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E-mail: Christos.Kloukinas@imag.fr & Sergio.Yovine@imag.fr
Abstract to do in order to useAcPis quite high. Worse yet, not all

cases of communication through condition variables can be
We present a new scheduler architecture, which permitstranslated according to these rules, since there can be tasks

adding QoS policies to the scheduling decisions. We alsowhich wait on a condition variable while still holding some
present a new scheduling synthesis method which allowsresource locked. These tasks cannot be split since the un-
a designer to obtain a safe scheduler for a particular ap- derlying assumptions of thetpclearly demand that tasks
plication. Our scheduler architecture and scheduler syn- finish executing without holding any resources. Therefore,
thesis method can be used for heterogeneous applicationst is not straightforward how one can use ttrch with a
where the tasks communicate through various synchronisadanguage such &2-T Java [9].
tion primitives. We present a prototype implementation of  Besides, the methods currently used do not allow de-
this scheduler architecture and related mechanisms on topsigners to easily extend them for incorporating QoS to the
of an open-source OS for embedded systems. scheduler decisions. Being able to extend a scheduler with

QoS characteristics could allow us to experiment with ways

to minimise energy consumption, or further increase the
1. Introduction speed of the system, by minimising, for example, the num-
ber of context switches. An example of this can be found in

. : - [2] where the authors present a dynamic scheduling method
tremely h|g.h quallty_, dug to the great. dangers and the hlghWhich also treats the QoS aspect of the system. However, in
cost of their potential failure. For this reason, when they

. his work the authors consider a fixed task model where all
are multi-threaded they must be guaranteed to be free oft

tasks are periodic and do not consider deadlock situations
deadlpcks and all thr_eads must be guaranteed to meet thel(sr the communication aspect of the system.
deadlines under all circumstances.

; o . In the following, we present a method for synthesising
The current practice for avoiding deadlocks is to use the . :
. . o i QoS extendiblandsafeschedulers following the controller
immediate priority ceiling protocollecp [8] for the shar-

ing of non-preemptable resources. This approach has a cer.§yntheS|S paradigm and continuing previous work at Ver-

tain number of disadvantages though. All the priority in- imag [I]. We start in sectioi|2 by presenting the overall

. . o architecture of the scheduler. Then, in secfipn 3 we present
heritance family of protocols are pessimistic in nature and,

the model of the systems we consider and in se¢fjon 4 the
therefore, can refuse access to a shared resource even when . .

: . particular method we use for the synthesis of the scheduler.
there is no real danger of a deadlock at the current situa-

tion. Additionally, in order to apply therich, the designer In sectior{$ we present a prototype implementation of our
g scheduler on top of a real operating system and we conclude

of the system must choose a set of priorities for all the tasksin sectio®

in the system. Furthermore, for each shared resource the '

designer must identify the threads which use it, in order to

assign a priority to that resourcees(, the ceiling priority of 2. Scheduler Architecture

the resource). More importantly, however, threc b cannot

on its own support tasks which synchronise using monitors

and communicate using condition variables, as for exam-

ple is done in AvA [3]. In such cases one should split tasks,

which means that the complexity of what the designers have

Safety & mission-critical systems need to be of ex-

We consider a set of threads synchronising through mon-
itors and communicating through condition variables. All
threads and shared objects are created at the initialisation
phase. We only consider applications executing on a single
processor for the moment. The architecture of the sched-
*Partially funded by the French RNTL project Expresso. ulers we synthesise consists of two three-layered stacks, as
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shown in Figuréfl. for the notification should receive the event. Indeed, lan-
The left stack is responsible for selecting an application guages (like &/A [3]) which provide the monitor construct,
thread for execution. The right stack is responsible for se-or thread libraries (like 8six threadsl[6]) which offer it to
lecting an application thread for the reception of a notifica- languages which do not provide it, leave this painspec-
tion. This stack allows the scheduler to control the commu- ified, allowing each implementation to choose the thread to
nication aspect of the system. Being able to control which be natified as it convenes it the best.
thread will be notified for a particular event is something  The top layerReady-Notifcalculates the seR s Of
that other scheduling policies like thecP do not offer, threads waiting on the condition variable being notified.
since they concentrate only on the selection of threads forThe apparent cases where we cannot effect any control
execution. on the system are three. First, the case where no thread
After one of the scheduler stacks is finished, it passeswaits on the condition variable being notified. Second, the
control to an underlyindR-T OSwhich provides low-level  case where only one thread waits on the condition variable.
kernel mechanisms. Such mechanisms include the ability toThird, the case where the notifying thread doewdfyAll ,
create, suspend and resume an application thread, as well da which case we are obliged to notify all the threads wait-
the ability to create, set and disable alarms for future eventsing on the condition variable. In these cases, the right stack

