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Abstract. Connector-Centric Design (XCD) is centred around a new formal ar-
chitectural description language, focusing mainly on complex connectors. In-
spired by Wright and BIP, XCD aims to cleanly separate in a modular manner
the high-level functional, interaction, and control system behaviours. This can
aid in both increasing the understandability of architectural specifications and the
reusability of components and connectors themselves. Through the independent
specification of control behaviours, XCD allows designers to experiment more
easily with different design decisions early on, without having to modify the func-
tional behaviour specifications (components) or the interaction ones (connectors).
At the same time XCD attempts to ease the architectural specification by follow-
ing (and extending) a Design-by-Contract approach, which is more familiar to
software developers than process algebras like CSP or languages like BIP that are
closer to synchronous/hardware specification languages. XCD extends Design-
by-Contract (i) by separating component contracts into functional and interac-
tion sub-contracts, and (ii) by allowing service consumers to specify their own
contractual clauses. XCD connector specifications are completely decentralized,
foregoing Wright’s connector glue, to ensure their realizability by construction.

Keywords: Software architecture; Modular specifications; Separation of func-
tional interaction and control behaviours; Design by contract; Connector realiz-
ability.

1 Introduction

Architectural descriptions of systems are extremely valuable for communicating high-
level system design aspects and the different solutions that have been evaluated for
meeting system-wide, non-functional properties. The need for components and con-
nectors to be first-class architectural entities has been advocated from the very begin-
ning [15, 30]. However, support for complex connectors is minimal in languages used
more widely by practitioners currently, e.g., AADL [13], SysML [6]. These rely mostly
on simple interconnection mechanisms like procedure-calls and provide no support for
specifying complex connectors, focusing their attention mostly upon components. The
end result is that architectures end up more like low-level designs [11].

∗ This work has been partially supported by the EU project FP7-257367 IoT@Work.
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With minimal support for connectors, components have to incorporate specific in-
teraction protocols, thus reducing their reusability. Worse yet, when component specifi-
cations omit to specify explicitly which protocols they have been designed for, we have
the problem of “architectural mismatch” [14], i.e., the inability to compose seemingly
compatible components, due to the (undocumented) assumptions these make on their
interaction with their environment. In quite a few cases designers are supposed to use
specific components that act as connectors in order to represent complex connectors.
This hinders analysis, as it is not possible to identify automatically which components
represent components and which ones represent connectors. It also places a lot of re-
sponsibility upon designers for ensuring that the architectural abstraction constraints are
respected. It is similar to trying to encode some O-O features by hand in C – possible
but very difficult to get (and keep. . . ) correct. In our view the main value of software
architectures is to enable early formal system analysis and not to be used for code gen-
eration alone. As such, an ADL needs to cleanly represent the various entities, in order
to aid the automation of architectural analysis.

The Connector-Centric Design (XCD) approach attempts to apply Wirth’s equation
“Algorithms + Data Structures = Programs” [35] at an architectural level. We advocate
that “Connectors + Components = Systems”, with connectors being essentially decen-
tralized algorithms and components the equivalent to data structures [22]. XCD focuses
on improving the modularity of architectural specifications, so to aid their development,
their formal analysis, and the experimentation with different design solutions. Complex
connectors are at the very centre of XCD, since it is them that are responsible for meet-
ing system-wide, non-functional requirements that no component can meet, such as
reliability, performance, etc. In the following we shortly introduce the reasons behind
the three orthogonal goals of XCD, namely support for complex connectors, support for
external control strategies, and specification through a Design by Contract approach.

Complex Connectors for Architectural Analysis Herein we use an example from
electrical engineering to demonstrate the importance of complex connectors for analyz-
ing system architectures. Let us consider k concrete electrical resistors, r1, · · · ,rk, i.e.,
the system components. When using a sequential connector (→), the overall resistance
is computed as R→(N,{Ri}N

i=1) = ∑
N
i=1 Ri, where N,Ri are variables (Ri correspond to

connector roles), to be assigned eventually some concrete values k,r j. If using a par-
allel connector (‖) instead, it is computed as R‖(N,{Ri}N

i=1) = 1/∑
N
i=1 1/Ri. So the

interaction protocol (connector) used is the one that gives us the formula we need to
use to analyze it – if it does not do so, then we are probably using the wrong connec-
tor abstraction. The components (r j) are simply providing some numerical values to
use in the formula, while the system configuration tells us which specific value (k, r j)
we should assign to each variable (N, Ri) of the connector-derived formula. By simply
enumerating the wires between resistors, as AADL and SysML do, we miss the forest
for the trees. Analysis becomes difficult and architectural errors can go undetected until
later development phases. Indeed, we are essentially forced to reverse-engineer the ar-
chitect’s intention in order to analyze our system – after all, the architect did not select
the specific wire connections by chance but because they form a specific complex con-
nector. The current situation is similarly to coding with labels and go-to statements and
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expecting our compilers to identify the higher-level looping and procedural constructs
within our code so as to analyse and optimize it.

