l)
k,n = Φk,n ◦ ρl, where ρl is the homomorphism given in Lemma 2.24. In

particular the affine generators yi act under Φ
(V ⊗l)
k,n in the same manner that the Jucys-

Murphy elements Yi+l act under Φk,n.
We now end this section by giving a brief description of how the diagrammatics of

CSn, mentioned at the end of Section 2.1.1, can be extended to Hn by introducing
decorations. This discussion will be an informal one. A more rigorous treatment of
these diagrammatics will be postponed to Section 4.3 of Chapter 4. As a diagram, the
identity permutation of Sn consists precisely of the trivial edges {{i′, i} | i ∈ [n]}. We
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may associate the affine generator yj of Hn with the diagram we get from the identity
diagram by adding a decoration (black dot) onto the edge {i′, i}. For example with j = 3
we have

y3 =

1 2 3 4 5

1′ 2′ 3′ 4′ 5′

as an element of H5. These dots can move freely along their edge and commute, which
allows relation (2)(i) and (2)(ii) of Definition 2.23 to be satisfied. To capture rela-
tion (2)(iii) of Definition 2.23 within these diagrammatics, a local relation is imposed
describing how a dot passes over a crossing of edges. This is given by

= − . (2.6)

Algebraically this is equivalent to the relation siyi = yi+1si − 1, which is equivalent to
relation (2)(iii) of Definition 2.23. Hence a permutation diagram with decorations on
its edges represents a word in the generators {si, yj | i ∈ [n − 1], j ∈ [n]} of Hn and
moving a decoration along its edge corresponds to employing a sequence of the relations
(2) of Definition 2.23.

2.2 Partition Algebra

2.2.1 Definitions and Presentation

Given a finite set X recall that a set partition α = {A1, . . . , An} of X is a collection of
non-empty subsets such that Ai ∩ Aj = ∅ for all i 6= j and X =

⋃n
i=1Ai. We will write

α ` X to denote this and refer to the elements Ai as the blocks of α. Any graph with
vertex set X and whose connected components partition the vertices according to the
blocks of α will be called an associated graph of α. We will not distinguish between a
set partition α and any associated graph of α, in particular we will only care about the
connected components of such graphs, not the edges forming the components. For any
x, y ∈ X we write x ∼α y whenever x and y belong to the same block of α, and write
x 6∼α y otherwise.

Now for any k ∈ N recall that [k] = {1, . . . , k} and [k′] = {1′, . . . , k′}. Let Π2k denote
the set of all set partitions of [k] ∪ [k′]. We call any associated graph of an α ∈ Π2k a
partition diagram. When drawing such diagrams, we arrange the vertices in two rows
with the top row reading 1 to k from left to right, and the bottom row reading 1′ to k′

from left to right. We call the vertices [k] top vertices and [k′] bottom vertices.

Example 2.28. In Π10 we have the identification

{{1, 2, 2′, 3}, {3′}, {1′, 4, 4′}, {5, 5′}} =

1 2 3 4 5

1′ 2′ 3′ 4′ 5′

.
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We now describe an associative product on the set Π2k.

Definition 2.29. Given α, β ∈ Π2k we define the product α ◦ β ∈ Π2k as follows:

(i) Construct α ? β ` {1, . . . , k, 1′, . . . , k′, 1′′, . . . , k′′} by identifying, for each i ∈ [k],
the bottom vertex i′ of α with the top vertex i of β, then relabel the vertex by i′′.

(ii) With α?β = {A1, . . . , An} define α◦β to be the set of all non-empty Ai∩([k]∪[k′]).

We refer to the elements of the set {1′′, . . . , k′′} as the middle vertices of α ? β. Di-
agrammatically step (i) in Definition 2.29 corresponds to stacking α on top of β while
step (ii) is the action of removing connected components containing only middle ver-
tices, and then reading off the connected components formed from the top row of α and
the bottom row of β, see Example 2.30 below. We refer to the set partition α ? β as a
stacked diagram. Often in the literature both steps are described in unison without the
need to define a stacked diagram, however we will find it helpful to have such an object
to work with for later results.

Example 2.30. Consider the elements α, β ∈ Π10 given diagrammatically by

α =

1 2 3 4 5

1′ 2′ 3′ 4′ 5′

and β =

1 2 3 4 5

1′ 2′ 3′ 4′ 5′

.

Then the stacked diagram and the product are given by

α ? β =

1 2 3 4 5

1′ 2′ 3′ 4′ 5′

and α ◦ β =

1 2 3 4 5

1′ 2′ 3′ 4′ 5′

.

Here the middle row of vertices of α ? β are labelled 1′′ to 5′′ from left to right. To go
from α ? β to α ◦ β the middle component {3′′} has been removed and the remaining
middle vertices have been ignored.

This product is easily seen to be associative and it is clear that the set partition
1 = {{i, i′} | i ∈ [k]} ∈ Π2k is an identity element. Thus Π2k is a monoid, and is called
the partition monoid. When drawing partition diagrams we will often suppress the labels
of the vertices since these can be deduced from their relative positions. The symmetric
group Sk can be regarded as the submonoid of Π2k by associating any permutation π with
the partition diagram {{i′, π(i)} | i ∈ [k]}, which we call a permutation diagram. These
permutation diagrams are precisely the diagrams described at the end of Section 2.1.1.
The subgroup Sk of Π2k is precisely the subgroup of units of Π2k.

Whenever k ∈ Z>0 we define Π2k−1 to be the subset of Π2k consisting of all set
partitions such that k and k′ belong to the same block, that is

Π2k−1 := {α ∈ Π2k | k ∼α k′}.
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For instance the set partition α in Example 2.30 is a member of Π9, while β is not. It
can be seen diagrammatically that Π2k−1 is closed under the product ◦, and hence Π2k−1

is a submonoid of Π2k. Furthermore Π2(k−1) can be realised as the submonoid of Π2k−1

consisting of all set partitions containing the block {k, k′}, that is

Π2(k−1)
∼= {α ∈ Π2k−1 | {k, k′} ∈ α}.

For instance, under such an isomorphism, we may interpret the set partition α in Example
2.30 as an element of Π8 which sits inside Π9. As for the element β, the smallest
partition monoid containing it is Π10, and for example we may view β as an element
of Π11 by adjoining the block {6, 6′}. In this manner we obtain a chain of monoids
∅ = Π0 ⊂ Π1 ⊂ Π2 ⊂ . . . , which have a natural diagrammatic interpretation. Any time
we write Πi ⊂ Πr for i ≤ r, we abide by the identification given in this chain. We also
have that |Πr| = Br, where Br is the rth Bell number.

Let z be a formal variable and C[z] the polynomial ring in z over the field C. We now
present the definition for the partition algebra which is an algebra over the ring C[z].

Definition 2.31. For any k ∈ Z≥0, the partition algebra A2k(z) is the C[z]-algebra with
{D(α) | α ∈ Π2k} as a C[z]-basis whose product is given by

D(α)D(β) = zm(α,β)D(α ◦ β)

for all α, β ∈ Π2k, extended linearly over C[z], where m(α, β) is the number of blocks of
α ? β containing only middle vertices.

As was the case for the partition monoids, for any i ≤ 2k we may regard Ai(z) as
the subalgebra of A2k(z) generated as a C[z]-algebra by {D(α) | α ∈ Πi}. We refer to
the set {D(α) | α ∈ Πr} as the diagrammatic basis of Ar(z). We may regard C[z]Sk

as the subalgebra of A2k(z) generated by D(π) for all permutation diagrams π ∈ Π2k.
We abuse notation a little and use partition diagrams to also represent elements of
the diagrammatic basis. In this manner an arbitrary element of Ar(z) is a C[z]-linear
combination of partition diagrams. The product of Ar(z) is a deformation of the monoid
product of Πr. More formally, as described in [W07], the algebra Ar(z) is the twisted
semigroup algebra of Πr with twisting t : Πr ×Πr → C[z] given by t(α, β) = zm(α,β).

Example 2.32. Consider the set partitions α, β ∈ Π10 given in Example 2.30. The
stacked diagram α?β contains only one block consisting only of middle vertices, namely
the block {3′′}. Hence m(α, β) = 1 and so

D(α)D(β) = z

We can view Ar(z) as an algebra over C with basis {znD(α) | n ∈ Z≥0, α ∈ Πr}.
When we want to stress this perspective we will use the notation Ar instead. For any
δ ∈ C we define the C-epimorphism evδ : C[z]→ C by evδ(z) = δ. Then by extension of
scalars we may define the C-algebras

Ar(δ) := C⊗evδ Ar(z).
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We let Dδ(α) := 1⊗D(α) ∈ Ar(δ) and so {Dδ(α) | α ∈ Πr} gives a diagrammatic basis
for Ar(δ). Thus the algebra Ar(δ) is finite dimensional with dimC(Ar(δ)) = Br. We have
a canonical projection of rings prδ : Ar(z) → Ar(δ) defined by evaluating polymonials
f(z) 7→ f(δ) and D(α) 7→ Dδ(α). One may define the algebra Ar(δ) in a completely
analgous manner to Ar(z) with the role of z instead being played by δ. When δ = 1 the
algebra Ar(1) is precisely the monoid algebra of Πr.

We end this subsection by recalling a presentation of the partition algebra A2k(z).
For i ∈ [k − 1] and j ∈ [k], we define the following elements of A2k(z):

si =

1

. . .

1′

i i+1

i′ (i+1)′

. . .

k

k′

, e2j−1 =

1

. . .

1′

j

j′

. . .

k

k′

,

e2i =

1

. . .

1′

i i+1

i′ (i+1)′

. . .

k

k′

.

One can deduce that these elements generate the algebra A2k(z). We use the same
notation for these generating elements for their projections to A2k(δ). The following
presentation for the partition algebra is given in terms of these generators and was first
established by T. Halverson and A. Ram in [HR05], see also [East11].

Theorem 2.33 (Theorem 1.11 of [HR05]). The partition algebra A2k(z) has a presen-
tation with generating set

{si, ej | i ∈ [k − 1], j ∈ [2k − 1]}

and relations

(HR1) (Coxeter relations)

(i) s2
i = 1, for i ∈ [k − 1].

(ii) sisj = sjsi, for j 6= i− 1, i+ 1.

(iii) sisi+1si = si+1sisi+1, for i ∈ [k − 2].

(HR2) (Idempotent relations)

(i) e2
2i−1 = ze2i−1, for i ∈ [k].

(ii) e2
2i = e2i, for i ∈ [k − 1].

(iii) sie2i = e2isi = e2i, for i ∈ [k − 1].

(iv) sie2i−1e2i+1 = e2i−1e2i+1si = e2i−1e2i+1, for i ∈ [k − 1].

(HR3) (Commutation relations)

(i) e2i−1e2j−1 = e2j−1e2i−1, for i, j ∈ [k].
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(ii) e2ie2j = e2je2i, for i, j ∈ [k − 1].

(iii) e2i−1e2j = e2je2i−1, for j 6= i− 1, i.

(iv) sie2j−1 = e2j−1si, for j 6= i, i+ 1.

(v) sie2j = e2jsi, for j 6= i− 1, i+ 1.

(vi) sie2i−1si = e2i+1, for i ∈ [k − 1].

(vii) sie2i−2si = si−1e2isi−1, for i ∈ [k − 1].

(HR4) (Contraction relations)

(i) eiei+1ei = ei for i ∈ [2k − 2].

(ii) ei+1eiei+1 = ei+1, for i ∈ [2k − 2].

�

The presentation above extends to one for the C-algebra A2k by simply adding z as
a central generator. The C-algebra A2k(δ) has a presentation identical to above with
the exception of replacing z with δ in relation (HR2)(i). From this presentation, one
can easily check that for any δ ∈ C we have a surjective C-algebra homomorphism
fδ : A2k → CSk given by fδ(z) = δ, fδ(ei) = 0, and fδ(si) = si. Thus the group algebra
CSk is not only a subalgebra of A2k but also a quotient.

From the symmetry of the above presentation, one can deduce that we have an anti-
involution ∗ : A2k(z) → A2k(z) which fixes the generators si and ej . Diagrammatically
this map corresponds to flipping a partition diagram up-side-down (i.e. swapping vertices
i and i′ around for each i ∈ [k]), and extending linearly over C[z]. We denote the image
of an element a ∈ A2k(z) under this anti-involution by a∗.

2.2.2 Jucys-Murphy Elements and Enyang’s Presentation

A collection of Jucys-Murphy elements L1, . . . , L2k for the partition algebra A2k(z) were
first defined in [HR05] where they gave a diagrammatic description. They were later
given a recursive definition in [Eny12]. This recursive definition introduced new elements
σi ∈ Ai+1(z) which resemble the simple transpositions, and we will refer to these as
Enyang’s generators. We now give the definition of such Jucys-Murphy elements and
Enyang’s generators as presented in [Eny13] (with some typos corrected).

Definition 2.34. Let L1 = 0, L2 = e1, σ2 = 1, and σ3 = s1. Then for i = 1, 2, . . . ,
define

L2i+2 = siL2isi − siL2ie2i − e2iL2isi + e2iL2ie2i+1e2i + σ2i+1,

where, for i = 2, 3, . . . , we have

σ2i+1 = si−1siσ2i−1sisi−1 + sie2i−2L2i−2sie2i−2si + e2i−2L2i−2sie2i−2

− sie2i−2L2i−2si−1e2ie2i−1e2i−2 − e2i−2e2i−1e2isi−1L2i−2e2i−2si.
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Also for i = 1, 2, . . . , define

L2i+1 = siL2i−1si − L2ie2i − e2iL2i + (z − L2i−1)e2i + σ2i,

where, for i = 2, 3, . . . , we have

σ2i = si−1siσ2i−2sisi−1 + e2i−2L2i−2sie2i−2si + sie2i−2L2i−2sie2i−2

− e2i−2L2i−2si−1e2ie2i−1e2i−2 − sie2i−2e2i−1e2isi−1L2i−2e2i−2si.

A proof by induction can confirm that Li ∈ Ai(z) and σi ∈ Ai+1(z). We use the
same notation to denote the corresponding elements in Ar(δ). The two recursive expres-
sions for the Jucys-Murphy elements L2i+2 and L2i+1 above are the partition algebra
counterparts to Equation (2.1) of the Jucys-Murphy elements of CSn.

Example 2.35. The first few non-trivial examples are

L3 = − − + z + ,

L4 = − − + + ,

σ4 = + + − − ,

σ5 = + + − − .

Even though the recursive definitions of the Jucys-Murphy elements are quite involved,
J. Enyang managed to prove a variety of relations within both [Eny12] and [Eny13]
involving the Jucys-Murphy elements and Enyang’s generators. We will be employing
many such relations throughout this thesis, most of which will not be recalled here but
rather referenced when needed.

Remark 2.36. The change of notation between [Eny12] and [Eny13] is given respectively
by pi ∼ e2i−1, pi+ 1

2
∼ e2i, σi ∼ σ2i−1, σi+ 1

2
∼ σ2i, Li ∼ L2i, and Li+ 1

2
∼ L2i+1.

We will however recall some properties proved in [Eny12] which will be used frequently.

Proposition 2.37. The following relations hold for all i ≥ 1:

(i) L∗i = Li and σ∗i = σi.

(ii) Li commutes with Ai−1(z).

(iii) σi+1 commutes with Ai−1(z).
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Proof. Items (ii) and (iii) are given in [Eny12, Theorem 3.8]. For item (i) we have
that L∗2i−1 = L2i−1 by [Eny12, Proposition 3.3 (2)], and we have that L∗2i = L2i by
definition and noting that L2i commutes with e2i+1. We have that σ∗2i = σ2i by [Eny12,
Proposition 3.3 (1)], and it follows that σ∗2i+1 = σ2i+1 by [Eny12, Proposition 3.4].

We will often use the properties of the above proposition without reference when clear
to do so. Note that since Li ∈ Ai(z), item (ii) above implies that the Jucys-Murphy
elements pairwise commute. We now recall an alternative presentation of the partition
algebra involving Enyang’s generators.

Theorem 2.38 (Theorem 4.1 of [Eny12]). The partition algebra A2k(z) has a presen-
tation with generating set

{σi, ej | 3 ≤ i ≤ 2k − 1, j ∈ [2k − 1]}

and relations:

(E1) (Involution)

(i) σ2
2i+2 = 1 for i ∈ [k − 2].

(ii) σ2
2i+1 = 1 for i ∈ [k − 1].

(E2) (Braid relations)

(i) σ2i+1σ2j = σ2jσ2i+1 for j 6= i+ 1.

(ii) σ2i+1σ2j+1 = σ2j+1σ2i+1 for j 6= i± 1.

(iii) σ2iσ2j = σ2jσ2i for j 6= i± 1.

(iv) sisi+1si = si+1sisi+1, for i ∈ [k − 2], where sj =

{
σ3, j = 1

σ2jσ2j+1, j > 1

(E3) (Idempotent relations)

(i) e2
2i−1 = ze2i−1 for i ∈ [k].

(ii) e2
2i = e2i for 2 ≥ i ≤ k − 1.

(iii) σ2i+1e2i = e2iσ2i+1 = e2i for i ∈ [k − 1].

(iv) σ2ie2i = e2iσ2i = e2i for 2 ≤ i ≤ k − 1.

(v) σ2ie2i−1e2i+1 = σ2i+1e2i−1e2i+1 for 2 ≤ i ≤ k − 1.

(vi) e2i+1e2i−1σ2i = e2i+1e2i−1σ2i+1 for 2 ≤ i ≤ k − 1.

(E4) (Commutation relations)

(i) eiej = ejei, if |i− j| ≥ 2.

(ii) σ2i−1e2j−1 = e2j−1σ2i−1, if j 6= i− 1, i.

(iii) σ2i−1e2j = e2jσ2i−1, if j 6= i.

37



(iv) σ2ie2j−1 = e2j−1σ2i, if j 6= i, i+ 1.

(v) σ2ie2j = e2jσ2i, if j 6= i− 1.

(E5) (Contractions)

(i) eiei+1ei = ei and ei+1eiei+1 = ei+1, for i ∈ [2k − 2].

(ii) σ2ie2i−1σ2i = σ2i+1e2i+1σ2i+1, for 2 ≤ i ≤ k − 1.

(iii) σ2ie2i−2σ2i = σ2i−1e2iσ2i−1, for 2 ≤ i ≤ k − 1.

�

Only the elements σi for i ≥ 3 were involved in the above presentation since the
even indexed base case σ2 = 1 is trivial. The elements sj in the above presentation are
precisely the simple transpositions of the subalgebra of C[z]Sk.

From (ii) and (iii) of Proposition 2.37, one can deduce that Li and σj commute
whenever j 6= i − 1, i, i + 1. We end this subsection by providing relations which tell
us how the Jucys-Murphy elements interact with Enyang’s generators when they do not
commute.

Proposition 2.39. The following relations hold for any i ≥ 1:

(i) L2i+1 = σ2iL2i−1σ2i − e2ie2i−1σ2i − σ2ie2i−1e2i + e2ie2i+1σ2ie2i+1e2i + σ2i.

(ii) L2i+2 = σ2i+1L2iσ2i+1 − e2ie2i+1 − e2i+1e2i + e2ie2i+1σ2i+1e2i+1e2i + σ2i+1.

(iii) L2i = σ2iL2iσ2i + e2ie2i−1σ2i + σ2ie2i−1e2i − e2ie2i+1 − e2i+1e2i.

(iv) L2i+1 = σ2i+1L2i+1σ2i+1 − e2ie2i+1σ2i+1 − σ2i+1e2i+1e2i + e2ie2i+1 + e2i+1e2i.

Proof. (i): By definition,

L2i+1 = siL2i−1si − L2ie2i − e2iL2i + (z − L2i−1)e2i + σ2i. (2.7)

We examine the right hand side term by term. For the first term we have

siL2i−1si = σ2iσ2i+1L2i−1σ2i+1σ2i = σ2iσ
2
2i+1L2i−1σ2i = σ2iL2i−1σ2i.

For the second term, multiplying [Eny12, Proposition 3.2 (3)] on the left by si we get
σ2ie2i−1e2i = L2ie2i. Acting by the anti-automorphism ∗ yields e2ie2i−1σ2i = e2iL2i for
the third term. Lastly for the forth term

(z − L2i−1)e2i = (z − L2i−1)e2ie2i+1e2i

= e2i(z − L2i−1)e2i+1e2i

= e2ie2i+1σ2ie2i+1e2i

where the last equality follows by [Eny12, Proposition 4.3 (2)]. Substituting these terms
back into Equation (2.7) yields (i).
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(ii): By definition,

L2i+2 = siL2isi − siL2ie2i − e2iL2isi + e2iL2ie2i+1e2i + σ2i+1. (2.8)

Multiplying this equation on the left and right by σ2i gives

L2i+2 = σ2i+1L2iσ2i+1 − σ2i+1L2ie2i − e2iL2iσ2i+1 + e2iL2ie2i+1e2i + σ2i+1

= σ2i+1L2iσ2i+1 − σ2
2i+1e2i+1e2i − e2ie2i+1σ

2
2i+1 + e2ie2i+1σ2i+1e2i+1e2i + σ2i+1

= σ2i+1L2iσ2i+1 − e2i+1e2i − e2ie2i+1 + e2ie2i+1σ2i+1e2i+1e2i + σ2i+1

which gives (ii), where the second equality follows by relation σ2i+1e2i+1e2i = L2ie2i and
its dual e2ie2i+1σ2i+1 = e2iL2i, which follows from [Eny12, Proposition 3.2 (3)].

(iii): It was shown in [Eny12, Proposition 3.10] that the element L1 + L2 + · · · + Lr
belongs to the center of Ar(z). From this, and the fact that Li and σj commute whenever
j 6= i− 1, i, i+ 1, one may deduce that

σ2i(L2i−1 + L2i + L2i+1)σ2i = L2i−1 + L2i + L2i+1.

Rearranging gives

L2i = σ2iL2iσ2i + (σ2iL2i−1σ2i − L2i+1) + (σ2iL2i+1σ2i − L2i−1). (2.9)

We examine the bracketed terms in Equation (2.9). Rearranging (i) gives the first
bracketed term as

σ2iL2i−1σ2i − L2i+1 = e2ie2i−1σ2i + σ2ie2i−1e2i − e2ie2i+1σ2ie2i+1e2i − σ2i.

Multiplying this on the left and right by σ2i, and then rearranging gives the second
bracketed term

σ2iL2i+1σ2i − L2i−1 = −e2ie2i−1 − e2i−1e2i + e2ie2i+1σ2ie2i+1e2i + σ2i.

Substituting these back into equation Equation (2.9) yields (iii).

(iv): Analogously to the previous case, one can deduce that

σ2i+1(L2i + L2i+1 + L2i+2)σ2i+1 = L2i + L2i+1 + L2i+2.

Rearranging gives

L2i+1 = σ2i+1L2i+1σ2i+1 + (σ2i+1L2iσ2i+1 − L2i+2) + (σ2i+1L2i+2σ2i+1 − L2i). (2.10)

We examine the bracketed terms in Equation (2.10). Rearranging (2)(ii) gives the first
bracketed term as

σ2i+1L2iσ2i+1 − L2i+2 = e2ie2i+1 + e2i+1e2i − e2ie2i+1σ2i+1e2i+1e2i − σ2i+1.

Multiplying this on the left and right by σ2i+1, and then rearranging gives the second
bracketed term

σ2i+1L2i+2σ2i+1 − L2i = −e2ie2i+1σ2i+1 − σ2i+1e2i+1e2i + e2ie2i+1σ2i+1e2i+1e2i + σ2i+1.

Substituting these back into equation Equation (2.10) yields (iv).
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2.2.3 Representation Theory

In Chapter 3 we will provide a description of the center of the partition algebra A2k(z)
and as a result obtain a spectral condition which describes the blocks of A2k(δ) for
any δ ∈ C. To do so we will utilise certain results regarding the representation theory
of the partition algebras. This subsection seeks to summarise all such results. We first
recall some semisimple results analogous to those presented in Section 2.1; describing the
branching graph of the partition algebras, the Gelfand-Zetlin basis for simple modules,
and the corresponding diagonal action of the Jucys-Murphy elements. All such results
can be found in [HR05]. Next we give the combinatorial description of the blocks of the
partition algebras first presented in [Martin96]. Lastly we mention a basis for the cell
modules of the partition algebras and recall the upper triangular action of the Jucys-
Murphy elements on such a basis as described in [Eny13].

Semisimple Case

Here we focus on the C-algebras Ar(δ) for parameters δ ∈ C. The partition algebra
Ar(δ) is semisimple for all but a finite number of choices of δ. The following result is
due to [MS94] (see also [MS93], [Martin96], and [HR05]).

Theorem 2.40. For r ∈ Z≥0, the partition algebra Ar(δ) is semisimple if and only if
δ 6∈ {0, 1, . . . , 2b r2c − 2}.

�

Using the natural diagrammatic embeddings of the partition monoids described in
Section 2.2.1, we have a chain of C-algebras

C = A0(δ) ⊂ A1(δ) ⊂ A2(δ) ⊂ · · · ⊂ Ar(δ). (2.11)

It was shown in [MR98, Proposition 1] that, when δ 6∈ {0, 1, . . . , 2b r2c − 2}, this chain
is multiplicity-free. That is, given 1 ≤ i ≤ r and any simple Ai(δ)-module M , the
multiplicity of any simple Ai−1(δ)-module in ResAi−1(δ)(M) is at most one. As was
the case for the chain of group algebras of the symmetric group, the description of the
simple constituents arising from restriction over the above chain may be encoded in
a combinatorial manner by a branching graph, which we describe below. Recall from
Section 2.1 that Λn denotes the set of partitions of n. Then we define the set

Λ≤r :=

r⋃
i=0

Λi.

Hence any element λ ∈ Λ≤r is a partition λ ` i for some i = 0, 1, . . . , r.

Definition 2.41. We let Â denote the graded directed graph with levels indexed by the
non-negative integers such that:

(1) Vertices on level r are given by the set Λ≤b r
2
c × {r}.
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(2) For r even, an edge (λ, r)→ (µ, r + 1) exists if either

(a) λ = µ, or

(b) µ is obtained from λ by removing a box.

(3) For r odd, an edge (λ, r)→ (µ, r + 1) exists if either

(a) λ = µ, or

(b) µ is obtained from λ by adding a box.

The second coordinate of a vertex of Â simply records the level it belongs to. We have
included this as the partition in the first coordinate will appear in multiple levels, and
we wish to distinguish between them easily.

Example 2.42. The first seven levels of Â (where we have dropped the second coordinate
of vertices and instead recorded the level to the left) are given by

∅0

∅1

∅2

∅3

∅4

∅5

∅6

A path in Â is a sequence T = ((λ(i), i))ri=s for some r ≥ s where (λ(i), i)→ (λ(i+1), i+1)
is an edge. We alternatively write

T = λ(s) → λ(s+1) → · · · → λ(r).

We let Path(λ, r) denote the set of paths in Â starting at level 0 and whose terminal
vertex is (λ, r). Truncating the graph Â up to level r gives the branching graph associated
with the multiplicity-free chain of Equation (2.11). We summarise this in the following
theorem (see [HR05, Theorem 2.24] and [Martin00, Proposition 7]).

Theorem 2.43. Let r ∈ Z≥0 and δ 6∈ {0, 1, . . . , 2b r2c − 2}. Then for all 0 ≤ i ≤ r:
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(1) The i-th level of Â gives an indexing set for the isomorphism classes of simple
Ai(δ)-modules. Let A(λ,i) denote a simple module of class (λ, i) ∈ Λ≤b i

2
c × {i}.

(2) For i ≥ 1 and (λ, i) ∈ Â , we have

ResAi−1(δ)(A
(λ,i)) =

⊕
(µ,i−1)→(λ,i)

A(µ,i−1),

where the sum runs over all edges (µ, i− 1)→ (λ, i) in Â.

(3) For each (λ, i) ∈ Â we have dim(A(λ,i)) = |Path(λ, i)|.

�

As was the case for the group algebra of the symmetric group given in Section 2.1.5,
we may employ item (2) of the above theorem to obtain a canconical decomposition of
any simple Ar(δ)-module A(λ,r) into one dimensional vector spaces indexed by paths.
That is

A(λ,r) =
⊕

T∈Path(λ,r)

VT,

where VT is 1-dimensional. Picking a non-zero vector vT ∈ VT for each T ∈ Path(λ, r)
gives a unique (up to scalars) basis {vT | T ∈ Path(λ, r)} for the simple Ar(δ)-module
A(λ,r). Again we refer to such a basis as the Gelfand-Zetlin basis, or GZ-basis for short.

Lastly, T. Halverson and A. Ram showed that the GZ-basis of a given simple module
A(λ,r) diagonalises the action of the Jucys-Murphy elements, and they gave a description
of the corresponding eigenvalues. To present this we first define the following.

Definition 2.44. For (λ, r) ∈ Â, path T = ((λ(i), i))ri=0 ∈ Path(λ, r), and 0 ≤ i ≤ r,
when i is even we set

cont(T, i) :=

{
z − |λ(i)|, if λ(i) = λ(i−1)

c(�), if λ(i) = λ(i−1) ∪ {�}

and for i odd we set

cont(T, i) :=

{
|λ(i)|, if λ(i) = λ(i−1)

z − c(�), if λ(i) = λ(i−1)\{�}
.

We refer to such a value as the contents of path T at i. For any δ ∈ C we let contδ(T, i)
denote the element of C obtained by replacing z with δ in the corresponding definition.

For the semisimple partition algebras, these values above provide statistics to the
paths in Â which generalises the contents of paths in Ŝ given in Definition 2.19.

Theorem 2.45 (Theorem 3.37 (b) of [HR05]). Let r ∈ Z≥0 and δ 6∈ {0, 1, . . . , 2b r2c−2}.
Let vT be a GZ-basis element of the simple Ar(δ)-module A(λ,r) for some (λ, r) ∈ Â and
T ∈ Path(λ, r). Then for any i ∈ [2k] we have that

LivT = contδ(T, i)vT

�
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Description of Blocks

In this section we will present a combinatorial condition describing the blocks of A2k(δ)
for arbitrary δ ∈ C. This condition was first given by P. Martin in [Martin96] for the
case δ 6= 0, and later extended by D. Wales and W. Doran in [DW00] to include the case
δ = 0. We begin by briefly recalling some definitions and notation.

Let A be any finite dimensional C-algebra, and let Λ be an indexing set for the
isomorphism classes of simple A-modules. The algebra A has a unique decomposition
as a direct sum of indecomposable ideals

A = Ae1 ⊕Ae2 ⊕ · · · ⊕Aen,

where 1 = e1 + e2 + · · · + en is a decomposition of unity as a sum of primitive central
idempotents ei ∈ A. The direct summands in the above decomposition are called the
blocks of A. We say that an A-module M belongs to the block Aei if eiM = M and
ejM = 0 for all j 6= i. Any simple module of A belongs to a particular block. Also
one can show that M belongs to a given block if and only if all its composition factors
do also. For any λ, µ ∈ Λ we write λ ∼ µ whenever the corresponding simples modules
belong to the same block. This equips Λ with an equivalence relation. We let BA(λ) be
the equivalence class of λ in Λ with respect to this equivalence relation and refer to it
as a block of Λ. Whenever A is semisimple, then BA(λ) = {λ} for all λ ∈ Λ.

As described in the previous subsection, whenever δ 6∈ {0, 1, . . . , 2k−2}, the C-algebra
A2k(δ) is semisimple and the set Λ≤k × {2k} indexes the isomorphism classes of simple
modules. For this section we drop the second coordinate and just work with the set
Λ≤k. It was shown in [Martin96] that the set Λ≤k also indexes the set of simple A2k(δ)-
modules whenever δ 6= 0. When δ = 0, the indexing set is Λ≤k\{∅} (see for example
[DW00, Corollary 2.3]). With this in mind we set

Λ
(δ)
≤k :=

{
Λ≤k, δ 6= 0,

Λ≤k\{∅}, δ = 0.

For any λ ∈ Λ
(δ)
≤k the block BA2k(δ)(λ) ⊂ Λ

(δ)
≤k consists of all partitions which belong to

a chain of partitions satisfying a combinatorial criteria involving the parameter δ. To
describe this first recall for any partitions µ ⊂ λ we have a skew diagram λ\µ consisting
of all boxes in λ which do not belong to µ. Then we call a skew diagram a horizontal
strip if all its boxes belong to the same row.

Definition 2.46. Given µ, λ ∈ Λ
(δ)
≤k such that µ ⊂ λ, we call the pair (µ, λ) a δ-pair if

λ\µ is a horizontal strip where the last (right-most) box has content δ − |µ|.

Example 2.47. Let δ = 1 and k ≥ 3, then consider µ = (2), λ = (2, 1) ∈ Λ
(1)
≤k. Inscribing

the contents within the boxes we have

0 1 ⊂ 0 1
-1

and λ\µ = -1 .

Since −1 = δ − |µ| = 1− 2 the pair ( , ) is a 1-pair.
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Let r ∈ N and suppose we have a chain of partitions

τ (1) ⊂ τ (2) ⊂ · · · ⊂ τ (r)

belonging to Λ
(δ)
≤k such that each consecutive pair (τ (i−1), τ (i)) is a δ-pair. Then we call

such a chain a δ-chain, and we say it is maximal if no other partition can be adjoined to

form a longer δ-chain. Now given λ ∈ Λ
(δ)
≤k, let Ri denote the maximal horizontal strip

which can be removed from the i-th row of λ and still form a partition. Let c(Ri) denote
the set of contents of the boxes in Ri, then one can note that c(Ri) ∩ c(Rj) is empty
whenever i 6= j. As such if there exists a partition µ such that (µ, λ) is a δ-pair, then µ
is the unique partition to do so. From this one can deduce that the maximal δ-chains

give a set partition of Λ
(δ)
≤k, and so any λ belongs to a unique maximal δ-chain. We let

C2k,δ(λ) denote the set of partitions belonging to the same maximal δ-chain as λ.

Example 2.48. For k = 4 and δ = 2, there are two non-trivial maximal 2-chains with

partitions belonging to Λ
(2)
≤4 given by

∅ ⊂ 0 1 2 ⊂ 0 1 2
-1

, 0 ⊂ 0 1 ⊂ 0 1
-1 0

.

The other maximal 2-chains are of length one. These chains partition the set Λ
(2)
≤4 into

distinct subsets C8,2(λ), where for example C8,2(∅) =
{
∅, ,

}
.

For the following result see [Martin96, Proposition 9] and [DW00, Theorem 1.1].

Proposition 2.49. Let λ ∈ Λ
(δ)
≤k, then BA2k(δ)(λ) = C2k,δ(λ).

�

In Chapter 3 we will provide an alternative spectral description of the blocks of Λ
(δ)
≤k.

We will associate to each partition a certain generating function which will encode the
action of a central subalgebra of the partition algebra. Then the block structure appears
by proving that two partitions belong to the same maximal δ-chain if and only if they
have the same associated generating functions.

Cellularity

Cellular algebras were first introduced by Graham and Lehrer in [GL96]. Roughly speak-
ing, given a commutative ring R, an R-algebra A is cellular if it come with a distinguished
basis called a cellular basis which is particularly well adapted to studying its represen-
tation theory. The cellular basis induces a basis for what are called cell modules. These
modules come equiped with a bilinear form, and when R is a field, quotienting the cell
modules by the radical of the form gives zero or a simple module. All simple A-modules
appear in this manner. It was first shown that the partition algebra A2k(δ) is a cellular
algebra in [Xi99], where an explicit construction of a cellular basis was given. Later
an alternative cellular basis was constructed for the partition algebra Ar(z) in [EG17,
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Theorem 6.30], and was called a Murphy type cellular basis. For our purposes, we do
not require a detailed description of cellular algebras or of the cellular structure of the
partition algebra, we simply want to recall some results given in [Eny13] regarding the
action of the Jucys-Murphy elements on the cell modules.

To begin, for any (λ, 2k) ∈ Λ≤k × {2k} there exists a cell module ∆
(λ,2k)
2k for the

partition algebra A2k(z) (see [Eny13, Definition 3.6]). This module has a basis {mT | T ∈
Path(λ, 2k)} indexed by the paths in Path(λ, 2k). There is a natural partial order ≺ one
can impose on the set of paths Path(λ, 2k) defined in [Eny13, Definition 3.8], and such an
ordering allows one to describe the action of Jucys-Murphy elements on the cell modules
as upper triangular.

Proposition 2.50 (Proposition 3.15 of [Eny13]). Let k ∈ Z≥0, (λ, 2k) ∈ Λ≤k × {2k},
T ∈ Path(λ, 2k), and mT be the corresponding basis element of the cell module ∆

(λ,2k)
2k

of A2k(z). Then for any i ∈ [2k],

LimT = cont(T, i)mT +
∑
T≺S

uS(T, i)mS

where uS(T, i) ∈ C[z], and cont(T, i) is the content of T at i defined in Definition 2.44.

�

Remark 2.51. We are considering the cell modules as left modules instead of right as
was presented in [Eny13].

The cellular structure of a cellular algebra is preserved under the extension of scalars
of the ground ring. As such the C-algebra A2k(δ) = C ⊗evδ A2k(z) is also cellular for
any δ ∈ C, and in particular the A2k(δ)-modules given by

∆
(λ,2k)
2k,δ := C⊗evδ ∆

(λ,2k)
2k

provide a complete collection of cell modules for A2k(δ). Now working over a field the
theory of cellular algebras tells us that each of the simple A2k(δ)-modules appears as
the head of some cell module. For any T ∈ Path(λ, 2k), we abuse notation a little and

write mT to denote the basis element 1⊗mT of the cell module ∆
(λ,2k)
2k,δ := C⊗evδ ∆

(λ,2k)
2k .

Then from the above proposition we immediately obtain the following results.

Corollary 2.52. Let k ∈ Z≥0, (λ, 2k) ∈ Λ≤k × {2k}, T ∈ Path(λ, 2k), and mT be the

corresponding basis element of the cell module ∆
(λ,2k)
2k,δ of A2k(δ). Then for any i ∈ [2k],

LimT = contδ(T, i)mT +
∑
T≺S

vS(T, i)mS

where vS(T, i) ∈ C, and contδ(T, i) is the content of T at i defined in Definition 2.44.

�
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2.2.4 Schur-Weyl Duality

The partition algebra A2k(n) and the group algebra of the symmetric group CSn are
in Schur-Weyl duality with respect to their actions on a given tensor space. In this
section we summarise features of such a duality which we extend in Chapter 4 and
Chapter 5. We begin by recalling the orbit basis of the partition algebra, and then
describe types of colourings of partition diagrams, both of which help in defining this
duality and extending it later. Lastly we present the duality itself and describe how the
Jucys-Murphy elements and Enyang’s generators act. Most results in this section can
be found in [BH18] and [HR05].

Orbit Basis

We can define a partial order on the set Πr as follows: Given any α, β ∈ Πr we let α � β
whenever each block of α is contained within a block of β. We then say that α is a
refinement of β, and that β is a coarsening of α.

Definition 2.53. The orbit basis {O(α) | α ∈ Πr} of the partition algebra Ar(z) is
defined according to the equation

D(α) =
∑
α�β

O(β), (2.12)

and we let Oδ(α) := 1⊗O(α) in A2k(δ) for any δ ∈ C.

It is clear that the set {O(α) | α ∈ Πr} is indeed a basis since the transition matrix
determined by Equation (2.12) is unitriangular, and hence invertible, with respect to
any extension of the partial order � to a total order. One can essentially “invert” the
summation of Equation (2.12) to express an orbit basis element as a sum of diagrammatic
basis elements. This comes about from the Möbius inversion formula (see for example
[S97, Proposition 3.7.1]) which gives

O(α) =
∑
α�β

µ(β, α)D(β) (2.13)

where µ : Πr × Πr → Z is called the Möbius function of Πr. The function µ may be
calculated as follows: Let α = {A1, . . . , A|α|} and β = {B1, . . . , B|β|} and suppose α � β.
Then for each block of β we have that Bi = Ai1 ∪ · · · ∪ Aini for some ni ∈ Z≥0 with
n1 + · · ·+ n|β| = |α|. Then from [S97, Example 3.10.4],

µ(β, α) =

|β|∏
i=1

(−1)ni−1(ni − 1)!.

We will also represent orbit basis elements diagrammatically as partition diagrams as
we did for the diagrammatic basis of the partition algebras. However, to distinguish the
orbit and diagrammatic basis, we will adopt the conventions of [BH18] and draw the
vertices of the partition diagram representing an orbit basis as clear nodes as opposed
to the solid black nodes used up until now.
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Example 2.54. Let α = {{1, 2′}, {2}, {1′}} ∈ Π4, then in A4(z) we have

D(α) = , O(α) = .

From Equation (2.13) we have

= − − − + 2 .

Definition 2.55. Let k ∈ N. For any subset B ⊆ [k], let B′ denote the corresponding
subset of [k′] obtained by taking the primed elements of B. Similarly, for any set partition
S = {B1, . . . , B|S|} of [k] let S′ = {B′1, . . . , B′|S|} denote the corresponding set partition of

[k′]. We define I(S) to be the set partition of [k]∪ [k′] given by {B1∪B′1, . . . , B|S|∪B′|S|}.

It is worth mentioning that for the partition diagram 1 = {{i, i′} | i ∈ [k]} ∈ Π2k, the
element D(1) is the identity of A2k(z), but O(1) is not. The identity D(1) is equal to
the sum of orbit basis elements O(I(S)) where S runs over all set partitions of [k].

Colourings of Partition Diagrams

Let n, k ∈ Z≥0. We view any tuple a = (a1, . . . , ak) ∈ [n]k as a function [k] → [n]
by setting a(i) = ai for any i ∈ [k]. Similarly, given tuples a = (a1, . . . , ak), b =
(b1, . . . , bk) ∈ [n]k, we view the pair (a, b) as a function [k] ∪ [k′] → [n] by setting
(a, b)(i) := ai and (a, b)(i′) := bi for any i ∈ [k].

Definition 2.56. Let α ∈ Π2k and a, b ∈ [n]k. We let αab denote the coloured partition
diagram where vertex i ∈ [k] ∪ [k′] in α has been assigned the colour (a, b)(i). We say
for any i, j ∈ [k] ∪ [k′] that

(1) (a, b) is a good colouring of α if i ∼α j implies (a, b)(i) = (a, b)(j). We write
(a, b)→ α and let GCn(α) = {(a, b) ∈ [n]k × [n]k | (a, b)→ α}.

(2) (a, b) is a perfect colouring of α if i ∼α j if and only if (a, b)(i) = (a, b)(j). We
write (a, b) ↪→ α and let PCn(α) = {(a, b) ∈ [n]k × [n]k | (a, b) ↪→ α}.

Note that all perfect colourings are good colourings.

Example 2.57. Let k = 3 and α = {{1, 2′, 3′}, {2, 1′}, {3}} ∈ Π6. Consider the tuples
a = (2, 1, 4), b = (2, 1, 2), and c = (1, 2, 2). Then (a, c) is a perfect colouring of α while
(b, c) is only a good colouring. The corresponding coloured partition diagrams are

αac =

2 1 4

1 2 2

and αbc =

2 1 2

1 2 2

.

For any n ≥ 0 we have the sets

GCn(α) = {((x, y, z), (y, x, x)) | (x, y, z) ∈ [n]3},
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PCn(α) = {((x, y, z), (y, x, x)) | (x, y, z) ∈ [n]!3},

where [n]!3 is the subset of [n]3 consisting of all tuples with pairwise distinct entries. In
particular, whenever n ≤ 2 we have that [n]!3 = ∅, and thus PCn(α) = ∅.

Put another way, a good colouring of a partition diagram is the same information
as assigning a colour to each block, with perfect colourings meaning blocks have been
assigned distinct colours. As such if n < |α| then PCn(α) = ∅. For any α, β ∈ Π2k, it is
clear from the definition that PCn(α) ∩ PCn(β) = ∅ whenever α 6= β. Moreover one can
deduce that we have the disjoint unions

[n]k × [n]k =
⊔

α∈Π2k

PCn(α), and GCn(α) =
⊔
α�β

PCn(β) (2.14)

The former disjoint union tells us that for any tuple (a, b) ∈ [n]k × [n]k there exists a
unique set partition α ∈ Π2k such that (a, b) ↪→ α. Now the symmetric group Sn acts
on [n]k coordinate-wise, and we denote this action by πa for any π ∈ Sn and a ∈ [n]k.
This action extends to [n]k × [n]k component-wise. For (a, b) ∈ [n]k × [n]k we denote
the orbit by OrbitSn(a, b) = {(πa, πb) | π ∈ Sn}. It is simple to deduce that

OrbitSn(a, b) = PCn(α)

where α is the unique set partition of Π2k which is perfectly coloured by (a, b). In
particular, both of the disjoint unions of Equation (2.14) are decompositions of Sn-
action sets into Sn-orbits.

Schur-Weyl Duality

Let V = SpanC{v1, . . . , vn} be the n-dimensional permutation module for the group
algebra CSn of the symmetric group. Thus πvi = vπ(i) for any π ∈ Sn and i ∈ [n]. For

any k ∈ Z≥0 we let V ⊗k := V ⊗ · · · ⊗ V with k tensor components. Then the tensor
space V ⊗k may be regarded as a CSn-module by extending the action of V diagonally.
For any a = (a1, . . . , ak) ∈ [n]k we set va = va1 ⊗ · · · ⊗ vak . Then we have that

V ⊗k = SpanC{va | a ∈ [n]k},

and the diagonal action is given by πva = vπa for all π ∈ Sn and a ∈ [n]k. For
any a, b ∈ [n]k we let Eab ∈ EndC(V ⊗k) be the endomorphism defined on the basis by
Eab (vc) = δb,cva where δb,c is the Kronecker delta. We let EndSn(V ⊗k) denote the space
of endomorphisms which commute with the diagonal action of CSn. For the following
result see for example [HR05, Theorem 3.6].

Theorem 2.58. For any n, k ∈ Z≥0, there exists a surjective homomorphism of C-
algebras

Ψ2k,n : A2k(n)→ EndSn(V ⊗k)

with the following properties:
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(1) The map Ψ2k,n acts on the diagrammatic basis by the C-linear extension of

Ψ2k,n(Dn(α)) =
∑

(a,b)∈GCn(α)

Eab

(2) The map Ψ2k,n acts on the orbit basis by the C-linear extension of

Ψ2k,n(On(α)) =
∑

(a,b)∈PCn(α)

Eab

(3) The image and kernel of Ψ2k,n are given by

Im(Ψ2k,n) = EndSn(V ⊗k) = SpanC{On(α) | α ∈ Π2k, |α| ≤ n},
Ker(Ψ2k,n) = SpanC{On(α) | α ∈ Π2k, |α| > n}.

Whenever n > 2k then Ker(Ψ2k,n) = 0, and thus Ψ2k,n is an isomorphism witness-
ing A2k(n) ∼= EndSn(V ⊗k).

�

In Chapter 4 and Chapter 5 we extend the map Ψ2k,n to affine versions of the partition
algebra, in other words construct an action which satisfies affinization property 4 from
Section 1.4. In Chapter 5 we will be able to directly generalise items (2) and (3) of
Theorem 2.58. However it proves difficult to generalises (1) in an analogous manner since
we lack an affine counterpart for the diagrammatic basis. In Chapter 4 the extension
will generalise the action of Ψ2k,n on the generating set given in Theorem 2.38 and the
Jucys-Murphy elements, as described below.

Due to the fact that Ψ2k,n is an isomorphism whenever 2k > n, this action can by
used to verify relations in the partition algebra A2k(z) as follows:

Lemma 2.59. Let R1, R2 ∈ A2k(z). Then R1 = R2 if and only if for all n ≥ 0,

(Ψ2k,n ◦ prn)(R1) = (Ψ2k,n ◦ prn)(R2)

Proof. The forward implication is immediate. Assuming the latter equations we have

R1 −R2 ∈
⋂
n≥0

Ker(Ψ2k,n ◦ prn) ⊂
⋂
n>2k

(z − n) = 0,

showing thatR1 = R2, where we used the facts that for all n > 2k we have Ker(Ψ2k,n) = 0
and Ker(prn) = (z − n), the two-sided ideal of A2k(z) generated by z − n ∈ C[z].

