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Abstract. We study the problem of checking the competence of com-
municative agents operating in a global society in order to receive and
offer electronic services. Such a society will be composed of local sub-
societies that will often be semi-open, viz., entrance of agents in a semi-
open society is conditional to specific admission criteria. Assuming that a
candidate agent provides an abstract description of their communicative
skills, we present a test that a controller agent could perform in order
to decide if a candidate agent should be admitted. We formulate this
test by revisiting an existing knowledge representation framework based
on games specified as extended logic programs. The resulting framework
finds useful application in complex and inter-operable web-services con-
strued as semi-open societies in support of the global vision known as
the Semantic Web.

1 Introduction

The vision of the Semantic Web [2] has resulted in a tremendous effort aim-
ing to build an open and distributed infrastructure of ubiquitous and semantic
web-services available to both humans and software entities alike. If this effort
carries on progressing with the current pace, it is only a matter of time before
software components will be in a position to choose from a huge variety of glob-
ally available web-services when seeking to achieve their goals, just like humans.
The problem then will not be simply how to describe services, publish them, and
access them, but also how to organise them, compose them, and enact them, so
that any software component can use them in the most effective and flexible
manner.

To address the flexible organisation, composition and enactment of web-
services, the position of this paper is that current web-services will need to
be designed so that they will be part of actions mediated by software agents.
Put another way, agents can offer or receive a service by interacting with other
agents. Provided agents are a suitable abstraction for software components that
access or offer web-services [3], the position of this paper goes on further to argue
that artificial societies will act as a way of organising the complex interactions
involved in composite and heterogeneous services. In this context, agents can



offer or receive a service if they are members of an artificial society. The issue
then becomes how an agent can be a member of a society [22] and interact with
other member agents to receive or offer services.

For autonomous and heterogeneous interactions in artificial agent societies,
however, we cannot always assume that (a) we have access to the action-selection
strategy of the agent and (b) the protocols available in a society match perfectly
with the action-selection strategies of the member agents. In [5] we relaxed (a)
so that the action-selection strategy of the agent is kept private but the space of
communicative responses is made public [6]. In this way, the agent revealed only
the actions it could perform abstractly (e.g. query or refuse in Fig. 1), without
giving the conditions under which it would select these acts. Then to address
(b) we checked if an agent is competent, by checking that the agent is able to
reach specific states of the interaction (e.g. states s3 and s4 in Fig. 1).

s0 s1
i : query

p : inform

p : failure

p : not-understood

p : refuse

s3

s5

s4

s6

Fig. 1. A simple interaction protocol allowing agents to query other agents about the
truth value of a proposition. The protocol starts at state s0 where an agent playing the
role of the initiator i asks a query, giving rise to state s1. From s1 an agent playing the
role of the participant p can then reply with: an inform, giving rise to final state s3; a
failure, giving rise to state s4; a refuse, giving rise to final state s5; or a not-understood,
giving rise to final state s6.

Competence as reachability allows us to check whether agents that wish to
join a society have the potential to terminate the interactions in which they
might participate, provided the other participants allow them to do so. However,
in [5] we did not present the computational part of the competence checking
procedure but referred the reader to the games framework in [19]. Here we extend
[5] by linking the representation of competence checking using games as the
methodology to support the structuring of e-service applications as artificial
societies. We look at these issues by concentrating on competence checking of



e-services only, i.e. other related issues such as trust or workflow management
are beyond the scope of this work.

After this introduction, we discuss in Section 2 how to move from the current
web-service scenario to one where e-services are mediated by artificial societies,
including a social organisation stating how competent agents can become mem-
bers of societies. In Section 3 we illustrate how interactions in artificial societies
can be represented as gaming situations, by providing a concrete computational
framework specified in terms of normal logic programs that have a direct Pro-
log implementation. The resulting computational framework is then extended in
Section 4 where we show how to test competence of agents in interactions that
require time. Section 5 summarises our contributions, evaluates it, and discusses
related and future work.

2 Web-Services, Agents, and the Global E-service Society

2.1 From Web-Services to Agents

A large part of the Semantic Web effort is currently being directed to web-
services, software systems designed to support machine-to-machine interaction
over a network. One of the advantages of the approach is interoperability, i.e.,
applications written in various programming languages and running on various
platforms can use web-services to exchange data over the Internet in a way
similar to inter-process communication on a single computer.

