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a b s t r a c t 

Demand is frequently found to react differently to price increases than to price decreases. 

This finding is usually attributed to psychological phenomena such as loss aversion or to 

the different pace with which price changes become known to potential buyers leading 

to a kinked demand curve. This kink is often invoked in explaining why prices are sticky, 

especially in the downward direction. We analyse the presence of and the causes for asym- 

metric price elasticities of demand for the London Underground. Studying public transport 

demand offers unique advantages: the service cannot be stored and must be consumed 

at the point of purchase, and the consumption of public transport cannot be preponed or 

postponed. During the period that we study some nominal fares on the network have in- 

creased while others have decreased, offering a unique opportunity to observe price elas- 

ticities for both cases. Comparing changes in price elasticities after a price decrease to 

changes after a price increase, we find that demand is more sensitive to price increases 

than to decreases (by 0.5 to 1.0 percentage points). We also find that loss aversion con- 

tributes to this asymmetry at least on the intensive margin of transport demand. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

 

1. Introduction 

Demand for many products is frequently found to react differently in magnitude to price increases than it does for price

decreases ( Cornelsen et al., 2018 ; Gately, 1992 ; Gately and Huntington, 2002 ; Kalyanaram and Winer, 1995 ). This finding is

often rationalised in terms of loss aversion as customers may perceive a price increase as a loss and a price decrease as a

gain. If customers are loss averse as in Kahneman and Tversky (1979) , then they will react more strongly to a price increase

than they do to an equivalent price decrease. Alternatively, a lag in information dissemination can also lead to asymmetric 

demand responses. Price changes might be immediately known to frequent buyers but not to those who do not buy a good

but would buy it if they had knowledge of the new price. Therefore, the response of demand can depend on the timely

dissemination of the appropriate information ( Cason, 1994 ). 

A more straightforward explanation of asymmetric price elasticities is that demand is simply not iso-elastic. However, 

loss aversion and asymmetric information have the additional appeal of potentially explaining why fare revisions occur 
∗ Corresponding author. 

E-mail address: Firat.Yaman.1@city.ac.uk (F. Yaman) . 
1 Any views and opinions expressed in this article are the authors’ alone and do not represent the views of Ofcom or Transport for London. 

https://doi.org/10.1016/j.jebo.2022.09.005 

0167-2681/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.jebo.2022.09.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jebo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jebo.2022.09.005&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:Firat.Yaman.1@city.ac.uk
https://doi.org/10.1016/j.jebo.2022.09.005
http://creativecommons.org/licenses/by/4.0/


F. Yaman and K. Offiaeli Journal of Economic Behavior and Organization 203 (2022) 318–335 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

infrequently (once a year in the current case). Both loss aversion and asymmetric information lead to a ‘kink’ in demand,

which can be invoked to explain infrequent and discontinuous price adjustments ( Dupraz, 2017 ). Blinder (1991) offers some

support for a psychological explanation by reporting that business people prefer to keep prices fixed so as not to antagonize

customers. The idea of kinked demand goes back to Sweezy (1939) who shows how it can arise in oligopolies, leading to a

discontinuity in marginal revenue, and thus a range of marginal costs for which an oligopolist does not adjust their price.

Heidhues and Koszegi (2004) present a model with loss-averse consumers and resulting price stickiness in a monopoly 

model. 

The literature on asymmetric price elasticities faces several obstacles in identifying, let alone interpreting, these elas- 

ticities. Studies based on demand for goods (e.g., sold in supermarkets) cannot distinguish between the purchase and the 

consumption of a good. Suppose customers buy more of a good when it is under price promotion (a price decrease) and

stock it. After the promotion ends (a price increase) demand does not revert to its initial level since customers have stocked

up on it. This appears as an asymmetric response, but consumption of the good might not be affected at all. Since services

cannot be stocked demand for services is not subject to such a misinterpretation due to storing and stockage. Furthermore, 

price changes occur rarely in isolation and are often disguised as or bundled with other promotions such as bundling of

goods, or offering a free product (“buy 1, get 2”, see Ahmetoglu et al. (2014) ). Finally, it is not clear whether the past

price of the good in question serves as the reference price. Indeed, the literature has also considered a competitor’s price

( Hardie et al., 1993 ), a price index ( Dossche et al., 2010 ), or a ‘usual’ price ( Ahrens et al., 2017 ) as reference price and found

support for asymmetric responses for all of those. 

Transport offers more compelling reasons to be analysed when looking for asymmetries in price elasticities. The purchase 

of many services can be delayed. Think of a haircut. A person might have an optimal point of time to have their hair cut

but might be willing to prepone or postpone to take advantage of a promotion. They will, however, need to get a haircut

eventually. These considerations again confound an accurate quantification of how sensitive demand really is to prices. 

Public transport offers a promising laboratory to study the relationship between demand and prices for those reasons: 

it is almost always consumed at the point of purchase, and it leaves very little to no room to be postponed due to price

considerations. On the London Underground there are no price promotions, and since transport is rarely consumed for its 

own sake, the choice is rarely about whether to travel or not, but rather by which mode and perhaps what time of the day. 1 

For the same reason we do not need to take into account phenomena such as brand loyalty and related reactions (e.g., a

feeling of ‘betrayal’ when prices increase). Transport for London is a public monopoly and as such there is no competitor and

there are no sales campaigns comparable to the marketing of a for-profit good. Finally, public transport fares are not subject

to price volatility, unlike, for example, gasoline prices ( Chi, 2022 ; Kwon and Lee, 2014 ) as they change at predictable times

and by predictable magnitudes. Any demand reactions to fare changes are therefore very likely to be pure price effects. 

Transport is a key sector to any economy and as such of interest per se. The movements of goods and people are essential

to the workings of an economy. The demand for transport thus grows with increasing population, employment, and trade. 

Transport will also play a key role in the global effort to combat climate change. Transport authorities in many economies

now pledge and indeed implement policies to encourage the use of public transport wherever possible, as well as encourage 

private modes powered by renewable energy. Many transport users make their mode and route choice based on several 

factors, but perhaps most importantly based on their costs ( Takahashi, 2017 ). It is therefore vital for policy makers and

public transport authorities to understand how their price policies affect demand and the choice of travel mode. 

Our paper exploits a rare opportunity to observe demand for public transport both after nominal price increases – which 

are frequently observed – and an episode of nominal price decreases – a very rare occurrence. In 2016 Transport for London 

(TfL) decreased the fares of some journey types by rezoning the area which resulted in passengers paying actual cheaper 

nominal fares. This sets our paper apart in that we estimate and analyse the asymmetry in the response of demand to

changes in nominal fares using data from actual fare reductions from the world’s oldest metro. Our identification relies on 

estimating how price elasticities have changed for journeys which were affected by this rezoning, compared to how they 

have changed for journeys which were not affected. 

Our results suggest that demand both in terms of journeys and passengers reacts asymmetrically between fare increases 

and fare decreases. Our estimates of the difference between price-increase and price-decrease elasticities range from 0.25 

to 1.00 percentage points. We can further shed some light on the underlying reasons for these asymmetries by looking at

different measures of demand (journeys, passengers, and frequent passengers). While not conclusive, our results suggest that 

at least some of this asymmetry is attributable to loss aversion. 

2. Literature review 

2.1. Evidence of price asymmetry 

Textbook models of consumer demand assume that consumers make decisions considering price levels. However, the 

observation of price stickiness in the downward direction suggests asymmetric consumer responses to positive and negative 

price changes. Marshall (1920) remarked that demand functions may be irreversible as demand does not necessarily revert 
1 Passengers can choose to travel during off-peak hours and pay a lower fare. 
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to ‘original’ levels when prices reduce to previous levels. Price asymmetry has been tested for in the fields of economics,

psychology and marketing ( Bidwell et al., 1995 ; Farrell, 1952 ; Gately, 1992 ; Heidhues and K ̋oszegi, 2008 ; Kalyanaram and

Winer, 1995 ; Mazumdar et al., 2005 ; Winer, 1986 ), as well as in agriculture and banking (see also: Chen et al., 2004 ;

Hannan and Berger, 1991 ; Neumark and Sharpe, 1992 ; Panagiotou and Stavrakoudis, 2015 ; Pick et al., 1990 ; Ward, 1982 ).

In transport the focus has mostly been on demand asymmetries with respect to gasoline prices ( Chi, 2022 ; Hymel and

Small, 2015 ; Kwon and Lee, 2014 ). Interestingly, Chi (2022) is the only study which proposes loss aversion as one potential

explanation for the presence of demand asymmetries. 