We close this subsection by recalling how both Enyang’s generators and the Jucys-
Murphy elements act under Ψ2k,n. Recall for any distinct a, b ∈ [n] that (a, b) ∈ Sn

denotes the transposition exchanging a and b. We take the convention that (a, b) = 1
whenever a = b. The following can be found in [Eny12, Section 5].
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Proposition 2.60. Let n, k ∈ Z≥0. For any a = (a1, . . . , ak) ∈ [n]k and i ∈ [k − 1],

Ψ2k,n(σ2i)(va) = (ai, ai+1)(va1 ⊗ · · · ⊗ vai−1)⊗ vai ⊗ · · · ⊗ vak
Ψ2k,n(σ2i+1)(va) = (ai, ai+1)(va1 ⊗ · · · ⊗ vai+1)⊗ vai+2 ⊗ · · · ⊗ vak

�

Proposition 2.61. Let n, k ∈ Z≥0. For any a = (a1, . . . , ak) ∈ [n]k and i ∈ [k − 1],

Ψ2k,n(L2i−1)(va) = nva −
n∑
b=1

(ai, b)(va1 ⊗ · · · ⊗ vai−1)⊗ vai ⊗ · · · ⊗ vak

Ψ2k,n(L2i)(va) =

n∑
b=1

(ai, b)(va1 ⊗ · · · ⊗ vai)⊗ vai+1 ⊗ · · · ⊗ vak

�

2.2.5 Constructing A2k(z) via the Orbit Basis

The definition of the partition algebra presented in Section 2.2.1 is the typical con-
struction given in the literature. For this section we provide a construction from the
perspective of the orbit basis and the algebra Im(Ψ2k,n) = EndSn(V ⊗k). We recover
items (2) and (3) of Theorem 2.58 and describe how the orbit basis elements multiply,
all of which can be found in [BH18]. We have included these results and proofs of such
results since, although they will not be directly applied in later chapters, the overall pro-
cess in constructing the partition algebra in this manner will be generalised in Chapter 5
and the details of the proofs here will resemble later results.

Firstly for k ∈ Z≥0 and any α ∈ Π2k, let

On(α) :=
∑

(a,b)∈PCn(α)

Eab ∈ EndC(V ⊗k) = SpanC{Eab | (a, b) ∈ [n]k × [n]k}.

It is easy to check that as operators on V ⊗k we have πEabπ
−1 = Eπaπb , and as such (since

PCn(α) is Sn-invariant) we have πOn(α)π−1 = On(α). This tells us that the operators
On(α) belong to EndSn(V ⊗k). Moreover these operators provide a spanning set for
EndSn(V ⊗k) which can be shown as follows: Let

E =
∑

(a,b)∈[n]k×[n]k

c(a,b)E
a
b

be an arbitrary element of EndC(V ⊗k), where c(a,b) ∈ C. Then E belongs to EndSn(V ⊗k)
if and only if πEπ−1 = E or all π ∈ Sn. This implies that c(a,b) = c(πa,πb) for all π ∈ Sn.
As such for each α ∈ Π2k we can set cα := c(a,b) for any perfect colouring (a, b) ↪→ α,

and thus E is the sum of terms cαOn(α) as α runs over Π2k. Therefore E belongs to
EndSn(V ⊗k) if and only if E belongs to SpanC{On(α) | α ∈ Π2k}. Also from definition
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we have that On(α) = 0 whenever |α| > n, and that the set {On(α) | α ∈ Π2k, |α| ≤ n}
is linearly independent, and hence gives a basis for EndSn(V ⊗k).

We now wish to “lift” the C-algebra EndSn(V ⊗k) to an algebra over C[z], which will
coincide with the partition algebra A2k(z). To do so we need to understand how the
composition of a pair of elements On(α) and On(β) decomposes as a linear combination
of elements of the same kind. We first set up some notation.

Definition 2.62. Given any α, β ∈ Π2k we define the following:

(1) Top(α) := {T | T ∈ α, T ⊆ [k]},

(2) Bot(α) := {B | B ∈ α, B ⊆ [k′]},

(3) Mid(α ? β) := {M | M ∈ α ? β, M ⊆ [k′′]}.

We refer to elements in Top(α) and Bot(α) as the top and bottom blocks of α respectively,
and we refer to Mid(α ? β) as the middle blocks of α ? β.

Recalling Definition 2.31 we have that m(α, β) = |Mid(α ? β)|. Also one can see that
Top(α) ⊆ Top(α ◦ β) and Bot(β) ⊆ Bot(α ◦ β), but in general these inclusions are strict.

Definition 2.63. Let T and B be two finite sets. A partial bijection from T to B is a
triple (θ,X, Y ) where X ⊂ T , Y ⊂ B, |X| = |Y |, and θ : X → Y is a bijection. We will
often supress the domain and codomain and just write θ.

Definition 2.64. Let α, β ∈ Π2k. We say that γ ∈ Π2k is a top-bottom coarsening of
the pair (α, β) if there exists a partial bijection θ from Top(α) to Bot(β) such that γ is
obtained from α ◦ β by merging the blocks T and θ(T ) for each T in the domain of θ.
We let TBC(α, β) denote the set of top-bottom coarsenings of (α, β).

Example 2.65. Consider α, β ∈ Π10 given diagrammatically by

α = , β = .

We have that Top(α) = {{1, 2}, {3, 5}} and Bot(β) = {{3′, 4′, 5′}}. There are three
partial bijections from Top(α) to Bot(β): the empty partial bijection θ1 : ∅ → ∅, θ2 :
{1, 2} 7→ {3′, 4′, 5′}, and θ3 : {3, 5} 7→ {3′, 4′, 5′}. We have that

α ◦ β = .

Therefore the set TBC(α, β) is given by{
γ1 = , γ2 = , γ3 =

}
.

Each γi is associated with the partial bijection θi respectively, and we have added edges
in red to highlight the blocks which were merged. For example γ2 has been obtained
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from α ◦β by merging blocks {1, 2} and θ2({1, 2}) = {3′, 4′, 5′}. Note that the top block
{4} of α ◦ β never gets merged to a bottom block for any γ ∈ TBC(α, β) since, although
it is a top block of α ◦ β, it does not belong to Top(α), in other words it was a top
block formed in the process of taking the product of α and β and not a top block of α
originally. Similarly, the bottom blocks {1′} and {2′} of α ◦ β are not merged with any
top blocks since they do not belong to Bot(β).

Definition 2.66. For any α, β ∈ Π2k, we will say that the pair (α, β) matches in the
middle whenever i ∼β j ⇐⇒ i′ ∼α j′ for all i, j ∈ [k].

When (α, β) matches in the middle, it means that the set partition of [k′] induced
from the bottom row of α is the prime counterpart to the set partition of [k] induced
from the top row of β. For example, given α and β as in Example 2.65, the pair (α, β)
matches in the middle while (β, α) does not.

The following result was given in [BH18, Lemma 4.2].

Proposition 2.67. For any k ∈ Z≥0 and partition diagrams α, β, γ ∈ Π2k, there exists
a polynomial pγα,β(z) ∈ Z[z] such that

On(α)On(β) =
∑

γ∈TBC(α,β)

pγα,β(n)On(γ).

Proof. Firstly note that EabE
d
c = δb,dE

a
c for any a, b, c,d ∈ [n]k× [n]k. Then by definition

On(α)On(β) =

 ∑
(a,b)∈PCn(α)

Eab

 ∑
(d,c)∈PCn(β)

Ecd

 ,

=
∑

(a,b)∈PCn(α)

∑
(d,c)∈PCn(β)

δb,dE
a
c .

For this sum to be non-zero we require that there exists a tuple b = d ∈ [n]k which
perfectly colours both the bottom row of α and the top row of β. This occurs if and
only if the pair (α, β) matches in the middle. Hence we set pγα,β(z) = 0 whenever (α, β)
does not match in the middle, and thus the lemma holds for all such pairs. Assume now
that (α, β) does match in the middle, then from above we obtain

On(α)On(β) =
∑

(a,b)∈PCn(α)

∑
(b,c)∈PCn(β)

Eac .

Let Cn(α, β) be the set consisting of the pairs of tuples (a, c) ∈ [n]k × [n]k such that
there exists a tuple b ∈ [n]k where (a, b) ∈ PCn(α) and (b, c) ∈ PCn(β). Also, for any

(a, c) ∈ Cn(α, β), we let C
(a,c)
n (α, β) denote the set of b ∈ [n]k such that (a, b) ∈ PCn(α)

and (b, c) ∈ PCn(β). Thus we may rewrite the double summation above as

On(α)On(β) =
∑

(a,c)∈Cn(α,β)

∑
b∈C(a,c)

n (α,β)

Eac ,

=
∑

(a,c)∈Cn(α,β)

|C(a,c)
n (α, β)|Eac .
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Note that any pair (a, c) ∈ Cn(α, β) gives a good colouring of α ◦ β. Also from the
definition of the set Cn(α, β), if (a, c) is not a perfect colouring of α ◦ β, then the
blocks of (α ◦ β)ac which share a colour must appear in pairs between the sets of blocks
Top(α) ⊂ Top(α ◦ β) and Bot(β) ⊂ Bot(α, ◦β). Hence (a, c) belongs to Cn(α, β) if and
only if there exists γ ∈ TBC(α, β) such that (a, c) ∈ PCn(γ). Moreover, it is simple to
check that Cn(α, β) is Sn-invariant, hence we must have the disjoint union

Cn(α, β) =
⊔

γ∈TBC(α,β)

PCn(γ).

As for the set C
(a,c)
n (α, β), its size equals the number of tuples b which perfectly colour

the middle row of α ? β given that (a, b) ↪→ α and (b, c) ↪→ β. Hence it equals the
number of ways to assign colours to the middle blocks Mid(α?β) which are distinct from
the colours appearing in the tuples a and c. The number of colours appearing within
the tuples a and c equals the number of blocks in γ, where γ is the unique element of
TBC(α, β) such that (a, c) ↪→ γ. Thus

|C(a,c)
n (α, β)| = (n− |γ|)(n− |γ| − 1) · · · (n− |γ| −m(α, β)),

which is polynomial in n and depends only on α, β, and γ, but not on the particular
perfect colouring (a, c). Thus setting pγα,β(z) := (z−|γ|)(z−|γ|−1) · · · (z−|γ|−m(α, β))
whenever γ ∈ TBC(α, β) and 0 otherwise, we have

On(α)On(β) =
∑

(a,c)∈Cn(α,β)

|C(a,c)
n (α, β)|Eac ,

=
∑

γ∈TBC(α,β)

∑
(a,c)∈PCn(γ)

pγα,β(n)Eac

=
∑

γ∈TBC(α,β)

pγα,β(n)
∑

(a,c)∈PCn(γ)

Ecc

=
∑

γ∈TBC(α,β)

pγα,β(n)On(γ).

Whenever n > 2k, the elements {On(α)|α ∈ Π2k} form a basis of EndSn(V ⊗k), and
thus the values pγα,β(n) are precisely the structure constants. The fact that they are
polynomial in n as described in the above lemma, allows us to define a C[z]-algebra
which possesses a projection down to EndSn(V ⊗k).

Definition 2.68. Let Q2k(z) denote the free C[z]-module with basis {O(α)|α ∈ Π2k}
equiped with the product given by the C[z]-linear extension of

O(α)O(β) =
∑

γ∈TBC(α,β)

pγα,β(z)O(γ)

for any α, β, γ ∈ Π2k and where pγα,β(z) are the polynomials given in Proposition 2.67.
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The construction of Q2k(z) from the algebras EndSn(V ⊗k) should be compared to how
the Farahat-Higman algebra Z was constructed from the centers Zn = Z(CSn), as was
described in Section 2.1.3.

As we will show shortly, the algebra Q2k(z) is exactly the partition algebra A2k(z),
and the basis elements O(α) are precisely the orbit basis elements, which is why we have
used the same symbols to denote them. This abuse of notation should hopefully cause no
confusion. However we have used different notation to denote the algebras themselves to
stress the distinct manners in which they were constructed. This will also help compare
the two affine counterparts to the partition algebras which we construct in Chapter 4
and Chapter 5.

The object Q2k(z) is indeed an algebra, although this is something that needs to be
proved as it is not immediate that the product is associative or that a multiplicative
identity exists. Recall that a distributive ring is a ring where we do not require a
multiplicative identity or for the product to be associative. By definition Q2k(z) is
certainly a distributive ring. Also by Proposition 2.67, for any k, n ∈ Z≥0 there exists a
surjective homomorphism of distributive rings

ψ2k,n : Q2k(z)→ EndSn(V ⊗k)

given by the extension of ψ2k,n(O(α)) = On(α) and ψ2k,n(z) = n. Moreover, whenever
n > 2k we have Ker(ψ2k,n) = (z−n). Thus employing the same arguments as in Lemma
2.59 gives the following result.

Lemma 2.69. Let R1, R2 ∈ Q2k(z). Then R1 = R2 if and only if for all n ≥ 0

ψ2k,n(R1) = ψ2k,n(R2).

�

This allows us to deduce that Q2k(z) is indeed a C[z]-algebra.

Proposition 2.70. The C[z]-module Q2k(z) is a unital associative algebra over C[z]
with the product described in Definition 2.68.

Proof. Let 1 = {{i, i′} | i ∈ [k]} ∈ Π2k, then it follows from Lemma 2.69 that∑
S`[k]

O(I(S))

is the identity of Q2k(z) since its image under ψ2k,n is the identity of EndSn(V ⊗k) for all
n ∈ Z≥0. Similarly for any A,B,C ∈ Q2k(z) let [A,B,C] := (AB)C −A(BC). Then for
all n ∈ Z≥0 we have that ψ2k,n([A,B,C]) = 0 since EndSn(V ⊗k) is an associative algebra.
Thus by Lemma 2.69 we have [A,B,C] = 0 showing that Q2k(z) is also associative.

We end this section by proving that Q2k(z) and A2k(z) isomorphic.

Proposition 2.71. We have an isomorphism of C[z]-algebras Q2k(z) ∼= A2k(z).
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Proof. By item (2) of Theorem 2.58 we have that (Ψ2k,n◦prn)(O(α)) = On(α). Hence by
Lemma 2.59 and Proposition 2.67 we see that the orbit basis elements of A2k(z) satisfy
the equations

O(α)O(β) =
∑

γ∈TBC(α,β)

pγα,β(z)O(γ)

where pγα,β(z) are the polynomials given in Proposition 2.67. Thus we have a C[z]-algebra
homomorphism A2k(z) → Q2k(z) defined by O(α) 7→ O(α) which sends basis to basis,
and hence is clearly both injective and surjective.
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3 Center of the Partition Algebra

This chapter is broken into three sections. The first section recalls the definition of
supersymmetric polynomials and describes some generating sets for the algebra of su-
persymmetric polynomials. The second section proves that the center of the semisimple
partition algebras is given by the supersymmetric polynomials in normalised Jucys-
Murphy elements. The last section uses this description of the center to prove an alter-
ative criteria for the blocks of the partition algebra using certain generating functions
which appear in the theory of supersymmetric polynomials.

3.1 Supersymmetric Polynomials

This section is a brief recap on supersymmetric polynomials and a result of J. Stem-
bridge in [Stem85] regarding natural generating sets for the algebra of supersymmetric
polynomials. We remodel the definitions a little to better align with our situation.

Let k ∈ Z≥0 and consider the polynomial algebra C[x1, . . . , x2k] in 2k commuting
variables. The symmetric group Sk acts on this algebra by permuting variables of the
same parity, that is π ◦x2i−1 := x2π(i)−1 and π ◦x2i := x2π(i) for any π ∈ Sk and i ∈ [k].

Definition 3.1. Let p ∈ C[x1, . . . , x2k], then we say that p is supersymmetric if

(1) p is parity symmetric: π ◦ p = p for all π ∈ Sk.

(2) p satisfies the cancellation property : substituting x1 = −x2 = y yields a polynomial
in x3, x4, . . . , xr which is independent of y.

We denote by SSym[x1, . . . , x2k] the set of all supersymmetric polynomials in C[x1, . . . , x2k].

It is simple to check that the two defining properties above are respected under ad-
dition and multiplication of polynomials, and thus SSym[x1, . . . , x2k] is a subalgebra of
C[x1, . . . , x2k]. We will be interested in two types of supersymmetric polynomials, both
of which generate all supersymmetric polynomials.

Definition 3.2. For any n, k ∈ Z≥0, the n-th power sum supersymmetric polynomial
in C[x1, . . . , x2k] is given by

qn(x1, . . . , x2k) := xn1 + xn3 + · · ·+ xn2k−1 + (−1)n+1(xn2 + xn4 + · · ·+ xn2k).

These polynomails are the supersymmetric counterparts to the usual power sum sym-
metric polynomials. It is clear that permuting the odd indexed (respectively even in-
dexed) variables around leaves qn(x1, . . . , x2k) invariant, hence they are parity symmet-
ric. Also, the sign (−1)n+1 which appears means that the cancellation property is upheld,
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thus these polynomials are indeed supersymmetric. When the number of variables in
play is clear, we will drop the variable arguments and write qn instead of qn(x1, . . . , x2k).

Definition 3.3. For t a formal variable, and n, k ∈ Z≥0, the n-th elementary supersym-
metric polynomial is defined to be the coefficient of tn in the generating function

∞∑
n=0

ln(x1, . . . , x2k)t
n =

∏k
i=1(1 + x2i−1t)∏k
i=1(1− x2it)

.

These polynomials are the supersymmetric counterparts to the regular elementary
symmetric polynomials, and it is clear from the generating function defining them that
they are indeed supersymmetric. As above, when the number of variables in play is
clear, we will drop the variable arguments and write ln instead of ln(x1, . . . , x2k).

The core result we will need is by J. Stembridge, and is the fact that the algebra
of supersymmetric polynomials is generated by either the power sum supersymmetric
polynomials or the elementary supersymmetric polynomials.

Theorem 3.4 (Theorem 2; Corollary of [Stem85]). As algebras we have that

SSym[x1, . . . , x2k] = 〈qn | n ∈ Z≥0〉 = 〈ln | n ∈ Z≥0〉.

�

3.2 Center of the Semisimple Partition Algebra

In this section we will prove that the center of the partition algebra A2k(δ), whenever
δ 6∈ {0, 1, . . . , 2k− 2} (i.e. whenever A2k(δ) is semisimple by Theorem 2.40), is given by
the subalgebra of supersymmetric polynomials in (normalised) Jucys-Murphy elements.
This result easily extends to one for A2k(z). We approach this result in a similar manner
to what was done in [JK17], where they gave a description of the center of the walled
Brauer algebras.

Recall the Jucys-Murphy elements L1, . . . , L2k of the partition algebra A2k(z) given
in Definition 2.34. To help with future computations and results, for this chapter we
will work with the normalisation of the Jucys-Murphy elements given by

Ni := Li −
z

2
(3.1)

for each i ∈ [2k]. These normalisations were considered in [Eny13, Section 6] in demon-
strating central element recursions analogous to ones established in [N96] for the Brauer
algebras. Given any δ ∈ C, we let Ni also denote the corresponding elements 1⊗Ni in
the finite dimensional partition algebra A2k(δ), which are simply given by Equation (3.1)
with z replaced by δ.

We will let SSym[N1, . . . , N2k] denote the C[z]-subalgebra of A2k(z) generated by the
supersymmetric polynomials evaluated at the normalised Jucys-Murphy elements. Then
by Theorem 3.4 we have that

SSym[N1, . . . , N2k] = 〈qn(N1, . . . , N2k) | n ∈ Z≥0〉 = 〈ln(N1, . . . , N2k) | n ∈ Z≥0〉.
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Similarly let SSymδ[N1, . . . , N2k] denote the corresponding image inA2k(δ) for any δ ∈ C.
We seek to show that SSym[N1, . . . , N2k] gives the center Z(A2k(z)) of A2k(z) and that
SSymδ[N1, . . . , N2k] gives the center Z(A2k(δ)) of A2k(δ) for any δ 6∈ {0, 1, . . . , 2k − 2}.

We delay the proof of the following result to Chapter 4, were a more general result
will be proven regarding the affine partition algebra defined in the same chapter. Alter-
natively one can find a proof in [Cre21, Theorem 3.2.6].

Theorem 3.5. The supersymmetric polynomials in the normalised Jucys-Murphy ele-
ments are central in A2k(z), that is to say SSym[N1, . . . , N2k] ⊆ Z(A2k(z)).

�

Of course this theorem implies that SSymδ[N1, . . . , N2k] ⊆ A2k(δ) for any δ ∈ C.
Assume for this section that δ 6∈ {0, 1, . . . , 2k−2}, henceA2k(δ) is semisimple by Theorem
2.40. It is well known, say from the Weddernburn-Artin theorem, that the dimension of
the center of a semisimple algebra equals the number of isomorphism classes of simple
modules. Recall from Theorem 2.43 that Λ≤k × {2k} is an indexing set for the simple
A2k(δ)-modules. Thus we have that

dimC(Z(A2k(δ))) = |Λ≤k × {2k}|. (3.2)

Our plan to show that SSymδ[N1, . . . , N2k] is the center of A2k(δ) is to confirm that
its dimension equals |Λ≤k × {2k}| = |Λ≤k|. To do this we will utilize the action of
the Jucys-Murphy elements on the simple modules to implicitly show the existence of
the right number of linearly independent supersymmetric polynomials in the normalised
Jucys-Murphy elements.

Recall the notation of Section 2.2.3. Let (λ, 2k) ∈ Λ≤k × {2k} and T ∈ Path(λ, 2k),
and recall in particular the contents contδ(T, i) defined in Definition 2.44 for any i ∈ [2k].
By Theorem 2.45 and Equation (3.1) we have the following:

Lemma 3.6. Let k ∈ Z≥0, (λ, 2k) ∈ Λ≤k × {2k}, and {vT | T ∈ Path(λ, 2k)} be a
GZ-basis of the simple A2k(δ)-module A(λ,2k). Then for any i ∈ [2k] we have that

NivT =

(
contδ(T, i)−

δ

2

)
vT.

�

Let (λ, 2k) ∈ Λ≤k × {2k}, T ∈ Path(λ, 2k), and p ∈ C[x1, . . . , x2k]. From the above
lemma, the action of p(N1, . . . , N2k) on the GZ-basis element vT is given as scaling by

p

(
contδ(T, 1)− δ

2
, . . . , contδ(T, 2k)− δ

2

)
,

the evaluation of p at xi = contδ(T, i) − δ/2. Since the supersymmetric polynomials in
the normalised Jucys-Murphy elements are central by Theorem 3.5, we show below that
such an evaluation of supersymmetric polynomials is independent of the path taken.
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Lemma 3.7. Let (λ, 2k) ∈ Λ≤k × {2k}. Then for any paths T,S ∈ Path(λ, 2k) and any
supersymmetric polynomial p ∈ SSym[x1, . . . , x2k], we have that

p

(
contδ(T, 1)− δ

2
, . . . , contδ(T, 2k)− δ

2

)
= p

(
contδ(S, 1)− δ

2
, . . . , contδ(S, 2k)− δ

2

)
.

Proof. Given the GZ-basis elements vT and vS, from Lemma 3.6 we have that

p(N1, . . . , N2k)vT = p

(
contδ(T, 1)− δ

2
, . . . , contδ(T, 2k)− δ

2

)
vT,

p(N1, . . . , N2k)vS = p

(
contδ(S, 1)− δ

2
, . . . , contδ(S, 2k)− δ

2

)
vS.

By Schur’s Lemma, any central element z of A2k(δ) acts on A(λ,2k) by scaling by a certain
constant. Since p(N1, . . . , N2k) is central by Theorem 3.5, it must act on vT and vS by
the same constant (since vT, vS ∈ A(λ,2k)), thus the result follows.

This result means that we may chose any path to work with when evaluating the action
of p(N1, . . . , N2k) on A(λ,2k) for any supersymmetric polynomials p ∈ SSym[x1, . . . , x2k].
With this in mind, we are going to fix a particular path to work with in Path(λ, 2k) for
each (λ, 2k) ∈ Λ≤k × {2k}, also see [Eny13, Lemma 3.9].

Definition 3.8. Let (λ, 2k) ∈ Λ≤k × {2k}. The standard path T(λ,2k) = ((λ(i), i))2k
i=0 of

Path(λ, 2k) is defined as follows:

(i) λ(2i) = λ(2i+1) for all 0 ≤ i ≤ k − 1.

(ii) λ(2i) = ∅ for all 0 ≤ i ≤ k − |λ|.

(iii) λ(2i+2) = λ(2i) ∪ {a} for all k − |λ| ≤ i ≤ k − 1, where a is an addable box of λ(2i)

with minimal row index.

The path T (λ,2k) is the one which never removes any boxes, only adds a box when it
must, and prioritises adding boxes in the highest row, i.e. lowest row index. Recall from
Section 2.2.3, in particular Corollary 2.52, that J. Enyang defined a partial order ≺ on
the set of paths Path(λ, 2k) which is compatible with the action of the Jucys-Murphy
elements on the cell modules. It was proved in [Eny13, Lemma 3.9] that the standard
path T(λ,2k) is a maximal element with respect to this partial order.

Example 3.9. Consider the vertex ( , 6) in Â. There are only two paths within

Path( , 6), both presented below in red sitting inside the truncation of Â at level six.
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The standard path T
( ,6)

is given in bold:

∅0

∅1

∅2

∅3

∅4

∅5

∅6

Now given any (λ, 2k) ∈ Λ≤k × {2k} we let

cti(λ, δ) := contδ(T
(λ,2k), i)− δ

2
. (3.3)

Also, for any polynomial p ∈ C[x1, . . . , x2k] we will let

p(λ, δ) := p (ct1(λ, δ), . . . , ct2k(λ, δ)) . (3.4)

From Lemma 3.7 and Lemma 3.6, the action of p(N1, . . . , N2k) on the simple A2k(δ)-
module A(λ,2k) is given by scaling by p(λ, δ) for any p ∈ SSym[x1, . . . , x2k] and for
any (λ, 2k) ∈ Λ≤k × {2k}. We may record this information in a generating function by
evaluating the elementary supersymmetric polynomials at xi = cti(λ, δ) in the generating
function given in Definition 3.3. Thus for any (λ, 2k) ∈ Λ≤k×{2k}, and formal variable
t, consider the generating function

L(λ, δ) :=

∞∑
n=0

ln(λ, δ)tn =

∏k
i=1(1 + ct2i−1(λ, δ)t)∏k
i=1(1− ct2i(λ, δ)t)

. (3.5)

Hence the coefficient of tn in L(λ, δ) records the action of ln(N1, . . . , N2k) on A(λ,2k). We
seek to better understand the rational polynomial in t given by the right hand side of
Equation (3.5). First we want to understand the multiset {cti(λ, δ) | i ∈ [2k]}, and to
do so we introduce some notation regarding integer partitions.

Definition 3.10. Let λ = (λ1, . . . , λl) ` n ∈ N. We say that the height of λ, written
h(λ), is the number of rows of λ minus 1. Similarly we say the width of λ, written w(λ),
is the number of columns of λ minus 1.
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Recall from Definition 2.14 that given a box � = (i, j) ∈ λ the content is c(�) = j− i,
the column index minus the row index. Also recall that c(λ) is the multiset of content of
the boxes of λ. It can be seen that two boxes a, b ∈ λ belong to the same diagonal (top-
left to bottom-right) in the corresponding Young diagram if and only if their contents
agree, that is c(a) = c(b). Thus we can index the diagonals of λ by the underlying set
of c(λ). It is clear that given a box � ∈ λ, then −h(λ) ≤ c(�) ≤ w(λ). Moreover, for
any value c such that −h(λ) ≤ c ≤ w(λ), there exists a box � ∈ λ such that c(�) = c.
Hence the set {−h(λ), . . . , w(λ)} is precisely the underlying set of c(λ). It is clear that
knowning λ is the same as knowing the set {−h(λ), . . . , w(λ)} and the number of boxes
whose content equals c for each c ∈ {−h(λ), . . . , w(λ)}. With this in mind we introduce
the following definition.

Definition 3.11. Let λ = (λ1, . . . , λl) ` n ∈ N. We define the diagonal datum of λ to
be the pair (D(λ),mλ) where D(λ) = {−h(λ),−h(λ)+1, . . . , w(λ)} and mλ : D(λ)→ N,
given by mλ(c) = |{� ∈ λ | c(�) = c}|.

Example 3.12. Consider the partition λ = (7, 5, 4, 3) ` 19. The corresponding Young
diagram (where each box a ∈ λ has its content inscribed within it) is given by

0 1 2 3 4 5 6
-1 0 1 2 3
-2 -1 0 1
-3 -2 -1

The height and width of λ are given by h(λ) = 3 and w(λ) = 6. We have that

D(λ) = {−3,−2,−1, 0, 1, 2, 3, 4, 5, 6},

and for example mλ(−1) = 3.

The diagonal datum (D(λ),mλ) of an integer partition λ will lend itself better for
future computations.

Proposition 3.13. Let (λ, 2k) ∈ Λ≤k × {2k}, then as multisets

{ct2i+1(λ, δ) | 0 ≤ i ≤ k − 1} =

{(
−δ

2

)k−|λ|
, i− δ

2

∣∣∣∣∣ 0 ≤ i ≤ |λ| − 1

}

{ct2i(λ, δ) | 1 ≤ i ≤ k} =

{(
δ

2

)k−|λ|
, c(�)− δ

2

∣∣∣∣∣ � ∈ λ
}

=

{(
δ

2

)k−|λ|
,

(
i− δ

2

)mλ(i)
∣∣∣∣∣ i ∈ D(λ)

}

where the superscript denotes multiplicity in the multisets.
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Proof. Let T(λ,2k) = (λ(i))2k
i=0 be the standard path of (λ, 2k). We begin with the set

{c2i+1(λ, δ) | 0 ≤ i ≤ k − 1}. By definition of T (λ,2k) we have that λ2i = λ2i+1 for all
0 ≤ i ≤ k − 1. Hence from Definition 2.44 we have that

ct2i+1(λ, δ) = |λ(2i+1)| − δ

2
.

From item (i) and (ii) of Definition 3.8, we have that λ(2i) = λ(2i+1) = ∅ for any i in the
range 0 ≤ i ≤ k − |λ| − 1. Thus

{ct2i+1(λ, δ) | 0 ≤ i ≤ k − |λ| − 1} =

{(
−δ

2

)k−|λ|}
.

Now note that λ(2i+2) = λ(2i) ∪ {�} for all k − |λ| ≤ i ≤ k − 1, with � an addable box
of λ(2i). Hence |λ(2i+2)| = |λ(2i)| + 1 for each k − |λ| ≤ i ≤ k − 1, and so item (i) of
Definition 3.8 implies that |λ(2i+3)| = |λ(2i+1)|+ 1 for all k − |λ| ≤ i ≤ k − 2. Thus the
quantities |λ(2i+1)| increase by one each time as i runs from k − |λ| to k − 1, starting at
0 and ending with k − 1− (k − |λ|) = |λ| − 1. As such we have

{ct2i+1(λ, δ) | k − |λ| ≤ i ≤ k − 1} =

{
|λ(2i+1)| − δ

2

∣∣∣∣∣ k − |λ| ≤ i ≤ k − 1

}

=

{
i− δ

2

∣∣∣∣∣ 0 ≤ i ≤ |λ| − 1

}
.

Therefore collectively we have

{ct2i+1(λ, δ) | 0 ≤ i ≤ k − 1} =

{(
−δ

2

)k−|λ|
, i− δ

2

∣∣∣∣∣ 0 ≤ i ≤ |λ| − 1

}
as desired. We now focus on the set {ct2i(λ, δ) | 1 ≤ i ≤ k}. By item (ii) of Definition
3.8, we have that λ(2i) = ∅ for all 0 ≤ i ≤ k − |λ|. Hence from Definition 2.44 we have
that c2i(λ, δ) = δ/2, and so

{ct2i(λ, δ) | 1 ≤ i ≤ k − |λ|} =

{(
δ

2

)k−|λ|}
.

For the cases k− |λ|+ 1 ≤ i ≤ k we have that λ2i = λ2i−2 ∪ {�2i} for some addable box
�2i of λ(2i). As such

ct2i(λ, δ) = c(�2i)−
δ

2

for each k − |λ| + 1 ≤ i ≤ k. All the boxes of λ are added during these steps since
λ2(k−|λ|) = λ2(k−|λ|)+1 = ∅, that is �2i runs over all the boxes of λ as i runs from
k − |λ|+ 1 to k. Therefore

{ct2i(λ, δ) | k−|λ|+ 1 ≤ i ≤ k} =

{
c(�)− δ

2

∣∣∣∣∣ � ∈ λ
}

=

{(
i− δ

2

)mλ(i)
∣∣∣∣∣ i ∈ D(λ)

}
.
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Thus altogether we have that

{ct2i(λ, δ) | 1 ≤ i ≤ k} =

{(
δ

2

)k−|λ|
, c(�)− δ

2

∣∣∣∣∣ � ∈ λ
}

=

{(
δ

2

)k−|λ|
,

(
i− δ

2

)mλ(i)
∣∣∣∣∣ i ∈ D(λ)

}
.

We now wish to express the generating function L(λ, δ) defined by Equation (3.5) as
a rational polynomial in reduced form, i.e. where the numerator and demonerator share
no common factors. Given the diagonal datum (D(λ),mλ) we let D(λ)≤δ := D(λ)∩Z≤δ
and D(λ)>δ := D(λ) ∩ Z>δ whenever δ is an integer.

Lemma 3.14. Let (λ, 2k) ∈ Λ≤k × {2k}, then we have the following two cases:

(1) Suppose δ 6∈ {−h(λ), . . . , 2k − 2}. Then

L(λ, δ) =

∏|λ|−1
i=0 (1 + (i− δ

2)t)∏
j∈D(λ)(1 + ( δ2 − j)t)mλ(j)

,

where the rational polynomial in t on the right is reduced.

(2) Suppose h(λ) ≥ 1 and δ ∈ {−h(λ), . . . ,−1}. Then

L(λ, δ) =

∏|λ|−1
i=δ+h(λ)+1(1 + (i− δ

2)t)∏
j∈D(λ)≤δ

(1 + ( δ2 − j)t)mλ(j)−1
∏
j∈D(λ)>δ

(1 + ( δ2 − j)t)mλ(j)
,

where the rational polynomial in t on the right is reduced.

Proof. Firstly, by Proposition 3.13 and Equation (3.5) we have that

L(λ, δ) =

∏k
i=1(1 + ct2i−1(λ, δ)t)∏k
i=1(1− ct2i(λ, δ)t)

=

(
1− δ

2 t
)k−|λ|∏|λ|−1

i=0

(
1 +

(
i− δ

2

)
t
)(

1− δ
2 t
)k−|λ|∏

j∈D(λ)

(
1 +

(
δ
2 − j

)
t
)mλ(j)

=

∏|λ|−1
i=0 (1 + (i− δ

2)t)∏
j∈D(λ)(1 + ( δ2 − j)t)mλ(j)

(1): We seek to show that the polynomials

|λ|−1∏
i=0

(
1 +

(
i− δ

2

)
t

)
and

∏
j∈D(λ)

(
1 +

(
δ

2
− j
)
t

)mλ(j)

share no common factors. Assume for contradiction that this is not the case. Then for
some 0 ≤ i ≤ |λ| − 1 and j ∈ D(λ) = {−h(λ), . . . , w(λ)} we have that i− δ/2 = δ/2− j,
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and so δ = i + j. Thus immediately we see that if δ 6∈ Z then the fraction is reduced.
Furthermore by consider the range of values i and j can take, we have that

−h(λ) ≤ δ ≤ w(λ) + |λ| − 1 ≤ 2(|λ| − 1) ≤ 2k − 2,

which contradicts the assumption that δ 6∈ {−h(λ), . . . , 2k − 2}.
(2): We now seek to understand what factors of∏|λ|−1

i=0 (1 + (i− δ
2)t)∏

j∈D(λ)(1 + ( δ2 − j)t)mλ(j)
, (3.6)

cancel out when h(λ) ≥ 1 and δ ∈ {−h(λ), . . . ,−1}. As described in the previous case,
numerator and denominator share a common factor if δ = i+ j for some 0 ≤ i ≤ |λ| − 1
and j ∈ D(λ). Let P (δ) = {(i, j) | δ = i + j, 0 ≤ i ≤ |λ| − 1, j ∈ D(λ)}. So |P (δ)|
is the number of pairs of common factors between the numerator and denomerator of
Equation (3.6). One can deduce that we must have

P (δ) = {(0, δ), (1, δ − 1), . . . , (h(λ) + δ,−h(λ))},

and so |P (δ)| = h(λ) + δ + 1. Therefore the factors (1 + (i − δ
2)t) in the numerator

corresponding to i = 0, 1, . . . , h(λ) + δ cancel with one of the factors (1 + ( δ2 − j)t) in the
denominator corresponding to j = δ, δ − 1, . . . ,−h(λ) respectively. Hence we obtain

L(λ, δ) =

∏|λ|−1
i=δ+h(λ)+1(1 + (i− δ

2)t)∏
j∈D(λ)≤δ

(1 + ( δ2 − j)t)mλ(j)−1
∏
j∈D(λ)>δ

(1 + ( δ2 − j)t)mλ(j)
,

where the rational polynomial in t on the right is reduced.

We can now show that the action of the central subalgebra SSymδ[N1, . . . , N2k] of
A2k(δ) (whenever δ 6∈ {0, 1, . . . , 2k − 2}) can distinguish between the simple modules.

Proposition 3.15. Let k ∈ Z≥0 and δ 6∈ {0, 1, . . . , 2k − 2}. Let (λ, 2k), (µ, 2k) ∈
Λ≤k × {2k} such that λ 6= µ. Then there exists a supersymmetric polynomial p ∈
SSym[x1, . . . , x2k] such that p(λ, δ) 6= p(µ, δ).

Proof. We will prove this by showing the contrapositive, that is if p(λ, δ) = p(µ, δ)
for all p ∈ SSym[x1, . . . , x2k], then λ = µ. Now since the elementary supersymmetric
polynomials generate all supersymmetric polynomails by Theorem 3.4, we have that
p(λ, δ) = p(µ, δ) for all p ∈ SSym[x1, . . . , x2k] if and only if L(λ, δ) = L(µ, δ), i.e. if and
only if ∏|λ|−1

i=0 (1 + (i− δ
2)t)∏

j∈D(λ)(1 + ( δ2 − j)t)mλ(j)
=

∏|µ|−1
i=0 (1 + (i− δ

2)t)∏
j∈D(µ)(1 + ( δ2 − j)t)mµ(j)

.

Using Lemma 3.14 we will break the above equality into four cases, and for each we will
show that either (λ, 2k) = (µ, 2k), or the case is impossible. The four cases to consider
are the following:
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(C1) δ 6∈ {−h(λ), . . . , 2k − 2} ∪ {−h(µ), . . . , 2k − 2}.

(C2) δ 6∈ {−h(µ), . . . , 2k − 2} but δ ∈ {−h(λ), . . . ,−1} with h(λ) ≥ 1.

(C3) δ 6∈ {−h(λ), . . . , 2k − 2} but δ ∈ {−h(µ), . . . ,−1} with h(µ) ≥ 1.

(C4) δ ∈ {−h(µ), . . . ,−1} ∩ {−h(λ), . . . ,−1}.

(C1): Since δ 6∈ {−h(λ), . . . , 2k − 2} ∪ {−h(µ), . . . , 2k − 2}, Lemma 3.14 (1) implies∏|λ|−1
i=0 (1 + (i− δ

2)t)∏
j∈D(λ)(1 + ( δ2 − j)t)mλ(j)

=

∏|µ|−1
i=0 (1 + (i− δ

2)t)∏
j∈D(µ)(1 + ( δ2 − j)t)mµ(j)

.

where both sides are reduced. Since they are reduced, we may equate the numerators
and denominators. Equating the numerators gives

|λ|−1∏
i=0

(
1 +

(
i− δ

2

)
t

)
=

|µ|−1∏
i=0

(
1 +

(
i− δ

2

)
t

)
. (Eq4)

Assume one of the factors on the left hand side is trivial, that is i = δ/2 for some
0 ≤ i ≤ |λ| − 1. This would imply that 0 ≤ δ ≤ 2(|λ| − 1), which contradicts the
assumption δ 6∈ {−h(λ), . . . , 2k− 2}. As such no factor on the left hand side of (Eq4) is
trivial, similarly no factor on the right is trivial. Therefore (Eq4) implies that |λ| = |µ|.
Now equating the denominators gives

∏
j∈D(λ)

(
1 +

(
δ

2
− j
)
t

)mλ(j)

=
∏

j∈D(µ)

(
1 +

(
δ

2
− j
)
t

)mµ(j)

.

This implies D(λ)\{δ/2} = D(µ)\{δ/2} and that mλ(j) = mµ(j) for all j ∈ D(λ)\{δ/2}.
This means that the Young diagrams λ and µ can only differ in the diagonal indexed by
δ/2. However since |λ| = |µ|, no such difference is present, hence (λ, 2k) = (µ, 2k).

(C2): Since δ 6∈ {−h(µ), . . . , 2k − 2} but δ ∈ {−h(λ), . . . ,−1} with h(λ) ≥ 1, Lemma
3.14 (1) and (2) tell us that∏|λ|−1

i=δ+h(λ)+1(1 + (i− δ
2)t)∏

j∈D(λ)≤δ
(1 + ( δ2 − j)t)mλ(j)−1

∏
j∈D(λ)>δ

(1 + ( δ2 − j)t)mλ(j)
=

∏|µ|−1
i=0 (1 + (i− δ

2)t)∏
j∈D(µ)(1 + ( δ2 − j)t)mµ(j)

.

As these are reduced we may equate the numerators and denominators. Equating the
numerators gives

|λ|−1∏
i=δ+h(λ)+1

(
1 +

(
i− δ

2

)
t

)
=

|µ|−1∏
i=0

(
1 +

(
i− δ

2

)
t

)
. (Eq5)

From the previous case we know that the right hand side of (Eq5) has no trivial factors.
Assume the left hand side has a trivial factor, that is i = δ/2 for some δ+h(λ)+1 ≤ i ≤
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|λ|−1. This implies that 2(δ+h(λ) + 1) ≤ δ, which gives the inequality δ ≤ −2h(λ)−2.
However this contradicts the assumption δ ∈ {−h(λ), . . . ,−1}. Hence none of the factors
on the left hand side of (Eq5) are trivial. Therefore (Eq5) implies that δ+h(λ) + 1 = 0,
and so δ = −h(λ) − 1, but this contradicts the assumption δ ∈ {−h(λ), . . . ,−1}. Thus
this equality can never hold, i.e. this case is impossible. By symmetry, the same can be
said for (C3).

(C4): Since δ ∈ {−h(µ), . . . ,−1} ∩ {−h(λ), . . . ,−1} with h(λ), h(µ) ≥ 1, Lemma 3.14
(2) implies ∏|λ|−1

i=δ+h(λ)+1(1 + (i− δ
2)t)∏

j∈D(λ)≤δ
(1 + ( δ2 − j)t)mλ(j)−1

∏
j∈D(λ)>δ

(1 + ( δ2 − j)t)mλ(j)

=

∏|µ|−1
i=δ+h(µ)+1(1 + (i− δ

2)t)∏
j∈D(µ)≤δ

(1 + ( δ2 − j)t)mµ(j)−1
∏
j∈D(µ)>δ

(1 + ( δ2 − j)t)mµ(j)
.

Since both sides are reduced, we may equate the numerators and denominators. Equating
numerators gives

|λ|−1∏
i=δ+h(λ)+1

(
1 +

(
i− δ

2

)
t

)
=

|µ|−1∏
i=δ+h(µ)+1

(
1 +

(
i− δ

2

)
t

)
.

Arguing as in case (2), none of the factors in the above equality are trivial. As such
we must have that both δ + h(λ) + 1 = δ + h(µ) + 1 and |λ| − 1 = |µ| − 1, hence
h(λ) = h(µ) and |λ| = |µ|. By assumption −h(λ) = −h(µ) ≤ δ ≤ −1, hence we have
that D(λ)≤δ = D(µ)≤δ. Now equating the denominators gives

∏
j∈D(λ)≤δ

(
1 +

(
δ

2
− j
)
t

)mλ(j)−1 ∏
j∈D(λ)>δ

(
1 +

(
δ

2
− j
)
t

)mλ(j)

=
∏

j∈D(µ)≤δ

(
1 +

(
δ

2
− j
)
t

)mµ(j)−1 ∏
j∈D(µ)>δ

(
1 +

(
δ

2
− j
)
t

)mµ(j)

.

Since D(τ1)≤δ ∩D(τ2)>δ = ∅ for any τ1, τ2 ∈ {λ, µ}, we must have

∏
j∈D(λ)≤δ

(
1 +

(
δ

2
− j
)
t

)mλ(j)−1

=
∏

j∈D(µ)≤δ

(
1 +

(
δ

2
− j
)
t

)mµ(j)−1

, (Eq6)

and ∏
j∈D(λ)>δ

(
1 +

(
δ

2
− j
)
t

)mλ(j)

=
∏

j∈D(µ)>δ

(
1 +

(
δ

2
− j
)
t

)mµ(j)

. (Eq7)

Since δ/2 6∈ D(λ)≤δ = D(µ)≤δ by definition, there must be no trivial factors in (Eq6).
As such the multiplicities in (Eq6) must agree, that is mλ(j) = mµ(j) for all j ∈ D(λ)≤δ.
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Now (Eq7) tells us that D(λ)>δ\{δ/2} = D(µ)>δ\{δ/2} and that the multiplicity func-
tions mλ and mµ agree on this set. Hence together, (Eq6) and (Eq7) tell us that
D(λ)\{δ/2} = D(µ)\{δ/2} and their multiplicity functions mλ and mµ agree on this
set. As was the situation in (C1), this implies that the Young diagrams λ and µ can
only differ in the diagonal indexed by δ/2, but since |λ| = |µ|, no difference is present,
showing that (λ, 2k) = (µ, 2k).

We now have enough information to prove that SSymδ[N1, . . . , N2k] is the center of
A2k(δ) whenever δ 6∈ {0, 1, . . . , 2k−2}. We will employ the following result, whose proof
can be found in [JK17, Lemma 4.4].

Lemma 3.16. Let A be a C-subalgebra of C[x1, . . . , xn] and let

(c11, . . . , c1n), . . . , (cm1, . . . , cmn)

be m n-tuples in Cn for some m ∈ Z>0. Suppose that for each 1 ≤ i 6= j ≤ m, there
exists a polynomial p ∈ A such that p(i) 6= p(j), where p(i) := p(ci1, . . . , cin). Then
there exists a family of polynomials p1, . . . , pm ∈ A such that∣∣∣∣∣∣∣∣

p1(1) p1(2) . . . p1(m)
p2(1) p2(2) . . . p2(m)
. . . . . . . . . . . .
pm(1) pm(2) . . . pm(m)

∣∣∣∣∣∣∣∣ 6= 0.

�

Theorem 3.17. Let k ∈ Z≥0 and δ 6∈ {0, 1, . . . , 2k − 2}. Then the center of A2k(δ) is
given by the supersymmetric polynomials in N1, . . . , N2k, that is SSymδ[N1, . . . , N2k] =
Z(A2k(δ)).

Proof. By Proposition 3.15, we can apply Lemma 3.16 to the case A = SSym[x1, . . . , x2k]
and where {(c11, . . . , c1n), . . . , (cm1, . . . , cmn)} = {(ct1(λ, δ), . . . , ct2k(λ, δ)) | λ ∈ Λ≤k}.
So we have that n = 2k and m = |Λ≤k|. Hence Lemma 3.16 tells us that there exists
a family of supersymmetric polynomials {pλ : λ ∈ Λ≤k} ⊂ SSym[x1, . . . , x2k] such that
the matrix (pλ(µ, δ))λ,µ∈Λ≤k in Cm×m is invertible, recalling that

pλ(µ, δ) := pλ(ct1(µ, δ), . . . , ct2k(µ, δ)).

We will now show that the corresponding elements pλ(N1, . . . , N2k) in SSymδ[N1, . . . , N2k]
are also linearly independent. Assume that

P =
∑
λ∈Λ≤k

cλpλ(N1, . . . , N2k) = 0,

where cλ ∈ C for each λ ∈ Λ≤k. We seek to show that cλ = 0 for each λ ∈ Λ≤k. For
any (µ, 2k) ∈ Λ≤k ×{2k}, the element P acts on the simple A2k(δ)-module A(µ,2k) by 0.
From Lemma 3.6 and Lemma 3.7 this means that∑

λ∈Λ≤k

cλpλ(µ, δ) = 0,
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for any (µ, 2k) ∈ Λ≤k×{2k}. However, since the column vectors of (pλ(µ, δ))λ,µ∈Λ≤k are
linearly independent, we must have that cλ = 0 for all λ ∈ Λ≤k. Therefore the set

{pλ(N1, . . . , N2k) : λ ∈ Λ≤k}

is linearly independent in SSymδ[N1, . . . , N2k]. Since A2k(δ) is semisimple, we know
by the Weddernburn-Artin theorem that the dimension of the center Z(A2k(δ)) equals
|Λ≤k×{2k}| = |Λ≤k|, which equals the size of the above linearly independent set. Hence
by Theorem 3.5 we must have that SSymδ[N1, . . . , N2k] = Z(A2k(δ)).

Corollary 3.18. We have that SSym[N1, . . . , N2k] = Z(A2k(z)).

Proof. This follows from Theorem 3.17 and then applying Lemma 2.59.