Fig. 2. The diagram, taken from [25], shows how the public interface of a web-service
is described using WSDL (Web-Service Description Language). Other software compo-
nents interact with a web-service in a manner prescribed by its interface using messages,
which may be enclosed in a SOAP (Simple Object Access Protocol) envelope. Such mes-
sages are typically conveyed using HTTP, and normally comprise XML in conjunction
with other web-related standards. Discovery of a new web-service is achieved via the
use of UDDI (Universal Description, Discovery, and Integration) protocol.



Fig. 2 depicts the typical service provision context, where a service requester
identifies how to access a web-service by contacting a service broker, who holds
information about services and how these can be obtained from service providers.
One issue of Fig. 2 is that although conceptually the participating components
are being thought of as roles of artificial or human agents, the figure focuses on
the low-level implementation of the communication between parties, further re-
ducing it to web-based protocol standards for distributed programming. There is,
obviously, a conceptual gap between the low-level implementation of distributed
components and the high-level organisation of service requesters, providers and
brokers, as web-services proliferate day by day.

To fill the conceptual gap of Fig. 2 we use the notion of agents as the extra-
layer required for one or more web-services with related functionality to be com-
posed into more complex services. These more complex services will be associated
with action descriptions that the agent will be capable to perform, either alone,
or through communication with other agents. For example, in this view, the
web-service interfaces supporting the functionality of a search engine provider,
will be designed as the actions of a search agent that is capable of indexing,
searching, and presenting a set of documents as URIs. Under this view, a service
requester agent will have to communicate with a broker agent to find the search
agent and subsequently ask for any required services. Communication between
interacting agents will be governed by communication protocols [13] build on
top of on an Agent Communication Language (ACL) [17]; [7] presents a way of
using ACL for agent-based web-services.

In addition (but unlike [7]), we assume that agents rely upon a logical process
that allows them to reason about web-services. Such a process is separate from
the way agents invoke web-services using low-level protocols such as SOAP. We
achieve this separation by assuming that agents are build with a mind and a body.
The mind of the agent allows us to describe the logical reasoning the agent needs
to do, including the planning required to offer a complex service by composing
basic services. Agents are competent in providing services, represented in the
mind as complex terms. The logical term below:

order("Item":string, "Quantity":integer)

shows how an agent might represent a more realistic order in the context of the
protocol defined in Fig. 3. On the other hand, the body situates the mind in the
distributed infrastructure of the Semantic Web. Through the body’s sensors and
effectors the different low-level protocols such as WSDL, UDDI, or SOAP will
be used to execute actions and observe the environment. For example, the body
will perform an action about an order by translating them in an XML format
as shown in the term below.

<message name = "order">
<part name = "Item" type="xsd:string"/>
<part name = "Quantity" type="xsd:integer"/>
</message>



m  : order

s : re-order

s : confirm

s : refuse

m  : withdraw

s : notify

m  : accept

s0

s2

s1

s5

s3

s6

s4

Fig. 3. A protocol where an agent in the role of a manufacturer m makes an order in
s0, giving rise to situation s1. From s1 an agent in the role of a supplier s can reply
with: a confirm, stating that the order must be confirmed by m, giving rise to state
s2; a refuse, stating that the order cannot be carried out, giving rise to final state s6;
and a reorder, stating that the order must be re-specified by m, returning to the initial
state s0. If m is asked to confirm in s2, then it may reply either with a withdraw, giving
rise to final state s3, or an accept, in which case the state s4 is reached. From s4 the
supplier s needs to notify agent m on the details of the transaction, giving rise to final
state s5.

This kind of mind-body organisation has already been tested successfully in [20],
where the logical actions of agents are translated into physical XML documents
that are in turn communicated using the P2P system JXTA [23].