One important reason for asymmetric price elasticities is the existence of a reference price. Consumers have memory 

and price expectations in that they can remember prices in the past ( Kalyanaram and Winer, 1995 ; Muth, 1961 ) which

then form their portfolio of reference prices; any increases or decreases in commodity prices would be compared to the 

reference prices which then results in a new demand function. Another reason is the existence of lags which enter into the

price transmission process ( Kitamura, 1990 ). Using household data from Great Britain, Cornelsen et al. (2018) show evidence

of asymmetric consumer behaviour and loss aversion. Bonnet and Villas-Boas (2016) find that customers in the French coffee 

market react differently to positive and negative price changes; demand for coffee is less elastic to price increases than to

price decreases. For Canada Noel (2009) concludes that gasoline prices tend to react more quickly to crude oil increase

than to decreases. Borenstein et al. (1997) test and confirm that gasoline prices respond asymmetrically to increases and 

decreases in crude oil prices. Energy demand responds more quickly to price increases than to price decreases ( Gately and

Huntington, 2002 ). 

In public transport, the only studies that we are aware of that look at the asymmetric response of public transport de-

mand to changes in price are Chen et al. (2011) and Li et al. (2020) . Utilising monthly commuter rail trip and fares data from

New Jersey Transit from January 1996 to February 2009 for journeys to and from New York City, Chen et al. (2011) conclude

that increases in gasoline prices lead to an increase in public transport demand, while decreases in gasoline prices do not

lead to a significant decrease in transit demand. On the other hand, an increase in transit fares results in a reduction in

demand while reduction in fare has no significant effect on demand. However, they consider real prices of transport, and 

price decreases occur only through inflation rather than a nominal reduction. Li et al. (2020) analyze a panel of Canadian

transit agencies and find higher elasticities for fare increases than for decreases. However, the result is not statistically con- 

clusive, and their identification of fare decreases seems likely to be driven by decreases in real fares due to inflation (the

study deflates fares to constant prices – it is not clear if there are any instances of nominal fare decreases). Do commuters

really respond to real price reductions which are very gradual and not salient in reality? The psychological reaction to a

very gradual change in prices over an extended period would be very different to a sudden and discontinuous one. As such,

reactions to a price increase and decrease are unlikely to be comparable. 

The transport literature has paid more attention to demand asymmetries in the context of gasoline prices, perhaps be- 

cause price changes and in particular price decreases are more readily observed. Chi (2022) finds higher elasticities of gaso-

line price increases compared to price decreases on public transit ridership in five of the six U.S. cities included in her study.

Hymel and Small (2015) find stronger responses of gasoline price increases compared to decreases on vehicle travel. They 

explore the channels of price volatility and media attention in explaining this asymmetry and conclude that these channels 

explain around half of the observed asymmetry. The media coverage channel is very close in spirit to the information asym-

metry argument that we explore in this paper. Li et al. (2020) find that transit demand in Canada reacts more strongly to

rising than to falling gasoline prices. The emerging consensus here is that demand for road travel as well as public transport

responds more strongly when gasoline prices rise than when they fall. 

Our paper, to the best of our knowledge, differs from any existing work on asymmetry because the data present a nomi-

nal reduction in fares which allows for a unique and rare empirical quantification of the response of demand to a reduction

in public transport fares. While we use gasoline prices as a control variable our focus are asymmetries in own-price elastic-

ities of travel demand on the London Underground. 

2.2. Public transport demand elasticity: an overview 

Elasticities are widely used in public transport delivery including the prediction of ridership and revenue effects of 

changes in any of the variables in the demand or supply functions (e.g., transit fares, service level, road tolls, parking fees,

infrastructural changes.) The elasticity of demand for public transport to changes in fares varies among networks, but there 

is consensus in the literature on the direction of the effects ( Balcombe et al., 2004 ; Bresson et al., 2003 ; Gordon and Will-

son, 1984 ; Holmgren, 2007 ; McLeod et al., 1991 ). In general the short run elasticity of transport demand to changes in fares

range from -0.25 to -0.8 while the long run elasticities are normally much larger and differ between networks ( Abrate et al.,

2009 ; Dargay and Hanly, 2002 ; Paulley et al., 2006 ). One rule of thumb states that for every 3% fare increase there is a corre-

sponding reduction in transit ridership by 1% ( Litman, 2017 ), but many other factors interplay in the fares-demand function.

Matas (2004) examined the long-term impact of the introduction of a travel card scheme in a transport network using ag-

gregate demand functions. The results conclude that passengers are highly responsive not just to fare changes but to other 

quality variables too, which is consistent with Balcombe et al. (2004) . Paulley et al. (2006) report that bus-fare elasticities

are around −0.4 in the short run and −1.0 in the long run. Gillen (1994) report that car owners have a greater elastic-

ity ( −0.41) than people who depend on public transport ( −0.10), and work trips are less elastic than shopping or leisure

trips. Lythgoe and Wardman (2002) find fare elasticities to depend on the direction of travel; elasticities were found to be
320



F. Yaman and K. Offiaeli Journal of Economic Behavior and Organization 203 (2022) 318–335 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lower for passengers travelling into the city than for those travelling outwards. Wardman (2014) provides a meta-analysis 

of surface travel elasticities and shows that elasticity estimates vary widely by travel mode, area, travel purpose, and time 

dimension (short or long run). Schimek (2015) reports a short run elasticity of −0.3 and a long-run elasticity of −0.7 for a

large cross-section of U.S. transit agencies. Dunkerley et al. (2018) provide evidence on bus fare and journey time elasticities

as well as recommendations on the values to be used in subsequent demand forecasting, appraisal and policymaking. There 

are reported differences between rail and bus elasticities depending on the method used. Rail transit fare elasticities tend 

to be relatively low in more advanced cities, probably a function of city transport priorities and policies, level of transport,

environmental integration, as well as average income. Canavan et al. (2018) find negative fare elasticities in the range of 

−0.25 and −0.4 in the long run for miles travelled and number of trips, while the long run income elasticity is found to

be positive for both miles travelled and number of trips. On the other hand, positive long run elasticities between 0.47 and

0.56 are reported for both passenger kilometres and passenger journey models. 

3. Background and institutional features 

London Underground is the oldest network in the world. The network consists of 17 different lines connecting 270 sta- 

tions and extends to 250 miles of track making it the 7th largest (in served passengers) and 3rd longest (in kilometres of

track) network in the world. In 2017 the network served about 4 million passenger journeys per day ( Offiaeli and Yaman,

2021 ). 

The network is managed and operated by Transport for London which revises their fares at the beginning of a year.

It is divided into different zones, with zone 1 being the most central, and zone 9 the outermost zone. Most stations on

the network fall into exactly one of the zones, but some stations fall on the boundary between two zones. The fare that a

customer pays depends on the zones of the origin and the destination, the time of travel, and on several other features such

as group travel and discounts. If the origin and/or destination station is a boundary zone, then the cheapest fare is applied

to the customer. For example, a journey from a station on the boundary between zones 2 and 3 to a station in zone 1 will

be treated as a journey between zones 1 and 2 rather than a journey between zones 1 and 3, as the former is cheaper. This

is an important feature for our identification of asymmetries in price elasticities. 

TfL typically revises their fares at the beginning of the year. All fares increased by £0.10 on January 2nd, 2015. In the

following year, the full peak fare for travel from a zone 1 station to a zone 1 or zone 2 station (and vice versa) increased

from £2.30 to £2.40. At the same time, seven stations in East London were rezoned. These stations had previously been in

zone 3 but became boundary stations (zone 2/3) after the rezoning, effectively reducing the travel fare between them and 

a zone 1 station from £3.30 to £2.90. Fig. 1 illustrates the re-zoning and lists the re-zoned stations. In November 2016, the

decision was taken to freeze fares on the London Underground for the next four years. 

The most common form of payment is pay as you go (PAYG). TfL issues their own PAYG travelcard (Oyster) which ac-

counted for 85% of all bus and rail journeys within London in 2013 ( TfL, 2014 ). PAYG has been extended to contactless

payment by bank card and mobile devices in 2014, and contactless payment has accounted for 40% of all PAYG payments

in 2017. For both Oyster and contactless payments, the fare is automatically calculated based on the stations where the 

passenger enters and exits, and daily caps are automatically applied. 

