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Abstract

We present a new scheduler architecture, which permits
adding QoS policies to the scheduling decisions. We also
present a new scheduling synthesis method which allows
a designer to obtain a safe scheduler for a particular ap-
plication. Our scheduler architecture and scheduler syn-
thesis method can be used for heterogeneous applications
where the tasks communicate through various synchronisa-
tion primitives. We present a prototype implementation of
this scheduler architecture and related mechanisms on top
of an open-source OS for embedded systems.

1. Introduction
Safety & mission-critical systems need to be of ex-

tremely high quality, due to the great dangers and the high
cost of their potential failure. For this reason, when they
are multi-threaded they must be guaranteed to be free of
deadlocks and all threads must be guaranteed to meet their
deadlines under all circumstances.

The current practice for avoiding deadlocks is to use the
immediate priority ceiling protocol (IPCP) [8] for the shar-
ing of non-preemptable resources. This approach has a cer-
tain number of disadvantages though. All the priority in-
heritance family of protocols are pessimistic in nature and,
therefore, can refuse access to a shared resource even when
there is no real danger of a deadlock at the current situa-
tion. Additionally, in order to apply the IPCP, the designer
of the system must choose a set of priorities for all the tasks
in the system. Furthermore, for each shared resource the
designer must identify the threads which use it, in order to
assign a priority to that resource (i.e., theceiling priority of
the resource). More importantly, however, the IPCPcannot
on its own support tasks which synchronise using monitors
and communicate using condition variables, as for exam-
ple is done in JAVA [3]. In such cases one should split tasks,
which means that the complexity of what the designers have
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to do in order to use IPCP is quite high. Worse yet, not all
cases of communication through condition variables can be
translated according to these rules, since there can be tasks
which wait on a condition variable while still holding some
resource locked. These tasks cannot be split since the un-
derlying assumptions of the IPCPclearly demand that tasks
finish executing without holding any resources. Therefore,
it is not straightforward how one can use the IPCP with a
language such asR-T JAVA [9].

Besides, the methods currently used do not allow de-
signers to easily extend them for incorporating QoS to the
scheduler decisions. Being able to extend a scheduler with
QoS characteristics could allow us to experiment with ways
to minimise energy consumption, or further increase the
speed of the system, by minimising, for example, the num-
ber of context switches. An example of this can be found in
[2] where the authors present a dynamic scheduling method
which also treats the QoS aspect of the system. However, in
this work the authors consider a fixed task model where all
tasks are periodic and do not consider deadlock situations
or the communication aspect of the system.

In the following, we present a method for synthesising
QoS extendibleandsafeschedulers following the controller
synthesis paradigm and continuing previous work at Ver-
imag [1]. We start in section 2 by presenting the overall
architecture of the scheduler. Then, in section 3 we present
the model of the systems we consider and in section 4 the
particular method we use for the synthesis of the scheduler.
In section 5 we present a prototype implementation of our
scheduler on top of a real operating system and we conclude
in section 6.

2. Scheduler Architecture

We consider a set of threads synchronising through mon-
itors and communicating through condition variables. All
threads and shared objects are created at the initialisation
phase. We only consider applications executing on a single
processor for the moment. The architecture of the sched-
ulers we synthesise consists of two three-layered stacks, as

mailto:Christos.Kloukinas@imag.fr
mailto:Sergio.Yovine@imag.fr


shown in Figure 1.
The left stack is responsible for selecting an application

thread for execution. The right stack is responsible for se-
lecting an application thread for the reception of a notifica-
tion. This stack allows the scheduler to control the commu-
nication aspect of the system. Being able to control which
thread will be notified for a particular event is something
that other scheduling policies like the PCP do not offer,
since they concentrate only on the selection of threads for
execution.

After one of the scheduler stacks is finished, it passes
control to an underlyingR-T OSwhich provides low-level
kernel mechanisms. Such mechanisms include the ability to
create, suspend and resume an application thread, as well as
the ability to create, set and disable alarms for future events
(e.g., arrival of next period or the timeout of awaitTimed).

2.1. Controlling the Currently Executing Thread
The left stack takes control of the system when the

application calls one ofmonitorEnter , monitorExit ,
waitForPeriod, wait and waitTimed, or when an alarm
expires. In these cases, it must choose one of the avail-
able threads as the thread which should next be run on the
processor. It does this in three steps, each one performed at
a different layer.