2.2 Requirements for the Global E-service Society

Although agents and the roles they play provide a first-level of semantic organi-
sation of a set of web-services with related functionality, we argue that complex
web-services can be best organised at another (higher) level as artificial agent
societies. In this view we will use the notion of a global society structured in
terms of local sub-societies as shown in Fig. 4. An agent will belong to a sub-
society to start with and use the global society to communicate with agents
from other sub-societies. To communicate in the global artificial society agents
must be conversant in a global ACL (ACLG in Fig. 4), possibly different to
the local ACLs (such as ACLK and ACLN in Fig. 4) used in sub-societies. This
choice of allowing different ACLs is not intended to ignore standards, but simply
acknowledges heterogeneity, if it exists within an application.

The global society will be open in the sense of [14], while the local sub-
societies might be in addition semi-open as in [4]. Members of a local sub-
society will be individual agents acting as brokers, service requesters, and service
providers, amongst other. To access a web-service within a particular sub-society,



an agent must become a member if the sub-society is semi-open; we use semi-
open societies to model the proliferation of web-sites that require registration
for example. To join a sub-society we assume that candidate agents must reveal
their service needs. A candidate agent will also need to make public to the sub-
society it wishes to join the service abilities it can offer to the society. Service
abilities are required so that a society can check whether the candidate agent
can participate effectively in the service centric interactions within the society.

Controller

Broker

Arbitrator

Broker

Arbitrator
Arbitrator

Controller

SocietyN
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Fig. 4. Agent joining a society

Once the agent is allowed in a sub-society, the agent is given a particular so-
cial position, implying that the agent will be expected to play one or more roles
associated with that position. The roles an agent plays condition the agent’s
participation in interaction protocols used in a society, thus regulating the in-
teraction of the agent while receiving or offering a service. According to the
protocols available in a society, we assume that a society will have a range of
social positions on offer, with certain agents occupying some of these positions
already, according to the way the society is organised. Apart from the usual po-
sitions encapsulating the roles of Fig.2, we anticipate to need (a) controllers to
approve/disprove the entry of agents in a society and (b) arbitrators to observe



the interactions between parties to enforce the social rules during the provision
of a service.

The formal representation of a global society is beyond the scope of this
work. Our primary concern is to use this notion informally to contextualise the
knowledge representation framework that we propose in the next section, which
is the main contribution of this work. This framework aims primarily to help
with developing the functionality of controller agents, although from existing
work it addresses well known issues with the development of arbitrators as game
umpires [19].

3 Competence checking using Games

Following earlier work on the games metaphor [21], we view communicative in-
teractions about web-services within an agent society abstractly as game inter-
actions [19]. More specifically, communicative acts about web-service execution
and enactment are made according to protocols which are interpreted as moves
made by players of a, possibly, complex game. We do not always look for a win-
ner or a looser, but for the interaction to reach situations with a result, as in
dialogue games [18]. We are motivated by communicative interactions that we
envisage will play a role in web-services for e-commerce applications, see Fig. 3.

We represent the rules of a game as an normal logic program written in
Prolog:

game(Situation, Result):-
terminating(Situation, Result).

game(Situation, Result):-
\+ terminating(Situation,_),
valid(Situation, Move),
effects(Situation, Move, NewSituation),
game(NewSituation, Result).

To formulate a particular game we need to decide how to represent a game sit-
uation, its initial and terminating states, how players make valid moves, and
how the effects of these moves change the current situation in to the next one
until the terminating state is reached. In defining these details we specify what
a controller agent needs to reason about how candidate agents can reach poten-
tially terminating situations, by exploring the effects of valid moves for a social
protocol. We will further extend this mechanism to plan for basic and complex
interactions, involving many agents, to check the competency of such agents.

3.1 Game Situations

We represent game situations by terms of the form:

sit(Name, Id, Narrative).



Such a term labels a game with a Name represented by a constant, a unique
Id also represented by a constant, and a Narrative of moves represented as a
list. The Narrative can be empty, in which case the term represents the initial
situation of a game. The term:

sit(order, s0, [])

can be thought of as representing the initial situation of the protocol depicted in
Fig. 3 represented as a game. Game situations change by players making moves.
The term:

select(Player, Action)

represents the fact that a Player has performed an Action as his move. For sim-
plicity of presentation we will use here ground terms such as order or confirm
to exemplify the discussion about action terms. Although such representation
abstracts away from the content description of these actions, in practice terms
will still be ground as we saw with the order term in section 2.1:

order("Item":string, "Quantity":integer).