Remark 3.19. As mentioned in Theorem 2.13, the center of the group algebra of the
symmetric group can be described as the subalgebra of symmetric polynomials in the
Jucys-Murphy elements. Analogous descriptions of the centers of the Brauer algebras
and walled Brauer algebras (in the semisimple settings) have also been shown in [N96]
and [JK17] respectively. Both Theorem 3.17 and Corollary 3.18 provide analogous results
for the partition algebras.

Remark 3.20. Before the Jucys-Murphy elements of the partition algebra were defined
in [HR05], the central idempotents of the partition algebra were described in [MW99].
These central idempotents were obtained by taking the product of the central idempo-
tents in the underlying group algebra of the symmetric group by a certain recursively
defined splitting idempotent associated to the partition algebra. In this sense the center
of the partition algebra is understood via the splitting idempotent and central idem-
potents in the group algebra of the symmetric group. Our result above gives us an
understanding of the center of the partition algebra via the Jucys-Murphy elements.
In [MW99] they described how their central idempotents can give information on the
blocks of the partition algebra, and in the next section we show how our description of
the center can do the same.

3.3 Alternative Description of the Blocks

Recall from Section 2.2.3 that the blocks of the partition algebra A2k(δ) were charac-

terised by P. Martin as maximal δ-chains of Λ
(δ)
≤k for any δ ∈ C. In this section we will

present an alternative characterisation of the blocks by utilising the action of the central
subalgebra SSymδ[N1, . . . , N2k] of A2k(δ).

Let A be any finite dimensional C-algebra and let Λ be an indexing set for the isomor-
phism classes of the simple A-modules. Recall that the set of blocks {BA(λ) | λ ∈ Λ}
give a set partition of Λ. We will write Aλ to denote a simple A-module belonging to
the class λ ∈ Λ. Let z belong to the center Z(A) of A, then by Schur’s lemma z acts
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by a scalar on Aλ. Let χλ(z) ∈ C denote this scalar. Then we obtain a C-algebra
homomorphism χλ : Z(A) → C which is referred to as the central character induced by
λ. It is well known that λ and µ belong to the same block of Λ if and only if the central
characters χλ and χµ are equal. In this sense, the center Z(A) can distinguish between
the blocks of A. Now for the partition algebra A2k(δ) recall that

Λ
(δ)
≤k :=

{
Λ≤k, δ 6= 0,

Λ≤k\{∅}, δ = 0.

index the isomorphism classes of simple A2k(δ)-modules. Consider the central characters

χλ : Z(A2k(δ))→ C

for λ ∈ Λ
(δ)
≤k, then BA2k(δ)(λ) = {µ ∈ Λ≤k | χµ = χλ}. When A2k(δ) is semisimple then

the blocks are trivial, and by Theorem 3.17 we know that Z(A2k(δ)) = SSymδ[N1, . . . , N2k].
From Lemma 3.7 and Lemma 3.6 we know that the central character χλ acts on any
p ∈ SSymδ[N1, . . . , N2k] by χλ(p) = p(λ, δ), i.e. it evaluates the polynomial at the tuple
(ct1(λ, δ), . . . , ct2k(λ, δ)). We now show that even in the non-semisimple case, the central
characters still act on the supersymmetric polynomials in the normalised Jucys-Murphy
elements by evaluating them at the contents of standard paths.

Proposition 3.21. For any δ ∈ C and λ ∈ Λ
(δ)
≤k, we have that

χλ(p) = p(λ, δ)

for any p ∈ SSymδ[N1, . . . , N2k].

Proof. By Corollary 2.52 we know for any λ ∈ Λ
(δ)
≤k there exists a cell module ∆λ

2k,δ of
A2k(δ) which possesses a basis {mT | T ∈ Path(λ, 2k)} such that

Nim
λ
T =

(
contδ(T, i)−

δ

2

)
mλ

T +
∑

S∈Path(λ,2k)
T≺S

vS(T, i)mλ
S (3.7)

where ≺ is the partial ordering on the set of paths Path(λ, 2k) defined in [Eny13, Defini-
tion 3.8]. As mentioned previously, the standard path T(λ,2k) ∈ Path(λ, 2k) is a maximal
element with respect to this partial ordering (see [Eny13, Lemma 3.9]), then for any
supersymmetric polynomial p ∈ SSym[x1, . . . , x2k], by Equation (3.7) we must have that

p(N1, . . . , N2k)m
λ
T(λ,2k) = p(λ, δ)mλ

T(λ,2k) .

Since ∆λ
2k,δ is a cell module, there exists a maximal submodule N ⊂ ∆λ

2k,δ such that

Dλ
2k,δ := ∆λ

A2k(δ)/N

is a simple module of the class λ. Then

p(N1, . . . , N2k)(m
λ
T(λ,2k) +N) = p(λ, δ)(mλ

T(λ,2k) +N).
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Since SSymδ[N1, . . . , N2k] ⊆ Z(A2k(δ)), then Schur’s lemma tells us that p(N1, . . . , N2k)
acts on all of Dλ

2k by a certain constant, and from above this constant must be p(λ, δ).
Therefore we must have that χλ(p) = p(λ, δ).

Now recall the generating functions L(λ, δ) of Equation (3.5) whose coefficient of the n-
th degree term is ln(λ, δ), the evaluation of the elementary supersymmetric polynomial at
the contents of the standard path. This can be defined for any δ ∈ C. From Proposition
3.21 and Proposition 3.13 we have that

L(λ, δ) =

∞∑
n=0

χλ(ln)tn =

∏|λ|−1
i=0 (1 + (i− δ

2)t)∏
j∈D(λ)(1 + ( δ2 − j)t)mλ(j)

,

for any δ ∈ C and λ ∈ Λ
(δ)
≤k. Since the elementary supersymmetric polynomials generate

the algebra of supersymmetric polynomials by Theorem 3.4, the generating function
L(λ, δ) contains the same information as the action of the central character χλ on the
subalgebra SSymδ[N1, . . . , N2k] of the center Z(A2k(δ)). In particular, for any λ, µ ∈
Λ

(δ)
≤k, we have that L(λ, δ) = L(µ, δ) if and only if

χλ|SSymδ[N1,...,N2k] = χµ|SSymδ[N1,...,N2k].

When A2k(δ) is semisimple, then we know by Theorem 3.17 that SSymδ[N1, . . . , N2k] is
precisely the center of A2k(δ), thus χλ = χµ if and only if λ = µ. This was shown in
Proposition 3.15 to be the same as asking that L(λ, δ) = L(µ, δ). We end this section by
showing that even in the non-semisimple case, these generating functions still determine
the blocks, that is to say that the action of the subalgebra SSymδ[N1, . . . , N2k] of the
center Z(A2k(δ)) can distinguish between the blocks of A2k(δ). We will prove this by
showing that L(λ, δ) = L(µ, δ) if and only if µ and λ belong to the same maximal δ-chain.

Lemma 3.22. Let λ, µ ∈ Λ
(δ)
≤k. If (µ, λ) is a δ-pair, then L(µ, δ) = L(λ, δ).

Proof. We have that λ\µ = R where R is a horizontal strip. Let R = {b1, . . . , bn} where
the boxes bi run from left to right as i runs from 1 to n. Since (µ, λ) is a δ-pair we have
that c(bn) = δ − |µ|. As such,

L(λ, δ) =

∏|λ|−1
i=0 (1 + (i− δ

2)t)∏
a∈λ(1 + ( δ2 − c(a))t)

=

∏|µ|−1
i=0 (1 + (i− δ

2)t)
∏|λ|−1
i=|µ| (1 + (i− δ

2)t)∏
a∈λ/R(1 + ( δ2 − c(a))t)

∏
1≤i≤n(1 + ( δ2 − c(bi))t)

.

We have that |λ| = |µ|+ n, then reindexing gives

|λ|−1∏
i=|µ|

(1 + (i− δ/2)t) =
n∏
i=1

(1 + (|λ| − i− δ/2)t). (3.8)

As R = {b1, . . . , bn} consists of consecutive boxes in the same row, and c(bn) = δ − |µ|,
we see that c(bi) = c(bn)− (n− i) = δ − |µ| − n+ i = δ − |λ|+ i. Thus∏

1≤i≤n
(1+(δ/2−c(bi))t) =

∏
1≤i≤n

(1+(δ/2−(δ−|λ|+i))t) =
∏

1≤i≤n
(1+(|λ|−i−δ/2)t). (3.9)
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Thus Equation (3.8) and Equation (3.9) agree, and so these factors cancel in L(λ, δ).
Hence, since λ/R = µ, we see that

L(λ, δ) =

∏|µ|−1
i=0 (1 + (i− δ

2)t)∏
a∈λ/R(1 + ( δ2 − c(a))t)

= L(µ, δ).

Recall that C2k,δ(λ) denotes the set of partitions in Λ
(δ)
≤2k which belong to the same

maximal δ-chain as λ, which we know equals the block BA2k(δ)(λ). From the above

lemma, one can immediately see that if τ (1) ⊂ · · · ⊂ τ (r) is a maximal δ-chain, then
L(τ (i), δ) = L(τ (j), δ) for any 1 ≤ i, j ≤ r. This tells us that µ ∈ C2k,δ(λ) implies that
L(λ, δ) = L(µ, δ). The other direction will following from the next two lemmas.

Lemma 3.23. Let λ, µ ∈ Λ
(δ)
≤k such that µ ⊂ λ. If L(λ, δ) = L(µ, δ), then there exists a

δ-chain τ (1) ⊂ · · · ⊂ τ (r) for some r ∈ N such that µ = τ (1) and λ = τ (r).

Proof. We will prove the result by induction on the number of horizontal strips which µ
and λ differ by (which is well-defined since µ ⊂ λ). For the base case, assume that µ and
λ differ in a single row, that is λ/µ = R := {b1, . . . , bn} for some n ∈ N, and we assume
that the boxes bi run left to right as i runs from 1 to n. Since µ ∪R = λ, we have

L(λ, δ) =

∏|λ|−1
i=0 (1 + (i− δ

2)t)∏
a∈λ(1 + ( δ2 − c(a))t)

=

∏|λ|−1
i=0 (1 + (i− δ

2)t)∏
a∈µ(1 + ( δ2 − c(a))t)

∏
1≤i≤n(1 + ( δ2 − c(bi))t)

,

and by definition we have

L(µ, δ) =

∏|µ|−1
i=0 (1 + (i− δ

2)t)∏
a∈µ(1 + ( δ2 − c(a))t)

.

By assumption we have that L(λ, δ) = L(µ, δ), and so we can deduce that∏|λ|−1
i=|µ| (1 + (i− δ

2)t)∏
1≤i≤n(1 + ( δ2 − c(bi))t)

= 1.

Note that there is n = |λ| − |µ| irreducible factors in the numerator and denominator
of above. Since the fraction equals 1, the factors in the numerator must match up one-
to-one with the factors in the denominator. The box bn has the largest content of all
the boxes in R, and so the factor (1 + ( δ2 − c(bn))t) has the smallest coefficient of t
out of all the factors in the denominator. As such, this factor must cancel out with
the factor (1 + (|µ| − δ

2)t) in the numerator, since this has the smallest coefficient of t
among the factors in the numerator. Equating these coefficients yields c(bn) = δ − |µ|.
Hence µ ↪→δ λ proving the base case. Now assume the result holds if λ differs from µ by
r− 1 > 1 horizontal strips, we seek to prove the r case. So suppose that µ∪i∈[r]R

(i) = λ

where R(i) = {b(i)1 , . . . , b
(i)
ni } is a horizontal strip of boxes in λ and ni ∈ N. Assume that
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R(i) is in a lower row of λ that R(j) whenever i > j, hence R(r) is found lower in λ than
any other R(i) for i < r. We have that

L(λ, δ) =

∏|λ|−1
i=0 (1 + (i− δ

2)t)∏
a∈µ(1 + ( δ2 − c(a))t)

∏
i∈I
∏

1≤j≤ni(1 + ( δ2 − c(b
(i)
j ))t)

.

By assumption we have that L(λ, δ) = L(µ, δ), and so one can deduce that∏|λ|−1
i=|µ| (1 + (i− δ

2)t)∏
i∈I
∏

1≤j≤ni(1 + ( δ2 − c(b
(i)
j ))t)

= 1.

Note, as was the case previously, the number of irreducible factors in the numerator
agrees with that of the denominator. Since the fraction equals 1, the factors in the
numerator must match up one-to-one with the factors in the denominator. For the

horizontal strip R(r) = {b(r)1 , . . . , b
(r)
nr } assume that b

(r)
i is to the left of b

(r)
j whenever

i < j. Thus since R(r) is lower than any other horizontal strip R(i), the box b
(r)
1 has the

smallest content among all the boxes in ∪i∈[r]R
(i). As such the factor (1+(δ/2−c(b(r)1 )t)

has the largest coefficient of t among the irreducible factors in the denominator, hence
this factor must cancel out with (1 + (|λ| − 1 − δ

2)t), since this is the irreducible factor
with the largest coefficient of t in the numerator. Therefore we must have that

c(b
(r)
1 ) = δ − |λ|+ 1.

The last box b
(r)
nr in R(r) has content c(b

(r)
nr ) = c(b

(r)
1 ) + nr − 1, and so we have that

c(b(r)nr ) = δ − |λ|+ 1 + nr − 1 = δ − |λ|+ nr = δ − |λ/R(r)|.

Therefore λ/R(r) ↪→δ λ, and thus by Lemma 3.22 we have that L(λ, δ) = L((λ/R(r)), δ).
Thus L(µ, δ) = L((λ/R(r)), δ) and µ ⊂ λ/R(r), and so by the inductive hypothesis there
exists a δ-chain τ (1) ⊂ · · · ⊂ τ (r−1) such that τ (1) = µ and τ (r−1) = λ/R(r). Since
λ/R(r) ↪→δ λ, we can extend this chain by adding τ (r) = λ, which completes the proof.

Lemma 3.24. Let λ, µ ∈ Λ
(δ)
≤k. If L(λ, δ) = L(µ, δ) then µ ⊂ λ or λ ⊂ µ.

Proof. Assume for contradiction that L(λ, δ) = L(µ, δ) but λ 6⊂ µ and µ 6⊂ λ. Consider
the Young diagram τ = λ ∩ µ, then we have

L(λ, δ) =

∏|λ|−1
i=0 (1 + (i− δ

2)t)∏
a∈λ(1 + ( δ2 − c(a))t)

=

∏|λ|−1
i=0 (1 + (i− δ

2)t)∏
a∈τ (1 + ( δ2 − c(a))t)

∏
a∈λ/τ (1 + ( δ2 − c(a))t)

,

and similarly

µ(t) =

∏|µ|−1
i=0 (1 + (i− δ

2)t)∏
a∈µ(1 + ( δ2 − c(a))t)

=

∏|µ|−1
i=0 (1 + (i− δ

2)t)∏
a∈τ (1 + ( δ2 − c(a))t)

∏
a∈µ/τ (1 + ( δ2 − c(a))t)

.
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Without loss of generality assume that |µ| ≤ |λ|. Since L(λ, δ) = L(µ, δ) we have that∏|λ|−1
i=|µ| (1 + (i− δ

2)t)∏
a∈λ/τ (1 + ( δ2 − c(a))t)

=
1∏

a∈µ/τ (1 + ( δ2 − c(a))t)
, (3.10)

which implies
|λ|−1∏
i=|µ|

(1 + (i− δ/2)t) =

∏
a∈λ/τ (1 + ( δ2 − c(a))t)∏
a∈µ/τ (1 + ( δ2 − c(a))t)

. (3.11)

This tells us that all the irreducible factors in the denominator of the right hand side
of Equation (3.11) must cancel out with factors in the numerator, or be trivial. This
means that the multiset of contents which do not equal δ/2 of the skew diagram µ/τ is
contained in the multiset of contents which do not equal δ/2 of the skew diagram λ/τ .
Since (λ/τ) ∩ (µ/τ) = ∅, these multisets are distinct, and so µ/τ must consists only
of boxes with content δ/2 and λ/τ has no boxes with content δ/2. The only way µ/τ
can consist solely of boxes with content δ/2 is if |µ/τ | = 1. So let µ/τ = {a} where
c(a) = δ/2. Then from Equation (3.10) above,∏|λ|−1

i=|µ| (1 + (i− δ
2)t)∏

a∈λ/τ (1 + ( δ2 − c(a))t)
= 1. (3.12)

Note, the number of irreducible factors in the numerator of Equation (3.12) equals
|λ| − |µ|, while there is |λ/τ | = |λ| − |µ| + 1 (since |µ| = |τ | + 1) irreducible factors in
the denominator. Thus for the equality of Equation (3.12) to hold, one of the factors in
the denominator must equal 1, i.e. there must exist some a ∈ λ/τ such that c(a) = δ/2.
However, as mentioned above this cannot occur, giving the desired contradiction.

Corollary 3.25. Given λ, µ ∈ Λ
(δ)
≤k, then λ and µ belong to the same block if and only

if L(λ, δ) = L(µ, δ). As such we have that

B2k(λ) =
{
µ ∈ Λ

(δ)
≤k

∣∣∣ χλ|SSymδ[N1,...,N2k] = χµ|SSymδ[N1,...,N2k]

}
.

�

Remark 3.26. If δ ∈ {0, 1, . . . , 2k− 2}, i.e. when A2k(δ) is non-semisimple, then we do
not know whether the subalgebra SSym[N1, . . . , N2k] is the entire center Z(A2k(δ)) or
not. However, we know that the action of the center Z(A2k(δ)) can distinguish the blocks
of A2k(δ), and Corollary 3.25 tells us that the central subalgebra SSym[N1, . . . , N2k]
can do the same. We believe this gives some evidence to suggest that the algebra
SSym[N1, . . . , N2k] is possibly the entire center even in the non-semisimple case.

Remark 3.27. As already summarised in Section 2.2.3, the blocks of the partition
algebra A2k(δ) have already been understood from the works of P. Martin in [Martin96]
and of D. Wales and W. Doran in [DW00] as maximal δ-chains. Our result in Corollary
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3.25 has simply re-expressed such information in the form of a generating function. One
reason why this is interesting is that is provides an analogous theory for understanding
the blocks of the partition algebra which has been described for various other algebras
such as the Brauer and walled Brauer algebras. That is using Jucys-Murphy elements
and thier action on simple modules has provided a more uniform approach to analysing
the blocks of a given algebra, and we have demonstrated this for the partition algebra.
It is also worth mentioning that comparing whether two generating functions L(λ, δ)
and L(µ, δ) agree or not is a very simple task, as one does not need to “unravel” the
generating functions, but instead just needs to treat them as rational functions in the
variable t, and simply cancel out common factors.
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4 Affine Partition Algebra

This chapter will provide a definition of an affine version of the partition algebra which
we denote by Aaff

2k called the affine partition algebra, and prove a variety of results
regarding it including the five affinization proerties 1 to 5 described in Section 1.4. For
the first section of this chapter, to help motivate the definition of our affine partition
algebra via a presentation, we start by summarising the process employed by others to
construct analogous algebras as highlighted in Section 1.3. We prove and collect various
relations in the partition algebra, then define the affine partition algebra by generators
and a presentation, and lastly focus on proving the first three affinization properties 1
to 3. The second section of this chapter describes an action of Aaff

2k on the tensor space
M ⊗V ⊗k, where M is any CSn-module, which generalises the action Ψ2k,n described in
Theorem 2.58. As such we prove that our affine partition algebra satisfies affinization
property 4. The third and last section of this chapter establishes connections between
our affine partition algebra and the Heisenberg category defined in [Kho14]. Namely
we prove that a certain endomorphism algebra of an object in the Heisenberg category
is a quotient of our affine partition algebra, and via this quotient the affine generators
get mapped onto decorations as one would hope. This shows that our affine partition
algebra partially satisfies the last affinization property 5. We end the chapter by recalling
a subcategory of the Heisenberg category called the affine partition category which was
defined in [BV21] and is denoted by APar. This category is generated by a single object
and a collection of morphisms, and an algebra also called the affine partition algebra
APk is defined in [BV21] as the endomorphism algebra of a certain object in APar. We
prove that the category APar is a full subcategory of the Heisenberg category, which as
a result gives us a basis for the morphism spaces of APar, and shows that the algebra
APk is a quotient of our affine partition algebra Aaff

2k .

4.1 Defining the Affine Partition Algebra Aaff
2k

In this section we will prove various relations within the partition algebra, use such to
define an affine partition algebra, and prove many structural results for this new algebra
including the affinization properties 1 to 3. We will define the affine partition algebra by
employing an analogous procedure to what has been done for other affine counterparts
of diagram algebras within the literature. This procedure however is very vague and
often only the outcome of such is given with the procedure itself only implicitly present.
As such we wish to give some structure to this procedure to help motivate our definition
and ease the readability of the chapter. We seek to define an affine partition algebra
Aaff

2k by taking the following steps:
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1. Fix a generating set G for the partition algebra A2k.

2. Fix a family of Jucys-Murphy elements X = {X1, . . . , X2k} for A2k and a collection
of central elements W ⊂ Z(A2k) related to X.

3. Fix a collection of relations R involving the elements G, X, and W, which contains
a presentation for A2k.

4. Define Aaff
2k with generating set Gaff tXaff tWaff and defining relations Raff where:

� The sets Gaff, Xaff, and Waff are considered to be formal symbols which are in
bijection with G, X, and W respectively.

� The relations Raff are obtained from R by replacing each of the elements from
G t X tW with their bijective counterparts in Gaff t Xaff tWaff.

This series of steps is presented to simply give a broad idea behind how we defined the
affine partition algebra. A variety of choices need to be made, with the most significant
choice being that for the set of relations R. No conditions for such choices are given,
which of course means that following these steps in general would lead to numerous
algebras which would be very undesirable candidates for an affine partition algebra. To
refine these steps to provide an algorithm which produces desirable algebras appears
to be a very difficult task, and we do not attempt to do such here. Instead, we will
model our choices to be as analogous as possible to the choices made in other affine
diagram algebras, and by keeping in mind that we want the resulting algebra to satisfy
the affinization properties 1 to 5. With this being said, recall the diagram algebras and
their affine counterparts discussed in Section 1.2 and Section 1.3, we now explain how
analogous steps to those presented above were taking in such settings.

For the setting of the degenerate affine Hecke algebra Hk, we have G = {s1, . . . , sk−1},
the set of simple transpositions in Sk, and X = {Y1, . . . , Yk}, the family of Jucys-Murphy
elements defined in Definition 2.11. The set of central elements W is to help account for
certain floating components in the diagrammatics, which are absent in this setting and
so we have W = ∅. The set of relations R is taken to be the relations in Theorem 2.1
along with the relations in Lemma 2.12. Then Hk is obtained by applying an analogous
step to Step 4 above. Due to the choice in relations R, the elements Gaff generate in Hk
a subalgebra isomorphic to the group algebra of the symmetric group CSk, and hence
we really have that Gaff = G. However, the elements Xaff have provided meaningfully
new generators as discussed in Section 2.1.7.

The setting for the affine Wenzl algebra Wk was presented in [N96]. To summarise,
let δ ∈ C, then G = {s1, . . . , sk−1, s1, . . . , sk−1}, where si are the simple transpositions of
Sk sitting inside the Brauer algebra Bk(δ), and si are the generators corresponding to
the diagrams {{i, i+ 1}, {i′, (i+ 1)′}, {j, j′} | j ∈ [k]\{i, i+ 1}} (i.e. when viewing Bk(δ)
as a subalgebra of A2k(δ), then si = e2ie2i−1e2i+1e2i). The family of Jucys-Murphy
elements X = {x1, . . . , xk} are taken to be those defined in [N96, Equation (2.2)]. The
set of central elements are taken to be set of constants

W =

{
z

(n)
1 :=

δn(δ − 1)

2
| n ∈ Z≥0

}
.
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The motivation behind this choice of central elements is since they satisfy the relation

s1x
n
1s1 = z

(n)
1 s1. Hence thinking ahead, we will want to interpret the affine version of the

element x1 (i.e. its counterpart in Xaff) as a decoration on the first string, thus the affine
version of the expression s1x

n
1s1 would be viewed diagrammtically as s1 plus a floating

loop with n decorations on it. As such the affine version of the equation s1x
n
1s1 = z

(n)
1 s1

will allow the affine version of the central element z
(n)
1 to play the role of a floating loop

with n decorations. The set of relations R are chosen to be those in the presentation of

Bk(δ) given in [N96, Proposition 1.1] alongside the relations s1x
n
1s1 = z

(n)
1 s1, various

commuting relations, and some non-commuting relations between the Jucys-Murphy
elements and the generators in G (which include recursive relations analogous to item
(iii) in Lemma 2.12). Then Wk is obtained by applying an analogous step to Step 4
above. Due to the choice in relations R, the elements Gaff generate in Wk a subalgebra
isomorphic to the Brauer algebra Bk(ω0) (viewed as an algebra over the ring C[ω0], with

ω0 being the affine version of z
(0)
1 = (δ − 1)\2 belonging to Waff). Hence we really have

that Gaff = G. However, the generators Xaff = {y1, . . . , yk} and Waff = {ωn | n ∈ Z≥0}
(adopting the notation of [N96]) have become meaningfully new elements, which in some

sense have “freed up” the Jucys-Murphy elements and the central elements z
(n)
1 . These

relations of R were very much a choice M. Nazarov made, and although little is said
in [N96] regarding the motivation for such choices, they are certainly quite analogous
to the relations chosen in the setting of Hk, and are very natural when considering the
corresponding diagrammatics that will be produced, in other words for the resulting
algebra to satisfy affinization property 5.

The setting for the affine walled Brauer algebras follows very analogously to that of
the affine Wenzl algebra, and the reader may find such details in [Sar13] and [RS13].

The choices we will make to construct our affine partition Aaff
2k are very much guided

by what has been done by others summarised above. However there will be numerious
unique features with our construction which we will remark on as they emerge. It is
worth mentioning now that our choice for the set of relations R was motivated by a
mixture of what was done by M. Nazarov in [N96], and in trying to produce an algebra
which satisfies the affinization properties 1 to 5, with the last two such properties being
the most helpful in determining appropriate relations to pick.

4.1.1 Making our choices for G, X, W, and R

In this subsection we establish the sets G, X, W, and R involved in Steps 1 to 3. We
define normalised versions of both the Jucys-Murphy elements and Enyang’s generators,
which will be easier to work with. Many of the relations in R will need to be proved,
and will contain an alternative presentation of A2k, which is simply the presentation
Theorem 2.38 given by J. Enyang with the exception of replacing Enyang’s generators
with the normalised versions.

Recall the Jucys-Murphy elements L1, . . . , L2k and Enyang’s generators σ2, . . . , σ2k−1

for the partition algebra A2k given in Definition 2.34. We define the following normali-
sations of such elements:
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Definition 4.1. In A2k define for any i ∈ [k − 1] the elements

t2i := σ2i − e2i, t2i+1 := σ2i+1 − e2i.

Also for any i ∈ [2k] define

Xi :=

{
z − 1− Li, if i odd

Li − 1, if i even
.

We use the same symbols to denote the corresponding elements in A2k(δ) for any δ ∈ C.

Throughout this chapter we will refer to the elements Xi also as the Jucys-Murphy
elements, and the elements ti also as Enyang’s generators. By definition one can see that
ti ∈ Ai+1 and Xi ∈ Ai, also these elements are invariant under the anti-automorphism
∗. By (E2)(iv) of Theorem 2.38 one can check that sit2i = t2isi = t2i+1. We briefly
collect some simple relations to ease the proof of the following proposition.

Lemma 4.2. The following relations hold:

(i) e2i+1t2ie2i+1 = X2i−1e2i+1

(ii) t2ie2i−1e2i = X2ie2i, and e2ie2i−1t2i = e2iX2i

(iii) t2i+1e2i+1e2i = X2ie2i, and e2ie2i+1t2i+1 = e2iX2i

Proof. (i): We have that

e2i+1t2ie2i+1 = e2i+1(σ2i − e2i)e2i+1

= e2i+1σ2ie2i+1 − e2i+1 by (E5) of Theorem 2.38

= (z − L2i−1)e2i+1 − e2i+1 by [Eny12, Proposition 4.3 (2)]

= (X2i−1 + 1)e2i+1 − e2i+1

= X2i−1e2i+1

(ii): We have that

t2ie2i−1e2i = (σ2i − e2i)e2i−1e2i

= σ2ie2i−1e2i − e2i by (E5) of Theorem 2.38

= L2ie2i − e2i by [Eny12, Proposition 3.2 (3)]

= (X2i + 1)e2i − e2i

= X2ie2i

The relation e2ie2i−1t2i = e2iX2i is obtained by acting by ∗.

(iii): We have t2i+1e2i+1e2i = t2isie2i+1e2i = t2ie2i−1e2i = X2ie2i. Again the relation
e2ie2i+1t2i+1 = e2iX2i is obtained by acting by ∗.
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The following proposition contains all the relations R we seek for our construction of
the affine partition algebra Aaff

2k , as such some are identical to relations which can be
found in Section 2.2. It includes a presentation of the partition algebra A2k(z) which
is simply Enyang’s presentation of Theorem 2.38 except working with the generators ti
instead of σi. For those relations we have adopted the same naming conventions given
in Theorem 2.38 even though their meaning does not always correspond directly to the
given relation.

Proposition 4.3. The partition algebra A2k(z) is generated by the set

{ti, ej | 2 ≤ i ≤ 2k − 1, j ∈ [2k − 1]},

and the following relations are satisfied:

(1) (Involutions)

(i) t22i = 1− e2i, for i ∈ [k − 1].

(ii) t22i+1 = 1− e2i, for i ∈ [k − 1].

(2) (Braid relations)

(i) t2i+1t2j = t2jt2i+1 for j 6= i+ 1.

(ii) t2i+1t2j+1 = t2j+1t2i+1 for j 6= i± 1.

(iii) t2it2j = t2jt2i for j 6= i± 1.

(iv) sisi+1si = si+1sisi+1, for i ∈ [k − 2], where si = t2it2i+1 + e2i.

(3) (Idempotent relations)

(i) e2
2i−1 = ze2i−1 for i ∈ [k].

(ii) e2
2i = e2i for i ∈ [k − 1].

(iii) t2i+1e2i = e2it2i+1 = 0 for i ∈ [k − 1].

(iv) t2ie2i = e2it2i = 0 for 1 ≤ i ≤ k − 1.

(v) t2ie2i−1e2i+1 = t2i+1e2i−1e2i+1 for 1 ≤ i ≤ k − 1.

(vi) e2i+1e2i−1t2i = e2i+1e2i−1t2i+1 for 1 ≤ i ≤ k − 1.

(4) (Commutation relations)

(i) eiej = ejei, if |i− j| ≥ 2.

(ii) t2i−1e2j−1 = e2j−1t2i−1, if j 6= i− 1, i.

(iii) t2i−1e2j = e2jt2i−1, if j 6= i.

(iv) t2ie2j−1 = e2j−1t2i, if j 6= i, i+ 1.

(v) t2ie2j = e2jt2i, if j 6= i− 1.

(5) (Contractions)

(i) eiei+1ei = ei and ei+1eiei+1 = ei+1, for i ∈ [2k − 2].
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(ii) t2ie2i−1t2i = t2i+1e2i+1t2i+1, for i ∈ [k − 1].

(iii) t2ie2i−2t2i = t2i−1e2it2i−1, for 2 ≤ i ≤ k − 1.

Furthermore, the following relations involving the Jucys-Murphy elements and Enyang’s
generators are satisfied, whenever the indices make sense if not stated:

(6) (JM Commutation Relations)

(i) XiXj = XjXi for all i, j ∈ [2k]

(ii) tiXj = Xjti for j 6= i− 1, i, i+ 1

(iii) eiXj = Xjei for j 6= i, i+ 1

(7) (Braid-like Relations)

(i) t2i−2t2it2i−2 = t2it2i−2t2i(1− e2i−2)

(ii) t2i+1t2i−1t2i+1 = t2i−1t2i+1t2i−1(1− e2i)

(iii) t2i−1t2it2i−1 = t2i − e2i−2t2i − t2ie2i−2

(iv) t2it2i−1t2i = t2i−1 − e2it2i−1 − t2i−1e2i

(8) (Skein-like Relations)

(i) X2i+1 = t2iX2i−1t2i + e2ie2i−1t2i + t2ie2i−1e2i − t2i.
(ii) X2i+2 = t2i+1X2it2i+1 + e2ie2i+1t2i+1e2i+1e2i + t2i+1.

(iii) X2i = t2iX2it2i + e2ie2i−1t2i + t2ie2i−1e2i.

(iv) X2i+1 = t2i+1X2i+1t2i+1 + e2ie2i+1t2i+1 + t2i+1e2i+1e2i.

(9) (Anti-symmetry Relations)

(i) ei(Xi −Xi+1) = 0 for i ∈ [2k − 1].

(ii) (Xi −Xi+1)ei = 0 for i ∈ [2k − 1].

(10) (Bubble Relations)

(i) e1X
l
1e1 = z(z − 1)le1, for all l ∈ Z≥0.

Proof. Although lengthy, it is simple to check that relations (1) to (5) are satisfied
since we merely exchanged the elements σi with ti from Enyang’s presentation given in
Theorem 2.38. In particular they certainly generate the algebra A2k(z).
(6): Follows from items (ii) and (iii) of Proposition 2.37, and since ei commutes with
Ai−1 for all i ∈ [2k − 1].
(7): These relations will be proven seperately in Lemma 4.6 below.
(9): Follows from [Eny12, Proposition 3.9] (1) and (2).
(10): We have that X1 = z − 1− L1 = z − 1. Thus for any l ∈ N,

e1X
l
1e1 = (z − 1)le2

1 = z(z − 1)le1.
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(8)(i): From Proposition 2.39 (i) we have

L2i+1 = σ2iL2i−1σ2i − e2ie2i−1σ2i − σ2ie2i−1e2i + e2ie2i+1σ2ie2i+1e2i + σ2i. (4.1)

Examining the right hand side term by term: For the first term,

σ2iL2i−1σ2i = (t2i + e2i)(−X2i−1)(t2i + e2i) + (z − 1)

= −t2iX2i−1t2i − t2iX2i−1e2i − e2iX2i−1t2i − e2iX2i−1e2i + (z − 1)

= −t2iX2i−1t2i −X2i−1e2i + (z − 1)

where the last equality follows since X2i−1 commutes with e2i and t2ie2i = e2it2i = 0.
For the second and third term of Equation (4.1), we have

−e2ie2i−1σ2i = −e2i − e2ie2i−1t2i, and − σ2ie2i−1e2i = −t2ie2i−1e2i − e2i.

For the forth term of Equation (4.1),

e2ie2i+1σ2ie2i+1e2i = e2ie2i+1t2ie2i+1e2i + e2ie2i+1e2ie2i+1e2i

= e2ie2i+1t2ie2i+1e2i + e2i

= e2ie2i−1t2i+1e2i+1e2i + e2i by t2i = sit2i+1

= e2ie2i−1X2i+1e2i + e2i by Lemma 4.2 (iii)

= e2ie2i−1e2iX2i−1 + e2i by (9)(i), (ii)

= e2iX2i−1 + e2i.

Substituting all these back into Equation (4.1) yields

z − 1−X2i+1 = −t2iX2i−1t2i −X2i−1e2i + (z − 1)− e2i − e2ie2i−1t2i − t2ie2i−1e2i − e2i

+ e2iX2i−1 + e2i + t2i + e2i

⇐⇒ X2i+1 = t2iX2i−1t2i + e2ie2i−1t2i + t2ie2i−1e2i − t2i

giving (8)(i).
(8)(ii): From Proposition 2.39 (ii) we have

L2i+2 = σ2i+1L2iσ2i+1 − e2ie2i+1 − e2i+1e2i + e2ie2i+1σ2i+1e2i+1e2i + σ2i+1. (4.2)

We examine two terms on the right hand side: The first term gives

σ2i+1L2iσ2i+1 = (t2i+1 + e2i)(X2i + 1)(t2i+1 + e2i)

= t2i+1X2it2i+1 + t2i+1X2ie2i + e2iX2it2i+1 + e2iX2ie2i + 1

= t2i+1X2it2i+1 + t22i+1e2i+1e2i + e2ie2i+1t
2
2i+1 + 1

= t2i+1X2it2i+1 + e2i+1e2i + e2ie2i+1 − 2e2i + 1

where the second equality follows since (t2i+1 + e2i)
2 = 1, and the third from Lemma

4.2 (iii) and since e2iX2ie2i = e2ie2i−1t2ie2i = 0. The forth term in Equation (4.2) gives

e2ie2i+1σ2i+1e2i+1e2i = e2ie2i+1t2i+1e2i+1e2i + e2ie2i+1e2ie2i+1e2i

= e2ie2i+1t2i+1e2i+1e2i + e2i.
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Substituting these back into Equation (4.2) yields

X2i+2 + 1 = t2i+1X2it2i+1 + e2i+1e2i + e2ie2i+1 − 2e2i + 1

− e2ie2i+1 − e2i+1e2i + e2ie2i+1t2i+1e2i+1e2i + e2i + t2i+1 + e2i

⇐⇒ X2i+2 = t2i+1X2it2i+1 + e2ie2i+1t2i+1e2i+1e2i + t2i+1

giving (8)(ii).
(8)(iii): From Proposition 2.39 (iii) we have

L2i = σ2iL2iσ2i + e2ie2i−1σ2i + σ2ie2i−1e2i − e2ie2i+1 − e2i+1e2i. (4.3)

We have that

σ2iL2iσ2i = (t2i + e2i)(X2i + 1)(t2i + e2i)

= t2iX2it2i + t2iX2ie2i + e2iX2it2i + e2iX2ie2i + 1

= t2iX2it2i + t22ie2i−1e2i + e2ie2i−1t
2
2i + 1

= t2iX2it2i + e2i−1e2i + e2ie2i−1 − 2e2i + 1

where the second equality follows since (t2i + e2i)
2 = 1, and the third equality from

Lemma 4.2 (ii) and the since t2ie2i = e2it2i = 0. Substituting this, and relations

e2ie2i−1σ2i = e2ie2i−1t2i + e2i and σ2ie2i−1e2i = t2ie2i−1e2i + e2i,

back into Equation (4.3) yields

X2i + 1 = t2iX2it2i + e2i−1e2i + e2ie2i−1 − 2e2i + 1 + e2ie2i−1t2i + e2i

+ t2ie2i−1e2i + e2i − e2ie2i+1 − e2i+1e2i

⇐⇒ X2i = t2iX2it2i + e2ie2i−1t2i + t2ie2i−1e2i + 1

giving (8)(iii).
(8)(iv): From Proposition 2.39 (iv) we have

L2i+1 = σ2i+1L2i+1σ2i+1 − e2ie2i+1σ2i+1 − σ2i+1e2i+1e2i + e2ie2i+1 + e2i+1e2i. (4.4)

We have that

σ2i+1L2i+1σ2i+1 = (t2i+1 + e2i)(−X2i+1)(t2i+1 + e2i) + (z − 1)

= −t2i+1X2i+1t2i+1 − t2i+1X2i+1e2i − e2iX2i+1t2i+1 − e2iX2i+1e2i + (z − 1)

= −t2i+1X2i+1t2i+1 − t22i+1e2i+1e2i − e2ie2i+1t
2
2i+1 + (z − 1)

= −t2i+1X2i+1t2i+1 − e2i+1e2i − e2ie2i+1 + 2e2i + (z − 1)

where the third equality follows from Lemma 4.2 (iii), and noting that e2iX2i+1e2i =
e2iX2ie2i = e2ie2i−1t2ie2i = 0. Substituting this, and the equations

−e2ie2i+1σ2i+1 = −e2ie2i+1t2i+1 − e2i and σ2ie2i−1e2i = −t2i+1e2i+1e2i − e2i,
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back into Equation (4.4) yields

(z − 1)−X2i+1 = −t2i+1X2i+1t2i+1 − e2i+1e2i − e2ie2i+1 + 2e2i + (z − 1)− e2ie2i+1t2i+1

− e2i − t2i+1e2i+1e2i − e2i + e2ie2i+1 + e2i+1e2i

⇐⇒ X2i+1 = t2i+1X2i+1t2i+1 + t2i+1e2i+1e2i + e2ie2i+1t2i+1

giving (8)(iv).

Remark 4.4. Although tedious, one can check that each of the relations given in Propo-
sition 4.3 above is invariant under the shift of indices given by 2i − 1 7→ 2(i + m) − 1
and 2i 7→ 2(i+m), for any m ∈ Z≥0.

Remark 4.5. To summarise Proposition 4.3 in regard to Steps 1 to 4 discussed at the
start of this section, we have picked our generating set to be

G = {ti, ej | 2 ≤ i ≤ 2k − 1, j ∈ [2k − 1]},

the family of Jucys-Murphy elements X to be the normalisations defined in Definition
4.1, and the central elements to be the polynomials W = {z(z− 1)l | l ∈ Z≥0}. Also the
relations R are all those present in Proposition 4.3.

A subtle but important aspect of the choice of generators G is that we have included
the element t2 = 1− e2 (noting that σ2 = 1 is absent in the presentation of the partition
algebra given in Theorem 2.38 since it is clearly redundant). As such, when applying
Step 4 in the next section, it will turn out that Gaff 6= G, which is a unique difference
when compared to the other affine diagram algebras discussed previously. Although the
generators ei will agree with their affine versions in Gaff, the generators ti will not, and
we will introduce new notation τi to represent their affine versions. One of the reasons
this is done is that it allows us to give a clean presentation comparable to other affine
diagrams algebras. Also, it will allow us to define an action of Aaff

2k on the tensor space
M ⊗V ⊗k which satisfies affinization property 4 (see Theorem 4.24), which would not be
obtainable otherwise. It appears that this is a good choice to make since it will allow
for very natural diagrammtics to come into play, with the new generators τi having
particularly simple descriptions (see Proposition 4.43).

As for the set of relations R, we picked relations (1) through (5) since they provide a
presentation of the partition algebra (if one removes t2 and all relations involving t2).
As for relations (6) through (10), all except (7) are comparable to the relations in [N96,
Section 4] which were chosen as the defining relations for Wk. We included relations
(7) since they appear to be very natural relations when considering the diagrammatics
which will be given in Proposition 4.43, and their inclusion allows us to recover affine
versions of the recursive relations for Enyang’s generators (see Lemma 4.17).

We now complete the proof of the above proposition:

Lemma 4.6. The relations
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(7) (Braid-like relations)

(i) t2i−2t2it2i−2 = t2it2i−2t2i(1− e2i−2)

(ii) t2i+1t2i−1t2i+1 = t2i−1t2i+1t2i−1(1− e2i)

(iii) t2i−1t2it2i−1 = t2i − e2i−2t2i − t2ie2i−2

(iv) t2it2i−1t2i = t2i−1 − e2it2i−1 − t2i−1e2i

are satisfied in A2k, thus completing the proof of Proposition 4.3.

Proof. We will prove these relations by showing that they hold under the homomorphism
Ψ2k,n given in Theorem 2.58, for all n ≥ 0, and then employ Lemma 2.59. To ease
notation, for any tuple a = (a1, . . . , ak) ∈ [n]k, we represent a simple tensor in V ⊗k by
a word in the entries of a, that is a1 · · · ak := va1 ⊗ · · · ⊗ vak . For each relation we will
have to consider different cases based on the relative values of the entries ai−1, ai, and
ai+1, although most cases are trivial. Also note that ψn,k(1− e2i)(a) = εai,ai+1a where
εai,ai+1 = 1− δai,ai+1 , with δai,ai+1 the Kronecker Delta.

(7)(i): If ai−1 = ai or ai = ai+1, then it is easy to check that both t2i−2t2it2i−2 and
t2it2i−2t2i(1− e2i−2) will act on a by 0. Assume that ai 6= ai−1 = ai+1, then

ψn,k(t2i−2t2it2i−2)(a) = ψn,k(t2i−2t2i)
(

(ai−1, ai)(a1 · · · ai−2)ai−1 · · · ak
)

= ψn,k(t2i−2)
(

(ai, ai+1)(ai−1, ai)(a1 · · · ai−2)aiai · · · ak
)

= 0.

Similarly one can show that ψn,k(t2it2i−2t2i(1 − e2i−2))(a) = 0 when ai 6= ai−1 = ai+1.
Lastly assume that ai−1, ai, and ai+1 are pairwise distinct, in particular εa,b = 1 for any
a, b ∈ {ai−1, ai, ai+1}. Then

ψn,k(t2it2i−2t2i(1− e2i−2))(a) = ψn,k(t2it2i−2t2i)(a)

= ψn,k(t2it2i−2)
(

(ai, ai+1)(a1 · · · ai−1)ai · · · ak
)

= ψn,k(t2it2i−2)
(

(ai, ai+1)(a1 · · · ai−2)ai−1 · · · ak
)

= ψn,k(t2i)
(

(ai−1, ai)(ai, ai+1)(a1 · · · ai−2)ai−1 · · · ak
)

=
(

(ai, ai+1)(ai−1, ai)(ai, ai+1)(a1 · · · ai−2)ai−1 · · · ak
)

=
(

(ai−1, ai)(ai, ai+1)(ai−1, ai)(a1 · · · ai−2)ai−1 · · · ak
)

= ψn,k(t2i−2)
(

(ai, ai+1)(ai−1, ai)(a1 · · · ai−2)ai−1 · · · ak
)

= ψn,k(t2i−2t2i)
(

(ai−1, ai)(a1 · · · ai−2)ai−1 · · · ak
)

= ψn,k(t2i−2t2it2i−2)(a)

(7)(ii): If ai = ai+1 then its clear that both t2i+1t2i−1t2i+1 and t2i−1t2i+1t2i−1(1 − e2i)
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act on a by 0. Assume that ai 6= ai+1 and ai−1 ∈ {ai, ai+1}, then

ψn,k(t2i+1t2i−1t2i+1)(a) = ψn,k(t2i+1t2i−1)
(

(ai, ai+1)(a1 · · · ai−1)ai+1aiai+2 · · · ak
)

= εb,ai+1
ψn,k(t2i+1)

(
(b, ai+1)(ai, ai+1)(a1 · · · ai−1)baiai+2 · · · ak

)
= εb,aiεb,ai+1

(
(b, ai)(b, ai+1)(ai, ai+1)(a1 · · · ai−1)aibai+2 · · · ak

)
where b = (ai, ai+1)(ai−1). Since ai−1 ∈ {ai, ai+1}, we have that εb,aiεb,ai+1

= 0, and so
t2i+1t2i−1t2i+1 acts on a by 0. Similarly one can check that t2i−1t2i+1t2i−1(1− e2i) also
acts on a by 0. Lastly assume that ai−1, ai, and ai+1 are pairwise distinct. Then

ψn,k(t2i−1t2i+1t2i−1(1− e2i))(a) = ψn,k(t2i−1t2i+1t2i−1)(a)

= ψn,k(t2i−1t2i+1)
(

(ai−1, ai)(a1 · · · ai−2)aiai−1ai+1 · · · ak
)

= ψn,k(t2i−1)
(

(ai−1, ai+1)(ai−1, ai)(a1 · · · ai−2)aiai+1ai−1ai+2 · · · ak
)

= (ai, ai+1)(ai−1, ai+1)(ai−1, ai)(a1 · · · ai−2)ai+1aiai−1ai+2 · · · ak
= (ai−1, ai)(ai−1, ai+1)(ai, ai+1)(a1 · · · ai−2)ai+1aiai−1ai+2 · · · ak

= ψn,k(t2i+1)
(

(ai−1, ai+1)(ai, ai+1)(a1 · · · ai−2)ai+1ai−1aiai+2 · · · ak
)

= ψn,k(t2i+1t2i−1)
(

(ai, ai+1)(a1 · · · ai−2)ai−1ai+1aiai+2 · · · ak
)

= ψn,k(t2i+1t2i−1t2i+1)(a)

(7)(iii): Assume ai = ai+1, then it is easy to check that t2i − e2i−2t2i − t2ie2i−2 acts on
a by 0. Similarly

ψn,k(t2i−1t2it2i−1)(a) = εai−1,aiψn,k(t2i−1t2i)
(

(ai−1, ai)(a1 · · · ai−2)aiai−1ai+1 · · · ak
)

= εai−1,ai+1εai−1,aiψn,k(t2i−1)
(

(ai−1, ai+1)(ai−1, ai)(a1 · · · ai−2)ai−1ai−1ai+1 · · · ak
)

= 0.

Now assume ai 6= ai+1 and ai−1 ∈ {ai, ai+1}. Then

ψn,k(t2i − e2i−2t2i − t2ie2i−2)(a) = (1− δ(ai,ai+1)(ai−1),ai)(ai, ai+1)(a1 · · · ai−1)ai · · · ak.

