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ARTICLE

Heterogeneous node copying from hidden network
structure
Max Falkenberg 1✉

Node copying is an important mechanism for network formation, yet most models assume

uniform copying rules. Motivated by observations of heterogeneous triadic closure in real

networks, we introduce the concept of a hidden network model—a generative two-layer

model in which an observed network evolves according to the structure of an underlying

hidden layer—and apply the framework to a model of heterogeneous copying. Framed in a

social context, these two layers represent a node’s inner social circle, and wider social circle,

such that the model can bias copying probabilities towards, or against, a node’s inner circle of

friends. Comparing the case of extreme inner circle bias to an equivalent model with uniform

copying, we find that heterogeneous copying suppresses the power-law degree distributions

commonly seen in copying models, and results in networks with much higher clustering than

even the most optimum scenario for uniform copying. Similarly large clustering values are

found in real collaboration networks, lending empirical support to the mechanism.
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Node copying is an important network growth
mechanism1–7. In social networks, copying is synon-
ymous with triadic closure, playing an important role in

the emergence of high clustering8,9. In biology, node copying
encapsulates duplication and deletion, a key mechanism in the
formation of protein-interaction networks10–14.

Despite this range of applications, most node copying models
assume uniform, or homogeneous copying, i.e., that the prob-
ability of copying any given neighbour of a node is equal. The
exact formulation varies widely, but examples include “links are
attached to neighbours of [node] j with probability p”5, or “one
node [is duplicated]... edges emanating from the newly generated
[node] are removed with probability δ”11. Many other models use
similar uniform copying rules2,3,6–8,10,12,15–26.

Homogeneous copying is a sensible base assumption, often
aiding a model’s analytical tractability. However, especially in a
social context, there are good reasons to believe that node copying
may be heterogeneous. As an example, consider the social brain
hypothesis, a theory which suggests that the average human has
around 150 friends (Dunbar’s number), encapsulating progres-
sively smaller sub-groups of increasing social importance27,28. In
contrast, large social networks often have an average degree far
exceeding Dunbar’s number29, implying that most of these
observed friends are only distant acquaintances. In this context, if
individual A introduces individual B to one of their friends, C,
(i.e., B is copying A’s friend C), we may reasonably expect that C
is more likely to be chosen from A’s inner social circle, than A’s
wider social circle.

This is directly related to the principle of strong triadic closure:
“If a node A has edges to nodes B and C, then the B−C edge is
especially likely to form if A’s edges to B and C are both strong
ties”30. In weighted networks where tie strength can be equated to
edge weight, empirical evidence for the strong triadic closure
principle can be inferred by measuring the neighbourhood
overlap between two nodes as a function of tie strength30; for
example, using mobile communication networks31, or using face
to face proximity networks32.

Unfortunately, for many networks tie strength data is una-
vailable or unknown. In these cases, evidence for asymmetric
triadic closure may be inferred through proxy means. For
instance, in academic collaboration networks, it has been shown
that the ratio of triadic closure varies strongly with the number of
shared collaborators between nodes33. Although the average
triadic closure ratio is small (typically < 10%), the ratio rapidly
increases with the number of shared collaborators. However,
these aggregate measures are highly coarse-grained and likely
only approximate real closure dynamics.

This motivates the study of simple heterogeneous copying
models4,5,9,34,35. Typically these models fall into a small number
of distinct categories. In the first, heterogeneity is introduced as a
node intrinsic property (e.g., node fitness) in the absence of
structural considerations5. In the second, heterogeneity is intro-
duced via group homophily where the probability of triadic clo-
sure between nodes A and B is dependent on whether nodes A
and B are in the same group or different groups (e.g., researchers
from the same academic discipline, as opposed to different
disciplines)9,35. However, intra-group copying is typically mod-
elled uniformly. Finally, some models consider heterogeneous
copying driven by the network structure around nodes A and B,
without introducing node homophily4.

Bhat et al.4 define a threshold model where node A introduces
node B to one of their friends C. An edge then forms between B
and C if the fraction of neighbours common to B and C exceeds
some threshold F. The model demonstrates a transition from a
state where networks are almost complete for small F, to a state
where networks are sparse but highly clustered as F increases past

a critical threshold. However, the model is limited in its tract-
ability and has peculiarities such as the observation that fringe
communities are almost always complete.

In the current work, our aim is to extend these ideas and
introduce a more general framework for heterogeneous node
copying based on the concept of hidden strong ties. To do so, we
introduce the hidden network model, a framework based on
multilayer networks36 where layers have identical node structure
but different edge structure. The framework lets us build models
where local heterogeneity in the rules of network growth is a
property of the hidden network structure and not arbitrarily
encoded using node intrinsic properties or group homophily. The
concept is closely related to other multilayer paradigms including
the use of replica nodes to model heterogeneity37, interdependent
networks38, and multilayer copying21.

In the remainder of this paper, we define and analytically study
the case of extreme heterogeneous copying, the correlated copy-
ing model (CCM). The CCM is an adaptation of the uniform
copying model introduced by Lambiotte et al.3, see Fig. 1a. In the
UCM, a single node, α, is added to the network at time tα, and
connects to one target node, β, which is chosen uniformly at
random. The formation of an edge between the new node and the
target node puts the UCM in the class of corded copying models;
Steinbock et al.16 refer to the UCM as the corded node duplica-
tion model. We label each neighbour of β with the index γj where
j∈ {1,⋯ , kβ}, and kβ is the degree of node β. For each neighbour
γj, the copied edge (α, γj) is added to the network independently
with probability p.

