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A B S T R A C T

Pulse rate variability (PRV) assesses the changes in pulse rate through time when pulse rate is extracted
from pulsatile signals such as the photoplethysmogram (PPG). PRV has been used as a surrogate of heart rate
variability (HRV), but there is evidence of differences between these two variables. It has been hypothesised
that these differences may arise from physiological processes or from technical aspects that may affect the
reliable extraction of PRV indices from PPG signals. Moreover, there are no guidelines for the extraction of PRV
information from pulsatile signals, which hinders the comparison among PRV studies and the understanding
of physiological changes that may affect PRV. In this study, the effects of using PPG signals with different
duration for the extraction of time-domain, frequency-domain and Poincaré plot indices from PRV was studied.
Using simulated PPG signals with known PRV content and varying duration, it was found that PRV indices
can be reliably estimated from signals as short as 90 s. This indicates that PRV indices can be extracted from
ultra-short PPG signals. Although further validation with real data is needed, it can be concluded that acquiring
shorter segments of PPG can be used for PRV analysis, allowing for a more efficient acquisition and processing
of this variable.
1. Introduction

Pulse rate variability (PRV) describes the changes in pulse rate
through time. It is extracted from pulsatile signals such as the photo-
plethysmogram (PPG) and has been proposed as a surrogate to heart
rate variability (HRV), which is measured from the electrocardiogram
(ECG) and reflects changes in cardiac autonomic activity [1,2]. PPG
is nowadays probably the most widespread used physiological signal,
since it is relatively easy to acquire, non-invasive and cost effective [3].
Hence, PRV has become particularly interesting for the monitoring and
prediction of mental and somatic diseases [1], and its validation is
crucial for the advancement of the technique and its applications.

However, the relationship between PRV and HRV is still not entirely
clear. Some studies have found that PRV and HRV have similar trends
but are not entirely the same, and have concluded that these differences
may (1) originate from physiological processes [4–8], which could
mean that PRV has potential applications when compared to HRV; or
(2) arise from technical aspects in the extraction of PRV from PPG
signals, such as the sampling rate used for the acquisition of the signal,
the algorithms used for the detection of inter-beat intervals (IBIs) and
the fiducial points used for the extraction of PRV traces [1]. Moreover,
there are no guidelines for the extraction of PRV indices from pulsatile
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signals, which makes it difficult to compare and validate results from
different studies.

One important factor for the extraction of PRV information from
PPG signals is to understand how long PPG segments should be to
obtain reliable PRV indices. This is essential especially for the extrac-
tion of PRV from wearable and embedded devices, which have limited
computational and power resources, and from smartphone-based PPG
technologies. Also, utilising shorter segments in PRV analysis will en-
able for a larger resolution in the measurement of indices in real time.
The standard length of signals suggested for short-term HRV and PRV
analysis is 5 min [9], but some researchers have found a relatively good
behaviour in the extraction of indices from ultra-short-term segments,
although further studies are needed to better understand the validity of
these indices to extract physiologically valuable information [10–12].

The aim of this study was to evaluate how the length of the PPG
signal affected the assessment of time-domain, frequency-domain and
Poincaré plot indices from PRV. This was done using simulated PPG
signals with different signal quality, varying lengths, and simulated
but physiologically-plausible PRV content. It was hypothesised that
PRV extracted from signals shorter than 5 min could be feasible for
the reliable estimation of PRV content, when compared to indices
extracted from the generated PRV trace with a duration of at least
vailable online 13 October 2022
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30 min. The use of simulated PPG signals and PRV information allows
for the direct comparison of the expected results to the extracted PRV
information, instead of using HRV information as a gold standard.
Thus, this allows for a direct analysis of how the length of the signal
affects PRV analysis, controls for the physiological differences that may
be included in the comparison against ECG-derived HRV indices, and
delivers valid statistical results due to the larger databases that can be
generated. Moreover, understanding how these technical factors may
affect PRV, regardless of HRV, is a step forward in the establishment of
guidelines for the assessment of PRV indices from PPG signals, which
could diminish the errors in PRV analysis. This, in turn, will open
the doors to a better understanding of the physiological factors that
affect PRV, its relationship to HRV, and the potential applications of
the technique.