In either case for ai−1 = ai or ai−1 = ai+1, we have ψn,k(t2i− e2i−2t2i− t2ie2i−2)(a) = 0.
Also, from above we see that ψn,k(t2i−1t2it2i−1)(a) = 0 since the factor εai−1,ai+1εai−1,ai

comes into play. Lastly, assume that ai−1, ai, and ai+1 are pairwise distinct, then it is
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easy to check that ψn,k(e2i−2t2i)(a) = ψn,k(t2ie2i−2)(a) = 0. Also,

ψn,k(t2i−1t2it2i−1)(a) = ψn,k(t2i−1t2i)
(

(ai−1, ai)(a1 · · · ai−2)aiai−1ai+1 · · · ak
)

= ψn,k(t2i−1)
(

(ai−1, ai+1)(ai−1, ai)(a1 · · · ai−2)aiai−1ai+1 · · · ak
)

= (ai−1, ai)(ai−1, ai+1)(ai−1, ai)(a1 · · · ai−2)ai−1 · · · ak
= (ai, ai+1)(a1 · · · ai−2)ai−1 · · · ak
= ψn,k(t2i)(a) = ψn,k(t2i − e2i−2t2i − t2ie2i−2)(a).

(7)(iv): This relation can be proved by analogous computations to (7)(iii) above.

4.1.2 Definition and Basic Results of Aaff
2k

In this section we give the definition of the affine partition algebra Aaff
2k by generators

and relations. As mentioned in Chapter 1, the algebra Aaff
2k is to play an analogous role

for the partition algebra A2k as that of the degenerate affine Hecke algebra Hk for the
group algebra of the symmetric group Sk. We prove some basic properties about Aaff

2k

including affinization properties 1 to 3. We also show that Hk ⊗Hk is a quotient. We
will prove a variety of relations in Aaff

2k including counterparts to the recursive definition
of both the Jucys-Murphy elements and Enyang’s generators.

It is worth mentioning that the definition for the affine partition algebra Aaff
2k given

below is defined as an algebra over the field of complex numbers C. However, one
may easily define this algebra over any commutative ring, and many of the structural
properties would still be upheld. We have chosen to work over C for simplicity, and
to allow the results of Section 4.2 and Section 4.3 to hold concerning the affinization
properties 4 and 5 respectively.

Definition 4.7. Let k ∈ Z≥0, we define the affine partition algebra Aaff
2k to be the

associative unitial C-algebra with set of generators

{ej , τi, xr, zl | 2 ≤ i ≤ 2k − 1, 1 ≤ j ≤ 2k − 1, r ∈ [2k], l ∈ Z≥0}

and defining relations

(1) (Involutions)

(i) τ2
2i = 1− e2i, for i ∈ [k − 1].

(ii) τ2
2i+1 = 1− e2i, for i ∈ [k − 1].

(2) (Braid relations)

(i) τ2i+1τ2j = τ2jτ2i+1 for j 6= i+ 1.

(ii) τ2i+1τ2j+1 = τ2j+1τ2i+1 for j 6= i± 1.

(iii) τ2iτ2j = τ2jτ2i for j 6= i± 1.

86



(iv) sisi+1si = si+1sisi+1, for i ∈ [k − 2], where sj := τ2jτ2j+1 + e2j .

(3) (Idempotent relations)

(i) e2
2i−1 = z0e2i−1 for i ∈ [k].

(ii) e2
2i = e2i for i ∈ [k − 1].

(iii) τ2i+1e2i = e2iτ2i+1 = 0 for i ∈ [k − 1].

(iv) τ2ie2i = e2iτ2i = 0 for i ∈ [k − 1].

(v) τ2ie2i−1e2i+1 = τ2i+1e2i−1e2i+1 for i ∈ [k − 1].

(vi) e2i+1e2i−1τ2i = e2i+1e2i−1τ2i+1 for i ∈ [k − 1].

(4) (Commutation relations)

(i) eiej = ejei, if |i− j| ≥ 2.

(ii) τ2i−1e2j−1 = e2j−1τ2i−1, if j 6= i− 1, i.

(iii) τ2i−1e2j = e2jτ2i−1, if j 6= i.

(iv) τ2ie2j−1 = e2j−1τ2i, if j 6= i, i+ 1.

(v) τ2ie2j = e2jτ2i, if j 6= i− 1.

(5) (Contractions)

(i) eiei+1ei = ei and ei+1eiei+1 = ei+1, for i ∈ [2n− 2].

(ii) τ2ie2i−1τ2i = τ2i+1e2i+1τ2i+1, for i ∈ [k − 1].

(iii) τ2ie2i−2τ2i = τ2i−1e2iτ2i−1, for 2 ≤ i ≤ k − 1.

(6) (Affine Commuting Relations)

(i) xixj = xjxi for all i, j ∈ [2k]

(ii) τixj = xjτi for j 6= i− 1, i, i+ 1

(iii) eixj = xjei for j 6= i, i+ 1

(7) (Braid-like relations)

(i) τ2i−2τ2iτ2i−2 = τ2iτ2i−2τ2i(1− e2i−2).

(ii) τ2i+1τ2i−1τ2i+1 = τ2i−1τ2i+1τ2i−1(1− e2i).

(iii) τ2i−1τ2iτ2i−1 = τ2i − e2i−2τ2i − τ2ie2i−2.

(iv) τ2iτ2i−1τ2i = τ2i−1 − e2iτ2i−1 − τ2i−1e2i.

(8) (Skein-like Relations)

(i) x2i+1 = τ2ix2i−1τ2i + e2ie2i−1τ2i + τ2ie2i−1e2i − τ2i.

(ii) x2i+2 = τ2i+1x2iτ2i+1 + e2ie2i+1τ2i+1e2i+1e2i + τ2i+1.

(iii) x2i = τ2ix2iτ2i + e2ie2i−1τ2i + τ2ie2i−1e2i.

(iv) x2i+1 = τ2i+1x2i+1τ2i+1 + e2ie2i+1τ2i+1 + τ2i+1e2i+1e2i.
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(9) (Anti-symmetry Relations)

(i) ei(xi − xi+1) = 0 for i ∈ [2k − 1].

(ii) (xi − xi+1)ei = 0 for i ∈ [2k − 1].

(10) (Bubble Relations)

(i) e1x
l
1e1 = zle1, for all l ∈ N.

(ii) zl is central for all l ∈ Z≥0.

Note we have overloaded the symbols ei and sj as elements in A2k and Aaff
2k , however we

will show shortly that the mapping A2k → Aaff
2k via z 7→ z0, ei 7→ ei, and sj 7→ sj realises

the subalgebra 〈ei, sj , z0〉 of Aaff
2k as an isomorphic copy of the partition algebra A2k. As

discussed in Remark 4.5, the defining relations above are those present in Proposition
4.3, except where the Jucys-Murphy elements Xi have been replaced with the affine
generators xi, Enyang’s generators tj have been replaced by new generators τj , and the
polynomials z(z − 1)l have been replaced by central generators zl. Also, it is worth
mentioning that the map A2k → Aaff

2k given by z 7→ z0, ei 7→ ei, and σj 7→ τj + e2i does
not realise an algebra homomorphism. This is since τ2 is a non-trivial generator in Aaff

2k

(as mentioned in Remark 4.5), while σ2 is absent in the presentation of Theorem 2.38,
as such the braid relation (E2)(iv) is not respected under such a map. The subalgebra
〈ei, τj , z0〉 of Aaff

2k is not isomorphic to the partition algebra, and in fact one can show
that this subalgebra is infinite dimensional as an C[z0]-module (see Corollary 4.26).

The Skein-like relations (8) tell us how the affine generators xi interact with the gener-
ators τj when they do not commute. We interpret these relations as affine partition alge-
bra counterparts to the defining relations yi+1 = siyisi+si of the degenerate affine Hecke
algebra Hk. In the next section we provide a projection of Aaff

2k onto a diagram algebra
living within the Heisenberg category. Under this projection the Skein-like relations will
correspond to moving a decoration over crossings. As mentioned in Remark 4.5, we have
also chosen to replace the generators tj with new generators τj . We will show that these
elements are not needed to generate the algebra, that is Aaff

2k = 〈ei, si, xi, zl〉. Hence to
go from A2k to Aaff

2k we have indeed just adjoined the new generators Xaff = {x1, . . . , x2k}
and Waff = {zl | l ∈ Z≥0}. However, as previously discussed, letting the elements τj play
the role of generators allows us to give a presentation which is more comparable to its
counterparts within the literature.

We begin by showing that the partition algebra is a quotient of the affine partition
algebra. This follows naturally from its construction.

Lemma 4.8. We have a surjective C-algebra homomorphism ρ : Aaff
2k → A2k, given on

the generators by ρ(τi) = ti, ρ(ei) = ei, ρ(xi) = Xi, and ρ(zl) = z(z − 1)l.

Proof. This follows by Proposition 4.3 and since

A2k = 〈ti, ej , z〉 = 〈ρ(τi), ρ(ei), ρ(z0)〉.
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Similar to the partition algebra, the affine partition algebra has a corresponding anti-
automorphism which fixes the generators.

Lemma 4.9. The mapping ∗ : Aaff
2k → Aaff

2k which fixes the generators, extended C-
linearly, gives an anti-automorphism.

Proof. All defining relations of Definition 4.7 are symmetric in the generators except
relations (7)(i) and (7)(ii). Thus it is clear that the result holds if we can show that
e2i−2 and τ2iτ2i−2τ2i commute, and that e2i and τ2i−1τ2i+1τ2i−1 commute. For the former,

τ2iτ2i−2τ2ie2i−2 = τ2iτ2i−2τ2i−1e2iτ2i−1τ2i

= τ2iτ2i−1e2iτ2i−1τ2i−2τ2i

= e2i−2τ2iτ2i−2τ2i

where the first equaltiy can be deduced from relation (5)(iii) of Definition 4.7, the second
equality follows since τ2i−2 commutes with τ2i−1 and e2i, then the last equality again is
deducable from relation (5)(iii). Showing that e2i and τ2i−1τ2i+1τ2i−1 commute follows
in a similar manner.

We now seek to show that A2k is isomorphic to the subalgebra 〈si, ej , z0〉 of Aaff
2k . We

first prove a few helpful relations.

Lemma 4.10. The following relations hold in Aaff
2k :

(i) e2ix2i = e2ie2i−1τ2i, and x2ie2i = τ2ie2i−1e2i

(ii) e2ix2i+1 = e2ie2i+1τ2i+1, and x2i+1e2i = τ2i+1e2i+1e2i

(ii) e2ie2i−1τ2i = e2ie2i+1τ2i+1, and τ2ie2i−1e2i = τ2i+1e2i+1e2i

Proof. (i): Multiplying (8)(iii) of Definition 4.7 on the left by e2i gives

e2ix2i = e2iτ2ix2iτ2i + e2ie2ie2i−1τ2i + e2iτ2ie2i−1e2i = e2ie2i−1τ2i

since e2iτ2i = 0 and e2ie2i = e2i. The relation x2ie2i = τ2ie2i−1e2i follows by ∗.

(ii): Multiplying (8)(iv) of Definition 4.7 on the left by e2i gives

e2ix2i+1 = e2iτ2i+1x2i+1τ2i+1 + e2ie2ie2i+1τ2i+1 + e2iτ2i+1e2i+1e2i = e2ie2i+1τ2i+1

since e2iτ2i+1 = 0 and e2ie2i = e2i. The relation x2i+1e2i = τ2i+1e2i+1e2i follows by ∗.

(iii): By (9)(i), (ii) of Definition 4.7, e2ix2i = e2ix2i+1 and x2ie2i = x2i+1e2i. So (i) and
(ii) imply (iii).

Proposition 4.11. We have a injective C-algebra homomorphism ι : A2k → Aaff
2k given

on the generators by ι(z) = z0, ι(si) = τ2iτ2i+1 + e2i, and ι(ei) = ei.
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Proof. We first prove that ι is a homomorphism. To do this we show that each of the
defining relations of A2k given in Theorem 2.33 is respected under ι. We only check the
relations involving si since the others are accounted for in the definition of Aaff

2k .

(HR1)(i):

ι(s2
i ) = (τ2iτ2i+1+e2i)(τ2iτ2i+1+e2i) = τ2

2iτ
2
2i+1+e2i = (1−e2i)(1−e2i)+e2i = 1−2e2i+2e2i = 1

where we used (1), (2)(i), (3)(ii), (3)(iii), and (3)(iv).

(HR1)(ii): This holds by relations (2)(i), (2)(ii), (2)(iii) and (4).

(HR1)(iii): This is precisely (2)(iv).

(HR2)(iii):
ι(e2isi) = e2i(τ2iτ2i+1 + e2i) = e2i = ι(e2i)

where we used (3)(iii) and (3)(ii). Similarly we have ι(sie2i) = ι(e2i).

(HR2)(iv):

ι(sie2i−1e2i+1) = (τ2iτ2i+1 + e2i)e2i−1e2i+1

= τ2iτ2i+1e2i−1e2i+1 + e2ie2i−1e2i+1

= τ2
2ie2i−1e2i+1 + e2ie2i−1e2i+1

= e2i−1e2i+1 − e2ie2i−1e2i+1 + e2ie2i−1e2i+1

= e2i−1e2i+1 = ι(e2i−1e2i+1)

where the third equality follows from (3)(v) and the forth from (1)(i). Similarly we have
ι(e2i−1e2i+1si) = ι(e2i−1e2i+1).

(HR3)(iv): Follows from commuting relations (4)(i), (4)(ii), and (4)(iv).

(HR3)(v): Follows from commuting relations (4)(i), (4)(iii), and (4)(v).

(HR3)(vi):

ι(sie2i−1si) = (τ2iτ2i+1 + e2i)e2i−1(τ2iτ2i+1 + e2i)

= τ2i+1τ2ie2i−1τ2iτ2i+1 + τ2i+1τ2ie2i−1e2i + e2ie2i−1τ2iτ2+1 + e2i

= τ2
2i+1e2i+1τ

2
2i+1 + τ2

2i+1e2i+1e2i + e2ie2i+1τ
2
2i+1 + e2i

= (1− e2i)e2i+1(1− e2i) + e2i+1e2i − e2i + e2ie2i+1 − e2i + e2i

= e2i+1 − e2ie2i+1 − e2i+1e2i + e2i + e2i+1e2i − e2i + e2ie2i+1

= e2i+1 = ι(e2i+1)

where the third equality follows by Lemma 4.10 (iii) and (5)(ii), and the forth from
τ2

2i+1 = 1− e2i.
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(HR3)(vii):

ι(sie2i−2si) = (τ2i+1τ2i + e2i)e2i−2(τ2iτ2i+1 + e2i)

= τ2iτ2i+1e2i−2τ2i+1τ2i + τ2i+1τ2ie2i−2e2i + e2ie2i−2τ2iτ2i+1 + e2ie2i−2e2i

= τ2iτ
2
2i+1e2i−2τ2i + e2ie2i−2

= τ2ie2i−2τ2i + e2ie2i−2

= τ2i−1e2iτ2i−1 + e2ie2i−2

where the third equality follows since τ2i+1 and e2i commute with e2i−2, e2
2i = e2i, and

e2iτ2i = τ2ie2i = 0. We also have

ι(si−1e2isi−1) = (τ2i−2τ2i−1 + e2i−2)e2i(τ2i−2τ2i−1 + e2i−2)

= τ2i−1τ2i−2e2iτ2i−2τ2i−1 + τ2i−1τ2i−2e2ie2i−2 + e2i−2e2iτ2i−2τ2i−1 + e2i−2e2ie2i−2

= τ2i−1τ
2
2i−2e2iτ2i−1 + e2ie2i−2

= τ2i−1e2iτ2i−1 − τ2i−1e2i−2e2iτ2i−1 + e2ie2i−2

= τ2i−1e2iτ2i−1 + e2ie2i−2

where the third equality follows since τ2i−2 and e2i−2 commute with e2i, e
2
2i−2 = e2i−2,

and e2i−2τ2i−2 = τ2i−2e2i−2 = 0. The forth equality follows since τ2i−1e2i−2 = 0. Com-
paring to above, we see that ι(sie2i−2si) = ι(si−1e2isi−1).

Hence we have shown that ι is indeed an algebra homomorphism. For injectivity, note
that ρ ◦ ι = id where id : A2k → A2k is the identity morphism. Thus ι has a left inverse,
and so is injective.

Therefore the partition algebra A2k is both a subalgebra and quotient of the affine
partition algebra Aaff

2k . Also note that restricting ∗ down to the partition algebra co-
incides with the anti-automorphism of flipping a diagram. We now seek to give affine
counterparts to the recursive definition of the Jucys-Murphy elements in Definition 2.34.

Lemma 4.12. The following relations hold in Aaff
2k :

(i) x2i+1 = six2i−1si + x2ie2i + e2ix2i − x2i−1e2i − τ2i

(ii) x2i+2 = six2isi − six2ie2i − e2ix2isi + e2ix2ie2i+1e2i + τ2i+1

Proof. (i): Multiplying on the left and right of (8)(i) of Definition 4.7 by τ2i+1 gives

τ2i+1x2i+1τ2i+1 = τ2i+1τ2ix2i−1τ2iτ2i+1 − τ2i+1τ2iτ2i+1

= (si − e2i)x2i−1(si − e2i)− (si − e2i)τ2i+1

= six2i−1si − e2ix2i−1si − six2i−1e2i + x2i+1 − τ2i

= six2i−1si − x2i−1e2i − τ2i

where, in the first equality we used the fact that τ2i+1e2i = e2iτ2i+1 = 0, the second
equality we used the substitution τ2iτ2i+1 = τ2i+1τ2i = si − e2i, and the last equality we
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used the fact that e2i and x2i−1 commute. Now applying (8)(iv) of Definition 4.7 to the
left hand side of above, we obtain

x2i+1 − e2ie2i+1τ2i+1 − τ2i+1e2i+1e2i = six2i−1si − x2i−1e2i − τ2i.

By applying Lemma 4.10 (ii) and rearranging, we arrive at (i). Item (ii) is proved in
an analogous manner were we instead employ relations (8)(ii) and (8)(iii) of Definition
4.7.

By rearranging the relations in the above lemma in terms of the generators τ2i and
τ2i+1, we immediately obtain the following:

Corollary 4.13. We have that Aaff
2k = 〈ei, sj , xk, zl〉i,j,k,l.

�

We will now show that Hk⊗Hk is a quotient of Aaff
2k . It is worth mentioning that this

result would not be obtainable if we did not replace Enyang’s generators ti with the new
generators τi when defining Aaff

2k .

Proposition 4.14. Let λ = (λl)
∞
l=0 be any sequence of constants in C. Then we have

a surjective C-algebra homomorphism fλ : Aaff
2k → Hk ⊗Hk given on the generators by

fλ(τ2i+1) = si ⊗ 1,

fλ(τ2i) = 1⊗ si,
fλ(ei) = 0,

fλ(x2i−1) = −1⊗ yi,
fλ(x2i) = yi ⊗ 1,

fλ(zl) = λl.

Proof. We show that each of the defining relations of Aaff
2k are upheld under fλ. Since

fλ(ei) = 0, one may observe that most of the defining relations involving generators ei
are trivially upheld.

(1)(i): fλ(τ2
2i) = (1⊗ si)(1⊗ si) = 1⊗ s2

i = 1 = fλ(1− e2i).

(1)(ii): Similar to (1)(i) above.

(2)(i): For any j 6= i+1, fλ(τ2i+1τ2j) = (si⊗1)(1⊗sj) = (1⊗sj)(si⊗1) = fλ(τ2jτ2i+1).

(2)(ii): For any j 6= i± 1,

f(τ2i+1τ2j+1) = (si ⊗ 1)(sj ⊗ 1) = sisj ⊗ 1 = sjsi ⊗ 1 = (sj ⊗ 1)(si ⊗ 1) = f(τ2j+1τ2i+1).

(2)(iii): Similar to (2)(ii) above.

(2)(iv): Noting that fλ(si) = fλ(τ2iτ2i+1 + e2i) = fλ(τ2i)fλ(τ2i+1) = si ⊗ si, then

fλ(sisi+1si) = sisi+1si ⊗ sisi+1si = si+1sisi+1 ⊗ si+1sisi+1 = fλ(si+1sisi+1).

(6)(i): Follows since y1, . . . , yk pairwise commute.
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(6)(ii): Follows since siyj = yjsi whenever j 6= i, i+ 1.

(7)(i):

fλ(τ2i−2τ2iτ2i−2) = 1⊗si−1sisi−1 = 1⊗sisi−1si = fλ(τ2iτ2i−2τ2i) = fλ(τ2iτ2i−2τ2i(1−e2i−2))

(7)(ii): Similar to (7)(i).

(7)(iii): fλ(τ2i−1τ2iτ2i−1) = s2
i−1 ⊗ si = 1⊗ si = fλ(τ2i) = fλ(τ2i − e2i−2τ2i − τ2ie2i−2).

(7)(iv): Similar to (7)(iii).

(8)(i):

fλ(τ2ix2i−1τ2i + e2ie2i−1τ2i + τ2ie2i−1e2i − τ2i) = fλ(τ2ix2i−1τ2i)− fλ(τ2i)

= (1⊗ si)(−1⊗ yi)(1⊗ si)− 1⊗ si
= −1⊗ siyisi − 1⊗ si
= −1⊗ (yi+1 − si)− 1⊗ si
= −1⊗ yi+1

= fλ(x2i+1)

where the fourth equality follows since siyisi = yi+1 − si in Hk.

(8)(ii):

fλ(τ2i+1x2iτ2i+1 + e2ie2i+1τ2i+1e2i+1e2i + τ2i+1) = fλ(τ2i+1x2iτ2i+1) + fλ(τ2i+1)

= (si ⊗ 1)(yi ⊗ 1)(si ⊗ 1) + si ⊗ 1

= (siyisi + si)⊗ 1

= yi+1 ⊗ 1

= fλ(x2i+2)

where the fourth equality follows since yi+1 = siyisi + si in Hk.

(8)(iii):

fλ(τ2ix2iτ2i + e2ie2i−1τ2i−1 + τ2i−1e2i−1e2i) = fλ(τ2ix2iτ2i),

= (1⊗ si)(yi ⊗ 1)(1⊗ si),
= yi ⊗ 1,

= fλ(x2i).

(8)(iv):

fλ(τ2i+1x2i+1τ2i+1 + e2ie2i+1τ2i+1 + τ2i+1e2i+1e2i) = fλ(τ2i+1x2i+1τ2i+1),

= (si ⊗ 1)(−1⊗ yi)(si ⊗ 1),

= −1⊗ yi,
= fλ(x2i+1).
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(10)(i) and (10)(ii): Immediate.

Thus fλ is a homomorphism. Surjectivity follows as 〈fλ(τi), fλ(xj)〉i,j = Hk ⊗Hk.

Corollary 4.15. The polynomial algebra C[x1, . . . , x2k] is a subalgebra of Aaff
2k .

Proof. This is equivalent to proving that all monomials in the generators of the subalge-
bra 〈x1, . . . , x2k〉 of Aaff

2k are linearly independent, which follows since their images under
the algebra homomorphism fλ are.

To end this section we establish a counterpart to the recursive relations of Enyang’s
generators. To do so, we collect the more technical relations needed into the following
lemma:

Lemma 4.16. The following relations hold in Aaff
2k :

(i) e2ix2ie2i = 0

(ii) e2iτ2i−1e2i = 0

(iii) e2i−2τ2ie2i−2 = 0

(iv) e2i−2τ2i = e2i−2x2i−2sie2i−2si

(v) τ2ie2i−2 = sie2i−2six2i−2e2i−2

(vi) τ2iτ2i−2τ2ie2i−2 = e2i−2x2i−2si−1e2ie2i−1e2i−2

(vii) τ2i−1e2isi−1 = sie2i−2e2i−1e2isi−1x2i−2e2i−2si

(viii) τ2iτ2i−2τ2ie2i−2 = e2i−2τ2iτ2i−2τ2i

Proof. (i): We have e2ix2ie2i = e2ie2i−1τ2ie2i = 0, by employing Lemma 4.10 (i) and
Definition 4.7 (3)(iv).

(ii): By rearranging (7)(iv) of Definition 4.7 in terms of τ2i−1, we have that

e2iτ2i−1e2i = e2i(τ2iτ2i−1τ2i + e2iτ2i−1 + τ2i−1e2i)e2i = e2iτ2i−1e2i + e2iτ2i−1e2i,

where we used relation e2iτ2i = 0. Rearranging gives e2iτ2i−1e2i = 0. Item (iii) follows
in a similar manner.

(iv): We have

e2i−2x2i−2sie2i−2si = e2i−2x2i−1sie2i−2si

= e2i−2(six2i+1 − six2ie2i − e2ix2i + x2i−1e2i + τ2i+1)e2i−2si

= e2i−2six2i+1e2i−2si − e2i−2six2ie2ie2i−2si − e2i−2e2ix2ie2i−2si

+ e2i−2x2i−1e2ie2i−2si + e2i−2τ2i+1e2i−2si

where the first equality follows from (9)(i) of Definition 4.7, and the second from Lemma
4.12 (i). We examine the five terms above:
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(1) e2i−2six2i+1e2i−2si = e2i−2sie2i−2x2i+1si = e2i−2e2ix2i+1si,

(2) −e2i−2six2ie2ie2i−2si = −e2i−2sie2i−2x2ie2i = −e2i−2e2ix2ie2i = 0,

(3) −e2i−2e2ix2ie2i−2si = −e2i−2e2ix2isi = −e2i−2e2ix2i+1si,

(4) e2i−2x2i−1e2ie2i−2si = e2i−2x2i−1e2i−2e2isi = 0,

(5) e2i−2τ2i+1e2i−2si = e2i−2τ2i+1si = e2i−2τ2i.

Substituting back into the above equation gives e2i−2x2i−2sie2i−2si = e2i−2τ2i as desired.

(v): This follows by applying the anti-automorphism ∗ to (iv).

(vi):

τ2iτ2i−2τ2ie2i−2 = τ2iτ2i−2(sie2i−2six2i−2e2i−2),

= τ2iτ2i−2si−1e2isi−1x2i−2e2i−2,

= τ2iτ2i−1e2isi−1x2i−2e2i−2,

= τ2i(τ2ie2i−2τ2iτ2i−1)si−1x2i−2e2i−2,

= (1− e2i)e2i−2τ2iτ2i−2x2i−2e2i−2,

= e2i−2τ2iτ2i−2x2i−2e2i−2,

= e2i−2τ2i(x2i−2τ2i−2 + e2i−3e2i−2 − e2i−2e2i−3)e2i−2,

= e2i−2τ2ie2i−3e2i−2,

= (e2i−2x2i−2sie2i−2si)e2i−3e2i−2,

= e2i−2x2i−2si−1e2ie2i−1e2i−2.

The first equality follows by (v), the fourth from (5)(iii) of Definition 4.7, the sixth since
e2iτ2i = 0, the seventh from (8)(iii) of Definition 4.7, the ninth from τ2i−2e2i−2 = 0 and
(iii), and the tenth from (iv).

(vii):

sie2i−2e2i−1e2isi−1x2i−2e2i−2si = sie2i−2e2i−1si−1sie2i−2six2i−2e2i−2si

= sie2i−2sie2i−3e2i−2x2i−2sie2i−2si

= si−1e2ie2i−1e2i−2x2i−2si−1e2isi−1

= si−1e2ie2i−1e2i−2e2i−1τ2i−1si−1e2isi−1

= si−1e2ie2i−1τ2i−2e2isi−1

= si−1e2ie2i−1e2iτ2i−1

= si−1e2iτ2i−1

= si−1e2iτ2i−2si−1

= si−1τ2i−2e2isi−1

= τ2i−1e2isi−1
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where the fourth equality follows from Lemma 4.10 (i).

(viii):

τ2iτ2i−2τ2ie2i−2 = τ2iτ2i−2(τ2i−1e2iτ2i−1τ2i)

= τ2i(si−1 − e2i−2)e2iτ2i−1τ2i

= τ2isi−1e2iτ2i−1τ2i

= τ2isie2i−2sisi−1τ2i−1τ2i

= τ2i+1e2i−2siτ2i−2τ2i

= e2i−2τ2iτ2i−2τ2i

where the first equality follows from (5)(iii) of Definition 4.7, the second since si−1 =
τ2i−1τ2i−2 + e2i−2, the third since e2i−2τ2i−1 = 0, and the sixth since τ2i+1 and e2i−2

commute.

Lemma 4.17. The following relations hold in Aaff
2k :

τ2i = si−1siτ2i−2sisi−1 + e2i−2x2i−2sie2i−2si + sie2i−2x2i−2sie2i−2

− e2i−2x2i−2si−1e2ie2i−1e2i−2 − sie2i−2e2i−1e2isi−1x2i−2e2i−2si.

and

τ2i+1 = si−1siτ2i−1sisi−1 + sie2i−2x2i−2sie2i−2si + e2i−2x2i−2sie2i−2

− sie2i−2x2i−2si−1e2ie2i−1e2i−2 − e2i−2e2i−1e2isi−1x2i−2e2i−2si.

Proof. We prove the first relation, the second follows from by multiplying on the left by
si. We have that

siτ2i−2si = (τ2iτ2i+1 + e2i)τ2i−2(τ2i+1τ2i + e2i)

= τ2iτ
2
2i+1τ2i−2τ2i + τ2i−2e2i

= τ2iτ2i−2τ2i + τ2i−2e2i

where the second equality follows since τ2i−2 commutes with τ2i+1 and e2iτ2i = τ2ie2i = 0.
Substituting the above we get

si−1siτ2i−2sisi−1 = si−1τ2iτ2i−2τ2isi−1 + τ2i−1e2isi−1. (4.5)

For the first term in equation (10) we have

si−1τ2iτ2i−2τ2isi−1 = si−1(τ2i−2τ2iτ2i−2 + τ2iτ2i−2τ2ie2i−2)si−1

= τ2i−1τ2iτ2i−1 + si−1τ2iτ2i−2τ2ie2i−2

= τ2i−1τ2iτ2i−1 + τ2iτ2i−2τ2ie2i−2

= τ2i − e2i−2τ2i − τ2ie2i−2 + τ2iτ2i−2τ2ie2i−2
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where the first equality follows by (7)(i) of Definition 4.7, the second from si−1τ2i−2 =
τ2i−2si−1 = τ2i−1, the third from Lemma 4.16 (viii), and the fourth from (7)(iii) of
Definition 4.7. Substituting this back into equation (10), and rearranging yields

τ2i = si−1siτ2i−2sisi−1 + e2i−2τ2i + τ2ie2i−2 − τ2iτ2i−2τ2ie2i−2 − τ2i−1e2isi−1.

The desired relation is obtained by applying relations (iv) to (vii) of Lemma 4.16.

In summary this subsection has proved that the affine partition algebra Aaff
2k satisfies

the affinization properties 1 to 3. We summarises this as a theorem for readablilty
purposes, and to stress that the definition of the affine partition algebra Aaff

2k presented
in Definition 4.7 has indeed given us something non-trivial with desirable structural
properties.

Theorem 4.18. The affine partition algebra Aaff
2k presented in Definition 4.7 satisfies

affinization properties 1 to 3.

Proof. Affinization property 1 is satisfied by Proposition 4.11 and Corollary 4.15. Affiniza-
tion property 2 is satisfied by comparing Definition 4.7 with Proposition 4.3, and noting
that the recursive relations for the Jucys-Murphy elements and Enyang’s generators have
counterparts in Aaff

2k by Lemma 4.12 and Lemma 4.16 respectively. Affinization property
3 is satisfied by Lemma 4.8.

4.1.3 A Central Subalgebra

In this section we describe a collection of central elements of Aaff
2k , and as a result we

give a proof of Theorem 3.5 stated in the previous chapter. We end the section with a
conjecture describing the center of Aaff

2k .
We begin by proving relations which resemble the relations siyi+1 = yisi + 1 in Hk.

Lemma 4.19. The following relations hold:

(i) τ2ix2i+1 = x2i−1τ2i + e2i−1e2i − 1.

(ii) τ2i+1x2i+2 = x2iτ2i+1 − e2ie2i+1 + 1.

(iii) τ2ix2i = x2iτ2i + e2i−1e2i − e2ie2i−1.

(iv) τ2i+1x2i+1 = x2i+1τ2i+1 − e2ie2i+1 + e2i+1e2i.

Proof. (i): Multiplying (8)(i) of Definition 4.7 on the left by τ2i gives

τ2ix2i+1 = τ2
2ix2i−1τ2i + τ2ie2ie2i−1τ2i + τ2

2ie2i−1e2i − τ2
2i

= (1− e2i)x2i−1τ2i + (1− e2i)e2i−1e2i − (1− e2i)

= x2i−1τ2i + x2i−1e2iτ2i + e2i−1e2i − e2i − 1 + e2i

= x2i−1τ2i + e2i−1e2i − 1
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where the second equality follows as τ2
2i = 1 − e2i and t2ie2i = 0, and the third since

x2i−1 and e2i commute.

(ii): Multiplying (8)(ii) of Definition 4.7 on the left by τ2i+1 gives

τ2i+1x2i+2 = τ2
2i+1x2iτ2i+1 + τ2i+1e2ie2i+1τ2i+1e2i+1e2i + τ2

2i+1

= (1− e2i)x2iτ2i+1 + 1− e2i

= x2iτ2i+1 − e2ix2iτ2i+1 + 1− e2i

= x2iτ2i+1 − e2ix2i+1τ2i+1 + 1− e2i

= x2iτ2i+1 − e2ie2i−1τ
2
2i+1 + 1− e2i

= x2iτ2i+1 − e2ie2i−1 + e2i + 1− e2i

= x2iτ2i+1 − e2ie2i−1 + 1

where the second equality follows since τ2i+1e2i = 0 and τ2
2i+1 = 1 − e2i, the fourth

equality follows since e2ix2i = e2ix2i+1, and the fifth equality follows since e2ix2i =
e2ie2i−1τ2i+1 (by Lemma 4.10 (ii) and (iii)).

(iii): Multiplying (8)(iii) of Definition 4.7 on the left by τ2i gives

τ2ix2i = τ2
2ix2iτ2i + τ2ie2ie2i−1τ2i + τ2

2ie2i−1e2i

= (1− e2i)x2iτ2i + (1− e2i)e2i−1e2i

= x2iτ2i − e2ix2iτ2i + e2i−1e2i − e2i

= x2iτ2i − e2ie2i−1τ
2
2i + e2i−1e2i − e2i

= x2iτ2i − e2ie2i−1 + e2i + e2i−1e2i − e2i

= x2iτ2i − e2ie2i−1 + e2i−1e2i

where the second equality follows since τ2ie2i = 0 and τ2
2i+1 = 1 − e2i, and the fourth

equality follows since e2ix2i = e2ie2i−1τ2i (by Lemma 4.10 (i)).

(iv): Multiplying (8)(iv) of Definition 4.7 on the left by τ2i+1 gives

τ2i+1x2i+1 = τ2
2i+1x2i+1τ2i+1 + τ2i+1e2ie2i+1τ2i+1 + τ2

2i+1e2i+1e2i

= (1− e2i)x2i+1τ2i+1 + (1− e2i)e2i+1e2i

= x2i+1τ2i+1 − e2ix2i+1τ2i+1 + e2i+1e2i − e2i

= x2i+1τ2i+1 − e2ie2i+1τ
2
2i+1 + e2i+1e2i − e2i

= x2iτ2i − e2ie2i+1 + e2i + e2i+1e2i − e2i

= x2iτ2i − e2ie2i+1 + e2i+1e2i

where the second equality follows since τ2i+1e2i = 0 and τ2
2i+1 = 1− e2i, and the fourth

equality follows since e2ix2i+1 = e2ie2i+1τ2i+1 (by Lemma 4.10 (ii)).

Lemma 4.20. For any n ≥ 1, the following relations hold:
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(i) τ2ix
n
2i+1 = xn2i−1τ2i +

∑
a+b=n−1
a,b≥0

xa2i−1(e2i−1e2i − 1)xb2i+1.

(ii) τ2ix
n
2i = xn2iτ2i +

∑
a+b=n−1
a,b≥0

xa2i(e2i−1e2i − e2ie2i−1)xb2i.

(iii) τ2i+1x
n
2i+2 = xn2iτ2i+1 +

∑
a+b=n−1
a,b≥0

xa2i(−e2ie2i+1 + 1)xb2i+2.

(iv) τ2i+1x
n
2i+1 = xn2i+1τ2i+1 +

∑
a+b=n−1
a,b≥0

xa2i+1(−e2ie2i+1 + e2i+1e2i)x
b
2i+1.

Proof. This follows from Lemma 4.19 by induction on n.

We now use the above lemma to prove that a family of polynomials in the affine
generators are central. For any n ∈ N define

pn = pn(x1, . . . , x2k) := xn1 + xn3 + · · ·+ x2k−1 − (xn2 + xn4 + · · ·+ xn2k) (4.6)

which belongs to the polynomial algebra C[x1, . . . , x2k] in 2k commuting variables. Com-
paring to the supersymmetric power sum polynomials qn of Definition 3.2, we have that

pn(x1,−x2, . . . , x2k−1,−x2k) = qn(x1, . . . , x2k).

We also denote by pn the corresponding polynomial in the affine generators xi of Aaff
2k .

Proposition 4.21. The polynomial pn is central in Aaff
2k for each n ∈ N.

Proof. We simply show that each generator of Aaff
2k commutes with pn. It is immediate

that the generators zl and xi commute with pn by (10)(ii) and (6)(i) of Definition 4.7.
Let [−,−] denote the commutator bracket.

For the generators e2i we have

[pn, e2i] = (−xn2i + xn2i+1)e2i − e2i(−xn2i + xn2i+1) = (−xn2i + xn2i)e2i − e2i(−xn2i + xn2i) = 0,

where the first equality follows from the commuting relation (6)(iii) of Definition 4.7,
and the second equality follows since x2i+1e2i = x2ie2i and e2ix2i+1 = e2ix2i by (9)(ii)
and (9)(i) of Definition 4.7. Similarly we have [pn, e2i−1] = 0.

For the generator τ2i, the commuting relation (6)(ii) of Definition 4.7 tells us that

[τ2i, pn] = τ2i(x
n
2i−1 − xn2i + xn2i+1)− (xn2i−1 − xn2i + xn2i+1)τ2i.

By acting on relation (i) of Lemma 4.20 by the anti-automorphism ∗, and rearranging,
we obtain

τ2ix
n
2i−1 = xn2i+1τ2i −

∑
a+b=n−1
a,b≥0

xa2i+1(e2ie2i−1 − 1)xb2i−1.

99



Employing this and relations (i) and (ii) of Lemma 4.20, we have

τ2i(x
n
2i−1 − xn2i + xn2i+1) = (xn2i−1 − xn2i + xn2i+1)τ2i +

∑
a+b=n−1
a,b≥0

xa2i−1(e2i−1e2i − 1)xb2i+1

−
∑

a+b=n−1
a,b≥0

xa2i(e2i−1e2i − e2ie2i−1)xb2i −
∑

a+b=n−1
a,b≥0

xa2i+1(e2ie2i−1 − 1)xb2i−1

Hence showing that [τ2i, pn] = 0 is equivalent to showing that the three summations
above sum to zero. This follows by changing the second summation accordingly:

−
∑

a+b=n−1
a,b≥0

xa2i(e2i−1e2i − e2ie2i−1)xb2i = −
∑

a+b=n−1
a,b≥0

xa2ie2i−1e2ix
b
2i − xa2ie2ie2i−1x

b
2i

= −
∑

a+b=n−1
a,b≥0

xa2i−1e2i−1e2ix
b
2i+1 − xa2i+1e2ie2i−1x

b
2i−1

by repeat application of relations (9)(i) and (9)(ii) of Definition 4.7. One shows
[τ2i+1, pn] = 0 analogously.

Recall Theorem 3.5 in the previous chapter which stated that the supersymmetric
polynomials in the normalised Jucys-Murphy elements are central in A2k(z). The above
result allows us to prove such a theorem.

Proof of Theorem 3.5. Since ρ : Aaff
2k → A2k of Lemma 4.8 is surjective and ρ(xi) = Xi,

then Proposition 4.21 tells us that the polynomials pn(X1, . . . , X2k) belong to the center
of A2k(z), hence

〈pn(X1, . . . , X2k), z | n ≥ 1〉 ⊆ Z(A2k(z)). (4.7)

By Theorem 3.4, the subalgebra SSym[N1, . . . , N2k] is generated by the supersymmetric
powersum polynomials qn(N1, . . . , N2k). Comparing Definition 4.1 with the normalisa-
tion of Ni given in Equation (3.1), we have

Ni =

{
z
2 − 1−Xi, if i odd,

Xi − z
2 + 1, if i even.

.
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Let h := z
2 − 1, thus we have that

qn(N1, . . . , N2k) =
k∑
i=1

(h−X2i−1)n + (−1)n+1
k∑
i=1

(X2i − h)n

=

n∑
m=0

k∑
i=1

(−1)mhn−mXm
2i−1 + (−1)n+1

n∑
m=0

k∑
i=1

(−1)n−mhn−mXm
2i

=
n∑

m=0

k∑
i=1

hn−m
(
(−1)mXm

2i−1 + (−1)2n−m+1Xm
2i

)
=

n∑
m=0

hn−m(−1)mpn(X1, . . . , X2k)

where the fourth equality follows since (−1)2n−m+1 = (−1)m+1 for any 0 ≤ m ≤ n. Thus
we have shown that qn(N1, . . . , N2k) ∈ 〈pn(X1, . . . , X2k), z | n ≥ 1〉, and so the result
follows from Theorem 3.4 and Equation (4.7).

Comparing the centers of other affine counterparts to diagram algebras, see for exam-
ple [N96, Corollary 4.10] and [DVR11, Theorem 4.2], we have a natural conjecture for
the center of Aaff

2k :

Conjecture 4.22. Z(Aaff
2k) = 〈zl, pn | l, n ∈ Z≥0〉.

4.2 Extending Schur-Weyl Duality

Recall Section 2.2.4, in particular the epimorphism Ψ2k,n : A2k(n)→ EndSn(V ⊗k) given
in Theorem 2.58. In this section we seek to generalise this action to one of Aaff

2k onto
the tensor space M ⊗ V ⊗k where M is any CSn-module, hence give an affine partition
algebra counterpart to Theorem 2.27 for the degenerate affine Hecke algebra Hk. We
end the section by showing that the C[z0]-subalgebra of Aaff

2k generated by the elements
ei and τj is of infinite rank over C[z0], which we remarked on earlier within this chapter.

We begin by describing some elements of the group algebra CSn.

Definition 4.23. For any b ∈ [n] let

Tn,b =
∑

a∈[n]\{b}

(a, b),

the sum of transpositions which act on b non-trivially. Moreover, for any l ∈ Z≥0 let

Zn,l =
∑
b∈[n]

T ln,b,

the l-power sum in the elements Tn,b as b runs from 1 to n, where Zn,0 = n.
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One can check that πTn,b = Tn,π(b)π for any π ∈ Sn, and hence see that Zn,l belongs
to the center Z(CSn).

Theorem 4.24. Let k, n ∈ Z≥0, andAaff
2k be as in Definition 4.7. Let V = Cn the natural

representation for CSn, and let M be any CSn-module with basis {mi | i ∈ I} where I
is some (possibly infinite) indexing set. Then we have a C-algebra homomorphism

Ψ
(M)
2k,n : Aaff

2k → EndSn(M ⊗ V ⊗k)

defined on the generators by

Ψ
(M)
2k,n(e2i−1)(ma0 ⊗ va) =

n∑
b=1

ma0 ⊗ va1 ⊗ · · · ⊗ vai−1 ⊗ vb ⊗ vai+1 ⊗ · · · ⊗ vak ,

Ψ
(M)
2k,n(e2i)(ma0 ⊗ va) = δai,ai+1ma0 ⊗ va,

Ψ
(M)
2k,n(τ2i)(ma0 ⊗ va) = εai,ai+1(ai, ai+1)(ma0 ⊗ va1 ⊗ · · · ⊗ vai−1)⊗ vai ⊗ · · · ⊗ vak ,

Ψ
(M)
2k,n(τ2i+1)(ma0 ⊗ va) = εai,ai+1(ai, ai+1)(ma0 ⊗ va1 ⊗ · · · ⊗ vai+1)⊗ vai+2 ⊗ · · · ⊗ vak ,

Ψ
(M)
2k,n(x2i−1)(ma0 ⊗ va) =

n∑
b=1
b6=ai

(b, ai)(ma0 ⊗ va1 ⊗ · · · ⊗ vai−1)⊗ vai ⊗ · · · ⊗ vak ,

Ψ
(M)
2k,n(x2i)(ma0 ⊗ va) =

n∑
b=1
b6=ai

(b, ai)(ma0 ⊗ va1 ⊗ · · · ⊗ vai)⊗ vai+1 ⊗ · · · ⊗ vak ,

Ψ
(M)
2k,n(zl)(ma0 ⊗ va) = (Zn,lma0)⊗ va,

for all a0 ∈ I and a = (a1, . . . , ak) ∈ [n]k, extended C-linearly across M ⊗ V ⊗k, and
where εa,b = 1− δa,b with δa,b the Kronecker Delta.

Proof. This can been shown by direct computations, much of which are fairly simple
but lengthy. To ease notation, for any tuple a = (a0, a1, . . . , ak) ∈ I × [n]k, we represent
a simple tensor in M ⊗ V ⊗k by a itself, or a word in the entries of a, that is to say we
write

a = a0a1 . . . ak := ma0 ⊗ va1 ⊗ · · · ⊗ vak .

We begin by showing that Ψ
(M)
2k,n is well-defined, that is to confirm that the endomor-

phisms in the image commute with the diagonal action of Sn. We do this by showing

for any π ∈ Sn, that πΨ
(M)
2k,n(g)π−1 = Ψ

(M)
2k,n(g) for each generator g of Aaff

2k .

Note that the endomorphisms Ψ
(M)
2k,n(ei) act trivially on the M component of M⊗V ⊗k,

and hence their action of V ⊗k is given by Ψ2k,n(ei) as described in (1) of Theorem 2.58.

As such it is clear that πΨ
(M)
2k,n(ei)π

−1 = Ψ
(M)
2k,n(ei) for any π ∈ Sn.
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For the generators τ2i, given any a ∈ I × [n]k we have

πΨ
(M)
2k,n(τ2i)π

−1(a) = πΨ
(M)
2k,n(τ2i)

(
π−1(a0a1 . . . ak)

)
= εai,ai+1π

(
(π−1(ai), π

−1(ai+1))π−1(a0a1 . . . ai−1)π−1(ai . . . ak)
)

= εai,ai+1π(π−1(ai), π
−1(ai+1))π−1(a0a1 . . . ai−1)ai . . . ak

= εai,ai+1(ai, ai+1)(a0a1 . . . ai−1)ai . . . ak

= Ψ
(M)
2k,n(τ2i)(a)

noting επ−1(ai),π−1(ai+1) = εai,ai+1 . One can show πΨ
(M)
2k,n(τ2i+1)π−1 = Ψ2k,n(τ2i+1) in a

similar manner.

For the generators x2i−1, given any a ∈ I × [n]k we have

πΨ
(M)
2k,n(x2i−1)π−1(a) = πΨ

(M)
2k,n(x2i−1)

(
π−1(a0a1 . . . ak)

)

= π

 ∑
b∈[n]

b 6=π−1(ai)

(b, π−1(ai))π
−1(a0a1 . . . ai−1)π−1(ai . . . ak)


=

∑
b∈[n]

b 6=π−1(ai)

π(b, π−1(ai))π
−1(a0a1 . . . ai−1)ai . . . ak

=
∑
b∈[n]

b6=π−1(ai)

(π(b), ai)(a0a1 . . . ai−1)ai . . . ak

=
∑
b′∈[n]
b′ 6=ai

(b′, ai)(a0a1 . . . ai−1)ai . . . ak = Ψ
(M)
2k,n(x2i−1)(a)

by the substitution b′ = π(b). One can show πΨ
(M)
2k,n(x2i)π

−1 = Ψ2k,n(x2i) similarly.

Lastly πΨ
(M)
2k,n(zl)π

−1 = Ψ2k,n(zl) can be seen since Zn,l are central in CSn.

One now needs to confirm that the defining relations ofAaff
2k in Definition 4.7 are upheld

under Ψ
(M)
n,k . As mentioned, these can be shown by direct, but lengthy computations.

With this in mind, we will only give details to some of the more difficult relations,
namely relations (8) through (10). Note that the Braid-like relations (7) follow in an
analogous manner to the proof of Lemma 4.6 as the M component does not complicate
the argument.

(8)(i): We seek to show that

Ψ
(M)
2k,n(x2i+1) = Ψ

(M)
2k,n(τ2ix2i−1τ2i + e2ie2i−1τ2i + τ2ie2i−1e2i − τ2i).
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To show this we examine how each term on the hand right side acts on the simple tensor
a, and show that the sum recovers the action of x2i+1. It proves easier to do this by
tackling two cases, when ai 6= ai+1 and when ai = ai+1.