Following the convention of previous copying models, the
nodes α and β are sometimes referred to as the daughter and
mother nodes respectively. The network is initialised at t= 1 with

Fig. 1 Two models of network formation via node copying. a The uniform
copying model (UCM), and b the correlated copying model (CCM). The
UCM consists of a single layer. The CCM has an observed layer, in which
copying takes place, GO, and a hidden layer, GH. For both models, a new
node α (the daughter) is added to the existing network (nodes connected
by grey edges) and forms a random link (blue) to a target node, β (the
mother). a In the UCM, there is a uniform probability, p, of forming an edge
to each of β’s neighbours (γ1, γ2, γ3; orange dashed edges). b In the CCM,
copied edges are added to the observed network, GO, deterministically. If an
edge exists in the hidden network, GH, between node β and node γj (e.g., the
{β, γ2} edge), then node α copies that edge in GO (e.g., forming the {α, γ2}
edge; solid green). If an edge does not exist in GH (e.g., the {β, γ1} and
{β, γ3} edges), the corresponding edges are not copied to GO (red dotted
lines). Copied edges are never added to GH.
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a single node. If p= 0, no edges are copied resulting in a random
recursive tree. If p= 1, the UCM generates a complete graph.

In addition to the extreme copying case (the CCM), we
numerically investigate a generalised form of the correlated
copying model (GCCM) which interpolates between the UCM
and CCM. The GCCM generates a diverse spectrum of network
structures spanning both ergodic sparse and non-ergodic dense
networks, with degree distributions ranging from exponential
decay, through stretched-exponentials and power-laws, to extre-
mely fat-tailed distributions with anomalous fluctuations. These
networks exhibit a broad clustering spectrum from sparse net-
works with significantly higher clustering than their uniform
equivalents to the unusual case where networks are almost
complete, but with near-zero clustering. We comment on a
selection of real collaboration networks, which, in line with the
CCM, exhibit higher clustering than can be explained by uniform
copying. This suggests that heterogeneous copying may be an
important explanatory mechanism for social network formation.

Results
Hidden network models. We define a hidden network model as
the pair of single layer graphs G= (GO,GH), comprising an
observed network GO= (V, EO) and a hidden network GH= (V,
EH), where V is the set of nodes for both networks and EO and EH
are the set of edges for each network. The set V represents the
same entities in both GO and GH, with differences lying exclu-
sively in the edge structure between nodes. The key feature of a
hidden network model is that the evolution of GO is dependent on
GH (or vice versa). Mathematically, this is closely related to
interdependent networks39.

Correlated copying model. In the CCM, see Fig. 1b, the observed
and hidden networks are initialised with a single node at t= 1.
At t= tα, node α is added to both networks and a single target
node, β, is chosen uniformly at random. We label the kβO
neighbours of β in GO with the index γj. Then, in the observed
network only, the copied edge (α, γj) is formed with phid= 1 if
the edge (β, γj)∈ EH, pobs= 0 otherwise. The general case with
intermediate copying probabilities is discussed in section “Gen-
eral correlated copying model”. No copied edges are added to the
hidden network GH. The direct edge (α, β) is added to both GO

and GH. The CCM therefore also falls into the class of corded
node duplication models. Using the convention of referring to β
as the mother node and α as the daughter node, we note that the
hidden network consists exclusively of first-order relations
(mother−daughter), whereas edges found only in the observed
network correspond to second-order relations (sister−sister, or
grandmother−granddaughter).

GH evolves as a random recursive tree. Unlike the UCM, all
copying in GO is deterministic, with the only probabilistic element
emerging in the choice of the target node β. For comparative
purposes, we define the effective copying probability in the CCM
as peff ¼ hkβH=kβOi, i.e., the fraction of the observed neighbours of
node β which are copied by node α.

Framed in a social context, we might think of GO as an
observed social network where individuals have many friends, but
the quality of those friendships is unknown, with most ties being
weak. In contrast, underlying every social network is a hidden
structure representing the inner social circle of individuals, where
a node is only connected to their closest friends28. Copying in the
CCM is biased to this inner circle.

Basic topological properties. The total number of edges in GH

scales as EH(t) ~ t, with the average degree given by 〈kH〉= 2.

Using the degree distribution of GH, see below, hk2Hi ¼ 6. In the
observed network, each time step a single edge is added by direct
attachment, and one copied edge is added for each neighbour of
the target node in GH, k

β
H . The average change in the number of

edges is therefore hΔEOðtÞi ¼ 1þ hkβHi ¼ 1þ hkHi ¼ 3, such that
〈EO(t)〉 ~ 3t and 〈kO〉= 6.

As an alternative, note that the observed degree of node α can
be written as

ðkOÞα ¼ ∑
ðkH Þα

β¼1
ðkHÞα;β ð1Þ

where the index α, β labels the ðkHÞα unique neighbours of α in
GH. Averaging both sides of Eq. (1) over all nodes we find,

hkOi ¼
1
t
∑
t

α¼1
∑

ðkH Þα

β¼1
ðkHÞα; β ¼

1
t
∑
t

‘¼1
n‘ � ðkHÞ‘; ð2Þ

where nℓ is the number of times that the degree of node ℓ appears
in the expanded sum. For any tree graph, node ℓ will appear
exactly once in Eq. (2) for each of its ðkHÞ‘ neighbours. Hence,
n‘ ¼ ðkHÞ‘ and hkOi ¼ hk2Hi. In Supplementary Note 1, Eq. (1) is
used to derive hk2Oi � 62.