In the first layer, referred to as theReady-Execsched-
uler, it calculates the set of threadsRexec which are ready
to execute without directly blocking due to mutual exclu-
sion. That is, it examines whether an application thread will
try to enter a monitor which is already occupied by another
thread, if it is chosen as the next thread to execute. Having
calculated the setRexec, this layer passes it to the next layer.

The Safe-Execscheduler layer is responsible for calcu-
lating the subsetSexec of Rexec, consisting of those threads
that cansafelyexecute. Safety here refers both to deadlock
freedom (i.e., entering a monitor would not cause a dead-
lock later on), as well as, to meeting the timing constraints
of the different threads (i.e., choosing a thread for execu-
tion will not delay another thread enough to make it miss its
deadline).

TheSafe-Execlayer passes the setSexec to the third layer
QoS-Exec, which calculates the setQexec ⊆ Sexec, consist-
ing of thesafethreads which respect the QoS requirements.

2.2. Controlling the Notified Thread
The right stack is passed control when the application

calls notify or notifyAll . The reason for this is that the
threads which will be notified (if any) cannot ever be se-
lected for execution. This is because they will immedi-
ately try to re-enter the monitor after being notified and thus
get blocked by the notifier (which is already in the moni-
tor). Nevertheless, when a thread notifies a condition vari-
able, then we can control which among the threads waiting

for the notification should receive the event. Indeed, lan-
guages (like JAVA [3]) which provide the monitor construct,
or thread libraries (like POSIX threads [6]) which offer it to
languages which do not provide it, leave this pointunspec-
ified, allowing each implementation to choose the thread to
be notified as it convenes it the best.

The top layerReady-Notifcalculates the setRnotif of
threads waiting on the condition variable being notified.
The apparent cases where we cannot effect any control
on the system are three. First, the case where no thread
waits on the condition variable being notified. Second, the
case where only one thread waits on the condition variable.
Third, the case where the notifying thread does anotifyAll ,
in which case we are obliged to notify all the threads wait-
ing on the condition variable. In these cases, the right stack
of the scheduler does not make any control decision, but
simplychanges the PCof all threads waiting on the current
notification, that is, the threads belonging to the setRnotif ,
to mark them as notified. Otherwise, the top layer passes
the setRnotif to the middle layerSafe-Notif, which calcu-
lates the subsetSnotif of Rnotif consisting of those threads
which, if notified, will not cause the system to enter into a
deadlock state or cause some other thread to miss its dead-
line (i.e., they are safe). Finally, theSafe-Notiflayer passes
theSnotif set to the bottomQoS-Notif layer, which calcu-
lates the subsetQnotif of Snotif , consisting of the threads
which we can safely notify and also respect the QoS prop-
erties of the application. TheQoS-Notif layer is also re-
sponsible for choosing one of the threads inQnotif as the
recipient of the current notification and marking it as noti-
fied by changing itsPC.

2.3. QoS Policies

By incorporating a layer for QoS in the scheduler, we of-
fer anextendiblemechanism for providing additional prop-
erties to the system. We allow the QoS policies to use the
same information which is available to the scheduler. That
is, the QoS layer has access to theprogram counters (PC)of
the threads, thecurrently executing thread (TExec), as well
as the value of thesystem clock (CSystem).

The complexity of the QoS layer is controlled by the ap-
plication designer. In choosing a QoS policy (or policies,
since these are composable) the designer can balance be-
tween the execution time and extra memory space needed
by the policy and the gains to the overall system quality the
particular policy can offer. A QoS policy is, for example,
thelocal minimisation of context switchesin order to speed-
up the execution. This policy can be implemented quite eas-
ily, since all one needs to examine is whether the currently
executing threadTExec is in the setSexec of threads which
are safe to execute next. If this is the case, then we can let it
continue its execution, by setting the setQexec equal to the
singleton{TExec}. This particular policy has another ad-
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Figure 1. A three-layered scheduler architecture

vantage: by decreasing the number of context switches, we
also decrease the cache misses of the application, since now
there are fewer points in the execution where the threads
compete for the cache, potentially flushing each other’s data
out of it. This can helpdecrease the energy consumptionof
the system, since a cache miss can lead to two main memory
accesses, which are known to be quite demanding with re-
spect to energy [7]. In fact, since a cache reads and flushes
one cache lineat a time (i.e., multiple consecutive mem-
ory addresses) the benefits can be even greater, both with
respect to energy consumption and execution speed.