(Case 1): Assume ai 6= ai+1, then for the first term we have

Ψ2k,n(τ2ix2i−1τ2i)(a) = Ψ2k,n(τ2ix2i−1)
(

(ai, ai+1)(a0a1 . . . ai−1)ai . . . ak

)

= Ψ2k,n(τ2i)

∑
b∈[n]
b6=ai

(b, ai)(ai, ai+1)(a0a1 . . . ai−1)ai . . . ak


=
∑
b∈[n]
b6=ai

(ai, ai+1)(b, ai)(ai, ai+1)(a0a1 . . . ai−1)ai . . . ak

=
∑
b∈[n]
b6=ai

((ai, ai+1)(b), ai+1)(a0a1 . . . ai−1)ai . . . ak

=
∑
c∈[n]
c 6=ai+1

(c, ai+1)(a0a1 . . . ai−1)ai . . . ak

=
∑
c∈[n]
c 6=ai+1

(c, ai+1)(a0a1 . . . ai)ai+1 . . . ak + (ai, ai+1)(a0a1 . . . ai−1)ai . . . ak

− (ai, ai+1)(a0a1 . . . ai)ai+1 . . . ak

= Ψ
(M)
2k,n(x2i+1)(a) + Ψ

(M)
2k,n(τ2i)(a)− (ai, ai+1)(a0a1 . . . ai)ai+1 . . . ak

where we employed the substitution c = (ai, ai+1)(b). For the second term,

Ψ
(M)
2k,n(e2ie2i−1τ2i)(a) = Ψ

(M)
2k,n(e2ie2i−1)

(
(ai, ai+1)(a0a1 . . . ai−1)ai . . . ak

)
= Ψ

(M)
2k,n(e2i)

(
n∑
b=1

(ai, ai+1)(a0a1 . . . ai−1)bai+1 . . . ak

)
= (ai, ai+1)(a0a1 . . . ai−1)ai+1ai+1 . . . ak

= (ai, ai+1)(a0a1 . . . ai)ai+1 . . . ak.
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For the third term Ψ
(M)
2k,n(τ2ie2i−1e2i)(a) = 0 since ai 6= ai+1. Thus collectively,

Ψ
(M)
2k,n(τ2ix2i−1τ2i + e2ie2i−1τ2i + τ2ie2i−1e2i − τ2i)(a)

= Ψ
(M)
2k,n(τ2ix2i−1τ2i)(a) + Ψ

(M)
2k,n(e2ie2i−1τ2i)(a) + Ψ

(M)
2k,n(τ2ie2i−1e2i)(a)−Ψ

(M)
2k,n(τ2i)(a)

= Ψ
(M)
2k,n(x2i+1)(a) + Ψ

(M)
2k,n(τ2i)(a)− (ai, ai+1)(a0a1 . . . ai)ai+1 . . . ak

+ (ai, ai+1)(a0a1 . . . ai)ai+1 . . . ak −Ψ
(M)
2k,n(τ2i)(a)

= Ψ
(M)
2k,n(x2i+1)(a).

(Case 2): Assume ai = ai+1. Then Ψ
(M)
2k,n(τ2i)(a) = 0, and so

Ψ
(M)
2k,n(τ2ix2i−1τ2i + e2ie2i−1τ2i + τ2ie2i−1e2i − τ2i) = Ψ

(M)
2k,n(τ2ie2i−1e2i).

Hence we just need to confirm that Ψ
(M)
2k,n(x2i+1)(a) = Ψ

(M)
2k,n(τ2ie2i−1e2i)(a). Well,

Ψ
(M)
2k,n(τ2ie2i−1e2i)(a) = Ψ

(M)
2k,n(τ2i)

(
n∑
b=1

a0a1 . . . ai−1bai+1 . . . ak

)

=

n∑
b=1

(b, ai+1)(a0a1 . . . ai−1)bai+1 . . . ak

=

n∑
b=1

(b, ai+1)(a0a1 . . . ai)ai+1 . . . ak = Ψ
(M)
2k,n(x2i+1)(a).

The remaining Skein-like relations follow by employing similar arguments.

(9)(i): We seek to show Ψ
(M)
2k,n(eixi) = Ψ

(M)
2k,n(eixi+1). We show this first when working

with e2i, then with e2i−1. Assume ai 6= ai+1, then

Ψ
(M)
2k,n(e2ix2i)(a) = Ψ

(M)
2k,n(e2i)

∑
b=1
b 6=ai

(b, ai)(a0a1 . . . ai)ai+1 . . . ak


= (ai, ai+1)(a0a1 . . . ai)ai+1 . . . ak,

Ψ
(M)
2k,n(e2ix2i+1)(a) = Ψ

(M)
2k,n(e2i)

 ∑
b=1

b6=ai+1

(b, ai+1)(a0a1 . . . ai)ai+1 . . . ak


= (ai, ai+1)(a0a1 . . . ai)ai+1 . . . ak.
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When ai = ai+1 one can check that Ψ
(M)
2k,n(e2ix2i)(a) = Ψ

(M)
2k,n(e2ix2i+1)(a) = 0, and thus

we have Ψ
(M)
2k,n(e2ix2i) = Ψ

(M)
2k,n(e2ix2i+1). For odd indices we have

Ψ
(M)
2k,n(e2i−1x2i−1)(a) = Ψ

(M)
2k,n(e2i−1)

∑
b=1
b6=ai

(b, ai)(a0a1 . . . ai−1)ai . . . ak


=

n∑
c=1

∑
b=1
b 6=ai

(b, ai)(a0a1 . . . ai−1)cai+1 . . . ak,

Ψ
(M)
2k,n(e2i−1x2i)(a) = Ψ

(M)
2k,n(e2i−1)

∑
b=1
b 6=ai

(b, ai)(a0a1 . . . ai)ai+1 . . . ak


=

n∑
c=1

∑
b=1
b6=ai

(b, ai)(a0a1 . . . ai−1)cai+1 . . . ak.

Thus Ψ
(M)
2k,n(eixi) = Ψ

(M)
2k,n(eixi+1). Relation (9)(ii) may be shown in a similar manner.

(10)(i):

Ψ
(M)
2k,n(e1x

l
1e1)(a) = Ψ

(M)
2k,n(e1x

l
1)

(
n∑
b=1

a0ba2 . . . ak

)
= Ψ

(M)
2k,n(e1)

(
n∑
b=1

(T ln,ba0)ba2 . . . ak

)

=
n∑
c=1

(
n∑
b=1

T ln,ba0

)
ca2 . . . ak =

n∑
c=1

(Zn,la0) ca2 . . . ak

= Ψ
(M)
2k,n(zl)

(
n∑
c=1

a0ca2 . . . ak

)
= Ψ

(M)
2k,n(zl)

(
Ψ

(M)
2k,n(e1)(a0a1a2 . . . ak)

)
= Ψ

(M)
2k,n(zle1)(a).

Lastly relation (10)(ii) is simple to check since Zn,l belongs to the center of CSn.

Remark 4.25. When one takes M = V ⊗m, for some m ≥ 1, then the image of Ψ
(V ⊗m)
2k,n

belongs to EndSn(V ⊗(k+m)). By comparing the actions of the affine generators xi and
the generators τj to that described in Proposition 2.61 and Proposition 2.60, then one
can see that

Ψ
(V ⊗m)
2k,n (x2i−1) = Ψ2k,n(X2(i+m)−1), Ψ

(V ⊗m)
2k,n (τ2i−1) = Ψ2k,n(t2(i+m)−1),

Ψ
(V ⊗m)
2k,n (x2i) = Ψ2k,n(X2(i+m)), Ψ

(V ⊗m)
2k,n (τ2i) = Ψ2k,n(t2(i+m)).
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Hence the action Ψ
(M)
2k,n has extended the action of the Jucys-Murphy elements and

Enyang’s generators onto the M component in a manner comparable to the situation
of the degenerate affine Hecke algebra Hk in the classical Schur-Weyl duality. When
n > 2(k +m) then by (3) of Theorem 2.58 we know that

A2(k+m)(n) ∼= EndSn(V ⊗(k+m)),

and hence Ψ
(V ⊗m)
2k,n sends x2i−1 7→ X2(i+m)−1 and τ2i−1 7→ t2(i+m)−1, and similarly for

the even indexed generators of the same kind. Thus we obtain a homomorphism Aaff
2k →

A2(k+m)(n) analogous to ρm : Hk → CSk+m given in Lemma 2.24. Under such a
homomorphism, the central generators zl get send to central elements in A2k similar to
the ones examined in [Eny13, Equation 6.3].

Corollary 4.26. The C[z0]-subalgebra of Aaff
2k generated by

{τi, ej | 2 ≤ i ≤ 2k − 1, j ∈ [2k − 1]}

has infinite rank over C[z0].

Proof. Set dm := xm1 e2e1 for all m ∈ N. We first show that dm ∈ 〈τi, ej〉 by induction
on m. By Lemma 4.10 (i) we see that e2x2 ∈ 〈τi, ej〉. Then multiplying on the right by
e1 yeilds e2x2e1 = e2x1e1 = x1e2e1 = d1, where the first equality follows from (9)(ii) of
Definition 4.7, and the second from (6)(iii). Thus we have the base case d1 ∈ 〈τi, ej〉.
Assume dm′ ∈ 〈τi, ej〉 for all m′ < m with m ≥ 2, we seek to show that dm ∈ 〈τi, ej〉.
Well we have that

dm−1τ2e1 = xm−1
1 e2e1τ2e1 = xm−1

1 e2x2e1 = xm−1
1 e2x1e1 = xm1 e2e1 = dn,

where the second equality follows from Lemma 4.10 (i), and the remaining equalities
follow in the same manner as the base case. Hence dm ∈ 〈τi, ej〉 completing induction.
We now seek to show that the set {dm | m ∈ N} is C[z0]-linearly independent in Aaff

2k ,
which will complete the proof. Given any finite subset I ⊂ N assume∑

m∈I
hm(z0)dm = 0,

where hm(z0) are polynomials in C[z0]. We seek to show that hm(z0) = 0 for each m ∈ I.
Let M ∈ I be the maximal element, and let R be the set of roots for each hm(z0). Pick
an n ∈ N such that n > M + 1 and n /∈ R. Let F be any free CSn-module. For any
non-zero f ∈ F and (a1, . . . , ak) ∈ [n]k, we have

Ψ
(F )
2k,n(dm)(f ⊗ va1 ⊗ va2 ⊗ · · · ⊗ vak) =

(
Tmn,a2f

)
⊗ va2 ⊗ va2 ⊗ va3 ⊗ · · · ⊗ vak .

Since F is free, it will follow that the set {Ψ(F )
2k,n(dm) | m ∈ I} is linearly independent in

EndSn(F ⊗ V ⊗k) if the set {Tmn,a2 | m ∈ I} is linearly independent in CSn. This follows
since n > M + 1, and hence Tmn,a2 contains a permutation consisting of a single cycle of
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size m+ 1, while all permutations in Tm
′

n,a2 must have smaller support whenever m′ < m.
Now consider the equation

Ψ
(F )
2k,n

(∑
m∈I

hm(z0)dm

)
=
∑
m∈I

hm(n)Ψ
(F )
2k,n(dm) = 0.

Since n is not a root of any hm(z0), and the set {ψ(F )
n,k (dm) | m ∈ I} is linearly indepen-

dent, we must have that hm(z0) = 0 for each m ∈ I.

4.3 The Heisenberg Category

4.3.1 Definition and Known Results

In this section we recall the definition of the Heisenberg category Heis first defined in
[Kho14]. The morphisms in Heis are defined diagrammatically, with the composition
given by diagram concatenation. We will present some known results regarding this
category which will be helpful for later sections, namely we recall a basis for the morphism
spaces, describe certain local relations involving decorations in the diagrammatics, and
how the degenerate affine Hecke algebra appears in a certain endomorphism algebra.

The Heisenberg category Heis is a C-linear monoidal category whose objects are gen-
erated by the two objects ↑ and ↓. We will often use juxtaposition to denote the tensor
product of objects, and the monoidal identity object is the empty word ∅. Hence we view
the free monoid 〈↑, ↓〉 as the set of objects in Heis. We require some setup to describe the
morphism spaces in Heis. Firstly, we will be working in the planar strip R× [0, 1] with
boundary B := R×{1}∪R×{0}. We call an oriented immersion of the interval [0, 1] and
circle S1 a string and loop respectively. We denote orientations by drawing an arrow on
the curve. For any n,m ≥ 0, we consider the set of points E(n,m) := [n]×{1}∪[m]×{0}
which belong to the boundary B.

Definition 4.27. For any n,m ≥ 0 let a = a1 · · · an and b = b1 · · · bm, for ai, bi ∈ {↑, ↓},
be objects in 〈↑, ↓〉. Colouring the points (i, 1) and (j, 0) of E(n,m) by the symbols ai
and bj respectively, we say a set partition of E(n,m) into pairs is an (a, b)-matching if
pairs of points in the same row are coloured by opposite arrows, while pairs of points in
different rows are coloured by the same arrow.

Definition 4.28. For any n,m ≥ 0 let a = a1 · · · an and b = b1 · · · bm, for ai, bi ∈ {↑, ↓},
be objects in 〈↑, ↓〉. We define an (a, b)-diagram to be a finite collection of strings and
loops, modulo boundary preserving isotopies, such that the following are upheld:

(D1) The endpoints of the strings induce an (a, b)-matching on E(n,m),

(D2) There are only finitely many points of intersection, and no triple or tangential
intersections occur,
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(D3) The boundary B does not intersect any loops, and only intersects strings at the
endpoints E(n,m).

Example 4.29. Let a =↓↓↑, b =↑↓↓↓↑∈ 〈↑, ↓〉, then

↓ ↓ ↑

↑ ↓ ↓ ↓ ↑

is a (a, b)-diagram. Isotopic deformation of the interior of R× [0, 1] is allowed, and will
preserve the relative structure of the ten points of intersection.

If a loop contains no self-intersections we call it a bubble. Bubbles can have clockwise
or anti-clockwise orientation. If the endpoints of a string occur in different rows we call
it a vertical string, and it has either a down or up orientation. If the endpoints belong
to the same row then we call it an arc. Non self-intersecting arcs have either a clockwise
or anti-clockwise orientation. In the above example there are two loops, one of which
is a bubble, and four strings, three of which are vertical and one an arc. We call an
endpoint of a string a source if the arrow of orientation points away from it, and a target
otherwise.

Definition 4.30. For n,m ≥ 0, let a = a1 · · · an and b = b1 · · · bm, for ai, bi ∈ {↑, ↓}, be
objects in 〈↑, ↓〉. The space of morphisms HomHeis(a, b) is the C-vector space generated
by the (a, b)-diagrams modulo the following local relations:

(H1) =

(H2) = , =

(H3) = -

(H4) = 0, = 1

where relation (H1) holds regardless of the orientations.
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To apply such a local relation to an (a, b)-diagram one locates a disk which is isotopic
to one of the disks above, then replace such a disk according to the corresponding
equation. Note that any of the local relations may be rotated in any way to give an
equivalent relation. Relation (H1) tells us that any curve may pass over a crossing, and
relations (H2) and (H3) tells us how to pull part orientated curves, where (H3) shows
that this can not always be done for free. Relation (H4) tells us that left curls annihilate
(a, b)-diagrams, and that any anti-clockwise bubble may be removed for free.

The composition of morphisms is vertical concatenation of diagrams, and rescaling
(and extending C-linearly). We denote composition by juxtaposition of symbols. When
a = b we write a-diagram instead of (a,a)-diagram. The morphism space EndHeis(a) is
a C-algebra with identity given by the diagram of non-intersecting vertical strings.

Now for later use, we collect some relations regarding arbitrary (a, b)-diagrams. The
following local relation follows from (H2) and (H3), see also [LS21, (3.5)]:

Lemma 4.31. Clockwise bubbles satisfy the commuting relation

=

�

Although left curls annihilate diagrams, right curls do not, and they play an important
role in the diagrammatics. We will represent right curls by a decoration, and label such
decorations with weights to denote multiplicity:

:= , l :=

}
l times... .

Lemma 4.32. The following two local relations hold:

= + , = − ,
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Proof. For the first relation we have that

=

= + by (H2)

= + by (H1) and (H2)

= + by (H2)

= + .

The second relation follows in a similar manner.

Note that the first relation in the above lemma is comparable to the local relation
described in Equation (2.6) for the degenerate affine Hecke algebra. In fact the degen-
erate affine Hecke algebras appear within the endomorphism algebras of certain objects
in Heis. For the following result see [Kho14, Proposition 4].

Proposition 4.33. Let C[z0, z1, . . . ] be the polynomial C-algebra in countably many
commuting variables zl. For k ≥ 0 we have an isomorphism of algebras

EndHeis(↑⊗k) ∼= C[z0, z1, . . . ]⊗Hk.

�

Remark 4.34. Under this isomorphism the variables zl are acting as clockwise bubbles
with l decorations on then. The affine generators and permutations of Hk corresponding
to decorated permutation diagrams as discussed at the end of Section 2.1.7, with the
exception that the labelling of the vertices 1, 2, . . . , k in both rows has been reverse when
going from Hk into EndHeis(↑⊗k).

We end this section by recalling a basis for the morphism spaces HomHeis(a, b) pre-
sented in [Kho14]. We first introduce a few definitions to help us describe this basis in
a manner which will lend itself better for later results.
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Definition 4.35. For a, b ∈ 〈↑, ↓〉, we say an (a, b)-diagram is simple if it contains no
loops, no self-intersections, and two strings intersect at most once. Let Sim(a, b) denote
the set of simple (a, b)-diagrams, and write Sim(a) for Sim(a,a).

Given words a, b ∈ 〈↑, ↓〉, let b∗ denote the word obtained from b by replacing up
arrows with down arrows, and down arrows with up arrows. Let u equal the number of
up arrows appearing in a and b∗, and d the number of a down arrows. Then by (D1)
of Definition 4.28, one can deduce that HomHeis(a, b) is non-empty if and only if u = d.
In this situation we have that |Sim(a, b)| = u!, since there is one simple (a, b)-diagram
for every (a, b)-matching. Such a correspondence is given by reading the pairings of
endpoints formed from the strings of a simple diagram.

Example 4.36. Consider a =↑↓ and b =↓↑↑↓. The 6 = 3! simple (a, b)-diagrams are

, , ,

, , .

These diagrams are in a one-to-one correspondence with the (a, b)-matchings of the set
of endpoints E(2, 4) = {(i, 1), (j, 0) | i ∈ [2], j ∈ [4]}, were we read off the endpoints of
the strings. For example we have the correspondence

↔
{
{(1, 1), (2, 0)}, {(2, 1), (1, 0)}, {(3, 0), (4, 0)}

}
.

The basis for HomHeis(a, b) we describe below is obtained by adding decorations (right
curls) and decorated clockwise loops to all the simple (a, b)-diagrams in a particular
manner. We describe this by introducing some basic diagrams and using the composition
of diagrams.

Definition 4.37. Let a = a1 · · · an ∈ 〈↑, ↓〉 for ai ∈ {↑, ↓}. For i ∈ [n] and l ∈ Z≥0 set

ri := · · · · · ·
a1 ai−1 ai ai+1 an

, and cl := · · ·
a1 an

l

which are a-diagrams. The orientations of the strings are taken to match a. Although
both ri and cl depend on a, we surpress this fact as it should be clear from context.

Definition 4.38. Given any a = a1 · · · an, b = b1 · · · bm ∈ 〈↑, ↓〉 for ai, bj ∈ {↑, ↓}, let
B(a, b) be the set of (a, b)-diagrams of the form

ckww · · · c
k1
1 c

k0
0 r

s1
1 · · · r

sn
n αr

t1
1 · · · r

tm
m

where α ∈ Sim(a, b), w, kl, si, tj ∈ Z≥0, and si = tj = 0 whenever (i, 1) and (j, 0) are
sources respectively. We write B(a) for B(a,a).
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Example 4.39. Given a =↑↓ and b =↓↑↑↓, an example of an element of B(a, b) is

c5c
2
0r

3
1αr

2
4 = 3

2

5

where α is the third simple (a, b)-diagram in the list given in Example 4.36.

The following result is Proposition 5 of [Kho14].

Theorem 4.40. The set B(a, b) is a basis for HomHeis(a, b).

�

Remark 4.41. The description of this basis is analogous to the basis given by regular
monomials presented in [N96, Theorem 4.6]. Note that no decorated anti-clockwise
bubbles appear. This is due to the fact that any decorated anti-clockwise bubble may
be expressed as a linear combination of decorated clockwise bubbles, see for example
[Kho14, Proposition 2].

4.3.2 Connections to Aaff
2k

In this section we demonstrate a connection between our affine partition algebra Aaff
2k

and the Heisenberg category Heis. Namely, we will prove that we have a surjective
C-algebra homomorphism Aaff

2k → EndHeis((↑↓)⊗k) which sends the generators of Aaff
2k to

very natural diagrams. This investigation was inspired from the works of J. Brundan and
M. Vargas in [BV21] regarding the affine partition category APar which they introduced,
and which we will recall in the next section.

It was shown by S. Likeng and A. Savage in [LS21] that there exists a faithful functor
from the partition category into the Heisenberg category (see Theorem 4.1 and Theorem
5.2 in [LS21]). As a result the partition algebra A2k embeds into EndHeis((↑↓)⊗k). To
describe this embedding, when drawing a (↑↓)⊗k-diagram, instead of labelling the end-
points with arrows, we instead will label the points (i, 1) with i for each 1 ≤ i ≤ 2k,
since the parity of the label recovers the orientation of the arrow. Also to ease notation
we employ the following diagrammatic shorthand for elements of B((↑↓)⊗k):

. . . βρ . . .

1 u v 2k

! ρ β

u v

,

where β is loopless, ρ is a collection of (possibly decorated) clockwise bubbles, and
u, v ∈ [2k]. Hence we drop the trivial vertical strings but retain the labels u through v,
allowing one to recover the original diagram.

Theorem 4.42 (Theorem 4.1 of [LS21]). We have an injective C-algebra homomorphism

φ : A2k → EndHeis((↑↓)⊗k)
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given on the generators by

φ(e2i−1) =

2i− 1 2i

, φ(e2i) =

2i 2i+ 1

, φ(z) = ,

φ(si) =

2i− 1 2i+ 2

+

2i− 1 2i+ 2

.

�

To go from the group algebra of the symmetric group CSk to the degenerate affine
Hecke algebra Hk, one includes the decorations (right curls) into the diagrammat-
ics, which play the role of the affine generators. Thus consider the subalgebra of
EndHeis((↑↓)⊗k) given by the image of the embedding of the partition algebra A2k via φ,
hence the subalgebra 〈φ(z), φ(e2i−1), φ(e2i), φ(sj)〉. If we include decorations into such a
subalgebra, i.e. adjoin the generators ri and cl of Definition 4.37, then we should obtain
something akin to an affine counterpart to the partition algebra. Let

Â2k := 〈φ(z), φ(e2i−1), φ(e2i), φ(sj), ri, cl〉 ⊆ EndHeis((↑↓)⊗k) (4.8)

be this subalgebra. We would hope that Aaff
2k is isomorphic to Â2k. Although at this

moment we are unable to prove or disprove this, with a significant hurdle being the fact
that we lack a basis for Aaff

2k . However, what we are able to show in this section is that

Â2k = EndHeis((↑↓)⊗k),

and moreover that this endomorphism algebra is a quotient of Aaff
2k .

Proposition 4.43. Let k ∈ Z≥0, then we have a C-algebra homomorphism

ϕ : Aaff
2k → EndHeis((↑↓)⊗k)

given on the generators by

ϕ(e2i−1) =

2i− 1 2i

, ϕ(e2i) =

2i 2i+ 1

, ϕ(x2i−1) =

2i− 1

, ϕ(x2i) =

2i

,

ϕ(τ2i) =

2i− 1 2i 2i+ 1

, ϕ(τ2i+1) =

2i 2i+ 1 2i+ 2

, ϕ(zl) = l

Proof. This will be shown by directly checking that each of the defining relations in
Definition 4.7 is satisfied under the map ϕ. Most of these are simple to check but
lengthy, hence for such relations we do not give full details.
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(1)(i):

ϕ(τ2
2i) =

2i− 1 2i 2i+ 1

=

2i− 1 2i 2i+ 1

by (H1)

=

2i− 1 2i 2i+ 1

by (H2)

=

2i− 1 2i 2i+ 1

−

2i− 1 2i 2i+ 1

by (H3)

which equals ϕ(1−e2i). One can show that relation (1)(ii) is upheld in a similar manner.

(2): Relation (2)(i) is τ2i+1τ2j = τ2jτ2i+1 for all j 6= i+ 1. When j 6= i, it is clear to see
diagrammatically that this relation is upheld under ϕ. For case j = i, one applies (H1)
and then (H2) to see that

ϕ(τ2i+1τ2i) =

2i− 1 2i 2i+ 12i+ 2

= ϕ(τ2iτ2i+1).

Both relations (2)(ii) and (2)(iii) can be seen to hold under ϕ diagrammatically. For
relation (2)(iv), we have that

ϕ(si) = ϕ(τ2i+1τ2i + e2i) =

2i− 1 2i 2i+ 12i+ 2

+

2i− 1 2i 2i+ 12i+ 2

.

Such elements satisfy the braid relation sisi+1si = si+1sisi+1 by Theorem 4.42.

(3): Relation (3)(i) is upheld under ϕ by applying Lemma 4.31, and (3)(ii) is upheld by
(H4). Relations (3)(iii) and (3)(iv) are upheld by the fact that left curls are annihilated.
For relation (3)(v), it is clear that applying (H1) allows one to go from the diagram
ϕ(τ2ie2i−1e2i+1) to ϕ(τ2i+1e2i−1e2i+1), and similarly for relation (3)(vi).

(4): All of these relations follow diagrammatically and from (3)(iii) and (3)(iv).

(5): Relation (5)(i) is simple to check since the diagrams contain no points of intersec-
tion. For (5)(ii), applying (H1) and (H2) we see that

ϕ(τ2ie2i−1τ2i) =

2i− 1 2i 2i+ 12i+ 2

=

2i− 1 2i 2i+ 12i+ 2

,
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ϕ(τ2i+1e2i+1τ2i+1) =

2i− 1 2i 2i+ 12i+ 2

=

2i− 1 2i 2i+ 12i+ 2

,

thus ϕ(τ2ie2i−1τ2i) = ϕ(τ2i+1e2i+1τ2i+1). In a similar manner, for relation (5)(iii) one
can show that

ϕ(τ2ie2i−2τ2i) =

2i− 2 2i+ 1

= ϕ(τ2i−1e2iτ2i−1).

(6): These relations are immediately seen to be upheld diagrammatically.

(7)(i): We seek to show ϕ(τ2i−2τ2iτ2i−2) = ϕ(τ2iτ2i−2τ2i(1− e2i−2)). The left hand side
gives

ϕ(τ2i−2τ2iτ2i−2) =

2i− 32i− 22i− 1 2i 2i+ 1

=

2i− 32i− 22i− 1 2i 2i+ 1

−

2i− 32i− 22i− 1 2i 2i+ 1

=

2i− 32i− 22i− 1 2i 2i+ 1

−

2i− 32i− 22i− 1 2i 2i+ 1

where the second equality follows by applying (H3), and the third equality follows from
(H2). By applying (H1) and (H2), one can check that the first term above is ϕ(τ2iτ2i−2τ2i)
and the second term above is ϕ(τ2iτ2i−2τ2ie2i−2), hence (7)(i) holds. Relation (7)(ii)
can be shown in an analogous manner.

(7)(iii): We seek to show that ϕ(τ2i−1τ2iτ2i−1) = ϕ(τ2i − e2i−2τ2i − τ2ie2i−2). The left
hand side gives

ϕ(τ2i−1τ2iτ2i−1) =

2i− 22i− 1 2i 2i+ 1

=

2i− 22i− 1 2i 2i+ 1

−

2i− 22i− 1 2i 2i+ 1

.
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By applying (H2) twice and (H1), the second term above straightens out to

2i− 22i− 1 2i 2i+ 1

=

2i− 22i− 1 2i 2i+ 1

= ϕ(τ2ie2i−2).

For the first term we get

2i− 22i− 1 2i 2i+ 1

=

2i− 22i− 1 2i 2i+ 1

−

2i− 22i− 1 2i 2i+ 1

=

2i− 22i− 1 2i 2i+ 1

−

2i− 22i− 1 2i 2i+ 1

= ϕ(τ2i) + ϕ(e2i−2τ2i)

where the first equality follows by applying (H3), and the second equality by (H1)
and (H2). Therefore collectively we have show (7)(iii). Relation (7)(iv) follows in an
analogous manner.

(8)(i): We seek to show that

ϕ(x2i+1) = ϕ(τ2ix2i−1τ2i) + ϕ(e2iei−1τ2i) + ϕ(τ2ie2i−1e2i)− ϕ(τ2i). (4.9)

One can check that

ϕ(e2ie2i−1τ2i) =

2i− 1 2i 2i+ 1

, ϕ(τ2ie2i−1e2i) =

2i− 1 2i 2i+ 1

.

By local relations (H1), (H2), and (H3), and applying Lemma 4.32 (and a 90◦ clockwise
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rotation of Lemma 4.32), we have

ϕ(τ2ix2i−1τ2i) =

2i− 1 2i 2i+ 1

=

2i− 1 2i 2i+ 1

=

2i− 1 2i 2i+ 1

+

2i− 1 2i 2i+ 1

=

2i− 1 2i 2i+ 1

+

2i− 1 2i 2i+ 1

=

2i− 1 2i 2i+ 1

−
2i− 1 2i 2i+ 1

+

2i− 1 2i 2i+ 1

=

2i− 1 2i 2i+ 1

−
2i− 1 2i 2i+ 1

−
2i− 1 2i 2i+ 1

+

2i− 1 2i 2i+ 1

= ϕ(x2i+1)− ϕ(τ2ie2i−1e2i)− ϕ(e2ie2i−1τ2i) + ϕ(τ2i).

Rearranging yields Equation (4.9). The remaining Skein-like relations (8)(ii), (8)(iii),
and (8)(iv), following in a similar manner where we employ Lemma 4.32 to pull the
decoration over various oriented crossings.

(9) and (10): These relations are immediately seen to be upheld diagrammatically.

Note that restricting ϕ of Theorem 4.42 to the partition algebra A2k gives the mor-
phisms φ of Proposition 4.43. The remainder of this section seeks to show that the
algebra homomorphism ϕ is surjective. Firstly, from Theorem 4.40 we know that
EndHeis((↑↓)⊗k) has a basis given by

ckww . . . ck11 c
k0
0 r

s1
1 r

s3
3 . . . r

s2k−1

2k−1 αr
t2
2 r

t4
4 . . . rt2k2k

where α ∈ Sim((↑↓)k). Since ϕ(zl) = cl and ϕ(xi) = ri, to prove that ϕ is surjective
it is enough to show that Sim((↑↓)k) ⊂ Im(ϕ). We will prove this by showing that
Sim((↑↓)k) ⊂ 〈ϕ(ei), ϕ(τj)〉i,j ⊂ Im(ϕ). We say that a simple diagram is planar if no
intersections occur among its strings, for example the diagrams ϕ(ei) are all planar for
each i ∈ [2k − 1]. The total number of planar diagrams in Sim((↑↓)k) is C2k, the 2k-th
Catalan number. These diagrams are precisely oriented versions of the Temperley-Lieb
diagrams. The Jones normal form gives a way of writing the Temperley-Lieb diagrams
as a product of generators (see [J83], and also [Kau90, Theorem 4.3 and Figure 16])
which does not involve bubbles, and so may be applied here for the elements ϕ(ei) to
show that any planar diagram belongs to 〈ϕ(ei)〉i and hence to Im(ϕ). Thus we have
the following:
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Lemma 4.44. The planar diagrams of Sim((↑↓)⊗k) belong to Im(ϕ).

�

We now define types of simple (↑↓)⊗k-diagrams which are naturally induced from
permutations. Recall that any simple (↑↓)⊗k-diagram is determined by the associated
(↑↓)⊗k-matching on the set of endpoints E(2k, 2k).

Definition 4.45. Let π ∈ Sk. Then we define the following simple (↑↓)k-diagrams:

(i) π↑ by pairings {(2i−1, 0), (2π(i)−1, 1)} and {(2i, 0), (2i, 1)} of endpoints E(2k, 2k),
for each 1 ≤ i ≤ k.

(ii) π↓ by pairings {(2i−1, 0), (2i−1, 1)} and {(2π(i), 0), (2i, 1)} of endpoints E(2k, 2k),
for each 1 ≤ i ≤ k.

Example 4.46. For k = 3 and π = (1, 2, 3) ∈ S3, we have

π↑ = , π↓ =

For any π ∈ Sk, it is shown in [Stem97] that we have a reduced expression of the form

π = (sm1sm1+1 · · · sn1)(sm2sm2+1 · · · sn2) · · · (smlsml+1 · · · snl),

where k > n1 > n2 > · · · > nl and ni ≥ mi. Noting that s↑i = ϕ(τ2i), consider

α↑(π) := (s↑m1
s↑m1+1 · · · s

↑
n1

)(s↑m2
s↑m2+1 · · · s

↑
n2

) · · · (s↑mls
↑
ml+1 · · · s

↑
nl

) ∈ Im(ϕ).

Strings in α↑(π) may intersect one another more than once, but we can resolve such
double crossings by pulling strings apart via the local relations (H2). The descending
condition on the indices in this reduced expression means we will never need to employ
(H3) to pull strings apart, and thus we must have that α↑(π) = π↑. Hence π↑ belongs
to Im(ϕ). It is easy to see that the image of ϕ is invariant under taking 180◦ rotation
(clockwise or anti-clockwise), and one can note that rotating π↑ by 180◦ yields (ρπρ−1)↓

where ρ is the product of transposition (i, k − i+ 1) for each i ∈ [k]. Thus we also have
that π↓ ∈ Im(ϕ) for all π ∈ Sk. Hence we have the following:

Lemma 4.47. For any π ∈ Sk we have that π↓ and π↑ belong to Im(ϕ).

�

To aid upcoming proofs we define a collection of diagrams which loosen the conditions
on simple diagrams.

Definition 4.48. Given any a, b ∈ 〈↑, ↓〉, we call an (a, b)-diagram semisimple if the
following hold:

(1) It contains no loops or self intersections.
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(2) No top arc intersects a bottom arc.

Let SSim(a, b) denote the set of semisimple (a, b)-diagrams. We will write SSim(a)
instead of SSim(a,a). We have that Sim(a, b) ⊂ SSim(a, b).

Example 4.49. Consider a =↑↓ and b =↓↑↑↓ as was given in Example 4.36. The 6
simple (a, b)-diagrams displayed in that example are all semisimple too. An example of
a semisimple (a, b)-diagram which is not simple would be

.

The down string and the arc intersect twice, making it non-simple, but such intersections
are allowed for semisimple diagrams.

As will be shown in Proposition 4.52, any semisimple diagram will decompose into a
linear combination of simple diagrams (hence the naming convention).

Any diagram α ∈ SSim((↑↓)k, (↑↓)l) contains precisely k+ l strings, and the endpoints
of these strings induce an ((↑↓)k, (↑↓)l)-matching of the endpoints E(2k, 2l). We let
α denote the unique simple diagram corresponding to such a matching (recalling the
discussion after Definition 4.35).

Lemma 4.50. Given any simple diagram α ∈ Sim((↑↓)k, (↑↓)l), there exists π ∈ Sk,
σ ∈ Sl, and a planar diagram β ∈ Sim((↑↓)k, (↑↓)l) such that π↑βσ↓ is semisimple and

α = π↑βσ↓.

Proof. Given any simple diagram γ ∈ Sim((↑↓)k, (↑↓)l) let (2i, 0), (2j, 0) ∈ E(2k, 2l)
(respectively (2i − 1, 1), (2i − j, 1)) be two ↓ (respectively ↑) endpoints in the bottom
row (respectively top row) of γ. Let γ′ be the simple diagram obtained from γ by
permuting these two endpoints around. It can be seen that γ(i, j)↓ (respectively (i, j)↑γ)
is semisimple as long as the permutation doesn’t swap the orianetation of an arc around,
since that is the only way a self intersection can occur. In this case, one can see that

γ′ = γ(i, j)↓
(

respectively = (i, j)↑γ
)
.

Hence to prove this lemma it is enough to show that we can reach a planar diagram β
from α by repeatably permuting the endpoints in the bottom row coloured by ↓, and
top row coloured by ↑, in such a way that the orientations of arcs are preserved. We
focus on the bottom row, where the top row will follow in the same manner by a 180◦

rotation of the diagrammatics. Starting with α we remove intersections one at a time by
employing a suitable permutation of endpoints. There are a few cases to consider, and
in each such case the endpoints of the strings in the following diagrams will be arbitrary:

(Case 1): Crossing of two down strings:
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(Case 2): Crossing of a down string with an clockwise/anti-clockwise arc:

 ,  

Note in either situation the orientation of the arc is preserved by the permutation.

(Case 3): Crossing of two arcs: There are four cases based on the orientations of the two
arcs given by

 ,  ,

 ,  .

noting that in the last case such a down string must exist. Again, the orientations of the
arcs are preserved under the permutation of endpoints in all four of the above situations.

In all three of the cases above, it can be seen that the new simple diagram we obtain
after the permutation of endpoints has strictly less number of intersections. We claim
that applying the moves above on the bottom row, and their 180◦ counterparts on
the top row, until all such intersections are removed will yield a planar diagram. For
contradiction, suppose this is not the case. Thus even after removing all such types of
intersections, the diagram still contains some other type of intersection. The other such
intersections are either between an up string and arc on the bottom row, a down string
and arc on the top row, or an up string and a down string. The former two are 180◦

counterparts to one another, hence we only need to consider one such type. Firstly, if
an up string intersects a clockwise arc on the bottom we have

a b c

Note that the parity of the number of endpoints on the bottom row strictly between a
and b must be different to the partity of endpoints strictly between b and c. Thus one
can deduce that such an endpoint must be a target to a string which intersects the arc,
and such an intersection would be accounted for by Case 2 or 3, hence a contradiction.
The same argument can be used to show that the case of an up string intersecting an
anti-clockwise arc on the bottom is also impossible. Note all intersections involving arcs
have now been accounted for. Lastly assume an up string intersects a down string. We
have two cases, one of which is

a

b

.
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The dashed vertical line is simply an aid for arguments to come, and has been drawn so
that the endpoints a and b are the closest endpoints to its left. The other case is given
by rotating the above by 180◦ and will follow analgously. The parity of the number of
endpoints to the right of a is odd, while the parity of the number of endpoints to the
right of b is even. This implies that there exists a string s such that one of its endpoints
belongs to the right of the dashed line, while the other belongs to the left. Moreover,
since the right-most endpoint on the top and bottom row are coloured by ↓, we can
say that the endpoint of s which is to the right of the dashed line is a source while the
endpoint to the left is a target. So s must intersect one of the above strings, and must
be a vertical string since all intersections with arcs are accounted for. Hence, colouring
the string s in red we have

a

b

or

a

b

.

Note that s may intersect both of the other strings and not just one, but it is always
forced to intersect the string depicted. As such each situation exhibits an intersection
accounted for in Cases 1 (or its 180◦ counterpart), giving the desired contradiction. Thus
removing all intersections of the types presented in Cases 1 to 3 (and their 180◦ rotated
counterparts) will result in a planar diagram, completing the proof.

Let R be an open subspace of R × [0, 1] and let α be an (a, b)-diagram. Examining
α locally in R will give a configuration of curve segments, and we refer to such as a
region of α. Within a given region we treat distinct curve segments as different curves,
even if in α itself the two segments belong to the same curve. In particular, if in R two
distinct curve segments intersect one another, and in α these two segments belong to
the same curve, we will not call such an intersection a self-intersection in R, but it is a
self-intersection in α.

Recall that the local relation (H4) tells us that if a left curl appears in a diagram we
may annihilate such a diagram. This relation asks that the region enclosed in the curl
is absent of any other strings. The following result shows that even if such a region is
non-empty, as long as its contains no loops or self-intersections, we can annihilate the
diagram.

Lemma 4.51. Let α be an (a, b)-diagram containing a left curl where the region
bounded by the curl contains no loops or self-intersecting curve segments, then α = 0.
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Proof. By assumption α contains a configuration of the form

R

g0

g1

g2 gm−2

gm−1

gm

· · ·

where we let R denote the interior region bounded by the curl, which contains no loops
or self-intersecting curve segments, and g0, . . . , gm account for all the intersections which
occur on the curl. Note we have only drawn the segments of the gi’s which realise the
intersection on the curl. We prove the result by induction on the number of intersec-
tions occurring in R. Assume that no intersections occur in R, hence R gives a planar
configuration of strings. One can deduce that there exists neighbours gi mod(m+1) and
g(i+1)mod(m+1) such that either

Rgi

gi+1

or R

g0 gm

.

In the former situation, since we are dealing with a left curl, one can check that regardless
of the orientation of the depicted string in R, it may be pulled outside the curl by (H2).
For the latter situation we may employ (H1) to pull the string out of the curl over the
crossing at the top. Continually pulling out such strings one at a time will result in
making R empty, and then applying (H4) gives α = 0.

Now suppose that the result holds whenever R contains n or less intersections for some
n ≥ 0, and assume that R contains n+ 1 intersections. It is clear that there must exist
an empty region R′ in R bounded by the curl and various segments. Diagrammatically
we have

· · ·

R′

gi gi+1

h1 hl

h2 hl−1

where gi, gi+1, and the (possibly empty) set of curve segments H = {h1, . . . , hl} make
up the remainder of the boundary of R′. Note such curve segments may not be pairwise
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distinct in R. In the case when H is empty, we simply have the situation

gi gi+1

R′

.

Since R′ is empty we may pull this crossing out of the curl by (H1), which will decrease
the number of intersection in R and thus by induction α = 0. Hence we may assume
that H is non-empty. The general case H = {h1, . . . , hl} is solved by focusing on h1,
and in fact solving the case H = {h1} is sufficient to understand the general case, hence
we only prove this case. So we are working with the sitaution

gi gi+1

R′

h1

There are two cases to consider based on the orientation of h1. For the first case we have

gi gi+1

h1
=

gi gi+1

h1

by (H2). Then we may pull the crossing between either gi and h1, or gi+1 and h1 out
of the curl by (H1), which will decrease the number of intersections in R by one and so
α = 0 by induction. With the opposite orientation on h1 we have

gi gi+1

h1
=

gi gi+1

h1

+

gi gi+1

h
(1)
1 h

(2)
1

124



by (H3). Here denote the first diagram on the right of the above equation by α1 and
the second by α2. For α1, as was done in the previous case we may pull one of the
crossings outside of the curl, and thus decrease the number of intersections in R by one,
and hence α1 = 0 by induction. For α2 the curve containing h1 and the original left curl

have been turned into the two new curves h
(1)
1 and h

(2)
1 . Note the original left curl is

no longer present, but regardless of how the original curve containing h1 intersected the

curl, at least one of the new curves h
(1)
1 and h

(2)
1 must form a new, smaller, left curl. The

region bounded by this new curl is a subregion of R containing strictly less number of
intersections. Hence by induction α2 = 0, and so collectively α = α1+α2 = 0 completing
the proof by induction. Note the general case for H = {h1, . . . , hl} is tackled in the exact
same manner by pulling h1 out of the curl, the diagrammatics are just more cluttered,
but the remaining segments h2, . . . , hl do not interfer with the above argumenets.

Let a = a1 · · · ak and b = b1 · · · bl for ai, bi ∈ {↑, ↓}, and consider the map

deg : SSim(a, b)→ Z≥0 × Z≥0

given by deg(α) = (A(α), C(α)) where A(α) is the number of arcs in α, and C(α) is
the number of clockwise arcs in α. We call the tuple (A(α), C(α)) the degrees of α. We
order the image of deg by using the lexicographical ordering < on Z≥0×Z≥0. Note that
for any α ∈ SSim(a, b) we have deg(α) = deg(α).

Proposition 4.52. Let α ∈ SSim(a, b). Then

α = α +
∑

β∈Sim(a,b)
deg(β)>deg(α)

cββ

where cβ ∈ Z for each β ∈ Sim(a, b) such that deg(β) > deg(α).

Proof. Given two distinct strings s and t in α, let n be the number of intersections
occurring between the two strings. If n is even set µ({s, t}) = n, while if n is odd set
µ({s, t}) = n− 1. Note µ({s, t}) is always even. We let

η(α) =
∑
s,t

µ({s, t}),

where the sum runs over all unordered pairs of distinct strings of α. Informally, η(α)
is the number of intersections of α which prevent it from being simple, in particular
η(α) = 0 if and only if α ∈ Sim(a, b). We will prove this proposition by induction on
η(α), where the base case of η(α) = 0 follows immediately since α = α. Assume the
result holds for all α ∈ SSim(a, b) such that η(α) < n for some n > 0. Now let α be
such that η(α) = n. Pick two strings s and t in α such that µ({s, t}) ≥ 2. Order the
points of intersections between s and t according to when they appear as one travels

125



from the source of s to its target. Under this ordering pick two neighbouring points of
intersection p and q. Then diagrammatically we have a configuration of strings

R

g1

gm

h1

hx

...
...

s tp

q

where R is the interior region bounded by the curve segments of s and t between the
points of intersection p and q, and the two (possible empty) sets of string segments
G = {g1, . . . , gm} and H = {h1, . . . , hx} account for all the intersections of the boundary
of R through t and s respectively. We may assume that we are not in one of the following
three situations:

(i) : (ii) : or (iii) :

since otherwise we may pick the more nested pair of intersections to work with instead.
Since situations (i) and (iii) are not present, any string segment gi must connect to a hj
(rather than another segment in G). Hence m = x and R realises a pairing of the string
segments G with H. Diagrammatically we have

g1

gm

h1

hm

...
...

s tp

q

B

where B is some permutation connecting segments in G with those in H. Moreover,
since situation (ii) is not present, this means that no string segments in B can intersect
more that once. In other words B is built out of crossings, and so we may pull all of B
outside of the region R one crossing at a time by (H1), and thus obtain

g1

gm

h1

hm

...
...

s tp

q

B
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Lastly we may pull these horizontal strings out of R through the top or bottom crossing
by (H1). Hence we have emptied R by employing only local relation (H1), and so the
value η(α) has remained the same. Now there are four different cases depending on the
orientations of the strings s and t. In three of these cases, since R is empty, we may pull
the strings s and t apart by applying (H2), and thus remove the two intersections p and
q. This decreases η(α) by two, and so the result follows by induction. The last case is
given with orientations as follows

s tp

q

=

s t

−

u

v

where we have applied (H3). Let the two diagrams on the right hand side of the above
equation be denoted by α1 and α2 respectively, hence α = α1 − α2. It is clear that
α1 = α and deg(α1) = deg(α). Moreover we have that η(α1) = η(α) − 2, and so by
induction

α1 = α+
∑

β∈Sim(a,b)
deg(β)>deg(α)

dββ (4.10)

where dβ ∈ Z. As for α2, the original strings s and t have been replaced by u and v.
Although the points of intersection p and q have been removed, in general we cannot
apply the inductive step for α2 as it may not be semisimple, since the new strings u and
v may contain self-intersections. This occurs precisely when there are more intersections
between the strings s and t than just p and q. So we break this situation into two cases:

(Case 1) Assume that p and q are the only intersections between the strings s and t in
α, and so α2 is semisimple. Thus by induction we have

α2 = α2 +
∑

β∈Sim(a,b)
deg(β)>deg(α2)

fββ (4.11)

where fβ ∈ Z. We seek to show that deg(α2) > deg(α), and then subtracking Equa-
tion (4.11) away from Equation (4.10) will prove this case. One can show this by com-
paring the string types of the sets {s, t} and {u, v}. We have the following to consider:

(1) The set {s, t} contains a down and up string.

(2) The set {s, t} contains a vertical string and clockwise arc.

(3) The set {s, t} contains two arcs on the same row, but not both anti-clockwise.

Note {s, t} cannot contain a top and bottom arc since α is semisimple. The remaining
cases which have been left out are due to the fact they can never realise the orientated
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double crossing of the strings s and t which we are considering. For (1) it is easy to see
that {u, v} consists of two arcs. For (2) one can deduce that {u, v} contains a vertical
string and anti-clockwise arc. For (3), when {s, t} consists of two clockwise arcs one
can check that {u, v} consists of a clockwsie arc and an anti-clockwise arc. When {s, t}
contains a clockwise and anti-clockwise arc, one can check that {u, v} consists of two
anti-clockwise arcs. For all these cases we have deg(α2) > deg(α), completing Case 1.

(Case 2) Assume now that there is at least one more point of intersection between the
strings s and t beside p or q. In the ordering of intersections discussed previously, pick a
neighbouring point which either preceds p or proceds q, say y. Without loss of generality
assume y preceds p. Then diagrammatically the equation α = α1 − α2 is given by

y

p

qs t

=
y

s t

−
y

u

v

by (H3). In α2 the interior region bounded by the left curl cannot contain loops or string
segments with self-intersections since α is semisimple. Hence by Lemma 4.51 α2 = 0,
and so α = α1 and thus the result follows by Equation (4.10).