Connector Role Strategies for Control/Design Decisions A cleaner separation of
functional and interaction behaviour aids in increasing the reusability of both compo-
nents and connectors. However, one can go even further, e.g., as in BIP [8], and attempt
to separate the control behaviour as well. XCD supports this through modular connec-
tor role strategies, which are specified externally to connectors, and so can be replaced
and modified easily. These are used to specify different design solutions for various is-
sues that basic role specifications do not address (on purpose) so as to be as reusable as
possible. In fact, such role strategies are already being used in good designs implicitly.
Consider a simple call in C: foo(i, ++i), where i=1. According to the C language
specification this call is undefined since the second parameter expression (++i) may
potentially change the value of the first one (i). So we can obtain either foo(1,2)
or foo(2,2). The C language specification does not specify a specific order for eval-
uating parameters either in the caller or the callee role, instead under-specifying the
procedure-call connector specification on purpose. If compilers have multiple cores at
their disposal they are allowed to evaluate parameters in parallel, instead of having to
evaluate each one in a specific sequential order. The C language specification allows
compilers to apply different evaluation strategies on the caller role by delaying this de-
sign decision until the optimal choice can be made, based on the call context and the
implementation costs of the available strategies.

Design by Contract JML [9] seems to be gaining popularity among developers, as
they use it for “test-driven development”. XCD attempts to follow this trend so as to
maximize adoption by practitioners. Thus, it departs from Wright’s [1] use of a process
algebra (Hoare’s CSP [18]) and follows a Design by Contract (DbC) [28] approach like
JML instead, specifying systems through simple pairs of method pre-/post-conditions,
based upon Hoare’s logic [17]. In fact, XCD extends DbC in two ways. First, it sep-
arates the component functional behaviour from its minimal interaction requirements.
Second, it allows service consumers to specify their own contractual clauses.

1.1 Running Example – The Dining Philosophers

We present XCD through the classic Dining Philosophers problem, since one needs
a complex enough system to demonstrate the need for the different aspects of the ap-
proach. This system can be designed with either decentralized or centralized control
(i.e., a butler), and for each of these general architectural solutions, there are differ-
ent specific design solutions for controlling the system in particular ways (e.g., for
deadlock-freedom). In the dining philosophers problem a set of n philosophers occa-
sionally sit on seats at a round table, sharing a fork at their right and left. Each philoso-
pher needs both forks to be able to eat but if all philosophers get one fork then there is
a deadlock, since no philosophers put down a fork until they have finished eating.

We show how designers can specify the system architecture and experiment with
different control policies, without changing the specifications of either the connectors
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Fig. 2: XCD language top-level structure

or components. Fig. 1 shows a possible configuration of the dining philosophers case
study, for two philosophers. Some of the elements there (ports, port variables, etc.) are
explained later, though Fig. 2 presents a quick summary of the main language struc-
ture. All constraints in XCD’s elements in Fig. 2 are expressed as pre/post-conditions.
Strategies may introduce their own data, predicates, and constraints but can refer only to
methods of port variables defined in a role. Designers are expected to start an architec-
tural description by the components, then derive connectors for them, and finally specify
appropriate strategies. Connector roles are defined over component interface fragments,
as is done in generic programming [10,29]. For example, C++’s STL defines algorithm
sort on a sequence of elements of type T, using T’s less-than, assignment, and copy
constructor operations.
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void sit(ID caller) throws (NullIDEX);

void arise(ID caller) throws (NullIDEX, WrongCallerEX,InteractionEX);

Fig. 3: The sit/arise (iSA) Seat interface

<D =
[
ID h :=⊥

]
,preds =

Occupied = (h 6=⊥), NullCaller(c) = (c =⊥),

CallerIsHolder(c) = (c = h), HolderIsCaller(c) = (h′ = c),

NoHolder = (h′ =⊥),

,
Ps = {piSA

s },Pp = /0,φ ,χ >

(a) Seat top-level specification[
sφ

1 =
(
ps,sit(c),¬NullCaller(c),HolderIsCaller(c)

)
sφ

2 =
(
ps,sit(c),NullCaller(c),NullIDEX

) ]


aφ

1 =
(
ps,arise(c),¬NullCaller(c)∧CallerIsHolder(c),NoHolder

)
aφ

2 =
(
ps,arise(c),NullCaller(c),NullIDEX

)
aφ

3 =
(
ps,arise(c),¬CallerIsHolder(c),WrongCallerEX

)


(b) Seat functional constraints (φ )[
sχ

1 =

(
ps,sit(c),

when(¬Occupied),T

)] aχ

1 =
(
ps,arise(c),Occupied,T

)
aχ

2 =
(
ps,arise(c),¬Occupied,InteractionEX

)


(c) Seat interaction constraints (χ)
Fig. 4: Seat component specification

1.2 Paper Structure

We consider first component specifications in XCD, concentrating then on connectors
– their specification in a decentralized manner that facilitates their implementation and
analysis, and the fundamental properties that a connector should provide. We then con-
sider role strategies for expressing control and other design decisions, and present an
evaluation of the approach before discussing related work and concluding.

2 XCD Components

Fig. 3 shows the iSA interface implemented by Seat components; the get/put one im-
plemented by Forks (iGP) is exactly the same. Method sit throws a NullIDEX excep-
tion, while arise also throws WrongCallerEX when the Seat is occupied by someone
that is not the caller. However, arise throws yet another exception – the enigmatic
InteractionEX. Components “throw” this special exception when their minimal in-
teraction constraints (rather than functional ones) have been violated, to denote subse-
quent chaotic behaviour. If one opens the door of a washing machine while it is washing,
subsequent behaviours include everything, even electrocution.