We are now in a position to deal with what holds in the state of the game as a
result of moves made by players. We combine our formulation with the situation
calculus [11] expressed as a normal logic program:

holds(sit(Name, Id, []), F):-
initially(sit(Name, Id, []), F).

holds(sit(Name, Id, [M | Ms]), F):-
effect(F, M, sit(Name, Id, Ms)).

holds(sit(Id, [M | Ms]), F):-
holds(sit(Name, Id, Ms), F),
\+ abnormal(F, M, sit(Name, Id, Ms)).

Given this representation we need to express what holds initially, how effects of
moves introduce new fluents, and how fluents that may hold abnormally can be
excluded.

3.2 Initial and terminating states

Consider a game where a manufacturer p1 and a supplier p2 want to commu-
nicate according to the protocol shown in Fig. 3. These roles will need to be
specified when the game starts. Then the typical state of such a protocol will
need to hold the roles of the players using a role of/2 fluent. Another fluent
last move/1 will also be used to record the last move made. We can express the
initial state of this protocol as:

initially(sit(order, s0, []), role_of(p1, manufacturer)).
initially(sit(order, s0, []), role_of(p2, supplier)).



The absence of last move/1 from the initial situation allows our formulation
of the situation calculus to capture that this does not hold, using negation as
failure. Similarly, we can specify the terminating states of the protocol in Fig. 3
as:

terminating(Situation, Situation):-
Situation = sit(order, Id, N),
holds(Situation, last_move(select(P, Act))),
on(Act, [refuse, withdraw, notify]).

In other words, in this instance we return as the result the whole of the situation
term with all the moves selected so far.

3.3 Valid Moves

Differentiating between valid and invalid moves is of great importance in the
analysis of interactive systems as games [18]. For social interactions using agents
such as an auction this differentiation will allow the auctioneer to determine
which bids are valid and therefore, which bids are eligible for winning the auction
[1]. In our games framework, we represent valid moves as:

valid(S, Move):- available(S, Move), legal(S, Move).

Available moves are all the moves afforded by the state of a game. To represent
that order is an available move for the protocol of Fig.3 we write:

available(sit(order, Id, N), select(P, order)).

The specification of available moves should allow all specified moves to be se-
lected by agents at any state. By adding conditions to available/2 rules we
can check the type preconditions of actions. As selecting an available move in a
game does not always imply that this move is legal, we also need to specify legal
moves separately. For example, to represent that it is legal to notify only after
an accept as in the protocol of Fig. 3, we write:

legal(sit(order, Id, N), select(P1, notify)):-
holds(sit(order, Id, N), last_move(select(P2, accept))),
holds(sit(order, Id, N), role_of(P1, supplier)).

last move/1 is what helps the definition of legal moves to ensure that commu-
nicative acts are ordered as expected by the protocol.

3.4 Representation of Effects

To represent the effects of a move on the game we distinguish between the effects
of that move on the term representing a game situation and how these effects are
brought about in the specific state represented by that situation. For example, to
represent the effects on the state of the situation we simply extend the narrative
of that situation with the move made:



effects(sit(Name, Id, Ms), Move, sit(Name, Id, [Move | Ms])).

The effects of such a move on the state representing a situation are obtained
implicitly by the situation calculus effect and abnormality rules. To give an
example of these predicates we consider again the protocol of Fig. 3. We write:

effect(last_move(M), M, sit(order, Id, N)).

to represent that when we apply a move on the state, it becomes the last move
in the next situation. Note that with our formulation of the rules of a game we
do not need to check for the preconditions of a move, as we have checked before
the effects are carried out that the move is valid.

We also need to specify any abnormal situations where a fluent holds where
it should not. For the protocol of Fig. 3, the assertion:

abnormal(last_move(M_old), M_new, sit(order, Id, N)).

will ensure that after a new move has been made it is abnormal to consider that
the last move is the one made previously.