We may naively expect that the effective copying probability
is peff= 〈kH〉/〈kO〉= 1/3. However, for the CCM,
peff ¼ hkβH=kβOi≠hkHi=hkOi. We have not found a route to
calculating this exactly, but simulations suggest peff ≈ 0.374.

Degree distribution. The hidden network evolves as a random
recursive tree which has a limiting degree distribution given by

pHðkHÞ ¼ 2�kH ; for kH>1: ð3Þ
In Supplementary Note 2, we show that the degree distribution
for the observed network can be written as the recurrence

pOðkOÞ ¼
πOðkO � 1Þ � pOðkO � 1Þ þ 21�kO

1þ πOðkOÞ
; for k≥ 2; ð4Þ

where the final term is the probability that at time t the newly
added node has initial degree kO and

πOðkOÞ ¼ 1þ hkH jkOi; ð5Þ
with 〈kH∣kO〉 as the average degree of nodes in the hidden net-
work with observed degree kO. Here, the 1 corresponds to edges
that are gained from direct attachment, whereas 〈kH∣kO〉 corre-
sponds to edges gained from copying. Although we have not
found an exact expression for 〈kH∣kO〉, we can make progress by
considering the evolution of individual nodes.

Consider node α added to the network at tα. The initial
conditions for node α are

ðkHðtαÞÞα ¼ 1; ð6aÞ

hkOðtαÞiα ¼ 1þ hkHðtα � 1Þiβ; ð6bÞ
where the final term is the average hidden degree of the target
node β. In GH, node α gains edges from direct attachment only.
Hence, at t > tα,

hkHðtÞiα ¼ 1þ ∑
t�1

j¼tα

1
j
¼ 1þ Ht�1 �Htα�1; ð7Þ

where Hn is the nth harmonic number. In GO, either node α is
targeted via direct attachment, or a copied edge is formed from
the new node to node α via any of the ðkHðtÞÞα neighbours of
node α. Hence,
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hkOðtÞiα ¼ hkOðtαÞiα þ ∑
t�1

j¼tα

1þ hkHðjÞiα
j

¼ hkOðtαÞiα þ ∑
t�1

j¼tα

2þHj �Htα�1 � 1=j

j
;

ð8Þ

where we have subbed in Eq. (7) and Hj−1=Hj− 1/j. Evaluating
this sum, see Supplementary Note 2, we find

hkOðtÞiα ¼ hkOðtαÞiα þ 1
2 ð4þHt�1 � Htα�1Þ
h

´ ðHt�1 � Htα�1Þ � Hð2Þ
t�1 þHð2Þ

tα�1

i
;

ð9Þ

where HðmÞ
n is the nth generalised Harmonic number of order m.

For t→∞, Hð2Þ
t ! π2=6. Hence, for large t we can drop the final

two terms and substitute in Eq. (7) to give

hkOðtÞiα � hkOðtαÞiα þ
1
2

hkHðtÞiα þ 3
� � hkHðtÞiα � 1

� �
: ð10Þ

Noting, that Eq. (10) is a monotonically increasing function of kH
for kH > 1, we assume that we can drop the index α and the time
dependence giving the average observed degree of nodes with
specific hidden degree as

hkOjkHi � h~kOjkOi þ
1
2

kH þ 3
� �

kH � 1
� �

; ð11Þ

where h~kOjkOi denotes the average initial observed degree of
nodes with current degree kO. Finally, we make the approxima-
tion that hkH jkOi � hkOjkHi�1 where the exponent denotes the
inverse function. This gives

πOðkOÞ ¼ 1þ hkH jkOi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðkO þ 2� h~kOjkOiÞ

q
: ð12Þ

To proceed, let us solve the degree distribution at kO= 2.
Although the average initial condition h~kOi ¼ 1þ hkHi ¼ 3, in
this case h~kOj2i ¼ 2. Therefore

pOð2Þ ¼ �πOð2Þ � pOð2Þ þ 2�1 ¼ �pOð2Þ �
ffiffiffiffiffiffiffiffi
2ð2Þ

p
þ 2�1; ð13Þ

giving pO(2)= 1/6. Since h~kOjkOi has an almost negligible effect
on πO(kO) for kO > 2, for simplicity we set h~kOjkOi ¼ 2. We can
now rewrite Eq. (4) as

pOðkOÞ ¼
pOðkO � 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðkO � 1Þp þ 21�kO

1þ ffiffiffiffiffiffiffiffi
2kO

p ; for kO > 2: ð14Þ

Although computing this recurrence shows good agreement with
simulations, see Fig. 2, we have not found a closed-form solution
to Eq. (14).

As an approximation, we return to Eq. (9) and note that
Ht�1 �Htα�1 � ln ðt=tαÞ. Substituting this into Eq. (9) and
dropping small terms

hkOðt > tαÞiα � 2 lnðt=tαÞ þ
ln2ðt=tαÞ

2
; ð15Þ

which inverted gives

lnðt=tαÞ � �2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðkO þ 2Þ

p
�

ffiffiffiffiffiffiffiffi
2kO

p
; for k � 2: ð16Þ

We have dropped the expectation value and define tα as the time a
node was created such that its degree at time t is approximately
kO. Exponentiating each side and taking the reciprocal,

tα
t
� e�

ffiffiffiffiffiffi
2kO

p
: ð17Þ

Finally, by substituting this approximation into the cumulative

degree distribution we find

~pOðkOÞ ¼ ∑
kO

k0O¼2
pOðk0OÞ � 1� tα

t
� 1� e�

ffiffiffiffiffiffi
2kO

p
; ð18Þ

which corresponds to a Weibull (stretched exponential) distribu-
tion, suppressing the power-law scaling observed in the UCM, see
Fig. 2.