2.1 Extending DbC – Different Contract Types

Fig. 4a shows the Seat component specification. It defines its data variable set (D)
and some helper predicates (preds). Then it defines two sets of ports, (Ps, Pp), for



6 Christos Kloukinas and Mert Ozkaya

pre(sχ

1 )→
∧(pre(sφ

1 )→ post(sφ

1 )

pre(sφ

2 )→ post(sφ

2 )

)
, pre(aχ

1 )→
∧


pre(aφ

1 )→ post(aφ

1 )

pre(aφ

2 )→ post(aφ

2 )

pre(aφ

3 )→ post(aφ

3 )

, pre(aχ

2 )→ post(aχ

2 )

Fig. 5: Constraint composition semantics

the “socket” and “plug” ports (empty set) respectively, i.e., the ones providing some
interface and these using some interface – what in CORBA are facets and receptacles.
Finally, it defines functional (φ ) and interaction (χ) constraints, as in Fig. 4b and 4c.

All constraints use the syntax (port-expr., method, pre-condition, post-condition).
They are grouped ([]) by the (port-expr., method) pair they apply to. They are labelled
here for easy reference as (s|a)(φ |χ) – for sit/arise (s|a) and for functional/interac-
tion (φ |χ). So in sφ

1 , ps’s sit pre-condition is ¬NullCaller(c) and HolderIsCaller(c)
its post-condition, where c is sit’s parameter. This is a JML “normal behaviour”, un-
like sφ

2 that throws a NullIDEX if the pre-condition NullCaller(c) is true. Constraints
aφ

1 , aφ

2 are similar ones for arise, while aφ

3 covers the case when the pre-condition is
¬CallerIsHolder(c). In that case, the post-condition throws a WrongCallerEX.

This last constraint aφ

3 introduces the difference between functional and (minimal)
interaction constraints. Method arise accepts calls where the caller is not the current
seat holder and throws an exception, while sit does not specify anything about this.
According to sφ

1 it seems it simply replaces Seat’s holder with the caller. However, this
is captured in Fig. 4c, through Seat’s minimal interaction constraints. Constraint sχ

1 asks
that sit be delayed until Occupied is false. This is expressed using the “when” keyword
as in JML’s extension for multi-threaded programming [33], though in XCD functional
constraints are not allowed to use it. To relate it to JML, one can think of it as a “normal”
interaction behaviour, describing a method’s acceptable concurrent behaviours. For all
“normal” interaction constraints of components, the post-condition is always T. Fig. 4c
also specifies the minimal interaction constraints of arise. Constraint aχ

1 states that
calling arise on an occupied Seat is acceptable. Constraint aχ

2 , however, states that
calling arise on an unoccupied Seat, results in an InteractionEX exception (which
functional constraints cannot use). This is a situation that Seat does not know how to
deal with, like calling a method on a component without having initialized it first. An
InteractionEX exception leads to undefined/chaotic component behaviour.

Interaction constraints take precedence over functional ones and if both can throw
an exception then the exception thrown is InteractionEX. With pre(φ) and post(φ)
standing for the pre-condition and the post-condition respectively of a constraint φ , the
real specification of the Seat constraints is shown in Fig. 5. As highlighted there for
aχ

2 , when an interaction exception’s precondition is true, then the functional constraints
are ignored. Otherwise, when the pre-condition of a normal interaction constraint is
satisfied, the functional constraints should also be satisfied.

If one specified contracts in the usual JML manner, they would need F × I cases in
the worst case, combining F functional and I interaction constraints, e.g., for arise:
Case 1: pre(aχ

1 )∧pre(aφ

1 )→ post(aφ

1 ) Case 3: pre(aχ

1 )∧pre(aφ

3 )→ post(aφ

3 )
Case 2: pre(aχ

1 )∧pre(aφ

2 )→ post(aφ

2 ) Case 4: pre(aχ

2 )→ post(aχ

2 )
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<D =

{
Bool wte := T,Bool hs := F,

Bool hl := F,Bool hr := F

}
,preds =

[
Eat = (wte∧hs′∧hl′∧ lr′),

Think = ¬(wte∨hs′∨hl′∨ lr′)

]
,

Ps = /0,Pp = {piSA
p s,p

iGP
p fR,piGP

p fL},φ ,χ >

(a) Philosopher top-level specification[(
pp s,sit(self),T,hs′= T∧wte′= ¬Eat

)]
[(

pp fL,get(self),T,hl′= T∧wte′= ¬Eat
)]

[(
pp fR,get(self),T,hr′= T∧wte′= ¬Eat

)]
[(

pp s,arise(self),T,hs′= F∧wte′= Think
)]

[(
pp fL,put(self),T,hl′= F∧wte′= Think

)]
[(

pp fR,put(self),T,hr′= F∧wte′= Think
)]

(b) “Normal” functional constraints (φ )

[(pp s,sit(self),when(wte),T)]

[(pp fL,get(self),when(wte),T)]

[(pp fR,get(self),when(wte),T)]

[(pp s,arise(self),when(¬wte),T)]

[(pp fL,put(self),when(¬wte),T)]

[(pp fR,put(self),when(¬wte),T)]

(c) Philosopher interaction constraints (χ)

Fig. 6: Philosopher component specification

Repeating “pre(aχ

1 )” each time makes specifications more difficult to read than they
need be and much easier to get wrong. The introduction of the (minimal) interaction
constraints imposes a much cleaner and modular manner (and guides the specification
of connectors as discussed later).

2.2 Extending DbC – Service Consumer Contracts

In DbC service providers specify pre-/post-conditions for their methods but service con-
sumers cannot express their own contractual clauses on them. Indeed, most languages
do not allow consumers to even declare the services/interfaces they use. However, in
component models like CORBA one declares both the services it provides (our sockets)
and those it consumes (our plugs). Here we extend DbC further, so that we can specify
contracts for consumed services as well. This is done for the Philosopher in Fig. 6a.
Philosopher has a Boolean variable wte (“want to eat”), and three more (hs, hl, hr) to
state whether it has a Seat, a left and a right Fork respectively. These change their values
according to its functional constraints in Fig. 6b, which apply when a method does not
throw an exception – that is why we call them “normal”. On exceptions components do
not update their data. Keyword self denotes the ID of the component instance.