(e.g, arrival of next period or the timeout ofvaaitTimed). of the scheduler does not make any control decision, but
simply changes the P®f all threads waiting on the current
2.1. Controlling the Currently Executing Thread notification, that is, the threads belonging to the”®gti:,
The left stack takes control of the system when the {0 mark them as notified. Otherwise, the top layer passes
application calls one ofmonitorEnter, monitorExit, the setR..tir to the middle layeSafe-Notif which calcu-

waitForPeriod, wait and waitTimed, or when an alarm €S the Subse, ot Of Ry consisting of those threads
expires. In these cases, it must choose one of the availwhich, if notified, will not cause the system to enter into a
able threads as the thread which should next be run on théleadlock state or cause some other thread to miss its dead-

processor. It does this in three steps, each one performed dine (- they are safe). Finally, theafe-Notiflayer passes
a different layer. the Spotir Set to the bottonQoS-Notiflayer, which calcu-

In the first layer, referred to as ttReady-Exesched-  ates the subseDuoir Of Syouir, consisting of the threads
uler, it calculates the set of threafs.... which are ready ~ Which we can safely notify and also respect the QoS prop-
to execute without directly blocking due to mutual exclu- €rties of the application. Th@oS-Notiflayer is also re-
sion. That s, it examines whether an application thread will SPOnsible for choosing one of the threadsdp..;r as the
try to enter a monitor which is already occupied by another r€cipient of the current notification and marking it as noti-
thread, if it is chosen as the next thread to execute. Havingfied by changing it®C.
calculated the sé®..., this layer passes it to the next layer.

The Safe-Execscheduler layer is responsible for calcu- 2.3. QoS Policies

lating the subsefcxcc Of Rexec, CONSisting of those threads gy jncorporating a layer for QoS in the scheduler, we of-
that cansafelyexecute. Safety here refers both to deadlock tgr anextendiblenechanism for providing additional prop-
freedom (., entering a monitor would not cause a dead- grties to the system. We allow the QoS policies to use the
lock later on), as well as, to meeting the timing constraints same information which is available to the scheduler. That
of the different threadsi.€., choosing a thread for execu- is, the QoS layer has access to hegram counters (PQ)f

tion will not delay another thread enough to make it miss its e threads, theurrently executing threadlfxec), as well
deadline). _ as the value of theystem clock@system)-

TheSafe—Exedayer passes the s8,.. to the third Iayer The complexity of the QoS layer is controlled by the ap-
QoS-Execwhich calculates the S&ecxcc C Sexee, CONSISt- pjication designer. In choosing a QoS policy (or policies,
ing of thesafethreads which respect the QoS requirements. gince these are composable) the designer can balance be-

) . tween the execution time and extra memory space needed
2.2. Controlling the Notified Thread by the policy and the gains to the overall system quality the

The right stack is passed control when the application particular policy can offer. A QoS policy is, for example,
calls notify or notifyAll. The reason for this is that the thelocal minimisation of context switch@sorder to speed-
threads which will be notified (if any) cannot ever be se- up the execution. This policy can be implemented quite eas-
lected for execution. This is because they will immedi- ily, since all one needs to examine is whether the currently
ately try to re-enter the monitor after being notified and thus executing thread g, is in the setS.,.. of threads which
get blocked by the notifier (which is already in the moni- are safe to execute next. If this is the case, then we can let it
tor). Nevertheless, when a thread notifies a condition vari- continue its execution, by setting the €&t... equal to the
able, then we can control which among the threads waitingsingleton{Tr..}. This particular policy has another ad-