2. Materials and methods

The simulation and processing of PPG signals and PRV was per-
formed in MATLAB (version 2020b), while statistical analyses were
done in RStudio (version 1.4.1717).

2.1. Signal simulation

PPG signals were simulated using a modified version of the model
proposed by Tang et al. [13,14]. In their model, a single cardiac cycle
was simulated using the sum of two Gaussian functions with parameters
set to simulate excellent and acceptable quality PPG signals. The values
they proposed for the parameters describing the Gaussian functions,
i.e., their amplitudes (𝑎𝑖), width (𝑏𝑖) and mean value (𝜇𝑖), were found by
determining the optimal values when comparing the simulated cardiac
cycle to annotated PPG signals from the MIMIC III database [15–17]. In
the modified version of this model, instead of altering the quality of the
PPG waveform it is possible to determine the ratio of the 𝑎 parameters,
𝑟, from the two Gaussian functions, which alters the amplitude of
the Gaussian functions and, therefore, the quality of the PPG cycle,
determined by the presence or absence of a dicrotic notch, and its
amplitude. The 𝑏 and 𝜇 parameters were selected according to what has
been suggested in the original model for the excellent quality PPG. The
resulting model for the PPG cycle is shown in (1), where 𝜃 corresponds
to the four quadrant inverse tangent of the cosine and sine functions of
the duration of the cycle.

𝑧 = 𝑎1(𝑒
− (𝜃−𝜇1)

2

2𝑏21 ) + 𝑎2(𝑒
− (𝜃−𝜇2)

2

2𝑏22 ), 𝑎2 =
𝑎1
𝑟

(1)

Then, the simulated cardiac cycles were appended and the result-
ing signal was detrended and low pass filtered using a second-order
Butterworth filter with cutoff frequency of 15 Hz. The duration of
each of the appended cardiac cycles was modified in order to include
PRV information on the PPG signal. This was done by simulating PRV
information as a sum of sinusoidal waves with randomly generated
parameters that fall inside plausible physiological values for PRV.
Table 1 summarises the ranges used for the random generation of these
parameters. The average pulse rate (PR) was generated with values
between 40 and 200 beats per minute, while its standard deviation was
between 0.05 and 0.08 s. The fundamental frequency for the sine waves
in the low frequency band was randomly selected between 0.04 and
0.15 Hz, while in the high frequency band these values were between
0.15 and 0.4 Hz.

The resulting function for the randomly generated PRV information
is shown in (2). As can be seen, a total of four sinusoidal waves were
summed, each of them with different fundamental frequencies, two
for each of the main frequency bands as found in PRV analysis. It
has been shown that the main physiological contributor to HRV, and
probably PRV, is respiratory sinus arrhythmia (RSA), although other
physiological processes, such as neural activity of the sympathetic and
parasympathetic branches of the ANS, affect these variables [18,19].
2

Table 1
Ranges for the Pulse Rate Variability (PRV) parameters randomly generated to obtain
PRV gold standard traces.

Parameter Range Units

Low frequency peak location (LF) 0.04–0.15 Hz
High frequency peak location (HF) 0.15–0.40 Hz
Average pulse rate (PR) 40–200 Beats per minute (bpm)
Standard deviation of pulse rate (SD) 0.05–0.08 s

Fig. 1. Photoplethysmographic cardiac cycles generated using the proposed mode,
using ratios of value (a) 𝑟 = 2 (excellent quality), and (b) 𝑟 = 4 (acceptable quality).
The blue and orange dotted lines illustrate the two Gaussian functions generated, while
the black continuous line shows the result of summing these two Gaussian functions,
i.e., 𝑧.

Hence, more than just one sinusoidal wave was included in the model
for each frequency band, increasing the complexity of the gold-standard
PRV and simulating the real behaviour of HRV and PRV spectra, in
which more than one frequency component can be observed.