The Philosopher interaction constraints in Fig. 6c state when services may be re-
quested from others. These constraints specify no resource acquisition/release order.
Philosopher is free to acquire a Seat after both Forks or in between them. In fact, it
can even acquire or release a resource multiple times. The constraints state that when it
wants to eat it will need to acquire all three resources, without releasing any of them.
When it does not want to eat, it will release all three resources (again in some unspec-
ified order), without attempting to re-acquire any of them until all of them have been
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released. These constraints were added so that the system can deadlock. Otherwise,
Philosopher can always release the resources it holds when those it needs are not avail-
able. It is exactly for this that we have introduced functional and interaction constraints
to plug ports (required interfaces). They are needed to express the constraints under
which the service providers must operate, i.e., the service’s “environment model”.

2.3 Component Structure and its Translation to FSP

XCD components have six components – Data, Predicates, Socket Ports, Plug Ports,
Functional Constraints, and Interaction Constraints. We encode these into the FSP pro-
cess algebra [26] by first creating a process for the Data component of each component
C, that acts as the XCD component’s internal memory.

1 C_Mem = D([ InitialValue(V)])*,

2 D([Name(V):Type(V)])* = read([Name(V)])* -> D([Name(V)])*

3 | write([Name(V)_n:Type(V)])* -> D([Name(V)_n:Type(V)])* .

That is, a state of the memory is indexed for each Data variable (V) and the initial state is
selected according to the initializations in the Data component. Name/Type(V) produces
the name, respectively type, of the variable and the star operator means zero or more oc-
currences of its operand. Our translator currently supports Boolean and bounded integer
variables. For Philosopher, this produces:

1 Philosopher_Mem = D[True][ False][ False][ False],

2 D[wte:Bool][hs:Bool][hl:Bool][hr:Bool]

3 = ( read[wte][hs][hl][hr] -> D[wte][hs][hl][hr]

4 | write[wten:Bool][hsn:Bool][hln:Bool][hrn:Bool]

5 -> D[wten][hsn][hln][hrn] ) .

Then each port P of a component C is encoded as an FSP process that locks the memory,
reads its current state, and evaluates the interaction constraints of the port’s methods.

1 C_P(ID=1) = Port ,

2 Port = (lock -> read([Name(V):Type(V)])* -> P([Name(V)])*),

3 P([Name(V):Type(V)])* =

4 {forall(m : Method , i : Interaction_Constraint)

5 when(pre(interaction(m, i))) m([Name(arg):Type(arg )])*

6 -> internal_m ([Name(arg )])* ([Name(V)])*

7 -> internal_m ([Name(arg )])* ([Name(V)_n:Type(V)])*

8 [r:RES][e:EX]

9 -> ( when (NoEXCEPTION != e) unlock

10 -> RES_m ([Name(arg )])*[r][e] ([Name(V)])*

11 ([Name(V)_n])*

12 | when (NoEXCEPTION == e) write([Name(V) n])* -> unlock

13 -> RES_m ([Name(arg )])*[r][e] ([Name(V)])*

14 ([Name(V)_n])* )

15 ...

16 } // end of forall(m, i)

17 | when({ forall(m,i) !pre(interaction(m, i))}) unlock ->Port ,
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Here, when a method m’s ith interaction precondition is satisfied, a call to it is accepted
(m([Name(arg):Type(arg)])*) and it is passed to another process through the internal m
action. The other process, which can be seen as m’s “implementation”, responds by an
action internal m which has the same values for the arguments and the new values for
the Data variables, as well as the result (r) and exception (e) returned. When there is an
exception the memory is unlocked and we pass control to sub-process “RES m”. When
there is no exception we update the memory, unlock it and then pass control to RES m.
Here, RES m is a sub-process of P (one per method m) responsible for checking m’s
functional constraints, using m’s arguments (arg), return type (r), exception thrown (e),
and values of the Data variables (V). Predicates are expanded wherever they are used.

Processes implementing a method m (those controlling the “internal m” actions),
follow this pattern, where C is the component name and P its port:

1 C_P_m(ID=1) = (

2 internal_m ([Name(arg)]: Type(arg))* ([Name(V):Type(V)])*

3 -> ({ forall(f : Functional_Constraint)

4 when (pre(functional(m,f)))

5 internal_m ([Name(arg )])* ([V’])* [r’][e’] -> C_P_m }

6 | when !(CP2) incomplete_pre_conditions -> ERROR).

7 // where CP2 is {∨ f pre(functional(m,f))} -- see eq. (2) below

2.4 Testing Architectural Components
Following Fig. 5’s constraint semantics, one needs to check that (CP1) the interaction
pre-conditions are complete; and that whenever the normal interaction pre-conditions
are satisfied that (CP2) the functional pre-conditions are complete; and (CP3) the func-
tional constraints are consistent.