Application Application Tasks

....
. LY .
Execution Schedfiler Stack Notific&tion Scheduler Stack
CANDIDATES FOR EXECUTION - Ce CANDIDATES FOR NOTIFICATIONS - Cyotif
Ready-Notif Scheduler
Ready-ExecScheduler Mutual Exclusion Rules Condition Var. Notification Rules
READY TASKQ Rexee € Coxec READY TO BE N!TIFIED - Ruotit € Cuotif
Avoid Deadlocks Avoid Deadlocks Safe-Notif Scheduler
Safe-Exec Scheduler Guarantee Deadlines Guarantee Deadiines
SAFE TASKi‘S«'“u C Rexec SAFE TARGET! ~Shotit € Ruoti
-Notif Schedul
QoS-Exec Scheduler Assure the QoS ‘ Assure the QoS QoS-Notif Scheduler
.
“"“
EXECUTING TASKS -Qcxec € Sexe TASKS 'ﬂWAKE UP -Q,0tif € Spotif

R-TOS|  Provide low-level mechanisms

T
....
Y.

Choose one amon@...... for execution Notify tasks in Qi

Figure 1. A three-layered scheduler architecture

vantage: by decreasing the number of context switches, weto the application simulate the locking and unlocking of
also decrease the cache misses of the application, since nonesources, as well as, the waiting and notification on con-
there are fewer points in the execution where the threadsdition variables. The computations performed by the ap-
compete for the cache, potentially flushing each other’s dataplication threads are simulated just by their minimum and
out of it. This can helglecrease the energy consumptain ~ maximum execution times. Each statemenf an applica-
the system, since a cache miss can lead to two main memoryion thread (where is one ofmonitorEnter , monitorExit ,
accesses, which are known to be quite demanding with re-wait, waitTimed, waitForPeriod, a conditional or a com-
spect to energy [7]. In fact, since a cache reads and flusheputation) is modelled by a separate automaton state and a
one cache lineat a time {.e,, multiple consecutive mem-  transition from it to the next statement positia@/{) which
ory addresses) the benefits can be even greater, both witls taken when the statementcan be executed. The only
respect to energy consumption and execution speed. exception to this rule is the case of thait andwaitTimed
statements. These statements are effectively modelled by
two states; the first one models the release of the mutex
3. System Model associated with the condition variable on which we wait
The model of the system we construct is the parallel and t_he second one mod_els the attempt _o_f the thread to re-
composition of an automaton which is responsible for ad- &cquire the mutex, once it has been notified. The advance-
vancing time and firing the alarms, one automaton for eachMent of time is the responsibility of a single automaton (see
of the application threads and two more automata, for the Figure[2-#) which, in addition, enables transitions in the ap-

QoS-Exea@nd theQoS-Notifscheduler layers respectively. plication automata which correspond to timeouts, such as in
The automaton of time and the automata of the applica-the case of avaitTimed or awaitForPeriod. This automa-

tion threads perform a finite number of actions and then N is also responsible for advancing the local thread clocks,
block, letting the scheduler automata respond. The actiondhat is, the clocks which model the time spent by threads in
of the time and application automata beimgcontrollable ~ Computations (and in waiting when doingwitTimed).

the onlycontrollableactions are those of the two scheduler These clocks are set to zero at the beginning of a compu-
automata. Thus, our model can be seen as a two pIayeFat'O” by a thregd and are'lncremented alongs'ldelwnh the
game with the scheduler automata on one siése the con- global time, until the duration of the computation is over

troller) and the time and application thread automata on the(0r the timeout of thewaitTimed has expired). The two
other {.e, the plant). In this game, the automata related @utomata for th€@oS-Exe@ndQoS-Notifscheduler layers
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Figure 3. Model execution modes

2-b: QoS-Execheduler automaton
ExecSchedEnabled= —Notif SchedEnabled, so that our

scheduler can treat the alarm. If there is no alarm to be fired
then the execution mode changes to “Time and Application”
(where ExecSchedEnabled = Notif_SchedEnabled =

are passed control as described in sub-secfions 2. and 2.1IS€). At this mode, both the time automaton and the au-
and decide Wthh of the application automata Shou'd be a|_t0mata of the appllcatlon are enabled. If the time automaton
lowed to execute next or be notified of an event. These au-9ets to execute first, then a ticke(, a time step) is per-
tomata are comprised of a single state and1 transitions, ~ formed and we pass back to the “Time Only” mode, so as
wheren is the number of application threads (the additional t© check if an alarm is now enabled. If it is one of the ap-
transition being for thedle thread). A transition of these Plication automata which gets to execute first, then it exe-
automata selects one of the threads for execution (resp. fofutes until it needs to perform an action which causes re-
notification). It is guarded by a predicate which asserts thatScheduling, in which case it passes control to the schedulers
the corresponding thread belongs to @&, (resp.Quotir) (i.e,, the mode now becomes “Schedulers Only”). If the
set (see Figurie 2kb). The transition choosing the idle threag@Pplication automaton needs to execute a time guarded ac-
asserts that the rest of the threads are not safe to executdon (i.e., a computation), then it blocks, allowing time to
(resp. no thread waits to be notified on the current event). advance.