Theorem 4.53. The homomorphism ϕ : Aaff
2k → EndHeis((↑↓)⊗k) of Proposition 4.43 is

surjective.

Proof. As discussed previously, this will follow by showing that α ∈ 〈ϕ(ei), ϕ(τj)〉i,j for
all α ∈ Sim((↑↓)⊗k). We prove this by downwards induction on deg(α). It’s easy to see
that the maximum degree is deg(α) = (2k, 2k). By considering what endpoints can be
targets and sources of clockwise arcs, one can deduce the only element α ∈ Sim((↑↓)⊗k)
satisfying deg(α) = (2k, 2k) is given by

· · · = ϕ

∏
i∈[k]

e2i−1


This completes the base case. Now, pick α such that deg(α) = (x, y) < (2k, 2k) and
assume that γ ∈ 〈ϕ(ei), ϕ(τj)〉i,j for any simple diagram γ ∈ Sim((↑↓)⊗k) such that
deg(γ) > (x, y). By Lemma 4.50 there exists π, σ ∈ Sk and a planar diagram β ∈ Sim((↑↓
)⊗k) such that π↑βσ↓ is semisimple and α = π↑βσ↓, in particular deg(α) = deg(π↑βσ↓).
Hence by Proposition 4.52 we have that

π↑βσ↓ = α+
∑

γ∈Sim((↑↓)k)
deg(γ)>deg(α)

cγγ, (4.12)
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where cγ ∈ Z. By induction all the simple terms in the above summation belong to Im(ϕ).
Also from Lemma 4.44 and Lemma 4.47 we know that π↑βσ↓ ∈ Im(ϕ), thus rearranging
the above equation shows that α ∈ Im(ϕ), completing the proof by induction.

Remark 4.54. Equation (4.12) is the key to Theorem 4.53, and follows from Proposition
4.52. This proposition applies to all semisimple diagrams which are much more general
than those appearing here. Ideally, one would like to prove that Equation (4.12) holds
for π↑βσ↓ by some inductive argument without needing to show it for all semisimple
diagrams. However it is a very delicate task to check which properties are preserved by
an inductive process. So we ended up using this more general approach instead, even
though many of the cases considered in proving Proposition 4.52 probably will not occur
in this case.

By Theorem 4.53, the image of any generating set of Aaff
2k provides a generating set

for the algebra EndHeis((↑↓)⊗k). Hence by Corollary 4.13 we see that the set

{ϕ(ei), ϕ(sj), ϕ(xm) = rm, ϕ(zl) = cl | i ∈ [2k − 1], j ∈ [k − 1],m ∈ [2k], l ∈ Z≥0}

gives a generating set of EndHeis((↑↓)⊗k). Comparing this to Equation (4.8), we see that
Â2k = EndHeis((↑↓)⊗k) as previously claimed.

4.3.3 The Affine Partition Category of Brundan and Vargas

In this last section of the chapter we relate our affine partition algebra Aaff
2k to the work

of J. Brundan and M. Vargas in [BV21]. We start by recalling the definition of their
affine partition category APar as a subcategory of Heis generated by a single object and
certain morphisms, and of their affine partition algebra APk, which is an endomorphism
algebra within APar.

Definition 4.55. [BV21, Definition 4.6 and Equation 4.47] The affine partition category
APar is the monoidal subcategory of Heis generated by the object ↑↓ and the following
morphisms:

+ (4.13)

, (4.14)

, (4.15)

+ , + (4.16)

+ , + (4.17)

The affine partition algebra is defined to be APk := EndAPar((↑↓)k).

129



We can generalise the arguments in the proof of Theorem 4.53 to show the following
result.

Theorem 4.56. The category APar is the full monoidal subcategory of Heis generated
by the object ↑↓.

Proof. We need to show that

HomAPar((↑↓)k, (↑↓)l) = HomHeis((↑↓)k, (↑↓)l).

Using Theorem 4.40, we need to show that any element of the form

ckww . . . ck11 c
k0
0 r

s1
1 r

s3
3 . . . r

s2k−1

2k−1 αr
t2
2 r

t4
4 . . . rt2l2l ,

where α ∈ Sim((↑↓)k, (↑↓)l), can be written in terms of the generating morphisms in
APar. The morphisms ri can be obtained by tensoring the generators (4.16) with the
appropriate identity morphisms on the left and right (and subtracting the identity).
Moreover, the morphisms ci can be obtained by concatenating ri1 with the generators
(4.15) on top and bottom. Thus, it remains to show that any α ∈ Sim((↑↓)k, (↑↓)l)
can be written in terms of the generating morphism in APar. A generalisation of Jones’
normal form shows that any planar α ∈ Sim((↑↓)k, (↑↓)l) can be written in terms of
the generators (4.14) and (4.15) (see for example [RSA14, Proof of Lemma 2.1] for an
explicit construction). Now Lemma 4.50 allows us to write any α ∈ Sim((↑↓)k, (↑↓)l)
as α = π↑βσ↓ where π ∈ Sk, σ ∈ Sl and β is planar. Note that s↑i and s↓i can be
written using the generators (4.17) and the composition of the generators (4.14) (and
tensoring with the appropriate identity morphism on the left and right). So using the
discussion following Example 4.46 we know that π↑ and σ↓ belong to EndAPar((↑↓)⊗k) and
EndAPar((↑↓)⊗l) respectively. Now we can follow exactly the same proof as for Theorem
4.53 noting that in this case the maximum degree is (k + l, k + l) and the only simple
diagram with that degree is the one containing k consecutive arcs at the top and l
consecutive arcs at the bottom, which is planar. The rest of the proof can be followed
verbatum simply replacing Im(ϕ) by HomAPar((↑↓)k, (↑↓)l).

We immediately obtain the following consequences.

Corollary 4.57. The map ϕ gives a surjective homomorphism for Aaff
2k to APk.

�

Corollary 4.58. The set B((↑↓)k) gives a basis for APk.

�

We do not know whether the map ϕ is an isomorphism. If it were, then we would
also have a presentation for APk. Although not included within this thesis, we have
constructed a basis for the small algebras Aaff

2 and Aaff
4 , and from such we have confirmed

that Aaff
2
∼= AP1 and Aaff

4
∼= AP2. We suspect that the map ϕ realises an isomorphism

between Aaff
2k and APk in general.
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5 Orbit Affine Partition Algebra

This chapter is broken into two sections. The first section focuses on generalising the
results summarised in Section 2.1.2 and Section 2.1.3 regarding the centers of group
algebras of symmetric groups, to closely related centralizer algebras. Namely, we provide
a class sum basis to certain centralizer algebras of the group algebras of the symmetric
groups, prove a polynomial property for the corresponding structure constants, and from
such define new C[z]-algebras called marked cycle shape algebras (see Definition 5.33),
which generalise the Farahat and Higman algebra Z given in Definition 2.10. We then go
on to prove various results regarding these new algebras, with one such result establishing
an isomorphism between marked cycle shape algebras and the endomorphism algebras
EndHeis(↑⊗k) discussed in the previous chapter.

The second section of this chapter uses the marked cycle shape algebras to analysis
certain subalgebras of the endomorphism algebras EndSn(M⊗V ⊗k) (the codomain of the

representation Ψ
(M)
2k,n given in Theorem 4.24). As a result, we are able to construct a new

algebra Qaff
2k which may also be thought of as an affine version of the partition algebra.

We prove some basic properties of this algebra, and end the chapter by constructing
an algebra homomorphism Aaff

2k → Qaff
2k . We suspect that Aaff

2k
∼= Qaff

2k as C-algebras,
although this appears difficult to prove at this stage.

5.1 Marked Cycle Shape Algebras

5.1.1 Conjugacy Classes of S×rN and S×rn

Throughout this chapter we let X denote a finite subset of N. For any r ≥ 1 and
finite group G, let G×r denote the group of r direct products of G. Recall that for any
permutation π ∈ SN the support Sup(π) is all elements of N on which π acts non-trivially,
and we have set ||π|| = |Sup(π)|.

Definition 5.1. Let π = (πi)
r
i=1 ∈ S×rN . Then we define the following:

(1) Sup(π) := Sup(π1) ∪ · · · ∪ Sup(πr) and ||π|| := |Sup(π)|.

(2) SupX(π) := Sup(π) ∩X and ||π||X := |SupX(π)|.

(3) SupX(π) := Sup(π)\X and ||π||X := |SupX(π)|.

In particular we have the disjoint union Sup(π) = SupX(π) t SupX(π).

We let Stab(X) := {π ∈ SN | π(x) = x for all x ∈ X} be the stabilizer subgroup of
X in SN. The group Stab(X) acts on S×rN by component-wise conjugation. We refer to
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the orbits of this action as the X-conjugacy classes of S×rN . For any π = (πi)
r
i=1 ∈ S×rN

we denote the X-conjugacy class of S×rN containing π by

CL[X](π) := {(σi)ri=1 ∈ S×rN | σi = τπiτ
−1 for all i ∈ [r], and some τ ∈ Stab(X)}.

Let C be an X-conjugacy class of S×rN and let π = (πi)
r
i=1,σ = (σi)

r
i=1 ∈ C. By

considering how conjugation acts on the cycle structure of permutations given in Lemma
2.3, one can see that for each i ∈ [r] the permutations πi and σi must have the same
cycle structure, and the relative positions of the elements of X within their cycles must
also match. Hence ||π|| = ||σ||, ||π||X = ||σ||X , and ||π||X = ||σ||X , and so it makes
sense to define ||C|| := ||π||, ||C||X := ||π||X , and ||C||X := ||π||X for any π ∈ C.

Example 5.2. Let r = 2, X = {1, 2}, and consider π = ((1, 3)(2, 4), (3, 4, 5)) ∈ S×2
N .

Then the X-conjugacy class containing π is given by

CL[X](π) = {((1, a)(2, b), (a, b, c)) | (a, b, c) ∈ (N\X)!3}

where (N\X)!3 is the subset of (N\X) × (N\X) × (N\X) of all tuples with pairwise
distinct entries. For any σ ∈ CL[X](π), we have ||σ|| = 5, ||σ||X = 2, and ||σ||X = 3.

Let n ∈ N and X ⊆ [n], then we set Stabn(X) := Stab(X) ∩Sn. Similar to the above
situation, this subgroup acts on S×rn by component-wise conjugation. We refer to the
orbits of this action as the X-conjugacy classes of S×rn . For any π = (πi)

r
i=1 ∈ S×rn , we

denote the X-conjugacy class of S×rn containing π by

CLn[X](π) := {(σi)ri=1 ∈ S×rn | σi = τπiτ
−1 for all i ∈ [r], and some τ ∈ Stabn(X)}.

Again we can set ||C|| := ||π||, ||C||X := ||π||X , and ||C||X := ||π||X for any X-conjugacy
class C of S×rn and any π ∈ C.

Given any X-conjugacy class C of S×rN we will let Cn := C ∩S×rn .

Example 5.3. Continuing from Example 5.2 let C = CL[X](π). Note that X ⊆ [n] for
all n ≥ 2. For these values one can deduce that

Cn =

{
{((1, a)(2, b), (a, b, c)) | (a, b, c) ∈ ([n]\X)!3}, n ≥ 5

∅, 2 ≤ n ≤ 4

where ([n]\X)!3 is the subset of ([n]\X)× ([n]\X)× ([n]\X) of all tuples with pairwise
distinct entries. When n ≥ 5 the set Cn is an X-conjugacy class of S×2

n .

As the above example suggests, when C is an X-conjugacy class of S×rN , n ∈ N, and
X ⊆ [n], then the set Cn is either empty or an X-conjugacy class of S×rn . The following
proposition proves this and gives a criteria for when Cn is non-empty.

Proposition 5.4. Let C be an X-conjugacy class of S×rN , n ∈ N, and X ⊆ [n]. Then
Cn is non-empty if and only if

n ≥ ||C||X + |X|. (5.1)

In this case Cn is an X-conjugacy class of S×rn , and all such X-conjugacy classes of S×rn
appear uniquely in this manner.
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Proof. By assumption |X| ≤ n. Pick an arbitrary element π = (πi)
r
i=1 ∈ C. All elements

of C are of the form (τπiτ
−1)ri=1 for some τ ∈ Stab(X). The set SupX(τπτ−1) is all the

elements of N\X for which at least one τπiτ
−1 acts non-trivially on. As such τπτ−1 ∈ Cn

if and only if SupX(τπτ−1) ⊂ [n]\X. For this to be the case we must have that

|SupX(τπτ−1)| = ||C||X ≤ |[n]\X| = n− |X|.

Rearranging gives Equation (5.1). This tells us that Cn = ∅ whenever n < ||C||X + |X|.
Now assume Equation (5.1) holds. We have SupX(τπτ−1) = τ

(
SupX(π)

)
, the image of

the set SupX(π) under τ . Let t : SupX(π)→ [n]\X be an injective map, which must exist
since Equation (5.1) holds. Then fix a permutation τt ∈ Stab(X) such that τt(i) = t(i)
for all i ∈ SupX(π). Hence SupX(τtπτ

−1
t ) ⊂ [n]\X and so, from our above discussion,

the set Cn is non-empty. We now want to prove that such a set Cn is an X-conjugacy
class of S×rn . We have shown that πn := τtπτ

−1
t ∈ Cn and hence, since Cn = C ∩S×rn ,

any element of Cn is of the form τπnτ
−1 for τ ∈ Stab(X) such that SupX(τπnτ

−1) ⊂
[n]\X. This differs to CLn[X](πn) only in the fact that τ can be taken from Stab(X)
as opposed to Stabn(X). Hence we need to show that whenever τπnτ

−1 ∈ Cn for some
τ ∈ Stab(X), then there exists a τn ∈ Stabn(X) such that τπnτ

−1 = τnπnτ
−1
n . Given

such a τ , we must have that SupX(τπnτ
−1) = τ

(
SupX(πn)

)
⊂ [n]\X. We also have that

SupX(πn) ⊂ [n]\X, hence let τn be any permutation of [n]\X with the property that
τn(i) := τ(i) for all i ∈ SupX(πn). From how conjugation acts on the cycle structure of
permutations given in Lemma 2.3, it is clear that τπnτ

−1 = τnπnτ
−1
n . Hence, for any

π ∈ S×rn , we have that
(CL[X](π))n = CLn[X](π).

Also, since orbits intersect trivially, all such X-conjugacy classes of S×rn appear as the
intersection of a unique X-conjugacy class of S×rN with S×rn .

We now present a result describing the size of the set Cn when C is an X-conjugacy
class of S×rN , n ∈ N, and X ⊆ [n]. In particular we show that the size of such a set is
polynomial in n.

Proposition 5.5. Let n ∈ N and X ⊆ [n]. For any X-conjugacy class C of S×rN ,

|Cn| =
1

b(C)
(n− |X|)(n− |X| − 1) · · · (n− |X| − ||C||X + 1)

where b(C) ∈ N is a constant depending only on the class C and not on n.

Proof. Assume that n ≥ ||C||X + |X|, and so by Proposition 5.4 we have that Cn is an X-
conjugacy class of S×rn . Pick π = (πi)

r
i=1 ∈ Cn, then Cn is the orbit of π in S×rn under

the action of Stabn(X) by component-wise conjugation. Thus by the Orbit-Stabilizer
Theorem we have

|Cn| =
|Stabn(X)|

|StabStabn(X)(π)|
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where StabStabn(X)(π) = {τ ∈ Stabn(X) | τπτ−1 = π} is the subgroup of Stabn(X)

whose elements fix π under component-wise conjugation. Consider Stabn(X∪SupX(π)),
the subgroup of Sn consisting of all permutations which act trivially on X∪SupX(π). It
is easy to see that Stabn(X ∪ SupX(π)) ⊂ StabStabn(X)(π). Now let S(SupX(π)) denote

the subgroup of Sn consisting of the permutations of SupX(π). Naturally S(SupX(π)) ⊂
Stabn(X), and hence the group

StabS(SupX(π))(π) = {τ ∈ S(SupX(π)) | τπτ−1 = π}

is also a subgroup of StabStabn(X)(π).
Claim: We have a group isomorphism

StabStabn(X)(π) ∼= Stabn(X ∪ SupX(π))× StabS(SupX(π))(π).

Note that the two subgroups Stabn(X ∪ SupX(π)) and StabS(SupX(π))(π) commute and
have trivial intersection. Hence to prove this claim we only need to show that any
permutation τ ∈ StabStabn(X)(π) can be expressed as a product τ = τ1τ2 for some

τ1 ∈ Stabn(X ∪ SupX(π)) and τ2 ∈ StabS(SupX(π))(π). Let τ ∈ StabStabn(X)(π), then

by definition we have τπiτ
−1 = πi for each i ∈ [r]. We now seek to show that the sets

[n]\Sup(π) and Sup(π) are invariant under the action of τ . Suppose for contradiction
this is not the case, hence there exists an i ∈ [n]\Sup(π) such that τ(i) = j ∈ Sup(π).
Then for each i ∈ [r],

πi(j) = (τπiτ
−1)(j) = (τπi)(i) = τ(i) = j.

Thus πi fixes j for each i ∈ [r], but this gives the desired contradiction since j ∈ Sup(π).
So since the sets [n]\Sup(π) and Sup(π) are invariant under the action of τ , we must
have a decomposition τ = τ1τ2 where τ1 is a permutation of [n]\Sup(π) and τ2 is a
permutation of Sup(π). Naturally τ1 and τ2 commute, and since τ fixes X, both τ1 and
τ2 must also fix X. As such τ1 is an element of Stabn(X ∪ SupX(π)) as desired, and
τ2 ∈ S(SupX(π)). Lastly note that for each i ∈ [r],

πi = τπiτ
−1 = τ2τ1πiτ

−1
1 τ−1

2 = τ2πiτ
−1
2

since τ1 commutes with both τ2 and πi. Thus τ2πiτ
−1
2 = πi for each i ∈ [r], and so τ2

actually belongs to StabS(SupX(π))(π). Hence the claim holds.

Now returning to the size of Cn, recall that |SupX(π)| = ||C||X . Also observe that
the size of the group S(SupX(π)) depends only on the class C, and in particular it is
independent of n. This implies the same for the size of StabS(SupX(π))(π), and so we

denote b(C) := |StabS(SupX(π))(π)|. Hence we have that

|Cn| =
|Stabn(X)|

|Stabn(X ∪ SupX(π))||StabS(SupX(π))(π)|

=
(n− |X|)!

(n− |X| − ||C||X)!b(C)

=
1

b(C)
(n− |X|)(n− |X| − 1) · · · (n− |X| − ||C||X + 1).
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We assumed that n ≥ ||C||X + |X| so that Cn is an X-conjugacy class of S×rn . By
Proposition 5.4 the set Cn is empty when |X| ≤ n < ||C||X + |X|, and such values of
n are precisely those which give zero in the above formula for |Cn|. Hence this formula
holds for all n ≥ |X|, completing the proof.

5.1.2 Marked Cycle Shapes

In this section we focus on the X-conjugacy classes of SN and Sn, hence specialising to
the case of r = 1 when comparing to the previous section. We will provide a natural
indexing set of such classes and set up a variety of notation which will be employed
throughout this chapter.

Let π ∈ SN and recall that the X-conjugacy class of SN containing π is given by

CL[X](π) = {σ ∈ SN | σ = τπτ−1 for some τ ∈ Stab(X)}.

Considering how conjugation acts on the cycles of a permutation, as given in Lemma
2.3, we have that σ ∈ CL[X](π) if and only if σ has the same cycle structure as π and the
relative positions of the elements of X within the cycles are the same. We will encode
such information into the following monoid: Let S(X) denote the group of permutations
of the set X, and let U(X) denote the free commutative monoid generated by the set
{ux | x ∈ X}. We have a natural (left) monoid action

ϕ : S(X)→ End(U(X))

given by ϕ(π)(ux) := uπ(x) for all π ∈ S(X) and x ∈ X, and where End(U(X)) is the
monoid of all monoid endomorphisms U(X) → U(X). Lastly, recall that C denotes the
free commutative monoid generated by the infinite set {ci | i ∈ N}.

Definition 5.6. We define the X-marked cycle shape monoid to be

C[X] := (S(X) nϕ U(X))× C,

where nϕ denotes the semidirect product with respect to the action ϕ.

As such the underlying set of C[X] is the cartesian product S(X) × U(X) × C, and
the monoid product is given by

(π, p, c)(π′, p′, c′) = (ππ′, ϕ(π′)(p)p′, cc′)

for all (π, p, c)(π′, p′, c′) ∈ S(X) × U(X) × C. We abuse notation a little and just write
c = (1, 1, c), p = (1, p, 1), and π = (π, 1, 1) as elements in C[X]. Now for any set A let
ZA≥0 denote the set of all functions f : A → Z≥0 with finite support, that is the set of
elements a ∈ A such that fa := f(a) 6= 0 is finite. Such a set may be regarded as a
commutative monoid under point-wise addition. Then for any d ∈ ZX≥0 we let ud denote

the element of U(X) given by the product of terms udxx for each x ∈ X. Similarly, for
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any l ∈ ZN
≥0 we let cl denote the element of C given by the product of terms clii for each

i ∈ N, which is well-defined since l has finite support. Then as sets we have

C[X] = {πudcl | π ∈ S(X), d ∈ ZX≥0, l ∈ ZN
≥0}.

Moreover, from this perspective the product is given by

(πudcl)(σueck) = πσuσ◦d+ecl+k (5.2)

where σ ◦ d ∈ ZX≥0 is defined by (σ ◦ d)(i) = d(σ−1(i)). In particular, the operator ◦
realises the set ZX≥0 as a (left) S(X)-action set.

The monoid C[X] provides an indexing set for the X-conjugacy classes of SN. The
submonoid C encodes the cycle structure of the cycles containing no elements of X,
while the submonoid S(X)nϕU(X) encodes the cycle structure of the cycles containing
elements of X and the relative positions of such elements in such cycles. Instead of
proving this connection now, we will show that we may associate to any element of C[X]
an object called an X-marked cycle shape, and then the correspondence between C[X]
and X-conjugacy classes of SN will be immediate.

Given a finite set A, a cycle with entries belonging to A is a tuple (ai)
m
i=1 ∈ A×m, for

some m ∈ N, where we only care about the order of the coordinates up to cyclic shifts.

Definition 5.7. Let ∗ be a formal symbol. We define an X-marked cycle shape to be a
finite collection of cycles with entries belonging to X ∪{∗} with the following properties:

(1) The multiset of entries among the cycles equals X ∪ {∗m} for some m ∈ Z≥0, in
particular each element of X appears precisely once.

(2) Cycles containing only ∗ must be of length at least two.

We write an X-marked cycle shape as a formal product of its cycles by juxtaposition,
where the order of the cycles is immaterial.

Example 5.8. Let X = {1, 3, 5, 7, 9, 11}. An example of an X-marked cycle shape is

λ = (3, 11)(9)(1, ∗, ∗, 7, ∗)(5, ∗, ∗)(∗, ∗)(∗, ∗, ∗).

The multiset of entries among the cycles of λ is X ∪ {∗10}. Any of the six cycles above
may be rearranged in any order to give an alternative expression for λ.

Naturally the group S(X) may be regarded as the subset of all X-marked cycle
shapes whose multiset of entries among the cycles is precisely X. At the other end of
the spectrum, the cycle shape monoid C of Section 2.1.2 may be regarded as the subset
of all X-marked cycle shapes where each element of X belongs to a cycle of length one.
Thus the set of X-marked cycle shapes interpolates between permutations of X and
cycle shapes.

By consulting Lemma 2.3, it is obvious that the set of X-marked cycles shapes in-
dex the X-conjugacy classes of SN. Explicitly, given an X-marked cycle shape λ, the
corresponding X-conjugacy class of SN is the set of permutations obtained from λ by
replacing the symbols ∗ with distinct elements from the set N\X. For any X-marked
cycle shape λ, we let CL[X](λ) denote the corresponding X-conjugacy class of SN.
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Example 5.9. Let X and λ be as in Example 5.8, then

CL[X](λ) =
{

(3, 11)(1, a1, a2, 7, a3)(5, a4, a5)(a6, a7)(a8, a9, a10)
∣∣∣ (ai)

10
i=1 ∈ (N\X)!10

}
where (N\X)!10 is the subset of the ten-fold cartesian product of N\X of tuples with
pairwise distinct entries.

The X-marked cycle shapes are in a natural one-to-one correspondence with the el-
ements of C[X] (justifying the name of such a monoid): Consider the map from C[X]
to the set of all X-marked cycle shapes given by sending πudcl to the X-marked cycle
shape consisting of, for each i ∈ N, l(i) many cycles of length i+ 1 containing only the
symbol ∗, and where the other cycles are constructed from those of π by adding d(x)
symbols ∗ after the entry x, for each x ∈ X (see below for an example). It is easy to
show that such a map is a bijection since there is a obvious inverse to consider. With
this bijection in mind, we identify C[X] as the set of X-marked cycle shapes. Hence C[X]
indexes the X-conjugacy classes of SN as previously claimed.

Example 5.10. Let X and λ be as in Example 5.8, then we have the identification

(1, 7)(3, 11)(5)(9)u2
1u

2
5u

1
7c

1
1c

1
2 = (3, 11)(9)(1, ∗, ∗, 7, ∗)(5, ∗, ∗)(∗, ∗)(∗, ∗, ∗),

where we have added colours to aid in demonstrating the correspondence.

Given any element λ of C[X], we will freely move between viewing it as an X-marked
cycle shape or an expression of the form πudcl with π ∈ S(X), d ∈ ZX≥0, and l ∈ ZN

≥0.
As mentioned, a permutation σ belongs to CL[X](λ) for some X-marked cycle shape λ if
and only if σ may be obtained from λ by replacing the symbols ∗ with distinct elements
from N\X. When expressing λ = πudcl, then from the above discussion, we have the
following equivalent criteria for when σ belongs to the X-conjugacy class CL[X](λ) given
in terms of π, d, and l.

Lemma 5.11. We have σ ∈ CL[X](πudcl) if and only if the following hold:

(i) the number of cycles of σ of length i+ 1 containing no elements of X is l(i),

(ii) σd(x)+1(x) = π(x) for each x ∈ X, and σm(x) 6∈ X for any 1 ≤ m ≤ d(x).

�

Now recall from the previous section the quantities ||C||, ||C||X , and ||C||X , for any
X-conjugacy class C of SN. Then for λ ∈ C[X], we write

||λ|| := ||CL[X](λ)||, ||λ||X := ||CL[X](λ)||X , and ||λ||X := ||CL[X](λ)||X .

From the view point of an X-marked cycle shape, the quantity ||λ|| counts the number
of entries among the cycles of length at least two, ||λ||X is the number of ∗ symbols
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appearing among the cycles, while ||λ||X is the number of elements from X which appear
in cycles of length at least two. With λ = πudcl, one can deduce

||λ|| = |Sup(π)|+
∑
x∈X

d(x) +
∑
i∈N

(i+ 1)l(i),

||λ||X =
∑
x∈X

d(x) +
∑
i∈N

(i+ 1)l(i),

||λ||X = |Sup(π)|.

We now describe a grading on C[X], and to do so we introduce a monoid to grade by.
Consider the set Z≥|X| of non-negative integers greater than or equal to the cardinality
of X. We equip Z≥|X| with the binary operator +X defined by

a+X b := a+ b− |X|.

Then one can check that Z≥|X| is a monoid under +X with identity |X|. As monoids
(Z≥0,+) and (Z≥|X|,+X) are isomorphic, with isomorphism given by n 7→ n + |X| for
all n ∈ Z≥0. For our purposes, the monoid Z≥|X| will be more convenient to work with.

Definition 5.12. We define the map deg : C[X]→ Z≥|X| by

deg(λ) = ||λ||X + |X|

for any λ ∈ C[X]. We refer to deg(λ) as the degree of λ.

Note we have defined this degree function with the inequality of Proposition 5.4 in
mind. By considering the description of the product of C[X] given in Equation (5.2), it
is easy to check that deg is a homomorphism of monoids. As such deg realises a grading
on C[X]. For any n ∈ Z≥0 define Cn[X] = {λ ∈ C[X] | deg(λ) = n} to be the n-th graded
component of C[X]. We have that Cn[X] is non-empty if and only if n ≥ |X|. We have
the disjoint union

C[X] =
⊔
|X|≤n

Cn[X].

For any n,m ∈ Z≥|X|, λ ∈ Cn[X], and µ ∈ Cm[X], we have that λµ ∈ Cn+m−|X|[X]. In
particular, the graded component C|X|[X] is a submonoid, and in fact this is precisely
the submonoid S(X). For any n ∈ Z≥0 we let C≤n[X] = {λ ∈ C[X] | deg(λ) ≤ n}. Again
C≤n[X] is non-empty if and only if n ≥ |X|. In this case we have the disjoint union

C≤n[X] =
⊔

|X|≤m≤n

Cm[X].

By Proposition 5.4, for any n ∈ Z≥0 and X ⊆ [n], we have that C≤n[X] indexes the
X-conjugacy classes of Sn. Given such an n, for any λ ∈ C[X] we set CLn[X](λ) :=
CL[X](λ) ∩ Sn. Hence CLn[X](λ) = ∅ whenever deg(λ) > n, and otherwise is the X-
conjugacy class of Sn containing all the permutations of Sn one can obtain from the
X-marked cycle shape λ by replacing the symbols ∗ with distinct elements from [n]\X.
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We end this section by describing generating functions whose coefficients record the
size of Cn[X] and C≤n[X]. As a corollary we obtain a formula for the size of C≤n[X]
given in terms of the number of partitions of integers less than or equal to n. Given a
generating function F (t) in a formal variable t, we let [tn]F (t) denote the coefficient of
the n-th degree term tn.

Proposition 5.13. Let t be a formal variable. As generating functions we have

∞∑
n=0

|Cn[X]|tn =
|X|!t|X|

(1− t)|X|
∞∏
n=2

1

1− tn
, (5.3)

and
∞∑
n=0

|C≤n[X]|tn =
|X|!t|X|

(1− t)|X|
∞∏
n=1

1

1− tn
. (5.4)

Proof. We begin by showing Equation (5.3). For any πudcl ∈ C[X] we have that

deg(πudcl) = |X|+
∑
x∈X

d(x) +
∑
i∈N

(i+ 1)l(i).

Now for any m ∈ Z≥0 define the subsets of C[X] given by

SU (m) :=

{
πud

∣∣∣∣∣ π ∈ S(X), d ∈ ZX≥0,
∑
x∈X

d(x) = m

}
,

and

C(m) :=

{
cl

∣∣∣∣∣ l ∈ ZN
≥0,

∑
i∈N

(i+ 1)l(i) = m

}
.

For any a, b ∈ Z≥0, given πud ∈ SU (a) and cl ∈ C(b), we have deg(πudcl) = a+ b+ |X|,
and all elements in C[X] of degree a+ b+ |X| appear uniquely in such a manner. Hence
for any n ∈ Z≥0 we have that

|Cn+|X|[X]| =
∑
a,b≥0
a+b=n

|SU (a)||C(b)|.

Therefore, if F (t) is the generating function such that [tn]F (t) = |SU (n)|, and G(t) the
generating function such that [tn]G(t) = |C(n)|, then

[tn](t|X|F (t)G(t)) = |Cn[X]|. (5.5)

The elements of C(n) are the X-marked cycle shapes where the elements of X belong to
cycles of length one, and the remaining cycles contain n symbols ∗ in total. The cycles
containing only the symbols ∗ must be of length at least two. Thus one can deduce that

G(t) =
∞∑
n=0

|C(n)|tn =
∞∏
n=2

1

1− tn
,
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since the factor (1− tn)−1 accounts for the number of cycles of length n containing only
the symbols ∗ present in such an X-marked cycle shape. As for the set SU (n), it is clear
that its cardinality is |X|! times the number of maps d : ZX≥0 → Z≥0 such that the sum of
d(x) for each x ∈ X is precisely n. The number of such maps is precisely the coefficient
of tn in the generating function (1− t)−|X|, since each factor (1− t)−1 accounts for the
choice of the image of a given element of X. As such

F (t) =

∞∑
n=0

|SU (n)|tn = |X|!
(

1

1− t

)|X|
.

Hence from Equation (5.5) we have that

∞∑
n=0

|Cn[X]|tn = t|X||X|!
(

1

1− t

)|X| ∞∏
n=2

1

1− tn
,

which is precisely Equation (5.3). As for Equation (5.4), this follows from Equation (5.3)
by noting that for any generating function A(t), the new generating function (1−t)−1A(t)
records the partial sums of the coefficients of A(t), that is to say

[tn]
(
(1− t)−1A(t)

)
=

n∑
i=0

[tn]A(t).

Recall that Λn is the set of all partitions of n. Then the above proposition allows us
to give a formula for the size of C≤n[X] in terms of the sizes of the sets Λm for m ≤ n.

Corollary 5.14. The cardinality of C≤n[X] is given by

|C≤n[X]| =
∑

a≥|X|,b≥0
a+b=n

|X|!
(
a− 1

a− |X|

)
|Λb|.

Proof. It is well-known that

∞∑
n=0

|Λn|tn =
∞∏
n=1

1

1− tn
.

Also it is known that (
1

1− t

)|X|
=
∞∑
n=0

(
|X|+ n− 1

n

)
tn,

and so (
t

1− t

)|X|
=
∞∑
n=0

(
|X|+ n− 1

n

)
tn+|X| =

∞∑
n=|X|

(
n− 1

n− |X|

)
tn.

Then the result follows from Equation (5.4) of Proposition 5.13. Note we are using the
generalised binomial coefficients here when X is empty.
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5.1.3 Centralizer Algebras Zn(X)

Assume throughout this section that n ∈ Z≥0 and X ⊆ [n]. In this section we introduce
the X-centralizer algebras Zn(X), which are subalgebras of the group algebras of the
symmetric group. When X is empty, these algebras are precisely the centers Zn =
Z(CSn). We give a basis of the X-centralizer algebras by class sums, and show that the
associated structure constants are polynomial in n. We end the section by establishing
various notation and proving some technical results for later proofs.

Recall that Stabn(X) is the subgroup of Sn consisting of all permutations which act
trivially on all elements belong to the set X. Then we define the X-centralizer algebra
as

Zn(X) := {z ∈ CSn | τz = zτ for all τ ∈ Stabn(X)}, (5.6)

which is a subalgebra of CSn. When X = ∅ we have that Stabn(∅) = Sn, and so the
X-centralizer algebra is precisely the center Zn(∅) = Zn. Analogous to the center, we
have a natural basis of Zn(X) given by X-conjugacy class sums of CSn. Recall that the
set C≤n[X] of X-marked cycle shapes of degree less than or equal to n gives an indexing
set for the X-conjugacy classes of Sn.

Definition 5.15. For λ ∈ C≤n[X], we define the X-conjugacy class sum as

Kn(λ) :=
∑

π∈CLn[X](λ)

π.

Since X-conjugacy classes of Sn are precisely the orbits associated to the action of
Stabn(X) on Sn by conjugation, the proceeding result follows in a completely analogous
manner to Proposition 2.8 of Section 2.1.3.

Proposition 5.16. The set of class sums {Kn(λ) | λ ∈ C≤n[X]} forms a basis of Zn(X).

�

As was the case for the class sums of the centers, we prove that the structure constants
associated to the basis {Kn(λ) | λ ∈ C≤n[X]} are polynomial in n.

Theorem 5.17. Let z be a formal variable, n ∈ Z≥0, and X ⊆ [n]. For each λ, µ, τ ∈
C≤n[X] there exists a unique polynomial f τλ,µ(z) such that in the centralizer algebra
Zn(X) we have

Kn(λ)Kn(µ) =
∑

τ∈C≤n[X]

f τλ,µ(n)Kn(τ).

We refer to the polynomials f τλ,µ(z) as the structure polynomials.

Proof. Fix λ, µ, τ ∈ C≤n[X]. Consider the set of pairs

A = {(π1, π2) ∈ CL[X](λ)× CL[X](µ) | π1π2 ∈ CL[X](τ)} ⊂ SN ×SN.

When A is empty, then we may set f τλ,µ(z) := 0. Assume that A is non-empty and let

(π1, π2) ∈ A. Then for any σ ∈ Stab(X) we have that (σπ1σ
−1)(σπ2σ

−1) = σ(π1π2)σ−1
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which belongs to CL[X](τ) since π1π2 ∈ CL[X](τ). Therefore (σπ1σ
−1, σπ2σ

−1) belongs
to A for any σ ∈ Stab(X). Thus for some indexing set I, we have the disjoint union

A =
⊔
i∈I

C(i)

where C(i) is an X-conjugacy class of SN×SN for each i ∈ I. For any (π
(i)
1 , π

(i)
2 ) ∈ C(i),

||C(i)||X = |SupX(π
(i)
1 ) ∪ SupX(π

(i)
2 )| ≤ |SupX(π

(i)
1 )|+ |SupX(π

(i)
2 )| = ||λ||X + ||µ||X .

Thus for any n ≥ ||λ||X + ||µ||X + |X| such that X ⊆ [n], by Proposition 5.4 we have that

C
(i)
n is an X-conjugacy class of Sn ×Sn for each i ∈ I. This implies that the indexing

set I is finite. Also by Proposition 5.5 we have that

|A ∩ (Sn ×Sn)| =
∑
i∈I

1

b(C(i))
(n− |X|)(n− |X| − 1) · · · (n− |X| − ||C(i)||X + 1),

where b(C(i)) are constants independent of n. By definition of A, the multiplicity of
Kn(τ) in the product Kn(λ)Kn(µ) is |A∩ (Sn×Sn)| divided by |CLn[X](τ)|. Again by
Proposition 5.5 we have that

|CLn[X](τ)| = 1

b(τ)
(n− |X|)(n− |X| − 1) · · · (n− |X| − ||τ ||X + 1),

where b(τ) = b(CL[X](τ)) is a constant independent of n. Now for any (π
(i)
1 , π

(i)
2 ) ∈ C(i),

||τ ||X = |SupX(π
(i)
1 π

(i)
2 )| ≤ |SupX(π

(i)
1 ) ∪ SupX(π

(i)
2 )| = ||C(i)||.

Thus we have that |A ∩ (Sn ×Sn)| divided by |CLn[X](τ)| is given by

b(τ)
∑
i∈I

1

b(C(i))
(n− |X| − ||τ ||X)(n− |X| − ||τ ||X − 1) · · · (n− |X| − ||C(i)||X + 1).

Hence letting f τλ,µ(z) be the polynomial obtained from the above expression by replacing
n with z gives the desired structure polynomial.

We now want to compare different centralizer algebras and their corresponding struc-
ture polynomials. Most of this is fairly obvious, but it is convenient to explicitly state
such results for later use.

Definition 5.18. For any σ ∈ SN and λ ∈ C[X], let λσ be the element of C[σ(X)]
obtained from λ by replacing the elements ofX in the cycles of λ with their corresponding
images under σ.

Example 5.19. Let X = {1, 3, 5} and λ = (1, ∗, 5, ∗)(3, ∗, ∗)(∗, ∗) ∈ C[X]. Given the
permutation σ = (1, 4, 9)(2, 5)(7, 8), we have the σ(X)-marked cycle shape

λσ = (σ(1), ∗, σ(5), ∗)(σ(3), ∗, ∗)(∗, ∗) = (4, ∗, 2, ∗)(3, ∗, ∗)(∗, ∗).
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For any σ ∈ SN, consider the map (−)σ : C[X] → C[σ(X)]. Given λ = πudcl ∈ C[X],
then one can deduce that

λσ = σπσ−1uσ◦dcl

where σ ◦ d ∈ Zσ(X)
≥0 is given by (σ ◦ d)(y) = d(σ−1(y)) for each y ∈ σ(X). One can

show from Equation (5.2) that (−)σ is an isomorphism of monoids. Also by Lemma 2.3
it is clear that CL[σ(X)](λσ) = σCL[X](λ)σ−1 for any λ ∈ C[X] and σ ∈ SN. Hence for
any σ ∈ SN, picking n ∈ Z≥0 such that X,σ(X) ⊆ [n], we may regard (−)σ as a map
Zn(X) → Zn(σ(X)) by the C-linear extension of Kn(λ)σ := Kn(λσ) = σKn(λ)σ−1. It
is simple to check that (−)σ realised an isomorphism of C-algebras Zn(X) ∼= Zn(σ(X)).
Also, it is simple to check that for any π ∈ Sn and K ∈ Zn(X) we have

[π]K = [πσ]Kσ. (5.7)

That is the coefficient of π in K is the same as that of σπσ−1 in σKσ−1. As such we
immediately obtain the following results.

Lemma 5.20. For λ, µ, τ ∈ C[X] and σ ∈ SN, we have an equality f τλ,µ(z) = f τ
σ

λσ ,µσ(z)
of structure polynomials.

�

Let X ⊆ Y ⊂ N with both such subsets finite. Let n ∈ Z≥0 be such that X,Y ⊆ [n].
Then Stabn(Y ) ⊆ Stabn(X), and hence from Equation (5.6) one can see that Zn(X) ⊆
Zn(Y ). We now describe this embedding in terms of the class sum basis.

Definition 5.21. Given finite subsets X ⊆ Y ⊂ N and λ ∈ C[X], we say that µ ∈ C[Y ]
is a Y -filling of λ if it can be obtained from λ by adding to it the elements of Y \X by
either replacing symbols ∗ or adding cycles of length one. We write FillYX(λ) to denote
the set of all Y -fillings of λ.

Example 5.22. Let X = {1, 2, 3} and Y = {1, 2, 3, 4, 5}. Consider the X-marked cycle
shape λ = (1, ∗, 2)(3, ∗), then the Y -fillings of λ are given by

FillYX(λ) =
{

(1, ∗, 2)(3, ∗)(4)(5), (1, 4, 2)(3, ∗)(5), (1, ∗, 2)(3, 4)(5),

(1, 5, 2)(3, ∗)(4), (1, ∗, 2)(3, 5)(4), (1, 4, 2)(3, 5), (1, 5, 2)(3, 4)
}
.

Given λ ∈ C[X] and a finite set Y ⊂ N containing X, it is clear that

{CL[Y ](µ) | µ ∈ FillYX(λ)}

gives a set partition of the X-conjugacy class CL[X](λ). In particular, each CL[Y ](µ) is
refining the elements of CL[X](λ) by also encoding the relative positions of the elements
of Y \X among the cycles of the permutations. Thus, given any n ∈ Z≥0 such that
Y ⊆ [n], we have that {CLn[Y ](µ) | µ ∈ FillYX(λ)} gives a set partition CLn[X](λ), and
hence we have the equality

Kn(λ) =
∑

µ∈FillYX(λ)

Kn(µ). (5.8)
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Hence the inclusion Zn(X) ⊆ Zn(Y ) may be described by the embedding given on the
class sum basis by Kn(λ) 7→

∑
µ∈FillYX(λ)Kn(µ).

We end this section by proving a few technical results which will play roles in later
proofs. The last of such will prove that another quantity which arises when dealing with
centralizer algebras is polynomial in n.

Let G be a group and H a subgroup of G. Recall that a left transversal of H in G is
a set T containing exactly one element from each left coset of H in G. In particular we
have the disjoint union

G =
⊔
t∈T

tH.

Given finite sets X ⊆ Y ⊂ N and n ∈ Z≥0 such that Y ⊆ [n], we have Stabn(Y ) ⊆
Stabn(X). Let Tn be a left transversal of Stabn(Y ) in Stabn(X). Then, as we show
below, the elements of Tn are precisely categorised by their action on Y \X.

Lemma 5.23. Given any injective map φ : Y \X → [n]\X, there exists one and only
one element τ ∈ Tn such that τ(i) = φ(i) for each i ∈ Y \X.

Proof. Fix some injective map φ : Y \X → [n]\X. Since elements of Stabn(X) are all
those in Sn which fix X element-wise, there clearly exists a permutation π ∈ Stabn(X)
such that π(i) = φ(i) for each i ∈ Y \X. Now suppose τ ∈ Tn is such that π ∈ τStabn(Y ),
hence π = τσ for some σ ∈ Stabn(Y ). Thus for each i ∈ Y \X, since σ acts trivially
on Y , we have that φ(i) = π(i) = (τσ)(i) = τ(σ(i)) = τ(i). Therefore we have show
that there exists such an element τ ∈ Tn with the desired property. Consider the map
I : Tn → {φ : Y \X → [n]\X | φ is injective} sending τ to its restriction on Y \X. We
have just shown that I is surjective. However, note that

|Tn| =
|Stabn(X)|
|Stabn(Y )|

=
(n− |X|)!
(n− |Y |)!

= (n− |X|)(n− |X| − 1) · · · (n− |X| − |Y \X|+ 1).

As such Tn has the same cardinality as the set {φ : Y \X → [n]\X | φ is injective}, and
so I must be injective also, and thus bijective, which completes the proof.

Definition 5.24. Given finite sets X ⊆ Y ⊂ N and µ ∈ C[Y ], let µ ↓X denote the
element of C[X] obtained from µ by replacing the elements of Y \X with the symbols ∗,
or when such an element belongs to a cycle of length one, remove such a cycle.

Example 5.25. Let X = {1, 2, 3}, Y = {1, 2, 3, 4, 5, 6}, and consider the Y -marked
cycle shape given by µ = (2, 5)(4)(3, ∗, 6, ∗)(1, ∗)(∗, ∗). Then

µ ↓X= (2, ∗)(3, ∗, ∗, ∗)(1, ∗)(∗, ∗),

hence the cycle (4) was removed, and the entries 5 and 6 where replaced with ∗.

Remark 5.26. Comparing to Definition 5.21, it is easy to see that given finite sets
X ⊆ Y ⊂ N and any λ ∈ C[X], we have FillYX(λ) = {µ ∈ C[Y ] | µ ↓X= λ}.
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Lemma 5.27. Let X ⊆ Y ⊂ N be finite sets, µ ∈ C[Y ], and n ∈ Z≥0 such that Y ⊆ [n].
Let Tn be a left transversal of Stabn(Y ) in Stabn(X), then as sets we have

CLn[X](µ ↓X) =
⋃
τ∈Tn

CLn[Y ](µτ ).

Proof. It is clear that CLn[Y ](µ) ⊆ CLn[X](µ ↓X), thus for π ∈ CL[Y ](µ) we have

CLn[Y ](µ) = {hπh−1 | h ∈ Stabn(Y )} and CLn[X](µ ↓X) = {gπg−1 | g ∈ Stabn(X)}.

Since Stabn(X) is the disjoint union of τStabn(Y ) as τ runs over Tn, we have that

CLn[X](µ ↓X) = {(τh)π(τh)−1 | (τ, h) ∈ Tn × Stabn(Y )}
= {τ(hπh−1)τ−1 | (τ, h) ∈ Tn × Stabn(Y )}

=
⋃
τ∈Tn

τ{hπh−1 | h ∈ Stabn(Y )}τ−1

=
⋃
τ∈Tn

τCLn[Y ](µ)τ−1 =
⋃
τ∈Tn

CLn[Y ](µτ ).

Proposition 5.28. Let X ⊆ Y ⊂ N be finite sets and µ ∈ C[Y ]. For all n ∈ Z≥0 where
Y ⊆ [n], let Tn be any left transversal of Stabn(Y ) in Stabn(X), then there exists a
polynomial fµX(z) such that

K :=
∑
τ∈Tn

Kn(µτ ) = fµX(n)Kn(µ ↓X).

We call the polynomials fµX(z) the Transversal Polynomials.

Proof. For any π ∈ Sn and A ∈ CSn, let [π]A ∈ C denote the coefficient of π in A, and
write π ∈ A whenever [π]A 6= 0. From Lemma 5.27 we know that π ∈ K if and only
if π ∈ Kn(µ ↓X). We first prove that for any two π1, π2 ∈ K we have [π1]K = [π2]K.
Given any τ ∈ Tn, since Kn(µτ ) is a class sum we have that [π]Kn(µτ ) ∈ {0, 1} for any
π ∈ Sn. Now let Tn(π) be the subset of Tn consisting of all τ such that π ∈ Kn(µτ ),
then we have that

[π]K =
∑
τ∈Tn

[π]Kn(µτ ) = |Tn(π)|.