CP1 = ∀m.
∨
n

pre(mχ
n ) (1)

CP2 = ∀m.
∧
k

(
pre(mχ

k )→
∨
n

pre(mφ
n )

)
(2)

CP3 = ∀m.
∧
k

(
pre(mχ

k )→
∧
n

[
pre(mφ

n )→post(mφ
n )
])

(3)

In equation (1) n ranges over both the normal and exceptional interaction constraints
and the predicate when(φ) always evaluates to T. So for Seat’s sit, we need to verify
that pre(sχ

1 ) holds. Being a when predicate, this is the case. For Seat’s arise we can
also verify that (pre(aχ

1 )∨ pre(aχ

2 )) = (Occupied∨¬Occupied) holds. In equation (2)
k ranges over the normal interaction constraints of method m and n ranges over all its
functional constraints. Both here and in equation (3) the predicate when is evaluated as
the identity function, i.e., when(φ) = φ . This is because we want to evaluate the com-
pleteness of the functional pre-conditions only when the method is eventually executed,
in which case the when condition should hold.

The CP3 condition is effectively checked in our FSP models through the RES m
sub-processes of ports mentioned in the previous section:
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1 RES_m([Name(arg):Type(arg )])*

2 [r:RES][e:EX] ([Name(V):Type(V)])* =

3 Let CP3={∧ f !pre(functional(m,f)) || post(functional(m,f))}

4 when ( CP3) m_ret ([Name(arg )])* [r][e] -> Port

5 | when (! CP3) inconsistent_normal_conditions -> ERROR

3 XCD Connectors

We can now consider connectors, as Fork is similar to Seat. If we opt for something like
procedure-call, event-bus, etc. then we are specifying our system at a very low level. The
extra details obfuscate the design, making it difficult to identify the high-level interac-
tion protocols, thanks to which the system achieves its non-functional requirements.
This is why XCD focuses instead on complex connectors. These connectors consist of
a set of roles, each one with a set of port variables. Role port variables are assumed by
some component ports, as specified by the architectural configuration.

Glue-less Connectors XCD connectors differ from those of Wright [1], since XCD
employs no “glue” element for coordinating role behaviours. The glue is problematic
for a number of reasons. First, the glue is a choreography, so one needs to realize it as
a set of individual services (i.e., role implementations) composed in parallel. But [2, 3]
have shown that the choreography realization problem is undecidable in general. De-
ciding realizability in certain cases is indeed possible, e.g., [7], and in some cases unre-
alizable choreographies can be repaired by extending the recipient set of messages [25].
However, this is the least of the problems introduced by glues. More importantly, if we
need to consider multiple instances of some role, then we need to manually specify in
the glue all the acceptable composed behaviours of these instances. For example, when
considering a market system with one consumer and two merchants in [12], the glue
describes all possible interactions of the three roles. This does not scale – it is imprac-
tical to specify a glue with five or more merchants and quasi-impossible to do so for N
merchants. Finally, the glue hinders the architectural analysis for further non-functional
requirements, such as reliability, performance, real-time behaviour, etc. It introduces an
artificial centralization point in the connector, even if the protocol represented by the
connector does not have such a centralization point, e.g., the procedure-call. This makes
analysis more difficult, since now one has to consider the real centralization points (e.g.,
for reliability analysis), while ignoring the fictitious ones (the glue elements of the var-
ious connectors). It also makes the modelling more difficult to validate. For example,
in [12] the authors perform a probabilistic analysis of a market system, assigning a rate
R1 to all transitions between the consumer role and the glue and a rate R2 to all tran-
sitions among the glue and the merchant roles. However, transitions between the con-
sumer and the glue represent in reality requests from the consumer to the merchants, as
well as responses from the merchants to the consumer. The transitions among the glue
and the merchants also represent the same requests and responses. We fail to see how
these rate assignments can be justified – in our view, the glue complicates the situation
so much that it is very easy to produce models that are difficult to understand, and, thus,
difficult to ensure that they represent the real system faithfully.
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< R =
{

rp,rs,rfL,rfR
}
,Chan >

(a) Connector top-level specification

rp =



D =


Bool sitting := F,

BoolgotLF := F,

BoolgotRF := F

 ,

preds = /0,Pp
v =

{
pviSA

p s,pviGP
p fL,

pviGP
p fR

}
,

Ps
v = /0,χp


rs=
[
Ps

v =
{

pviSA
s

}]
rfL=

[
Ps

v =
{

pviGP
fL

}]
rfR=

[
Ps

v =
{

pviGP
fR

}]
(b) Role (R) definitions

[(
pvp s,sit(self),when(¬sitting),sitting′ = T

)]
[(

pvp s,arise(self),when(sitting),sitting′ = F
)]

[(
pvp fL,get(self),when(¬gotLF),gotLF′ = T

)]
[(

pvp fL,put(self),when(gotLF),gotLF′ = F
)]

[(
pvp fR,get(self),when(¬gotRF),gotRF′ = T

)]
[(

pvp fR,put(self),when(gotRF),gotRF′ = F
)]

(c) Philosopher role constraints (χp)

c

p,s = (pvp s,pvs),c



p, f l = (pvp fL,pvfL),

c

p, f r = (pvp fR,pvfR)
(d) Channels (Chan) connecting port-variables

Fig. 7: Dining philosophers decentralized control connector

Wrapper-like Connectors In [1], a component should implement the roles it assumes,
L (Comp) ⊆ L (Role), i.e., have the same set of behaviours as the role or a subset
of that. This seems too constraining and limiting component reusability. Instead, XCD
components focus on implementing just the minimum interaction constraints that they
need to operate correctly. The roles they assume act as a sort of wrapper, controlling
their behaviour so that it meets the expected role behaviours.

Another way of looking at it is to consider components as machines that (modulo
their constraints) execute the script (constraints) specified by the connector roles they
assume, just like human actors do.