To Summarise, the state in our model Compriseﬁ)cﬂ: As an eXampIe, let us consider the model shown in F|g'
program CounterF{q) for each of the app"cation threadS, Ure@. Here, the application consists of three thl‘eads, one of
(ii) a local clock (7;) for each thread which is used for their Which is aperiodicone (theUser ) and twoaperiodicones
computations and the timeouts if they executesit Timed, (theWriter and theRefresher ). One should note that
(“') a g|0ba| clock CSystemi) for mode”ing the periods theerthr and theRefresher are Continucfilly en-abled
of each periodic thread(iv) a variable {kxe.) holding aperiodic threads and do not have any deadlines directly as-
the currently executing thready) two boolean variables ~ Sociated with them.

(ExecSchedEnabled& Notif_SchedEnabled for control-

ling whether it is one of the scheduler automata (and which 4, Scheduler Synthesis

of them), or the time (when they are both true) or the
time and application automata (when they are both false)
which should execute, anli) the booleanvariables of
the application threads used in conditionals whichsige
nificant[] with respect to the use of resources and com-
munication of events. Our model goes through three dif-
ferent modes of execution, as shown in FigQite 3. In

the “Time Only” mode (whereExecSchedEnabled = describe the seBafe-Exedqresp.Safe-Noti) needs to be

Notif_SchedEnabled = true) the time automaton is the ; . : )
. ) , constrained even further. This predicate starts with the value
sole automaton enabled in the system and it can fire one R .
. . g of true, thus accepting initially all threads in the $&ady-
or more alarms, if any is enabled. If an alarm is fired then

. o N Exec(resp.Ready-Notij as safe. Having obtained the dead-
the execution mode changes to “Schedulers Only (Wherelocked states, we do a backwards traversal of the whole state

1we performslicing of the original code to identify these variables. space starting from the deadlocked states, until we reach a

Figure 2. Time & Scheduler automata

In order to synthesise th&afe-Execand Safe-Notif
scheduler layers, we first construct the set of reachable
states and, thus, identify the deadlocks. These are the states
where the application threads are deadlocked, or the states
where some thread has missed its deadline (since in that
case we block the system explicitly). The existence of these
states indicates that the predicate we are currently using to
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VamonioEner <1 | LmonitorEnter V.monitoEnter | consists of synthesising schedulers for successively more
) ¢ Vot s | detailed models, adding thus complexity to a model pnly
‘ \ when we have already calculated how we can constrain the
AV wrie LN freshi=false |- nofified L while(1V_fresh) more abstract one. The scheduler synthesis is performed in
! ] / | V. fresh two major steps. In the first one, we examine timtimed
L.monitorEnter L timed_wait(13) 2]V fresh=false model of the system and search for constraints which can
i T ot , guarantee thabsence of deadlock#n the second one, we
notified V timedout ¢ . . . . .
T R T re-lr_1troduce time into the model and after constral_nlng it fpr
V.monitorExit avoiding deadlocks, we search for those constraints which
1 i i can guarantee thatl threads meet their deadlines
L.notify V.monitorEnter [5,6] compute
I I I 4.2. Deadlock Avoidance
L monitorEsit [1,1]V_fresh:=L. fresh wait_for_period(20) |—! Examining the untimed model of the system first, has
‘ I the disadvantage that some of the deadlocks we identify are
— Vol not possible in reality, due to the existing timing relations.
VmonitorBxit - \— On the other hand, adding time to a model significantly in-
‘ creases its size and thus renders the analysis and synthesis
- monitorExit a lot more difficult. Thus, searching for deadlocks in the
i untimed model allows us to examine a much smaller search
L{ LmonitorExit space and thus allows us to attack larger systems. For in-

stance, the untimed model of the application shown in Fig-
ure[4 is 97% smaller than the timed one and it allowed us
to discover 8 constraints which can help us avoid all the
10 deadlocks caused by the use of shared resources. More
importantly, finding and removingll deadlocks in the un-
timed model means that the applicatioridgically correct
state which corresponds to a choice of one of the sched-and allows a designer to experiment with different underly-
uler automata. There, we identify the choifg... = t; ing platforms and algorithms for implementing the applica-
which allowed the path leading to a deadlock state(s) andtion computations.