The approximation for the cumulative degree distribution
stems from the observation that, on average, nodes with k0 > kO
were added to the network at t0 < tα, whereas nodes with k0 < kO
were added to the network at t0 > tα. Note that Eq. (18) is close to
the scaling expected from sub-linear preferential attachment40

with an exponent 1/2.

Clique distribution. In a simple undirected graph, a clique of size
n is a subgraph of n nodes that is complete. A clique of size n= 2
is an edge, whereas n= 3 is a triangle. Here we calculate the exact
scaling for the number of n cliques, Qn(t), in GO.

Let us first consider the case of triangles. At t= tα, there are
two mechanisms by which a new triangle forms:

1. Direct triangles. The new node, α, forms a direct edge to
the target node, β, and forms copied edges to each of the kβH
neighbours of node β, labelled with the index γj. The
combination of the direct edge (α, β), the copied edge
(α, γj), and the existing edge (β, γj) creates one triangle,
(α, β, γj), for each of the kβH neighbours.

2. Induced triangles. If node α forms copied edges to both
node γj, and to node γj0 , j ≠ j0, the triangle ðα; γj; γj0 Þ is
formed if ðγj; γj0 Þ 2 EO.

Combining these mechanisms, the change in the number of
triangles can be written as

ΔQ3ðtαÞ ¼ ΔQD
3 ðtαÞ þ ΔQI

3ðtαÞ; ð19Þ
where the first and second terms on the right correspond to direct
and induced triangles respectively. One new direct triangle is formed
for each of the kβH neighbours of node β, ΔQD

3 ¼ kβH . For induced
triangles, the copied edge (α, γj) is only formed if (β, γj)∈ EH.

Fig. 2 The degree distributions for the correlated copying model (CCM)
and uniform copying model (UCM). Degree probability, pO(kO), plotted as
a function of the observed degree, kO. UCM initialised with copying
probability p= 0.374 (equal to the CCM’s effective copying probability).
Networks grown to t= 107, averaged over 100 networks. Error bars omitted
for clarity. Dashed line: analytical expression for CCM in Eq. (14). Dot-
dashed: stretched exponential approximation. Dotted: power-law scaling.
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Additionally, all pairs of nodes which are next-nearest neighbours in
GH must be nearest neighbours in GO. Hence, the edge ðγj; γj0 Þ must
exist in the observed network if both γj and γj0 are copied. As a result,
one induced triangle is formed for each pair of copied edges (α, γj)
and ðα; γj0 Þ such that

ΔQI
3 ¼

kβH
2

 !
¼ ðkβHÞ

2 � kβH
2

: ð20Þ

A visual example of the combinatorics for kβH ¼ 3 is shown in Fig. 3.
Extending the triangle argument to general n we can write

ΔQnðtαÞ ¼ ΔQD
n ðtαÞ þ ΔQI

nðtαÞ; ð21Þ
where direct cliques are those which include the edge (α, β). For a
clique of size n, the number of direct cliques is given by the
number of ways in which n− 2 nodes can be chosen from kβH
nodes,

ΔQD
n ðtαÞ ¼

kβH
n� 2

 !
; ð22Þ

whereas the number of induced cliques is given by the number of
ways in which n− 1 nodes can be chosen,

ΔQI
nðtαÞ ¼

kβH
n� 1

 !
: ð23Þ

As t→∞, the average change in clique number is

hΔQnðtÞi ¼ ∑
1

kH¼1
pHðkHÞ

kH
n� 2

� �
þ kH

n� 1

� �� �
; ð24Þ

where pH(kH) is the probability that the randomly chosen target
node kβH ¼ kH . To avoid ill-defined binomials, we rewrite Eq. (24)
as

hΔQnðtÞi ¼ pHðn� 2Þ þ ∑
1

kH¼n�1
pHðkHÞ �

kH þ 1

n� 1

� �
; ð25Þ

where we have combined the two terms into a single binomial.
After subbing in pH(kH) and solving the sum,

hΔQnðtÞi ¼ 22�n þ ∑
1

kH¼n�1
2�kH � kH þ 1

n� 1

� �
¼ 4: ð26Þ

Consequently, for large t we find the curious result that the
number of n cliques scales as

QnðtÞ � 4t; for n > 2; ð27Þ
independent of the clique size. In practice, this result only applies
for t→∞. To see this, note that the largest clique in GO at time t
is always directly related to the largest degree node in GH,

Maxðn; tÞ ¼ Max ðkH ; tÞ þ 1; ð28Þ
with the largest hidden degree at time t scaling as approximately

MaxðkH ; tÞ � lnðtÞ : ð29Þ
We can invert this and ask how large the network is if we observe
that the largest observed clique is n. This gives

tn � en: ð30Þ
Hence, the scaling relation in Eq. (27), is only valid for cliques of
size n when t≫ tn. In Supplementary Note 3, we plot the number
of cliques in simulations of the CCM as a function of t. For small
clique sizes, the scaling in Eq. (27) is clearly apparent early in the
evolution of the CCM. However, for moderate and large cliques,
the standard deviation in the number of cliques is significantly
larger than the average number of cliques, obscuring a clear trend.