3. System Model

The model of the system we construct is the parallel
composition of an automaton which is responsible for ad-
vancing time and firing the alarms, one automaton for each
of the application threads and two more automata, for the
QoS-Execand theQoS-Notifscheduler layers respectively.
The automaton of time and the automata of the applica-
tion threads perform a finite number of actions and then
block, letting the scheduler automata respond. The actions
of the time and application automata beinguncontrollable,
the onlycontrollableactions are those of the two scheduler
automata. Thus, our model can be seen as a two player
game with the scheduler automata on one side (i.e., the con-
troller) and the time and application thread automata on the
other (i.e., the plant). In this game, the automata related

to the application simulate the locking and unlocking of
resources, as well as, the waiting and notification on con-
dition variables. The computations performed by the ap-
plication threads are simulated just by their minimum and
maximum execution times. Each statements of an applica-
tion thread (wheres is one ofmonitorEnter , monitorExit ,
wait, waitTimed, waitForPeriod, a conditional or a com-
putation) is modelled by a separate automaton state and a
transition from it to the next statement position (@s′) which
is taken when the statements can be executed. The only
exception to this rule is the case of thewait andwaitTimed
statements. These statements are effectively modelled by
two states; the first one models the release of the mutex
associated with the condition variable on which we wait
and the second one models the attempt of the thread to re-
acquire the mutex, once it has been notified.The advance-
ment of time is the responsibility of a single automaton (see
Figure 2-a) which, in addition, enables transitions in the ap-
plication automata which correspond to timeouts, such as in
the case of awaitTimed or awaitForPeriod. This automa-
ton is also responsible for advancing the local thread clocks,
that is, the clocks which model the time spent by threads in
computations (and in waiting when doing awaitTimed).
These clocks are set to zero at the beginning of a compu-
tation by a thread and are incremented alongside with the
global time, until the duration of the computation is over
(or the timeout of thewaitTimed has expired). The two
automata for theQoS-ExecandQoS-Notifscheduler layers
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Figure 2. Time & Scheduler automata

are passed control as described in sub-sections 2.1 and 2.2
and decide which of the application automata should be al-
lowed to execute next or be notified of an event. These au-
tomata are comprised of a single state andn+1 transitions,
wheren is the number of application threads (the additional
transition being for theidle thread). A transition of these
automata selects one of the threads for execution (resp. for
notification). It is guarded by a predicate which asserts that
the corresponding thread belongs to theQexec (resp.Qnotif )
set (see Figure 2-b). The transition choosing the idle thread
asserts that the rest of the threads are not safe to execute
(resp. no thread waits to be notified on the current event).

To summarise, the state in our model comprises of:(i) a
program counter (PCi) for each of the application threads,
(ii) a local clock (Ci) for each thread which is used for their
computations and the timeouts if they execute awaitTimed,
(iii) a global clock (CSystemi) for modelling the periods
of each periodic thread,(iv) a variable (TExec) holding
the currently executing thread,(v) two boolean variables
(ExecSchedEnabled& Notif SchedEnabled) for control-
ling whether it is one of the scheduler automata (and which
of them), or the time (when they are both true) or the
time and application automata (when they are both false)
which should execute, and(vi) the booleanvariables of
the application threads used in conditionals which aresig-
nificant 1 with respect to the use of resources and com-
munication of events. Our model goes through three dif-
ferent modes of execution, as shown in Figure 3. In
the “Time Only” mode (whereExecSchedEnabled =
Notif SchedEnabled = true) the time automaton is the
sole automaton enabled in the system and it can fire one
or more alarms, if any is enabled. If an alarm is fired then
the execution mode changes to “Schedulers Only” (where

1We performslicingof the original code to identify these variables.
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Figure 3. Model execution modes

ExecSchedEnabled= ¬Notif SchedEnabled), so that our
scheduler can treat the alarm. If there is no alarm to be fired
then the execution mode changes to “Time and Application”
(where ExecSchedEnabled = Notif SchedEnabled =
false). At this mode, both the time automaton and the au-
tomata of the application are enabled. If the time automaton
gets to execute first, then a tick (i.e., a time step) is per-
formed and we pass back to the “Time Only” mode, so as
to check if an alarm is now enabled. If it is one of the ap-
plication automata which gets to execute first, then it exe-
cutes until it needs to perform an action which causes re-
scheduling, in which case it passes control to the schedulers
(i.e., the mode now becomes “Schedulers Only”). If the
application automaton needs to execute a time guarded ac-
tion (i.e., a computation), then it blocks, allowing time to
advance.