create a new constraint for the lay®@afe-Exedresp.Safe-

Notif). This constraint is constructed by changing the set 4.3. Guaranteeing Deadlines

Figure 4. Application automata
(Clock variables are omitted for readability — each
computation is annotated with its duration interval. )

Sexec (r€SP.Shotif) t0 be: Having found all the potential deadlocks in the system,
Séxec(m) _ Sexec(m) \ {t:) we add the synthesis&fl... andS,iir scheduler sets ob-

tained so far to the timed version of the initial model, in or-
If at some point we find tha$’, .. (stat¢) is equal to the  der to search for thémelinesconstraints, which can guar-
empty set, then we add the current state to the set of deadantee that all threads will meet their deadlines. In order to
locked states and continue the synthesis procedure. make the problem more tractable, our synthesis algorithm
works in three steps.
4.1. State Space Reduction & Application Analysis

Even though the basic idea of synthesising Befe- Safety-preserving abstraction Not all time instances are
Execand Safe-Notif scheduler layers is simple, it is evi- visible when the scheduler automata take control during the
dent that in practice it suffers from the state explosion prob- execution of the system. That is, there are certain states of
lem. Therefore, it is imperative that we use techniques to a system where the only event allowed is the advancement
minimise the size of the state space. Altisgral. [1] pro- of time. In such cases, we do not really gain anything by
posed to constrain the system with a high level poliay.,( explicitly constructing the complete sequence of all the dif-
FiFo scheduling, BF schedulinggtc) the idea being that  ferent time steps. Instead, we can jump directly to the last
this will constrain enough the system to allow us to con- state of this sequence, where the time has advanced enough
struct the entire (constrained) state space of it. However,to allow some other event to occur. This state space re-
this method can sometimes over-constrain the system andluction can be effectively obtained through thranching
remove all possible paths which would allow us to avoid bisimulation equivalence (bbe) reductifii], which elim-
the unsafe states. Besides, it is not always clear how onenates “unobservable” actions (in our case the Tick action)
can apply policies such asbE, RmA, etc. when the ap-  but only when doing so preserves the branching structure
plication consists of heterogeneous threads. Our methodof processes. The preservation of the branching structure of



the application is crucial for us, since the synthesis of the an additional 18 constraints and thus we can safely sched-
scheduler depends on it for calculating the states where aule this application with a total of 56 constraints, avoiding
controllable action can help avoid taking a path which leads both deadlocks and missed deadlines. These 56 constraints
to an undesired state. Given a set of equivalent states unare all part of theSafe-Exedayer, since in this application
der thebbe reduction, we elect as a representative of this there is always at most one thread waiting to be notified on
set the state which has the maximum global clock value. Ina particular condition variable and thus we cannot control
other words, in thébereduced system, our scheduler takes the communication aspect of the application. This fazde
its decisions at the latest moment possible. For the appli-timed model has a state space which is 96% smaller than
cation shown in Figurg]4 we obtain a 74% reduction of the the original, unsafe one.
state-space.

4.4. Not Observing Clocks

Non Preemptable Threads We then consider that the ap- Having synthesised a safe scheduler for an application
plication threads cannot @eemptedvhile they are com-  does not necessarily mean that we can implement it easily
puting. The non-preemption hypothesis reduces the stateon a usuaR-T OSthough. The difficulty of implementing
space, since it removes all the cases where the executiofi as is, arises from the fact that the constraints we produce
of a thread is suspended by an interrupig( for starting during the synthesis use the state of the system to decide
a new period of some other thread). In the application of what are the safe choices at each point during the execu-
Figure[4 the reduction obtained by not allowing preemption tion and, therefore, also make reference to the values of the
is 40% when applied on the initial timed model and 80% local clocks of the threads. However, these clocks do not
when applied to thdobe reduced timed model. Once we really exist in the application but were only introduced as a
can indeed safely schedule the system under the hypotheway to model the computations of the threads. Introducing
sis that threads are never preempted, then we can use thhem means that we will have to add for each thread an ad-
constraints obtained during this stepréaluce even further  ditional timer object and reset and activate (resp. reset and
the state space that we have to construct and analyse whegeactivate) the timer before (resp. after) each computation
we do allow threads to be preempted. Indeed, for the ap-and read its value when making a scheduling decision. As
plication of Figurg #, we can reduce the state space by anusing timers may substantially increase the execution time
additional 10% with the 30 constraints we construct during of the scheduler, we investigate the possibility of synthesis-
this step. ing a clock-free one, which only examines tR€s of the