𝑃𝑅𝑉 = 60
𝑃𝑅

+ 𝑆𝐷
2
∑

𝑖=1
(sin (2𝜋𝐿𝐹 (𝑖)𝑡) + sin (2𝜋𝐻𝐹 (𝑖)𝑡)) (2)

In this study, two groups of PPG signals were simulated, according
to the ratio 𝑟 used to simulate the amplitude of the Gaussian functions.
Excellent quality PPG signals were simulated with ratios of 𝑟 = 2, while
acceptable quality PPG signals were considered as those with 𝑟 = 4.
The base cardiac cycles for these two values of 𝑟 are illustrated in
Fig. 1. The main difference between these signals can be observed in the
notoriety of the dicrotic notch, i.e., its amplitude when compared to the
amplitude of the systolic peak. Fig. 2 depicts excellent and acceptable
PPG signals simulated using the model with the specified 𝑟 values, and
with randomly generated PRV information.

In this study, 110 PRV traces with at least 30-min duration were
generated and used to simulate excellent and acceptable quality PPG
signals with varying lengths. From each of these, long PPG signals were
generated, which were then segmented into shorter PPG segments. PPG
segments had a minimum duration of 30 s, and a maximum of 20 min
(1200 s), increasing in steps of 30 s. These gave a total of 40 segments
with different lengths related to each of the generated 30-min PRV
traces, for a total of 4400 signals. The 30-min PRV traces were used
as gold-standard for statistical comparisons. This was done in order to
understand how short the PPG segments need to be to reflect similar
behaviour as longer PPG segments for PRV analysis. PPG signals were
simulated using a sampling rate of 256 Hz, which has been shown to
be a good sampling rate for PRV analysis from PPG signals [20,21].

2.2. Pulse rate variability assessment

Cardiac cycles were extracted from simulated PPG signals using the
D2Max algorithm described in [22], which is based on the generation of
blocks of interests based on two moving averages, which are designed
based on the expected duration of cardiac cycles and the 𝑎 point in the
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Fig. 2. Example of photoplethysmographic (PPG) signals simulated using the proposed model and randomly generated pulse rate variability (PRV) information. (a) PPG signal
with excellent quality (𝑟 = 2). (b) PPG signal with acceptable quality (𝑟 = 4). (c) PRV information used for the generation of these signals.
second derivative of the PPG signal. The location of the systolic peak
from the PPG signal was determined as the location of the maximum
point in each block of interest. This algorithm has been found to have
a good performance for PRV analysis [20]. IBIs were then obtained as
the time difference between consecutive 𝑎 points detected from each of
the identified cardiac cycles. The 𝑎 point corresponds to the location
of the first local maxima in the second derivative of the PPG cardiac
cycle. IBIs longer than 1.25 times the median duration of all the IBIs
were corrected by looking for additional cardiac cycles in each of these
longer windows. IBIs shorter than 0.75 times the median duration of
IBIs were also detected and discarded.

Time-domain, frequency-domain and Poincaré plot PRV indices
were extracted, both from the IBIs time-series and from the gold-
standard PRV traces. From the time-domain, the mean duration of IBIs
(AVNN), their standard deviation (SDNN), the root-mean squared value
of sequential differences (RMSSD) and the proportion of sequential
differences longer than 50 ms (pNN50) were obtained.

Spectral analysis was performed using Fast Fourier Transform (FFT).
In the case of extracted IBIs time-series, the FFT was done after applying
a cubic-spline interpolation with 4 Hz rate, and with 512 data points,
for a frequency resolution of 0.0078 Hz. From all the analysed PRV
time-series, both simulated and extracted, the very-low frequency (VLF,
3

𝑓 ≤ 0.04 Hz), low-frequency (LF, 0.04 Hz < 𝑓 ≤ 0.15 Hz), high-frequency
(HF, 0.15 Hz < 𝑓 ≤ 0.40 Hz) and total power (TP, 0.04 Hz ≤ 𝑓 ≤
0.40 Hz) bands were measured. Relative indices, i.e., the normalised LF
and HF (nLF and nHF, respectively) and the ratio between LF and HF
(LF/HF) were also extracted. The centroid of LF, HF and TP bands was
measured, and their 𝑥 and 𝑦 coordinates were obtained (cLFx, cLFy,
cHFx, cHFy, cTPx and cTPy). Although VLF was not included in the
model for PRV simulation, it was extracted in an attempt to understand
if, even in its absence, technical processes may affect the behaviour of
this index when extracted from shorter PPG signals.