4. The data 

The data are from TfL’s ODX database which records information on origin, destination, time, and payment information 

of each journey undertaken on the TfL network since mid-2014. TfL kindly consented to extract the number of peak pe-

riod journeys and passengers (more on this below) distinguished by origin station, destination station, and day. 2 We only 

consider pay-as-you-go journeys. We aggregate origin and destination stations to fall under one of the following categories: 

Zone 1, zone 2, zone 3, zone 4, boundary zone 2/3, boundary zone 3/4, and stations which were rezoned in 2016. Finally,

we also identify stations which are adjacent to the rezoned stations both in the inbound direction (A2) as well as in the

outbound direction (A3), resulting in nine categories. We refer to any combination of distinct origin and destination cate- 

gories as a journey type . Our data thus has 81 journey types. We consider only journeys made during peak hours which

were subject to the full fare (without discounts). 

To illustrate, the left part of Fig. 2 displays the natural log of journeys undertaken from zone 3 to zone 1 stations during

peak times and subject to the full fare from June 2014 to July 2016. The figure displays some regularities. Most data points

fall into the band between 11 and 12, or 60,0 0 0 and 160,0 0 0 journeys. Demand drops both before the Christmas period

and during school holidays and picks up again shortly after New Year’s Day and in late summer. There are also occasional

outliers, mostly in the downward direction, which are typically driven by problems on the network, industrial action, or 

other events. 

We distinguish between a journey, which is any trip undertaken on the Underground, from passengers. A passenger 

might engage more than once on a journey type on the same day. In that case we would register only one passenger, but

several journeys for this journey type. We caution that we can identify only separate payment sources (the card from which
2 We are indebted to Graeme Fairnie and Vasiliki Bampi, both TfL, for their help and patience. 
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Fig. 1. Rezoned and adjacent stations. 

Note: Before rezoning in 2016, the stations under Rezoned were in zone 3 (upper panel). After rezoning, they became boundary stations on the boundary 

between zones 2 and 3 (lower panel). Adjacent stations are stations which directly connect to one of the rezoned stations. 

Fig. 2. Daily demand from zone 3 stations to zone 1 stations. 

Note: Log of daily demand during peak times and at full fare from zone 3 to zone 1. Left: all observations. Right: after removing troughs and outliers. 

 

 

 

 

 

 

payment was taken) rather than passengers per se, so that passenger numbers will be measured with some error (e.g., two

people using the same debit card to travel, or the same person using two separate cards to travel, on the same day). 

As fare changes become effective on the 2nd of January of each year, our identification of price elasticities will be driven

by changes in demand which occur between years, in a local time window around the first day that a new fare schedule

becomes effective. We first drop demand observations which fall between the 20th of December and the 9th of January. 

We also eliminate observations which fall into the school holiday season by keeping only observations which are up to 85

days away from the 2nd of January in either direction. We refer to such an 85-day period on either side of the New Year

as a period (e.g., the 85 days before the 2.1.2015 are period 1, the 85 days after the 2.1.2015 are period 2, etc.). Finally,

we eliminate any remaining outliers by dropping those demand observations which are more than two standard deviations 
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away from their cell average, where cells are defined by period, and journey type. The data after applying all those filters

can be seen on the right part of Fig. 2 . 

Daily travel demand is influenced by additional factors such as the weather, the cost of alternative modes of transport, 

and disruptions to the public transport system. To control for weather related factors we use daily data on rainfall, tem-

perature, and other weather characteristics. 3 We obtain weekly petrol price information (price paid at pump station) from 

the UK Department for Business, Energy, and Industrial Strategy. Monthly data on unemployment and average house prices 

were obtained from the London Datastore. Finally, we complement TfL’s travel data with TfL’s internal daily information on 

lost customer hours as a measure of service reliability. 

In projecting monthly data (such as unemployment) onto days we have followed two approaches. The first is to use 

the unemployment rate reported for a month for all the days which fall into that month. Alternatively, we have used the

reported unemployment rate only for the 15th day of each month and filled in the remaining points by linear interpolation.

Both calculations yielded nearly identical results for our elasticity estimations. The results reported below are based on the 

interpolated series. Complete results can be requested by the corresponding author. 

5. Model specification and estimation 

We look at three different measures of demand: Journeys, passengers, and frequent passengers. Journeys of a journey 

type are the number of journeys made for that journey type during peak hours during a day (week). Passengers of a journey

type are distinct passengers who make a journey of this journey type during peak hours during a day (week). Frequent

passengers for a journey type are distinct passengers who travel at least 10 times both during the period before and after

the fare changes. We also look at two different time aggregates: daily, and weekly. For example, weekly passenger data 

between zone 1 and zone 3 would be the number of distinct passengers who travelled between these two zones during a

week. 

Using the above samples will allow us to differentiate between the intensive and extensive margins of demand changes, 

and therefore inform on the underlying reasons for asymmetric price elasticities. As we show below, journey demand reacts 

more strongly to price increases than price decreases. A behavioural explanation would be the presence of loss aversion 

provided that loss aversion at an individual level translates to loss aversion in aggregate demand. Customers perceive a 

strong loss of value when fares increase and reduce their demand. The value gain experienced by a fare decrease is not as

strong as the corresponding loss and therefore demand does not increase as much. This is the loss aversion hypothesis . 

An alternative explanation is that while fare increases are common knowledge among all who use public transport, 

fare decreases might not be known by some who do not use public transport but would use it if they had knowledge of

the actual fares. This effect might even be more important in our case, as fare decreases come about through a re-zoning

of certain stations, and the fare implications might not be immediately clear to some potential passengers. This is the 

asymmetric information hypothesis . Hymel and Small (2015) explore a similar channel by looking at whether elasticities are 

higher during periods of media coverage of gasoline prices. If media attention is greater to price increases, then this could

potentially explain why price increase elasticities are greater than price decrease elasticities. 

A third possibility might be that the travel mode choice set might change after a fare increase, e.g., someone might buy

a car, and even if fares revert to their initial level, the person might not find it worthwhile to use public transport. However,

this argument cuts both ways, and seems unlikely to be an important determinant of short-run demand for public transport. 

The frequent passenger sample eliminates the asymmetric information channel. Since the sample only contains passen- 

gers who travelled at least 10 times both under the old and the new fare regime, we assume that these passengers were

fully aware of the fares. Any change in demand among this sample is thus on the intensive margin, and we attribute asym-

metric responses to price changes to loss aversion. As a test of loss aversion, this is our preferred sample. 

Distinguishing between journeys and passengers also informs about the margin of adjustment and underlying reasons 

for asymmetry, though perhaps not as cleanly as the frequent passenger sample. Suppose the demand in terms of journeys 

( D ), passengers ( N ), and average number of journeys per passenger ( d ), is given by: 

ln D jt = αD + βD ln P jt (1) 

ln N jt = αN + βN ln P jt (2) 

ln d jt = αd + βd ln P jt (3) 

Where P is the fare, and the subscripts denote journey type j and time t . Since D jt = N jt d jt , the demand elasticity in

terms of journeys could be decomposed as 

βD = βN + βd 
3 We obtained rainfall data for London from the London Datastore (data.london.gov.uk) run by the Greater London Authority. We downloaded data on 

average temperatures, humidity, wind speed and dew point from the Weather Underground website (wunderground.com). 
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Fig. 3. Example daily and weekly travel demand. 

Note: Both persons A and B travel every day before the fare change but travel on alternating days after the fare change. For daily data we observe a 50% 

drop of journeys and of distinct passengers. For weekly data we observe a 50% drop of journeys, but no drop in distinct passengers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the number of passengers is fully inelastic ( βN = 0 ), then all adjustment must happen on the intensive margin, and

the information asymmetry channel can be ruled out as all passengers would be exposed to the fares before and after fare

revision. If, however, journey elasticity can be fully explained by the passenger elasticity, then all the adjustment happens on 

the extensive margin, and we cannot know to which extent the loss aversion and information asymmetry factors contribute. 

We complement our analysis based on daily demand by an analysis based on weekly demand, as daily data can lead to

misleading classifications of journeys and passengers. Consider the example in Fig. 3 . Both persons A and B travel every day

before the fare increase. The daily data thus counts two journeys, and two passengers, every day. After the fare increase, A

travels on odd, and B on even days of the week, and the daily journey data counts one journey, and one passenger every

day. It seems that the entire adjustment happened at the extensive margin. But this is not true when we consider the whole

week, where we still see two passengers, and half as many journeys as before. The latter scenario reflects more closely what

we understand to be the intensive and extensive margins of demand. Weekly data reduces our sample by 80% compared to

daily data. 