As an example, let us consider the model shown in Fig-
ure 4. Here, the application consists of three threads, one of
which is aperiodicone (theUser ) and twoaperiodicones
(theWriter and theRefresher ). One should note that
theWriter and theRefresher are continually enabled
aperiodic threads and do not have any deadlines directly as-
sociated with them.

4. Scheduler Synthesis
In order to synthesise theSafe-Execand Safe-Notif

scheduler layers, we first construct the set of reachable
states and, thus, identify the deadlocks. These are the states
where the application threads are deadlocked, or the states
where some thread has missed its deadline (since in that
case we block the system explicitly). The existence of these
states indicates that the predicate we are currently using to
describe the setSafe-Exec(resp.Safe-Notif) needs to be
constrained even further. This predicate starts with the value
of true, thus accepting initially all threads in the setReady-
Exec(resp.Ready-Notif) as safe. Having obtained the dead-
locked states, we do a backwards traversal of the whole state
space starting from the deadlocked states, until we reach a
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(Clock variables are omitted for readability – each

computation is annotated with its duration interval. )

state which corresponds to a choice of one of the sched-
uler automata. There, we identify the choiceTExec = ti
which allowed the path leading to a deadlock state(s) and
create a new constraint for the layerSafe-Exec(resp.Safe-
Notif). This constraint is constructed by changing the set
Sexec (resp.Snotif ) to be:

S ′
exec(

−−−→state) = Sexec(
−−−→state) \ {ti}

If at some point we find thatS ′
exec(

−−−→state) is equal to the
empty set, then we add the current state to the set of dead-
locked states and continue the synthesis procedure.

4.1. State Space Reduction & Application Analysis
Even though the basic idea of synthesising theSafe-

Execand Safe-Notif scheduler layers is simple, it is evi-
dent that in practice it suffers from the state explosion prob-
lem. Therefore, it is imperative that we use techniques to
minimise the size of the state space. Altisenet al. [1] pro-
posed to constrain the system with a high level policy (i.e.,
FIFO scheduling, EDF scheduling,etc.) the idea being that
this will constrain enough the system to allow us to con-
struct the entire (constrained) state space of it. However,
this method can sometimes over-constrain the system and
remove all possible paths which would allow us to avoid
the unsafe states. Besides, it is not always clear how one
can apply policies such as EDF, RMA , etc. when the ap-
plication consists of heterogeneous threads. Our method

consists of synthesising schedulers for successively more
detailed models, adding thus complexity to a model only
when we have already calculated how we can constrain the
more abstract one. The scheduler synthesis is performed in
two major steps. In the first one, we examine theuntimed
model of the system and search for constraints which can
guarantee theabsence of deadlocks. In the second one, we
re-introduce time into the model and after constraining it for
avoiding deadlocks, we search for those constraints which
can guarantee thatall threads meet their deadlines.

4.2. Deadlock Avoidance
Examining the untimed model of the system first, has

the disadvantage that some of the deadlocks we identify are
not possible in reality, due to the existing timing relations.
On the other hand, adding time to a model significantly in-
creases its size and thus renders the analysis and synthesis
a lot more difficult. Thus, searching for deadlocks in the
untimed model allows us to examine a much smaller search
space and thus allows us to attack larger systems. For in-
stance, the untimed model of the application shown in Fig-
ure 4 is 97% smaller than the timed one and it allowed us
to discover 8 constraints which can help us avoid all the
10 deadlocks caused by the use of shared resources. More
importantly, finding and removingall deadlocks in the un-
timed model means that the application islogically correct
and allows a designer to experiment with different underly-
ing platforms and algorithms for implementing the applica-
tion computations.

4.3. Guaranteeing Deadlines
Having found all the potential deadlocks in the system,

we add the synthesisedSexec andSnotif scheduler sets ob-
tained so far to the timed version of the initial model, in or-
der to search for thetimelinessconstraints, which can guar-
antee that all threads will meet their deadlines. In order to
make the problem more tractable, our synthesis algorithm
works in three steps.