3.5 Competence checking as planning

Given the formulation of games so far we have a way of describing all valid
situations that a set of agents can use according to the social rules of a protocol.
In [19] we have shown how such rules can be used by an umpire (arbitrator) that
checks conformance of the interactions or by a player who wants to play by the
rules. However, [19] did not consider competence. To augment the applicability
of the approach we view here competence checking as a particular instance of
planning using the rules of the game. We will use the following program to plan
according to the rules of a game:

plan(game(S, R), S, R):-
achieved(terminating(S, R), S, R).

plan(game(S, R), S, R):-
\+ terminating(S, _),
assume(valid(S, M), S, M),
apply(effects(S, M, NewS), S, M, NewS),
plan(game(NewS, R), NewS, R).

That is, to plan for a game we need to stop when a terminating state has been
achieved. Otherwise, in a non-terminating state, we need to assume a valid move,
apply the effects of this move to get a new state, and then carry on planning in
that new state.

We define achieved/3 and apply/4 simply by calling in Prolog the predicates
that they take as their first argument (as they are instantiated in the plan/3
program):



achieved(Terminating, Initial, Result):- call(Terminating).

apply(Effects, S, Move, NewS):- call(Effects).

To define assume/3, however, we need to rely on competence descriptions of
players, which correspond to what we referred to in section 2 as the service
abilities of agents. To represent such abilities for an agent we will assume rules
of the form:

competent(Agent, do(Situation, Act)):- Conditions.

A controller agent will need to keep rules of this kind to test the competence
of candidate agents. The controller must hold such models for all the members
in the society too. For example for the protocol of Fig. 3, consider the models
describing the competence of players p1 and p2:

competent(p1, do(sit(order, Id, N), order)).
competent(p1, do(sit(order, Id, N), accept)).

competent(p2, do(sit(order, Id, N), reorder)).
competent(p2, do(sit(order, Id, N), confirm)).
competent(p2, do(sit(order, Id, N), notify)).

We now define:

assume(Valid, Situation, select(Player, Act)):-
call(Valid),
competent(Player, do(Situation, Act)),
acceptable(Situation, select(Player, Act)).

While planning, this definition allow us to generate a valid move, check that the
agent is competent of performing it, and finally check that a move is accept-
able. The definition of acceptable/2 joins the assumed move with the rest of
the narrative describing the current situation to filter unwanted loops. For the
protocol of Fig. 3 such a loop is described by the sequence:

[select(A, order), select(B, reorder)]

which is allowed to be repeated only once. The implementation of acceptable
moves for this example is not included here as it trivially checks for specific
unwanted sub-lists of a list. We are now in a position to ask:

?- plan(Game, sit(order, s0, []), Result)

and get as part of the solution process all the valid states that can be planned for
using the description of the protocol and the descriptions of the competence for
individual players, with loops allowed only once, if they exist. What a controller
agent can then do with the results is application specific.



4 Competence checking in Timed Games

Combining our games framework with the normal logic programming formula-
tion of the situation calculus allowed us to specify protocol-based interactions
and test for reachability of all the states of the protocol via planning. However, in
many occasions social protocols do not assume strict turn-taking in that moves
of players can occur at the same time. An example of such a protocol is that of
an English auction, as shown in Fig. 5.

s1 s2
a:callforbids(p)

s3

b: (nobid1 and nobid2 and ... and nobidn)

b: (bid 1 or bid 2  or... or bid n)

[p < r] a: withdraw

[p > r] a: adjudicate

Legend: r = Reserve Price ,     p = Current Auction Price .

s0
a:openauction

s4

s5

Fig. 5. The English auction protocol allowing an agent with the role of an auctioneer
a and a set of agents with the role of bidder b to interact for the sale of a good. The
auctioneer starts the auction and the calls for bids at a specific price. One or more
bidders bid, in which case the auctioneer calls for new bids until no more bids are
offered. At that point the auctioneer either adjudicates the good to the highest bidder
or withdraws the good if the reserve price is not met.

To allow for protocols of the kind describe in the above figure we introduce
timed games, that is, games whose moves have also a representation of the time
in which they happened.

4.1 Timed Games in the Event Calculus

In trying to formulate timed games we introduce timed situations of the form:

sit(Name, Id, Time, Narrative).

One difference from our earlier representation is that now we need to keep the
current Time in the situation term. In addition, a narrative in timed games is
represented in terms of episodes, that is collections of moves that can validly
happen at the same time in a situation. We express episodes as:

at([select(Player1, Act1), ..., select(PlayerN, ActN)], T).