Our empirical model accounts for demand specific to journey types, a quadratic time trend to capture global demand 

trends, a discontinuous change in demand on the 2nd of January, and other control variables which affect demand for 

public transport. These are petrol prices, economic conditions, weather characteristics, and service reliability proxied by lost 

customer hours as described above. For our model in weekly observations, we computed the averages of these data for the

corresponding weeks. Our most general specification also allows for price elasticities specific to journeys between zone 1 

and rezoned stations, and for demand to be auto-regressive of order 1: 

ln ( Y ) it = αi + β1 t + β2 t 
2 + D t 

(
t > January 2 

nd 
)

+ γ ′ 
2 X it + δ1 ln ( fare ) it + δ2 D i (Rezone ) × l n ( fare ) it + κ l n ( Y ) i,t−1 + u it 

(4) 

The subscript i refers to journey type, and t to time. Observations are daily or weekly. Y is demand, D t (t > January 2nd)

is 1 if t is after January 2nd, and 0 else. D i (Rezone) is 1 if the journey type is between zone 1 and a rezoned station. Finally,

X is a column vector of control variables including the price of petrol, daily weather characteristics, economic conditions, 

and daily lost customer hours due to disruptions to the Underground service, and fare is the fare in pounds. 

5.1. Model validity 

The main parameters of interest are δ1 and δ2 . These parameters can be consistently estimated since fare changes, both 

in incidence and magnitude, can reasonably be treated as exogenous, especially in the short time window which we observe. 

In the long-term fares and demand are more likely to be co-determined and endogeneity of fares is a more serious mat-

ter in longer time series. Note that for any journey type the fare changes only once (on January 2nd). The variable ln(fare)

is therefore akin to a treatment variable which allows before and after comparisons on treated observations. The dummy 

variable D t (t > January 2nd) will absorb any other factors which change on the same threshold day and which affect trans-

port demand. If the fares of all journey types changed by the same proportion, then a fare effect could not be separately

identified from the effect of this dummy. However, different journey types change by different rates. This allows us to inter-

pret δ1 as a pure fare effect. To check whether fare changes affect journeys involving rezoned stations differently compared 

to the remaining journeys we allow the two journey types to have different elasticities. This is achieved by including the

interaction term D i (Rezone) × ln(fare) it in our model. The change in travel demand for a 1% fare increase for journeys in-

volving rezoned stations is given by ( δ1 + δ2 )%, while for the remaining journeys it is δ1 %. The difference between the two

is then δ2 percentage points. The parameter δ2 estimated for the 2014/15 sample ( δ2014 / 15 
2 

) thus gives us a good indication

of the ‘natural’ difference in elasticities between journeys with and without rezoned stations and absorbs any unobserved 

differences between journeys with and without rezoned stations. 

In the following year (2015/16) the fares for journeys involving rezoned stations have dropped . If there are no asym-

metric responses between price increases and decreases then we should expect to obtain a comparable value for δ2 

( δ2015 / 16 
2 

= δ2014 / 15 
2 

). A significant difference will support the hypothesis that demand reacts differently in magnitude to 

price increases than to price decreases. Our empirical strategy thus combines a regression discontinuity (RD) approach (in 
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Table 1 

Price elasticities trips - full sample. 

Year 2014/15 2015/16 

Model (1) (2) (3) (4) (1) (2) (3) (4) 

Short term ε −0.12 −0.12 −0.71 ∗∗∗ −0.58 ∗∗∗

(0.20) (0.17) (0.07) (0.06) 

Short term ε - not rezoned −0.15 −0.13 −0.89 ∗∗∗ −0.73 ∗∗∗

(0.20) (0.17) (0.07) (0.07) 

Short term ε - rezoned −0.73 ∗∗ −0.63 ∗∗ −0.56 ∗∗∗ −0.44 ∗∗∗

(0.35) (0.29) (0.08) (0.06) 

Long term ε −0.14 −0.75 ∗∗∗

(0.20) (0.08) 

Long term ε - not rezoned −0.16 −0.94 ∗∗∗

(0.20) (0.07) 

Long term ε - rezoned −0.76 ∗∗ −0.57 ∗∗∗

(0.35) (0.08) 

Petrol price ε 0.53 ∗∗∗ 0.53 ∗∗∗ 0.46 ∗∗∗ 0.46 ∗∗∗ 1.26 ∗∗∗ 1.27 ∗∗∗ 1.03 ∗∗ 1.03 ∗∗

(0.22) (0.15) (0.14) (0.14) (0.17) (0.17) (0.16) (0.16) 

Separate elasticity rezoned stations no yes no yes no yes no yes 

Includes lagged demand no no yes yes no no yes yes 

Number of observations 8163 8163 8163 8163 7981 7981 7981 7981 

Note: Results are price elasticities of demand. Further controls are weather characteristics, economic conditions, and lost customer hours (see Section 4 for 

a detailed description of variables). Standard errors in parentheses. ∗ Significant at 10%. ∗∗ Significant at 5%. ∗∗∗ Significant at 1%. 

 

 

 

 

 

 

 

 

 

 

 

 

estimating elasticities exploiting discontinuous changes in fares around the start of a new calendar year) and a difference- 

in-differences (DiD) model in comparing these elasticities between journeys with and without rezoned stations on the one 

hand, and between a year with and without re-zoning on the other. The DiD model assumes that in the absence of treatment

the outcome of treated observations would have evolved parallel to the outcome of the control observations. This is the 

well-known parallel trend assumptions needed for the causal interpretation of the DiD estimator. The assumption is not 

testable since we do not observe the evolution of treated observations under a no-treatment scenario. 

Given the exogeneity of fares it is unlikely that omitted variables will bias our elasticity estimates. Even if other variables

explain day-to-day fluctuations in public transport demand, these variables are likely to be orthogonal to prices, especially 

given that we control for time effects. This is confirmed by inspecting the correlation of ln(fare) with the remaining control

variables (see Table A1 in the appendix). The highest correlation is with ln(petrol) – a correlation coefficient of merely −0.04. 

However, control variables may help in reducing the remaining noise in our model and lead to more precise estimates. 

Long term elasticities are calculated as δ/ ( 1 − κ) . Our estimates for κ range from 0.14 to 0.28, providing strong evidence

against a unit root. Long-term elasticities are thus higher than short-term elasticities by 16% to 39%. We caution the reader

that short and long run in the current context are quite distinct from their use in the literature due to the high frequency

of our data. There is probably more day-to-day variation in demand than would be the case for monthly data which would

explain the relatively small coefficients on lagged demand. The model does not contain cross-price elasticities as these 

cannot all be identified in a model with year fixed effects, considerably complicating the interpretation of coefficients. 4 

However, any price effects that are common to all journey types will be absorbed by the dummy for the new year D t (t >

January 2nd). 

The fare increases in 2015 increased fares for all journey types, so that substituting between journey types due to new

fares would be very unlikely. For the fare changes in 2016, we complement our main analysis by looking at whether demand

for journey types which had their fares changed crowded out (in) demand for other journey types. 

Since an observation is a record of (the log of) how many journeys were undertaken for a certain journey type, obser-

vations are weighted by the average demand for the journey type over the sample period, so that more frequent journey 

types receive a higher weight in the estimation. Standard errors are clustered by journey type – period combinations. 5 For 

comparison purposes we also estimate our model under the restrictions δ2 = 0 and κ = 0. 

6. Results 

Table 1 reports estimated journey price elasticities for our entire sample of journey types (elasticity is denoted by ε). 

Model 1 does not allow for asymmetry ( δ = 0) and does not differentiate between short and long-run elasticity ( κ = 0),
2 

4 Let there be j = 1,…,J journey types, and t = 1,2 years. Let p jt be the price of journey type j in year t , and D t=2 a dummy variable equal to 1 if t = 2. 

Then the price of journey type 1 in any year can be written as p 1 t = ( 
J ∑ 

j=1 

p j1 ) − ( 
J ∑ 

j=2 

p jt ) + D t=2 ( 
J ∑ 

j=1 

�p j ) , that is, p 1 t is a linear combination of a constant, 

the prices of other journeys, and a dummy for year 2 multiplied by a factor. 
5 We also considered Newey-West standard errors, but this did not generally change the inference. Significance levels for results in Table 4 were reduced. 
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Table 2 

Selected studies on public transport demand. 