3.1 Decentralized Control Connector

Fig. 7 shows the specification of a complex Decentralized Control connector for the din-
ing philosophers. The connector defines a set of roles and interaction channels (Fig. 7a).
The specifications of the roles are shown in Fig. 7b. Each of them has five constituent
parts: a set of role data variables (D), a set of predicates (preds), a set of plug port vari-
ables (Pp

v), a set of socket port variables (Ps
v), and a set of interaction constraints (χ).

Roles rs, rfL, and rfR, have socket port variables only (rest omitted for brevity). Role rp
uses variables to keep track of the state of resources and to control it through its con-
straints in Fig. 7c so that it only acquires resources when it does not hold them already
and releases them when it does hold them. Constraints modify role variables only when
the respective methods do not raise exceptions. Channels in Fig. 7d state which role
port variables are linked to each other – all the channels we use are rendez-vous ones.

This connector does not describe the full system configuration. If there are n in-
stances of the Philosopher, Seat, and Fork components in the system then there should
be n instances of the Decentralized connector as well, since a single connector instance
can only connect one Philosopher, with one Seat and two Forks.
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3.2 FSP Encoding of XCD Connector Roles

Encoding connector role port variables is similar to encoding component ports. The
only difference is that since roles do not have functional constraints, a request for a
method “m([Name(arg):Type(arg)])*” is immediately followed by a response through
its corresponding “m ret” action (performed by some component’s RES m sub-process).

3.3 Fundamental Connector Properties

There are two fundamental connector safety properties: (XP1) local deadlock-freedom;
and (XP2) interaction exception-freedom. Local deadlock-freedom (XP1) requires each
connector role to not cause its component to deadlock by constraining it too much. This
can be checked at a local level by showing that L (Comp ‖ Role)@Σ Role ⊆ L (Role),
where @ projects a language on an alphabet.

However, interaction exception-freedom (XP2) is a connector-level property. It re-
quires that component socket ports never throw an interaction exception, no matter how
the component plug ports behave. This can be checked by composing the connector
with the corresponding components that assume its roles, while setting all interaction
pre-conditions of component plug ports to T (i.e., those in Fig. 6c). Doing so allows us
to explore all possible interaction patterns that the connector roles allow for the compo-
nents and verify that interaction exceptions have been rendered impossible by it.

Of course, these two safety properties do not guarantee that the connector as a whole
(or for that matter the system) will be deadlock-free. Nevertheless we do not view this
as being problematic because we believe that connector-level deadlock-freedom is best
met through external role strategies as discussed in section 4.

4 Role Strategies – Control/Design Decisions

XCD advocates the underspecification of connectors – additional interaction properties
are to be imposed through modular role strategies [22]. These can enforce an action or-
der, e.g., that Seat is acquired before the Forks, or render the system deadlock-free.
Deadlock-freedom can usually be achieved through different techniques. Instead of
hard-coding one in the connector, XCD allows designers to re-use the same connec-
tor specification and experiment with different strategies for it in a modular fashion.

Fig. 8 shows examples of such strategies for the Philosopher role. The strategy in
Fig. 8a forces Seat to be acquired before the Forks, while that of Fig. 8b forces Forks to
be released first. Then the asymmetry strategy in Fig. 8c avoids deadlocks by picking
a different Fork when the ID of the caller c is odd or even. The strategy in Fig. 8d also
avoids deadlocks but does so by always acquiring the Fork with the smallest ID first.

Strategies are encoded in FSP like roles are. Finally, configurations are encoded by
a series of action prefixing, renaming, etc., that are too tortuous to describe in detail.

5 Evaluating XCD’s Modular Specifications

We have encoded (first manually, then automatically) these architectural specifications
in the FSP process algebra [26] and have verified them automatically. Our goal was to
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[(
pvp fL,get(c),when(sitting),T

)][(
pvp fR,get(c),when(sitting),T

)]
(a) Resource acquisition order

[(
pvp s,arise(c),when¬(gotLF∨gotRF),T

)]
(b) Resource release order

[(
pvp fL,get(c),when(gotRF∨ c%2 = 0),T

)][(
pvp fR,get(c),when(gotLF∨ c%2 6= 0),T

)]
(c) Deadlock-avoidance by asymmetry – for even/odd c[(

pvp fL,get(c),when(gotRF∨ (rfL.ID < rfR.ID)),T
)][(

pvp fR,get(c),when(gotLF∨¬(rfL.ID < rfR.ID)),T
)]

(d) Deadlock-avoidance by resource order – the fork with the least ID has priority

Fig. 8: Philosopher role strategies (their constraints)

establish that our architectural specifications can be verified automatically indeed and to
obtain some early results on the usefulness of modular specifications. In particular we
wanted to evaluate the usefulness of control strategies and how these could aid design-
ers when developing an architecture. In total, we considered 12 different configurations
for the decentralized system, shown in Fig. 1 for two philosophers, using different com-
binations of strategies. In all these cases our models remained the same, with the only
difference being the enabling/disabling of strategies. This cannot be stressed enough –
without such a modular specification it would have been extremely difficult to encode
in FSP the different models of connector/strategy combinations or, even worse, the dif-
ferent models of connector/strategy/component combinations if we were to use AADL-
like simple connectors. Not having a compiler initially (a prototype one is available
now) had forced us to increase the modularity of our language as much as possible.
This modularity maximizes architectural exploration in practice – one can start with
minimal component and connector specifications and test multiple strategies without
having to modify any specifications.

The different role strategies defined in Fig. 8 allow designers to easily experiment
with controlling their system and evaluating different design decisions early on. XCD
aids designers to decide on, and explicitly document, the relative importance of the vari-
ous system properties and the specific solutions they have provided for each. XCD also
makes it easier to experiment with different strategies and configurations of strategies,
as these are represented explicitly and externally to connectors.