Using this representation, the term at(T, []) means that nothing happened at
time T.

To reason about timed game situations, we use the simple version [15] of
the event calculus [8] instead of the situation calculus, suitably adapted for our
purposes as follows:

holds(sit(N,Id,Tn,Nn), P):-
0 =< Tn,
initially(sit(N,Id,Ti,Ni), P),
\+ clipped(P, sit(N,Id,Ti,Ni), sit(N,Id,Tn,Nn)).

holds(sit(N,Id,Tn,Nn), P):-
happens(E, Ti, Ni, Nn),
Ti < Tn,
initiates(E, P, sit(N,Id,Ti,Ni)),
\+ clipped(P, sit(N,Id,Ti,Ni), sit(N,Id,Tn,Nn)).

clipped(P, sit(N,Id,Ti,Ni), sit(N,Id,Tn,Nn)):-
happens(Estar, Tj, Nj, Nn),
Ti < Tj, Tj < Tn,
terminates(Estar, P, sit(N,Id,Tj,Nj)).

The important difference from the normal event calculus formulations is that
narratives are held as lists in situation terms rather than as assertions in the
knowledge base, in the spirit of the situation calculus. In this context, our rep-
resentation of an event happening is re-specified as:

happens(E, Tn, [at(En, Tn)|Sn], [at(En, Tn)|Sn]):-
member(E, En).

happens(E, Ti, [at(Ei,Ti)|Si], [at(En, Tn)|Sn]):-
happens(E, Ti, [at(Ei,Ti)|Si], Sn).

happens(at(En,Tn), Tn, [at(En,Tn)|Sn], [at(En, Tn)|Sn]).
happens(at(Ei,Ti), Ti, [at(Ei,Ti)|Si], [at(En, Tn)|Sn]):-

happens(at(Ei, Ti), Ti, [at(Ei,Ti)|Si], Sn).

The first two rules deal with individual events as in the simple event calculus,
with the difference that now we need additional parameters to keep the narrative
at intermediate times. Unlike the simple event calculus however, our formulation
also requires additional rules (the last two) to deal with episodes that have
happened in the narrative; like the events they contain, they too can affect the
state of the game.

One implication of the use of episodes is that we need to change the way we
update the narrative in a timed game. We write:

effects(sit(N,Id,T,Es), at(Ms, T), sit(N,Id,NewT,[at(Ms,T)|Es])):-
T > 0, NewT is T + 1.

The above definition makes the assumption that new episodes last for one unit
of time. The rest of the generic representation for game remains the same, the
only parts that change are the domain specific details. We give an example next.



4.2 Formulating an English Auction

To exemplify timed games we present briefly parts of our formulation for an
auction as shown in Fig. 5. For simplicity, we will assume that there are two
bidders and an auctioneer, and that in order to check the game we only need
the last set of moves captured in the fluent (last moves/1). We will represent
the initial state as before, but now we will need to also specify the initial time,
which we will assume it is 0. This gives rise to the initial state:

initially(sit(auction, s0,0,[]), role_of(p1, auctioneer)).
initially(sit(auction, s0,0,[]), role_of(p2, bidder)).
initially(sit(auction, s0,0,[]), role_of(p3, bidder)).

The terminating conditions are specified with holds axioms using the simple
version of the event calculus presented in the previous section. For example, to
define termination in the auction we write:

terminating(sit(auction,Id,T,N), sit(auction, Id, T, N)):-
holds(sit(auction,Id,T,N), last_moves([select(P,X)])),
member(X, [adjudicate,withdraw]).

The valid moves are specified as before, including available and legal moves,
however now these need to be specific to the moves of the auction. For example,
to specify a legal bid we write:

legal(sit(auction,Id,T,N), select(Player1, bid)):-
holds(sit(auction,Id,T,N),role_of(Player1,bidder)),
holds(sit(auction,Id,T,N),last_moves([select(Player2,cfp)])),
holds(sit(auction,Id,T,N),role_of(Player2,auctioneer)).

The only aspect that really changes is the representation of effects, which are
now expressed in terms of initiates/3 and terminates/3 instead of effect/3
and abnormal/3.

initiates(at(Es, T), last_moves(Es), sit(auction,Id,T,Ns)).

terminates(at(Es, T), last_moves(Old_M), sit(auction,Id,T,Ns)).