Study Cross section Time Fare metric Price elasticity 

Chen et al. (2011) Commuter rail trips between New 

Jersey and New York City 

1996–2009 (monthly) Average fares charged −0.4 

Wardman (2014) Meta analysis of rail travel in the UK −0.4 to −1.0 

Schimek (2015) 198 US transit agencies (all modes) 1991–2012 Revenue/passengers −0.34 

Daldoul et al. (2016) 12 Regional Transport Companies in 

Tunisia (mostly buses) 

1997–2010 Revenue/passengers −0.46 

Li et al. (2020) 99 Canadian transit authorities 2002–2016 Actual fares charged −0.24 

This study 81 journey type dyads on the London 

Underground 

2014–2016 (daily and 

weekly) 

Actual fares charged −0.12 

Note: Comparison of this study with recent estimates of own fare elasticities for public transport. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the second model freely estimates δ2 , the third model freely estimates κ and the fourth model places no restriction on 

either of those coefficients. We estimate these elasticities separately for periods 1 and 2 (2014/15, left), and for periods 3

and 4 (2015/16, right). The short-term elasticities in models (1) and (3) in 2014/15 are not significantly different from 0,

suggesting very inelastic price elasticities of journey demand. If we allow for journeys between zone 1 and stations which 

were rezoned in 2016 to have a different elasticity (models (2) and (4)), then our results suggest that these journey types

exhibit a stronger response to fare changes than the remaining journey types. Petrol prices are found to have a positive effect

on public transport demand. This result is robust throughout all our estimations. The weather characteristics are jointly 

highly significant, unemployment correlates negatively and service reliability positively with travel demand as expected. 6 

We focus our discussion on the short-run elasticities, as these are better identified by the changes in demand around the

time of the fare changes and generally show the same asymmetry features as long-run elasticities. 

How do our estimates compare to recent findings in the literature? Table 2 compiles a selected list of recent studies

which have estimated price elasticities for public transport demand. The estimates of original studies range from −0.24 

to −0.46 – a remarkably narrow range given the diversity of regions and transport modes considered. The most typical 

elasticity from our investigation is −0.12. This is the elasticity for non-rezoned journeys – by far the more common type of

journey undertaken on the London Underground – in 2014/15 when travel fares increased for all journey types. A number of 

factors contribute to a lower elasticity estimate compared to the literature. First, we look at journey types within one mode

of travel and one city. Different journey types are less substitutable than different modes of travel. Second, TfL increased 

fares in 2015 for all journey types and travel modes. For example, pay as you go bus fares increased from £1.45 to £1.50,

reducing the relative benefit of changing transport modes. As a result, travelling became more expensive, but the cost of 

travelling relative to another mode changed less. Third, structural features of London (population density, the congestion 

charge of driving into the inner city, commuting distances) might contribute to a lower elasticity in London compared to 

other cities. We thus think that our elasticity estimates fall in a reasonable range given these features. Only two of the

papers have explored demand asymmetries ( Chen et al. (2011) and Li et al. (2020) ). Both fail to find a significant effect of

price decreases on demand but they do find a significant effect of price increases. We suspect that the failure to find effects

of price decreases is due to the fact that price decreases are only identified in terms of real prices which fall due to inflation.

In contrast, in our context we can observe the change of demand after a nominal price decrease. 

In 2015/16 rezoning became effective and fares for journeys between rezoned and zone 1 stations dropped by 12%. 

Demand for journey types not affected by re-zoning became more elastic (from −0.15 in 2014/15 to −0.89 in 2015/16),

while demand for journeys affected by re-zoning (which saw fare decreases in 2015/16) became less elastic (from −0.73 in 

2014/15 to −0.56 in 2015/16). The difference in these elasticity changes between rezoned and non-rezoned journey types is 

0.90 and significant at 1% (see also Table 4 ). 

Does this suggest that price-elasticities are asymmetric? There are two challenges to this interpretation. First, only two 

journey types actually saw their fares increase in 2015/16, while all journey types became more expensive in 2014/15. Thus, 

the change in elasticity for journeys not affected by re-zoning is driven by sample selection (in terms of journey types)

more than a genuine change in elasticities. Second, the observations which use journey types which involve fare decreases 

are not comparable to the remaining observations, in particular, their price elasticities are different. We address the first 

point below by looking only at the sub-sample of journey types which saw their fares change in either direction in 2015/16.

The second objection is corroborated by the different elasticities between these journey types within a year (e.g., −0.15 for 

non-rezoned, and −0.73 for rezoned journey types within the same period 2014/15). But to say that the difference between 

price elasticity changes is driven by population differences would require a stronger, and less plausible, argument that the 

change in price elasticities between these two populations, all else equal, must be different. This is perhaps the case, and we

cannot disprove it. We therefore progress on the assumption that price elasticities would have changed in the same direction 

and by the same magnitude if prices for journeys affected by rezoning had changed by the same percentage as journeys not

affected by rezoning, making our estimate of price elasticity asymmetries effectively a DiD estimator. 
6 We omit the results from the table to avoid clutter and to focus attention on fare elasticities. Full results are available upon request from the corre- 

sponding author. 
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Table 3 

Price elasticities trips - small sample. 

Year 2014/15 2015/16 

Model (1) (2) (3) (4) (1) (2) (3) (4) 

Short term ε −1.85 ∗∗∗ −1.56 ∗∗∗ −0.65 ∗∗∗ −0.52 ∗∗∗

(0.47) (0.44) (0.05) (0.05) 

Short term ε - not rezoned −2.11 ∗∗∗ −1.78 ∗∗∗ −0.69 ∗∗∗ −0.57 ∗∗∗

(0.54) (0.52) (0.13) (0.10) 

Short term ε - rezoned −2.80 ∗∗∗ −2.39 ∗∗∗ −0.62 ∗∗∗ −0.49 ∗∗∗

(0.80) (0.75) (0.09) (0.07) 

Long term ε −1.79 ∗∗∗ −0.68 ∗∗∗

(0.48) (0.06) 

Long term ε - not rezoned −2.04 ∗∗∗ −0.74 ∗∗∗

(0.56) (0.12) 

Long term ε - rezoned −2.73 ∗∗∗ −0.63 ∗∗∗

(0.82) (0.09) 

Petrol price ε 0.34 0.34 0.31 0.31 1.27 ∗∗∗ 1.27 ∗∗∗ 1.16 ∗∗∗ 1.16 ∗∗∗

(0.24) (0.24) (0.24) (0.24) (0.24) (0.24) (0.22) (0.22) 

Separate elasticity rezoned stations no yes no yes no yes no yes 

Includes lagged demand no no yes yes no no yes yes 

Number of observations 911 911 911 911 898 898 898 898 

Note: Results are price elasticities of demand. The small sample consists only of journey types which have had their fare changed in both fare revision 

rounds (at the beginning of 2015 and again in 2016). Further controls are weather characteristics, economic conditions, and lost customer hours (see 

Section 4 for a detailed description of variables). Standard errors in parentheses. ∗ Significant at 10%. ∗∗ Significant at 5%. ∗∗∗ Significant at 1%. 

Table 4 

Price elasticities with daily data. 

Journeys Passengers Frequent passengers 

2014/15 2015/16 Difference 2014/15 2015/16 Difference 2014/15 2015/16 Difference 

Full sample 

Short term ε - not rezoned −0.15 −0.88 ∗∗∗ −0.74 ∗∗∗ 0.13 −0.82 ∗∗∗ −0.96 ∗∗∗ −0.15 −0.16 ∗∗∗ −0.01 

(0.20) (0.07) (0.21) (0.23) (0.06) (0.24) (0.19) (0.05) (0.19) 

Short term ε - rezoned −0.73 ∗∗ −0.57 ∗∗∗ 0.16 −0.46 −0.59 ∗∗∗ −0.13 −0.76 ∗ −0.52 ∗∗∗ 0.24 

(0.35) (0.08) (0.36) (0.43) (0.03) (0.43) (0.42) (0.02) (0.42) 

Difference −0.58 ∗∗∗ 0.32 ∗∗∗ 0.90 ∗∗∗ −0.59 ∗∗ 0.23 ∗∗ 0.83 ∗∗∗ −0.61 ∗ −0.37 ∗∗∗ 0.25 

(0.22) (0.12) (0.25) (0.28) (0.09) (0.29) (0.33) (0.06) (0.34) 

Number of observations 8163 7981 8121 8195 8263 8203 

Small sample 

Short term ε - not rezoned −2.11 ∗∗∗ −0.70 ∗∗∗ 1.41 ∗∗ −2.19 ∗∗∗ −0.69 ∗∗∗ 1.50 ∗∗ −2.86 ∗∗∗ −0.15 ∗ 2.71 ∗∗∗