Finally, non-linear measures were obtained using 1-lag Poincaré
plots. From these, the area of the ellipse (S), the minor and major axes
of the ellipse (SD1 and SD2, respectively) and the ratio between axes
(SD1/SD2) were extracted.

2.3. Statistical analysis

The differences between indices obtained from the extracted PRV
traces and from gold standard traces were measured, and Friedman
rank sum tests were implemented to evaluate how these differences
were affected by the duration of the signals. This was considered as an
appropriate non-parametric alternative to a 2-way ANOVA, where the
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Fig. 3. Mean and standard deviations of the differences between indices extracted from measured and gold-standard pulse rate variability traces.
utilisation of the same PRV traces for the generation of PPG signals with
different duration was considered as blocking factor and controlled
for. Wilcoxon rank sum tests with Bonferroni correction were used for
post-hoc comparisons.

3. Results

Fig. 3 shows the behaviour of PRV indices measured from excellent
quality PPG signals with varying length. Statistical analyses showed
non-significant differences among lengths for RMSSD (𝑝-value = 0.217),
nHF (𝑝-value = 0.902), LF/HF (𝑝-value = 0.0.150), cHFx (𝑝-value =
0.062), cHFy (𝑝-value = 0.136), cTPx (𝑝-value = 0.984), S (𝑝-value
= 0.832), SD1 (𝑝-value = 0.217) and SD1/SD2 (𝑝-value = 0.261). The
mean value of the differences for time-domain (AVNN, SDNN, RMSSD,
pNN50), non-centroid related frequency domain (VLF, LF, HF, TP, nLF,
nHF, LF/HF) and Poincaré plot indices (S, SD1, SD2, SD1/SD2) tend to
be smaller in PPG signals with duration longer than 120 s, as well as
their standard deviations. The higher mean differences were observed
in the extraction of non-centroid related frequency-domain indices.
In the case of centroid-related frequency-domain indices, the trend is
opposite, with lower differences for 𝑦-coordinates with shorter signals,
while values related to 𝑥-coordinates remain relatively stable regardless
of the duration of the signals. These indices seem to be less affected by
technical aspects than 𝑦-coordinates of centroids.

In the case of acceptable quality PPG signals, Friedman rank sum
tests showed non-significant differences among lengths for nHF (𝑝-value
4

= 0.604), cLFx (𝑝-value = 0.113), cHFx (𝑝-value = 0.343), cHFy (𝑝-
value = 0.355), cTPx (𝑝-value = 0.691) and cTPy (𝑝-value = 0.939). The
behaviour of the mean values and standard deviations (Fig. 4) is similar
as that observed with excellent quality PPG signals: The differences
become smaller and less variable with PPG signals longer than 120
s, and differences become stable with durations longer than 300 s.
Again, differences are larger for non-centroid related frequency-domain
indices, while the same behaviour can be observed in centroid-related
indices.

In both cases, the results obtained for VLF need to be taken with
care. Since this frequency component was not simulated as part of the
proposed PRV model, it should not be present in the extracted spectra.
However, it was assessed as an attempt to understand how technical
aspects may affect it. It was observed that there were differences
between VLF extracted from the gold standard and from the measured
PRV traces, indicating that care should be taken to these technical
aspects, which may include the frequency resolution and the algorithm
used to obtain the frequency spectrum. However, this is not particularly
valuable regarding the duration of the PPG signal, hence this index was
not included in the subsequent analysis.

Since the aim of this study was to determine how long PPG segments
need to be for reliable estimation of PRV indices, the minimum length
at which no significant differences were observed for each index and
each PPG signal quality were obtained from the post-hoc comparisons
(Table 2). It was observed that pNN50, HF, and TP needed at least 90
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Fig. 4. Mean and standard deviations of the differences between indices extracted from measured and gold-standard pulse rate variability traces.
s long PPG signals. Hence, PPG signals of at least this length should be
considered for reliable PRV estimation.