Clustering. Transitivity is a global clustering measure defined as

τGO
¼ 3 ´

#ð triangles in GOÞ
#ð twigs in GOÞ

; ð31Þ

where a twig is any three nodes connected by two edges. The
number of twigs is equivalent to the number of star graphs of size
2, S2, where a star graph of size n is a subgraph with 1 central
node and n connected neighbours. The number of subgraphs of
size 2 is related to the degree distribution by

S2ðtÞ ¼ t ∑
kO ≥ 2

kO
2

� �
� pOðkOÞ ¼ t � hk

2
Oi � hkOi

2
; ð32Þ

where we have used the property that pO(kO < 2)= 0. Recalling
that 〈kO〉= 6 and hk2Oi � 62, the number of twigs scales as
S2 ~ 28t, such that

τGO
¼ 3Q3

S2
� 3 � 4t

28t
¼ 3

7
: ð33Þ

The observed network can be recovered from the hidden
network by converting every wedge in GH into a triangle. This can
be thought of as complete triadic closure where every possible
triangle which can be closed, from the addition of a single edge to
the hidden network, is closed. This implies that the CCM has the
largest possible transitivity from a single iteration of triadic
closure on a random recursive tree.

The local clustering coefficient, cc(α), is defined as the number
of edges between the ðkOÞα neighbours of α, normalised by the the
number of edges in a complete subgraph of size ðkOÞα. For the
CCM,

ccðαÞ ¼

ðkHÞα
2

� �
þ∑ðkH Þα

β¼1

ðkHÞα;β
2

� �
ðkOÞα
2

� � ; ð34Þ

where the first term corresponds to the complete subgraph of the
ðkHÞα neighbours of α in GH, and the sum contributes the edges
from one complete subgraph formed by node α, β, and β
ðkHÞα;β � 1 neighbours, excluding α. The global clustering
coefficient, CC(GO), is defined as the average of Eq. (34) over

Fig. 3 A schematic illustrating the number of triangles formed in a single
time step of the correlated copying model. GO: the observed network, GH:
the hidden network. The new node, α, forms a direct edge (blue) to a node β
which has three existing hidden neighbours (γ1, γ2, γ3). The copying process
forms three new edges (green) in GO. The copying process results in three
new direct triangles (outlined in blue), involving the edge {α, β}, and three
new induced triangles (outlined in green), excluding the edge {α, β}. Triangles
are formed in the observed network only; the hidden network remains a
random tree. Note that in GO and GH, the grey edges represent the existing
network, while in the small graphs at the bottom they represent edges that
are not part of the outlined triangles.
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all nodes in the network. In simulations, CC(GO) ≈ 0.771 for
large t.

Path lengths. Steinbock et al.16 calculate the distribution of
shortest path lengths for the UCM (referred to in their paper as
the corded node duplication model). Specifically, the authors
calculate the probability that two randomly chosen nodes, i and j,
will be separated by a shortest path of length ℓ, denoted as
PðL ¼ ‘; tÞ, at time t.

The UCM with p= 0 corresponds to a random recursive tree
and is therefore equivalent to GH in the CCM. Hence, for the
hidden network, we can lift the path length distribution,
PHðLH ¼ ‘; tÞ, and the mean shortest path, 〈LH(t)〉, from
Steinbock et al.16. We can then exploit a convenient mapping
to calculate the distribution of shortest path lengths in GO from
GH.

Consider two randomly chosen nodes i and j. In GH, there is a
unique path (due to its tree structure) from i to j of length ð‘HÞij.
In GO, the enforced triadic closure process means that for every
two steps on the path from i to j in GH, an observed edge exists in
GO, which acts as a shortcut, reducing the path length by one.
Hence, if the path length ð‘HÞij is even, the path length in GO is
given by ℓO= ℓH/2; if the path length is odd ℓO= (ℓH+ 1)/2.
Using this mapping, we can write

POðLO ¼ ‘; tÞ ¼ PHðLH ¼ 2‘; tÞ þ PHðLH ¼ 2‘� 1; tÞ;
for ‘≥ 1:

ð35Þ

If we assume that, for large t, there are an approximately equal
number of odd and even shortest paths in GH, the average
shortest path length in GO is

hLOðtÞi �
hLHðtÞi

2
þ 1

4
; ð36Þ

where the 1/4 term accounts for the discrepancy in the mapping
for odd and even paths.

From Steinbock et al.16, we note that the mean shortest path
length for GH scales as

hLHðtÞi � 2 � ln ðtÞ; ð37Þ
which indicates that the hidden network exhibits the small-world
property41. We have omitted constants which are negligible at
large t. Hence, applying the mapping in Eq. (36) and omitting the
1/4 term for simplicity, the mean shortest path length for GO is
given by

hLOðtÞi � ln ðtÞ; ð38Þ
indicating that the observed network also exhibits the small-world
phenomenon. This mapping is confirmed by simulations.

For interest, we note that for 0 < p < 1, the shortest paths for the
UCM are in general not unique; there may be multiple paths
between nodes i and j, which are equally short. Unusually for a
non-tree network, all shortest paths are unique in the CCM.

General correlated copying model. The GCCM, is defined ana-
logously to the CCM, starting with observed and hidden networks
initialised at t= 1. Like the UCM and CCM, the GCCM is a
corded node duplication model. For practical reasons, we initialise
the graph with three nodes which form a complete graph in GO,
and a wedge in GH. This ensures that the initial graph contains
some edges found in GH, and some edges found only in GO.