(0.53) (0.12) (0.54) (0.70) (0.11) (0.69) (0.75) (0.09) (0.76) 

Short term ε - rezoned −2.81 ∗∗∗ −0.62 ∗∗∗ 2.18 ∗∗∗ −2.87 ∗∗∗ −0.64 ∗∗∗ 2.23 ∗∗ −3.79 ∗∗∗ −0.53 ∗∗∗ 3.26 ∗∗∗

(0.79) (0.09) (0.79) (1.00) (0.04) (1.00) (1.12) (0.03) (1.12) 

Difference −0.70 ∗∗ 0.07 0.77 ∗∗ −0.70 ∗ 0.05 0.73 ∗ −0.93 ∗∗ −0.38 ∗∗∗ 0.55 

(0.29) (0.18) (0.34) (0.37) (0.15) (0.40) (0.45) (0.11) (0.46) 

Number of observations 911 898 912 913 936 919 

Note: Results are price elasticities of demand and their differences over time and between stations which were and were not rezoned. Further controls are 

weather characteristics, economic conditions, and lost customer hours (see Section 4 for a detailed description of variables). Standard errors in parentheses. 
∗ Significant at 10%. ∗∗ Significant at 5%. ∗∗∗ Significant at 1%. The number of observations varies between Journeys, Passengers, and Frequent passengers 

because the trimming of outliers (see Data section) does not affect the exact same observations across the three demand measures. 

 

 

 

 

 

 

 

 

It is possible that demand for journey types whose fares did not change in 2016 are inelastic relative to demand for

journey types involving rezoned stations, while demand for journeys whose fares increased in 2016 are more elastic –

regardless the direction of the price change. This would explain why elasticity estimates increased for journey types not 

affected by rezoning. To see if this is the case, we repeat our estimations restricting our sample to only those journeys

which see a change in fares in 2016. The results can be seen in Table 3 . The price elasticities for this smaller sample are

much larger than for the full sample in 2014/15, but we still observe that demand for journeys involving rezoned stations

is more elastic. However, in 2016 demand for the same journeys is less elastic than demand for journeys which have seen

fare increases (the difference between the two elasticities is significant at the 5% level in both years). The difference in the

elasticity changes is 0.77 which is in the ballpark of the 0.90 estimated for the complete sample. 

Table 4 reports results of estimated price elasticities in a model with asymmetric price elasticities, and κ = 0 (no separate

long-run elasticity) based on daily data. For journeys (left panel), we have discussed the results above: the elasticity for 

journeys affected by re-zoning become less elastic (as the elasticities are negative) compared to journeys not affected by 

re-zoning by 0.90 percentage points in the full sample and by 0.77 percentage points in the small sample. This holds both
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Table 5 

Price elasticities with weekly data. 

Journeys Passengers Regular passengers 

2014/15 2015/16 Difference 2014/15 2015/16 Difference 2014/15 2015/16 Difference 

Full sample 

Short term ε - not rezoned 0.17 −0.60 ∗∗∗ −0.78 ∗∗∗ 0.58 ∗∗∗ −0.64 ∗∗∗ −1.21 ∗∗∗ 0.23 ∗∗ −0.18 ∗∗∗ −0.40 ∗∗∗

(0.23) (0.06) (0.23) (0.13) (0.05) (0.14) (0.11) (0.02) (0.11) 

Short term ε - rezoned −0.32 −0.61 ∗∗∗ −0.29 0.09 −0.17 ∗∗∗ −0.26 −0.49 ∗∗∗ −0.18 ∗∗∗ 0.31 

(0.38) (0.11) (0.40) (0.26) (0.02) (0.27) (0.27) (0.01) (0.27) 

Difference −0.49 ∗∗ −0.01 0.49 ∗ −0.49 ∗∗ 0.47 ∗∗∗ 0.96 ∗∗∗ −0.72 ∗∗∗ −0.01 0.71 ∗∗∗

(0.24) (0.13) (0.27) (0.19) (0.06) (0.20) (0.23) (0.03) (0.23) 

Number of observations 1548 1485 1563 1556 1611 1596 

Small sample 

Short term ε - not rezoned −2.90 ∗∗∗ −0.48 ∗∗∗ 2.43 ∗∗∗ −0.46 −0.52 ∗∗∗ −0.06 −2.21 ∗∗∗ −0.17 ∗∗∗ 2.04 ∗∗∗

(0.52) (0.09) (0.52) (0.35) (0.07) (0.35) (0.29) (0.04) (0.30) 

Short term ε - rezoned −3.74 ∗∗∗ −0.64 ∗∗∗ 3.11 ∗∗∗ −0.96 ∗ −0.21 ∗∗∗ 0.75 −3.23 ∗∗∗ −0.19 ∗∗∗ 3.04 ∗∗∗

(0.73) (0.11) (0.73) (0.54) (0.03) (0.54) (0.48) (0.01) (0.47) 

Difference −0.84 ∗∗∗ −0.16 0.68 ∗∗ −0.51 ∗∗ 0.30 ∗∗∗ 0.81 ∗∗∗ −1.02 ∗∗ −0.02 1.00 ∗∗∗

(0.27) (0.16) (0.32) (0.24) (0.09) (0.25) (0.26) (0.05) (0.27) 

Number of observations 177 167 175 173 179 178 

Note: Results are price elasticities of demand and their differences over time and between stations which were and were not rezoned. Further controls are 

weather characteristics, economic conditions, and lost customer hours (see Section 4 for a detailed description of variables). Standard errors in parentheses. 
∗ Significant at 10%. ∗∗ Significant at 5%. ∗∗∗ Significant at 1%. The number of observations varies between Journeys, Passengers, and Frequent passengers 

because the trimming of outliers (see Data section) does not affect the exact same observations across the three demand measures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for the full and the small sample of journey types. For passengers, we observe that for the full sample the elasticity for

journey types involving fare increases changes from −0.46 to −0.59 (demand becomes more elastic, though not significantly 

so). At the same time, passenger demand for other journey types sees a significant increase in its elasticity, from 0.13 to

−0.82, resulting in a significant difference in differences of 0.83 (0.73 in the smaller sample). The implied difference in 

differences estimates for journeys per passenger (the intensive margin) are 0.07 in the full, and 0.04 in the small sample.

As most of the elasticity changes are driven on the extensive margin, we cannot say whether the observed asymmetries are

better explained by loss aversion or information asymmetry. 

If we only look at frequent passengers, we also find a positive difference between elasticity changes (0.25 for the full,

0.55 for the small sample) but they are not significantly different from zero. 

We report results for weekly data in Table 5 . Journey demand appears to have become more elastic for both journey

types which were and were not affected by rezoning in the full sample (from 0.17 to −0.60 and from −0.32 to −0.61

respectively). However, the estimates from the small sample suggest that elasticities have decreased (from −2.90 to −0.48 

and from −3.74 to −0.64). In either case, the resulting difference in elasticity changes is estimated as 0.49 for the full, and

0.68, with the latter being significant at 5%. 

For passengers, we do observe statistically significant differences, and the asymmetry is close to one percentage point 

(0.96 and 0.81). This would imply that the elasticity for journeys per passenger has increased more for journey types affected

by rezoning than the elasticity for other journey types. 7 For frequent passengers we observe similar magnitudes as for 

passengers, with implied price elasticity asymmetries of 0.71 percentage points for the full and 1.00 percentage point for the 

small sample. This last result is perhaps the most convincing evidence to suggest that there is price elasticity asymmetry 

at least on the intensive margin. A fare increase results in fewer people using the London Underground in a week. An

equivalent fare decrease, however, does not recover the same passenger numbers that would be lost to the equivalent fare 

increase. Since these passengers are exposed to both the new and the old fares many times, this asymmetry is not driven

by the information asymmetry channel, but rather the loss aversion channel. 

6.1. Did fare decreases crowd out demand for different journey types? 

We now investigate whether the fare changes in 2016 have affected demand for journey types whose fares have not 

changed. Fig. 4 illustrates this situation. Both passengers A and B travel to central London (zone 1). Passenger A lives close

to a rezoned station but prefers to walk to the nearest zone 2 station before the rezoning to pay a cheaper fare. However, the

fare advantage disappears once the rezoned station becomes a boundary station in 2016. Similarly, passenger B lives close to 

a zone 3 station and travels from that station before the rezoning. After the rezoning, they walk to a rezoned station since

the fare from a rezoned station to a zone 1 station became lower after the rezoning. 