Safety-preserving abstraction Not all time instances are
visible when the scheduler automata take control during the
execution of the system. That is, there are certain states of
a system where the only event allowed is the advancement
of time. In such cases, we do not really gain anything by
explicitly constructing the complete sequence of all the dif-
ferent time steps. Instead, we can jump directly to the last
state of this sequence, where the time has advanced enough
to allow some other event to occur. This state space re-
duction can be effectively obtained through thebranching
bisimulation equivalence (bbe) reduction[11], which elim-
inates “unobservable” actions (in our case the Tick action)
but only when doing so preserves the branching structure
of processes. The preservation of the branching structure of



the application is crucial for us, since the synthesis of the
scheduler depends on it for calculating the states where a
controllable action can help avoid taking a path which leads
to an undesired state. Given a set of equivalent states un-
der thebbe reduction, we elect as a representative of this
set the state which has the maximum global clock value. In
other words, in thebbereduced system, our scheduler takes
its decisions at the latest moment possible. For the appli-
cation shown in Figure 4 we obtain a 74% reduction of the
state-space.

Non Preemptable Threads We then consider that the ap-
plication threads cannot bepreemptedwhile they are com-
puting. The non-preemption hypothesis reduces the state
space, since it removes all the cases where the execution
of a thread is suspended by an interrupt (e.g., for starting
a new period of some other thread). In the application of
Figure 4 the reduction obtained by not allowing preemption
is 40% when applied on the initial timed model and 80%
when applied to thebbe reduced timed model. Once we
can indeed safely schedule the system under the hypothe-
sis that threads are never preempted, then we can use the
constraints obtained during this step toreduce even further
the state space that we have to construct and analyse when
we do allow threads to be preempted. Indeed, for the ap-
plication of Figure 4, we can reduce the state space by an
additional 10% with the 30 constraints we construct during
this step.

The non-preemption of threads is easily added to our
modelsthrough the use of a QoS policythat forbids the
schedulers from choosing a thread for execution, when an-
other thread is already in a state where it is performing a
computation :

Qexec(
−−−→state) =
{t . t ∈ Sexec(

−−−→state) ∧ ¬∃t′ 6= t . computes(t′)}

However, we cannot safely schedule all systems when
we do not allow threads to be preempted. This means that
for these systems we will not obtain any scheduling con-
straints and, therefore, will be obliged to examine the large,
unconstrained state space of the timed model.

Allowing Preemption Having performed the scheduler
synthesis for the case where threads are not preemptable,
we add the additional constraints we synthesised (if any) to
the model and perform the scheduler synthesis once more,
this time allowing threads to be preempted. This is the fi-
nal step of the scheduler synthesis, which provides us with
the whole set of constraints that we must impose on the ap-
plication in order to guarantee that it will be deadlock free
and that it will meet all the deadlines of the threads. For
the application of Figure 4, this last synthesis step produces

an additional 18 constraints and thus we can safely sched-
ule this application with a total of 56 constraints, avoiding
both deadlocks and missed deadlines. These 56 constraints
are all part of theSafe-Execlayer, since in this application
there is always at most one thread waiting to be notified on
a particular condition variable and thus we cannot control
the communication aspect of the application. This finalsafe
timed model has a state space which is 96% smaller than
the original, unsafe one.

4.4. Not Observing Clocks
Having synthesised a safe scheduler for an application

does not necessarily mean that we can implement it easily
on a usualR-T OSthough. The difficulty of implementing
it as is, arises from the fact that the constraints we produce
during the synthesis use the state of the system to decide
what are the safe choices at each point during the execu-
tion and, therefore, also make reference to the values of the
local clocks of the threads. However, these clocks do not
really exist in the application but were only introduced as a
way to model the computations of the threads. Introducing
them means that we will have to add for each thread an ad-
ditional timer object and reset and activate (resp. reset and
deactivate) the timer before (resp. after) each computation
and read its value when making a scheduling decision. As
using timers may substantially increase the execution time
of the scheduler, we investigate the possibility of synthesis-
ing a clock-free one, which only examines thePCs of the
threads. This will make the scheduler itself faster to exe-
cute, since in order to make a scheduling decision it now
only needs to examine then values of the differentPCs and
not the2n+1 values of thePCs, the local thread clocks and
the global clock.