At t= tα, node α is added to both networks and a single target
node, β, is chosen uniformly at random. We label the kβO
neighbours of β in GO with the index γj. In the observed network,
the copied edge (α, γj) is formed with probability phid if the edge
(β, γj)∈ EH (inner circle copying), and probability pobs otherwise

(outer circle copying). The direct edge (α, β) is added to both GO

and GH.
The GCCM encapsulates a wide spectrum of heterogeneous

copying. Setting phid= 1 and pobs= 0 reduces the GCCM to the
CCM, whereas setting phid= pobs= p reduces the GCCM to the
UCM. We have discussed the social motivation for the case where
phid > pobs, representing a copying bias towards the inner social
circle of a node. However, the GCCM can also be tuned to the
reverse case where phid < pobs, resulting in a bias against inner
circle nodes. We are not aware of a clear physical motivation for
this latter case. However, the structural diversity of these anti-
correlated networks warrants their discussion here.

Figure 4 shows numerical results for (a) the effective copying
probability, (b) the densification exponent, (c) the average local
clustering coefficient, and (d) the transitivity, for the GCCM with
104 nodes.

The effective copying probability corresponds to the fraction of
target node neighbours which appear to be copied in the observed
network. Formally, we can write the average effective copying
probability at time t as

peff ðtÞ ¼
phidk

β
H þ pobsðk

β
O � kβHÞ

kβO

* +
; ð39Þ

where β is the index of the target node at time t, the first term
represents edges copied from node β’s inner circle, and the
second term represents edges copied from the outer circle.

The dashed contour in Fig. 4b corresponds to an effective
copying probability of 0.5, calculated numerically by averaging
over the preceding 104 time steps. We note that peff= 0 if
phid= pobs= 0 (random tree), peff= 1 if phid= pobs= 1 (complete
graph), and peff= p if phid= pobs= p (UCM). In general, the rise
in peff is faster with increasing pobs than increasing phid, although
for phid= 0 we find very small peff, even for large pobs. However,
this observation is somewhat deceptive since, if the GCCM is in
the dense regime and phid ≠ pobs, peff is not stationary. Calculated

Fig. 4 Properties of the observed network, GO, in the general correlated
copying model (GCCM). Numerical results for 104 nodes as a function of
the hidden/inner copying probability, phid, and the outer copying
probability, pobs. a The effective copying probability. b The densification
exponent. c The average local clustering coefficient, CC(GO). d The
transitivity, τGO

. Black dashed contour: effective copying probability of 0.5
at t= 104, calculated numerically. Values have been smoothed for clarity.
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over longer time frames, we note that the effective copying
probability appears to slowly converge to the outer copying
probability, peff→ pobs, since for t→∞, the ratio of the number of
edges in the hidden network to the number of edges in the
observed network tends to zero. This suggests that the dashed
peff= 0.5 contour will converge to the pobs= 0.5 line as t→∞.

We test whether the GCCM is in the sparse or dense regime
explicitly by tracking the growth in the number of edges in the
observed network. Let us define the densification exponent, δ,
0 ≤ δ ≤ 1, using EO(t)∝ t1+δ, which relates the number of edges in
the observed network to the number of nodes t. If δ ≈ 0, the
GCCM is sparse. If δ= 1, the GCCM grows as a complete graph.
For intermediate values, the GCCM undergoes densification. For
the UCM, the transition from the sparse to dense regime is
known to take place at p= 0.53. We have not analytically
calculated the transition for the GCCM, but may intuitively
expect the transition at pobs= 0.5 since the hidden network is a
random tree. This seems to be supported by the numerical values
of δ in Fig. 4b, although the transition from zero to non-zero δ is
shifted to slightly larger pobs for phid= 0, and to smaller pobs for
phid= 1; this shift is likely to disappear as t→∞.

Figures 4c and d shows the average local clustering coefficient,
CC(GO), and transitivity (global clustering), τGO

, for the GCCM.
Patterns are similar between the two figures, although local
clustering generally exceeds global clustering in the sparse regime.
For the UCM it is known that, in the dense regime, τGO

slowly
converges to zero as t→∞, unless p= 12. In contrast, the local
clustering appears to remain non-zero.

As expected, clustering is minimised at phid= pobs= 0 (random
tree) and maximised for a complete graph, phid= pobs= 1.
However, in the sparse regime we find that the maximum
clustering is found at phid= 1, pobs= 0 which corresponds to the
CCM. Bhat et al.2 note that local and global clustering for the
UCM is not a monotonically increasing function of the copying
probability p, with a local maxima in the sparse regime at non-
zero p. This bimodal clustering is also present in the GCCM. In
the anti-correlated regime where phid ≈ 0, we find near-zero
clustering values. In particular if phid= 0 and pobs= 1, we observe
the unusual property that δ ≈ 1, such that the network scales as
(but is not) a complete graph, yet both the local and global
clustering are approximately zero.

Extracting the degree distributions for the GCCM for various
phid and pobs shows similarly diverse behaviour, see Fig. 5. Each
distribution is averaged over 100 instances, but points are left
deliberately unbinned to illustrate the significant fluctuations
observed in the dense regime. For phid= pobs= 0 (bottom left) the
GCCM reduces to a random recursive tree, see Eq. (3). The CCM
case with phid= 1, pobs= 0 (top left) follows Eq. (14), where the
tail can be approximated as a stretched exponential. This
distribution is also shown in Fig. 2. Along the diagonal where
phid= pobs (UCM), the degree distribution has a power-law tail in
the sparse regime, and exhibits anomalous scaling in the dense
regime (p ≥ 0.5). For phid= pobs= 1, the GCCM reduces to a
complete graph and all nodes have degree t− 1.