We analyse whether the fare change for journeys between rezoned stations and zone 1 stations has also affected travel 

demand for journeys between zone 1 stations and stations which are adjacent to rezoned stations (henceforth adjacent 
7 Note that the elasticity for journeys per passenger is inferred according to Eqs. 1 ) to 3 ) rather than estimated. 
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Fig. 4. Optimal departure station before and after rezoning. 

Note: Person A walks to the zone 2 station before (to pay a lower fare), and to the boundary station after rezoning. Person B walks to the zone 3 station 

before, and to the boundary station after rezoning (to pay a lower fare). 

Table 6 

Cross price elasticities in 2015/16. 

Daily Weekly 

Journeys Passengers Frequent passengers Journeys Passengers Frequent passengers 

Full sample 

Short term ε - not rezoned 0.09 0.07 0.11 0.09 −0.05 0.04 

(0.12) (0.12) (0.11) (0.13) (0.15) (0.07) 

Short term ε - rezoned 0.05 0.09 0.13 0.04 0.16 ∗∗∗ 0.17 ∗∗∗

(0.06) (0.06) (0.06) (0.07) (0.06) (0.06) 

Small sample 

Short term ε - not rezoned 0.23 0.18 0.15 ∗∗ 0.15 0.08 0.06 

(0.15) (0.16) (0.07) (0.15) (0.16) (0.08) 

Short term ε - rezoned 0.01 0.06 0.12 0.03 0.13 0.15 ∗∗

(0.07) (0.07) (0.14) (0.08) (0.06) (0.06) 

Note: Results are demand elasticities of journey types which are the closest substitutes to journey types which saw a change in their fares with respect 

to that fare change. Further controls are weather characteristics, economic conditions, and lost customer hours (see Section 4 for a detailed description of 

variables). Standard errors in parentheses. ∗ Significant at 10%. ∗∗ Significant at 5%. ∗∗∗ Significant at 1%. 

 

 

 

 

 

 

 

 

 

 

journeys) on either side (in- or outbound). Similarly, since zone 1 to zone 1 or 2 stations became more expensive, we

analyse whether this influenced travel between zone 1 and zone 3 stations. The results for this analysis are reported in

Table 6 . In both the full and the small sample we find positive but mostly insignificant cross-elasticities. Only for weekly

demand do we find evidence that fewer passengers travelled from stations adjacent to rezoned stations to zone 1 stations 

(and vice versa) after the rezoning – a cross-elasticity of 0.17% (last two columns). Interestingly, for the small sample we 

find strong evidence for crowding out of demand for the journey types affected by the fare increase in 2016, but not for 

7. Robustness 

The methods applied in this paper all rely on certain assumptions to either consistently estimate the parameters or 

to give them a causal interpretation. We discuss below the following potential threats to the validity of our results: The

potential correlation of error terms across journey types (cross-sectional dependence), the parallel trends assumption and 

heterogeneity in elasticities, and the possibility of a structural break in the coefficients of our control variables. In this 

section we briefly discuss these issues and our remedies. Corresponding results can be found in the appendix. 

7.1. Cross-sectional dependence 

Panel data methods typically rely on independence across panel units for inference. When the time dimension of a panel 

is long then this assumption is less tenable as the likelihood of events which affect all panel units increases. These events

may affect both observable and unobservable characteristics. The ensuing dependence between units is known as cross- 

sectional dependence (CSD) and has spurned an entire literature on how to treat it in estimation (see Chudik (2013) for a

survey). Note that CSD which affects both observable and unobservable characteristics is akin to omitted variable bias and 

as such causes endogeneity. In the current setting, we do not think that our model is subject to this bias. All our control

variables are exogenous to consumer behavior (the weather, the aggregate economy, and service levels) and vary only across 

time but not across journey types. Equally, fares are exogenous and we cannot think of any factor which might have affected

fares and travel behaviour at the same time, at least not within the six month period which we consider here. Still, one can

object to the assumption of independence across journey types on efficiency grounds. We therefore re-estimated our model 

using the Common Correlated Effects estimator developed by Chudik and Pesaran (2015) . The estimator’s intuition is simple: 

if all units at a given point of time are affected by unobserved common factors, then the average values of observed variables
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absorb the common factor effects and can serve as proxies for the common factors. All our independent variables other than

fares vary over time but not across journey types. Fares are set by TfL and there is no room for any other factor or variable

to affect them. We therefore only use average demand as a proxy for common factors. Our model is thus an augmented

version of Eq. (4) which also includes average (across journey types) demand as an independent variable. We estimated 

the model using the xtdcce2 Stata package by Ditzen (2018) . The results can be found in Table A2 . We expected results

to be similar to the benchmark model, and this was in general the case: The change in elasticities among journey types

affected by rezoning is around one percentage point higher than the change for the remaining journey types, although we 

fail to find any sizeable effect among frequent passengers. While point estimates between the benchmark and CCE model 

are comparable, we note that standard errors in the CCE model are higher and that none of the elasticity differences are

significantly different from zero. 

Table A3 shows the results from the dynamic version of this model. The model includes lagged demand as well as a

number of lagged cross-sectional averages of demand. For convenience we only report the DiD estimate. The results are a 1

to 1.5 percentage point difference in elasticities for daily data. Consistent with previous results, the estimates are smaller for 

frequent passengers. The model performs less robustly when using weekly data, perhaps due to leaving very little variation 

in demand after controlling for several lagged variable. 

7.2. Parallel trends and heterogeneous elasticities 

Recall that our estimate of the asymmetry in price elasticities derives from a DiD design. We observe elasticities for 

rezoned and non-rezoned journey types before the rezoning, and again after the rezoning. If we assume that elasticities 

for rezoned journey types had changed by the same proportion as the remaining journey types, then the DiD estimate 

delivers a treatment effect on the treated (here: the effect of rezoning on journey types involving rezoned stations; see 

discussion in Section 4 ). While this assumption cannot be tested, the customary approach in the literature is to compare

whether treatment and control observations were moving on similar trajectories before the treatment. In our case this is 

not possible since we have only one elasticity estimate for both types of journeys before the rezoning – we can identify

level but not trend differences. 

A related issue is one of slope heterogeneity. Models with panels often restrict the effect of most variables to be the

same across panel units. Short panels typically do not contain enough information to estimate the effects separately even 

if the researcher were interested in slope heterogeneity. Since we have a panel with comparable cross-sectional and time 

dimensions, we can gauge the heterogeneity in elasticities. This also serves as a check to what extent baseline differences 

exist between rezoned and non-rezoned journeys. 

We therefore explore baseline differences in elasticities across journey types. We cannot separately identify all individ- 

ual elasticities since they would be collinear with the dummy for the new year. However, we can estimate the difference

between the elasticity of rezoned journeys and the elasticities of non-rezoned journeys in 2014/15. Fig. A1 in the appendix

plots the histogram of these elasticity differences. We see that the elasticity of rezoned journeys in 2014/15 was greater 

than the elasticity of most other journey types – 86% of elasticity differences are positive. 8 This reflects the estimated elas-

ticity differences in Table 1 and casts some doubt on the comparability between rezoned and non-rezoned journey types at 

baseline. 

Fig. A2 looks at the position of the rezoned journeys compared to the remaining journeys. The histogram depicts the 

changes in log demand across all journey types identified around the beginning of the new year. That is, we estimate 

ln ( Y ) it = αi + β1i t + β2i t 
2 + γi D t 

(
t > January 2 

nd 
)

+ u it 

for all journey types i . We then calculate d γ j = γ j - γ rezoned for all j � = rezoned , and where γ rezoned is the average change in

log demand for the rezoned journeys. We do this separately for the 2014/15 and 2015/16 sample. The histograms depict the

distributions of these d γ j . In 2014/15 (before the rezoning) demand for most journey types increased relative to rezoned 

journeys – or equivalently, demand for rezoned journeys dropped more compared to the remaining journeys. Rezoned jour- 

neys are at the 10th percentile of the distribution. In 2015/16 however the demand change for rezoned journeys exceeded 

the demand change of most other journey types and was at the 90th percentile of the distribution. We cannot translate

these numbers into elasticities because most fares did not change in 2015/16. However, the results suggest that the fare 

decrease through rezoning has moved rezoned journey types from the bottom to the top of the distribution of demand 

changes. 