On the other hand, removing the clocks from the con-
straints can introduce states where the scheduler will take
the wrong decision and cause a thread to miss its deadline.
These states are those where a scheduler gets called at the
same configuration of threadPCs but at different time in-
stances. Since the time instance (and therefore the clock
values) are different, the safe setsSexec of these states can
be different themselves as well. When we decide to not
observe the clock values while scheduling, we are effec-
tively unable to differentiate among these different sets and
all these states becomeequivalent, as far as our scheduler
is concerned. Therefore, if we wish our scheduler to al-
ways make a decision which issafe, then theSexec set of
thisequivalence classof states should be theintersectionof
theSexec sets of the states which belong to the same equiv-
alence class.

Sexec(
−−−→classj) =

⋂
statei∈classj

Sexec(
−−−→statei)

Sometimes, theSexec(
−−−→classj) set will be empty, if the



scheduler decisions at the members of this equivalence class
were conflicting. When encountering such an equivalence
class whoseSexec set is the empty set, we need to add its
members to the set of deadlocked states and continue the
synthesis algorithm, until we find a set of constraints which
helps us to avoid the whole class.

The example of Figure 4 is indeed an application which
can be scheduled without observing the clock values. How-
ever, in some cases it may be impossible to safely schedule
the application without taking into account the values of the
clocks. Thus, there is a trade-off between schedulabity and
execution cost of the scheduler.

4.5. Other QoS Policies
Once we have synthesised a safe scheduler, we can com-

pose it with other QoS policies to choose among the safe
threads those which better realise the QoS requirements of
the system. However, it can always be the case that some of
these policies can cause the application to miss a deadline,
by choosing no thread for execution (i.e., setting theQexec

set to be the empty set). For this reason we must verify them
and change them if they can indeed cause the application to
miss a deadline. Since the verification is performed on the
safely schedulableapplication, the size of the state space we
must explore is quite small. For the example application of
Figure 4, we verified two additional QoS policies. The first
is a fixed priority QoS policy, whereUser > Refresher
> Writer when they aresafeand it is effectively veri-
fied in a model 98.4% smaller than the original timed one.
The second is a QoS which (locally) minimises the number
of context switches and it is verified on a model which is
slightly even smaller (a 98.8% reduction).

5. Scheduler Implementation
In this section we present the implementation of our

scheduler over anOS for embedded systems. Our current
implementation does not make use of priorities, mutexes or
condition variables of the underlying system. It rather uses
thread suspension and resumptionto simulate these mecha-
nisms, which allows us to provide an implementation of our
approach even on operating systems which have a very lim-
ited number of priorities or have no priorities whatsoever.

The actions which activate our scheduler in order to
elect a new thread to execute (monitorEnter , monitorExit ,
waitForPeriod, wait andwaitTimed, and the expiration of
a timeout), are implemented similarly. First, theOSsched-
uler is locked so as to avoid interrupt handlers from chang-
ing the system state. Then our scheduler examines the cur-
rent state of the system,i.e., thePCs of all the threads, and
decides which should be the next thread to execute, by using
the synthesised setsRexec & Sexec and the user-provided
setQexec. Finally, our scheduler suspends all threads, re-
sumes the one it has chosen for execution and returns after

having unlocked theOSscheduler, thus re-allowing inter-
rupts to occur. The only case which is treated differently, is
the case where an interrupt arrives to signal a timeout (ei-
ther for awaitTimed or awaitForPeriod). In this case, the
associated interrupt handler changes thePC of the respec-
tive thread to mark it as no longer waiting and, then, sus-
pends the currently executing thread (if any) and resumes
the thread that was waiting. Once this thread starts to exe-
cute, it calls our scheduler in its turn, to assure that it can
safely continue. If this is the case, our scheduler will allow
it to execute, otherwise it will suspend it and resume another
thread. It is easy to see that if more than one interrupts arrive
at the same time, our scheduler will be called consecutively
more than once. However, we proved that there can be no
more than 3 consecutive calls to our scheduler ever.

The actions which do not cause our scheduler to elect a
new thread for execution (notify and notifyAll ) are imple-
mented as follows. These actions make use of its right stack,
which deals with the communication aspects of the system.
When anotify occurs, the scheduler is called and it checks
whether there are any threads waiting on the event notified.
If so, it selects one of themusing theQnotif set, marks it
as notified and gives back the execution to the thread which
did thenotify .

We have implemented our architecture on top of
eCos [5], an open-sourceOS for embedded systems. We
run our test-bed application on a 330 MHz Pentium II ma-
chine usingsynthetic-Linuxas the execution platform of
eCos, which means thateCos and the application are run-
ning as a single Linux process. Our experiments showed
that the application did indeed honour its deadlines as ex-
pected. Besides, the measurements showed an average ex-
ecution time of our scheduler of the order of 0.66 micro-
seconds. Given the fact that our prototype implementation
is not particularly optimised for speed, this is a rather small
execution cost.