Table 1a shows results from combinations of the two ordering strategies of Fig. 8a
and Fig. 8b with the asymmetry strategy of Fig. 8c and the resource order strategy of
Fig. 8d, for a system with 2 philosophers. Table 1b, Table 1c, and Table 1d show results
for 3, 4, and 5 philosophers respectively. We used LTSA v. 2.2 with 7000 MB of RAM.
Surprisingly, we see that the best state space reduction (third column, headed “Red.
(%)”) for two strategies is obtained when combining the two strategies that constrain
the acquisition (Acq.) and release order (Rel.) of resources (64%, 80%, 88%, and 93%
respectively), even though these do not render the system deadlock-free. These reduc-
tions are almost the double of those achieved by the strategies for deadlock-freedom
(As., RO) on their own (33%, 40%, 51%, and 58% respectively).
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Table 1: Different decentralized control strategy combinations
(a) 2 Philosophers

Strategies States Red.
(%) Trans. Red.

(%)
Dead-
lock

No strategies 505 0.00 1104 0.00 Yes
Acq(uisition) 303 40.00 628 43.12 Yes
Rel(ease) 345 31.68 732 33.70 Yes
As(ymmetry) 335 33.66 708 35.87 No
Acq./Rel. 179 64.55 352 68.12 Yes
Acq./As. 245 51.49 504 54.35 No
Rel./As. 205 59.41 412 62.68 No
Acq./Rel./As. 133 73.66 256 76.81 No

Res. Order (RO) 335 33.66 708 35.87 No
Acq./RO 245 51.49 504 54.35 No
Rel./RO 205 59.41 412 62.68 No
Acq./Rel./RO 133 73.66 256 76.81 No

(b) 3 Philosophers

Strategies States Red.
(%) Trans. Red.

(%)
Dead-
lock

No strategies 12750 0.00 42060 0.00 Yes
Acq(uisition) 6381 49.95 20178 52.03 Yes
Rel(ease) 6615 48.12 21030 50.00 Yes
As(ymmetry) 7550 40.78 24320 42.18 No
Acq./Rel. 2532 80.14 7452 82.28 Yes
Acq./As. 4850 61.96 15278 63.68 No
Rel./As. 3260 74.43 9892 76.48 No
Acq./Rel./As. 1667 86.93 4804 88.58 No

Res. Order (RO) 7550 40.78 24320 42.18 No
Acq./RO 4850 61.96 15278 63.68 No
Rel./RO 3260 74.43 9892 76.48 No
Acq./Rel./RO 1667 86.93 4804 88.58 No

(c) 4 Philosophers

Strategies States Red.
(%) Trans. Red.

(%)
Dead-
lock

No strategies 304325 0.00 1340320 0.00 Yes
Acq(uisition) 123327 59.48 521992 61.05 Yes
Rel(ease) 124545 59.08 527864 60.62 Yes
As(ymmetry) 146925 51.72 631480 52.89 No
Acq./Rel. 34775 88.57 136496 89.82 Yes
Acq./As. 85725 71.83 361960 72.99 No
Rel./As. 44455 85.39 178168 86.71 No
Acq./Rel./As. 19561 93.57 75136 94.39 No

Res. Order (RO) 156675 48.52 675680 49.59 No
Acq./RO 86925 71.44 366896 72.63 No
Rel./RO 50305 83.47 204108 84.77 No
Acq./Rel./RO 20173 93.37 77568 94.21 No

(d) 5 Philosophers

Strategies States Red.
(%) Trans. Red.

(%)
Dead-
lock

No strategies 7178125 0.00 39529000 0.00 Yes
Acq(uisition) 2334189 67.48 12361790 68.73 Yes
Rel(ease) 2340375 67.40 12398970 68.63 Yes
As(ymmetry) 2996250 58.26 16129250 59.20 No
Acq./Rel. 475359 93.38 2332320 94.10 Yes
Acq./As. 1497825 79.13 7915260 79.98 No
Rel./As. 691550 90.37 3484630 91.18 No
Acq./Rel./As. 235655 96.72 1132228 97.14 No

Res. Order (RO) 3191250 55.54 17227750 56.42 No
Acq./RO 1518225 78.85 8020772 79.71 No
Rel./RO 773450 89.22 3929690 90.06 No
Acq./Rel./RO 242387 96.62 1165100 97.05 No

As these results indicate, it is not necessarily true that a designer should choose
to apply a deadlock-freedom strategy first. In fact, the results obtained by the two
deadlock-freedom strategies for 2 and 3 philosophers in Table 1a and Table 1b give a
reason for not doing so, since they are identical. So designers have to consider a larger
system, with 4 philosophers and possibly with 5, to be able to choose one deadlock-
freedom strategy over another. There the two strategies produce different results (a 51%
versus 48% reduction and a 58% versus a 55% one respectively). However, checking a
larger system is far more expensive and may lead to state-space explosion. So we can
see that constraining first with some strategies that do not meet any critical properties,
as with the acquisition and release ordering strategies, is a sensible step for reducing the
overall state-space. It allows designers to explore larger instances of the system, which
may potentially help identify further problems, opportunities for optimization, or sim-
ply provide evidence for choosing among alternative strategies for meeting a particular
property, as it does here. Designers can then easily remove some of the non-critical
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strategies, if they need to use the extra degrees of freedom for meeting other critical
properties, e.g., performance. This is made possible by the modular nature of the strate-
gies – adding and removing them requires no modifications to either component or
connector specifications.