7.3. Structural breaks 

We considered the possibility that our control variables might affect demand differently after the fare revision on the 

2nd of January. We therefore allowed for the control variables (weather characteristics, economic conditions, petrol prices 

and service reliability) to carry different coefficients before and after the 2nd of January. Table A4 in the appendix compares

results from the benchmark models and the more flexible specifications. The results remain virtually unchanged. 
8 Note that the elasticity is typically a negative number. A difference between -0.5 (inelastic) and -1.5 (elastic) would be + 1. 
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8. Conclusion 

We have analysed whether public transport demand reacts more strongly to price increases than to price decreases. We 

have exploited a rare occasion of a nominal fare decrease on the London Underground to estimate the price elasticity for

a price decrease and compared this to occasions when fares increased. Our results suggest that demand is indeed more 

responsive to price increases than to price decreases. Our estimates of the difference between price increase and price 

decrease elasticities range from 0.67 to 0.89 percentage points, where our estimates are differentiated by the exact sample 

of journey types, and the period over which we measure demand (daily and weekly). 

We also differentiate between demand for journeys and demand in terms of distinct passengers and find that passenger 

demand also displays significant elasticity asymmetries. This differentiation and looking at a sample of only frequent users 

of the London Underground helps us to identify the underlying reason for the asymmetry. We consider loss aversion, and 

information asymmetry as possible causes. The evidence here is not conclusive, but our preferred specification suggests that 

loss aversion plays an important role in explaining why demand reacts more strongly to a price increase than to a price

decrease. 

Our findings constitute a considerable challenge to TfL and to public transport authorities in general. Demand for journeys 

on the LU peaked in November 2018 with 118 million journeys undertaken over a 28-day period. Patronage dropped by 95%

after the announcement of the first Covid lockdown in the UK in March 2020. The latest figure for journeys on the LU

is for May 2022 and stands at 79 million journeys – 67% of the pre-Covid peak ( TfL, 2022 ). Thus, while managing growing

demand under capacity constraints was a pressing problem for TfL, it now faces a revenue crunch as demand seems unlikely

to recover to pre-Covid levels. Working habits have dramatically changed, and demand has probably become more elastic 

due to home office and online teamwork arrangements. In light of our findings TfL will find it difficult to use pricing as a

policy tool. Increasing fares might fail to raise revenue due to loss aversion. Decreasing fares might fail to increase patronage

due to slow information dissemination. Both effects combine with changing working and commuting patterns to reduce the 

utility of fares as a demand and revenue management tool. 
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Appendix. Further figures and tables 
Table A1 

Correlation matrix independent variables. 

Log 

fares 

Log 

petrol 

Lost customer 

hours 

Air 

pressure 

Wind 

speed 

Humidity Dew 

point 

Temperature Rainfall House 

prices 

Unemployment 

Log fares 1.00 

Log petrol −0.04 1.00 

Lost customer 

hours 

0.00 0.10 1.00 

Air pressure 0.02 −0.08 0.08 1.00 

Wind speed 0.00 −0.10 −0.05 −0.37 1.00 

Humidity −0.01 0.30 0.12 0.01 −0.37 1.00 

Dew point −0.02 0.32 −0.03 −0.09 0.06 0.48 1.00 

Temperature −0.02 0.24 −0.09 −0.10 0.23 0.10 0.92 1.00 

Rainfall −0.01 0.05 −0.03 −0.27 0.07 0.16 0.11 0.05 1.00 

House prices 0.04 −0.10 0.27 0.15 0.04 0.03 −0.04 −0.05 −0.10 1.00 

Unemployment −0.04 0.16 −0.30 −0.20 0.02 0.03 0.41 0.45 0.10 −0.70 1.00 

Note: Raw correlations between independent variables. 
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Table A2 

Price elasticities with cross-sectional dependence. 

Journeys Passengers Frequent passengers 

2014/15 2015/16 Difference 2014/15 2015/16 Difference 2014/15 2015/16 Difference 

Daily 

Short term ε - not rezoned −0.06 −0.92 −0.86 −0.05 −0.81 −0.76 −0.35 −0.00 0.35 

(0.80) (0.76) (1.10) (0.44) (0.91) (1.01) (0.46) (0.35) (0.58) 

Short term ε - rezoned −0.95 −0.53 0.42 −1.29 −0.56 0.73 −1.19 −0.56 0.63 

(1.86) (0.31) (1.91) (0.84) (0.38) (0.92) (1.00) (0.48) (1.11) 

Difference −0.89 0.40 1.29 −1.24 ∗∗ 0.25 1.50 −0.84 −0.56 0.28 

(1.36) (0.88) (1.62) (0.50) (0.99) (1.11) (0.68) (0.60) (0.91) 

Number of observations 8163 7981 8121 8195 8263 8203 

Weekly 

Short term ε - not rezoned 0.20 −0.78 ∗ −0.98 0.25 −0.66 −0.92 0.22 0.28 ∗∗∗ 0.06 

(0.66) (0.44) (0.79) (0.46) (1.41) (1.49) (0.46) (0.09) (0.47) 

Short term ε - rezoned −0.55 −0.51 0.03 0.14 −0.18 ∗∗∗ −0.32 −0.23 −0.20 ∗∗∗ 0.03 

(1.47) (0.46) (1.54) (1.29) (0.06) (1.29) (1.58) (0.07) (1.58) 

Difference −0.75 0.26 1.01 −0.11 0.48 0.59 −0.45 −0.48 ∗∗∗ −0.03 

(1.05) (0.64) (1.23) (1.06) (1.42) (1.77) (1.40) (0.14) (0.46) 

Number of observations 1536 1495 1563 1556 1611 1596 

Note: Results from a Common Correlated Effects estimator - an augmented version of Eq. (4) which also controls for the contemporary cross-sectional 

average of log(demand). Further controls are weather characteristics, economic conditions, and lost customer hours (see Section 4 for a detailed description 

of variables). Standard errors in parentheses. ∗ Significant at 10%. ∗∗ Significant at 5%. ∗∗∗ Significant at 1%. 

Table A3 

DiD estimates based on dynamic CCE model. 

Journeys Passengers Frequent passengers 

Daily 

1 period lag 1.15 1.00 0.22 

(5.53) (3.26) (14.90) 

2 period lags 1.34 1.12 0.22 

(5.14) (2.48) (11.89) 

3 period lags 1.47 1.23 0.32 

(7.13) (2.96) (11.89) 

Weekly 

1 period lag 2.08 −0.32 −0.02 

(4.02) (3.88) (8.95) 

2 period lags 2.00 −0.83 0.03 

(6.18) (4.61) (22.55) 

3 period lags 2.82 3.55 2.00 

(151.20) (18.76) (70.58) 

Note: DiD estimates for a Common Correlated Effects estimator - an augmented version of Eq. (4) which also 

controls for the contemporary and lagged cross-sectional averages of log(demand). The lags in the table 

refer to the number of lags of average log(demand) included in the model. Further controls are weather 

characteristics, economic conditions, and lost customer hours (see Section 4 for a detailed description of 

variables). Standard errors in parentheses. ∗ Significant at 10%. ∗∗ Significant at 5%. ∗∗∗ Significant at 1%. 

Table A4 

DiD estimates without and with structural breaks. 

Journeys Passengers Frequent passengers 

Daily 

No structural break 0.90 ∗∗∗ 0.83 ∗∗∗ 0.25 

(0.25) (0.29) (0.34) 

Structural break 0.90 ∗∗∗ 0.83 ∗∗∗ 0.25 

(0.25) (0.29) (0.34) 

Weekly 

No structural break 0.48 ∗ 0.96 ∗∗∗ 0.71 ∗∗∗

(0.24) (0.20) (0.23) 

Structural break 0.31 0.97 ∗∗∗ 0.71 ∗∗∗

(0.28) (0.20) (0.24) 

Note: DiD estimates from an augmented version of Eq. (4) which allows for control variables to have a 

different effect before and after the 2nd of January of a year. Controls are weather characteristics, economic 

conditions, and lost customer hours (see Section 4 for a detailed description of variables). Standard errors 

in parentheses. ∗ Significant at 10%. ∗∗ Significant at 5%. ∗∗∗ Significant at 1%. 
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Fig. A1. Distribution of elasticities relative to elasticity of rezoned stations in 2014/15. 

Note: The graph depicts the distribution of fare elasticities relative to the elasticity for rezoned journey types. Our elasticity definition is not in absolute 

value. A positive value on the histogram thus implies a lower elasticity compared to the rezoned journey types. 

Fig. A2. Change in demand relative to rezoned station after January 2nd. 

Note: The distribution of changes in demand (in %) relative to the change in demand for rezoned journeys. Demand for most journey types increased more 

(decreased less) than demand for rezoned journey in 2015, while the reverse holds in 2016. 
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