The non-preemption of threads is easily added to ourthreads. This will make the scheduler itself faster to exe-
modelsthrough the use of a QoS politiat forbids the  cute, since in order to make a scheduling decision it now
schedulers from choosing a thread for execution, when an-only needs to examine thevalues of the differerCs and
other thread is already in a state where it is performing a not the2n 41 values of thePCs, the local thread clocks and

computation : the global clock.
On the other hand, removing the clocks from the con-
Qexec(ﬁavtz) = straints can introduce states where the scheduler will take
{t .t € Sexec(state) A —3t' # t . computes(t')} the wrong decision and cause a thread to miss its deadline.

These states are those where a scheduler gets called at the

However, we cannot safely schedule all systems whensame configuration of thred@Cs but at different time in-
we do not allow threads to be preempted. This means thatstances. Since the time instance (and therefore the clock
for these systems we will not obtain any scheduling con- values) are different, the safe séls... of these states can
straints and, therefore, will be obliged to examine the large, be different themselves as well. When we decide to not
unconstrained state space of the timed model. observe the clock values while scheduling, we are effec-
tively unable to differentiate among these different sets and
all these states beconegjuivalent as far as our scheduler
eis concerned. Therefore, if we wish our scheduler to al-
Ways make a decision which afe then theS.... set of
thisequivalence classf states should be thetersectiorof
the Sexec Sets of the states which belong to the same equiv-

Allowing Preemption  Having performed the scheduler
synthesis for the case where threads are not preemptabl
we add the additional constraints we synthesised (if any) to
the model and perform the scheduler synthesis once more
this time allowing threads to be preempted. This is the fi-
nal step of the scheduler synthesis, which provides us WithaIenCe class.

the whole set of constraints that we must impose on the ap- Sexec(M) = m Sexcee(sTate;)
plication in order to guarantee that it will be deadlock free
and that it will meet all the deadlines of the threads. For
the application of Figur]4, this last synthesis step produces Sometimes, thé‘exec(M) set will be empty, if the

state; Eclass;



scheduler decisions at the members of this equivalence claskaving unlocked th@®S scheduler, thus re-allowing inter-
were conflicting. When encountering such an equivalencerupts to occur. The only case which is treated differently, is
class whoses.,.. set is the empty set, we need to add its the case where an interrupt arrives to signal a timeout (ei-
members to the set of deadlocked states and continue théher for awaitTimed or awaitForPeriod). In this case, the
synthesis algorithm, until we find a set of constraints which associated interrupt handler changesRi@of the respec-
helps us to avoid the whole class. tive thread to mark it as no longer waiting and, then, sus-
The example of Figurg]4 is indeed an application which pends the currently executing thread (if any) and resumes
can be scheduled without observing the clock values. How-the thread that was waiting. Once this thread starts to exe-
ever, in some cases it may be impossible to safely schedulecute, it calls our scheduler in its turn, to assure that it can
the application without taking into account the values of the safely continue. If this is the case, our scheduler will allow
clocks. Thus, there is a trade-off between schedulabity andit to execute, otherwise it will suspend it and resume another

execution cost of the scheduler. thread. Itis easy to see that if more than one interrupts arrive
at the same time, our scheduler will be called consecutively
4.5. Other QoS Policies more than once. However, we proved that there can be no