4. Discussion

Given the growing interest in acquiring and analysing PPG signals
using everyday devices, such as smartwatches, or smartbands or video-
based PPG signals from smartphones, as well as using PRV for the
extraction of physiological information in a continuous manner, there
is an acute interest in understanding how short the analysis window
should be in order to obtain reliable PRV information. In the case of
HRV, the standard is to use windows as short as 5 min [9], although
shorter segments of ECG signals have been proposed for ultra-short
HRV analysis [10]. The results of this experiment suggest that PPG
signals as short as 90 s, for obtaining time-domain, frequency-domain
and Poincaré plot indices, give sufficiently reliable results, and that the
differences to gold-standard indices stabilise using PPG signals longer
than 300 s.

It has usually been accepted that frequency-domain indices are more
affected by the duration of the PPG signals used for PRV analysis than
time-domain and non-linear indices, although further validation and
analysis of ultra-short-term indices extracted both from HRV and PRV
are needed [18]. From the results obtained in this study, it can be
concluded that the differences between indices obtained from longer
duration gold standard traces and PRV indices measured from ultra-
short term signals of at least 120 s duration are comparable, and that
5

these differences become stable when measured from signals longer
than 5 min. However, these results should be considered with care
given the simulated nature of the signals used, and the fact that
physiological processes are not considered in this study. The effects of
using ultra-short signals for PRV analysis could be larger in diseased
subjects or while executing different experimental protocols that may
alter PRV behaviour, and care should be taken given the effects of
outliers in ultra-short-term recordings [18].

As should have been expected, indices related to long-term changes
in PRV, i.e., AVNN, LF- and TP-related indices, and SD2, are impor-
tantly affected by the duration of the signal, mostly showing larger
differences to gold-standard and more variability as shorter segments
are employed. This could be explained by the nature of these indices,
which are related to long-term changes in PRV, and as explained by
Shaffer and Ginsberg [18] most of these indices are not comparable
between long-term and short-term analysis results. However, these are
not the only indices that show important differences when shorter
segments are used, and pNN50, HF, S and 𝑦-coordinate related centroid
indices show important differences to the gold standard as the window
becomes shorter.

Previous studies have reported on the validity of ultra-short-term
measurements for HRV or PRV. Baek et al. [23] obtained 5-min PPG
signals from 467 healthy volunteers with a wide range of ages, and
partitioned them into 270, 240, 210, 180, 150, 120, 90, 60, 30, 20
and 10 s segments. PRV indices were extracted from these short seg-
ments as well as the 5-min original signals, which were used as gold
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Table 2
Minimum length of photoplethysmographic signals where post-hoc comparisons did not
show significant differences between indices extracted from measured and gold-standard
pulse rate variability traces, both with excellent and acceptable quality.

Index Minimum length without significant differences (s)