Notice that in this particular example initiates/3 and terminates/3 rules are
written only for episodes, however, in general, these need to be specified also for
individual events.

4.3 Competence checking of an English Auction

To check the competence of a set of players for timed games we are going to
assume, as before, that we have a set of statements regarding the competencies
of individual players and the plan/4 program. The main aspect that changes in
timed games, however, is that instead of generating individual moves we need
to generate individual episodes:



assume(Valid, Sit, at(Moves, T)):-
Sit = sit(N,Id,T,Es),
Valid = valid(Sit, select(P, M)),
findall(M, (call(Valid, competent(P, do(Sit, M))), All),
sublist(Moves, All),
acceptable(Sit, at(Moves, T)).

In other words, we need to change our definition of assume/3 to deal with
episodes, so that we get all the valid and acceptable subset of moves in the
protocol. Running the query:

?- plan(Game, sit(auction, s0, 1, []), Result)

we will be in a position to find all the reachable states of the protocol, according
to the description of the rules, and the competence of the players.

5 Concluding remarks

We have investigated the issue of competence checking for agents operating in a
global artificial society whose purpose is to organise complex services. Assuming
that a candidate agent provides an abstract description of their communicative
competence, we have formulated a test that a controller agent can perform to
decide if the candidate agent should join a sub-society of the global society. We
have formulated this test by revisiting an existing knowledge-based framework
based on games represented in extensive form. Although [22, 5, 9] have motivated
our framework, we have found no other related work that links agent competency
with artificial societies using games.

In evaluating our approach we see that our formulation can integrate the
situation and the event calculi according to the competence checking problem
at hand. In this context we inherit from our original formulation of games the
notion of compound games, viz., games built from active sub-games [18], thus
allowing quite complex interactions to be checked for competency. Also, by using
normal logic programs our approach can be implemented directly in Prolog,
unlike other approaches that need to extend the proof-procedure e.g. agents
based on abduction [22].

The current formulation of games and, as a result, the competence checking
presented has the potential to build upon the methodology developed in [18].
One aspect of this is that it treats valid acts as an abstraction for different
specification approaches of social action, as they may be required by different
applications. We have for example assumed that valid acts must be available
and legal. Nevertheless, not all applications need to be presented in this way.
For example, in [1] valid acts are treated in a way that relies on a more elaborate
representation of concepts such as those of obligation and permission. Investi-
gation of these aspects will allow us to compare our framework with existing
approaches that model web-services, e.g. see [12], but with an artificial societies
approach.



By investigating how to best check the competency of agents in artificial soci-
eties for e-services we have identified the need to incorporate into our framework
a mechanism that ensures that agents are not simply competent according to
the acts of a protocol but also according to the expected order of acts described
in it. In parallel, we also need to deal with the re-computation introduced from
the use of event and situation calculi in more complex domains to the examples
used here. An immediate remedy will be to run our games framework on a Pro-
log system that supports tabling [24], such XSB Prolog. How tabled execution
compares with approaches based on model checking [10] and satisfiability [16] is
another direction that we wish to investigate in this context.

Acknowledgements

We would like to thank the anonymous referees for their comments on a previous
version of this paper. The first and third authors were partially supported by
the EU IST6 ArguGRID and SeCSE projects respectively.

References

1. A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational soci-
eties. In C. Castelfranchi and W. Lewis Johnson, editors, Proceedings of the First
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2002), Part III, pages 1053–1061, Bologna, Italy, July 15–19 2002. ACM
Press.

2. T. Burners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
284(5), May 2001.

3. V. Curcin, M. Ghanem, Y. Guo, K. Stathis, and F. Toni. Building next genera-
tion Service-Oriented Architectures using Argumentation Agents. In A. Polze and
R. Kowalczyk, editors, 3rd International Conference on Grid Service Engineering
and Management, pages 249 – 263, Germany, Sep 2006.

4. P. Davidsson. Categories of artificial societies. In P. Petta A. Omicini and R. Tolks-
dorf, editors, Engineering Societies in the Agents World II, pages 1–9, Prague,
Czech Republic, 2001.