So we want to show |Tn(π1)| = |Tn(π2)|. For any h ∈ Sn, let Lh : Tn → Tn be given by
sending τ to the unique element Lh(τ) of Tn such that hτ ∈ Lh(τ)Stabn(Y ). It is easy
to check that Lh is bijective. Now since π1, π2 ∈ Kn(µ ↓X) there exists h ∈ Stabn(X)
such that π2 = hπ1h

−1. Also for τ ∈ Tn(π1) we have π1 ∈ Kn(µτ ), and so there exists a
unique g ∈ Kn(µ) such that π1 = τgτ−1. Thus we have

π2 = (hτ)g(hτ)−1 = Lh(τ)ωgω−1Lh(τ)−1 = Lh(τ)fLh(τ)−1,
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where ω ∈ Stabn(Y ) and f = ωgω−1 ∈ Kn(µ). So π2 = Lh(τ)fLh(τ)−1, which implies
that Lh(τ) ∈ Tn(π2). Hence restricting Lh to Tn(π1) gives a mapping Tn(π1)→ Tn(π2).
Analgously one can show that restricting Lh−1 to Tn(π2) gives a mapping Tn(π2) →
Tn(π1), and naturally this map is an inverse to Lh. Therefore |Tn(π1)| = |Tn(π2)|. So we
have currently shown that K = fµX(n)Kn(µ ↓X) for some constant fµX(n) ∈ N, and now
need to show that such a constant is polynomial in n. Since |CLn[Y ](µ)| = |CLn[Y ](µτ )|
for any τ ∈ Tn, then by definition of K we have that

fµX(n) =
|Tn||CLn[Y ](µ)|
|CLn[X](µ ↓X)|

. (5.9)

Let π ∈ CLn[Y ](µ) ⊆ CLn[X](µ ↓X), then by the orbit-stabilizer theorem we have

|CLn[Y ](µ)| = |Stabn(Y )|
|StabStabn(Y )(π)|

, and |CLn[X](µ ↓X)| = |Stabn(X)|
|StabStabn(X)(π)|

.

As a special case of the claim proved in the proof of Proposition 5.5, one can deduce the
following isomorphisms of groups:

StabStabn(Y )(π) ∼= Stabn(Y ∪ SupY (π))× StabS(SupY (π))(π),

StabStabn(X)(π) ∼= Stabn(X ∪ SupX(π))× StabS(SupX(π))(π).

Since the size of the sets SupY (π) and SupX(π) are independent in n, so are the sizes of
the groups StabS(SupY (π))(π) and StabS(SupX(π))(π). Hence we set

b(µ) := |StabS(SupY (π))(π)|,

b(µ ↓X) := |StabS(SupX(π))(π)|.

Also note that StabS(SupY (π))(π) is a subgroup of StabS(SupX(π))(π), and hence b(µ)

divides b(µ ↓X). We set c(µ) := b(µ ↓X)/b(µ) ∈ N. Then from Equation (5.9) we have

fµX(n) = |Tn||CLn[Y ](µ)| 1

|CLn[X](µ ↓X)|

=
|Stabn(X)|
|Stabn(Y )|

|Stabn(Y )|
|StabStabn(Y )(π)|

|StabStabn(X)(π)|
|Stabn(X)|

=
|StabStabn(X)(π)|
|StabStabn(Y )(π)|

=
b(µ ↓X)

b(µ)

(n− |SupX(π)|)!
(n− |SupY (π)|)!

= c(µ)(n− |SupX(π)|)(n− |SupX(π)| − 1) · · · (n− |SupX(π)| − |SupY (π)|+ 1).

Hence replacing the occurences of n in the above expression with the variable z give the
desired polynomial fµY (z).
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Lemma 5.29. Let X ⊆ Y ⊂ N be finite sets and µ ∈ C[Y ]. For all n ∈ Z≥0 where Y ⊆
[n], and any σ ∈ Sn, we have the equality fµX(z) = fµ

σ

σ(X)(z) of transversal polynomials.

Proof. As mentioned previously, the linear extension of (−)σ realises an isomorphism
of centralizer algebras Zn(Y ) ∼= Zn(σ(Y )). Let Tn be a left transversal of Stabn(Y ) in
Stabn(X), then one can check that T σn := σTnσ−1 gives a left transversal of Stabn(σ(Y ))
in Stabn(σ(X)). Then by Proposition 5.28, under the isomorphism (−)σ we have that

fµX(n)Kn(µ ↓X) =
∑
τ∈Tn

Kn(µτ ) 7→
∑
τ∈Tn

Kn(µτ )σ =
∑
τ∈Tn

Kn(µτσ)

=
∑
τ∈T σn

Kn(µστ ) =
∑
τ∈T σn

Kn((µσ)τ )

= fµ
σ

σ(X)(n)Kn((µσ) ↓σ(X))

= fµ
σ

σ(X)(n)Kn(µ ↓X)σ

Hence by Equation (5.7) these polynomials agree on infinitely many natural numbers,
and so must be equal.

5.1.4 Dimension Formula

By Proposition 5.16 we know that dim(Zn(X)) = |C≤n[X]|, and from Corollary 5.14
given at the end of Section 5.1.2, we have a formula to calculate such a quantity. In this
section we present an alterative expression for the dimension of Zn(X) which comes from
the representation theory of the symmetric groups. We will first prove a few lemmas to
help with such a result.

Consider the algebra CSn ⊗ CSn with component-wise addition and multiplication.
The group algebra CSn may be regarded as a left CSn⊗CSn-module by the extension
of the action (π1 ⊗ π2)(σ) = π1σπ

−1
2 , for all π1, π2, σ ∈ Sn.

Lemma 5.30. For any n ∈ Z≥0 such that X ⊆ [n], we have an isomorphism of algebras

Zn(X) ∼= EndCSn⊗CStabn(X)(CSn),

with the latter being the algebra of CSn ⊗ CStabn(X)-module endomorphism of CSn.

Proof. Consider the map

φ : Zn(X)→ EndCSn⊗CStabn(X)(CSn)

given by φ(z)(x) = xz for any z ∈ Zn(X) and x ∈ CSn. We will show that φ is
an isomorphism of algebras. Let us first show that φ is well-defined, that is for any
z ∈ Zn(X) we show that φ(z) : CSn → CSn is indeed a CSn ⊗ CStabn(X)-module
homomorphism. Since φ(z) is given by right multiplying by the element z, it is clear to
see that φ(z) is linear. Also, given any π1 ⊗ π2 ∈ Sn × Stabn(X) and x ∈ CSn,

φ(z)(π1xπ
−1
2 ) = π1xπ

−1
2 z = π1xzπ

−1
2 = π1φ(z)(x)π−1

2 = (π1 ⊗ π2)(φ(z)(x)),

147



where we used the fact that Zn(X) commutes with Stabn(X). Hence φ(z) is a module
homomorphism. Now it is clear that φ is an algebra homomorphism since its given by
right multiplication. So we are left with showing that φ is both injective and surjective.
For injectivity, assume z ∈ Ker(φ), hence xz = 0 for all x ∈ CSn, but picking x = 1 yields
z = 0, showing that Ker(φ) = {0}. For surjectivity, let f ∈ EndCSn⊗CStabn(X)(CSn),
then for any π ∈ Stabn(X), we have that πf(1)π−1 = f(ππ−1) = f(1). Therefore
f(1) ∈ Zn(X). Moreover, for any x ∈ CSn we have that φ(f(1))(x) = xf(1) = f(x).
Thus φ(f(1)) = f , and hence φ is also surjective.

For M and N two left CSn-modules, then M ⊗N is a left CSn ⊗CSn-module given
by component-wise action.

Lemma 5.31. As left CSn ⊗ CSn-module we have the isomorphism

CSn
∼=
⊕
λ∈Λn

Sλ ⊗ Sλ.

Proof. By the Artin-Wedderburn Theorem we have that

CSn
∼=
⊕
λ∈Λn

Mdim(λ)(C) (5.10)

as algebras. We identify CSn as the direct product of matrix algebras described in this
isomorphism, and let {Eλij | λ ∈ Λn, i, j,∈ [dim(λ)]} be the basis of CSn given by the

standard matrix units. From this identification, the simple CSn-module Sλ corresponds
to the column space associated to the block Mdim(λ)(C). From this let {eλi | i ∈ [dim(λ)]}
be the standard basis of Sλ as a column space. Hence CSn acts on Sλ by the linear
extension of Eλije

µ
k = δjkδλµe

λ
i , where δab = 1 if a = b and 0 otherwise. Now let

ϕ : CSn →
⊕
λ∈Λn

Sλ ⊗ Sλ

be the map defined by Eλij 7→ eλi ⊗ eλj , extended linearly across CSn. It is immediate
that ϕ is both linear and bijective, so what remains is to show that it preserves the
CSn⊗CSn-module structure. We show this on the standard matrix units of CSn, where
the result will then follow from linearity of ϕ. Note that, since irreducible representations
of finite group algebras over C are unitary, the linear extension of the inverse (−)−1 of
CSn corresponds to conjugate transpose (−)∗ under the isomorphism of Equation (5.10).
Then we have

(Eλij ⊗ E
µ
lk)ϕ(Eτab) = (Eλij ⊗ E

µ
lk)(e

τ
a ⊗ eτb )

= (Eλije
τ
a)⊗ (Eµlke

τ
b )

= δλτδµτδjaδkb(e
τ
i ⊗ eτl )
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and

ϕ((Eλij ⊗ E
µ
lk)E

τ
ab) = ϕ(EλijE

τ
ab(E

µ
lk)
∗)

= ϕ(EλijE
τ
abE

µ
kl)

= δλτδµτδjaδkbϕ(Eτil)

= δλτδµτδjaδkb(e
τ
i ⊗ eτl ).

So (Eλij ⊗ E
µ
lk)ϕ(Eτab) = ϕ((Eλij ⊗ E

µ
lk)E

τ
ab), thus ϕ is an isomorphism.

Recall Young’s lattice Ŝ given in Definition 2.16. For any a ≥ b, and partitions µ ∈ Λb
and λ ∈ Λa, let Path(µ, λ) denote the set of paths in Ŝ starting at µ and ending at λ.
Such a set of paths is non-empty if and only if µ ⊆ λ.

Proposition 5.32. Given n ∈ Z≥0 such that X ⊆ [n], set m := |X|. Then we have

dimC(Zn(X)) =
∑

µ∈Λn−m

∑
λ∈Λn

|Path(µ, λ)|2.

Proof. Note that for any subsets X,Y ⊆ [n] such that |X| = |Y |, we have an isomorphism
of algebras Zn(X) ∼= Zn(Y ). Therefore to prove this result, it suffices to prove it for
X = {n−m,n−m+ 1, . . . , n}. Now by Lemma 5.31 we have

CSn
∼=
⊕
λ∈Λn

Sλ ⊗ Sλ,

as left CSn⊗CSn-modules. Restricting the action to CSn⊗CStabn(X) ∼= CSn⊗CSn−m
gives the following decomposition,

ResCSn⊗CSn−m(CSn) ∼=
⊕
λ∈Λn

Sλ ⊗ ResCSn−m(Sλ)

∼=
⊕
λ∈Λn

Sλ ⊗

 ⊕
µ∈Λn−m

|Path(µ, λ)|Sµ


∼=
⊕
λ∈Λn

⊕
µ∈Λn−m

|Path(µ, λ)|(Sλ ⊗ Sµ)

where the second isomorphism above follows from item (2) of Theorem 2.18. By Lemma
5.30 we know that

Zn(X) ∼= EndCSn⊗CSn−m

⊕
λ∈Λn

⊕
µ∈Λn−m

|Path(µ, λ)|(Sλ ⊗ Sµ)

 .

The proposition thus follows since dim(EndA(S⊕m)) = m2 for any algebra A, simple
A-module S, and m ∈ Z≥0.
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5.1.5 The Marked Cycle Shape Algebra Z(X)

In this section we define a new C[z]-algebra Z(X) which we call the X-marked cycle
shape algebra, for any finite subset X ⊆ N. This is not the monoid algebra of the X-
marked cycle shape monoid C[X], but rather an algebra which can be interpreted as the
X-centralizer algebra Zn(X) as n→∞. In particular, in the case when X is empty, the
algebra Z(∅) will coincide with the cycle shape algebra Z of H. Farahat and G. Higman
presented in Section 2.1.3.

Recall the X-centralizer algebra Zn(X) given by Equation 5.6, which has a basis given
by class sums Kn(λ) for λ ∈ C≤n[X], presented in Definition 5.15. Also recall that the
corresponding structure constants for this class sum basis were shown to be polynomial
in n by Theorem 5.17.

Definition 5.33. Let X ⊆ N be finite. We define Z(X) to be the free C[z]-module
with basis {K(λ) | λ ∈ C[X]}. Equip Z(X) with the product given by the C[z]-linear
extension of

K(λ)K(µ) =
∑

τ∈C[X]

f τλ,µ(z)K(τ),

where f τλ,µ(z) are the structure polynomials given in Theorem 5.17. We call Z(X) the
X-marked cycle shape algebra.

Since f τλ,µ(n) is the multiplicity of Kn(τ) in the product Kn(λ)Kn(µ), it is clear that
f τλ,µ(z) equals zero whenever ||τ || > ||λ||+ ||µ|| . So the product of Z(X) described above
is well-defined as only finitely many terms will appear in the product of two elements.
We may also view Z(X) as a C-algebra with basis {znK(λ) | n ∈ Z≥0, λ ∈ C[X]}, and
where z is interpreted as a central generator.

As it stands, we need to prove that Z(X) is indeed an C[z]-algebra. Recall that
a distributive ring is an object satisfying all the axioms of a ring except possibly the
associativity of the product, and the existence of a multiplicative identity element. Then
by definition Z(X) is a distributive ring. By Theorem 5.17, for any n ∈ Z≥0 withX ⊆ [n],
we have a surjective homomorphism of distributive rings prn[X] : Z(X)→ Zn(X) given
by

prn[X](K(λ)) = Kn(λ) and prn[X](z) = n.

By Proposition 5.4 we have that Kn(λ) = 0 if and only if n < ||λ||X + |X| = deg(λ).
Therefore, one can deduce that Ker(prn[X]) is the ideal generated by the polynomial z−n
and the set {K(λ) | n < deg(λ)}. As such, it is easy to show that ∩nKer(prn[X]) = {0}
as one lets n run over all n ∈ Z≥0 such that X ⊆ [n]. We thus obtain the following:

Lemma 5.34. For any R1, R2 ∈ Z(X), we have that R1 = R2 if and only if

prn[X](R1) = prn[X](R2)

for all n ∈ Z≥0 such that X ⊆ [n].

Proof. The forward implication is immediate, while the reverse implication follows since
it implies that R1 −R2 belongs to ∩nKer(prn[X]) = {0}.
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The above result will be the main tool we use in confirming relations within Z(X).

Example 5.35. Let X = {1, 2}, and so we only consider n ≥ 2. Consider the X-marked
cycle shapes λ = (1, 2)(∗, ∗) and µ = (1)(2)(∗, ∗). We have that deg2(λ) = deg2(µ) = 4,
hence the class sums Kn(λ) and Kn(µ) are non-zero if and only if n ≥ 4. Let n ≥ 2 so
that X ⊆ [n], then we have that

Kn(λ)Kn(µ) =

 ∑
{a,b}⊆[n]\X

(1, 2)(a, b)

 ∑
{c,d}⊆[n]\X

(c, d)


=

∑
{a,b}⊆[n]\X

∑
{c,d}⊆[n]\X

(1, 2)(a, b)(c, d).

If the two cycles (a, b) and (c, d) are disjoint then the resulting permutation is simply
(a, b)(c, d), and there are two such ways to do so. If the two cycles share a single element,
then the resulting permutation gives a 3-cycle (a, b, c), and the number of ways to arrive
at this 3-cycle from a product of two transpositions is three. Lastly if the two cycles
agree then the result is the identity, and there are as many ways to do this as there are
two-element subsets of [n]\[2]. Thus altogether we have that

Kn(λ)Kn(µ) = 2Kn(τ1) + 3Kn(τ2) +

(
n− 2

2

)
Kn(τ3)

where τ1 = (1, 2)(∗, ∗)(∗, ∗), τ2 = (1, 2)(∗, ∗, ∗), and τ3 = (1, 2). Note that(
n− 2

2

)
=

1

2
(n− 2)(n− 3).

Thus Kn(λ)Kn(µ) = 2Kn(τ1)+3Kn(τ2)+ 1
2(n−2)(n−3)Kn(τ3) for all n ≥ 2, noting that

when n = 2, 3 both sides of the equality are zero since Kn(τ) = 0 for all τ ∈ {λ, µ, τ1, τ2},
and the polynomial in n which is the coefficient of Kn(τ3) has both 2 and 3 as roots.
Thus by Lemma 5.34 we have that the relation

K(λ)K(µ) = 2K(τ1) + 3K(τ2) +
1

2
(z − 2)(z − 3)K(τ3)

holds in Z(X), and so f τ1λ,µ(z) = 2, f τ2λ,µ(z) = 3, and f τ3λ,µ(z) = 1
2(z − 2)(z − 3).

As one can imagine from the above example, if the X-marked cycles shapes λ and
µ of C[X] possess many symbols ∗, then calculating the product K(λ)K(µ) in Z(X)
becomes quite difficult. At the moment, carrying out computations analogous to the
above is the easiest way to calculate K(λ)K(µ). One could also follow along with the
proof of Theorem 5.17 to compute which non-zero structure polynomials are present in
the product K(λ)K(µ), and to calculate such structure polynomials. This would require
one to evaluate the constants b(C) for various X-conjugacy class of SN ×SN. However,
it turns out that such an approach is comparable to carring out similar calculations to
the above anyway.

We now use Lemma 5.34 to confirm that Z(X) is a C[z]-algebra.

151



Proposition 5.36. The distributive ring Z(X) is in fact an C[z]-algebra.

Proof. We only need to confirm that the product is associative and that a multiplicative
identity exists. For the identity, consider the element K(1) where 1 ∈ C[X] is the X-
marked cycle shape with no symbols ∗ present, and where the elements of X belong
to cycles of length one. Thus CLn[X](1) is the singleton containing only the identity
permutation, and hence Kn(1) is the identity permutation belonging to Zn(X) for any
n ∈ Z≥0 and X ⊆ [n]. As such, by Lemma 5.34, K(1) must be the identity of Z(X).
Now for any triple (R1, R2, R3) ∈ Z(X)× Z(X)× Z(X), let

[R1, R2, R3] := (R1R2)R3 −R1(R2R3)

be the associator. Then prn[X]([R1, R2, R3]) = 0 for all n ∈ Z≥0 and X ⊆ [n] since
Zn(X) is associative. As such, by Lemma 5.34, [R1, R2, R3] = 0 showing that Z(X) is
also associative.

We end this section by describing some basic facts about the algebra Z(X).

Lemma 5.37. We have an injective C-algebra homomorphism ι : CS(X) → Z(X)
defined on the basis elements by ι(π) = K(π) for all π ∈ S(X).

Proof. For any n ∈ Z≥0 and X ⊆ [n], the X-conjugacy class CLn[X](π) is precisely the
singleton {π} for any π ∈ S(X) ⊂ C[X] . Hence prn[X](K(π)) = Kn(π) = π, and so
it is clear by Lemma 5.34 that ι is a homomorphism of C-algebras. Injectivity follows
from construction of Z(X).

Let X ⊆ Y ⊂ N be finite sets such that |X| = |Y |. By Lemma 5.20 Z(X) ∼= Z(Y )
as C[z]-algebras, where such an isomorphism can be realised as the extension of basis
elements by K(λ) 7→ K(λσ) for any σ ∈ SN such that σ(X) = Y .

Lastly, by Equation (5.8) we immediately obtain the following result.

Lemma 5.38. Let X ⊆ Y ⊂ N be finite sets. Then Z(X) may be realised as the
subalgebra of Z(Y ) by the embedding

K(λ) 7→
∑

µ∈FillYX(λ)

K(µ).

�

Thus the cycle shape algebra Z = Z(∅) is a subalgebra of Z(X) for any finite X ⊂ N.
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5.1.6 Structural Properties of Z(X)

In this section we will prove that the X-marked cycle shape algebra Z(X) is filtered by
a degree function induced from that of C[X]. Moreover, we show that the multiplication
of two basis elements of Z(X) produces a unique leading term of highest degree. From
this we are able to determine a generating set for Z(X), which is also induced from the
natural generators of C[X]. We end the section by proving that Z(X) is isomorphic as
C-algebras to the tensor product of the degenerate affine Hecke algebra H|X| with the
polynomial algebra in countably many commuting variables.

Recall the degree function deg : C[X]→ Z≥|X| given by deg(λ) = ||λ||X + |X| for any
λ ∈ C[X]. We extend this function to Z(X) by letting

deg

 ∑
λ∈C[X]

fλ(z)K(λ)

 = max{deg(λ) | fλ(z) 6= 0}.

In particular deg(K(λ)) = deg(λ). We seek to show that Z(X) is filtered by deg. To
prove this we will use the following lemma.

Lemma 5.39. For λ, µ ∈ C[X], let g ∈ CL[X](λ) and h ∈ CL[X](µ). Suppose that

SupX(g) ∩ SupX(h) = ∅, (5.11)

then we must have that gh ∈ CL[X](λµ).

Proof. Consider the expressions

λ = πudcl and µ = σueck

for π, σ ∈ S(X), d, e ∈ ZX≥0, and l,k ∈ ZN
≥0. By Equation (5.2),

λµ = πσuσ◦d+ecl+k.

Hence the result follows if we show that gh satisfies items (i) and (ii) of Lemma 5.11 with
respect to πσuσ◦d+ecl+k. For item (i), since Equation (5.11) is upheld, it is clear that
the number of cycles of gh of length i+ 1 which contain no elements of X is l(i) + k(i),
since this is the sum of such cycles of g and h. For item (ii), pick any x ∈ X and set
y := σ(x) and z := π(y). Since h ∈ CL[X](σueck), item (ii) of Lemma 5.11 tells us that

h : x 7→ i1 7→ i2 7→ · · · 7→ ie(x) 7→ y

where {i1, i2, . . . , ie(x)} ∩X = ∅. Similarly since g ∈ CL[X](πudcl),

g : y 7→ j1 7→ j2 7→ · · · 7→ jd(y) 7→ z

where {j1, j2, . . . , jd(y)} ∩X = ∅. Since Equation (5.11) is upheld, we must have that

gh : x 7→ i1 7→ · · · 7→ ie(x) 7→ j1 7→ · · · jd(y) 7→ z.

Thus (gh)d(y)+e(x)+1(x) = (πσ)(x) and (gh)m(x) 6∈ X for any 1 ≤ m ≤ d(y) + e(x).
Note that d(y) = d(σ−1(x)) = (σ ◦d)(x), and hence gh also upholds item (ii) of Lemma
5.11.
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Proposition 5.40. Let λ = πudcl, µ = σueck ∈ C[X]. In Z(X) we have that

K(λ)K(µ) = cλ,µK(λµ) +
∑

τ∈C[X]
deg(τ)<deg(λµ)

f τλ,µ(z)K(τ)

where cλ,µ ∈ N is a constant given by

cλ,µ =

∞∏
i=1

(
(l+ k)(i)

l(i)

)
,

Proof. Let g ∈ CL[X](λ) and h ∈ CL[X](µ), then clearly we have

SupX(gh) ⊆ SupX(g) ∪ SupX(h).

Thus if gh ∈ CL[X](τ) for some τ ∈ C[X], then ||τ ||X ≤ ||λ||X + ||µ||X . Now recall that
deg(τ) = ||τ ||X + |X|, hence deg(τ) ≤ deg(λ) +X deg(µ) = deg(λµ). Thus we have

K(λ)K(µ) =
∑

τ∈C[X]
deg(τ)≤deg(λµ)

f τλ,µ(z)K(τ).

Now suppose gh ∈ CL[X](τ) with deg(τ) = deg(λµ). This implies that ||τ ||X = ||λµ||X ,
which means that SupX(g) ∩ SupX(h) = ∅. Hence by Lemma 5.39 it must be the case
that τ = λµ. Therefore

K(λ)K(µ) = fλµλ,µ(z)K(λµ) +
∑

τ∈C[X]
deg(τ)<deg(λµ)

f τλ,µ(z)K(τ).

So what remains to be shown is that fλµλ,µ(z) = cλ,µ. Well let f ∈ CL[X](λµ) and consider
the set Aλ,µ(f) = {(g, h) ∈ CL[X](λ)× CL[X](µ) | gh = f}. By Equation (5.2) we have
λµ = πσuσ◦d+ecl+k, and so by Lemma 5.11, for any x ∈ X, we have that

f : x 7→ i1 7→ · · · 7→ i(σ◦d+e)(x) 7→ (πσ)(x),

where {i1, · · · , i(σ◦d+e)(x)} ∩X = ∅. Any pair (g, h) ∈ Aλ,µ(f) satisfies Equation (5.11),
hence we have that

h : x 7→ i1 7→ · · · 7→ ie(x) 7→ σ(x),

g : σ(x) 7→ ie(x)+1 7→ · · · 7→ i(σ◦d+e)(x) 7→ (πσ)(x).

As such, if we are to construct a pair of permutations (g, h) ∈ CL[X](λ)×CL[X](µ) such
that gh = f , the cycles containing elements of X in g and h are predetermined by f .
Hence we are just concerned with the cycles which contain no elements of X. In f there
are (l+k)(i) number of such cycles of length i+ 1, while g and h containg l(i) and k(i)
such cycles respectively. Thus to construct a pair (g, h) ∈ Aλ,µ(f), it is simply a matter
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of how one distributes the cycles containing no elements of X of f among either g or h.
The binomial coefficient (

(l+ k)(i)

l(i)

)
counts the number of ways to allocate such cycles of length i+1 of f to the permutation
g (with the remaining cycles allocated to h). Therefore

fλµλ,µ(z) = |Aλ,µ(f)| =
∞∏
i=1

(
(l+ k)(i)

l(i)

)
.

We immediately obtain the following corollary.

Corollary 5.41. The algebra Z(X) is filtered by deg, with filtration

C[z]S(X) = Z≤|X|(X) ⊂ Z≤|X|+1(X) ⊂ Z≤|X|+2(X) ⊂ · · · ,

where for any n ≥ |X|, Z≤n(X) is the C[z]-submonoid generated by {K(λ) | λ ∈ C≤n[X]}.

�

This filtration is quite compatible with the projections prn[X] down to the centralizer
algebras. Namely, for any n ∈ Z≥0 and X ⊆ [n], by Proposition 5.4 one can deduce that
Im(prn[X]) = prn[X](Z≤n(X)), the image of the n-th filtered component of Z(X).

Beyond confirming that Z(X) is filtered, Proposition 5.40 shows that K(λµ) is the
unique basis element of maximal degree which appears in the decomposition ofK(λ)K(µ),
and more importantly, the coefficient of K(λµ) in this decomposition belongs to N. As
such the associated graded C[z]-algebra Zgr(X), of Z(X) with respect to deg, may be re-
garded as a C-algebra. Also one can prove that Zgr(X) is the twisted semigroup algebra
of the monoid C[X] with twisting t : C[X]× C[X]→ N given by

t(πudcl, σueck) =
∞∏
i=1

(
(l+ k)(i)

l(i)

)
.

We now use Proposition 5.40 to detemine a generating set for Z(X) as a C[z]-algebra,
which is induced from the natural generators of the monoid C[X]. Firstly we will write
X = {x1, . . . , x|X|} such that xi < xi+1 for each i ∈ [|X| − 1]. Then for any i ∈ [|X| − 1]
we let s̃i := (xi, xi+1) ∈ C[X] denote the transpositions exchanging xi and xi+1, and for
any j ∈ [|X|] we let ũj := uxj ∈ C[X]. Now consider the set

GX := {K(s̃i),K(ũj),K(cm) | i ∈ [|X| − 1], j ∈ [|X|],m ∈ N} (5.12)

of elements in Z(X).

Proposition 5.42. The set GX generates Z(X) as a C[z]-algebra.
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Proof. It suffices to prove, for any λ ∈ C[X], that K(λ) is a C[z]-linear combination of
monomials in elements of GX . We prove this by induction on deg(λ). For the base case
assume deg(λ) = |X|, thus λ ∈ S(X). As mentioned before, the subalgebra of Z(X)
generated by K(π) for π ∈ S(X) is isomorphic to C[z]S(X) via K(π) 7→ π. Hence this
case follows since the set of transpositions {s̃i | i ∈ [|X| − 1]} generate C[z]S(X) as a
C[z]-algebra. Now assume that K(µ) ∈ 〈GX〉 for all µ ∈ C[X] such that deg(µ) < n for
some n > |X|. We seek to show that K(λ) ∈ 〈GX〉 for all λ ∈ C[X] such that deg(λ) = n.
Let λ = πudcl be such an element, and let π = s̃i1 · · · s̃il be an expression for π in terms
of transpositions. Then by repeat application of Proposition 5.40, the expression

Kλ := K(s̃i1) · · ·K(s̃il)K(ũ1)d(x1) · · ·K(ũ|X|)
d(xm)K(c1)l(i)K(c2)l(2) · · · ,

is equal to

cλK(λ) +
∑

µ∈C[X]
deg(µ)<deg(λ)

hµ(z)K(µ)

where cλ is some constant belonging to N and hµ(z) belong to C[z] for all µ ∈ C[X] such
that deg(µ) < deg(λ). Rearranging yields

K(λ) =
1

cλ

Kλ −
∑

µ∈C[X]
deg(µ)<deg(λ)

hµ(z)K(µ)


which belongs to 〈GX〉 since Kλ does by construction, and the summation does by the
inductive hypothesis.

When viewing Z(X) as a C-algebra, naturally it is generated by the variable z and
the set GX . Now let C[z0, z1, . . . ] be the polynomial C-algebra in commuting variables
zi for i ∈ N. We end this section by showing that, as C-algebras, the X-marked cycle
shape algebra is isomorphic to H|X| ⊗ C[z0, z1, . . . ], where H|X| is the affine degenerate
Hecke algebra discussed in Section 2.1.7. For h ∈ H|X| and f ∈ C[z0, z1, . . . ], we write
hf := h⊗ f ∈ H|X| ⊗ C[z0, z1, . . . ].

Proposition 5.43. We have a C-algebra isomorphism ϕ : H|X| ⊗C[z0, z1, . . . ]→ Z(X)
defined on generators by

ϕ(si) = K(s̃i), ϕ(yj) = K(ũj) +
∑
l<j

K((xl, xj)), and ϕ(zm) =

{
z m = 0

K(cm) m ≥ 1
,

for all i ∈ [|X| − 1], j ∈ [|X|], and m ∈ Z≥0.

Proof. We begin by showing that ϕ is a homomorphism of algebras. It suffices to check
that ϕ respects the defining relations ofH|X| given in Definition 2.23, and that ϕ respects
the fact that the variable generators zi commute with the other generators. To show
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this we will use the projection prn[X] : Z(X) → Zn(X) and employ Lemma 5.34. We
start with checking relations in Definition 2.23.

(1): The C-subalgebra of Z(X) generated by the set {K(π) | π ∈ S(X) ⊂ C[X]} is
isomorphic to the group algebra CS(X) by associating K(π) with π. Hence it is clear
that relations (1) of Definition 2.23 are respected under ϕ.

(2)(ii): For any i ∈ [|X| − 1] and j ∈ [|X|] such that j 6= i, i+ 1, we seek to show that
ϕ(siyj) = ϕ(yjsi) which is the same as ϕ(siyjsi) = ϕ(yj) since (1)(i) of Definition 2.23
is respected by ϕ. For any n ∈ Z≥0 and X ⊆ [n], we have that

prn[X](ϕ(siyjsi)) = prn[X](ϕ(si)ϕ(yj)ϕ(si))

= prn[X]

K(s̃i)

K(ũj) +
∑
l<j

K((xl, xj))

K(s̃i)


= Kn(s̃i)

Kn(ũj) +
∑
l<j

Kn((xl, xj))

Kn(s̃i)

= (xi, xi+1)

 ∑
a∈[n]\X

(a, xj) +
∑
l<j

(xl, xj)

 (xi, xi+1)

=
∑

a∈[n]\X

(a, xj) +
∑
l<j

(xl, xj)

= prn[X](ϕ(yj))

where the fifth equality follows since j 6= i, i+ 1, and so (xi, xi+1) commutes with (a, xj)
for any a ∈ [n]\X, and (xi, xi+1)({x1, . . . , xj−1}) = {x1, . . . , xj−1}, thus∑

l<j

(xi, xi+1)(xl, xj)(xi, xi+1) =
∑
l<j

((xi, xi+1)(xl), xj) =
∑
l<j

(xl, xj).

So prn[X](ϕ(siyjsi)) = prn[X](ϕ(yj)) for all n ∈ Z≥0 and X ⊆ [n]. Hence applying
Lemma 5.34 tells us that ϕ(siyjsi) = ϕ(yj), showing that (2)(ii) is respected under ϕ.

(2)(i): We seek to show that ϕ(yiyj) = ϕ(yjyi) for any i, j ∈ [|X|]. Recall that the
set X = {x1, . . . , x|X|} such that xi < xi+1, and let [n]\X = {y1, . . . , yn−|X|} be such
that yi < yi+1. Then let σ ∈ Sn be the unique permutation which rearranges the list
1, 2, . . . , n into y1, . . . , yn−|X|, x1, . . . , x|X|. Then for any j ∈ [|X|] one can deduce that

prn[X](ϕ(yj)) =
∑

a∈[n]\X

(a, xj) +
∑
l<j

(xl, xj) = σYn−|X|+jσ
−1,

where Yi is the i-th Jucys-Murphy element of CSn given in Definition 2.11. Since
the Jucys-Murphy elements pairwise commute, it is easy to see that prn[X](ϕ(yj)) and
prn[X](ϕ(yi)) commute for all i, j ∈ [|X|]. Thus prn[X](ϕ(yiyi)) = prn[X](ϕ(yjyi)) for
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all n ∈ Z≥0 and X ⊆ [n], hence applying Lemma 5.34 we see that relation (2)(i) is
respected by ϕ.

(2)(iii): For any i ∈ [|X| − 1] we seek to show that ϕ(yi+1) = ϕ(siyisi + si). For any
n ∈ Z≥0 and X ⊆ [n], we have that

prn[X](ϕ(siyisi + si)) = prn[X](ϕ(si)ϕ(yi)ϕ(si) + ϕ(si))

= prn[X]

(
K(s̃i)

(
K(ũi) +

∑
k<i

K((xk, xi))

)
K(s̃i) +K(s̃i)

)

= Kn(s̃i)

(
Kn(ũi) +

∑
k<i

Kn((xk, xi))

)
Kn(s̃i) +Kn(s̃i)

= (xi, xi+1)

 ∑
a∈[n]\X

(a, xi) +
∑
k<i

(xk, xi)

 (xi, xi+1) + (xi, xi+1)

=
∑

a∈[n]\X

(a, xi+1) +
∑
k<i

(xk, xi+1) + (xi, xi+1)

=
∑

a∈[n]\X

(a, xi+1) +
∑
k<i+1

(xk, xi+1)

= prn[X](ϕ(yi+1)).

Hence employing Lemma 5.34 shows that ϕ respects relation (2)(iii) of Definition 2.23.
We now need to show that ϕ respects the fact that zm is central for each m ∈ Z≥0.

Note this is immediate for the case m = 0. Assume that m > 1, then for any n ≥ m+ 1
and X ⊆ [n], we have that

prn[X](ϕ(zm)) =
∑

(a1, . . . , am+1),

where the sum runs over all cycles of length m+ 1 whose entries a1, . . . , am+1 belong to
[n]\X. As such we have that prn[X](ϕ(zm)) belongs to CStabn(X), and so recalling that
Zn(X) = {z ∈ CSn | τz = zτ for all τ ∈ Stabn(X)}, it is easily seen that prn[X](ϕ(zm))
is central in Zn(X). Thus applying Lemma 5.34 shows that ϕ(zm) is central in Z(X).
Therefore we have shown that ϕ is a homomorphism of C-algebras.

We now show that ϕ is bijective. For surjectivity, by Proposition 5.42, we only need
to show that the elements of GX belong to the image Im(ϕ). Clearly K(s̃i) and K(cm)
belong to Im(ϕ). Also it is easy to check that, for any j ∈ [|X|] and l < j,

K((xl, xj)) = K(s̃l) · · ·K(s̃j−1)K(s̃j)K(s̃j−1) · · ·K(s̃l).

Hence K((xl, xj)) belongs to Im(ϕ) for any l, j ∈ [|X|]. Therefore

K(ũj) = ϕ(yj)−
∑
l<j

K((xl, xj)) ∈ Im(ϕ),
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and so GX ⊂ Im(ϕ). For injectivity we first set up a little notation. For any a ∈ Z|X|≥0

and b ∈ ZN
≥0, we let

ya :=
∏

i∈[|X|]

y
a(i)
i and zb :=

∏
m∈N

zb(m)
m ,

which is well-defined since b has finite support. Then by Theorem 2.25, the set

B := {zn0 πyazb | n ∈ Z≥0, π ∈ S|X|, a ∈ Z|X|≥0 , b ∈ ZN
≥0}

forms a basis for H|X|⊗C[z0, z1, . . . ]. Given any π ∈ S|X| let π̃ denote the permutation
in S(X) defined by π̃(xi) = xπ(i) for all i ∈ [|X|]. Then ϕ(π) = K(π̃). Similarly, given

any a ∈ Z|X|≥0 let ã denote the element of ZX≥0 defined by ã(xi) = a(i) for each i ∈ [|X|].
Then, by Proposition 5.40, one can deduce that

ϕ(zn0 πy
azb) = cznK(π̃uãcb) +

∑
µ∈C[X]

deg(µ)<deg(π̃uãcb)

hµ(z)K(µ)

where c ∈ N and hµ(z) ∈ C[z] for each µ ∈ C[X] such that deg(µ) < deg(π̃uãcb).
Thus it is clear that ϕ(B) is C-linearly independent since the leading terms appearing
in ϕ(zn0 πy

azb) are C-linearly independent.

By Proposition 4.33 we immediately obtain the following corollary.

Corollary 5.44. We have an isomorphism of algebras Z(X) ∼= EndHeis(↑⊗|X|).

5.2 Orbit Affine Partition Algebra

5.2.1 The Subalgebra Q2k(M,n) of EndSn(M ⊗ V ⊗k)

In this section we define a subalgebra Q2k(M,n) of EndSn(M ⊗ V ⊗k) (the codomain of

the representation Ψ
(M)
2k,n given in Theorem 4.24) which, in a sense, takes the action of the

partition algebra Q2k(z) on V ⊗k and fuses it with the action of the centraliser algebra
Z(X) on M via inflation through Zn(X) for any X ⊆ [n]. This subalgebra will be defined
by generators, and we prove a polynomial property regarding the coefficients appearing
in the product of any two such generators. As a corollary we obtain a spanning set for
Q2k(M,n), which we show specialises to a basis when M is a free CSn-module. This
subalgebra, and the polynomial property of coefficients, will be used in the next section
to define a new C[z]-algebra.

Recall the definition of an X-marked cycle shape in Definition 5.7 and the X-marked
cycle shape monoid C[X] in Definition 5.6. Naturally such definitions may be generalised
to any finite set, not just a finite subset of N. We replace the role of X with the set
of blocks for a set partition α ∈ Π2k, hence we consider the α-marked cycle shapes and
the corresponding α-marked cycle shape monoid C[α]. The grading given by the degree
function deg : C[α]→ Z≤|α| naturally carries over also, with deg(λ) equaling the number
of symbols ∗ appearing in λ plus |α|, the number of blocks of α, for any λ ∈ C[α].
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Example 5.45. Let k = 3, and consider the element of Π6 given by

α = {{1, 3}, {2, 1′}, {2′}, {3′}} =

1 2 3

1′ 2′ 3′

.

Label the blocks by A := {1, 3}, B := {2, 1′}, C := {2′}, and D := {3′}. An example of
a α-marked cycle shape is

λ = (A,C)(B)(D)u2
AuBuCc1 = (A, ∗, ∗, C, ∗)(B, ∗)(D)(∗, ∗).

We have that deg(λ) = 6 + |α| = 10, hence λ ∈ C≤10[α] ⊂ C[α].

Let k, n ≥ 0, and recall from Definition 2.56 that the set of perfect colourings PCn(α)
of a partition diagram α ∈ Π2k consists of all pairs of tuples (a, b) ∈ [n]k × [n]k such
that for any i, j ∈ [k] ∪ [k′] we have i ∼α j if and only if (a, b)(i) = (a, b)(j). We write
(a, b) ↪→ α. Any such perfect colouring assigns a distinct colour from [n] to each block
of α. Let B ∈ α be a block and (a, b) ∈ PCn(α) a perfect colouring, then we let B(a,b)

denote the colour of [n] that (a, b) has assigned it. Also let [a, b] denote the subset of
[n] consisting of the entries in a and b, that is [a, b] := {(a, b)(i) | for all i ∈ [k] ∪ [k′]}.

Let λ ∈ C[α] be an α-marked cycle shape. For any perfect colouring (a, b) ∈ PCn(α)
we let λ(a,b) denote the [a, b]-marked cycle shape obtained from λ by replacing each
block B with B(a,b). Clearly we have a monoid isomorphism (−)(a,b) : C[α]→ C[a, b] for
any perfect colouring (a, b) ∈ PCn(α) given by λ 7→ λ(a,b).

Example 5.46. Let α ∈ Π6 and λ ∈ C[α] be as in Example 5.45. Let n ≥ 10 = deg(λ),
and consider the tuples a = (2, 6, 2) and b = (6, 1, 3) belonging to [n]3, so we are working
with the set of colours [a, b] = {1, 2, 3, 6}. We have (a, b) ↪→ α with the coloured diagram

αab =

2 6 2

6 1 3

.

With the blocks of α labelled as before we have that A(a,b) = 2, B(a,b) = 6, C(a,b) = 1,
and D(a,b) = 3. Then λ(a,b) is the {1, 2, 3, 6}-marked cycle shape given by

λ(a,b) = (A(a,b), ∗, ∗, C(a,b), ∗)(B(a,b), ∗)(D(a,b))(∗, ∗) = (2, ∗, ∗, 1, ∗)(6, ∗)(3)(∗, ∗).

Although we have replaced the role of X with the blocks of a partition diagram α,
this does not generalise to the centralizer algebras, that is, it does not make sense to
consider the algebra Zn(α) or elements Kn(λ) for some λ ∈ C[α]. However it does make
sense to consider the algebra Zn([a, b]) and the class sum elements Kn(λ(a,b)) for any
λ ∈ C[α] and perfect colouring (a, b) ∈ PCn(α).
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Recall the set up of Section 2.2.5 and Schur-Weyl duality in Theorem 2.58, in partic-
ular V is the n-dimensional vector space with basis {va | a ∈ [n]} which is viewed as a
CSn-module via π(va) := vπ(a) for any π ∈ Sn. Also we have the tensor space

V ⊗k = SpanC{va | a ∈ [n]k}

which is a CSn-module by extending the action of V diagonally. We now seek to
extend the action of the orbit basis of A2k(n) on V ⊗k, described in item (2) of Theorem
2.58, to an action on M ⊗ V ⊗k where M is any CSn-module. From here on let M
have a basis {mi | i ∈ I} for some (possibly infinite) indexing set I, and we denote
the action of π ∈ Sn on any m ∈ M by concatenation of symbols πm. Consider
the C-algebra EndC(M ⊗ V ⊗k) of linear endomorphisms M ⊗ V ⊗k → M ⊗ V ⊗k. For
any f ∈ EndC(M) and g ∈ EndC(V ⊗k), we let f ⊗ g ∈ EndC(M ⊗ V ⊗k) be given by
(f ⊗ g)(ma0 ⊗ va) = (fma0)⊗ (gva), for any a0 ∈ I and a ∈ [n]k.

Definition 5.47. For any α ∈ Π2k and α-marked cycle shape λ ∈ C[α], we let

OM,n(λ, α) :=
∑

(a,b)∈PCn(α)

Kn(λ(a,b))⊗ Eab

be an endomorphism of M ⊗ V ⊗k.

Comparing OM,n(λ, α) to the action of the orbit basis element On(α) described by
item (2) of Theorem 2.58, we have extended it onto the M component by acting by the
class sum element Kn(λ(a,b)) in unison with Eab as we run over all perfect colourings in
PCn(α).

Example 5.48. Let k = 2 and consider the partition diagram α ∈ Π4 given by

α =

1 2

1′ 2′

.

For n = 4 we have PC4(α) = {((a, b)(b, b)) | a, b ∈ [4], a 6= b}. Consider the α-marked
cycle shape given by λ = ({2, 1′, 2′}, ∗)({1}). Then, for any CS4-module M , the operator
OM,4(λ, α) is given by

OM,4(λ, α) =
∑

(a,b)∈PC4(α)

K4(λ(a,b))⊗ Eab

= ((2, 3) + (2, 4))⊗ E(1,2)
(2,2) + ((3, 2) + (3, 4))⊗ E(1,3)

(3,3) + ((4, 2) + (4, 3))⊗ E(1,4)
(4,4)

+ ((1, 3) + (1, 4))⊗ E(2,1)
(1,1) + ((3, 1) + (3, 4))⊗ E(2,3)

(3,3) + ((4, 1) + (4, 3))⊗ E(2,4)
(4,4)

+ ((1, 2) + (1, 4))⊗ E(3,1)
(1,1) + ((2, 1) + (2, 4))⊗ E(3,2)

(2,2) + ((4, 1) + (4, 2))⊗ E(3,4)
(4,4)

+ ((1, 2) + (1, 3))⊗ E(4,1)
(1,1) + ((2, 1) + (2, 3))⊗ E(4,2)

(2,2) + ((3, 1) + (3, 2))⊗ E(4,3)
(3,3) .
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Given ma0⊗va1⊗va2 ∈M⊗V ⊗2 such that a1 6= a2, then OM,4(λ, α)(ma0⊗va1⊗va2) = 0.
For a particular non-trivial example, we have that

OM,4(λ, α)(ma0 ⊗ v2 ⊗ v2) = ((2, 3) + (2, 4))ma0 ⊗ v1 ⊗ v2 + ((2, 1) + (2, 4))ma0 ⊗ v3 ⊗ v2

+ ((2, 1) + (2, 3))ma0 ⊗ v4 ⊗ v2

for any a0 ∈ I. We can vary n to obtain an analogous operator on M ⊗ V ⊗2 where
dim(V ) = n. Note when n = 2 the set PC2(α) is non-empty, however since deg(λ) = 3,
one can see that K2(λ(a,b)) = 0 for any (a, b) ∈ PC2(α). Hence OM,n(λ, α) = 0 for
n = 1, 2.

Proposition 5.49. For any α ∈ Π2k and λ ∈ C[α], then OM,n(λ, α) ∈ EndSn(M⊗V ⊗k).

Proof. We need to show that OM,n(λ, α) commutes with the diagonal action of CSn.
We prove this by showing that πOM,n(λ, α)π−1 = OM,n(λ, α) for any π ∈ Sn. Well,

πOM,n(λ, α)π−1 =
∑

(a,b)∈PCn(α)

πK(λ(a,b))π
−1 ⊗ πEab π−1

=
∑

(a,b)∈PCn(α)

K((λ(a,b))
π)⊗ Eπaπb

=
∑

(a,b)∈PCn(α)

K(λ(πa,πb))⊗ Eπaπb

=
∑

(a,b)∈PCn(α)

K(λ(a,b))⊗ Eab = OM,n(λ, α),

where the second and third equalities follows from definitions, and the fourth equality
follows since PCn(α) is an orbit of the action of Sn on [n]k × [n]k.

Recall the decomposition of the operator OM,4(λ, α) given in Example 5.48 into twelve
terms. Then one can check the above proposition for this operator by noting that
conjugating by any π ∈ S4 simply permutes the twelve terms around in some manner.

Definition 5.50. For any n, k ∈ Z≥0 and CSn-module M , we define Q2k(M,n) to be
the subalgebra of EndSn(M⊗V ⊗k) generated by the operators OM,n(λ, α) for all α ∈ Π2k

and λ ∈ C[α].

For any partition diagram α ∈ Π2k, one can see that PCn(α) 6= ∅ if and only if
n ≥ |α|. Also, by Proposition 5.4 and Definition 5.12, we have for any λ ∈ C[α] and
(a, b) ∈ PCn(α) that Kn(λ(a,b)) 6= 0 if and only if n ≥ deg(λ(a,b)) = deg(λ). Therefore,

the operator OM,n(λ, α) 6= 0 if and only if n ≥ |α| and n ≥ deg(λ). As such the algebra
Q2k(M,n) is finitely generated by

Q2k(M,n) =
〈
OM,n(λ, α) | α ∈ Π2k, n ≥ |α|, λ ∈ C≤n[α]

〉
. (5.13)

We now present an example of multiplying two generators of Q2k(M,n) together. Infor-
mally, such a product is comparable to “smashing” together the products of class sum
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elements of centralizer algebras Zn(X) with the product of orbit basis elements of the
partition algebra A2k(n). In particular it is worth comparing with Theorem 5.17 and
Proposition 2.67. One will note that the computations are quite lengthy even though
we picked simple partition diagrams and associated marked cycle shapes.

Example 5.51. Let k = 2 and consider the partition diagrams α, β ∈ Π4 given by

α =

1 2

1′ 2′

and β =

1 2

1′ 2′

.