Excellent PPG Acceptable PPG

AVNN 60 60
SDNN 30 30
RMSSD 30 60
pNN50 90 90

LF 60 60
HF 90 90
TP 90 90

nLF 30 30
nHF 30 30
LF/HF 30 30

cLFx 30 30
cLFy 30 30
cHFx 30 30
cHFy 30 30
cTPx 30 30
cTPy 30 30

S 30 30
SD1 30 60
SD2 60 60
SD1/SD2 30 60

standard, and compared using correlation analysis, Kruskal-Wallis tests
and Bland-Altman analysis. They found that the minimum duration of
PPG segments varied according to group age and index, with a minimal
duration of 10 s for AVNN; 20 s for HF; 30 s for RMSSD; 60 s for
pNN50; 90 s for LF, nLF, nHF, and LF/HF; 240 s for SDNN; and 270
s for VLF. Most of these results are in line with those found in the
current experiment, where it was found that shorter segments can be
used to extract PRV indices, and the differences in the suggested lengths
could be explained by the fact that these authors used shorter segments
as gold-standard than what was used in this experiment, and the
effects of physiological factors that are not considered using simulated
data, as well as the amount of variability included in the simulated
PRV information. Regardless, these authors suggest the reliability of
obtaining most PRV indices from ultra-short PPG signals. Similarly,
Finžgar and Podržaj [11] investigated the feasibility of assessing ultra-
short-term PRV from video PPG, and compared their results to most of
the previous studies using video-based PPG and ultra-short recordings.
Although their results suggest that SDNN, RMSSD and pNN50 could
be reliably extracted from ultra-short PPG segments (10 s, 30 s and
60 s), their gold standard was indices extracted from 60 s segments,
which should not be considered as acceptable. Hence, the validity of
their results is under question and further analyses should be performed
in the area of video-based PRV analysis. Nonetheless, other studies
have suggested the validity of using segments as short as 60 s for PRV
analysis in healthy fit subjects [23,24].

Recently, similar studies have been reported for ECG-derived ultra-
short-term HRV analysis. Kim et al. [12] showed that ultra-short-term
HRV could be assessed under static conditions with ECG signals with
duration between 30 and 240 s, while under dynamic conditions longer
segments are needed, even with unreliable results for some indices
regardless of the duration of the segments for ultra-short-term analysis.
Gallardo et al. [25] extracted LF/HF and SD1/SD2 from HRV traces
with varying lengths, and concluded that signals with duration of
180 s and 120 s, respectively, should be considered as the minimum
reliable duration for ultra-short-term HRV analysis. Finally, Canino
et al. [26] evaluated the feasibility of using 120 s ECG signals for the
extraction of ultra-short-term HRV indices under different physiological
conditions and data pre-processing techniques, and found that indices
carry information related to different physiological states, although
6

were not strongly predictors of aerobic fitness in healthy men, and
found that most indices are robust to artifact correction procedures.

This study has some limitations. Firstly, simulated PPG signals with
simulated PRV information were used in this study. This was done for
two main purposes. It is simpler to obtain larger number of samples
using simulated data, which gives statistical validity to the experiment.
Also, by simulating PRV information it was possible to obtain a gold
standard that was not HRV information obtained from the ECG. As
mentioned, physiological aspects may explain part of the differences
between HRV and PRV, hence comparing them in order to establish
methodologies and strategies for obtaining PRV information is not
ideal. Regardless of the benefits, using simulated PPG signals may not
represent the entire variation of the PPG morphology and PRV changes,
and the results from these experiments need to be validated using real
PPG data. The simulation of PRV information may also affect the results
obtained. However, PRV was simulated using physiologically feasible
values. Future studies should optimise the PRV model to have a better
reflection of real PRV information, using alternative models such as
the integral pulse frequency modulation model [27]. It is important
to note that the inclusion of four sinusoidal waves (2 for LF, and 2
for HF) in this model was intended only for increasing the complexity
of the PRV information, rather than to suggest that this is the real
behaviour of PRV and its related physiological processes. Hence, it is
critical to validate this model or utilise a more robust model, especially
for frequency-domain analyses. Secondly, this study considered noise
free signals. This was done in order to have a level of control on the
extraction of PRV information from PPG signals. Future studies should
consider including noise to the signal to evaluate its effects on PRV
analysis and the results found in this study. Moreover, although it
was found that short segments reliably reflect the behaviour of PRV
information extracted from these signals, the results need to be further
validated using data obtained from healthy and ill subjects, in order to
understand the effects of physiological processes that take part on PRV
changes.

5. Conclusion

The reliable extraction of PRV information from short PPG signals
is crucial for the continuous estimation of PRV in real-life scenarios
and for its applications in wearable and consumer devices. According
to the results found in this study, PPG segments should be longer than
90 s for reliable estimation of all time domain, frequency domain and
Poincaré plot PRV indices, which is in line with several of the results
reported in the literature. Nonetheless, further studies with real data
both from healthy and unhealthy populations are needed to understand
the differences among ultra-short-, short- and long-term PRV indices,
and how and when could shorter segments of PPG signals be used for
reliable estimation of PRV.
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