6. Conclusions
We have presented a new methodology for building

application-driven schedulers for heterogeneous systems
and a prototype implementation of our scheduler using an
open-sourceOSfor embedded systems. Our work continues
the one described in [1], where a thorough discussion about
related approaches is presented. Applications comprising
of heterogeneous thread types have also been considered in
[4], without taking into account thread interdependencies
due to the sharing of non-preemptable resources.

The advantages of our synthesis method is that we can
handle larger models than if we would have tried to attack
the original timed version of the model at once. In addition,
following our method a designer is better able to understand
the behaviour of a system, since we successively drive him
through: (i) the states which cause a deadlock later on,(ii)



Table 1. Experimental results
Model kind States Red. Trans. Red. Dead. Red. Constraints

Model Abstractions & Optimisations

T original (i.e., Preemption) 45470 0.00% 48786 0.00% 367 0.00% —
U 1352 97.03% 1645 96.63% 10 97.28% —
T No Preemption 27266 40.04% 29118 40.31% 134 63.49% —
T Preemption, bbe reduction 11437 74.85% 13648 72.02% 1 99.73% —
T No Preemption, bbe reduction 8648 80.98% 10038 79.42% 1 99.73% —

Synthesis Steps

U 1352 97.03% 1645 96.63% 10 97.28% 0
U, No Deadlocks 1200 97.36% 1451 97.03% 0 100.00% 8
T No Preemption, bbe reduction, No Deadlocks 8642 80.99% 10027 79.45% 1 99.73% 8
T No Preemption, bbe reduction, Safe 1542 96.61% 1668 96.58% 0 100.00% 38
T Preemption, bbe reduction, No Clocks 4640 89.80% 5532 88.66% 1 99.73% 38
T Preemption, bbe reduction, No Clocks, Safe 1593 96.50% 1740 96.43% 0 100.00% 56

QoS Policies(reduced with bbe)

T Safe, Fixed Priorities 728 98.40% 750 98.46% 0 100.00% 56
T Safe, Locally Min. Context Switches 549 98.79% 573 98.83% 0 100.00% 56

the states where a system is overloaded (and, therefore, he
needs to allow preemption of threads), and finally,(iii) the
states where the scheduler also needs to observe the values
of the local clocks measuring the duration of each compu-
tation of the threads. Our method can be applied to appli-
cations comprising of any mix of periodic, aperiodic,etc.
threads, which share non-preemptable system resources and
communicate through condition variables. Finally, the ro-
bustness of the synthesised scheduler with respect to the as-
sumed execution times of the computations can be verified
by enlarging the corresponding intervals. For example, this
allows checking for the case where computations take less
time than specified in the model.

A disadvantage of our method is that we must build the
entire state space before we can synthesise a scheduler for
an application. We plan to address this problem in future
versions of our tools, which will perform the synthesis in
an on-the-fly manner while constructing the state-space, as
for example was done in [10]. We also plan to study ways to
perform the synthesis symbolically, without explicitly con-
structing the state space graph.

In this article we focused on models instead of a partic-
ular programming language. Such models can be extracted
from programs using static analysis techniques. We indeed
plan to develop such a model extraction for Java, so as to be
able to schedule real-time Java programs.
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A. Experimental Results
Table 1 shows the results of the experiments with the

case study. The state-space construction and reduction have
been carried out using the CADP tools2. Section“Model
Abstractions & Optimisations”, presents the state-space re-
ductions obtained at each step.T indicates aTimedandU
an Untimedmodel. Section“Synthesis Steps”shows how
the model sizes change during the scheduler synthesis pro-
cess. The attribute “No Clocks” refers to the fact that the
synthesised scheduler does not observe the values of the
clocks. The column “Constraints” reports the number of
constraintsappliedto the model, that is the number of con-
straints synthesised in thepreviousstep(s). Section“QoS
Policies” shows the size of thesafemodel, when we apply
to it different QoS policies. The first one uses the fixed pri-
ority User > Refresher > Writer . The second one
locally minimises the number of thread context switches,
by selecting the previously executing thread if it is still safe
to do so.

2http://www.inrialpes.fr/vasy/cadp/
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