The sets of perfect colourings for α and β are given by

PCn(α) = {((a, b), (b, b)) | (a, b) ∈ [n]!2} and PCn(β) = {((d, d), (c, c)) | (c, d) ∈ [n]!2},

where [n]!m denotes the subset of [n]m consisting of tuples with pairwise distinct entries.
Recall the definition of top-bottom coarsenings given in Definition 2.64, then one can
see that

TBC(α, β) =

γ :=

1 2

1′ 2′

, δ :=

1 2

1′ 2′

 .

One can deduce that the sets of perfect colourings of γ and δ are

PCn(γ) = {((a, b), (c, c)) | (a, b, c) ∈ [n]!3} and PCn(δ) = {((a, b), (a, a)) | (a, b) ∈ [n]!2}.

Now consider the marked cycle shapes

λ = ({2, 1′, 2′}, ∗)({1}), and µ = ({1, 2}, ∗)({1′, 2′}),

with λ ∈ C[α] and µ ∈ C[β]. We now evaluate the product OM,n(λ, α)OM,n(µ, β) for
arbitrary n ∈ Z≥0 (and arbitrary CSn-module M):

OM,n(λ, α)OM,n(µ, β) =

 ∑
(a,b)∈PCn(α)

Kn(λ(a,b))⊗ Eab

 ∑
(d,c)∈PCn(β)

Kn(λ(d,c))⊗ Edc


=

∑
(a,b)∈PCn(α)

∑
(d,c)∈PCn(β)

Kn(λ(a,b))Kn(λ(d,c))⊗ EabEdc

=
∑

(a,b)∈PCn(α)

∑
(b,c)∈PCn(β)

Kn(λ(a,b))Kn(λ(b,c))⊗ Eac

=
∑

a,b,c∈[n]
a6=b,b 6=c

Kn

(
λ((a,b)(b,b))

)
Kn

(
µ((b,b),(c,c))

)
⊗ E(a,b)

(c,c)

= S1 + S2,
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where S1 and S2 have broken the summation up into the two case a 6= c and a = c, thus

S1 :=
∑

(a,b,c)∈[n]!3

Kn

(
λ((a,b)(b,b))

)
Kn

(
µ((b,b),(c,c))

)
⊗ E(a,b)

(c,c) ,

S2 :=
∑

(a,b)∈[n]!2

Kn

(
λ((a,b)(b,b))

)
Kn

(
µ((b,b),(a,a))

)
⊗ E(a,b)

(a,a).

Evaluating S1: Given (a, b, c) ∈ [n]!3, we have that

Kn

(
λ((a,b)(b,b))

)
Kn

(
µ((b,b),(c,c))

)
=

 ∑
i∈[n]\{a,b}

(b, i)

 ∑
j∈[n]\{b,c}

(b, j)


=

 ∑
i∈[n]\{a,b,c}

(b, i) + (b, c)

 ∑
j∈[n]\{b,c,a}

(b, j) + (b, a)


=

∑
i,j∈[n]\{a,b,c}

(b, i)(b, j) +
∑

j∈[n]\{a,b,c}

(b, c)(b, j) +
∑

i∈[n]\{a,b,c}

(b, i)(b, a) + (b, c)(b, a)

= (n− 3) +
∑

i,j∈[n]\{a,b,c}
i 6=j

(b, j, i) +
∑

j∈[n]\{a,b,c}

(b, j, c) +
∑

i∈[n]\{a,b,c}

(b, a, i) + (b, a, c)

= (n− 3)Kn

(
1

(γ)
((a,b),(c,c))

)
+Kn

(
τ

(1)
((a,b),(c,c))

)
+Kn

(
τ

(2)
((a,b),(c,c))

)
+Kn

(
τ

(3)
((a,b),(c,c))

)
+Kn

(
τ

(4)
((a,b),(c,c))

)
where 1(γ) = ({1})({2})({1′, 2′}) ∈ C[γ] and τ (2), τ (3), τ (4) ∈ C[γ] are given by

τ (1) = ({2}, ∗, ∗)({1})({1′, 2′}), τ (3) = ({2}, {1}, ∗)({1′, 2′}),
τ (2) = ({2}, ∗, {1′, 2′})({1}), τ (4) = ({2}, {1}, {1′, 2′}).

Therefore, recalling the description of PCn(γ), we have

S1 =
∑

(a,b,c)∈[n]!3

(n− 3)Kn

(
1

(γ)
((a,b),(c,c))

)
⊗ E(a,b)

(c,c) +
∑
i∈[4]

∑
(a,b,c)∈[n]!3

Kn

(
τ

(i)
((a,b),(c,c))

)
⊗ E(a,b)

(c,c)

= (n− 3)OM,n(1(γ), γ) +
∑
i∈[4]

OM,n(τ (i), γ).

Evaluating S2: Given (a, b) ∈ [n]!2, we have that

Kn

(
λ((a,b)(b,b))

)
Kn

(
µ((b,b),(a,a))

)
=

 ∑
i∈[n]\{a,b}

(b, i)

 ∑
j∈[n]\{a,b}

(b, j)


= (n− 2) +

∑
i,j∈[n]\{a,b}

i 6=j

(b, j, i)

= (n− 2)Kn

(
1

(δ)
((a,b),(b,b))

)
+Kn

(
ν((a,b),(b,b))

)
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where 1(δ) = ({1, 1′, 2′})({2}) ∈ C[δ] and ν = ({2}, ∗, ∗)({1, 1′, 2′}) ∈ C[δ]. Hence,
recalling the description of PCn(δ), we have that

S2 = (n− 2)
∑

(a,b)∈[n]!2

Kn

(
1

(δ)
((a,b),(b,b))

)
+

∑
(a,b)∈[n]!2

Kn

(
ν((a,b),(b,b))

)
= (n− 2)OM,n(1(δ), δ) +OM,n(ν, δ).

Thus collectively we have that

OM,n(λ, α)OM,n(µ, β) = (n−3)OM,n(1(γ), γ)+
∑
i∈[4]

OM,n(τ (i), γ)+(n−2)OM,n(1(δ), δ)+OM,n(ν, δ).

In the above example the product of two generators of Q4(M,n) decomposed into a
linear combination of other generators of Q4(M,n), and the coefficients which appear
are polynomial in n. It turns out, and we prove below, that this holds in general. As
such the generating set {OM,n(λ, α) | α ∈ Π2k, n ≥ |α|, λ ∈ C≤n[α]} for Q2k(M,n) is in
fact a spanning set. It is worth comparing the proof below to that of Proposition 2.67.

Theorem 5.52. Let n, k ∈ Z≥0, M an CSn-module, α, β,∈ Π2k, λ ∈ C[α], and µ ∈ C[β].
Then in Q2k(M,n) we have that

OM,n(λ, α)OM,n(µ, β) =
∑

γ∈TBC(α,β)

∑
τ∈C[γ]

F τλ,µ(n)OM,n(τ, γ)

with F τλ,µ(z) ∈ C[z] unique. In particular F τλ,µ(z) = 0 whenever τ 6∈ TBC(α, β).

Proof. We have that

OM,n(λ, α)OM,n(µ, β) =

 ∑
(a,b)∈PCn(α)

Kn(λ(a,b))⊗ Eab

 ∑
(d,c)∈PCn(β)

Kn(µ(d,c))⊗ Edc


=

∑
(a,b)∈PCn(α)

∑
(d,c)∈PCn(β)

Kn(λ(a,b))Kn(µ(d,c))⊗ EabEdc .

We have that EabE
d
c = δb,dE

a
c where δb,d = 1 if b = d and 0 otherwise. Note if the pair

(α, β) does not match in the middle, then there is no tuple b = d which perfectly colours
both the top row of β and the bottom row of α. Hence in such a case we must have that
OM,n(λ, α)OM,n(µ, β) = 0, so we can set F τλ,µ(z) = 0 whenever (α, β) does not match in
the middle. Assume that (α, β) does match in the middle, then continuing from above
we have

On(λ, α)On(µ, β) =
∑

(a,b)∈PCn(α)

∑
(b,c)∈PCn(β)

Kn(λ(a,b))Kn(µ(b,c))⊗ Eac . (5.14)
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For any (a, b) ∈ PCn(α) and (b, c) ∈ PCn(β), recalling Equation (5.8) we have that

Kn(λ(a,b))Kn(µ(b,c)) =
∑

κ∈Fill[a,b,c]
[a,b]

(λ(a,b))

∑
ν∈Fill[a,b,c]

[b,c]
(µ(b,c))

Kn(κ)Kn(ν)

=
∑

κ∈Fill[a,b,c]
[a,b]

(λ(a,b))

∑
ν∈Fill[a,b,c]

[b,c]
(µ(b,c))

 ∑
$∈C[a,b,c]

f$κ,ν(n)Kn($)



=
∑

$∈C[a,b,c]

 ∑
κ∈Fill[a,b,c]

[a,b]
(λ(a,b))

∑
ν∈Fill[a,b,c]

[b,c]
(µ(b,c))

f$κ,ν(n)

Kn($).

Hence for any $ ∈ C[a, b, c] define the polynomial

h$λ(a,b),µ(b,c)(z) :=
∑

κ∈Fill[a,b,c]
[a,b]

(λ(a,b))

∑
ν∈Fill[a,b,c]

[b,c]
(µ(b,c))

f$κ,ν(z).

Note that given any σ ∈ S([a, b, c]), by Lemma 5.20 one can see that

h$λ(a,b),µ(b,c)(z) = h$
σ

λσ
(a,b)

,µσ
(b,c)

(z). (5.15)

From Equation (5.14) we have that

OM,n(λ, α)OM,n(µ, β) =
∑

(a,b)∈PCn(α)

∑
(b,c)∈PCn(β)

∑
$∈C[a,b,c]

h$λ(a,b),µ(b,c)(n)Kn($)⊗ Eac .

(5.16)
Consider any pair a, c ∈ [n]k such that there exists b ∈ [n]k where (a, b) ↪→ α and
(b, c) ↪→ β. Thus a perfectly colours the top row of α and c perfectly colours the
bottom row of β. Let

C(a,c)
n (α, β) := {b ∈ [n]k | (a, b) ↪→ α, (b, c) ↪→ β}.

Each block of the coloured diagram (α ◦ β)ac will have a colour associated to them, but
in general these colours may not be distinct. There may be blocks from Top(α) which
share a colour with blocks from Bot(β), in a manner encoded by a partial bijection. As
such there exists a unique γ ∈ TBC(α, β) such that (a, c) perfectly colours γ (where
γ is obtained by merging blocks from Top(α) with those in Bot(β) which share the
same colour in (α ◦ β)ac ). Hence for any (a, b) ∈ PCn(α) and (b, c) ∈ PCn(β) we have

that (a, c) ∈ PCn(γ) and b ∈ C
(a,c)
n (α, β) for some unique γ ∈ TBC(α, β). Thus, by

Equation (5.16), the product OM,n(λ, α)OM,n(µ, β) is given by∑
(a,b)∈PCn(α)

∑
(b,c)∈PCn(β)

∑
$∈C[a,b,c]

h$λ(a,b),µ(b,c)(n)Kn($)⊗ Eac =

∑
γ∈TBC(α,β)

∑
(a,c)∈PCn(γ)

∑
b∈C(a,c)

n (α,β)

∑
$∈C[a,b,c]

h$λ(a,b),µ(b,c)(n)Kn($)⊗ Eac

(5.17)
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We seek to evaluate the right hand side of Equation (5.17) by breaking it up into more
manageable pieces. Fix γ ∈ TBC(α, β) and a perfect colouring (a, c) ∈ PCn(γ). Let

W γ
(a,c) :=

∑
b∈C(a,c)

n (α,β)

∑
$∈C[a,b,c]

h$λ(a,b),µ(b,c)(n)Kn($)⊗ Eac .

Now the set C
(a,c)
n (α, β) is all the tuples b ∈ [n]k which perfectly colour the bottom row

of α and the top row of β such that (a, b) perfectly colours α and (b, c) perfectly colours
β. Diagrammatically we are working with the situation

a ↪→
α

b ↪→
β

c ↪→

The only entries of b that are not predetermined by how a and c have coloured the top
and bottom rows are the entries corresponding to middle blocks in the stacked diagram

α?β, that is the blocks in Mid(α?β). Now fix b′ ∈ C
(a,c)
n (α, β), and let T(a,c) be a set of

left transversals of Stabn([a, b′, c]) in Stabn([a, c]). Note that the set C := [a, b′, c]\[a, c]
is precisely the entries of b′ which perfectly colour the middle blocks of α?β. By Lemma
5.23, a defining property of T(a,c) is the fact that each element σ ∈ T(a,c) encodes a
unique way of sending the elements of C into the set [n]\[a, c], and every such way of
embedding C into [n]\[a, c] is accounted for by a unique σ ∈ T(a,b). So an alternative

way of representing the set C
(a,c)
n (α, β) is given by

C(a,c)
n (α, β) := {σb′ | σ ∈ T(a,c)}.

As such we have

W γ
(a,c) =

∑
b∈C(a,c)

n (α,β)

∑
$∈C[a,b,c]

h$λ(a,b),µ(b,c)(n)Kn($)⊗ Eac

=
∑

σ∈T(a,c)

∑
$∈C[a,σb′,c]

h$λ(a,σb′),µ(σb′,c)(n)Kn($)⊗ Eac

=
∑

σ∈T(a,c)

∑
$∈C[a,b′,c]

h$
σ

λσ
(a,b′),µ

σ
(b′,c)

(n)Kn($σ)⊗ Eac

=
∑

$∈C[a,b′,c]

h$λ(a,b′),µ(b′,c)(n)f$[a,c](n)Kn($ ↓[a,c])⊗ Eac

where the third equality follows since Zn([a, b′, c]) ∼= Zn([a, σb′, c]) via (−)σ, and where
the fourth equality follows from Proposition 5.28 and Equation (5.15). For any $ ∈
C[a, b′, c], since (a, c) ↪→ γ, there exists a unique τ ∈ C[γ] such that $ ↓[a,c]= τ(a,c). So
for any τ ∈ C[γ], define the polynomial

F
τ(a,c)
λ(a,b′),µ(b′,c)

(z) :=
∑

$∈C[a,b′,c]
$↓[a,c]=τ(a,c)

h$λ(a,b′),µ(b′,c)(z)f
$
[a,c](z).

167



Then we have that

W γ
(a,c) =

∑
τ∈C[γ]

F
τ(a,c)
λ(a,b′),µ(b′,c)

(n)Kn(τ(a,c))⊗ Eac .

Therefore recalling that OM,n(λ, α)OM,n(µ, β) is given by the right hand side of Equa-
tion (5.17), then we have that

OM,n(λ, α)OM,n(µ, β) =
∑

γ∈TBC(α,β)

∑
(a,c)∈PCn(γ)

∑
b∈C(a,c)

n (α,β)

∑
$∈C[a,b,c]

h$λ(a,b),µ(b,c)(n)Kn($)⊗ Eac

=
∑

γ∈TBC(α,β)

∑
(a,c)∈PCn(γ)

W γ
(a,c)

=
∑

γ∈TBC(α,β)

∑
(a,c)∈PCn(γ)

∑
τ∈C[γ]

F
τ(a,c)
λ(a,b′),µ(b′,c)

(n)Kn(τ(a,c))⊗ Eac

=
∑

γ∈TBC(α,β)

∑
τ∈C[γ]

∑
(a,c)∈PCn(γ)

F
τ(a,c)
λ(a,b′),µ(b′,c)

(n)Kn(τ(a,c))⊗ Eac

By Equation (5.15) and Lemma 5.29 one can deduce that, for any σ ∈ Sn, we have

F
τ(a,c)
λ(a,b′),µ(b′,c)

(n) = F
τ(σa,σc)
λ(σa,σb′),µ(σb′,σc)

(n).

Hence such polynomials are independent of the particular perfect colourings, and so we
can drop such perfect colours as subscripts and just write F τλ,µ(n). Thus

OM,n(λ, α)OM,n(µ, β) =
∑

γ∈TBC(α,β)

∑
τ∈C[γ]

∑
(a,c)∈PCn(γ)

F τλ,µ(n)Kn(τ(a,c))⊗ Eac

=
∑

γ∈TBC(α,β)

∑
τ∈C[γ]

F τλ,µ(n)
∑

(a,c)∈PCn(γ)

Kn(τ(a,c))⊗ Eac

=
∑

γ∈TBC(α,β)

∑
τ∈C[γ]

F τλ,µ(n)OM,n(τ, γ).

Corollary 5.53. Let n, k ∈ Z≥0 and M an CSn-module. As a C-algebra we have that

Q2k(M,n) = SpanC{OM,n(λ, α) | α ∈ Π2k, n ≥ |α|, λ ∈ C≤n[α]}.

�

In Q2k(M,n), the C-linear dependencies among the operators OM,n(λ, α) for α ∈ Π2k

with n ≥ |α|, and λ ∈ C≤n[α], depends on the module M . As we show now, no such
dependencies are present whenever M is free.

Proposition 5.54. Let F be a free CSn-module, then the set

{OF,n(λ, α) | α ∈ Π2k, n ≥ |α|, λ ∈ C≤n[α]}

forms a basis of Q2k(F, n).
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Proof. Let us set
I := {(λ, α) | α ∈ Π2k, n ≥ |α|, λ ∈ C≤n[α]}.

By Corollary 5.53, we only need to show that {OM,n(λ, α) | (λ, α) ∈ I} is linearly
independent in Q2k(F, n). Also any free CSn-module is isomorphic to (CSn)⊕r viewed
as a module by left componentwise multiplication. It will suffice to prove this result for
F = CSn. Now assume that ∑

(λ,α)∈I

cλ,αOCSn,n(λ, α) = 0 (5.18)

where cλ,α ∈ C for each (λ, α) ∈ I. We seek to show that cλ,α = 0 for all (λ, α) ∈ I.
The space CSn⊗ V ⊗k has a basis given by {π⊗ va | π ∈ Sn, a ∈ [n]k}. For any vector
w ∈ CSn⊗V ⊗k and basis element π⊗va ∈ CSn⊗V ⊗k we write π⊗va ∈ w whenever the
basis element π⊗va appears with non-zero coefficient in the decomposition of w into said
basis elements. Now for any (λ, α) ∈ I, let b ∈ [n]k be a tuple which perfectly colours
the bottom row of α (which exists since |α| ≤ n). Then the operator OCSn,n(λ, α) acts
on the basis element 1⊗ vb ∈ CSn ⊗ V ⊗k by

OCSn,n(λ, α)(1⊗ vb) =
∑
a∈[n]k

(a,b)∈PCn(α)

Kn(λ(a,b))⊗ va,

which is non-zero since n ≥ deg(λ). Thus π ⊗ va ∈ OCSn,n(λ, α)(1 ⊗ vb) if and only
if (a, b) ∈ PCn(α) and π ∈ CLn[a, b](λ(a,b)). Hence assume for (λ, α), (µ, β) ∈ I that

we have π ⊗ va ∈ OCSn,n(λ, α)(1⊗ vb) and π ⊗ va ∈ OCSn,n(µ, β)(1⊗ vb). Then (a, b)
belongs to PCn(α) and PCn(β), which implies that α = β. Moreover we must have
that π belongs to CLn[a, b](λ(a,b)) and CLn[a, b](µ(a,b)). Since both these sets are orbits
under the action of Stabn([a, b]) on Sn by conjugation, they are either disjoint or equal,
thus we must have that λ = µ. Now by Equation (5.18), picking any (µ, β) ∈ I and
b ∈ [n]k which perfectly colours the bottom row of β, we have that∑

(λ,α)∈I\{(µ,β)}

cλ,αOCSn,n(λ, α)(1⊗ vb) = −cµ,βOCSn,n(µ, β)(1⊗ vb).

However, we have shown that for any π⊗ va ∈ OCSn,n(µ, β)(1⊗ vb), it must be the case
that π⊗ va 6∈ OCSn,n(λ, α)(1⊗ vb) whenever (λ, α) 6= (µ, β). This implies that cµ,β = 0,
and since (µ, β) was an arbitrary element of I, we have that cλ,α = 0 for all (λ, α) ∈ I.

Remark 5.55. From above, whenever F is a free CSn-module, then the operators
OF,n(λ, α), for α ∈ Π2k and λ ∈ C[α], form a basis for the subalgebra Q2k(F, n) of the
endomorphism space EndSn(F ⊗ V ⊗k). Thus Theorem 5.52 has proved the existence of
certain polynomials which have “globalised” the structure constants of such a basis for
Q2k(F, n). From this, we will be able to define a new algebra in the next section which
“globalises” the algebras Q2k(F, n). It is worth comparing this theory to that presented
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by P. Martin and D. Woodcock in [MW98]. In such, they defined a new algebra called the
global Schur algebra which appears to play an analogous role for another endomorphism
algebra, in particular [MW98, Proposition 3.3] is comparable to our Theorem 5.52, with
both proofs being combinatorial in nature. In their setting they have “globalised” the
endomorphism algebra EndSn(E⊗k) where E is a countably infinite analog to V .

5.2.2 The Orbit Affine Partition Algebra Qaff
2k

In this section we define an algebra Qaff
2k which may be interpreted as another affinization

of the partition algebra. We will call it the orbit affine partition algebra. This algebra will
act on the space M ⊗ V ⊗k in a manner which generalised the action of Ψ2k,n described
in item (2) of Theorem 2.58. In fact such an action comes more or less for free from
the construction of Qaff

2k . We will prove that the partition algebra Q2k(z) and certain
marked cycle shape algebras are subalgebras of Qaff

2k . We end the section by constructing
a C-algebra homomorphism Aaff

2k → Qaff
2k .

We construct the orbit affine partition algebra Qaff
2k from the subalgebras Q2k(Fn, n)

of EndSn(Fn ⊗ V ⊗k), where Fn is a free CSn-module. This is done in a completely
analogous manner to how the X-marked cycle shape algebra Z(X) was constructed
from the centralizer algebras Zn(X) in Section 5.1.5, and how the partition algebra
Q2k(z) was constructed from the endomorphism algebras EndSn(V ⊗k) in Section 2.2.5.

Definition 5.56. Let k ∈ Z≥0 and z a formal variable. We define Qaff
2k to be the free

C[z]-module with basis given by {O(λ, α) | α ∈ Π2k, λ ∈ C[α]}. We equip Qaff
2k with the

product given by the C[z]-linear extension of

O(λ, α)O(µ, β) =
∑

γ∈TBC(α,β)

∑
τ∈C[γ]

F τλ,µ(z)O(τ, γ),

where F τλ,µ(z) are the polynomials of Theorem 5.52.

By definition, Qaff
2k is a distributive ring. By Theorem 5.52, for any n ∈ Z≥0 and

CSn-module M , we have a surjective homomorphism of distributive rings

θ
(M)
2k,n : Qaff

2k → Q2k(M,n) ⊆ EndSn(M ⊗ V ⊗k),

defined on the generators by z 7→ n and O(λ, α) 7→ OM,n(λ, α). The map θ
(M)
2k,n is the

orbit affine partition algebra counterpart to the map Ψ
(M)
2k,n given in Theorem 4.24 for

the affine partition algebra Aaff
2k .

Lemma 5.57. For each n ∈ Z≥0 let Fn be a free CSn-module. Then⋂
n≥0

Ker
(
θ

(Fn)
2k,n

)
= {0}.
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Proof. Let I be a finite subset of {(λ, α) | α ∈ Π2k, λ ∈ C[α]}. Assume that

K :=
∑

(λ,α)∈I

fλ,α(z)O(λ, α)

belongs to Ker(θ
(Fn)
2k,n ) for each n ∈ Z≥0, where fλ,α(z) ∈ C[z] for all (λ, α) ∈ I. Now by

Proposition 5.54, for any N ≥ max{deg(λ), |α| | (λ, α) ∈ I} we have that{
θ

(FN )
2k,N (O(λ, α)) | (λ, α) ∈ I

}
=
{
OFN ,N (λ, α) | (λ, α) ∈ I

}
is linearly independent in Q2k(FN , N). Since θ

(FN )
2k,N (K) = 0, we must have for all (λ, α) ∈

I that fλ,α(N) = 0 for infinitely many natural numbers N , which implies that fλ,α(z) = 0
for all (λ, α) ∈ I. Therefore K = 0, and since I and K were arbitrary, the result is shown.

We may now give an analogous result to both Lemma 5.34 and Lemma 2.59.

Lemma 5.58. Let R1, R2 ∈ Qaff
2k . Then R1 = R2 if and only if for all n ∈ Z≥0

θ
(Fn)
2k,n (R1) = θ

(Fn)
2k,n (R1),

where Fn is a free CSn-module.

Proof. The forward implication is immediate, while the reverse implication follows since

it implies that R1 −R2 belongs to ∩n≥0Ker(θ
(Fn)
2k,n ) = {0}.

The above lemma will be the main tool we use to confirm relations within Qaff
2k .

Example 5.59. Continuing from Example 5.51, it was shown that in Q4(Fn, n) we have

OFn,n(λ, α)OFn,n(µ, β) = (n−3)OFn,n(1(γ), γ)+
∑
i∈[4]

OFn,n(τ (i), γ)+(n−2)OFn,n(1(δ), δ)+OFn,n(ν, δ),

for any n ∈ Z≥0, and free CSn-modules Fn. Hence by Lemma 5.58 we have that

O(λ, α)O(µ, β) = (z − 3)O(1(γ), γ) +
∑
i∈[4]

O(τ (i), γ) + (z − 2)O(1(δ), δ) +O(ν, δ)

is a relation in Qaff
4 .

Proposition 5.60. The distributive ring Qaff
2k is a C[z]-algebra.

Proof. We need to show that a multiplicative identity exists, and that the product
described in Definition 5.56 is associative. For any partition diagram α ∈ Π2k we let
1(α) ∈ C[α] denote the α-marked cycle shape containing no symbols ∗ and where the
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blocks of α appear in cycles of length one. So for any perfect colouring (a, b) ∈ PCn(α)

and n ≥ |α|, we have that Kn(1
(α)
(a,b)) = 1. Recall Definition 2.55, then one can see that

θ
(Fn)
2k,n

∑
S`[k]

O(1(I(S)), I(S))


is the identity element in Q2k(Fn, n) for any n ≥ k and free CSn-module Fn. Thus

by Lemma 5.58 the argument of θ
(Fn)
2k,n above is the identity element of Qaff

2k . Now let

A,B,C ∈ Qaff
2k and [A,B,C] := (AB)C − A(BC). Then for all n ∈ Z≥0 we have that

ψ
(Fn)
2k,n ([A,B,C]) = 0 since Q2k(Fn, n) is an associative algebra. Thus by Lemma 5.58

[A,B,C] = 0, showing that the product of Qaff
2k is also associative.

We now show that the partition algebra Q2k(z) is a subalgebra of Qaff
2k .

Proposition 5.61. We have an injective C[z]-algebra homomorphism ι : Q2k(z)→ Qaff
2k

given by the C[z]-linear extension of ι(O(α)) = O(1(α), α) for each α ∈ Π2k and where
1(α) ∈ C[α] is the identity.

Proof. For any CSn-module M , as elements in Q2k(M,n) we have that

OM,n(1(α), α) =
∑

(a,b)∈PCn(α)

Kn(1
(α)
(a,b))⊗ E

a
b =

∑
(a,b)∈PCn(α)

1⊗ Eab ,

for any α ∈ Π2k. Hence it is clear that

OM,n(1(α), α)OM,n(1(β), β) =
∑

γ∈TBC(α,β)

pγα,β(n)On(1(γ), γ)

for any α, β ∈ Π2k and where pγα,β(z) are the polynomials in Proposition 2.67. Hence by

Lemma 5.58 we have in Qaff
2k that

O(1(α), α)O(1(β), β) =
∑

γ∈TBC(α,β)

pγα,β(z)O(1(γ), γ),

which confirms that ι is a homomorphism. By definition {O(1(α), α) | α ∈ Π2k} is
C[z]-linearly independent in Qaff

2k , hence ι is injective.

We now show that certain marked cycle shape algebras are subalgebras of Qaff
2k . Let

k ∈ Z≥0 and m ∈ [k]. Take any set partition Sm = {B1, . . . , Bm} of [k] consisting of
m blocks. By ordering the blocks of Sm according to minimal elements, suppose that
Bi < Bi+1 for each i ∈ [m− 1]. Recalling Definition 2.55,

I(Sm) = {Ci := Bi ∪B′i | i ∈ [m]}
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is a set partition of [k] ∪ [k′] also containing precisely m blocks. Given any [m]-marked
cycle shape λ ∈ C[[m]] let λ(Sm) denote the I(Sm)-marked cycle shape in C[I(Sm)]
obtained from λ by replacing colour i with block Ci for each i ∈ [m]. Naturally the map
(−)(Sm) gives a monoid isomorphism C[[m]] ∼= C[I(Sm)]. It also induces an embedding
of Z([m]) into Qaff

2k , as we now show.

Proposition 5.62. Let k ∈ Z≥0 and m ∈ [k]. We have an injective C[z]-algebra
homomorphism ι : Z([m])→ Qaff

2k given by the C[z]-linear extension of

ι(K(λ)) = O(λ(Sm), I(Sm))

for any λ ∈ C[[m]].

Proof. For any n ∈ Z≥0 and CSn-module M , we have that

OM,n(λ(Sm), I(Sm)) =
∑

(a,a)∈PCn(I(Sm))

Kn

(
λ

(Sm)
(a,a)

)
⊗ Eaa ,

noting that a ∈ [n]k perfectly colours the bottom row of I(Sm) if and only if it perfectly
colours the top row. Let λ, µ ∈ C[[m]], then OM,n(λ(Sm), I(Sm))OM,n(µ(Sm), I(Sm))
equals  ∑

(a,a)∈PCn(I(Sm))

Kn

(
λ

(Sm)
(a,a)

)
⊗ Eaa

 ∑
(b,b)∈PCn(I(Sm))

Kn

(
µ

(Sm)
(b,b)

)
⊗ Ebb


=

∑
(a,a)∈PCn(I(Sm))

∑
(b,b)∈PCn(I(Sm))

Kn

(
λ

(Sm)
(a,a)

)
Kn

(
µ

(Sm)
(b,b)

)
⊗ EaaEbb

=
∑

(a,a)∈PCn(I(Sm))

Kn

(
λ

(Sm)
(a,a)

)
Kn

(
µ

(Sm)
(a,a)

)
⊗ Eaa

=
∑

(a,a)∈PCn(I(Sm))

 ∑
τ∈C[[m]]

f τλ,µ(n)Kn

(
τ

(Sm)
(a,a)

)⊗ Eaa
=

∑
τ∈C[[m]]

f τλ,µ(n)OM,n(τ (Sm), I(Sm)),

where f τλ,µ(z) are the structure polynomials in Theorem 5.17. Hence employing Lemma
5.58 we have that

O(λ(Sm), I(Sm))O(µ(Sm), I(Sm)) =
∑

τ∈C[m]

f τλ,µ(z)O(τ (Sm), I(Sm)),

which confirms that ι is a homomorphism of C[z]-algebras. Injectivity follows since by
definition the set {O(λ(Sm), I(Sm)) | λ ∈ C[m]} is C[z]-linearly independent in Qaff

2k .
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We may view Qaff
2k as a C-algebra with basis {znO(λ, α) | α ∈ Π2k, λ ∈ C[α], n ∈ Z≥0}.

From this perspective z is playing the role of a central generator.

Remark 5.63. By Proposition 5.43 and Corollary 5.44 we know that

Z([m]) ∼= C[z0, z1, . . . ]⊗Hm ∼= EndHeis(↑⊗m),

As such for any m ≤ k, Proposition 5.62 tells us that EndHeis(↑⊗m), and in particular
Hm, are subalgebras of the orbit affine partition algebra Qaff

2k .

We now wish to connect the algebra Qaff
2k to Aaff

2k by a homomorphism. To do so, it
will be helpful to give a more minimal generating set for Aaff

2k .

Lemma 5.64. The affine partition algebra Aaff
2k is generated by the set

G2k := {ea, sj , x1, x2, τ2, zl | a ∈ [2k − 1], j ∈ [k − 1], l ∈ Z≥0}.

Proof. From the definition of Aaff
2k , is it clear that we only need to show that, for each

i ∈ [2k] and 2 ≤ j ≤ 2k − 1, the elements xi and τj belong to 〈G2k〉, the subalgebra of
Aaff

2k generated by the elements of G2k. We first prove that x2i−1 and τ2j belong to 〈G2k〉
for any i ∈ [k] and j ∈ [k − 1], by the repeat application of two steps:

(Step 1): Assume for some i ∈ [k− 1] that x2i−1 and τ2i belong to 〈G2k〉. Then from (i)
of Lemma 4.12 we must have that x2i+1 belongs to 〈G2k〉.

(Step 2): Assume for some 2 ≤ i ≤ k that x2i−1 and τ2i−2 belong to 〈G2k〉. Then (i) of
Lemma 4.17 may be expressed as

τ2i = si−1siτ2i−2sisi−1 + e2i−2x2i−1sie2i−2si + sie2i−2x2i−1sie2i−2

− e2i−2x2i−1si−1e2ie2i−1e2i−2 − sie2i−2e2i−1e2isi−1x2i−1e2i−2si,

where we employed the relations e2i−2x2i−2 = e2i−2x2i−1 and x2i−2e2i−2 = x2i−1e2i−2

given by (9)(i) and (9)(ii) of Definition 4.7. Hence we see that τ2i must belong to 〈G2k〉.

We already know that x1 and τ2 belong to 〈G2k〉, hence alternating applications of
(Step 1) and then (Step 2) show that x2i−1 and τ2j belong to G2k for any i ∈ [k] and
j ∈ [k − 1]. A similar argument can be given for the pairs x2i and τ2i+1, noting that x2

and τ3 = τ2s1 both belong to G2k.

Let n ∈ Z≥0 and M be an CSn-module with basis {mi | i ∈ I} for I some indexing set.
To ease reference checking in the next theorem, we recall the actions of the generators

x1, x2, and τ2 on the tensor space M ⊗ V ⊗k given by the map Ψ
(M)
2k,n of Theorem 4.24.

Let b = (b(1), . . . , b(k)) ∈ [n]k, b0 ∈ I, and i ∈ [2k], then we have the following:

Ψ
(M)
2k,n(x1)(mb0 ⊗ vb) =

∑
a∈[n]\{b(1)}

(a, b(1))mb0 ⊗ vb,

Ψ
(M)
2k,n(x2)(mb0 ⊗ vb) =

∑
a∈[n]\{b(1)}

(a, b(1))mb0 ⊗ va ⊗ vb(2) ⊗ · · · ⊗ vb(k),

Ψ
(M)
2k,n(τ2)(mb0 ⊗ vb) = (1− δb(1),b(2))(b(1), b(2))mb0 ⊗ vb,
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where δa,b is the kronecker delta.

Theorem 5.65. There exists a C-algebra homomorphism Q : Aaff
2k → Qaff

2k .

Proof. For each of the generators g ∈ G2k we construct an element Q(g) ∈ Qaff
2k such that

θ
(M)
2k,n(Q(g)) = Ψ

(M)
2k,n(g) ∈ EndSn(M ⊗ V ⊗k)

for every n ∈ Z≥0 and every CSn-module M . As Ψ
(M)
2k,n is a C-algebra homomorphism,

we have that all the relations between the generators g ∈ G2k are also satisfied by

the corresponding elements θ
(M)
2k,n(Q(g)) = Ψ

(M)
2k,n(g). As these hold for any n and any

M , we can then use Lemma 5.58 to deduce that these relations also hold between the
corresponding elements Q(g). So this will prove the theorem. Before we construct such
elements we introduce a little notation. For any α ∈ Π2k, let

Λ =
∑
λ∈I

fλ(z)λ

be a formal C[z]-linear combination of elements in C[α], for some finite set I ⊂ C[α].
Then in Qaff

2k we will define

O(Λ, α) :=
∑
λ∈I

fλ(z)O(λ, α).

We also let OM,n(Λ, α) := θ
(M)
2k,n(O(Λ, α)) for any n ∈ Z≥0 and CSn-module M . We may

now construct elements Q(g) for each family of generators g ∈ G2k:

Constructing Q(sj) and Q(ea): By Proposition 5.61, it is clear that

Q(ea) =
∑
α∈Π2k
ea�α

O(1(α), α), and Q(sj) =
∑
α∈Π2k
sj�α

O(1(α), α)

will satisfy the desired property.

Constructing Q(x1): Recall the notation established in Definition 2.55, let S be a set
partition of [k] and I(S) the corresponding set partition of [k] ∪ [k′]. Note any perfect
colouring in PCn(I(S)) is of the form (b, b) where b(i) = b(j) if and only if i and j
belong to the same block of S. Let 1I(S) denote the block of I(S) containing 1. Consider
the formal C[z]-linear combination of elements in C[I(S)] given by

U1I(S) := u1I(S) +
∑

B∈I(S)
B 6=1I(S)

(B, 1I(S)).
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Then we have that

θ
(M)
2k,n(O(U1I(S) , I(S))) =

∑
(b,b)∈PCn(I(S))

Kn((u1I(S))(b,b)) +
∑

B∈I(S)
B 6=1I(S)

Kn((B, 1I(S))(b,b))

⊗ Ebb

=
∑

(b,b)∈PCn(I(S))

Kn(ub(1)) +
∑
a∈[b]
a6=b(1)

Kn((a, b(1)))

⊗ Ebb

=
∑

(b,b)∈PCn(I(S))

 ∑
a∈[n]\[b]

(a, b(1)) +
∑
a∈[b]
a6=b(1)

(a, b(1))

⊗ Ebb
=

∑
(b,b)∈PCn(I(S))

 ∑
a∈[n]\{b(1)}

(a, b(1))

⊗ Ebb .
Hence given any b0 ∈ I and b ∈ [n]k which perfectly colours the top and bottom rows of

I(S), we have that θ
(M)
2k,n(O(U1S , I(S))) acts on mb0⊗vb in the same manner as Ψ

(M)
2k,n(x1),

and acts on mb0 ⊗ vc by 0 whenever (c, c) is not a perfect colouring of I(S). Hence the
element Q(x1) we are looking for is

Q(x1) :=
∑
S`[k]

O(U1I(S) , I(S)),

where the sum runs over all set partitions S of [k].

Constructing Q(x2): Let S be a set partition of [k], and let I(1)(S) denote the set
partition of [k]∪ [k′] we obtain from I(S) by removing 1 from its block and letting it be
in its own block {1}. Let 1′

I(1)(S)
denote the block of I(1)(S) containing {1′}. Consider

the formal C[z]-linear combintaion of elements in C[I(1)(S)] given by

(1, 1′)I(1)(S) := ({1}, 1′
I(1)(S)

) +
∑

B∈I(1)(S)
B 6=1′

I(1)(S)
,{1}

(B, 1′
I(1)(S)

).

Note that any perfect colourings of I(1)(S) is of the form (b(a), b) where b perfectly colours
the top and bottom rows of I(S), b(a)(j) = b(j) for all j ∈ [k]\{1}, and b(a)(1) = a for
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some a ∈ [n]\[b]. Then in Q2k(M,n) we have that θ
(M)
2k,n(O((1, 1′)I(1)(S), I

(1)(S))) equals

∑
(a,b)∈PCn(I(1)(S))

Kn(({1}, 1′
I(1)(S)

)(a,b)) +
∑

B∈I(1)(S)
B 6=1′

I(1)(S)
,{1}

Kn((B, 1′
I(1)(S)

)(a,b))

⊗ Eab

=
∑

(a,b)∈PCn(I(1)(S))

(a(1), b(1)) +
∑
b∈[b]
b 6=b(1)

(b, b(1))

⊗ Eab

=
∑

(b,b)∈PCn(I(S))

 ∑
a∈[n]\[b]

(a, b(1))⊗ Eb(a)b +
∑
b∈[b]
b 6=b(1)

(b, b(1))⊗ Eb(a)b


=

∑
(b,b)∈PCn(I(S))

∑
a∈[n]
a6=b(1)

(a, b(1))⊗ Eb(a)b ,

Therefore, given any b0 ∈ I and b ∈ [n]k such that (b, b) perfectly colors I(S), we have

that θ
(M)
2k,n(O((1, 1′)I(1)(S), I

(1)(S))) acts on mb0 ⊗ vb in the same manner as Ψ
(M)
2k,n(x2),

and acts on mb0 ⊗ vc by 0 whenever (c, c) is not a perfect colouring of I(S). Hence the
element Q(x2) we are looking for is

Q(x2) =
∑
S`[k]

O((1, 1′)I(1)(S), I
(1)(S)),

where the sum runs over all set partitions S of [k].

Constructing Q(τ2): Let S be a set partition of [k] such that 1 6∼S 2, that is 1 and
2 belong to distinct blocks of S. Let 1I(S) and 2I(S) denote the distinct blocks of S
containing 1 and 2 respectively. Consider the element (1I(S), 2I(S)) in C[I(S)], then

θ
(M)
2k,n(O((1I(S), 2I(S)), I(S))) =

∑
(b,b)∈PCn(I(S))

Kn((1I(S), 2I(S))(b,b))⊗ Ebb

=
∑

(b,b)∈PCn(I(S))

Kn((b(1), b(2)))⊗ Ebb

=
∑

(b,b)∈PCn(I(S))

(b(1), b(2))⊗ Ebb .

Therefore, given any b0 ∈ I and b ∈ [n]k such that (b, b) perfectly colours I(S), we have

that θ
(M)
2k,n(O((1I(S), 2I(S)), I(S))) acts on mb0 ⊗ vb in the same manner as Ψ

(M)
2k,n(τ2), and

acts on mb0 ⊗ vc by 0 whenever (c, c) is not a perfect colouring of I(S). Hence the
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element Q(τ2) we are looking for is

Q(τ2) =
∑
S`[k]
16∼S2

O((1I(S), 2I(S)), I(S)),

where the sum runs over all set partitions S of [k] such that 1 6∼S 2.

Constructing Q(zl): Let b0 ∈ I and b ∈ [n]k, then recall that

Ψ
(M)
2k,n(zl)(mb0 ⊗ vb) = (Zn,lmb0)⊗ vb,

where Zn,l belongs to the center Zn = Zn(∅) of CSn and is given by

Zn,l =
∑
b∈[n]

T ln,b, where Tn,b =
∑

a∈[n]\{b}

(a, b).

To construct Q(zl) we first want to show that there exists an element in the ∅-marked
cycle shape algebra Z(∅) such that its projection into the center Zn(∅) under prn[∅]
equals Zn,l for all n ∈ Z≥0. We introduce the following notation: Let X ⊆ [n] and r ≥ 1,
and consider any r-tuple λ = (λ1, . . . , λr) ∈ C[X]×r of X-marked cycle shapes and any
µ ∈ C[X]. Then we define

fµλ(z) := [K(µ)](K(λ1) · · ·K(λr)),

the polynomial in C[z] which appears as the coefficient of the term K(µ) in the product
K(λ1) · · ·K(λr) in Z(X). Now for any b ∈ [n], one can see that Tn,b = Kn((∗, b)) which
belongs to Zn({b}). Hence we have that∑

b∈[n]

T ln,b =
∑
b∈[n]

Kn((∗, b))l =
∑
σ∈T

σKn((∗, 1))lσ−1

where T = {(1, 2), (1, 3), . . . , (1, n)} a set of left transversals of Stabn({1}) within the
group Stabn(∅) = Sn. Now set (∗, 1)(l) := ((∗, 1), . . . , (∗, 1)) ∈ C[{1}]×l. Then in the
centralizer algebra Zn({1}) we have that

Kn((1, ∗))l =
∑

µ∈C[{1}]

fµ
(∗,1)(l)

(n)Kn(µ).

Therefore the elements Zn,l can be expressed as

∑
b∈[n]

T ln,b =
∑
σ∈T

σ

 ∑
µ∈C[{1}]

fµ
(∗,1)(l)

(n)Kn(µ)

σ−1 =
∑
σ∈T

∑
µ∈C[{1}]

fµ
(∗,1)(l)

(n)Kn(µσ)

=
∑

µ∈C[{1}]

fµ
(∗,1)(l)

(n)fµ∅ (n)Kn(µ ↓∅) =
∑
λ∈C[∅]

 ∑
µ∈C[{1}]
µ↓∅=λ

fµ
(∗,1)(l)

(n)fµ∅ (n)

Kn(λ)
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where fµ∅ (z) are the polynomials given in Proposition 5.28. Thus set

hλl (z) :=
∑

µ∈C[{1}]
µ↓∅=λ

fµ
(∗,1)(l)

(z)fµ∅ (z). (5.19)

Then the element ∑
λ∈C[∅]

hλl (z)K(λ)

of Z(∅) projects down to Zn,l under the morphism prn[∅] for all n ∈ Z≥0. Lastly, for
any l ∈ Z≥0 and set partition S of [k], consider the formal C[z]-linear combination of
elements of C[I(S)] given by

wl :=
∑
λ∈C[∅]

hλl (z)

 ∑
µ∈FillI(S)∅ (λ)

µ

 ,

Then for any n ∈ Z≥0 we have that

θ
(M)
2k,n(O(wl, I(S))) =

∑
(b,b)∈PCn(I(S))

 ∑
λ∈C[∅]

hλl (n)
∑

µ∈FillI(S)∅ (λ)

Kn(µ(b,b))

⊗ Ebb ,
=

∑
(b,b)∈PCn(I(S))

 ∑
λ∈C[∅]

hλl (n)Kn(λ)

⊗ Ebb ,
=

∑
(b,b)∈PCn(I(S))

Zn,l ⊗ Ebb ,

where for the second equality we employed Equation (5.8). Therefore, given any b0 ∈ I
and b ∈ [n]k such that (b, b) perfectly colours I(S), we have that θ

(M)
2k,n(O(wl, I(S))) acts

on mb0 ⊗ vb in the same manner as Ψ
(M)
2k,n(zl), and acts on mb0 ⊗ vc by 0 whenever (c, c)

is not a perfect colouring of I(S). Hence the element Q(zl) we are looking for is

Q(zl) =
∑
S`[k]

On(wl, I(S)),

where the sum runs over all set partitions S of [k].

Corollary 5.66. For any k, n ∈ Z≥0 and CSn-module M , the image of Ψ
(M)
2k,n : Aaff

2k →
EndSn(M ⊗ V ⊗k) (given in Theorem 4.24) belongs to Q2k(M,n).

�
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Remark 5.67. Both the algebra Q2k(M,n) and Qaff
2k came about from investigating the

image of Ψ
(M)
2k,n in Theorem 4.24. We suspect that we have an isomorphism of C-algebras

Aaff
2k
∼= Qaff

2k , which in turn would give us Im(Ψ
(M)
2k,n) = Q2k(M,n). Although not included

within this thesis, we believe we have a proof of the surjectivity of the homomorphism
Q : Aaff

2k → Qaff
2k , but injectivity will probably require knowing a basis for Aaff

2k which we
do not yet have.

Remark 5.68. The algebra Qaff
2k is interesting in its own right as it allows for greater

analysis of the image Im(Ψ
(M)
2k,n) ⊆ Q2k(M,n). In particular, using the formula presented

in Corollary 5.14, one can compute an upper bound for the dimension of the image

Im(Ψ
(M)
2k,n), at least for small n. Also the algebra Qaff

2k , if isomorphic to Aaff
2k , provides a lot

of non-trivial structure to investigate. For example we have shown that the degenerate
affine Hecke algebra Hk, and any X-marked cycle shape algebra Z(X) (for |X| ≤ k)
are subalgebras of Qaff

2k , which has not been shown for Aaff
2k . Also, we know a basis of

Qaff
2k which projects down to EndSn(M ⊗ V ⊗k) in a very natural manner, and the non-

vanishing basis elements provide a spanning set (and in fact a basis whenever M is free).
This gives us clues as to what structure a yet to be defined cyclotomic quotient of the
affine partition algebra should have, at least vaguely. A long term hope would be that
some of the theory produced by J. Brundan and A. Kleshchev in [BK08] would have
analogs in the setting of the affine partition algebra, most notably having some analogs
to higher Schur-Weyl dualities between the group algebra of the symmetric group and
the partition algebra. In the classical case, the module M is specialised to certain weight
modules of gln. It is not obvious what would make an appropriate choice of modules in
the setting of the affine partition algebra, but we have done some basic analysis of the
algebra Q2k(M,n) when M = Sλ is a Specht module for some λ ∈ Λn, and n is small.
In the cases we have investigated, we have not been able to rule out the surjectivity of

Ψ
(Sλ)
2k,n. We suspect that Ψ

(Sλ)
2k,n should be surjective for some Specht modules, but not all.

Remark 5.69. We treat Aaff
2k as our primary definition for an affine partition algebra,

since it is much nicer to work with compared to Qaff
2k . In particular, we focused on

proving the affinization properties 1 to 5 for Aaff
2k but not for Qaff

2k . However, one can
confirm some of the affinization properties for Qaff

2k by using the homomorphism Q in
Theorem 5.65. If it is true that Aaff

2k
∼= Qaff

2k , then the algebra Qaff
2k would be the orbit

description of Aaff
2k , much in the same way the Q2k(z) is an orbit description of A2k(z)

as present in Section 2.2.5.
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