A connector for centralized control (with a “Butler” role) and associated evaluation
results is described in a separate technical report [23].

6 Related Work

Research in software architectures identified the need for first-class connectors from the
very beginning [15, 30]. The problems created by the non-documentation of protocols
was also identified early on in [14] and a formalization of connectors was presented in
[1] shortly after that – a formalization that is still being used today, e.g., [19,34]. Indeed,
the connectors in CONNECT [19] follow the same general structure as Wright’s (roles
and glue), but seem to be specified in FSP instead of CSP. Compared to Wright [1],
XCD adds the extra element of role strategy, and the additional constraint that connec-
tors and strategies should not have a glue. As such XCD avoids the glue realizability
problem – XCD connector roles are realizable by construction, as they only require ac-
cess to local data (Booleans, integers, buffers, etc.). XCD also abandons the use of CSP
for what we believe is a more developer-friendly approach.

Work which has been done at identifying different types of connectors [16, 27] has
tended to focus at cataloguing and specifying basic interaction mechanisms, e.g., proce-
dure calls, event buses, etc., especially since these were needed to base upon them more
complex connectors. However, the use of basic interaction mechanisms as connectors
in an architectural specification makes it difficult to understand what the real protocols
in the system are and leads to system specifications that are at a very low level of ab-
straction, as is the case with AADL [11]. Indeed, designers are forced to incorporate the
behaviour of the more complex connectors they wish to use into their components, de-
creasing their re-use potential and increasing the chance of architectural mismatch [14].
In fact, the presence of low-level connectors [16, 27] in a system architecture should
alert designers that they have a potential problem. That is, they have over-designed the
architectural description and/or have failed to describe the general protocols that are
supposed to be used among their components in a way that is sufficiently abstract, and
therefore understandable and analyzable. Blackboards, event buses, tuple spaces, etc.,
are low-level interconnection mechanisms that give precious little information on what
interaction protocols a system uses and how these meet its non-functional requirements.

Languages used by practitioners suffer from this problem in particular. A connec-
tor in UML 2.0 is just a UML association, so architects must use modelling elements
other than UML connectors to describe architectural connectors [20]. AADL [13] only
supports certain specific, basic connector types and does not offer the possibility to de-
fine more complex connector types, while SysML [6] does not support architectural
connectors at all (only UML ones).

Plasil et al.’s work [5, 31, 32] is somewhat similar to ours, in particular the need to
describe component interactions as separate entities, albeit ones which still form part of
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the component. Instead, XCD cleanly separates component and connector behaviour,
and further separates the control parts of the connectors through role strategies.

It should be noted here that the constraints introduced through strategies are orthog-
onal to architectural style constraints, such as those of ACME [21]. The latter are global
constraints enforcing a style, while strategies are local constraints. So there are cases
where the strategy constraints are met but the style ones are not, as in a pipe-and-filter
style prohibiting cycles, something that cannot be enforced through role strategies.

Compared to BIP [8], XCD differs in the fact that it tries to support complex connec-
tors as first class entities, while BIP only provides two basic connectors, for “rendez-
vous” and “atomic broadcast”. We believe that latter can be misused very easily by
designers who mistake it for “broadcast”. At the same time, BIP offers a specification
framework that is closer to synchronous/hardware description languages that XCD tries
to avoid as we believe that languages like JML will prove much more popular with soft-
ware developers.

Compared to Exogenous Connectors [24] and Reo [4], XCD differs by introduc-
ing role strategies and by not trying to remove interaction constraints from components
entirely. We believe that components still need to be able to specify some interaction
constraints so as to describe what they expect of their environment and how they plan to
use it. Another difference is with the way a designer is expected to specify their system.
XCD uses pre-/post-conditions to specify the behaviour of components, connectors,
and strategies, while exogenous connectors uses a graphical representation, which to
our eyes looks too much like hardware block diagrams. Reo also constructs complex
connectors by the appropriate composition of simpler channel specifications, in a man-
ner that again resembles a circuit design. We do not expect such languages to gain a
significant follow up from the general software development community – they do not
look like “code” enough.

7 Conclusions

XCD is a new connector-centric approach for designing systems, aimed at facilitating
their formal analysis at an early stage. XCD views connectors as the most important
architectural element and uses them to cleanly separate functional behaviour from in-
teraction behaviour. XCD attempts to further modularize architectural specifications by
separating control behaviour into external controller role strategies that can be easily
combined and replaced, without having to modify the component or connector speci-
fications. These structural characteristics of XCD mean that designers can experiment
more easily with different combinations of components, connectors, and strategies, to
formally evaluate the properties of their systems and the potential solutions that exist
for meeting those, without having to modify the specifications of any of these elements.

Inspired by JML, XCD follows a Design by Contract (DbC) specification approach,
through the use of simple pre-/post-conditions so that it is easier to use. XCD extends
DbC in two ways. First XCD introduces a new structure for contracts, to distinguish
between the different behaviour/contract types (functional/interaction) in a clean man-
ner. Second, XCD extends DbC so that service consumers can specify contractual terms
too, expressing their intended use of the services they are interested in, i.e., providing a
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service “environment model”. Finally, by foregoing the use of Wright’s [1] connector
glue element and instead expressing all constraints through local pre-/post-conditions,
XCD ensures that connectors can be realized by construction and that connectors can
be easily specified even in the case where the number of roles is high (or a parameter).

Apart from improving tool support, we are currently considering extensions of XCD
so that it can deal with events (i.e., asynchronous oneway calls), and different types of
interaction channels (buffered, lossy, etc.).
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