For pobs= 0, the power-law scaling observed in the UCM is
completely suppressed, with a gradual transition from exponen-
tial decay to a stretched exponential tail as phid is increased from 0
to 1. In the sparse regime with pobs ≠ 0, all degree distributions
appear fat-tailed with only small deviations from the power-laws
observed for the UCM. However, unusual scaling is observed for
phid= 0, pobs ≠ 0, where the distributions exhibit initial exponen-
tial decay at small kO, attributable to the hidden network, before a
second fat-tailed regime starting at intermediate kO.

In the dense regime, all degree distributions exhibit anomalous
scaling, such that individual instances are not self-averaging. For

pobs= 0.75, the tail of the degree distributions is largely consistent
across all phid. However, the probability of finding nodes with
small degree is large for phid= 0, and is gradually suppressed as
phid→ 1. These effects are most pronounced for pobs= 1 where
the modal degree is 1 for phid= 0, and t− 1 for phid= 1, with a
gradual transition in between. Throughout this transition, the
degree distribution appears almost uniform at phid= 0.25, where
the probability of finding nodes with any given degree is
approximately constant up until the large kO limit. However,
this effect is only observed when averaging over many instances,
with a much smaller degree range observed in individual
networks.

It is possible to extend the GCCM further by adding copied
edges from GO to the hidden network, GH, with probability q.
Results are shown in Supplementary Note 4 for q > 0 where
clustering is enhanced if phid > pobs and suppressed if phid < pobs,
relative to the UCM. In the limiting case of q= 1, the GCCM is
independent of pobs and equivalent to the UCM with p= phid.
The phid= pobs line (UCM) is invariant under changes in q. One
potential application of the q ≠ 0 case is for generating random
simplicial complexes42 by combining the hidden and observed
networks into a single structure. Such a construction may be
interesting since it explicitly distinguishes between cliques of
strong ties, where all nodes are within each other’s inner circle,
and cliques of weak ties, see Supplementary Note 5.

Comparing copying models. We have introduced a simple
model of heterogeneous node copying, motivated by arguments
that triadic closure may not be structurally homogeneous in real
networks.

Comparing the CCM, for which we have analytical results, to
the UCM with the equivalent effective copying probability
(p= peff= 0.374) we find significant differences in network
structure. Both the average local clustering coefficient, CC(GO),
and the transitivity, τGO

, are significantly larger in the CCM than
the UCM. The CCM suppresses the power-law tail observed in
the UCM for the sparse regime, and consequently, the degree
variance observed in the CCM is smaller than for the UCM.
CCM: σ2(kO) ≈ 26; UCM: σ2(kO) ≈ 192. The CCM also has the
unusual property, not found in the UCM, that the growth in the
number of cliques of size n scales independently of n as t→∞.
For both the UCM and CCM, the mean shortest path lengths
scale as ln(t) indicative of the small-world property.

The above comparison uses a single effective copying
probability, but key differences are robust for variable p in the
sparse regime. Specifically, the UCM degree distribution always
exhibits a power-law tail, and the largest measured clustering
coefficients fall below the values seen for the CCM, see Table 1.
Relaxing the CCM to the GCCM, we note that for large phid and
small pobs, the measured clustering values regularly exceed those
observed in the UCM, with the UCM only reaching similar values
far into the dense regime. Given the continuing debate about the
ubiquity of power-laws in real networks43, the observation that
power-laws are suppressed in the GCCM as soon as the UCM
symmetry is broken supports the view that power-law network
scaling is an idealised case which in practice is rarely observed for
real networks.

Whether such extreme bias is plausible in real networks is
uncertain. However, observations in academic collaboration
networks suggest that extreme bias may be possible33. For
instance, Kim and Diesner33 show that the ratio of triadic closure
between two nodes is approximately zero if the number of shared
collaborators is zero, rises rapidly as the number of shared
collaborators increases, and plateaus at a ratio of one.
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A second clue towards heterogeneous copying is the observa-
tion of very large clustering values in real networks. A selection of
these networks and their clustering coefficients are shown in
Table 2. Stressing that both the UCM and GCCM are toy models
of node copying, the networks in Table 2 exhibit average local
and/ or global clustering far exceeding even the most optimistic
values for the UCM. In contrast, the listed clustering values are
relatively similar to what may plausibly emerge from hetero-
geneous copying, although even the clustering observed for the
extreme CCM case falls below some of the values shown in
Table 2. Future work should go beyond this qualitative analysis
and should attempt to measure the degree to which copying
symmetry is broken for real networks where these mechanisms
are relevant.

Discussion
The UCM, CCM, and GCCM are all examples of corded copying
models where an edge forms between a newly added node and the
target node which is duplicated. This is in contrast to uncorded

duplication models where a new node is formed by copying an
existing target node and its neighbours, but an edge is not formed
between the new node and the duplicated target node. Corded
models are more common in the context of social phenomena
and triadic closure, whereas uncorded models are typically more
relevant to duplication–divergence processes in protein interac-
tion networks. In the current work, we have focused exclusively
on corded models; considering heterogeneous copying in
uncorded models13,14,23,24 would be an appropriate future
extension. Heterogeneous copying could also be studied by
extending directed models25,26.