5. U. Endriss, W. Lue, N. Maudet, and K. Stathis. Competent agents and customising
protocols. In A. Omicini, P. Petta, and J. Pitt, editors, Proceedings of the 4th
International Workshop Engineering Societies in the Agent World (ESAW-2003),
volume 3071 of Lecture Notes in Artificial Intelligence (LNAI), pages 168–181.
Springer-Verlag, 2004.

6. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance for logic-
based agents. In G. Gottlob and T. Walsh, editors, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, Acapulco, Mexico (IJCAI-
03). Morgan Kaufmann Publishers, August 2003.

7. R. Kowalczyk J. Yan, Y. Yang and X. T. Nguyen. A service workflow management
framework based on peer-to-peer and agent technologies. In Proc. of International
Workshop on Grid and Peer-to-Peer based Workflows, Melbourne, Australia, Sep.
2005.



8. R. A. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67–95, 1986.

9. G. K. Lekeas and K. Stathis. Agents acquiring Resources through Social Positions:
An Activity-based Approach. In O. de Bruijn and K. Stathis, editors, Proceedings
of the 1st International Workshop on Socio-Cognitive Grids, Santorini, Greece,
June 2003.

10. A. Lomuscio and F. Raimondi. Model checking knowledge, strategies, and games
in multi-agent systems. In Proceedings of the 5th International Conference on
Autonomous Agents and Multi-Agent systems (AAMAS06). ACM Press, 2006.

11. J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence
4, pages 463–502. American Elsevier, New York, 1969.

12. S. McIlraith, T. Cao Son, and H. Zeng. Semantic web services. IEEE Intelligent
Systems, 16(2):46–53, 2001.

13. J. Pitt and A. Mamdani. A Protocol-based Semantics for an Agent Communi-
cation Language. In Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence, Stockholm, Sweden (IJCAI-99), pages 486–491. Morgan
Kaufmann Publishers, 1999.

14. J. V. Pitt. The open agent society as a platform for the user-friendly information
society. AI & Society, 19(2):123–158, 2005.

15. M. Shanahan. The event calculus explained. In M.Veloso M.J.Wooldridge, editor,
Lecture Notes in Artificial Intelligence, pages 409–30. Springer, 1999.

16. M. Shanahan and M. Witkowski. Event Calculus Planning Through Satisfiability.
Journal of Logic and Computation, 14:731–745, 2004.

17. M. P. Singh. Agent communication languages: Rethinking the principles. In Com-
munication in Multiagent Systems, pages 37–50, 2003.

18. K. Stathis. Game–Based Development of Interactive Systems. PhD thesis, Depart-
ment of Computing, Imperial College London, Nov 1996.

19. K. Stathis. A Game-based Architecture for developing Interactive Components in
Computational Logic. Functional and Logic Programming, Special Issue on Logical
Formalisms for Program Composition, 2000(1), March 2000.

20. K. Stathis, A. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali.
PROSOCS: a platform for programming software agents in computational logic. In
J. Müller and P. Petta, editors, Proceedings of the Fourth International Symposium
“From Agent Theory to Agent Implementation”, Vienna, Austria, April 13-16 2004.

21. K. Stathis and M. J. Sergot. Games as a Metaphor for Interactive Systems. In
M. A. Sasse, R.J. Cunningham, and R. L. Winder, editors, People and Computers
XI (Proceedings of HCI’96), BCS Conference Series, pages 19–33, London, UK,
August 1996. Springer-Verlag.

22. F. Toni and K. Stathis. Access-as-you-need: a computational logic framework
for flexible resource access in artificial societies. In Proceedings of the Third In-
ternational Workshop on Engineering Societies in the Agents World (ESAW’02),
Lecture Notes in Artificial Intelligence. Springer-Verlag, 2002.

23. B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou, J. C. Hugly, and E. Pouyoul.
Project JXTA-C:Enabling a Web of Things. In Proceedings of the 36th Hawaii
International Conference on System Sciences (HICSS’03), pages 282–287. IEEE
Press, January 2003.

24. D. S. Warren. Memoing for logic programs. Commun. ACM, 35(3):93–111, 1992.
25. Web-services. Home Page: http://en.wikipedia.org/wiki/Web services.