Once we have synthesised a safe scheduler, we can comnore than 3 consecutive calls to our scheduler ever.
pose it with other QoS policies to choose among the safe The actions which do not cause our scheduler to elect a
threads those which better realise the QoS requirements ofiew thread for executiomptify and notifyAll ) are imple-
the system. However, it can always be the case that some oMmented as follows. These actions make use of its right stack,
these policies can cause the application to miss a deadlinewhich deals with the communication aspects of the system.
by choosing no thread for executioine(, setting theQcc When anotify occurs, the scheduler is called and it checks
set to be the empty set). For this reason we must verify themwhether there are any threads waiting on the event notified.
and change them if they can indeed cause the application tdf so, it selects one of therasing theQ,q.ir set marks it
miss a deadline. Since the verification is performed on theas notified and gives back the execution to the thread which
safely schedulablapplication, the size of the state space we did the notify.
must explore is quite small. For the example application of ~We have implemented our architecture on top of
Figure[4, we verified two additional QoS policies. The first €Cos [5], an open-sourc®Sfor embedded systems. We
is a fixed priority QoS policy, whergser > Refresher run our test-bed application on a 330 MHz Pentium Il ma-
> Writer when they aresafeand it is effectively veri- chine usingsynthetic-Linuxas the execution platform of
fied in a model 98.4% smaller than the original timed one. €Cos, which means thaCos and the application are run-
The second is a QoS which (locally) minimises the number nNing as a single Linux process. Our experiments showed
of context switches and it is verified on a model which is that the application did indeed honour its deadlines as ex-

slightly even smaller (a 98.8% reduction). pected. Besides, the measurements showed an average ex-
ecution time of our scheduler of the order of 0.66 micro-
5. Scheduler Implementation seconds. Given the fact that our prototype implementation

is not particularly optimised for speed, this is a rather small

In this section we present the implementation of our execution cost.

scheduler over a@Sfor embedded systems. Our current
implementation does not make use of priorities, mutexes or .
condition variables of the underlying system. It rather uses6' Conclusions
thread suspension and resumpttorsimulate these mecha- We have presented a new methodology for building
nisms, which allows us to provide an implementation of our application-driven schedulers for heterogeneous systems
approach even on operating systems which have a very lim-and a prototype implementation of our scheduler using an
ited number of priorities or have no priorities whatsoever. open-sourc®Sfor embedded systems. Our work continues
The actions which activate our scheduler in order to the one described in][1], where a thorough discussion about

elect a new thread to executegnitorEnter, monitorExit , related approaches is presented. Applications comprising
waitForPeriod, wait andwaitTimed, and the expiration of  of heterogeneous thread types have also been considered in
a timeout), are implemented similarly. First, & sched- [4], without taking into account thread interdependencies

uler is locked so as to avoid interrupt handlers from chang- due to the sharing of non-preemptable resources.

ing the system state. Then our scheduler examines the cur- The advantages of our synthesis method is that we can
rent state of the systeme., thePCs of all the threads, and  handle larger models than if we would have tried to attack
decides which should be the next thread to execute, by usinghe original timed version of the model at once. In addition,
the synthesised sef8 ... & Scxec @nd the user-provided following our method a designer is better able to understand
set Qqxec. Finally, our scheduler suspends all threads, re- the behaviour of a system, since we successively drive him
sumes the one it has chosen for execution and returns aftethrough: (i) the states which cause a deadlock later(éh,



Table 1. Experimental results

[ Model kind [ States Red.][ Trans. Red. [ Dead. Red. ] Constraints ||

(I Model Abstractions & Optimisations I
T original (i.e., Preemption) 45470 0.00%| 48786 0.00% 367 0.00% —

U 1352 97.03% 1645 96.63% 10 97.28% —
T No Preemption 27266 40.04%| 29118 40.31% 134 63.49% —_
T Preemption, bbe reduction 11437 74.85%| 13648 72.02% 1 99.73% —
T No Preemption, bbe reduction 8648 80.98%| 10038 79.42% 1 99.73% [—

(I Synthesis Steps I
U 1352 97.03% 1645 96.63% 10 97.28% (0]
U, No Deadlocks 1200 97.36% 1451 97.03% O 100.00% 8
T No Preemption, bbe reductigriNo Deadlocks 8642 80.99%| 10027 79.45% 1 99.73% 8
T No Preemption, bbe reductigrSafe 1542 96.61% 1668 96.58% O 100.00% 38
T Preemption, bbe reductigriNo Clocks 4640 89.80% 5532 88.66% 1 99.73% 38
T Preemption, bbe reductigrNo Clocks, Safe 1593 96.50% 1740 96.43% O 100.00% 56