The GCCM and CCM are examples of hidden network models.
From a mathematical standpoint, hidden network models can be
thought of as a variant of interdependent networks where nodes

Fig. 5 The observed degree distributions for the general correlated copying model (GCCM). The degree probability, pO(kO), is plotted as a function of the
observed degree, kO, for various values of the outer copying probability, pobs (left to right), and the hidden copying probability, phid (bottom to top). For
pobs∈ {0, 0.25, and 0.5}, each network contains 106 nodes. For pobs= 0.75, each network contains 105 nodes. For pobs= 1, each network contains 104

nodes. Distributions are averaged over 100 instances. In the dense regime (pobs > 0.5), network growth is non-ergodic leading to anomalous scaling and
noisy degree distributions. The distribution at phid= pobs= 0 corresponds to a random recursive tree, see Eq. (3) (exponential decay). The distribution at
phid= pobs= 1 corresponds to a complete graph. The distribution at phid= 1, pobs= 0 corresponds to the CCM, see Fig. 2. If phid= pobs, the GCCM is
equivalent to the uniform copying model.

Table 1 A comparison between the correlated copying model
(CCM) and the uniform copying model (UCM).

peff CC(GO) τGO
Degree dist.

CCM 0.37 0.77 0.43 Str. Exp.
UCM
(Max CC(GO))

0.38 0.52 0.20 Power-law

UCM
(Max τGO

)
0.22 0.40 0.28 Power-law

UCM is simulated twice, once with an effective copying probability, peff, that results in the
network with the highest average local clustering coefficient (in the sparse regime), CC(GO),
and once with the effective copying probability that gives the largest transitivity, τGO

. Values
averaged over 50 simulations where each network contains 105 nodes. Standard deviations are
negligible. All values for the observed network, GO.

Table 2 A selection of sparse undirected networks which
may plausibly grow via a copying mechanism.

Nodes Edges CC(GO) τGO

arXiv Astro
coauthors

18.8 K 198.1 K 0.63 0.32

arXiv GR coauthors 5.2 K 14.5 K 0.53 0.63
arXiv CM coauthors 23.1 K 93.4 K 0.63 0.26
arXiv HEP
coauthors

22.9 K 2.7 M 0.81 0.31

DBLP coauthors 540.5 K 15.2 M 0.80 0.65
NetSci coauthors 379 914 0.74 0.43
Hollywood
collaborations

1.1 M 56.3 M 0.77 0.31

DNC email
corecipients

906 12.1 K 0.61 0.56

These networks exhibit larger average local clustering coefficients, CC(GO), and transitivity, τGO
,

than one may expect if these networks were to grow via a uniform copying mechanism. Network
source data from Rossi and Ahmed51.
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in one layer have dependencies of nodes in another layer38,39.
However, at a conceptual level, hidden network models put an
emphasis on how the evolution of network structure can depend
on asymmetries not observed in our data.

In this paper, we have focused on copying in social networks,
but the ideas naturally extend to other contexts. In economics,
our framework may be applied to shareholder networks44, where
nodes are connected if they both own a common asset. Here, the
hidden network represents the full set of co-owned assets,
whereas the observed network includes publicly disclosed assets.
Similarly, the idea can be applied to co-bidding networks in
public procurement, where an edge indicates that two companies
both placed bids on the same contract. In many jurisdictions, only
winning bids (of which there may be multiple) are publicly
revealed. Therefore, the observed network may represent the
network of winning bids, whereas the hidden network includes all
bids. Hidden network models may be a valuable representation in
these cases if there are structural reasons for why some data is
observed and some data is hidden. For instance, fraudulent
behaviour in public procurement has been associated with
anomalous structural features in the co-bidding network45.

Other examples may be found in ecology, where multilayer
networks have been used to represent different interactions
between a common set of species46,47. Kéfi et al.46 find that the
structure of interactions in one layer has significant cross-
dependencies to the structure of other layers. This mirrors how
interlayer dependencies in the CCM are used to break symmetries
in the evolution of the observed network. Finally, hidden networks
may find general relevance to other fields where interdependent
networks have been influential. This may include studies on
energy demand management for power grids48, and the emer-
gence of synchronisation in multilayer neuronal models49.

A more unusual application of the hidden network concept is
for decomposing complex single-layer networks into simpler two-
layer structures. One such example is second-neighbour pre-
ferential attachment; an implementation of the Barabási−Albert
model where nodes attach proportionally to the number of nodes
within two steps of a target node50. Using our framework, the
model is decomposed into an observed network, and a hidden
network (in this case referred to as the influence network) where
nodes are connected to all nodes which are two or fewer steps
away, representing the node’s sphere of influence. Here, second-
neighbour preferential attachment is equivalent to conventional
first-neighbour preferential attachment followed by a local
copying step. Structural heterogeneity that is intrinsic in such a
model has profound consequences for the time dependence of
network growth50.

Conclusion
We have introduced a general model of heterogeneous copying,
implemented using a hidden network model. In the case of
extreme copying bias, we have derived analytical results and have
demonstrated significant differences to similar models with uni-
form copying rules. In particular, power-law degree distributions
observed in uniform copying can be suppressed under hetero-
geneous copying, and networks are significantly more clustered if
copying is biased towards a node’s inner circle. Although a sys-
tematic study of copying in real networks is necessary, evidence
suggests that heterogeneous copying may be relevant in a social
context.

The heterogeneous copying model is just one simple applica-
tion of a hidden network model. In general, the framework allows
us to deconstruct network growth heterogeneities in a non-
arbitrary way, focusing on structural rather than node hetero-
geneity, and poses questions concerning the role of hidden

information in network growth. Exploring these questions is a
key aim in upcoming work.

Data availability
All data can be generated using the Python code provided.

Code availability
Python code is available at: github.com/MaxFalkenberg/RandomCopying.
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