(I QoS Policiegreduced with bbe) I

[ T Safe, Fixed Priorities I 728 98.40%] 750 98.46%] 0 100.00%] 56 ||

|[ T Safe, Locally Min. Context Switches I 549 98.79%| 573 98.83%| 0 100.00% | 56 ||

the states where a system is overloaded (and, therefore, he[5] A. J. Massa.Embedded Software Development with eCos

needs to allow preemption of threads), and findily), the Prentice Hall, 2002.
states where the scheduler also needs to observe the valued6] The Open Group. [The Single UNIX_Specification,
of the local clocks measuring the duration of each compu- Version 2: Threads 1997. (www.unix-systems.org/-

single.unix_specificationv2/xsh/threads.html)

F. Parain, M. Baatre, G. Cabillic, T. Higuera, V. Issarny,
and J.-P. Lesot. Techniques deduction de la consom-
mation dans les sy&ies embardes tempsé&el. TR-1332,

tation of the threads. Our method can be applied to appli-
cations comprising of any mix of periodic, aperiodétc. ]
threads, which share non-preemptable system resources and

communicate through condition variables. Finally, the ro- IRISA, France, May 2000. (In French).

bustness of the synthesised scheduler with respect to the as-[g; r. Rajkumar, L. Sha, and J. P. Lehoczky. An experimental
sumed execution times of the Computations can be verified investigation of Synchronisation protoco|sl |BEE Work-

by enlarging the corresponding intervals. For example, this shop on Real-Time Operating Systems & Softwa989.
allows checking for the case where computations take less [9] Real-Time for Java Expert Group. The real-time specifica-
time than specified in the model. tion for Java. Tech. Report, RTJ.org, Dec. 2001.

S. Tripakis and K. Altisen. On-the-fly controller synthesis

A disadvantage of our method is that we must build the (10] ; _
for discrete and dense-time systems=M'99, volume 1708

entire state space before we can synthesise a scheduler for .

L . . of LNCS Toulouse, France, Sept. 1999. Springer-Verlag.
an a.pphcatlon' We plan .to adqress this problem in f_UtL.'re [11] R.J.van Glabbeek and W. P. Weijland. Branching time and
versions of our tools, whlch will perfprm the synthesis in abstraction in bisimulation semanticACM, 43(3), 1996.
an on-the-fly manner while constructing the state-space, asA E . IR |
for example was done i [10]. We also plan to study ways to xperimental Results . .
perform the synthesis symbolically, without explicitly con- ~ Table[] shows the results of the experiments with the
structing the state space graph. case study. The state-space construction and reduction have

In this article we focused on models instead of a partic- P€€N carried out using the CADP tofls SectionModel
ular programming language. Such models can be extracted*PStractions & Optimisations’presents the state-space re-
from programs using static analysis techniques. We indeeddUctions obtained at each step.indicates alimedandU

plan to develop such a model extraction for Java, so as to b Untimedmodel. SectiortSynthesis StepsShows how
able to schedule real-time Java programs. the model sizes change during the scheduler synthesis pro-

cess. The attribute “No Clocks” refers to the fact that the
References synthesised schedule“r does npt 9bserve the values of the
clocks. The column “Constraints” reports the number of
[1] K. Altisen, G. GRler, and J. Sifakis. Scheduler modeling constraintsappliedto the model, that is the number of con-
based on the controller synthesis paradig®eal-Time Sys-  straints synthesised in thgreviousstep(s). SectiofiQoS
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[2] G.C.Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elas- tg it different QoS policies. The first one uses the fixed pri-
tic SChedU”ng for flexible workload managementEEE Orlty User‘ > Refresher > W”ter . The second one
Trans. Computerss1(3):289-302, Mar. 2002. locally minimises the number of thread context switches,

[3] J. Gosling, B. Joy, and G. Steel€he Java Language Spec- : - . ey .
ification. Addison-Wesley, Reading, MA, USA. 1996, i)gdsslseoctmg the previously executing thread if it is still safe

[4] D. Isovic and G. Fohler. Efficient scheduling of sporadic,
aperiodic, and periodic tasks with complex constraints. In
IEEE RTSS’'000rlando, Florida, USA, Nov. 2000. Zhttp://www.inrialpes.fr/vasy/cadp/
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